Science.gov

Sample records for cracking units tcc

  1. 40 CFR 63.1565 - What are my requirements for organic HAP emissions from catalytic cracking units?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... Pollutants for Petroleum Refineries: Catalytic Cracking Units, Catalytic Reforming Units, and Sulfur Recovery Units Catalytic Cracking Units, Catalytic Reforming Units, Sulfur Recovery Units, and Bypass Lines § 63... limits for organic HAP emissions from catalytic cracking units required in paragraphs (a)(1) and (2)...

  2. 40 CFR 63.1565 - What are my requirements for organic HAP emissions from catalytic cracking units?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... Pollutants for Petroleum Refineries: Catalytic Cracking Units, Catalytic Reforming Units, and Sulfur Recovery Units Catalytic Cracking Units, Catalytic Reforming Units, Sulfur Recovery Units, and Bypass Lines § 63... limits for organic HAP emissions from catalytic cracking units required in paragraphs (a)(1) and (2)...

  3. 40 CFR 63.1565 - What are my requirements for organic HAP emissions from catalytic cracking units?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Petroleum Refineries: Catalytic Cracking Units, Catalytic Reforming Units, and Sulfur Recovery Units Catalytic Cracking Units, Catalytic Reforming Units, Sulfur Recovery Units, and Bypass Lines § 63.1565 What... emissions from catalytic cracking units required in paragraphs (a)(1) and (2) of this section do not...

  4. 40 CFR 63.1565 - What are my requirements for organic HAP emissions from catalytic cracking units?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... Pollutants for Petroleum Refineries: Catalytic Cracking Units, Catalytic Reforming Units, and Sulfur Recovery Units Catalytic Cracking Units, Catalytic Reforming Units, Sulfur Recovery Units, and Bypass Lines § 63... limits for organic HAP emissions from catalytic cracking units required in paragraphs (a)(1) and (2)...

  5. 40 CFR 63.1565 - What are my requirements for organic HAP emissions from catalytic cracking units?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... Petroleum Refineries: Catalytic Cracking Units, Catalytic Reforming Units, and Sulfur Recovery Units Catalytic Cracking Units, Catalytic Reforming Units, Sulfur Recovery Units, and Bypass Lines § 63.1565 What... emissions from catalytic cracking units required in paragraphs (a)(1) and (2) of this section do not...

  6. Publ 945, avoiding environmental cracking in amine units, first edition, August 1990

    SciTech Connect

    Not Available

    1990-01-01

    This publication covers problems with environmental cracking of carbon steel in amine units. It will provide guidelines for fabrication, inspection, and repair to help ensure safe, reliable operation.

  7. Analysis of cracked core spray piping from the Quad Cities Unit 2 boiling water reactor

    SciTech Connect

    Diercks, D.R.; Gaitonde, S.M.

    1982-09-01

    The results of a metallurgical analysis of leaking cracks detected in the core spray injection piping of Commonwealth Edison Company's Quad Cities Unit 2 Boiling Water Reactor are described. The cracks were present in a welded 105/sup 0/ elbow assembly in the line, and were found to be caused by intergranular stress corrosion cracking associated with the probable presence of dissolved oxygen in the reactor cooling water and the presence of grain boundary sensitization and local residual stresses induced by welding. The failure is unusual in several respects, including the very large number of cracks (approximately 40) present in the failed component, the axial orientation of the cracks, and the fact that at least one crack completely penetrated a circumferential weld. Virtually all of the cracking occurred in forged material, and the microstructural evidence presented suggests that the orientation of the cracks was influenced by the presence of axially banded delta ferrite in the microstructure of the forged components.

  8. 40 CFR 63.1564 - What are my requirements for metal HAP emissions from catalytic cracking units?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... applies to you. If your catalytic cracking unit is subject to the NSPS for PM in § 60.102 of this chapter, you must meet the emission limitations for NSPS units. If your catalytic cracking unit isn't subject... Table 3 of this subpart. (2) Conduct a performance test for each catalytic cracking unit not subject...

  9. NSTS Orbiter auxiliary power unit turbine wheel cracking risk assessment

    NASA Technical Reports Server (NTRS)

    Cruse, T. A.; Mcclung, R. C.; Torng, T. Y.

    1992-01-01

    The present investigation of turbine-wheel cracking problems in the hydrazine-fueled APU turbine wheel of the Space Shuttle Orbiter's Main Engines has indicated the efficacy of systematic probabilistic risk assessment in flight certification and safety resolution. Nevertheless, real crack-initiation and propagation problems do not lend themselves to purely analytical studies. The high-cycle fatigue problem is noted to generally be unsuited to probabilistic modeling, due to its extremely high degree of intrinsic scatter. In the case treated, the cracks appear to trend toward crack arrest in a low cycle fatigue mode, due to a detuning of the resonance model.

  10. Crack

    MedlinePlus

    ... sound the drug makes as it heats up. Short-Term Effects Crack is a stimulant that is absorbed through ... quickly, after about 5 or 10 minutes. Other short-term effects include: higher heart rate, breathing rate, blood pressure , ...

  11. Influence of feedstock quality on operation of 1A/1M commercial catalytic cracking unit

    SciTech Connect

    Pryanikov, E.I.; Abdullaev, M.A.; Aleksanyan, A.P.; Guseinov, A.M.; Mkrtychev, A.A.; Rustamov, I.I.

    1983-03-01

    This article summarizes and correlates the results from the operation of the unit in 2-stage cracking, in which the fresh feed is cracked in the reactor with rising cocurrent flow of catalyst, and the bottom product from the distillation tower (cut distilling above 195/sup 0/C) is cracked in the reactor with rising semicocurrent flow of catalyst. The presence of heavy aromatic hydrocarbons in the feed has a significant effect on the yields of naphtha and stabilizer heat cut. With increasing amounts of the light cuts in the feed, the yield of desired products and the conversion level decreased.

  12. Production of Tetraquark State Tcc at B-Factories

    NASA Astrophysics Data System (ADS)

    Reyima, Rashidin

    2013-12-01

    We study production of the tetraquark state Tcc via virtual photon at the B-factories in the QCD factorization framework. We predict the cross section of tetraquark state production in the leading order at the B-factories.

  13. 40 CFR Table 8 to Subpart Uuu of... - Organic HAP Emission Limits for Catalytic Cracking Units

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 13 2012-07-01 2012-07-01 false Organic HAP Emission Limits for Catalytic Cracking Units 8 Table 8 to Subpart UUU of Part 63 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) NATIONAL EMISSION STANDARDS FOR HAZARDOUS AIR POLLUTANTS FOR SOURCE CATEGORIES (CONTINUED)...

  14. 40 CFR Table 8 to Subpart Uuu of... - Organic HAP Emission Limits for Catalytic Cracking Units

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 12 2010-07-01 2010-07-01 true Organic HAP Emission Limits for Catalytic Cracking Units 8 Table 8 to Subpart UUU of Part 63 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) NATIONAL EMISSION STANDARDS FOR HAZARDOUS AIR POLLUTANTS FOR SOURCE CATEGORIES National...

  15. 40 CFR Table 1 to Subpart Uuu of... - Metal HAP Emission Limits for Catalytic Cracking Units

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 12 2011-07-01 2009-07-01 true Metal HAP Emission Limits for Catalytic Cracking Units 1 Table 1 to Subpart UUU of Part 63 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) NATIONAL EMISSION STANDARDS FOR HAZARDOUS AIR POLLUTANTS FOR SOURCE CATEGORIES National...

  16. 40 CFR Table 1 to Subpart Uuu of... - Metal HAP Emission Limits for Catalytic Cracking Units

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 13 2014-07-01 2014-07-01 false Metal HAP Emission Limits for Catalytic Cracking Units 1 Table 1 to Subpart UUU of Part 63 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) NATIONAL EMISSION STANDARDS FOR HAZARDOUS AIR POLLUTANTS FOR SOURCE CATEGORIES (CONTINUED)...

  17. 40 CFR Table 1 to Subpart Uuu of... - Metal HAP Emission Limits for Catalytic Cracking Units

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 13 2013-07-01 2012-07-01 true Metal HAP Emission Limits for Catalytic Cracking Units 1 Table 1 to Subpart UUU of Part 63 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) NATIONAL EMISSION STANDARDS FOR HAZARDOUS AIR POLLUTANTS FOR SOURCE CATEGORIES (CONTINUED)...

  18. Crocodile head scales are not developmental units but emerge from physical cracking.

    PubMed

    Milinkovitch, Michel C; Manukyan, Liana; Debry, Adrien; Di-Poï, Nicolas; Martin, Samuel; Singh, Daljit; Lambert, Dominique; Zwicker, Matthias

    2013-01-01

    Various lineages of amniotes display keratinized skin appendages (feathers, hairs, and scales) that differentiate in the embryo from genetically controlled developmental units whose spatial organization is patterned by reaction-diffusion mechanisms (RDMs). We show that, contrary to skin appendages in other amniotes (as well as body scales in crocodiles), face and jaws scales of crocodiles are random polygonal domains of highly keratinized skin, rather than genetically controlled elements, and emerge from a physical self-organizing stochastic process distinct from RDMs: cracking of the developing skin in a stress field. We suggest that the rapid growth of the crocodile embryonic facial and jaw skeleton, combined with the development of a very keratinized skin, generates the mechanical stress that causes cracking. PMID:23196908

  19. Economics for iso-olefin production using the fluid catalytic cracking unit

    SciTech Connect

    McClung, R.G.; Witoshkin, A.; Bogert, D.C.; Winkler, W.S.

    1993-12-31

    The Clean Air Act of 1990 requires use of oxygenates in some gasolines to improve both CO and hydrocarbon auto tailpipe emissions. Various oxygenates are currently being used by the refining industry. For the fully integrated refinery having a fluid catalytic cracking unit, the most commonly used oxygenates are methyl tertiary butyl ether (MTBE) and tertiary amyl ether (TAME). The FCC unit produces the isobutylene and iso-amylases need for manufacture of both MTBE and TAME. The economics for an assumed refinery processing scheme for several FCC cases are examined giving estimates of income and investments for each case. Up to one-third of the total gasoline pool can be made in reformulated gasoline using TAME and MTBE with the FCC unit as the sole source of feedstock. This processing route is much more economical than the alternative scheme using butane isomerization/iosbutane dehydrogenation.

  20. Evaluation of the vent header crack at Edwin 1. Hatch Unit No. 2 Nuclear Power Station

    SciTech Connect

    Czajkowski, C.J.

    1985-01-01

    A metallurgical failure analysis was performed on pieces of the cracked vent header pipe from the Edwin I. Hatch Unit 2 Nuclear Power Plant. The analysis consisted of optical microscopy, chemical analysis, mechanical Charpy impact testing and fractography. The general conclusions drawn from this analysis were: (1) the material of the vent header met the mechanical and chemical properties of ASTM A516 Gr. 70 material and that the microstructures were consistent with this material; (2) the fracture faces of the cracked pipe were predominantly brittle in appearance with no evidence of fatigue contribution; (3) the NDTT (Nil Ductility Transition Temperature) for this material is approximately -60/sup 0/F (-51/sup 0/C); and (4) the fact that the material's NDTT is significantly out of the normal operating range of the pipe suggests that an impingement of low temperature nitrogen (caused by a faulty torus inerting system) induced a thermal shock in the pipe which, when cooled below its NDTT, cracked in a brittle manner.

  1. Charmed tetraquarks Tcc and Tcs from dynamical lattice QCD simulations

    NASA Astrophysics Data System (ADS)

    Ikeda, Yoichi; Charron, Bruno; Aoki, Sinya; Doi, Takumi; Hatsuda, Tetsuo; Inoue, Takashi; Ishii, Noriyoshi; Murano, Keiko; Nemura, Hidekatsu; Sasaki, Kenji

    2014-02-01

    Charmed tetraquarks Tcc=(ccubardbar) and Tcs=(csubardbar) are studied through the S-wave meson-meson interactions, D-D, Kbar-D, D-D* and Kbar-D*, on the basis of the (2+1)-flavor lattice QCD simulations with the pion mass mπ≃410, 570 and 700 MeV. For the charm quark, the relativistic heavy quark action is employed to treat its dynamics on the lattice. Using the HAL QCD method, we extract the S-wave potentials in lattice QCD simulations, from which the meson-meson scattering phase shifts are calculated. The phase shifts in the isospin triplet (I=1) channels indicate repulsive interactions, while those in the I=0 channels suggest attraction, growing as mπ decreases. This is particularly prominent in the Tcc (JP=1+,I=0) channel, though neither bound state nor resonance are found in the range mπ=410-700 MeV. We make a qualitative comparison of our results with the phenomenological diquark picture.

  2. Analysis of cracked core spray injection line piping from the Quad Cities Units 1 and 2 boiling water reactors

    SciTech Connect

    Diercks, D.R.

    1983-12-01

    Elbow assemblies and adjacent piping from the loops A and B core spray injection lines of Quad Cities Units 1 and 2 Boiling Water Reactors have been examined in order to determine the nature and causes of coolant leakages and flaw indications detected during hydrostatic tests and subsequent ultrasonic inspections. The elbow assemblies were found to contain multiple intergranular cracks in the weld heat-affected zones. The cracking was predominantly axial in orientation in the forged elbow and wedge components, whereas mixed axial and circumferential cracking was seen in the wrought piping pieces. In at least two instances, axial cracks completely penetrated the circumferential weld joining adjacent components. Based upon the observations made in the present study, the failures were attributed to intergranular stress corrosion cracking caused by the weld-induced sensitized microstructure and residual stresses present; dissolved oxygen in the reactor coolant apparently served as the corrosive species. The predominantly axial orientation of the cracks present in the forged components is believed to be related to the banded microstructure present in these components. The metallographic studies reported are supplemented by x-radiography, chemical analysis and mechanical test results, determinations of the degree of sensitization present, and measurements of weld metal delta ferrite content.

  3. Analysis of a turbine rotor containing a transverse crack at Oak Creek Unit 17

    NASA Technical Reports Server (NTRS)

    Rogers, G. W.; Rau, C. A., Jr.; Kottke, J. J.; Menning, R. H.

    1982-01-01

    Transient increases in one, two and three per revolution vibration characteristics of a low pressure steam turbine were observed during steam temperature reduction operations. Vibration and fracture mechanics analyses suggested the presence of a transverse shaft crack which was eventually identified by ultrasonic inspection and confirmed by destructive sectioning. Signature analyses of vibration data recorded over a two-year period prior to crack identification are correlated with fatigue crack growth, which occurred intermittently during transient temperature decreases. The apparent increased response of the rotor to vibration is due to asymmetric stiffness changes introduced by the growing transverse crack. The vibration response is predicted to increase with increasing crack depths in excess of 10% of the shaft diameter. Fracture mechanics analyses predict that fatigue crack growth occurred during periods of steam temperature decrease, when high surface tensile stresses are present. These same transient thermal stresses are shown to have retarded and prevented subsequent fatigue crack growth during steady operation.

  4. Powder Cocaine and Crack Use in the United States: An Examination of Risk for Arrest and Socioeconomic Disparities in Use

    PubMed Central

    Palamar, Joseph J.; Davies, Shelby; Ompad, Danielle C.; Cleland, Charles M.; Weitzman, Michael

    2015-01-01

    Background In light of the current sentencing disparity (18:1) between crack and powder cocaine possession in the United States, we examined socioeconomic correlates of use of each, and relations between use and arrest, to determine who may be at highest risk for arrest and imprisonment. Methods We conducted secondary data analyses on the National Survey on Drug Use and Health, 2009–2012. Data were analyzed for adults age ≥18 to determine associations between use and arrest. Socioeconomic correlates of lifetime and annual use of powder cocaine and of crack were delineated using multivariable logistic regression and correlates of frequency of recent use were examined using generalized negative binomial regression. Results Crack users were at higher risk than powder cocaine users for reporting a lifetime arrest or multiple recent arrests. Racial minorities were at low risk for powder cocaine use and Hispanics were at low risk for crack use. Blacks were at increased risk for lifetime and recent crack use, but not when controlling for other socioeconomic variables. However, blacks who did use either powder cocaine or crack tended to use at higher frequencies. Higher education and higher family income were negatively associated with crack use although these factors were sometimes risk factors for powder cocaine use. Conclusions Crack users are at higher risk of arrest and tend to be of lower socioeconomic status compared to powder cocaine users. These findings can inform US Congress as they review the proposed Smarter Sentencing Act of 2014, which would help eliminate cocaine-related sentencing disparities. PMID:25702933

  5. 40 CFR Table 13 to Subpart Uuu of... - Continuous Compliance With Organic HAP Emission Limits for Catalytic Cracking Units

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 13 2012-07-01 2012-07-01 false Continuous Compliance With Organic HAP Emission Limits for Catalytic Cracking Units 13 Table 13 to Subpart UUU of Part 63 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) NATIONAL EMISSION STANDARDS FOR HAZARDOUS AIR POLLUTANTS FOR...

  6. 40 CFR Table 12 to Subpart Uuu of... - Initial Compliance With Organic HAP Emission Limits for Catalytic Cracking Units

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 13 2012-07-01 2012-07-01 false Initial Compliance With Organic HAP Emission Limits for Catalytic Cracking Units 12 Table 12 to Subpart UUU of Part 63 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) NATIONAL EMISSION STANDARDS FOR HAZARDOUS AIR POLLUTANTS FOR...

  7. 40 CFR Table 9 to Subpart Uuu of... - Operating Limits for Organic HAP Emissions From Catalytic Cracking Units

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 12 2010-07-01 2010-07-01 true Operating Limits for Organic HAP Emissions From Catalytic Cracking Units 9 Table 9 to Subpart UUU of Part 63 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) NATIONAL EMISSION STANDARDS FOR HAZARDOUS AIR POLLUTANTS FOR SOURCE...

  8. 40 CFR Table 13 to Subpart Uuu of... - Continuous Compliance With Organic HAP Emission Limits for Catalytic Cracking Units

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... demonstrate continuous compliance by . . . 1. Subject to the NSPS for carbon monoxide (CO) in 40 CFR 60.103 CO emissions from your catalyst regenerator vent or CO boiler serving the catalytic cracking unit must not... ppmv (dry basis). 2. Not subject to the NSPS for CO in 40 CFR 60.103 i. CO emissions from your...

  9. 40 CFR Table 12 to Subpart Uuu of... - Initial Compliance With Organic HAP Emission Limits for Catalytic Cracking Units

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... the NSPS for carbon monoxide (CO) in 40 CFR 60.103 CO emissions from your catalyst regenerator vent or CO boiler serving the catalytic cracking unit must not exceed 500 ppmv (dry basis). You have already... initial compliance. 2. Not subject to the NSPS for CO in 40 CFR 60.103 a. CO emissions from your...

  10. 40 CFR Table 10 to Subpart Uuu of... - Continuous Monitoring Systems for Organic HAP Emissions From Catalytic Cracking Units

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 13 2012-07-01 2012-07-01 false Continuous Monitoring Systems for Organic HAP Emissions From Catalytic Cracking Units 10 Table 10 to Subpart UUU of Part 63 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) NATIONAL EMISSION STANDARDS FOR HAZARDOUS AIR POLLUTANTS FOR...

  11. 40 CFR Table 6 to Subpart Uuu of... - Continuous Compliance With Metal HAP Emission Limits for Catalytic Cracking Units

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 13 2013-07-01 2012-07-01 true Continuous Compliance With Metal HAP Emission Limits for Catalytic Cracking Units 6 Table 6 to Subpart UUU of Part 63 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) NATIONAL EMISSION STANDARDS FOR HAZARDOUS AIR POLLUTANTS FOR...

  12. 40 CFR Table 6 to Subpart Uuu of... - Continuous Compliance With Metal HAP Emission Limits for Catalytic Cracking Units

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 12 2011-07-01 2009-07-01 true Continuous Compliance With Metal HAP Emission Limits for Catalytic Cracking Units 6 Table 6 to Subpart UUU of Part 63 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) NATIONAL EMISSION STANDARDS FOR HAZARDOUS AIR POLLUTANTS FOR...

  13. 40 CFR Table 6 to Subpart Uuu of... - Continuous Compliance With Metal HAP Emission Limits for Catalytic Cracking Units

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 13 2014-07-01 2014-07-01 false Continuous Compliance With Metal HAP Emission Limits for Catalytic Cracking Units 6 Table 6 to Subpart UUU of Part 63 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) NATIONAL EMISSION STANDARDS FOR HAZARDOUS AIR POLLUTANTS FOR...

  14. 40 CFR Table 5 to Subpart Uuu of... - Initial Compliance With Metal HAP Emission Limits for Catalytic Cracking Units

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 13 2013-07-01 2012-07-01 true Initial Compliance With Metal HAP Emission Limits for Catalytic Cracking Units 5 Table 5 to Subpart UUU of Part 63 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) NATIONAL EMISSION STANDARDS FOR HAZARDOUS AIR POLLUTANTS FOR SOURCE...

  15. 40 CFR Table 5 to Subpart Uuu of... - Initial Compliance With Metal HAP Emission Limits for Catalytic Cracking Units

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 13 2014-07-01 2014-07-01 false Initial Compliance With Metal HAP Emission Limits for Catalytic Cracking Units 5 Table 5 to Subpart UUU of Part 63 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) NATIONAL EMISSION STANDARDS FOR HAZARDOUS AIR POLLUTANTS FOR SOURCE...

  16. 40 CFR Table 5 to Subpart Uuu of... - Initial Compliance With Metal HAP Emission Limits for Catalytic Cracking Units

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 12 2011-07-01 2009-07-01 true Initial Compliance With Metal HAP Emission Limits for Catalytic Cracking Units 5 Table 5 to Subpart UUU of Part 63 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) NATIONAL EMISSION STANDARDS FOR HAZARDOUS AIR POLLUTANTS FOR SOURCE...

  17. 40 CFR Table 12 to Subpart Uuu of... - Initial Compliance With Organic HAP Emission Limits for Catalytic Cracking Units

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... . . . 1. Subject to the NSPS for carbon monoxide (CO) in 40 CFR 60.103 CO emissions from your catalyst... demonstrate initial compliance. 2. Not subject to the NSPS for CO in 40 CFR 60.103 a. CO emissions from your catalyst regenerator vent or CO boiler serving the catalytic cracking unit must not exceed 500 ppmv...

  18. 40 CFR Table 13 to Subpart Uuu of... - Continuous Compliance With Organic HAP Emission Limits for Catalytic Cracking Units

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... monoxide (CO) in 40 CFR 60.103 CO emissions from your catalyst regenerator vent or CO boiler serving the... CO concentration at or below 500 ppmv (dry basis). 2. Not subject to the NSPS for CO in 40 CFR 60.103... catalytic cracking unit . . . Subject to this emission limit for your catalyst regenerator vent . . . If...

  19. 40 CFR Table 13 to Subpart Uuu of... - Continuous Compliance With Organic HAP Emission Limits for Catalytic Cracking Units

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... monoxide (CO) in 40 CFR 60.103 CO emissions from your catalyst regenerator vent or CO boiler serving the... CO concentration at or below 500 ppmv (dry basis). 2. Not subject to the NSPS for CO in 40 CFR 60.103... catalytic cracking unit . . . Subject to this emission limit for your catalyst regenerator vent . . . If...

  20. Measured physicochemical characteristics and biosolids-borne concentrations of the antimicrobial Triclocarban (TCC).

    PubMed

    Snyder, Elizabeth Hodges; O'Connor, George A; McAvoy, Drew C

    2010-06-01

    Triclocarban (TCC) is an active ingredient in antibacterial bar soaps, a common constituent of domestic wastewater, and the subject of recent criticism by consumer advocate groups and academic researchers alike. Activated sludge treatment readily removes TCC from the liquid waste stream and concentrates the antimicrobial in the solid fraction, which is often processed to produce biosolids intended for land application. Greater than half of the biosolids generated in the US are land-applied, resulting in a systematic release of biosolids-borne TCC into the terrestrial and, potentially, the aquatic environment. Multiple data gaps in the TCC literature (including basic physicochemical properties and biosolids concentrations) prevent an accurate, quantitative risk assessment of biosolids-borne TCC. We utilized the USEPA Office of Prevention, Pesticides, and Toxic Substances (OPPTS) harmonized test guidelines to measure TCC solubility and log K(ow) values as 0.045 mg L(-1) and 3.5, respectively. The measured physicochemical 2 properties differed from computer model predictions. The mean concentration of TCC in 23 biosolids representative of multiple sludge processing methods was 19+/-11 mg kg(-1). PMID:20385403

  1. Structural, electronic, superconducting and mechanical properties of ReC and TcC

    SciTech Connect

    Kavitha, M.; Priyanga, G. Sudha; Rajeswarapalanichamy, R. Santhosh, M.

    2015-06-24

    The structural, electronic, superconducting and mechanical properties of ReC and TcC are investigated using density functional theory calculations. The lattice constants, bulk modulus, and the density of states are obtained. The calculated lattice parameters are in good agreement with the available results. The density of states reveals that ReC and TcC exhibit metallic behavior at ambient condition. A pressure-induced structural phase transition is observed in both materials.

  2. Structural, electronic, superconducting and mechanical properties of ReC and TcC

    NASA Astrophysics Data System (ADS)

    Kavitha, M.; Priyanga, G. Sudha; Rajeswarapalanichamy, R.; Santhosh, M.

    2015-06-01

    The structural, electronic, superconducting and mechanical properties of ReC and TcC are investigated using density functional theory calculations. The lattice constants, bulk modulus, and the density of states are obtained. The calculated lattice parameters are in good agreement with the available results. The density of states reveals that ReC and TcC exhibit metallic behavior at ambient condition. A pressure-induced structural phase transition is observed in both materials.

  3. 40 CFR Table 8 to Subpart Uuu of... - Organic HAP Emission Limits for Catalytic Cracking Units

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... limit for each catalyst regenerator vent . . . 1. Subject to the NSPS for carbon monoxide (CO) in 40 CFR 60.103 CO emissions from the catalyst regenerator vent or CO boiler serving the catalytic cracking... in 40 CFR 60.103 a. CO emissions from the catalyst regenerator vent or CO boiler serving...

  4. Crack Cocaine Education in the Public Schools: A Treatment Center and the Schools Unite.

    ERIC Educational Resources Information Center

    Rohrer, Glenn E.; And Others

    1987-01-01

    Describes crack cocaine education project conducted by Highlands County, Florida School System in cooperation with Florida Alcoholism Treatment Center which used 10 patients being treated for cocaine addiction to present drug information to students. Results showed statistically significant increases in self-esteem of patients following program.…

  5. Percolation Cooling of the Three Mile Island Unit 2 Lower Head by Way of Thermal Cracking and Gap Formation

    SciTech Connect

    Thomsen, K.L.

    2002-01-15

    Two partial models have been developed to elucidate the Three Mile Island Unit 2 lower head coolability by water percolation from above into the thermally cracking debris bed and into a gap between the debris and the wall. The bulk permeability of the cracked top crust is estimated based on simple fracture mechanics and application of Poiseuille's law to the fractures. The gap is considered as an abstraction representing an initially rugged interface, which probably expanded by thermal deformation and cracking in connection with the water ingress. The coupled flow and heat conduction problem for the top crust is solved in slab geometry based on the two-phase Darcy equations together with quasi-steady mass and energy conservation equations. The resulting water penetration depth is in good agreement with the depth of the so-called loose debris bed. The lower-head and bottom-crust problem is treated analogously by a two-dimensional axisymmetric model. The notion of a gap is maintained as a useful concept in the flow analysis. Simulations show that a central hot spot with a peak wall temperature of 1075 to 1100 deg. C can be obtained, but the quenching rates are not satisfactory. It is concluded that a three-dimensional model with an additional mechanism to explain the sudden water ingress to the hot spot center would be more appropriate.

  6. Crack dancing in the United Kingdom: apropos a video case presentation.

    PubMed

    Kamath, Shankar; Bajaj, Nin

    2007-06-15

    We report an adult patient presenting with choreiform movements 4 days after a large intravenous dose of cocaine. These movements were transitory and they normalized a week after admission. We believe this to be the first video case of acute chorea secondary to cocaine--a phenomenon popularly known as "crack dancing. " Cocaine abuse is associated with a wide range of movement disorders, including dystonia and exacerbation of Tourette's syndrome, multifocal tics, opsoclonus-myoclonus, choreiform movements, and stereotyped behavior known as "punding." Transient choreiform movements with a typical duration of 2 to 6 days are recognized by cocaine abusers themselves as crack dancing, but are infrequently reported. We present a video report of a patient with cocaine dependency and choreiform movements that normalized within a week of admission. PMID:17415801

  7. Debye temperature, thermal expansion, and heat capacity of TcC up to 100 GPa

    SciTech Connect

    Song, T.; Ma, Q.; Tian, J.H.; Liu, X.B.; Ouyang, Y.H.; Zhang, C.L.; Su, W.F.

    2015-01-15

    Highlights: • A number of thermodynamic properties of rocksalt TcC are investigated for the first time. • The quasi-harmonic Debye model is applied to take into account the thermal effect. • The pressure and temperature up to about 100 GPa and 3000 K, respectively. - Abstract: Debye temperature, thermal expansion coefficient, and heat capacity of ideal stoichiometric TcC in the rocksalt structure have been studied systematically by using ab initio plane-wave pseudopotential density functional theory method within the generalized gradient approximation. Through the quasi-harmonic Debye model, in which the phononic effects are considered, the dependences of Debye temperature, thermal expansion coefficient, constant-volume heat capacity, and constant-pressure heat capacity on pressure and temperature are successfully predicted. All the thermodynamic properties of TcC with rocksalt phase have been predicted in the entire temperature range from 300 to 3000 K and pressure up to 100 GPa.

  8. First-principles prediction of the equation of state for TcC with rocksalt structure

    NASA Astrophysics Data System (ADS)

    Sun, Xiao-Wei; Chu, Yan-Dong; Liu, Zi-Jiang; Song, Ting; Tian, Jun-Hong; Wei, Xiao-Ping

    2014-10-01

    The equation of state of TcC with rocksalt structure is investigated by means of first-principles density functional theory calculations combined with the quasi-harmonic Debye model in which the phononic effects are considered. Particular attention is paid to the predictions of the compressibility, the isothermal bulk modulus and its first pressure derivative which play a central role in the formulation of approximate equations of state for the first time. The properties of TcC with rocksalt structure are summarized in the pressure range of 0-80 GPa and the temperature up to 2500 K.

  9. Investigation of intergranular stress corrosion cracking in the fuel pool at Three Mile Island Unit 1

    SciTech Connect

    Czajkowski, C.J.

    1985-01-01

    An intergranular stress corrosion cracking failure of 304 stainless steel pipe in 2000 ppM B as H/sub 3/BO/sub 3/ + H/sub 2/O at 100/sup 0/C has been investigated. Constant extension rate testing has produced an intergranular type failure in material in air. Chemical analysis was performed on both the base metal and weld material, in addition to fractography, EPR testing and optical microscopy in discerning the mode of failure. Various effects of Cl/sup -/, O/sub 2/, and MnS are discussed. The results have indicated that the cause of failure was the severe sensitization coupled with probable contamination by S and possibly by Cl ions.

  10. Should anyone be riding to glory on the now-descending limb of the crack-cocaine epidemic curve in the United States?1

    PubMed Central

    Parker, Maria A.; Anthony, James C.

    2014-01-01

    Background Many pre-clinical and clinical researchers do not appreciate the recent decline in United States (US) population-level incidence of crack-cocaine smoking. At present, no more than about 200 young people start using crack-cocaine each day. Ten years ago, the corresponding estimated daily rate was 1,000. This short communication looks into these trends, surrounding evidence on this important public health topic, and checks whether duration-reducing treatment interventions might be responsible, versus selected alternatives. Methods Via analyses of standardized computer-assisted self-interview data from the US National Surveys on Drug Use and Health (NSDUH, 2002–2011; n>500,000), we evaluated change in incidence estimates, perceived difficulty to acquire crack, risk of using cocaine, treatment entries, and persistence once crack use has started. Results We draw attention to a marked overall decline in year-specific incidence rates for crack-cocaine smoking from 2002–2011, especially 2007–2011. There is some variation in estimates of difficulty to acquire crack (p<0.001) and observed risk of using cocaine among ‘at risk’ susceptibles (p<0.001), but no appreciable shifts in duration of crack smoking among active users (p>0.05) nor in proportion of crack users receiving treatment (p>0.05). Conclusions Changing epidemiology of crack-cocaine smoking may rest largely on reductions in newly incident use with no major direct effects due to US cocaine treatment, incarceration, or interdiction. Concurrently, we see quite modest declines in survey-based estimates of cocaine-attributed perceived risk and cocaine availability. As such, we posit that no specific US agency should claim it is ‘riding to glory’ on the descending limb of this epidemic curve. PMID:24629632

  11. Analysis of particle-particle interactions in fluidized catalytic cracking units: Effects of collisions, agglomeration, and vaporization

    SciTech Connect

    Kruis, F.E.; Terguer, V.; Lede, J.

    1996-12-31

    A theoretical background is developed for the understanding of the role of particulate interactions in three-phase reactors resulting from turbulent motion, with special application to the Fluid Catalytic Cracking unit. The characteristic times between two collisions in a mixture of catalyst particles and liquid droplets in a gas, the strength of aggregates and efficiency of particle collisions are discussed. A new model has been developed to describe the interaction process between a hot particle, e.g. a catalyst: particle, and a liquid droplet. The vaporization from the droplet surface results in a overpressure in the film around the droplet, thus preventing the droplets and catalysts particles touching each other (similar to the so-called Leidenfrost: phenomenon). A balance of the relevant forces in combination with the heat balance permits the calculation of both the time-dependent distance between the particle and the droplet and the diameter of the evaporating droplet. 10 refs.

  12. Risk assessment of land-applied biosolids-borne triclocarban (TCC).

    PubMed

    Snyder, Elizabeth Hodges; O'Connor, George A

    2013-01-01

    Triclocarban (TCC) is monitored under the USEPA High Production Volume (HPV) chemical program and is predominantly used as the active ingredient in select antibacterial bar soaps and other personal care products. The compound commonly occurs at parts-per-million concentrations in processed wastewater treatment residuals (i.e. biosolids), which are frequently land-applied as fertilizers and soil conditioners. Human and ecological risk assessment parameters measured by the authors in previous studies were integrated with existing data to perform a two-tiered human health and ecological risk assessment of land-applied biosolids-borne TCC. The 14 exposure pathways identified in the Part 503 Biosolids Rule were expanded, and conservative screening-level hazard quotients (HQ values) were first calculated to estimate risk to humans and a variety of terrestrial and aquatic organisms (Tier 1). The majority of biosolids-borne TCC exposure pathways resulted in no screening-level HQ values indicative of significant risks to exposed organisms (including humans), even under worst-case land application scenarios. The two pathways for which the conservative screening-level HQ values exceeded one (i.e. Pathway 10: biosolids➔soil➔soil organism➔predator, and Pathway 16: biosolids➔soil➔surface water➔aquatic organism) were then reexamined using modified parameters and scenarios (Tier 2). Adjusted HQ values remained greater than one for Exposure Pathway 10, with the exception of the final adjusted HQ values under a one-time 5 Mg ha(-1) (agronomic) biosolids loading rate scenario for the American woodcock (Scolopax minor) and short-tailed shrew (Blarina brevicauda). Results were used to prioritize recommendations for future biosolids-borne TCC research, which include additional measurements of toxicological effects and TCC concentrations in environmental matrices at the field level. PMID:23183124

  13. 40 CFR Table 11 to Subpart Uuu of... - Requirements for Performance Tests for Organic HAP Emissions From Catalytic Cracking Units Not...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 13 2012-07-01 2012-07-01 false Requirements for Performance Tests for Organic HAP Emissions From Catalytic Cracking Units Not Subject to New Source Performance Standard (NSPS) for Carbon Monoxide (CO) 11 Table 11 to Subpart UUU of Part 63 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED)...

  14. 40 CFR Table 7 to Subpart Uuu of... - Continuous Compliance With Operating Limits for Metal HAP Emissions From Catalytic Cracking Units

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 12 2011-07-01 2009-07-01 true Continuous Compliance With Operating Limits for Metal HAP Emissions From Catalytic Cracking Units 7 Table 7 to Subpart UUU of Part 63 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) NATIONAL EMISSION STANDARDS FOR HAZARDOUS AIR POLLUTANTS...

  15. 40 CFR Table 4 to Subpart Uuu of... - Requirements for Performance Tests for Metal HAP Emissions From Catalytic Cracking Units Not...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 13 2012-07-01 2012-07-01 false Requirements for Performance Tests for Metal HAP Emissions From Catalytic Cracking Units Not Subject to the New Source Performance Standard (NSPS) for Particulate Matter (PM) 4 Table 4 to Subpart UUU of Part 63 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED)...

  16. Robust regulation of temperature in reactor-regenerator fluid catalytic cracking units

    SciTech Connect

    Alvarez-Ramirez, J.; Aguilar, R.; Lopez-Isunza, F.

    1996-05-01

    FCC processes involve complex interactive dynamics which are difficult to operate and control as well as poorly known reaction kinetics. This work concerns the synthesis of temperature controllers for FCC units. The problem is addressed first for the case where perfect knowledge of the reaction kinetics is assumed, leading to an input-output linearizing state feedback. However, in most industrial FCC units, perfect knowledge of reaction kinetics and composition measurements is not available. To address the problem of robustness against uncertainties in the reaction kinetics, an adaptive model-based nonlinear controller with simplified reaction models is presented. The adaptive strategy makes use of estimates of uncertainties derived from calorimetric (energy) balances. The resulting controller is similar in form to standard input-output linearizing controllers and can be tuned analogously. Alternatively, the controller can be tuned using a single gain parameter and is computationally efficient. The performance of the closed-loop system and the controller design procedure are shown with simulations.

  17. Complete Transperitoneal Laparoscopic Nephroureterectomy in Circumcaval Ureter with Upper Tract TCC: Initial Case Report

    PubMed Central

    Chhabra, Jaspreet Singh; Mishra, Shashikant; Sudharsan, S.B.; Ganpule, Arvind P.; Sabnis, Ravindra B.

    2015-01-01

    Abstract Transitional-cell carcinoma (TCC) of the upper tract in a case of circumcaval ureter (CCU) is a rare entity. Laparoscopic transperitoneal nephroureterectomy in such case represents a unique challenge in the era of minimally invasive surgery. We report a case of complete transperitoneal laparoscopic nephroureterectomy with bladder cuff excision done for TCC in a case of CCU. This case report describes the first point of technique of the procedure done for this rare entity. A 38-year-old male patient underwent the procedure for high-grade TCC of right lower calix. The essential tenets of the procedure included performance of the technique in a manner contrary to the conventional nephroureterectomy. The case report describes the procedure in the following steps: management of lower ureter and bladder cuff followed upper tract procedure after transposition of bladder cuff posterior to inferior vena cava. The procedure was accomplished utilizing four ports and a 6 cm Pfannenstiel incision with operative time of 220 minutes and blood loss of 50 mL.

  18. Field dissipation and risk assessment of typical personal care products TCC, TCS, AHTN and HHCB in biosolid-amended soils.

    PubMed

    Chen, Feng; Ying, Guang-Guo; Ma, Yi-Bing; Chen, Zhi-Feng; Lai, Hua-Jie; Peng, Feng-Jiao

    2014-02-01

    The antimicrobial agents triclocarban (TCC) and triclosan (TCS) and synthetic musks AHTN (Tonalide) and HHCB (Galaxolide) are widely used in many personal care products. These compounds may release into the soil environment through biosolid application to agricultural land and potentially affect soil organisms. This paper aimed to investigate accumulation, dissipation and potential risks of TCC, TCS, AHTN and HHCB in biosolid-amended soils of the three field trial sites (Zhejiang, Hunan and Shandong) with three treatments (CK: control without biosolid application, T1: single biosolid application, T2: repeated biosolid application every year). The one-year monitoring results showed that biosolids application could lead to accumulation of these four chemicals in the biosolid-amended soils, with the residual concentrations in the following order: TCC>TCS>AHTN>HHCB. Dissipation of TCC, TCS, AHTN and HHCB in the biosolid-amended soils followed the first-order kinetics model. Half-lives for TCC, TCS, AHTN and HHCB under the field conditions of Shandong site were 191, 258, 336 and 900 days for T1, and 51, 106, 159 and 83 days for T2, respectively. Repeated applications of biosolid led to accumulation of these personal care products and result in higher ecological risks. Based on the residual levels in the trial sites and limited toxicity data, high risks to soil organisms are expected for TCC and TCS, while low-medium risks for AHTN and HHCB. PMID:24239829

  19. Corrosion cracking

    SciTech Connect

    Goel, V.S.

    1986-01-01

    Various papers on corrosion cracking are presented. The topics addressed include: unique case studies on hydrogen embrittlement failures in components used in aeronautical industry; analysis of subcritical cracking in a Ti-5Al-2.5Sn liquid hydrogen control valve; corrosion fatigue and stress corrosion cracking of 7475-T7351 aluminum alloy; effects of salt water environment and loading frequency on crack initiation in 7075-T7651 aluminum alloy and Ti-6Al-4V; stress corrosion cracking of 4340 steel in aircraft ignition starter residues. Also discussed are: stress corrosion cracking of a titanium alloy in a hydrogen-free environment; automation in corrosion fatigue crack growth rate measurements; the breaking load method, a new approach for assessing resistance to growth of early stage stress corrosion cracks; stress corrosion cracking properties of 2090 Al-Li alloy; repair welding of cracked free machining Invar 36; radial bore cracks in rotating disks.

  20. Relation between Tcc,bb and Xc,b from QCD

    NASA Astrophysics Data System (ADS)

    Dias, J. M.; Narison, S.; Navarra, F. S.; Nielsen, M.; Richard, J. M.

    2013-03-01

    We use double ratio of QCD (spectral) sum rules, to study the ratio masses of Tcc and X(3872) structures, assuming that they are described respectively by the DD* and D¯D* molecular currents. In this approach and within our approximation, we found that the masses of these two states are almost degenerated. In addition, if the observed Belle resonance X(3872) is a D¯D* molecule, then the DD* molecule should exists with approximately the same mass. We have studied an extension for the case including bottom quark. In this situation, our results indicates the same conclusion.

  1. Catalytic cracking process

    SciTech Connect

    Gladrow, E.M.; Winter, W.E.

    1980-04-29

    The octane number of a cracked naphtha can be significantly improved in a catalytic cracking unit, without significant decrease in naphtha yield, by maintaining certain critical concentrations of metals on the catalyst, suitably by blending or adding a heavy metals-containing component to the gas oil feed. Suitably, in a catalytic cracking process unit wherein a gas oil feed is cracked in a cracking reactor (Zone) at an elevated temperature in the presence of a cracking catalyst, the cracking catalyst is regenerated in a regenerator (Regeneration zone) by burning coke off the catalyst, and catalyst is circulated between the reactor and regenerator, sufficient of a metals-containing heavy feedstock is admixed, intermittantly or continuously, with the gas oil feed to deposit metals on said catalyst and raise the metals-content of said catalyst to a level of from about 1500 to about 6000 parts per million, preferably from about 2500 to about 4000 parts per million expressed as equivalent nickel, base the weight of the catalyst, and said metals level is maintained on the catalyst throughout the operation by withdrawing high metals-containing catalyst and adding low metals-containing catalyst to the regenerator.

  2. Triclosan (TCS) and Triclocarban (TCC) cause lifespan reduction and reproductive impairment through oxidative stress-mediated expression of the defensome in the monogonont rotifer (Brachionus koreanus).

    PubMed

    Han, Jeonghoon; Won, Eun-Ji; Hwang, Un-Ki; Kim, Il-Chan; Yim, Joung Han; Lee, Jae-Seong

    2016-01-01

    Triclosan (TCS) and Triclocarban (TCC) are used as antimicrobial agents and have been widely dispersed and detected in the marine environment. However, the toxicities of TCS and TCC have been poorly investigated in marine invertebrates. In this study, the effects of TCS and TCC on mortality, population growth, lifespan, and fecundity were examined in the monogonont rotifer (Brachionus koreanus) using cellular ROS levels, GST enzymatic activity, and gene expression of defensomes. The median lethal concentration (LC50) of TCS (393.1μg/L) and TCC (388.1μg/L) was also determined in the same species. In TCS- and TCC-exposed B. koreanus, growth retardation and reduced fecundity were observed and were shown to have a potentially deleterious effect on the life cycle of B. koreanus. In addition, time-dependent increases in ROS content (%) and GST enzymatic activity were shown in response to TCS and TCC exposure. Additionally, transcript levels of detoxification proteins (e.g., CYPs), antioxidant proteins (e.g., GST-sigma, Cu/ZnSOD, CAT), and heat shock proteins (Hsps) were modulated in response to TCS and TCC exposure over a 24h period. Our results indicate that TCS and TCC induce oxidative stress and transcriptional regulation of detoxification, antioxidant, and heat shock proteins, resulting in changes in lifespan and fecundity. PMID:27067728

  3. Cracking the Credit Hour

    ERIC Educational Resources Information Center

    Laitinen, Amy

    2012-01-01

    The basic currency of higher education--the credit hour--represents the root of many problems plaguing America's higher education system: the practice of measuring time rather than learning. "Cracking the Credit Hour" traces the history of this time-based unit, from the days of Andrew Carnegie to recent federal efforts to define a credit hour. If…

  4. Knuckle Cracking

    MedlinePlus

    ... older obese people. Question: Can cracking knuckles / joints lead to arthritis? Answer: There is no evidence of ... or damaged joints due to arthritis could potentially lead more easily to ligament injury or acute trauma ...

  5. Deposits of terminal complement complex (TCC) in muscularis mucosae and submucosal vessels in ulcerative colitis and Crohn's disease of the colon.

    PubMed Central

    Halstensen, T S; Mollnes, T E; Fausa, O; Brandtzaeg, P

    1989-01-01

    Extensively washed, ethanol fixed and paraffin embedded colonic specimens from 15 patients with ulcerative colitis (UC) and nine patients with Crohn's disease (CD) of the colon, ileal specimens from six patients with CD of the ileum, and histologically normal control specimens obtained from 10 patients operated for colonic carcinoma, were examined by immunohistochemistry with a monoclonal antibody specific for a neoepitope in the C9 part of the terminal complement complex (TCC). The submucosal blood vessels in inflammatory bowel disease (IBD) showed significantly more TCC positivity than the controls, and vascular TCC deposition was statistically related (p less than 0.001) to degree of inflammation. Five of the six ileal CD specimens contained likewise vascular TCC deposits. In addition, five UC specimens and one colonic CD specimen contained TCC-positive fibrils in the muscularis mucosae or submucosa. There was no significant difference in vascular TCC deposits between UC and CD. The results suggested that terminal complement activation takes place in the intestinal lesions of IBD. Images Fig. 1 Fig. 2 Fig. 3 PMID:2707635

  6. Transformation products and human metabolites of triclocarban and tricllosan in sewage sludge across the United States

    USGS Publications Warehouse

    Pycke, Benny F.G.; Roll, Isaac B.; Brownawell, Bruce J.; Kinney, Chad A.; Furlong, Edward T.; Kolpin, Dana W.; Halden, Rolf U.

    2014-01-01

    Removal of triclocarban (TCC) and triclosan (TCS) from wastewater is a function of adsorption, abiotic degradation, and microbial mineralization or transformation, reactions that are not currently controlled or optimized in the pollution control infrastructure of standard wastewater treatment. Here, we report on the levels of eight transformation products, human metabolites, and manufacturing byproducts of TCC and TCS in raw and treated sewage sludge. Two sample sets were studied: samples collected once from 14 wastewater treatment plants (WWTPs) representing nine states, and multiple samples collected from one WWTP monitored for 12 months. Time-course analysis of significant mass fluxes (α = 0.01) indicate that transformation of TCC (dechlorination) and TCS (methylation) occurred during sewage conveyance and treatment. Strong linear correlations were found between TCC and the human metabolite 2′-hydroxy-TCC (r = 0.84), and between the TCC-dechlorination products dichlorocarbanilide (DCC) and monochlorocarbanilide (r = 0.99). Mass ratios of DCC-to-TCC and of methyl-triclosan (MeTCS)-to-TCS, serving as indicators of transformation activity, revealed that transformation was widespread under different treatment regimes across the WWTPs sampled, though the degree of transformation varied significantly among study sites (α = 0.01). The analysis of sludge sampled before and after different unit operation steps (i.e., anaerobic digestion, sludge heat treatment, and sludge drying) yielded insights into the extent and location of TCC and TCS transformation. Results showed anaerobic digestion to be important for MeTCS transformation (37–74%), whereas its contribution to partial TCC dechlorination was limited (0.4–2.1%). This longitudinal and nationwide survey is the first to report the occurrence of transformation products, human metabolites, and manufacturing byproducts of TCC and TCS in sewage sludge.

  7. Transformation Products and Human Metabolites of Triclocarban and Triclosan in Sewage Sludge Across the United States

    PubMed Central

    2015-01-01

    Removal of triclocarban (TCC) and triclosan (TCS) from wastewater is a function of adsorption, abiotic degradation, and microbial mineralization or transformation, reactions that are not currently controlled or optimized in the pollution control infrastructure of standard wastewater treatment. Here, we report on the levels of eight transformation products, human metabolites, and manufacturing byproducts of TCC and TCS in raw and treated sewage sludge. Two sample sets were studied: samples collected once from 14 wastewater treatment plants (WWTPs) representing nine states, and multiple samples collected from one WWTP monitored for 12 months. Time-course analysis of significant mass fluxes (α = 0.01) indicate that transformation of TCC (dechlorination) and TCS (methylation) occurred during sewage conveyance and treatment. Strong linear correlations were found between TCC and the human metabolite 2′-hydroxy-TCC (r = 0.84), and between the TCC-dechlorination products dichlorocarbanilide (DCC) and monochlorocarbanilide (r = 0.99). Mass ratios of DCC-to-TCC and of methyl-triclosan (MeTCS)-to-TCS, serving as indicators of transformation activity, revealed that transformation was widespread under different treatment regimes across the WWTPs sampled, though the degree of transformation varied significantly among study sites (α = 0.01). The analysis of sludge sampled before and after different unit operation steps (i.e., anaerobic digestion, sludge heat treatment, and sludge drying) yielded insights into the extent and location of TCC and TCS transformation. Results showed anaerobic digestion to be important for MeTCS transformation (37–74%), whereas its contribution to partial TCC dechlorination was limited (0.4–2.1%). This longitudinal and nationwide survey is the first to report the occurrence of transformation products, human metabolites, and manufacturing byproducts of TCC and TCS in sewage sludge. PMID:24932693

  8. Transformation products and human metabolites of triclocarban and triclosan in sewage sludge across the United States.

    PubMed

    Pycke, Benny F G; Roll, Isaac B; Brownawell, Bruce J; Kinney, Chad A; Furlong, Edward T; Kolpin, Dana W; Halden, Rolf U

    2014-07-15

    Removal of triclocarban (TCC) and triclosan (TCS) from wastewater is a function of adsorption, abiotic degradation, and microbial mineralization or transformation, reactions that are not currently controlled or optimized in the pollution control infrastructure of standard wastewater treatment. Here, we report on the levels of eight transformation products, human metabolites, and manufacturing byproducts of TCC and TCS in raw and treated sewage sludge. Two sample sets were studied: samples collected once from 14 wastewater treatment plants (WWTPs) representing nine states, and multiple samples collected from one WWTP monitored for 12 months. Time-course analysis of significant mass fluxes (α=0.01) indicate that transformation of TCC (dechlorination) and TCS (methylation) occurred during sewage conveyance and treatment. Strong linear correlations were found between TCC and the human metabolite 2'-hydroxy-TCC (r=0.84), and between the TCC-dechlorination products dichlorocarbanilide (DCC) and monochlorocarbanilide (r=0.99). Mass ratios of DCC-to-TCC and of methyl-triclosan (MeTCS)-to-TCS, serving as indicators of transformation activity, revealed that transformation was widespread under different treatment regimes across the WWTPs sampled, though the degree of transformation varied significantly among study sites (α=0.01). The analysis of sludge sampled before and after different unit operation steps (i.e., anaerobic digestion, sludge heat treatment, and sludge drying) yielded insights into the extent and location of TCC and TCS transformation. Results showed anaerobic digestion to be important for MeTCS transformation (37-74%), whereas its contribution to partial TCC dechlorination was limited (0.4-2.1%). This longitudinal and nationwide survey is the first to report the occurrence of transformation products, human metabolites, and manufacturing byproducts of TCC and TCS in sewage sludge. PMID:24932693

  9. Cracking behavior of structural slab bridge decks

    NASA Astrophysics Data System (ADS)

    Baah, Prince

    Bridge deck cracking is a common problem throughout the United States, and it affects the durability and service life of concrete bridges. Several departments of transportation (DOTs) in the United States prefer using continuous three-span solid structural slab bridges without stringers over typical four-lane highways. Recent inspections of such bridges in Ohio revealed cracks as wide as 0.125 in. These measured crack widths are more than ten times the maximum limit recommended in ACI 224R-01 for bridge decks exposed to de-icing salts. Measurements using digital image correlation revealed that the cracks widened under truck loading, and in some cases, the cracks did not fully close after unloading. This dissertation includes details of an experimental investigation of the cracking behavior of structural concrete. Prism tests revealed that the concrete with epoxy-coated bars (ECB) develops the first crack at smaller loads, and develops larger crack widths compared to the corresponding specimens with uncoated (black) bars. Slab tests revealed that the slabs with longitudinal ECB developed first crack at smaller loads, exhibited wider cracks and a larger number of cracks, and failed at smaller ultimate loads compared to the corresponding test slabs with black bars. To develop a preventive measure, slabs with basalt and polypropylene fiber reinforced concrete were also included in the test program. These test slabs exhibited higher cracking loads, smaller crack widths, and higher ultimate loads at failure compared to the corresponding slab specimens without fibers. Merely satisfying the reinforcement spacing requirements given in AASHTO or ACI 318-11 is not adequate to limit cracking below the ACI 224R-01 recommended maximum limit, even though all the relevant design requirements are otherwise met. Addition of fiber to concrete without changing any steel reinforcing details is expected to reduce the severity and extent of cracking in reinforced concrete bridge decks.

  10. Crack tip deformation and fatigue crack growth

    NASA Technical Reports Server (NTRS)

    Liu, H.-W.

    1981-01-01

    Recent research on fatigue crack growth is summarized. Topics discussed include the use of the differential stress intensity factor to characterize crack tip deformation, the use of the unzipping model to study the growth of microcracks and the fatigue crack growth in a ferritic-martensitic steel, and the development of a model of fatige crack growth threshold. It is shown that in the case of small yielding, the differential stress intensity factor provides an adequate description of cyclic plastic deformation at the crack tip and correlates well with the crack growth rate. The unzipping model based on crack tip shear decohesion process is found to be in good agreement with the measured crack growth and striation spacing measurements. The proposed model of crack growth threshold gives correct predictions of the crack growth behavior in the near-threshold region.

  11. Influence of inorganic and organic additives on the crystal growth, properties and crystalline perfection of tris(thiourea)copper(I) chloride (TCC) crystals

    NASA Astrophysics Data System (ADS)

    Bhagavannarayana, G.; Kushwaha, S. K.; Parthiban, S.; Ajitha, G.; Meenakshisundaram, Subbiah

    2008-05-01

    The influence of inorganic Co(II) and organic (urea) additives on the properties and crystalline perfection of TCC single crystals grown at 30 °C by slow evaporation solution grown technique (SEST) is investigated. The stoichiometry of the as-grown anhydrous complex crystal was confirmed by elemental (C, H, N and S; CHNS) analysis. Incorporation of Co(II) into the crystal lattice is well confirmed by EDS and chemical tests. Powder XRD profiles of Co-TCC reveal slight changes in intensity patterns of the spectra. FT-IR studies, particularly for heavily Co(II)-doped TCC, reveal small vibrational changes. Second harmonic generation (SHG) studies reveal that TCC is NLO inactive and doping does not lead to any SHG. SEM reveals changes in surface morphology as a result of doping. Urea doping results in red shift in PL spectrum and it very much suggests the complex formation. The addition of low quantity of dopants into the crystal through the aqueous growth medium improves the crystalline perfection to a great extent as evidenced from high-resolution X-ray diffraction (HRXRD) studies. However, high dopant concentration leads to the formation of structural grain boundaries leading to deterioration of crystalline perfection. It appears that some part of the doped Co(II) occupies substitutional positions because of close atomic/ionic radii with that of the host metal. The interstitial site occupancy is predominant in the case of urea dopant.

  12. Chemolithoautotrophic arsenite oxidation by a thermophilic Anoxybacillus flavithermus strain TCC9-4 from a hot spring in Tengchong of Yunnan, China

    PubMed Central

    Jiang, Dawei; Li, Ping; Jiang, Zhou; Dai, Xinyue; Zhang, Rui; Wang, Yanhong; Guo, Qinghai; Wang, Yanxin

    2015-01-01

    A new facultative chemolithoautotrophic arsenite (AsIII)-oxidizing bacterium TCC9-4 was isolated from a hot spring microbial mat in Tengchong of Yunnan, China. This strain could grow with AsIII as an energy source, CO2–HCO3- as a carbon source and oxygen as the electron acceptor in a minimal salts medium. Under chemolithoautotrophic conditions, more than 90% of 100 mg/L AsIII could be oxidized by the strain TCC9-4 in 36 h. Temperature was an important environmental factor that strongly influenced the AsIII oxidation rate and AsIII oxidase (Aio) activity; the highest Aio activity was found at the temperature of 40∘C. Addition of 0.01% yeast extract enhanced the growth significantly, but delayed the AsIII oxidation. On the basis of 16S rRNA phylogenetic sequence analysis, strain TCC9-4 was identified as Anoxybacillus flavithermus. To our best knowledge, this is the first report of arsenic (As) oxidation by A. flavithermus. The Aio gene in TCC9-4 might be quite novel relative to currently known gene sequences. The results of this study expand our current understanding of microbially mediated As oxidation in hot springs. PMID:25999920

  13. Mechanics of fatigue crack closure

    NASA Technical Reports Server (NTRS)

    Newman, J. C., Jr. (Editor); Elber, Wolf (Editor)

    1988-01-01

    Papers are presented on plasticity induced crack closure, crack closure in fatigue crack growth, the dependence of crack closure on fatigue loading variables, and a procedure for standardizing crack closure levels. Also considered are a statistical approach to crack closure determination, the crack closure behavior of surface cracks under pure bending, closure measurements on short fatigue cracks, and crack closure under plane strain conditions. Other topics include fatigue crack closure behavior at high stress ratios, the use of acoustic waves for the characterization of closed fatigue cracks, and the influence of fatigue crack wake length and state of stress on crack closure.

  14. Crack, crack house sex, and HIV risk.

    PubMed

    Inciardi, J A

    1995-06-01

    Limited attention has been focused on HIV risk behaviors of crack smokers and their sex partners, yet there is evidence that the crack house and the crack-using life-style may be playing significant roles in the transmission of HIV and other sexually transmitted diseases. The purposes of this research were to study the attributes and patterns of "sex for crack" exchanges, particularly those that occurred in crack houses, and to assess their potential impact on the spread of HIV. Structured interviews were conducted with 17 men and 35 women in Miami, Florida, who were regular users of crack and who had exchanged sex for crack (or for money to buy crack) during the past 30 days. In addition, participant observation was conducted in 8 Miami crack houses. Interview and observational data suggest that individuals who exchange sex for crack do so with considerable frequency, and through a variety of sexual activities. Systematic data indicated that almost a third of the men and 89% of the women had had 100 or more sex partners during the 30-day period prior to study recruitment. Not only were sexual activities anonymous, extremely frequent, varied, uninhibited (often undertaken in public areas of crack houses), and with multiple partners but, in addition, condoms were not used during the majority of contacts. Of the 37 subjects who were tested for HIV and received their test results 31% of the men and 21% of the women were HIV seropositive. PMID:7611845

  15. Gear Crack Propagation Investigation

    NASA Technical Reports Server (NTRS)

    1995-01-01

    Reduced weight is a major design goal in aircraft power transmissions. Some gear designs incorporate thin rims to help meet this goal. Thin rims, however, may lead to bending fatigue cracks. These cracks may propagate through a gear tooth or into the gear rim. A crack that propagates through a tooth would probably not be catastrophic, and ample warning of a failure could be possible. On the other hand, a crack that propagates through the rim would be catastrophic. Such cracks could lead to disengagement of a rotor or propeller from an engine, loss of an aircraft, and fatalities. To help create and validate tools for the gear designer, the NASA Lewis Research Center performed in-house analytical and experimental studies to investigate the effect of rim thickness on gear-tooth crack propagation. Our goal was to determine whether cracks grew through gear teeth (benign failure mode) or through gear rims (catastrophic failure mode) for various rim thicknesses. In addition, we investigated the effect of rim thickness on crack propagation life. A finite-element-based computer program simulated gear-tooth crack propagation. The analysis used principles of linear elastic fracture mechanics, and quarter-point, triangular elements were used at the crack tip to represent the stress singularity. The program had an automated crack propagation option in which cracks were grown numerically via an automated remeshing scheme. Crack-tip stress-intensity factors were estimated to determine crack-propagation direction. Also, various fatigue crack growth models were used to estimate crack-propagation life. Experiments were performed in Lewis' Spur Gear Fatigue Rig to validate predicted crack propagation results. Gears with various backup ratios were tested to validate crack-path predictions. Also, test gears were installed with special crack-propagation gages in the tooth fillet region to measure bending-fatigue crack growth. From both predictions and tests, gears with backup ratios

  16. F-actin asymmetry and the endoplasmic reticulum-associated TCC-1 protein contribute to stereotypic spindle movements in the Caenorhabditis elegans embryo.

    PubMed

    Berends, Christian W H; Muñoz, Javier; Portegijs, Vincent; Schmidt, Ruben; Grigoriev, Ilya; Boxem, Mike; Akhmanova, Anna; Heck, Albert J R; van den Heuvel, Sander

    2013-07-01

    The microtubule spindle apparatus dictates the plane of cell cleavage in animal cells. During development, dividing cells control the position of the spindle to determine the size, location, and fate of daughter cells. Spindle positioning depends on pulling forces that act between the cell periphery and astral microtubules. This involves dynein recruitment to the cell cortex by a heterotrimeric G-protein α subunit in complex with a TPR-GoLoco motif protein (GPR-1/2, Pins, LGN) and coiled-coil protein (LIN-5, Mud, NuMA). In this study, we searched for additional factors that contribute to spindle positioning in the one-cell Caenorhabditis elegans embryo. We show that cortical actin is not needed for Gα-GPR-LIN-5 localization and pulling force generation. Instead, actin accumulation in the anterior actually reduces pulling forces, possibly by increasing cortical rigidity. Examining membrane-associated proteins that copurified with GOA-1 Gα, we found that the transmembrane and coiled-coil domain protein 1 (TCC-1) contributes to proper spindle movements. TCC-1 localizes to the endoplasmic reticulum membrane and interacts with UNC-116 kinesin-1 heavy chain in yeast two-hybrid assays. RNA interference of tcc-1 and unc-116 causes similar defects in meiotic spindle positioning, supporting the concept of TCC-1 acting with kinesin-1 in vivo. These results emphasize the contribution of membrane-associated and cortical proteins other than Gα-GPR-LIN-5 in balancing the pulling forces that position the spindle during asymmetric cell division. PMID:23699393

  17. F-actin asymmetry and the endoplasmic reticulum–associated TCC-1 protein contribute to stereotypic spindle movements in the Caenorhabditis elegans embryo

    PubMed Central

    Berends, Christian W. H.; Muñoz, Javier; Portegijs, Vincent; Schmidt, Ruben; Grigoriev, Ilya; Boxem, Mike; Akhmanova, Anna; Heck, Albert J. R.; van den Heuvel, Sander

    2013-01-01

    The microtubule spindle apparatus dictates the plane of cell cleavage in animal cells. During development, dividing cells control the position of the spindle to determine the size, location, and fate of daughter cells. Spindle positioning depends on pulling forces that act between the cell periphery and astral microtubules. This involves dynein recruitment to the cell cortex by a heterotrimeric G-protein α subunit in complex with a TPR-GoLoco motif protein (GPR-1/2, Pins, LGN) and coiled-coil protein (LIN-5, Mud, NuMA). In this study, we searched for additional factors that contribute to spindle positioning in the one-cell Caenorhabditis elegans embryo. We show that cortical actin is not needed for Gα–GPR–LIN-5 localization and pulling force generation. Instead, actin accumulation in the anterior actually reduces pulling forces, possibly by increasing cortical rigidity. Examining membrane-associated proteins that copurified with GOA-1 Gα, we found that the transmembrane and coiled-coil domain protein 1 (TCC-1) contributes to proper spindle movements. TCC-1 localizes to the endoplasmic reticulum membrane and interacts with UNC-116 kinesin-1 heavy chain in yeast two-hybrid assays. RNA interference of tcc-1 and unc-116 causes similar defects in meiotic spindle positioning, supporting the concept of TCC-1 acting with kinesin-1 in vivo. These results emphasize the contribution of membrane-associated and cortical proteins other than Gα–GPR–LIN-5 in balancing the pulling forces that position the spindle during asymmetric cell division. PMID:23699393

  18. Crack spectra analysis

    SciTech Connect

    Tiernan, M.

    1980-09-01

    Crack spectra derived from velocity data have been shown to exhibit systematics which reflect microstructural and textural differences between samples (Warren and Tiernan, 1980). Further research into both properties and information content of crack spectra have yielded the following: Spectral features are reproducible even at low pressures; certain observed spectral features may correspond to non-in-situ crack populations created during sample retrieval; the functional form of a crack spectra may be diagnostic of the sample's grain texture; hysteresis is observed in crack spectra between up and down pressure runs - it may be due to friction between the faces of closed crack populations.

  19. ''KN'' series cracking catalysts

    SciTech Connect

    Klapstov, V.F.; Khlebrikova, M.A.; Maslova, A.A.; Nefedov, B.K.

    1986-09-01

    The basic directions in improving high-activity zeolitic cracking catalysts at the present stage are improvements in the resistance to attrition and increases in the bulk density of the catalysts, along with a changeover to relatively waste-free catalyst manufacturing technology. Catalysts of the ''KN'' series have been synthesized recently with improved quality characteristics. Low-waste technology is used in manufacturing them. Data are presented which show that the KN catalysts are better than the other Soviet catalysts. The starting materials and reagents in preparing the KN catalysts are technical alumina, rare-earth element nitrates, a natural component (such as clay conforming to specification TU-21-25-146-75), sodium hydroxide, and granulated sodium silicate. The preparation of the KN catalysts is described and no silica gel is used in manufacturing the KN series catalyst, in contrast to the RSG-6Ts catalyst. The use of KN series catalysts in place of KMTsR in catalytic cracking units will result in an increase in the naphtha yield by at least 20% by weight, as well as a reduction of the catalyst consumption by a factor of 2-3. A changeover to the commerical production of this catalyst will make it possible to reduce saline waste by a factor of 8-10 and reduce the catalyst cost by a factor of 1.5-2.

  20. Stress analysis for structures with surface cracks

    NASA Technical Reports Server (NTRS)

    Bell, J. C.

    1978-01-01

    Two basic forms of analysis, one treating stresses around arbitrarily loaded circular cracks, the other treating stresses due to loads arbitrarily distributed on the surface of a half space, are united by a boundary-point least squares method to obtain analyses for stresses from surface cracks in places or bars. Calculations were for enough cases to show how effects from the crack vary with the depth-to-length ratio, the fractional penetration ratio, the obliquity of the load, and to some extent the fractional span ratio. The results include plots showing stress intensity factors, stress component distributions near the crack, and crack opening displacement patterns. Favorable comparisons are shown with two kinds of independent experiments, but the main method for confirming the results is by wide checking of overall satisfaction of boundary conditions, so that external confirmation is not essential. Principles involved in designing analyses which promote dependability of the results are proposed and illustrated.

  1. Gear crack propagation investigations

    NASA Technical Reports Server (NTRS)

    Lewicki, David G.; Ballarini, Roberto

    1996-01-01

    Analytical and experimental studies were performed to investigate the effect of gear rim thickness on crack propagation life. The FRANC (FRacture ANalysis Code) computer program was used to simulate crack propagation. The FRANC program used principles of linear elastic fracture mechanics, finite element modeling, and a unique re-meshing scheme to determine crack tip stress distributions, estimate stress intensity factors, and model crack propagation. Various fatigue crack growth models were used to estimate crack propagation life based on the calculated stress intensity factors. Experimental tests were performed in a gear fatigue rig to validate predicted crack propagation results. Test gears were installed with special crack propagation gages in the tooth fillet region to measure bending fatigue crack growth. Good correlation between predicted and measured crack growth was achieved when the fatigue crack closure concept was introduced into the analysis. As the gear rim thickness decreased, the compressive cyclic stress in the gear tooth fillet region increased. This retarded crack growth and increased the number of crack propagation cycles to failure.

  2. Cocaine (Coke, Crack) Facts

    MedlinePlus

    ... That People Abuse » Cocaine (Coke, Crack) Facts Cocaine (Coke, Crack) Facts Listen Cocaine is a white ... Version Download "My life was built around getting cocaine and getting high." Stacey is recovering from her ...

  3. Crack propagation in graphene

    NASA Astrophysics Data System (ADS)

    Budarapu, P. R.; Javvaji, B.; Sutrakar, V. K.; Roy Mahapatra, D.; Zi, G.; Rabczuk, T.

    2015-08-01

    The crack initiation and growth mechanisms in an 2D graphene lattice structure are studied based on molecular dynamics simulations. Crack growth in an initial edge crack model in the arm-chair and the zig-zag lattice configurations of graphene are considered. Influence of the time steps on the post yielding behaviour of graphene is studied. Based on the results, a time step of 0.1 fs is recommended for consistent and accurate simulation of crack propagation. Effect of temperature on the crack propagation in graphene is also studied, considering adiabatic and isothermal conditions. Total energy and stress fields are analyzed. A systematic study of the bond stretching and bond reorientation phenomena is performed, which shows that the crack propagates after significant bond elongation and rotation in graphene. Variation of the crack speed with the change in crack length is estimated.

  4. Short crack growth behavior

    SciTech Connect

    Sadananda, K.; Vasudevan, A.K.

    1997-12-01

    The authors have re-evaluated short crack growth behavior using concepts developed recently, and they show that these concepts provide a unified framework that can explain both short and long crack growth behavior without resorting to the crack closure effect. They consider that the behavior of long cracks, including the effects of load ratio, R, is fundamental. they had shown previously that, since fatigue is at least a two-parameter problem in that at least two load parameters are required for an unambiguous description, there are two critical driving forces required simultaneously for fatigue cracks to grow. In extending this analysis to the growth of short cracks, they reject the current notion of the lack of similitude for short cracks and express the similitude as a fundamental postulate that, for a given crack growth mechanism, equal crack tip driving forces result in equal crack growth rates. Short crack growth behavior confirms the concept that two parameters are required to define fatigue; consequently, for fatigue cracks to grow, two thresholds need to be satisfied simultaneously. The authors present examples from the literature to illustrate the concepts discussed.

  5. 40 CFR Table 4 to Subpart Uuu of... - Requirements for Performance Tests for Metal HAP Emissions From Catalytic Cracking Units Not...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    .... Measure PM emissions. Method 5B or 5F (40 CFR part 60, appendix A) to determine PM emissions and associated moisture content for units without wet scrubbers. Method 5B (40 CFR part 60, appendix A) to... (40 CFR part 60, appendix A). b. Compute Ni emission rate (lb/hr). Equation 5 of § 63.1564....

  6. 40 CFR Table 4 to Subpart Uuu of... - Requirements for Performance Tests for Metal HAP Emissions From Catalytic Cracking Units Not...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... a. Measure PM emissions. Method 5B or 5F (40 CFR part 60, appendix A) to determine PM emissions and associated moisture content for units without wet scrubbers. Method 5B (40 CFR part 60, appendix A) to... (40 CFR part 60, appendix A). b. Compute Ni emission rate (lb/hr). Equation 5 of § 63.1564....

  7. 40 CFR Table 4 to Subpart Uuu of... - Requirements for Performance Tests for Metal HAP Emissions From Catalytic Cracking Units Not...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... a. Measure PM emissions. Method 5B or 5F (40 CFR part 60, appendix A) to determine PM emissions and associated moisture content for units without wet scrubbers. Method 5B (40 CFR part 60, appendix A) to... (40 CFR part 60, appendix A). b. Compute Ni emission rate (lb/hr). Equation 5 of § 63.1564....

  8. 40 CFR Table 4 to Subpart Uuu of... - Requirements for Performance Tests for Metal HAP Emissions From Catalytic Cracking Units Not...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    .... Measure PM emissions. Method 5B or 5F (40 CFR part 60, appendix A) to determine PM emissions and associated moisture content for units without wet scrubbers. Method 5B (40 CFR part 60, appendix A) to... (40 CFR part 60, appendix A). b. Compute Ni emission rate (lb/hr). Equation 5 of § 63.1564....

  9. Investigation of Helicopter Longeron Cracks

    NASA Technical Reports Server (NTRS)

    Newman, John A.; Baughman, James; Wallace, Terryl A.

    2009-01-01

    Four cracked longerons, containing a total of eight cracks, were provided for study. Cracked regions were cut from the longerons. Load was applied to open the cracks, enabling crack surface examination. Examination revealed that crack propagation was driven by fatigue loading in all eight cases. Fatigue crack initiation appears to have occurred on the top edge of the longerons near geometric changes that affect component bending stiffness. Additionally, metallurgical analysis has revealed a local depletion in alloying elements in the crack initiation regions that may be a contributing factor. Fatigue crack propagation appeared to be initially driven by opening-mode loading, but at a crack length of approximately 0.5 inches (12.7 mm), there is evidence of mixed-mode crack loading. For the longest cracks studied, shear-mode displacements destroyed crack-surface features of interest over significant portions of the crack surfaces.

  10. Elevated temperature crack growth

    NASA Technical Reports Server (NTRS)

    Kim, K. S.; Vanstone, R. H.

    1992-01-01

    The purpose of this program was to extend the work performed in the base program (CR 182247) into the regime of time-dependent crack growth under isothermal and thermal mechanical fatigue (TMF) loading, where creep deformation also influences the crack growth behavior. The investigation was performed in a two-year, six-task, combined experimental and analytical program. The path-independent integrals for application to time-dependent crack growth were critically reviewed. The crack growth was simulated using a finite element method. The path-independent integrals were computed from the results of finite-element analyses. The ability of these integrals to correlate experimental crack growth data were evaluated under various loading and temperature conditions. The results indicate that some of these integrals are viable parameters for crack growth prediction at elevated temperatures.

  11. CRACK MODELLING FOR RADIOGRAPHY

    SciTech Connect

    Chady, T.; Napierala, L.

    2010-02-22

    In this paper, possibility of creation of three-dimensional crack models, both random type and based on real-life radiographic images is discussed. Method for storing cracks in a number of two-dimensional matrices, as well algorithm for their reconstruction into three-dimensional objects is presented. Also the possibility of using iterative algorithm for matching simulated images of cracks to real-life radiographic images is discussed.

  12. Crack Modelling for Radiography

    NASA Astrophysics Data System (ADS)

    Chady, T.; Napierała, L.

    2010-02-01

    In this paper, possibility of creation of three-dimensional crack models, both random type and based on real-life radiographic images is discussed. Method for storing cracks in a number of two-dimensional matrices, as well algorithm for their reconstruction into three-dimensional objects is presented. Also the possibility of using iterative algorithm for matching simulated images of cracks to real-life radiographic images is discussed.

  13. Thermal cracking of butadiene

    SciTech Connect

    Duisters, H.A.M. )

    1994-01-01

    This paper presents experimental data on the thermal cracking of butadiene in a pilot plant, under conditions representative of industrial operation. The product distribution of pure-butadiene cracking is shown. Results from cocracking experiments in naphtha and C[sub 4]-raffinate are also presented. It is shown that butadiene cracking can be an interesting outlet for the increasing butadiene overcapacity in steam crackers. Some aspects of coke formation during butadiene pyrolysis are addressed as well.

  14. Automatic crack propagation tracking

    NASA Technical Reports Server (NTRS)

    Shephard, M. S.; Weidner, T. J.; Yehia, N. A. B.; Burd, G. S.

    1985-01-01

    A finite element based approach to fully automatic crack propagation tracking is presented. The procedure presented combines fully automatic mesh generation with linear fracture mechanics techniques in a geometrically based finite element code capable of automatically tracking cracks in two-dimensional domains. The automatic mesh generator employs the modified-quadtree technique. Crack propagation increment and direction are predicted using a modified maximum dilatational strain energy density criterion employing the numerical results obtained by meshes of quadratic displacement and singular crack tip finite elements. Example problems are included to demonstrate the procedure.

  15. Crack layer theory

    NASA Technical Reports Server (NTRS)

    Chudnovsky, A.

    1987-01-01

    A damage parameter is introduced in addition to conventional parameters of continuum mechanics and consider a crack surrounded by an array of microdefects within the continuum mechanics framework. A system consisting of the main crack and surrounding damage is called crack layer (CL). Crack layer propagation is an irreversible process. The general framework of the thermodynamics of irreversible processes are employed to identify the driving forces (causes) and to derive the constitutive equation of CL propagation, that is, the relationship between the rates of the crack growth and damage dissemination from one side and the conjugated thermodynamic forces from another. The proposed law of CL propagation is in good agreement with the experimental data on fatigue CL propagation in various materials. The theory also elaborates material toughness characterization.

  16. Crack layer theory

    NASA Technical Reports Server (NTRS)

    Chudnovsky, A.

    1984-01-01

    A damage parameter is introduced in addition to conventional parameters of continuum mechanics and consider a crack surrounded by an array of microdefects within the continuum mechanics framework. A system consisting of the main crack and surrounding damage is called crack layer (CL). Crack layer propagation is an irreversible process. The general framework of the thermodynamics of irreversible processes are employed to identify the driving forces (causes) and to derive the constitutive equation of CL propagation, that is, the relationship between the rates of the crack growth and damage dissemination from one side and the conjugated thermodynamic forces from another. The proposed law of CL propagation is in good agreement with the experimental data on fatigue CL propagation in various materials. The theory also elaborates material toughness characterization.

  17. Small-crack test methods

    NASA Astrophysics Data System (ADS)

    Larsen, James M.; Allison, John E.

    This book contains chapters on fracture mechanics parameters for small fatigue cracks, monitoring small-crack growth by the replication method, measurement of small cracks by photomicroscopy (experiments and analysis), and experimental mechanics of microcracks. Other topics discussed are the real-time measurement of small-crack-opening behavior using an interferometric strain/displacement gage; direct current electrical potential measurement of the growth of small cracks; an ultrasonic method for the measurement of the size and opening behavior of small fatigue cracks; and the simulation of short crack and other low closure loading conditions, utilizing constant K(max) Delta-K-decreasing fatigue crack growth procedures.

  18. Effect of crack surface geometry on fatigue crack closure

    SciTech Connect

    Drury, W.J.; Gokhale, A.M.; Antolovich, S.D.

    1995-10-01

    The geometry of crack faces often plays a critical role in reducing crack extension forces when crack closure occurs during fatigue crack growth. Most previous studies of fatigue crack closure are concerned with mechanical measure of closure as related to the crack growth rate; very little attention has been given to the geometry of the crack surfaces. The objective is to identify those aspects of crack surface geometry that are important in the closure process, to develop quantitative fractographic techniques to estimate such attributes in a statistically significant and robust manner, and to correlate them to the physical process of crack closure. For this purpose, fatigue crack propagation experiments were performed on a Ni-base superalloy and crack growth rates and crack closure loads were measured. Digital image profilometry and software-based analysis techniques were used for statistically reliable and detailed quantitative characterization of fatigue crack profiles. It is shown that the dimensionless, scale-independent attributes, such a height-to-width ratio of asperities, fractal dimensions, dimensionless roughness parameters, etc., do not represent the aspects of crack geometry that are of primary importance in the crack closure phenomena. Furthermore, it is shown that the scale-dependent characteristics, such as average asperity height, do represent the aspects of crack geometry that play an interactive role in the closure process. These observations have implications concerning the validity of geometry-dependent, closure-based models for fatigue crack growth.

  19. Effect of crack surface geometry on fatigue crack closure

    NASA Astrophysics Data System (ADS)

    Drury, W. J.; Gokhale, Arun M.; Antolovich, S. D.

    1995-10-01

    The geometry of crack faces often plays a critical role in reducing crack extension forces when crack closure occurs during fatigue crack growth. Most previous studies of fatigue crack closure are concerned with mechanical measures of closure as related to the crack growth rate; very little attention has been given to the geometry of the crack surfaces. Our objective is to identify those aspects of crack surface geometry that are important in the closure process, to develop quantitative fractographic techniques to estimate such attributes in a statistically significant and robust manner, and to correlate them to the physical process of crack closure. For this purpose, fatigue crack propagation experiments were performed on a Ni-base superalloy and crack growth rates and crack closure loads were measured. Digital image profilometry and software-based analysis techniques were used for statistically reliable and detailed quantitative characterization of fatigue crack profiles. It is shown that the dimensionless, scale-independent attributes, such as height-to-width ratio of asperities, fractal dimensions, dimensionless roughness parameters, etc., do not represent the aspects of crack geometry that are of primary importance in the crack closure phenomena. Furthermore, it is shown that the scaledependent characteristics, such as average asperity height, do represent the aspects of crack geometry that play an interactive role in the closure process. These observations have implications concerning the validity of geometry-dependent, closure-based models for fatigue crack growth.

  20. Modelling of hydride cracking

    SciTech Connect

    Zheng, X.J.; Metzger, D.R.; Glinka, G.; Dubey, R.N.

    1996-12-01

    Zirconium alloys may be susceptible to hydride formation under certain service conditions, due to hydrogen diffusion and precipitation in the presence of stress concentrations and temperature gradients. The inhomogeneous brittle hydride platelets that form are modeled as plane defects of zero thickness, with fracture toughness less than that of the matrix. A fracture criterion based on sufficient energy and stress is proposed for either delayed hydride cracking (DHC) under constant loading conditions, or hydride cracking at rising loads, such as in a fracture toughness test. The fracture criterion is validated against available experimental data concerning initiation of hydride fracture in smooth specimens, and DHC in cracked specimens under various loading and temperature conditions.

  1. Stress corrosion cracking of carbon steel in amine systems

    SciTech Connect

    Richert, J.P.; Bagdasarian, A.J.; Shargay, C.A.

    1988-01-01

    NACE Task Group T-8-14 was formed by Group Committee T-8 on Refining Industry Corrosion to conduct a survey on stress corrosion cracking (SCC) of existing amine units. The main purpose of the survey was to determine the extent of cracking problems in such units and to examine possible correlations between cracked and noncracked locations to establish possible cause(s) for cracking. A total of 294 completed survey forms were received and analyzed. Cracking was reported in monoethanolamine (MEA), diethanolamine, methyldiethanolamine, and diisopropanolamine solutions but was most prevalent in MEA units. Cracking occurs in all types of equipment and piping operating at all common temperatures. Cracking has been reported in all typical refinery streams containing H/sub 2/S, CO/sub 2/, or a combination of the two. The use of corrosion inhibitors, soda ash, caustic, filters, or reclaimers has no indicated effect on cracking tendencies. The survey results confirmed that stress relieving is a highly effective means of preventing amine SCC.

  2. Production of hydrogen by thermocatalytic cracking of natural gas

    SciTech Connect

    Muradov, N.Z.

    1995-09-01

    It is universally accepted that in the next few decades hydrogen production will continue to rely on fossil fuels (primarily, natural gas). On the other hand, the conventional methods of hydrogen production from natural gas (for example, steam reforming) are complex multi-step processes. These processes also result in the emission of large quantities of CO{sub 2} into the atmosphere that produce adverse ecological effects. One alternative is the one-step thermocatalytic cracking (TCC) (or decomposition) of natural gas into hydrogen and carbon. Preliminary analysis indicates that the cost of hydrogen produced by thermal decomposition of natural gas is somewhat lower than the conventional processes after by-product carbon credit is taken. In the short term, this process can be used for on-site production of hydrogen-methane mixtures in gas-filling stations and for CO{sub x}-free production of hydrogen for fuel cell driven prime movers. The experimental data on the thermocatalytic cracking of methane over various catalysts and supports in a wide range of temperatures (500-900{degrees}C) are presented in this paper. Two types of reactors were designed and built at FSEC: continuous flow and pulse fix bed catalytic reactors. The temperature dependence of the hydrogen production yield using oxide type catalysts was studied. Alumina-supported Ni- and Fe-catalysts demonstrated relatively high efficiency in the methane cracking reaction at moderate temperatures (600-800{degrees}C). Kinetic curves of hydrogen production over metal and metal oxide catalysts at different temperatures are presented in the paper. Fe-catalyst demonstrated good stability (for several hours), whereas alumina-supported Pt-catalyst rapidly lost its catalytic activity.

  3. Crack motion in viscoelastic solids: the role of the flash temperature.

    PubMed

    Carbone, G; Persson, B N J

    2005-07-01

    We present a simple theory of crack propagation in viscoelastic solids. We calculate the energy per unit area, G(v), to propagate a crack, as a function of the crack tip velocity v. Our study includes the non-uniform temperature distribution (flash temperature) in the vicinity of the crack tip, which has a profound influence on G(v). At very low crack tip velocities, the heat produced at the crack tip can diffuse away, resulting in very small temperature increase: in this "low-speed" regime the flash temperature effect is unimportant. However, because of the low heat conductivity of rubber-like materials, already at moderate crack tip velocities a very large temperature increase (of order of 1000 K) can occur close to the crack tip. We show that this will drastically affect the viscoelastic energy dissipation close to the crack tip, resulting in a "hot-crack" propagation regime. The transition between the low-speed regime and the hot-crack regime is very abrupt, which may result in unstable crack motion, e.g. stick-slip motion or catastrophic failure, as observed in some experiments. In addition, the high crack tip temperature may result in significant thermal decomposition within the heated region, resulting in a liquid-like region in the vicinity of the crack tip. This may explain the change in surface morphology (from rough to smooth surfaces) which is observed as the crack tip velocity is increased above the instability threshold. PMID:15997339

  4. Quantity Effect of Radial Cracks on the Cracking Propagation Behavior and the Crack Morphology

    PubMed Central

    Chen, Jingjing; Xu, Jun; Liu, Bohan; Yao, Xuefeng; Li, Yibing

    2014-01-01

    In this letter, the quantity effect of radial cracks on the cracking propagation behavior as well as the circular crack generation on the impacted glass plate within the sandwiched glass sheets are experimentally investigated via high-speed photography system. Results show that the radial crack velocity on the backing glass layer decreases with the crack number under the same impact conditions during large quantities of repeated experiments. Thus, the “energy conversion factor” is suggested to elucidate the physical relation between the cracking number and the crack propagation speed. Besides, the number of radial crack also takes the determinative effect in the crack morphology of the impacted glass plate. This study may shed lights on understanding the cracking and propagation mechanism in laminated glass structures and provide useful tool to explore the impact information on the cracking debris. PMID:25048684

  5. Ethylene by Naphta Cracking

    ERIC Educational Resources Information Center

    Wiseman, Peter

    1977-01-01

    Presents a discussion of the manufacture of ethylene by thermal cracking of hydrocarbon feedstocks that is useful for introducing the subject of industrial chemistry into a chemistry curriculum. (MLH)

  6. Elevated temperature crack growth

    NASA Technical Reports Server (NTRS)

    Kim, K. S.; Vanstone, R. H.; Malik, S. N.; Laflen, J. H.

    1988-01-01

    A study was performed to examine the applicability of path-independent (P-I) integrals to crack growth problems in hot section components of gas turbine aircraft engines. Alloy 718 was used and the experimental parameters included combined temperature and strain cycling, thermal gradients, elastic-plastic strain levels, and mean strains. A literature review was conducted of proposed P-I integrals, and those capable of analyzing hot section component problems were selected and programmed into the postprocessor of a finite element code. Detailed elastic-plastic finite element analyses were conducted to simulate crack growth and crack closure of the test specimen, and to evaluate the P-I integrals. It was shown that the selected P-I integrals are very effective for predicting crack growth for isothermal conditions.

  7. Elevated Temperature Crack Propagation

    NASA Technical Reports Server (NTRS)

    Orange, Thomas W.

    1994-01-01

    This paper is a summary of two NASA contracts on high temperature fatigue crack propagation in metals. The first evaluated the ability of fairly simple nonlinear fracture parameters to correlate crack propagation. Hastelloy-X specimens were tested under isothermal and thermomechanical cycling at temperatures up to 980 degrees C (1800 degrees F). The most successful correlating parameter was the crack tip opening displacement derived from the J-integral. The second evaluated the ability of several path-independent integrals to correlate crack propagation behavior. Inconel 718 specimens were tested under isothermal, thermomechanical, temperature gradient, and creep conditions at temperatures up to 650 degrees C (1200 degrees F). The integrals formulated by Blackburn and by Kishimoto correlated the data reasonably well under all test conditions.

  8. Crack-growth analysis

    NASA Technical Reports Server (NTRS)

    Bianca, C.; Creager, M.

    1976-01-01

    Flexible, adaptable, integrative routine, computer program incorporates Collipriest-Ehret and Paris-Forman equations. Calculates growth from initial defect size and terminates calculation when crack is sufficiently large for critical condition. Wheeler, Willenborg, and Grumman Closure models are available.

  9. Thermal cracking of hydrocarbons

    SciTech Connect

    Braun, R.L.; Burnham, A.K.

    1988-09-01

    Knowledge of thermal cracking of hydrocarbons is important in understanding and modeling petroleum maturation. We have reviewed the literature on the thermal cracking of pure hydrocarbons and mixtures of hydrocarbons, with particular attention given to dependence of the kinetics on temperature, pressure, and phase. Major uncertainties remain with regard to pressure dependence. Based on this review, we developed a simple, four-component, three-reaction model for oil-cracking. We also developed a simple, kerogen-maturation, kinetic model that incorporates hydrogen and carbon balance and includes the most important oil- and gas-forming reactions: kerogen pyrolysis, three oil-cracking reactions, and three coke-pyrolysis reactions. Tentative stoichiometry parameters are given for lacustrine and marine kerogens. 35 refs., 5 figs., 5 tabs.

  10. The kinked interface crack

    NASA Astrophysics Data System (ADS)

    Heitzer, Joerg

    1992-05-01

    Two methods for the numerical solution of the integral equation describing the kinked interface crack, one proposed by Erdogan et al. (1973) and the other by Theokaris and Iokimidis (1979), are examined. The method of Erdogan et al. is then used to solve the equation in order to determine the kinking angle of the interface crack. Results are presented for two material combinations, aluminum/epoxy and glass/ceramic, under uniaxial tension in the direction normal to the interface.

  11. Identification of breathing cracks in a beam structure with entropy

    NASA Astrophysics Data System (ADS)

    Wimarshana, Buddhi; Wu, Nan; Wu, Christine

    2016-04-01

    A cantilever beam with a breathing crack is studied to detect and evaluate the crack using entropy measures. Closed cracks in engineering structures lead to proportional complexities to their vibration responses due to weak bi-linearity imposed by the crack breathing phenomenon. Entropy is a measure of system complexity and has the potential in quantifying the complexity. The weak bi-linearity in vibration signals can be amplified using wavelet transformation to increase the sensitivity of the measurements. A mathematical model of harmonically excited unit length steel cantilever beam with a breathing crack located near the fixed end is established, and an iterative numerical method is applied to generate accurate time domain dynamic responses. The bi-linearity in time domain signals due to the crack breathing are amplified by wavelet transformation first, and then the complexities due to bi-linearity is quantified using sample entropy to detect the possible crack and estimate the crack depth. It is observed that the method is capable of identifying crack depths even at very early stages of 3% with the increase in the entropy values more than 10% compared with the healthy beam. The current study extends the entropy based damage detection of rotary machines to structural analysis and takes a step further in high-sensitivity structural health monitoring by combining wavelet transformation with entropy calculations. The proposed technique can also be applied to other types of structures, such as plates and shells.

  12. Quantifying weld solidification cracking susceptibility using the varestraint test

    SciTech Connect

    Lin, W.; Lippold, J.C.; Nelson, T.W.

    1994-12-31

    Since the introduction of the original Varestraint concept in the 1960`s, the longitudinal- and transverse-type Varestraint tests have become the most widely utilized techniques for quantifying weld solidification cracking susceptibility. Conventionally, cracking susceptibility is assessed by threshold strain to cause cracking and the degree of cracking as quantified by total crack strain to cause cracking and the degree of cracking as quantified by total crack length or maximum crack length. Although material-specific quantifications such as the brittle temperature range (BTR) have been proposed for the transverse-type test, similar quantifications have not been developed for the longitudinal type test. Various alloys including 304, 310, 316L, A-286, AL6XN, 20Cb-3, RA253, and RA333 stainless steels, 625, 690, and 718 nickel-base alloys, 2090, 2219, 5083, and 6061 aluminum alloys were investigated using both longitudinal- and transverse-type Varestraint tests. Tests were performed using a newly developed, computer-controlled Varestraint unit equipped with a 3-axis movable torch, spring-loaded fixture and a servo-hydraulic loading system. It was found that extensive cracking was observed in the fusion zone emanating radially from the solid-liquid inteface toward the fusion boundary in the longitudinal-type test, while weld centerline cracking was prevalent in the transverse-type test. The theoretical basis for the formation of the CSR is that liquation-related cracking only occurs in a certain temperature range known as the BTR. The detailed procedure in the development of the CSR in the fusion zone is described and discussed. This approach allows a weldability data base to be created and the comparison of results from different laboratories using different test techniques.

  13. Refinery ring groove cracking experience

    SciTech Connect

    Ehmke, E.F.

    1982-05-01

    This paper presents the results of a questionnaire on the problem of ring groove cracking in reactors. The results were found to be inconclusive in providing any information on correcting the problem. One report pertaining to a ring groove crack on a 24-inch reactor nozzle served as a warning that cracks may progress beyond the overlay, through it is not known if the base metal can easily crack at low temperatures. The results did not indicate at what point the cracks occurred, but what was common to almost all cracks was that the flange had been in high-temperature, high-pressure hydrogen suggesting that dissolved hydrogen or environmental hydrogen assisted the cracking. The type of stress that contributes in the cracking has not been determined. It is indicated that many cracks were found after the questionnaire was done.

  14. Monitoring of solidification crack propagation mechanism in pulsed laser welding of 6082 aluminum

    NASA Astrophysics Data System (ADS)

    von Witzendorff, P.; Kaierle, S.; Suttmann, O.; Overmeyer, L.

    2016-03-01

    Pulsed laser sources with pulse durations in the millisecond regime can be used for spot welding and seam welding of aluminum. Seam welds are generally produced with several overlapping spot welds. Hot cracking has its origin in the solidification process of individual spot welds which determines the cracking morphology along the seam welding. This study used a monitoring unit to capture the crack geometry within individual spot welds during seam welding to investigate the conditions for initiation, propagation and healing (re-melting) of solidification cracking within overlapping pulsed laser welds. The results suggest that small crack radii and high crack angles with respect to welding direction are favorable conditions for crack healing which leads to crack-free seam welds. Optimized pulse shapes were used to produce butt welds of 0.5 mm thick 6082 aluminum alloys. Tensile tests were performed to investigate the mechanical strength in the as-welded condition.

  15. Surface crack problems in plates

    NASA Technical Reports Server (NTRS)

    Joseph, P. F.; Erdogan, F.

    1989-01-01

    The mode I crack problem in plates under membrane loading and bending is reconsidered. The purpose is to examine certain analytical features of the problem further and to provide some new results. The formulation and the results given by the classical and the Reissner plate theories for through and part-through cracks are compared. For surface cracks the three-dimensional finite element solution is used as the basis of comparison. The solution is obtained and results are given for the crack/contact problem in a plate with a through crack under pure bending and for the crack interaction problem. Also, a procedure is developed to treat the problem of subcritical crack growth and to trace the evolution of the propagating crack.

  16. Catalytic cracking process

    DOEpatents

    Lokhandwala, Kaaeid A.; Baker, Richard W.

    2001-01-01

    Processes and apparatus for providing improved catalytic cracking, specifically improved recovery of olefins, LPG or hydrogen from catalytic crackers. The improvement is achieved by passing part of the wet gas stream across membranes selective in favor of light hydrocarbons over hydrogen.

  17. Eddy current inspection of bonded composite crack repair

    NASA Astrophysics Data System (ADS)

    Smith, Thomas K., Jr.; Guijt, Cornelius; Fredell, Robert

    1996-11-01

    The aging of the US aircraft fleet poses serious economic and safety challenges. Fatigue cracks in the 7079-T6 aluminum fuselage skin of aging transports have presented zn opportunity to test a prototype repair. GLARE, a fiber metal laminate, has been applied to repair fuselage cracks in the fuselage skin of a US transport aircraft. This affordable prototype solution to extend the life of aging aircraft requires an inspection method to track crack growth and monitor the effectiveness of the patch on repaired fuselage skin. The fiber metal laminate patch is opaque and the fuselage skin at the damage location generally can only be accessed from the outside surface requiring the use of a non-destructive means to monitor crack length. Advances in eddy current inspection technology have provided a means to detect and track crack growth beneath patches on fuselage skins. This paper describes the development of low-frequency eddy current techniques to monitor cracks under bonded composite repair patches applied to stiffened fuselage structures. The development involved the use of a rugged portable eddy current inspection unit. The results show crack growth can be monitored to ensure the continued structural integrity of repaired flawed structures; however, the influence of substructure present a challenge to the inspector in detecting crack growth.

  18. Coke formation in the thermal cracking of hydrocarbons. 4: Modeling of coke formation in naphtha cracking

    SciTech Connect

    Reyniers, G.C.; Froment, G.F. . Lab. voor Petrochemische Techniek); Kopinke, F.D.; Zimmermann, G. . Abteilung Hochtemperaturreaktionen am Inst. fuer Technische Chemie)

    1994-11-01

    An extensive experimental program has been carried out in a pilot unit for the thermal cracking of hydrocarbons. On the basis of the experimental information and the insight in the mechanisms for coke formation in pyrolysis reactors, a mathematical model describing the coke formation has been derived. This model has been incorporated in the existing simulation tools at the Laboratorium voor Petrochemische Techniek, and the run length of an industrial naphtha cracking furnace has been accurately simulated. In this way the coking model has been validated.

  19. A novel activity of HMG domains: promotion of the triple-stranded complex formation between DNA containing (GGA/TCC)11 and d(GGA)11 oligonucleotides.

    PubMed Central

    Suda, T; Mishima, Y; Takayanagi, K; Asakura, H; Odani, S; Kominami, R

    1996-01-01

    The high mobility group protein (HMG)-box is a DNA-binding domain found in many proteins that bind preferentially to DNA of irregular structures in a sequence-independent manner and can bend the DNA. We show here that GST-fusion proteins of HMG domains from HMG1 and HMG2 promote a triple-stranded complex formation between DNA containing the (GGA/TCC)11 repeat and oligonucleotides of d(GGA)11 probably due to G:G base pairing. The activity is to reduce association time and requirements of Mg2+ and oligonucleotide concentrations. The HMG box of SRY, the protein determining male-sex differentiation, also has the activity, suggesting that it is not restricted to the HMG-box domains derived from HMG1/2 but is common to those from other members of the HMG-box family of proteins. Interestingly, the box-AB and box-B of HMG1 bend DNA containing the repeat, but SRY fails to bend in a circularization assay. The difference suggests that the two activities of association-promotion and DNA bending are distinct. These results suggest that the HMG-box domain has a novel activity of promoting the association between GGA repeats which might be involved in higher-order architecture of chromatin. PMID:8972860

  20. Crack patterns over uneven substrates.

    PubMed

    Nandakishore, Pawan; Goehring, Lucas

    2016-02-28

    Cracks in thin layers are influenced by what lies beneath them. From buried craters to crocodile skin, crack patterns are found over an enormous range of length scales. Regardless of absolute size, their substrates can dramatically influence how cracks form, guiding them in some cases, or shielding regions from them in others. Here we investigate how a substrate's shape affects the appearance of cracks above it, by preparing mud cracks over sinusoidally varying surfaces. We find that as the thickness of the cracking layer increases, the observed crack patterns change from wavy to ladder-like to isotropic. Two order parameters are introduced to measure the relative alignment of these crack networks, and, along with Fourier methods, are used to characterise the transitions between crack pattern types. Finally, we explain these results with a model, based on the Griffith criteria of fracture, that identifies the conditions for which straight or wavy cracks will be seen, and predicts how well-ordered the cracks will be. Our metrics and results can be applied to any situation where connected networks of cracks are expected, or found. PMID:26762761

  1. Random loading fatigue crack growth: Crack closure considerations

    NASA Technical Reports Server (NTRS)

    Ortiz, Keith

    1987-01-01

    The prediction of fatigue crack growth is an important element of effective fracture control for metallic structures and mechanical components, especially in the aerospace industry. The prediction techniques available and applied today are mostly based on fatigue crack growth measurements determined in constant amplitude testing. However, while many service loadings are constant amplitude, many more loadings are random amplitude. An investigation to determine which statistics of random loadings are relevant to fatigue crack closure was conducted. The fundamentals of random processes and crack closure are briefly reviewed, then the relevance of certain random process parameters to the crack closure calculation are discussed qualitatively. A course for further research is outlined.

  2. Statistical crack mechanics

    SciTech Connect

    Dienes, J.K.

    1983-01-01

    An alternative to the use of plasticity theory to characterize the inelastic behavior of solids is to represent the flaws by statistical methods. We have taken such an approach to study fragmentation because it offers a number of advantages. Foremost among these is that, by considering the effects of flaws, it becomes possible to address the underlying physics directly. For example, we have been able to explain why rocks exhibit large strain-rate effects (a consequence of the finite growth rate of cracks), why a spherical explosive imbedded in oil shale produces a cavity with a nearly square section (opening of bedding cracks) and why propellants may detonate following low-speed impact (a consequence of frictional hot spots).

  3. Elevated temperature crack growth

    NASA Technical Reports Server (NTRS)

    Yau, J. F.; Malik, S. N.; Kim, K. S.; Vanstone, R. H.; Laflen, J. H.

    1985-01-01

    The objective of the Elevated Temperature Crack Growth Project is to evaluate proposed nonlinear fracture mechanics methods for application to combustor liners of aircraft gas turbine engines. During the first year of this program, proposed path-independent (P-I) integrals were reviewed for such applications. Several P-I integrals were implemented into a finite-element postprocessor which was developed and verified as part of the work. Alloy 718 was selected as the analog material for use in the forthcoming experimental work. A buttonhead, single-edge notch specimen was designed and verified for use in elevated-temperature strain control testing with significant inelastic strains. A crack mouth opening displacement measurement device was developed for further use.

  4. Replica-based Crack Inspection

    NASA Technical Reports Server (NTRS)

    Newman, John A.; Smith, Stephen W.; Piascik, R. S.; Willard, Scott A.; Dawicke, David S.

    2007-01-01

    A surface replica-based crack inspection method has recently been developed for use in Space Shuttle main engine (SSME) hydrogen feedline flowliners. These flowliners exist to ensure favorable flow of liquid hydrogen over gimble joint bellows, and consist of two rings each containing 38 elongated slots. In the summer of 2002, multiple cracks ranging from 0.1 inches to 0.6 inches long were discovered; each orbiter contained at least one cracked flowliner. These long cracks were repaired and eddy current inspections ensured that no cracks longer than 0.075 inches were present. However, subsequent fracture-mechanics review of flight rationale required detection of smaller cracks, and was the driving force for development of higher-resolution inspection method. Acetate tape surface replicas have been used for decades to detect and monitor small cracks. However, acetate tape replicas have primarily been limited to laboratory specimens because complexities involved in making these replicas - requiring acetate tape to be dissolved with acetone - are not well suited for a crack inspection tool. More recently developed silicon-based replicas are better suited for use as a crack detection tool. A commercially available silicon-based replica product has been determined to be acceptable for use in SSME hydrogen feedlines. A method has been developed using this product and a scanning electron microscope for analysis, which can find cracks as small as 0.005 inches and other features (e.g., pits, scratches, tool marks, etc.) as small as 0.001 inches. The resolution of this method has been validated with dozens of cracks generated in a laboratory setting and this method has been used to locate 55 cracks (ranging in size from 0.040 inches to 0.004 inches) on space flight hardware. These cracks were removed by polishing away the cracked material and a second round of replicas confirmed the repair.

  5. Subcritical crack growth in marble

    NASA Astrophysics Data System (ADS)

    Nara, Yoshitaka; Nishida, Yuki; Toshinori, Ii; Harui, Tomoki; Tanaka, Mayu; Kashiwaya, Koki

    2016-04-01

    It is essential to study time-dependent deformation and fracturing in various rock materials to prevent natural hazards related to the failure of a rock mass. In addition, information of time-dependent fracturing is essential to ensure the long-term stability of a rock mass surrounding various structures. Subcritical crack growth is one of the main causes of time-dependent fracturing in rock. It is known that subcritical crack growth is influenced by not only stress but also surrounding environment. Studies of subcritical crack growth have been widely conducted for silicate rocks such as igneous rocks and sandstones. By contrast, information of subcritical crack growth in carbonate rocks is not enough. Specifically, influence of surrounding environment on subcritical crack growth in carbonate rock should be clarified to ensure the long-term stability of a rock mass. In this study, subcritical crack growth in marble was investigated. Especially, the influence of the temperature, relative humidity and water on subcritical crack growth in marble is investigated. As rock samples, marbles obtained in Skopje-City in Macedonia and Carrara-City in Italy were used. To measure subcritical crack growth, we used the load relaxation method of the double-torsion (DT) test. All measurements by DT test were conducted under controlled temperature and relative humidity. For both marbles, it was shown that the crack velocity in marble in air increased with increasing relative humidity at a constant temperature. Additionally, the crack velocity in water was much higher than that in air. It was also found that the crack velocity increased with increasing temperature. It is considered that temperature and water have significant influences on subcritical crack growth in marble. For Carrara marble in air, it was recognized that the value of subcritical crack growth index became low when the crack velocity was higher than 10-4 m/s. This is similar to Region II of subcritical crack growth

  6. Cracks and Lines

    NASA Technical Reports Server (NTRS)

    2004-01-01

    6 June 2004 This Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) picture shows an odd area of the south polar region that has sets of fine, nearly parallel lines running from the northeast (upper right) toward southwest (lower left) and a darker, wider set of cracks with a major trend running almost perpendicular to the finer lines. The appearance of these features is enhanced by seasonal frost. Dark areas have no frost, bright areas still have frozen carbon dioxide ice. In summer, the ice would be gone and the cracks and lines less obvious when viewed from orbit. Although unknown, wind might be responsible for forming the fine set of lines, and perhaps freeze-thaw cycles of ground ice or structural deformation would have contributed to formation of the wider cracks. The image is located near 85.0oS, 324.0oW, and covers an area about 1.5 km (nearly 1 mi) across. The scene is illuminated by sunlight from the upper left.

  7. Investigation of Cracks Found in Helicopter Longerons

    NASA Technical Reports Server (NTRS)

    Newman, John A.; Baughman, James M.; Wallace, Terryl A.

    2009-01-01

    Four cracked longerons, containing a total of eight cracks, were provided for study. Cracked regions were cut from the longerons. Load was applied to open the cracks, enabling crack surface examination. Examination revealed that crack propagation was driven by fatigue loading in all eight cases. Fatigue crack initiation appears to have occurred on the top edge of the longerons near geometric changes that affect component bending stiffness. Additionally, metallurigical analysis has revealed a local depletion in alloying elements in the crack initiation regions that may be a contributing factor. Fatigue crack propagation appeared to be initially driven by opening-mode loading, but at a crack length of approximately 0.5 inches (12.7 mm), there is evidence of mixed-mode crack loading. For the longest cracks studied, shear-mode displacements destroyed crack-surface features of interest over significant portions of the crack surfaces.

  8. 40 CFR 63.1568 - What are my requirements for HAP emissions from sulfur recovery units?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... emissions from sulfur recovery units? 63.1568 Section 63.1568 Protection of Environment ENVIRONMENTAL... Petroleum Refineries: Catalytic Cracking Units, Catalytic Reforming Units, and Sulfur Recovery Units Catalytic Cracking Units, Catalytic Reforming Units, Sulfur Recovery Units, and Bypass Lines § 63.1568...

  9. 40 CFR 63.1568 - What are my requirements for HAP emissions from sulfur recovery units?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... Petroleum Refineries: Catalytic Cracking Units, Catalytic Reforming Units, and Sulfur Recovery Units Catalytic Cracking Units, Catalytic Reforming Units, Sulfur Recovery Units, and Bypass Lines § 63.1568 What are my requirements for HAP emissions from sulfur recovery units? (a) What emission limitations...

  10. 40 CFR 63.1568 - What are my requirements for HAP emissions from sulfur recovery units?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... Petroleum Refineries: Catalytic Cracking Units, Catalytic Reforming Units, and Sulfur Recovery Units Catalytic Cracking Units, Catalytic Reforming Units, Sulfur Recovery Units, and Bypass Lines § 63.1568 What are my requirements for HAP emissions from sulfur recovery units? (a) What emission limitations...

  11. 40 CFR 63.1568 - What are my requirements for HAP emissions from sulfur recovery units?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Refineries: Catalytic Cracking Units, Catalytic Reforming Units, and Sulfur Recovery Units Catalytic Cracking Units, Catalytic Reforming Units, Sulfur Recovery Units, and Bypass Lines § 63.1568 What are my requirements for HAP emissions from sulfur recovery units? (a) What emission limitations and work...

  12. 40 CFR 63.1568 - What are my requirements for HAP emissions from sulfur recovery units?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... Refineries: Catalytic Cracking Units, Catalytic Reforming Units, and Sulfur Recovery Units Catalytic Cracking Units, Catalytic Reforming Units, Sulfur Recovery Units, and Bypass Lines § 63.1568 What are my requirements for HAP emissions from sulfur recovery units? (a) What emission limitations and work...

  13. Automatic crack growth tracking of bimaterial interface cracks

    NASA Technical Reports Server (NTRS)

    Yehia, Nabil A. B.; Shephard, Mark S.

    1988-01-01

    The propagation process of an interfacial crack in composite material is studied using the modified maximum dilatational strain energy density criterion, NT-criterion. Some necessary assumptions have been adopted to facilitate the use of the NT-criterion in this case. The stress intensity factors at the crack tip are extracted from the complex displacement field and finite element results. A simple algorithm for automatic crack propagation is presented with an illustrative example.

  14. A study of creep crack growth in 2219-T851

    NASA Astrophysics Data System (ADS)

    Bensussan, Philippe L.; Jablonski, David A.; Pelloux, Regis M.

    1984-01-01

    Creep crack growth rates were measured in high strength 2219-T851 aluminum alloy with a computerized fully automated test procedure. Crack growth tests were performed on CT specimens with side grooves. The experimental set-up is described. During a test, the specimen is cyclically loaded on a servohydraulic testing machine under computer control, maintained at maximum load for a given hold time at each cycle, unloaded, and then reloaded. Crack lengths are obtained from compliance measurements recorded during each unloading. It is shown that the measured crack growth rates per cycle do represent creep crack growth rates per unit time for hold times longer than 10 seconds. The validity of LEFM concepts for side-grooved specimens is reviewed, and compliance and stress intensity factor calibrations for such specimens are reported. For the range of testing conditions of this study, 2219-T851 is shown to be creep brittle in terms of concepts of fracture mechanics of creeping solids. It is found that, under these testing conditions, a correlation exists between the creep crack growth rates under plane strain conditions and the stress intensity factor ( da/dt = A K 3.8 at 175 °C) for simple K histories in a regime of steady or quasi-steady state crack growth. The micromechanisms of fracture are determined to be of complex nature. The fracture mode is observed to be mixed inter- and transgranular, the relative amount of intergranular fracture decreasing as K and da/dt increase.

  15. Cracking blends of gas oil and residual oil

    SciTech Connect

    Myers, G.D.

    1988-03-01

    In a catalytic cracking process unit wherein a gas oil feed is cracked in a cracking zone at an elevated temperature in the presence of a cracking catalyst, the cracking catalyst is regenerated in a regeneration zone by burning coke of the catalyst, and catalyst is circulated between the cracking zone and the regeneration zone. The improvement is described for obtaining a naphtha product of improved octane number comprising introducing sufficient of a nickel and vanadium metals-containing heavy feedstock with the gas oil feed introduced into the cracking zone to deposit nickel and vanadium metals on the catalyst and raise the nickel and metals-content of the catalyst to a level ranging from about 1500 to about 6000 parts per million of the metals expressed as equivalent nickel, based on the weight of the catalyst, and maintaining the nickel and vanadium metals level on the catalyst by withdrawing high nickel and vanadium metals containing catalyst and adding low nickel and vanadium metals-containing catalyst to the regeneration zone.

  16. A comprehensive theoretical, numerical and experimental approach for crack detection in power plant rotating machinery

    NASA Astrophysics Data System (ADS)

    Stoisser, C. M.; Audebert, S.

    2008-05-01

    In order to describe the state-of-the-art on cracked rotor related problems, the current work presents the comprehensive theoretical, numerical and experimental approach adopted by EDF for crack detection in power plant rotating machinery. The work mainly focuses on the theoretical cracked beam model developed in the past years by S. Andrieux and C. Varé and associates both numerical and experimental aspects related to the crack detection problem in either turboset or turbo pump units. The theoretical part consists of the derivation of a lumped cracked beam model from the three-dimensional formulation of the general problem of elasticity with unilateral contact conditions on the crack lips, valid for any shape and number of cracks in the beam section and extended to cracks not located in a cross-section. This leads to the assessment of the cracked beam rigidity as a function of the rotation angle, in case of pure bending load or bending plus shear load. In this way the function can be implemented in a 1D rotordynamics code. An extension of the cracked beam model taking into account the torsion behaviour is also proposed. It is based on the assumption of full adherence between crack lips, when the crack closes, and on an incremental formulation of deformation energy. An experimental validation has been carried out using different cracked samples, both in static and dynamic configurations, considering one or three elliptic cracks in the same cross-section and helix-shaped cracks. Concerning the static configuration, a good agreement between numerical and experimental results is found. It is shown to be equal to 1% maximal gap of the beam deflection. Concerning the dynamical analysis, the main well-known indicator 2× rev. bending vibration component at half critical speed is approximated at maximum by 18% near the crack position. Our experiments also allowed for the observation of the bending and torsion resonance frequency shifts determined by the extra

  17. Asperities, Crack Front Waves and Crack Self Healing

    NASA Astrophysics Data System (ADS)

    Rajak, Pankaj; Kalia, Rajiv; Nakano, Aiichiro; Vashishta, Priya

    We have performed petascale simulations to study nanomaterial systems capable of sensing and repairing damage in high temperature/high pressure operating conditions. The system we have studied is a ceramic nanocomposite consisting of silicon carbide/silicon dioxide core/shell nanoparticles embedded in alumina. We observe that the interaction of the crack with core/shell asperities gives rise to crack-front waves. We also study crack healing by diffusion of silica into the crack as a function of nanoparticle size and inter-particle distance. Our results are well supported by experimental observations.

  18. On the Crack Bifurcation and Fanning of Crack Growth Data

    NASA Technical Reports Server (NTRS)

    Forman, Royce G.; Zanganeh, Mohammad

    2015-01-01

    Crack growth data obtained from ASTM load shedding method for different R values show some fanning especially for aluminum alloys. It is believed by the authors and it has been shown before that the observed fanning is due to the crack bifurcation occurs in the near threshold region which is a function of intrinsic properties of the alloy. Therefore, validity of the ASTM load shedding test procedure and results is confirmed. However, this position has been argued by some experimentalists who believe the fanning is an artifact of the test procedure and thus the obtained results are invalid. It has been shown that using a special test procedure such as using compressively pre-cracked specimens will eliminate the fanning effect. Since not using the fanned data fit can result in a significantly lower calculated cyclic life, design of a component, particularly for rotorcraft and propeller systems will considerably be impacted and therefore this study is of paramount importance. In this effort both test procedures i.e. ASTM load shedding and the proposed compressive pre-cracking have been used to study the fatigue crack growth behavior of compact tension specimens made of aluminum alloy 2524-T3. Fatigue crack growth paths have been closely observed using SEM machines to investigate the effects of compression pre-cracking on the crack bifurcation behavior. The results of this study will shed a light on resolving the existing argument by better understanding of near threshold fatigue crack growth behavior.

  19. Preventing Cracking of Anodized Coatings

    NASA Technical Reports Server (NTRS)

    He, Charles C.; Heslin, Thomas M.

    1995-01-01

    Anodized coatings have been used as optical and thermal surfaces in spacecraft. Particulate contamination from cracked coatings is a concern for many applications. The major cause for the cracking is the difference in the coefficient of thermal expansion between the oxide coatings and the aluminum substrate. The loss of water when the coating is exposed to a vacuum also could induce cracking of the coating. Hot-water sealing was identified as the major cause for the cracking of the coatings because of the large temperature change when the parts were immersed in boiling water and the water was absorbed in the coating. when the hot-water sealing process was eliminated, the cracking resistance of the anodized coatings was greatly improved. Also, it was found that dyed black coatings were more susceptible than clear coatings to cracking during thermo-vacuum cyclings.

  20. Fatigue-Crack-Tip Locator

    NASA Technical Reports Server (NTRS)

    Namkung, Min; Clendenin, C. Gerald; Wincheski, Buzz; Fulton, James P.; Todhunter, Ronald G.; Simpson, John W.

    1994-01-01

    Fatigue-testing system includes automated subsystem continuously tracking location of fatigue-crack tip in metal or other highly electrically conductive specimen. Fatigue-crack-tip-locating subsystem also searches specimen to find initial fatigue crack and its tip and to trace out hidden fatigue cracks and other flaws inside specimen. Subsystem operates under overall control of personal computer, which also controls load frame applying prescribed cyclic stresses to specimen. Electromagnetic flaw detector based on eddy-current principle scanned over surface of specimen. Flaw detector described in "Electromagnetic Flaw Detector Is Easier To Use" (LAR-15046). System provides automated control and monitoring of fatigue experiments, saving time for researchers and enabling experiments to run unattended 24 hours a day. All information on crack-tip trajectories and rates of growth of cracks recorded automatically, so researchers have access to more information.

  1. Elastostatic stress analysis of orthotropic rectangular center-cracked plates

    NASA Technical Reports Server (NTRS)

    Gyekenyesi, G. S.; Mendelson, A.

    1972-01-01

    A mapping-collocation method was developed for the elastostatic stress analysis of finite, anisotropic plates with centrally located traction-free cracks. The method essentially consists of mapping the crack into the unit circle and satisfying the crack boundary conditions exactly with the help of Muskhelishvili's function extension concept. The conditions on the outer boundary are satisfied approximately by applying the method of least-squares boundary collocation. A parametric study of finite-plate stress intensity factors, employing this mapping-collocation method, is presented. It shows the effects of varying material properties, orientation angle, and crack-length-to-plate-width and plate-height-to-plate-width ratios for rectangular orthotropic plates under constant tensile and shear loads.

  2. Shuttle Fuel Feedliner Cracking Investigation

    NASA Technical Reports Server (NTRS)

    Nesman, Tomas E.; Turner, Jim (Technical Monitor)

    2002-01-01

    This presentation provides an overview of material covered during 'Space Shuttle Fuel Feedliner Cracking Investigation MSFC Fluids Workshop' held November 19-21, 2002. Topics covered include: cracks on fuel feed lines of Orbiter space shuttles, fluid driven cracking analysis, liner structural modes, structural motion in a fluid, fluid borne drivers, three dimensional computational fluid dynamics models, fluid borne drivers from pumps, amplification mechanisms, flow parameter mapping, and flight engine flow map.

  3. Retrofitting olefin cracking plants

    SciTech Connect

    Sumner, C.; Fernandez-Baujin, J.M.

    1983-12-01

    This article discusses the retrofitting of liquid crackers which produce olefins so that gaseous feedstocks can be used. Naphtha and gas oil are the predominant design feedstocks for producing olefins. The price of gaseous feedstocks such as ethane, propane and butane have become economically more attractive than liquid feedstocks. Existing liquid crackers will be able to produce ethylene at 85% or higher capacity when cracking propane and butane feedstock with only minor changes. Topics considered include revamping for vacuum gas oil (VGO) feedstocks and revamping for liquefied petroleum gas (LPG) feedstocks.

  4. Mode II fatigue crack propagation.

    NASA Technical Reports Server (NTRS)

    Roberts, R.; Kibler, J. J.

    1971-01-01

    Fatigue crack propagation rates were obtained for 2024-T3 bare aluminum plates subjected to in-plane, mode I, extensional loads and transverse, mode II, bending loads. These results were compared to the results of Iida and Kobayashi for in-plane mode I-mode II extensional loads. The engineering significance of mode I-mode II fatigue crack growth is considered in view of the present results. A fatigue crack growth equation for handling mode I-mode II fatigue crack growth rates from existing mode I data is also discussed.

  5. Three-Dimensional Gear Crack Propagation Studies

    NASA Technical Reports Server (NTRS)

    Lewicki, David G.; Sane, Ashok D.; Drago, Raymond J.; Wawrzynek, Paul A.

    1998-01-01

    Three-dimensional crack growth simulation was performed on a split-tooth gear design using boundary element modeling and linear elastic fracture mechanics. Initial cracks in the fillet of the teeth produced stress intensity factors of greater magnitude (and thus, greater crack growth rates) than those in the root or groove areas of the teeth. Crack growth simulation was performed on a case study to evaluate crack propagation paths. Tooth fracture was predicted from the crack growth simulation for an initial crack in the tooth fillet region. Tooth loads on the uncracked mesh of the split-tooth design were up to five times greater than those on the cracked mesh if equal deflections of the cracked and uncracked teeth were considered. Predicted crack shapes as well as crack propagation life are presented based on calculated stress intensity factors, mixed-mode crack propagation trajectory theories, and fatigue crack growth theories.

  6. Shear fatigue crack growth - A literature survey

    NASA Technical Reports Server (NTRS)

    Liu, H. W.

    1985-01-01

    Recent studies of shear crack growth are reviewed, emphasizing test methods and data analyses. The combined mode I and mode II elastic crack tip stress fields are considered. The development and design of the compact shear specimen are described, and the results of fatigue crack growth tests using compact shear specimens are reviewed. The fatigue crack growth tests are discussed and the results of inclined cracks in tensile panels, center cracks in plates under biaxial loading, cracked beam specimens with combined bending and shear loading, center-cracked panels and double edge-cracked plates under cyclic shear loading are examined and analyzed in detail.

  7. Effect of Crack Opening on Penetrant Crack Detectability

    NASA Technical Reports Server (NTRS)

    Weaver, Devin

    2009-01-01

    Results: From the testing we were able to determine all the cracks within the test range were detectable or better with developer. Many of the indications after development lost their linearity and gave circular indications. Our tests were performed in a laboratory and our procedure would be difficult in an industrial setting. Conclusions: The "V" did not significantly affect our ability to detect the POD cracks with fluorescent penetrant. Conduct same experiment with more cracks. The 0.025 and 0.050 POD specimens are clean and documented with the SEM. Conduct water-wash fluorescent penetrant test at EAFB. The poppet cracks are tighter than the POD specimen cracks. Flight FCV poppets: 0.01 mils (0.3 microns) Langley fatigue cracked poppets: 0.02 mils (0.5 microns) POD specimen (post 5 mils): 0.05 mils (1.4 microns) We could not detect cracks in Langley fatigue-cracked poppets with fluorescent penetrant. Investigate inability of penetrant to wet the poppet surface.

  8. Reciprocity principle and crack identification

    NASA Astrophysics Data System (ADS)

    Andrieux, Stéphane; Ben Abda, Amel; Duong Bui, Huy

    1999-02-01

    In this paper we are concerned with the planar crack identification problem defined by a unique complete elastostatic overdetermined boundary datum. Based on the reciprocity gap principle, we give a direct process for locating the host plane and we establish a new constuctive identifiability result for 3D planar cracks.

  9. Experiences on IGSCC crack manufacturing

    SciTech Connect

    Veron, P.

    1997-02-01

    The author presents his experience in manufacturing IGSCC realistic defects, mainly in INCONEL 600 MA Steam Generator Tubes. From that experience he extracts some knowledge about this cracking (influence of chemistry in the environment, stress state, crack growth rate, and occurrence in laboratory condition of break before leak).

  10. Interface cracks in piezoelectric materials

    NASA Astrophysics Data System (ADS)

    Govorukha, V.; Kamlah, M.; Loboda, V.; Lapusta, Y.

    2016-02-01

    Due to their intrinsic electromechanical coupling behavior, piezoelectric materials are widely used in sensors, actuators and other modern technologies. It is well known that piezoelectric ceramics are very brittle and susceptible to fracture. In many cases, fracture occurs at interfaces as debonding and cracks. This leads to an undesired degradation of electrical and mechanical performance. Because of the practical and fundamental importance of the problem, interface cracks in piezoelectric materials have been actively studied in the last few decades. This review provides a comprehensive survey of recent works on cracks situated at the interface of two materials, at least one of which has piezoelectric or piezoelectromagnetic properties. Different electric boundary conditions along the crack faces are discussed. The oscillating and contact zone models for in-plane straight interface cracks between two dissimilar piezoelectric materials or between piezoelectric and non-piezoelectric ones are reviewed. Different peculiarities related to the investigation of interface cracks in piezoelectric materials for the anti-plane case, for functionally graded and thermopiezoelectric materials are presented. Papers related to magnetoelectroelastic bimaterials, to steady state motion of interface cracks in piezoelectric bimaterials and to circular arc-cracks at the interface of piezoelectric materials are reviewed, and various methods used to address these problems are discussed. The review concludes with an outlook on future research directions.

  11. Bonded orthotropic strips with cracks

    NASA Technical Reports Server (NTRS)

    Delale, F.; Erdogan, F.

    1979-01-01

    The elastostatic problem for a nonhomogeneous plane which consists of two sets of periodically arranged dissimilar orthotropic strips is considered. It is assumed that the plane contains a series of collinear cracks perpendicular to the interfaces and is loaded in tension away from and perpendicular to the cracks. The problem of cracks fully imbedded into the homogeneous strips is considered. The singular behavior of the stresses for two special crack geometries is studied. The first is the case of a broken laminate in which the crack tips touch the interfaces. The second is the case of cracks crossing the interfaces. An interesting result found from the analysis of the latter is that for certain orthotropic material combinations the stress state at the point of intersection of a crack and an interface may be bounded whereas in isotropic materials at this point stresses are always singular. A number of numerical examples are worked out to separate the primary material parameters influencing the stress intensity factors and the powers of stress singularity, and to determine the trends regarding the influence of the secondary parameters. Some numerical results are given for the stress intensity factors in certain basic crack geometries and for typical material combinations.

  12. Replica-Based Crack Inspection

    NASA Technical Reports Server (NTRS)

    Newman, John A.; Willard, Scott A.; Smith, Stephen W.; Piascik, Robert S.

    2008-01-01

    Surface replication has been proposed as a method for crack detection in space shuttle main engine flowliner slots. The results of a feasibility study show that examination of surface replicas with a scanning electron microscope can result in the detection of cracks as small as 0.005 inch, and surface flaws as small as 0.001 inch, for the flowliner material.

  13. What Crack Does to Babies.

    ERIC Educational Resources Information Center

    Hutchinson, Janice

    1991-01-01

    Describes the effect of crack on the user and on the pregnant user's offspring. Children of the first crack addicts are now in school and exhibit an array of behavioral and cognitive difficulties. Early intervention in a supportive environment has succeeded in preparing some of these children for the classroom. (DM)

  14. Shapes Formed By Interacting Cracks

    NASA Astrophysics Data System (ADS)

    Daniels, K.

    2014-12-01

    Brittle failure through multiple cracks occurs in a wide variety of contexts, from microscopic failures in rocks to geological faults and planetary ice crusts. In each of these situations, with complicated stress geometries and different microscopic mechanisms, pairwise interactions between approaching cracks nonetheless produce characteristically curved fracture paths. We investigate the origins of this widely observed "en passant" crack pattern by fracturing a rectangular slab which is notched on two sides and then subjected to quasistatic uniaxial, biaxial, or shear strain. The two cracks propagate along approximately straight paths until they pass each other, after which they curve and release a lens-shaped fragment. Under uniaxial strain, we find that each crack path has a universal shape and aspect ratio which is independent of the material. By changing the geometry of the applied strain, we are able to achieve different aspect ratios for the crack paths. With birefringent materials, it is possible to interpret these patterns in light of the stress geometry, and we are able to explain the origins of these universal shapes with a simple geometrical model. Since a variety of aspect ratios have similarly been observed in geological contexts, this raises the possibility of using observed crack shapes as a diagnostic for the stress conditions under which cracks were formed in nature. In particular, the shape may serve as a means to infer the boundary loading in situations where history and dynamics are inaccessible.

  15. Stability of Tseokar type cracking catalyst

    SciTech Connect

    Zinov'ev, V.R.; Bryzgalina, L.V.

    1984-07-01

    This article reports on an investigation of the catalytic stability of the bead catalysts Tseokar-2 and Tseokar-4 in a catalytic cracking unit at the V.I. Lenin Groznyi Petroleum Refinery operating on a heavy distillate feed from medium-wax, low-sulfur crudes. The physical structure and the catalytic properties of the Tseokar-4 and the Tseokar-2 were determined according to the standard OST 38 01176-79. The results indicate that the yields of cracking products, the composition of the wet gas, and the properties of the liquid products (naphtha and light and heavy gasoils) were constant during over two years of testing the catalysts. It is concluded that the investigation of the Tseokar-2 and Tseokar-4 catalysts under commercial conditions without renewal over a period of 9-18 months in cracking a heavy low-sulfur feed demonstrates the high stability of the physical and catalytic properties and also the high oxidative stability of the Tseokar-4 in comparison with the Tseokar-2.

  16. Bonded orthotropic strips with cracks

    NASA Technical Reports Server (NTRS)

    Delale, F.; Erdogan, F.

    1978-01-01

    The elastostatic problem for a nonhomogeneous plane which consists of two sets of periodically arranged dissimilar orthotropic strips is considered. First, the problem of cracks fully imbedded into the homogeneous strips is considered. Then, the singular behavior of the stresses for two special crack geometries is studied in some detail. The first is the case of a broken laminate in which the crack tips touch the interfaces. The second is the case of cracks crossing the interfaces. A number of numerical examples are worked out in order to separate the primary material parameters influencing the stress intensity factors and the powers of stress singularity, and to determine the trends regarding the influence of the secondary parameters. Finally, some numerical results are given for the stress intensity factors in certain basic crack geometries and for typical material combinations.

  17. Hydrocarbon cracking and reforming process

    SciTech Connect

    Le, Q.N.; Schipper, P.H.; Owen, H.

    1992-03-31

    This patent describes a process for upgrading paraffinic naphtha to high octane fuel. It comprises: contacting a fresh naphtha feedstock stream containing a major amount of C{sub 7+} alkanes and naphthenes with medium pore acid cracking catalyst under low pressure selective cracking conditions effective to produce 4-C5 isoalkene and C4-C5 isoalkane, the cracking catalyst being substantially free of hydrogenation-dehydrogenation metal components and having an acid cracking activity less than 15; separating cracking effluent to obtain an olefinic fraction rich in C4-C5 isoalkene and a C6+ fraction; etherifying the C4-C5 isoalkene fraction by catalytic reaction with lower alkanol to produce tertiary-alkyl ether product; and reforming the C6+ fraction to provide high octane gasoline components.

  18. High speed thin plate fatigue crack monitor

    NASA Technical Reports Server (NTRS)

    Wincheski, Buzz A. (Inventor); Heyman, Joseph S. (Inventor); Namkung, Min (Inventor); Fulton, James P. (Inventor)

    1996-01-01

    A device and method are provided which non-destructively detect crack length and crack geometry in thin metallic plates. A non-contacting vibration apparatus produces resonant vibrations without introducing extraneous noise. Resulting resonant vibration shifts in cracked plates are correlated to known crack length in plates with similar resonant vibration shifts. In addition, acoustic emissions of cracks at resonance frequencies are correlated to acoustic emissions from known crack geometries.

  19. Numerical simulation of out-of-plane distortion fatigue crack growth in bridge girders

    NASA Astrophysics Data System (ADS)

    MIller, Paula A.

    Aging of the United States infrastructure systems has resulted in the degradation of many operational bridge structures throughout the country. Structural deficiencies can result from material fatigue caused by cyclical loadings leading to localized structural damage. While fatigue crack growth is viewed as a serviceability problem, unstable crack growth can compromise the integrity of the structure. Multi-girder bridges designed with transverse cross bracing systems can be prone to distortion fatigue at unstiffened web gaps. Cracking is exhibited within this fatigue prone region from the application of cyclical multi-mode loadings. Focus of fatigue analysis has largely been directed at pure Mode I loading through the development of AASHTO fatigue classifications for crack initiation and the Paris Law for crack propagation. Numerical modeling approaches through the ABAQUS Extended Finite Element Method offers a unique avenue in which this detail can be assessed. Finite element simulations were developed to first evaluate the applicability of the Paris Law crack propagation under multi-mode loading against experimental data. Following the validation, fatigue crack growth in plate girders with various web gap sizes was assessed due to mixed-mode loadings. Modeling results showed enlargement of horizontal initial crack lengths within stiffer web gap regions arrested crack development. Crack directionality was also seen to change as initial crack lengths were increased. From this research it is hypothesized that deterioration of the transverse stiffener connection can be minimized by increasing the horizontal length of initial fatigue cracks. Enlargement of the crack plane away from regions of localized stress concentrations within the web gap may result in arrestment of the out-of-plane distortion induced cracking.

  20. Prediction of fatigue crack-growth patterns and lives in three-dimensional cracked bodies

    NASA Technical Reports Server (NTRS)

    Newman, J. C., Jr.; Raju, I. S.

    1984-01-01

    Fatigue crack growth patterns and lives for surface cracks, surface cracks at holes, and corner cracks at holes in three dimensional bodies were predicted using linear-elastic fracture mechanics concepts that were modified to account for crack-closure behavior. The predictions were made by using stress intensity factor equations for these crack configurations and the fatigue crack-growth (delta K against rate) relationship for the material of interest. The crack configurations were subjected to constant-amplitude fatigue loading under either remote tension or bending loads. The predicted crack growth patterns and crack growth lives for aluminum alloys agreed well with test data from the literature.

  1. Current research on fatigue cracks

    SciTech Connect

    Tanaka, T.; Jono, M.; Komai, K.

    1987-01-01

    This first volume of CJMR (Current Japanese Materials Research), contains thirteen chapters concerning the above three themes of fatigue cracks. Each chapter is not a single paper as appearing in many academic journals and transactions, but a systematic review of the current achievement by each author with the emphasis on important points. The common feature is that the elaborated experimental techniques and theoretical approaches, some of which are quite unique, are introduced by respective authors to make clear the difficulty arising in the observation of small cracks and analysis of data. Theoretical models are proposed from the viewpoint of fracture mechanics to link the two thresholds of fatigue limit and crack growth, and intensive discussions are made for further development of the theory. Threshold stress intensity factors and the growth rate of medium and long sized cracks are also discussed, together with their opening behavior. The influencing factors are plastic zone size, the stress ratio and residual stress distribution occurring in welded joints. Mode II crack growth is of great significance since the initial fatigue cracks propagate mainly in shear mode. The problems of fatigue crack growth in corrosive environment is highly important since its retardation and enhancement take place in structural steels affected by the variety of factors. Life prediction in such environments poses another important problem. These are systematically discussed in this book.

  2. Password Cracking Using Sony Playstations

    NASA Astrophysics Data System (ADS)

    Kleinhans, Hugo; Butts, Jonathan; Shenoi, Sujeet

    Law enforcement agencies frequently encounter encrypted digital evidence for which the cryptographic keys are unknown or unavailable. Password cracking - whether it employs brute force or sophisticated cryptanalytic techniques - requires massive computational resources. This paper evaluates the benefits of using the Sony PlayStation 3 (PS3) to crack passwords. The PS3 offers massive computational power at relatively low cost. Moreover, multiple PS3 systems can be introduced easily to expand parallel processing when additional power is needed. This paper also describes a distributed framework designed to enable law enforcement agents to crack encrypted archives and applications in an efficient and cost-effective manner.

  3. A computational algorithm for crack determination: The multiple crack case

    NASA Technical Reports Server (NTRS)

    Bryan, Kurt; Vogelius, Michael

    1992-01-01

    An algorithm for recovering a collection of linear cracks in a homogeneous electrical conductor from boundary measurements of voltages induced by specified current fluxes is developed. The technique is a variation of Newton's method and is based on taking weighted averages of the boundary data. The method also adaptively changes the applied current flux at each iteration to maintain maximum sensitivity to the estimated locations of the cracks.

  4. Stress intensity and crack displacement for small edge cracks

    NASA Technical Reports Server (NTRS)

    Orange, Thomas W.

    1988-01-01

    The weight function method was used to derive stress intensity factors and crack mouth displacement coefficients for small edge cracks (less than 20 percent of the specimen width) in common fracture specimen configurations. Contact stresses due to point application of loads were found to be small but significant for three-point bending and insignificant for four-point bending. The results are compared with available equations and numerical solutions from the literature and with unpublished boundary collocation results.

  5. Peridynamic model for fatigue cracking.

    SciTech Connect

    Silling, Stewart Andrew; Abe Askari

    2014-10-01

    The peridynamic theory is an extension of traditional solid mechanics in which the field equations can be applied on discontinuities, such as growing cracks. This paper proposes a bond damage model within peridynamics to treat the nucleation and growth of cracks due to cyclic loading. Bond damage occurs according to the evolution of a variable called the "remaining life" of each bond that changes over time according to the cyclic strain in the bond. It is shown that the model reproduces the main features of S-N data for typical materials and also reproduces the Paris law for fatigue crack growth. Extensions of the model account for the effects of loading spectrum, fatigue limit, and variable load ratio. A three-dimensional example illustrates the nucleation and growth of a helical fatigue crack in the torsion of an aluminum alloy rod.

  6. 21 CFR 137.190 - Cracked wheat.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 2 2012-04-01 2012-04-01 false Cracked wheat. 137.190 Section 137.190 Food and... Related Products § 137.190 Cracked wheat. Cracked wheat is the food prepared by so cracking or cutting into angular fragments cleaned wheat other than durum wheat and red durum wheat that, when tested...

  7. 21 CFR 137.190 - Cracked wheat.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 2 2013-04-01 2013-04-01 false Cracked wheat. 137.190 Section 137.190 Food and... Related Products § 137.190 Cracked wheat. Cracked wheat is the food prepared by so cracking or cutting into angular fragments cleaned wheat other than durum wheat and red durum wheat that, when tested...

  8. 21 CFR 137.190 - Cracked wheat.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 2 2014-04-01 2014-04-01 false Cracked wheat. 137.190 Section 137.190 Food and... Related Products § 137.190 Cracked wheat. Cracked wheat is the food prepared by so cracking or cutting into angular fragments cleaned wheat other than durum wheat and red durum wheat that, when tested...

  9. Cocaine/Crack: The Big Lie.

    ERIC Educational Resources Information Center

    National Inst. on Drug Abuse (DHHS/PHS), Rockville, MD.

    This pamphlet focuses on cocaine and crack use and the addictive nature of cocaine/crack. It contains a set of 21 questions about crack and cocaine, each accompanied by a clear and complete response. Interspersed throughout the booklet are photographs and quotes from former cocaine or crack users/addicts. Questions and answers focus on what…

  10. Vibrations Caused By Cracked Turbopump Bearing Race

    NASA Technical Reports Server (NTRS)

    Goggin, David G.; Dweck, Robert A.

    1990-01-01

    Expansion gives rise to eccentricity. Report presents analysis of dynamic effects caused by cracking of inner race of ball bearing in turbopump. Crack manifested itself via increase in vibrations synchronous with rotation and smaller increase at twice frequency of rotation. Analysis conducted to verify these increases were caused solely by crack and to understand implications for future such cracks.

  11. 21 CFR 137.190 - Cracked wheat.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 2 2010-04-01 2010-04-01 false Cracked wheat. 137.190 Section 137.190 Food and... Related Products § 137.190 Cracked wheat. Cracked wheat is the food prepared by so cracking or cutting into angular fragments cleaned wheat other than durum wheat and red durum wheat that, when tested...

  12. Shaft vibrations in turbomachinery excited by cracks

    NASA Technical Reports Server (NTRS)

    Grabowski, B.

    1982-01-01

    During the past years the dynamic behavior of rotors with cracks has been investigated mainly theoretically. This paper deals with the comparison of analytical and experimental results of the dynamics of a rotor with an artificial crack. The experimental results verify the crack model used in the analysis. They show the general possibility to determine a crack by extended vibration control.

  13. Cracking behavior of cored structures

    SciTech Connect

    Wahid, A.; Olson, D.L.; Matlock, D.K. . Center for Welding and Joining Research); Kelly, T.J. )

    1991-01-01

    The effects of compositional gradients, are considered based on a thermodynamic analysis, referred to as the Cahn-Hillard analysis, which describes the degree to which a local surface energy is modified by the presence of a composition gradient. The analysis predicts that both ductile and brittle fracture mechanisms are enhanced by the presence of a composition gradient. Data on stress corrosion cracking and fatigue crack growth in selected FCC alloys are used to illustrate the significance of microsegregation on mechanical properties.

  14. Cracking behavior of cored structures

    SciTech Connect

    Wahid, A.; Olson, D.L.; Matlock, D.K.; Kelly, T.J.

    1991-12-31

    The effects of compositional gradients, are considered based on a thermodynamic analysis, referred to as the Cahn-Hillard analysis, which describes the degree to which a local surface energy is modified by the presence of a composition gradient. The analysis predicts that both ductile and brittle fracture mechanisms are enhanced by the presence of a composition gradient. Data on stress corrosion cracking and fatigue crack growth in selected FCC alloys are used to illustrate the significance of microsegregation on mechanical properties.

  15. Compliance matrices for cracked bodies

    NASA Technical Reports Server (NTRS)

    Ballarini, R.

    1986-01-01

    An algorithm is presented which can be used to develop compliance matrices for cracked bodies. The method relies on the numerical solution of singular integral equations with Cauchy-type kernels and provides an efficient and accurate procedure for relating applied loadings to crack opening displacements. The algorithm should be of interest to those performing repetitive calculations in the analysis of experimental results obtained from fracture specimens.

  16. Analysis of fatigue crack propagation

    NASA Technical Reports Server (NTRS)

    Liu, H. W.

    1972-01-01

    The correlation between fatigue crack propagation and stress intensity factor is analyzed. When determining fatigue crack propagation rate, a crack increment, delta a, and its corresponding increment in load cycles, delta N, are measured. Fatigue crack propagation must be caused by a shear and/or a normal separation mode. Both of these two processes are discrete if one looks at the atomic level. If the average deformation and fracture properties over the crack increments, delta a, can be considered as homogeneous, if the characteristic discrete lengths of sigma a, if the plastic zone size is small, and if a plate is thick enough to insure a plane strain case, da/dN is proportional to delta K squared. Any deviation of empirical data from this relation must be caused by the fact that one or more of these conditions are not satisfied. The effects of plate thickness and material inhomogeneity are discussed in detail. A shear separation mode of fatigue crack propagation is described and is used to illustrate the effects of material inhomogeneity.

  17. Mitigation of Crack Damage in Metallic Materials

    NASA Technical Reports Server (NTRS)

    Leser, Patrick E.; Newman, John A.; Smith, Stephen W.; Leser, William P.; Wincheski, Russell A.; Wallace, Terryl A.; Glaessgen, Edward H.; Piascik, Robert S.

    2014-01-01

    A system designed to mitigate or heal crack damage in metallic materials has been developed where the protected material or component is coated with a low-melting temperature film. After a crack is formed, the material is heated, melting the film which then infiltrates the crack opening through capillary action. Upon solidification, the healing material inhibits further crack damage in two ways. While the crack healing material is intact, it acts like an adhesive that bonds or bridges the crack faces together. After fatigue loading damages, the healing material in the crack mouth inhibits further crack growth by creating artificially-high crack closure levels. Mechanical test data show that this method sucessfully arrests or retards crack growth in laboratory specimens.

  18. Dual function cracking catalyst (DFCC) composition

    SciTech Connect

    Occelli, M.L.

    1986-10-07

    The patent describes a novel catalytic cracking composition comprising a cracking catalyst having high activity and, as a separate and distinct entity, a diluent comprising a substantially catalytically inactive crystalline aluminosilicte having a fresh MAT Activity below about 1. The diluent is clinoptilolite and the cracking catalyst contains a rare earth-exchanged crystalline aluminium silicate. The cracking catalyst comprises from about ten to about 60 weight percent of a zeolite having cracking characteristics dispersed in a refractory metal oxide matrix.

  19. 40 CFR 63.1566 - What are my requirements for organic HAP emissions from catalytic reforming units?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... Pollutants for Petroleum Refineries: Catalytic Cracking Units, Catalytic Reforming Units, and Sulfur Recovery Units Catalytic Cracking Units, Catalytic Reforming Units, Sulfur Recovery Units, and Bypass Lines § 63... emission limitations and work practice standards must I meet? You must: (1) Meet each emission...

  20. 40 CFR 63.1566 - What are my requirements for organic HAP emissions from catalytic reforming units?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... Pollutants for Petroleum Refineries: Catalytic Cracking Units, Catalytic Reforming Units, and Sulfur Recovery Units Catalytic Cracking Units, Catalytic Reforming Units, Sulfur Recovery Units, and Bypass Lines § 63... emission limitations and work practice standards must I meet? You must: (1) Meet each emission...

  1. 40 CFR 63.1566 - What are my requirements for organic HAP emissions from catalytic reforming units?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... Petroleum Refineries: Catalytic Cracking Units, Catalytic Reforming Units, and Sulfur Recovery Units Catalytic Cracking Units, Catalytic Reforming Units, Sulfur Recovery Units, and Bypass Lines § 63.1566 What... limitations and work practice standards must I meet? You must: (1) Meet each emission limitation in Table...

  2. 40 CFR 63.1567 - What are my requirements for inorganic HAP emissions from catalytic reforming units?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... Pollutants for Petroleum Refineries: Catalytic Cracking Units, Catalytic Reforming Units, and Sulfur Recovery Units Catalytic Cracking Units, Catalytic Reforming Units, Sulfur Recovery Units, and Bypass Lines § 63... emission limitations and work practice standards must I meet? You must: (1) Meet each emission...

  3. 40 CFR 63.1566 - What are my requirements for organic HAP emissions from catalytic reforming units?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... Pollutants for Petroleum Refineries: Catalytic Cracking Units, Catalytic Reforming Units, and Sulfur Recovery Units Catalytic Cracking Units, Catalytic Reforming Units, Sulfur Recovery Units, and Bypass Lines § 63... emission limitations and work practice standards must I meet? You must: (1) Meet each emission...

  4. Formation and interpretation of dilatant echelon cracks.

    USGS Publications Warehouse

    Pollard, D.D.; Segall, P.; Delaney, P.T.

    1982-01-01

    The relative displacements of the walls of many veins, joints, and dikes demonstrate that these structures are dilatant cracks. We infer that dilatant cracks propagate in a principal stress plane, normal to the maximum tensile or least compressive stress. Arrays of echelon crack segments appear to emerge from the peripheries of some dilatant cracks. Breakdown of a parent crack into an echelon array may be initiated by a spatial or temporal rotation of the remote principal stresses about an axis parallel to the crack propagation direction. Near the parent-crack tip, a rotation of the local principal stresses is induced in the same sense, but not necessarily through the same angle. Incipient echelon cracks form at the parent-crack tip normal to the local maximum tensile stress. Further longitudinal growth along surfaces that twist about axes parallel to the propagation direction realigns each echelon crack into a remote principal stress plane. The walls of these twisted cracks may be idealized as helicoidal surfaces. An array of helicoidal cracks sweeps out less surface area than one parent crack twisting through the same angle. Thus, many echelon cracks grow from a single parent because the work done in creating the array, as measured by its surface area decreases as the number of cracks increases. -from Authors

  5. Salinity effects on the dynamics and patterns of desiccation cracks

    NASA Astrophysics Data System (ADS)

    Shokri, N.; Zhou, P.

    2012-12-01

    Cracking arising from desiccation is a ubiquitous phenomenon encountered in various industrial and geo-environmental applications including drying of clayey soil, cement, ceramics, gels, and many more colloidal suspensions. Presence of cracks in muddy sediments modifies the characteristics of the medium such as pore structure, porosity, and permeability which in turn influence various flow and transport processes. Thus it remains a topic of great interest in many disciplines to describe the dynamics of desiccation cracking under various boundary conditions. To this end, we conducted a comprehensive study to investigate effects of NaCl concentrations on cracking dynamics and patterns during desiccation of Bentonite. Mixtures of Bentonite and NaCl solutions were prepared with NaCl concentration varying from 2 to 10 percent in 0.5 percent increment (totally 17 configurations). The slurry was placed in a Petri dish mounted on a digital balance to record the evaporation dynamics. The atmospheric conditions were kept constant using an environmental chamber. An automatic camera was used to record the dynamics of macro-cracks (mm scale) at the surface of desiccating clay each minute. The obtained results illustrate the significant effects of salt concentration on the initiation, propagation, morphology and general dynamics of macro-cracks. We found that higher salt concentrations results in larger macro cracks' lengths attributed to the effects of NaCl on compressing the electric double layer of particles at increasing electrolyte concentrations which reduce considerably the repulsive forces among the particles and causing instability of the slurry and flocculation of the colloidal particles. Rheological measurements by means of a stress controlled rheometer revealed that the yield stress of the slurry decreases as NaCl concentration increases which may indicate aggregation of larger units in the slurry as a result of flocculation causing larger cracks' lengths due to

  6. Observation of Intralaminar Cracking in the Edge Crack Torsion Specimen

    NASA Technical Reports Server (NTRS)

    Czabaj, Michael W.; Ratcliffe, James G.; Davidson, Barry D.

    2013-01-01

    The edge crack torsion (ECT) test is evaluated to determine its suitability for measuring fracture toughness associated with mode III delamination growth onset. A series of ECT specimens with preimplanted inserts with different lengths is tested and examined using nondestructive and destructive techniques. Ultrasonic inspection of all tested specimens reveals that delamination growth occurs at one interface ply beneath the intended midplane interface. Sectioning and optical microscopy suggest that the observed delamination growth results from coalescence of angled intralaminar matrix cracks that form and extend across the midplane plies. The relative orientation of these cracks is approximately 45 deg with respect to the midplane, suggesting their formation is caused by resolved principal tensile stresses arising due to the global mode-III shear loading. Examination of ECT specimens tested to loads below the level corresponding to delamination growth onset reveals that initiation of intralaminar cracking approximately coincides with the onset of nonlinearity in the specimen's force-displacement response. The existence of intralaminar cracking prior to delamination growth onset and the resulting delamination extension at an unintended interface render the ECT test, in its current form, unsuitable for characterization of mode III delamination growth onset. The broader implications of the mechanisms observed in this study are also discussed with respect to the current understanding of shear-driven delamination in tape-laminate composites.

  7. The influence of stress ratio and temperature on the fatigue crack growth rate behavior of ARALL

    SciTech Connect

    Salivar, G.C.; Gardini, C.A. Pratt Whitney Group, West Palm Beach, FL )

    1993-01-01

    The fatigue crack growth rate behavior of ARALL (aramid-reinforced aluminum laminate) was investigated as a function of stress ratio and temperature. The particular material was ARALL-3, a 7475-T76 aluminum alloy laminate. Tests were conducted for stress ratios of 0.1 and 0.5 at temperatures of 21, 82, and 93 C (70, 180, and 200 F) using a center-cracked panel geometry (measurements were made in English units and converted to SI units). The objective was to examine the contributions of the effects of crack closure and fiber bridging of the crack on the material behavior. Crack closure was monitored throughout the tests using compliance measurements. Fractography was used to investigate the influence of temperature on the integrity of the aluminum to epoxy/fiber bond to try to identify the effects of fiber bridging. Some crack closure, in the traditional metallic material sense, was evident through compliance measurements. However, the crack tip bridging by the fibers appears to be the dominant mechanism influencing the fatigue crack growth rate behavior in this material under these test conditions. Fractography indicates a considerable difference in fiber-bridging behavior between the room temperature and the elevated temperature tests. 19 refs.

  8. BWR pipe crack remedies evaluation

    SciTech Connect

    Shack, W.J.; Kassner, T.F.; Maiya, P.S.; Park, J.Y.; Ruther, W.E.

    1986-10-01

    This paper presents results on: (a) the influence of simulated BWR environments on the stress-corrosion-craking (SCC) susceptibility of Types 304, 316NG, and 347 stainless (SS); (b) fracture-mechanics crack-growth-rate measurements on these materials and weld overlay specimens in different environments; and (c) residual stress measurements and metallographic evaluations of conventional pipe weldments treated by a mechanical-stress-improvement process (MSIP) as well as those produced by a narrow-gap welding procedure. Crack initiation studies on Types 304 and 316NG SS under crevice and non-crevice conditions in 289/sup 0/C water containing 0.25 ppM dissolved oxygen with low sulfate concentrations indicate that SCC initiates at very low strains (<3%) in the nuclear grade material. Crack growth measurements on fracture-mechanics-type specimens, under low-frequency cyclic loading, show that the Type 316NG steel cracks at a somewhat lower rate (approx.40%) than sensitized Type 304 SS in an impurity environment with 0.25 ppM dissolved-oxygen; however, the latter material stops cracking when sulfate is removed from the water. Crack growth in both materials ceases under simulated hydrogen-water chemistry conditions (<5 ppB oxygen) even with 100 ppB sulfate present in the water. An unexpected result was obtained in the test on a weld overlay specimen in the impurity environment, viz., the crack grew to the overlay interface at a nominal rate, branched at 90/sup 0/ in both directions, and then grew at high rate (parallel to the nominal applied load). Residual stress measurements on MSIP-treated weldments and those produced by a narrow-gap welding procedure indicate that these techniques produce compressive stresses over most of the inner surface near the weld and heat-affected zones.

  9. Advances in fatigue crack closure measurement and analysis: Second volume. ASTM special technical publication 1343

    SciTech Connect

    McClung, R.C.; Newman, J.C. Jr.

    1999-07-01

    The discovery of the phenomenon of plasticity-induced fatigue crack closure by Elber was truly a landmark event in the study of fatigue crack growth (FCG) and the development of practical engineering methods for fatigue life management. Subsequent research identified other contributing mechanisms for crack closure, including crack surface roughness and oxide debris. Fatigue crack closure is now understood to be an intrinsic feature of crack growth behavior that must be considered to understand or treat many FCG problems, although closure may not be an issue in all problems and does not always provide a complete explanation of crack growth behavior. As the thirtieth anniversary of the Elber discovery approached, the strong, continuing international interest in crack closure prompted the organization of another ASTM symposium. An international audience numbering over sixty-five persons heard thirty papers contributed by authors from twelve different countries, with more than half of the papers originating from outside the United States. This STP volume contains peer-reviewed manuscripts for twenty-seven of those presentations, plus one peer-reviewed paper that could not be presented at the symposium. Topics covered are: Fundamental Studies; Experimental Characterization of Closure; Load History Effects; Surface Roughness Effects; and Closure Effects on Crack Behavior. Separate abstracts were prepared for all 28 papers.

  10. Asphaltene cracking in catalytic hydrotreating of heavy oil

    SciTech Connect

    Asaoka, S.; Nakata, S.; Shiroto, Y.; Takeuchi, C.

    1981-03-01

    A Boscan crude, an Athabasca bitumen and a Khafji vacuum residue were chosen as typical asphaltenic feedstocks for this study, since they contain a lot of asphaltenes as well as sulfur and their metal contents are considerably different from one another. Any changes on these asphaltenes caused by metals and sulfur removal should, therefore, be observed easier than on other asphaltenes similar to one another. Various measurements reported here vapor pressure osmometry, gel permeation chromatography, nuclear magnetic resonance, x-ray diffraction, small angle x-ray scattering and electron spin resonance are mainly for the asphaltenes isolated from these feedstocks and from their product oils. Further, the model of the asphaltene cracking mechanism is proposed from these results and is discussed in the correspondence with the activities and selectivities among demetallation, desulfurization and asphaltene cracking. The features of asphaltene cracking are summarized as follows: (1) the removal of vanadium and sulfur from asphaltenes; (2) the decrease of molecular weight of remaining asphaltene; (3) the decrease of unit number and no change of unit sheet weight; (4) no change of asphaltene macrostructure in the stacking portion (cracking occurring at the non-stacked portion); (5) no major change of asphaltene particle size; and (6) the change of vanadyl association type in remaining asphaltenes from free to bound state and the decrease of the dissociation energy of the vanadyl. According to these features, the model of asphaltene cracking previously proposed, was confirmed, where the main reactions are the destruction of asphaltene micelles caused by vanadium removal and the depolymerization of asphaltene molecules by removal of heteroatoms such as sulfur. By comparing the model with the reactivities and selectivities, it is shown that the contribution of the two reactions in the model for asphaltene cracking depends on the kinds of feedstocks.

  11. Fatigue Crack Growth Database for Damage Tolerance Analysis

    NASA Technical Reports Server (NTRS)

    Forman, R. G.; Shivakumar, V.; Cardinal, J. W.; Williams, L. C.; McKeighan, P. C.

    2005-01-01

    The objective of this project was to begin the process of developing a fatigue crack growth database (FCGD) of metallic materials for use in damage tolerance analysis of aircraft structure. For this initial effort, crack growth rate data in the NASGRO (Registered trademark) database, the United States Air Force Damage Tolerant Design Handbook, and other publicly available sources were examined and used to develop a database that characterizes crack growth behavior for specific applications (materials). The focus of this effort was on materials for general commercial aircraft applications, including large transport airplanes, small transport commuter airplanes, general aviation airplanes, and rotorcraft. The end products of this project are the FCGD software and this report. The specific goal of this effort was to present fatigue crack growth data in three usable formats: (1) NASGRO equation parameters, (2) Walker equation parameters, and (3) tabular data points. The development of this FCGD will begin the process of developing a consistent set of standard fatigue crack growth material properties. It is envisioned that the end product of the process will be a general repository for credible and well-documented fracture properties that may be used as a default standard in damage tolerance analyses.

  12. Cessation of environmentally-assisted cracking in a low-alloy steel: Experimental results

    SciTech Connect

    Li, Y.Y.

    1997-01-01

    The presence of dissolved metallurgical sulfides in pressure vessel and piping steels has been linked to Environmentally-Assisted Cracking (EAC), a phenomenon observed in laboratory tests that results in fatigue crack growth rates as high as 100 times that in air. Previous experimental and analytical work based on diffusion as the mass transport process has shown that surface cracks that are initially clean of sulfides will not initiate EAC in most applications. This is because the average crack tip velocity would not be sufficiently high to expose enough metallurgical sulfides per unit time and produce the sulfide concentration required for EAC. However, there is a potential concern for the case of a relatively large embedded crack breaking through to the wetted surface. Such a crack would not be initially clean of sulfides, and EAC could initiate. This paper presents the results of a series of experiments conducted on two heats of an EAC susceptible, high-sulfur, low-alloy steel in 243{degrees}C low-oxygen water to further study the phenomenon of EAC persistence at low crack tip velocities. A load cycle profile that incorporated a significant load dwell period at minimum load was used. In one experiment, the fatigue cycling history was such that relatively high crack tip velocities at the start of the experiment produced a persistent case of EAC even when crack tip velocities were later reduced to levels below the EAC initiation velocity. The other series of experiments used initial crack tip velocities that were much lower and probably more realistic. Air precracking of the compact tension specimens produced an initial inventory of undissolved sulfides on the crack flanks that directly simulates the array of sulfides expected from the breakthrough of an embedded crack. In all cases, results showed EAC ceased after several hundred hours of cycling.

  13. Corrosion fatigue crack propagation in metals

    SciTech Connect

    Gangloff, R.P.

    1990-06-01

    This review assesses fracture mechanics data and mechanistic models for corrosion fatigue crack propagation in structural alloys exposed to ambient temperature gases and electrolytes. Extensive stress intensity-crack growth rate data exist for ferrous, aluminum and nickel based alloys in a variety of environments. Interactive variables (viz., stress intensity range, mean stress, alloy composition and microstructure, loading frequency, temperature, gas pressure and electrode potential) strongly affect crack growth kinetics and complicate fatigue control. Mechanistic models to predict crack growth rates were formulated by coupling crack tip mechanics with occluded crack chemistry, and from both the hydrogen embrittlement and anodic dissolution/film rupture perspectives. Research is required to better define: (1) environmental effects near threshold and on crack closure; (2) damage tolerant life prediction codes and the validity of similitude; (3) the behavior of microcrack; (4) probes and improved models of crack tip damage; and (5) the cracking performance of advanced alloys and composites.

  14. Corrosion fatigue crack propagation in metals

    NASA Technical Reports Server (NTRS)

    Gangloff, Richard P.

    1990-01-01

    This review assesses fracture mechanics data and mechanistic models for corrosion fatigue crack propagation in structural alloys exposed to ambient temperature gases and electrolytes. Extensive stress intensity-crack growth rate data exist for ferrous, aluminum and nickel based alloys in a variety of environments. Interactive variables (viz., stress intensity range, mean stress, alloy composition and microstructure, loading frequency, temperature, gas pressure and electrode potential) strongly affect crack growth kinetics and complicate fatigue control. Mechanistic models to predict crack growth rates were formulated by coupling crack tip mechanics with occluded crack chemistry, and from both the hydrogen embrittlement and anodic dissolution/film rupture perspectives. Research is required to better define: (1) environmental effects near threshold and on crack closure; (2) damage tolerant life prediction codes and the validity of similitude; (3) the behavior of microcrack; (4) probes and improved models of crack tip damage; and (5) the cracking performance of advanced alloys and composites.

  15. Crack propagation driven by crystal growth

    SciTech Connect

    A. Royne; Paul Meaking; A. Malthe-Sorenssen; B. Jamtveit; D. K. Dysthe

    2011-10-01

    Crystals that grow in confinement may exert a force on their surroundings and thereby drive crack propagation in rocks and other materials. We describe a model of crystal growth in an idealized crack geometry in which the crystal growth and crack propagation are coupled through the stress in the surrounding bulk solid. Subcritical crack propagation takes place during a transient period, which may be very long, during which the crack velocity is limited by the kinetics of crack propagation. When the crack is sufficiently large, the crack velocity becomes limited by the kinetics of crystal growth. The duration of the subcritical regime is determined by two non-dimensional parameters, which relate the kinetics of crack propagation and crystal growth to the supersaturation of the fluid and the elastic properties of the surrounding material.

  16. Crack growth in single-crystal silicon

    NASA Technical Reports Server (NTRS)

    Chen, C. P.; Leipold, M. H.

    1986-01-01

    Crack growth in single-crystal silicon at room temperature in air was evaluated by double torsion (DT) load-relaxation method and monitored by acoustic emission (AE) technique. Both DT and AE methods indicated lack of subcritical crack growth in silicon. At the critical stress intensity factor, the crack front was found to be jumping several times in a 'mirror' region and then followed by fast crack growth in a 'hackle' region. Hackle marks were found to be associated with plastic deformation at the tip of the fast moving crack. No dislocation etch pits were found in the 'mirror' region, in which crack growth may result from interatomic bonds broken at the crack tip under stress without any plastic deformation. Acoustic emission appears to be spontaneously generated from both interatomic bonds broken and dislocation generation at the moving crack tip during the crack growth in single-crystal silicon.

  17. Getter materials for cracking ammonia

    DOEpatents

    Boffito, Claudio; Baker, John D.

    1999-11-02

    A method is provided for cracking ammonia to produce hydrogen. The method includes the steps of passing ammonia over an ammonia-cracking catalyst which is an alloy including (1) alloys having the general formula Zr.sub.1-x Ti.sub.x M.sub.1 M.sub.2, wherein M.sub.1 and M.sub.2 are selected independently from the group consisting of Cr, Mn, Fe, Co, and Ni, and x is between about 0.0 and about 1.0 inclusive; and between about 20% and about 50% Al by weight. In another aspect, the method of the invention is used to provide methods for operating hydrogen-fueled internal combustion engines and hydrogen fuel cells. In still another aspect, the present invention provides a hydrogen-fueled internal combustion engine and a hydrogen fuel cell including the above-described ammonia-cracking catalyst.

  18. Crack-path effect on material toughness

    NASA Technical Reports Server (NTRS)

    Rubinstein, Asher A.

    1990-01-01

    The main features of a toughening mechanism associated with a curvilinear crack path are examined using a model consisting of a macrocrack in a brittle solid with a curvilinear segment at the crack tip. A numerical procedure for finite and semiinfinite cracks is formulated and evaluated using an example which has an exact solution (a finite crack in the form of a circular arc in a uniform stress field). It is shown that, for a relatively small amplitude of crack path oscillations, the toughening ratio can be taken equal to the ratio of the corresponding crack path lengths.

  19. Why do drying films crack?

    PubMed

    Lee, Wai Peng; Routh, Alexander F

    2004-11-01

    Understanding the mechanism by which films fail during drying is the first step in controlling this natural process. Previous studies have examined the spacing between cracks with predictions made by assuming a balance between elastic energy released with a surface energy consumed. We introduce a new scaling for the spacing between cracks in drying dispersions. The scaling relates to the distance that solvent can flow, to relieve capillary stresses, as a film fails. The scaling collapses data for a range of evaporation rates, film thicknesses, particle sizes, and materials. This work identifies capillary pressures, induced by packed particle fronts travelling horizontally across films, as responsible for the failure in dried films. PMID:15518466

  20. Monitoring fatigue cracks in gears

    NASA Astrophysics Data System (ADS)

    Dalpiaz, G.; Meneghetti, U.

    1991-12-01

    Vibration analysis is the most common means of gear monitoring and diagnostics. Gear vibration is affected by faults but the signal is usually picked up at the case, where it is also affected by the structural response. An appropriate filtering function is therefore proposed to recover the torsional gear vibration from the case vibration signal. The restored gear vibration can then be used with greater confidence than case vibration both for particular diagnostics purposes like crack detection and for more general objectives. This technique and its possible advantages in fatigue crack detection are illustrated in the paper.

  1. Nonlinear structural crack growth monitoring

    DOEpatents

    Welch, Donald E.; Hively, Lee M.; Holdaway, Ray F.

    2002-01-01

    A method and apparatus are provided for the detection, through nonlinear manipulation of data, of an indicator of imminent failure due to crack growth in structural elements. The method is a process of determining energy consumption due to crack growth and correlating the energy consumption with physical phenomena indicative of a failure event. The apparatus includes sensors for sensing physical data factors, processors or the like for computing a relationship between the physical data factors and phenomena indicative of the failure event, and apparatus for providing notification of the characteristics and extent of such phenomena.

  2. Slow Crack Growth of Germanium

    NASA Technical Reports Server (NTRS)

    Salem, Jon

    2016-01-01

    The fracture toughness and slow crack growth parameters of germanium supplied as single crystal beams and coarse grain disks were measured. Although germanium is anisotropic (A=1.7), it is not as anisotropic as SiC, NiAl, or Cu, as evidence by consistent fracture toughness on the 100, 110, and 111 planes. Germanium does not exhibit significant slow crack growth in distilled water. (n=100). Practical values for engineering design are a fracture toughness of 0.7 MPam and a Weibull modulus of m=6+/-2. For well ground and reasonable handled coupons, fracture strength should be greater than 30 MPa.

  3. Pilot studies on novel catalyst for sulfur removal from cracked naphthas with minimal octane loss

    SciTech Connect

    Sherwood, D.E. Jr.; Gripka, P.J.; Clausen, M.F.; Nelson, R.G.

    1996-12-31

    Oil companies are expecting wider mandated use of reformulated gasolines and further environmental mandates to lower sulfur contents of reformulated gasolines in the near future. Environmental agencies currently believe that lower sulfur contents will significantly upgrade the quality of automotive exhaust gases. Most of the sulfur in a typical refinery gasoline pool comes from {open_quotes}cracked naphthas,{close_quotes} e.g. from Fluid Catalyst Cracking Units (FCCU`s). Cracked naphthas also have high olefin contents, and thus, high octane numbers. Although it is relatively easy to remove sulfur from a cracked naphtha in a low severity hydrotreating operation, at the same time, significant olefin saturation and octane reduction occur. Clearly, a selective hydrodesulfurization (HDS) process with minimal olefin reduction is required to produce low sulfur, high octane cracked naphthas. 2 refs., 5 tabs.

  4. Automatic inspection of pavement cracking distress

    NASA Astrophysics Data System (ADS)

    Xu, B.; Huang, Y.

    2005-08-01

    This paper presents the image-processing algorithm customized for high-speed, real-time inspection of pavement cracking. In the algorithm, a pavement image is divided into grid cells of 8x8 pixels and each cell is classified as a non-crack or crack cell using the grayscale information of the border pixels. Whether a crack cell can be regarded as a basic element (or seed) depends on its contrast to the neighboring cells. A number of crack seeds can be called a crack cluster if they fall on a linear string. A crack cluster corresponds to a dark strip in the original image that may or may not be a section of a real crack. Additional conditions to verify a crack cluster include the requirements in the contrast, width and length of the strip. If verified crack clusters are oriented in similar directions, they will be joined to become one crack. Because many operations are performed on crack seeds rather than on the original image, crack detection can be executed simultaneously when the frame grabber is forming a new image, permitting real-time, online pavement survey. The trial test results show a good repeatability and accuracy when multiple surveys were conducted at different driving conditions.

  5. Fracture mechanics parameters for small fatigue cracks

    NASA Technical Reports Server (NTRS)

    Newman, J. C., Jr.

    1992-01-01

    This paper presents a review of some common small-crack test specimens, the underlying causes of the small-crack effect, and the fracture-mechanics parameters that have been used to correlate or predict their growth behavior. This review concentrates on continuum mechanics concepts and on the nonlinear behavior of small cracks. The paper reviews some stress-intensity factor solutions for small-crack test specimens and develops some simple elastic-plastic J integral and cyclic J integral expressions that include the influence of crack-closure. These parameters were applied to small-crack growth data on two aluminum alloys, and a fatigue life prediction methodology is demonstrated. For these materials, the crack-closure transient from the plastic wake was found to be the major factor in causing the small-crack effect.

  6. Crack problems in cylindrical and spherical shells

    NASA Technical Reports Server (NTRS)

    Erdogan, F.

    1976-01-01

    Standard plate or shell theories were used as a starting point to study the fracture problems in thin-walled cylindrical and spherical shells, assuming that the plane of the crack is perpendicular to the surface of the sheet. Since recent studies have shown that local shell curvatures may have a rather considerable effect on the stress intensity factor, the crack problem was considered in conjunction with a shell rather than a plate theory. The material was assumed to be isotropic and homogeneous, so that approximate solutions may be obtained by approximating the local shell crack geometry with an ideal shell which has a solution, namely a spherical shell with a meridional crack, a cylindrical shell with a circumferential crack, or a cylindrical shell with an axial crack. A method of solution for the specially orthotropic shells containing a crack was described; symmetric and skew-symmetric problems are considered in cylindrical shells with an axial crack.

  7. Crack Formation in Cement-Based Composites

    NASA Astrophysics Data System (ADS)

    Sprince, A.; Pakrastinsh, L.; Vatin, N.

    2016-04-01

    The cracking properties in cement-based composites widely influences mechanical behavior of construction structures. The challenge of present investigation is to evaluate the crack propagation near the crack tip. During experiments the tension strength and crack mouth opening displacement of several types of concrete compositions was determined. For each composition the Compact Tension (CT) specimens were prepared with dimensions 150×150×12 mm. Specimens were subjected to a tensile load. Deformations and crack mouth opening displacement were measured with extensometers. Cracks initiation and propagation were analyzed using a digital image analysis technique. The formation and propagation of the tensile cracks was traced on the surface of the specimens using a high resolution digital camera with 60 mm focal length. Images were captured during testing with a time interval of one second. The obtained experimental curve shows the stages of crack development.

  8. Mechanics of the crack path formation

    NASA Technical Reports Server (NTRS)

    Rubinstein, Asher A.

    1991-01-01

    A detailed analysis of experimentally obtained curvilinear crack path trajectories formed in a heterogeneous stress field is presented. Experimental crack path trajectories were used as data for the numerical simulations, recreating the actual stress field governing the development of the crack path. Thus, the current theories of crack curving and kinking could be examined by comparing them with the actual stress field parameters as they develop along the experimentally observed crack path. The experimental curvilinear crack path trajectories were formed in the tensile specimens with a hole positioned in the vicinity of a potential crack path. The numerical simulation, based on the solution of equivalent boundary value problems with the possible perturbations of the crack path, is presented.

  9. Mechanics of the crack path formation

    NASA Technical Reports Server (NTRS)

    Rubinstein, Asher A.

    1989-01-01

    A detailed analysis of experimentally obtained curvilinear crack path trajectories formed in a heterogeneous stress field is presented. Experimental crack path trajectories were used as data for numerical simulations, recreating the actual stress field governing the development of the crack path. Thus, the current theories of crack curving and kinking could be examined by comparing them with the actual stress field parameters as they develop along the experimentally observed crack path. The experimental curvilinear crack path trajectories were formed in the tensile specimens with a hole positioned in the vicinity of a potential crack path. The numerical simulation, based on the solution of equivalent boundary value problems with the possible perturbations of the crack path, is presented here.

  10. Damage analysis of a crack layer

    NASA Technical Reports Server (NTRS)

    Botsis, J.

    1989-01-01

    Damage analysis of a crack layer in polystyrene is carried out by employing optical microscopy and principles of quantitative stereology. The results show that, within the quasistatic phase of crack layer propagation, the average crazing density, along the trailing edge of the active zone, is constant. This is consistent with a self-similarity hypothesis of damage evolution employed by the crack layer theory. The average crazing densities within the active zone and along its trailing edge are found to be practically equal. A layer of constant crazing density, adjacent to the crack planes, accompanies the crack during its quasi-static growth. This suggests that: (1) a certain level of crazing density should be reached, around the crack tip, prior to crack advance; (2) the specific energy, associated with this 'core' of damage, could be considered as a Griffith's type energy. The results are in favor of certain hypothesis adopted by the crack layer theory.

  11. Thermal cracking with hydrogen donor diluent

    SciTech Connect

    Derbyshire, F.; Varghese, P.; Whitehurst, D.D.

    1983-07-26

    An improved hydrogen donor for hydrogen donor diluent cracking is provided by extraction with naphtha from the cracked product and hydrogenation by hydrogen transfer from a lower boiling hydrogen donor such as tetralin.

  12. Steam Hydrocarbon Cracking and Reforming

    ERIC Educational Resources Information Center

    Golombok, Michael

    2004-01-01

    The interactive methods of steam hydrocarbon reforming and cracking of the oil and chemical industries are scrutinized, with special focus on their resemblance and variations. The two methods are illustrations of equilibrium-controlled and kinetically-controlled processes, the analysis of which involves theories, which overlap and balance each…

  13. TV fatigue crack monitoring system

    NASA Technical Reports Server (NTRS)

    Exton, R. J. (Inventor)

    1977-01-01

    An apparatus is disclosed for monitoring the development and growth of fatigue cracks in a test specimen subjected to a pulsating tensile load. A plurality of television cameras photograph a test specimen which is illuminated at the point of maximum tensile stress. The television cameras have a modified vidicon tube which has an increased persistence time thereby eliminating flicker in the displayed images.

  14. Crack-Defined Electronic Nanogaps.

    PubMed

    Dubois, Valentin; Niklaus, Frank; Stemme, Göran

    2016-03-01

    Achieving near-atomic-scale electronic nanogaps in a reliable and scalable manner will facilitate fundamental advances in molecular detection, plasmonics, and nanoelectronics. Here, a method is shown for realizing crack-defined nanogaps separating TiN electrodes, allowing parallel and scalable fabrication of arrays of sub-10 nm electronic nanogaps featuring individually defined gap widths. PMID:26784270

  15. Effect of crack length-to-width ratio on crack resistance of high Cr-ODS steels at high temperature for fuel cladding application

    NASA Astrophysics Data System (ADS)

    Chaouadi, R.; Ramesh, M.; Gavrilov, S.

    2013-11-01

    Oxide dispersion strengthened (ODS) steels with high Cr-content are extensively investigated in Europe, Japan and United States by the nuclear materials community for application to both advanced fission reactors and fusion systems. In comparison to standard high Cr-steels, the expected operation temperature range can be extended to 650 °C or more because of their improved creep resistance. However, their crack resistance behavior in the high temperature range was less investigated.The aim of the present paper is to provide some insight on their fracture behavior at high temperature and different crack configurations, in particular shallow crack. Crack resistance measurements were performed on a 12%Cr-ODS steel using compact tension specimens at 650 °C considering both shallow and deep crack configurations. Finite element calculations were performed on a typical fuel cladding tube geometry to assess the performances in terms of crack resistance. It is found that the temperature gradient across the wall should be maintained low enough to avoid cracking. After irradiation in corrosive environment, the boundary conditions might be further affected limiting therefore the lifetime of ODS cladding.

  16. Simulating the effect of slab features on vapor intrusion of crack entry.

    PubMed

    Yao, Yijun; Pennell, Kelly G; Suuberg, Eric M

    2013-01-01

    In vapor intrusion screening models, a most widely employed assumption in simulating the entry of contaminant into a building is that of a crack in the building foundation slab. Some modelers employed a perimeter crack hypothesis while others chose not to identify the crack type. However, few studies have systematically investigated the influence on vapor intrusion predictions of slab crack features, such as the shape and distribution of slab cracks and related to this overall building foundation footprint size. In this paper, predictions from a three-dimensional model of vapor intrusion are used to compare the contaminant mass flow rates into buildings with different foundation slab crack features. The simulations show that the contaminant mass flow rate into the building does not change much for different assumed slab crack shapes and locations, and the foundation footprint size does not play a significant role in determining contaminant mass flow rate through a unit area of crack. Moreover, the simulation helped reveal the distribution of subslab contaminant soil vapor concentration beneath the foundation, and the results suggest that in most cases involving no biodegradation, the variation in subslab concentration should not exceed an order of magnitude, and is often significantly less than this. PMID:23359620

  17. Jumplike fatigue crack growth in compressor blades

    NASA Astrophysics Data System (ADS)

    Limar', L. V.; Demina, Yu. A.; Botvina, L. R.

    2014-04-01

    It is shown that power relations between the two main fractographic characteristics of fracture surfaces forming during jumplike fatigue crack growth, namely, the crack depth and the corresponding crack front length, can be used to estimate the fracture stress during vibration tests of the compressor blades of an aviation gas turbine engine, which are made of VT3-1 titanium alloy.

  18. 46 CFR 59.10-5 - Cracks.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... CFR 59.01-2). For thicknesses exceeding three-fourths inch, suitable U grooves should be employed. A... the total length of any crack or series of consecutive cracks does not exceed two staybolt pitches. (d) Cracks in plain, circular or Adamson ring or similar type furnaces may be welded provided any one...

  19. 46 CFR 59.10-5 - Cracks.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... CFR 59.01-2). For thicknesses exceeding three-fourths inch, suitable U grooves should be employed. A... the total length of any crack or series of consecutive cracks does not exceed two staybolt pitches. (d) Cracks in plain, circular or Adamson ring or similar type furnaces may be welded provided any one...

  20. 46 CFR 59.10-5 - Cracks.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 2 2012-10-01 2012-10-01 false Cracks. 59.10-5 Section 59.10-5 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) MARINE ENGINEERING REPAIRS TO BOILERS, PRESSURE VESSELS AND APPURTENANCES Welding Repairs to Boilers and Pressure Vessels in -Service § 59.10-5 Cracks. (a) Cracks extending from the calking edge of plates...

  1. 46 CFR 59.10-5 - Cracks.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... CFR 59.01-2). For thicknesses exceeding three-fourths inch, suitable U grooves should be employed. A... the total length of any crack or series of consecutive cracks does not exceed two staybolt pitches. (d) Cracks in plain, circular or Adamson ring or similar type furnaces may be welded provided any one...

  2. 46 CFR 59.10-5 - Cracks.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... CFR 59.01-2). For thicknesses exceeding three-fourths inch, suitable U grooves should be employed. A... the total length of any crack or series of consecutive cracks does not exceed two staybolt pitches. (d) Cracks in plain, circular or Adamson ring or similar type furnaces may be welded provided any one...

  3. Cracked Teeth: A Review of the Literature

    PubMed Central

    Lubisich, Erinne B.; Hilton, Thomas J.; FERRACANE, JACK

    2013-01-01

    Although cracked teeth are a common problem for patients and dentists, there is a dearth of evidence-based guidelines on how to prevent, diagnose, and treat cracks in teeth. The purpose of this article is to review the literature to establish what evidence exists regarding the risk factors for cracked teeth and their prevention, diagnosis, and treatment. PMID:20590967

  4. On Generating Fatigue Crack Growth Thresholds

    NASA Technical Reports Server (NTRS)

    Forth, Scott C.; Newman, James, Jr.; Forman, Royce G.

    2003-01-01

    The fatigue crack growth threshold, defining crack growth as either very slow or nonexistent, has been traditionally determined with standardized load reduction methodologies. These experimental procedures can induce load history effects that result in crack closure. This history can affect the crack driving force, i.e. during the unloading process the crack will close first at some point along the wake or blunt at the crack tip, reducing the effective load at the crack tip. One way to reduce the effects of load history is to propagate a crack under constant amplitude loading. As a crack propagates under constant amplitude loading, the stress intensity factor range, Delta K, will increase, as will the crack growth rate. da/dN. A fatigue crack growth threshold test procedure is experimentally validated that does not produce load history effects and can be conducted at a specified stress ratio, R. The authors have chosen to study a ductile aluminum alloy where the plastic deformations generated during testing may be of the magnitude to impact the crack opening.

  5. The transition from subsonic to supersonic cracks

    PubMed Central

    Behn, Chris; Marder, M.

    2015-01-01

    We present the full analytical solution for steady-state in-plane crack motion in a brittle triangular lattice. This allows quick numerical evaluation of solutions for very large systems, facilitating comparisons with continuum fracture theory. Cracks that propagate faster than the Rayleigh wave speed have been thought to be forbidden in the continuum theory, but clearly exist in lattice systems. Using our analytical methods, we examine in detail the motion of atoms around a crack tip as crack speed changes from subsonic to supersonic. Subsonic cracks feature displacement fields consistent with a stress intensity factor. For supersonic cracks, the stress intensity factor disappears. Subsonic cracks are characterized by small-amplitude, high-frequency oscillations in the vertical displacement of an atom along the crack line, while supersonic cracks have large-amplitude, low-frequency oscillations. Thus, while supersonic cracks are no less physical than subsonic cracks, the connection between microscopic and macroscopic behaviour must be made in a different way. This is one reason supersonic cracks in tension had been thought not to exist. PMID:25713443

  6. A review of fatigue crack growth analyses

    NASA Technical Reports Server (NTRS)

    Liu, H. W.

    1991-01-01

    Stress intensity factor range, Delta K, has been shown to correlate well with fatigue crack growth rate, da/dN. A number of fatigue crack growth theories have been developed for such correlations. Often, conjectory theories of fatigue crack growth are constructed from experimental data. On the other hand, fatigue crack growth theories can also be derived rigorously with deductive logic. Four such deductive theories are reviewed: (1) that for the growth of a small crack in a very wide homogeneous plate, (2) the theory of similitude for the correlation of da/dN with Delta K, (3) a theory of crack growth in homogeneous materials in small-scale yielding, and (4) the unzipping theory of fatigue crack growth. This paper synthesizes these four theories into a logic framework useful for fatigue crack growth analysis. The deductive theories and the conjectory theories complement each other in the advances of the understanding of fatigue crack growth. The applications of logic framework to formulating an overview of fatigue crack growth behavior and to defining the complex issues of the growth of small cracks and crack growth in composites are illustrated.

  7. Automatic inspection of pavement cracking distress

    NASA Astrophysics Data System (ADS)

    Huang, Yaxiong; Xu, Bugao

    2006-01-01

    We present an image processing algorithm customized for high-speed, real-time inspection of pavement cracking. In the algorithm, a pavement image is divided into grid cells of 8×8 pixels, and each cell is classified as a noncrack or crack cell using the grayscale information of the border pixels. Whether a crack cell can be regarded as a basic element (or seed) depends on its contrast to the neighboring cells. A number of crack seeds can be called a crack cluster if they fall on a linear string. A crack cluster corresponds to a dark strip in the original image that may or may not be a section of a real crack. Additional conditions to verify a crack cluster include the requirements in the contrast, width, and length of the strip. If verified crack clusters are oriented in similar directions, they will be joined to become one crack. Because many operations are performed on crack seeds rather than on the original image, crack detection can be executed simultaneously when the frame grabber is forming a new image, permitting real-time, online pavement surveys. The trial test results show a good repeatability and accuracy when multiple surveys were conducted at different driving conditions.

  8. Cracking process with catalyst of combined zeolites

    SciTech Connect

    Gladrow, E. M.; Winter, W. E.

    1981-09-01

    A hydrocarbon cracking catalyst comprises an ultrastable y-type crystalline zeolite, a small pore crystalline zeolite such as mordenite, an inorganic oxide matrix and, optionally, a porous inert component. The cracking catalyst has a high activity and selectivity for the production of high octane naphtha fractions from higher boiling point hydrocarbonaceous oils. Catalytic cracking processes utilizing the catalyst are also provided.

  9. VEBA-cracking-processes for upgrading heavy oils and refinery residues

    SciTech Connect

    Graeser, U.; Niemann, K.

    1983-03-01

    More than 20 different heavy oils and residues have been processed by the VEBA-Combi-Cracking and VEBA-LQ-Cracking high pressure hydrocracking processes, in a bench scale unit. Conversions up to 99 wt % of to a syncrude, consisting of naphtha middle distillate and vacuum gas oil were obtained. Conversions correlate with space velocity at a given temperature and product pattern depends upon degree of conversion. The VEBA-LQ-Cracking process produces a stable syncrude whereas the products of the VEBA-Combi process are very low in sulfur and nitrogen.

  10. Catalytic cracking of vacuum distillate with additives in fluidized catalyst bed

    SciTech Connect

    Omaraliev, T.O.; Tanashev, S.T.; Kapustin, V.M.

    1987-03-01

    The authors report on a study of the catalytic cracking of straight-run 350-500/sup 0/C vacuum distillates differing substantially in contents of aromatic hydrocarbons and resins, as influenced by the addition of an extract from the No. III lube cut from West Siberian crude. The experiments were performed in a standard catalytic cracking unit in the fluidization mode, using KMTsR zeolitic microbead catalyst.

  11. Crack modeling of rotating blades with cracked hexahedral finite element method

    NASA Astrophysics Data System (ADS)

    Liu, Chao; Jiang, Dongxiang

    2014-06-01

    Dynamic analysis is the basis in investigating vibration features of cracked blades, where the features can be applied to monitor health state of blades, detect cracks in an early stage and prevent failures. This work presents a cracked hexahedral finite element method for dynamic analysis of cracked blades, with the purpose of addressing the contradiction between accuracy and efficiency in crack modeling of blades in rotor system. The cracked hexahedral element is first derived with strain energy release rate method, where correction of stress intensity factors of crack front and formulation of load distribution of crack surface are carried out to improve the modeling accuracy. To consider nonlinear characteristics of time-varying opening and closure effects caused by alternating loads, breathing function is proposed for the cracked hexahedral element. Second, finite element method with contact element is analyzed and used for comparison. Finally, validation of the cracked hexahedral element is carried out in terms of breathing effects of cracked blades and natural frequency in different crack depths. Good consistency is acquired between the results with developed cracked hexahedral element and contact element, while the computation time is significantly reduced in the previous one. Therefore, the developed cracked hexahedral element achieves good accuracy and high efficiency in crack modeling of rotating blades.

  12. The three thresholds for fatigue crack propagation

    SciTech Connect

    Miller, K.J.

    1997-12-01

    The three governing threshold conditions in metal fatigue are considered, one relating to crack growth in single crystals, one concerned with crack growth in polycrystalline materials, and one based on linear elastic fracture mechanics (LEFM). All three conditions are examined in relation to the two physical processes of cracking, i.e., Stage I (shear) and Stage II (tensile) crack growth. The LEFM threshold is seen as a lower bound condition for fatigue crack growth rate, and the single crystal threshold is viewed in relation to the fundamental threshold pertaining to the fatigue resistance of polycrystalline metals.

  13. Cracks in Flow Liners and Their Resolution

    NASA Technical Reports Server (NTRS)

    Harris, C. E.; Raju, I. S.

    2005-01-01

    Cracks were detected in flow liners at the gimbal joints in the LH2 feedlines of the space shuttle's main engines. The cracks initiated at defects in the drainage slots of the flow liners and grew due to high cycle fatigue. Fracture mechanics analyses were conducted to evaluate the life of the liners. These analyses yielded extremely short lives in the presence of small surface or corner cracks. A high fidelity detection method, edge replication, was used to detect the very small cracks. The detected cracks were removed by polishing and the surface quality of the slots was reestablished to improve life of the liners.

  14. Crack detection by stimulated infrared thermography

    NASA Astrophysics Data System (ADS)

    Bodnar, Jean-Luc

    2014-03-01

    In this paper, the potential of stimulated infrared thermography is studied for the detection of cracks located in metallic materials. To start with, the feasibility of the method is shown with the use of numerical simulations. Stimulated infrared thermography allows detecting emerging cracks in samples whether reflective or not as well as non-emerging cracks. In addition, crack detection is due to the radiative effects and/or the thermal effects induced by the defects. Then, the experimental device implemented for the study is detailed. Finally, experiments confirm that stimulated infrared thermography enables to detect microscopic cracks, whether emerging or non-emerging, in metal samples.

  15. Fatigue-Crack-Growth Structural Analysis

    NASA Technical Reports Server (NTRS)

    Newman, J. C., Jr.

    1986-01-01

    Elastic and plastic deformations calculated under variety of loading conditions. Prediction of fatigue-crack-growth lives made with FatigueCrack-Growth Structural Analysis (FASTRAN) computer program. As cyclic loads are applied to initial crack configuration, FASTRAN predicts crack length and other parameters until complete break occurs. Loads are tensile or compressive and of variable or constant amplitude. FASTRAN incorporates linear-elastic fracture mechanics with modifications of load-interaction effects caused by crack closure. FASTRAN considered research tool, because of lengthy calculation times. FASTRAN written in FORTRAN IV for batch execution.

  16. Catalytic process for hydrocarbon cracking using synthetic mesoporous crystalline material

    SciTech Connect

    Le, Q.N.; Thomson, R.T.

    1993-08-03

    A process is described for catalytic cracking of naphtha feedstock which comprises contacting feedstock containing at least 20 wt % C7-C12 alkanes under catalytic reaction conditions with inorganic, porous, non-layered crystalline phase catalyst material exhibiting, after calcination, an X-ray diffraction pattern with at least one peak at a d-spacing greater than 18 Angstrom units and having a benzene adsorption capacity greater than 15 grams of benzene per 100 grams of said material at 50 torr and 25 C, said catalyst material having active Bronsted acid sites; and wherein said cracking conditions include total pressure up to 500 kPa and reaction temperature of 425 to 650 C for less than 50 wt % partial feedstock cracking; thereby producing cracking effluent containing at least 20 wt % isomeric C4-C5 aliphatics including at least 10 wt % C4-C5 tertiary alkene, and at least 10 wt % C4-C5 isoalkane, based on C[sub 5[minus

  17. Environmentally assisted cracking of LWR materials

    SciTech Connect

    Chopra, O.K.; Chung, H.M.; Kassner, T.F.; Shack, W.J.

    1995-12-01

    Research on environmentally assisted cracking (EAC) of light water reactor materials has focused on (a) fatigue initiation in pressure vessel and piping steels, (b) crack growth in cast duplex and austenitic stainless steels (SSs), (c) irradiation-assisted stress corrosion cracking (IASCC) of austenitic SSs, and (d) EAC in high- nickel alloys. The effect of strain rate during different portions of the loading cycle on fatigue life of carbon and low-alloy steels in 289{degree}C water was determined. Crack growth studies on wrought and cast SSs have been completed. The effect of dissolved-oxygen concentration in high-purity water on IASCC of irradiated Type 304 SS was investigated and trace elements in the steel that increase susceptibility to intergranular cracking were identified. Preliminary results were obtained on crack growth rates of high-nickel alloys in water that contains a wide range of dissolved oxygen and hydrogen concentrations at 289 and 320{degree}C. The program on Environmentally Assisted Cracking of Light Water Reactor Materials is currently focused on four tasks: fatigue initiation in pressure vessel and piping steels, fatigue and environmentally assisted crack growth in cast duplex and austenitic SS, irradiation-assisted stress corrosion cracking of austenitic SSs, and environmentally assisted crack growth in high-nickel alloys. Measurements of corrosion-fatigue crack growth rates (CGRs) of wrought and cast stainless steels has been essentially completed. Recent progress in these areas is outlined in the following sections.

  18. Visual simulation of fatigue crack growth

    SciTech Connect

    Wang, S.; Margolin, H.; Lin, F.B.

    1998-07-01

    An attempt has been made to visually simulate fatigue crack propagation from a precrack. An integrated program was developed for this purpose. The crack-tip shape was determined at four load positions in the first load cycle. The final shape was a blunt front with an ear profile at the precrack tip. A more general model, schematically illustrating the mechanism of fatigue crack growth and striation formation in a ductile material, was proposed based on this simulation. According to the present model, fatigue crack growth is an intermittent process; cyclic plastic shear strain is the driving force applied to both state 1 and 2 crack growth. No fracture mode transition occurs between the two stages in the present study. The crack growth direction alternates, moving up and down successively, producing fatigue striations. A brief examination has been made of the crack growth path in a ductile two-phase material.

  19. Improved imaging algorithm for bridge crack detection

    NASA Astrophysics Data System (ADS)

    Lu, Jingxiao; Song, Pingli; Han, Kaihong

    2012-04-01

    This paper present an improved imaging algorithm for bridge crack detection, through optimizing the eight-direction Sobel edge detection operator, making the positioning of edge points more accurate than without the optimization, and effectively reducing the false edges information, so as to facilitate follow-up treatment. In calculating the crack geometry characteristics, we use the method of extracting skeleton on single crack length. In order to calculate crack area, we construct the template of area by making logical bitwise AND operation of the crack image. After experiment, the results show errors of the crack detection method and actual manual measurement are within an acceptable range, meet the needs of engineering applications. This algorithm is high-speed and effective for automated crack measurement, it can provide more valid data for proper planning and appropriate performance of the maintenance and rehabilitation processes of bridge.

  20. Further progress on the wavy-crack model of dynamic crack propagation

    SciTech Connect

    Gao, H.; Pawlikowski, K.

    1995-12-31

    The state-of-the-art theory of dynamic crack propagation has not been able to provide an unequivocal explanation for a number of experimental findings. An important observation is that the crack surfaces, as the trace of fracture path, tend to exhibit a rough surface morphology during rapid crack propagation. In a wavy-crack model proposed recently by the author, the crack surface roughening is attributed to an inherent instability which causes the tip of the crack to propagate along an oscillatory fracture path. It appears that the wavy-crack model is capable of explaining important discrepancies currently existing between theory and experiments. In particular, experimentally observed terminal fracture speeds are significantly lower than the theoretically predicted value, i.e. the Rayleigh wave speed CR. This may be attributed to the oscillatory fracture path which makes the measured crack velocity appear lower than the actual crack speed. Also, the wavy-crack model explains how the local crack tip motion can exhibit high inertia behaviors while the measurable crack motion remains in the low inertia domain. As a result of different inertia effects associated with local and apparent crack motion, the high inertia field near the crack tip tends to induce nucleation of microcrack branches while the low inertia apparent crack field tends to suppress the microbranching. This view of dynamic fracture is not inconsistent with relevant experimental observations (e.g. see and references therein) and recent numerical simulation of fast crack motion. A planar wavy motion of a 3D crack front has been analyzed by Pice et al.. The wavy-crack model has also been applied to dynamic crack propagation along a weak interface having lower fracture resistance than the adjacent material. Further analytical and numerical developments of this model will be discussed in this presentation.

  1. Immunotoxicity of cocaine and crack.

    PubMed

    Stefanidou, Maria; Loutsidou, Ariadni C; Chasapis, Christos T; Spiliopoulou, Chara A

    2011-06-01

    The toxicity of cocaine and crack was studied on the protozoan Tetrahymena pyriformis, using several endpoints, such as the DNA content of the macronuclei and the phagocytic ability. Both forms induced an increase in the DNA content of the protozoan, which indicates the stimulation of the mitotic process. In contrast, the phagocytic activity, of the protozoan was decreased after the administration of cocaine, an effect that was more extensive after the administration of crack. These results, derived from previous experiments, suggest a possible relationship between the observed immunosuppression in cocaine abusers and the immunosuppression found in the protozoan. This suppression subsequently may play a role in the development of other opportunistic infections in drug abusers. This paper, based on in vivo experiments with the protozoan Tetrahymena, suggests the compromised immune response in cocaine addicts and assures the reported effects of cocaine on immune cell function. PMID:21696343

  2. Polygon/Cracked Sedimentary Rock

    NASA Technical Reports Server (NTRS)

    2004-01-01

    4 December 2004 Exposures of sedimentary rock are quite common on the surface of Mars. Less common, but found in many craters in the regions north and northwest of the giant basin, Hellas, are sedimentary rocks with distinct polygonal cracks in them. This Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) image shows an example from the floor of an unnamed crater near 21.0oS, 311.9oW. Such cracks might have formed by desiccation as an ancient lake dried up, or they might be related to ground ice freeze/thaw cycles or some other stresses placed on the original sediment or the rock after it became lithified. The 300 meter scale bar is about 328 yards long. The scene is illuminated by sunlight from the upper left.

  3. Compliance matrices for cracked bodies

    NASA Technical Reports Server (NTRS)

    Ballarini, R.

    1986-01-01

    An algorithm is developed to construct the compliance matrix for a cracked solid in the integral-equation formulation of two-dimensional linear-elastic fracture mechanics. The integral equation is reduced to a system of algebraic equations for unknown values of the dislocation-density function at discrete points on the interval from -1 to 1, using the numerical procedure described by Gerasoulis (1982). Sample numerical results are presented, and it is suggested that the algorithm is especially useful in cases where iterative solutions are required; e.g., models of fiber-reinforced concrete, rocks, or ceramics where microcracking, fiber bridging, and other nonlinear effects are treated as nonlinear springs along the crack surfaces (Ballarini et al., 1984).

  4. The Growth of Small Corrosion Fatigue Cracks in Alloy 7075

    NASA Technical Reports Server (NTRS)

    Piascik, R. S.

    2001-01-01

    The corrosion fatigue crack growth characteristics of small (less than 35 microns) surface and corner cracks in aluminum alloy 7075 is established. The early stage of crack growth is studied by performing in situ long focal length microscope (500X) crack length measurements in laboratory air and 1% NaCl environments. To quantify the "small crack effect" in the corrosive environment, the corrosion fatigue crack propagation behavior of small cracks is compared to long through-the-thickness cracks grown under identical experimental conditions. In salt water, long crack constant K(sub max) growth rates are similar to small crack da/dN.

  5. The Growth of Small Corrosion Fatigue Cracks in Alloy 7075

    NASA Technical Reports Server (NTRS)

    Piascik, Robert S.

    2015-01-01

    The corrosion fatigue crack growth characteristics of small (greater than 35 micrometers) surface and corner cracks in aluminum alloy 7075 is established. The early stage of crack growth is studied by performing in situ long focal length microscope (500×) crack length measurements in laboratory air and 1% sodium chloride (NaCl) environments. To quantify the "small crack effect" in the corrosive environment, the corrosion fatigue crack propagation behavior of small cracks is compared to long through-the-thickness cracks grown under identical experimental conditions. In salt water, long crack constant K(sub max) growth rates are similar to small crack da/dN.

  6. Stress Corrosion Cracking of Carbon Steel Weldments

    SciTech Connect

    POH-SANG, LAM

    2005-01-13

    An experiment was conducted to investigate the role of weld residual stress on stress corrosion cracking in welded carbon steel plates prototypic to those used for nuclear waste storage tanks. Carbon steel specimen plates were butt-joined with Gas Metal Arc Welding technique. Initial cracks (seed cracks) were machined across the weld and in the heat affected zone. These specimen plates were then submerged in a simulated high level radioactive waste chemistry environment. Stress corrosion cracking occurred in the as-welded plate but not in the stress-relieved duplicate. A detailed finite element analysis to simulate exactly the welding process was carried out, and the resulting temperature history was used to calculate the residual stress distribution in the plate for characterizing the observed stress corrosion cracking. It was shown that the cracking can be predicted for the through-thickness cracks perpendicular to the weld by comparing the experimental KISCC to the calculated stress intensity factors due to the welding residual stress. The predicted crack lengths agree reasonably well with the test data. The final crack lengths appear to be dependent on the details of welding and the sequence of machining the seed cracks, consistent with the prediction.

  7. Modelling and measurement of crack closure and crack growth following overloads and underloads

    NASA Technical Reports Server (NTRS)

    Dexter, R. J.; Hudak, S. J.; Davidson, D. L.

    1989-01-01

    Ignoring crack growth retardation following overloads can result in overly conservative life predictions in structures subjected to variable amplitude fatigue loading. Crack closure is believed to contribute to the crack growth retardation, although the specific closure mechanism is dabatable. The delay period and corresponding crack growth rate transients following overload and overload/underload cycles were systematically measured as a function of load ratio and overload magnitude. These responses are correlated in terms of the local 'driving force' for crack growth, i.e. the effective stress intensity factor range. Experimental results are compared with the predictions of a Dugdale-type (1960) crack closure model, and improvements in the model are suggested.

  8. Crack Turning in Integrally Stiffened Aircraft Structures

    NASA Technical Reports Server (NTRS)

    Pettit, Richard Glen

    2000-01-01

    Current emphasis in the aircraft industry toward reducing manufacturing cost has created a renewed interest in integrally stiffened structures. Crack turning has been identified as an approach to improve the damage tolerance and fail-safety of this class of structures. A desired behavior is for skin cracks to turn before reaching a stiffener, instead of growing straight through. A crack in a pressurized fuselage encounters high T-stress as it nears the stiffener--a condition favorable to crack turning. Also, the tear resistance of aluminum alloys typically varies with crack orientation, a form of anisotropy that can influence the crack path. The present work addresses these issues with a study of crack turning in two-dimensions, including the effects of both T-stress and fracture anisotropy. Both effects are shown to have relation to the process zone size, an interaction that is central to this study. Following an introduction to the problem, the T-stress effect is studied for a slightly curved semi-infinite crack with a cohesive process zone, yielding a closed form expression for the future crack path in an infinite medium. For a given initial crack tip curvature and tensile T-stress, the crack path instability is found to increase with process zone size. Fracture orthotropy is treated using a simple function to interpolate between the two principal fracture resistance values in two-dimensions. An extension to three-dimensions interpolates between the six principal values of fracture resistance. Also discussed is the transition between mode I and mode II fracture in metals. For isotropic materials, there is evidence that the crack seeks out a direction of either local symmetry (pure mode I) or local asymmetry (pure mode II) growth. For orthotropic materials the favored states are not pure modal, and have mode mixity that is a function of crack orientation.

  9. Crack detection sensor layout and bus configuration analysis

    NASA Astrophysics Data System (ADS)

    Sharp, Nathan; Kuntz, Alan; Brubaker, Cole; Amos, Stephanie; Gao, Wei; Gupta, Gautam; Mohite, Aditya; Farrar, Chuck; Mascareñas, David

    2014-05-01

    In crack detection applications large sensor arrays are needed to be able to detect and locate cracks in structures. Emerging graphene-oxide paper sensing skins are a promising technology that will help enable structural sensing skins, but in order to make use of them we must consider how the sensors will be laid out and wired on the skin. This paper analyzes different sensor shapes and layouts to determine the layout which provides the preferred performance. A ‘snaked hexagon’ layout is proposed as the preferred sensor layout when both crack detection and crack location parameters are considered. In previous work we have developed a crack detection circuit which reduces the number of channels of the system by placing several sensors onto a common bus line. This helps reduce data and power consumption requirements but reduces the robustness of the system by creating the possibility of losing sensing in several sensors in the event that a single wire breaks. In this paper, sensor bus configurations are analyzed to increase the robustness of the bused sensor system. Results show that spacing out sensors in the same bus as much as possible increases the robustness of the system and that at least 3 buses are needed to prevent large segments of a structure from losing sensing in the event of a bus failure. This work is a preliminary effort toward enabling a new class of ‘networked materials’ that will be vitally important for next generation structural applications. ‘Networked materials’ have material properties related to information theoretic concepts. An example material property is ‘bandwidth’ per unit of material that might indicate the amount of information the material can provide about its state-of-health.

  10. Micro-crack enhanced permeability in tight rocks: An experimental and microstructural study

    NASA Astrophysics Data System (ADS)

    Delle Piane, Claudio; Arena, Alessio; Sarout, Joel; Esteban, Lionel; Cazes, Emilie

    2015-12-01

    The elastic and hydraulic response of a rock and its stress sensitivity are strongly affected by the presence of micro-cracks. Therefore, a full characterization and quantification of cracks at the micro-scale is essential for understanding the physical and transport properties of rocks under stress. As yet, there is no uniquely accepted method to precisely quantify the density and geometrical characteristics of such microstructural features. In this contribution, we present results of quantitative analyses of 2D scanning electron microscopy (SEM) images and 3D X-ray microtomograms acquired on three samples of Carrara Marble artificially cracked by thermal shock. New semi-automatic workflows have been developed to perform these 2D and 3D analyses. The main outcome is the quantification of average length, aspect ratio, and density per unit surface (2D) or volume (3D) of micro-cracks observed. The thermal treatment only opens grain boundaries and does not result in the creation of new intragranular cracks. The results are consistent with the degree of thermal cracking artificially induced on the rock sample prior to the imaging/analysis procedure, i.e., more and wider micro-cracks are measured on samples heated to higher temperatures. The results of these quantitative microstructural analyses are also consistent with nuclear magnetic resonance (NMR) data independently acquired on the same samples saturated with water.

  11. Passive wireless antenna sensors for crack detection and shear/compression sensing

    NASA Astrophysics Data System (ADS)

    Mohammad, Irshad

    Despite the fact that engineering components and structures are carefully designed against fatigue failures, 50 to 90% of mechanical failures are due to fatigue crack development. The severity of the failure depends on both the crack length and its orientation. Many types of sensors are available that can detect fatigue crack propagation. However, crack orientation detection has been rarely reported in the literature. We evaluated a patch antenna sensor capable of detecting crack propagation as well as crack orientation changes. The aim of these sensors would be to evaluate the real-time health condition of metallic structures to avoid catastrophic failures. The proposed crack sensing system consists of a dielectric substrate with a ground plane on one side of the substrate and an antenna patch printed on the other side of the substrate. The ground plane and the antenna patch, both conductive in nature, form an electromagnetic resonant cavity that radiates at distinct frequencies. These frequencies are monitored to evaluate the condition of cracks. A wireless sensor array can be realized by implementing a wireless interrogation unit. The scientific merits of this research are: 1) high sensitivity: it was demonstrated that the antenna sensors can detect crack growth with a sub-millimeter resolution; 2) passive wireless operation: based on microstrip antennas, the antenna sensors encode the sensing information in the backscattered antenna signal and thus can transmit the information without needing a local battery; 3) thin and conformal: the entire sensor unit is less than a millimeter thick and highly conformal; 4) crack orientation detection: the crack orientation on the structure can be precisely evaluated based on a single parameter, which only few sensors can accomplish. In addition to crack detection, the patch antenna sensors are also investigated for measuring shear and pressure forces, with an aim to study the formation, diagnostics and prevention of foot

  12. Impact of severe cracked germanium (111) substrate on aluminum indium gallium phosphate light-emitting-diode's electro-optical performance

    NASA Astrophysics Data System (ADS)

    Annaniah, Luruthudass; Devarajan, Mutharasu

    2016-07-01

    Cracked die is a serious failure mode in the Light Emitting Diode (LED) industry - affecting LED quality and long-term reliability performance. In this paper an investigation has been carried out to find the correlation between severe cracked germanium (Ge) substrate of an aluminum indium gallium phosphate (AlInGaP) LED and its electro-optical performance after the Temperature Cycle (TC) test. The LED dice were indented at several bond forces using a die bonder. The indented dice were analysed using a Scanning Electron Microscope (SEM). The result showed that severe cracks were observed at 180 gF onward. As the force of indentation increases, crack formation also becomes more severe thus resulting in the chipping of the substrate. The cracked dies were packaged and the TC test was performed. The results did not show any electro-optical failure or degradation, even after a 1000 cycle TC test. Several mechanically cross-sectioned cracked die LEDs, were analysed using SEM and found that no crack reached the active layer. This shows that severely cracked Ge substrate are able to withstand a -40°C/+100°C TC test up to 1000 cycles and LED optical performance is not affected. A small leakage current was observed in all of the cracked die LEDs in comparison to the reference unit. However, this value is smaller than the product specification and is of no concern.

  13. Crack formation and prevention in colloidal drops.

    PubMed

    Kim, Jin Young; Cho, Kun; Ryu, Seul-A; Kim, So Youn; Weon, Byung Mook

    2015-01-01

    Crack formation is a frequent result of residual stress release from colloidal films made by the evaporation of colloidal droplets containing nanoparticles. Crack prevention is a significant task in industrial applications such as painting and inkjet printing with colloidal nanoparticles. Here, we illustrate how colloidal drops evaporate and how crack generation is dependent on the particle size and initial volume fraction, through direct visualization of the individual colloids with confocal laser microscopy. To prevent crack formation, we suggest use of a versatile method to control the colloid-polymer interactions by mixing a nonadsorbing polymer with the colloidal suspension, which is known to drive gelation of the particles with short-range attraction. Gelation-driven crack prevention is a feasible and simple method to obtain crack-free, uniform coatings through drying-mediated assembly of colloidal nanoparticles. PMID:26279317

  14. Scaling of crack propagation in rubber sheets

    NASA Astrophysics Data System (ADS)

    Chen, C. H.; Zhang, H. P.; Niemczura, J.; Ravi-Chandar, K.; Marder, M.

    2011-11-01

    We have conducted experiments and numerical simulations to investigate supersonic cracks. The experiments are performed at 85 °C to suppress strain-induced crystallites that complicate experiments at lower temperature. Calibration experiments were performed to obtain the parameters needed to compare with a theory including viscous dissipation. We find that both experiments and numerical simulations support supersonic cracks, and we discover a transition from subsonic to supersonic as we plot experimental crack speed curves vs. extension ratio for different sized samples. Both experiments and simulations show two different scaling regimes: the speed of subsonic cracks scales with the elastic energy density while the speed of supersonic cracks scales with the extension ratio. Crack openings have qualitatively different shapes in the two scaling regimes.

  15. Online Bridge Crack Monitoring with Smart Film

    PubMed Central

    Wang, Shuliang; Li, Xingxing; Zhou, Zhixiang; Zhang, Xu; Yang, Guang; Qiu, Minfeng

    2013-01-01

    Smart film crack monitoring method, which can be used for detecting initiation, length, width, shape, location, and propagation of cracks on real bridges, is proposed. Firstly, the fabrication of the smart film is developed. Then the feasibility of the method is analyzed and verified by the mechanical sensing character of the smart film under the two conditions of normal strain and crack initiation. Meanwhile, the coupling interference between parallel enameled wires of the smart film is discussed, and then low-frequency detecting signal and the custom communication protocol are used to decrease interference. On this basis, crack monitoring system with smart film is designed, where the collected crack data is sent to the remote monitoring center and the cracks are simulated and recurred. Finally, the monitoring system is applied to six bridges, and the effects are discussed. PMID:24489496

  16. Online bridge crack monitoring with smart film.

    PubMed

    Zhang, Benniu; Wang, Shuliang; Li, Xingxing; Zhou, Zhixiang; Zhang, Xu; Yang, Guang; Qiu, Minfeng

    2013-01-01

    Smart film crack monitoring method, which can be used for detecting initiation, length, width, shape, location, and propagation of cracks on real bridges, is proposed. Firstly, the fabrication of the smart film is developed. Then the feasibility of the method is analyzed and verified by the mechanical sensing character of the smart film under the two conditions of normal strain and crack initiation. Meanwhile, the coupling interference between parallel enameled wires of the smart film is discussed, and then low-frequency detecting signal and the custom communication protocol are used to decrease interference. On this basis, crack monitoring system with smart film is designed, where the collected crack data is sent to the remote monitoring center and the cracks are simulated and recurred. Finally, the monitoring system is applied to six bridges, and the effects are discussed. PMID:24489496

  17. Crack formation and prevention in colloidal drops

    NASA Astrophysics Data System (ADS)

    Kim, Jin Young; Cho, Kun; Ryu, Seul-A.; Kim, So Youn; Weon, Byung Mook

    2015-08-01

    Crack formation is a frequent result of residual stress release from colloidal films made by the evaporation of colloidal droplets containing nanoparticles. Crack prevention is a significant task in industrial applications such as painting and inkjet printing with colloidal nanoparticles. Here, we illustrate how colloidal drops evaporate and how crack generation is dependent on the particle size and initial volume fraction, through direct visualization of the individual colloids with confocal laser microscopy. To prevent crack formation, we suggest use of a versatile method to control the colloid-polymer interactions by mixing a nonadsorbing polymer with the colloidal suspension, which is known to drive gelation of the particles with short-range attraction. Gelation-driven crack prevention is a feasible and simple method to obtain crack-free, uniform coatings through drying-mediated assembly of colloidal nanoparticles.

  18. Crack formation and prevention in colloidal drops

    PubMed Central

    Kim, Jin Young; Cho, Kun; Ryu, Seul-a; Kim, So Youn; Weon, Byung Mook

    2015-01-01

    Crack formation is a frequent result of residual stress release from colloidal films made by the evaporation of colloidal droplets containing nanoparticles. Crack prevention is a significant task in industrial applications such as painting and inkjet printing with colloidal nanoparticles. Here, we illustrate how colloidal drops evaporate and how crack generation is dependent on the particle size and initial volume fraction, through direct visualization of the individual colloids with confocal laser microscopy. To prevent crack formation, we suggest use of a versatile method to control the colloid-polymer interactions by mixing a nonadsorbing polymer with the colloidal suspension, which is known to drive gelation of the particles with short-range attraction. Gelation-driven crack prevention is a feasible and simple method to obtain crack-free, uniform coatings through drying-mediated assembly of colloidal nanoparticles. PMID:26279317

  19. Crack Propagation in Bamboo's Hierarchical Cellular Structure

    PubMed Central

    Habibi, Meisam K.; Lu, Yang

    2014-01-01

    Bamboo, as a natural hierarchical cellular material, exhibits remarkable mechanical properties including excellent flexibility and fracture toughness. As far as bamboo as a functionally graded bio-composite is concerned, the interactions of different constituents (bamboo fibers; parenchyma cells; and vessels.) alongside their corresponding interfacial areas with a developed crack should be of high significance. Here, by using multi-scale mechanical characterizations coupled with advanced environmental electron microscopy (ESEM), we unambiguously show that fibers' interfacial areas along with parenchyma cells' boundaries were preferred routes for crack growth in both radial and longitudinal directions. Irrespective of the honeycomb structure of fibers along with cellular configuration of parenchyma ground, the hollow vessels within bamboo culm affected the crack propagation too, by crack deflection or crack-tip energy dissipation. It is expected that the tortuous crack propagation mode exhibited in the present study could be applicable to other cellular natural materials as well. PMID:24998298

  20. Drug user settings: a crack house typology.

    PubMed

    Geter, R S

    1994-06-01

    Both lay persons and members of the scientific community have come to view the inner-city crack house as a facility where drug dealers and crack addicts sell, buy, and use crack cocaine. It is suggested in this article that the term "crack house" be unbundled into four more meaningful terms based on the physical conditions of the house, its functionality, and the social relationships that it supports. Two typologies are proposed. The first separates drug houses into four general categories: (1) Crack House, (2) Cop House, (3) Drug House III, and (4) Drug House IV. The second typology categorizes the Crack House into four types: (A) the Party House, (B) the Hit House, (C) the Smoke House, and (D) the Bandominium. Each of these types is explored in detail. PMID:7960297

  1. Prediction of thermal cycling induced matrix cracking

    NASA Technical Reports Server (NTRS)

    Mcmanus, Hugh L.

    1992-01-01

    Thermal fatigue has been observed to cause matrix cracking in laminated composite materials. A method is presented to predict transverse matrix cracks in composite laminates subjected to cyclic thermal load. Shear lag stress approximations and a simple energy-based fracture criteria are used to predict crack densities as a function of temperature. Prediction of crack densities as a function of thermal cycling is accomplished by assuming that fatigue degrades the material's inherent resistance to cracking. The method is implemented as a computer program. A simple experiment provides data on progressive cracking of a laminate with decreasing temperature. Existing data on thermal fatigue is also used. Correlations of the analytical predictions to the data are very good. A parametric study using the analytical method is presented which provides insight into material behavior under cyclical thermal loads.

  2. Study of methods for automated crack inspection of electrically poled piezoelectric ceramics.

    SciTech Connect

    Yang, Pin; Hwang, Stephen C.; Jokiel, Bernhard, Jr.; Burns, George Robert

    2004-06-01

    The goal of this project was to identify a viable, non-destructive methodology for the detection of cracks in electrically poled piezoelectric ceramics used in neutron generator power supply units. The following methods were investigated: Impedance Spectroscopy, Scanning Acoustic Microscopy, Lock-in Thermography, Photo-acoustic Microscopy, and Scanned Vicinal Light. In addition to the exploration of these techniques for crack detection, special consideration was given to the feasibility of integrating these approaches to the Automatic Visual Inspection System (AVIS) that was developed for mapping defects such as chips, pits and voids in piezoelectric ceramic components. Scanned Vicinal Light was shown to be the most effective method of automatically detecting and quantifying cracks in ceramic components. This method is also very effective for crack detection in other translucent ceramics.

  3. Improved diagnosis and therapy of superficial transitional cell carcinoma (TCC) of the urinary bladder by 5-aminolevulinic-acid (5-ALA)-induced protoporphyrin IX (PPIX) fluorescence: a prospective study in 100 patients

    NASA Astrophysics Data System (ADS)

    Kuntz, Rainer M.; Ruecker, Frank

    2001-05-01

    The prognosis of superficial bladder cancer is strongly related to a high recurrence rate and the presence of concomitant plane tumor lesions such as severe dysplasia or carcinoma in situ. They are frequently overlooked on white light cystoscopy. Furthermore, the traditional transurethral tumor resection of superficial bladder tumor is frequently incomplete. This prospective study aimed to evaluate whether or not 5-ALA induced PPIX fluorescence cystoscopy could increase the detection of superficial bladder tumors and/or plane carcinoma in situ invisible on white light cystoscopy. 100 patients with superficial TCC of the urinary bladder underwent cystoscopy under white light and under blue fluorescence light. 2 hours (1-4 hours) prior to cystoscopy 50 ml 3 percent 5-ALA-solution were intravesically instilled into the empty bladder. All lesions visible on white light cystoscopy were compared with fluorescence findings and, vice versa, all fluorescence findings were compared with white light cystoscopy findings. All lesions visible under white light, and all lesions only visible under 5-ALA induced fluorescence were resected/biopsied and histologically examined.

  4. Detecting Cracks in Rough Metal Surfaces

    NASA Technical Reports Server (NTRS)

    Zuver, N. T.; Sugg, F. E.; Stuckenberg, F. H.; Morrissey, E. T.

    1985-01-01

    Test based on eddy-current probe technique identifies cracks in swaged metals. Hinged collar with spring-loaded latch holds probe in place on part tested. For repeated measurements on same or similar parts, collar loosened and moved to various measuring positions. Method suitable for many kinds of metal parts, including swaged fittings, tubing, and pipes. Used for rapid crack/no-crack determinations in suspect parts already installed.

  5. Dislocation shielding of a cohesive crack

    NASA Astrophysics Data System (ADS)

    Bhandakkar, Tanmay K.; Chng, Audrey C.; Curtin, W. A.; Gao, Huajian

    2010-04-01

    Dislocation interaction with a cohesive crack is of increasing importance to computational modelling of crack nucleation/growth and related toughening mechanisms in confined structures and under cyclic fatigue conditions. Here, dislocation shielding of a Dugdale cohesive crack described by a rectangular traction-separation law is studied. The shielding is completely characterized by three non-dimensional parameters representing the effective fracture toughness, the cohesive strength, and the distance between the dislocations and the crack tip. A closed form analytical solution shows that, while the classical singular crack model predicts that a dislocation can shield or anti-shield a crack depending on the sign of its Burgers vector, at low cohesive strengths a dislocation always shields the cohesive crack irrespective of the Burgers vector. A numerical study shows the transition in shielding from the classical solution of Lin and Thomson (1986) in the high strength limit to the solution in the low strength limit. An asymptotic analysis yields an approximate analytical model for the shielding over the full range of cohesive strengths. A discrete dislocation (DD) simulation of a large (>10 3) number of edge dislocations interacting with a cohesive crack described by a trapezoidal traction-separation law confirms the transition in shielding, showing that the cohesive crack does behave like a singular crack at very high cohesive strengths (˜7 GPa), but that significant deviations in shielding between singular and cohesive crack predictions arise at cohesive strengths around 1GPa, consistent with the analytic models. Both analytical and numerical studies indicate that an appropriate crack tip model is essential for accurately quantifying dislocation shielding for cohesive strengths in the GPa range.

  6. Matrix cracking in ceramic-matrix composites

    SciTech Connect

    Danchaivijit, S.; Shetty, D.K. . Dept. of Materials Science and Engineering)

    1993-10-01

    Matrix cracking in ceramic-matrix composites with unbonded frictional interface has been studied using fracture mechanics theory. The critical stress for extension of a fiber-bridged crack has been analyzed using the stress-intensity approach. The analysis uses a new shear-lag formulation of the crack-closure traction applied by the bridging fibers based on the assumption of a constant sliding friction stress over the sliding length of the fiber-matrix interface. The new formulation satisfies two required limiting conditions: (a) when the stress in the bridging fiber approaches the far-field applied stress, the crack-opening displacement approaches a steady-state upper limit that is in agreement with the previous formulations; and (b) in the limit of zero crack opening, the stress in the bridging fiber approaches the far-field fiber stress. This lower limit of the bridging stress is distinctly different from the previous formulations. For all other conditions, the closure traction is a function of the far-field applied stress in addition to the local crack-opening displacement, the interfacial sliding friction stress, and the material properties. Numerical calculations using the stress-intensity approach indicate that the critical stress for crack extension decreases with increasing crack length and approaches a constant steady-state value for large cracks. The steady-state matrix-cracking stress agrees with a steady-state energy balance analysis applied to the continuum model, but it is slightly less than the matrix-cracking stress predicted by such theories of steady-state cracking as that of Aveston, Cooper, and Kelly. The origin of this difference and a method for reconciliation of the two theoretical approaches are discussed.

  7. A clamped rectangular plate containing a crack

    NASA Technical Reports Server (NTRS)

    Tang, R.; Erdogan, F.

    1985-01-01

    The general problem of a rectangular plate clamped along two parallel sides and containing a crack parallel to the clamps is considered. The problem is formulated in terms of a system of singular integral equations and the asymptotic behavior of the stress state near the corners is investigated. Numerical examples are considered for a clamped plate without a crack and with a centrally located crack, and the stress intensity factors and the stresses along the clamps are calculated.

  8. Measuring Crack Length in Coarse Grain Ceramics

    NASA Technical Reports Server (NTRS)

    Salem, Jonathan A.; Ghosn, Louis J.

    2010-01-01

    Due to a coarse grain structure, crack lengths in precracked spinel specimens could not be measured optically, so the crack lengths and fracture toughness were estimated by strain gage measurements. An expression was developed via finite element analysis to correlate the measured strain with crack length in four-point flexure. The fracture toughness estimated by the strain gaged samples and another standardized method were in agreement.

  9. Investigations of Low Temperature Time Dependent Cracking

    SciTech Connect

    Van der Sluys, W A; Robitz, E S; Young, B A; Bloom, J

    2002-09-30

    The objective of this project was to investigate metallurgical and mechanical phenomena associated with time dependent cracking of cold bent carbon steel piping at temperatures between 327 C and 360 C. Boiler piping failures have demonstrated that understanding the fundamental metallurgical and mechanical parameters controlling these failures is insufficient to eliminate it from the field. The results of the project consisted of the development of a testing methodology to reproduce low temperature time dependent cracking in laboratory specimens. This methodology was used to evaluate the cracking resistance of candidate heats in order to identify the factors that enhance cracking sensitivity. The resultant data was integrated into current available life prediction tools.

  10. Fatigue crack propagation at polymer adhesive interfaces

    SciTech Connect

    Ritter, J.E.

    1996-12-31

    Delamination of polymer adhesive interfaces often occurs due to slow crack growth under either monotonic or cyclic loading. The author`s previous research showed that moisture-assisted crack growth at epoxy/glass and epoxy acrylate/glass interfaces under monotonic loading was directly related to the applied energy release rate and relative humidity and that cyclic loading could enhance crack growth. The purpose of the present research is to compare crack growth along epoxy acrylate/glass and epoxy/PMMA interfaces under monotonic and cyclic loading.

  11. Combustion in cracks of PBX 9501

    SciTech Connect

    Berghout, H. L.; Son, S. F.; Bolme, C. A.; Hill, L. G.; Asay, B. W.; Dickson, P. M.; Henson, B. F.; Smilowitz, L. B.

    2002-01-01

    Recent experiments involving the combustion of PBX 9501 explosive under confined conditions reveal the importance of crack and flaws in reaction violence. Experiments on room temperature confined disks of pristine and thermally damaged PBX 9501 reveal that crack ignition depends on hot gases entering existing or pressure induced cracks rather than on energy release at the crack tip. PBX 9501 slot combustion experiments show that the reaction propagation rate in the slot does not depend on the external pressure. We have observed 1500 d s in long slots of highly-confined PBX 9501. We present experiments that examine the combustion of mechanically and thermally damaged samples of PBX 9501.

  12. Controlled crack growth specimen for brittle systems

    NASA Technical Reports Server (NTRS)

    Calomino, Anthony M.; Brewer, David N.

    1990-01-01

    A pure Mode 1 fracture specimen and test procedure has been developed which provides extended, stable, through-thickness crack growth in ceramics and other brittle, nonmetallic materials. Fixed displacement loading, applied at the crack mouth, promotes stable crack extension by reducing the stored elastic strain energy. Extremely fine control of applied displacements is achieved by utilizing the Poisson's expansion of a compressively loaded cylindrical pin. Stable cracks were successfully grown in soda-lime glass and monolithic Al2O3 for lengths in excess of 20 mm without uncontrollable catastrophic failure.

  13. Expansive soil crack depth under cumulative damage.

    PubMed

    Shi, Bei-xiao; Chen, Sheng-shui; Han, Hua-qiang; Zheng, Cheng-feng

    2014-01-01

    The crack developing depth is a key problem to slope stability of the expansive soil and its project governance and the crack appears under the roles of dry-wet cycle and gradually develops. It is believed from the analysis that, because of its own cohesion, the expansive soil will have a certain amount of deformation under pulling stress but without cracks. The soil body will crack only when the deformation exceeds the ultimate tensile strain that causes cracks. And it is also believed that, due to the combined effect of various environmental factors, particularly changes of the internal water content, the inherent basic physical properties of expansive soil are weakened, and irreversible cumulative damages are eventually formed, resulting in the development of expansive soil cracks in depth. Starting from the perspective of volumetric strain that is caused by water loss, considering the influences of water loss rate and dry-wet cycle on crack developing depth, the crack developing depth calculation model which considers the water loss rate and the cumulative damages is established. Both the proposal of water loss rate and the application of cumulative damage theory to the expansive soil crack development problems try to avoid difficulties in matrix suction measurement, which will surely play a good role in promoting and improving the research of unsaturated expansive soil. PMID:24737974

  14. Crack interaction with 3-D dislocation loops

    NASA Astrophysics Data System (ADS)

    Gao, Huajian

    CRACKS in a solid often interact with other crystal defects such as dislocation loops. The interaction effects are of 3-D character yet their analytical treatment has been mostly limited to the 2-D regime due to mathematical complications. This paper shows that distribution of the stress intensity factors along a crack front due to arbitrary dislocation loops may be expressed as simple line integrals along the loop contours. The method of analysis is based on the 3-D Bueckner-Rice weight function theory for elastic crack analysis. Our results have significantly simplified the calculations for 3-D dislocation loops produced in the plastic processes at the crack front due to highly concentrated crack tip stress fields. Examples for crack-tip 3-D loops and 2-D straight dislocations emerging from the crack tip are given to demonstrate applications of the derived formulae. The results are consistent with some previous analytical solutions existing in the literature. As further applications we also analyse straight dislocations that are parallel or perpendicular to the crack plane but are not parallel to the crack front.

  15. Fatigue crack nucleation in metallic materials

    SciTech Connect

    Peralta, P.; Laird, C.; Ramamurty, U.; Suresh, S.; Campbell, G.H.; King, W.E.; Mitchell, T.E.

    1999-04-01

    The process of fatigue crack nucleation in metallic materials is reviewed placing emphasis in results derived for pure FCC metals with wavy slip behavior. The relationship between Persistent Slip Bands (PSB`s) and crack initiation will be examined for both single crystals and polycrystals, including the conditions for inter- and transgranular crack nucleation and their connection to type of loading, crystallography and slip geometry. The latter has been found to be an important parameter in the nucleation of intergranular cracks in polycrystals subjected to high strain fatigue, whereby primary slip bands with long slip lengths impinging on a grain boundary produce intergranular crack nucleation under the right conditions. Recent results related to intergranular crack nucleation in copper bicrystals and crack nucleation in Cu/Sapphire interfaces indicate that this mechanism controls crack nucleation in those simpler systems as well. Furthermore, it is found that under multiple slip conditions the crack nucleation location is controlled by the presence of local single slip conditions and long slip lengths for a particular Burgers vector that does not have to be in the primary slip system.

  16. Dynamics of cracking in drying colloidal sheets.

    PubMed

    Sengupta, Rajarshi; Tirumkudulu, Mahesh S

    2016-04-01

    Colloidal dispersions are known to display a fascinating network of cracks on drying. We probe the fracture mechanics of free-standing films of aqueous polymer-particle dispersions. Thin films of the dispersion are cast between a pair of plain steel wires and allowed to dry under ambient conditions. The strain induced on the particle network during drying is relieved by cracking. The stress which causes the films to crack has been calculated by measuring the deflection of the wires. The critical cracking stress varied inversely to the two-thirds' power of the film thickness. We also measure the velocity of the tip of a moving crack. The motion of a crack has been modeled as a competition between the release of the elastic energy stored in the particle network, the increase in surface energy as a result of the growth of a crack, the rate of viscous dissipation of the interstitial fluid and the kinetic energy associated with a moving crack. There is fair agreement between the measured crack velocities and predictions. PMID:26924546

  17. Semi-empirical crack tip analysis

    NASA Technical Reports Server (NTRS)

    Chudnovsky, A.; Ben Ouezdon, M.

    1988-01-01

    Experimentally observed crack opening displacements are employed as the solution of the multiple crack interaction problem. Then the near and far fields are reconstructed analytically by means of the double layer potential technqiue. Evaluation of the effective stress intensity factor resulting from the interaction of the main crack and its surrounding crazes in addition to the remotely applied load is presented as an illustrative example. It is shown that crazing (as well as microcracking) may constitute an alternative mechanism to Dugdale-Berenblatt models responsible for the cancellation of the singularity at the crack tip.

  18. Expansive Soil Crack Depth under Cumulative Damage

    PubMed Central

    Shi, Bei-xiao; Chen, Sheng-shui; Han, Hua-qiang; Zheng, Cheng-feng

    2014-01-01

    The crack developing depth is a key problem to slope stability of the expansive soil and its project governance and the crack appears under the roles of dry-wet cycle and gradually develops. It is believed from the analysis that, because of its own cohesion, the expansive soil will have a certain amount of deformation under pulling stress but without cracks. The soil body will crack only when the deformation exceeds the ultimate tensile strain that causes cracks. And it is also believed that, due to the combined effect of various environmental factors, particularly changes of the internal water content, the inherent basic physical properties of expansive soil are weakened, and irreversible cumulative damages are eventually formed, resulting in the development of expansive soil cracks in depth. Starting from the perspective of volumetric strain that is caused by water loss, considering the influences of water loss rate and dry-wet cycle on crack developing depth, the crack developing depth calculation model which considers the water loss rate and the cumulative damages is established. Both the proposal of water loss rate and the application of cumulative damage theory to the expansive soil crack development problems try to avoid difficulties in matrix suction measurement, which will surely play a good role in promoting and improving the research of unsaturated expansive soil. PMID:24737974

  19. Cracks in Sheets Draped on Curved Surfaces

    NASA Astrophysics Data System (ADS)

    Mitchell, Noah P.; Koning, Vinzenz; Vitelli, Vincenzo; Irvine, William T. M.

    Conforming materials to surfaces with Gaussian curvature has proven a versatile tool to guide the behavior of mechanical defects such as folds, blisters, scars, and pleats. In this talk, we show how curvature can likewise be used to control material failure. In our experiments, thin elastic sheets are confined on curved geometries that stimulate or suppress the growth of cracks, and steer or arrest their propagation. By redistributing stresses in a sheet, curvature provides a geometric tool for protecting certain regions and guiding crack patterns. A simple model captures crack behavior at the onset of propagation, while a 2D phase-field model successfully captures the crack's full phenomenology.

  20. Controlled crack growth specimen for brittle systems

    NASA Technical Reports Server (NTRS)

    Calomino, Anthony M.; Brewer, David N.

    1992-01-01

    A pure Mode 1 fracture specimen and test procedure has been developed which provides extended, stable, through-thickness crack growth in ceramics and other brittle, nonmetallic materials. Fixed displacement loading, applied at the crack mouth, promotes stable crack extension by reducing the stored elastic strain energy. Extremely fine control of applied displacements is achieved by utilizing the Poisson's expansion of a compressively loaded cylindrical pin. Stable cracks were successfully grown in soda-lime glass and monolithic Al2O3 for lengths in excess of 2O mm without uncontrollable catastrophic failure.

  1. Crack depth determination with inductive thermography

    NASA Astrophysics Data System (ADS)

    Oswald-Tranta, B.; Schmidt, R.

    2015-05-01

    Castings, forgings and other steel products are nowadays usually tested with magnetic particle inspection, in order to detect surface cracks. An alternative method is active thermography with inductive heating, which is quicker, it can be well automated and as in this paper presented, even the depth of a crack can be estimated. The induced eddy current, due to its very small penetration depth in ferro-magnetic materials, flows around a surface crack, heating this selectively. The surface temperature is recorded during and after the short inductive heating pulse with an infrared camera. Using Fourier transformation the whole IR image sequence is evaluated and the phase image is processed to detect surface cracks. The level and the local distribution of the phase around a crack correspond to its depth. Analytical calculations were used to model the signal distribution around cracks with different depth and a relationship has been derived between the depth of a crack and its phase value. Additionally, also the influence of the heating pulse duration has been investigated. Samples with artificial and with natural cracks have been tested. Results are presented comparing the calculated and measured phase values depending on the crack depth. Keywords: inductive heating, eddy current, infrared

  2. Transient thermoelastic fracture of interface cracks

    SciTech Connect

    Kokini, K.; Reynolds, R.R. )

    1992-09-01

    The transient behavior of an interface crack at the center and edge of two finite dissimilar materials free to bend and subjected to a transient thermal load was studied. It was first assumed that the crack was insulated. The effect of allowing heat to conduct through the crack upon closing was also investigated. The effects of the mechanical and thermal material property ratios as well as the thickness ratio on the crack deformations and the transient strain energy release rate were calculated. 13 refs.

  3. Crack Healing in Quartz: Influence of Crack Morphology and pOH-

    NASA Astrophysics Data System (ADS)

    Fallon, J. A.; Kronenberg, A. K.; Popp, R. K.; Lamb, W. M.

    2004-12-01

    Crack healing in quartz has been investigated by optical microscopy and interferometry of rhombohedral r-cleavage cracks in polished Brazilian quartz prisms that were hydrothermally annealed. Quartz prisms were pre-cracked at room temperature and then annealed at temperatures T of 250° and 400° C for 2.4 to 240 hours, fluid pressure Pf = 41 MPa (equal to confining pressure Pc), and varying pOH- (from 5.4 to 1.2 at 250° C for fluids consisting of distilled water and NaOH solutions). Crack morphologies before and after annealing were recorded for each sample in plane light digital images and apertures were determined from interference fringes recorded using transmitted monochromatic light (λ = 598 nm). As documented in previous studies (Smith and Evans, 1984; Brantley et al., 1990; Beeler and Hickman, 1996), crack healing of quartz is driven by reductions in surface energy and healing rates appear to be limited by diffusional solute transport; sharply defined crack tips become blunted and break up into fluid-filled tubes and inclusions. However, fluid inclusion geometries are also observed with nonequilibrium shapes that depend on initial surface roughness. Crack healing is significant at 400° C after short run durations (24 hr) with healing rates reaching 10-5 mm/s. Crack healing is also observed at T=250° C, but only for smooth cracks with apertures < 0.6 μ m or for cracks subject to low pOH-. The extent of crack healing is sensitive to crack aperture and to hackles formed by fine-scale crack branching during crack growth. Initial crack apertures appear to be governed by the presence of fine particles, often found in the vicinity of hackles, which maintain the separation of crack surfaces. Where rough cracks exhibit healing, hackles are sites of either enhanced or reduced loss of fluid-solid interface depending on slight mismatches and sense of twist of opposing crack surfaces. Hackles of open r-cleavage cracks are replaced either by (1) healed curvilinear

  4. Fatigue Crack Closure Analysis Using Digital Image Correlation

    NASA Technical Reports Server (NTRS)

    Leser, William P.; Newman, John A.; Johnston, William M.

    2010-01-01

    Fatigue crack closure during crack growth testing is analyzed in order to evaluate the critieria of ASTM Standard E647 for measurement of fatigue crack growth rates. Of specific concern is remote closure, which occurs away from the crack tip and is a product of the load history during crack-driving-force-reduction fatigue crack growth testing. Crack closure behavior is characterized using relative displacements determined from a series of high-magnification digital images acquired as the crack is loaded. Changes in the relative displacements of features on opposite sides of the crack are used to generate crack closure data as a function of crack wake position. For the results presented in this paper, remote closure did not affect fatigue crack growth rate measurements when ASTM Standard E647 was strictly followed and only became a problem when testing parameters (e.g., load shed rate, initial crack driving force, etc.) greatly exceeded the guidelines of the accepted standard.

  5. Statistical distribution of time to crack initiation and initial crack size using service data

    NASA Technical Reports Server (NTRS)

    Heller, R. A.; Yang, J. N.

    1977-01-01

    Crack growth inspection data gathered during the service life of the C-130 Hercules airplane were used in conjunction with a crack propagation rule to estimate the distribution of crack initiation times and of initial crack sizes. A Bayesian statistical approach was used to calculate the fraction of undetected initiation times as a function of the inspection time and the reliability of the inspection procedure used.

  6. Liquid metal embrittlement. [crack propagation in metals with liquid metal in crack space

    NASA Technical Reports Server (NTRS)

    Tiller, W. A.

    1973-01-01

    Crack propagation is discussed for metals with liquid metal in the crack space. The change in electrochemical potential of an electron in a metal due to changes in stress level along the crack surface was investigated along with the change in local chemistry, and interfacial energy due to atomic redistribution in the liquid. Coupled elastic-elastrostatic equations, stress effects on electron energy states, and crack propagation via surface roughening are discussed.

  7. Surface Enhancement Improves Crack Resistance

    NASA Technical Reports Server (NTRS)

    2002-01-01

    The low plasticity burnishing (LPB) process produces a deep layer of surface compression in a quick and affordable manner to produce metal surfaces free of scratches, nicks, and gouges. The process, designed for easy inclusion in the manufacturing environment, can be performed with conventional Computer Numerical Control machine tools. This allows parts to be processed during manufacturing, rather than as a post process in a separate facility. A smooth, free-rolling spherical ball suspended in a fluid allows for single-point contact. The ball comes into mechanical contact only with the surface to be burnished, and can be moved in any direction. LPB can be applied to all types of carbon and alloy steel, stainless steel, cast iron, aluminum, titanium, and nickel- based super alloys. In addition to improving a surface's resistance to fatigue and damage, treatment stops the growth of shallow cracks. The LPB process is used on the leading edges of turbine blades to improve resistance to foreign object damage and crack growth. This means significant savings for aircraft owners, since maintenance requirements to inspect for fatigue damage, replace parts, and remove corrosion damage increase the cost of operation.

  8. Laboratory Study of Crack Development and Crack Interaction in Concrete Blocks due to Swelling of Cracking Agent

    NASA Astrophysics Data System (ADS)

    Frühwirt, Thomas; Plößer, Arne; Konietzky, Heinz

    2015-04-01

    The main focus of this work was to investigate temporary and spatial features of crack development in concrete blocks due to the action of a swelling agent. A commercial available cement-based mortar which shows heavily swelling behaviour when hydrating is used to provide inside pressure in boreholes in conrete blocks and hence serves as cracking agent. As no data for the swelling behaviour of the cracking agent were available the maximum axial swelling stress and axial free swelling strain were determined experimentally. In a first series of tests on concrete blocks the influence of an external mechanical, unidirectional stress on the development-time and orientation of cracks has been investigated for a range of loading levels. The stress state in the blocks prepared with a single borehole was determined by a superposition of internal stresses caused by swelling pressure and external mechanical loading. For a second series of tests prismatic blocks with two boreholes where prepared. This test setup allowed to realize different orientation of boreholes with respect to the uniaxial loading direction. Complementary tests were done using the cracking agent in both, only one or none of the boreholes. Different modes of crack interaction and influence of filled or unfilled boreholes have been observed. Features of crack development showed significant sensitivity to external loading. Starting even at very low load levels crack orientation was primarely determined by the direction of the external load. Temporal change in crack development due to the different load levels was insignificant and no consistent conclusion could be drawn. Crack interaction phenomena only were observed with two boreholes orientated primarely in direction of the external loading. Even in these cases crack orientation was mainly determined by the external stress field and only locally influenced by other cracks or the unfilled borehole. The work provides us with an extensive catalogue of

  9. Development of crack shape: LBB methodology for cracked pipes

    SciTech Connect

    Moulin, D.; Chapuliot, S.; Drubay, B.

    1997-04-01

    For structures like vessels or pipes containing a fluid, the Leak-Before-Break (LBB) assessment requires to demonstrate that it is possible, during the lifetime of the component, to detect a rate of leakage due to a possible defect, the growth of which would result in a leak before-break of the component. This LBB assessment could be an important contribution to the overall structural integrity argument for many components. The aim of this paper is to review some practices used for LBB assessment and to describe how some new R & D results have been used to provide a simplified approach of fracture mechanics analysis and especially the evaluation of crack shape and size during the lifetime of the component.

  10. The growth of small corrosion fatigue cracks in alloy 2024

    NASA Technical Reports Server (NTRS)

    Piascik, Robert S.; Willard, Scott A.

    1993-01-01

    The corrosion fatigue crack growth characteristics of small surface and corner cracks in aluminum alloy 2024 is established. The damaging effect of salt water on the early stages of small crack growth is characterized by crack initiation at constituent particle pits, intergranular microcracking for a less than 100 micrometers, and transgranular small crack growth for a micrometer. In aqueous 1 percent NaCl and at a constant anodic potential of -700 mV(sub SCE), small cracks exhibit a factor of three increase in fatigue crack growth rates compared to laboratory air. Small cracks exhibit accelerated corrosion fatigue crack growth rates at low levels of delta-K (less than 1 MPa square root of m) below long crack delta-K (sub th). When exposed to Paris regime levels of crack tip stress intensity, small corrosion fatigue cracks exhibit growth rates similar to that observed for long cracks. Results suggest that crack closure effects influence the corrosion fatigue crack growth rates of small cracks (a less than or equal to 100 micrometers). This is evidenced by similar small and long crack growth behavior at various levels of R. Contrary to the corrosion fatigue characteristics of small cracks in high strength steels, no pronounced chemical crack length effect is observed for Al by 2024 exposed to salt water.

  11. Deeply etherify FCC light cracked Naphtha (LCN)

    SciTech Connect

    Trotta, R.

    1996-03-01

    Drastic changes in refinery operations and economics resulting from implementation of environmentally driven U.S. legislation such as the Complex Model in 1998, as well as possible changes beyond that will necessitate several changes. An effective method of adjusting to these process challenges is by deep etherification of the entire FCC light cracked naphtha (LCN) stream, which is the FCC product fraction containing C{sub 5}, C{sub 6} and C{sub 7} hydrocarbons having a typical 1 atm boiling range of 95{degrees}F to 212{degrees}F. Deep etherification technology (DET) can solve five or six problems at once. All U.S. refineries which have an FCC unit have an LCN stream (or possibly a separate LCN stream). Snaprogetti`s LCN DET technology is essentially an upgrade of an otherwise already finished product-which in today`s processing and operations environment, would be sent directly to the gasoline pool. The technology is simply an add-on and does not substantially change refinery operations. As the LCN DET does not require changes in the FCC and catalytic reformer, DET does not cause disturbances to the refinery`s operation.

  12. On the location of crack closure and the threshold condition for fatigue crack growth

    SciTech Connect

    Zaiken, E.; Ritchie, R.O.

    1984-08-01

    These experiments on ingot aluminum alloys provide further confirmation that the development of a threshold for the growth of long fatigue cracks is primarily associated with a reduction in local crack driving force due to crack closure in the wake of the crack tip. Moreover, based on studies of the change in K /SUB c1/ during progressive removal of the wake at threshold levels, it appears that although such closure is fairly evenly distributed over most of the crack length, more than 40% of the closure is confined to the near-tip region.

  13. A crack-closure model for predicting fatigue-crack growth under aircraft spectrum loading

    NASA Technical Reports Server (NTRS)

    Newman, J. C., Jr.

    1981-01-01

    The development and application of an analytical model of cycle crack growth is presented that includes the effects of crack closure. The model was used to correlate crack growth rates under constant amplitude loading and to predict crack growth under aircraft spectrum loading on 2219-T851 aluminum alloy sheet material. The predicted crack growth lives agreed well with experimental data. The ratio of predicted to experimental lives ranged from 0.66 to 1.48. These predictions were made using data from an ASTM E24.06.01 Round Robin.

  14. Tiled fuzzy Hough transform for crack detection

    NASA Astrophysics Data System (ADS)

    Vaheesan, Kanapathippillai; Chandrakumar, Chanjief; Mathavan, Senthan; Kamal, Khurram; Rahman, Mujib; Al-Habaibeh, Amin

    2015-04-01

    Surface cracks can be the bellwether of the failure of any component under loading as it indicates the component's fracture due to stresses and usage. For this reason, crack detection is indispensable for the condition monitoring and quality control of road surfaces. Pavement images have high levels of intensity variation and texture content, hence the crack detection is difficult. Moreover, shallow cracks result in very low contrast image pixels making their detection difficult. For these reasons, studies on pavement crack detection is active even after years of research. In this paper, the fuzzy Hough transform is employed, for the first time to detect cracks on any surface. The contribution of texture pixels to the accumulator array is reduced by using the tiled version of the Hough transform. Precision values of 78% and a recall of 72% are obtaining for an image set obtained from an industrial imaging system containing very low contrast cracking. When only high contrast crack segments are considered the values move to mid to high 90%.

  15. Short cracks in piping and piping welds

    SciTech Connect

    Wilkowski, G.M.; Brust, F.; Francini, R.; Ghadiali, N.; Kilinski, T.; Krishnaswamy, P.; Landow, M.; Marschall, C.W.; Rahman, S.; Scott, P. )

    1992-04-01

    This is the second semiannual report of the US Nuclear Regulatory Commission's Short Cracks in Piping and Piping Welds research program. The program began in March 1990 and will extend for 4 years. The intent of this program is to verify and improve fracture analyses for circumferentially cracked large-diameter nuclear piping with crack sizes typically used in leak-before-break analyses or in-service flaw evaluations. Only quasi-static loading rates are evaluated since the NRC's International Piping Integrity Research Group (IPIRG) program is evaluating the effects of seismic loading rates on cracked piping systems. Progress for through-wall-cracked pipe involved (1) conducting a 28-inch diameter stainless steel SAW and 4-inch diameter French TP316 experiments, (2) conducting a matrix of FEM analyses to determine GE/EPRI functions for short TWC pipe, (3) comparison of uncracked pipe maximum moments to various analyses and FEM solutions, (4) development of a J-estimation scheme that includes the strength of both the weld and base metals. Progress for surface-cracked pipe involved (1) conducting two experiments on 6-inch diameter pipe with d/t = 0.5 and {Theta}/{pi} = 0.25 cracks, (2) comparisons of the pipe experiments to Net-Section-Collapse predictions, and (3) modification of the SC.TNP and SC.TKP J-estimation schemes to include external surface cracks.

  16. Crack initiation under generalized plane strain conditions

    SciTech Connect

    Shum, D.K.M.; Merkle, J.G.

    1991-01-01

    A method for estimating the decrease in crack-initiation toughness, from a reference plane strain value, due to positive straining along the crack front of a circumferential flaw in a reactor pressure vessel is presented in this study. This method relates crack initiation under generalized plane strain conditions with material failure at points within a distance of a few crack-tip-opening displacements ahead of a crack front, and involves the formulation of a micromechanical crack-initiation model. While this study is intended to address concerns regarding the effects of positive out-of- plane straining on ductile crack initiation, the approach adopted in this work can be extended in a straightforward fashion to examine conditions of macroscopic cleavage crack initiation. Provided single- parameter dominance of near-tip fields exists in the flawed structure, results from this study could be used to examine the appropriateness of applying plane strain fracture toughness to the evaluation of circumferential flaws, in particular to those in ring-forged vessels which have no longitudinal welds. In addition, results from this study could also be applied toward the analysis of the effects of thermal streaming on the fracture resistance of circumferentially oriented flaws in a pressure vessel. 37 refs., 8 figs., 1 tab.

  17. Effect of size on cracking of materials

    NASA Technical Reports Server (NTRS)

    Glucklick, J.

    1971-01-01

    Brittle behavior of large mild steel elements, glass plasticity, and fatigue specimen size sensitivity are manifestations of strain-energy size effect. Specimens physical size effect on material cracking initiation occurs according to flaw distribution statistics. Fracture size effect depends on stability or instability of crack propagation.

  18. Helping Crack-Affected Children Succeed.

    ERIC Educational Resources Information Center

    Waller, Mary Bellis

    1993-01-01

    Crack-affected children who experience early intervention can be mainstreamed successfully into regular classes. These children can be overwhelmed by stimuli and need stability, routine, and sameness in the intervention classroom. Teachers have discovered effective methods for working with crack-affected children. (16 references) (MLF)

  19. Positioning Community Art Practices in Urban Cracks

    ERIC Educational Resources Information Center

    Verschelden, Griet; Van Eeghem, Elly; Steel, Riet; De Visscher, Sven; Dekeyrel, Carlos

    2012-01-01

    This article addresses the position of community art practices and the role of practitioners in urban cracks. Community art practices raise possibilities for a reconceptualisation of the concept of community and an extension of the concept of art in public space. Urban cracks are conceptualised as spatial, temporal and relational manifestations of…

  20. Preventing Cracks in Silicon-Reactor Liners

    NASA Technical Reports Server (NTRS)

    Lutwack, R.

    1987-01-01

    Correct placement helps prevent contamination while eliminating crack-causing deposits. Repositioning quartz liner in silicon fluidized-bed reactor prevents cracking of liner when cools. Liner protects stainless-steel walls of reactor from abrasion by particles in fluidized bed. Prevents contamination of newly formed silicon by material abraded from wall and ensures high-quality product.

  1. The crack-inclusion interaction problem

    NASA Technical Reports Server (NTRS)

    Liu, X.-H.; Erdogan, F.

    1986-01-01

    The general plane elastostatic problem of interaction between a crack and an inclusion is considered. The Green's functions for a pair of dislocations and a pair of concentrated body forces are used to generate the crack and the inclusion. Integral equations are obtained for a line crack and an elastic line inclusion having an arbitrary relative orientation and size. The nature of stress singularity around the end points of rigid and elastic inclusions is described and three special cases of this intersection problem are studied. The problem is solved for an arbitrary uniform stress state away from the crack-inclusion region. The nonintersecting crack-inclusion problem is considered for various relative size, orientation, and stiffness parameters, and the stress intensity factors at the ends of the inclusion and the crack are calculated. For the crack-inclusion intersection case, special stress intensity factors are defined and are calculated for various values of the parameters defining the relative size and orientation of the crack and the inclusion and the stiffness of the inclusion.

  2. The crack-inclusion interaction problem

    NASA Technical Reports Server (NTRS)

    Xue-Hui, L.; Erdogan, F.

    1984-01-01

    The general plane elastostatic problem of interaction between a crack and an inclusion is considered. The Green's functions for a pair of dislocations and a pair of concentrated body forces are used to generate the crack and the inclusion. Integral equations are obtained for a line crack and an elastic line inclusion having an arbitrary relative orientation and size. The nature of stress singularity around the end points of rigid and elastic inclusions is described and three special cases of this intersection problem are studied. The problem is solved for an arbitrary uniform stress state away from the crack-inclusion region. The nonintersecting crack-inclusion problem is considered for various relative size, orientation, and stiffness parameters, and the stress intensity factors at the ends of the inclusion and the crack are calculated. For the crack-inclusion intersection case, special stress intensity factors are defined and are calculated for various values of the parameters defining the relative size and orientation of the crack and the inclusion and the stiffness of the inclusion.

  3. Entering a Crack: An Encounter with Gossip

    ERIC Educational Resources Information Center

    Henderson, Linda

    2014-01-01

    In this paper, I enter a crack to think otherwise about the concept "gossip". Drawing on previous scholarship engaging with Deleuzian concepts to inform research methodologies, this paper builds on this body of work. Following Deleuze and Guattari, the paper undertakes a mapping of gossip, subsequent to an encounter with a crack.…

  4. Fatigue life and crack growth prediction methodology

    NASA Technical Reports Server (NTRS)

    Newman, J. C., Jr.; Phillips, E. P.; Everett, R. A., Jr.

    1993-01-01

    The capabilities of a plasticity-induced crack-closure model and life-prediction code to predict fatigue crack growth and fatigue lives of metallic materials are reviewed. Crack-tip constraint factors, to account for three-dimensional effects, were selected to correlate large-crack growth rate data as a function of the effective-stress-intensity factor range (delta(K(sub eff))) under constant-amplitude loading. Some modifications to the delta(K(sub eff))-rate relations were needed in the near threshold regime to fit small-crack growth rate behavior and endurance limits. The model was then used to calculate small- and large-crack growth rates, and in some cases total fatigue lives, for several aluminum and titanium alloys under constant-amplitude, variable-amplitude, and spectrum loading. Fatigue lives were calculated using the crack growth relations and microstructural features like those that initiated cracks. Results from the tests and analyses agreed well.

  5. Crack tip field and fatigue crack growth in general yielding and low cycle fatigue

    NASA Technical Reports Server (NTRS)

    Minzhong, Z.; Liu, H. W.

    1984-01-01

    Fatigue life consists of crack nucleation and crack propagation periods. Fatigue crack nucleation period is shorter relative to the propagation period at higher stresses. Crack nucleation period of low cycle fatigue might even be shortened by material and fabrication defects and by environmental attack. In these cases, fatigue life is largely crack propagation period. The characteristic crack tip field was studied by the finite element method, and the crack tip field is related to the far field parameters: the deformation work density, and the product of applied stress and applied strain. The cyclic carck growth rates in specimens in general yielding as measured by Solomon are analyzed in terms of J-integral. A generalized crack behavior in terms of delta is developed. The relations between J and the far field parameters and the relation for the general cyclic crack growth behavior are used to analyze fatigue lives of specimens under general-yielding cyclic-load. Fatigue life is related to the applied stress and strain ranges, the deformation work density, crack nucleus size, fracture toughness, fatigue crack growth threshold, Young's modulus, and the cyclic yield stress and strain. The fatigue lives of two aluminum alloys correlate well with the deformation work density as depicted by the derived theory. The general relation is reduced to Coffin-Manson low cycle fatigue law in the high strain region.

  6. Risk behaviors for sexually transmitted diseases among crack users 1

    PubMed Central

    Guimarães, Rafael Alves; da Silva, Leandro Nascimento; França, Divânia Dias da Silva; Del-Rios, Nativa Helena Alves; Carneiro, Megmar Aparecida dos Santos; Teles, Sheila Araujo

    2015-01-01

    Abstract Objectives: to investigate the prevalence and risk behaviors by means of reporting of sexually transmitted diseases among crack users. Method: cross-sectional study carried out with 588 crack users in a referral care unit for the treatment of chemical dependency. Data were collected by means of face-to-face interview and analyzed using Stata statistical software, version 8.0. Results: of the total participants, 154 (26.2%; 95% CI: 22.8-29.9) reported antecedents of sexually transmitted diseases. Ages between 25 and 30 years (RP: 2.1; 95% CI: 1.0-4.0) and over 30 years (RP: 3.8; 95% CI: 2.1-6.8), alcohol consumption (RP: 1.9; 95% CI: 1.1-3.3), antecedents of prostitution (RP: 1.9; 95% CI: 1.3-2.9) and sexual intercourse with person living with human immunodeficiency virus/AIDS (RP: 2.7; 95% CI: 1.8-4.2) were independently associated with reporting of sexually transmitted diseases. Conclusion: the results of this study suggest high risk and vulnerability of crack users for sexually transmitted diseases. PMID:26444164

  7. Stress-corrosion cracking studies in coal-liquefaction systems

    SciTech Connect

    Baylor, V.B.; Keiser, J.R.

    1981-01-01

    Coal liquefaction plants with 6000 ton/d capacity are currently being planned by DOE as a step toward commercial production of synthetic fossil fuels. These plants will demonstrate the large-scale viability of the Solvent Refined Coal (SRC) process, which has been used since 1974 in two operating pilot plants: a 50-ton/d unit at Fort Lewis, Washington, and a 6-ton/d plant in Wilsonville, Alabama. Experience in these plants has shown that austenitic stainless steels are susceptible to stress corrosion cracking associated with residual stresses from cold working or welding. The corrodants responsible for the cracking have not yet been positively identified but are suspected to include polythionic acids and chlorides. To screen candidate materials of construction for resistance to stress corrosion cracking, racks of stressed U-bend specimens in welded and as-wrought conditions have been exposed at the Wilsonville and Fort Lewis SRC pilot plants. These studies have identified alloys that are suitable for critical plant applications.

  8. Fatigue crack growth automated testing method

    SciTech Connect

    Hatch, P.W.; VanDenAvyle, J.A.; Laing, J.

    1989-06-01

    A computer controlled servo-hydraulic mechanical test system has been configured to conduct automated fatigue crack growth testing. This provides two major benefits: it allows continuous cycling of specimens without operator attention over evenings and weekends; and complex load histories, including random loading and spectrum loading, can be applied to the specimens to simulate cyclic loading of engineering structures. The software is written in MTS Multi-User Basic to control test machine output and acquire data at predetermined intervals. Compact tension specimens are cycled according to ASTM specification E647-86. Fatigue crack growth is measured via specimen compliance during the test using a compliance/crack length calibration determined earlier by visual crack length measurements. This setup was used to measure crack growth rates in 6063 aluminum alloy for a variety of cyclic loadings, including spectrum loads. Data collected compared well with tests run manually. 13 figs.

  9. Method of continuously determining crack length

    NASA Technical Reports Server (NTRS)

    Prabhakaran, Ramamurthy (Inventor); Lopez, Osvaldo F. (Inventor)

    1993-01-01

    The determination of crack lengths in an accurate and straight forward manner is very useful in studying and preventing load created flaws and cracks. A crack length sensor according to the present invention is fabricated in a rectangular or other geometrical form from a conductive powder impregnated polymer material. The long edges of the sensor are silver painted on both sides and the sensor is then bonded to a test specimen via an adhesive having sufficient thickness to also serve as an insulator. A lead wire is connected to each of the two outwardly facing silver painted edges. The resistance across the sensor changes as a function of the crack length in the specimen and sensor. The novel aspect of the present invention includes the use of relatively uncomplicated sensors and instrumentation to effectively measure the length of generated cracks.

  10. Fracture toughness and crack growth of Zerodur

    NASA Technical Reports Server (NTRS)

    Viens, Michael J.

    1990-01-01

    The fracture toughness and crack growth parameters of Zerodur, a low expansion glass ceramic material, were determined. The fracture toughness was determined using indentation techniques and was found to be 0.9 MPa x m(sup 1/2). The crack growth parameters were determined using indented biaxial specimens subjected to static and dynamic loading in an aqueous environment. The crack growth parameters n and 1n(B) were found to be 30.7 and -6.837, respectively. The crack growth parameters were also determined using indented biaxial specimens subjected to dynamic loading in an ambient 50 percent relative humidity environment. The crack growth parameters n and 1n(B) at 50 percent relative humidity were found to be 59.3 and -17.51, respectively.

  11. Small crack test program for helicopter materials

    NASA Technical Reports Server (NTRS)

    Annigeri, Bal; Schneider, George

    1994-01-01

    Crack propagation tests were conducted to determine crack growth behavior in five helicopter materials for surface cracks between 0.005 to 0.020 inches in depth. Constant amplitude tests were conducted at stress ratios R equals 0.1 and 0.5, and emphasis was placed on near threshold data (i.e., 10-8 to 10-6 inches/cycle). Spectrum tests were conducted using a helicopter spectrum. The test specimen was an unnotched tension specimen, and cracks were initiated from a small EDM notch. An optical/video system was used to monitor crack growth. The material for the test specimens was obtained from helicopter part forgings. Testing was conducted at stresses below yield to reflect actual stresses in helicopter parts.

  12. The crack problem for a nonhomogeneous plane

    NASA Technical Reports Server (NTRS)

    Delale, F.; Erdogan, F.

    1983-01-01

    The plane elasticity problem for a nonhomogeneous medium containing a crack is considered. It is assumed that the Poisson's ratio of the medium is constant and the Young's modulus E varies exponentially with the coordinate parallel to the crack. First the half plane problem is formulated and the solution is given for arbitrary tractions along the boundary. Then the integral equation for the crack problem is derived. It is shown that the integral equation having the derivative of the crack surface displacement as the density function has a simple Cauchy type kernel. Hence, its solution and the stresses around the crack tips have the conventional square root singularity. The solution is given for various loading conditions. The results show that the effect of the Poisson's ratio and consequently that of the thickness constraint on the stress intensity factors are rather negligible.

  13. Crack problem for a nonhomogeneous plane

    SciTech Connect

    Delale, F.; Erdogan, F.

    1983-09-01

    This study considers the plane elasticity problem for a nonhomogeneous medium containing a crack. It is assumed that the Poisson's ratio of the medium is constant and the Young's modulus E varies exponentially with the coordinate parallel to the crack. First the half plane problem is formulated and the solution is given for arbitrary tractions along the boundary. Then, the integral equation for the crack problem is derived. It is shown that the integral equation having the derivative of the crack surface displacement as the density function has a simple Cauchy-type kernel. Hence, its solution and the stresses around the crack tips have the conventional square-root singularity. The solution is given for various loading conditions. The results show that the effect of the Poisson's ratio and consequently that of the thickness constraint on the stress intensity factors are rather negligible. 14 references.

  14. The crack problem for a nonhomogeneous plane

    NASA Technical Reports Server (NTRS)

    Delale, F.; Erdogan, F.

    1982-01-01

    The plane elasticity problem for a nonhomogeneous medium containing a crack is considered. It is assumed that the Poisson's ratio of the medium is constant and the Young's modulus E varies exponentially with the coordinate parallel to the crack. First the half plane problem is formulated and the solution is given for arbitrary tractions along the boundary. Then the integral equation for the crack problem is derived. It is shown that the integral equation having the derivative of the crack surface displacement as the density function has a simple Cauchy type kernel. Hence, its solution and the stresses around the crack tips have the conventional square root singularity. The solution is given for various loading conditions. The results show that the effect of the Poisson's ratio and consequently that of the thickness constraint on the stress intensity factors are rather negligible.

  15. Stress-corrosion cracking in metals

    NASA Technical Reports Server (NTRS)

    1971-01-01

    Criteria and recommended practices for preventing stress-corrosion cracking from impairing the structural integrity and flightworthiness of space vehicles are presented. The important variables affecting stress-corrosion cracking are considered to be the environment, including time and temperature; metal composition, and structure; and sustained tensile stress. For designing spacecraft structures that are free of stress-corrosion cracking for the service life of the vehicle the following rules apply: (1) identification and control of the environments to which the structure will be exposed during construction, storage, transportation, and use; (2) selection of alloy compositions and tempers which are resistant to stress-corrosion cracking in the identified environment; (3) control of fabrication and other processes which may introduce residual tensile stresses or damage the material; (4) limitation of the combined residual and applied tensile stresses to below the threshold stress level for the onset of cracking throughout the service life of the vehicle; and (5) establishment of a thorough inspection program.

  16. Crack Detection Using EddyTherm

    SciTech Connect

    Zenzinger, G.; Bamberg, J.; Dumm, M.; Nutz, P.

    2005-04-09

    The EddyTherm thermographic crack detection method uses brief pulsed eddy currents to heat metallic components under inspection. Cracks, if present, will disturb the current flow and so generate changes in the temperature profile in the crack area. These temperature changes are visualized using a thermographic camera. The advantages afforded by the method are its very brief inspection times, its ability to inspect complex geometries, its excellent flaw detection sensitivity and its ability to detect hidden, subsurface cracks. Simulation of inductive heating using FEM methods permits coils to be adjusted and inspection parameters optimized. The use of a robot to manipulate parts under inspection, a high-frequency pulse generator for inductive heating and enhanced algorithms enabled a demonstrator to be set up for the fully automated crack inspection of engine compressor blades.

  17. Measurement and analysis of critical crack tip processes during fatigue crack growth

    NASA Technical Reports Server (NTRS)

    Davidson, D. L.; Hudak, S. J.; Dexter, R. J.

    1985-01-01

    The mechanics of fatigue crack growth under constant-amplitudes and variable-amplitude loading were examined. Critical loading histories involving relatively simple overload and overload/underload cycles were studied to provide a basic understanding of the underlying physical processes controlling crack growth. The material used for this study was 7091-T7E69, a powder metallurgy aluminum alloy. Local crack-tip parameters were measured at various times before, during, and after the overloads, these include crack-tip opening loads and displacements, and crack-tip strain fields. The latter were useed, in combination with the materials cyclic and monotonic stress-strain properties, to compute crack-tip residual stresses. The experimental results are also compared with analytical predictions obtained using the FAST-2 computer code. The sensitivity of the analytical model to constant-amplitude fatigue crack growth rate properties and to through-thickness constrain are studied.

  18. Crack shape developments and leak rates for circumferential complex-cracked pipes

    SciTech Connect

    Brickstad, B.; Bergman, M.

    1997-04-01

    A computerized procedure has been developed that predicts the growth of an initial circumferential surface crack through a pipe and further on to failure. The crack growth mechanism can either be fatigue or stress corrosion. Consideration is taken to complex crack shapes and for the through-wall cracks, crack opening areas and leak rates are also calculated. The procedure is based on a large number of three-dimensional finite element calculations of cracked pipes. The results from these calculations are stored in a database from which the PC-program, denoted LBBPIPE, reads all necessary information. In this paper, a sensitivity analysis is presented for cracked pipes subjected to both stress corrosion and vibration fatigue.

  19. S-N curve for crack initiation and an estimate of fatigue crack nucleus size

    SciTech Connect

    Yang, C.Y.; Palusamy, S.S.; Liaw, P.K.; Ren, W.

    1997-12-01

    A study of fatigue life prediction was made for ASTM A533 Grade B nuclear pressure vessel steel. The objectives of the study were to predict the S-N curve, representing crack initiation, and to estimate the average crack nucleus size using an engineering approach. The plastic replica method was used to monitor crack initiation and growth from well-polished specimens under uniaxial tension-tension stressing. Two methods were used to estimate crack nucleus size: (1) backcalculating crack length via the da/dN versus {Delta}K relationship, and (2) evaluating an assumed relationship between the endurance limit and the threshold stress intensity factor range. Crack nucleus size estimated by these two methods are fairly consistent when the effects of crack closure and plastic zone correction are taken into account.

  20. Micromechanical predictions of crack initiation, propagation and crack growth resistance in boron/aluminum composites

    NASA Technical Reports Server (NTRS)

    Mahishi, J. M.; Adams, D. F.

    1982-01-01

    An elastoplastic, axisymmetric finite element model has been used to predict the initiation and propagation of a crack in a composite model consisting of a single broken boron fiber embedded in an annular sheath of aluminum matrix. The accuracy of the axisymmetric finite element model for crack problems has been established by solving the classical problem of a penny-shaped crack in a thick cylindrical rod under axial tension. Also, the stress intensity factors predicted by the present numerical model are compared with continuum results. A constant displacement boundary condition applied during an increment of crack growth permits a substantial amount of stable crack growth in the matrix material. The concept of Crack Growth Resistance Curves (KR-curves) has been used to determine the point of crack instability

  1. Fatigue crack initiation and small crack growth in several airframe alloys

    NASA Technical Reports Server (NTRS)

    Swain, M. H.; Newman, J. C., Jr.; Phillips, E. P.; Everett, R. A.

    1990-01-01

    The growth of naturally-initiated small cracks under a variety of constant amplitude and variable amplitude load sequences is examined for several airframe materials: the conventional aluminum alloys, 2024-T3 and 7075-T6, the aluminum-lithium alloy, 2090-T8E41 and 4340 steel. Loading conditions investigated include constant amplitude loading at R = 0.5, 0, -1 and -2 and the variable amplitude sequences FALSTAFF, Mini-TWIST, and FELIX/28. Crack growth was measured at the root of semicircular edge notches using acetate replicas. Crack growth rates are compared on a stress intensity factor basis, to those for large cracks to evaluate the extent of the small crack effect in each alloy. In addition, the various alloys are compared on a crack initiation and crack growth morphology basis.

  2. Fatigue crack initiation and small crack growth in several airframe alloys

    NASA Technical Reports Server (NTRS)

    Swain, M. H.; Newman, J. C., Jr.; Phillips, E. P.; Everett, R. A., Jr.

    1990-01-01

    The growth of naturally-initiated small cracks under a variety of constant amplitude and variable amplitude load sequences is examined for several airframe materials: the conventional aluminum alloys, 2024-T3 and 7075-T6, the aluminum-lithium alloy, 2090-T8E41, and 4340 steel. Loading conditions investigated include constant amplitude loading at R = 0.5, 0, -1 and -2 and the variable amplitude sequences FALSTAFF, Mini-TWIST and FELIX/28. Crack growth was measured at the root of semicircular edge notches using acetate replicas. Crack growth rates are compared on a stress intensity factor basis, to those for large cracks to evaluate the extent of the small crack effect in each alloy. In addition, the various alloys are compared on a crack initiation and crack growth morphology basis.

  3. An elastic-plastic finite element analysis of crack initiation, stable crack growth, and instability

    NASA Technical Reports Server (NTRS)

    Newman, J. C., Jr.

    1984-01-01

    Studies have been conducted to develop efficient techniques to simulate crack extension and to examine various local and global fracture criteria. Of the considered criteria, the crack-tip-opening angle (CTOA) or displacement (CTOD) at a specified distance from the crack tip was shown to be most suited for modeling stable crack growth and instability during the fracture process. The results obtained in a number of studies show the necessity for studying different crack configurations when assessing the validity of any fracture criteria. One of the objectives of the present investigation is related to a critical evaluation of the CTOD growth criterion using an elastic-plastic finite element analysis under monotonic loading to failure. The analysis was found to predict three stages of crack growth behavior under monotonic loading to failure. Calculated CTOD values agreed well with experimental values for crack growth initiation.

  4. Toward assessing the effects of crack front curvature /CFC/.

    NASA Technical Reports Server (NTRS)

    Swedlow, J. L.; Ritter, M. A.

    1972-01-01

    Consideration of the effect of crack front curvature (CFC) on the K calibration of five special geometries in which CFC occurs. The five cases considered include an elliptical crack in an infinite medium, an internal annular crack in a thick-walled cylinder, a through crack in a flat plate, a part-through crack in a plate, and an irregularly shaped crack in a solid. It is shown that K depends on CFC differently in each case.

  5. Constraint effects observed in crack initiation stretch

    SciTech Connect

    Lambert, D.M.; Ernst, H.A.

    1995-12-31

    The current paper characterizes constraint in fracture: J-modified resistance (Jr) curves were developed for two tough structural materials, 6061-T651 (aluminum) and IN718-STA1 (nickel-base superalloy). A wide variety of configurations was tested to consider load configurations from bending to tension including three specimen types (compact tension, center-crack tension, and single-edge notched tension), and a range of ligament lengths and thicknesses, as well as side-grooved and smooth-sided ligaments. The Jr curves exhibited an inflection point after some crack extension, and the data were excluded beyond the inflection. Qualified Jr curves for the two materials showed similar behavior, but R-curves were identical for equal ligament length-to-thickness ratio (RL), for the aluminum alloy, with increasing slope for increasing RL, while for the nickel, the resistance curves aligned for equal ligament thickness, B, and the slope increased for decreasing B. Displacements at the original crack tip (CToD) were recorded throughout the test for several specimens. CToD-versus-crack extension curves were developed, and data were excluded beyond the inflection point (as with the Jr curves). The data collapsed into two distinct curves, thought to represent the surface, plane stress effect and the central, plane strain effect. This was observed for both materials. A technique called profiling is presented for the aluminum alloy only, where the crack face displacements are recorded at the final point of the test as a function of the position throughout the crack cavity, along with an effort to extract the observations in a usable form. Displacements were consistent throughout the cross-section at and behind the original crack tip. In the region where the crack grew, this displacement was developed by a combination of stretch and crack growth. The stretch required to initiate crack extension was a function of the depth beneath the surface into the cross-section.

  6. Life prediction for bridged fatigue cracks

    SciTech Connect

    Cox, B.N.

    1994-08-01

    One of the more promising classes of composites touted for high temperature applications, and certainly the most available, is that of relatively brittle matrices, either ceramic or intermetallic, reinforced by strong, aligned, continuous fibers. Under cyclic loading in the fiber direction, these materials develop matrix cracks that often run perpendicular to the fibers, while the fibers remain intact in the crack wake, supplying bridging tractions across the fracture surfaces. The bridging tractions shield the crack tip from the applied load, dramatically reducing the crack velocity from that expected in an unreinforced material subjected to the same value, {Delta}K{sub a}, of the cyclic applied stress intensity factor. An important issue in reliability is the prediction of the growth rates of the bridged cracks. The growth rates of matrix fatigue cracks bridged by sliding fibers are now commonly predicted by models based on the micromechanics of frictional interfaces. However, there exist many reasons, both theoretical and experimental, for suspecting that the most popular micromechanical models are probably wrong in detail in the context of fatigue cracks. Furthermore, a review of crack growth data reveals that the validity of the micromechanics-based predictive model has never been tested and may never be tested. In this paper, two alternative approaches are suggested to the engineering problem of predicting the growth rates of bridged cracks without explicit recourse to micromechanics. Instead, it is shown that the material properties required to analyze bridging effects can be deduced directly from crack growth data. Some experiments are proposed to test the validity of the proposals.

  7. Environmental stress cracking of polymers

    NASA Technical Reports Server (NTRS)

    Mahan, K. I.

    1980-01-01

    A two point bending method for use in studying the environmental stress cracking and crazing phenomena is described and demonstrated for a variety of polymer/solvent systems. Critical strain values obtained from these curves are reported for various polymer/solvent systems including a considerable number of systems for which critical strain values have not been previously reported. Polymers studied using this technique include polycarbonate (PC), ABS, high impact styrene (HIS), polyphenylene oxide (PPO), and polymethyl methacrylate (PMMA). Critical strain values obtained using this method compared favorably with available existing data. The major advantage of the technique is the ability to obtain time vs. strain curves over a short period of time. The data obtained suggests that over a short period of time the transition in most of the polymer solvent systems is more gradual than previously believed.

  8. Investigating Reaction-Driven Cracking

    NASA Astrophysics Data System (ADS)

    Kelemen, P. B.; Hirth, G.; Savage, H. M.

    2013-12-01

    Many metamorphic reactions lead to large volume changes, and potentially to reaction-driven cracking [1,2]. Large-scale hydration of mantle peridotite to produce serpentine or talc is invoked to explain the rheology of plate boundaries, the nature of earthquakes, and the seismic properties of slow-spread ocean crust and the 'mantle wedge' above subduction zones. Carbonation of peridotite may be an important sink in the global carbon cycle. Zones of 100% magnesite + quartz replacing peridotite, up to 200 m thick, formed where oceanic mantle was thrust over carbonate-bearing metasediments in Oman. Talc + carbonate is an important component of the matrix in subduction mélanges at Santa Catalina Island , California, and the Sanbagawa metamorphic belt, Japan. Engineered systems to emulate natural mineral carbonation could provide relatively inexpensive CO2 capture and storage [3]. More generally, engineered reaction-driven cracking could supplement or replace hydraulic fracture in geothermal systems, solution mining, and extraction of tight oil and gas. The controls on reaction-driven cracking are poorly understood. Hydration and carbonation reactions can be self-limiting, since they potentially reduce permeability and armor reactive surfaces [4]. Also, in some cases, hydration or carbonation may take place at constant volume. Small changes in volume due to precipitation of solid products increases stress, destabilizing solid reactants, until precipitation and dissolution rates become equal at a steady state stress [5]. In a third case, volume change due to precipitation of solid products causes brittle failure. This has been invoked on qualitative grounds to explain, e.g., complete serpentinization of mantle peridotite [6]. Below ~ 300°C, the available potential energy for hydration and carbonation of olivine could produce stresses of 100's of MPa [2], sufficient to fracture rocks to 10 km depth or more, causing brittle failure below the steady state stress required

  9. Environmentally assisted cracking of light-water reactor materials

    SciTech Connect

    Chopra, O.K.; Chung, H.M.; Kassner, T.F.; Shack, W.J.

    1996-02-01

    Environmentally assisted cracking (EAC) of lightwater reactor (LWR) materials has affected nuclear reactors from the very introduction of the technology. Corrosion problems have afflicted steam generators from the very introduction of pressurized water reactor (PWR) technology. Shippingport, the first commercial PWR operated in the United States, developed leaking cracks in two Type 304 stainless steel (SS) steam generator tubes as early as 1957, after only 150 h of operation. Stress corrosion cracks were observed in the heat-affected zones of welds in austenitic SS piping and associated components in boiling-water reactors (BRWs) as early as 1965. The degradation of steam generator tubing in PWRs and the stress corrosion cracking (SCC) of austenitic SS piping in BWRs have been the most visible and most expensive examples of EAC in LWRs, and the repair and replacement of steam generators and recirculation piping has cost hundreds of millions of dollars. However, other problems associated with the effects of the environment on reactor structures and components am important concerns in operating plants and for extended reactor lifetimes. Cast duplex austenitic-ferritic SSs are used extensively in the nuclear industry to fabricate pump casings and valve bodies for LWRs and primary coolant piping in many PWRs. Embrittlement of the ferrite phase in cast duplex SS may occur after 10 to 20 years at reactor operating temperatures, which could influence the mechanical response and integrity of pressure boundary components during high strain-rate loading (e.g., seismic events). The problem is of most concern in PWRs where slightly higher temperatures are typical and cast SS piping is widely used.

  10. Three-Dimensional Gear Crack Propagation Studied

    NASA Technical Reports Server (NTRS)

    Lewicki, David G.

    1999-01-01

    Gears used in current helicopters and turboprops are designed for light weight, high margins of safety, and high reliability. However, unexpected gear failures may occur even with adequate tooth design. To design an extremely safe system, the designer must ask and address the question, "What happens when a failure occurs?" With gear-tooth bending fatigue, tooth or rim fractures may occur. A crack that propagates through a rim will be catastrophic, leading to disengagement of the rotor or propeller, loss of an aircraft, and possible fatalities. This failure mode should be avoided. A crack that propagates through a tooth may or may not be catastrophic, depending on the design and operating conditions. Also, early warning of this failure mode may be possible because of advances in modern diagnostic systems. One concept proposed to address bending fatigue fracture from a safety aspect is a splittooth gear design. The prime objective of this design would be to control crack propagation in a desired direction such that at least half of the tooth would remain operational should a bending failure occur. A study at the NASA Lewis Research Center analytically validated the crack-propagation failsafe characteristics of a split-tooth gear. It used a specially developed three-dimensional crack analysis program that was based on boundary element modeling and principles of linear elastic fracture mechanics. Crack shapes as well as the crack-propagation life were predicted on the basis of the calculated stress intensity factors, mixed-mode crack-propagation trajectory theories, and fatigue crack-growth theories. The preceding figures show the effect of the location of initial cracks on crack propagation. Initial cracks in the fillet of the teeth produced stress intensity factors of greater magnitude (and thus, greater crack growth rates) than those in the root or groove areas of the teeth. Crack growth was simulated in a case study to evaluate crack-propagation paths. Tooth

  11. Crack curving in a ductile pressurized fuselage

    NASA Astrophysics Data System (ADS)

    Lam, Paul W.

    Moire interferometry was used to study crack tip displacement fields of a biaxially loaded cruciform type 0.8mm thick 2024-T3 aluminum specimen with various tearstrap reinforcement configurations: Unreinforced, Bonded, Bonded+Riveted, and Machined Pad-up. A program was developed using the commercially available code Matlab to derive strain, stress, and integral parameters from the experimental displacements. An FEM model of the crack tip area, with experimental displacements as boundary conditions, was used to validate FEM calculations of crack tip parameters. The results indicate that T*-integral parameter reaches a value of approximately 120 MPa-m0.5 during stable crack propagation which agrees with previously published values for straight cracks in the same material. The approximate computation method employed in this study uses a partial contour around the crack tip that neglects the contribution from the portion behind the crack tip where there is significant unloading. Strain distributions around the crack tip were obtained from experimental displacements and indicate that Maximum Principal Strain or Equivalent Strain can predict the direction of crack propagation, and is generally comparable with predictions using the Erdogan-Sih and Kosai-Ramulu-Kobayashi criteria. The biaxial tests to failure showed that the Machined Pad-up specimen carried the highest load, with the Bonded specimen next, at 78% of the Machined Pad-up value. The Bonded+Riveted specimen carried a lower load than the Bonded, at 67% of the Machined Pad-up value, which was the same as that carried by the Unreinforced specimen. The tearstraps of the bonded specimens remained intact after the specimen failed while the integrally machined reinforcement broke with the specimen. FEM studies were also made of skin flapping in typical Narrow and Wide-body fuselage sections, both containing the same crack path from a full-scale fatigue test of a Narrow-body fuselage. Results indicate that the

  12. A comparison of stress in cracked fibrous tissue specimens with varied crack location, loading, and orientation using finite element analysis.

    PubMed

    Peloquin, John M; Elliott, Dawn M

    2016-04-01

    Cracks in fibrous soft tissue, such as intervertebral disc annulus fibrosus and knee meniscus, cause pain and compromise joint mechanics. A crack concentrates stress at its tip, making further failure and crack extension (fracture) more likely. Ex vivo mechanical testing is an important tool for studying the loading conditions required for crack extension, but prior work has shown that it is difficult to reproduce crack extension. Most prior work used edge crack specimens in uniaxial tension, with the crack 90° to the edge of the specimen. This configuration does not necessarily represent the loading conditions that cause in vivo crack extension. To find a potentially better choice for experiments aiming to reproduce crack extension, we used finite element analysis to compare, in factorial combination, (1) center crack vs. edge crack location, (2) biaxial vs. uniaxial loading, and (3) crack-fiber angles ranging from 0° to 90°. The simulated material was annulus fibrosus fibrocartilage with a single fiber family. We hypothesized that one of the simulated test cases would produce a stronger stress concentration than the commonly used uniaxially loaded 90° crack-fiber angle edge crack case. Stress concentrations were compared between cases in terms of fiber-parallel stress (representing risk of fiber rupture), fiber-perpendicular stress (representing risk of matrix rupture), and fiber shear stress (representing risk of fiber sliding). Fiber-perpendicular stress and fiber shear stress concentrations were greatest in edge crack specimens (of any crack-fiber angle) and center crack specimens with a 90° crack-fiber angle. However, unless the crack is parallel to the fiber direction, these stress components alone are insufficient to cause crack opening and extension. Fiber-parallel stress concentrations were greatest in center crack specimens with a 45° crack-fiber angle, either biaxially or uniaxially loaded. We therefore recommend that the 45° center crack case be

  13. Kids, Crack and the Community: Reclaiming Drug-Exposed Infants and Children.

    ERIC Educational Resources Information Center

    Hicks, Barbara Barrett; Wilson, Gregory A., Ed.

    This book examines the growing epidemic of children born to mothers who use cocaine, particularly the highly addictive version known as "crack," focusing on the health and educational needs of such children. Nine chapters address: (1) the origins of cocaine use in the United States, as well as the chemical properties and physiological effects of…

  14. Bladder Endometriosis Mimicking TCC - A Case Report.

    PubMed

    Gupta, Asish; Bhatnagar, Atul; Seth, B N; Dang, Arbinder; Gupta, Vineeta

    2016-02-01

    Endometriosis is the ectopic presence of endometrial tissue outside the uterus. Though on its own endometriosis is not a rare lesion, the involvement of the urinary tract is rare but with the bladder being the most commonly affected organ. Endometriosis is usually seen in females between the ages of 30-40 years and may occur due to fluctuating levels of oestrogen and progesterone. Clinically the patient maybe asymptomatic or show symptoms of dysmenorrhea, irregular or heavy periods, pain in the pelvic area, lower abdomen or in the back. It has been suggested that ultrasonography should be done either before or during menstruation as the lesion becomes more evident and a biopsy taken during this period is a strong aid in reaching a final diagnosis. We report here an unusual case of bladder endometriosis where the patient came with severe pelvic pain and an endoluminal mass seen on the ultrasonographic report. Based on these findings a differential of transitional cell carcinoma was given which was ruled out based on the cystoscopic findings. PMID:27042525

  15. Crack-closure and crack-growth measurements in surface-flawed titanium alloy Ti6Al-4V

    NASA Technical Reports Server (NTRS)

    Elber, W.

    1975-01-01

    The crack-closure and crack-growth characteristics of the titanium alloy Ti-6Al-4V were determined experimentally on surface-flawed plate specimens. Under cyclic loading from zero to tension, cracks deeper than 1 mm opened at approximately 50 percent of the maximum load. Cracks shallower than 1 mm opened at higher loads. The correlation between crack-growth rate and the total stress-intensity range showed a lower threshold behavior. This behavior was attributed to the high crack-opening loads at short cracks because the lower threshold was much less evident in correlations between the crack-growth rates and the effective stress-intensity range.

  16. Radiation-thermal cracking of coal

    NASA Astrophysics Data System (ADS)

    Mitsui, H.; Shimizu, Y.

    The radiation-thermal cracking of Taiheiyo coal was carried out in the presence of hydrogen at 400°C by using γ-rays with a dose rate of 3.15 x 10 5{rad}/{hr} in a static, batch type autoclave of 100 ml capacity, and compared with the thermal cracking under the same conditions. The initial hydrogen pressure was 20 {kg}/{cm 2G } at 30°C. Tetralin and asphalt were used as a solvent. The yields of gas, non-volatile benzene-soluble residue, and benzene-insoluble residue were measured, and the remaining products were defined as oil. The results of the cracking without solvent showed that the decomposition of the component difficult to decompose in coal is accelerated by γ-irradiation, whereas that of the component easy to decompose is little affected. In the cracking in tetralin, it was considered that γ-rays accelerate the cracking in the early stage through the same mechanism as that in the cracking without solvent. The decomposition of coal and asphalt was accelerated by γ-irradiation in the cracking in asphalt. The main gaseous products were methane and carbon dioxide in all reaction systems investigated. The time dependence of the yields of gaseous products showed that the formation of gaseous hydrocarbons is accelerated by γ-irradiation, whereas the formation of carbon dioxide and carbon monoxide is almost independent of γ-irradiation.

  17. Closure of fatigue cracks at high strains

    NASA Technical Reports Server (NTRS)

    Iyyer, N. S.; Dowling, N. E.

    1985-01-01

    Experiments were conducted on smooth specimens to study the closure behavior of short cracks at high cyclic strains under completely reversed cycling. Testing procedures and methodology, and closure measurement techniques, are described in detail. The strain levels chosen for the study cover from predominantly elastic to grossly plastic strains. Crack closure measurements are made at different crack lengths. The study reveals that, at high strains, cracks close only as the lowest stress level in the cycle is approached. The crack opening is observed to occur in the compressive part of the loading cycle. The applied stress needed to open a short crack under high strain is found to be less than for cracks under small scale yielding. For increased plastic deformations, the value of sigma sub op/sigma sub max is observed to decrease and approaches the value of R. Comparison of the experimental results with existing analysis is made and indicates the limitations of the small scale yielding approach where gross plastic deformation behavior occurs.

  18. Subcritical crack growth in two titanium alloys.

    NASA Technical Reports Server (NTRS)

    Williams, D. N.

    1973-01-01

    Measurement of subcritical crack growth during static loading of precracked titanium alloys in salt water using samples too thin for plane strain loading to predominate was examined as a method for determining the critical stress intensity for crack propagation in salt water. Significant internal crack growth followed by arrest was found at quite low stress intensities, but crack growth rates were relatively low. Assuming these techniques provided a reliable measurement of the critical stress intensity, the value for annealed Ti-4Al-1.5Mo-0.5V alloy was apparently about 35 ksi-in. to the 1/2 power, while that for annealed Ti-4Al-3Mo-1V was below 45 ksi-in. to the 1/2 power. Crack growth was also observed in tests conducted in both alloys in an air environment. At 65 ksi-in. to the 1/2 power, the extent of crack growth was greater in air than in salt water. Ti-4Al-3Mo-1V showed arrested crack growth in air at a stress intensity of 45 ksi-in. to the 1/2 power.

  19. Modelling microstructurally sensitive fatigue short crack growth

    NASA Astrophysics Data System (ADS)

    de Los Rios, E. R.; Xin, X. J.; Navarro, A.

    1994-10-01

    Microstructurally sensitive fatigue short crack growth can occur in many engineering components devoid of large defects. Continuum mechanics principles, including linear elastic fracture mechanics, used in damage tolerance design and life prediction methods are not applicable in these situations and therefore new concepts need to be developed to characterize this type of growth. A microstructurally sensitive model of fatigue crack growth is presented in which the effect of microstructure is dominant in the early stage of growth but plays a negligible role after the crack has gone through the transition from structure-sensitive to structure-insensitive growth. The effect of both microstructure and structure sensitive variables on the transition from short cracks to continuum mechanics and the conditions for crack instability leading to final failure are examined. The microstructural variables incorporated in the equations that describe the model are those controlling the extent and intensity of crack tip plasticity such as grain size, precipitation and dispersion hardening, strain hardening and mis-orientation between grains. It is expected that the concepts developed within the model will form the basis for the design of new crack-resistant materials.

  20. Contact of nonflat crack surfaces during fatigue

    SciTech Connect

    Sehitoglu, H.; Garcia, A.M.

    1999-07-01

    A model has been developed to predict crack opening and closure behavior for propagating fatigue cracks which are nonflat and undergo significant sliding displacements. Crack surfaces were characterized by a random distribution of asperity heights, density of asperities, and asperity radii. The propagating crack was subdivided into ligaments and each ligament was treated as a contact problem between two randomly rough surfaces. The far-field tensile stresses were varied in a cyclic manner for R = 0.1 and {minus}1 loading conditions. The contact stresses at the minimal load were determined by analyzing the local crushing of the asperities. Then, upon loading the crack opening, stresses were computed when the contact stresses were overcome. The results of crack opening stresses were correlated with CTOD/{sigma}{sub 0} where CTOD is the crack-tip opening displacement and {sigma}{sub 0} is the average asperity height. The asperity effects on closure were compared with plasticity-induced closure results from the literature for identification of conditions when one mechanism dominates the other.

  1. Fatigue life and crack growth prediction methodology

    NASA Technical Reports Server (NTRS)

    Newman, J. C., Jr.; Phillips, E. P.; Everett, Richard A., Jr.

    1994-01-01

    This paper reviews the capabilities of a plasticity-induced crack-closure model and life-prediction code to predict fatigue crack growth and fatigue lives of metallic materials. Crack-tip constraint factors, to account for three-dimensional effects, were selected to correlate large-crack growth rate data as a function of the effective stress-intensity factor range (Delta K(sub eff)) under constant amplitude loading. Some modifications to the Delta K(sub eff)-rate relations were needed in the near threshold regime to fit small-crackgrowth rate behavior and endurance limits. The model was then used to calculate small- and large-crack growth rates, and in some cases total fatigue lives, for several aluminum and titanium alloys under constant-amplitude, variable-amplitude, and spectrum loading. Fatigue lives were calculated using the crack-growth relations and microstructural features like those that initiated cracks. Results from the tests and analyses agreed well.

  2. Process for catalytic cracking of hydrocarbons

    SciTech Connect

    Goelzer, A.R.

    1991-04-23

    This patent describes improvement in a fluidized catalytic cracking-regeneration process for cracking hydrocarbon feedstocks or the vapors. The improvement consists of: cracking a first hydrocarbon feed comprising gas oil, residual oil boiling range material or mixtures thereof in a first elongated riser reactor in the presence of regenerated cracking catalyst supplied from the second catalyst regeneration zone at a temperature of at least 1300{degrees}F., cracking a second hydrocarbon feed comprising virgin naphtha, intermediate and heavy cracked naphtha boiling range material or mixtures thereof, having a boiling point to about 450{degrees}F., in a second elongated riser reactor in the presence of regenerated cracking catalyst supplied from the second catalyst regeneration zone at a temperature of at least 1300{degrees}F., combining the vaporous conversion products from the first and second elongated riser reactors in a common disengaging zone therein separating entrained catalyst particles from vaporous product material and passing the combined conversion products to a fractional distillation zone to recover at least a gasoline boiling range material fraction and lighter gaseous hydrocarbon material fraction, a light cycle oil boiling range material fraction and a heavy naphtha boiling range material fraction including slurry oil and higher boiling material fractions.

  3. Crack growth monitoring at CFRP bond lines

    NASA Astrophysics Data System (ADS)

    Rahammer, M.; Adebahr, W.; Sachse, R.; Gröninger, S.; Kreutzbruck, M.

    2016-02-01

    With the growing need for lightweight technologies in aerospace and automotive industries, fibre-reinforced plastics, especially carbon-fibre (CFRP), are used with a continuously increasing annual growth rate. A promising joining technique for composites is adhesive bonding. While rivet holes destroy the fibres and cause stress concentration, adhesive bond lines distribute the load evenly. Today bonding is only used in secondary structures due to a lack of knowledge with regard to long-term predictability. In all industries, numerical simulation plays a critical part in the development process of new materials and structures, while it plays a vital role when it comes to CFRP adhesive bondings conducing the predictability of life time and damage tolerance. The critical issue with adhesive bondings is crack growth. In a dynamic tensile stress testing machine we dynamically load bonded CFRP coupon specimen and measure the growth rate of an artificially started crack in order to feed the models with the results. We also investigate the effect of mechanical crack stopping features. For observation of the bond line, we apply two non-contact NDT techniques: Air-coupled ultrasound in slanted transmission mode and active lockin-thermography evaluated at load frequencies. Both methods give promising results for detecting the current crack front location. While the ultrasonic technique provides a slightly higher accuracy, thermography has the advantage of true online monitoring, because the measurements are made while the cyclic load is being applied. The NDT methods are compared to visual inspection of the crack front at the specimen flanks and show high congruence. Furthermore, the effect of crack stopping features within the specimen on the crack growth is investigated. The results show, that not all crack fronts are perfectly horizontal, but all of them eventually come to a halt in the crack stopping feature vicinity.

  4. Early stages in the development of stress corrosion cracks

    SciTech Connect

    Jones, R.H.; Simonen, E.P.

    1993-12-01

    Processes in growth of short cracks and stage I of long stress corrosion cracks were identified and evaluated. There is evidence that electrochemical effects can cause short stress corrosion cracks to grow at rates faster or slower than long cracks. Short cracks can grow at faster rates than long cracks for a salt film dissolution growth mechanism or from reduced oxygen inhibition of hydrolytic acidification. An increasing crack growth rate with increasing crack length could result from a process of increasing crack tip concentration of a critical anion, such as Cl{sup {minus}}, with increasing crack length in a system where the crack velocity is dependent on the Cl{sup {minus}} or some other anion concentration. An increasing potential drop between crack tip and mouth would result in an increased anion concentration at the crack tip and hence an increasing crack velocity. Stage I behavior of long cracks is another early development stage in the life of a stress corrosion crack which is poorly understood. This stage can be described by da/dt = AK{sup m} where da/dt is crack velocity, A is a constant, K is stress intensity and m ranges from 2 to 24 for a variety of materials and environments. Only the salt film dissolution model was found to quantitatively describe this stage; however, the model was only tested on one material and its general applicability is unknown.

  5. Crack Growth Properties of Sealing Glasses

    NASA Technical Reports Server (NTRS)

    Salem, Jonathan A.; Tandon, R.

    2008-01-01

    The crack growth properties of several sealing glasses were measured using constant stress rate testing in 2% and 95% RH (relative humidity). Crack growth parameters measured in high humidity are systematically smaller (n and B) than those measured in low humidity, and velocities for dry environments are approx. 100x lower than for wet environments. The crack velocity is very sensitivity to small changes in RH at low RH. Confidence intervals on parameters that were estimated from propagation of errors were comparable to those from Monte Carlo simulation.

  6. MECHANICS OF CRACK BRIDGING UNDER DYNAMIC LOADS

    SciTech Connect

    N. SRIDHAR; ET AL

    2001-02-01

    A bridging law for fiber reinforced composites under dynamic crack propagation conditions has been derived. Inertial effects in the mechanism of fiber pullout during dynamic propagation of a bridged crack are critically examined for the first time. By reposing simple shear lag models of pullout as problems of dynamic wave propagation, the effect of the frictional coupling between the fibers and the matrix is accounted for in a fairly straightforward way. The solutions yield the time-dependent relationship between the crack opening displacement and the bridging traction. Engineering criteria and the role of material and geometrical parameters for significant inertial effects are identified.

  7. Crack growth resistance of textured alumina

    NASA Technical Reports Server (NTRS)

    Salem, Jonathan A.; Shannon, John L., Jr.; Bradt, Richard C.

    1989-01-01

    The crack growth resistance of a textured, extruded alumina body was compared with that of anisotropic, isopressed body of similar grain size, density, and chemistry. R-curve levels reflected the preferred orientation; however, R-curve slopes were the same in all instances, implying a similar crack growth-resistive mechanism. Three orthogonal orientations of crack growth in the two structures exhibited similar forms of K(IR) versus Delta-a curves, for which a schematic diagram for polycrystalline ceramics is proposed.

  8. Slow crack growth in spinel in water

    NASA Technical Reports Server (NTRS)

    Schwantes, S.; Elber, W.

    1983-01-01

    Magnesium aluminate spinel was tested in a water environment at room temperature to establish its slow crack-growth behavior. Ring specimens with artificial flaws on the outside surface were loaded hydraulically on the inside surface. The time to failure was measured. Various precracking techniques were evaluated and multiple precracks were used to minimize the scatter in the static fatigue tests. Statistical analysis techniques were developed to determine the strength and crack velocities for a single flaw. Slow crack-growth rupture was observed at stress intensities as low as 70 percent of K sub c. A strengthening effect was observed in specimens that had survived long-time static fatigue tests.

  9. On fatigue crack growth under random loading

    NASA Astrophysics Data System (ADS)

    Zhu, W. Q.; Lin, Y. K.; Lei, Y.

    1992-09-01

    A probabilistic analysis of the fatigue crack growth, fatigue life and reliability of a structural or mechanical component is presented on the basis of fracture mechanics and theory of random processes. The material resistance to fatigue crack growth and the time-history of the stress are assumed to be random. Analytical expressions are obtained for the special case in which the random stress is a stationary narrow-band Gaussian random process, and a randomized Paris-Erdogan law is applicable. As an example, the analytical method is applied to a plate with a central crack, and the results are compared with those obtained from digital Monte Carlo simulations.

  10. Fatigue-Crack-Growth Computer Program

    NASA Technical Reports Server (NTRS)

    Forman, Royce G.; Shivakumar, V.; Newman, James C., Jr.

    1991-01-01

    Fatigue Crack Growth (NASA/FLAGRO) computer program developed as aid in predicting growth of preexisting flaws and cracks in structural components of space systems. Is enhanced version of FLAGRO4 and incorporates state-of-the-art improvements in both fracture mechanics and computer technology. Provides fracture-mechanics analyst with computerized method of evaluating "safe-crack-growth-life" capabilities of structural components. Also used to evaluate tolerance to damage of structure of given design. Designed modular to facilitate revisions and operation on minicomputers. Written in FORTRAN 77.

  11. An analysis of creep crack growth of interface cracks in layered/graded materials

    SciTech Connect

    Biner, S.B.

    1997-07-01

    In this study, the growth behavior of interface cracks in bimaterials and in layered materials resulting from the creep cavitation was studied. The growth model includes the effects of material deposition resulting from the growth of creep cavities on the crack tip stress fields. The results indicate that in layered materials under identical applied loading, the location of the interface crack strongly influence the amplitude of the stress field at steady-state. Due to large variation in the distribution of the stresses ahead of the interface cracks at creep regime, depending upon the crack location, the creep crack growth rates will be significantly different from each other under identical loading for a given layered material.

  12. Crack-face displacements for embedded elliptic and semi-elliptical surface cracks

    NASA Technical Reports Server (NTRS)

    Raju, I. S.

    1989-01-01

    Analytical expressions for the crack-face displacements of an embedded elliptic crack in infinite solid subjected to arbitrary tractions are obtained. The tractions on the crack faces are assumed to be expressed in a polynomial form. These displacements expressions complete the exact solution of Vijayakumar and Atluri, and Nishioki and Atluri. For the special case of an embedded crack in an infinite solid subjected to uniform pressure loading, the present displacements agree with those by Green and Sneddon. The displacement equations derived were used with the finite-element alternating method (FEAM) for the analysis of a semi-elliptic surface crack in a finite solid subjected to remote tensile loading. The maximum opening displacements obtained with FEAM are compared to those with the finite-element method with singularity elements. The maximum crack opening displacements by the two methods showed good agreement.

  13. Cracking the code of change.

    PubMed

    Beer, M; Nohria, N

    2000-01-01

    Today's fast-paced economy demands that businesses change or die. But few companies manage corporate transformations as well as they would like. The brutal fact is that about 70% of all change initiatives fail. In this article, authors Michael Beer and Nitin Nohria describe two archetypes--or theories--of corporate transformation that may help executives crack the code of change. Theory E is change based on economic value: shareholder value is the only legitimate measure of success, and change often involves heavy use of economic incentives, layoffs, downsizing, and restructuring. Theory O is change based on organizational capability: the goal is to build and strengthen corporate culture. Most companies focus purely on one theory or the other, or haphazardly use a mix of both, the authors say. Combining E and O is directionally correct, they contend, but it requires a careful, conscious integration plan. Beer and Nohria present the examples of two companies, Scott Paper and Champion International, that used a purely E or purely O strategy to create change--and met with limited levels of success. They contrast those corporate transformations with that of UK-based retailer ASDA, which has successfully embraced the paradox between the opposing theories of change and integrated E and O. The lesson from ASDA? To thrive and adapt in the new economy, companies must make sure the E and O theories of business change are in sync at their own organizations. PMID:11183975

  14. Elapsed time for crack formation during drying.

    PubMed

    Giorgiutti-Dauphiné, F; Pauchard, L

    2014-05-01

    The drying of colloidal films usually leads to mechanical instabilities that affect the uniformity of the final deposit. The resulting patterns are the signature of the mechanical stress, and reveal the way the system consolidates. We report experimental results on the crack patterns induced by the drying of sessile drops of concentrated dispersions. Crack patterns exhibit a well-defined spatial order, and a regular temporal periodicity. In addition, the onset of cracking occurs after a well-defined elapsed time that depends on the mechanical properties of the gel, and on the drying kinetics. The estimation of the time elapsed before cracks form is related to the elastic properties of the material. This is supported by quantitative measurements using indentation testing and by a simple scaling law derived from poro-elastic theory. PMID:24853634

  15. Cracked shells under skew-symmetric loading

    NASA Technical Reports Server (NTRS)

    Lelale, F.

    1982-01-01

    A shell containing a through crack in one of the principal planes of curvature and under general skew-symmetric loading is considered. By employing a Reissner type shell theory which takes into account the effect of transverse shear strains, all boundary conditions on the crack surfaces are satisfied separately. Consequently, unlike those obtained from the classical shell theory, the angular distributions of the stress components around the crack tips are shown to be identical to the distributions obtained from the plane and antiplane elasticity solutions. Extensive results are given for axially and circumferentially cracked cylindrical shells, spherical shells, and toroidal shells under uniform inplane shearing, out of plane shearing, and torsion. The effect of orthotropy on the results is also studied.

  16. Fatigue crack propagation in aerospace aluminum alloys

    NASA Technical Reports Server (NTRS)

    Gangloff, R. P.; Piascik, R. S.; Dicus, D. L.; Newman, J. C., Jr.

    1990-01-01

    This paper reviews fracture mechanics based, damage tolerant characterizations and predictions of fatigue crack growth in aerospace aluminum alloys. The results of laboratory experimentation and modeling are summarized in the areas of: (1) fatigue crack closure, (2) the wide range crack growth rate response of conventional aluminum alloys, (3) the fatigue behavior of advanced monolithic aluminum alloys and metal matrix composites, (4) the short crack problem, (5) environmental fatigue, and (6) variable amplitude loading. Remaining uncertainties and necessary research are identified. This work provides a foundation for the development of fatigue resistant alloys and composites, next generation life prediction codes for new structural designs and extreme environments, and to counter the problem of aging components.

  17. The interaction between inclusions and cracks

    NASA Technical Reports Server (NTRS)

    Erdogan, F.

    1973-01-01

    Some current fracture theories are reviewed and a group of mechanics problems of practical interest relating to the elastic interaction between cracks and inclusions are identified and results summarized.

  18. Thermographic detection of cracks in thin sheets

    NASA Technical Reports Server (NTRS)

    Cramer, K. E.; Syed, Hazari; Winfree, William P.

    1991-01-01

    A thermographic inspection technique for crack detection based on a 2D filter convolved with the thermal temperature images is presented. The filter is designed to approximate operating on the temperature images with a Laplacian operator. This operation yields an image which approximates changes in the heat flux in a thin plate. This filtering method results in an enhanced contrast due to the presence of cracks. Measurements have been performed on samples with fabricated electrical discharge machining (EDM) notches (both through-the-thickness and surface notches) and closed fatigue cracks around rivets. It is shown that the technique is effective for the detection of various crack lengths down to the resolution limits of the imager used.

  19. The Effect of Water on Crack Interaction

    NASA Astrophysics Data System (ADS)

    Gaede, O.; Regenauer-Lieb, K.

    2009-04-01

    While the mechanical coupling between pore fluid and solid phase is relatively well understood, quantitative studies dealing with chemical-mechanical weakening in geological materials are rare. Many classical poroelastic problems can be addressed with the simple law of effective stress. Experimental studies show that the presence of a chemically active fluid can have effects that exceed the predictions of the law of effective stress. These chemical fluid-rock interactions alter the mechanical properties of the solid phase. Especially chemical-mechanical weakening has important ramifications for many areas of applied geosciences ranging from nuclear waste disposal over reservoir enhancement to fault stability. In this study, we model chemically induced changes of the size of the process zone around a crack tip. The knowledge of the process zone size is used to extend existing effective medium approximations of cracked solids. The stress distribution around a crack leads to a chemical potential gradient. This gradient will be a driver for mass diffusion through the solid phase. As an example, mass diffusion is towards the crack tip for a mode I crack. In this case a chemical reaction, that weakens the solid phase, will increase the size of the process zone around the crack tip. We apply our model to the prominent hydrolytic weakening effect observed in the quartz-water system (Griggs and Blacic, 1965). Hydrolytic weakening is generally attributed to water hydrolyzing the strong Si-O bonds of the quartz crystal. The hydrolysis replaces a Si-O-Si bridge with a relatively weak hydrogen bridge between two silanol groups. This enhances dislocation mobility and hence the yield stress is reduced. The plastic process zone around a crack tip is therefore larger in a wet crystal than in a dry crystal. We calculate the size of the process zone by solving this coupled mechanical-chemical problem with the Finite Element code ABAQUS. We consider single crack, collinear crack and

  20. Reliability Studies for Fatigue-Crack Detection

    NASA Technical Reports Server (NTRS)

    Christner, B. K.; Rummel, W. D.; Knadler, J.

    1985-01-01

    Reusable test panels available to assess reliability of techniques that use fluorescent penetrant to detect fatigue cracks. Ultrasonic cleaning method developed for removing penetrant from panels prior to reuse.

  1. Interface crack in a nonhomogeneous elastic medium

    NASA Technical Reports Server (NTRS)

    Delale, F.; Erdogan, F.

    1988-01-01

    The linear elasticity problem for an interface crack between two bonded half planes is reconsidered. It is assumed that one of the half planes is homogeneous and the second is nonhomogeneous in such a way that the elastic properties are continuous throughout the plane and have discontinuous derivatives along the interface. The problem is formulated in terms of a system of integral equations and the asymptotic behavior of the stress state near the crack tip is determined. The results lead to the conclusion that the singular behavior of stresses in the nonhomogeneous medium is identical to that in a homogeneous material provided the spacial distribution of material properties is continuous near and at the crack tip. The problem is solved for various values of the nonhomogeneity parameter and for four different sets of crack surface tractions, and the corresponding stress intensity factors are tabulated.

  2. The crack problem in bonded nonhomogeneous materials

    NASA Technical Reports Server (NTRS)

    Erdogan, F.; Joseph, P. F.; Kaya, A. C.

    1991-01-01

    The plane elasticity problem for two bonded half planes containing a crack perpendicular to the interface was considered. The effect of very steep variations in the material properties near the diffusion plane on the singular behavior of the stresses and stress intensity factors were studied. The two materials were thus, assumed to have the shear moduli mu(o) and mu(o) exp (Beta x), x=0 being the diffusion plane. Of particular interest was the examination of the nature of stress singularity near a crack tip termination at the interface where the shear modulus has a discontinuous derivative. The results show that, unlike the crack problem in piecewise homogeneous materials for which the singularity is of the form r/alpha, 0 less than alpha less than 1, in this problem the stresses have a standard square-root singularity regardless of the location of the crack tip. The nonhomogeneity constant Beta has, however, considerable influence on the stress intensity factors.

  3. The crack problem in bonded nonhomogeneous materials

    NASA Technical Reports Server (NTRS)

    Erdogan, Fazil; Kaya, A. C.; Joseph, P. F.

    1988-01-01

    The plane elasticity problem for two bonded half planes containing a crack perpendicular to the interface was considered. The effect of very steep variations in the material properties near the diffusion plane on the singular behavior of the stresses and stress intensity factors were studied. The two materials were thus, assumed to have the shear moduli mu(o) and mu(o) exp (Beta x), x=0 being the diffusion plane. Of particular interest was the examination of the nature of stress singularity near a crack tip terminating at the interface where the shear modulus has a discontinuous derivative. The results show that, unlike the crack problem in piecewise homogeneous materials for which the singularity is of the form r/alpha, 0 less than alpha less than 1, in this problem the stresses have a standard square-root singularity regardless of the location of the crack tip. The nonhomogeneity constant Beta has, however, considerable influence on the stress intensity factors.

  4. Sulfide stress corrosion cracking of line pipe

    SciTech Connect

    Kimuro, M.; Totsuka, N.; Kurisu, T.; Amano, K.; Matsuyama, J.; Nakai, Y. )

    1989-04-01

    This paper reports the sulfide stress corrosion cracking (SSC) behavior of line pipe steel investigated using the SSC test method in NACE Standard TMO177-77, Testing of Metals for Resistance to Sulfide Stress Cracking at Ambient Temperatures. SSC of base metal can be classified into two types, depending on microstructures. In ferrite-perlite steel, the first crack initiates parallel to the pipe surface and propagates perpendicularly to the axis of stress. In ferrite-bainite steel or low C-bainite steel, the crack initiates at the interface between the bainite particle and the ferrite. With decreasing carbon content, the threshold stress of SSC ({sigma}{sub th}) increases, but in low-carbon steel, the {sigma}{sub th} value of weld seam is lower than that of base metal. SSC of weld seams occurs at the softening zone in the heat-affected zone (HAZ) about 2 to 4 mm away from the fusion line.

  5. Acoustic emission monitoring of a fatigue crack

    NASA Astrophysics Data System (ADS)

    Granata, D. M.; Scott, W. R.; Davis, J.; Lee, E. U.; Boodey, J. B.; Kulowitch, P.

    AE monitoring is applied to crack detection in materials containing intermetallic compounds that have very small critical flaw sizes. The tests performed are simpler than structural monitoring since the source location is well defined and extraneous sources are limited. A correlation was found between defect propagation and AE events in the two titanium aluminide alloys studied. Because events that are apparently not crack related can occur, and because the number of events detected is threshold and gain-sensitive, the AE count alone is not an absolute measure of crack length. Parameters denoting the portion of the load cycle where events occur are valuable for identifying AE sources and cracking mechanisms. Pattern recognition algorithms can be developed on the basis of stored waveforms and load level parameters.

  6. NURBS distance fields for extremely curved cracks

    NASA Astrophysics Data System (ADS)

    Sevilla, Ruben; Barbieri, Ettore

    2014-12-01

    This paper proposes for the first time an intrinsic enrichment for extremely curved cracks in a meshfree framework. The unique property of the proposed method lies in the exact geometric representation of cracks using non-uniform rational B-splines (NURBS). A distance function algorithm for NURBS is presented, resulting in a spatial field which is simultaneously discontinuous over the (finite) curved crack and continuous all around the crack tips. Numerical examples show the potential of the proposed approach and illustrate its advantages with respect to other techniques usually employed to model fracture, including standard finite elements with remeshing and the extended finite element method. This work represents a further step in an ongoing effort in the community to integrate computer aided design with numerical simulations.

  7. Three-dimensional measurements of fatigue crack closure

    NASA Technical Reports Server (NTRS)

    Ray, S. K.; Grandt, A. F., Jr.

    1984-01-01

    Fatigue crack growth and retardation experiments conducted in polycarbonate test specimen are described. The transparent test material allows optical interferometry measurements of the fatigue crack opening (and closing) profiles. Crack surface displacements are obtained through the specimen thickness and three dimensional aspects of fatigue crack closure are discussed.

  8. On the stochastic fatigue crack growth problem

    NASA Astrophysics Data System (ADS)

    Enneking, Thomas Joseph

    The research focuses on continuous and discrete stochastic models for fatigue crack growth which are based on Markov process theory. These models account for the random nature of fatigue crack growth which is not adequately explained by a deterministic approach. A hybrid finite element/finite difference solution methodology is developed and shown to be highly effective in determining the solution of the backward Kolmogorov equation and the Pontryagin-Vitt equation yielding the probabilistic description of the time to reach a critical crack size as a function of the initial crack size. Excellent comparisons are shown between this method, previous analytical studies, and experimental results. A significant reduction in computer processing time and storage is achieved with this approach. Alternatively, the forward Fokker-Planck-Kolmogorov equation is formulated, and a two-dimensional initial boundary value problem developed, to determine the distribution of crack sizes as a function of time. A two-dimensional finite element solution approach is used for problem solution. A major advantage of this problem formulation is that the entire probability density function is obtained as a function of cycle number. Studies of discrete Markov process models are also considered for the characterization of fatigue crack growth. A cell-to-cell mapping approach, which has been effectively utilized for other two-state problems in stochastic dynamics, is developed for the stochastic fatigue crack growth problem. In this approach the transitional probability matrix for crack transition from cell i to any other cell is determined using simulation with a two-state lognormal random process model. Repeated matrix multiplication is then used to determine the distribution of crack lengths at other times for a given initial flow size distribution. The effect of varying the initial fatigue quality may be evaluated without repeating the simulation of the probability transition matrix

  9. Crack-mouth displacements for semielliptical surface cracks subjected to remote tension and bending loads

    NASA Technical Reports Server (NTRS)

    Raju, Ivatury S.; Newman, James C., Jr.; Atluri, Satya N.

    1992-01-01

    The exact analytical solution for an embedded elliptical crack in an infinite body subjected to arbitrary loading was used in conjunction with the finite element alternating method to obtain crack-mouth-opening displacements (CMOD) for surface cracks in finite plates subjected to remote tension. Identical surface-crack configurations were also analyzed with the finite element method using 20-noded element for plates subjected to both remote tension and bending. The CMODs from these two methods generally agreed within a few percent of each other. Comparisons made with experimental results obtained from surface cracks in welded aluminum alloy specimens subjected to tension also showed good agreement. Empirical equations were developed for CMOD for a wide range of surface-crack shapes and sizes subjected to tension and bending loads. These equations were obtained by modifying the Green-Sneddon exact solution for an elliptical crack in an infinite body to account for finite boundary effects. These equations should be useful in monitoring surface-crack growth in tests and in developing complete crack-face-displacement equations for use in three-dimensional weight-function methods.

  10. The effects of crack surface friction and roughness on crack tip stress fields

    NASA Technical Reports Server (NTRS)

    Ballarini, Roberto; Plesha, Michael E.

    1987-01-01

    A model is presented which can be used to incorporate the effects of friction and tortuosity along crack surfaces through a constitutive law applied to the interface between opposing crack surfaces. The problem of a crack with a saw-tooth surface in an infinite medium subjected to a far-field shear stress is solved and the ratios of Mode-I stress intensity to Mode-II stress intensity are calculated for various coefficients of friction and material properties. The results show that tortuosity and friction lead to an increase in fracture loads and alter the direction of crack propagation.

  11. Measurement and analysis of critical crack tip processes associated with variable amplitude fatigue crack growth

    NASA Technical Reports Server (NTRS)

    Hudak, S. J., Jr.; Davidson, D. L.; Chan, K. S.

    1983-01-01

    Crack growth retardation following overloads can result in overly conservative life predictions in structures subjected to variable amplitude fatigue loading when linear damage accumulation procedures are employed. Crack closure is believed to control the crack growth retardation, although the specific closure mechanism is debatable. Information on the relative contributions to crack closure from: (1) plasticity left in the wake of the advancing crack and (2) crack tip residual stresses is provided. The delay period and corresponding crack growth rate transients following overloads are systematically measured as a function of load ratio (R) and overload magnitude. These responses are correlated in terms of the local 'driving force' for crack growth as measured by crack tip opening loads and delta K sub eff. The latter measurements are obtained using a scanning electron microscope equipped with a cyclic loading stage; measurements are quantified using a relatively new stereoimaging technique. Combining experimental results with analytical predictions suggests that both plastic wake and residual stress mechanism are operative, the latter becoming predominate as R increases.

  12. Discrete crack growth analysis methodology for through cracks in pressurized fuselage structures

    NASA Astrophysics Data System (ADS)

    Potyondy, David O.; Wawrzynek, Paul A.; Ingraffea, Anthony R.

    1995-05-01

    A methodology for simulating the growth of long through cracks in the skin of pressurized aircraft fuselage structures is described. Crack trajectories are allowed to be arbitrary and are computed as part of the simulation. The interaction between the mechanical loads acting on the superstructure and the local structural response near the crack tips is accounted for by employing a hierarchical modelling strategy. The structural response for each cracked configuration is obtained using a geometrically non-linear shell finite element analysis procedure. Four stress intensity factors, two for membrane behavior and two for bending using Kirchhoff plate theory, are computed using an extension of the modified crack closure integral method. Crack trajectories are determined by applying the maximum tangential stress criterion. Crack growth results in localized mesh deletion, and the deletion regions are remeshed automatically using a newly developed all-quadrilateral meshing algorithm. The effectiveness of the methodology, and its applicability to performing practical analyses of realistic structures, is demonstrated by simulating curvilinear crack growth in a fuselage panel that is representative of a typical narrow-body aircraft. The predicted crack trajectory and fatigue life compare well with measurements of these same quantities from a full-scale pressurized panel test.

  13. Discrete crack growth analysis methodology for through cracks in pressurized fuselage structures

    NASA Astrophysics Data System (ADS)

    Potyondy, David O.; Wawrzynek, Paul A.; Ingraffea, Anthony R.

    1994-09-01

    A methodology for simulating the growth of long through cracks in the skin of pressurized aircraft fuselage structures is described. Crack trajectories are allowed to be arbitrary and are computed as part of the simulation. The interaction between the mechanical loads acting on the superstructure and the local structural response near the crack tips is accounted for by employing a hierarchical modeling strategy. The structural response for each cracked configuration is obtained using a geometrically nonlinear shell finite element analysis procedure. Four stress intensity factors, two for membrane behavior and two for bending using Kirchhoff plate theory, are computed using an extension of the modified crack closure integral method. Crack trajectories are determined by applying the maximum tangential stress criterion. Crack growth results in localized mesh deletion, and the deletion regions are remeshed automatically using a newly developed all-quadrilateral meshing algorithm. The effectiveness of the methodology and its applicability to performing practical analyses of realistic structures is demonstrated by simulating curvilinear crack growth in a fuselage panel that is representative of a typical narrow-body aircraft. The predicted crack trajectory and fatigue life compare well with measurements of these same quantities from a full-scale pressurized panel test.

  14. Effects of crack geometry and material behavior on scattering by cracks for QNDE applications

    SciTech Connect

    Achenbach, J.D.

    1989-09-15

    In work carried out on this project, the usual mathematical modeling of ultrasonic wave scattering by flaws is being extended to account for several typical characteristics of fatigue and stress-corrosion cracks, and the environment of such cracks. Work has been completed on scattering by macrocrack-microcrack configurations. We have also investigated reflection and transmission by a flaw plane consisting of an infinite array of randomly oriented cracks. In another investigation the propagation of mechanical disturbances in solids with periodically distributed cracks has been studied.

  15. Discrete crack growth analysis methodology for through cracks in pressurized fuselage structures

    NASA Technical Reports Server (NTRS)

    Potyondy, David O.; Wawrzynek, Paul A.; Ingraffea, Anthony R.

    1994-01-01

    A methodology for simulating the growth of long through cracks in the skin of pressurized aircraft fuselage structures is described. Crack trajectories are allowed to be arbitrary and are computed as part of the simulation. The interaction between the mechanical loads acting on the superstructure and the local structural response near the crack tips is accounted for by employing a hierarchical modeling strategy. The structural response for each cracked configuration is obtained using a geometrically nonlinear shell finite element analysis procedure. Four stress intensity factors, two for membrane behavior and two for bending using Kirchhoff plate theory, are computed using an extension of the modified crack closure integral method. Crack trajectories are determined by applying the maximum tangential stress criterion. Crack growth results in localized mesh deletion, and the deletion regions are remeshed automatically using a newly developed all-quadrilateral meshing algorithm. The effectiveness of the methodology and its applicability to performing practical analyses of realistic structures is demonstrated by simulating curvilinear crack growth in a fuselage panel that is representative of a typical narrow-body aircraft. The predicted crack trajectory and fatigue life compare well with measurements of these same quantities from a full-scale pressurized panel test.

  16. Cracking of general relativistic anisotropic polytropes

    NASA Astrophysics Data System (ADS)

    Herrera, L.; Fuenmayor, E.; León, P.

    2016-01-01

    We discuss the effect that small fluctuations of the local anisotropy of pressure and of the energy density may have on the occurrence of cracking in spherical compact objects, satisfying a polytropic equation of state. Two different kinds of polytropes are considered. For both, it is shown that departures from equilibrium may lead to the appearance of cracking, for a wide range of values of the parameters defining the polytrope. Prospective applications of the obtained results to some astrophysical scenarios are pointed out.

  17. A severe complication of crack cocaine use

    PubMed Central

    Vidyasankar, Gokul; Souza, Carolina; Lai, Chi; Mulpuru, Sunita

    2015-01-01

    The present report describes a 48-year-old woman with a history of recurrent ‘crack’ cocaine use, who developed progressive shortness of breath over a period of years. Serial imaging revealed progressive interstitial fibrosis secondary to recurrent alveolar hemorrhage and inflammation from crack cocaine. The present case serves as a reminder of the numerous sequelae of crack cocaine use, highlighting one particularly severe outcome. PMID:25848717

  18. Molecular dynamics simulation of propagating cracks

    NASA Technical Reports Server (NTRS)

    Mullins, M.

    1982-01-01

    Steady state crack propagation is investigated numerically using a model consisting of 236 free atoms in two (010) planes of bcc alpha iron. The continuum region is modeled using the finite element method with 175 nodes and 288 elements. The model shows clear (010) plane fracture to the edge of the discrete region at moderate loads. Analysis of the results obtained indicates that models of this type can provide realistic simulation of steady state crack propagation.

  19. Crack Growth in Single-Crystal Silicon

    NASA Technical Reports Server (NTRS)

    Chen, C. P.; Leipold, M. H.

    1986-01-01

    Report describes experiments on crack growth in single-crystal silicon at room temperature in air. Crack growth in (111) cleavage plane of wafers, 50 by 100 by 0.76 mm in dimension, cut from Czochralski singlecrystal silicon studied by double-torsion load-relaxation method and by acoustic-emission measurements. Scanning electron microscopy and X-ray topography also employed. Results aid in design and fabrication of silicon photovoltaic and microelectronic devices.

  20. Composite Pressure Vessel Including Crack Arresting Barrier

    NASA Technical Reports Server (NTRS)

    DeLay, Thomas K. (Inventor)

    2013-01-01

    A pressure vessel includes a ported fitting having an annular flange formed on an end thereof and a tank that envelopes the annular flange. A crack arresting barrier is bonded to and forming a lining of the tank within the outer surface thereof. The crack arresting barrier includes a cured resin having a post-curing ductility rating of at least approximately 60% through the cured resin, and further includes randomly-oriented fibers positioned in and throughout the cured resin.

  1. Axial crack propagation and arrest in pressurized fuselage

    NASA Technical Reports Server (NTRS)

    Kosai, M.; Shimamoto, A.; Yu, C.-T.; Walker, S. I.; Kobayashi, A. S.; Tan, P.

    1994-01-01

    The crack arrest capability of a tear strap in a pressurized precracked fuselage was studied through instrumented axial rupture tests of small scale models of an idealized fuselage. Upon pressurization, rapid crack propagation initiated at an axial through crack along the stringer and immediately kinked due to the mixed modes 1 and 2 state caused by the one-sided opening of the crack flap. The diagonally running crack further turned at the tear straps. Dynamic finite element analysis of the rupturing cylinder showed that the crack kinked and also ran straight in the presence of a mixed mode state according to a modified two-parameter crack kinking criterion.

  2. Crack growth direction in unidirectional off-axis graphite epoxy

    NASA Technical Reports Server (NTRS)

    Herakovich, C. T.; Gregory, M. A.; Beuth, J. L., Jr.

    1984-01-01

    An anisotropic elasticity crack tip stress analysis is implemented using three crack extension direction criteria (the normal stress ratio, the tensor polynominal and the strain energy density) to predict the direction of crack extension in unidirectional off axis graphite-epoxy. The theoretical predictions of crack extension direction are then compared with experimental results for 15 deg off axis tensile coupons with center cracks. Specimens of various aspect ratios and crack orientations are analyzed. It is shown that only the normal stress ratio criterion predicts the correct direction of crack growth.

  3. Applications and limitations for using ACPD in crack depth measurements

    NASA Astrophysics Data System (ADS)

    Utrata, David; Enyart, Darrel A.

    2016-02-01

    Alternating current potential drop (ACPD) testing has been established as a viable means of measuring crack depth. This paper presents experiences in using a commercially available version of this tool to generate results under flaw constraints encountered in industrial usage. Sample geometries with simulated cracks were studied to examine crack depth as a percentage of through-wall thickness and with varying width of contact area adjacent to cracks. A variety of real cracks were also examined, illustrating cracking conditions that may be adequately measured using ACPD, as well as situations where crack depth may be under- or oversized.

  4. Finite element microscopic stress analysis of cracked composite systems

    NASA Technical Reports Server (NTRS)

    Ko, W. L.

    1978-01-01

    This paper considers the stress concentration problems of two types of cracked composite systems: (1) a composite system with a broken fiber (a penny-shaped crack problem), and (2) a composite system with a cracked matrix (an annular crack problem). The cracked composite systems are modeled with triangular and trapezoidal ring finite elements. Using NASTRAN (NASA Structural Analysis) finite element computer program, the stress and deformation fields in the cracked composite systems are calculated. The effect of fiber-matrix material combination on the stress concentrations and on the crack opening displacements is studied.

  5. Atomistic observation of a crack tip approaching coherent twin boundaries

    PubMed Central

    Liu, L.; Wang, J.; Gong, S. K.; Mao, S. X.

    2014-01-01

    Coherent twin boundaries (CTBs) in nano-twinned materials could improve crack resistance. However, the role of the CTBs during crack penetration has never been explored at atomic scale. Our in situ observation on nano-twinned Ag under a high resolution transmission electron microscope (HRTEM) reveals the dynamic processes of a crack penetration across the CTBs, which involve alternated crack tip blunting, crack deflection, twinning/detwinning and slip transmission across the CTBs. The alternated blunting processes are related to the emission of different types of dislocations at the crack tip and vary with the distance of the crack tip from the CTBs. PMID:24637906

  6. Protection of brittle film against cracking

    NASA Astrophysics Data System (ADS)

    Musil, J.; Sklenka, J.; Čerstvý, R.

    2016-05-01

    This article reports on the protection of the brittle Zrsbnd Sisbnd O film against cracking in bending by the highly elastic top film (over-layer). In experiments the Zrsbnd Sisbnd O films with different elemental composition and structure were used. Both the brittle and highly elastic films were prepared by magnetron sputtering using a dual magnetron. The brittle film easily cracks in bending. On the other hand, the highly elastic film exhibits enhanced resistance to cracking in bending. Main characteristic parameters of both the brittle and highly elastic films are given. Special attention is devoted to the effect of the structure (crystalline, amorphous) of both the brittle and highly elastic top film on the resistance of cracking of the brittle film. It was found that (1) both the X-ray amorphous and crystalline brittle films easily crack in bending, (2) the highly elastic film can have either X-ray amorphous or crystalline structure and (3) both the X-ray amorphous and crystalline, highly elastic top films perfectly protect the brittle films against cracking in bending. The structure, mechanical properties and optical transparency of the brittle and highly elastic sputtered Zrsbnd Sisbnd O films are described in detail. At the end of this article, the principle of the low-temperature formation of the highly elastic films is also explained.

  7. Creep Behavior and Durability of Cracked CMC

    NASA Technical Reports Server (NTRS)

    Bhatt, R. T.; Fox, Dennis; Smith, Craig

    2015-01-01

    To understand failure mechanisms and durability of cracked Ceramic matrix composites (CMCs), Melt Infiltration (MI) SiCSiC composites with Sylramic-iBN fibers and full Chemical vapour infiltration SiCSiC composites with Sylramic-ion bombarded BN (iBN) and Hi-Nicalon -S fibers were pre-cracked between 150 to 200 megapascal and then creep and Sustained Peak Low Cycle Fatigue (SPLCF) tested at 13150 C at stress levels from 35 to 103 megapascal for up to 200 hours under furnace and burner rig conditions. In addition creep testing was also conducted on pre-cracked full Chemical vapour infiltration SiCSiC composites at 14500 C between 35 and 103 megapascal for up to 200 hours under furnace conditions. If the specimens survived the 200 hour durability tests, then they were tensile tested at room temperature to determine their residual tensile properties. The failed specimens were examined by Scanning electron microscope (SEM) to determine the failure modes and mechanisms. The influence of crack healing matrix, fiber types, crack density, testing modes and interface oxidation on durability of cracked Ceramic matrix composites (CMCs) will be discussed.

  8. Ultrasonic testing of plates containing edge cracks

    NASA Technical Reports Server (NTRS)

    Williams, J. H., Jr.; Lee, S. S.; Karagulle, H.

    1986-01-01

    The stress wave factor (SWF) signal is utilized for the nondestructive evaluation of plates containing perpendicular edge cracks. The effects of the existence lateral location and depth of the crack on the magnitude spectra of individual reflections in the SWF signal are studied. If the reflections in the SWF signal are not overlapped the short time Fourier analysis is applied. If the reflections are overlapped the short time homomorphic analysis (cepstrum analysis) is applied. Several reflections which have average resonant frequencies approximately at 0.9, 1.3, and 1.7 MHz are analyzed. It is observed that the magnitude ratios evaluated at average resonant frequencies decrease more with increasing d/h if the crack is located between the transducers, where h is plate thickness and d is crack depth. Moreover, for the plates, crack geometries, reflections, and frequencies considered, the average decibel drop depends mainly on the dimensionless parameter d/h and it is approximately -1 dB per 0.07 d/h. Changes in the average resonant frequencies of the magnitude spectra are also observed due to changes in the location of the crack.

  9. Ultrasonic testing of plates containing edge cracks

    NASA Technical Reports Server (NTRS)

    Williams, J. H., Jr.; Karagulle, H.; Lee, S. S.

    1985-01-01

    The stress wave factor (SWF) signal is utilized for the nondestructive evaluation of plates containing perpendicular edge cracks. The effects of the existence lateral location and depth of the crack on the magnitude spectra of individual reflections in the SWF signal are studied. If the reflections in the SWF signal are not overlapped the short time Fourier analysis is applied. If the reflections are overlapped the short time homomorphic analysis (cepstrum analysis) is applied. Several reflections which have average resonant frequencies approximately at 0.9, 1.3, and 1.7 MHz are analyzed. It is observed that the magnitude ratios evaluated at average resonant frequencies decrease more with increasing d/h if the crack is located between the transducers, where h is plate thickness and d is crack depth. Moreover, for the plates, crack geometries, reflections, and frequencies considered, the average decibel drop depends mainly on the dimensionless parameter d/h and it is approximately -1 dB per 0.07 d/h. Changes in the average resonant frequencies of the magnitude spectra are also observed due to changes in the location of the crack.

  10. Crack users: the new AIDS risk group?

    PubMed

    Fullilove, R E; Fullilove, M T; Bowser, B; Gross, S

    1990-01-01

    Crack cocaine, a smokable form of cocaine hydrochloride, is now widely available in American inner cities. Reports of high rates of unprotected sexual activity among crack users, coupled with reports of high rates of sexually transmitted diseases (STDs), have raised fears that this population of drug users may soon be contracting and disseminating sexually transmitted HIV. In a study of 205 black adolescent crack users conducted in Oakland and San Francisco, California, 101 respondents (49% of the sample) who reported using crack in combination with sexual activity were examined. Those respondents who reported having a history of one or more STD were compared using discriminant analysis (DA). A successful discrimination (canonical correlation = 0.61, p = 0.000) identified five variables that distinguished those with a STD history from those with no STD history: gender (being female) (p = 0.000), frequency of marijuana use (p = 0.005), response to the question; "Do you plan for sex or does it just happen?" (p = 0.002), response to the statement, "I use drugs to get away from my problems" (0.029), and response to the question, "Do you agree that sex doesn't feel as good when you use a condom?" (p = 0.006). The selection of these variables was thought to represent an underlying passivity in the way that crack users who combine crack use with sex approach sexual activity. PMID:2386974

  11. Fatigue crack growth in lithium hydride

    SciTech Connect

    Healy, T.E.

    1993-09-01

    Subcritical fatigue crack growth, from cyclic tensile loading, was demonstrated in warm pressed Polycrystalline lithium hydride. Experiments were performed with cyclic tension-tension crack opening (mode I) loads applied to a pre-cracked compact type specimen in an argon environment at a temperature of 21C (70F). The fatigue crack growth was found to occur between 7.56 {times} 10{sup {minus}ll} M/cycle (2.98 {times} l0{sup {minus}9} in/cycle) and 2.35 {times} l0{sup {minus}8} m/cycle (9.24{times}10{sup {minus}7} in/cycle) for a range of stress intensity factors between 1.04 MPa{center_dot}{radical}m (0.95 ksi{center_dot}{radical}in) and 1.49 MPa{center_dot}{radical}m (1.36 ksi{center_dot}{radical}in). The rate of fatigue crack growth from cyclic tensile loading was found to be in excess of crack growth from sustained loading at an equivalent stress intensity factor. Furthermore, a fatigue threshold was not evident from the acquired data.

  12. Fatigue crack propagation analysis of plaque rupture.

    PubMed

    Pei, Xuan; Wu, Baijian; Li, Zhi-Yong

    2013-10-01

    Rupture of atheromatous plaque is the major cause of stroke or heart attack. Considering that the cardiovascular system is a classic fatigue environment, plaque rupture was treated as a chronic fatigue crack growth process in this study. Fracture mechanics theory was introduced to describe the stress status at the crack tip and Paris' law was used to calculate the crack growth rate. The effect of anatomical variation of an idealized plaque cross-section model was investigated. The crack initiation was considered to be either at the maximum circumferential stress location or at any other possible locations around the lumen. Although the crack automatically initialized at the maximum circumferential stress location usually propagated faster than others, it was not necessarily the most critical location where the fatigue life reached its minimum. We found that the fatigue life was minimum for cracks initialized in the following three regions: the midcap zone, the shoulder zone, and the backside zone. The anatomical variation has a significant influence on the fatigue life. Either a decrease in cap thickness or an increase in lipid pool size resulted in a significant decrease in fatigue life. Comparing to the previously used stress analysis, this fatigue model provides some possible explanations of plaque rupture at a low stress level in a pulsatile cardiovascular environment, and the method proposed here may be useful for further investigation of the mechanism of plaque rupture based on in vivo patient data. PMID:23897295

  13. Modeling of crack bridging in a unidirectional metal matrix composite

    NASA Technical Reports Server (NTRS)

    Ghosn, Louis J.; Kantzos, Pete; Telesman, Jack

    1992-01-01

    The effective fatigue crack driving force and crack opening profiles were determined analytically for fatigue tested unidirectional composite specimens exhibiting fiber bridging. The crack closure pressure due to bridging was modeled using two approaches: the fiber pressure model and the shear lag model. For both closure models, the Bueckner weight function method and the finite element method were used to calculate crack opening displacements and the crack driving force. The predicted near crack tip opening profile agreed well with the experimentally measured profiles for single edge notch SCS-6/Ti-15-3 metal matrix composite specimens. The numerically determined effective crack driving force, Delta K(eff), was calculated using both models to correlate the measure crack growth rate in the composite. The calculated Delta K(eff) from both models accounted for the crack bridging by showing a good agreement between the measured fatigue crack growth rates of the bridged composite and that of unreinforced, unbridged titanium matrix alloy specimens.

  14. Hierarchical Formation of Intrasplat Cracks in Thermal Spray Ceramic Coatings

    NASA Astrophysics Data System (ADS)

    Chen, Lin; Yang, Guan-Jun; Li, Cheng-Xin; Li, Chang-Jiu

    2016-06-01

    Intrasplat cracks, an essential feature of thermally sprayed ceramic coatings, play important roles in determining coating properties. However, final intrasplat crack patterns are always considered to be disordered and irregular, resulting from random cracking during splat cooling, since the detailed formation process of intrasplat cracks has scarcely been considered. In the present study, the primary formation mechanism for intrasplat cracking was explored based on both experimental observations and mechanical analysis. The results show that the intrasplat crack pattern in thermally sprayed ceramic splats presents a hierarchical structure with four sides and six neighbors, indicating that intrasplat crack patterns arise from successive domain divisions due to sequential cracking during splat cooling. The driving forces for intrasplat cracking are discussed, and the experimental data quantitatively agree well with theoretical results. This will provide insight for further coating structure designs and tailoring by tuning of intrasplat cracks.

  15. Analysis of internal crack healing mechanism under rolling deformation.

    PubMed

    Gao, Haitao; Ai, Zhengrong; Yu, Hailiang; Wu, Hongyan; Liu, Xianghua

    2014-01-01

    A new experimental method, called the 'hole filling method', is proposed to simulate the healing of internal cracks in rolled workpieces. Based on the experimental results, the evolution in the microstructure, in terms of diffusion, nucleation and recrystallisation were used to analyze the crack healing mechanism. We also validated the phenomenon of segmented healing. Internal crack healing involves plastic deformation, heat transfer and an increase in the free energy introduced by the cracks. It is proposed that internal cracks heal better under high plastic deformation followed by slow cooling after rolling. Crack healing is controlled by diffusion of atoms from the matrix to the crack surface, and also by the nucleation and growth of ferrite grain on the crack surface. The diffusion mechanism is used to explain the source of material needed for crack healing. The recrystallisation mechanism is used to explain grain nucleation and growth, accompanied by atomic migration to the crack surface. PMID:25003518

  16. Generating Fatigue Crack Growth Thresholds with Constant Amplitude Loads

    NASA Technical Reports Server (NTRS)

    Forth, Scott C.; Newman, James C., J.; Forman, Royce G.

    2002-01-01

    The fatigue crack growth threshold, defining crack growth as either very slow or nonexistent, has been traditionally determined with standardized load reduction methodologies. Some experimental procedures tend to induce load history effects that result in remote crack closure from plasticity. This history can affect the crack driving force, i.e. during the unloading process the crack will close first at some point along the wake, reducing the effective load at the crack tip. One way to reduce the effects of load history is to propagate a crack under constant amplitude loading. As a crack propagates under constant amplitude loading, the stress intensity factor, K, will increase, as will the crack growth rate, da/dN. A fatigue crack growth threshold test procedure is developed and experimentally validated that does not produce load history effects and can be conducted at a specified stress ratio, R.

  17. Analysis of Internal Crack Healing Mechanism under Rolling Deformation

    PubMed Central

    Gao, Haitao; Ai, Zhengrong; Yu, Hailiang; Wu, Hongyan; Liu, Xianghua

    2014-01-01

    A new experimental method, called the ‘hole filling method’, is proposed to simulate the healing of internal cracks in rolled workpieces. Based on the experimental results, the evolution in the microstructure, in terms of diffusion, nucleation and recrystallisation were used to analyze the crack healing mechanism. We also validated the phenomenon of segmented healing. Internal crack healing involves plastic deformation, heat transfer and an increase in the free energy introduced by the cracks. It is proposed that internal cracks heal better under high plastic deformation followed by slow cooling after rolling. Crack healing is controlled by diffusion of atoms from the matrix to the crack surface, and also by the nucleation and growth of ferrite grain on the crack surface. The diffusion mechanism is used to explain the source of material needed for crack healing. The recrystallisation mechanism is used to explain grain nucleation and growth, accompanied by atomic migration to the crack surface. PMID:25003518

  18. Fatigue crack layer propagation in silicon-iron

    NASA Technical Reports Server (NTRS)

    Birol, Y.; Welsch, G.; Chudnovsky, A.

    1986-01-01

    Fatigue crack propagation in metal is almost always accompanied by plastic deformation unless conditions strongly favor brittle fracture. The analysis of the plastic zone is crucial to the understanding of crack propagation behavior as it governs the crack growth kinetics. This research was undertaken to study the fatigue crack propagation in a silicon iron alloy. Kinetic and plasticity aspects of fatigue crack propagation in the alloy were obtained, including the characterization of damage evolution.

  19. Biogenic Cracks in Porous Rock

    NASA Astrophysics Data System (ADS)

    Hemmerle, A.; Hartung, J.; Hallatschek, O.; Goehring, L.; Herminghaus, S.

    2014-12-01

    Microorganisms growing on and inside porous rock may fracture it by various processes. Some of the mechanisms of biofouling and bioweathering are today identified and partially understood but most emphasis is on chemical weathering, while mechanical contributions have been neglected. However, as demonstrated by the perseverance of a seed germinating and cracking up a concrete block, the turgor pressure of living organisms can be very significant. Here, we present results of a systematic study of the effects of the mechanical forces of growing microbial populations on the weathering of porous media. We designed a model porous medium made of glass beads held together by polydimethylsiloxane (PDMS), a curable polymer. The rheological properties of the porous medium, whose shape and size are tunable, can be controlled by the ratio of crosslinker to base used in the PDMS (see Fig. 1). Glass and PDMS being inert to most chemicals, we are able to focus on the mechanical processes of biodeterioration, excluding any chemical weathering. Inspired by recent measurements of the high pressure (~0.5 Mpa) exerted by a growing population of yeasts trapped in a microfluidic device, we show that yeast cells can be cultured homogeneously within porous medium until saturation of the porous space. We investigate then the effects of such an inner pressure on the mechanical properties of the sample. Using the same model system, we study also the complex interplay between biofilms and porous media. We focus in particular on the effects of pore size on the penetration of the biofilm within the porous sample, and on the resulting deformations of the matrix, opening new perspectives into the understanding of life in complex geometry. Figure 1. Left : cell culture growing in a model porous medium. The white spheres represent the grains, bonds are displayed in grey, and microbes in green. Right: microscopy picture of glass beads linked by PDMS bridges, scale bar: 100 μm.

  20. Difficulty accessing crack pipes and crack pipe sharing among people who use drugs in Vancouver, Canada

    PubMed Central

    2011-01-01

    Background Crack pipe sharing can increase health risks among people who use drugs, yet the reasons for sharing these pipes have not been well described. Therefore, we sought to identify the prevalence and correlates of crack pipe sharing among a community-recruited sample of people who use illicit drugs in Vancouver, a setting where crack pipes are provided at low or no cost. Findings Data for this study were derived from two prospective cohorts of people who use drugs: the Vancouver Injection Drug Users Study (VIDUS) and the AIDS Care Cohort to evaluate Exposure to Survival Services (ACCESS). Multivariate logistic regression was used to identify factors independently associated with crack pipe sharing. Among 503 crack users, 238 (47.3%) participants reported having shared a crack pipe in the previous six months. Having acquired a mouthpiece in the last six months (adjusted odds ratio [AOR] = 1.91; 95% confidence interval [CI]: 1.31 - 2.79) and difficulty finding new pipes (AOR = 2.19; 95%CI: 1.42 - 3.37) were positively associated with pipe sharing. Binge drug use (AOR = 1.39; 95%CI: 0.96 - 2.02) was marginally associated with sharing pipes. Discussion There was a high prevalence of crack pipe sharing in a setting where crack pipes are distributed at low or no cost. Difficulty accessing crack pipes was independently and positively associated with this behavior. These findings suggest that additional efforts are needed to discourage crack pipe sharing as well as increase access to crack pipes. PMID:22208877

  1. Paleoseismology of Crack-in-the-Ground Fault, Central Oregon

    NASA Astrophysics Data System (ADS)

    Castonguay, S. R.; Mackey, B. H.; Weldon, R. J.

    2011-12-01

    Central Oregon exhibits both extensive active faulting and Quaternary volcanism, yet the relations between them are complex and poorly constrained. The N15W striking North Christmas Valley fault system is a Basin and Range type structure offsetting High Lava Plains volcanics forming a ~3 km wide graben that bounds Christmas Lake. Several young volcanic vents, including Green Mountain (GM), Four Craters (4C), and East Lava Field, are aligned parallel with and bounded by the graben. We focus on Crack-in-the-Ground (CITG) fault which vertically displaces the GM and FC basalts. The GM basalt is dated at 740 +/- 59 ka by 40Ar/39Ar (Jordan, 2002). Our preliminary dating of the 4C basalt yields an average age of 12 +/- 2 ka, determined by cosmogenic 3He exposure dating of olivine from flow surfaces. Since emplacement of the GM basalts, the fault has developed a ~10 m hanging wall monocline and a vertical hinge crack which yields the 0.013 mm/yr slip rate suggested in Jordan (2002). The 4C basalt has also been cracked by the CITG fault, producing a 30 +/-10 cm vertical offset. A trench excavated across a section of CITG exposed the stratigraphy of the upper 2.25 m. The upper 1.25 m is a modern soil developed on ~7 ka Mt. Mazama ash. The whole unit is offset ~12 cm as the result of a presumed co-seismic graben structure in the crack. The lower one meter is a palesol developed on windblown sandy silt. The 4C cinder cones may have produced a basaltic tephra that is not seen in the trench, therefore we think the lower unit is post-4C. The paleo-surface has a shallow east dip caused by co-seismic deformation. The two events seen in the trench are likely post-4C, suggesting the 4C offset is cumulative between two events, yielding a slip rate of 0.025 mm/yr. Comparison of the two slip rates suggests an increased slip rate post-4C. Our results are consistent with a potential volcano-tectonic relationship in which slip rate increased during the Late Pleistocene associated with

  2. Environmentally assisted cracking in light water reactors.

    SciTech Connect

    Chopra, O. K.; Chung, H. M.; Clark, R. W.; Gruber, E. E.; Shack, W. J.; Soppet, W. K.; Strain, R. V.

    2007-11-06

    This report summarizes work performed by Argonne National Laboratory on fatigue and environmentally assisted cracking (EAC) in light water reactors (LWRs) from January to December 2002. Topics that have been investigated include: (a) environmental effects on fatigue crack initiation in carbon and low-alloy steels and austenitic stainless steels (SSs), (b) irradiation-assisted stress corrosion cracking (IASCC) of austenitic SSs in BWRs, (c) evaluation of causes and mechanisms of irradiation-assisted cracking of austenitic SS in PWRs, and (d) cracking in Ni-alloys and welds. A critical review of the ASME Code fatigue design margins and an assessment of the conservation in the current choice of design margins are presented. The existing fatigue {var_epsilon}-N data have been evaluated to define the effects of key material, loading, and environmental parameters on the fatigue lives of carbon and low-alloy steels and austenitic SSs. Experimental data are presented on the effects of surface roughness on fatigue crack initiation in these materials in air and LWR environments. Crack growth tests were performed in BWR environments on SSs irradiated to 0.9 and 2.0 x 10{sup 21} n x cm{sup -2}. The crack growth rates (CGRs) of the irradiated steels are a factor of {approx}5 higher than the disposition curve proposed in NUREG-0313 for thermally sensitized materials. The CGRs decreased by an order of magnitude in low-dissolved oxygen (DO) environments. Slow-strain-rate tensile (SSRT) tests were conducted in high-purity 289 C water on steels irradiated to {approx}3 dpa. The bulk S content correlated well with the susceptibility to intergranular SCC in 289 C water. The IASCC susceptibility of SSs that contain >0.003 wt. % S increased drastically. bend tests in inert environments at 23 C were conducted on broken pieces of SSRT specimens and on unirradiated specimens of the same materials after hydrogen charging. The results of the tests and a review of other data in the literature

  3. Stochastic modeling of crack initiation and short-crack growth under creep and creep-fatigue conditions

    NASA Technical Reports Server (NTRS)

    Kitamura, Takayuki; Ghosn, Louis J.; Ohtani, Ryuichi

    1992-01-01

    A simplified stochastic model is proposed for crack initiation and short-crack growth under creep and creep-fatigue conditions. Material inhomogeneity provides the random nature of crack initiation and early growth. In the model, the influence of microstructure is introduced by the variability of: (1) damage accumulation along grain boundaries, (2) critical damage required for crack initiation or growth, and (3) the grain-boundary length. The probabilities of crack initiation and growth are derived by using convolution integrals. The model is calibrated and used to predict the crack density and crack-growth rate of short cracks of 304 stainless steel under creep and creep-fatigue conditions. The mean-crack initiation lives are predicted to be within an average deviation of about 10 percent from the experimental results. The predicted comulative distributions of crack-growth rate follow the experimental data closely. The applicability of the simplified stochastic model is discussed and the future research direction is outlined.

  4. Stochastic modeling of crack initiation and short-crack growth under creep and creep-fatigue conditions

    NASA Technical Reports Server (NTRS)

    Kitamura, Takayuki; Ghosn, Louis J.; Ohtani, Ryuichi

    1989-01-01

    A simplified stochastic model is proposed for crack initiation and short-crack growth under creep and creep-fatigue conditions. Material inhomogeneity provides the random nature of crack initiation and early growth. In the model, the influence of microstructure is introduced by the variability of: (1) damage accumulation along grain boundaries, (2) critical damage required for crack initiation or growth, and (3) the grain-boundary length. The probabilities of crack initiation and growth are derived by using convolution integrals. The model is calibrated and used to predict the crack density and crack-growth rate of short cracks of 304 stainless steel under creep and creep-fatigue conditions. The mean-crack initiation lives are predicted to be within an average deviation of about 10 percent from the experimental results. The predicted cumulative distributions of crack-growth rate follow the experimental data closely. The applicability of the simplified stochastic model is discussed and the future research direction is outlined.

  5. Cracking of long-chain alkyl aromatics on USY zeolite catalysts

    SciTech Connect

    Corma, A. ); Miguel, P.J.; Orchilles, A.V. ); Koermer, G.S. )

    1992-05-01

    Long-chain alkyl aromatics are important precursors for FCC gasoline. It is well known that for short-chain alkyl aromatics like cumene the dominant cracking process is simple alkyl aryl cleavage. In contrast the authors have found that for long-chain alkyl aromatics like 1-phenylheptane, cracking over in situ USY catalysts is much more complex. Cracking in a long alkyl side chain results in a carbenium ion that isomerizes easily and gives self-alkylation of the aromatic ring. Self-alkylation produces coke precursors and heavy gasoline aromatics. Product selectivities vary with zeolite unit cell size in ways that are rationalized on the basis of decreasing acid site density and zeolite adsorption properties.

  6. Extended displacement discontinuity boundary integral equation and boundary element method for cracks in thermo-magneto-electro-elastic media

    NASA Astrophysics Data System (ADS)

    Li, Yuan; Dang, HuaYang; Xu, GuangTao; Fan, CuiYing; Zhao, MingHao

    2016-08-01

    The extended displacement discontinuity boundary integral equation (EDDBIE) and boundary element method is developed for the analysis of planar cracks of arbitrary shape in the isotropic plane of three-dimensional (3D) transversely isotropic thermo-magneto-electro-elastic (TMEE) media. The extended displacement discontinuities (EDDs) include conventional displacement discontinuity, electric potential discontinuity, magnetic potential discontinuity, as well as temperature discontinuity across crack faces; correspondingly, the extended stresses represent conventional stress, electric displacement, magnetic induction and heat flux. Employing a Hankel transformation, the fundamental solutions for unit point EDDs in 3D transversely isotropic TMEE media are derived. The EDDBIEs for a planar crack of arbitrary shape in the isotropic plane of a 3D transversely isotropic TMEE medium are then established. Using the boundary integral equation method, the singularities of near-crack border fields are obtained and the extended stress field intensity factors are expressed in terms of the EDDs on crack faces. According to the analogy between the EDDBIEs for an isotropic thermoelastic material and TMEE medium, an analogical solution method for crack problems of a TMEE medium is proposed for coupled multi-field loadings. Employing constant triangular elements, the EDDBIEs are discretized and numerically solved. As an application, the problems of an elliptical crack subjected to combined mechanical-electric-magnetic-thermal loadings are investigated.

  7. How to crack nuts: acquisition process in captive chimpanzees (Pan troglodytes) observing a model.

    PubMed

    Hirata, Satoshi; Morimura, Naruki; Houki, Chiharu

    2009-10-01

    Stone tool use for nut cracking consists of placing a hard-shelled nut onto a stone anvil and then cracking the shell open by pounding it with a stone hammer to get to the kernel. We investigated the acquisition of tool use for nut cracking in a group of captive chimpanzees to clarify what kind of understanding of the tools and actions will lead to the acquisition of this type of tool use in the presence of a skilled model. A human experimenter trained a male chimpanzee until he mastered the use of a hammer and anvil stone to crack open macadamia nuts. He was then put in a nut-cracking situation together with his group mates, who were naïve to this tool use; we did not have a control group without a model. The results showed that the process of acquisition could be broken down into several steps, including recognition of applying pressure to the nut,emergence of the use of a combination of three objects, emergence of the hitting action, using a tool for hitting, and hitting the nut. The chimpanzees recognized these different components separately and practiced them one after another. They gradually united these factors in their behavior leading to their first success. Their behavior did not clearly improve immediately after observing successful nut cracking by a peer, but observation of a skilled group member seemed to have a gradual, long-term influence on the acquisition of nut cracking by naïve chimpanzees. PMID:19727866

  8. Crack-tip-opening angle measurements and crack tunneling under stable tearing in thin sheet 2024-T3 aluminum alloy

    NASA Technical Reports Server (NTRS)

    Dawicke, D. S.; Sutton, M. A.

    1993-01-01

    The stable tearing behavior of thin sheets 2024-T3 aluminum alloy was studied for middle crack tension specimens having initial cracks that were: flat cracks (low fatigue stress) and 45 degrees through-thickness slant cracks (high fatigue stress). The critical crack-tip-opening angle (CTOA) values during stable tearing were measured by two independent methods, optical microscopy and digital image correlation. Results from the two methods agreed well. The CTOA measurements and observations of the fracture surfaces showed that the initial stable tearing behavior of low and high fatigue stress tests is significantly different. The cracks in the low fatigue stress tests underwent a transition from flat-to-slant crack growth, during which the CTOA values were high and significant crack tunneling occurred. After crack growth equal to about the thickness, CTOA reached a constant value of 6 deg and after crack growth equal to about twice the thickness, crack tunneling stabilized. The initial high CTOA values, in the low fatigue crack tests, coincided with large three-dimensional crack front shape changes due to a variation in the through-thickness crack tip constraint. The cracks in the high fatigue stress tests reach the same constant CTOA value after crack growth equal to about the thickness, but produced only a slightly higher CTOA value during initial crack growth. For crack growth on the 45 degree slant, the crack front and local field variables are still highly three-dimensional. However, the constant CTOA values and stable crack front shape may allow the process to be approximated with two-dimensional models.

  9. TRANSPORT THROUGH CRACKED CONCRETE: LITERATURE REVIEW

    SciTech Connect

    Langton, C.

    2012-05-11

    Concrete containment structures and cement-based fills and waste forms are used at the Savannah River Site to enhance the performance of shallow land disposal systems designed for containment of low-level radioactive waste. Understanding and measuring transport through cracked concrete is important for describing the initial condition of radioactive waste containment structures at the Savannah River Site (SRS) and for predicting performance of these structures over time. This report transmits the results of a literature review on transport through cracked concrete which was performed by Professor Jason Weiss, Purdue University per SRR0000678 (RFP-RQ00001029-WY). This review complements the NRC-sponsored literature review and assessment of factors relevant to performance of grouted systems for radioactive waste disposal. This review was performed by The Center for Nuclear Waste Regulatory Analyses, San Antonio, TX, and The University of Aberdeen, Aberdeen Scotland and was focused on tank closure. The objective of the literature review on transport through cracked concrete was to identify information in the open literature which can be applied to SRS transport models for cementitious containment structures, fills, and waste forms. In addition, the literature review was intended to: (1) Provide a framework for describing and classifying cracks in containment structures and cementitious materials used in radioactive waste disposal, (2) Document the state of knowledge and research related to transport through cracks in concrete for various exposure conditions, (3) Provide information or methodology for answering several specific questions related to cracking and transport in concrete, and (4) Provide information that can be used to design experiments on transport through cracked samples and actual structures.

  10. Crack propagation modeling using Peridynamic theory

    NASA Astrophysics Data System (ADS)

    Hafezi, M. H.; Alebrahim, R.; Kundu, T.

    2016-04-01

    Crack propagation and branching are modeled using nonlocal peridynamic theory. One major advantage of this nonlocal theory based analysis tool is the unifying approach towards material behavior modeling - irrespective of whether the crack is formed in the material or not. No separate damage law is needed for crack initiation and propagation. This theory overcomes the weaknesses of existing continuum mechanics based numerical tools (e.g. FEM, XFEM etc.) for identifying fracture modes and does not require any simplifying assumptions. Cracks grow autonomously and not necessarily along a prescribed path. However, in some special situations such as in case of ductile fracture, the damage evolution and failure depend on parameters characterizing the local stress state instead of peridynamic damage modeling technique developed for brittle fracture. For brittle fracture modeling the bond is simply broken when the failure criterion is satisfied. This simulation helps us to design more reliable modeling tool for crack propagation and branching in both brittle and ductile materials. Peridynamic analysis has been found to be very demanding computationally, particularly for real-world structures (e.g. vehicles, aircrafts, etc.). It also requires a very expensive visualization process. The goal of this paper is to bring awareness to researchers the impact of this cutting-edge simulation tool for a better understanding of the cracked material response. A computer code has been developed to implement the peridynamic theory based modeling tool for two-dimensional analysis. A good agreement between our predictions and previously published results is observed. Some interesting new results that have not been reported earlier by others are also obtained and presented in this paper. The final objective of this investigation is to increase the mechanics knowledge of self-similar and self-affine cracks.

  11. Treatment of singularities in cracked bodies

    NASA Technical Reports Server (NTRS)

    Shivakumar, K. N.; Raju, I. S.

    1989-01-01

    Three-dimensional finite-element analyses of middle-crack tension (M-T) and bend specimens subjected to mode I loadings were performed to study the stress singularity along the crack front. The specimen was modeled using 20-node isoparametric elements. The displacements and stresses from the analysis were used to estimate the power of singularities using a log-log regression analysis along the crack front. The analyses showed that finite-sized cracked bodies have two singular stress fields of the form rho = C sub o (theta, z) r to the -1/2 power + D sub o (theta, phi) R to the lambda rho power. The first term is the cylindrical singularity with the power -1/2 and is dominant over the middle 96 pct (for Poisson's ratio = 0.3) of the crack front and becomes nearly zero at the free surface. The second singularity is a vertex singularity with the vertex point located at the intersection of the crack front and the free surface. The second term is dominant at the free surface and becomes nearly zero away from the the boundary layer. The thickness of the boundary layer depends on Poisson's ratio of the material and is independent of the specimen type. The thickness of the boundary layer varied from 0 pct to about 5 pct of the total specimen thickness as Poisson's ratio varied from 0.0 to 0.45. Because there are two singular stress fields near the free surface, the strain energy release rate (G) is an appropriate parameter to measure the severity of the crack.

  12. Treatment of singularities in cracked bodies

    NASA Technical Reports Server (NTRS)

    Shivakumar, K. N.; Raju, I. S.

    1990-01-01

    Three-dimensional finite-element analyses of middle-crack tension (M-T) and bend specimens subjected to mode I loadings were performed to study the stress singularity along the crack front. The specimen was modeled using 20-node isoparametric elements. The displacements and stresses from the analysis were used to estimate the power of singularities using a log-log regression analysis along the crack front. The analyses showed that finite-sized cracked bodies have two singular stress fields of the form rho = C sub o (theta, z) r to the -1/2 power + D sub o (theta, phi) R to the lambda rho power. The first term is the cylindrical singularity with the power -1/2 and is dominant over the middle 96 pct (for Poisson's ratio = 0.3) of the crack front and becomes nearly zero at the free surface. The second singularity is a vertex singularity with the vertex point located at the intersection of the crack front and the free surface. The second term is dominant at the free surface and becomes nearly zero away from the boundary layer. The thickness of the boundary layer depends on Poisson's ratio of the material and is independent of the specimen type. The thickness of the boundary layer varied from 0 pct to about 5 pct of the total specimen thickness as Poisson's ratio varied from 0.0 to 0.45. Because there are two singular stress fields near the free surface, the strain energy release rate (G) is an appropriate parameter to measure the severity of the crack.

  13. Recent evaluations of crack-opening-area in circumferentially cracked pipes

    SciTech Connect

    Rahman, S.; Brust, F.; Ghadiali, N.; Wilkowski, G.; Miura, N.

    1997-04-01

    Leak-before-break (LBB) analyses for circumferentially cracked pipes are currently being conducted in the nuclear industry to justify elimination of pipe whip restraints and jet shields which are present because of the expected dynamic effects from pipe rupture. The application of the LBB methodology frequently requires calculation of leak rates. The leak rates depend on the crack-opening area of the through-wall crack in the pipe. In addition to LBB analyses which assume a hypothetical flaw size, there is also interest in the integrity of actual leaking cracks corresponding to current leakage detection requirements in NRC Regulatory Guide 1.45, or for assessing temporary repair of Class 2 and 3 pipes that have leaks as are being evaluated in ASME Section XI. The objectives of this study were to review, evaluate, and refine current predictive models for performing crack-opening-area analyses of circumferentially cracked pipes. The results from twenty-five full-scale pipe fracture experiments, conducted in the Degraded Piping Program, the International Piping Integrity Research Group Program, and the Short Cracks in Piping and Piping Welds Program, were used to verify the analytical models. Standard statistical analyses were performed to assess used to verify the analytical models. Standard statistical analyses were performed to assess quantitatively the accuracy of the predictive models. The evaluation also involved finite element analyses for determining the crack-opening profile often needed to perform leak-rate calculations.

  14. The effect of a capillary bridge on the crack opening of a penny crack.

    PubMed

    Yang, Fuqian; Zhao, Ya-Pu

    2016-02-01

    Young's relation is based on the equilibrium of horizontal components of surface tensions for a liquid droplet on a "rigid" substrate without addressing the substrate deformation induced by the net vertical component of surface tensions. Upon realizing the importance of wetting in controlling the integrity of flexible structures and electronics, the effect of a capillary bridge or a liquid droplet on the crack opening of a penny crack under the action of a far-field tensile stress is analyzed. Closed-form solutions are derived for both the crack opening and the stress intensity factor, which are functions of the size of the capillary bridge or the droplet, surface tension, and the contact angle. Both the capillary bridge and the droplet can introduce the crack closure. The minimum far-field tensile stresses needed for complete crack opening, i.e. no crack closure, are obtained analytically. The net vertical component of the surface tensions introduces the formation of a surface ridge on the crack face at the edge of the droplet for an open crack. The amplitude of the surface ridge increases with the increase of the net vertical component of the surface tensions and the decrease of the breadth width. PMID:26660422

  15. Moisture-assisted cracking and atomistic crack path meandering in oxidized hydrogenated amorphous silicon carbide films

    NASA Astrophysics Data System (ADS)

    Matsuda, Yusuke; King, Sean W.; Oliver, Mark; Dauskardt, Reinhold H.

    2013-02-01

    Moisture-assisted cracking of silica-derived materials results from a stress-enhanced reaction between water molecules and moisture-sensitive SiOSi bonds at the crack tip. We report the moisture-assisted cracking of oxidized hydrogenated amorphous silicon carbide films (a-SiCO:H) consisting of both moisture-sensitive SiOSi bonds and moisture-insensitive bonds. The sensitivity of the films to moisture-assisted cracking was observed to increase with the SiOSi bond density, ρSiOSi. This sensitivity was correlated with the number of SiOSi bonds ruptured, NSiOSi, through an atomistic kinetic fracture model. By comparing these correlated NSiOSi values with those estimated by a planar crack model, we demonstrated that at the atomistic scale the crack path meanders three-dimensionally so as to intercept the most SiOSi bonds. This atomistic crack path meandering was verified by a computational method based on graph theory and molecular dynamics. Our findings could provide a basis for better understanding of moisture-assisted cracking in materials consisting of other types of moisture-sensitive and moisture-insensitive bonds.

  16. Implementation of a symmetric boundary integral formulation for cohesive cracks in homogeneous media and at interfaces

    SciTech Connect

    Tavara, Luis; Mantic, Vladislav; Salvadori, Alberto; Gray, Leonard J; Paris, Federico

    2009-01-01

    A symmetric boundary integral formulation for cohesive cracks growing in the interior of homogeneous linear elastic isotropic media and/or at interfaces between these media is developed and implemented in a numerical code. The solution of a problem that includes cohesive cracks depends on the cohesive law adopted. In the present work, models based on the concept of free energy density per unit undeformed area are considered. The corresponding constitutive cohesive equations present a softening branch which induces to the problem a potential instability. Thus, the development and implementation of a suitable solution algorithm capable of following the growth of the cohesive zone becomes an important issue. An arc-length control combined with a Newton-Raphson algorithm for iterative solution of nonlinear equations is used. The Boundary Element Method is very attractive for modeling cohesive crack problems as all nonlinearities are located on the boundaries (including the crack boundaries) of linear elastic domains. A Galerkin approximation scheme, applied to a suitable symmetric integral formulation, ensures an easy treatment of cracks in homogeneous media and excellent convergence behavior of the numerical solution. Numerical results for the wedge split test are presented and compared with experimental results available in the literature.

  17. Crack-tip chemistry modeling of stage I stress corrosion cracking

    SciTech Connect

    Jones, R.H.; Simonen, E.P.

    1991-10-01

    Stage I stress corrosion cracking usually exhibits a very strong K dependence with Paris law exponents of up to 30. 2 Model calculations indicate that the crack velocity in this regime is controlled by transport through a salt film and that the K dependence results from crack opening controlled salt film dissolution. An ionic transport model that accounts for both electromigration through the resistive salt film and Fickian diffusion through the aqueous solution was used for these predictions. Predicted crack growth rates are in excellent agreement with measured values for Ni with P segregated to the grain boundaries and tested in IN H{sub 2}SO{sub 4} at +900 mV. This salt film dissolution may be applicable to stage I cracking of other materials.

  18. Stress Ratio Effects on Crack Opening Loads and Crack Growth Rates in Aluminum Alloy 2024

    NASA Technical Reports Server (NTRS)

    Riddell, William T.; Piascik, Robert S.

    1998-01-01

    The effects of stress ratio (R) and crack opening behavior on fatigue crack growth rates (da/dN) for aluminum alloy (AA) 2024-T3 were investigated using constant-delta K testing, closure measurements, and fractography. Fatigue crack growth rates were obtained for a range of delta K and stress ratios. Results show that constant delta K fatigue crack growth for R ranging from near 0 to 1 is divided into three regions. In Region 1, at low R, da/dN increases with increasing R. In Region 2, at intermediate R, fatigue crack growth rates are relatively independent of R. In Region 3, at high R, further increases in da/dN are observed with increasing R.

  19. CRACK TIP OPENING DISPLACEMENT AND ANGLE FOR A GROWING CRACK IN CARBON STEEL

    SciTech Connect

    LAM, POH-SANG

    2005-01-18

    The crack tip opening displacements and angles (CTOD/CTOA) are calculated with finite element method based on the test data of a set of constraint-dependent J-R curves for A285 carbon steel. The values of the CTOD/CTOA are initially high at initiation, but rapidly decrease to a nearly constant value. When the common practice is adopted by using only the constant part of CTOD/CTOA as the fracture criterion, the crack growth behavior is shown to be severely underestimated. However, with a bilinear form of CTOD/CTOA fracture criterion which approximates the initial non-constant portion, the experimental load vs. crack extension curves can be closely predicted. Furthermore, it is demonstrated that the CTOD/CTOA is crack tip constraint dependent. The values of CTOD/CTOA for specimens with various ratios of crack length to specimen width (a/W) are reflected by the J-R curves and their slopes.

  20. Crack injection in silver gold alloys

    NASA Astrophysics Data System (ADS)

    Chen, Xiying

    Stress corrosion cracking (SCC) is a materials degradation phenomena resulting from a combination of stress and a corrosive environment. Among the alphabet soup of proposed mechanism of SCC the most important are film-rupture, film-induced cleavage and hydrogen embrittlement. This work examines various aspects of film-induced cleavage in gold alloys for which the operation of hydrogen embrittlement processes can be strictly ruled out on thermodynamic grounds. This is so because in such alloys SCC occurs under electrochemical conditions within which water is stable to hydrogen gas evolution. The alloy system examined in this work is AgAu since the corrosion processes in this system occur by a dealloying mechanism that results in the formation of nanoporous gold. The physics behind the dealloying process as well as the resulting formation of nanoporous gold is today well understood. Two important aspects of the film-induced cleavage mechanism are examined in this work: dynamic fracture in monolithic nanoporous gold and crack injection. In crack injection there is a finite thickness dealloyed layer formed on a AgAu alloy sample and the question of whether or not a crack that nucleates within this layer can travel for some finite distance into the un-corroded parent phase alloy is addressed. Dynamic fracture tests were performed on single edge-notched monolithic nanoporous gold samples as well as "infinite strip" sample configurations for which the stress intensity remains constant over a significant portion of the crack length. High-speed photography was used to measure the crack velocity. In the dynamic fracture experiments cracks were observed to travel at speeds as large as 270 m/s corresponding to about 68% of the Raleigh wave velocity. Crack injection experiments were performed on single crystal Ag77Au23, polycrystalline Ag72Au28 and pure gold, all of which had thin nanoporous gold layers on the surface of samples. Through-thickness fracture was seen in both the

  1. Modeling the Interactions Between Multiple Crack Closure Mechanisms at Threshold

    NASA Technical Reports Server (NTRS)

    Newman, John A.; Riddell, William T.; Piascik, Robert S.

    2003-01-01

    A fatigue crack closure model is developed that includes interactions between the three closure mechanisms most likely to occur at threshold; plasticity, roughness, and oxide. This model, herein referred to as the CROP model (for Closure, Roughness, Oxide, and Plasticity), also includes the effects of out-of plane cracking and multi-axial loading. These features make the CROP closure model uniquely suited for, but not limited to, threshold applications. Rough cracks are idealized here as two-dimensional sawtooths, whose geometry induces mixed-mode crack- tip stresses. Continuum mechanics and crack-tip dislocation concepts are combined to relate crack face displacements to crack-tip loads. Geometric criteria are used to determine closure loads from crack-face displacements. Finite element results, used to verify model predictions, provide critical information about the locations where crack closure occurs.

  2. Burst Pressure Prediction of Multiple Cracks in Pipelines

    NASA Astrophysics Data System (ADS)

    Razak, N. A.; Alang, N. A.; Murad, M. A.

    2013-12-01

    Available industrial code such as ASME B1G, modified ASME B1G and DNV RP-F101 to assess pipeline defects appear more conservative for multiple crack like- defects than single crack-like defects. Thus, this paper presents burst pressure prediction of pipe with multiple cracks like defects. A finite element model was developed and the burst pressure prediction was compared with the available code. The model was used to investigate the effect of the distance between the cracks and the crack length. The coalescence diagram was also developed to evaluate the burst pressure of the multiple cracks. It was found as the distance between crack increases, the interaction effect comes to fade away and multiple cracks behave like two independent single cracks.

  3. Eccentric annular crack under general nonuniform internal pressure

    NASA Astrophysics Data System (ADS)

    Moeini-Ardakani, S.; Kamali, M. T.; Shodja, H. M.

    2016-08-01

    For a better approximation of ring-shaped and toroidal cracks, a new eccentric annular crack model is proposed and an analytical approach for determination of the corresponding stress intensity factors is given. The crack is subjected to arbitrary mode I loading. A rigorous solution is provided by mapping the eccentric annular crack to a concentric annular crack. The analysis leads to two decoupled Fredholm integral equations of the second kind. For the sake of verification, the problem of a conventional annular crack is examined. Furthermore, for various crack configurations of an eccentric annular crack under uniform tension, the stress intensity factors pertaining to the inner and outer crack edges are delineated in dimensionless plots.

  4. Remote field eddy current detection of stress-corrosion cracks

    SciTech Connect

    Nestleroth, J.B. )

    1991-09-01

    This report describes experimental application of the RFEC technique for crack detection in gas transmission pipelines. Crack data from three pipe samples are presented. A total of eight stress corrosion cracks were detected ranging in depth from 25 percent of wall thickness to completely through-wall. An improved defect detection model is presented that explains the interaction of the remote electromagnetic field with axial cracks as well as other defects such as metal loss and circumferential cracks. The investigation of the through-wall crack helps illustrate this model and also indicates RFEC has potential for detection and location of leaks from cracks. Many regions with crack depths less than 25 percent and lengths less than one inch were investigated, but dejection was unsuccessful. Data from artificial defects are presented to describe the relative sensitivity and characterization capability of the RFEC technique to longitudinal and circumferential planar (crack-like) defects as well as volumetric (metal loss) defects.

  5. Environmental Effects on Fatigue Crack Growth in 7075 Aluminum Alloy

    NASA Astrophysics Data System (ADS)

    Bonakdar, A.; Wang, F.; Williams, J. J.; Chawla, N.

    2012-08-01

    The fatigue behavior of aluminum alloys is greatly influenced by the environmental conditions. In this article, fatigue crack growth rates were measured for 7075-T651 Al alloy under ultrahigh vacuum (UHV, ~10-10 Torr), dry air, and water vapor. Standard compact tension (CT) specimens were tested along the L-T orientation under various load ratios of 0.1, 0.5, and 0.8. Fracture surfaces and crack morphologies were studied using scanning electron microscopy and crack deflection analysis. The crack growth behavior under vacuum was affected by friction and possible rewelding of crack surfaces, causing an asymmetry in the crack growth behavior, from load shedding to constant load. The enhancement of crack growth at higher moisture levels was observed and is discussed in terms of moisture decreasing friction between the crack faces. The effect of crack deflection as a function of R ratio and environment is also presented.

  6. Opening and closing of cracks at high cyclic strains

    NASA Technical Reports Server (NTRS)

    Iyyer, N. S.; Dowling, N. E.

    1986-01-01

    The closure behavior of cracks of different length and at different cyclic strain levels (ranging from predominantly elastic to grossly plastic strains) was studied to observe the effect of residual crack-tip plasticity on crack closure. Cracks were initiated either naturally or artificially (from electric discharge machining pits) in uniaxial test specimens of strengthened alloy steel AISI 4340 with a grain size of 0.016 mm. It was found that, at high strains, cracks closed only when the lowest stress level in the cycle was approached. The stress or the strain opening level depended upon the exact point along the crack length where the observations were made. As the plastic deformation increased, the relative crack opening level was found to decrease and approach the value of stress ratio R. The experimental results were compared with those of three analytical models of crack closure and opening, demonstrating the limitations of the currently available elastic-plastic crack growth analysis.

  7. Crack Detection with Lamb Wave Wavenumber Analysis

    NASA Technical Reports Server (NTRS)

    Tian, Zhenhua; Leckey, Cara; Rogge, Matt; Yu, Lingyu

    2013-01-01

    In this work, we present our study of Lamb wave crack detection using wavenumber analysis. The aim is to demonstrate the application of wavenumber analysis to 3D Lamb wave data to enable damage detection. The 3D wavefields (including vx, vy and vz components) in time-space domain contain a wealth of information regarding the propagating waves in a damaged plate. For crack detection, three wavenumber analysis techniques are used: (i) two dimensional Fourier transform (2D-FT) which can transform the time-space wavefield into frequency-wavenumber representation while losing the spatial information; (ii) short space 2D-FT which can obtain the frequency-wavenumber spectra at various spatial locations, resulting in a space-frequency-wavenumber representation; (iii) local wavenumber analysis which can provide the distribution of the effective wavenumbers at different locations. All of these concepts are demonstrated through a numerical simulation example of an aluminum plate with a crack. The 3D elastodynamic finite integration technique (EFIT) was used to obtain the 3D wavefields, of which the vz (out-of-plane) wave component is compared with the experimental measurement obtained from a scanning laser Doppler vibrometer (SLDV) for verification purposes. The experimental and simulated results are found to be in close agreement. The application of wavenumber analysis on 3D EFIT simulation data shows the effectiveness of the analysis for crack detection. Keywords: : Lamb wave, crack detection, wavenumber analysis, EFIT modeling

  8. STRESS CORROSION CRACKING IN TEAR DROP SPECIMENS

    SciTech Connect

    Lam, P; Philip Zapp, P; Jonathan Duffey, J; Kerry Dunn, K

    2009-05-01

    Laboratory tests were conducted to investigate the stress corrosion cracking (SCC) of 304L stainless steel used to construct the containment vessels for the storage of plutonium-bearing materials. The tear drop corrosion specimens each with an autogenous weld in the center were placed in contact with moist plutonium oxide and chloride salt mixtures. Cracking was found in two of the specimens in the heat affected zone (HAZ) at the apex area. Finite element analysis was performed to simulate the specimen fabrication for determining the internal stress which caused SCC to occur. It was found that the tensile stress at the crack initiation site was about 30% lower than the highest stress which had been shifted to the shoulders of the specimen due to the specimen fabrication process. This finding appears to indicate that the SCC initiation took place in favor of the possibly weaker weld/base metal interface at a sufficiently high level of background stress. The base material, even subject to a higher tensile stress, was not cracked. The relieving of tensile stress due to SCC initiation and growth in the HAZ and the weld might have foreclosed the potential for cracking at the specimen shoulders where higher stress was found.

  9. Environmentally assisted cracking in light water reactors

    SciTech Connect

    Shack, W.J.; Kassner, T.F.; Maiya, P.S.; Park, J.Y.; Ruther, W.E.

    1988-10-01

    Research during the past year focused on (1) stress corrosion cracking (SCC) of austentitic stainless steels (SS), (2) fatigue of Type 316NG SS, and (3) SCC of ferritic steels used in reactor piping, pressure vessels, and steam generators. Stress corrosion cracking studies on austentitic SS explored the critical strains required for crack initiation, the effects of crevice conditions on SCC susceptibility, heat-to-heat variations in SCC susceptibility of Type 316NG and modified Type 347 SS, the effect of heat treatment on the susceptibility of Type 347 SS, threshold stress intensity values for crack growth in Type 316NG SS, and the effects of cuprous ion and several organic salts on the SCC of sensitized Type 304 SS. Crevice conditions were observed to strongly promote SCC. Significant heat-to-heat variations were observed in SCC susceptibility of Types 316NG and 347 SS. No correlation was found between SCC behavior and minor variations in chemical composition. A significant effect of heat treatment was observed in Type 347 SS. A heat that was extremely resistant to SCC after heat treatment at 650/degree/C for 24 h was susceptible to transgranular stress corrosion cracking (TGSCC) in the solution-annealed condition. Although there was no sensitization in either condition, the presence or absence of precipitates and differences in precipitate morphology appear to influence the SCC behavior. 20 refs., 20 figs., 11 tabs.

  10. Flaw Tolerance for Multiple Fatique Cracks

    SciTech Connect

    Gosselin, Stephen R.; Simonen, Fredric A.; Carter, R. G.

    2005-07-01

    This paper documents important details of the technical bases for changes to Appendix L. Calculations identified aspect ratios for equivalent single cracks (ESC) between the extremes of a 6:1 ratio and a full circumferential crack that can be used in Appendix L flaw tolerance assessments to account for the initiation, growth, and linking of multiple fatigue cracks. Probabilistic fracture mechanics (PFM) calculations determined ESC aspect ratios that result in the same through-wall crack probability as multiple small cracks (0.02 inch depth) that initiate and coalesce. The computations considered two materials (stainless and low alloy steels), three pipe diameters, five cyclic membrane-to-gradient stress ratios and a wide range of primary loads. Subsequent deterministic calculations identified the ESC aspect ratio for the hypothetical reference flaw depth assumptions in Appendix L. This paper also describes computations that compare the Appendix L flaw tolerance allowable operating period for the ESC models with results obtained when the a single default 6:1 aspect ratio reference flaw.

  11. Enhanced Strength via crack friction and Pressure

    NASA Astrophysics Data System (ADS)

    Wiegand, Donald; Ellis, Kevin; Leppard, Claire

    2011-03-01

    The effect of pressure on the mechanical response of particulate polymer composites is being studied. Between about 0.1 and 7 MPa for one composite the results indicate that slow crack growth is the dominant failure mode. With continuously creasing strain at low pressures the stress initially increases to a maximum, the compressive strength, then decreases indicating work softening and them becomes approximately constant at a plateau value. Both the compressive strength and the plateau stress increases linearly with pressure but the plateau stress increases with a steeper slope such that at higher pressures work softening is not observed. The results are analyzed in terms of shear cracks with friction between the crack surfaces. The model predicts a threshold stress for crack growth which increases linearly with pressure and further predicts that the compressive strength increases linearly with pressure as observed and with the same slope as the threshold stress. These results clearly indicate that the pressure dependence of the compressive strength is due to the pressure dependence of the threshold stress for crack growth. The changes in the plateau region can also be attributed to frictional effects. Supported by AWE Aldermaston.

  12. Surface crack growth in fiber composites

    NASA Technical Reports Server (NTRS)

    Im, J.; Mandell, J. F.; Wang, S. S.; Mcgarry, F. J.

    1976-01-01

    The results of an experimental study of damage extension and failure in glass and graphite/epoxy laminates containing partially through-thickness surface cracks are presented. The laminates studied are divided between those containing four plies, 90/0/0/90, 15/-15/-15/15, and 45/-45/-45/45, and those containing 12-16 plies of the general configurations 0/90, + or - 45, and 0/+ or - 60. Most of the results are for surface cracks of various lengths and several depths. Stable damage extension in laminates containing surface cracks is predominantly delamination between plies, and tends to be much more extensive prior to failure than is the case with through-thickness cracks, resulting in approximately notch-insensitive behavior in most cases. A greater tendency for notch-sensitive behavior is found for 0/90 graphite/epoxy laminates for which stable damage extension is more limited. The rate of damage extension with increasing applied stress depends upon the composite system and ply configuration as well as the crack length and depth. An approximate semiempirical method is presented for estimating the growth rate of large damage-regions.

  13. How fatigue cracks grow, interact with microstructure, and lose similitude

    SciTech Connect

    Davidson, D.L.

    1997-12-01

    This paper reviews the processes by which fatigue cracks grow and interact with applied load and microstructure. Fatigue crack growth processes are remarkably similar irrespective of microstructure, crack size, or nature of the loading. Large strains at fatigue crack tips applied over repeated cycles severely alter, or homogenize, microstructures, followed by crack advance. Microstructure affects fatigue crack growth kinetics more than growth processes. But, under marginal conditions, fatigue crack growth rates are also affected by microstructural features. Examples are small cracks growing under low stresses or large cracks growing near threshold. The prediction of safe lifetimes for machine parts, such as gas turbine components, requires that laboratory-generated fatigue crack growth rate data be transferred to field-operating conditions. This transfer depends on the maintenance of similitude: microstructurely, mechanically, and environmentally. However, for many industrially important conditions, similitude with large fatigue crack growth is lost, partially because of changes in fatigue crack closure. The effect of closure on similitude is discussed. New data are presented to illustrate the loss of similitude between applied loading and crack tip strain response. The resulting strain rates of material within the process zone are unexpected. Environmentally influenced fatigue crack growth rates are likely to be influenced by these strain rates.

  14. Propagation of stress corrosion cracks in alpha-brasses

    SciTech Connect

    Beggs, Dennis Vinton

    1981-01-01

    Transgranular and intergranular stress corrosion cracks were investigated in alpha-brasses in a tarnishing ammoniacal solution. Surface observation indicated that the transgranular cracks propagated discontinuously by the sudden appearance of a fine crack extending several microns ahead of the previous crack tip, often associated with the detection of a discrete acoustic emission (AE). By periodically increasing the deflection, crack front markings were produced on the resulting fracture surfaces, showing that the discontinuous propagation of the crack trace was representative of the subsurface cracking. The intergranular crack trace appeared to propagate continuously at a relatively blunt crack tip and was not associated with discrete AE. Under load pulsing tests with a time between pulses, ..delta..t greater than or equal to 3 s, the transgranular fracture surfaces always exhibited crack front markings which corresponded with the applied pulses. The spacing between crack front markings, ..delta..x, decreased linearly with ..delta..t. With ..delta..t less than or equal to 1.5 s, the crack front markings were in a one-to-one correspondence with applied pulses only at relatively long crack lengths. In this case, ..delta..x = ..delta..x* which approached a limiting value of 1 ..mu..m. No crack front markings were observed on intergranular fracture surfaces produced during these tests. It is concluded that transgranular cracking occurs by discontinuous mechanical fracture of an embrittled region around the crack tip, while intergranular cracking results from a different mechanism with cracking occurring via the film-rupture mechanism.

  15. Evaluation of multi-phase heat transfer and droplet evaporation in petroleum cracking flows

    SciTech Connect

    Chang, S.L.; Lottes, S.A.; Petrick, M.; Zhou, C.Q.

    1996-04-01

    A computer code ICRKFLO was used to simulate the multiphase reacting flow of fluidized catalytic cracking (FCC) riser reactors. The simulation provided a fundamental understanding of the hydrodynamics and heat transfer processes in an FCC riser reactor, critical to the development of a new high performance unit. The code was able to make predictions that are in good agreement with available pilot-scale test data. Computational results indicate that the heat transfer and droplet evaporation processes have a significant impact on the performance of a pilot-scale FCC unit. The impact could become even greater on scale-up units.

  16. Fracture and crack growth in orthotropic laminates

    NASA Technical Reports Server (NTRS)

    Goree, J. G.; Gross, R. S.

    1978-01-01

    An approximate solution is developed for the determination of the interlaminar normal and shear stresses in the vicinity of a crack in a three dimensional composite containing unidirectional linearly elastic fibers in an infinite linearly elastic matrix. In order to reduce the complexity of the formulation, certain assumptions are made as to the physically significant stresses to be retained. These simplifications reduce the partial differential equations of elasticity to differential-difference equations which are tractable using Fourier transform techniques. The potential for damaged or debonded zones to be generated by an embedded crack is discussed, and stress concentration factors for fibers near the crack are given. Detailed comparisons are made between the present solution, the analogous two dimensional problem, and corresponding shear-lag models.

  17. FInal Report - Investment Casting Shell Cracking

    SciTech Connect

    Von Richards

    2003-12-01

    This project made a significant contribution to the understanding of the investment casting shell cracking problem. The effects of wax properties on the occurrence of shell cracking were demonstrated and can be measured. The properties measured include coefficient of thermal expansion, heating rate and crystallinity of the structure. The important features of production molds and materials properties have been indicated by case study analysis and fractography of low strength test bars. It was found that stress risers in shell cavity design were important and that typical critical flaws were either oversize particles or large pores just behind the prime coat. It was also found that the true effect of fugitive polymer fibers was not permeability increase, but rather a toughening mechanism due to crack deflection.

  18. Seacoast stress corrosion cracking of aluminum alloys

    NASA Technical Reports Server (NTRS)

    Humphries, T. S.; Nelson, E. E.

    1981-01-01

    The stress corrosion cracking resistance of high strength, wrought aluminum alloys in a seacoast atmosphere was investigated and the results were compared with those obtained in laboratory tests. Round tensile specimens taken from the short transverse grain direction of aluminum plate and stressed up to 100 percent of their yield strengths were exposed to the seacoast and to alternate immersion in salt water and synthetic seawater. Maximum exposure periods of one year at the seacoast, 0.3 or 0.7 of a month for alternate immersion in salt water, and three months for synthetic seawater were indicated for aluminum alloys to avoid false indications of stress corrosion cracking failure resulting from pitting. Correlation of the results was very good among the three test media using the selected exposure periods. It is concluded that either of the laboratory test media is suitable for evaluating the stress corrosion cracking performance of aluminum alloys in seacoast atmosphere.

  19. Environmentally assisted cracking of LWR materials.

    SciTech Connect

    Chopra, O. K.; Chung, H. M.; Kassner, T. F.; Park, J. H.; Shack, W. J.; Zhang, J.; Brust, F. W.; Dong, P.

    1997-12-05

    The effect of dissolved oxygen level on fatigue life of austenitic stainless steels is discussed and the results of a detailed study of the effect of the environment on the growth of cracks during fatigue initiation are presented. Initial test results are given for specimens irradiated in the Halden reactor. Impurities introduced by shielded metal arc welding that may affect susceptibility to stress corrosion cracking are described. Results of calculations of residual stresses in core shroud weldments are summarized. Crack growth rates of high-nickel alloys under cyclic loading with R ratios from 0.2-0.95 in water that contains a wide range of dissolved oxygen and hydrogen concentrations at 289 and 320 C are summarized.

  20. Fracture of surface cracks loaded in bending

    SciTech Connect

    Chao, Y.J.; Reuter, W.G.

    1997-12-31

    Theoretical background of the constraint effect in brittle fracture of solids is reviewed. Fracture test data from D6-aC, a high strength steel, using three-point-bend (SE(B)) specimens and surface cracked plate (SC(B)) specimens under bending are presented. It is shown that the SE(B) data has an elevated fracture toughness for increasing a/W, i.e., a crack geometry with a larger T/K corresponds to a higher K{sub c} which is consistent with the theoretical prediction. The fundamental fracture properties, i.e., the critical strain and the critical distance, determined from the SE(B) test data are then applied to the interpretation and prediction of the SC(B) test data. Reasonable agreement is achieved for the crack growth initiation site and the load.

  1. Crack Tip Dislocation Nucleation in FCC Solids

    NASA Astrophysics Data System (ADS)

    Knap, J.; Sieradzki, K.

    1999-02-01

    We present results of molecular dynamic simulations aimed at examining crack tip dislocation emission in fcc solids. The results are analyzed in terms of recent continuum formulations of this problem. In mode II, Au, Pd, and Pt displayed a new unanticipated mechanism of crack tip dislocation emission involving the creation of a pair of Shockley partials on a slip plane one plane below the crack plane. In mode I, for all the materials examined, Rice's continuum formulation [J. Mech. Phys. Solids 40, 239 (1992)] underestimated the stress intensity for dislocation emission by almost a factor of 2. Surface stress corrections to the emission criterion brought the agreement between continuum predictions and simulations to within 20%.

  2. Crack detection using resonant ultrasound spectroscopy

    DOEpatents

    Migliori, Albert; Bell, Thomas M.; Rhodes, George W.

    1994-01-01

    Method and apparatus are provided for detecting crack-like flaws in components. A plurality of exciting frequencies are generated and applied to a component in a dry condition to obtain a first ultrasonic spectrum of the component. The component is then wet with a selected liquid to penetrate any crack-like flaws in the component. The plurality of exciting frequencies are again applied to the component and a second ultrasonic spectrum of the component is obtained. The wet and dry ultrasonic spectra are then analyzed to determine the second harmonic components in each of the ultrasonic resonance spectra and the second harmonic components are compared to ascertain the presence of crack-like flaws in the component.

  3. Crack detection using resonant ultrasound spectroscopy

    DOEpatents

    Migliori, A.; Bell, T.M.; Rhodes, G.W.

    1994-10-04

    Method and apparatus are provided for detecting crack-like flaws in components. A plurality of exciting frequencies are generated and applied to a component in a dry condition to obtain a first ultrasonic spectrum of the component. The component is then wet with a selected liquid to penetrate any crack-like flaws in the component. The plurality of exciting frequencies are again applied to the component and a second ultrasonic spectrum of the component is obtained. The wet and dry ultrasonic spectra are then analyzed to determine the second harmonic components in each of the ultrasonic resonance spectra and the second harmonic components are compared to ascertain the presence of crack-like flaws in the component. 5 figs.

  4. Barnacles resist removal by crack trapping

    PubMed Central

    Hui, Chung-Yuen; Long, Rong; Wahl, Kathryn J.; Everett, Richard K.

    2011-01-01

    We study the mechanics of pull-off of a barnacle adhering to a thin elastic layer which is bonded to a rigid substrate. We address the case of barnacles having acorn shell geometry and hard, calcarious base plates. Pull-off is initiated by the propagation of an interface edge crack between the base plate and the layer. We compute the energy release rate of this crack as it grows along the interface using a finite element method. We also develop an approximate analytical model to interpret our numerical results and to give a closed-form expression for the energy release rate. Our result shows that the resistance of barnacles to interfacial failure arises from a crack-trapping mechanism. PMID:21208968

  5. Burrowing mechanics: burrow extension by crack propagation.

    PubMed

    Dorgan, Kelly M; Jumars, Peter A; Johnson, Bruce; Boudreau, B P; Landis, Eric

    2005-02-01

    Until now, the analysis of burrowing mechanics has neglected the mechanical properties of impeding, muddy, cohesive sediments, which behave like elastic solids. Here we show that burrowers can progress through such sediments by using a mechanically efficient, previously unsuspected mechanism--crack propagation--in which an alternating 'anchor' system of burrowing serves as a wedge to extend the crack-shaped burrow. The force required to propagate cracks through sediment in this way is relatively small: we find that the force exerted by the annelid worm Nereis virens in making and moving into such a burrow amounts to less than one-tenth of the force it needs to use against rigid aquarium walls. PMID:15690029

  6. Crack propagation and arrest in pressurized containers

    NASA Technical Reports Server (NTRS)

    Erdogan, F.; Delale, F.; Owczarek, J. A.

    1976-01-01

    The problem of crack propagation and arrest in a finite volume cylindrical container filled with pressurized gas is considered. It is assumed that the cylinder contains a symmetrically located longitudinal part-through crack with a relatively small net ligament. The net ligament suddenly ruptures initiating the process of fracture propagation and depressurization in the cylinder. Thus the problem is a coupled gas dynamics and solid mechanics problem the exact formulation of which does not seem to be possible. The problem is reduced to a proper initial value problem by introducing a dynamic fracture criterion which relates the crack acceleration to the difference between a load factor and the corresponding strength parameter. The results indicate that generally in gas filled cylinders fracture arrest is not possible unless the material behaves in a ductile manner and the container is relatively long.

  7. Environmentally assisted cracking in LWR materials

    SciTech Connect

    Chopra, O.K.; Chung, H.M.; Kassner, T.F.; Park, J.H.; Shack, W.J.; Zhang, J.; Brust, F.W.; Dong, P.

    1998-03-01

    The effect of dissolved oxygen level on fatigue life of austenitic stainless steels is discussed and the results of a detailed study of the effect of the environment on the growth of cracks during fatigue initiation are presented. Initial test results are given for specimens irradiated in the Halden reactor. Impurities introduced by shielded metal arc welding that may affect susceptibility to stress corrosion cracking are described. Results of calculations of residual stresses in core shroud weldments are summarized. Crack growth rates of high-nickel alloys under cyclic loading with R ratios from 0.2--0.95 in water that contains a wide range of dissolved oxygen and hydrogen concentrations at 289 and 320 C are summarized.

  8. The Dugdale crack on bimaterial interface

    NASA Astrophysics Data System (ADS)

    Wang, X.-M.; Shen, Y.-P.

    1993-01-01

    The hypothesis of the Dugdale model (which assumes that the cohesive zone appears ahead of the crack tip and the normal cohesive stress acting on the surface of the zone makes the stress intensity factor at the zone tip equal zero) is extended to cases where not only the small-scale cohesive zone is supposed to exist ahead of a semiinfinite crack tip but the cohesive zone is subject to undetermined normal and shear cohesive stres which meets the Mises yield condition. The cohesive zone is measured, and the relation between the cohesive zone and the contact zone is discussed. The results obtained are different from the results of the Dugdale model for homogeneous brittle crack problems.

  9. Catalytic cracking of heavy coker gas oil

    SciTech Connect

    Rustamov, M.I.; Farkhadova, G.T.; Farzullaev, T.S.; Guseinova, S.B.

    1985-07-01

    The authors present results obtained in experiments on the catalytic cracking of heavy coker gas oil on a zeolitic catalyst, using as the catcracker feed either the original coker gas oil or this gas oil after dearomatization by furfural extraction. They conclude from an examination of their data that with the dearomatized feed the yield of butanebutylene cut is 20% higher, the yield of dry gas is lower by a factor of 1.6, and the yield of coke by a factor of 1.2. The characteristics of the naptha obtained by cracking original and dearomatized feeds indicate that the naptha obtained from cracking original gasoil contains 36% aromatics by weight, 10% more than that derived from the dearomatized feed.

  10. Catalytic cracking process with vanadium passivation

    SciTech Connect

    Kennedy, J.V.; Jossens, L.W.

    1991-03-26

    This paper discusses a process for the catalytic cracking of metal-containing hydrocarbonaceous feedstock. It comprises contacting the feedstock under cracking conditions with a dual component catalyst composition. The catalyst composition comprises a first component comprising an active cracking catalyst; and a second component, as a separate and distinct entity, the second component comprising the following materials: a calcium and magnesium containing material selected from the group consisting of dolomite, substantially amorphous calcium magnesium silicate, calcium magnesium oxide, calcium magnesium acetate, calcium magnesium carbonate, and calcium magnesium subcarbonate; a magnesium containing material comprising a hydrous magnesium silicate; and a binder selected from the group consisting of kaolin, bentonite, montmorillonite, saponite, hectorite, alumina, silica, titania, zirconia, silica-alumina, and combinations thereof.

  11. Modeling radon transport in dry, cracked soil

    SciTech Connect

    Holford, D.J. ); Schery, S.D.; Wilson, J.L.; Phillips, F.M. )

    1993-01-10

    A two-dimensional finite element code was used to investigate the effect of changes in surface air pressure on radon flux from soil with parallel, partially penetrating cracks. A sensitivity analysis investigates the effects of various crack dimensions, soil characteristics, and surface air pressure on radon flux from the soil surface to the atmosphere. Simulation results indicate that radon flux is most sensitive to soil properties; the diffusion coefficient is most important, followed by permeability and porosity. Radon flux is also sensitive to changes in barometric pressure, which cause variations in radon flux above and below the average diffusive flux. Sinusoidal variations in barometric pressure cause a net increase in the average radon flux from the soil, because increases in flux during periods of decreasing pressure are greater than the decreases in flux during periods of decreasing pressure of equal magnitude. Cracks were found to significantly increase radon flux from soils of low permeability. 33 refs. 19 figs., 1 tab.

  12. Fatigue Crack Growth Analysis Models for Functionally Graded Materials

    SciTech Connect

    Dag, Serkan; Yildirim, Bora; Sabuncuoglu, Baris

    2008-02-15

    The objective of this study is to develop crack growth analysis methods for functionally graded materials (FGMs) subjected to mode I cyclic loading. The study presents finite elements based computational procedures for both two and three dimensional problems to examine fatigue crack growth in functionally graded materials. Developed methods allow the computation of crack length and generation of crack front profile for a graded medium subjected to fluctuating stresses. The results presented for an elliptical crack embedded in a functionally graded medium, illustrate the competing effects of ellipse aspect ratio and material property gradation on the fatigue crack growth behavior.

  13. Alternating method applied to edge and surface crack problems.

    NASA Technical Reports Server (NTRS)

    Hartranft, R. J.; Sih, G. C.

    1973-01-01

    The alternating method, which intimately combines analytical results with numerical calculations, as applied to edge crack problems in two dimensions and surface crack problems in three dimensions, is treated. The case of a crack perpendicular to the edge of a semiinfinite material is considered. One of the crack geometries that has received continual interest in fracture mechanics is that of a semielliptical crack whose major axis lies on a stress free surface. In order to demonstrate the sensitivity of the solution to the influence of the free surface the semicircular crack problem is again treated by the alternating method.

  14. Crack velocity jumps engendered by a transformational process zone

    NASA Astrophysics Data System (ADS)

    Boulbitch, A.; Korzhenevskii, A. L.

    2016-06-01

    We study a concerted propagation of a fast crack with the process zone where a rearrangement of the solid structure takes place. The latter is treated as a second-order local phase transformation. We demonstrate that the propagation of such a zone gives rise to a nonlinear frictionlike force exerted on the crack tip, resisting its propagation. Depending on the temperature, it produces three regimes of crack motion, which differ in the behavior of the crack tip process zone: (i) always existing, (ii) only emerging at a high crack speed, and (iii) flickering. We show that the latter regime exhibits crack velocity jumps.

  15. Crack detection using pulsed eddy current stimulated thermography

    SciTech Connect

    Kostson, E.; Weekes, B.; Almond, D. P.; Wilson, J.; Tian, G. Y.

    2011-06-23

    This contribution presents results from studies investigating factors that influence the detection of surface breaking cracks using pulsed eddy current thermography. The influences of the current strength and crack orientation in both ferromagnetic and non-ferromagnetic metals have been investigated. It has been found that crack detection is far more sensitive to crack orientation in non-ferromagnetic metals than in ferromagnetic metals. The effects of crack size on detectability are presented for a large number of steel, nickel alloy and titanium samples. Results of studies comparing crack images obtained prior and after coating a nickel alloy sample with a thermal barrier coating are presented.

  16. Evaluation of a Small-Crack Monitoring System

    NASA Technical Reports Server (NTRS)

    Newman, John A.; Johnston, William M.

    2010-01-01

    A new system has been developed to obtain fatigue crack growth rate data from a series of images acquired during fatigue testing of specimens containing small surface cracks that initiate at highly-polished notches. The primary benefit associated with replica-based crack growth rate data methods is preserving a record of the crack configuration during the life of the specimen. Additionally, this system has the benefits of both reducing time and labor, and not requiring introduction of surface replica media into the crack. Fatigue crack growth rate data obtained using this new system are found to be in good agreement with similar results obtained from surface replicas.

  17. Crack problems involving nonhomogeneous interfacial regions in bonded materials

    NASA Technical Reports Server (NTRS)

    Erdogan, F.

    1990-01-01

    Consideration is given to two classes of fracture-related solid mechanics problems in which the model leads to some physically anomalous results. The first is the interface crack problem associated with the debonding process in which the corresponding elasticity solution predicts severe oscillations of stresses and the crack surface displacements vary near the crack tip. The second deals with crack intersecting the interface. The nature of the solutions around the crack tips arising from these problems is reviewed. The rationale for introducing a new interfacial zone model is discussed, its analytical consequences within the context of the two crack-problem classes are described, and some examples are presented.

  18. Interaction of Cracks Between Two Adjacent Indents in Glass

    NASA Technical Reports Server (NTRS)

    Choi, S. R.; Salem, J. A.

    1993-01-01

    Experimental observations of the interaction behavior of cracks between two adjacent indents were made using an indentation technique in soda-lime glass. It was specifically demonstrated how one indent crack initiates and propagates in the vicinity of another indent crack. Several types of crack interactions were examined by changing the orientation and distance of one indent relative to the other. It was found that the residual stress field produced by elastic/plastic indentation has a significant influence on controlling the mode of crack interaction. The interaction of an indent crack with a free surface was also investigated for glass and ceramic specimens.

  19. Velocity-Dependent Fatigue Crack Paths in Nanograined Pt Films

    NASA Astrophysics Data System (ADS)

    Meirom, R. A.; Clark, T.; Polcawich, R.; Pulskamp, J.; Dubey, M.; Muhlstein, C. L.

    2008-08-01

    Studies of crack growth in nanograined films assert that mechanical damage accumulates at grain boundaries irrespective of the crack velocity and loading conditions. This work shows that crack advance in nanograined Pt films involves a dislocation-slip mechanism that is a function of the crack growth rate and mode of loading. Crack paths in Pt were initially intergranular, but transitioned to a transgranular mode that persisted until catastrophic failure. This research demonstrates that crack growth mechanisms modeled for nanograined Ni cannot be generalized to other pure, metallic systems.

  20. COD measurements at various positions along a crack

    NASA Technical Reports Server (NTRS)

    Sharpe, W. N., Jr.; Su, X.

    1988-01-01

    Load versus crack-opening-displacement (COD) was measured at various positions along the border of a fatigue crack as it grew from a small surface crack on the edge of an aluminum specimen into a through-the-thickness crack. Displacements were measured with a laser-based interferometric system with a gage length of 70 microns and a resolution of 0.01 micron. These load-COD curves can be used to determine opening loads and thereby investigate the effect of closure on the growth of small cracks. In general, the opening loads decrease as the crack grows.

  1. Realistic and efficient 2D crack simulation

    NASA Astrophysics Data System (ADS)

    Yadegar, Jacob; Liu, Xiaoqing; Singh, Abhishek

    2010-04-01

    Although numerical algorithms for 2D crack simulation have been studied in Modeling and Simulation (M&S) and computer graphics for decades, realism and computational efficiency are still major challenges. In this paper, we introduce a high-fidelity, scalable, adaptive and efficient/runtime 2D crack/fracture simulation system by applying the mathematically elegant Peano-Cesaro triangular meshing/remeshing technique to model the generation of shards/fragments. The recursive fractal sweep associated with the Peano-Cesaro triangulation provides efficient local multi-resolution refinement to any level-of-detail. The generated binary decomposition tree also provides efficient neighbor retrieval mechanism used for mesh element splitting and merging with minimal memory requirements essential for realistic 2D fragment formation. Upon load impact/contact/penetration, a number of factors including impact angle, impact energy, and material properties are all taken into account to produce the criteria of crack initialization, propagation, and termination leading to realistic fractal-like rubble/fragments formation. The aforementioned parameters are used as variables of probabilistic models of cracks/shards formation, making the proposed solution highly adaptive by allowing machine learning mechanisms learn the optimal values for the variables/parameters based on prior benchmark data generated by off-line physics based simulation solutions that produce accurate fractures/shards though at highly non-real time paste. Crack/fracture simulation has been conducted on various load impacts with different initial locations at various impulse scales. The simulation results demonstrate that the proposed system has the capability to realistically and efficiently simulate 2D crack phenomena (such as window shattering and shards generation) with diverse potentials in military and civil M&S applications such as training and mission planning.

  2. Residual strength of thin panels with cracks

    NASA Technical Reports Server (NTRS)

    Madenci, Erdogan

    1994-01-01

    The previous design philosophies involving safe life, fail-safe and damage tolerance concepts become inadequate for assuring the safety of aging aircraft structures. For example, the failure mechanism for the Aloha Airline accident involved the coalescence of undetected small cracks at the rivet holes causing a section of the fuselage to peel open during flight. Therefore, the fuselage structure should be designed to have sufficient residual strength under worst case crack configurations and in-flight load conditions. Residual strength is interpreted as the maximum load carrying capacity prior to unstable crack growth. Internal pressure and bending moment constitute the two major components of the external loads on the fuselage section during flight. Although the stiffeners in the form of stringers, frames and tear straps sustain part of the external loads, the significant portion of the load is taken up by the skin. In the presence of a large crack in the skin, the crack lips bulge out with considerable yielding; thus, the geometric and material nonlinearities must be included in the analysis for predicting residual strength. Also, these nonlinearities do not permit the decoupling of in-plane and out-of-plane bending deformations. The failure criterion combining the concepts of absorbed specific energy and strain energy density addresses the aforementioned concerns. The critical absorbed specific energy (local toughness) for the material is determined from the global specimen response and deformation geometry based on the uniaxial tensile test data and detailed finite element modeling of the specimen response. The use of the local toughness and stress-strain response at the continuum level eliminates the size effect. With this critical parameter and stress-strain response, the finite element analysis of the component by using STAGS along with the application of this failure criterion provides the stable crack growth calculations for residual strength predictions.

  3. Elastic-plastic analysis of growing cracks

    SciTech Connect

    Rice, J.R.; Drugan, W.J.; Sham, T.L.

    1980-01-01

    The elastic-plastic stress and deformation fields at the tip of a crack which grow in an ideally plastic solid under plane strain, small-scale yielding conditions is discussed. Asymptotic analysis suggests a crack-tip stress state similar to that of the classical Prandtl field, but containing elastic unloading between the centered fan region and the trailing constant stress plastic region. The near tip expression for the rate of opening displacement delta at distance r from the growing tip is found to have the same form suggested by Rice and Sorensen, delta = ..cap alpha..J/sigma/sub 0/ + ..beta..(sigma/sub 0//E)a ln (R/r), but now the presence of the elastic wedge causes ..beta.. to have the revised value of 5.08 (for Poisson ratio ..nu.. = 0.3). Here, a = crack length, sigma/sub 0/ = yield strength, E = elastic modulus, and J denotes the far-field value (1 - ..nu../sup 2/) K/sup 2//E for the small scale yielding conditions considered. The parameters ..cap alpha.. and R cannot be determined from the asymptotic analysis, but ..cap alpha.. is approximately the same for stationary and growing cracks, and R scales approximately with the size of the plastic zone, being about 15 to 30% larger. For large scale yielding, a similar form applies with possible variations in ..cap alpha.. and ..beta.., at least in cases which maintain triaxial constraint at the crack tip, but in the fully yielded case R is expected to be proportional to the dimension of the uncracked ligament. The model crack growth criterion of Rice and Sorensen, requiring a critical delta at some fixed r from the tip, is reexamined. Results suggest that the J versus ..delta..a relation describing growth will be dependent on the extent of yielding, although it is suggested that this dependency might be small for highly ductile materials, provided that a similar triaxial constraint is maintained in all cases.

  4. Analyses of Fatigue Crack Growth and Closure Near Threshold Conditions for Large-Crack Behavior

    NASA Technical Reports Server (NTRS)

    Newman, J. C., Jr.

    1999-01-01

    A plasticity-induced crack-closure model was used to study fatigue crack growth and closure in thin 2024-T3 aluminum alloy under constant-R and constant-K(sub max) threshold testing procedures. Two methods of calculating crack-opening stresses were compared. One method was based on a contact-K analyses and the other on crack-opening-displacement (COD) analyses. These methods gave nearly identical results under constant-amplitude loading, but under threshold simulations the contact-K analyses gave lower opening stresses than the contact COD method. Crack-growth predictions tend to support the use of contact-K analyses. Crack-growth simulations showed that remote closure can cause a rapid rise in opening stresses in the near threshold regime for low-constraint and high applied stress levels. Under low applied stress levels and high constraint, a rise in opening stresses was not observed near threshold conditions. But crack-tip-opening displacement (CTOD) were of the order of measured oxide thicknesses in the 2024 alloy under constant-R simulations. In contrast, under constant-K(sub max) testing the CTOD near threshold conditions were an order-of-magnitude larger than measured oxide thicknesses. Residual-plastic deformations under both constant-R and constant-K(sub max) threshold simulations were several times larger than the expected oxide thicknesses. Thus, residual-plastic deformations, in addition to oxide and roughness, play an integral part in threshold development.

  5. Cohesive models of fatigue crack growth and stress-corrosion cracking

    NASA Astrophysics Data System (ADS)

    Nguyen, Olivier T.

    The aim of this dissertation was to develop models of fatigue crack growth and stress-corrosion cracking by investigating cohesive theories of fracture. These models were integrated in a finite-element framework embedding a contact algorithm and techniques of remeshing and adaptive meshing.For the fatigue model, we developed a phenomenological cohesive law which exhibits unloading-reloading hysteresis. This model qualitatively predicts fatigue crack growth rates in metals under constant amplitude regime for short and long cracks, as well as growth retardation due to overload. Quantitative predictions were obtained in the case of long cracks.We developed a chemistry-dependent cohesive law which serves as a basis for the stress-corrosion cracking model. In order to determine this cohesive law, two approaches, based on energy relaxation and the renormalization group, were used for coarse-graining interplanar potentials. We analyzed the cohesive behavior of a large--but finite--number of interatomic planes and found that the macroscopic cohesive law adopts a universal asymptotic form. The resulting stress-corrosion crack growth rates agreed well with those observed experimentally in 'static' fatigue tests given in the literature.

  6. Crack initiation and crack growth behavior of carbon and low-alloy steels

    SciTech Connect

    Gavenda, D.J.; Luebbers, P.R.; Chopra, O.K.

    1997-01-01

    Section III of the ASME Boiler and Pressure Vessel Code specifies fatigue design curves for structural materials. These curves were based on tests of smooth polished specimens at room temperature in air. The effects of reactor coolant environments are not explicitly addressed by the Code design curves, but recent test data illustrate potentially significant effects of LWR coolant environments on the fatigue resistance of carbon and low-alloy steels. Under certain loading and environmental conditions, fatigue lives of test specimens may be a factor of {approx}70 shorter than in air. Results of fatigue tests that examine the influence of reactor environment on crack imitation and crack growth of carbon and low-alloy steels are presented. Crack lengths as a function of fatigue cycles were determined in air by a surface replication technique, and in water by block loading that leaves marks on the fracture surface. Decreases in fatigue life of low-alloy steels in high-dissolved-oxygen (DO) water are primarily caused by the effects of environment during early stages of fatigue damage, i.e., growth of short cracks <100 {micro}m in depth. For crack sizes of >100 {micro}m, crack growth rates in high-DO water are higher than in air by one order of magnitude. The effects of LWR environments on growth of short cracks are discussed.

  7. Fatigue crack growth simulations of interfacial cracks in bi-layered FGMs using XFEM

    NASA Astrophysics Data System (ADS)

    Bhattacharya, S.; Singh, I. V.; Mishra, B. K.; Bui, T. Q.

    2013-10-01

    An investigation of fatigue crack growth of interfacial cracks in bi-layered materials using the extended finite element method is presented. The bi-material consists of two layers of dissimilar materials. The bottom layer is made of aluminium alloy while the upper one is made of functionally graded material (FGM). The FGM layer consists of 100 % aluminium alloy on the left side and 100 % ceramic (alumina) on the right side. The gradation in material property of the FGM layer is assumed to be exponential from the alloy side to the ceramic side. The domain based interaction integral approach is extended to obtain the stress intensity factors for an interfacial crack under thermo-mechanical load. The edge and centre cracks are taken at the interface of bi-layered material. The fatigue life of the interface crack plate is obtained using the Paris law of fatigue crack growth under cyclic mode-I, mixed-mode and thermal loads. This study reveals that the crack propagates into the FGM layer under all types of loads.

  8. Corrective Action Investigation Plan for Corrective Action Unit 232: Area 25 Sewage Lagoons Nevada Test Site, Nevada

    SciTech Connect

    DOE /NV Operations Office

    1999-05-01

    This Corrective Action Investigation Plan (CAIP) has been developed in accordance with the Federal Facility Agreement and Consent Order (FFACO) (1996) that was agreed to by the US Department of Energy, Nevada Operations Office (DOE/NV); the State of Nevada Division of Environmental Protection (NDEP); and the US Department of Defense. The CAIP is a document that provides or references all of the specific information for investigation activities associated with Corrective Action Units (CAUs) or Corrective Action Sites (CASs). According to the FFACO, CASs are sites potentially requiring corrective action(s) and may include solid waste management units or individual disposal or release sites. A CAU consists of one or more CASs grouped together based on geography, technical similarity, or agency responsibility for the purpose of determining corrective actions. This CAIP contains the environmental sample collection objectives and criteria for conducting site investigation activities at CAU 232, Area 25 Sewage Lagoons. Corrective Action Unit 232 consists of CAS 25-03-01, Sewage Lagoon, located in Area 25 of the Nevada Test Site (NTS). The NTS is approximately 65 miles (mi) northwest of Las Vegas, Nevada (Figure 1-1) (DOE/NV, 1996a). The Area 25 Sewage Lagoons (Figure 1-2) (IT, 1999b) are located approximately 0.3 mi south of the Test Cell 'C' (TCC) Facility and were used for the discharge of sanitary effluent from the TCC facility. For purposes of this discussion, this site will be referred to as either CAU 232 or the sewage lagoons.

  9. Crack detection on HU-25 Guardian aircraft

    SciTech Connect

    Moore, D.G.; Jones, C.R.; Mihelic, J.E.; Dassler, E.; Walizer, J.

    1996-10-01

    An ultrasonic inspection method was developed at FAA`s Airworthiness Assurance NDI Validation Center (AANC) to easily and rapidly detect hidden fatigue cracks in the copilot vertical windshield post on USCG (Coast Guard) HU-25 `Guardian` aircraft. The inspection procedure locates hidden cracks as small as 3.2 mm emanating from internal fastener holes and determines their length. A test procedure was developed and a baseline assessment of the USCG fleet conducted. Inspection results on 41 aircraft revealed good correlation with results made during subsequent structural disassembly and visual inspection of selected aircraft.

  10. Locating Cracks Amid Pitting and Corrosion

    NASA Technical Reports Server (NTRS)

    Fahey, P. P.

    1986-01-01

    Use of two fluorescent penetrants reveals cracks. New inspection technique for locating cracks in metal parts. Dual-dye technique used to inspect metal parts having surface-roughness-height ratings from 125 to 450 microinch (3.2 to 11.4 micrometer). Parts have included shot-peened machined aluminum extrusions; partially machined aluminum castings; aluminum, steel, and titanium tabular weldments; aircraft landing-gear components; chemically milled aluminum sheet and extrusions; and rough-machined aluminum and steel forgings. Also used on nonporous ceraminc parts.

  11. Interface crack problems in layered orthotropic materials

    NASA Astrophysics Data System (ADS)

    Erdogan, F.; Wu, Binghua

    1993-05-01

    T HE PRIMARY objective of this paper is to study the influence of the structure and thickness of the interfacial regions on the strain energy release rate in bonded isotropic or orthotropic materials containing collinear interface cracks. The problem is formulated in terms of a system of singular integral equations of the second kind which is solved by using a relatively simple and efficient technique. A number of examples are given for various crack geometries and material combinations. The results show that the effect of the properties and the relative thickness of the interfacial region on the stress intensity factors and the strain energy release rate can be highly significant.

  12. Hot cracking during welding and casting

    NASA Astrophysics Data System (ADS)

    Cao, Guoping

    Aluminum welds are susceptible to liquation cracking in the partially melted zone (PMZ). Using the multicomponent Scheil model, curves of temperature vs. fraction solid (T-fS) during solidification were calculated for the PMZ and weld metals (WMs). These curves were used to predict the crack susceptibility by checking if the harmful condition of WM fS > PMZ fS exists during PMZ solidification and reduce the susceptibility by minimizing this condition. This approach was tested against full-penetration welds of alloys 7075 and 2024 and it can be used to guide the selection or development of filler metals. Liquation cracking in the PMZ in welds of Al-Si cast alloys was also investigated. The crack susceptibility was evaluated by circular-patch test, and full-penetration welds made with filler metals 1100, 4043, 4047 and 5356. Liquation cracking was significant with filler metals 1100 and 5356 but slight with filler metals 4043 and 4047. In all welds, liquation cracks were completely backfilled, instead of open as in full-penetration welds of wrought alloys 2219 and 6061. The T-fS curves showed that alloy A357 has a much higher fraction liquid for backfilling before PMZ solidification was essentially over. Hot tearing in Mg-xAl-yCa alloys was studied by constrained rod casting (CRC) in a steel mold. The hot tearing susceptibility decreased significantly with increasing Ca content (y) but did not change much with the Al content (x). An instrumented CRC with a steel mold was developed to detect the onset of hot tearing. The secondary phases, eutectic content, solidification path, and freezing range were examined. Hot tearing in Mg-Al-Sr alloys was also studied by CRC in a steel mold. With Mg-(4,6,8)Al-1.5Sr alloys, the hot tearing susceptibility decreased significantly with increasing Al content. With Mg-(4,6,8)Al-3Sr alloys, the trend was similar but not as significant. At the same Al content, the hot tearing susceptibility decreased significantly with increasing Sr

  13. Fatigue crack growth under variable amplitude loading

    NASA Astrophysics Data System (ADS)

    Sidawi, Jihad A.

    1994-09-01

    Fatigue crack growth tests were conducted on an Fe 510 E C-Mn steel and a submerged arc welded joint from the same material under constant, variable, and random loading amplitudes. Paris-Erdogan's crack growth rate law was tested for the evaluation of m and C using the stress intensity factor K, the J-integral, the effective stress intensity factor K(sub eff), and the root mean square stress intensity factor K(sub rms) fracture mechanics concepts. The effect of retardation and residual stresses resulting from welding was also considered. It was found that all concepts gave good life predictions in all cases.

  14. Comparison of fatigue crack propagation in Modes I and III

    SciTech Connect

    Ritchie, R.O.

    1985-06-01

    The propagation behavior of fatigue cracks in Mode III (anti-plane shear), measured under cyclic torsion, is described and compared with more commonly encountered behavior under Mode I (tensile opening) loads. It is shown that a unique, global characterization of Mode III growth rates, akin to the Paris ''law'' in Mode I, is only possible if characterizating parameters appropriate to large-scale yielding are employed and allowance is made for crack tip shielding from sliding crack surface interference (i.e., friction and abrasion) between mating fracture surfaces. Based on the crack tip stress and deformation fields for Mode III stationary cracks, the cyclic crack tip displacement, (..delta..CTD/sub III/, and plastic strain intensity range ..delta..GAMMA/sub III/, have been proposed and are found to provide an adequate description of behavior in a range of steels, provided crack surface interference is minimized. The magnitude of this interference, which is somewhat analogous to crack closure in Mode I, is further examined in the light of the complex fractography of torsional fatigue failures and the question of a ''fatigue threshold'' for Mode III crack growth. Finally, micro-mechanical models for cyclic crack extension in anti-plane shear are briefly described, and the contrasting behavior between Mode III and Mode I cracks subjected to simple variable amplitude spectra is examined in terms of the differing role of crack tip blunting and closure in influencing shear, as opposed to tensile opening, modes of crack growth.

  15. Thermoelastic analysis of matrix crack growth in particulate composites

    SciTech Connect

    Sridhar, N.; Rickman, J.M.; Srolovitz, D.J.

    1995-04-01

    The authors examine the conditions under which differences in thermal expansion between a particle and the matrix lead to crack growth within the matrix. Using linear elasticity fracture mechanics, they obtain closed-form, analytical results for the case of a penny shaped crack present in the matrix interacting with a spherical inclusion which is misfitting with respect to the matrix. A simple and direct relationship is established between the strain energy release rate, the crack size, the crack orientation with respect to the inclusion, the crack/inclusion separation, the degree of thermal expansion mismatch and the elastic properties of the medium. The authors also analyze the size to which these cracks can grow and find that for a given misfit strain and material properties, crack growth is inhibited beyond a certain critical crack size. They find that beyond this critical size, the elastic strain energy released upon crack growth is no longer sufficient to compensate for the energy expended in extending the crack, since the crack is growing into the rapidly decreasing stress field. The modification of the above conditions for crack growth due to the superposition of an external stress field has also been analyzed. The preferred orientation of these cracks as a function of misfit strain is predicted. The implication of these results for thermal cycling are analyzed.

  16. Influence of fatigue crack wake length and state of stress on crack closure

    NASA Technical Reports Server (NTRS)

    Telesman, J.; Fisher, D. M.

    1986-01-01

    The location of crack closure with respect to crack wake and specimen thickness under different loading conditions was determined. The rate of increase of K sub CL in the crack wake was found to be significantly higher for plasticity induced closure in comparison to roughness induced closure. Roughness induced closure was uniform throughout the thickness of the specimen while plasticity induced closure levels were 50 percent higher in the near surface region than in the midthickness. The influence of state of stress on low-high load interaction effects was also examined. Load interaction effects differed depending upon the state of stress and were explained in terms of delta K sub eff.

  17. Dynamic delamination crack propagation in a graphite/epoxy laminate

    NASA Technical Reports Server (NTRS)

    Sun, C. T.; Grady, J. E.

    1986-01-01

    The dynamic delamination crack propagation behavior during ballistic tests of (90/0)5s T-300/934 graphite/epoxy laminates with embedded interfacial cracks was investigated using high speed photography. The impact on the beam-like specimen was produced with a silicon rubber ball, and the crack propagation speeds and the threshold impact velocities required to initiate dynamic crack propagation were determined for several crack positions. The results suggest that the mode of crack propagation depends on the specimen geometry as well as the loading condition. A simplified finite element analysis of the experimental data obtained from one of the midplane-cracked specimens was used to estimate the critical strain energy release rate, which may determine the onset of unstable crack propagation.

  18. Strain oxidation cracking of austenitic stainless steels at 610 C

    SciTech Connect

    Calvar, M. Le; Scott, P.M.; Magnin, T.; Rieux, P.

    1998-02-01

    Strain oxidation cracking of both forged and welded austenitic stainless steels (SS) was studied. Creep and slow strain rate tests (SSRT) were performed in vacuum, air, and a gas furnace environment (air + carbon dioxide [CO{sub 2}] + water [H{sub 2}O]). Results showed cracking was environmentally dependent. Almost no cracking was observed in vacuum, whereas intergranular cracking was observed with increasing severity in passing from an air to a gas furnace environment. The most severe cracking was associated with formation of a less protective film formed in the gas furnace environment (air: haematite-like M{sub 2}O{sub 3} oxide; gas furnace environment: spinel M{sub 3}O{sub 4} oxide). Cracking depended strongly on the carbon content and the sensitization susceptibility of the material: the higher the carbon content, the more susceptible the alloy. This cracking was believed to be similar to other oxidation-induced cracking phenomena.

  19. Subharmonic phased array for crack evaluation using surface acoustic wave

    NASA Astrophysics Data System (ADS)

    Ouchi, Akihiro; Sugawara, Azusa; Ohara, Yoshikazu; Yamanaka, Kazushi

    2015-07-01

    To accurately measure closed crack length, we proposed an imaging method using a subharmonic phased array for crack evaluation using surface acoustic waves (SAW SPACE) with water immersion. We applied SAW SPACE to the hole specimen in a fundamental array (FA) image. The hole was imaged with high resolution. Subsequently, SAW SPACE was applied to fatigue crack and stress corrosion crack (SCC) specimens. A fatigue crack was imaged in FA and subharmonic array (SA) images, and the length of this particular fatigue crack measured in the images was almost the same as that measured by optical observation. The SCC was imaged and its length was accurately measured in the SA image, whereas it was underestimated in the FA image and by optical observation. Thus, we demonstrated that SAW SPACE with water immersion is useful for the accurate measurement of closed crack length and for imaging the distribution of open and closed parts of cracks with high resolution.

  20. Cracking the Genetic Code | NIH MedlinePlus the Magazine

    MedlinePlus

    ... this page please turn Javascript on. Cracking the Genetic Code, From NIH Director Dr. Francis S. Collins Past ... moment in science in 2000: Cracking of the genetic code raised the prospect of pinpointing the root ...

  1. Emerging crack front identification from tangential surface displacements

    NASA Astrophysics Data System (ADS)

    Andrieux, Stéphane; Baranger, Thouraya Nouri

    2012-08-01

    We present in this Note an identification method for the crack front of a crack emerging at the surface of an elastic solid, provided displacements field or its tangential components are given on a part free of loading of the external surface. The method is based on two steps. The first one is the solution of a Cauchy problem in order to expand the displacement field within the solid up to a surface enclosing the unknown crack. Then the reciprocity gap method is used in order to determine the displacement jump on the crack and then the crack itself. We prove then an identifiability result. The method is illustrated with two synthetic examples: a crossing crack with linear crack front and an elliptic emerging crack.

  2. Stability analysis of bridged cracks in brittle matrix composites

    NASA Technical Reports Server (NTRS)

    Ballarini, Roberto; Muju, Sandeep

    1991-01-01

    The bridging of matrix cracks by fibers is an important toughening mechanism in fiber reinforced brittle matrix composites. This paper presents the results of a nonlinear finite element analysis of the Mode-I propagation of a bridged matrix crack in a finite size specimen. The composite is modeled as an orthotropic continuum and the bridging due to the fibers is modeled as a distribution of tractions which resist crack opening. A critical stress intensity factor criterion is employed for matrix crack propagation while a critical crack opening condition is used for fiber failure. The structural response of the specimen (load-deflection curves) as well as the stress intensity factor of the propagating crack are calculated for various constituent properties and specimen configurations for both tensile and bending loading. By controlling the length of the bridged crack results are obtained which highlight the transition from stable to unstable behavior of the propagating crack.

  3. Short-crack growth behaviour in various aircraft materials

    NASA Technical Reports Server (NTRS)

    Edwards, P. R. (Compiler); Newman, James C., Jr. (Compiler)

    1990-01-01

    The results of the first phase of an AGARD Cooperative Test Program on the behavior and growth of short fatigue cracks are reviewed. The establishment of a common test method, means of data collection/analysis and crack growth modeling in an aircraft alloy AA 2024-T3 are described. The second phase allowed testing of various materials and loading conditions. The results of this second phase are described. All materials exhibited a short-crack effect to some extent. The effect was much less evident in 4340 steel than in the other materials. For the aluminum, aluminum-lithium, and titanium alloys, short cracks grew at stress-intensity factor ranges lower, in some cases much lower, than the thresholds obtained from long crack tests. Several laboratories used the same crack growth model to analyze the growth of short cracks. Reasonable agreement was found between measured and predicted short-crack growth rates and fatigue lives.

  4. Control and Manipulation of Nano Cracks Mimicking Optical Wave

    NASA Astrophysics Data System (ADS)

    Suh, Young D.; Yeo, Junyeob; Lee, Habeom; Hong, Sukjoon; Kwon, Jinhyeong; Kim, Kyunkyu; Ko, Seung Hwan

    2015-11-01

    Generally, a fracture is considered as an uncontrollable thus useless phenomenon due to its highly random nature. The aim of this study is to investigate highly ordered cracks such as oscillatory cracks and to manipulate via elaborate control of mechanical properties of the cracking medium including thickness, geometry, and elastic mismatch. Specific thin film with micro-sized notches was fabricated on a silicon based substrate in order to controllably generate self-propagating cracks in large area. Interestingly, various nano-cracks behaved similar to optical wave including refraction, total internal reflection and evanescent wave. This novel phenomena of controlled cracking was used to fabricate sophisticated nano/micro patterns in large area which cannot be obtained even with conventional nanofabrication methods. We also have showed that the cracks are directly implementable into a nano/micro-channel application since the cracks naturally have a form of channel-like shape.

  5. The noncontinuum crack tip deformation behavior of surface microcracks

    NASA Astrophysics Data System (ADS)

    Morris, W. L.

    1980-07-01

    The crack tip opening displacement (CTOD) of small surface fatigue cracks (lengths of the grain size) in Al 2219-T851 depends upon the location of a crack relative to the grain boundaries. Both CTOD and crack tip closure stress are greatest when the crack tip is a large distance from the next grain boundary in the direction of crack propagation. Contrary to behavioral trends predicted by continuum fracture mechanics, crack length has no detectable effect on the contribution of plastic deformation to CTOD. It is apparent from these observations that the region of significant plastic deformation is confined by the grain boundaries, resulting in a plastic zone size that is insensitive to crack length and to external load.

  6. Effective crack lengths by compliance measurement for ARALL-2 laminates

    NASA Technical Reports Server (NTRS)

    Wilson, Christopher D.; Wilson, Dale A.

    1991-01-01

    As a means of determining a stress intensity factor solution, the compliance properties of an ARALL-2 laminated-sheet composite were investigated. Fatigue crack growth rate (FCGR) tests were conducted on middle crack tension (MT) specimens fabricated from a layup consisting of three sheets of 2024-T3 aluminum bonded together with unidirectional aramid fibers embedded in epoxy. Excellent fatigue crack growth properties are obtained by the presence of unbroken aramid fibers in the wake of the crack tip. These unbroken fibers act as a bridging mechanism to inhibit further crack growth. To quantify the effect of maximum fatigue load on compliance, a series of FCGR tests were performed. Effective crack lengths were determined to be at least 10 mm shorter than surface measured crack lengths for a 76-mm-wide specimen. The bridging zone was estimated to be at least 5 mm. Compliance and stress intensity factor as functions of effective crack length were determined.

  7. Control and Manipulation of Nano Cracks Mimicking Optical Wave

    PubMed Central

    Suh, Young D.; Yeo, Junyeob; Lee, Habeom; Hong, Sukjoon; Kwon, Jinhyeong; Kim, Kyunkyu; Ko, Seung Hwan

    2015-01-01

    Generally, a fracture is considered as an uncontrollable thus useless phenomenon due to its highly random nature. The aim of this study is to investigate highly ordered cracks such as oscillatory cracks and to manipulate via elaborate control of mechanical properties of the cracking medium including thickness, geometry, and elastic mismatch. Specific thin film with micro-sized notches was fabricated on a silicon based substrate in order to controllably generate self-propagating cracks in large area. Interestingly, various nano-cracks behaved similar to optical wave including refraction, total internal reflection and evanescent wave. This novel phenomena of controlled cracking was used to fabricate sophisticated nano/micro patterns in large area which cannot be obtained even with conventional nanofabrication methods. We also have showed that the cracks are directly implementable into a nano/micro-channel application since the cracks naturally have a form of channel-like shape. PMID:26612107

  8. Acoustic emission assessment of interface cracking in thermal barrier coatings

    NASA Astrophysics Data System (ADS)

    Yang, Li; Zhong, Zhi-Chun; Zhou, Yi-Chun; Zhu, Wang; Zhang, Zhi-Biao; Cai, Can-Ying; Lu, Chun-Sheng

    2016-04-01

    In this paper, acoustic emission (AE) and digital image correlation methods were applied to monitor interface cracking in thermal barrier coatings under compression. The interface failure process can be identified via its AE features, including buckling, delamination incubation and spallation. According to the Fourier transformation of AE signals, there are four different failure modes: surface vertical cracks, opening and sliding interface cracks, and substrate deformation. The characteristic frequency of AE signals from surface vertical cracks is 0.21 MHz, whilst that of the two types of interface cracks are 0.43 and 0.29 MHz, respectively. The energy released of the two types of interface cracks are 0.43 and 0.29 MHz, respectively. Based on the energy released from cracking and the AE signals, a relationship is established between the interface crack length and AE parameters, which is in good agreement with experimental results.

  9. Crack initiation and near-threshold surface fatigue crack propagation behavior of the iron-base superalloy A-286

    NASA Astrophysics Data System (ADS)

    Daeubler, M. A.; Thompson, A. W.; Bernstein, I. M.

    1988-02-01

    The fatigue behavior of the iron-base superalloy A-286 was studied at room temperature in air for three aging conditions: underaged, peak aged, and overaged. A fatigue strength at 107 cycles of about 200 MPa, independent of aging condition, was measured for an applied load ratio of R =0.1. Surface crack initiation and propagation were measured using hourglass specimens. Surface cracks were invariably initiated in slip bands orientated between 45 and 55 deg to the load axis, and an average ratio of crack depth to crack length of about 0.45 for these semi-elliptical cracks was measured. These earliest observable short surface cracks grew at an accelerated propagation rate in the near-threshold regime but were retarded in a transition stage, resulting in a minimum in crack growth rate. This behavior was correlated to the interaction of the crack with specific microstructure features. Following this minimum, the crack growth accelerated again with increasing Δ K and appeared to converge with the crack growth behavior expected for long through cracks. The crack propagation rate at fixed Δ K was lowest in underaged, compared to peak aged and overaged microstructures. The minimum and trends in crack growth rate appeared to depend on the development of roughness-induced closure.

  10. Strip edge cracking simulation in cold rolling

    SciTech Connect

    Hubert, C.; Dubar, L.; Dubar, M.; Dubois, A.

    2011-01-17

    This research work focuses on a specific defect which occurs during cold rolling of steel strips: edge-serration. Investigations on the industrial processes have led to the conclusion that this defect is the result of the edge-trimming and cold rolling sequences. The aim of this research work is to analyze the effect of the cutting process and the cold rolling on cracks occurrence, especially on strip edges.This study is performed using an experimental testing stand called Upsetting Rolling Test (URT). It allows to reproduce cold rolling contact parameters such as forward slip, reduction ratio and friction coefficients. Specimens sampled near trimmed industrial strip edges are deformed using the URT stand. Two sets of specimens with different stress states, obtained by annealing, are submitted to two reduction passes with extreme forward slips.Scanning electron microscopy observations added to 3D optical surface profiler topographies show that on one hand, forward slip has a major effect on cracks opening. On the other hand, cracks opening decreases according to high roll strip speed gradient. Concerning the heat-treated specimens, no crack appeared after all reduction passes, showing a large influence of the cutting process and consequently of the local stress state in the vicinity of the burnish and fracture regions.

  11. Digital radiographic systems detect boiler tube cracks

    SciTech Connect

    Walker, S.

    2008-06-15

    Boiler water wall leaks have been a major cause of steam plant forced outages. But conventional nondestructive evaluation techniques have a poor track record of detecting corrosion fatigue cracking on the inside surface of the cold side of waterwall tubing. EPRI is performing field trials of a prototype direct-digital radiographic system that promises to be a game changer. 8 figs.

  12. Kinetic studies of stress-corrosion cracking

    NASA Technical Reports Server (NTRS)

    Noronha, P. J.

    1977-01-01

    Use of time-to-failure curves for stress-corrosion cracking processes may lead to incorrect estimates of structural life, if material is strongly dependent upon prestress levels. Technique characterizes kinetics of crackgrowth rates and intermediate arrest times by load-level changes.

  13. Stress Corrosion Cracking of Certain Aluminum Alloys

    NASA Technical Reports Server (NTRS)

    Hasse, K. R.; Dorward, R. C.

    1983-01-01

    SC resistance of new high-strength alloys tested. Research report describes progress in continuing investigation of stress corrosion (SC) cracking of some aluminum alloys. Objective of program is comparing SC behavior of newer high-strength alloys with established SC-resistant alloy.

  14. Unrecognized "crack" cocaine abuse in pregnancy.

    PubMed

    Campbell, D; Parr, M J; Shutt, L E

    1996-10-01

    We report a case of "crack" cocaine abuse in a pregnant patient associated with haematuria, proteinuria, haemolytic anaemia, renal impairment, thrombocytopenia and pulmonary oedema. The case illustrates the problems for clinicians where unrecognized cocaine abuse interferes with the diagnosis and management of a complicated pregnancy. In addition, we discuss the principles for the safe conduct of anaesthesia in the pregnant cocaine abuser. PMID:8942348

  15. Modified Pressure System for Imaging Egg Cracks

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Abstract One aspect of grading table eggs is shell checks or cracks. Currently, USDA voluntary regulations require that humans grade a representative sample of all eggs processed. However, as processing plants and packing facilities continue to increase their volume and throughput, human graders a...

  16. Surface-crack detection by microwave methods

    NASA Technical Reports Server (NTRS)

    Feinstein, L.; Hruby, R.

    1967-01-01

    Microwave surface-crack detection system examines metallic surfaces with a noncontacting probe. The change in the microwave signal reflected from the surface under investigation is an indication of the existence of surface flaws. This technique can detect flaws and scratches as small as 100 microinches.

  17. Crack Detection for Aerospace Quality Spur Gears

    NASA Technical Reports Server (NTRS)

    Decker, Harry J.

    2002-01-01

    Health and Usage Monitoring System research and development involves analysis of the vibration signals produced by a gearbox throughout its life. There are two major advantages of knowing the actual lifetime of a gearbox component: safety and cost. In this report, a technique is proposed to help extract the critical data and present it in a manner that can be easy to understand. The key feature of the technique is to make it independent of speed, torque and prior history for localized, single tooth damage such as gear cracks. This extraction technique is demonstrated on two sets of digitized vibration data from cracked spur gears. Standard vibration diagnostic parameters are calculated and presented for comparison. Several new detection algorithms are also presented. The results of this study indicate that crack detection methods examined are not robust or repeatable. The proposed techniques provide a limited improvement to existing diagnostic parameters. Current techniques show that the cracks progressed at a much faster rate than anticipated which reduced available time for detection.

  18. Environmentally assisted cracking in light water reactors

    SciTech Connect

    Chopra, O.K.; Chung, H.M.; Gruber, E.E.

    1996-07-01

    This report summarizes work performed by Argonne National Laboratory on fatigue and environmentally assisted cracking (EAC) in light water reactors (LWRs) from April 1995 to December 1995. Topics that have been investigated include fatigue of carbon and low-alloy steel used in reactor piping and pressure vessels, EAC of Alloy 600 and 690, and irradiation-assisted stress corrosion cracking (IASCC) of Type 304 SS. Fatigue tests were conducted on ferritic steels in water that contained various concentrations of dissolved oxygen (DO) to determine whether a slow strain rate applied during different portions of a tensile-loading cycle are equally effective in decreasing fatigue life. Crack-growth-rate tests were conducted on compact-tension specimens from several heats of Alloys 600 and 690 in simulated LWR environments. Effects of fluoride-ion contamination on susceptibility to intergranular cracking of high- and commercial- purity Type 304 SS specimens from control-tensile tests at 288 degrees Centigrade. Microchemical changes in the specimens were studied by Auger electron spectroscopy and scanning electron microscopy to determine whether trace impurity elements may contribute to IASCC of these materials.

  19. In-service turbine wheel crack monitor

    NASA Technical Reports Server (NTRS)

    Barranger, J. P.

    1975-01-01

    System can be utilized in flight or at flight line. It monitors disk rim for surface cracks emanating from blade root interface. System consists of eddy-current sensor, mounted approximately 1 1/2 mm (1/16 in) away from face of disk, and remotely located electrical capacitance-conductance bridge and signal analyzer.

  20. System for Repairing Cracks in Structures

    NASA Technical Reports Server (NTRS)

    Smith, Stephen W. (Inventor); Newman, John A. (Inventor); Piascik, Robert S. (Inventor); Glaessgen, Edward H. (Inventor)

    2014-01-01

    A first material with a known maximum temperature of operation is coated with a second material on at least one surface of the first material. The coating has a melting temperature that is greater than the maximum temperature of operation of the first material. The coating is heated to its melting temperature until the coating flows into any cracks in the first material's surface.