Science.gov

Sample records for craniofacial skeletal evolution

  1. Altered FGF signalling in congenital craniofacial and skeletal disorders.

    PubMed

    Moosa, Shahida; Wollnik, Bernd

    2016-05-01

    The fibroblast growth factor (FGF) signalling pathway has been the focus of intense genetic and functional research for several decades. The emerging data implicate FGF signalling in diverse regulatory processes, both in the developing embryo as well as in the adult organism. Alterations in this tightly regulated pathway can lead to a number of pathological conditions, ranging from well-recognized congenital disorders to cancer. In order to mediate their cellular processes, FGFs signal through a subfamily of tyrosine kinase receptors, called FGF receptors (FGFRs). In humans, four FGFRs are described, and, to date, mutations in FGFR1, FGFR2, and FGFR3 have been shown to underlie human developmental disorders. FGFs/FGFRs are known to be key players in both endochondral and intramembranous bone development. In this review, we focus on the major developmental craniofacial and skeletal disorders which result from altered FGF signalling. PMID:26686047

  2. Applications of Mesenchymal Stem Cells and Neural Crest Cells in Craniofacial Skeletal Research

    PubMed Central

    Ouchi, Takehito; Shibata, Shinsuke; Fujimura, Takumi; Kawana, Hiromasa; Okano, Hideyuki; Nakagawa, Taneaki

    2016-01-01

    Craniofacial skeletal tissues are composed of tooth and bone, together with nerves and blood vessels. This composite material is mainly derived from neural crest cells (NCCs). The neural crest is transient embryonic tissue present during neural tube formation whose cells have high potential for migration and differentiation. Thus, NCCs are promising candidates for craniofacial tissue regeneration; however, the clinical application of NCCs is hindered by their limited accessibility. In contrast, mesenchymal stem cells (MSCs) are easily accessible in adults, have similar potential for self-renewal, and can differentiate into skeletal tissues, including bones and cartilage. Therefore, MSCs may represent good sources of stem cells for clinical use. MSCs are classically identified under adherent culture conditions, leading to contamination with other cell lineages. Previous studies have identified mouse- and human-specific MSC subsets using cell surface markers. Additionally, some studies have shown that a subset of MSCs is closely related to neural crest derivatives and endothelial cells. These MSCs may be promising candidates for regeneration of craniofacial tissues from the perspective of developmental fate. Here, we review the fundamental biology of MSCs in craniofacial research. PMID:27006661

  3. VEGF stimulates intramembranous bone formation during craniofacial skeletal development.

    PubMed

    Duan, Xuchen; Bradbury, Seth R; Olsen, Bjorn R; Berendsen, Agnes D

    2016-01-01

    Deficiency of vascular endothelial growth factor A (VEGF) has been associated with severe craniofacial anomalies in both humans and mice. Cranial neural crest cell (NCC)-derived VEGF regulates proliferation, vascularization and ossification of cartilage and membranous bone. However, the function of VEGF derived from specific subpopulations of NCCs in controlling unique aspects of craniofacial morphogenesis is not clear. In this study a conditional knockdown strategy was used to genetically delete Vegfa expression in Osterix (Osx) and collagen II (Col2)-expressing NCC descendants. No major defects in calvaria and mandibular morphogenesis were observed upon knockdown of VEGF in the Col2(+) cell population. In contrast, loss of VEGF in Osx(+) osteoblast progenitor cells led to reduced ossification of calvarial and mandibular bones without affecting the formation of cartilage templates in newborn mice. The early stages of ossification in the developing jaw revealed decreased initial mineralization levels and a reduced thickness of the collagen I (Col1)-positive bone template upon loss of VEGF in Osx(+) precursors. Increased numbers of proliferating cells were detected within the jaw mesenchyme of mutant embryos. Explant culture assays revealed that mandibular osteogenesis occurred independently of paracrine VEGF action and vascular development. Reduced VEGF expression in mandibles coincided with increased phospho-Smad1/5 (P-Smad1/5) levels and bone morphogenetic protein 2 (Bmp2) expression in the jaw mesenchyme. We conclude that VEGF derived from Osx(+) osteoblast progenitor cells is required for optimal ossification of developing mandibular bones and modulates mechanisms controlling BMP-dependent specification and expansion of the jaw mesenchyme. PMID:26899202

  4. Craniofacial skeletal measurements based on computed tomography: Part II. Normal values and growth trends.

    PubMed

    Waitzman, A A; Posnick, J C; Armstrong, D C; Pron, G E

    1992-03-01

    Current diagnosis and surgical correction of craniofacial anomalies would benefit from accurate quantitative and standardized points of reference. A retrospective study was undertaken to define normal values for a series of craniofacial measurements and to evaluate the growth patterns of the craniofacial complex through axial computed tomography (CT). Fifteen measurements were taken from 542 CT scan series of skeletally normal subjects. The measurement values were then divided into 1-year age categories from 1 to 17 years, and into four age groups for those under 1 year of age. The normal range and growth pattern of measurement values for the cranial vault, orbital region, and upper midface are presented. The overall size of the cranio-orbito-zygomatic skeleton reaches more than 85 percent of adult size by age 5 years. The cranial vault grows rapidly in the first year of life but growth levels off early. The upper midface grows at a slower rate in infancy, but continues to grow later in childhood and early adolescence. Knowledge of the differential growth patterns and normal measurement values in the craniofacial region will help improve diagnostic accuracy, staging of reconstruction, precision of corrective surgery, and follow-up of patients. PMID:1571345

  5. Mutations in mouse Ift144 model the craniofacial, limb and rib defects in skeletal ciliopathies.

    PubMed

    Ashe, Alyson; Butterfield, Natalie C; Town, Liam; Courtney, Andrew D; Cooper, Ashley N; Ferguson, Charles; Barry, Rachael; Olsson, Fredrik; Liem, Karel F; Parton, Robert G; Wainwright, Brandon J; Anderson, Kathryn V; Whitelaw, Emma; Wicking, Carol

    2012-04-15

    Mutations in components of the intraflagellar transport (IFT) machinery required for assembly and function of the primary cilium cause a subset of human ciliopathies characterized primarily by skeletal dysplasia. Recently, mutations in the IFT-A gene IFT144 have been described in patients with Sensenbrenner and Jeune syndromes, which are associated with short ribs and limbs, polydactyly and craniofacial defects. Here, we describe an N-ethyl-N-nitrosourea-derived mouse mutant with a hypomorphic missense mutation in the Ift144 gene. The mutant twinkle-toes (Ift144(twt)) phenocopies a number of the skeletal and craniofacial anomalies seen in patients with human skeletal ciliopathies. Like other IFT-A mouse mutants, Ift144 mutant embryos display a generalized ligand-independent expansion of hedgehog (Hh) signalling, in spite of defective ciliogenesis and an attenuation of the ability of mutant cells to respond to upstream stimulation of the pathway. This enhanced Hh signalling is consistent with cleft palate and polydactyly phenotypes in the Ift144(twt) mutant, although extensive rib branching, fusion and truncation phenotypes correlate with defects in early somite patterning and may reflect contributions from multiple signalling pathways. Analysis of embryos harbouring a second allele of Ift144 which represents a functional null, revealed a dose-dependent effect on limb outgrowth consistent with the short-limb phenotypes characteristic of these ciliopathies. This allelic series of mouse mutants provides a unique opportunity to uncover the underlying mechanistic basis of this intriguing subset of ciliopathies. PMID:22228095

  6. Mutations in mouse Ift144 model the craniofacial, limb and rib defects in skeletal ciliopathies

    PubMed Central

    Ashe, Alyson; Butterfield, Natalie C.; Town, Liam; Courtney, Andrew D.; Cooper, Ashley N.; Ferguson, Charles; Barry, Rachael; Olsson, Fredrik; Liem, Karel F.; Parton, Robert G.; Wainwright, Brandon J.; Anderson, Kathryn V.; Whitelaw, Emma; Wicking, Carol

    2012-01-01

    Mutations in components of the intraflagellar transport (IFT) machinery required for assembly and function of the primary cilium cause a subset of human ciliopathies characterized primarily by skeletal dysplasia. Recently, mutations in the IFT-A gene IFT144 have been described in patients with Sensenbrenner and Jeune syndromes, which are associated with short ribs and limbs, polydactyly and craniofacial defects. Here, we describe an N-ethyl-N-nitrosourea-derived mouse mutant with a hypomorphic missense mutation in the Ift144 gene. The mutant twinkle-toes (Ift144twt) phenocopies a number of the skeletal and craniofacial anomalies seen in patients with human skeletal ciliopathies. Like other IFT-A mouse mutants, Ift144 mutant embryos display a generalized ligand-independent expansion of hedgehog (Hh) signalling, in spite of defective ciliogenesis and an attenuation of the ability of mutant cells to respond to upstream stimulation of the pathway. This enhanced Hh signalling is consistent with cleft palate and polydactyly phenotypes in the Ift144twt mutant, although extensive rib branching, fusion and truncation phenotypes correlate with defects in early somite patterning and may reflect contributions from multiple signalling pathways. Analysis of embryos harbouring a second allele of Ift144 which represents a functional null, revealed a dose-dependent effect on limb outgrowth consistent with the short-limb phenotypes characteristic of these ciliopathies. This allelic series of mouse mutants provides a unique opportunity to uncover the underlying mechanistic basis of this intriguing subset of ciliopathies. PMID:22228095

  7. A new syndrome with craniofacial and skeletal dysmorphisms and developmental delay.

    PubMed

    Der Kaloustian, V M; Pelletier, M; Costa, T; Blackston, D R; Oudjhane, K

    2001-04-01

    We report a 16-year-old boy with multiple craniofacial and skeletal dysmorphic features including brachycephaly, acrocephaly, hypertelorism, wide palpebral fissures, broad nose, anteverted nares, broad columella, long and smooth philtrum, thin upper lip, macrostomia, carp-like mouth, micrognathia, low-set and posteriorly angulated ears with small and abnormal pinnae, a low posterior hairline, a short neck, hypoplastic and widely-spaced nipples, multiple severe pterygia, an umbilical hernia, metatarsus varus, low implantation of the halluces, and delayed motor and language development. An MRI of the head showed bilateral frontal pachygyria but no sign of heterotopia. The unique features of our patient suggest that he represents a new syndrome. PMID:11311002

  8. Evolution of a developmental mechanism: species-specific regulation of the cell cycle and the timing of events during craniofacial osteogenesis

    PubMed Central

    Hall, Jane; Jheon, Andrew H.; Ealba, Erin L.; Eames, B. Frank; Butcher, Kristin D.; Mak, Siu-Shan; Ladher, Raj; Alliston, Tamara; Schneider, Richard A.

    2014-01-01

    Neural crest mesenchyme (NCM) controls species-specific pattern in the craniofacial skeleton but how this cell population accomplishes such a complex task remains unclear. To elucidate mechanisms through which NCM directs skeletal development and evolution, we made chimeras from quail and duck embryos, which differ markedly in their craniofacial morphology and maturation rates. We show that quail NCM, when transplanted into duck, maintains its faster timetable for development and autonomously executes molecular and cellular programs for the induction, differentiation, and mineralization of bone, including premature expression of osteogenic genes such as Runx2 and Col1a1. In contrast, the duck host systemic environment appears to be relatively permissive and supports osteogenesis independently by providing circulating minerals and a vascular network. Further experiments reveal that NCM establishes the timing of osteogenesis by regulating cell cycle progression in a stage- and species-specific manner. Altering the time-course of D-type cyclin expression mimics chimeras by accelerating expression of Runx2 and Col1a1. We also discover higher endogenous expression of Runx2 in quail coincident with their smaller craniofacial skeletons, and by prematurely over-expressing Runx2 in chick embryos we reduce the overall size of the craniofacial skeleton. Thus, our work suggests that NCM establishes species-specific size in the craniofacial skeleton by controlling cell cycle, Runx2 expression, and the timing of key events during osteogenesis. PMID:24262986

  9. 30-year International Pediatric Craniofacial Surgery Partnership: Evolution from the “Third World” Forward

    PubMed Central

    Swanson, Jordan W.; Skirpan, Jan; Stanek, Beata; Kowalczyk, Maciej

    2016-01-01

    Background: Craniofacial diseases constitute an important component of the surgical disease burden in low- and middle-income countries. The consideration to introduce craniofacial surgery into such settings poses different questions, risks, and challenges compared with cleft or other forms of plastic surgery. We report the evolution, innovations, and challenges of a 30-year international craniofacial surgery partnership. Methods: We retrospectively report a partnership between surgeons at the Uniwersytecki Szpital Dzieciecy in Krakow, Poland, and a North American craniofacial surgeon. We studied patient conditions, treatment patterns, and associated complications, as well as program advancements and limitations as perceived by surgeons, patient families, and hospital administrators. Results: Since partnership inception in 1986, the complexity of cases performed increased gradually, with the first intracranial case performed in 1995. In the most recent 10-year period (2006–2015), 85 patients have been evaluated, with most common diagnoses of Apert syndrome, Crouzon syndrome, and single-suture craniosynostosis. In the same period, 55 major surgical procedures have been undertaken, with LeFort III midface distraction, posterior vault distraction, and frontoorbital advancement performed most frequently. Key innovations have been the employment of craniofacial distraction osteogenesis, the use of Internet communication and digital photography, and increased understanding of how craniofacial morphology may improve in the absence of surgical intervention. Ongoing challenges include prohibitive training pathways for pediatric plastic surgeons, difficulty in coordinating care with surgeons in other institutions, and limited medical and material resources. Conclusion: Safe craniofacial surgery can be introduced and sustained in a resource-limited setting through an international partnership. PMID:27200233

  10. Developmental mechanisms underlying variation in craniofacial disease and evolution.

    PubMed

    Fish, Jennifer L

    2016-07-15

    Craniofacial disease phenotypes exhibit significant variation in penetrance and severity. Although many genetic contributions to phenotypic variation have been identified, genotype-phenotype correlations remain imprecise. Recent work in evolutionary developmental biology has exposed intriguing developmental mechanisms that potentially explain incongruities in genotype-phenotype relationships. This review focuses on two observations from work in comparative and experimental animal model systems that highlight how development structures variation. First, multiple genetic inputs converge on relatively few developmental processes. Investigation of when and how variation in developmental processes occurs may therefore help predict potential genetic interactions and phenotypic outcomes. Second, genetic mutation is typically associated with an increase in phenotypic variance. Several models outlining developmental mechanisms underlying mutational increases in phenotypic variance are discussed using Satb2-mediated variation in jaw size as an example. These data highlight development as a critical mediator of genotype-phenotype correlations. Future research in evolutionary developmental biology focusing on tissue-level processes may help elucidate the "black box" between genotype and phenotype, potentially leading to novel treatment, earlier diagnoses, and better clinical consultations for individuals affected by craniofacial anomalies. PMID:26724698

  11. Phenotypic evolution of human craniofacial morphology after admixture: a geometric morphometrics approach.

    PubMed

    Martínez-Abadías, Neus; González-José, Rolando; González-Martín, Antonio; Van der Molen, Silvina; Talavera, Arturo; Hernández, Patricia; Hernández, Miquel

    2006-03-01

    An evolutionary, diachronic approach to the phenotypic craniofacial pattern arisen in a human population after high levels of admixture and gene flow was achieved by means of geometric morphometrics. Admixture has long been studied after molecular data. Nevertheless, few efforts have been made to explain the morphological outcome in human craniofacial samples. The Spanish-Amerindian contact can be considered a good scenario for such an analysis. Here we present a comparative analysis of craniofacial shape changes observed between two putative ancestor groups, Spanish and precontact Aztecs, and two diachronic admixed groups, corresponding to early and late colonial periods from the Mexico's Central Valley. Quantitative shape comparisons of Amerindian, Spanish, and admixed groups were used to test the expectations of quantitative genetics for admixture events. In its simplest form, this prediction states that an admixed group will present phenotypic values falling between those of both parental groups. Results show that, in general terms, although the human skull is a complex, integrated structure, the craniofacial morphology observed fits the theoretical expectations of quantitative genetics. Thus, it is predictive of population structure and history. In fact, results obtained after the craniofacial analysis are in accordance with previous molecular and historical interpretations, providing evidence that admixture is a main microevolutionary agent influencing modern Mexican gene pool. However, expectations are not straightforward when moderate shape changes are considered. Deviations detected at localized structures, such as the upper and lower face, highlight the evolution of a craniofacial pattern exclusively inherent to the admixed groups, indicating that quantitative characters might respond to admixture in a complicated, nondirectional way. PMID:16323202

  12. Craniofacial skeletal measurements based on computed tomography: Part I. Accuracy and reproducibility.

    PubMed

    Waitzman, A A; Posnick, J C; Armstrong, D C; Pron, G E

    1992-03-01

    Computed tomography (CT) is a useful modality for the management of craniofacial anomalies. A study was undertaken to assess whether CT measurements of the upper craniofacial skeleton accurately represent the bony region imaged. Measurements taken directly from five dry skulls (approximate ages: adults, over 18 years; child, 4 years; infant, 6 months) were compared to those from axial CT scans of these skulls. Excellent agreement was found between the direct (dry skull) and indirect (CT) measurements. The effect of head tilt on the accuracy of these measurements was investigated. The error was within clinically acceptable limits (less than 5 percent) if the angle was no more than +/- 4 degrees from baseline (0 degrees). Objective standardized information gained from CT should complement the subjective clinical data usually collected for the treatment of craniofacial deformities. PMID:1571344

  13. Homozygous frameshift mutation in TMCO1 causes a syndrome with craniofacial dysmorphism, skeletal anomalies, and mental retardation

    PubMed Central

    Xin, Baozhong; Puffenberger, Erik G.; Turben, Susan; Tan, Haiyan; Zhou, Aimin; Wang, Heng

    2009-01-01

    We identified an autosomal recessive condition in 11 individuals in the Old Order Amish of northeastern Ohio. The syndrome was characterized by distinctive craniofacial dysmorphism, skeletal anomalies, and mental retardation. The typical craniofacial dysmorphism included brachycephaly, highly arched bushy eyebrows, synophrys, long eyelashes, low-set ears, microdontism of primary teeth, and generalized gingival hyperplasia, whereas Sprengel deformity of scapula, fusion of spine, rib abnormities, pectus excavatum, and pes planus represented skeletal anomalies. The genome-wide homozygosity mapping using six affected individuals localized the disease gene to a 3.3-Mb region on chromosome 1q23.3-q24.1. Candidate gene sequencing identified a homozygous frameshift mutation, c.139_140delAG, in the transmembrane and coiled-coil domains 1 (TMCO1) gene, as the pathogenic change in all affected members of the extended pedigree. This mutation is predicted to result in a severely truncated protein (p.Ser47Ter) of only one-fourth the original length. The TMCO1 gene product is a member of DUF841 superfamily of several eukaryotic proteins with unknown function. The gene has highly conserved amino acid sequence and is universally expressed in all human tissues examined. The high degree of conservation and the ubiquitous expression pattern in human adult and fetal tissues suggest a critical role for TMCO1. This report shows a TMCO1 sequence variant being associated with a genetic disorder in human. We propose “TMCO1 defect syndrome” as the name of this condition. PMID:20018682

  14. The Dlx5 and Dlx6 homeobox genes are essential for craniofacial, axial, and appendicular skeletal development.

    PubMed

    Robledo, Raymond F; Rajan, Lakshmi; Li, Xue; Lufkin, Thomas

    2002-05-01

    Dlx homeobox genes are mammalian homologs of the Drosophila Distal-less (Dll) gene. The Dlx/Dll gene family is of ancient origin and appears to play a role in appendage development in essentially all species in which it has been identified. In Drosophila, Dll is expressed in the distal portion of the developing appendages and is critical for the development of distal structures. In addition, human Dlx5 and Dlx6 homeobox genes have been identified as possible candidate genes for the autosomal dominant form of the split-hand/split-foot malformation (SHFM), a heterogeneous limb disorder characterized by missing central digits and claw-like distal extremities. Targeted inactivation of Dlx5 and Dlx6 genes in mice results in severe craniofacial, axial, and appendicular skeletal abnormalities, leading to perinatal lethality. For the first time, Dlx/Dll gene products are shown to be critical regulators of mammalian limb development, as combined loss-of-function mutations phenocopy SHFM. Furthermore, spatiotemporal-specific transgenic overexpression of Dlx5, in the apical ectodermal ridge of Dlx5/6 null mice can fully rescue Dlx/Dll function in limb outgrowth. PMID:12000792

  15. Craniofacial modularity, character analysis, and the evolution of the premaxilla in early African hominins.

    PubMed

    Villmoare, Brian A; Dunmore, Christopher; Kilpatrick, Shaun; Oertelt, Nadja; Depew, Michael J; Fish, Jennifer L

    2014-12-01

    Phylogenetic analyses require evolutionarily independent characters, but there is no consensus, nor has there been a clear methodology presented on how to define character independence in a phylogenetic context, particularly within a complex morphological structure such as the skull. Following from studies of craniofacial development, we hypothesize that the premaxilla is an independent evolutionary module with two integrated characters that have traditionally been treated as independent. We test this hypothesis on a large sample of primate skulls and find evidence supporting the premaxilla as an independent module within the larger module of the palate. Additionally, our data indicate that the convexity of the nasoalveolar clivus and the contour of the alveolus are integrated within the premaxilla. We show that the palate itself is composed of two distinct modules: the FNP-derived premaxillae and the mxBA1-derived maxillae and palatines. Application of our data to early African hominin facial morphology suggests that at least three separate transitions contributed to robust facial morphology: 1) an increase in the size of the post-canine dentition housed within the maxillae and palatines, 2) modification of the premaxilla generating a concave clivus and reduced incisor alveolus, and 3) modification of the zygomatic, shifting the zygomatic root and lateral face anteriorly. These data lend support to the monophyly of Paranthropus boisei and Paranthropus robustus, and provide mounting evidence in favor of a Paranthropus clade. This study also highlights the utility of applying developmental evidence to studies of morphological evolution. PMID:25449953

  16. Adipose-Derived Stem Cells: A Review of Signaling Networks Governing Cell Fate and Regenerative Potential in the Context of Craniofacial and Long Bone Skeletal Repair

    PubMed Central

    Senarath-Yapa, Kshemendra; McArdle, Adrian; Renda, Andrea; Longaker, Michael T.; Quarto, Natalina

    2014-01-01

    Improvements in medical care, nutrition and social care are resulting in a commendable change in world population demographics with an ever increasing skew towards an aging population. As the proportion of the world’s population that is considered elderly increases, so does the incidence of osteodegenerative disease and the resultant burden on healthcare. The increasing demand coupled with the limitations of contemporary approaches, have provided the impetus to develop novel tissue regeneration therapies. The use of stem cells, with their potential for self-renewal and differentiation, is one potential solution. Adipose-derived stem cells (ASCs), which are relatively easy to harvest and readily available have emerged as an ideal candidate. In this review, we explore the potential for ASCs to provide tangible therapies for craniofacial and long bone skeletal defects, outline key signaling pathways that direct these cells and describe how the developmental signaling program may provide clues on how to guide these cells in vivo. This review also provides an overview of the importance of establishing an osteogenic microniche using appropriately customized scaffolds and delineates some of the key challenges that still need to be overcome for adult stem cell skeletal regenerative therapy to become a clinical reality. PMID:24865492

  17. Craniofacial Abnormalities

    MedlinePlus

    ... of the skull and face. Craniofacial abnormalities are birth defects of the face or head. Some, like cleft ... palate, are among the most common of all birth defects. Others are very rare. Most of them affect ...

  18. Craniofacial surgery: present and future.

    PubMed Central

    Whitaker, L A; Schut, L; Randall, P

    1976-01-01

    The possibilities for radical craniofacial restructuring have increased dramatically in the past 6 years with the development of craniofacial surgery. The field developed from a background of patients with major craniofacial birth defects allowing orderly planning and expansion to correction of a multitude of other craniofacial structural problems. The procedures concentrate upon changing the skeletal structures using extensive subperiostial dissection of soft tissue, and adding bone to fill in areas of deficiency. There are three grades of complexity in craniofacial procedures. After extensive soft tissue sub-periostial stripping about the orbits and upper face, the simplest form consists of onlay bone grafts. The next most complicated involves osteotomies to shift the face into a more normal position. In its most complicated form, abnormal proportions of bone are removed and the orbits or cranium are shifted into a new or normal position. We have had experience with 69 patients since September, 1972. Thirty-six have had intracranial procedures. Infection has been the most serious problem, and there have been no instances of death or blindness. A number of lesser problems occur. Future applications of craniofacial surgery are appearing with great frequency as more experience is gained with its uses. It has particular application in acute and late reconstruction of patients with traumatic defects about the face. Preventive osteotomies are an area with great potential, by releasing stenotic areas of bone and allowing the developing brain to mold the upper face and orbits. There is also applicability in surgery of tumors about the craniofacial structure and in cosmetic surgery. Images Fig. 1a. Fig. 1b. Fig. 1c. Fig. 1d. Fig. 1e. Fig. 2a. Fig. 2b. Fig. 2c. PMID:984925

  19. [Craniofacial neuralgias].

    PubMed

    Mikula, Ivan

    2008-05-01

    Craniofacial neuralgias are characterized by sudden paroxysmal pain along the distribution of one or more of the cranial or upper cervical spinal nerves. The most significant neuralgia of the craniofacial region is trigeminal neuralgia, while geniculate neuralgia, glossopharyngeal neuralgia and occipital neuralgia are less common. Trigeminal neuralgia may be primary or secondary. Idiopathic trigeminal neuralgia or tic douloureux has been recognized for centuries as an extremely painful disorder most commonly involving the maxillary nerve. Recurrent lancinating, shocklike unilateral pain lasting for seconds to minutes is provoked by non noxious stimulation of the skin at specific sites around the face and less frequently by movement of the tongue. The trigger zones are usually within the same dermatome as the painful sensation. After each episode, there is usually a refractive period during which stimulation of the trigger zone will not induce pain. Idiopathic trigeminal neuralgia occurs somewhat more frequently in women and usually begins in individuals 50 to 70 years of age. There is no pain between attacks, and the frequency of painful episodes can range from several per day to only a few per year. With time, the features may become more atypical, with greater areas of more enduring and dull pain and occasionally bilateral pain, rarely on both sides simultaneously. No sensory or reflex deficit is detectable by routine neurologic testing. Diagnostic local anesthetic blocks will identify the specific nerves involved and the trigger point distribution. Neurologic and neuroradiologic examination is advised in all cases to rule out diseases such as intracranical tumors, vascular malformations or multiple sclerosis. PMID:18710080

  20. RSK2 Is a Modulator of Craniofacial Development

    PubMed Central

    Laugel-Haushalter, Virginie; Paschaki, Marie; Marangoni, Pauline; Pilgram, Coralie; Langer, Arnaud; Kuntz, Thibaut; Demassue, Julie; Morkmued, Supawich; Choquet, Philippe; Constantinesco, André; Bornert, Fabien; Schmittbuhl, Matthieu; Pannetier, Solange; Viriot, Laurent; Hanauer, André; Dollé, Pascal; Bloch-Zupan, Agnès

    2014-01-01

    Background The RSK2 gene is responsible for Coffin-Lowry syndrome, an X-linked dominant genetic disorder causing mental retardation, skeletal growth delays, with craniofacial and digital abnormalities typically associated with this syndrome. Craniofacial and dental anomalies encountered in this rare disease have been poorly characterized. Methodology/Principal Findings We examined, using X-Ray microtomographic analysis, the variable craniofacial dysmorphism and dental anomalies present in Rsk2 knockout mice, a model of Coffin-Lowry syndrome, as well as in triple Rsk1,2,3 knockout mutants. We report Rsk mutation produces surpernumerary teeth midline/mesial to the first molar. This highly penetrant phenotype recapitulates more ancestral tooth structures lost with evolution. Most likely this leads to a reduction of the maxillary diastema. Abnormalities of molar shape were generally restricted to the mesial part of both upper and lower first molars (M1). Expression analysis of the four Rsk genes (Rsk1, 2, 3 and 4) was performed at various stages of odontogenesis in wild-type (WT) mice. Rsk2 is expressed in the mesenchymal, neural crest-derived compartment, correlating with proliferative areas of the developing teeth. This is consistent with RSK2 functioning in cell cycle control and growth regulation, functions potentially responsible for severe dental phenotypes. To uncover molecular pathways involved in the etiology of these defects, we performed a comparative transcriptomic (DNA microarray) analysis of mandibular wild-type versus Rsk2-/Y molars. We further demonstrated a misregulation of several critical genes, using a Rsk2 shRNA knock-down strategy in molar tooth germs cultured in vitro. Conclusions This study reveals RSK2 regulates craniofacial development including tooth development and patterning via novel transcriptional targets. PMID:24416220

  1. In vivo bone strain and finite-element modeling of the craniofacial haft in catarrhine primates

    PubMed Central

    Ross, Callum F; Berthaume, Michael A; Dechow, Paul C; Iriarte-Diaz, Jose; Porro, Laura B; Richmond, Brian G; Spencer, Mark; Strait, David

    2011-01-01

    Hypotheses regarding patterns of stress, strain and deformation in the craniofacial skeleton are central to adaptive explanations for the evolution of primate craniofacial form. The complexity of craniofacial skeletal morphology makes it difficult to evaluate these hypotheses with in vivo bone strain data. In this paper, new in vivo bone strain data from the intraorbital surfaces of the supraorbital torus, postorbital bar and postorbital septum, the anterior surface of the postorbital bar, and the anterior root of the zygoma are combined with published data from the supraorbital region and zygomatic arch to evaluate the validity of a finite-element model (FEM) of a macaque cranium during mastication. The behavior of this model is then used to test hypotheses regarding the overall deformation regime in the craniofacial haft of macaques. This FEM constitutes a hypothesis regarding deformation of the facial skeleton during mastication. A simplified verbal description of the deformation regime in the macaque FEM is as follows. Inferior bending and twisting of the zygomatic arches about a rostrocaudal axis exerts inferolaterally directed tensile forces on the lateral orbital wall, bending the wall and the supraorbital torus in frontal planes and bending and shearing the infraorbital region and anterior zygoma root in frontal planes. Similar deformation regimes also characterize the crania of Homo and Gorilla under in vitro loading conditions and may be shared among extant catarrhines. Relatively high strain magnitudes in the anterior root of the zygoma suggest that the morphology of this region may be important for resisting forces generated during feeding. PMID:21105871

  2. Modular Skeletal Evolution in Sticklebacks Is Controlled by Additive and Clustered Quantitative Trait Loci

    PubMed Central

    Miller, Craig T.; Glazer, Andrew M.; Summers, Brian R.; Blackman, Benjamin K.; Norman, Andrew R.; Shapiro, Michael D.; Cole, Bonnie L.; Peichel, Catherine L.; Schluter, Dolph; Kingsley, David M.

    2014-01-01

    Understanding the genetic architecture of evolutionary change remains a long-standing goal in biology. In vertebrates, skeletal evolution has contributed greatly to adaptation in body form and function in response to changing ecological variables like diet and predation. Here we use genome-wide linkage mapping in threespine stickleback fish to investigate the genetic architecture of evolved changes in many armor and trophic traits. We identify >100 quantitative trait loci (QTL) controlling the pattern of serially repeating skeletal elements, including gill rakers, teeth, branchial bones, jaws, median fin spines, and vertebrae. We use this large collection of QTL to address long-standing questions about the anatomical specificity, genetic dominance, and genomic clustering of loci controlling skeletal differences in evolving populations. We find that most QTL (76%) that influence serially repeating skeletal elements have anatomically regional effects. In addition, most QTL (71%) have at least partially additive effects, regardless of whether the QTL controls evolved loss or gain of skeletal elements. Finally, many QTL with high LOD scores cluster on chromosomes 4, 20, and 21. These results identify a modular system that can control highly specific aspects of skeletal form. Because of the general additivity and genomic clustering of major QTL, concerted changes in both protective armor and trophic traits may occur when sticklebacks inherit either marine or freshwater alleles at linked or possible “supergene” regions of the stickleback genome. Further study of these regions will help identify the molecular basis of both modular and coordinated changes in the vertebrate skeleton. PMID:24652999

  3. Modular skeletal evolution in sticklebacks is controlled by additive and clustered quantitative trait Loci.

    PubMed

    Miller, Craig T; Glazer, Andrew M; Summers, Brian R; Blackman, Benjamin K; Norman, Andrew R; Shapiro, Michael D; Cole, Bonnie L; Peichel, Catherine L; Schluter, Dolph; Kingsley, David M

    2014-05-01

    Understanding the genetic architecture of evolutionary change remains a long-standing goal in biology. In vertebrates, skeletal evolution has contributed greatly to adaptation in body form and function in response to changing ecological variables like diet and predation. Here we use genome-wide linkage mapping in threespine stickleback fish to investigate the genetic architecture of evolved changes in many armor and trophic traits. We identify >100 quantitative trait loci (QTL) controlling the pattern of serially repeating skeletal elements, including gill rakers, teeth, branchial bones, jaws, median fin spines, and vertebrae. We use this large collection of QTL to address long-standing questions about the anatomical specificity, genetic dominance, and genomic clustering of loci controlling skeletal differences in evolving populations. We find that most QTL (76%) that influence serially repeating skeletal elements have anatomically regional effects. In addition, most QTL (71%) have at least partially additive effects, regardless of whether the QTL controls evolved loss or gain of skeletal elements. Finally, many QTL with high LOD scores cluster on chromosomes 4, 20, and 21. These results identify a modular system that can control highly specific aspects of skeletal form. Because of the general additivity and genomic clustering of major QTL, concerted changes in both protective armor and trophic traits may occur when sticklebacks inherit either marine or freshwater alleles at linked or possible "supergene" regions of the stickleback genome. Further study of these regions will help identify the molecular basis of both modular and coordinated changes in the vertebrate skeleton. PMID:24652999

  4. Growth Hormone and Craniofacial Tissues. An update

    PubMed Central

    Litsas, George

    2015-01-01

    Growth hormone is an important regulator of bone homeostasis. In childhood, it determines the longitudinal bone growth, skeletal maturation, and acquisition of bone mass. In adulthood, it is necessary to maintain bone mass throughout life. Although an association between craniofacial and somatic development has been clearly established, craniofacial growth involves complex interactions of genes, hormones and environment. Moreover, as an anabolic hormone seems to have an important role in the regulation of bone remodeling, muscle enhancement and tooth development. In this paper the influence of growth hormone on oral tissues is reviewed. PMID:25674165

  5. Skeletal ossification and sequence heterochrony in xenarthran evolution.

    PubMed

    Hautier, Lionel; Weisbecker, Vera; Goswami, Anjali; Knight, Frank; Kardjilov, Nikolay; Asher, Robert J

    2011-01-01

    Previous analyses of how mammals vary in their ossification sequences have focused on monotremes, marsupials, and boreoeutherian placentals. Here, we focus on the sequence of cranial and postcranial ossification events during growth in the xenarthran skull and skeleton, including armadillos, anteaters, and sloths. We use two different methods to quantify sequence heterochrony: sequence analysis of variance (ANOVA) and event-paring/Parsimov. Our results indicate that Parsimov is conservative and does not detect clear heterochronic shifts between xenarthran and boreoeutherian placentals. Sequence-ANOVA performs better, but both methods exhibit sensitivity to the artifactual accumulation of ties. By controlling for ties and taking into account results that the methods have in common, our analysis suggests that xenarthrans significantly differ from other placentals by a late ossification of the sternum and an early ossification of the phalanges and pubis. We interpret these differences as showing that heterochrony plays a role in the skeletal development of xenarthrans, a change from previous studies that have emphasized the developmental homogeneity of the skeleton across placental mammals. PMID:23016907

  6. Forelimb skeletal morphology and flight mode evolution in pelecaniform birds.

    PubMed

    Simons, Erin L R

    2010-01-01

    The total length and mid-shaft diameters of wing elements of 50 species of pelecaniform birds were examined to investigate how forelimb skeletal morphology varies with body size and flight mode within this group. Pelecaniforms were assigned to flight mode categories based on primary habitual behaviors (soar, flap-glide, continuous flap). Allometric and discriminant function analyses were conducted on wing element variables in both historical (using independent contrasts) and ahistorical contexts. Results of this study indicate that when phylogenetic relationships are taken into account, only the length of the ulna scales with positive allometry, whereas all other variables exhibit isometry. These results differ from the ahistorical allometric analysis. Discriminant function analysis (DFA) significantly separated the flight mode groups (Wilk's lambda=0.002, p<0.00001), with only six individuals from two species (out of n=284) misclassified. Results of historical canonical variates analysis supported the ahistorical DFA and identified two carpometacarpal (CMC) variables as important for separating the flight mode groups: dorsoventral CMC diameter and total CMC length. The carpometacarpus is that portion of the forelimb skeleton that serves as the attachment point for the primary flight feathers, and thus, that portion of the airfoil surface that mediates detailed flight control. Its morphology, more than any other element, reflects differences in flight mode in pelecaniforms. Results of this study indicate that, in pelecaniforms, wing bones generally exhibit isometry (with the exception of the ulna) and do possess specific morphologies reflective of the demands associated with different types of aerial locomotor specialization. PMID:20071157

  7. Influence of congenital facial nerve palsy on craniofacial growth in craniofacial microsomia.

    PubMed

    Choi, Jaehoon; Park, Sang Woo; Kwon, Geun-Yong; Kim, Sang-Hyun; Hur, Ji An; Baek, Seung-Hak; Kim, Jae Chan; Choi, Tae Hyun; Kim, Sukwha

    2014-11-01

    Facial muscles are of major importance in human craniofacial growth and development. The purpose of our study was to investigate whether congenital facial nerve palsy influences craniofacial growth in craniofacial microsomia. Fifty-one patients with unilateral craniofacial microsomia and no history of craniofacial skeletal surgery whose radiographs were taken after craniofacial growth was complete were included in this study. These patients were divided into groups in which the facial nerve was involved or uninvolved. The authors evaluated a total of seven measurement items to analyze the midface and mandibular asymmetry. Twenty patients had facial nerve involvement, and 31 had no involvement. None of the measurement items revealed any significant differences between the facial nerve-involved group and the uninvolved group within the same modified Pruzansky grade. There was no correlation between the type of facial nerve involvement and the measurement items. In relationships among the measurement items within each group, maxillary asymmetry was indirectly correlated with mandibular asymmetry or midline deviation through the occlusal plane angle in the uninvolved groups. However, in the facial nerve-involved group, the relationships disappeared. When the correlations in the facial nerve-involved group were compared with those of the uninvolved group, the relationships in the uninvolved group appeared more significant than in the facial nerve-involved group. The loss of relationships between the upper and lower jaw in the facial nerve-involved group might have been caused by subtle changes, which occur in midfacial bones and in the mandible due to facial nerve palsy. The main limitation of our study is that aside from facial nerve palsy, craniofacial microsomia has many factors that can influence craniofacial growth, such as hypoplasia of the mandibular condyle and soft tissue deficiencies. PMID:25210001

  8. Skeletal muscle mass and quality: evolution of modern measurement concepts in the context of sarcopenia.

    PubMed

    Heymsfield, Steven B; Gonzalez, M Cristina; Lu, Jianhua; Jia, Guang; Zheng, Jolene

    2015-11-01

    The first reports of accurate skeletal muscle mass measurement in human subjects appeared at about the same time as introduction of the sarcopenia concept in the late 1980s. Since then these methods, computed tomography and MRI, have been used to gain insights into older (i.e. anthropometry and urinary markers) and more recently developed and refined methods (ultrasound, bioimpedance analysis and dual-energy X-ray absorptiometry) of quantifying regional and total body skeletal muscle mass. The objective of this review is to describe the evolution of these methods and their continued development in the context of sarcopenia evaluation and treatment. Advances in these technologies are described with a focus on additional quantifiable measures that relate to muscle composition and 'quality'. The integration of these collective evaluations with strength and physical performance indices is highlighted with linkages to evaluation of sarcopenia and the spectrum of related disorders such as sarcopenic obesity, cachexia and frailty. Our findings show that currently available methods and those in development are capable of non-invasively extending measures from solely 'mass' to quality evaluations that promise to close the gaps now recognised between skeletal muscle mass and muscle function, morbidity and mortality. As the largest tissue compartment in most adults, skeletal muscle mass and aspects of muscle composition can now be evaluated by a wide array of technologies that provide important new research and clinical opportunities aligned with the growing interest in the spectrum of conditions associated with sarcopenia. PMID:25851205

  9. Core issues in craniofacial myogenesis

    SciTech Connect

    Kelly, Robert G.

    2010-11-01

    Branchiomeric craniofacial muscles control feeding, breathing and facial expression. These muscles differ on multiple counts from all other skeletal muscles and originate in a progenitor cell population in pharyngeal mesoderm characterized by a common genetic program with an adjacent population of cardiac progenitor cells, the second heart field, that gives rise to much of the heart. The transcription factors and signaling molecules that trigger the myogenic program at sites of branchiomeric muscle formation are correspondingly distinct from those in somite-derived muscle progenitor cells. Here new insights into the regulatory hierarchies controlling branchiomeric myogenesis are discussed. Differences in embryological origin are reflected in the lineage, transcriptional program and proliferative and differentiation properties of branchiomeric muscle satellite cells. These recent findings have important implications for our understanding of the diverse myogenic strategies operative both in the embryo and adult and are of direct biomedical relevance to deciphering the mechanisms underlying the cause and progression of muscle restricted myopathies.

  10. Craniofacial Surgery Fellowship Websites.

    PubMed

    Silvestre, Jason; Agarwal, Divyansh; Taylor, Jesse A

    2016-06-01

    Applicants for craniofacial surgery fellowships utilize Internet-based resources like the San Francisco (SF) Match to manage applications. The purpose of this study was to evaluate the accessibility and content of craniofacial surgery fellowship websites (CSFWs). A list of available craniofacial surgery fellowships was compiled from directories of the American Society of Craniofacial Surgery (ACSFS) and SF Match. Accessibility of CSFWs was assessed via links from these directories and a Google search. Craniofacial surgery fellowship websites were evaluated on education and recruitment content and compared via program characteristics. Twenty-four of the 28 US-based craniofacial surgery fellowship programs had a CSFW (86%). The ACSFS and SF Match databases had limited CSFW accessibility, but a Google search revealed most CSFWs had the top search result (76%). In total, CSFWs provided an average of 39% of education and recruitment variables. While most programs provided fellowship program descriptions (96%), application links (96%), and faculty listings (83%), relatively few provided rotation schedules (13%), fellow selection process information (13%), or interview dates (8%). CSFW content did not vary by program location, faculty size, accreditation status, or institutional affiliations (P > 0.05). Craniofacial surgery fellowships often lack readily accessible websites from national program lists and have limited information for interested applicants. The consistent lack of online information across programs suggests future opportunities exist to improve these educational resources. PMID:27285892

  11. Craniofacial shape transition across the house mouse hybrid zone: implications for the genetic architecture and evolution of between-species differences.

    PubMed

    Pallares, Luisa F; Turner, Leslie M; Tautz, Diethard

    2016-06-01

    Craniofacial shape differences between taxa have often been linked to environmental adaptation, e.g., new food sources, or have been studied in the context of domestication. Evidence for the genetic basis of such phenotypic differences to date suggests that between-species as well as between-population variation has an oligogenic basis, i.e., few loci of large effect explain most of the variation. In mice, it has been shown that within-population craniofacial variation has a highly polygenic basis, but there are no data regarding the genetic basis of between-species differences in natural populations. Here, we address this question using a phenotype-focused approach. Using 3D geometric morphometrics, we phenotyped a panel of mice derived from a natural hybrid zone between Mus musculus domesticus and Mus mus musculus and quantify the transition of craniofacial shape along the hybridization gradient. We find a continuous shape transition along the hybridization gradient and unaltered developmental stability associated with hybridization. This suggests that the morphospace between the two subspecies is continuous despite reproductive isolation and strong barriers to gene flow. We show that quantitative changes in overall genome composition generate quantitative changes in craniofacial shape; this supports a highly polygenic basis for between-species craniofacial differences in the house mouse. We discuss our findings in the context of oligogenic versus polygenic models of the genetic architecture of morphological traits. PMID:27216933

  12. Evolution of the new vertebrate head by co-option of an ancient chordate skeletal tissue.

    PubMed

    Jandzik, David; Garnett, Aaron T; Square, Tyler A; Cattell, Maria V; Yu, Jr-Kai; Medeiros, Daniel M

    2015-02-26

    A defining feature of vertebrates (craniates) is a pronounced head that is supported and protected by a robust cellular endoskeleton. In the first vertebrates, this skeleton probably consisted of collagenous cellular cartilage, which forms the embryonic skeleton of all vertebrates and the adult skeleton of modern jawless and cartilaginous fish. In the head, most cellular cartilage is derived from a migratory cell population called the neural crest, which arises from the edges of the central nervous system. Because collagenous cellular cartilage and neural crest cells have not been described in invertebrates, the appearance of cellular cartilage derived from neural crest cells is considered a turning point in vertebrate evolution. Here we show that a tissue with many of the defining features of vertebrate cellular cartilage transiently forms in the larvae of the invertebrate chordate Branchiostoma floridae (Florida amphioxus). We also present evidence that during evolution, a key regulator of vertebrate cartilage development, SoxE, gained new cis-regulatory sequences that subsequently directed its novel expression in neural crest cells. Together, these results suggest that the origin of the vertebrate head skeleton did not depend on the evolution of a new skeletal tissue, as is commonly thought, but on the spread of this tissue throughout the head. We further propose that the evolution of cis-regulatory elements near an ancient regulator of cartilage differentiation was a major factor in the evolution of the vertebrate head skeleton. PMID:25487155

  13. Craniofacial malformation among endemic cretins in Ecuador.

    PubMed

    Israel, H; Johnson, G F; Fierro-Benitez, R

    1983-01-01

    Nearly 6% of the inhabitants of two villages in Ecuador are deaf-mute and mentally retarded cretins. These communities are situated in the Andean highlands where environmental and dietary stores of iodine are extremely scarce. Endemic goiter and cretinism are widespread, and 10% of the cretins are additionally burdened with dwarfism and facial dysmorphia. Those with obvious involvement of the skeletal system were selected in order to study the extent of craniofacial malformation. Their appearance is characterized by midface hypoplasia, a broad nose with a depressed bridge, and a conspicuous circumoral prominence. Radiographic evaluation demonstrates a vertical displacement of the cranial base with an associated upward tilt of the midface. The flattened frontal bone, reduced frontal sinus pneumatization, and diminutive nasal bones collectively create a backward sloping face. The defect in the craniofacial skeleton of these Ecuadorian cretins is characteristic, and it readily sets them apart from the dysmorphism of those cretins with myxedema. PMID:6874895

  14. The old and new face of craniofacial research: How animal models inform human craniofacial genetic and clinical data.

    PubMed

    Van Otterloo, Eric; Williams, Trevor; Artinger, Kristin Bruk

    2016-07-15

    The craniofacial skeletal structures that comprise the human head develop from multiple tissues that converge to form the bones and cartilage of the face. Because of their complex development and morphogenesis, many human birth defects arise due to disruptions in these cellular populations. Thus, determining how these structures normally develop is vital if we are to gain a deeper understanding of craniofacial birth defects and devise treatment and prevention options. In this review, we will focus on how animal model systems have been used historically and in an ongoing context to enhance our understanding of human craniofacial development. We do this by first highlighting "animal to man" approaches; that is, how animal models are being utilized to understand fundamental mechanisms of craniofacial development. We discuss emerging technologies, including high throughput sequencing and genome editing, and new animal repository resources, and how their application can revolutionize the future of animal models in craniofacial research. Secondly, we highlight "man to animal" approaches, including the current use of animal models to test the function of candidate human disease variants. Specifically, we outline a common workflow deployed after discovery of a potentially disease causing variant based on a select set of recent examples in which human mutations are investigated in vivo using animal models. Collectively, these topics will provide a pipeline for the use of animal models in understanding human craniofacial development and disease for clinical geneticist and basic researchers alike. PMID:26808208

  15. A gene expression map of the larval Xenopus laevis head reveals developmental changes underlying the evolution of new skeletal elements.

    PubMed

    Square, Tyler; Jandzik, David; Cattell, Maria; Coe, Alex; Doherty, Jacob; Medeiros, Daniel Meulemans

    2015-01-15

    The morphology of the vertebrate head skeleton is highly plastic, with the number, size, shape, and position of its components varying dramatically between groups. While this evolutionary flexibility has been key to vertebrate success, its developmental and genetic bases are poorly understood. The larval head skeleton of the frog Xenopus laevis possesses a unique combination of ancestral tetrapod features and anuran-specific novelties. We built a detailed gene expression map of the head mesenchyme in X. laevis during early larval development, focusing on transcription factor families with known functions in vertebrate head skeleton development. This map was then compared to homologous gene expression in zebrafish, mouse, and shark embryos to identify conserved and evolutionarily flexible aspects of vertebrate head skeleton development. While we observed broad conservation of gene expression between X. laevis and other gnathostomes, we also identified several divergent features that correlate to lineage-specific novelties. We noted a conspicuous change in dlx1/2 and emx2 expression in the second pharyngeal arch, presaging the differentiation of the reduced dorsal hyoid arch skeletal element typical of modern anamniote tetrapods. In the first pharyngeal arch we observed a shift in the expression of the joint inhibitor barx1, and new expression of the joint marker gdf5, shortly before skeletal differentiation. This suggests that the anuran-specific infrarostral cartilage evolved by partitioning of Meckel's cartilage with a new paired joint. Taken together, these comparisons support a model in which early patterning mechanisms divide the vertebrate head mesenchyme into a highly conserved set of skeletal precursor populations. While subtle changes in this early patterning system can affect skeletal element size, they do not appear to underlie the evolution of new joints or cartilages. In contrast, later expression of the genes that regulate skeletal element

  16. Applying Craniofacial Principles to Neurosurgical Exposures in Cerebrovascular Aneurysm Repair.

    PubMed

    Alperovich, Michael; Frey, Jordan D; Potts, Matthew B; Riina, Howard A; Staffenberg, David A

    2016-06-01

    The subspecialty of craniofacial surgery emphasizes skeletal exposure, preservation of critical structures, and provision of a superior cosmetic result. In recent decades, an emphasis on minimally invasive neurosurgical exposure has paved the way for increased collaboration between neurosurgeons and craniofacial surgeons.The 1990s saw the growing popularity of an eyebrow incision for orbital roof craniotomies in neurosurgery to address lesions in the anterior skull base. Disadvantages of this approach included conspicuous scarring above the brow skin, risk of injury to the frontal branch of the facial nerve, and numbness from supraorbital or supratrochlear nerve transection.A transpalpebral approach was first described in 2008 in the neurosurgical literature. An approach familiar to the craniofacial surgeon, transpalpebral exposure is used for zygomaticomaxillary complex fractures as well as aesthetic brow and periorbital surgery.In conjunction with neurosurgery, the authors have applied craniofacial principles to address the major pitfalls of the transpalpebral craniotomy. The authors present their patient series experience. Hopefully, in the future, other institutions will have increased collaboration between craniofacial surgeons and neurosurgeons. PMID:27192638

  17. Stem cells of the suture mesenchyme in craniofacial bone development, repair and regeneration

    PubMed Central

    Maruyama, Takamitsu; Jeong, Jaeim; Sheu, Tzong-Jen; Hsu, Wei

    2016-01-01

    The suture mesenchyme serves as a growth centre for calvarial morphogenesis and has been postulated to act as the niche for skeletal stem cells. Aberrant gene regulation causes suture dysmorphogenesis resulting in craniosynostosis, one of the most common craniofacial deformities. Owing to various limitations, especially the lack of suture stem cell isolation, reconstruction of large craniofacial bone defects remains highly challenging. Here we provide the first evidence for an Axin2-expressing stem cell population with long-term self-renewing, clonal expanding and differentiating abilities during calvarial development and homeostastic maintenance. These cells, which reside in the suture midline, contribute directly to injury repair and skeletal regeneration in a cell autonomous fashion. Our findings demonstrate their true identity as skeletal stem cells with innate capacities to replace the damaged skeleton in cell-based therapy, and permit further elucidation of the stem cell-mediated craniofacial skeletogenesis, leading to revealing the complex nature of congenital disease and regenerative medicine. PMID:26830436

  18. Craniofacial morphology of Homo floresiensis: description, taxonomic affinities, and evolutionary implication.

    PubMed

    Kaifu, Yousuke; Baba, Hisao; Sutikna, Thomas; Morwood, Michael J; Kubo, Daisuke; Saptomo, E Wahyu; Jatmiko; Awe, Rokhus Due; Djubiantono, Tony

    2011-12-01

    This paper describes in detail the external morphology of LB1/1, the nearly complete and only known cranium of Homo floresiensis. Comparisons were made with a large sample of early groups of the genus Homo to assess primitive, derived, and unique craniofacial traits of LB1 and discuss its evolution. Principal cranial shape differences between H. floresiensis and Homo sapiens are also explored metrically. The LB1 specimen exhibits a marked reductive trend in its facial skeleton, which is comparable to the H. sapiens condition and is probably associated with reduced masticatory stresses. However, LB1 is craniometrically different from H. sapiens showing an extremely small overall cranial size, and the combination of a primitive low and anteriorly narrow vault shape, a relatively prognathic face, a rounded oval foramen that is greatly separated anteriorly from the carotid canal/jugular foramen, and a unique, tall orbital shape. Whereas the neurocranium of LB1 is as small as that of some Homo habilis specimens, it exhibits laterally expanded parietals, a weak suprameatal crest, a moderately flexed occipital, a marked facial reduction, and many other derived features that characterize post-habilis Homo. Other craniofacial characteristics of LB1 include, for example, a relatively narrow frontal squama with flattened right and left sides, a marked frontal keel, posteriorly divergent temporal lines, a posteriorly flexed anteromedial corner of the mandibular fossa, a bulbous lateral end of the supraorbital torus, and a forward protruding maxillary body with a distinct infraorbital sulcus. LB1 is most similar to early Javanese Homo erectus from Sangiran and Trinil in these and other aspects. We conclude that the craniofacial morphology of LB1 is consistent with the hypothesis that H. floresiensis evolved from early Javanese H. erectus with dramatic island dwarfism. However, further field discoveries of early hominin skeletal remains from Flores and detailed analyses of the

  19. Craniofacial fibrous dysplasia

    PubMed Central

    Jhamb, Aakarsh; Mohanty, Sujata; Jhamb, Parul A

    2012-01-01

    Fibrous dysplasia can present clinically in varied forms which may appear as collision of different pathologic processes. We report a rare case of craniofacial fibrous dysplasia with coexisting epithelial lined cyst and superimposed osteomyelitis with sequestrum formation. Its clinical features and management with possible hypotheses are described along with the post operative course. Pertinent literature has been reviewed with emphasis on pathogenesis of this unique occurrence. PMID:23248490

  20. Craniofacial fibrous dysplasia.

    PubMed

    Ricalde, Pat; Magliocca, Kelly R; Lee, Janice S

    2012-08-01

    Despite recent advances in the understanding of the natural history and molecular abnormalities, many questions remain surrounding the progression and management of fibrous dysplasia (FD). In the absence of comorbidities, the expected behavior of craniofacial FD (CFD) is to be slow growing and without functional consequence. Understanding of the pathophysiologic mechanisms contributing to the various phenotypes of this condition, as well as the predictors of the different behaviors of FD lesions, must be improved. Long-term follow-up of patients with CFD is vital because spontaneous recovery is unlikely, and the course of disease can be unpredictable. PMID:22771278

  1. Fibronectin and craniofacial surgery.

    PubMed

    Al-Qattan, Mohammad M; AlShomer, Feras; Alqahtani, Abdullah; Alhadlg, Ahmad

    2014-12-01

    Fibronectin is an essential component of the extracellular matrix. The role of fibronectin in craniofacial surgery has not been previously reviewed. Fibronectin mediates bone differentiation and development of the skull. Studies have shown that normal development of the skull requires a specific pattern of expression around the epithelial-mesenchymal interface of the neurocranium. Fibronectin is also essential in mediating the migration of neural crest cells to form the facial skeleton. The calvaria of patients with Apert and Crouzon syndromes have an abnormally elevated collagen level. However, fibronectin levels are elevated in the former syndrome and decreased in the latter syndrome. The significance of this requires further research. Fibronectin gene expression is increased in port wine-derived fibroblasts in patients with Sturge-Weber syndrome. Normal palatogenesis also requires a specific pattern of expression of fibronectin around the maxillary process as well as the roof of the stomodeum, and several studies have linked the development of cleft lip/palate to an imbalance of fibronectin content of the extracellular matrix. Fibronectin mediates cell-to-cell attachment during repair of calvarial defects; hence, fibronectin has been used as a carrier for bone morphogenetic proteins to treat calvarial defects. Finally, fibronectin is now an essential component in stem cell technology related to craniofacial surgery. PMID:24322634

  2. The relationship between nasal obstruction and craniofacial growth.

    PubMed

    Smith, R M; Gonzalez, C

    1989-12-01

    The relationship between nasal obstruction and craniofacial growth is unclear. The literature indicates that upper-airway compromise produces chronic mouth breathing, especially in the dolichocephalic (narrow-faced) child. It has been shown that a greater tendency exists toward the skeletal pattern associated with long face syndrome in dolichocephalic head types. Therefore, it becomes difficult to assess whether the long face syndrome is a cause or an effect of increased nasal airway resistance. Nevertheless, animal studies have demonstrated the development of typical craniofacial anomalies in experimentally induced nasal obstruction. Some of these changes are also noted to be reversed by removing the nasal obstruction. Although much of the concern for nasal obstruction and abnormal dentofacial growth has centered around adenotonsillar hypertrophy, other causes for nasal obstruction should be sought. Allergic rhinitis and choanal atresia also should be considered. Longitudinal data are lacking to support conclusively abnormal dentofacial growth as an indication for surgical intervention. Available literature would suggest, however, that relief of nasal obstruction should be attempted in an effort to establish a patent airway and decrease the possibility of abnormal craniofacial development. The more information we gain about nasal obstruction and abnormal dentofacial development, the greater our diagnostic ability becomes. We can now incorporate information from a thorough nasal-oral examination with rhinomanometry and cephalometrics to provide a rational treatment plan for these children. Future directions should investigate genetic influences on craniofacial morphology and growth. PMID:2587086

  3. Regenerative Strategies for Craniofacial Disorders

    PubMed Central

    Garland, Catharine B.; Pomerantz, Jason H.

    2012-01-01

    Craniofacial disorders present markedly complicated problems in reconstruction because of the complex interactions of the multiple, simultaneously affected tissues. Regenerative medicine holds promise for new strategies to improve treatment of these disorders. This review addresses current areas of unmet need in craniofacial reconstruction and emphasizes how craniofacial tissues differ from their analogs elsewhere in the body. We present a problem-based approach to illustrate current treatment strategies for various craniofacial disorders, to highlight areas of need, and to suggest regenerative strategies for craniofacial bone, fat, muscle, nerve, and skin. For some tissues, current approaches offer excellent reconstructive solutions using autologous tissue or prosthetic materials. Thus, new “regenerative” approaches would need to offer major advantages in order to be adopted. In other tissues, the unmet need is great, and we suggest the greatest regenerative need is for muscle, skin, and nerve. The advent of composite facial tissue transplantation and the development of regenerative medicine are each likely to add important new paradigms to our treatment of craniofacial disorders. PMID:23248598

  4. [SGTB orthopedic regime to correct protrusive skeletal anomalies: a developmental path through evolution, renovation and innovation].

    PubMed

    Shen, Gang

    2015-10-01

    Sagittal-guidance Twin-block appliance (SGTB), an orthopedic therapy that has been widely implemented in orthodontic practice since it was introduced by the author a decade ago. This overview was aimed to clarify the fundamental mechanism of SGTB in correction of skeletal malocclusions, i.e., retraction of the maxilla triggered by the muscular force generated from mandibular forward positioning. This overview was also designed to summarize the evolutionary pathway through which SGTB regime originated and developed from removable, bonded and to the latest form of clear aligner SGTB. It was concluded that SGTB promised to be an efficient orthopedic approach to manage complicated and severe dentofacial anomalies with skeletal element. PMID:26598180

  5. Understanding Cleft and Craniofacial Team Care

    MedlinePlus

    ... Donor Spotlight Fundraising Ideas Vehicle Donation Volunteer Efforts Cleft Lip/Palate & Craniofacial Specialists in Your Area skip to submenu Parents & Individuals Cleft Lip/Palate & Craniofacial Specialists in Your Area Team Disclaimer ...

  6. An image processing system for locating craniofacial landmarks

    SciTech Connect

    Cardillo, J.; Sid-Ahmed, M.A. . Dept. of Electrical Engineering)

    1994-06-01

    A new automatic target recognition algorithm has been developed to extract craniofacial landmarks from lateral skull x-rays (cephalograms). The locations of these landmarks are used by orthodontists in what is referred to as a cephalometric evaluation. The evaluation assists in the diagnosis of anomalies and in the monitoring of treatments. The algorithm is based on gray-scale mathematical morphology. A statistical approach to training was used to overcome subtle differences in skeletal topographies. Decomposition was used to desensitize the algorithm to size differences. A system was trained to locate 20 landmarks. Tests on 40 x-rays showed an 85% recognition rate on average.

  7. Craniofacial norms in white adult males. Final report 1 Oct 80-30 Sep 83

    SciTech Connect

    Kapur, K.K.; Lestrel, P.

    1983-01-01

    The objective of this investigation was to establish clinical 'norms' of craniofacial skeletal orientation and the associated soft tissue facial profile for adult white males. Lateral and frontal cephalometric radiographs and study casts taken on 305 white males, with 28 or more teeth and 25-75 years of age, were used to develop these craniofacial standards. The goal of the research program has been to develop a computerized approach based upon dentofacial templates for the fabrication of complete dentures and to define clinical standards that can be applied in assessing the prosthodontic and orthodontic treatment needs of adult patients.

  8. Biomaterials for Craniofacial Bone Engineering

    PubMed Central

    Tevlin, R.; McArdle, A.; Atashroo, D.; Walmsley, G.G.; Senarath-Yapa, K.; Zielins, E.R.; Paik, K.J.; Longaker, M.T.; Wan, D.C.

    2014-01-01

    Conditions such as congenital anomalies, cancers, and trauma can all result in devastating deficits of bone in the craniofacial skeleton. This can lead to significant alteration in function and appearance that may have significant implications for patients. In addition, large bone defects in this area can pose serious clinical dilemmas, which prove difficult to remedy, even with current gold standard surgical treatments. The craniofacial skeleton is complex and serves important functional demands. The necessity to develop new approaches for craniofacial reconstruction arises from the fact that traditional therapeutic modalities, such as autologous bone grafting, present myriad limitations and carry with them the potential for significant complications. While the optimal bone construct for tissue regeneration remains to be elucidated, much progress has been made in the past decade. Advances in tissue engineering have led to innovative scaffold design, complemented by progress in the understanding of stem cell–based therapy and growth factor enhancement of the healing cascade. This review focuses on the role of biomaterials for craniofacial bone engineering, highlighting key advances in scaffold design and development. PMID:25139365

  9. Bone Grafts in Craniofacial Surgery

    PubMed Central

    Elsalanty, Mohammed E.; Genecov, David G.

    2009-01-01

    Reconstruction of cranial and maxillofacial defects is a challenging task. The standard reconstruction method has been bone grafting. In this review, we shall describe the biological principles of bone graft healing, as pertinent to craniofacial reconstruction. Different types and sources of bone grafts will be discussed, as well as new methods of bone defect reconstruction. PMID:22110806

  10. CRANIAL NEURAL CREST CELLS ON THE MOVE: THEIR ROLES IN CRANIOFACIAL DEVELOPMENT

    PubMed Central

    Cordero, Dwight R.; Brugmann, Samantha; Chu, Yvonne; Bajpai, Ruchi; Jame, Maryam; Helms, Jill A.

    2010-01-01

    The craniofacial region is assembled through the active migration of cells and the rearrangement and sculpting of facial prominences and pharyngeal arches, which consequently make it particularly susceptible to a large number of birth defects. Genetic, molecular, and cellular processes must be temporally and spatially regulated to culminate in the three-dimension structures of the face. The starting constituent for the majority of skeletal and connective tissues in the face is a pluripotent population of cells, the cranial neural crest cells (NCCs). In this review we discuss the newest scientific findings in the development of the craniofacial complex as related to NCCs. Furthermore, we present recent findings on NCC diseases called neurocristopathies and, in doing so, provide clinicians with new tools for understanding a growing number of craniofacial genetic disorders. PMID:21271641

  11. Cranial neural crest cells on the move: their roles in craniofacial development.

    PubMed

    Cordero, Dwight R; Brugmann, Samantha; Chu, Yvonne; Bajpai, Ruchi; Jame, Maryam; Helms, Jill A

    2011-02-01

    The craniofacial region is assembled through the active migration of cells and the rearrangement and sculpting of facial prominences and pharyngeal arches, which consequently make it particularly susceptible to a large number of birth defects. Genetic, molecular, and cellular processes must be temporally and spatially regulated to culminate in the three-dimension structures of the face. The starting constituent for the majority of skeletal and connective tissues in the face is a pluripotent population of cells, the cranial neural crest cells (NCCs). In this review we discuss the newest scientific findings in the development of the craniofacial complex as related to NCCs. Furthermore, we present recent findings on NCC diseases called neurocristopathies and, in doing so, provide clinicians with new tools for understanding a growing number of craniofacial genetic disorders. PMID:21271641

  12. Incremental evolution of the neural crest, neural crest cells and neural crest-derived skeletal tissues

    PubMed Central

    Hall, Brian K; Gillis, J Andrew

    2013-01-01

    Urochordates (ascidians) have recently supplanted cephalochordates (amphioxus) as the extant sister taxon of vertebrates. Given that urochordates possess migratory cells that have been classified as ‘neural crest-like’– and that cephalochordates lack such cells – this phylogenetic hypothesis may have significant implications with respect to the origin of the neural crest and neural crest-derived skeletal tissues in vertebrates. We present an overview of the genes and gene regulatory network associated with specification of the neural crest in vertebrates. We then use these molecular data – alongside cell behaviour, cell fate and embryonic context – to assess putative antecedents (latent homologues) of the neural crest or neural crest cells in ascidians and cephalochordates. Ascidian migratory mesenchymal cells – non-pigment-forming trunk lateral line cells and pigment-forming ‘neural crest-like cells’ (NCLC) – are unlikely latent neural crest cell homologues. Rather, Snail-expressing cells at the neural plate of border of urochordates and cephalochordates likely represent the extent of neural crest elaboration in non-vertebrate chordates. We also review evidence for the evolutionary origin of two neural crest-derived skeletal tissues – cartilage and dentine. Dentine is a bona fide vertebrate novelty, and dentine-secreting odontoblasts represent a cell type that is exclusively derived from the neural crest. Cartilage, on the other hand, likely has a much deeper origin within the Metazoa. The mesodermally derived cellular cartilages of some protostome invertebrates are much more similar to vertebrate cartilage than is the acellular ‘cartilage-like’ tissue in cephalochordate pharyngeal arches. Cartilage, therefore, is not a vertebrate novelty, and a well-developed chondrogenic program was most likely co-opted from mesoderm to the neural crest along the vertebrate stem. We conclude that the neural crest is a vertebrate novelty, but that neural

  13. Stem cells, growth factors and scaffolds in craniofacial regenerative medicine

    PubMed Central

    Tollemar, Viktor; Collier, Zach J.; Mohammed, Maryam K.; Lee, Michael J.; Ameer, Guillermo A.; Reid, Russell R.

    2015-01-01

    Current reconstructive approaches to large craniofacial skeletal defects are often complicated and challenging. Critical-sized defects are unable to heal via natural regenerative processes and require surgical intervention, traditionally involving autologous bone (mainly in the form of nonvascularized grafts) or alloplasts. Autologous bone grafts remain the gold standard of care in spite of the associated risk of donor site morbidity. Tissue engineering approaches represent a promising alternative that would serve to facilitate bone regeneration even in large craniofacial skeletal defects. This strategy has been tested in a myriad of iterations by utilizing a variety of osteoconductive scaffold materials, osteoblastic stem cells, as well as osteoinductive growth factors and small molecules. One of the major challenges facing tissue engineers is creating a scaffold fulfilling the properties necessary for controlled bone regeneration. These properties include osteoconduction, osetoinduction, biocompatibility, biodegradability, vascularization, and progenitor cell retention. This review will provide an overview of how optimization of the aforementioned scaffold parameters facilitates bone regenerative capabilities as well as a discussion of common osteoconductive scaffold materials. PMID:27239485

  14. Creation of three-dimensional craniofacial standards from CBCT images

    NASA Astrophysics Data System (ADS)

    Subramanyan, Krishna; Palomo, Martin; Hans, Mark

    2006-03-01

    Low-dose three-dimensional Cone Beam Computed Tomography (CBCT) is becoming increasingly popular in the clinical practice of dental medicine. Two-dimensional Bolton Standards of dentofacial development are routinely used to identify deviations from normal craniofacial anatomy. With the advent of CBCT three dimensional imaging, we propose a set of methods to extend these 2D Bolton Standards to anatomically correct surface based 3D standards to allow analysis of morphometric changes seen in craniofacial complex. To create 3D surface standards, we have implemented series of steps. 1) Converting bi-plane 2D tracings into set of splines 2) Converting the 2D splines curves from bi-plane projection into 3D space curves 3) Creating labeled template of facial and skeletal shapes and 4) Creating 3D average surface Bolton standards. We have used datasets from patients scanned with Hitachi MercuRay CBCT scanner providing high resolution and isotropic CT volume images, digitized Bolton Standards from age 3 to 18 years of lateral and frontal male, female and average tracings and converted them into facial and skeletal 3D space curves. This new 3D standard will help in assessing shape variations due to aging in young population and provide reference to correct facial anomalies in dental medicine.

  15. First molar health status in different craniofacial relationships

    PubMed Central

    Linjawi, Amal I

    2016-01-01

    Objective To investigate the association between the health status of permanent first molars and different craniofacial relationships among adolescents. Study design This is a retrospective study on patients’ records aged 11–15 years. Sex, skeletal relationship, vertical growth pattern, malocclusion, overjet, and overbite were assessed. The health status of permanent first molars was recorded from the orthopantomograms and intraoral photographs as “sound” and “not sound”. Chi-square, Mann–Whitney U and Kruskal–Wallis tests, and Pearson’s correlation coefficient were used to analyze and correlate the assessed variables. Significance level was set at P<0.05. Results A total of 210 records were evaluated; 81 were male, 68 had Class I and 91 had Class II skeletal relationships. More than half of the subjects had normal (n=67) to moderate deep bite (n=72); normal (n=91), moderately increased (n=54), to severely increased (n=50) overjet; and Class I (n=106) and Class II division 1 (n=75) malocclusion. Significant differences were found in the health status of the permanent first molars with respect to sex (P=0.034), vertical growth pattern (P=0.01), and overbite (P=0.047). Strong correlations were only found between the health status of the permanent first molars and the following variables: sex (P=0.036) and vertical growth pattern (P=0.004). Significant correlation was further found between the upper left first molar health status and sex (P=0.019) and the lower right first molar health status and the vertical growth pattern (P=0.001). No significant association was found with the anteroposterior craniofacial relationships (P>0.05). Conclusion Sex difference and vertical growth patterns were found to be potential predictors of the health status of the permanent first molars. No significant association was found with the anteroposterior craniofacial relationships. PMID:27462176

  16. Assessing Species-specific Contributions To Craniofacial Development Using Quail-duck Chimeras

    PubMed Central

    Fish, Jennifer L.; Schneider, Richard A.

    2014-01-01

    The generation of chimeric embryos is a widespread and powerful approach to study cell fates, tissue interactions, and species-specific contributions to the histological and morphological development of vertebrate embryos. In particular, the use of chimeric embryos has established the importance of neural crest in directing the species-specific morphology of the craniofacial complex. The method described herein utilizes two avian species, duck and quail, with remarkably different craniofacial morphology. This method greatly facilitates the investigation of molecular and cellular regulation of species-specific pattern in the craniofacial complex. Experiments in quail and duck chimeric embryos have already revealed neural crest-mediated tissue interactions and cell-autonomous behaviors that regulate species-specific pattern in the craniofacial skeleton, musculature, and integument. The great diversity of neural crest derivatives suggests significant potential for future applications of the quail-duck chimeric system to understanding vertebrate development, disease, and evolution. PMID:24962088

  17. A systematic review of the oral and craniofacial manifestations of cri du chat syndrome.

    PubMed

    Corcuera-Flores, José-Ramón; Casttellanos-Cosano, Lizett; Torres-Lagares, Daniel; Serrera-Figallo, María Ángeles; Rodríguez-Caballero, Ángela; Machuca-Portillo, Guillermo

    2016-07-01

    Cri du chat syndrome is an autosomal disorder. Because it affects few people in the population it is considered a rare disease, yet it is one of the most common autosomal chromosomal syndromes in humans. It entails pathognomonic alterations that affect the craniofacial and oral anatomy of patients. The aim of this study is to review these craniofacial and oral abnormalities in patients with Cri du chat syndrome. The PubMed Medline database was searched using two different strategies. First, we used "Dentistry" and "Cri du chat" as keywords; second, we used "Cri du chat" and "craniofacial." Seven articles in which the main orofacial and cranio-skeletal characteristics of patients with Cri du chat syndrome were described were selected according to the inclusion and exclusion criteria. Cri du Chat syndrome entails pathognomonic characteristics in the craniofacial area (epicanthus, short philtrum, and wide nasal bridge), the oral area (mandibular retrognathism and anterior open bite) and the cranial region (alterations at the cranial base angle and a small upper airway). However, more studies on larger samples are needed to specify the orofacial and craniofacial characteristics of patients with Cri du chat syndrome more accurately. Clin. Anat. 29:555-560, 2016. © 2015 Wiley Periodicals, Inc. PMID:26457586

  18. Modes of Developmental Outgrowth and Shaping of a Craniofacial Bone in Zebrafish

    PubMed Central

    Kimmel, Charles B.; DeLaurier, April; Ullmann, Bonnie; Dowd, John; McFadden, Marcie

    2010-01-01

    The morphologies of individual bones are crucial for their functions within the skeleton, and vary markedly during evolution. Recent studies have begun to reveal the detailed molecular genetic pathways that underlie skeletal morphogenesis. On the other hand, understanding of the process of morphogenesis itself has not kept pace with the molecular work. We examined, through an extended period of development in zebrafish, how a prominent craniofacial bone, the opercle (Op), attains its adult morphology. Using high-resolution confocal imaging of the vitally stained Op in live larvae, we show that the bone initially appears as a simple linear spicule, or spur, with a characteristic position and orientation, and lined by osteoblasts that we visualize by transgenic labeling. The Op then undergoes a stereotyped sequence of shape transitions, most notably during the larval period occurring through three weeks postfertilization. New shapes arise, and the bone grows in size, as a consequence of anisotropic addition of new mineralized bone matrix along specific regions of the pre-existing bone surfaces. We find that two modes of matrix addition, spurs and veils, are primarily associated with change in shape, whereas a third mode, incremental banding, largely accounts for growth in size. Furthermore, morphometric analyses show that shape development and growth follow different trajectories, suggesting separate control of bone shape and size. New osteoblast arrangements are associated with new patterns of matrix outgrowth, and we propose that fine developmental regulation of osteoblast position is a critical determinant of the spatiotemporal pattern of morphogenesis. PMID:20221441

  19. Ecology and Caudal Skeletal Morphology in Birds: The Convergent Evolution of Pygostyle Shape in Underwater Foraging Taxa

    PubMed Central

    Felice, Ryan N.; O’Connor, Patrick M.

    2014-01-01

    Birds exhibit a specialized tail that serves as an integral part of the flight apparatus, supplementing the role of the wings in facilitating high performance aerial locomotion. The evolution of this function for the tail contributed to the diversification of birds by allowing them to utilize a wider range of flight behaviors and thus exploit a greater range of ecological niches. The shape of the wings and the tail feathers influence the aerodynamic properties of a bird. Accordingly, taxa that habitually utilize different flight behaviors are characterized by different flight apparatus morphologies. This study explores whether differences in flight behavior are also associated with variation in caudal vertebra and pygostyle morphology. Details of the tail skeleton were characterized in 51 Aequornithes and Charadriiformes species. Free caudal vertebral morphology was measured using linear metrics. Variation in pygostyle morphology was characterized using Elliptical Fourier Analysis, a geometric morphometric method for the analysis of outline shapes. Each taxon was categorized based on flight style (flap, flap-glide, dynamic soar, etc.) and foraging style (aerial, terrestrial, plunge dive, etc.). Phylogenetic MANOVAs and Flexible Discriminant Analyses were used to test whether caudal skeletal morphology can be used to predict flight behavior. Foraging style groups differ significantly in pygostyle shape, and pygostyle shape predicts foraging style with less than 4% misclassification error. Four distinct lineages of underwater foraging birds exhibit an elongate, straight pygostyle, whereas aerial and terrestrial birds are characterized by a short, dorsally deflected pygostyle. Convergent evolution of a common pygostyle phenotype in diving birds suggests that this morphology is related to the mechanical demands of using the tail as a rudder during underwater foraging. Thus, distinct locomotor behaviors influence not only feather attributes but also the underlying

  20. Craniofacial reconstruction following oncologic resection.

    PubMed

    Hanasono, Matthew M; Hofstede, Theresa M

    2013-01-01

    The ability to reliably reconstruct complex and sizable wounds has decreased the morbidity of skull base surgery substantially, preventing major complications and allowing treatment of tumors previously considered inoperable. Addressing facial nerve function with static and dynamic procedures as well as fabrication of craniofacial prostheses to replace delicate facial landmarks has further increased surgeons' ability to restore the appearance and function of the face. PMID:23174362

  1. National Institute of Dental and Craniofacial Research

    MedlinePlus

    ... and craniofacial health of our nation. Grants & Funding Funding Opportunity Announcements By Topic RFAs PAs See All Grants & Funding Application Forms and Deadlines Grant Application Forms Application ...

  2. The Ribosome Biogenesis Factor Nol11 Is Required for Optimal rDNA Transcription and Craniofacial Development in Xenopus

    PubMed Central

    Griffin, John N.; Sondalle, Samuel B.; del Viso, Florencia; Baserga, Susan J.; Khokha, Mustafa K.

    2015-01-01

    The production of ribosomes is ubiquitous and fundamental to life. As such, it is surprising that defects in ribosome biogenesis underlie a growing number of symptomatically distinct inherited disorders, collectively called ribosomopathies. We previously determined that the nucleolar protein, NOL11, is essential for optimal pre-rRNA transcription and processing in human tissue culture cells. However, the role of NOL11 in the development of a multicellular organism remains unknown. Here, we reveal a critical function for NOL11 in vertebrate ribosome biogenesis and craniofacial development. Nol11 is strongly expressed in the developing cranial neural crest (CNC) of both amphibians and mammals, and knockdown of Xenopus nol11 results in impaired pre-rRNA transcription and processing, increased apoptosis, and abnormal development of the craniofacial cartilages. Inhibition of p53 rescues this skeletal phenotype, but not the underlying ribosome biogenesis defect, demonstrating an evolutionarily conserved control mechanism through which ribosome-impaired craniofacial cells are removed. Excessive activation of this mechanism impairs craniofacial development. Together, our findings reveal a novel requirement for Nol11 in craniofacial development, present the first frog model of a ribosomopathy, and provide further insight into the clinically important relationship between specific ribosome biogenesis proteins and craniofacial cell survival. PMID:25756904

  3. The ribosome biogenesis factor Nol11 is required for optimal rDNA transcription and craniofacial development in Xenopus.

    PubMed

    Griffin, John N; Sondalle, Samuel B; Del Viso, Florencia; Baserga, Susan J; Khokha, Mustafa K

    2015-03-01

    The production of ribosomes is ubiquitous and fundamental to life. As such, it is surprising that defects in ribosome biogenesis underlie a growing number of symptomatically distinct inherited disorders, collectively called ribosomopathies. We previously determined that the nucleolar protein, NOL11, is essential for optimal pre-rRNA transcription and processing in human tissue culture cells. However, the role of NOL11 in the development of a multicellular organism remains unknown. Here, we reveal a critical function for NOL11 in vertebrate ribosome biogenesis and craniofacial development. Nol11 is strongly expressed in the developing cranial neural crest (CNC) of both amphibians and mammals, and knockdown of Xenopus nol11 results in impaired pre-rRNA transcription and processing, increased apoptosis, and abnormal development of the craniofacial cartilages. Inhibition of p53 rescues this skeletal phenotype, but not the underlying ribosome biogenesis defect, demonstrating an evolutionarily conserved control mechanism through which ribosome-impaired craniofacial cells are removed. Excessive activation of this mechanism impairs craniofacial development. Together, our findings reveal a novel requirement for Nol11 in craniofacial development, present the first frog model of a ribosomopathy, and provide further insight into the clinically important relationship between specific ribosome biogenesis proteins and craniofacial cell survival. PMID:25756904

  4. Identification of novel craniofacial regulatory domains located far upstream of SOX9 and disrupted in Pierre Robin sequence

    PubMed Central

    Gordon, Christopher T.; Attanasio, Catia; Bhatia, Shipra; Benko, Sabina; Ansari, Morad; Tan, Tiong Y.; Munnich, Arnold; Pennacchio, Len A.; Abadie, Véronique; Temple, I. Karen; Goldenberg, Alice; van Heyningen, Veronica; Amiel, Jeanne; FitzPatrick, David; Kleinjan, Dirk A.; Visel, Axel; Lyonnet, Stanislas

    2015-01-01

    Mutations in the coding sequence of SOX9 cause campomelic dysplasia (CD), a disorder of skeletal development associated with 46,XY disorders of sex development (DSDs). Translocations, deletions and duplications within a ~2 Mb region upstream of SOX9 can recapitulate the CD-DSD phenotype fully or partially, suggesting the existence of an unusually large cis-regulatory control region. Pierre Robin sequence (PRS) is a craniofacial disorder that is frequently an endophenotype of CD and a locus for isolated PRS at ~1.2-1.5 Mb upstream of SOX9 has been previously reported. The craniofacial regulatory potential within this locus, and within the greater genomic domain surrounding SOX9, remains poorly defined. We report two novel deletions upstream of SOX9 in families with PRS, allowing refinement of the regions harbouring candidate craniofacial regulatory elements. In parallel, ChIP-Seq for p300 binding sites in mouse craniofacial tissue led to the identification of several novel craniofacial enhancers at the SOX9 locus, which were validated in transgenic reporter mice and zebrafish. Notably, some of the functionally validated elements fall within the PRS deletions. These studies suggest that multiple non-coding elements contribute to the craniofacial regulation of SOX9 expression, and that their disruption results in PRS. PMID:24934569

  5. Skeletal development in sloths and the evolution of mammalian vertebral patterning.

    PubMed

    Hautier, Lionel; Weisbecker, Vera; Sánchez-Villagra, Marcelo R; Goswami, Anjali; Asher, Robert J

    2010-11-01

    Mammals show a very low level of variation in vertebral count, particularly in the neck. Phenotypes exhibited at various stages during the development of the axial skeleton may play a key role in testing mechanisms recently proposed to explain this conservatism. Here, we provide osteogenetic data that identify developmental criteria with which to recognize cervical vs. noncervical vertebrae in mammals. Except for sloths, all mammals show the late ossification of the caudal-most centra in the neck after other centra and neural arches. In sloths with 8-10 ribless neck vertebrae, the caudal-most neck centra ossify early, matching the pattern observed in cranial thoracic vertebrae of other mammals. Accordingly, we interpret the ribless neck vertebrae of three-toed sloths caudal to V7 as thoracic based on our developmental criterion. Applied to the unusual vertebral phenotype of long-necked sloths, these data support the interpretation that elements of the axial skeleton with origins from distinct mesodermal tissues have repatterned over the course of evolution. PMID:20956304

  6. Skeletal development in sloths and the evolution of mammalian vertebral patterning

    PubMed Central

    Hautier, Lionel; Weisbecker, Vera; Sánchez-Villagra, Marcelo R.; Goswami, Anjali; Asher, Robert J.

    2010-01-01

    Mammals show a very low level of variation in vertebral count, particularly in the neck. Phenotypes exhibited at various stages during the development of the axial skeleton may play a key role in testing mechanisms recently proposed to explain this conservatism. Here, we provide osteogenetic data that identify developmental criteria with which to recognize cervical vs. noncervical vertebrae in mammals. Except for sloths, all mammals show the late ossification of the caudal-most centra in the neck after other centra and neural arches. In sloths with 8–10 ribless neck vertebrae, the caudal-most neck centra ossify early, matching the pattern observed in cranial thoracic vertebrae of other mammals. Accordingly, we interpret the ribless neck vertebrae of three-toed sloths caudal to V7 as thoracic based on our developmental criterion. Applied to the unusual vertebral phenotype of long-necked sloths, these data support the interpretation that elements of the axial skeleton with origins from distinct mesodermal tissues have repatterned over the course of evolution. PMID:20956304

  7. Paget's disease with craniofacial and skeletal bone involvement.

    PubMed

    Rai, Narendra Prakash; Anekar, Jayaprasad; Mustafa, Shabil Mohamed; Devang Divakar, Darshan

    2016-01-01

    Paget's disease is a metabolic disorder of bone caused due to defect in the remodelling process and is very common in western countries but is very rare in Asians and Africans. It was first described by a British scientist Sir James Paget in 1877. It can be monostotic or polyostotic depending on the number of bones involved. It most commonly affects older people of more than 50 years. Disease involvement can be symptomatic or asymptomatic depending on the extent of the disease process. Diagnosis of Paget's disease can be made by raised serum alkaline phosphatase levels, radiological examination and by radioisotope bone scans. PMID:27587747

  8. Thymus, kidney and craniofacial abnormalities in Six 1 deficient mice.

    PubMed

    Laclef, Christine; Souil, Evelyne; Demignon, Josiane; Maire, Pascal

    2003-06-01

    Six genes are widely expressed during vertebrate embryogenesis, suggesting that they are implicated in diverse differentiation processes. To determine the functions of the Six1 gene, we constructed Six1-deficient mice by replacing its first exon by the beta-galactosidase gene. We have previously shown that mice lacking Six1 die at birth due to thoracic skeletal defects and severe muscle hypoplasia affecting most of the body muscles. Here, we report that Six1(-/-) neonates also lack a kidney and thymus, as well as displaying a strong disorganisation of craniofacial structures, namely the inner ear, the nasal cavity, the craniofacial skeleton, and the lacrimal and parotid glands. These organ defects can be correlated with Six1 expression in the embryonic primordium structures as revealed by X-Gal staining at different stages of embryogenesis. Thus, the fetal abnormalities of Six1(-/-) mice appear to result from the absence of the Six 1 homeoprotein during early stages of organogenesis. Interestingly, these Six1 defects are very similar to phenotypes caused by mutations of Eya 1, which are responsible for the BOR syndrome in humans. Close comparison of Six1 and Eya 1 deficient mice strongly suggests a functional link between these two factors. Pax gene mutations also lead to comparable phenotypes, suggesting that a regulatory network including the Pax, Six and Eya genes is required for several types of organogenesis in mammals. PMID:12834866

  9. Clinical guidelines for the management of craniofacial fibrous dysplasia

    PubMed Central

    2012-01-01

    Fibrous dysplasia (FD) is a non-malignant condition caused by post-zygotic, activating mutations of the GNAS gene that results in inhibition of the differentiation and proliferation of bone-forming stromal cells and leads to the replacement of normal bone and marrow by fibrous tissue and woven bone. The phenotype is variable and may be isolated to a single skeletal site or multiple sites and sometimes is associated with extraskeletal manifestations in the skin and/or endocrine organs (McCune-Albright syndrome). The clinical behavior and progression of FD may also vary, thereby making the management of this condition difficult with few established clinical guidelines. This paper provides a clinically-focused comprehensive description of craniofacial FD, its natural progression, the components of the diagnostic evaluation and the multi-disciplinary management, and considerations for future research. PMID:22640797

  10. Clinical guidelines for the management of craniofacial fibrous dysplasia.

    PubMed

    Lee, J S; FitzGibbon, E J; Chen, Y R; Kim, H J; Lustig, L R; Akintoye, S O; Collins, M T; Kaban, L B

    2012-05-24

    Fibrous dysplasia (FD) is a non-malignant condition caused by post-zygotic, activating mutations of the GNAS gene that results in inhibition of the differentiation and proliferation of bone-forming stromal cells and leads to the replacement of normal bone and marrow by fibrous tissue and woven bone. The phenotype is variable and may be isolated to a single skeletal site or multiple sites and sometimes is associated with extraskeletal manifestations in the skin and/or endocrine organs (McCune-Albright syndrome). The clinical behavior and progression of FD may also vary, thereby making the management of this condition difficult with few established clinical guidelines. This paper provides a clinically-focused comprehensive description of craniofacial FD, its natural progression, the components of the diagnostic evaluation and the multi-disciplinary management, and considerations for future research. PMID:22640797

  11. Functional coupling constrains craniofacial diversification in Lake Tanganyika cichlids.

    PubMed

    Tsuboi, Masahito; Gonzalez-Voyer, Alejandro; Kolm, Niclas

    2015-05-01

    Functional coupling, where a single morphological trait performs multiple functions, is a universal feature of organismal design. Theory suggests that functional coupling may constrain the rate of phenotypic evolution, yet empirical tests of this hypothesis are rare. In fish, the evolutionary transition from guarding the eggs on a sandy/rocky substrate (i.e. substrate guarding) to mouthbrooding introduces a novel function to the craniofacial system and offers an ideal opportunity to test the functional coupling hypothesis. Using a combination of geometric morphometrics and a recently developed phylogenetic comparative method, we found that head morphology evolution was 43% faster in substrate guarding species than in mouthbrooding species. Furthermore, for species in which females were solely responsible for mouthbrooding the males had a higher rate of head morphology evolution than in those with bi-parental mouthbrooding. Our results support the hypothesis that adaptations resulting in functional coupling constrain phenotypic evolution. PMID:25948565

  12. Biomimetic approaches to complex craniofacial defects.

    PubMed

    Teven, Chad M; Fisher, Sean; Ameer, Guillermo A; He, Tong-Chuan; Reid, Russell R

    2015-01-01

    The primary goals of craniofacial reconstruction include the restoration of the form, function, and facial esthetics, and in the case of pediatric patients, respect for craniofacial growth. The surgeon, however, faces several challenges when attempting a reconstructive cranioplasty. For that reason, craniofacial defect repair often requires sophisticated treatment strategies and multidisciplinary input. In the ideal situation, autologous tissue similar in structure and function to that which is missing can be utilized for repair. In the context of the craniofacial skeleton, autologous cranial bone, or secondarily rib, iliac crest, or scapular bone, is most favorable. Often, this option is limited by the finite supply of available bone. Therefore, alternative strategies to repair craniofacial defects are necessary. In the field of regenerative medicine, tissue engineering has emerged as a promising concept, and several methods of bone engineering are currently under investigation. A growth factor-based approach utilizing bone morphogenetic proteins (BMPs) has demonstrated stimulatory effects on cranial bone and defect repair. When combined with cell-based and matrix-based models, regenerative goals can be optimized. This manuscript intends to review recent investigations of tissue engineering models used for the repair of craniofacial defects with a focus on the role of BMPs, scaffold materials, and novel cell lines. When sufficient autologous bone is not available, safe and effective strategies to engineer bone would allow the surgeon to meet the reconstructive goals of the craniofacial skeleton. PMID:26389027

  13. Heritability of the Human Craniofacial Complex.

    PubMed

    Šešelj, Maja; Duren, Dana L; Sherwood, Richard J

    2015-09-01

    Quantifying normal variation and the genetic underpinnings of anatomical structures is one of the main goals of modern morphological studies. However, the extent of genetic contributions to normal variation in craniofacial morphology in humans is still unclear. The current study addresses this gap by investigating the genetic underpinnings of normal craniofacial morphology. The sample under investigation consists of 75 linear and angular measurements spanning the entire craniofacial complex, recorded from lateral cephalographs of 1,379 participants in the Fels Longitudinal Study. Heritabilities for each trait were estimated using SOLAR, a maximum-likelihood variance components approach utilizing all pedigree information for parameter estimation. Trait means and mean effects of the covariates age, sex, age(2) , sex × age, and sex × age(2) were simultaneously estimated in the analytic models. All traits of the craniofacial complex were significantly heritable. Heritability estimates ranged from 0.10 to 0.60, with the majority being moderate. It is important to note that we found similar ranges of heritability occurring across the different functional/developmental components of the craniofacial complex, the splanchnocranium, the basicranium, and the neurocranium. This suggests that traits from different regions of the craniofacial complex are of comparable utility for the purposes of population history and phylogeny reconstruction. At the same time, this genetic influence on craniofacial morphology signals a caution to researchers of nongenetic studies to consider the implications of this finding when selecting samples for study given their project design and goals. PMID:26097051

  14. Biomimetic approaches to complex craniofacial defects

    PubMed Central

    Teven, Chad M.; Fisher, Sean; Ameer, Guillermo A.; He, Tong-Chuan; Reid, Russell R.

    2015-01-01

    The primary goals of craniofacial reconstruction include the restoration of the form, function, and facial esthetics, and in the case of pediatric patients, respect for craniofacial growth. The surgeon, however, faces several challenges when attempting a reconstructive cranioplasty. For that reason, craniofacial defect repair often requires sophisticated treatment strategies and multidisciplinary input. In the ideal situation, autologous tissue similar in structure and function to that which is missing can be utilized for repair. In the context of the craniofacial skeleton, autologous cranial bone, or secondarily rib, iliac crest, or scapular bone, is most favorable. Often, this option is limited by the finite supply of available bone. Therefore, alternative strategies to repair craniofacial defects are necessary. In the field of regenerative medicine, tissue engineering has emerged as a promising concept, and several methods of bone engineering are currently under investigation. A growth factor-based approach utilizing bone morphogenetic proteins (BMPs) has demonstrated stimulatory effects on cranial bone and defect repair. When combined with cell-based and matrix-based models, regenerative goals can be optimized. This manuscript intends to review recent investigations of tissue engineering models used for the repair of craniofacial defects with a focus on the role of BMPs, scaffold materials, and novel cell lines. When sufficient autologous bone is not available, safe and effective strategies to engineer bone would allow the surgeon to meet the reconstructive goals of the craniofacial skeleton. PMID:26389027

  15. Advances in Bioprinting Technologies for Craniofacial Reconstruction.

    PubMed

    Visscher, Dafydd O; Farré-Guasch, Elisabet; Helder, Marco N; Gibbs, Susan; Forouzanfar, Tymour; van Zuijlen, Paul P; Wolff, Jan

    2016-09-01

    Recent developments in craniofacial reconstruction have shown important advances in both the materials and methods used. While autogenous tissue is still considered to be the gold standard for these reconstructions, the harvesting procedure remains tedious and in many cases causes significant donor site morbidity. These limitations have subsequently led to the development of less invasive techniques such as 3D bioprinting that could offer possibilities to manufacture patient-tailored bioactive tissue constructs for craniofacial reconstruction. Here, we discuss the current technological and (pre)clinical advances of 3D bioprinting for use in craniofacial reconstruction and highlight the challenges that need to be addressed in the coming years. PMID:27113634

  16. Stem Cells in Teeth and Craniofacial Bones.

    PubMed

    Zhao, H; Chai, Y

    2015-11-01

    Stem cells are remarkable, and stem cell-based tissue engineering is an emerging field of biomedical science aiming to restore damaged tissue or organs. In dentistry and reconstructive facial surgery, it is of great interest to restore lost teeth or craniofacial bone defects using stem cell-mediated therapy. In the craniofacial region, various stem cell populations have been identified with regeneration potential. In this review, we provide an overview of the current knowledge concerning the various types of tooth- and craniofacial bone-related stem cells and discuss their in vivo identities and regulating mechanisms. PMID:26350960

  17. Orthognathic Surgery in Craniofacial Microsomia: Treatment Algorithm

    PubMed Central

    Valladares, Salvador; Torrealba, Ramón; Nuñez, Marcelo; Uribe, Francisca

    2015-01-01

    Summary: Craniofacial microsomia is a broad term that covers a variety of craniofacial malformation conditions that are caused by alterations in the derivatives of the first and second pharyngeal arches. In general terms, diverse therapeutic alternatives are proposed according to the growth stage and the severity of the alteration. When craniofacial growth has concluded, conventional orthognathic surgery (Le Fort I osteotomy, bilateral sagittal split osteotomy, and genioplasty) provides good alternatives for MI and MIIA type cases. Reconstruction of the mandibular ramus and temporomandibular joint before orthognathic surgery is the indicated treatment for cases MIIB and MIII. The goal of this article is to establish a surgical treatment algorithm for orthognathic surgery on patients with craniofacial microsomia, analyzing the points that allow the ideal treatment for each patient to be chosen. PMID:25674375

  18. Integration of comprehensive 3D microCT and signaling analysis reveals differential regulatory mechanisms of craniofacial bone development.

    PubMed

    Ho, Thach-Vu; Iwata, Junichi; Ho, Hoang Anh; Grimes, Weston C; Park, Shery; Sanchez-Lara, Pedro A; Chai, Yang

    2015-04-15

    Growth factor signaling regulates tissue-tissue interactions to control organogenesis and tissue homeostasis. Specifically, transforming growth factor beta (TGFβ) signaling plays a crucial role in the development of cranial neural crest (CNC) cell-derived bone, and loss of Tgfbr2 in CNC cells results in craniofacial skeletal malformations. Our recent studies indicate that non-canonical TGFβ signaling is activated whereas canonical TGFβ signaling is compromised in the absence of Tgfbr2 (in Tgfbr2(fl/fl);Wnt1-Cre mice). A haploinsufficiency of Tgfbr1 (aka Alk5) (Tgfbr2(fl/fl);Wnt1-Cre;Alk5(fl/+)) largely rescues craniofacial deformities in Tgfbr2 mutant mice by reducing ectopic non-canonical TGFβ signaling. However, the relative involvement of canonical and non-canonical TGFβ signaling in regulating specific craniofacial bone formation remains unclear. We compared the size and volume of CNC-derived craniofacial bones (frontal bone, premaxilla, maxilla, palatine bone, and mandible) from E18.5 control, Tgfbr2(fl/fl);Wnt1-Cre, and Tgfbr2(fl/fl);Wnt1-Cre;Alk5(fl/+)mice. By analyzing three dimensional (3D) micro-computed tomography (microCT) images, we found that different craniofacial bones were restored to different degrees in Tgfbr2(fl/fl);Wnt1-Cre;Alk5(fl/+) mice. Our study provides comprehensive information on anatomical landmarks and the size and volume of each craniofacial bone, as well as insights into the extent that canonical and non-canonical TGFβ signaling cascades contribute to the formation of each CNC-derived bone. Our data will serve as an important resource for developmental biologists who are interested in craniofacial morphogenesis. PMID:25722190

  19. Craniofacial and Dental Development in Costello Syndrome

    PubMed Central

    Goodwin, Alice F.; Oberoi, Snehlata; Landan, Maya; Charles, Cyril; Massie, Jessica C.; Fairley, Cecilia; Rauen, Katherine A.; Klein, Ophir D.

    2014-01-01

    Costello syndrome (CS) is a RASopathy characterized by a wide range of cardiac, musculoskeletal, dermatological, and developmental abnormalities. The RASopathies are defined as a group of syndromes caused by activated Ras/mitogen-activated protein kinase (MAPK) signaling. Specifically, CS is caused by activating mutations in HRAS. Although receptor tyrosine kinase (RTK) signaling, which is upstream of Ras/MAPK, is known to play a critical role in craniofacial and dental development, the craniofacial and dental features of CS have not been systematically defined in a large group of individuals. In order to address this gap in our understanding and fully characterize the CS phenotype, we evaluated the craniofacial and dental phenotype in a large cohort (n=41) of CS individuals. We confirmed that the craniofacial features common in CS include macrocephaly, bitemporal narrowing, convex facial profile, full cheeks, and large mouth. Additionally, CS patients have a characteristic dental phenotype that includes malocclusion with anterior open bite and posterior crossbite, enamel hypo-mineralization, delayed tooth development and eruption, gingival hyperplasia, thickening of the alveolar ridge, and high palate. Comparison of the craniofacial and dental phenotype in CS with other RASopathies, such as cardio-facio-cutaneous syndrome (CFC), provides insight into the complexities of Ras/MAPK signaling in human craniofacial and dental development. PMID:24668879

  20. Craniofacial abnormalities in mice carrying a dominant interference mutation in type X collagen.

    PubMed

    Chung, K S; Jacenko, O; Boyle, P; Olsen, B R; Nishimura, I

    1997-04-01

    Type X collagen is a short, non-fibril forming collagen restricted to hypertrophic cartilage, and has been hypothesized to play a role in endochondral ossification. The purpose of the study was to investigate the consequences resulting from the interference of type X collagen function on the growth and development of the craniofacial skeleton through analysis of transgenic mice with a dominant interference mutation for type X collagen. The craniofacial tissues of 21-day-old transgenic mice were examined by: cephalometric and radiographic densitometry analyses, conventional histology, and immunohistochemistry using antibodies specific for either endogenous mouse type X collagen or the transgene product. Genotypically positive mutant mice showed moderate but statistically significant craniofacial skeletal abnormalities, including the underdevelopment of the chondrocranium and mandible, but no cleft palate. Mean radiographic optical densities of the mutant condylar cartilage and the subchondylar areas were 32% less than the corresponding areas of normal mandibles, while mean radiographic optical density measured at the incisor tooth point remained constant. Histologically, transgene-positive mice revealed compressed hypertrophic cartilage zones and reduced trabeculae in both the mandibular condyle and the synchondroses of the chondrocranium. In the normal condyle, mouse type X collagen was localized by the monospecific antibody against a synthetic rat type X collagen NC1 peptide throughout the hypertrophic cartilage layer; in the mutant condyle, immunoreactivity to endogenous type X collagen was only seen sporadically. The truncated type X collagen transgene product, identified with the monoclonal antibody against an epitope within the chick type X collagen NC2 domain, persisted in the lower hypertrophic cartilage layer and the primary spongiosa, rather than being removed by subsequent endochondral ossification. The data suggested that the expression of the chick type

  1. Fuz Regulates Craniofacial Development through Tissue Specific Responses to Signaling Factors

    PubMed Central

    Zhang, Zichao; Wlodarczyk, Bogdan J.; Niederreither, Karen; Venugopalan, Shankar; Florez, Sergio; Finnell, Richard H.; Amendt, Brad A.

    2011-01-01

    The planar cell polarity effector gene Fuz regulates ciliogenesis and Fuz loss of function studies reveal an array of embryonic phenotypes. However, cilia defects can affect many signaling pathways and, in humans, cilia defects underlie several craniofacial anomalies. To address this, we analyzed the craniofacial phenotype and signaling responses of the Fuz−/− mice. We demonstrate a unique role for Fuz in regulating both Hedgehog (Hh) and Wnt/β-catenin signaling during craniofacial development. Fuz expression first appears in the dorsal tissues and later in ventral tissues and craniofacial regions during embryonic development coincident with cilia development. The Fuz−/− mice exhibit severe craniofacial deformities including anophthalmia, agenesis of the tongue and incisors, a hypoplastic mandible, cleft palate, ossification/skeletal defects and hyperplastic malformed Meckel's cartilage. Hh signaling is down-regulated in the Fuz null mice, while canonical Wnt signaling is up-regulated revealing the antagonistic relationship of these two pathways. Meckel's cartilage is expanded in the Fuz−/− mice due to increased cell proliferation associated with the up-regulation of Wnt canonical target genes and decreased non-canonical pathway genes. Interestingly, cilia development was decreased in the mandible mesenchyme of Fuz null mice, suggesting that cilia may antagonize Wnt signaling in this tissue. Furthermore, expression of Fuz decreased expression of Wnt pathway genes as well as a Wnt-dependent reporter. Finally, chromatin IP experiments demonstrate that β-catenin/TCF-binding directly regulates Fuz expression. These data demonstrate a new model for coordination of Hh and Wnt signaling and reveal a Fuz-dependent negative feedback loop controlling Wnt/β-catenin signaling. PMID:21935430

  2. Classification and craniofacial features of gummy smile in adolescents.

    PubMed

    Wu, Hao; Lin, Jie; Zhou, Li; Bai, Ding

    2010-09-01

    Classification of gummy smile was tried first according to gingival exposure site during posed smile, then several items were measured on cephalometric radiograph to analyze the morphologic features in both sexes and further divided into subgroups. Two hundred twenty-eight adolescents with gingival display of more than 2 mm during smile were clustered according to gingival exposure site. Measurements of 18 pertinent items with great clinical concern or controversy in previous study in each groups were compared with corresponding references. Four distinctive types of gummy smile could be distinguished, and they exposed a continuous band, posterior parts, and one side or anterior part of upper gingiva, respectively. The type exposing a continuous band of upper gingiva took up the majority (200 cases, 88%) of all subjects and were chosen for further cephalometric analysis. Among the characteristic features of gummy smile, adolescents have skeletal class II relationship, vertical growth pattern, retrusive mandible, excessive anterior maxillary height, labially inclined upper incisors and upper lip, great overjet and overbite, and relatively short lip compared with anterior maxillary height. Skeletal class III relationship and horizontal growth pattern were absolutely absent. As a result, treatment planning should be adjusted according to the exposure site and craniofacial feature of each individual patient to obtain the best result. PMID:20856039

  3. The 50 Most Cited Papers in Craniofacial Anomalies and Craniofacial Surgery

    PubMed Central

    Joyce, Cormac W; Thomas, Sangeetha; Concannon, Elizabeth; Murray, Dylan

    2015-01-01

    Background Citation analysis is a recognized scientometric method of classifying cited articles according to the frequency of which they have been referenced. The total number of citations an article receives is considered to reflect it's significance among it's peers. Methods Until now, a bibliometric analysis has never been performed in the specialty of craniofacial anomalies and craniofacial surgery. This citation analysis generates an extensive list of the 50 most influential papers in this developing field. Journals specializing in craniofacial surgery, maxillofacial surgery, plastic surgery, neurosurgery, genetics and pediatrics were searched to demonstrate which articles have cultivated the specialty within the past 55 years. Results The results show an intriguing compilation of papers which outline the fundamental knowledge of craniofacial anomalies and the developments of surgical techniques to manage these patients. Conclusions This citation analysis provides a summation of the current most popular trends in craniofacial literature. These esteemed papers aid to direct our decision making today within this specialty. PMID:26430626

  4. Scales and dermal skeletal histology of an early bony fish Psarolepis romeri and their bearing on the evolution of rhombic scales and hard tissues.

    PubMed

    Qu, Qingming; Zhu, Min; Wang, Wei

    2013-01-01

    Recent discoveries of early bony fishes from the Silurian and earliest Devonian of South China (e.g. Psarolepis, Achoania, Meemannia, Styloichthys and Guiyu) have been crucial in understanding the origin and early diversification of the osteichthyans (bony fishes and tetrapods). All these early fishes, except Guiyu, have their dermal skeletal surface punctured by relatively large pore openings. However, among these early fishes little is known about scale morphology and dermal skeletal histology. Here we report new data about the scales and dermal skeletal histology of Psarolepis romeri, a taxon with important implications for studying the phylogeny of early gnathostomes and early osteichthyans. Seven subtypes of rhombic scales with similar histological composition and surface sculpture are referred to Psarolepis romeri. They are generally thick and show a faint antero-dorsal process and a broad peg-and-socket structure. In contrast to previously reported rhombic scales of osteichthyans, these scales bear a neck between crown and base as in acanthodian scales. Histologically, the crown is composed of several generations of odontodes and an irregular canal system connecting cylindrical pore cavities. Younger odontodes are deposited on older ones both superpositionally and areally. The bony tissues forming the keel of the scale are shown to be lamellar bone with plywood-like structure, whereas the other parts of the base are composed of pseudo-lamellar bone with parallel collagen fibers. The unique tissue combination in the keel (i.e., extrinsic Sharpey's fibers orthogonal to the intrinsic orthogonal sets of collagen fibers) has rarely been reported in the keel of other rhombic scales. The new data provide insights into the early evolution of rhombic (ganoid and cosmoid) scales in osteichthyans, and add to our knowledge of hard tissues of early vertebrates. PMID:23585902

  5. Scales and Dermal Skeletal Histology of an Early Bony Fish Psarolepis romeri and Their Bearing on the Evolution of Rhombic Scales and Hard Tissues

    PubMed Central

    Qu, Qingming; Zhu, Min; Wang, Wei

    2013-01-01

    Recent discoveries of early bony fishes from the Silurian and earliest Devonian of South China (e.g. Psarolepis, Achoania, Meemannia, Styloichthys and Guiyu) have been crucial in understanding the origin and early diversification of the osteichthyans (bony fishes and tetrapods). All these early fishes, except Guiyu, have their dermal skeletal surface punctured by relatively large pore openings. However, among these early fishes little is known about scale morphology and dermal skeletal histology. Here we report new data about the scales and dermal skeletal histology of Psarolepis romeri, a taxon with important implications for studying the phylogeny of early gnathostomes and early osteichthyans. Seven subtypes of rhombic scales with similar histological composition and surface sculpture are referred to Psarolepis romeri. They are generally thick and show a faint antero-dorsal process and a broad peg-and-socket structure. In contrast to previously reported rhombic scales of osteichthyans, these scales bear a neck between crown and base as in acanthodian scales. Histologically, the crown is composed of several generations of odontodes and an irregular canal system connecting cylindrical pore cavities. Younger odontodes are deposited on older ones both superpositionally and areally. The bony tissues forming the keel of the scale are shown to be lamellar bone with plywood-like structure, whereas the other parts of the base are composed of pseudo-lamellar bone with parallel collagen fibers. The unique tissue combination in the keel (i.e., extrinsic Sharpey's fibers orthogonal to the intrinsic orthogonal sets of collagen fibers) has rarely been reported in the keel of other rhombic scales. The new data provide insights into the early evolution of rhombic (ganoid and cosmoid) scales in osteichthyans, and add to our knowledge of hard tissues of early vertebrates. PMID:23585902

  6. Reciprocal influence of masticatory apparatus, craniofacial structure and whole body homeostasis.

    PubMed

    Lee, Yong-Keun; Moon, Hyung-Joo

    2012-12-01

    There are evidences that the evolution into Homo erectus was partially induced by masticatory muscular dystrophy caused by a gene mutation, which in turn increased brain capacity and led to bipedalism. It is generally accepted that the morphology and function of mammalian skull are partially controlled by epigenetic mechanisms. Archeologic evidences support that the masticatory apparatus have influenced the mechanical stress distribution in hominin skull, and consequently changed craniofacial morphology and function. Even after evolution into H. erectus, alterations in food properties by civilization and cultural preferences have caused modification of human masticatory pattern and accordingly craniofacial structure. Since there are evidences that prehuman and human masticatory apparatus has been influenced the craniofacial and whole body morphology and function, this apparatus in turn might influence whole body homeostasis. Plausible reciprocal influencing mechanisms of the masticatory apparatus on the whole body homeostasis might be (1) direct mechanical influence on the craniofacial structure, (2) distortion of cerebrospinal fluid circulation, and/or (3) several neural/humoral routes. Based on these backgrounds, the hypothesis of the present study is that the morphology and function of masticatory apparatus influence the whole body homeostasis and these interactions are reciprocal. Therefore, human masticatory apparatus, at the present time, should be kept in its physiological status to maintain the whole body homeostasis. We recommend basic and clinical approaches to confirm this hypothesis. PMID:22981594

  7. Craniofacial plasticity in ancient Peru.

    PubMed

    Stone, Jessica H; Chew, Kristen; Ross, Ann H; Verano, John W

    2015-01-01

    Numerous studies have utilized craniometric data to explore the roles of genetic diversity and environment in human cranial shape variation. Peru is a particularly interesting region to examine cranial variation due to the wide variety of high and low altitude ecological zones, which in combination with rugged terrain have created isolated populations with vastly different physiological adaptations. This study examines seven samples from throughout Peru in an effort to understand the contributions of environmental adaptation and genetic relatedness to craniofacial variation at a regional scale. Morphological variation was investigated using a canonical discriminant analysis and Mahalanobis D(2) analysis. Results indicate that all groups are significantly different from one another with the closest relationship between Yauyos and Jahuay, two sites that are located geographically close in central Peru but in very different ecozones. The relationship between latitude/longitude and face shape was also examined with a spatial autocorrelation analysis (Moran's I) using ArcMap and show that there is significant spatial patterning for facial measures and geographic location suggesting that there is an association between biological variation and geographic location. PMID:25807293

  8. Stature estimation from craniofacial anthropometry in Bangladeshi Garo adult females.

    PubMed

    Akhter, Z; Banu, L A; Alam, M M; Rahman, M F

    2012-07-01

    Estimation of stature is an important tool in forensic examination especially in unknown, highly decomposed, fragmentary and mutilated human remains. When the evidences are skeletal remains; forensic anthropology has put forward means to estimate the stature from the skeletal and even from fragmentary bones. Sometimes, craniofacial remains are brought in for forensic and postmortem examination. In such a situation, estimation of stature becomes equally important along with other parameters like age, sex, race, etc. Today, anthropometry plays an important role in industrial design, clothing design, ergonomics and architecture where statistical data about the distribution of body dimensions in the population are used to optimize products. It is well established that a single standard of craniofacial aesthetics is not appropriate for application to diverse racial and ethnic groups. Bangladesh is a country not only for the Bengalis; the country harbours many cultures and people of different races because of the colonial rules of the past regimes. Like other ethnic groups, the Garos (study subjects) have their own set of language, social structure, cultures and economic activities and religious values. In the above context, the present study was attempted to establish ethnic specific anthropometric data for the Bangladeshi Garo adult females. The study also attempted to find out the correlation of the craniofacial dimensions with stature and to determine multiplication factors. The study was an observational, cross-sectional and primarily descriptive in nature with some analytical components. The study was carried out with a total number of one hundred Garo adult females, aged between 25-45 years. Craniofacial dimension such as head circumference, head length, facial height from 'nasion' to 'gnathion', bizygomatic breadth and stature were measured using a measuring tape, spreading caliper, steel plate and steel tape and sliding caliper. The data were then statistically

  9. Fish is Fish: the use of experimental model species to reveal causes of skeletal diversity in evolution and disease

    PubMed Central

    Harris, M. P.; Henke, K.; Hawkins, M. B.; Witten, P. E.

    2014-01-01

    Summary Fishes are wonderfully diverse. This variety is a result of the ability of ray-finned fishes to adapt to a wide range of environments, and has made them more specious than the rest of vertebrates combined. With such diversity it is easy to dismiss comparisons between distantly related fishes in efforts to understand the biology of a particular fish species. However, shared ancestry and the conservation of developmental mechanisms, morphological features and physiology provide the ability to use comparative analyses between different organisms to understand mechanisms of development and physiology. The use of species that are amenable to experimental investigation provides tools to approach questions that would not be feasible in other ‘non-model’ organisms. For example, the use of small teleost fishes such as zebrafish and medaka has been powerful for analysis of gene function and mechanisms of disease in humans, including skeletal diseases. However, use of these fish to aid in understanding variation and disease in other fishes has been largely unexplored. This is especially evident in aquaculture research. Here we highlight the utility of these small laboratory fishes to study genetic and developmental factors that underlie skeletal malformations that occur under farming conditions. We highlight several areas in which model species can serve as a resource for identifying the causes of variation in economically important fish species as well as to assess strategies to alleviate the expression of the variant phenotypes in farmed fish. We focus on genetic causes of skeletal deformities in the zebrafish and medaka that closely resemble phenotypes observed both in farmed as well as natural populations of fishes. PMID:25221374

  10. Craniofacial characteristics of Croatian and Syrian populations.

    PubMed

    Grbesa, Durdica; Pezerović-Panijan, Ruzica; Kalaya, Mohamed Nadim; Gorsić, Irma; Cavcić, Anamarija; Zura, Nikolino; Berberović, Behija

    2007-12-01

    Craniofacial area is apart of the human body which undergoes the greatest changes during development and is characterized by uneven growth. External and internal factors affect the growth and development of craniofacial structures. They are responsible for the occurrence of specific craniofacial characteristics in different races or populations within the same race. The present study investigates the possible differences of the basic head and face shapes between the Croatian and Syrian populations. The sample included 400 subjects of both sexes aged 18-24 years and was divided into a Croatian and a Syrian group with 200 subjects each. Six variables defined according to Martin and Saller were measured by standard anthropometric instruments. The results of the study demonstrated statistically significant differences between our subjects in all variables except face width. The dolichocephalic head type and the mesoprosopic face type were predominant in the Croatian population, while the brachycephalic head type and the euryprosopic face type dominated in the Syrian population. PMID:18217470

  11. Development of the Sea Star Echinaster (Othilia) brasiliensis, with Inference on the Evolution of Development and Skeletal Plates in Asteroidea.

    PubMed

    Lopes, Elinia Medeiros; Ventura, Carlos Renato Rezende

    2016-02-01

    We describe the development and juvenile morphology of the sea star Echinaster (Othilia) brasiliensis in order to explore evolutionary developmental modes and skeletal homologies. This species produces large, buoyant eggs (0.6 ± 0.03 mm diameter), and has a typical lecithotrophic brachiolaria larva. The planktonic brachiolaria larva is formed 2-4 days after fertilization, when cilia cover the surface. Early juveniles are completely formed by 18 days of age. Initial growth is supported by maternal nutrients while the stomach continues to develop until 60 days after fertilization, when juveniles reach about 0.5 mm of radius length. The madreporite was observed 88 days after fertilization. In the youngest juvenile skeleton of E. (O.) brasiliensis, the madreporite and odontophore are homologous to those of other recent, non-paxillosid asteroids, and follow the Late Madreporic Mode. The emergence of plates related to the ambulacral system follows the Ocular Plate Rule. The development and juvenile skeletal morphology of this species are similar to those of the few other studied species in the genus Echinaster. This study corroborates the notion that the mode of development--including a short-lived lecithotrophic brachiolaria larva--in all Echinaster species shares a similar pattern that may be conserved throughout the evolutionary history of the group. PMID:26896175

  12. Craniofacial ontogeny in Centrosaurus apertus

    PubMed Central

    Tumarkin-Deratzian, Allison R.

    2014-01-01

    Centrosaurus apertus, a large bodied ceratopsid from the Late Cretaceous of North America, is one of the most common fossils recovered from the Belly River Group. This fossil record shows a wide diversity in morphology and size, with specimens ranging from putative juveniles to fully-grown individuals. The goal of this study was to reconstruct the ontogenetic changes that occur in the craniofacial skeleton of C. apertus through a quantitative cladistic analysis. Forty-seven cranial specimens were independently coded in separate data matrices for 80 hypothetical multistate growth characters and 130 hypothetical binary growth characters. Both analyses yielded the max-limit of 100,000 most parsimonious saved trees and the strict consensus collapsed into large polytomies. In order to reduce conflict resulting from missing data, fragmentary individuals were removed and the analyses were rerun. Among both the complete and the reduced data sets the multistate analyses recovered a shorter tree with a higher consistency index (CI) than the additive binary data sets. The arrangement within the trees shows a progression of specimens with a recurved nasal horn in the least mature individuals, followed by specimens with straight nasal horns in relatively more mature individuals, and finally specimens with procurved nasal horns in the most mature individuals. The most mature individuals are further characterized by the reduction of the cranial horn ornamentations in late growth stages, a trait that similarly occurs in the growth of other dinosaurs. Bone textural changes were found to be sufficient proxies for relative maturity in individuals that have not reached adult size. Additionally, frill length is congruent with relative maturity status and makes an acceptable proxy for ontogenetic status, especially in smaller individuals. In adult-sized individuals, the fusion of the epiparietals and episquamosals and the orientation of the nasal horn are the best indicators of relative

  13. Craniofacial ontogeny in Centrosaurus apertus.

    PubMed

    Frederickson, Joseph A; Tumarkin-Deratzian, Allison R

    2014-01-01

    Centrosaurus apertus, a large bodied ceratopsid from the Late Cretaceous of North America, is one of the most common fossils recovered from the Belly River Group. This fossil record shows a wide diversity in morphology and size, with specimens ranging from putative juveniles to fully-grown individuals. The goal of this study was to reconstruct the ontogenetic changes that occur in the craniofacial skeleton of C. apertus through a quantitative cladistic analysis. Forty-seven cranial specimens were independently coded in separate data matrices for 80 hypothetical multistate growth characters and 130 hypothetical binary growth characters. Both analyses yielded the max-limit of 100,000 most parsimonious saved trees and the strict consensus collapsed into large polytomies. In order to reduce conflict resulting from missing data, fragmentary individuals were removed and the analyses were rerun. Among both the complete and the reduced data sets the multistate analyses recovered a shorter tree with a higher consistency index (CI) than the additive binary data sets. The arrangement within the trees shows a progression of specimens with a recurved nasal horn in the least mature individuals, followed by specimens with straight nasal horns in relatively more mature individuals, and finally specimens with procurved nasal horns in the most mature individuals. The most mature individuals are further characterized by the reduction of the cranial horn ornamentations in late growth stages, a trait that similarly occurs in the growth of other dinosaurs. Bone textural changes were found to be sufficient proxies for relative maturity in individuals that have not reached adult size. Additionally, frill length is congruent with relative maturity status and makes an acceptable proxy for ontogenetic status, especially in smaller individuals. In adult-sized individuals, the fusion of the epiparietals and episquamosals and the orientation of the nasal horn are the best indicators of relative

  14. Craniofacial reconstruction using rational cubic ball curves.

    PubMed

    Majeed, Abdul; Mt Piah, Abd Rahni; Gobithaasan, R U; Yahya, Zainor Ridzuan

    2015-01-01

    This paper proposes the reconstruction of craniofacial fracture using rational cubic Ball curve. The idea of choosing Ball curve is based on its robustness of computing efficiency over Bezier curve. The main steps are conversion of Digital Imaging and Communications in Medicine (Dicom) images to binary images, boundary extraction and corner point detection, Ball curve fitting with genetic algorithm and final solution conversion to Dicom format. The last section illustrates a real case of craniofacial reconstruction using the proposed method which clearly indicates the applicability of this method. A Graphical User Interface (GUI) has also been developed for practical application. PMID:25880632

  15. Craniofacial Reconstruction Using Rational Cubic Ball Curves

    PubMed Central

    Majeed, Abdul; Mt Piah, Abd Rahni; Gobithaasan, R. U.; Yahya, Zainor Ridzuan

    2015-01-01

    This paper proposes the reconstruction of craniofacial fracture using rational cubic Ball curve. The idea of choosing Ball curve is based on its robustness of computing efficiency over Bezier curve. The main steps are conversion of Digital Imaging and Communications in Medicine (Dicom) images to binary images, boundary extraction and corner point detection, Ball curve fitting with genetic algorithm and final solution conversion to Dicom format. The last section illustrates a real case of craniofacial reconstruction using the proposed method which clearly indicates the applicability of this method. A Graphical User Interface (GUI) has also been developed for practical application. PMID:25880632

  16. Cranio-facial remodeling in domestic dogs is associated with changes in larynx position.

    PubMed

    Plotsky, Kyle; Rendall, Drew; Chase, Kevin; Riede, Tobias

    2016-06-01

    The hyo-laryngeal complex is a multi-segmented structure integrating the oral and pharyngeal cavities and thus a variety of critical functions related to airway control, feeding, and vocal communication. Currently, we lack a complete understanding of how the hyoid complex, and the functions it mediates, can also be affected by changes in surrounding cranio-facial dimensions. Here, we explore these relationships in a breed of domestic dog, the Portuguese Water Dog, which is characterized by strong cranio-facial variation. We used radiographic images of the upper body and head of 55 adult males and 51 adult females to obtain detailed measures of cranio-facial variation and hyoid anatomy. Principal components analysis revealed multiple orthogonal dimensions of cranio-facial variation, some of which were associated with significant differences in larynx position: the larynx occupied a more descended position in individuals with shorter, broader faces than in those with longer, narrower faces. We then tested the possibility that caudal displacement of the larynx in brachycephalic individuals might reflect a degree of tongue crowding resulting from facial shortening and reduction of oral and pharyngeal spaces. A cadaver sample was used to obtain detailed measurements of constituent bones of the hyoid skeleton and of the tongue body, and their relationships to cranio-facial size and shape and overall body size supported the tongue-crowding hypothesis. Considering the presence of descended larynges in numerous mammalian taxa, our findings establish an important precedent for the possibility that laryngeal descent can be initiated, and even sustained, in part in response to remodeling of the face and cranium for selective pressures unrelated to vocal production. These integrated changes could also have been involved in hominin evolution, where the different laryngeal positions in modern humans compared with nonhuman primates have been traditionally linked to the evolution

  17. In vivo impact of Dlx3 conditional inactivation in Neural Crest-Derived Craniofacial Bones

    PubMed Central

    Duverger, Olivier; Isaac, Juliane; Zah, Angela; Hwang, Joonsung; Berdal, Ariane; Lian, Jane B.; Morasso, Maria I.

    2012-01-01

    Mutations in DLX3 in humans lead to defects in craniofacial and appendicular bones, yet the in vivo activity related to Dlx3 function during normal skeletal development have not been fully elucidated. Here we used a conditional knockout approach to analyze the effects of neural crest deletion of Dlx3 on craniofacial bones development. At birth, mutant mice exhibit a normal overall positioning of the skull bones, but a change in the shape of the calvaria was observed. Molecular analysis of the genes affected in the frontal bones and mandibles from these mice identified several bone markers known to affect bone development, with a strong prediction for increased bone formation and mineralization in vivo. Interestingly, while a subset of these genes were similarly affected in frontal bones and mandibles (Sost, Mepe, Bglap, Alp, Ibsp, Agt), several genes, including Lect1 and Calca, were specifically affected in frontal bones. Consistent with these molecular alterations, cells isolated from the frontal bone of mutant mice exhibited increased differentiation and mineralization capacities ex vivo, supporting cell autonomous defects in neural crest cells. However, adult mutant animals exhibited decreased bone mineral density in both mandibles and calvaria, as well as a significant increase in bone porosity. Together, these observations suggest that mature osteoblasts in the adult respond to signals that regulate adult bone mass and remodeling. This study provides new downstream targets for Dlx3 in craniofacial bone, and gives additional evidence of the complex regulation of bone formation and homeostasis in the adult skeleton. PMID:22886599

  18. Sensitivity analysis of a validated subject-specific finite element model of the human craniofacial skeleton.

    PubMed

    Szwedowski, T D; Fialkov, J; Whyne, C M

    2011-01-01

    Developing a more complete understanding of the mechanical response of the craniofacial skeleton (CFS) to physiological loads is fundamental to improving treatment for traumatic injuries, reconstruction due to neoplasia, and deformities. Characterization of the biomechanics of the CFS is challenging due to its highly complex structure and heterogeneity, motivating the utilization of experimentally validated computational models. As such, the objective of this study was to develop, experimentally validate, and parametrically analyse a patient-specific finite element (FE) model of the CFS to elucidate a better understanding of the factors that are of intrinsic importance to the skeletal structural behaviour of the human CFS. An FE model of a cadaveric craniofacial skeleton was created from subject-specific computed tomography data. The model was validated based on bone strain measurements taken under simulated physiological-like loading through the masseter and temporalis muscles (which are responsible for the majority of craniofacial physiologic loading due to mastication). The baseline subject-specific model using locally defined cortical bone thicknesses produced the strongest correlation to the experimental data (r2 = 0.73). Large effects on strain patterns arising from small parametric changes in cortical thickness suggest that the very thin bony structures present in the CFS are crucial to characterizing the local load distribution in the CFS accurately. PMID:21381488

  19. In vivo impact of Dlx3 conditional inactivation in neural crest-derived craniofacial bones.

    PubMed

    Duverger, Olivier; Isaac, Juliane; Zah, Angela; Hwang, Joonsung; Berdal, Ariane; Lian, Jane B; Morasso, Maria I

    2013-03-01

    Mutations in DLX3 in humans lead to defects in craniofacial and appendicular bones, yet the in vivo activities related to Dlx3 function during normal skeletal development have not been fully elucidated. Here we used a conditional knockout approach to analyze the effects of neural crest deletion of Dlx3 on craniofacial bones development. At birth, mutant mice exhibit a normal overall positioning of the skull bones, but a change in the shape of the calvaria was observed. Molecular analysis of the genes affected in the frontal bones and mandibles from these mice identified several bone markers known to affect bone development, with a strong prediction for increased bone formation and mineralization in vivo. Interestingly, while a subset of these genes were similarly affected in frontal bones and mandibles (Sost, Mepe, Bglap, Alp, Ibsp, Agt), several genes, including Lect1 and Calca, were specifically affected in frontal bones. Consistent with these molecular alterations, cells isolated from the frontal bone of mutant mice exhibited increased differentiation and mineralization capacities ex vivo, supporting cell autonomous defects in neural crest cells. However, adult mutant animals exhibited decreased bone mineral density in both mandibles and calvaria, as well as a significant increase in bone porosity. Together, these observations suggest that mature osteoblasts in the adult respond to signals that regulate adult bone mass and remodeling. This study provides new downstream targets for Dlx3 in craniofacial bone, and gives additional evidence of the complex regulation of bone formation and homeostasis in the adult skeleton. PMID:22886599

  20. Skeletal radiology

    SciTech Connect

    Bowerman, J.W.

    1982-01-01

    The main emphasis of the chapter on skeletal radiology is CAT scanning and its use in the diagnosis of neoplasms. Other topics that are discussed include infections, arthritis, trauma, and metabolic and endocrine diseases as they relate to skeletal radiology. (KRM)

  1. Mouse Models of Rare Craniofacial Disorders.

    PubMed

    Achilleos, Annita; Trainor, Paul A

    2015-01-01

    A rare disease is defined as a condition that affects less than 1 in 2000 individuals. Currently more than 7000 rare diseases have been documented, and most are thought to be of genetic origin. Rare diseases primarily affect children, and congenital craniofacial syndromes and disorders constitute a significant proportion of rare diseases, with over 700 having been described to date. Modeling craniofacial disorders in animal models has been instrumental in uncovering the etiology and pathogenesis of numerous conditions and in some cases has even led to potential therapeutic avenues for their prevention. In this chapter, we focus primarily on two general classes of rare disorders, ribosomopathies and ciliopathies, and the surprising finding that the disruption of fundamental, global processes can result in tissue-specific craniofacial defects. In addition, we discuss recent advances in understanding the pathogenesis of an extremely rare and specific craniofacial condition known as syngnathia, based on the first mouse models for this condition. Approximately 1% of all babies are born with a minor or major developmental anomaly, and individuals suffering from rare diseases deserve the same quality of treatment and care and attention to their disease as other patients. PMID:26589934

  2. EARLY CRANIOFACIAL DEVELOPMENT: LIFE AMONG THE SIGNALS

    EPA Science Inventory

    Early Craniofacial Development: Life Among the Signals. Sid Hunter and Keith Ward. Reproductive Toxicology Division, NHEERL, US EPA, RTP, NC, 27711

    Haloacetic acids (HAA) are chemicals formed during drinking water disinfection and present in finished tap water. Exposure o...

  3. Injectable Biomaterials for Regenerating Complex Craniofacial Tissues**

    PubMed Central

    Kretlow, James D.; Young, Simon; Klouda, Leda; Wong, Mark; Mikos, Antonios G.

    2009-01-01

    Engineering complex tissues requires a precisely formulated combination of cells, spatiotemporally released bioactive factors, and a specialized scaffold support system. Injectable materials, particularly those delivered in aqueous solution, are considered ideal delivery vehicles for cells and bioactive factors and can also be delivered through minimally invasive methods and fill complex 3D shapes. In this review, we examine injectable materials that form scaffolds or networks capable of both replacing tissue function early after delivery and supporting tissue regeneration over a time period of weeks to months. The use of these materials for tissue engineering within the craniofacial complex is challenging but ideal as many highly specialized and functional tissues reside within a small volume in the craniofacial structures and the need for minimally invasive interventions is desirable due to aesthetic considerations. Current biomaterials and strategies used to treat craniofacial defects are examined, followed by a review of craniofacial tissue engineering, and finally an examination of current technologies used for injectable scaffold development and drug and cell delivery using these materials. PMID:19750143

  4. Psychosocial adjustment and craniofacial malformations in childhood.

    PubMed

    Pertschuk, M J; Whitaker, L A

    1985-02-01

    Forty-three children between the ages of 6 and 13 years with congenital facial anomalies underwent psychosocial evaluation prior to surgery. Also evaluated were healthy children matched to the craniofacial subjects by sex, age, intelligence, and economic background. Relative to this comparison group, the craniofacial children were found to have poorer self-concept, greater anxiety at the time of evaluation, and more introversion. Parents of the craniofacial children noted more frequent negative social encounters for their children and more hyperactive behavior at home. Teachers reported more problematic classroom behavior. Examination of these results revealed craniofacial malformations to be associated with psychosocial limitations rather than marked deficits. These children tended to function less well than the comparison children, but with few exceptions, they were not functioning in a psychosocially deviant range. Explanations for the observed circumscribed impact of facial deformity include the use of denial as a coping mechanism, possible diminished significance of appearance for younger children, and the restricted environment experienced by most of the subjects. It can be predicted that time would render these protective influences ineffective, so that adolescent and young adult patients could be at far greater psychosocial risk. PMID:3969404

  5. Bone Repair Cells for Craniofacial Regeneration

    PubMed Central

    Pagni, G; Kaigler, D; Rasperini, G; Avila-Ortiz, G; Bartel, R; Giannobile, WV

    2012-01-01

    Reconstruction of complex craniofacial deformities is a clinical challenge in situations of injury, congenital defects or disease. The use of cell-based therapies represents one of the most advanced methods for enhancing the regenerative response for craniofacial wound healing. Both Somatic and Stem Cells have been adopted in the treatment of complex osseous defects and advances have been made in finding the most adequate scaffold for the delivery of cell therapies in human regenerative medicine. As an example of such approaches for clinical application for craniofacial regeneration, Ixmyelocel-T or bone repair cells are a source of bone marrow derived stem and progenitor cells. They are produced through the use of single pass perfusion bioreactors for CD90+ mesenchymal stem cells and CD14+ monocyte/macrophage progenitor cells. The application of ixmyelocel-T has shown potential in the regeneration of muscular, vascular, nervous and osseous tissue. The purpose of this manuscript is to highlight cell therapies used to repair bony and soft tissue defects in the oral and craniofacial complex. The field at this point remains at an early stage, however this review will provide insights into the progress being made using cell therapies for eventual development into clinical practice. PMID:22433781

  6. Family Members as Participants on Craniofacial Teams.

    ERIC Educational Resources Information Center

    Andrews, James; Seaver, Earl; Stevens, George; Whiteley, Joseph

    1998-01-01

    Family members (N=83) who participated in professional team staffing concerning treatment plans for their child with a craniofacial difference (typically, cleft lip and/or palate) were surveyed. Ninety-seven percent of respondents said they would choose to meet with the team on their next visit to the clinic. The role of early interventionists on…

  7. Discrimination among adults with craniofacial conditions.

    PubMed

    Roberts, Rachel M

    2014-01-01

    The primary goal of this study was to establish the level of perceived discrimination experienced by adults with congenital craniofacial conditions in Australia and to examine predictors of discrimination. Specifically, this study tested whether social support mediates the relationship between discrimination and health. Adults (n = 93) who had been treated at the Australian Craniofacial Unit, Women's and Children's Hospital, Adelaide for congenital craniofacial conditions (not including cleft lip and/or palate) completed questionnaires examining satisfaction with life, quality of life, anxiety and depression, self-esteem, satisfaction with social support, and satisfaction with appearance. A substantial minority of adults with congenital craniofacial conditions reported that they experience discrimination almost every day in a range of areas. Higher reports of discrimination were related to older age, being male, and less education. Other factors related to higher discrimination included lower levels of satisfaction with life, self-esteem, satisfaction with appearance and mental quality of life, as well as higher levels of anxiety and depression. Social support partially mediated the relationship between discrimination and mental health outcomes. The current study shows that discrimination experiences continue into adulthood confirming the importance of ensuring patients are well supported both by psychosocial services as well as within their own social support networks. PMID:24240765

  8. The chromatin remodeling protein CHD7, mutated in CHARGE syndrome, is necessary for proper craniofacial and tracheal development

    PubMed Central

    Sperry, Ethan D.; Hurd, Elizabeth A.; Durham, Mark A.; Reamer, Elyse N.; Stein, Adam B.; Martin, Donna M.

    2014-01-01

    Background Heterozygous mutations in the chromatin remodeling gene CHD7 cause CHARGE syndrome, a developmental disorder with variable craniofacial dysmorphisms and respiratory difficulties. The molecular etiologies of these malformations are not well understood. Homozygous Chd7 null mice die by E11, whereas Chd7Gt/+ heterozygous null mice are a viable and excellent model of CHARGE. We explored skeletal phenotypes in Chd7Gt/+ and Chd7 conditional knockout mice, using Foxg1-Cre to delete Chd7 (Foxg1-CKO) in the developing eye, ear, nose, pharyngeal pouch, forebrain, and gut and Wnt1-Cre (Wnt1-CKO) to delete Chd7 in migrating neural crest cells. Results Foxg1-CKO mice exhibited postnatal respiratory distress and death, dysplasia of the eye, concha, and frontal bone, hypoplastic maxillary shelves and nasal epithelia, and reduced tracheal rings. Wnt1-CKO mice exhibited frontal and occipital bone dysplasia, hypoplasia of the maxillary shelves and mandible, and cleft palate. In contrast, heterozygous Chd7Gt/+ mice had apparently normal skeletal development. Conclusions Conditional deletion of Chd7 in ectodermal and endodermal derivatives (Foxg1-Cre) or migrating neural crest cells (Wnt1-Cre) results in varied and more severe craniofacial defects than in Chd7Gt/+ mice. These studies indicate that CHD7 has an important, dosage-dependent role in development of several different craniofacial tissues. PMID:24975120

  9. Age Related Changes in Craniofacial Morphology in GDF-8 (Myostatin) Deficient Mice

    PubMed Central

    Vecchione, Lisa; Miller, Jeffrey; Byron, Craig; Cooper, Gregory M.; Barbano, Timothy; Cray, James; Losee, Joseph E.; Hamrick, Mark W.; Sciote, James J.; Mooney, Mark P.

    2011-01-01

    It is well recognized that masticatory muscle function helps determine morphology, although the extent of function on final form is still debated. GDF-8 (myostatin), a transcription factor is a negative regulator of skeletal muscle growth. A recent study has shown that mice homozygous for the myostatin mutation had increased muscle mass and craniofacial dysmorphology in adulthood. However, it is unclear whether such dysmorphology is present at birth. This study examines the onset and relationship between hypermuscularity and craniofacial morphology in neonatal and adult mice with GDF-8 deficiency. Fifteen (8 wild-type and 7 GDF-8 −/−), 1 day old and 16 (9 wt and 7 GDF-8 −/−), 180 day old male CD-1 mice were used. Standardized radiographs were taken of each head, scanned, traced, and cephalometric landmarks identified. Significant mean differences were assessed using a group × age, two-way ANOVA. Myostatin-deficient mice had significantly (p<0.01) smaller body and masseter muscle weights and craniofacial skeletons at 1 day of age and significantly greater body and masseter muscle weights at 180 days of age compared to controls. Myostatin-deficient mice showed significantly (p<0.001) longer and “rocker-shaped” mandibles and shorter and wider crania compared to controls at 180 days. Significant correlations were noted between masseter muscle weight and all cephalometric measurements in 180 day old Myostatin-deficient mice. Results suggest in this mouse model, there may be both early systemic skeletal growth deficiencies and later compensatory changes from hypermuscularity. These findings reiterate the role that masticatory muscle function plays on the ontogeny of the cranial vault, base, and most notably the mandible. PMID:19899116

  10. The Nervous System Orchestrates and Integrates Craniofacial Development: A Review

    PubMed Central

    Adameyko, Igor; Fried, Kaj

    2016-01-01

    Development of a head is a dazzlingly complex process: a number of distinct cellular sources including cranial ecto- and endoderm, mesoderm and neural crest contribute to facial and other structures. In the head, an extremely fine-tuned developmental coordination of CNS, peripheral neural components, sensory organs and a musculo-skeletal apparatus occurs, which provides protection and functional integration. The face can to a large extent be considered as an assembly of sensory systems encased and functionally fused with appendages represented by jaws. Here we review how the developing brain, neurogenic placodes and peripheral nerves influence the morphogenesis of surrounding tissues as a part of various general integrative processes in the head. The mechanisms of this impact, as we understand it now, span from the targeted release of the morphogens necessary for shaping to providing a niche for cellular sources required in later development. In this review we also discuss the most recent findings and ideas related to how peripheral nerves and nerve-associated cells contribute to craniofacial development, including teeth, during the post- neural crest period and potentially in regeneration. PMID:26924989

  11. The Nervous System Orchestrates and Integrates Craniofacial Development: A Review.

    PubMed

    Adameyko, Igor; Fried, Kaj

    2016-01-01

    Development of a head is a dazzlingly complex process: a number of distinct cellular sources including cranial ecto- and endoderm, mesoderm and neural crest contribute to facial and other structures. In the head, an extremely fine-tuned developmental coordination of CNS, peripheral neural components, sensory organs and a musculo-skeletal apparatus occurs, which provides protection and functional integration. The face can to a large extent be considered as an assembly of sensory systems encased and functionally fused with appendages represented by jaws. Here we review how the developing brain, neurogenic placodes and peripheral nerves influence the morphogenesis of surrounding tissues as a part of various general integrative processes in the head. The mechanisms of this impact, as we understand it now, span from the targeted release of the morphogens necessary for shaping to providing a niche for cellular sources required in later development. In this review we also discuss the most recent findings and ideas related to how peripheral nerves and nerve-associated cells contribute to craniofacial development, including teeth, during the post- neural crest period and potentially in regeneration. PMID:26924989

  12. 75 FR 2150 - National Institute of Dental & Craniofacial Research; Notice of Closed Meetings

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-01-14

    ... HUMAN SERVICES National Institutes of Health National Institute of Dental & Craniofacial Research... personal privacy. Name of Committee: National Institute of Dental and Craniofacial Research Special... Review Branch, National Inst. of Dental & Craniofacial Research, NIH 6701 Democracy Blvd., Room 672,...

  13. 77 FR 71605 - National Institute of Dental & Craniofacial Research; Notice of Closed Meetings

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-12-03

    ... HUMAN SERVICES National Institutes of Health National Institute of Dental & Craniofacial Research... personal privacy. Name of Committee: National Institute of Dental and Craniofacial Research Special..., National Institute of Dental and Craniofacial Research, 6701 Democracy Blvd., Rm. 676, Bethesda, MD...

  14. 77 FR 8268 - National Institute of Dental & Craniofacial Research; Notice of Closed Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-02-14

    ... HUMAN SERVICES National Institutes of Health National Institute of Dental & Craniofacial Research... personal privacy. Name of Committee: National Institute of Dental and Craniofacial Research Special... Review Officer, Scientific Review Branch, National Institute of Dental and Craniofacial Research,...

  15. 77 FR 74676 - National Institute of Dental and Craniofacial Research; Notice of Closed Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-12-17

    ... HUMAN SERVICES National Institutes of Health National Institute of Dental and Craniofacial Research... personal privacy. Name of Committee: National Institute of Dental and Craniofacial Research Special... Branch, National Institute of Dental and Craniofacial Research, One Democracy Plaza, Room 670,...

  16. 78 FR 56902 - National Institute of Dental & Craniofacial Research; Notice of Closed Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-09-16

    ... HUMAN SERVICES National Institutes of Health National Institute of Dental & Craniofacial Research... personal privacy. Name of Committee: National Institute of Dental and Craniofacial Research Special..., Scientific Review Branch, National Institute of Dental and Craniofacial Research, One Democracy Plaza,...

  17. 75 FR 13562 - National Institute of Dental & Craniofacial Research; Notice of Closed Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-03-22

    ... HUMAN SERVICES National Institutes of Health National Institute of Dental & Craniofacial Research... Institute of Dental and Craniofacial Research. The meeting will be closed to the public as indicated below... National Institute of Dental & Craniofacial Research, including consideration of personnel...

  18. 77 FR 14816 - National Institute of Dental & Craniofacial Research; Notice of Closed Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-03-13

    ... HUMAN SERVICES National Institutes of Health National Institute of Dental & Craniofacial Research... Institute of Dental and Craniofacial Research. The meeting will be closed to the public as indicated below... National Institute of Dental & Craniofacial Research, including consideration of personnel...

  19. 77 FR 10539 - National Institute of Dental & Craniofacial Research; Notice of Closed Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-02-22

    ... HUMAN SERVICES National Institutes of Health National Institute of Dental & Craniofacial Research... personal privacy. Name of Committee: National Institute of Dental and Craniofacial Research Special... Scientific Review Branch, National Institute of Dental and Craniofacial, Research, 6701 Democracy Blvd.,...

  20. 76 FR 1444 - National Institute of Dental & Craniofacial Research; Notice of Closed Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-01-10

    ... HUMAN SERVICES National Institutes of Health National Institute of Dental & Craniofacial Research... personal privacy. Name of Committee: National Institute of Dental and Craniofacial Research Special... Dental and Craniofacial Research, National Insitutes of Health, 6701 Democracy Blvd, Room 664,...

  1. 75 FR 39547 - National Institute of Dental & Craniofacial Research; Notice of Closed Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-07-09

    ... HUMAN SERVICES National Institutes of Health National Institute of Dental & Craniofacial Research... personal privacy. Name of Committee: National Institute of Dental and Craniofacial Research Special... Review Branch, National Institute of Dental and Craniofacial Research, One Democracy Plaza, Room...

  2. 78 FR 36556 - National Institute of Dental and Craniofacial Research; Notice of Closed Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-06-18

    ... HUMAN SERVICES National Institutes of Health National Institute of Dental and Craniofacial Research... personal privacy. Name of Committee: National Institute of Dental and Craniofacial Research Special... Chief, 6701 Democracy Blvd., Rm. 662, National Institute of Dental &, Craniofacial Research,...

  3. 78 FR 28234 - National Institute of Dental and Craniofacial Research; Notice of Closed Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-05-14

    ... HUMAN SERVICES National Institutes of Health National Institute of Dental and Craniofacial Research... personal privacy. Name of Committee: National Institute of Dental and Craniofacial Research Special... of Dental and Craniofacial Research, National Institutes of Health, 6701 Democracy Blvd., Room...

  4. 75 FR 993 - National Institute of Dental & Craniofacial Research; Notice of Closed Meetings

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-01-07

    ... HUMAN SERVICES National Institutes of Health National Institute of Dental & Craniofacial Research... personal privacy. Name of Committee: National Institute of Dental and Craniofacial Research Special... Review Branch, National Inst of Dental & Craniofacial Research, NIH 6701 Democracy Blvd., Room 672,...

  5. 75 FR 4833 - National Institute of Dental & Craniofacial Research; Notice of Closed Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-01-29

    ... HUMAN SERVICES National Institutes of Health National Institute of Dental & Craniofacial Research... personal privacy. Name of Committee: National Institute of Dental and Craniofacial Research Special... Inst of Dental & Craniofacial Research, NIH 6701 Democracy Blvd, room 672, MSC 4878, Bethesda, md...

  6. 76 FR 80953 - National Institute of Dental & Craniofacial Research; Notice of Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-12-27

    ... HUMAN SERVICES National Institutes of Health National Institute of Dental & Craniofacial Research.... App.), notice is hereby given of a meeting of the National Advisory Dental and Craniofacial Research... personal privacy. Name of Committee: National Advisory Dental and Craniofacial Research Council....

  7. 78 FR 24762 - National Institute of Dental & Craniofacial Research; Notice of Closed Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-04-26

    ... HUMAN SERVICES National Institutes of Health National Institute of Dental & Craniofacial Research... Institute of Dental and Craniofacial Research. The meeting will be closed to the public as indicated below... NATIONAL INSTITUTE OF DENTAL & CRANIOFACIAL RESEARCH, including consideration of personnel...

  8. 77 FR 59202 - National Institute of Dental & Craniofacial Research; Notice of Closed Meetings

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-09-26

    ... HUMAN SERVICES National Institutes of Health National Institute of Dental & Craniofacial Research... personal privacy. Name of Committee: National Institute of Dental and Craniofacial Research Special... Branch, National Institute of Dental & Craniofacial Research, National Institutes of Health, 45 Center...

  9. 78 FR 39740 - National Institute of Dental & Craniofacial Research; Notice of Closed Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-07-02

    ... HUMAN SERVICES National Institutes of Health National Institute of Dental & Craniofacial Research... personal privacy. Name of Committee: National Institute of Dental and Craniofacial Research Special..., Scientific Review Branch, National Institute of Dental and Craniofacial Research, 6701 Democracy Blvd.,...

  10. 77 FR 40369 - National Institute of Dental & Craniofacial Research; Notice of Closed Meetings

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-07-09

    ... HUMAN SERVICES National Institutes of Health National Institute of Dental & Craniofacial Research... personal privacy. Name of Committee: National Institute of Dental and Craniofacial Research Special... Branch, National Institute of Dental and Craniofacial Research, 6701 Democracy Blvd., Rm. 676,...

  11. 77 FR 6812 - National Institute of Dental and Craniofacial Research, Notice of Closed Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-02-09

    ... HUMAN SERVICES National Institutes of Health National Institute of Dental and Craniofacial Research... personal privacy. Name of Committee: National Institute of Dental and Craniofacial Research Special... Review Officer, Scientific Review Branch, National Institute of Dental and Craniofacial Research,...

  12. 76 FR 66077 - National Institute of Dental & Craniofacial Research; Notice of Closed Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-10-25

    ... HUMAN SERVICES National Institutes of Health National Institute of Dental & Craniofacial Research... Institute of Dental and Craniofacial Research. The meeting will be closed to the public as indicated below... NATIONAL INSTITUTE OF DENTAL & CRANIOFACIAL RESEARCH, including consideration of personnel...

  13. 76 FR 20693 - National Institute of Dental & Craniofacial Research; Notice of Closed Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-04-13

    ... HUMAN SERVICES National Institutes of Health National Institute of Dental & Craniofacial Research... personal privacy. Name of Committee: National Institute of Dental and Craniofacial Research Special..., National Institute of Dental and Craniofacial Research, One Democracy Plaza, Room 670, Bethesda, MD...

  14. 75 FR 26762 - National Institute of Dental & Craniofacial Research; Notice of Closed Meetings

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-05-12

    ... HUMAN SERVICES National Institutes of Health National Institute of Dental & Craniofacial Research... personal privacy. ] Name of Committee: National Institute of Dental and Craniofacial Research Special..., National Inst of Dental & Craniofacial Research, National Institutes of Health, 6701 Democracy, Rm...

  15. 75 FR 58409 - National Institute of Dental & Craniofacial Research; Notice of Closed Meetings

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-09-24

    ... HUMAN SERVICES National Institutes of Health National Institute of Dental & Craniofacial Research... personal privacy. Name of Committee: National Institute of Dental and Craniofacial Research Special... Review Officer, Scientific Review Branch, National Institute of Dental and Craniofacial Research,...

  16. 76 FR 5184 - National Institute of Dental & Craniofacial Research; Notice of Closed Meetings

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-01-28

    ... HUMAN SERVICES National Institutes of Health National Institute of Dental & Craniofacial Research... personal privacy. Name of Committee: National Institute of Dental and Craniofacial Research Special..., Scientific Review Branch, National Institute of Dental and Craniofacial Research, 6701 Democracy Blvd.,...

  17. 75 FR 2146 - National Institute of Dental & Craniofacial Research; Notice of Closed Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-01-14

    ... HUMAN SERVICES National Institutes of Health National Institute of Dental & Craniofacial Research... personal privacy. Name of Committee: National Institute of Dental and Craniofacial Research Special..., Scientific Review Branch, National Institute of Dental and Craniofacial Research/NIH, 6701 Democracy...

  18. 75 FR 62553 - National Institute of Dental & Craniofacial Research; Notice of Closed Meetings

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-10-12

    ... HUMAN SERVICES National Institutes of Health National Institute of Dental & Craniofacial Research... personal privacy. Name of Committee: National Institute of Dental and Craniofacial Research Special... of Dental and Craniofacial Research, One Democracy Plaza, Room 670, Bethesda, MD 20892-4878,...

  19. 75 FR 58409 - National Institute of Dental & Craniofacial Research; Notice of Closed Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-09-24

    ... HUMAN SERVICES National Institutes of Health National Institute of Dental & Craniofacial Research... personal privacy. Name of Committee: National Institute of Dental and Craniofacial Research Special... Review Officer, Scientific Review Branch, ] National Inst of Dental & Craniofacial Research, NIH...

  20. 77 FR 10539 - National Institute of Dental & Craniofacial Research Notice of Closed Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-02-22

    ... HUMAN SERVICES National Institutes of Health National Institute of Dental & Craniofacial Research Notice... personal privacy. Name of Committee: National Institute of Dental and Craniofacial Research Special..., Ph.D., Scientific Review Officer, Natl Inst of Dental and Craniofacial Research, National...

  1. 75 FR 52537 - National Institute of Dental & Craniofacial Research; Notice of Closed Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-08-26

    ... HUMAN SERVICES National Institutes of Health National Institute of Dental & Craniofacial Research... personal privacy. Name of Committee: National Institute of Dental and Craniofacial Research Special... Review Officer, Scientific Review Branch, National Inst of Dental & Craniofacial Research, NIH...

  2. 76 FR 28996 - National Institute of Dental & Craniofacial Research; Notice of Closed Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-05-19

    ... HUMAN SERVICES National Institutes of Health National Institute of Dental & Craniofacial Research... personal privacy. Name of Committee: National Institute of Dental and Craniofacial Research Special... Branch, National Inst of Dental & Craniofacial Research, NIH, 6701 Democracy Blvd., Room 672, MSC...

  3. 76 FR 28793 - National Institute of Dental & Craniofacial Research; Notice of Closed Meetings

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-05-18

    ... HUMAN SERVICES National Institutes of Health National Institute of Dental & Craniofacial Research... Review Branch, National Inst of Dental & Craniofacial Research, National Institutes of Health, 45 Center...: National Institute of Dental and Craniofacial Research Special Emphasis Panel; Agenda: Review...

  4. 76 FR 22111 - National Institute of Dental & Craniofacial Research; Notice of Closed Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-04-20

    ... HUMAN SERVICES National Institutes of Health National Institute of Dental & Craniofacial Research... Institute of Dental and Craniofacial Research. The meeting will be closed to the public as indicated below... National Institute of Dental & Craniofacial Research, including consideration of personnel...

  5. 77 FR 68136 - National Institute of Dental & Craniofacial Research; Notice of Closed Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-11-15

    ... HUMAN SERVICES National Institutes of Health National Institute of Dental & Craniofacial Research... Institute of Dental and Craniofacial Research. The meeting will be closed to the public as indicated below... National Institute of Dental & Craniofacial Research, including consideration of personnel...

  6. 76 FR 79202 - National Institute Of Dental & Craniofacial Research; Notice of Closed Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-12-21

    ... HUMAN SERVICES National Institutes of Health National Institute Of Dental & Craniofacial Research... personal privacy. Name of Committee: National Institute of Dental and Craniofacial Research Special..., Scientific Review Officer, Scientific Review Branch, National Inst of Dental & Craniofacial...

  7. 77 FR 59199 - National Institute of Dental & Craniofacial Research; Notice of Closed Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-09-26

    ... HUMAN SERVICES National Institutes of Health National Institute of Dental & Craniofacial Research... personal privacy. Name of Committee: National Institute of Dental and Craniofacial Research Special... Officer, Scientific Review Branch, National Institute of Dental and Craniofacial, Research, One...

  8. 78 FR 75929 - National Institute of Dental & Craniofacial Research; Notice of Closed Meetings

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-12-13

    ... HUMAN SERVICES National Institutes of Health National Institute of Dental & Craniofacial Research... personal privacy. Name of Committee: National Institute of Dental and Craniofacial Research Special...: National Institute of Dental and Craniofacial Research Special Emphasis Panel; Review of R01 &...

  9. 75 FR 7485 - National Institute of Dental & Craniofacial Research; Notice of Closed Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-02-19

    ... HUMAN SERVICES National Institutes of Health National Institute of Dental & Craniofacial Research... personal privacy. Name of Committee: National Institute of Dental and Craniofacial Research Special..., National Inst of Dental & Craniofacial Research, NIH 6701 Democracy Blvd., Room 672, MSC 4878, Bethesda,...

  10. 78 FR 67178 - National Institute of Dental & Craniofacial Research; Notice of Closed Meetings

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-11-08

    ... HUMAN SERVICES National Institutes of Health National Institute of Dental & Craniofacial Research... personal privacy. Name of Committee: National Institute of Dental and Craniofacial Research Special...., Scientific Review Officer, Scientific Review Branch, National Institute of Dental and Craniofacial...

  11. 77 FR 35990 - National Institute of Dental and Craniofacial Research; Notice of Closed Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-06-15

    ... HUMAN SERVICES National Institutes of Health National Institute of Dental and Craniofacial Research... personal privacy. Name of Committee: National Institute of Dental and Craniofacial Research Special...., Scientific Review Officer, Scientific Review Branch, National Institute of Dental and Craniofacial...

  12. Unexpected skeletal histology of an ichthyosaur from the Middle Jurassic of Patagonia: implications for evolution of bone microstructure among secondary aquatic tetrapods

    NASA Astrophysics Data System (ADS)

    Talevi, Marianella; Fernández, Marta S.

    2012-03-01

    During the Mesozoic, one of the most significant evolutionary processes was the secondary adaptation of tetrapods to life in water. Several non-related lineages invaded from the terrestrial realms and from the oceans of the entire world. Among these lineages, ichthyosaurs were particularly successful. Advance parvipelvian ichthyosaurs were the first tetrapods to evolve a fish-shaped body profile. The deep skeletal modifications of their bodies, as well as their biology, depict advance ichthyosaurs as the paradigm of secondary adaptation of reptiles to marine life. Functional inferences point to them as off-shore cruising forms, similar to a living tuna, and some of them were capable of deep diving. Bone histology of some genera such as Temnodontosaurus, Stenopterygius, Ichthyosaurus, and Caypullisaurus, characterized by overall cancellous bone, is consistent with the idea of a fish-shaped ichthyosaurs as fast and far cruisers. Here, we provide histological examination of the ribs of the Middle Jurassic parvipelvian Mollesaurus. Contrasting with the bone histology of other parvipelvian, Mollesaurus ribs are characterized by a compact and thick cortex. Our data indicate that the rib cage was heavy and suggest that not all advanced ichthyosaurs were fast cruisers. The compact and dense ribs in these parvipelvian show that advance ichthyosaurs were ecologically more diverse than previously thought and that the lightening of the skeleton reversed, as also occurred in the evolution of cetacean, at least once along the evolutionary history of ichthyosaurs.

  13. The concept of pattern in craniofacial growth.

    PubMed

    Moyers, R E; Bookstein, F L; Guire, K E

    1979-08-01

    1. There are semantic and associated problems with the word pattern in biology, particularly in orthodontics and facial growth. 2. Pattern, as we use the term, is invariance of relationships--"a set of constraints operating to preserve the integration of parts under varying conditions and through time." 3. Craniofacial pattern can be described and quantified by the identification of craniofacial constants, measures that are relatively invariant. 4. Growth is change and is best identified by studying those measures of size and shape that vary most sensitively through time over development stages. 5. The many traditional cephalometric measures that represent well neither pattern nor growth (mixed) are of less clinical utility than either pure pattern indices or growth indices. 6. The analytical and conceptual separation of pattern and growth seems useful in analysis of morphology, analysis of growth, prediction of growth, and clinical treatment planning. PMID:289292

  14. Candidate Gene Analyses of Skeletal Variation in Malocclusion.

    PubMed

    da Fontoura, C S G; Miller, S F; Wehby, G L; Amendt, B A; Holton, N E; Southard, T E; Allareddy, V; Moreno Uribe, L M

    2015-07-01

    This study evaluated associations between craniofacial candidate genes and skeletal variation in patients with malocclusion. Lateral cephalometric radiographs of 269 untreated adults with skeletal classes I, II, and III malocclusion were digitized with 14 landmarks. Two-dimensional coordinates were analyzed using Procrustes fit and principal component (PC) analysis to generate continuous malocclusion phenotypes. Skeletal class classifications (I, II, or III) were used as a categorical phenotype. Individuals were genotyped for 198 single-nucleotide polymorphisms (SNPs) in 71 craniofacial genes and loci. Phenotype-genotype associations were tested via multivariate linear regression for continuous phenotypes and multinomial logistic regression for skeletal malocclusion class. PC analysis resulted in 4 principal components (PCs) explaining 69% of the total skeletal facial variation. PC1 explained 32.7% of the variation and depicted vertical discrepancies ranging from skeletal deep to open bites. PC1 was associated with a SNP near PAX5 (P = 0.01). PC2 explained 21.7% and captured horizontal maxillomandibular discrepancies. PC2 was associated with SNPs upstream of SNAI3 (P = 0.0002) and MYO1H (P = 0.006). PC3 explained 8.2% and captured variation in ramus height, body length, and anterior cranial base orientation. PC3 was associated with TWIST1 (P = 0.000076). Finally, PC4 explained 6.6% and detected variation in condylar inclination as well as symphysis projection. PC4 was associated with PAX7 (P = 0.007). Furthermore, skeletal class II risk increased relative to class I with the minor alleles of SNPs in FGFR2 (odds ratio [OR] = 2.1, P = 0.004) and declined with SNPs in EDN1 (OR = 0.5, P = 0.007). Conversely, skeletal class III risk increased versus class I with SNPs in FGFR2 (OR 2.2, P = 0.005) and COL1A1 (OR = 2.1, P = 0.008) and declined with SNPs in TBX5 (OR = 0.5, P = 0.014). PAX5, SNAI3, MYO1H, TWIST1, and PAX7 are associated with craniofacial skeletal variation

  15. Candidate Gene Analyses of Skeletal Variation in Malocclusion

    PubMed Central

    da Fontoura, C.S.G.; Miller, S.F.; Wehby, G.L.; Amendt, B.A.; Holton, N.E.; Southard, T.E.; Allareddy, V.

    2015-01-01

    This study evaluated associations between craniofacial candidate genes and skeletal variation in patients with malocclusion. Lateral cephalometric radiographs of 269 untreated adults with skeletal classes I, II, and III malocclusion were digitized with 14 landmarks. Two-dimensional coordinates were analyzed using Procrustes fit and principal component (PC) analysis to generate continuous malocclusion phenotypes. Skeletal class classifications (I, II, or III) were used as a categorical phenotype. Individuals were genotyped for 198 single-nucleotide polymorphisms (SNPs) in 71 craniofacial genes and loci. Phenotype-genotype associations were tested via multivariate linear regression for continuous phenotypes and multinomial logistic regression for skeletal malocclusion class. PC analysis resulted in 4 principal components (PCs) explaining 69% of the total skeletal facial variation. PC1 explained 32.7% of the variation and depicted vertical discrepancies ranging from skeletal deep to open bites. PC1 was associated with a SNP near PAX5 (P = 0.01). PC2 explained 21.7% and captured horizontal maxillomandibular discrepancies. PC2 was associated with SNPs upstream of SNAI3 (P = 0.0002) and MYO1H (P = 0.006). PC3 explained 8.2% and captured variation in ramus height, body length, and anterior cranial base orientation. PC3 was associated with TWIST1 (P = 0.000076). Finally, PC4 explained 6.6% and detected variation in condylar inclination as well as symphysis projection. PC4 was associated with PAX7 (P = 0.007). Furthermore, skeletal class II risk increased relative to class I with the minor alleles of SNPs in FGFR2 (odds ratio [OR] = 2.1, P = 0.004) and declined with SNPs in EDN1 (OR = 0.5, P = 0.007). Conversely, skeletal class III risk increased versus class I with SNPs in FGFR2 (OR 2.2, P = 0.005) and COL1A1 (OR = 2.1, P = 0.008) and declined with SNPs in TBX5 (OR = 0.5, P = 0.014). PAX5, SNAI3, MYO1H, TWIST1, and PAX7 are associated with craniofacial skeletal variation

  16. Imaging findings in craniofacial childhood rhabdomyosarcoma

    PubMed Central

    Merks, Johannes H. M.; Saeed, Peerooz; Balm, Alfons J. M.; Bras, Johannes; Pieters, Bradley R.; Adam, Judit A.; van Rijn, Rick R.

    2010-01-01

    Rhabdomyosarcoma (RMS) is the commonest paediatric soft-tissue sarcoma constituting 3–5% of all malignancies in childhood. RMS has a predilection for the head and neck area and tumours in this location account for 40% of all childhood RMS cases. In this review we address the clinical and imaging presentations of craniofacial RMS, discuss the most appropriate imaging techniques, present characteristic imaging features and offer an overview of differential diagnostic considerations. Post-treatment changes will be briefly addressed. PMID:20725831

  17. Multiple phylogenetically distinct events shaped the evolution of limb skeletal morphologies associated with bipedalism in the jerboas.

    PubMed

    Moore, Talia Y; Organ, Chris L; Edwards, Scott V; Biewener, Andrew A; Tabin, Clifford J; Jenkins, Farish A; Cooper, Kimberly L

    2015-11-01

    Recent rapid advances in experimental biology have expanded the opportunity for interdisciplinary investigations of the evolution of form and function in non-traditional model species. However, historical divisions of philosophy and methodology between evolutionary/organismal biologists and developmental geneticists often preclude an effective merging of disciplines. In an effort to overcome these divisions, we take advantage of the extraordinary morphological diversity of the rodent superfamily Dipodoidea, including the bipedal jerboas, to experimentally study the developmental mechanisms and biomechanical performance of a remarkably divergent limb structure. Here, we place multiple limb character states in a locomotor and phylogenetic context. Whereas obligate bipedalism arose just once in the ancestor of extant jerboas, we find that digit loss, metatarsal fusion, between-limb proportions, and within-hindlimb proportions all evolved independently of one another. Digit loss occurred three times through at least two distinct developmental mechanisms, and elongation of the hindlimb relative to the forelimb is not simply due to growth mechanisms that change proportions within the hindlimb. Furthermore, we find strong evidence for punctuated evolution of allometric scaling of hindlimb elements during the radiation of Dipodoidea. Our work demonstrates the value of leveraging the evolutionary history of a clade to establish criteria for identifying the developmental genetic mechanisms of morphological diversification. PMID:26455300

  18. [Mechanisms of growth, development and disease of the craniofacial skeleton].

    PubMed

    Yamashiro, Takashi

    2016-01-01

    Craniofacial skeleton is derived from several pieces of bone, which hold the brain and house the sensory organ of vision, hearing, taste and smell. It also serves as an entrance of the digestive and respiratory tracts. Hence, craniofacial complex develops under sophisticated balance between the shape and the function. Disruption of such balance leads to various types of malformation and/or deformation of the face. This review focuses on the molecular aspects of growth and developments of the craniofacial structures and also on the genetic basis of congenital craniofacial malformations. PMID:26728542

  19. Venous air embolism during a craniofacial procedure.

    PubMed

    Phillips, R J; Mulliken, J B

    1988-07-01

    The possibility of venous air embolism exists whenever the craniofacial operative field is above the level of the heart. Craniotomy with the high-torque craniotome is hypothesized to have produced venous air embolism in the patient described in this report. The diagnosis of venous air embolism is determined by transesophageal Doppler probe, transesophageal echocardiogram or external echocardiogram, and end-tidal N2 and CO2 determinations. Treatment includes control of the air entry sites, aspiration of air from the right atrium via a catheter placed prior to operation, and discontinuing nitrous oxide. If these measures are unsuccessful, the operative field should be transposed below heart level and the procedure terminated. In the event of significant hemodynamic compromise, closed cardiac massage should be tried; if that fails, open cardiac massage and direct aspiration are necessary. The true incidence of venous air embolism in craniofacial operations may be much higher than previously suspected. We therefore recommend placement of appropriate monitoring equipment to detect intracardiac air in those major craniofacial procedures in which there is a potential for intravascular air ingress. PMID:3289061

  20. Craniofacial abnormalities among patients with Edwards Syndrome

    PubMed Central

    Rosa, Rafael Fabiano M.; Rosa, Rosana Cardoso M.; Lorenzen, Marina Boff; Zen, Paulo Ricardo G.; Graziadio, Carla; Paskulin, Giorgio Adriano

    2013-01-01

    OBJECTIVE To determine the frequency and types of craniofacial abnormalities observed in patients with trisomy 18 or Edwards syndrome (ES). METHODS This descriptive and retrospective study of a case series included all patients diagnosed with ES in a Clinical Genetics Service of a reference hospital in Southern Brazil from 1975 to 2008. The results of the karyotypic analysis, along with clinical data, were collected from medical records. RESULTS: The sample consisted of 50 patients, of which 66% were female. The median age at first evaluation was 14 days. Regarding the karyotypes, full trisomy of chromosome 18 was the main alteration (90%). Mosaicism was observed in 10%. The main craniofacial abnormalities were: microretrognathia (76%), abnormalities of the ear helix/dysplastic ears (70%), prominent occiput (52%), posteriorly rotated (46%) and low set ears (44%), and short palpebral fissures/blepharophimosis (46%). Other uncommon - but relevant - abnormalities included: microtia (18%), orofacial clefts (12%), preauricular tags (10%), facial palsy (4%), encephalocele (4%), absence of external auditory canal (2%) and asymmetric face (2%). One patient had an initial suspicion of oculo-auriculo-vertebral spectrum (OAVS) or Goldenhar syndrome. CONCLUSIONS: Despite the literature description of a characteristic clinical presentation for ES, craniofacial alterations may be variable among these patients. The OAVS findings in this sample are noteworthy. The association of ES with OAVS has been reported once in the literature. PMID:24142310

  1. Midline Anterior Craniofacial Approach for Malignancy

    PubMed Central

    Wellman, Bryan John; Traynelis, Vincent C.; McCulloch, Timothy M.; Funk, Gerry F.; Menezes, Arnold H.; Hoffman, Henry T.

    1999-01-01

    Thirty consecutive cases of midline anterior craniofacial procedures for the treatment of malignant neoplasms arising from the paranasal sinuses were reviewed. Posterior and lateral base craniofacial procedures were specifically excluded. This review compares the results, in terms of survival and major complication rate, between en bloc and piecemeal resections. The average follow-up was 4 years and 3 months. Sixteen patients were treated with an en bloc resection. The major complication rate was 31%. One-year survival rate was 94% for the en bloc resection group, 67% for patients with positive margins, and 100% for patients with clear margins. Three-year survival for en bloc resection dropped to 56, 33, and 67%, respectively. Fourteen patients were treated with piecemeal resections. The major complication rate was 21%. One-year survival rate was 83% for the piecemeal resection group, 60% for patients with positive margins, and 100% for patients with clear margins. Three-year survival dropped to 70, 60, and 80%, respectively. Although it is considered desirable to obtain an en bloc resection in some craniofacial procedures, we conclude that a piecemeal resection is a viable alternative in situations where an en bloc procedure is difficult to obtain safely. ImagesFigure 1p43-bFigure 2p44-b PMID:17171080

  2. Parathyroid Hormone Applications in the Craniofacial Skeleton

    PubMed Central

    Chan, H.L.; McCauley, L.K.

    2013-01-01

    Parathyroid hormone (PTH) is known for its ability to ‘build’ bone, with research in this area centered on its use as an osteoporosis therapeutic. Recent interest has developed regarding its potential for regenerative applications such as fracture healing and osseous defects of the oral cavity. Many years of investigation using murine gene-targeted models substantiate a role for signaling at the PTH/PTH-related protein (PTHrP) receptor (PPR) in intramembranous bone formation in the craniofacial region as well as in tooth development. Pre-clinical studies clearly support a positive role of intermittent PTH administration in craniofacial bones and in fracture healing and implant integration. A few human clinical studies have shown favorable responses with teriparatide (the biologically active fragment of PTH) administration. Favorable outcomes have emerged with teriparatide administration in patients with osteonecrosis of the jaw (ONJ). New delivery strategies are in development to optimize targeted application of PTH and to help maximize local approaches. The promising host-modulating potential of PTH requires more information to further its effectiveness for craniofacial regeneration and osseous wound-healing, including a better delineation of cellular targets, temporal effects of PTH action, and improved approaches for local/targeted delivery of PTH. PMID:23071071

  3. Skeletal Dysplasias

    PubMed Central

    Krakow, Deborah

    2015-01-01

    Synoposis The skeletal dysplasias are a group of more than 450 heritable disorders of bone. They frequently present in the newborn period with disproportion, radiographic abnormalities, and occasionally other organ system abnormalities. For improved clinical care it is important to determine a precise diagnosis to aid in management, familial recurrence and identify those disorders highly associated with mortality. Long-term management of these disorders is predicated on an understanding of the associated skeletal system abnormalities and these children are best served by a team approach to health care surveillance. PMID:26042906

  4. Skeletal dysplasias.

    PubMed

    Krakow, Deborah

    2015-06-01

    The skeletal dysplasias are a group of more than 450 heritable disorders of bone. They frequently present in the newborn period with disproportion, radiographic abnormalities, and occasionally other organ system abnormalities. For improved clinical care, it is important to determine a precise diagnosis to aid in management, familial recurrence, and identify those disorders highly associated with mortality. Long-term management of these disorders is predicated on an understanding of the associated skeletal system abnormalities, and these children are best served by a team approach to health care surveillance. PMID:26042906

  5. Complex craniofacial changes in blind cave-dwelling fish are mediated by genetically symmetric and asymmetric loci.

    PubMed

    Gross, Joshua B; Krutzler, Amanda J; Carlson, Brian M

    2014-04-01

    The genetic regulators of regressive craniofacial morphologies are poorly understood. To shed light on this problem, we examined the freshwater fish Astyanax mexicanus, a species with surface-dwelling and multiple independent eyeless cave-dwelling forms. Changes affecting the skull in cavefish include morphological alterations to the intramembranous circumorbital bones encircling the eye. Many of these modifications, however, have evolved separately from eye loss, such as fragmentation of the third suborbital bone. To understand the genetic architecture of these eye-independent craniofacial alterations, we developed and scored 33 phenotypes in the context of an F2 hybrid mapping pedigree bred from Pachón cavefish and surface fish. We discovered several individuals exhibiting dramatic left-right differences in bone formation, such as extensive fragmentation on the right side only. This observation, along with well-known eye size asymmetry in natural cave-dwelling animals, led us to further evaluate left-right genetic differences for the craniofacial complex. We discovered three phenotypes, inclusive of bone fragmentation and fusion, which demonstrated a directional heritable basis only on one side. Interestingly, the overall areas of affected bones were genetically symmetric. Phenotypic effect plots of these novel craniofacial QTL revealed that cave alleles are associated with abnormal conditions such as bony fusion and fragmentation. Moreover, many linked loci overlapped with other cave-associated traits, suggesting regressive craniofacial changes may evolve through linkage or as antagonistic pleiotropic consequences of cave-associated adaptations. These novel findings illuminate significant craniofacial changes accompanying evolution in complete darkness and reveal complex changes to the skull differentially influenced by genetic changes affecting the left and right sides. PMID:24496009

  6. Complex Craniofacial Changes in Blind Cave-Dwelling Fish Are Mediated by Genetically Symmetric and Asymmetric Loci

    PubMed Central

    Gross, Joshua B.; Krutzler, Amanda J.; Carlson, Brian M.

    2014-01-01

    The genetic regulators of regressive craniofacial morphologies are poorly understood. To shed light on this problem, we examined the freshwater fish Astyanax mexicanus, a species with surface-dwelling and multiple independent eyeless cave-dwelling forms. Changes affecting the skull in cavefish include morphological alterations to the intramembranous circumorbital bones encircling the eye. Many of these modifications, however, have evolved separately from eye loss, such as fragmentation of the third suborbital bone. To understand the genetic architecture of these eye-independent craniofacial alterations, we developed and scored 33 phenotypes in the context of an F2 hybrid mapping pedigree bred from Pachón cavefish and surface fish. We discovered several individuals exhibiting dramatic left–right differences in bone formation, such as extensive fragmentation on the right side only. This observation, along with well-known eye size asymmetry in natural cave-dwelling animals, led us to further evaluate left–right genetic differences for the craniofacial complex. We discovered three phenotypes, inclusive of bone fragmentation and fusion, which demonstrated a directional heritable basis only on one side. Interestingly, the overall areas of affected bones were genetically symmetric. Phenotypic effect plots of these novel craniofacial QTL revealed that cave alleles are associated with abnormal conditions such as bony fusion and fragmentation. Moreover, many linked loci overlapped with other cave-associated traits, suggesting regressive craniofacial changes may evolve through linkage or as antagonistic pleiotropic consequences of cave-associated adaptations. These novel findings illuminate significant craniofacial changes accompanying evolution in complete darkness and reveal complex changes to the skull differentially influenced by genetic changes affecting the left and right sides. PMID:24496009

  7. Skeletal muscle

    Technology Transfer Automated Retrieval System (TEKTRAN)

    There are approximately 650-850 muscles in the human body these include skeletal (striated), smooth and cardiac muscle. The approximation is based on what some anatomists consider separate muscle or muscle systems. Muscles are classified based on their anatomy (striated vs. smooth) and if they are v...

  8. Discovery and characterization of spontaneous mouse models of craniofacial dysmorphology.

    PubMed

    Palmer, Kristina; Fairfield, Heather; Borgeia, Suhaib; Curtain, Michelle; Hassan, Mohamed G; Dionne, Louise; Yong Karst, Son; Coombs, Harold; Bronson, Roderick T; Reinholdt, Laura G; Bergstrom, David E; Donahue, Leah Rae; Cox, Timothy C; Murray, Stephen A

    2016-07-15

    Craniofacial abnormalities are among the most common features of human genetic syndromes and disorders. The etiology of these conditions is often complex, influenced by both genetic context and the environment. Frequently, craniofacial abnormalities present as part of a syndrome with clear comorbid phenotypes, providing additional insight into mechanisms of the causative gene or pathway. The mouse has been a key tool in our understanding of the genetic mechanisms of craniofacial development and disease, and can provide excellent models for human craniofacial abnormalities. While powerful genetic engineering tools in the mouse have contributed significantly our understanding of craniofacial development and dysmorphology, forward genetic approaches provide an unbiased means to identify new genes and pathways. Moreover, spontaneous mutations can occur on any number of genetic backgrounds, potentially revealing critical genes that require a specific genetic context. Here we report discovery and phenotyping of 43 craniofacial mouse models, derived primarily from a screen for spontaneous mutations in production colonies at the Jackson Laboratory. We identify the causative gene for 33 lines, including novel genes in pathways not previously connected to craniofacial development, and novel alleles of known genes that present with unique phenotypes. Together with our detailed characterization, this work provides a valuable gene discovery resource for the craniofacial community, and a rich source of mouse models for further investigation. PMID:26234751

  9. 76 FR 30373 - National Institute of Dental & Craniofacial Research; Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-05-25

    ... HUMAN SERVICES National Institutes of Health National Institute of Dental & Craniofacial Research... unwarranted invasion of personal privacy. Name of Committee: National Institute of Dental and Craniofacial...: Marilyn Moore-Hoon, PhD, Scientific Review Officer, Scientific Review Branch, National Institute of...

  10. OCT imaging of craniofacial anatomy in xenopus embryos (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Deniz, Engin; Jonas, Stephan M.; Griffin, John; Hooper, Michael C.; Choma, Michael A.; Khokha, Mustafa K.

    2016-03-01

    The etiology of craniofacial defects is incompletely understood. The ability to obtain large amounts of gene sequence data from families affected by craniofacial defects is opening up new ways to understand molecular genetic etiological factors. One important link between gene sequence data and clinical relevance is biological research into candidate genes and molecular pathways. We present our recent research using OCT as a nondestructive phenotyping modality of craniofacial morphology in Xenopus embryos, an important animal model for biological research in gene and pathway discovery. We define 2D and 3D scanning protocols for a standardized approach to craniofacial imaging in Xenopus embryos. We define standard views and planar reconstructions for visualizing normal anatomy and landmarks. We compare these views and reconstructions to traditional histopathology using alcian blue staining. In addition to being 3D, nondestructive, and having much faster throughout, OCT can identify craniofacial features that are lost during traditional histopathological preparation. We also identify quantitative morphometric parameters to define normative craniofacial anatomy. We also note that craniofacial and cardiac defects are not infrequently present in the same patient (e.g velocardiofacial syndrome). Given that OCT excels at certain aspects of cardiac imaging in Xenopus embryos, our work highlights the potential of using OCT and Xenopus to study molecular genetic factors that impact both cardiac and craniofacial development.

  11. Facing up to the Challenges of Advancing Craniofacial Research

    PubMed Central

    Trainor, Paul A.; Richtsmeier, Joan T.

    2015-01-01

    Craniofacial anomalies are among the most common human birth defects and have considerable functional, aesthetic, and social consequences. The early developmental origin as well as the anatomical complexity of the head and face render these tissues prone to genetic and environmental insult. The establishment of craniofacial clinics offering comprehensive care for craniofacial patients at a single site together with international research networks focused on the origins and treatment of craniofacial disorders has led to tremendous advances in our understanding of the etiology and pathogenesis of congenital craniofacial anomalies. However, the genetic, environmental, and developmental sources of many craniofacial disorders remain unknown. To overcome this problem and further advance craniofacial research, we must recognize current challenges in the field and establish priority areas for study. We still need (i) a deeper understanding of variation during normal development and within the context of any disorder, (ii) improved genotyping and phenotyping and understanding of the impact of epigenetics, (iii) continued development of animal models and functional analyses of genes and variants, and (iv) integration of patient derived cells and tissues together with 3D printing and quantitative assessment of surgical outcomes for improved practice. Only with fundamental advances in each of these areas will we be able to meet the challenge of translating potential therapeutic and preventative approaches into clinical solutions and reduce the financial and emotional burden of craniofacial anomalies. PMID:25820983

  12. Craniofacial dysmorphology: Studies in honor of Samuel Pruzansky

    SciTech Connect

    Cohen, M.M.; Rollnick, B.R.

    1985-01-01

    This book contains 31 chapters. Some of the chapter titles are: Regional Specification of Cell-Specific Gene Expression During Craniofacial Development; Timing Cleft Palate Closure - Age Should Not Be the Sole Determinant; Excess of Parental Non-Righthandedness in Children with Right-Sided Cleft Lip: A Preliminary Report; and The Application of Roentgencephalometry to the Study of Craniofacial Anomalies.

  13. Application of Skeletal Buttress Analogy in Composite Facial Reconstruction

    PubMed Central

    Bluebond-Langner, Rachel; Rodriguez, Eduardo D.

    2009-01-01

    Reconstructive algorithms for composite craniofacial defects have focused on soft tissue flaps with or without bone grafts. However, volumetric loss over time limits long-term preservation of facial contour. Application of craniofacial skeletal buttress principles to high-energy trauma or oncologic defects with composite vascularized bone flaps restores the soft tissue as well as the buttresses and ultimately preserves facial contour. We conducted a retrospective review of 34 patients with craniofacial defects treated by a single surgeon with composite bone flaps at R Adams Cowley Shock Trauma Center and Johns Hopkins Hospital from 2001 to 2007. Data collected included age, sex, mechanism of injury, type of defect, type of reconstructive procedures, and outcome. Thirty-four patients with composite tissue loss, primarily males (n = 24) with an average age of 37.4 years, underwent reconstruction with vascularized bone flaps (28 fibula flaps and 6 iliac crest flaps). There were 4 cranial defects, 8 periorbital defects, 18 maxillary defects, and 4 maxillary and periorbital defects. Flap survival rate was 94.1% with an average follow-up time of 20.5 months. Restoration of facial height, width, and projection is achieved through replacement of skeletal buttresses and is essential for facial harmony. Since 2001, our unit has undergone a paradigm shift with regard to treatment of composite oncologic and traumatic defects, advocating vascularized bone flaps to achieve predictable long-term outcomes. PMID:22110793

  14. Evaluation of Craniofacial Morphology of Children with Dental Fluorosis in Early Permanent Dentition Period

    PubMed Central

    Dogan, Alev Aksoy; Bolpaca, Pinar

    2009-01-01

    Objectives High intake of fluoride (>1.5 mg/L) for a prolonged period may lead to skeletal fluorosis as well as dental fluorosis. The aim of this study was to compare the craniofacial characteristics of children with dental fluorosis in early permanent dentition period to those without fluorosis. Methods Two hundred and sixteen children in early permanent dentition (girls:121, boys:95) were included in the study. Study group was composed of 124 children with dental fluorosis who was born and grew up in Isparta (girls:75, boys:49) whereas control group of children (n=92: 46 girls and 46 boys) had no dental fluorosis. Dental fluorosis was classified using Thylstrup Fejerskov Fluorosis Index. Radiological evaluation was performed by cephalometric tracing using Björk analysis. Statistical evaluation in between study and control groups was done by Independent Samples T test and comparison with Björk’s standards was done by One Sample T test analysis. The association between two quantitative variables was evaluated with Pearson’s correlation coefficient (rho). Results The mean dental fluorosis level was 4.6±1.8 for children with fluorosis. Systemic fluorosis affect girls no different than boys in the early permanent dentition period because none of the angular measurements show significant difference between boys and girls in the fluoridated group. Comparison of craniofacial angular values of boys with fluorosis show greater diversity compared to boys without fluorosis against Björk’s mean values for boys. Conclusions Craniofacial morphology of children with fluorosis did not show great diversity than the ones without fluorosis in the early permanent dentition period. None of the angular measurements were significantly different between boys and girls in the fluoridated group which might imply that systemic fluorosis did not show gender difference in the early permanent dentition. (Eur J Dent 2009;3:304–313) PMID:19826603

  15. Apert Syndrome: Outcomes From the Australian Craniofacial Unit's Birth to Maturity Management Protocol.

    PubMed

    David, David J; Anderson, Peter; Flapper, Walter; Syme-Grant, Jonathan; Santoreneos, Steven; Moore, Mark

    2016-07-01

    The complex, progressive, multisystem nature of Apert syndrome presents many challenges to managing surgeons. Based on the pioneering work of Paul Tessier, the senior author developed a multidisciplinary birth to maturity management protocol for Apert syndrome. Between 1975 and 2014 the Australian Craniofacial Unit has treated 174 Apert syndrome patients and 28 have completed full protocol management. This paper reviews the scientific contribution made to the management of Apert syndrome by the Australian Craniofacial Unit, the development and evolution of the protocol and presents comprehensive data on the surgical and nonsurgical craniofacial interventions, and outcomes for the 28 patients who have completed the programme; 26 had normal visual acuity, 22 had normal hearing, 20 achieved normal or nearly normal speech, 24 a functional class I occlusion, 18 completed mainstream schooling of whom at least 8 went on to tertiary education, at least 13 gained employment and 15 developed good social groups. These outcomes equal or exceed those presented by other authors and provide compelling evidence of the value of protocol management in clinical outcomes, in addition to their value in international collaboration, and scientific development of future therapeutic strategies for the management of Apert syndrome. PMID:27380568

  16. Craniofacial Reconstruction with Induced Pluripotent Stem Cells

    PubMed Central

    Wan, Derrick C.; Wong, Victor W.; Longaker, Michael T.

    2012-01-01

    Induced pluripotent stem cells (iPSCs) hold enormous promise for the treatment of complex tissue defects throughout the entire body. The ability for iPSCs to form all tissue types makes them an ideal autogenous cellular building block for tissue engineering strategies designed to replace any combination of skin, muscle, nerve, and bone deficiencies in the craniofacial region. Several obstacles to their use remain, however, chief among which include concerns over insertional mutagenesis and tumorigenicity. As studies continue to develop strategies minimizing these risks, the potential for development of patient-specific regenerative therapies has become tantalizingly close. PMID:22627398

  17. Fat-Dachsous Signaling Coordinates Cartilage Differentiation and Polarity during Craniofacial Development

    PubMed Central

    Le Pabic, Pierre; Ng, Carrie; Schilling, Thomas F.

    2014-01-01

    Organogenesis requires coordinated regulation of cellular differentiation and morphogenesis. Cartilage cells in the vertebrate skeleton form polarized stacks, which drive the elongation and shaping of skeletal primordia. Here we show that an atypical cadherin, Fat3, and its partner Dachsous-2 (Dchs2), control polarized cell-cell intercalation of cartilage precursors during craniofacial development. In zebrafish embryos deficient in Fat3 or Dchs2, chondrocytes fail to stack and misregulate expression of sox9a. Similar morphogenetic defects occur in rerea/atr2a −/− mutants, and Fat3 binds REREa, consistent with a model in which Fat3, Dchs2 and REREa interact to control polarized cell-cell intercalation and simultaneously control differentiation through Sox9. Chimaeric analyses support such a model, and reveal long-range influences of all three factors, consistent with the activation of a secondary signal that regulates polarized cell-cell intercalation. This coordinates the spatial and temporal morphogenesis of chondrocytes to shape skeletal primordia and defects in these processes underlie human skeletal malformations. Similar links between cell polarity and differentiation mechanisms are also likely to control organ formation in other contexts. PMID:25340762

  18. MEPE Localization in the Craniofacial Complex and Function in Tooth Dentin Formation.

    PubMed

    Gullard, Angela; Gluhak-Heinrich, Jelica; Papagerakis, Silvana; Sohn, Philip; Unterbrink, Aaron; Chen, Shuo; MacDougall, Mary

    2016-04-01

    Matrix extracellular phosphoglycoprotein (MEPE) is an extracellular matrix protein found in dental and skeletal tissues. Although information regarding the role of MEPE in bone and disorders of phosphate metabolism is emerging, the role of MEPE in dental tissues remains unclear. We performed RNA in situ hybridization and immunohistochemistry analyses to delineate the expression pattern of MEPE during embryonic and postnatal development in craniofacial mineralizing tissues.MepeRNA expression was seen within teeth from cap through root formation in association with odontoblasts and cellular cementoblasts. More intense expression was seen in the alveolar bone within the osteoblasts and osteocytes. MEPE immunohistochemistry showed biphasic dentin staining in incisors and more intense staining in alveolar bone matrix and in forming cartilage. Analysis ofMepenull mouse molars showed overall mineralized tooth volume and density of enamel and dentin comparable with that of wild-type samples. However,Mepe(-/-)molars exhibited increased thickness of predentin, dentin, and enamel over controls and decreased gene expression ofEnam,Bsp,Dmp1,Dspp, andOpnby RT-PCR. In vitroMepeoverexpression in odontoblasts led to significant reductions inDsppreporter activity. These data suggest MEPE may be instrumental in craniofacial and dental matrix maturation, potentially functioning in the maintenance of non-mineralized matrix. PMID:26927967

  19. Craniofacial and Dental Defects in the Col1a1Jrt/+ Mouse Model of Osteogenesis Imperfecta.

    PubMed

    Eimar, H; Tamimi, F; Retrouvey, J-M; Rauch, F; Aubin, J E; McKee, M D

    2016-07-01

    Certain mutations in the COL1A1 and COL1A2 genes produce clinical symptoms of both osteogenesis imperfecta (OI) and Ehlers-Danlos syndrome (EDS) that include abnormal craniofacial growth, dental malocclusion, and dentinogenesis imperfecta. A mouse model (Col1a1(Jrt)/+) was recently developed that had a skeletal phenotype and other features consistent with moderate-to-severe OI and also with EDS. The craniofacial phenotype of 4- and 20-wk-old Col1a1(Jrt)/+ mice and wild-type littermates was assessed by micro-computed tomography (µCT) and morphometry. Teeth and the periodontal ligament compartment were analyzed by µCT, light microscopy/histomorphometry, and electron microscopy. Over time, at 20 wk, Col1a1(Jrt)/+ mice developed smaller heads, a shortened anterior cranial base, class III occlusion, and a mandibular side shift with shorter morphology in the masticatory region (maxilla and mandible). Col1a1(Jrt)/+ mice also had changes in the periodontal compartment and abnormalities in the dentin matrix and mineralization. These findings validate Col1a1(Jrt)/+ mice as a model for OI and EDS in humans. PMID:26951553

  20. Hedgehog receptor function during craniofacial development.

    PubMed

    Xavier, Guilherme M; Seppala, Maisa; Barrell, William; Birjandi, Anahid A; Geoghegan, Finn; Cobourne, Martyn T

    2016-07-15

    The Hedgehog signalling pathway plays a fundamental role in orchestrating normal craniofacial development in vertebrates. In particular, Sonic hedgehog (Shh) is produced in three key domains during the early formation of the head; neuroectoderm of the ventral forebrain, facial ectoderm and the pharyngeal endoderm; with signal transduction evident in both ectodermal and mesenchymal tissue compartments. Shh signalling from the prechordal plate and ventral midline of the diencephalon is required for appropriate division of the eyefield and forebrain, with mutation in a number of pathway components associated with Holoprosencephaly, a clinically heterogeneous developmental defect characterized by a failure of the early forebrain vesicle to divide into distinct halves. In addition, signalling from the pharyngeal endoderm and facial ectoderm plays an essential role during development of the face, influencing cranial neural crest cells that migrate into the early facial processes. In recent years, the complexity of Shh signalling has been highlighted by the identification of multiple novel proteins that are involved in regulating both the release and reception of this protein. Here, we review the contributions of Shh signalling during early craniofacial development, focusing on Hedgehog receptor function and describing the consequences of disruption for inherited anomalies of this region in both mouse models and human populations. PMID:26875496

  1. Facial Phenotyping by Quantitative Photography Reflects Craniofacial Morphology Measured on Magnetic Resonance Imaging in Icelandic Sleep Apnea Patients

    PubMed Central

    Sutherland, Kate; Schwab, Richard J.; Maislin, Greg; Lee, Richard W.W.; Benedikstdsottir, Bryndis; Pack, Allan I.; Gislason, Thorarinn; Juliusson, Sigurdur; Cistulli, Peter A.

    2014-01-01

    Study Objectives: (1) To determine whether facial phenotype, measured by quantitative photography, relates to underlying craniofacial obstructive sleep apnea (OSA) risk factors, measured with magnetic resonance imaging (MRI); (2) To assess whether these associations are independent of body size and obesity. Design: Cross-sectional cohort. Setting: Landspitali, The National University Hospital, Iceland. Participants: One hundred forty patients (87.1% male) from the Icelandic Sleep Apnea Cohort who had both calibrated frontal and profile craniofacial photographs and upper airway MRI. Mean ± standard deviation age 56.1 ± 10.4 y, body mass index 33.5 ± 5.05 kg/m2, with on-average severe OSA (apnea-hypopnea index 45.4 ± 19.7 h-1). Interventions: N/A. Measurements and Results: Relationships between surface facial dimensions (photos) and facial bony dimensions and upper airway soft-tissue volumes (MRI) was assessed using canonical correlation analysis. Photo and MRI craniofacial datasets related in four significant canonical correlations, primarily driven by measurements of (1) maxillary-mandibular relationship (r = 0.8, P < 0.0001), (2) lower face height (r = 0.76, P < 0.0001), (3) mandibular length (r = 0.67, P < 0.0001), and (4) tongue volume (r = 0.52, P = 0.01). Correlations 1, 2, and 3 were unchanged when controlled for weight and neck and waist circumference. However, tongue volume was no longer significant, suggesting facial dimensions relate to tongue volume as a result of obesity. Conclusions: Significant associations were found between craniofacial variable sets from facial photography and MRI. This study confirms that facial photographic phenotype reflects underlying aspects of craniofacial skeletal abnormalities associated with OSA. Therefore, facial photographic phenotyping may be a useful tool to assess intermediate phenotypes for OSA, particularly in large-scale studies. Citation: Sutherland K, Schwab RJ, Maislin G, Lee RW, Benedikstdsottir B, Pack AI

  2. An animal model to study toxicity of central nervous system therapy for childhood acute lymphoblastic leukemia: Effects on growth and craniofacial proportion

    SciTech Connect

    Schunior, A.; Zengel, A.E.; Mullenix, P.J.; Tarbell, N.J.; Howes, A.; Tassinari, M.S. )

    1990-10-15

    Many long term survivors of childhood acute lymphoblastic leukemia have short stature, as well as craniofacial and dental abnormalities, as side effects of central nervous system prophylactic therapy. An animal model is presented to assess these adverse effects on growth. Cranial irradiation (1000 cGy) with and without prednisolone (18 mg/kg i.p.) and methotrexate (2 mg/kg i.p.) was administered to 17- and 18-day-old Sprague-Dawley male and female rats. Animals were weighed 3 times/week. Final body weight and body length were measured at 150 days of age. Femur length and craniofacial dimensions were measured directly from the bones, using calipers. For all exposed groups there was a permanent suppression of weight gain with no catch-up growth or normal adolescent growth spurt. Body length was reduced for all treated groups, as were the ratios of body weight to body length and cranial length to body length. Animals subjected to cranial irradiation exhibited microcephaly, whereas those who received a combination of radiation and chemotherapy demonstrated altered craniofacial proportions in addition to microcephaly. Changes in growth patterns and skeletal proportions exhibited sexually dimorphic characteristics. The results indicate that cranial irradiation is a major factor in the growth failure in exposed rats, but chemotherapeutic agents contribute significantly to the outcome of growth and craniofacial dimensions.

  3. Selective brain cooling seems to be a mechanism leading to human craniofacial diversity observed in different geographical regions.

    PubMed

    Irmak, M K; Korkmaz, A; Erogul, O

    2004-01-01

    Selective brain cooling (SBC) can occur in hyperthermic humans despite the fact that humans have no carotid rete, a vascular structure that facilitates countercurrent heat exchange located at the base of the skull in some mammals. Emissary and angular veins, upper respiratory tract, tympanic cavity and cerebrospinal fluid are major components of SBC system in humans. The efficiency of SBC is increased by evaporation of sweat on the head and by ventilation through the nose, but it is surprising to find out that mammals do not display SBC during exercise hyperthermia. What is the explanation then for the SBC at high body temperatures? Our hypothesis is that selective brain cooling protects the brain from thermal damage in a long-standing manner by allowing adaptive mechanisms to change the craniofacial morphology appropriate for different environmental conditions. Since the brain can only be as big that can cool, it is not surprising to find a lower (below 1300 cm(3)) cranial volume in Australian Aborigines with respect to the one (over 1450 cm(3)) in Eskimos. In addition to lower brain volume, other craniofacial features such as thick everted lips, broader nasal cavity and bigger paranasal sinuses that provide more evaporating surfaces seem to be anatomical variations developed in time for an effective SBC in hot climates. It was reported previously that these biological adaptations result from the tissues of neural crest origin. Among the crest derivatives, leptomeninges (pia and arachnoid mater), skeletal and connective tissues of the face and much of the skull seem to be structures upon which environment operates to produce more convenient craniofacial morphology for an effective SBC. In conclusion, selective brain cooling seems to be a mechanism leading to adaptive craniofacial diversity observed in different geographical regions. Thus, SBC is necessary for long-term biological adaptation, not for protecting the brain from acute thermal damage. PMID:15504564

  4. Structure and Sequence of the Human Fast Skeletal Troponin T (TNNT3) Gene: Insight Into the Evolution of the Gene and the Origin of the Developmentally Regulated Isoforms

    PubMed Central

    Stefancsik, Raymund; Randall, Jeffrey D.; Mao, Chengjian

    2003-01-01

    We describe the cloning, sequencing and structure of the human fast skeletal troponin T (TNNT3) gene located on chromosome 11p15.5. The single-copy gene encodes 19 exons and 18 introns. Eleven of these exons, 1–3, 9–15 and 18, are constitutively spliced, whereas exons 4–8 are alternatively spliced. The gene contains an additional subset of developmentally regulated and alternatively spliced exons, including a foetal exon located between exon 8 and 9 and exon 16 or α (adult) and 17 or β (foetal and neonatal). Exon phasing suggests that the majority of the alternatively spliced exons located at the 5′ end of the gene may have evolved as a result of exon shuffling, because they are of the same phase class. In contrast, the 3′ exons encoding an evolutionarily conserved heptad repeat domain, shared by both TnT and troponin I (TnI), may be remnants of an ancient ancestral gene. The sequence of the 5′ flanking region shows that the putative promoter contains motifs including binding sites for MyoD, MEF-2 and several transcription factors which may play a role in transcriptional regulation and tissue-specific expression of TnT. The coding region of TNNT3 exhibits strong similarity to the corresponding rat sequence. However, unlike the rat TnT gene, TNNT3 possesses two repeat regions of CCA and TC. The exclusive presence of these repetitive elements in the human gene indicates divergence in the evolutionary dynamics of mammalian TnT genes. Homologous muscle-specific splicing enhancer motifs are present in the introns upstream and downstream of the foetal exon, and may play a role in the developmental pattern of alternative splicing of the gene. The genomic correlates of TNNT3 are relevant to our understanding of the evolution and regulation of expression of the gene, as well as the structure and function of the protein isoforms. The nucleotide sequence of TNNT3 has been submitted to EMBL/GenBank under Accession No. AF026276. PMID:18629027

  5. Paleopathological Study of Dwarfism-Related Skeletal Dysplasia in a Late Joseon Dynasty (South Korean) Population

    PubMed Central

    Woo, Eun Jin; Lee, Won-Joon; Hu, Kyung-Seok; Hwang, Jae Joon

    2015-01-01

    Skeletal dysplasias related to genetic etiologies have rarely been reported for past populations. This report presents the skeletal characteristics of an individual with dwarfism-related skeletal dysplasia from South Korea. To assess abnormal deformities, morphological features, metric data, and computed tomography scans are analyzed. Differential diagnoses include achondroplasia or hypochondroplasia, chondrodysplasia, multiple epiphyseal dysplasia, thalassemia-related hemolytic anemia, and lysosomal storage disease. The diffused deformities in the upper-limb bones and several coarsened features of the craniofacial bones indicate the most likely diagnosis to have been a certain type of lysosomal storage disease. The skeletal remains of EP-III-4-No.107 from the Eunpyeong site, although incomplete and fragmented, provide important clues to the paleopathological diagnosis of skeletal dysplasias. PMID:26488291

  6. Paleopathological Study of Dwarfism-Related Skeletal Dysplasia in a Late Joseon Dynasty (South Korean) Population.

    PubMed

    Woo, Eun Jin; Lee, Won-Joon; Hu, Kyung-Seok; Hwang, Jae Joon

    2015-01-01

    Skeletal dysplasias related to genetic etiologies have rarely been reported for past populations. This report presents the skeletal characteristics of an individual with dwarfism-related skeletal dysplasia from South Korea. To assess abnormal deformities, morphological features, metric data, and computed tomography scans are analyzed. Differential diagnoses include achondroplasia or hypochondroplasia, chondrodysplasia, multiple epiphyseal dysplasia, thalassemia-related hemolytic anemia, and lysosomal storage disease. The diffused deformities in the upper-limb bones and several coarsened features of the craniofacial bones indicate the most likely diagnosis to have been a certain type of lysosomal storage disease. The skeletal remains of EP-III-4-No.107 from the Eunpyeong site, although incomplete and fragmented, provide important clues to the paleopathological diagnosis of skeletal dysplasias. PMID:26488291

  7. Shape covariation between the craniofacial complex and first molars in humans

    PubMed Central

    Polychronis, Georgios; Halazonetis, Demetrios J

    2014-01-01

    The occurrence of mutual genetic loci in morphogenesis of the face and teeth implies shape covariation between these structures. However, teeth finalize their shape at an early age, whereas the face grows and is subjected to environmental influences for a prolonged period; it is therefore conceivable that covariation might modulate with age. Here we investigate the extent of this covariation in humans by measuring the 3D shape of the occlusal surface of the permanent first molars and the shape of the craniofacial complex from lateral radiographs, at two maturations stages. A sample of Greek subjects was divided into two groups (110 adult, 110 prepubertal) with equally distributed gender. The occlusal surfaces of the right first molars were 3D scanned from dental casts; 265 and 274 landmarks (including surface and curve semilandmarks) were digitized on the maxillary and mandibular molars, respectively. The corresponding lateral cephalometric radiographs were digitized with 71 landmarks. Geometric morphometric methods were used to assess shape variation and covariation. The vertical dimension of the craniofacial complex was the main parameter of shape variation, followed by anteroposterior deviations. The male craniofacial complex was larger (4.0–5.7%) and was characterized by a prominent chin and clockwise rotation of the cranial base (adult group only). Allometry was weak and statistically significant only when examined for the sample as a whole (percent variance explained: 2.1%, P = 0.0002). Covariation was statistically significant only between the lower first molar and the craniofacial complex (RV = 14.05%, P = 0.0099, and RV = 12.31%, P = 0.0162, for the prepubertal and adult groups, respectively). Subtle age-related covariation differences were noted, indicating that environmental factors may influence the pattern and strength of covariation. However, the main pattern was similar in both groups: a class III skeletal pattern (relative maxillary retrusion and

  8. Pacific Craniofacial Team and Cleft Prevention Program.

    PubMed

    Tolarová, Marie M; Poulton, Donald; Aubert, Maryse M; Oh, HeeSoo; Ellerhorst, Thomas; Mosby, Terezie; Tolar, Miroslav; Boyd, Robert L

    2006-10-01

    There is no doubt modern genetics have greatly influenced our professional and personal lives during the last decade. Uncovering genetic causes of many medical and dental pathologies is helping to narrow the diagnosis and select a treatment plan that would provide the best outcome. Importantly, having an understanding of multifactorial etiology helps direct our attention toward prevention. We now understand much better our own health problems. In some cases, we can modify our lifestyle and diet in order to prevent "environmental factors" from triggering the mutated genes inherited from our parents. Good examples are diabetes and cardiovascular diseases. If we realize we might have inherited genes for cardiovascular problems from several ancestors who had heart attacks, we already know that these genes will make us only "susceptible" for disease. Those who exercise, watch one's weight, diet, and carefully monitor one's lifestyle will very likely--though possessing "susceptibility genes"--stay healthier and, maybe, will never experience any cardiovascular problems. In principle, the same applies for craniofacial anomalies, especially for nonsyndromic cleft lip and palate. One needs to understand genetic and environmental causes of nonsyndromic orofacial clefts in order to prevent them. With all this in mind, the Pacific Craniofacial Team and Cleft Prevention Program have been established at the Department of Orthodontics, University of the Pacific Arthur A. Dugoni School of Dentistry in San Francisco. A partnership with Rotaplast International, Inc., has made it possible for the faculty, orthodontic residents, and students to participate in 27 multidisciplinary cleft medical missions in underdeveloped and developing countries by donating professional and educational services, and, last but not least, by collecting valuable data and specimens to further research. A significant number of research studies, including 15 master of science theses, have been accomplished in

  9. Reforming craniofacial orthodontics via stem cells

    PubMed Central

    Mohanty, Pritam; Prasad, N.K.K.; Sahoo, Nivedita; Kumar, Gunjan; Mohanty, Debapreeti; Sah, Sushila

    2015-01-01

    Stem cells are the most interesting cells in cell biology. They have the potential to evolve as one of the most powerful technologies in the future. The future refers to an age where it will be used extensively in various fields of medical and dental sciences. Researchers have discovered a number of sources from which stem cells can be derived. Craniofacial problems are very common and occur at all ages. Stem cells can be used therapeutically in almost every field of health science. In fact, many procedures will be reformed after stem cells come into play. This article is an insight into the review of the current researches being carried out on stem cells and its use in the field of orthodontics, which is a specialized branch of dentistry. Although the future is uncertain, there is a great possibility that stem cells will be used extensively in almost all major procedures of orthodontics. PMID:25767761

  10. Application of Digital Anthropometry for Craniofacial Assessment

    PubMed Central

    Jayaratne, Yasas S. N.; Zwahlen, Roger A.

    2014-01-01

    Craniofacial anthropometry is an objective technique based on a series of measurements and proportions, which facilitate the characterization of phenotypic variation and quantification of dysmorphology. With the introduction of stereophotography, it is possible to acquire a lifelike three-dimensional (3D) image of the face with natural color and texture. Most of the traditional anthropometric landmarks can be identified on these 3D photographs using specialized software. Therefore, it has become possible to compute new digital measurements, which were not feasible with traditional instruments. The term “digital anthropometry” has been used by researchers based on such systems to separate their methods from conventional manual measurements. Anthropometry has been traditionally used as a research tool. With the advent of digital anthropometry, this technique can be employed in several disciplines as a noninvasive tool for quantifying facial morphology. The aim of this review is to provide a broad overview of digital anthropometry and discuss its clinical applications. PMID:25050146

  11. The eye as an organizer of craniofacial development

    PubMed Central

    Kish, Phillip E.; Bohnsack, Brenda L; Gallina, Donika D.; Kasprick, Daniel S.

    2013-01-01

    The formation and invagination of the optic stalk coincides with the migration of cranial neural crest (CNC) cells, and a growing body of data reveals that the optic stalk and CNC cells communicate to lay the foundations for periocular and craniofacial development. Following migration, the interaction between the developing eye and surrounding periocular mesenchyme (POM) continues, leading to induction of transcriptional regulatory cascades that regulate craniofacial morphogenesis. Studies in chick, mice and zebrafish have revealed a remarkable level of genetic and mechanistic conservation, affirming the power of each animal model to shed light on the broader morphogenic process. This review will focus on the role of the developing eye in orchestrating craniofacial morphogenesis, utilizing morphogenic gradients, paracrine signaling, and transcriptional regulatory cascades to establish an evolutionarily-conserved facial architecture. We propose that in addition to the forebrain, the eye functions during early craniofacial morphogenesis as a key organizer of facial development, independent of its role in vision. PMID:21309065

  12. Impact of Stem Cells in Craniofacial Regenerative Medicine

    PubMed Central

    Sanchez-Lara, Pedro A.; Zhao, Hu; Bajpai, Ruchi; Abdelhamid, Alaa I.; Warburton, David

    2012-01-01

    Interest regarding stem cell based therapies for the treatment of congenital or acquired craniofacial deformities is rapidly growing. Craniofacial problems such as periodontal disease, cleft lip and palate, ear microtia, craniofacial microsomia, and head and neck cancers are not only common but also some of the most burdensome surgical problems worldwide. Treatments often require a multi-staged multidisciplinary team approach. Current surgical therapies attempt to reduce the morbidity and social/emotional impact, yet outcomes can still be unpredictable and unsatisfactory. The concept of harvesting stem cells followed by expansion, differentiation, seeding onto a scaffold and re-transplanting them is likely to become a clinical reality. In this review, we will summarize the translational applications of stem cell therapy in tissue regeneration for craniofacial defects. PMID:22737127

  13. Vertical Craniofacial Morphology and its Relation to Temporomandibular Disorders

    PubMed Central

    Bavia, Paula Furlan

    2016-01-01

    ABSTRACT Objectives This study investigated the association between craniofacial morphology and temporomandibular disorders in adults. The influence of different craniofacial morphologies on painful temporomandibular disorders was also evaluated. Material and Methods A total of 200 subjects were selected, including 100 with temporomandibular disorders (TMD) and 100 without TMD (control), diagnosed by research diagnostic criteria for temporomandibular disorders. All subjects were submitted to lateral cephalometric radiographs, and classified as brachyfacial, mesofacial, or dolichofacial by Ricketts’ analysis. Data were analysed by Tukey-Kramer and Chi-square tests. Results No association between craniofacial morphology and TMD was found (P = 0.6622). However, brachyfacial morphology influences the presence of painful TMD (P = 0.0077). Conclusions Craniofacial morphology is not related to temporomandibular disorders in general. PMID:27489610

  14. Evolution.

    ERIC Educational Resources Information Center

    Mayr, Ernst

    1978-01-01

    Traces the history of evolution theory from Lamarck and Darwin to the present. Discusses natural selection in detail. Suggests that, besides biological evolution, there is also a cultural evolution which is more rapid than the former. (MA)

  15. Adult psychological functioning of individuals born with craniofacial anomalies.

    PubMed

    Sarwer, D B; Bartlett, S P; Whitaker, L A; Paige, K T; Pertschuk, M J; Wadden, T A

    1999-02-01

    This study represents an initial investigation into the adult psychological functioning of individuals born with craniofacial disfigurement. A total of 24 men and women born with a craniofacial anomaly completed paper and pencil measures of body image dissatisfaction, self-esteem, quality of life, and experiences of discrimination. An age- and gender-matched control group of 24 non-facially disfigured adults also completed the measures. As expected, craniofacially disfigured adults reported greater dissatisfaction with their facial appearance than did the control group. Craniofacially disfigured adults also reported significantly lower levels of self-esteem and quality of life. Dissatisfaction with facial appearance, self-esteem, and quality of life were related to self-ratings of physical attractiveness. More than one-third of craniofacially disfigured adults (38 percent) reported experiences of discrimination in employment or social settings. Among disfigured adults, psychological functioning was not related to number of surgeries, although the degree of residual facial deformity was related to increased dissatisfaction with facial appearance and greater experiences of discrimination. Results suggest that adults who were born with craniofacial disfigurement, as compared with non-facially disfigured adults, experience greater dissatisfaction with facial appearance and lower self-esteem and quality of life; however, these experiences do not seem to be universal. PMID:9950526

  16. The Aponeurotic Tension Model of Craniofacial Growth in Man

    PubMed Central

    Standerwick, Richard G; Roberts, W. Eugene

    2009-01-01

    Craniofacial growth is a scientific crossroad for the fundamental mechanisms of musculoskeletal physiology. Better understanding of growth and development will provide new insights into repair, regeneration and adaptation to applied loads. Traditional craniofacial growth concepts are insufficient to explain the dynamics of airway/vocal tract development, cranial rotation, basicranial flexion and the role of the cranial base in expression of facial proportions. A testable hypothesis is needed to explore the physiological pressure propelling midface growth and the role of neural factors in expression of musculoskeletal adaptation after the cessation of anterior cranial base growth. A novel model for craniofacial growth is proposed for: 1. brain growth and craniofacial adaptation up to the age of 20; 2. explaining growth force vectors; 3. defining the role of muscle plasticity as a conduit for craniofacial growth forces; and 4. describing the effect of cranial rotation in the expression of facial form. Growth of the viscerocranium is believed to be influenced by the superficial musculoaponeurotic systems (SMAS) of the head through residual tension in the occipitofrontalis muscle as a result of cephalad brain growth and cranial rotation. The coordinated effects of the regional SMAS develop a craniofacial musculoaponeurotic system (CFMAS), which is believed to affect maxillary and mandibular development. PMID:19572022

  17. Antimicrobial surfaces for craniofacial implants: state of the art

    PubMed Central

    Actis, Lisa; Gaviria, Laura; Guda, Teja

    2013-01-01

    In an attempt to regain function and aesthetics in the craniofacial region, different biomaterials, including titanium, hydroxyapatite, biodegradable polymers and composites, have been widely used as a result of the loss of craniofacial bone. Although these materials presented favorable success rates, osseointegration and antibacterial properties are often hard to achieve. Although bone-implant interactions are highly dependent on the implant's surface characteristics, infections following traumatic craniofacial injuries are common. As such, poor osseointegration and infections are two of the many causes of implant failure. Further, as increasingly complex dental repairs are attempted, the likelihood of infection in these implants has also been on the rise. For these reasons, the treatment of craniofacial bone defects and dental repairs for long-term success remains a challenge. Various approaches to reduce the rate of infection and improve osseointegration have been investigated. Furthermore, recent and planned tissue engineering developments are aimed at improving the implants' physical and biological properties by improving their surfaces in order to develop craniofacial bone substitutes that will restore, maintain and improve tissue function. In this review, the commonly used biomaterials for craniofacial bone restoration and dental repair, as well as surface modification techniques, antibacterial surfaces and coatings are discussed. PMID:24471018

  18. Skeletal abnormalities of tricho-rhino-phalangeal syndrome type I.

    PubMed

    de Barros, Guilherme Monteiro; Kakehasi, Adriana Maria

    2016-01-01

    The tricho-rhino-phalangeal syndrome (TRPS) type I is a rare genetic disorder related to the TRPS1 gene mutation in chromosome 8, characterized by craniofacial abnormalities and disturbances in formation and maturation of bone matrix. The hallmarks are sparse and brittle hair, tendency to premature baldness, bulbous nose called pear-shaped, long and flat filter and low ear implantation. The most noticeable skeletal changes are clinodactyly, phalangeal epiphyses of the hands appearing as cone-shaped, short stature and hip joint malformations. We report a case of a teenager boy diagnosed with TRPS and referred for rheumatologic evaluation due to joint complaints. PMID:27267340

  19. Skeletal anomalies.

    PubMed

    Dugoff, L; Thieme, G; Hobbins, J C

    2000-12-01

    It is possible to identify many types of skeletal dysplasias and conditions involving limb deformities prenatally using ultrasound. It is likely that in the future, with the advancing technology and discoveries in molecular genetics, specific mutation analysis will become available for many of these conditions. This will make first trimester diagnosis an option in many cases. Because of the complex nature of many of these cases, it may be helpful to use a multidisciplinary approach involving a radiologist and a geneticist at times. In utero radiographs may help clarify a diagnosis. In lethal cases where a specific diagnosis has not been confirmed, it may be helpful postpartum to obtain an autopsy; photographs; complete body radiographs; karyotypic analysis; and specimens of bone, cartilage, and fetal blood for further analysis. PMID:11816496

  20. Skeletal Scintigraphy

    PubMed Central

    McDougall, I. Ross

    1979-01-01

    Skeletal scintigraphy, using phosphates or diphosphonates labeled with technetium 99m, is a sensitive method of detecting bone abnormalities. The most important and most frequent role of bone scanning is evaluating the skeletal areas in patients who have a primary cancer, especially a malignant condition that has a tendency to spread to bone areas. The bone scan is superior to bone radiographs in diagnosing these abnormalities; 15 percent to 25 percent of patients with breast, prostate or lung cancer, who have normal roentgenograms, also have abnormal scintigrams due to metastases. The majority of bone metastases appear as hot spots on the scan and are easily recognized. The incidence of abnormal bone scans in patients with early stages (I and II) of breast cancer varies from 6 percent to 26 percent, but almost invariably those patients with scan abnormalities have a poor prognosis and should be considered for additional therapies. Progression or regression of bony lesions can be defined through scanning, and abnormal areas can be identified for biopsy. The incidence of metastases in solitary scan lesions in patients with known primary tumors varies from 20 percent to 64 percent. Bone scintigraphy shows positive uptake in 95 percent of cases with acute osteomyelitis. Stress fractures and trauma suspected in battered babies can be diagnosed by scanning before there is radiological evidence. The procedure is free from acute or long-term side effects and, except in cases of very young patients, sedation is seldom necessary. Although the test is sensitive, it is not specific and therefore it is difficult to overemphasize the importance of clinical, radiographic, biochemical and scanning correlation in each patient. ImagesFigure 2.Figure 3.Figure 4.Figure 5.Figure 6.Figure 7.Figure 8.Figure 9.Figure 10. PMID:390886

  1. Obesity and craniofacial variables in subjects with obstructive sleep apnea syndrome: comparisons of cephalometric values

    PubMed Central

    Cuccia, Antonino M; Campisi, Giuseppina; Cannavale, Rosangela; Colella, Giuseppe

    2007-01-01

    Background The aim of this paper was to determine the most common craniofacial changes in patients suffering Obstructive Sleep Apnea Syndrome (OSAS) with regards to the degree of obesity. Accordingly, cephalometric data reported in the literature was searched and analyzed. Methods After a careful analysis of the literature from 1990 to 2006, 5 papers with similar procedural criteria were selected. Inclusion criteria were: recruitment of Caucasian patients with an apnea-hypopnea index (AHI) >10 as grouped in non-obese (Body Mass Index – [BMI] < 30) vs. obese (BMI ≥ 30). Results A low position of the hyoid bone was present in both groups. In non-obese patients, an increased value of the ANB angle and a reduced dimension of the cranial base (S-N) were found to be the most common finding, whereas major skeletal divergence (ANS-PNS ^Go-Me) was evident among obese patients. No strict association was found between OSAS and length of the soft palate. Conclusion In both non-obese and obese OSAS patients, skeletal changes were often evident; with special emphasis of intermaxillary divergence in obese patients. Unexpectedly, in obese OSAS patients, alterations of oropharyngeal soft tissue were not always present and did not prevail. PMID:18154686

  2. Etiology of craniofacial malformations in mouse models of blepharophimosis, ptosis and epicanthus inversus syndrome.

    PubMed

    Heude, Églantine; Bellessort, Brice; Fontaine, Anastasia; Hamazaki, Manatsu; Treier, Anna-Corina; Treier, Mathias; Levi, Giovanni; Narboux-Nême, Nicolas

    2015-03-15

    Blepharophimosis, ptosis, epicanthus-inversus syndrome (BPES) is an autosomal dominant genetic disorder characterized by narrow palpebral fissures and eyelid levator muscle defects. BPES is often associated to premature ovarian insufficiency (BPES type I). FOXL2, a member of the forkhead transcription factor family, is the only gene known to be mutated in BPES. Foxl2 is essential for maintenance of ovarian identity, but the developmental origin of the facial malformations of BPES remains, so far, unexplained. In this study, we provide the first detailed account of the developmental processes leading to the craniofacial malformations associated to Foxl2. We show that, during development, Foxl2 is expressed both by Cranial Neural Crest Cells (CNCCs) and by Cranial Mesodermal Cells (CMCs), which give rise to skeletal (CNCCs and CMCs) and muscular (CMCs) components of the head. Using mice in which Foxl2 is selectively inactivated in either CNCCs or CMCs, we reveal that expression of Foxl2 in CNCCs is essential for the development of extraocular muscles. Indeed, inactivation of Foxl2 in CMCs has only minor effects on muscle development, whereas its inactivation in CNCCs provokes a severe hypoplasia of the levator palpabrae superioris and of the superior and inferior oblique muscles. We further show that Foxl2 deletion in either CNCCs or CMCs prevents eyelid closure and induces subtle skeletal developmental defects. Our results provide new insights in the complex developmental origin of human BPES and could help to understand the origin of other ocular anomalies associated to this syndrome. PMID:25416281

  3. ARCN1 Mutations Cause a Recognizable Craniofacial Syndrome Due to COPI-Mediated Transport Defects.

    PubMed

    Izumi, Kosuke; Brett, Maggie; Nishi, Eriko; Drunat, Séverine; Tan, Ee-Shien; Fujiki, Katsunori; Lebon, Sophie; Cham, Breana; Masuda, Koji; Arakawa, Michiko; Jacquinet, Adeline; Yamazumi, Yusuke; Chen, Shu-Ting; Verloes, Alain; Okada, Yuki; Katou, Yuki; Nakamura, Tomohiko; Akiyama, Tetsu; Gressens, Pierre; Foo, Roger; Passemard, Sandrine; Tan, Ene-Choo; El Ghouzzi, Vincent; Shirahige, Katsuhiko

    2016-08-01

    Cellular homeostasis is maintained by the highly organized cooperation of intracellular trafficking systems, including COPI, COPII, and clathrin complexes. COPI is a coatomer protein complex responsible for intracellular protein transport between the endoplasmic reticulum and the Golgi apparatus. The importance of such intracellular transport mechanisms is underscored by the various disorders, including skeletal disorders such as cranio-lenticulo-sutural dysplasia and osteogenesis imperfect, caused by mutations in the COPII coatomer complex. In this article, we report a clinically recognizable craniofacial disorder characterized by facial dysmorphisms, severe micrognathia, rhizomelic shortening, microcephalic dwarfism, and mild developmental delay due to loss-of-function heterozygous mutations in ARCN1, which encodes the coatomer subunit delta of COPI. ARCN1 mutant cell lines were revealed to have endoplasmic reticulum stress, suggesting the involvement of ER stress response in the pathogenesis of this disorder. Given that ARCN1 deficiency causes defective type I collagen transport, reduction of collagen secretion represents the likely mechanism underlying the skeletal phenotype that characterizes this condition. Our findings demonstrate the importance of COPI-mediated transport in human development, including skeletogenesis and brain growth. PMID:27476655

  4. Tissue-nonspecific Alkaline Phosphatase Deficiency Causes Abnormal Craniofacial Bone Development in the Alpl−/− Mouse Model of Infantile Hypophosphatasia

    PubMed Central

    Liu, Jin; Nam, Hwa Kyung; Campbell, Cassie; Gasque, Kellen Cristina da Silva; Millán, José Luis; Hatch, Nan E.

    2014-01-01

    Tissue-nonspecific alkaline phosphatase (TNAP) is an enzyme present on the surface of mineralizing cells and their derived matrix vesicles that promotes hydroxyapatite crystal growth. Hypophosphatasia (HPP) is an inborn-error-of-metabolism that, dependent upon age of onset, features rickets or osteomalacia due to loss-of function mutations in the gene (Alpl) encoding TNAP. Craniosynostosis is prevalent in infants with HPP and other forms of rachitic disease but how craniosynostosis develops in these disorders is unknown. Objectives: Because craniosynostosis carries high morbidity, we are investigating craniofacial skeletal abnormalities in Alpl−/− mice to establish these mice as a model of HPP-associated craniosynostosis and determine mechanisms by which TNAP influences craniofacial skeletal development. Methods: Cranial bone, cranial suture and cranial base abnormalities were analyzed by micro-CT and histology. Craniofacial shape abnormalities were quantified using digital calipers. TNAP expression was suppressed in MC3T3E1(C4) calvarial cells by TNAP-specific shRNA. Cells were analyzed for changes in mineralization, gene expression, proliferation, apoptosis, matrix deposition and cell adhesion. Results: Alpl−/− mice feature craniofacial shape abnormalities suggestive of limited anterior-posterior growth. Craniosynostosis in the form of bony coronal suture fusion is present by three weeks after birth. Alpl−/− mice also exhibit marked histologic abnormalities of calvarial bones and the cranial base involving growth plates, cortical and trabecular bone within two weeks of birth. Analysis of calvarial cells in which TNAP expression was suppressed by shRNA indicates that TNAP deficiency promotes aberrant osteoblastic gene expression, diminished matrix deposition, diminished proliferation, increased apoptosis and increased cell adhesion. Conclusions: These findings demonstrate that Alpl−/− mice exhibit a craniofacial skeletal phenotype similar to that

  5. 75 FR 28031 - National Institute of Dental & Craniofacial Research; Notice of Closed Meetings

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-05-19

    ...; Teleconference Review of Small Research Grants for Data Analysis and Statistical Methodology (R03) Applications... HUMAN SERVICES National Institutes of Health National Institute of Dental & Craniofacial Research... personal privacy. Name of Committee: National Institute of Dental and Craniofacial Research...

  6. 78 FR 3009 - National Institute of Dental & Craniofacial Research; Notice of Closed Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-01-15

    ... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF HEALTH AND HUMAN SERVICES National Institutes of Health National Institute of Dental & Craniofacial Research... personal privacy. Name of Committee: National Institute of Dental and Craniofacial Research...

  7. 76 FR 57061 - National Institute of Dental & Craniofacial Research; Notice of Closed Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-09-15

    ... HUMAN SERVICES National Institutes of Health National Institute of Dental & Craniofacial Research... personal privacy. Name of Committee: National Institute of Dental and Craniofacial Research Special... Kelly, Scientific Review Officer, Scientific Review Branch, National Inst of Dental &...

  8. 76 FR 5183 - National Institute of Dental & Craniofacial Research; Notice of Closed Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-01-28

    ... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF HEALTH AND HUMAN SERVICES National Institutes of Health National Institute of Dental & Craniofacial Research..., Scientific Review Officer, Scientific Review Branch, National Inst. of Dental & Craniofacial...

  9. 77 FR 64815 - National Institute of Dental & Craniofacial Research; Notice of Closed Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-10-23

    ... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF HEALTH AND HUMAN SERVICES National Institutes of Health National Institute of Dental & Craniofacial Research... personal privacy. Name of Committee: National Institute of Dental and Craniofacial Research...

  10. 77 FR 10540 - National Institute of Dental & Craniofacial Research; Notice of Closed Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-02-22

    ... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF HEALTH AND HUMAN SERVICES National Institutes of Health National Institute of Dental & Craniofacial Research... personal privacy. Name of Committee: National Institute of Dental and Craniofacial Research...

  11. 77 FR 76297 - National Institute of Dental & Craniofacial Research; Notice of Closed Meetings

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-12-27

    ... HUMAN SERVICES National Institutes of Health National Institute of Dental & Craniofacial Research...-594-0652, rwagenaa@mail.nih.gov . Name of Committee: National Institute of Dental and Craniofacial...., MS, Scientific Review Officer, Scientific ] Review Branch, National Institute of...

  12. 78 FR 24761 - National Institute of Dental & Craniofacial Research; Notice of Closed Meetings

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-04-26

    ... HUMAN SERVICES National Institutes of Health National Institute of Dental & Craniofacial Research... personal privacy. Name of Committee: National Institute of Dental and Craniofacial Research Special Emphasis Panel; Design and Development of Novel Dental Composite Restorative Systems Review Panel....

  13. 75 FR 8976 - National Institute of Dental & Craniofacial Research; Notice of Closed Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-02-26

    ... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF HEALTH AND HUMAN SERVICES National Institutes of Health National Institute of Dental & Craniofacial Research... personal privacy. Name of Committee: National Institute of Dental and Craniofacial Research...

  14. 77 FR 57098 - National Institute of Dental & Craniofacial Research; Notice of Closed Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-09-17

    ... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF HEALTH AND HUMAN SERVICES National Institutes of Health National Institute of Dental & Craniofacial Research... personal privacy. Name of Committee: National Institute of Dental and Craniofacial Research...

  15. 75 FR 7486 - National Institute of Dental & Craniofacial Research; Notice of Closed Meetings

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-02-19

    ... HUMAN SERVICES National Institutes of Health National Institute of Dental & Craniofacial Research... personal privacy. Name of Committee: National Institute of Dental and Craniofacial Research Special..., PhD, Scientific Review Officer, Scientific Review Branch, National Institute of Dental...

  16. Morphometrics, 3D Imaging, and Craniofacial Development.

    PubMed

    Hallgrimsson, Benedikt; Percival, Christopher J; Green, Rebecca; Young, Nathan M; Mio, Washington; Marcucio, Ralph

    2015-01-01

    Recent studies have shown how volumetric imaging and morphometrics can add significantly to our understanding of morphogenesis, the developmental basis for variation, and the etiology of structural birth defects. On the other hand, the complex questions and diverse imaging data in developmental biology present morphometrics with more complex challenges than applications in virtually any other field. Meeting these challenges is necessary in order to understand the mechanistic basis for variation in complex morphologies. This chapter reviews the methods and theory that enable the application of modern landmark-based morphometrics to developmental biology and craniofacial development, in particular. We discuss the theoretical foundations of morphometrics as applied to development and review the basic approaches to the quantification of morphology. Focusing on geometric morphometrics, we discuss the principal statistical methods for quantifying and comparing morphological variation and covariation structure within and among groups. Finally, we discuss the future directions for morphometrics in developmental biology that will be required for approaches that enable quantitative integration across the genotype-phenotype map. PMID:26589938

  17. Zebrafish Craniofacial Development: A Window into Early Patterning

    PubMed Central

    Mork, Lindsey; Crump, Gage

    2016-01-01

    The formation of the face and skull involves a complex series of developmental events mediated by cells derived from the neural crest, endoderm, mesoderm, and ectoderm. Although vertebrates boast an enormous diversity of adult facial morphologies, the fundamental signaling pathways and cellular events that sculpt the nascent craniofacial skeleton in the embryo have proven to be highly conserved from fish to man. The zebrafish Danio rerio, a small freshwater cyprinid fish from eastern India, has served as a popular model of craniofacial development since the 1990s. Unique strengths of the zebrafish model include a simplified skeleton during larval stages, access to rapidly developing embryos for live imaging, and amenability to transgenesis and complex genetics. In this chapter, we describe the anatomy of the zebrafish craniofacial skeleton; its applications as models for the mammalian jaw, middle ear, palate, and cranial sutures; the superior imaging technology available in fish that has provided unprecedented insights into the dynamics of facial morphogenesis; the use of the zebrafish to decipher the genetic underpinnings of craniofacial biology; and finally a glimpse into the most promising future applications of zebrafish craniofacial research. PMID:26589928

  18. Genetic Analysis of Craniofacial Traits in the Medaka

    PubMed Central

    Kimura, Tetsuaki; Shimada, Atsuko; Sakai, Noriyoshi; Mitani, Hiroshi; Naruse, Kiyoshi; Takeda, Hiroyuki; Inoko, Hidetoshi; Tamiya, Gen; Shinya, Minori

    2007-01-01

    Family and twin studies suggest that a substantial genetic component underlies individual differences in craniofacial morphology. In the current study, we quantified 444 craniofacial traits in 100 individuals from two inbred medaka (Oryzias latipes) strains, HNI and Hd-rR. Relative distances between defined landmarks were measured in digital images of the medaka head region. A total of 379 traits differed significantly between the two strains, indicating that many craniofacial traits are controlled by genetic factors. Of these, 89 traits were analyzed via interval mapping of 184 F2 progeny from an intercross between HNI and Hd-rR. We identified quantitative trait loci for 66 craniofacial traits. The highest logarithm of the odds score was 6.2 for linkage group (LG) 9 and 11. Trait L33, which corresponds to the ratio of head length to head height at eye level, mapped to LG9; trait V15, which corresponds to the ratio of snout length to head width measured behind the eyes, mapped to LG11. Our initial results confirm the potential of the medaka as a model system for the genetic analysis of complex traits such as craniofacial morphology. PMID:18073435

  19. Craniofacial shape variation in Twist1+/- mutant mice.

    PubMed

    Parsons, Trish E; Weinberg, Seth M; Khaksarfard, Kameron; Howie, R Nicole; Elsalanty, Mohammed; Yu, Jack C; Cray, James J

    2014-05-01

    Craniosynostosis (CS) is a relatively common birth defect resulting from the premature fusion of one or more cranial sutures. Human genetic studies have identified several genes in association with CS. One such gene that has been implicated in both syndromic (Saethre-Chotzen syndrome) and nonsyndromic forms of CS in humans is TWIST1. In this study, a heterozygous Twist1 knock out (Twist1(+/-) ) mouse model was used to study the craniofacial shape changes associated with the partial loss of function. A geometric morphometric approach was used to analyze landmark data derived from microcomputed tomography scans to compare craniofacial shape between 17 Twist1(+/-) mice and 26 of their Twist1(+/+) (wild type) littermate controls at 15 days of age. The results show that despite the purported wide variation in synostotic severity, Twist1(+/-) mice have a consistent pattern of craniofacial dysmorphology affecting all major regions of the skull. Similar to Saethre-Chotzen, the calvarium is acrocephalic and wide with an overall brachycephalic shape. Mutant mice also exhibited a shortened cranial base and a wider and shorted face, consistent with coronal CS associated phenotypes. The results suggest that these differences are at least partially the direct result of the Twist1 haploinsufficiency on the developing craniofacial skeleton. This study provides a quantitative phenotype complement to the developmental and molecular genetic research previously done on Twist1. These results can be used to generate further hypotheses about the effect of Twist1 and premature suture fusion on the entire craniofacial skeleton. PMID:24585549

  20. Cranio-facial clefts in pre-hispanic America.

    PubMed

    Marius-Nunez, A L; Wasiak, D T

    2015-10-01

    Among the representations of congenital malformations in Moche ceramic art, cranio-facial clefts have been portrayed in pottery found in Moche burials. These pottery vessels were used as domestic items during lifetime and funerary offerings upon death. The aim of this study was to examine archeological evidence for representations of cranio-facial cleft malformations in Moche vessels. Pottery depicting malformations of the midface in Moche collections in Lima-Peru were studied. The malformations portrayed on pottery were analyzed using the Tessier classification. Photographs were authorized by the Larco Museo.Three vessels were observed to have median cranio-facial dysraphia in association with midline cleft of the lower lip with cleft of the mandible. ML001489 portrays a median cranio-facial dysraphia with an orbital cleft and a midline cleft of the lower lip extending to the mandible. ML001514 represents a median facial dysraphia in association with an orbital facial cleft and a vertical orbital dystopia. ML001491 illustrates a median facial cleft with a soft tissue cleft. Three cases of midline, orbital and lateral facial clefts have been portrayed in Moche full-figure portrait vessels. They represent the earliest registries of congenital cranio-facial malformations in ancient Peru. PMID:26010214

  1. Investigation of the effects of estrogen on skeletal gene expression during zebrafish larval head development

    PubMed Central

    Walker, Benjamin S.; Lassiter, Christopher S.; Jónsson, Zophonías O.

    2016-01-01

    The development of craniofacial skeletal structures requires well-orchestrated tissue interactions controlled by distinct molecular signals. Disruptions in normal function of these molecular signals have been associated with a wide range of craniofacial malformations. A pathway mediated by estrogens is one of those molecular signals that plays role in formation of bone and cartilage including craniofacial skeletogenesis. Studies in zebrafish have shown that while higher concentrations of 17-β estradiol (E2) cause severe craniofacial defects, treatment with lower concentrations result in subtle changes in head morphology characterized with shorter snouts and flatter faces. The molecular basis for these morphological changes, particularly the subtle skeletal effects mediated by lower E2 concentrations, remains unexplored. In the present study we address these effects at a molecular level by quantitative expression analysis of sets of candidate genes in developing heads of zebrafish larvae treated with two different E2 concentrations. To this end, we first validated three suitable reference genes, ppia2, rpl8 and tbp, to permit sensitive quantitative real-time PCR analysis. Next, we profiled the expression of 28 skeletogenesis-associated genes that potentially respond to estrogen signals and play role in craniofacial development. We found E2 mediated differential expression of genes involved in extracellular matrix (ECM) remodelling, mmp2/9/13, sparc and timp2a, as well as components of skeletogenic pathways, bmp2a, erf, ptch1/2, rankl, rarab and sfrp1a. Furthermore, we identified a co-expressed network of genes, including cpn1, dnajc3, esr1, lman1, rrbp1a, ssr1 and tram1 with a stronger inductive response to a lower dose of E2 during larval head development. PMID:27069811

  2. Investigation of the effects of estrogen on skeletal gene expression during zebrafish larval head development.

    PubMed

    Pashay Ahi, Ehsan; Walker, Benjamin S; Lassiter, Christopher S; Jónsson, Zophonías O

    2016-01-01

    The development of craniofacial skeletal structures requires well-orchestrated tissue interactions controlled by distinct molecular signals. Disruptions in normal function of these molecular signals have been associated with a wide range of craniofacial malformations. A pathway mediated by estrogens is one of those molecular signals that plays role in formation of bone and cartilage including craniofacial skeletogenesis. Studies in zebrafish have shown that while higher concentrations of 17-β estradiol (E 2) cause severe craniofacial defects, treatment with lower concentrations result in subtle changes in head morphology characterized with shorter snouts and flatter faces. The molecular basis for these morphological changes, particularly the subtle skeletal effects mediated by lower E 2 concentrations, remains unexplored. In the present study we address these effects at a molecular level by quantitative expression analysis of sets of candidate genes in developing heads of zebrafish larvae treated with two different E 2 concentrations. To this end, we first validated three suitable reference genes, ppia2, rpl8 and tbp, to permit sensitive quantitative real-time PCR analysis. Next, we profiled the expression of 28 skeletogenesis-associated genes that potentially respond to estrogen signals and play role in craniofacial development. We found E 2 mediated differential expression of genes involved in extracellular matrix (ECM) remodelling, mmp2/9/13, sparc and timp2a, as well as components of skeletogenic pathways, bmp2a, erf, ptch1/2, rankl, rarab and sfrp1a. Furthermore, we identified a co-expressed network of genes, including cpn1, dnajc3, esr1, lman1, rrbp1a, ssr1 and tram1 with a stronger inductive response to a lower dose of E 2 during larval head development. PMID:27069811

  3. Craniofacial analysis of the Tweed Foundation in Angle Class II, division 1 malocclusion.

    PubMed

    Tukasan, Paulo César; Magnani, Maria Beatriz Borges de Araújo; Nouer, Darcy Flávio; Nouer, Paulo Roberto Aranha; Neto, João Sarmento Pereira; Garbui, Ivana Uglik

    2005-01-01

    This study has defined the cephalometric values of the Craniofacial Analysis of the Tweed Foundation for a sample of Brazilian subjects. The sample consisted of 211 cephalometric radiographs from subjects aged 12-15, which were divided into two groups: Class II group, with 168 lateral teleradiographs (cephalograms) of white Brazilian subjects, with Angle Class II, division 1 malocclusion, of both genders (82 males and 86 females); and the Control Group, with 43 lateral teleradiographs (cephalograms) of subjects whose occlusion was clinically excellent, and also of both genders (21 males and 22 females). The teleradiographs were selected from the files of the Department of Orthodontics, School of Dentistry of Piracicaba, State University of Campinas, previously to the orthodontic treatment. The results demonstrated no sexual dimorphism for each group, as attested by the Student's t-test. The exploratory analysis (+/- 0.5 standard deviation) enabled the tolerance limits to be determined and a Craniofacial Analysis Table to be constructed using the respective cephalometric intervals. In addition, the difference between the two groups was not statistically significant according to the maxilla position. The maxilla was in a good position in relation to the cranial base. On the other hand, the mandible was retruded in relation to the cranial base in the Class II cases. The skeletal pattern was not defined because only the Facial Height Index (FHI) showed a vertical pattern in Class II subjects, while the Y Axis, SN.PlO, SN.GoMe and FMA values did not show any statistically significant difference between the groups. The Class II division 1 subjects showed lower incisors more labially tipped and a convex facial profile. PMID:16229360

  4. 76 FR 38193 - National Institute of Dental & Craniofacial Research; Notice of Closed Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-06-29

    ... HUMAN SERVICES National Institutes of Health National Institute of Dental & Craniofacial Research... Institute of Dental and Craniofacial Research Special Emphasis Panel, Review of PAR-11-144 NIDCR U01... of Dental & Craniofacial Research, National Institutes of Health, 6701 Democracy Blvd., Rm...

  5. 77 FR 23488 - National Institute of Dental & Craniofacial Research; Notice of Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-04-19

    ... HUMAN SERVICES National Institutes of Health National Institute of Dental & Craniofacial Research.... App.), notice is hereby given of a meeting of the National Advisory Dental and Craniofacial Research... personal privacy. Name of Committee: National Advisory Dental and Craniofacial Research Council. Date:...

  6. 78 FR 7794 - National Institute of Dental & Craniofacial Research; Notice of Closed Meetings

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-02-04

    ... HUMAN SERVICES National Institutes of Health National Institute of Dental & Craniofacial Research... personal privacy. Name of Committee: National Institute of Dental and Craniofacial Research Special... Dental and Craniofacial Research Special Emphasis Panel; R34/U01 Grant Application Review MH10....

  7. Cephalometric Assessment of Upper Airway Effects on Craniofacial Morphology.

    PubMed

    Ardehali, Mojtaba Mohamadi; Zarch, Varasteh Vakili; Joibari, Mohammad-Esmaeil; Kouhi, Ali

    2016-03-01

    To investigate craniofacial growth deformities in children with upper airway obstruction, this controlled study was performed. Cephalometry is used as a screening test for anatomic abnormalities in patients with obstructive sleep apnea syndrome. Therefore, the current work selected this method to investigate the effect of upper airway obstruction on craniofacial morphology.Patients with upper airway obstruction (104) were compared with 71 controls. Patients with upper airway compromise had mandibular hypoplasia, mandibular retrognathism, and higher hard palates in comparison with controls with no history of airway obstruction. The difference was higher in the older age group.Airway obstruction has significant correlation craniofacial morphology. Our findings support the idea of early assessment and thorough management of mouth breathing in children. PMID:26967073

  8. The quantitative and qualitative analysis of the craniofacial skeleton of mice lacking the IGF-I gene.

    PubMed

    McAlarney, M E; Rizos, M; Rocca, E G; Nicolay, O F; Efstratiadis, S

    2001-11-01

    Insulin-like growth factors are mediators of growth hormone and are believed to also stimulate growth independently. Insulin-like growth factor I (IGF-I) null mutant mice exhibit a lower rate of skeletal growth compared with their wild-type (control) littermates. Although their general body dimensions seem proportionate, their heads appear shortened with a blunt nose compared with the controls. The aim of this project was threefold: 1) to investigate whether differences in shape/form exist between the craniofacial skeleton of the IGF-I null mutant mice and their control littermates by using three techniques; 2) to determine whether the three techniques yield similar, different, or complementary information regarding the size and shape of specimens; and 3) to investigate whether the histological sections obtained from the craniofacial skeleton exhibit any differences between the two groups. Thirty adult male mice, 12 mutant and 18 wild type, obtained from 11 litters were examined. Lateral and superio-inferior radiographs of their head were analyzed by the procrustes, the macroelement, and the traditional cephalometric techniques. Later, the animals were processed for routine histological examination. The IGF null mutant mice demonstrated a generalized decrease of craniofacial size (43-64% of the normal adult size) and a non-allometric change of shape when compared with their wild-type littermates. While the mandible did not exhibit any shape changes, the facial and cranial areas demonstrated prominent changes. Examination of histological sections did not reveal any structural difference between the two groups at the adult stage. Furthermore, procrustes and macroelement techniques offer a more complete, detailed, and comprehensive description of the specimens compared. PMID:11683810

  9. Sf3b4-depleted Xenopus embryos: A model to study the pathogenesis of craniofacial defects in Nager syndrome.

    PubMed

    Devotta, Arun; Juraver-Geslin, Hugo; Gonzalez, Jose Antonio; Hong, Chang-Soo; Saint-Jeannet, Jean-Pierre

    2016-07-15

    Mandibulofacial dysostosis (MFD) is a human developmental disorder characterized by defects of the facial bones. It is the second most frequent craniofacial malformation after cleft lip and palate. Nager syndrome combines many features of MFD with a variety of limb defects. Mutations in SF3B4 (splicing factor 3b, subunit 4) gene, which encodes a component of the pre-mRNA spliceosomal complex, were recently identified as a cause of Nager syndrome, accounting for 60% of affected individuals. Nothing is known about the cellular pathogenesis underlying Nager type MFD. Here we describe the first animal model for Nager syndrome, generated by knocking down Sf3b4 function in Xenopus laevis embryos, using morpholino antisense oligonucleotides. Our results indicate that Sf3b4-depleted embryos show reduced expression of the neural crest genes sox10, snail2 and twist at the neural plate border, associated with a broadening of the neural plate. This phenotype can be rescued by injection of wild-type human SF3B4 mRNA but not by mRNAs carrying mutations that cause Nager syndrome. At the tailbud stage, morphant embryos had decreased sox10 and tfap2a expression in the pharyngeal arches, indicative of a reduced number of neural crest cells. Later in development, Sf3b4-depleted tadpoles exhibited hypoplasia of neural crest-derived craniofacial cartilages, phenocopying aspects of the craniofacial skeletal defects seen in Nager syndrome patients. With this animal model we are now poised to gain important insights into the etiology and pathogenesis of Nager type MFD, and to identify the molecular targets of Sf3b4. PMID:26874011

  10. A Nonsynonymous Mutation in the Transcriptional Regulator lbh Is Associated with Cichlid Craniofacial Adaptation and Neural Crest Cell Development

    PubMed Central

    Powder, Kara E.; Cousin, Hélène; McLinden, Gretchen P.; Craig Albertson, R.

    2014-01-01

    Since the time of Darwin, biologists have sought to understand the origins and maintenance of life’s diversity of form. However, the nature of the exact DNA mutations and molecular mechanisms that result in morphological differences between species remains unclear. Here, we characterize a nonsynonymous mutation in a transcriptional coactivator, limb bud and heart homolog (lbh), which is associated with adaptive variation in the lower jaw of cichlid fishes. Using both zebrafish and Xenopus, we demonstrate that lbh mediates migration of cranial neural crest cells, the cellular source of the craniofacial skeleton. A single amino acid change that is alternatively fixed in cichlids with differing facial morphologies results in discrete shifts in migration patterns of this multipotent cell type that are consistent with both embryological and adult craniofacial phenotypes. Among animals, this polymorphism in lbh represents a rare example of a coding change that is associated with continuous morphological variation. This work offers novel insights into the development and evolution of the craniofacial skeleton, underscores the evolutionary potential of neural crest cells, and extends our understanding of the genetic nature of mutations that underlie divergence in complex phenotypes. PMID:25234704

  11. Alcohol use in pregnancy, craniofacial features, and fetal growth.

    PubMed Central

    Rostand, A; Kaminski, M; Lelong, N; Dehaene, P; Delestret, I; Klein-Bertrand, C; Querleu, D; Crepin, G

    1990-01-01

    STUDY OBJECTIVE--The aim was to study the relationship between the level of alcohol consumption in pregnancy and craniofacial characteristics of the neonate. DESIGN--This was a prospective survey of a sample of pregnant women, stratified on prepregnancy level of alcohol consumption. SETTING--The study was carried out at the public antenatal clinic of Roubaix maternity hospital. PARTICIPANTS--During an eight month period, 684 women (89% of those eligible) were interviewed in a standardised way at their first antenatal clinic visit. Of these, all who were suspected of being alcoholic or heavy drinkers (at least 21 drinks per week) were selected for follow up, as was a subsample of light (0-6 drinks per week) and moderate (7-20 drinks per week) drinkers. Of 347 women selected in this way, 202 had their infants assessed by a standardised morphological examination. MEASUREMENTS AND AND MAIN RESULTS--Suggestive craniofacial characteristics of the infants, present either in isolation or in association with growth retardation ("fetal alcohol effects"), were compared in relation to maternal alcohol consumption (alcoholic 12%; heavy drinking 24%; moderate drinking 28%; light drinking 36%). No differences were found between light and moderate drinkers. Infants born to alcoholics had a greater number of craniofacial characteristics and the proportion with features compatible with fetal alcohol effects was higher. There was a similar trend for infants of heavy drinkers. Infants of heavy drinkers who had decreased their alcohol consumption during pregnancy had fewer craniofacial features. Infants of heavy smokers were also found to have increased numbers of craniofacial characteristics. CONCLUSIONS--Craniofacial morphology could be a sensitive indicator of alcohol exposure in utero. Altered morphology is usually considered specific for alcohol exposure, but the relation observed with smoking needs further exploration. PMID:2277252

  12. Craniofacial Asymmetry in Adults With Neglected Congenital Muscular Torticollis

    PubMed Central

    Jeong, Kil-Yong; Min, Kyung-Jay; Woo, Jieun

    2015-01-01

    Objective To evaluate the craniofacial asymmetry in adults with neglected congenital muscular torticollis (CMT) by quantitative assessment based on craniofacial three-dimensional computed tomography (3D-CT). Methods Preoperative craniofacial asymmetry was measured by 3D-CT for 31 CMT subjects ≥18 years of age who visited a tertiary medical center and underwent 3D-CT between January 2009 and December 2013. The relationship between the age and the severity of craniofacial asymmetry was analyzed in reference to anteroposterior length asymmetry of the frontal bone and zygomatic arch, vertical and lateral displacements of the facial landmarks, and mandibular axis rotation. Results The age at CT was 27.71±7.02 years (range, 18-44 years). All intra-class correlation coefficients were higher than 0.7, suggesting good inter-rater reliability (p<0.05) of all the measurements. The frontal and the zygomatic length ratio (i.e., the anteroposterior length asymmetry on the axial plane) was 1.06±0.03 and 1.07±0.03, respectively, which was increased significantly with age in the linear regression analysis (r2=0.176, p=0.019 and r2=0.188, p=0.015, respectively). The vertical or lateral displacement of the facial landmarks and rotation of the mandibular axis did not significantly correlate with age (p>0.05). Conclusion Craniofacial asymmetry of neglected CMT became more severe with age in terms of anteroposterior length asymmetry of the ipsilateral frontal bone and zygomatic arch on the axial plane even after growth cessation. This finding may enhance the understanding of therapeutic strategies for craniofacial asymmetry in adults with neglected CMT. PMID:26161351

  13. Distinguishing Goldenhar Syndrome from Craniofacial Microsomia.

    PubMed

    Tuin, Jorien; Tahiri, Youssef; Paliga, James T; Taylor, Jesse A; Bartlett, Scott P

    2015-09-01

    Goldenhar syndrome is characterized by the typical features of craniofacial microsomia (CFM) with the addition of epibulbar dermoids and vertebral anomalies. The aim of this study is to examine the objective differences between patients carrying a diagnosis of Goldenhar syndrome to those diagnosed with CFM. Thus, we performed an Institutional Review Board-approved retrospective chart review on all patients who presented with a diagnosis of CFM or Goldenhar syndrome from January 1990 to December 2012. Demographic, diagnosis, OMENS+ classification, accompanying diagnoses, and radiographic data were collected. For subjective analysis, subgroups were designed based on the diagnosis Goldenhar syndrome or CFM per history. For objective analysis, subgroups were designed based on the presence of epibulbar dermoids and/or vertebral anomalies. The cohorts were compared with respect to associated medical abnormalities and severity of CFM features. One hundred thirty eight patients met inclusion criteria. Epibulbar dermoids and vertebral anomalies were seen in 17% and 34% of the patients, respectively. Only 10 patients (7.2%) had both epibulbar dermoids and vertebral anomalies. The subjective "Goldenhar" group (N = 44, 32%) was found to have a higher percentage of bilaterally affected patients (P = 0.001), a more severe mandibular deformity (P = <0.001), a more severe soft tissue deformity (P = 0.01), and a higher incidence of macrostomia (P = 0.003). In the objective subgroup analysis, the only significant difference was found in the degree of soft tissue deficiency (P = 0.049). The diagnostic criteria of Goldenhar syndrome remain unclear, thereby making clinical use of the term "Goldenhar" inconsequential. Goldenhar syndrome is over diagnosed subjectively in patients who show more severe CFM features. PMID:26267577

  14. Cell lineage in mammalian craniofacial mesenchyme.

    PubMed

    Yoshida, Toshiyuki; Vivatbutsiri, Philaiporn; Morriss-Kay, Gillian; Saga, Yumiko; Iseki, Sachiko

    2008-01-01

    We have analysed the contributions of neural crest and mesoderm to mammalian craniofacial mesenchyme and its derivatives by cell lineage tracing experiments in mouse embryos, using the permanent genetic markers Wnt1-cre for neural crest and Mesp1-cre for mesoderm, combined with the Rosa26 reporter. At the end of neural crest cell migration (E9.5) the two patterns are reciprocal, with a mutual boundary just posterior to the eye. Mesodermal cells expressing endothelial markers (angioblasts) are found not to respect this boundary; they are associated with the migrating neural crest from the 5-somite stage, and by E9.5 they form a pre-endothelial meshwork throughout the cranial mesenchyme. Mesodermal cells of the myogenic lineage also migrate with neural crest cells, as the branchial arches form. By E17.5 the neural crest-mesoderm boundary in the subectodermal mesenchyme becomes out of register with that of the underlying skeletogenic layer, which is between the frontal and parietal bones. At E13.5 the primordia of these bones lie basolateral to the brain, extending towards the vertex of the skull during the following 4-5 days. We used DiI labelling of the bone primordia in ex-utero E13.5 embryos to distinguish between two possibilities for the origin of the frontal and parietal bones: (1) recruitment from adjacent connective tissue or (2) proliferation of the original primordia. The results clearly demonstrated that the bone primordia extend vertically by intrinsic growth, without detectable recruitment of adjacent mesenchymal cells. PMID:18617001

  15. Genesis of alcohol-induced craniofacial dysmorphism.

    PubMed

    Sulik, Kathleen K

    2005-06-01

    The initial diagnosis of fetal alcohol syndrome (FAS) in the United States was made because of the facial features common to the first cohort of patients. This article reviews the development of an FAS mouse model whose craniofacial features are remarkably similar to those of affected humans. The model is based on short-term maternal treatment with a high dosage of ethanol at stages of pregnancy that are equivalent to Weeks 3 and 4 of human gestation. At these early stages of development, alcohol's insult to the developing face is concurrent with that to the brain, eyes, and inner ear. That facial and central nervous system defects consistent with FAS can be induced by more "realistic" alcohol dosages as illustrated with data from an oral alcohol intake mouse model in which maternal blood alcohol levels do not exceed 200 mg/dl. The ethanol-induced pathogenesis involves apoptosis that occurs within 12 hrs of alcohol exposure in selected cell populations of Day 7, 8, and 9 mouse embryos. Experimental evidence from other species also shows that apoptosis underlies ethanol-induced malformations. With knowledge of sensitive and resistant cell populations at specific developmental stages, studies designed to identify the basis for these differing cellular responses and, therefore, to determine the primary mechanisms of ethanol's teratogenesis are possible. For example, microarray comparisons of sensitive and resistant embryonic cell populations have been made, as have in situ studies of gene expression patterns in the populations of interest. Studies that illustrate agents that are effective in diminishing or exacerbating ethanol's teratogenesis have also been helpful in determining mechanisms. Among these agents are antioxidants, sonic hedgehog protein, retinoids, and the peptides SAL and NAP. PMID:15956766

  16. Obstructive sleep apnoea in children with craniofacial syndromes

    PubMed Central

    Cielo, Christopher M.

    2014-01-01

    Summary Obstructive sleep apnoea syndrome (OSAS) is common in children. Craniofacial anomalies such as cleft palate are among the most common congenital conditions. Children with a variety of craniofacial conditions, including cleft palate, micrognathia, craniosynostosis, and midface hypoplasia are at increased risk for OSAS. Available evidence, which is largely limited to surgical case series and retrospective studies, suggests that OSAS can be successfully managed in these children through both surgical and non-surgical techniques. Prospective studies using larger cohorts of patients and including polysomnograms are needed to better understand the risk factors for this patient population and the efficacy of treatment options for OSAS and their underlying conditions. PMID:25555676

  17. Comparison of craniofacial morphology, head posture and hyoid bone position with different breathing patterns

    PubMed Central

    Ucar, Faruk Izzet; Ekizer, Abdullah; Uysal, Tancan

    2012-01-01

    Objectives The aim of this study was to evaluate differences in craniofacial morphology, head posture and hyoid bone position between mouth breathing (MB) and nasal breathing (NB) patients. Methods Mouth breathing patients comprised 34 skeletal Class I subjects with a mean age of 12.8 ± 1.5 years (range: 12.0–15.2 years). Thirty-two subjects with skeletal Class I relationship were included in the NB group (mean 13.5 ± 1.3 years; range: 12.2–14.8 years). Twenty-seven measurements (15 angular and 12 linear) were used for the craniofacial analysis. Additionally, 12 measurements were evaluated for head posture (eight measurements) and hyoid bone position (four measurements). Student’s t-test was used for the statistical analysis. Probability values <0.05 were accepted as significant. Results Statistical comparisons showed that sagittal measurements including SNA (p < 0.01), ANB (p < 0.01), A to N perp (p < 0.05), convexity (p < 0.05), IMPA (p < 0.05) and overbite (p < 0.05) measurements were found to be lower in MB patients compared to NB. Vertical measurements including SN-MP (p < 0.01) and PP-GoGn (p < 0.01), S-N (p <0.05) and anterior facial height (p < 0.05) were significantly higher in MB patients, while the odontoid proses and palatal plane angle (OPT-PP) was greater and true vertical line and palatal plane angle (Vert-PP) was smaller in MB patients compared to NB group (p < 0.05 for both). No statistically significant differences were found regarding the hyoid bone position between both groups. Conclusions The maxilla was more retrognathic in MB patients. Additionally, the palatal plane had a posterior rotation in MB patients. However, no significant differences were found in the hyoid bone position between MB and NB patients. PMID:23960542

  18. Morphological comparison of cervical vertebrae in adult females with different sagittal craniofacial patterns: A cross-sectional study

    PubMed Central

    Alkan, Özer; Aydoğan, Cihan; Akkaya, Sevil

    2016-01-01

    Introduction: Cervical vertebral maturation (CVM) methods have gained popularity to assess growth and development status for orthodontic patients. Although craniofacial and craniocervical structures are known to be associated, there is no evidence in the literature if this relation might negatively affect the accuracy of CVM assessments. Therefore, this study aimed to comparatively investigate the sizes of the 2nd, 3rd, and 4th cervical vertebrae in adult females (radius union stage of skeletal maturity) who have different sagittal skeletal patterns. Materials and Methods: A cross-sectional study was conducted, and 151 lateral cephalometric radiographs of adult female patients were assessed in the study. Patients were assigned to three groups according to ANB angle. Parameters including concavity depth at the lower border of the 2nd, 3rd, and 4th cervical vertebrae and base length, upper border length, body length, posterior height, anterior height, and body height of the 3rd and 4th cervical vertebrae bodies were measured. One-way analysis of variance was used for between-group comparisons. Results: No statistically significant differences were found between groups in terms of concavity depth at the lower borders of the 2nd, 3rd, and 4th cervical vertebrae (P > 0.05). Base length, upper border length, body length, posterior height, anterior height, and body height of the 3rd and 4th cervical vertebrae were also similar between groups (P > 0.05). Conclusions: The results of this study supports that sagittal craniofacial pattern has no effect on the accuracy of using the methods assessing CVM and calculating cervical vertebral age.

  19. The genesis of craniofacial biology as a health science discipline.

    PubMed

    Sperber, G H; Sperber, S M

    2014-06-01

    The craniofacial complex encapsulates the brain and contains the organs for key functions of the body, including sight, hearing and balance, smell, taste, respiration and mastication. All these systems are intimately integrated within the head. The combination of these diverse systems into a new field was dictated by the dental profession's desire for a research branch of basic science devoted and attuned to its specific needs. The traditional subjects of genetics, embryology, anatomy, physiology, biochemistry, dental materials, odontology, molecular biology and palaeoanthropology pertaining to dentistry have been drawn together by many newly emerging technologies. These new technologies include gene sequencing, CAT scanning, MRI imaging, laser scanning, image analysis, ultrasonography, spectroscopy and visualosonics. A vibrant unitary discipline of investigation, craniofacial biology, has emerged that builds on the original concept of 'oral biology' that began in the 1960s. This paper reviews some of the developments that have led to the genesis of craniofacial biology as a fully-fledged health science discipline of significance in the advancement of clinical dental practice. Some of the key figures and milestones in craniofacial biology are identified. PMID:24495071

  20. Hutchinson-Gilford progeria syndrome: Oral and craniofacial phenotypes

    PubMed Central

    Domingo, D.L.; Trujillo, M.I.; Council, S.E.; Merideth, M.A.; Gordon, L.B.; Wu, T.; Introne, W.J.; Gahl, W.A.; Hart, T.C.

    2008-01-01

    OBJECTIVE Hutchinson-Gilford progeria syndrome (HGPS) is a rare early-onset accelerated senescence syndrome. In HGPS, a recently identified de novo dominant mutation of the lamin A gene (LMNA) produces abnormal lamin A, resulting in compromised nuclear membrane integrity. Clinical features include sclerotic skin, cardiovascular and bone abnormalities, and marked growth retardation. Craniofacial features include “bird-like” facies, alopecia, craniofacial disproportion and dental crowding. Our prospective study describes dental, oral soft tissue, and craniofacial bone features in HGPS. METHODS Fifteen patients with confirmed p.G608G LMNA mutation (1–17 years, 7 males, 8 females) received comprehensive oral evaluations. Anomalies of oral soft tissue, gnathic bones and dentition were identified. RESULTS Radiographic findings included hypodontia (n=7), dysmorphic teeth (n=5), steep mandibular angles (n=11), and thin basal bone (n=11). Soft tissue findings included ogival palatal arch (n=8), median sagittal palatal fissure (n=7), and ankyloglossia (n=7). Calculated dental ages (9months–11y2m) were significantly lower than chronological ages (1y6m–17y8m) (p=0.002). Eleven children manifested a shorter mandibular body, anterior/posterior cranial base and ramus, but a larger gonial angle, compared to age/gender/race norms. CONCLUSION Novel oral-craniofacial phenotypes and quantification of previously reported features are presented. Our findings expand the HGPS phenotype and provide additional insight into the complex pathogenesis of HGPS. PMID:19236595

  1. Analysis of the 50 most cited papers in craniofacial surgery.

    PubMed

    Tahiri, Youssef; Fleming, Tara M; Greathouse, Travis; Tholpady, Sunil S

    2015-12-01

    The intent of this study is to discuss the most prominent literature in craniofacial surgery. To do so, using the ISI Web of Science, a ranking by average number of citations per year of the top 50 craniofacial surgery articles was compiled. All plastic surgery journals listed in the "Surgery" category in the ISI Web of Knowledge Journal Citation Reports 2013 Science Edition were considered. Journal of publication, country of origin, collaborating institutions, topic of interest, and level of evidence were analyzed. The total number of citations ranged from 47 to 1017. Average number of citations per year ranged from 46.2 to 8.6. The oldest article in the top 50 was published in 1988 and the most recent in 2009. The majority of the articles came from Plastic and Reconstructive Surgery with 28 of the 50. The majority of the articles, originated from the United States (56%). Reconstruction of acquired defects was the most commonly examined topic at 46.2%; followed by articles discussing reconstruction of congenital defects (23.1%). The most common level of evidence was level 3. This extensive examination of the craniofacial literature highlights the important part that craniofacial surgery takes in the field of plastic surgery. PMID:26541748

  2. The Roles of RNA Polymerase I and III Subunits Polr1c and Polr1d in Craniofacial Development and in Zebrafish Models of Treacher Collins Syndrome.

    PubMed

    Noack Watt, Kristin E; Achilleos, Annita; Neben, Cynthia L; Merrill, Amy E; Trainor, Paul A

    2016-07-01

    Ribosome biogenesis is a global process required for growth and proliferation of all cells, yet perturbation of ribosome biogenesis during human development often leads to tissue-specific defects termed ribosomopathies. Transcription of the ribosomal RNAs (rRNAs) by RNA polymerases (Pol) I and III, is considered a rate limiting step of ribosome biogenesis and mutations in the genes coding for RNA Pol I and III subunits, POLR1C and POLR1D cause Treacher Collins syndrome, a rare congenital craniofacial disorder. Our understanding of the functions of individual RNA polymerase subunits, however, remains poor. We discovered that polr1c and polr1d are dynamically expressed during zebrafish embryonic development, particularly in craniofacial tissues. Consistent with this pattern of activity, polr1c and polr1d homozygous mutant zebrafish exhibit cartilage hypoplasia and cranioskeletal anomalies characteristic of humans with Treacher Collins syndrome. Mechanistically, we discovered that polr1c and polr1d loss-of-function results in deficient ribosome biogenesis, Tp53-dependent neuroepithelial cell death and a deficiency of migrating neural crest cells, which are the primary progenitors of the craniofacial skeleton. More importantly, we show that genetic inhibition of tp53 can suppress neuroepithelial cell death and ameliorate the skeletal anomalies in polr1c and polr1d mutants, providing a potential avenue to prevent the pathogenesis of Treacher Collins syndrome. Our work therefore has uncovered tissue-specific roles for polr1c and polr1d in rRNA transcription, ribosome biogenesis, and neural crest and craniofacial development during embryogenesis. Furthermore, we have established polr1c and polr1d mutant zebrafish as models of Treacher Collins syndrome together with a unifying mechanism underlying its pathogenesis and possible prevention. PMID:27448281

  3. The Roles of RNA Polymerase I and III Subunits Polr1c and Polr1d in Craniofacial Development and in Zebrafish Models of Treacher Collins Syndrome

    PubMed Central

    Achilleos, Annita; Neben, Cynthia L.; Merrill, Amy E.; Trainor, Paul A.

    2016-01-01

    Ribosome biogenesis is a global process required for growth and proliferation of all cells, yet perturbation of ribosome biogenesis during human development often leads to tissue-specific defects termed ribosomopathies. Transcription of the ribosomal RNAs (rRNAs) by RNA polymerases (Pol) I and III, is considered a rate limiting step of ribosome biogenesis and mutations in the genes coding for RNA Pol I and III subunits, POLR1C and POLR1D cause Treacher Collins syndrome, a rare congenital craniofacial disorder. Our understanding of the functions of individual RNA polymerase subunits, however, remains poor. We discovered that polr1c and polr1d are dynamically expressed during zebrafish embryonic development, particularly in craniofacial tissues. Consistent with this pattern of activity, polr1c and polr1d homozygous mutant zebrafish exhibit cartilage hypoplasia and cranioskeletal anomalies characteristic of humans with Treacher Collins syndrome. Mechanistically, we discovered that polr1c and polr1d loss-of-function results in deficient ribosome biogenesis, Tp53-dependent neuroepithelial cell death and a deficiency of migrating neural crest cells, which are the primary progenitors of the craniofacial skeleton. More importantly, we show that genetic inhibition of tp53 can suppress neuroepithelial cell death and ameliorate the skeletal anomalies in polr1c and polr1d mutants, providing a potential avenue to prevent the pathogenesis of Treacher Collins syndrome. Our work therefore has uncovered tissue-specific roles for polr1c and polr1d in rRNA transcription, ribosome biogenesis, and neural crest and craniofacial development during embryogenesis. Furthermore, we have established polr1c and polr1d mutant zebrafish as models of Treacher Collins syndrome together with a unifying mechanism underlying its pathogenesis and possible prevention. PMID:27448281

  4. Reorganization of craniofacial/cleft care delivery: the Massachusetts experience.

    PubMed

    Borah, G L; Hagberg, N; Jakubiak, C; Temple, J

    1993-05-01

    Until 1989, the Commonwealth of Massachusetts operated a mandated care program known as Services for Handicapped Children (SHC) for children with cleft lip/palate or craniofacial anomalies. During the mid 1980s, the federal government reduced its block grant funds and encouraged the Commonwealth of Massachusetts to develop Project SERVE to address this changing fiscal reality. The principal outcome of Project SERVE was the recommendation that the SHC direct care programs, including all craniofacial and cleft palate clinics, should be dismantled over a number of years. However, due to the economic recession, all government funding was suddenly withdrawn from cleft palate teams and the state-run SHC clinics were abruptly dissolved. To treat patients left without coordinated care, former team members reassembled and began a new craniofacial team based at the University of Massachusetts Medical Center. Difficulties with the transition of the clinic included recruiting and retaining team members; remuneration procedures for team members; maintenance of patient records previously kept by the state; coordination of clinical/clerical responsibilities; identifying a physical locale to hold the clinics; and solicitation of referring health care provider referrals and follow-up. All these issues required specific interventions that are presented in this paper. Project SERVE, begun under federal auspices, in the Commonwealth of Massachusetts, has recently been promoted as a model for a new and improved approach to the management of cleft palate and craniofacial care delivery nationwide. Awareness of the potential for abrupt, radical change in funding for federally mandated cleft/craniofacial care is essential, and a successful transition to a medical center-based model is possible using the procedures established at our center. PMID:8338866

  5. Effect of bite force and diet composition on craniofacial diversification of Southern South American human populations.

    PubMed

    Menéndez, Lumila; Bernal, Valeria; Novellino, Paula; Perez, S Ivan

    2014-09-01

    Ecological factors can be important to shape the patterns of morphological variation among human populations. Particularly, diet plays a fundamental role in craniofacial variation due to both the effect of the nutritional status-mostly dependent on the type and amount of nutrients consumed-on skeletal growth and the localized effects of masticatory forces. We examine these two dimensions of diet and evaluate their influence on morphological diversification of human populations from southern South America during the late Holocene. Cranial morphology was measured as 3D coordinates defining the face, base and vault. Size, form, and shape variables were obtained for 474 adult individuals coming from 12 samples. Diet composition was inferred from carious lesions and δ(13) C data, whereas bite forces were estimated using traits of main jaw muscles. The spatial structure of the morphological and ecological variables was measured using correlograms. The influence of diet composition and bite force on morphometric variation was estimated by a spatial regression model. Cranial variation and diet composition display a geographical structure, while no geographical pattern was observed in bite forces. Cranial variation in size and form is significantly associated with diet composition, suggesting a strong effect of systemic factors on cranial growth. Conversely, bite forces do not contribute significantly to the pattern of morphological variation among the samples analyzed. Overall, these results show that an association between diet composition and hardness cannot be assumed, and highlight the complex relationship between morphological diversification and diet in human populations. PMID:24985052

  6. Evolution

    NASA Astrophysics Data System (ADS)

    Peter, Ulmschneider

    When we are looking for intelligent life outside the Earth, there is a fundamental question: Assuming that life has formed on an extraterrestrial planet, will it also develop toward intelligence? As this is hotly debated, we will now describe the development of life on Earth in more detail in order to show that there are good reasons why evolution should culminate in intelligent beings.

  7. Skeletal stem cells.

    PubMed

    Bianco, Paolo; Robey, Pamela G

    2015-03-15

    Skeletal stem cells (SSCs) reside in the postnatal bone marrow and give rise to cartilage, bone, hematopoiesis-supportive stroma and marrow adipocytes in defined in vivo assays. These lineages emerge in a specific sequence during embryonic development and post natal growth, and together comprise a continuous anatomical system, the bone-bone marrow organ. SSCs conjoin skeletal and hematopoietic physiology, and are a tool for understanding and ameliorating skeletal and hematopoietic disorders. Here and in the accompanying poster, we concisely discuss the biology of SSCs in the context of the development and postnatal physiology of skeletal lineages, to which their use in medicine must remain anchored. PMID:25758217

  8. The suture provides a niche for mesenchymal stem cells of craniofacial bones

    PubMed Central

    Zhao, Hu; Feng, Jifan; Ho, Thach-Vu; Grimes, Weston; Urata, Mark; Chai, Yang

    2015-01-01

    Bone tissue undergoes constant turnover supported by stem cells. Recent studies showed that perivascular mesenchymal stem cells (MSCs) contribute to the turnover of long bones. Craniofacial bones are flat bones derived from a different embryonic origin than the long bones. The identity and regulating niche for craniofacial bone MSCs remain unknown. Here, we identify Gli1+ cells within the suture mesenchyme as the major MSC population for craniofacial bones. They are not associated with vasculature, give rise to all craniofacial bones in the adult and are activated during injury repair. Gli1+ cells are typical MSCs in vitro. Ablation of Gli1+ cells leads to craniosynostosis and arrest of skull growth, indicating these cells are an indispensible stem cell population. Twist1+/− mice with craniosynostosis show reduced Gli1+ MSCs in sutures, suggesting that craniosynostosis may result from diminished suture stem cells. Our study indicates that craniofacial sutures provide a unique niche for MSCs for craniofacial bone homeostasis and repair. PMID:25799059

  9. The society for craniofacial genetics and developmental biology 38th annual meeting.

    PubMed

    Taneyhill, Lisa A; Hoover-Fong, Julie; Lozanoff, Scott; Marcucio, Ralph; Richtsmeier, Joan T; Trainor, Paul A

    2016-07-01

    The mission of the Society for Craniofacial Genetics and Developmental Biology (SCGDB) is to promote education, research, and communication about normal and abnormal development of the tissues and organs of the head. The SCGDB welcomes as members undergraduate students, graduate students, post doctoral researchers, clinicians, orthodontists, scientists, and academicians who share an interest in craniofacial biology. Each year our members come together to share their novel findings, build upon, and challenge current knowledge of craniofacial biology. © 2016 Wiley Periodicals, Inc. PMID:27102868

  10. The oral and craniofacial relevance of chemically modified RNA therapeutics.

    PubMed

    Elangovan, Satheesh; Kormann, Michael S D; Khorsand, Behnoush; Salem, Aliasger K

    2016-01-01

    Several tissue engineering strategies in the form of protein therapy, gene therapy, cell therapy, and their combinations are currently being explored for oral and craniofacial regeneration and repair. Though each of these approaches has advantages, they all have common inherent drawbacks of being expensive and raising safety concerns. Using RNA (encoding therapeutic protein) has several advantages that have the potential to overcome these limitations. Chemically modifying the RNA improves its stability and mitigates immunogenicity allowing for the potential of RNA to become an alternative to protein and gene based therapies. This brief review article focuses on the potential of RNA therapeutics in the treatment of disorders in the oral and craniofacial regions. PMID:26896600

  11. Generation algorithm of craniofacial structure contour in cephalometric images

    NASA Astrophysics Data System (ADS)

    Mondal, Tanmoy; Jain, Ashish; Sardana, H. K.

    2010-02-01

    Anatomical structure tracing on cephalograms is a significant way to obtain cephalometric analysis. Computerized cephalometric analysis involves both manual and automatic approaches. The manual approach is limited in accuracy and repeatability. In this paper we have attempted to develop and test a novel method for automatic localization of craniofacial structure based on the detected edges on the region of interest. According to the grey scale feature at the different region of the cephalometric images, an algorithm for obtaining tissue contour is put forward. Using edge detection with specific threshold an improved bidirectional contour tracing approach is proposed by an interactive selection of the starting edge pixels, the tracking process searches repetitively for an edge pixel at the neighborhood of previously searched edge pixel to segment images, and then craniofacial structures are obtained. The effectiveness of the algorithm is demonstrated by the preliminary experimental results obtained with the proposed method.

  12. Versatility of Distraction Osteogenesis for the Craniofacial Skeleton.

    PubMed

    Klement, Kristen A; Black, Jonathan S; Denny, Arlen D

    2016-05-01

    Malformations of the craniofacial skeleton are common. Restoration of anatomic shape, size, and position has been traditionally accomplished using autologous bone grafting to fill gaps created by surgery and segmental movement. The authors present their practice using distraction in many different ages and settings over 20 years. A retrospective review was performed of all craniofacial patients treated using distraction osteogenesis for mandible, midface, and calvarium. The authors identified 205 patient. Mandible: 112 patients were treated at an average age of 3.4 years. 18.8% of patients required repeat distraction. There was no difference in the neonatal versus older group (P = 0.71). There were significantly higher reoperation rates in syndromic children (P < 0.01). Midface: 58 patients underwent Lefort III distraction at an average age of 13.6 years. One (1.7%) required repeat distraction (Miller syndrome). Five (8.6%) patients underwent subsequent Lefort I advancement for occlusal changes. Calvarium: 33 patients were treated at an average age of 4.7 years. No repeat distractions were performed. One patient required an additional advancement procedure. Distraction demonstrates successful long-term correction of defects in the craniofacial skeleton with the versatility and control needed to treat the wide spectrum of deformity. PMID:26999694

  13. Study on the performance of different craniofacial superimposition approaches (I).

    PubMed

    Ibáñez, O; Vicente, R; Navega, D S; Wilkinson, C; Jayaprakash, P T; Huete, M I; Briers, T; Hardiman, R; Navarro, F; Ruiz, E; Cavalli, F; Imaizumi, K; Jankauskas, R; Veselovskaya, E; Abramov, A; Lestón, P; Molinero, F; Cardoso, J; Çağdır, A S; Humpire, D; Nakanishi, Y; Zeuner, A; Ross, A H; Gaudio, D; Damas, S

    2015-12-01

    As part of the scientific tasks coordinated throughout The 'New Methodologies and Protocols of Forensic Identification by Craniofacial Superimposition (MEPROCS)' project, the current study aims to analyse the performance of a diverse set of CFS methodologies and the corresponding technical approaches when dealing with a common dataset of real-world cases. Thus, a multiple-lab study on craniofacial superimposition has been carried out for the first time. In particular, 26 participants from 17 different institutions in 13 countries were asked to deal with 14 identification scenarios, some of them involving the comparison of multiple candidates and unknown skulls. In total, 60 craniofacial superimposition problems divided in two set of females and males. Each participant follow her/his own methodology and employed her/his particular technological means. For each single case they were asked to report the final identification decision (either positive or negative) along with the rationale supporting the decision and at least one image illustrating the overlay/superimposition outcome. This study is expected to provide important insights to better understand the most convenient characteristics of every method included in this study. PMID:26060056

  14. Unmasking the ciliopathies: craniofacial defects and the primary cilium.

    PubMed

    Cortés, Claudio R; Metzis, Vicki; Wicking, Carol

    2015-01-01

    Over the past decade, the primary cilium has emerged as a pivotal sensory organelle that acts as a major signaling hub for a number of developmental signaling pathways. In that time, a vast number of proteins involved in trafficking and signaling have been linked to ciliary assembly and/or function, demonstrating the importance of this organelle during embryonic development. Given the central role of the primary cilium in regulating developmental signaling, it is not surprising that its dysfunction results in widespread defects in the embryo, leading to an expanding class of human congenital disorders known as ciliopathies. These disorders are individually rare and phenotypically variable, but together they affect virtually every vertebrate organ system. Features of ciliopathies that are often overlooked, but which are being reported with increasing frequency, are craniofacial abnormalities, ranging from subtle midline defects to full-blown orofacial clefting. The challenge moving forward is to understand the primary mechanism of disease given the link between the primary cilium and a number of developmental signaling pathways (such as hedgehog, platelet-derived growth factor, and WNT signaling) that are essential for craniofacial development. Here, we provide an overview of the diversity of craniofacial abnormalities present in the ciliopathy spectrum, and reveal those defects in common across multiple disorders. Further, we discuss the molecular defects and potential signaling perturbations underlying these anomalies. This provides insight into the mechanisms leading to ciliopathy phenotypes more generally and highlights the prevalence of widespread dysmorphologies resulting from cilia dysfunction. PMID:26173831

  15. Web-based cephalometric procedure for craniofacial and dentition analyses

    NASA Astrophysics Data System (ADS)

    Arun Kumar, N. S.; Kamath, Srijit R.; Ram, S.; Muthukumaran, B.; Venkatachalapathy, A.; Nandakumar, A.; Jayakumar, P.

    2000-05-01

    Craniofacial analysis is a very important and widely used procedure in orthodontic caphalometry, which plays a key role in diagnosis and treatment planning. This involves establishing reference standards and specification of landmarks and variables. The manual approach takes up a tremendous amount of the orthodontist's time. In this paper, we developed a web-based approach for the craniofacial and dentition analyses. A digital computed radiography (CR) system is utilized for obtaining the craniofacial image, which is stored as a bitmap file. The system comprises of two components - a server and a client. The server component is a program that runs on a remote machine. To use the system, the user has to connect to the website. The client component is now activated, which uploads the image from the PC and displays it on the canvas area. The landmarks are identified using a mouse interface. The reference lines are generated. The resulting image is then sent to the server which performs all measurement and calculates the mean, standard deviation, etc. of the variables. The results generated are sent immediately to the client where it is displayed on a separate frame along with the standard values for comparison. This system eliminates the need for every user to load other expensive programs on his machine.

  16. A review of craniofacial disorders caused by spliceosomal defects.

    PubMed

    Lehalle, D; Wieczorek, D; Zechi-Ceide, R M; Passos-Bueno, M R; Lyonnet, S; Amiel, J; Gordon, C T

    2015-11-01

    The spliceosome is a large ribonucleoprotein complex that removes introns from pre-mRNA transcripts. Mutations in EFTUD2, encoding a component of the major spliceosome, have recently been identified as the cause of mandibulofacial dysostosis, Guion-Almeida type (MFDGA), characterized by mandibulofacial dysostosis, microcephaly, external ear malformations and intellectual disability. Mutations in several other genes involved in spliceosomal function or linked aspects of mRNA processing have also recently been identified in human disorders with specific craniofacial malformations: SF3B4 in Nager syndrome, an acrofacial dysostosis (AFD); SNRPB in cerebrocostomandibular syndrome, characterized by Robin sequence and rib defects; EIF4A3 in the AFD Richieri-Costa-Pereira syndrome, characterized by Robin sequence, median mandibular cleft and limb defects; and TXNL4A in Burn-McKeown syndrome, involving specific craniofacial dysmorphisms. Here, we review phenotypic and molecular aspects of these syndromes. Given the apparent sensitivity of craniofacial development to defects in mRNA processing, it is possible that mutations in other proteins involved in spliceosomal function will emerge in the future as causative for related human disorders. PMID:25865758

  17. Growth changes in internal and craniofacial flexion measurements.

    PubMed

    May, R; Sheffer, D B

    1999-09-01

    Growth changes in both internal and craniofacial flexion angles are presented for Pan troglodytes, Gorilla gorilla, and modern humans. The internal flexion angle (IFA) was measured from lateral radiographs, and the craniofacial flexion angle (CFA) was calculated from coordinate data. Stage of dental development is used as a baseline for examination of growth changes and nonparametric correlations between flexion angles and dental development stage are tested for significance. In Gorilla, the IFA increases during growth. The IFA is relatively stable in Pan and modern humans. Pan and Gorilla display an increase in the CFA. However, this angle decreases during growth in modern humans. Flexion angles were derived from coordinate data collected for several early hominid crania. Measurements for two robust australopithecine crania indicate strong internal flexion. It has been suggested that cerebellar expansion in this group may relate to derived features of the posterior cranial base. In general, australopithecine crania exhibit craniofacial flexion intermediate between great apes and modern humans. The "archaic" Homo sapiens specimen from Kabwe is most similar to modern humans. PMID:10490467

  18. Latest Research from NIH's National Institute of Dental and Craniofacial Research | NIH MedlinePlus the Magazine

    MedlinePlus

    ... Health Latest Research from NIH's National Institute of Dental and Craniofacial Research Past Issues / Summer 2012 Table ... D., is director of NIH's National Institute of Dental and Craniofacial Research (NIDCR). The NIH's National Institute ...

  19. A transgenic line with Gal4 insertion useful to study morphogenesis of craniofacial perichondrium, vascular endothelium-associated cells, floor plate, and dorsal midline radial glia during zebrafish development

    PubMed Central

    Nakayama, Sohei; Ikenaga, Takanori; Kawakami, Koichi; Ono, Fumihito; Hatta, Kohei

    2013-01-01

    Zebrafish is a good model for studying vertebrate development because of the availability of powerful genetic tools. We are interested in the study of the craniofacial skeletal structure of the zebrafish. For this purpose, we performed a gene trap screen and identified a Gal4 gene trap line, SAGFF(LF)134A. We then analyzed the expression pattern of SAGFF(LF)134A;Tg(UAS:GFP) and found that GFP was expressed not only in craniofacial skeletal elements but also in the vascular system, as well as in the nervous system. In craniofacial skeletal elements, strong GFP expression was detected not only in chondrocytes but also in the perichondrium. In the vascular system, GFP was expressed in endothelium-associated cells. In the spinal cord, strong GFP expression was found in the floor plate, and later in the dorsal radial glia located on the midline. Taking advantage of this transgenic line, which drives Gal4 expression in specific tissues, we crossed SAGFF(LF)134A with several UAS reporter lines. In particular, time-lapse imaging of photoconverted floor-plate cells of SAGFF(LF)134A;Tg(UAS:KikGR) revealed that the floor-plate cells changed their shape within 36 hours from cuboidal/trapezoidal to wine glass shaped. Moreover, we identified a novel mode of association between axons and glia. The putative paths for the commissural axons, including pax8-positive CoBL interneurons, were identified as small openings in the basal endfoot of each floor plate. Our results indicate that the transgenic line would be useful for studying the morphogenesis of less-well-characterized tissues of interest, including the perichondrium, dorsal midline radial glia, late-stage floor plate, and vascular endothelium-associated cells. PMID:22348745

  20. 76 FR 4123 - National Institute of Dental & Craniofacial Research; Notice of Closed Meetings

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-01-24

    ... HUMAN SERVICES National Institutes of Health National Institute of Dental & Craniofacial Research... personal privacy. Name of Committee: National Institute of Dental and Craniofacial Research Special Emphasis Panel, ZDE1 VH (13) NIDCR Review of Small Research Grants for Data Analysis and...

  1. 75 FR 82033 - National Institute of Dental and Craniofacial Research; Notice of Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-12-29

    ... HUMAN SERVICES National Institutes of Health National Institute of Dental and Craniofacial Research.... App.), notice is hereby given of a meeting of the National Advisory Dental and Craniofacial Research... constitute a clearly unwarranted invasion of personal privacy. Name of Committee: National Advisory...

  2. 75 FR 13561 - National Institute of Dental & Craniofacial Research; Notice of Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-03-22

    ... HUMAN SERVICES National Institutes of Health National Institute of Dental & Craniofacial Research.... App.), notice is hereby given of a meeting of the National Advisory Dental and Craniofacial Research... constitute a clearly unwarranted invasion of personal privacy. Name of Committee: National Advisory...

  3. 75 FR 4833 - National Institute of Dental & Craniofacial Research; Notice of Closed Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-01-29

    ... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF HEALTH AND HUMAN SERVICES National Institutes of Health National Institute of Dental & Craniofacial Research.... of Dental & Craniofacial Research, National Institutes of Health, 45 Center Dr., Rm 4AN 32J,...

  4. 75 FR 55592 - National Institute of Dental & Craniofacial Research; Amended Notice of Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-09-13

    ... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF HEALTH AND HUMAN SERVICES National Institutes of Health National Institute of Dental & Craniofacial Research... Dental and Craniofacial Research Council, September 27, 2010, 8:30 a.m. to September 27, 2010, 3...

  5. 78 FR 65343 - National Institute of Dental & Craniofacial Research; Amended Notice of Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-10-31

    ... published in the Federal Register on September 16, 2013, 78 FR 56902. Meeting date has changed from October... HUMAN SERVICES National Institutes of Health National Institute of Dental & Craniofacial Research... Dental and Craniofacial Research Special Emphasis Panel, October 7, 2013, 10:00 a.m. to October 7,...

  6. 77 FR 49820 - National Institute of Dental & Craniofacial Research; Notice of Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-08-17

    ... HUMAN SERVICES National Institutes of Health National Institute of Dental & Craniofacial Research.... App.), notice is hereby given of a meeting of the National Advisory Dental and Craniofacial Research... constitute a clearly unwarranted invasion of personal privacy. Name of Committee: National Advisory...

  7. 75 FR 62546 - National Institute of Dental & Craniofacial Research; Notice of Closed Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-10-12

    ... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF HEALTH AND HUMAN SERVICES National Institutes of Health National Institute of Dental & Craniofacial Research..., National Inst of Dental & Craniofacial Research, National Institutes of Health, 45 Center Dr. Rm 4AN...

  8. 78 FR 50066 - National Institute of Dental and Craniofacial Research; Notice of Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-08-16

    ... HUMAN SERVICES National Institutes of Health National Institute of Dental and Craniofacial Research.... App.), notice is ] hereby given of a meeting of the National Advisory Dental and Craniofacial Research... constitute a clearly unwarranted invasion of personal privacy. Name of Committee: National Advisory...

  9. 78 FR 24761 - National Institute of Dental & Craniofacial Research; Notice of Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-04-26

    ... HUMAN SERVICES National Institutes of Health National Institute of Dental & Craniofacial Research.... App.), notice is hereby given of a meeting of the National Advisory Dental and Craniofacial Research... constitute a clearly unwarranted invasion of personal privacy. Name of Committee: National Advisory...

  10. 76 FR 23612 - National Institute of Dental & Craniofacial Research; Notice of Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-04-27

    ... HUMAN SERVICES National Institutes of Health National Institute of Dental & Craniofacial Research.... App.), notice is hereby given of a meeting of the National Advisory Dental and Craniofacial Research... constitute a clearly unwarranted invasion of personal privacy. Name of Committee: National Advisory...

  11. 76 FR 51995 - National Institute of Dental & Craniofacial Research; Notice of Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-08-19

    ... HUMAN SERVICES National Institutes of Health National Institute of Dental & Craniofacial Research.... App.), notice is hereby given of a meeting of the National Advisory Dental and Craniofacial Research... constitute a clearly unwarranted invasion of personal privacy. Name of Committee: National Advisory...

  12. 76 FR 48874 - National Institute Of Dental & Craniofacial Research; Notice of Closed Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-08-09

    ... HUMAN SERVICES National Institutes of Health National Institute Of Dental & Craniofacial Research... personal privacy. Name of Committee: National Institute of Dental and Craniofacial Research Special Emphasis Panel, Review of RFA-DE-12-002; National Dental Practice-based Research, Network...

  13. 78 FR 65348 - National Institute of Dental & Craniofacial Research; Amended Notice of Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-10-31

    ..., MD 20892 which was published in the Federal Register on September 27, 2013, 78 FR 59708. Meeting date... HUMAN SERVICES National Institutes of Health National Institute of Dental & Craniofacial Research... Dental and Craniofacial Research Special Emphasis Panel, October 21, 2013, 9:00 a.m. to October 21,...

  14. 77 FR 74674 - National Institute of Dental & Craniofacial Research; Notice of Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-12-17

    ... HUMAN SERVICES National Institutes of Health National Institute of Dental & Craniofacial Research.... App.), notice is hereby given of a meeting of the National Advisory Dental and Craniofacial Research... constitute a clearly unwarranted invasion of personal privacy. Name of Committee: National Advisory...

  15. 75 FR 51275 - National Institute of Dental and Craniofacial Research; Notice of Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-08-19

    ... HUMAN SERVICES National Institutes of Health National Institute of Dental and Craniofacial Research.... App.), notice is hereby given of a meeting of the National Advisory Dental and Craniofacial Research... constitute a clearly unwarranted invasion of personal privacy. Name of Committee: National Advisory...

  16. Comparison of inverse-dynamics musculo-skeletal models of AL 288-1 Australopithecus afarensis and KNM-WT 15000 Homo ergaster to modern humans, with implications for the evolution of bipedalism.

    PubMed

    Wang, Weijie; Crompton, Robin H; Carey, Tanya S; Günther, Michael M; Li, Yu; Savage, Russell; Sellers, Williams I

    2004-12-01

    Size and proportions of the postcranial skeleton differ markedly between Australopithecus afarensis and Homo ergaster, and between the latter and modern Homo sapiens. This study uses computer simulations of gait in models derived from the best-known skeletons of these species (AL 288-1, Australopithecus afarensis, 3.18 million year ago) and KNM-WT 15000 (Homo ergaster, 1.5-1.8 million year ago) compared to models of adult human males and females, to estimate the required muscle power during bipedal walking, and to compare this with those in modern humans. Skeletal measurements were carried out on a cast of KNM-WT 15000, but for AL 288-1 were taken from the literature. Muscle attachments were applied to the models based on their position relative to the bone in modern humans. Joint motions and moments from experiments on human walking were input into the models to calculate muscle stress and power. The models were tested in erect walking and 'bent-hip bent-knee' gait. Calculated muscle forces were verified against EMG activity phases from experimental data, with reference to reasonable activation/force delays. Calculated muscle powers are reasonably comparable to experimentally derived metabolic values from the literature, given likely values for muscle efficiency. The results show that: 1) if evaluated by the power expenditure per unit of mass (W/kg) in walking, AL 288-1 and KNM-WT 15000 would need similar power to modern humans; however, 2) with distance-specific parameters as the criteria, AL 288-1 would require to expend relatively more muscle power (W/kg.m(-1)) in comparison to modern humans. The results imply that in the evolution of bipedalism, body proportions, for example those of KNM-WT 15000, may have evolved to obtain an effective application of muscle power to bipedal walking over a long distance, or at high speed. PMID:15566947

  17. Evolution of oropharyngeal patterning mechanisms involving Dlx and endothelins in vertebrates.

    PubMed

    Kuraku, Shigehiro; Takio, Yoko; Sugahara, Fumiaki; Takechi, Masaki; Kuratani, Shigeru

    2010-05-01

    In jawed vertebrates, the Dlx code, or nested expression patterns of Dlx genes, specify the dorsoventral polarity of pharyngeal arches, downstream of endothelin-1 (Edn-1) and its effectors, Bapx1 (Nkx3.2) and dHand (Hand2). To elucidate the evolution of the specification mechanism of the oropharyngeal skeletal system, lamprey homologs of Dlx, Edn, endothelin receptor (Ednr), Bapx1, and dHand were identified. Our analysis suggested that the Edn gene family emerged at the advent of vertebrates, and that gene duplications leading to the different Edn gnathostome subtypes (Edn1-3) occurred before the cyclostome-gnathostome split. This timing of gene duplications, giving rise to multiple subtypes, was also implied for Dlx, Ednr, Hand, and Bapx. In lamprey embryos, nested expressions of Dlx genes were not observed in pharyngeal arches, nor was any focal expression of Bapx1, known in gnathostomes to specify the jaw joint. The dHand homolog, however, was expressed more intensively ventrally, as in gnathostomes. Lamprey homologs of Edn-1 and EdnrA were also shown to be expressed as described in mice, indicating involvement of this signaling pathway in the craniofacial patterning early in vertebrate evolution. These results suggest that the last common ancestor of all the extant vertebrates would have possessed basic gene repertoires involved in oropharyngeal patterning in gnathostomes, but the elaborate genetic program leading to the Dlx code is likely to have been acquired uniquely in gnathostomes. PMID:20171204

  18. Magnesium Alloys as a Biomaterial for Degradable Craniofacial Screws

    PubMed Central

    Henderson, Sarah E.; Verdelis, Konstantinos; Maiti, Spandan; Pal, Siladitya; Chung, William L.; Chou, Da-Tren; Kumta, Prashant N.; Almarza, Alejandro J.

    2014-01-01

    Recently, magnesium (Mg) alloys have received significant attention as a potential biomaterial for degradable implants, and this study was directed at evaluating the suitability of Mg for craniofacial bone screws. The objective was to implant screws fabricated from commercially available Mg-alloys (pure Mg and AZ31) in-vivo in a rabbit mandible. First, Mg-alloy screws were compared to stainless steel screws in an in-vitro pull-out test and determined to have a similar holding strength (~40N). A finite element model of the screw was created using the pull-out test data, and the model can be used for future Mg-alloy screw design. Then, Mg-alloy screws were implanted for 4, 8, and 12 weeks, with two controls of an osteotomy site (hole) with no implant and a stainless steel screw implanted for 12 weeks. MicroCT (computed tomography) was used to assess bone remodeling and Mg-alloy degradation, both visually and qualitatively through volume fraction measurements for all time points. Histologic analysis was also completed for the Mg-alloys at 12 weeks. The results showed that craniofacial bone remodeling occurred around both Mg-alloy screw types. Pure Mg had a different degradation profile than AZ31, however bone growth occurred around both screw types. The degradation rate of both Mg-alloy screw types in the bone marrow space and the muscle were faster than in the cortical bone space at 12 weeks. Furthermore, it was shown that by alloying Mg, the degradation profile could be changed. These results indicate the promise of using Mg-alloys for craniofacial applications. PMID:24384125

  19. SP8 regulates signaling centers during craniofacial development.

    PubMed

    Kasberg, Abigail D; Brunskill, Eric W; Steven Potter, S

    2013-09-15

    Much of the bone, cartilage and smooth muscle of the vertebrate face is derived from neural crest (NC) cells. During craniofacial development, the anterior neural ridge (ANR) and olfactory pit (OP) signaling centers are responsible for driving the outgrowth, survival, and differentiation of NC populated facial prominences, primarily via FGF. While much is known about the functional importance of signaling centers, relatively little is understood of how these signaling centers are made and maintained. In this report we describe a dramatic craniofacial malformation in mice mutant for the zinc finger transcription factor gene Sp8. At E14.5 they show facial prominences that are reduced in size and underdeveloped, giving an almost faceless phenotype. At later times they show severe midline defects, excencephaly, hyperterlorism, cleft palate, and a striking loss of many NC and paraxial mesoderm derived cranial bones. Sp8 expression was primarily restricted to the ANR and OP regions during craniofacial development. Analysis of an extensive series of conditional Sp8 mutants confirmed the critical role of Sp8 in signaling centers, and not directly in the NC and paraxial mesoderm cells. The NC cells of the Sp8 mutants showed increased levels of apoptosis and decreased cell proliferation, thereby explaining the reduced sizes of the facial prominences. Perturbed gene expression in the Sp8 mutants was examined by laser capture microdissection coupled with microarrays, as well as in situ hybridization and immunostaining. The most dramatic differences included striking reductions in Fgf8 and Fgf17 expression in the ANR and OP signaling centers. We were also able to achieve genetic and pharmaceutical partial rescue of the Sp8 mutant phenotype by reducing Sonic Hedgehog (SHH) signaling. These results show that Sp8 primarily functions to promote Fgf expression in the ANR and OP signaling centers that drive the survival, proliferation, and differentiation of the NC and paraxial

  20. SP8 regulates signaling centers during craniofacial development

    PubMed Central

    Kasberg, Abigail D.; Brunskill, Eric W.; Potter, S. Steven

    2014-01-01

    Much of the bone, cartilage and smooth muscle of the vertebrate face is derived from neural crest (NC) cells. During craniofacial development, the anterior neural ridge (ANR) and olfactory pit (OP) signaling centers are responsible for driving the outgrowth, survival, and differentiation of NC populated facial prominences, primarily via FGF. While much is known about the functional importance of signaling centers, relatively little is understood of how these signaling centers are made and maintained. In this report we describe a dramatic craniofacial malformation in mice mutant for the zinc finger transcription factor gene Sp8. At E14.5 they show facial prominences that are reduced in size and underdeveloped, giving an almost faceless phenotype. At later times they show severe midline defects, excencephaly, hyperterlorism, cleft palate, and a striking loss of many NC and paraxial mesoderm derived cranial bones. Sp8 expression was primarily restricted to the ANR and OP regions during craniofacial development. Analysis of an extensive series of conditional Sp8 mutants confirmed the critical role of Sp8 in signaling centers, and not directly in the NC and paraxial mesoderm cells. The NC cells of the Sp8 mutants showed increased levels of apoptosis and decreased cell proliferation, thereby explaining the reduced sizes of the facial prominences. Perturbed gene expression in the Sp8 mutants was examined by laser capture microdissection coupled with microarrays, as well as in situ hybridization and immunostaining. The most dramatic differences included striking reductions in Fgf8 and Fgf17 expression in the ANR and OP signaling centers. We were also able to achieve genetic and pharmaceutical partial rescue of the Sp8 mutant phenotype by reducing Sonic Hedgehog (SHH) signaling. These results show that Sp8 primarily functions to promote Fgf expression in the ANR and OP signaling centers that drive the survival, proliferation, and differentiation of the NC and paraxial

  1. Antibacterial coating on biocomposites for cranio-facial reconstruction

    PubMed Central

    LAZAR, MADALINA ANCA; VODNAR, DAN; PRODAN, DOINA; ROTARU, HORATIU; ROMAN, CALIN RARES; SORCOI, LIDIA ADRIANA; BACIUT, GRIGORE; CAMPIAN, RADU SEPTIMIU

    2016-01-01

    Background and aims Despite the fact that implants are sterilized, antiseptic techniques are applied and systemic antibiotics are routinely administered prior to and after craniofacial surgery, infection rates between 3% and 40% are still reported for alloplastic implants, urging for implant removal. The present study focuses on the development of a fiber-reinforced composite (FRC) implant for craniofacial reconstruction with antimicrobial properties. Methods A new fiber-reinforced composite coated with gentamicin was developed and tested for bacterial adherence and antibacterial efficiency, using two of the most involved bacterial strains in the postoperative infections: Staphylococcus aureus and Pseudomonas aeruginosa. Results Bacteria were efficiently inactivated in direct contact with gentamicin coatings (p<0.05). The inhibition zone for Staphylococcus aureus ranged from 17.21 mm to 20.13 mm and for Pseudomonas aeruginosa ranged from 12.93 mm to 15.33 mm. Although no significant statistical results were found for bacterial adhesion and gentamicin concentration, (Staphylococcus aureus: β= −0.974; p=0.144>0.05 and Pseudomonas aeruginosa: β = −0.921; p=0.255>0.05), a negative relation was observed, indicating the reversed relation between the antibiotic dosage and the bacterial adherence. Conclusion The results of the two applied microbiological protocols used in the study suggested that gentamicin eluting coating inhibited not only the bacterial growth, but also led to a lower initial bacterial adhesion to the surface of the implant. Thus, antibiotic coating of craniofacial implants may reduce the infection rate related to reconstructive surgery. PMID:27547065

  2. Endemic skeletal fluorosis

    PubMed Central

    Teotia, M.; Teotia, S. P. S.; Kunwar, K. B.

    1971-01-01

    Endemic skeletal fluorosis is described in 6 children aged 11 or over. Four cases were crippled with severe deformities in the spine, hips, and knees. All showed positive phosphorus, magnesium, and nitrogen balances and excessively positive calcium balances. The skeletal x-rays, histology, and chemical composition of the bones revealed diagnostic changes in each case. ImagesFIG. 1FIG. 2FIG. 3FIG. 4FIG. 5 PMID:5118057

  3. Management of fibro-osseous lesions of the craniofacial area. Presentation of 19 cases and review of the literature

    PubMed Central

    Baquero-Ruiz de la Hermosa, Mari C.; Minguez-Martínez, Ignacio; Floría-García, Luis M.; Barea-Gámiz, Jose; Delhom-Valero, Jose; Risueño-Mata, Presentation

    2013-01-01

    Introduction: Fibro-osseous lesions constitute a rare benign type of pathology with a non-odontogenic lineage that affect the craniofacial area. According to Waldrom’s classification, these lesions are divided into: fibrous dysplasia (FD), cemento-ossifying fibroma (COF) and desmoplastic fibroma (DF). Material and Methods: A retrospective study was performed on patients diagnosed with fibro-osseous lesions of the craniofacial area at the Hospital Universitario La Fe, Valencia, during 1987-2009. A total of 19 cases were collected: 15 cases compatible with an FD diagnosis, 3 cases with a COF diagnosis and 1 case with a DF diagnosis. Results: In the differential diagnosis, entities having similar clinical manifestations in the maxillofacial area with possible involvement of teeth or manifestations present as an asymptomatic radiolucent image should be ruled out. We hereby present the management and development of patients treated in our hospital for fibro-osseous lesions. Conclusions: Fibro-osseous lesions share many clinical and radiological characteristics in common, with histological features confirming the nature of the lesion. Management of patients should be individualized and case-specific, assessing the clinical evolution of each case and taking into account the benign nature and growth behavior of this type of tumors. Key words:Fibro-osseous, fibrous dysplasia, cemento-ossifying fibroma, desmoplastic fibroma. PMID:23524411

  4. Single gene disorders with craniofacial and oral manifestations.

    PubMed

    Patil, Shankargouda; Rao, Roopa S; Majumdar, Barnali

    2014-01-01

    Gene and environmental factors are instrumental in genesis of complex and wide range of disorders and syndromes. The newer gene sequencing and other advanced technologies have made our previous knowledge of genetic etiopathogenesis of various disorders more transparent. Single gene disorders refer to the disorders caused due to mutations in a single gene and a fair number of these manifest as craniofacial defects and anomalies. This review is an attempt to give a detailed insight into the varied single gene disorders and syndromes with an emphasis on dental implications. PMID:25707843

  5. Measuring outcomes in craniofacial and pediatric plastic surgery.

    PubMed

    Wong, Karen W Y; Forrest, Christopher R; Goodacre, Tim E E; Klassen, Anne F

    2013-04-01

    This article discusses the measurement of outcomes in craniofacial and pediatric plastic surgery, using examples of craniosynostosis and cleft lip and/or palate (CLP). The challenges in measuring the standard outcomes of function, aesthetics, and health-related quality of life are discussed, along with the importance of developing evidence and studying quality improvement in this specialty. The need to define specific and comprehensive goals is discussed with a focus on patient-reported outcomes (PROs). Examples from the development of the CLEFT-Q, a PRO instrument for patients with CLP, are provided to support the need to seek the patient perspective. PMID:23506771

  6. Craniofacial biomechanics and functional and dietary inferences in hominin paleontology.

    PubMed

    Grine, Frederick E; Judex, Stefan; Daegling, David J; Ozcivici, Engin; Ungar, Peter S; Teaford, Mark F; Sponheimer, Matt; Scott, Jessica; Scott, Robert S; Walker, Alan

    2010-04-01

    Finite element analysis (FEA) is a potentially powerful tool by which the mechanical behaviors of different skeletal and dental designs can be investigated, and, as such, has become increasingly popular for biomechanical modeling and inferring the behavior of extinct organisms. However, the use of FEA to extrapolate from characterization of the mechanical environment to questions of trophic or ecological adaptation in a fossil taxon is both challenging and perilous. Here, we consider the problems and prospects of FEA applications in paleoanthropology, and provide a critical examination of one such study of the trophic adaptations of Australopithecus africanus. This particular FEA is evaluated with regard to 1) the nature of the A. africanus cranial composite, 2) model validation, 3) decisions made with respect to model parameters, 4) adequacy of data presentation, and 5) interpretation of the results. Each suggests that the results reflect methodological decisions as much as any underlying biological significance. Notwithstanding these issues, this model yields predictions that follow from the posited emphasis on premolar use by A. africanus. These predictions are tested with data from the paleontological record, including a phylogenetically-informed consideration of relative premolar size, and postcanine microwear fabrics and antemortem enamel chipping. In each instance, the data fail to conform to predictions from the model. This model thus serves to emphasize the need for caution in the application of FEA in paleoanthropological enquiry. Theoretical models can be instrumental in the construction of testable hypotheses; but ultimately, the studies that serve to test these hypotheses - rather than data from the models - should remain the source of information pertaining to hominin paleobiology and evolution. PMID:20227747

  7. SHOX nullizygosity and haploinsufficiency in a Japanese family: implication for the development of Turner skeletal features.

    PubMed

    Ogata, Tsutomu; Muroya, Koji; Sasaki, Goro; Nishimura, Gen; Kitoh, Hiroshi; Hattori, Tadashi

    2002-03-01

    We report on clinical and molecular findings in a Japanese family consisting of a male infant with SHOX nullizygosity and his four family members with SHOX haploinsufficiency. The male infant had Langer mesomelic dysplasia, the prepubertal sister had idiopathic short stature phenotype with no discernible skeletal features, the father had mild Léri-Weill dyschondrosteosis (LWDC), and the mother and the maternal grandmother had moderate LWDC. The five subjects lacked clinically recognizable short metacarpals, cubitus valgus, high arched palate, short neck, and micrognathia, as well as recurrent otitis media and hearing loss. Fluorescence in situ hybridization and sequence analyses showed that the proband had a pseudoautosomal microdeletion involving SHOX and a C502T missense mutation in the homeobox domain at exon 4, and that the father was heterozygous for the SHOX deletion, and the sister, the mother, and the grandmother were heterozygous for the C502T mutation. The results, in conjunction with the previous findings, suggest that mesomelic skeletal features such as Langer mesomelic dysplasia and LWDC, which are absent or rare in Turner syndrome, are primarily caused by the SHOX dosage effect and the bone maturing effect of gonadal estrogens, whereas other skeletal features such as short metacarpals, cubitus valgus, and various craniofacial and cervical skeletal stigmata, which are common in Turner syndrome, are largely contributed by a compressive effect of distended lymphatics and lymphedema on the developing skeletal tissues. PMID:11889214

  8. The effect of direction of force to the craniofacial skeleton on the severity of brain injury in patients with a fronto-basal fracture.

    PubMed

    Stephens, J R; Holmes, S; Bulters, D; Evans, B T

    2016-07-01

    The skull base is uniquely positioned to absorb force imparted to the craniofacial skeleton, thereby reducing brain injury. Less well understood is the effect of the direction of force imparted to the craniofacial skeleton on the severity of brain injury. Eighty-one patients from two UK major trauma centres who sustained a fronto-basal fracture were divided into two groups: those struck with predominantly anterior force and those by predominantly lateral force. The first recorded Glasgow Coma Score (GCS), requirement for intubation, and requirement for decompressive craniectomy were used as markers of the severity of brain injury. An average GCS of 5 was found in the lateral group and 14 in the anterior group; this difference was statistically significant (P<0.001). There was an increased need for both intubation and decompressive craniectomy in the lateral group compared to the anterior group (absolute risk difference 46.6% and 15.8%, respectively). These results suggest that the skeletal anatomy of the fronto-basal region influences the severity of head injury. The delicate lattice-like structure in the central anterior cranial fossa can act as a crumple zone, absorbing force. Conversely in the lateral aspect of the anterior cranial fossa, there is a lack of collapsible interface, resulting in an increased energy transfer to the brain. PMID:26972160

  9. Brain, Craniofacial, and Dental Lesions of a Free-ranging Gray Wolf (Canis lupus) Implicated in a Human Attack in Minnesota, USA.

    PubMed

    Schwabenlander, Marc; Stepaniuk, Kevin; Carstensen, Michelle; Armién, Aníbal G

    2016-01-01

    We describe significant brain, craniofacial, and dental lesions in a free-ranging wolf (Canis lupus) involved in a human attack. On postmortem examination, the wolf presented asymmetric atrophy and bone remodeling affecting the mandible, incisive, maxilla, lacrimal, palatine, frontal, and ethmoid bones. There was an asymmetrical skeletal malocclusion and dental abnormalities including rotated, malpositioned, partially erupted teeth, and an odontogenic cyst associated with an unerupted canine tooth. Brain changes were bilateral loss and atrophy of extensive cortex regions including olfactory bulb, peduncles, and tract, and the frontal lobe. We highlight the relevance of a thorough postmortem examination of wildlife to elucidate disease-based abnormal behavior as the reason for human-animal conflict. PMID:26540333

  10. Wnt Signaling and Its Contribution to Craniofacial Tissue Homeostasis.

    PubMed

    Yin, X; Li, J; Salmon, B; Huang, L; Lim, W H; Liu, B; Hunter, D J; Ransom, R C; Singh, G; Gillette, M; Zou, S; Helms, J A

    2015-11-01

    A new field of dental medicine seeks to exploit nature's solution for repairing damaged tissues, through the process of regeneration. Most adult mammalian tissues have limited regenerative capacities, but in lower vertebrates, the molecular machinery for regeneration is an elemental part of their genetic makeup. Accumulating data suggest that the molecular pathways responsible for the regenerative capacity of teleosts, amphibians, and reptiles have fallen into disuse in mammals but that they can be "jumpstarted" by the selective activation of key molecules. The Wnt family of secreted proteins constitutes one such critical pathway: Wnt proteins rank among the most potent and ubiquitous stem cell self-renewing factors, with tremendous potential for promoting human tissue regeneration. Wnt reporter and lineage-tracing strains of mice have been employed to create molecular maps of Wnt responsiveness in the craniofacial tissues, and these patterns of Wnt signaling colocalize with stem/progenitor populations in the rodent incisor apex, the dental pulp, the alveolar bone, the periodontal ligament, the cementum, and oral mucosa. The importance of Wnt signaling in both the maintenance and healing of these craniofacial tissues is summarized, and the therapeutic potential of Wnt-based strategies to accelerate healing through activation of endogenous stem cells is highlighted. PMID:26285808

  11. Craniofacial resection: decreased complication rate with a modified subcranial approach.

    PubMed

    Ross, D A; Marentette, L J; Moore, C E; Switz, K L

    1999-01-01

    The authors have successfully utilized a modified subcranial approach to the anterior skull base, based upon the procedure first described by Joram Raveh, as an alternative to standard craniofacial resection. The complication rate of this procedure in 31 consecutive cases (28 tumors, 2 congenital malformations, and 1 mucocele) has been 19.4% with no permanent complications, no deaths, no new neurological deficits, no brain injuries, no infections, and no seizures. Minor complications without permanent sequelae included two cases of tension pnenmocephalus, a subdural hygroma, two transient cerebrospinal fluid leaks, and a case of bacterial meningitis secondary to fecal contamination of a lumbar drain in a child. Average length of hospitalization was 7.1 days (range 2 to 16 days). The overall complication rate is considerably below the complication rate for other reported craniofacial procedures. We describe the technique we have used and the results. The subcranial approach as described herein provides wide exposure of the anterior cranial base without brain retraction, does not require prolonged operating times or hospitalization, and has a potentially lower complication rate than reported for other transfrontal transbasal approaches. PMID:17171124

  12. IFT46 plays crucial roles in craniofacial and cilia development.

    PubMed

    Park, Inji; Lee, Hyun-Kyung; Kim, Chowon; Ismail, Tayaba; Kim, Yoo-Kyung; Park, Jeen-Woo; Kwon, Oh-Shin; Kang, Beom Sik; Lee, Dong-Seok; Park, Tae-Joo; Park, Mae-Ja; Choi, Sun-Cheol; Lee, Hyun-Shik

    2016-08-26

    The intraflagellar transport (IFT) system is essential for bidirectional movement of ciliary components from the basal body to the tip beneath the ciliary sheath and is conserved for cilia and flagella formation in most vertebrates. IFT complex A is involved in anterograde trafficking, whereas complex B is involved in retrograde trafficking. IFT46 is well known as a crucial component of IFT complex B, however, its developmental functions are poorly understood. In this study, we investigated the novel functions of IFT46 during vertebrate development, especially, ciliogenesis and neurogenesis, because IFT46 is strongly expressed in both multiciliated cells of epithelial and neural tissues. Knockdown of IFT46 using morpholino microinjections caused shortening of the body axis as well as the formation of fewer and shorter cilia. Furthermore, loss of IFT46 down-regulated the expression of the neural plate and neural tube markers, thus may influence Wnt/planar cell polarity and the sonic hedgehog signaling pathway during neurogenesis. In addition, loss of IFT46 caused craniofacial defects by interfering with cartilage formation. In conclusion, our results depict that IFT46 plays important roles in cilia as well as in neural and craniofacial development. PMID:27320864

  13. Thermal shell fragment craniofacial injury: biophysics, pathophysiology, and management.

    PubMed

    Shuker, Sabri T

    2015-01-01

    This article aims to bring attention to unique risks and burns by thermal shell fragment craniofacial soft tissue injury. Hot shrapnel may inflict burns to major vessel walls and lead to life-threatening hemorrhaging or death, which adds a new challenge for craniofacial surgeons. Morbidity of thermal deep tissue may lead to deep tissue necrosis and infection.Thermal energy (TE) physics, biophysics, and pathophysiological effects relate directly to the amount of heat generated from shell casing detonation, which transfers to skin, deep tissue, as well as brain and leads to life-threatening burning of organs; this is different from shrapnel kinetic energy injury.The unprecedented increase in using a large range of explosives and high-heat thermobaric weapons contributes to the superfluous and unnecessary suffering caused by thermal injury wounds.Surgeons and medics should recognize that a surprising amount of TE can be found in an explosion or detonation of a steel-encased explosive, resulting in TEs ranging from 400 F up to 1000 F. PMID:25534053

  14. Rare bone diseases and their dental, oral, and craniofacial manifestations.

    PubMed

    Foster, B L; Ramnitz, M S; Gafni, R I; Burke, A B; Boyce, A M; Lee, J S; Wright, J T; Akintoye, S O; Somerman, M J; Collins, M T

    2014-07-01

    Hereditary diseases affecting the skeleton are heterogeneous in etiology and severity. Though many of these conditions are individually rare, the total number of people affected is great. These disorders often include dental-oral-craniofacial (DOC) manifestations, but the combination of the rarity and lack of in-depth reporting often limit our understanding and ability to diagnose and treat affected individuals. In this review, we focus on dental, oral, and craniofacial manifestations of rare bone diseases. Discussed are defects in 4 key physiologic processes in bone/tooth formation that serve as models for the understanding of other diseases in the skeleton and DOC complex: progenitor cell differentiation (fibrous dysplasia), extracellular matrix production (osteogenesis imperfecta), mineralization (familial tumoral calcinosis/hyperostosis hyperphosphatemia syndrome, hypophosphatemic rickets, and hypophosphatasia), and bone resorption (Gorham-Stout disease). For each condition, we highlight causative mutations (when known), etiopathology in the skeleton and DOC complex, and treatments. By understanding how these 4 foci are subverted to cause disease, we aim to improve the identification of genetic, molecular, and/or biologic causes, diagnoses, and treatment of these and other rare bone conditions that may share underlying mechanisms of disease. PMID:24700690

  15. Rare Bone Diseases and Their Dental, Oral, and Craniofacial Manifestations

    PubMed Central

    Foster, B.L.; Ramnitz, M.S.; Gafni, R.I.; Burke, A.B.; Boyce, A.M.; Lee, J.S.; Wright, J.T.; Akintoye, S.O.; Somerman, M.J.; Collins, M.T.

    2014-01-01

    Hereditary diseases affecting the skeleton are heterogeneous in etiology and severity. Though many of these conditions are individually rare, the total number of people affected is great. These disorders often include dental-oral-craniofacial (DOC) manifestations, but the combination of the rarity and lack of in-depth reporting often limit our understanding and ability to diagnose and treat affected individuals. In this review, we focus on dental, oral, and craniofacial manifestations of rare bone diseases. Discussed are defects in 4 key physiologic processes in bone/tooth formation that serve as models for the understanding of other diseases in the skeleton and DOC complex: progenitor cell differentiation (fibrous dysplasia), extracellular matrix production (osteogenesis imperfecta), mineralization (familial tumoral calcinosis/hyperostosis hyperphosphatemia syndrome, hypophosphatemic rickets, and hypophosphatasia), and bone resorption (Gorham-Stout disease). For each condition, we highlight causative mutations (when known), etiopathology in the skeleton and DOC complex, and treatments. By understanding how these 4 foci are subverted to cause disease, we aim to improve the identification of genetic, molecular, and/or biologic causes, diagnoses, and treatment of these and other rare bone conditions that may share underlying mechanisms of disease. PMID:24700690

  16. A gene expression atlas of early craniofacial development.

    PubMed

    Brunskill, Eric W; Potter, Andrew S; Distasio, Andrew; Dexheimer, Phillip; Plassard, Andrew; Aronow, Bruce J; Potter, S Steven

    2014-07-15

    We present a gene expression atlas of early mouse craniofacial development. Laser capture microdissection (LCM) was used to isolate cells from the principal critical microregions, whose development, differentiation and signaling interactions are responsible for the construction of the mammalian face. At E8.5, as migrating neural crest cells begin to exit the neural fold/epidermal ectoderm boundary, we examined the cranial mesenchyme, composed of mixed neural crest and paraxial mesoderm cells, as well as cells from adjacent neuroepithelium. At E9.5 cells from the cranial mesenchyme, overlying olfactory placode/epidermal ectoderm, and underlying neuroepithelium, as well as the emerging mandibular and maxillary arches were sampled. At E10.5, as the facial prominences form, cells from the medial and lateral prominences, the olfactory pit, multiple discrete regions of underlying neuroepithelium, the mandibular and maxillary arches, including both their mesenchymal and ectodermal components, as well as Rathke's pouch, were similarly sampled and profiled using both microarray and RNA-seq technologies. Further, we performed single cell studies to better define the gene expression states of the early E8.5 pioneer neural crest cells and paraxial mesoderm. Taken together, and analyzable by a variety of biological network approaches, these data provide a complementing and cross validating resource capable of fueling discovery of novel compartment specific markers and signatures whose combinatorial interactions of transcription factors and growth factors/receptors are responsible for providing the master genetic blueprint for craniofacial development. PMID:24780627

  17. A Gene Expression Atlas of Early Craniofacial Development

    PubMed Central

    Brunskill, Eric W.; Potter, Andrew S.; Distasio, Andrew; Dexheimer, Phillip; Plassard, Andrew; Aronow, Bruce J.; Potter, S. Steven

    2014-01-01

    We present a gene expression atlas of early mouse craniofacial development. Laser capture microdissection (LCM) was used to isolate cells from the principal critical micro-regions, whose development, differentiation and signaling interactions are responsible for the construction of the mammalian face. At E8.5, as migrating neural crest cells begin to exit the neural fold/epidermal ectoderm boundary, we examined the cranial mesenchyme, composed of mixed neural crest and paraxial mesoderm cells, as well as cells from adjacent neuroepithelium. At E9.5 cells from the cranial mesenchyme, overlying olfactory placode/epidermal ectoderm, and underlying neuroepithelium, as well as the emerging mandibular and maxillary arches were sampled. At E10.5, as the facial prominences form, cells from the medial and lateral prominences, the olfactory pit, multiple discrete regions of underlying neuroepithelium, the mandibular and maxillary arches, including both their mesenchymal and ectodermal components, as well as Rathke’s pouch, were similarly sampled and profiled using both microarray and RNA-seq technologies. Further, we performed single cell studies to better define the gene expression states of the early E8.5 pioneer neural crest cells and paraxial mesoderm. Taken together, and analyzable by a variety of biological network approaches, these data provide a complementing and cross-validating resource capable of fueling discovery of novel compartment specific markers and signatures whose combinatorial interactions of transcription factors and growth factors/receptors are responsible for providing the master genetic blueprint for craniofacial development. PMID:24780627

  18. Reliability of Craniofacial Superimposition Using Three-Dimension Skull Model.

    PubMed

    Gaudio, Daniel; Olivieri, Lara; De Angelis, Danilo; Poppa, Pasquale; Galassi, Andrea; Cattaneo, Cristina

    2016-01-01

    Craniofacial superimposition is a technique potentially useful for the identification of unidentified human remains if a photo of the missing person is available. We have tested the reliability of the 2D-3D computer-aided nonautomatic superimposition techniques. Three-dimension laser scans of five skulls and ten photographs were overlaid with an imaging software. The resulting superimpositions were evaluated using three methods: craniofacial landmarks, morphological features, and a combination of the two. A 3D model of each skull without its mandible was tested for superimposition; we also evaluated whether separating skulls by sex would increase correct identifications. Results show that the landmark method employing the entire skull is the more reliable one (5/5 correct identifications, 40% false positives [FP]), regardless of sex. However, the persistence of a high percentage of FP in all the methods evaluated indicates that these methods are unreliable for positive identification although the landmark-only method could be useful for exclusion. PMID:26335587

  19. Study on the performance of different craniofacial superimposition approaches (II): Best practices proposal.

    PubMed

    Damas, S; Wilkinson, C; Kahana, T; Veselovskaya, E; Abramov, A; Jankauskas, R; Jayaprakash, P T; Ruiz, E; Navarro, F; Huete, M I; Cunha, E; Cavalli, F; Clement, J; Lestón, P; Molinero, F; Briers, T; Viegas, F; Imaizumi, K; Humpire, D; Ibáñez, O

    2015-12-01

    Craniofacial superimposition, although existing for one century, is still a controversial technique within the scientific community. Objective and unbiased validation studies over a significant number of cases are required to establish a more solid picture on the reliability. However, there is lack of protocols and standards in the application of the technique leading to contradictory information concerning reliability. Instead of following a uniform methodology, every expert tends to apply his own approach to the problem, based on the available technology and deep knowledge on human craniofacial anatomy, soft tissues, and their relationships. The aim of this study was to assess the reliability of different craniofacial superimposition methodologies and the corresponding technical approaches to this type of identification. With all the data generated, some of the most representative experts in craniofacial identification joined in a discussion intended to identify and agree on the most important issues that have to be considered to properly employ the craniofacial superimposition technique. As a consequence, the consortium has produced the current manuscript, which can be considered the first standard in the field; including good and bad practices, sources of error and uncertainties, technological requirements and desirable features, and finally a common scale for the craniofacial matching evaluation. Such a document is intended to be part of a more complete framework for craniofacial superimposition, to be developed during the FP7-founded project MEPROCS, which will favour and standardize its proper application. PMID:26482539

  20. BCL11B expression in intramembranous osteogenesis during murine craniofacial suture development

    PubMed Central

    Holmes, Greg; van Bakel, Harm; Zhou, Xueyan; Losic, Bojan; Jabs, Ethylin Wang

    2014-01-01

    Sutures, where neighboring craniofacial bones are separated by undifferentiated mesenchyme, are major growth sites during craniofacial development. Pathologic fusion of bones within sutures occurs in a wide variety of craniosynostosis conditions and can result in dysmorphic craniofacial growth and secondary neurologic deficits. Our knowledge of the genes involved in suture formation is poor. Here we describe the novel expression pattern of the BCL11B transcription factor protein during murine embryonic craniofacial bone formation. We examined BCL11B protein expression at E14.5, E16.5, and E18.5 in 14 major craniofacial sutures of C57BL/6J mice. We found BCL11B expression to be associated with all intramembranous craniofacial bones examined. The most striking aspects of BCL11B expression were its high levels in suture mesenchyme and increasingly complementary expression with RUNX2 in differentiating osteoblasts during development. BCL11B was also expressed in mesenchyme at the non-sutural edges of intramembranous bones. No expression was seen in osteoblasts involved in endochondral ossification of the cartilaginous cranial base. BCL11B is expressed to potentially regulate the transition of mesenchymal differentiation and suture formation within craniofacial intramembranous bone. PMID:25511173

  1. Sexual selection on skeletal shape in Carnivora.

    PubMed

    Morris, Jeremy S; Carrier, David R

    2016-04-01

    Lifetime reproductive success of males is often dependent upon the ability to physically compete for mates. However, species variation in social structure leads to differences in the relative importance of intraspecific aggression. Here, we present a large comparative dataset on sexual dimorphism in skeletal shape in Carnivora to test the hypotheses that carnivorans exhibit sexual dimorphism in skeletal anatomy that is reflective of greater specialization for physical aggression in males relative to females and that this dimorphism is associated with the intensity of sexual selection. We tested these hypotheses using a set of functional indices predicted to improve aggressive performance. Our results indicate that skeletal shape dimorphism is widespread within our sample. Functional traits thought to enhance aggressive performance are more pronounced in males. Phylogenetic model selection suggests that the evolution of this dimorphism is driven by sexual selection, with the best-fitting model indicating greater dimorphism in polygynous versus nonpolygynous species. Skeletal shape dimorphism is correlated with body size dimorphism, a common indicator of the intensity of male-male competition, but not with mean body size. These results represent the first evidence of sexual dimorphism in the primary locomotor system of a large sample of mammals. PMID:26969835

  2. Fibroblast growth factor (FGF) signaling in development and skeletal diseases

    PubMed Central

    Teven, Chad M.; Farina, Evan M.; Rivas, Jane; Reid, Russell R.

    2014-01-01

    Fibroblast growth factors (FGF) and their receptors serve many functions in both the developing and adult organism. Humans contain 18 FGF ligands and four FGF receptors (FGFR). FGF ligands are polypeptide growth factors that regulate several developmental processes including cellular proliferation, differentiation, and migration, morphogenesis, and patterning. FGF-FGFR signaling is also critical to the developing axial and craniofacial skeleton. In particular, the signaling cascade has been implicated in intramembranous ossification of cranial bones as well as cranial suture homeostasis. In the adult, FGFs and FGFRs are crucial for tissue repair. FGF signaling generally follows one of three transduction pathways: RAS/MAP kinase, PI3/AKT, or PLCγ. Each pathway likely regulates specific cellular behaviors. Inappropriate expression of FGF and improper activation of FGFRs are associated with various pathologic conditions, unregulated cell growth, and tumorigenesis. Additionally, aberrant signaling has been implicated in many skeletal abnormalities including achondroplasia and craniosynostosis. The biology and mechanisms of the FGF family have been the subject of significant research over the past 30 years. Recently, work has focused on the therapeutic targeting and potential of FGF ligands and their associated receptors. The majority of FGF-related therapy is aimed at age-related disorders. Increased understanding of FGF signaling and biology may reveal additional therapeutic roles, both in utero and postnatally. This review discusses the role of FGF signaling in general physiologic and pathologic embryogenesis and further explores it within the context of skeletal development. PMID:25679016

  3. [Muscle-skeletal pain].

    PubMed

    Vygonskaya, M V; Filatova, E G

    2016-01-01

    The paper is devoted to the most complicated aspects of low back pain. The differences between specific and nonspecific low back pain using the "red flags" system is highlighted. The authors consider the causes of pain chronification (the "yellow flags" system) and the necessity of using a biopsychosocial model. Main pathogenetic mechanisms of chronic muscle/skeletal pain are considered and the possible involvement of several mechanism in the pathogenesis of chronic pain as well as the use of complex therapy is discussed. The high efficacy and safety of ketorolac in treatment of nonspecific muscle/skeletal pain is demonstrated. PMID:27042717

  4. Psychosocial aspects of craniofacial disfigurement. A "State of the Art" assessment conducted by the Craniofacial Anomalies Program Branch, The National Institute of Dental Research.

    PubMed

    Stricker, G; Clifford, E; Cohen, L K; Giddon, D B; Meskin, L H; Evans, C A

    1979-10-01

    The psychosocial sequelae of craniofacial disfigurement may have as great an impact on the patient as the strictly physical aspects of the problem. Very little systematic work has been focused directly on these effects. The following broad recommendations would constitute initial research steps in this field: Development of satisfactory measures of physical attractiveness and their use in studies to explore the role of craniofacial features in over-all physical attractiveness. The establishment of valid metrics for assessing the severity of craniofacial anomalies through the use of both physiologic and behavioral measures, thus constructing a broader definition of what constitutes a craniofacial handicap. Studies of the relationships among physiologic and behavioral variables using recently developed statistical techniques and computer methods to determine the psychosocial consequences of craniofacial disfigurement. Studies of the process through which persons with various types of malocclusion decide to seek and complete treatment. The studies would include the patients' demographic characteristics, self-perceptions, perceptions of them by others, and the complex patient-clinician interactions during the treatment programs. PMID:386802

  5. The feelgood mutation in zebrafish dysregulates COPII-dependent secretion of select extracellular matrix proteins in skeletal morphogenesis

    PubMed Central

    Melville, David B.; Montero-Balaguer, Mercedes; Levic, Daniel S.; Bradley, Kevin; Smith, Jeffrey R.; Hatzopoulos, Antonis K.; Knapik, Ela W.

    2011-01-01

    SUMMARY Craniofacial and skeletal dysmorphologies account for the majority of birth defects. A number of the disease phenotypes have been attributed to abnormal synthesis, maintenance and composition of extracellular matrix (ECM), yet the molecular and cellular mechanisms causing these ECM defects remain poorly understood. The zebrafish feelgood mutant manifests a severely malformed head skeleton and shortened body length due to defects in the maturation stage of chondrocyte development. In vivo analyses reveal a backlog of type II and type IV collagens in rough endoplasmic reticulum (ER) similar to those found in coat protein II complex (COPII)-deficient cells. The feelgood mutation hinders collagen deposition in the ECM, but trafficking of small cargos and other large ECM proteins such as laminin to the extracellular space is unaffected. We demonstrate that the zebrafish feelgood mutation causes a single amino acid substitution within the DNA-binding domain of transcription factor Creb3l2. We show that Creb3l2 selectively regulates the expression of genes encoding distinct COPII proteins (sec23a, sec23b and sec24d) but find no evidence for its regulation of sec24c expression. Moreover, we did not detect activation of ER stress response genes despite intracellular accumulation of collagen and prominent skeletal defects. Promoter trans-activation assays show that the Creb3l2 feelgood variant is a hypomorphic allele that retains approximately 50% of its transcriptional activity. Transgenic rescue experiments of the feelgood phenotype restore craniofacial development, illustrating that a precise level of Creb3l2 transcriptional activity is essential for skeletogenesis. Our results indicate that Creb3l2 modulates the availability of COPII machinery in a tissue- and cargo-specific manner. These findings could lead to a better understanding of the etiology of human craniofacial and skeletal birth defects as well as adult-onset diseases that are linked to dysregulated

  6. The emerging roles of ribosome biogenesis in craniofacial development.

    PubMed

    Ross, Adam P; Zarbalis, Konstantinos S

    2014-01-01

    Neural crest cells (NCCs) are a transient, migratory cell population, which originates during neurulation at the neural folds and contributes to the majority of tissues, including the mesenchymal structures of the craniofacial skeleton. The deregulation of the complex developmental processes that guide migration, proliferation, and differentiation of NCCs may result in a wide range of pathological conditions grouped together as neurocristopathies. Recently, due to their multipotent properties neural crest stem cells have received considerable attention as a possible source for stem cell based regenerative therapies. This exciting prospect underlines the need to further explore the developmental programs that guide NCC differentiation. This review explores the particular importance of ribosome biogenesis defects in this context since a specific interface between ribosomopathies and neurocristopathies exists as evidenced by disorders such as Treacher-Collins-Franceschetti syndrome (TCS) and Diamond-Blackfan anemia (DBA). PMID:24550838

  7. Craniofacial syndromes and sleep-related breathing disorders.

    PubMed

    Tan, Hui-Leng; Kheirandish-Gozal, Leila; Abel, François; Gozal, David

    2016-06-01

    Children with craniofacial syndromes are at risk of sleep disordered breathing, the most common being obstructive sleep apnea. Midface hypoplasia in children with craniosynostosis and glossoptosis in children with Pierre Robin syndrome are well recognized risk factors, but the etiology is often multifactorial and many children have multilevel airway obstruction. We examine the published evidence and explore the current management strategies in these complex patients. Some treatment modalities are similar to those used in otherwise healthy children such as adenotonsillectomy, positive pressure ventilation and in the refractory cases, tracheostomy. However, there are some distinct approaches such as nasopharyngeal airways, tongue lip adhesion, mandibular distraction osteogenesis in children with Pierre Robin sequence, and midface advancement in children with craniosynostoses. Clinicians should have a low threshold for referral for evaluation of sleep-disordered-breathing in these patients. PMID:26454241

  8. Implant-retained craniofacial prostheses for facial defects

    PubMed Central

    Federspil, Philipp A.

    2012-01-01

    Craniofacial prostheses, also known as epistheses, are artificial substitutes for facial defects. The breakthrough for rehabilitation of facial defects with implant-retained prostheses came with the development of the modern silicones and bone anchorage. Following the discovery of the osseointegration of titanium in the 1950s, dental implants have been made of titanium in the 1960s. In 1977, the first extraoral titanium implant was inserted in a patient. Later, various solitary extraoral implant systems were developed. Grouped implant systems have also been developed which may be placed more reliably in areas with low bone presentation, as in the nasal and orbital region, or the ideally pneumatised mastoid process. Today, even large facial prostheses may be securely retained. The classical atraumatic surgical technique has remained an unchanged prerequisite for successful implantation of any system. This review outlines the basic principles of osseointegration as well as the main features of extraoral implantology. PMID:22073096

  9. Prevention of Treacher Collins syndrome craniofacial anomalies in mouse models via maternal antioxidant supplementation

    PubMed Central

    Sakai, Daisuke; Dixon, Jill; Achilleos, Annita; Dixon, Michael; Trainor, Paul A.

    2016-01-01

    Craniofacial anomalies account for approximately one-third of all birth defects and are a significant cause of infant mortality. Since the majority of the bones, cartilage and connective tissues that comprise the head and face are derived from a multipotent migratory progenitor cell population called the neural crest, craniofacial disorders are typically attributed to defects in neural crest cell development. Treacher Collins syndrome (TCS) is a disorder of craniofacial development and although TCS arises primarily through autosomal dominant mutations in TCOF1, no clear genotype–phenotype correlation has been documented. Here we show that Tcof1 haploinsufficiency results in oxidative stress-induced DNA damage and neuroepithelial cell death. Consistent with this discovery, maternal treatment with antioxidants minimizes cell death in the neuroepithelium and substantially ameliorates or prevents the pathogenesis of craniofacial anomalies in Tcof1+/− mice. Thus maternal antioxidant dietary supplementation may provide an avenue for protection against the pathogenesis of TCS and similar neurocristopathies. PMID:26792133

  10. Computed tomography of craniofacial trauma at a combat support hospital in Afghanistan.

    PubMed

    Statler, John D; Tempel, Carl G; Harcke, H Theodore

    2005-03-01

    Complex craniofacial injuries are encountered among both soldiers and civilians in combat zones. Computed tomography is a necessary and effective tool for the evaluation and treatment of these injuries in the forward-deployed combat support hospital. PMID:15828695

  11. Effects of sex hormone disturbances on craniofacial growth in newborn mice.

    PubMed

    Fujita, T; Ohtani, J; Shigekawa, M; Kawata, T; Kaku, M; Kohno, S; Tsutsui, K; Tenjo, K; Motokawa, M; Tohma, Y; Tanne, K

    2004-03-01

    It is well-known that sex hormones influence bone metabolism. However, it remains unclear as to how sex hormones affect bone growth in newborn mice. In this study, we performed orchiectomy (ORX) and ovariectomy (OVX) on newborn mice, and examined the effects on craniofacial growth morphometrically. ORX and OVX were performed on five-day-old C57BL/6J mice. Four weeks after surgery, lateral cephalograms were taken of all of the mice, with the use of a rat and mouse cephalometer. Cephalometric analysis of the craniofacial skeleton was performed by means of a personal computer. Inhibition of craniofacial growth was found in the experimental groups but not in the sham-operated groups. In the nasomaxillary bone and mandible, the amount of growth was significantly reduced. These results suggest that craniofacial growth is inhibited by sex hormone disturbances not only in puberty but also immediately after birth. PMID:14981129

  12. 76 FR 30370 - National Institute of Dental and Craniofacial Research; Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-05-25

    ... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF HEALTH AND HUMAN SERVICES National Institutes of Health National Institute of Dental and Craniofacial Research... unwarranted invasion of personal privacy. Name of Committee: National Institute of Dental and...

  13. 77 FR 2987 - National Institute of Dental & Craniofacial Research; Notice of Closed Meetings

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-01-20

    ... Emphasis Panel; Review of R34 Clinical Trial Planning Grants. Date: February 21, 2012. Time: 1 p.m. to 2:30...: National Institute of Dental and Craniofacial Research Special Emphasis Panel; Review of R34 Clinical...

  14. Prevention of Treacher Collins syndrome craniofacial anomalies in mouse models via maternal antioxidant supplementation.

    PubMed

    Sakai, Daisuke; Dixon, Jill; Achilleos, Annita; Dixon, Michael; Trainor, Paul A

    2016-01-01

    Craniofacial anomalies account for approximately one-third of all birth defects and are a significant cause of infant mortality. Since the majority of the bones, cartilage and connective tissues that comprise the head and face are derived from a multipotent migratory progenitor cell population called the neural crest, craniofacial disorders are typically attributed to defects in neural crest cell development. Treacher Collins syndrome (TCS) is a disorder of craniofacial development and although TCS arises primarily through autosomal dominant mutations in TCOF1, no clear genotype-phenotype correlation has been documented. Here we show that Tcof1 haploinsufficiency results in oxidative stress-induced DNA damage and neuroepithelial cell death. Consistent with this discovery, maternal treatment with antioxidants minimizes cell death in the neuroepithelium and substantially ameliorates or prevents the pathogenesis of craniofacial anomalies in Tcof1(+/-) mice. Thus maternal antioxidant dietary supplementation may provide an avenue for protection against the pathogenesis of TCS and similar neurocristopathies. PMID:26792133

  15. 75 FR 65495 - National Institute of Dental and Craniofacial Research; Interagency Pain Research Coordinating...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-10-25

    ... HUMAN SERVICES National Institutes of Health National Institute of Dental and Craniofacial Research; Interagency Pain Research Coordinating Committee; Call for Nominations The Department of Health and Human Services has created the Interagency Pain Research Coordinating Committee and is seeking nominations...

  16. PATHOGENESIS OF METHANOL-INDUCED CRANIOFACIAL DEFECTS IN C57BL/6J MICE

    EPA Science Inventory

    BACKGROUND: Methanol administered to C57BL/6J mice during gastrulation causes severe craniofacial dysmorphology. We describe dysmorphogenesis, cell death, cell cycle assessment, and effects on development of cranial ganglia and nerves observed following administration of methanol...

  17. Development of a biodegradable bone cement for craniofacial applications.

    PubMed

    Henslee, Allan M; Gwak, Dong-Ho; Mikos, Antonios G; Kasper, F Kurtis

    2012-09-01

    This study investigated the formulation of a two-component biodegradable bone cement comprising the unsaturated linear polyester macromer poly(propylene fumarate) (PPF) and crosslinked PPF microparticles for use in craniofacial bone repair applications. A full factorial design was employed to evaluate the effects of formulation parameters such as particle weight percentage, particle size, and accelerator concentration on the setting and mechanical properties of crosslinked composites. It was found that the addition of crosslinked microparticles to PPF macromer significantly reduced the temperature rise upon crosslinking from 100.3°C ± 21.6°C to 102.7°C ± 49.3°C for formulations without microparticles to 28.0°C ± 2.0°C to 65.3°C ± 17.5°C for formulations with microparticles. The main effects of increasing the particle weight percentage from 25 to 50% were to significantly increase the compressive modulus by 37.7 ± 16.3 MPa, increase the compressive strength by 2.2 ± 0.5 MPa, decrease the maximum temperature by 9.5°C ± 3.7°C, and increase the setting time by 0.7 ± 0.3 min. Additionally, the main effects of increasing the particle size range from 0-150 μm to 150-300 μm were to significantly increase the compressive modulus by 31.2 ± 16.3 MPa and the compressive strength by 1.3 ± 0.5 MPa. However, the particle size range did not have a significant effect on the maximum temperature and setting time. Overall, the composites tested in this study were found to have properties suitable for further consideration in craniofacial bone repair applications. PMID:22499285

  18. Characterization of porous polymethylmethacrylate space maintainers for craniofacial reconstruction.

    PubMed

    Wang, Limin; Yoon, Diana M; Spicer, Patrick P; Henslee, Allan M; Scott, David W; Wong, Mark E; Kasper, F Kurtis; Mikos, Antonios G

    2013-07-01

    Porous polymethylmethacrylate (PMMA) has been used as an alloplastic bone substitute in the craniofacial complex, showing integration with the surrounding soft and hard tissue. This study investigated the physicochemical properties of curing and cured mixtures of a PMMA-based bone cement and a carboxymethylcellulose (CMC) gel porogen. Four formulations yielding porous PMMA of varied porosity were examined; specifically, two groups containing 30% (w/w) CMC gel in the mixture using a 7% (w/v) or 9% (w/v) stock CMC gel (30-7 and 30-9, respectively) and two groups containing 40% (w/w) CMC gel (40-7 and 40-9). An additional group comprising solid PMMA without CMC was investigated. The incorporation of the CMC gel into the PMMA bone cement during polymerization decreased the setting time from 608 ± 12 s for the solid PMMA to 427 ± 10 s for the 40-9 group, and decreased the maximum temperature from 81 ± 4°C for the solid PMMA to 38 ± 2°C for the 40-9 group. The porous PMMA groups exhibited reduced compressive strength and bending modulus and strength relative to the solid PMMA. All the porous PMMA formulations released more unconverted methylmethacrylate (MMA) monomer and N,N-dimethyl-p-toluidine (DMT) from cured specimens and less MMA and DMT from curing specimens than the solid PMMA. The data suggest that the physicochemical properties of the porous PMMA formulations are appropriate for their application in craniofacial space maintenance. PMID:23359449

  19. Structure of Skeletal Muscle

    MedlinePlus

    ... Cells, Tissues, & Membranes Cell Structure & Function Cell Structure Cell Function Body Tissues Epithelial Tissue Connective Tissue Muscle Tissue ... nerves. This is directly related to the primary function of skeletal muscle, ... an impulse from a nerve cell. Generally, an artery and at least one vein ...

  20. Gravity and Skeletal Growth

    NASA Technical Reports Server (NTRS)

    Morey-Holton, Emily; Turner, Russell T.

    1999-01-01

    Two simultaneous experiments were performed using 5-week-old male Sprague Dawley rats; in one study, the rats were flown in low earth orbit; in the other study, the hindlimbs of the growing rats were elevated to prevent weight bearing. Following 9 d of unloading, weight bearing was restored for 4, 28, and 76 hrs. Afterwards, additional hindlimb unloading experiments were performed to evaluate the skeletal response to 0, 2, 4, 6, 8, 10, 12, 16, and 24 hrs of restored weight bearing following 7 d of unloading. Cancellous and cortical bone histomorphometry were evaluated in the left tibia at the proximal metaphysis and in the left femur at mid-diaphysis, respectively. Steady-state mRNA levels for bone matrix proteins and skeletal signaling peptides were determined in total cellular RNA extracted from trabeculae from the right proximal tibiametaphysis and periosteum from the right femur. Spaceflight and hindlimb unloading each resulted in cancellous osteopenia, as well as a tendency towards decreased periosteal bone formation. Both models for skeletal unloading resulted in site specific reductions in mRNA levels for transforming growth factor-beta (sub 1) (TGF-beta) osteocalcin (OC), and prepro-alpha (I) subunit of type 1 collagen (collagen) and little or no changes in mRNA levels for glyceraldehyde-3-phosphate dehydrogenase (GAP) and insulin-like growth factor I (IGF-I). Restoration of normal weight bearing resulted in transient increases in mRNA levels for the bone matrix proteins and TGF-beta in the proximal metaphysis and periosteum and no changes in either GAP or IGF-I mRNA levels. The timecourse for the response differed between the two skeletal compartments; the tibial metaphysis responded much more quickly to reloading. These results suggest that the skeletal adaptation to acute physiological changes in mechanical usage are mediated, in part, by changes in mRNA levels for bone matrix proteins and TGF-beta.

  1. Hcfc1b, a zebrafish ortholog of HCFC1, regulates craniofacial development by modulating mmachc expression

    PubMed Central

    Quintana, Anita M.; Geiger, Elizabeth A.; Achilly, Nate; Rosenblatt, David S.; Maclean, Kenneth N.; Stabler, Sally P.; Artinger, Kristin B.; Appel, Bruce; Shaikh, Tamim H.

    2014-01-01

    Mutations in HCFC1 (MIM300019), have been recently associated with cblX (MIM309541), an X-linked, recessive disorder characterized by multiple congenital anomalies including craniofacial abnormalities. HCFC1 is a transcriptional co-regulator that modulates the expression of numerous downstream target genes including MMACHC, but it is not clear how these HCFC1 targets play a role in the clinical manifestations of cblX. To begin to elucidate the mechanism by which HCFC1 modulates disease phenotypes, we have carried out loss of function analyses in the developing zebrafish. Of the two HCFC1 orthologs in zebrafish, hcfc1a and hcfc1b, the loss of hcfc1b specifically results in defects in craniofacial development. Subsequent analysis revealed that hcfc1b regulates cranial neural crest cell differentiation and proliferation within the posterior pharyngeal arches. Further, the hcfc1b-mediated craniofacial abnormalities were rescued by expression of human MMACHC, a downstream target of HCFC1 that is aberrantly expressed in cblX. Furthermore, we tested distinct human HCFC1 mutations for their role in craniofacial development and demonstrated variable effects on MMACHC expression in humans and craniofacial development in zebrafish. Notably, several individuals with mutations in either HCFC1 or MMACHC have been reported to have mild to moderate facial dysmorphia. Thus, our data demonstrates that HCFC1 plays a role in craniofacial development, which is in part mediated through the regulation of MMACHC expression. PMID:25281006

  2. Intrauterine effect of dam on prenatal development of craniofacial complex of mouse embryo.

    PubMed

    Nonaka, K; Sasaki, Y; Yanagita, K; Matsumoto, T; Watanabe, Y; Nakata, M

    1993-01-01

    Embryo transfer effect and intrauterine effect of the dam on prenatal development of the craniofacial complex of mice embryos were investigated with the use of embryo transfer and cephalostat. DDD strain embryos were transferred to the three strains of recipients (DDD, C57BL, and DBA). The cephalometric observation of newborn offspring developed from transferred embryos was performed just after parturition. Dorso-ventral craniofacial size of newborn offspring was calculated using values of X- and Y-coordinates on a dorsoventral cephalogram. Statistical analysis showed that a significant intergroup difference in craniofacial size between transferred and nontransferred groups as well as a significant inter-strain difference among those of the three strains of recipients were observed. Thus, it was disclosed that embryo transfer technique might retard the prenatal development of craniofacial complex of transferred embryo and that the three strains of recipients contributed unequally to the prenatal development of craniofacial complex of transferred embryo through each of their intrauterine environments as a prenatal maternal effect. These results indicated that the intrauterine environment of the recipient played an important role in the prenatal development of the craniofacial complex of the mice embryo. PMID:8227293

  3. Cdh1 regulates craniofacial development via APC-dependent ubiquitination and activation of Goosecoid.

    PubMed

    Shao, Rui; Liu, Jia; Yan, Guang; Zhang, Jinfang; Han, Yujiao; Guo, Jianfeng; Xu, Zhan; Yuan, Zhu; Liu, Jiankang; Malumbres, Marcos; Wan, Lixin; Wei, Wenyi; Zou, Weiguo

    2016-06-01

    Craniofacial anomalies (CFAs) characterized by birth defects of skull and facial bones are the most frequent congenital disease. Genomic analysis has identified multiple genes responsible for CFAs; however, the underlying genetic mechanisms for the majority of CFAs remain largely unclear. Our previous study revealed that the Wwp2 E3 ubiquitin ligase facilitates craniofacial development in part through inducing monoubiquitination and activation of the paired-like homeobox transcription factor, Goosecoid (Gsc). Here we report that Gsc is also ubiquitinated and activated by the APC(Cdh1) E3 ubiquitin ligase, leading to transcriptional activation of various Gsc target genes crucial for craniofacial development. Consistenly, neural crest-specific Cdh1-knockout mice display similar bone malformation as Wwp2-deficient mice in the craniofacial region, characterized by a domed skull, a short snout and a twisted nasal bone. Mechanistically, like Wwp2-deficient mice, mice with Cdh1 deficiency in neural crest cells exhibit reduced Gsc/Sox6 transcriptional activities. Simultaneous deletion of Cdh1 and Wwp2 results in a more severe craniofacial defect compared with single gene deletion, suggesting a synergistic augmentation of Gsc activity by these two E3 ubiquitin ligases. Hence, our study reveals a novel role for Cdh1 in craniofacial development through promoting APC-dependent non-proteolytic ubiquitination and activation of Gsc. PMID:27126000

  4. [Personal identification using information from cranio-facial region].

    PubMed

    Minaguchi, Kiyoshi

    2007-11-01

    Much of Forensic Odontology is concerned with personal identification, through examination of cranio-facial region. This paper describes several studies in which we worked with materials derived from cranio-facial region. The following topics are addressed : (1) Human saliva contains proteins specific to salivary glands, proteins which are highly polymorphic compared with those found in other body fluids. In particular, six genes for proline-rich proteins coded many proteins found in human saliva, and we found several of them. At least five kinds of cystatin are secreted in saliva. We constructed recombinant polymorphic proteins, cystatin SAl and SA2. Using these proteins, we compared effects of amino acid mutation on protease inhibitor activity, and demonstrated a novel function for type-2 cystatin cytokine-inducing activity. (2) Among autosomal STR loci, we identified the D12S67 locus as highly polymorphic, with a heterozygosity of 95%, by investigating differences in nucleotide repeat units. Highly polymorphic autosomal STR loci offer an effective forensic tool under certain conditions, in addition to multiplex PCR, and therefore merit further study in forensic practice. (3) Although digitalization is prevalent in photography, analog images are preferable in certain circumstances as they offer better resolution. (4) Usually, information on mtDNA polymorphisms from HV1 and HV2 in the control region is used in forensic practice. However, information from the coding region considerably increases the discrimination power of mtDNA polymorphisms. It is important to increase the volume of coding region information available with regard to mtDNA polymorphisms for future forensic practice. (5) Y-STR polymorphisms are closely associated with binary haplogroups, and it is possible to estimate a binary haplogroup from an STR haplotype. (6) Mitochondrial DNA and Y-chromosomal polymorphisms can be used to determine geographic origin in individuals from East Asia, something

  5. STRAIN-SPECIFIC MODIFIER GENES GOVERNING CRANIOFACIAL PHENOTYPES

    PubMed Central

    Mukhopadhyay, Partha; Brock, Guy; Webb, Cynthia; Pisano, M. Michele; Greene, Robert M

    2012-01-01

    BACKGROUND The presence of strain-specific modifier genes is known to modulate the phenotype and pathophysiology of mice harboring genetically engineered mutations. Thus, identification of genetic modifier genes is requisite to understanding control of phenotypic expression. c-Ski is a transcriptional regulator. Ski−/− mice on a C57BL6J (B6) background exhibit facial clefting, while Ski−/− mice on a 129P3 (129) background present with exencephaly. METHODS In the present study, oligonucleotide-based gene expression profiling was utilized to identify potential strain-specific modifier gene candidates present in wild-type mice of B6 and 129 genetic backgrounds. Changes in gene expression were verified by TaqMan quantitative real-time PCR. RESULTS Steady-state levels of 89 genes demonstrated a significantly higher level of expression, and those of 68 genes demonstrated a significantly lower level of expression in the developing neural tubes from E8.5, B6 embryos when compared to expression levels in neural tubes derived from E8.5, 129 embryos. CONCLUSIONS Based on the results from the current comparative microarray study, and taking into consideration a number of relevant published reports, several potential strain-specific gene candidates, likely to modify the craniofacial phenotypes in various knockout mouse models have been identified. PMID:22371338

  6. A standardized nomenclature for craniofacial and facial anthropometry.

    PubMed

    Caple, Jodi; Stephan, Carl N

    2016-05-01

    Standardized terms and methods have long been recognized as crucial to reduce measurement error and increase reliability in anthropometry. The successful prior use of craniometric landmarks makes extrapolation of these landmarks to the soft tissue context, as analogs, intuitive for forensic craniofacial analyses and facial photogrammetry. However, this extrapolation has not, so far, been systematic. Instead, varied nomenclature and definitions exist for facial landmarks, and photographic analyses are complicated by the generalization of 3D craniometric landmarks to the 2D face space where analogy is subsequently often lost, complicating anatomical assessments. For example, landmarks requiring palpation of the skull or the examination of the 3D surface typology are impossible to legitimately position; similar applies to median landmarks not visible in lateral photographs. To redress these issues without disposing of the craniometric framework that underpins many facial landmarks, we provide an updated and transparent nomenclature for facial description. This nomenclature maintains the original craniometric intent (and base abbreviations) but provides clear distinction of ill-defined (quasi) landmarks in photographic contexts, as produced when anatomical points are subjectively inferred from shape-from-shading information alone. PMID:26662189

  7. Health policy and craniofacial care: issues in resource allocation.

    PubMed

    Strauss, R P

    1994-01-01

    The distribution of health care services, including craniofacial services in the United States, is examined. The U.S. has a unique health care financing and organizational system in which persons are most commonly covered by health insurance as a benefit of their employment. Current estimates are that nearly 40 million Americans have no health insurance (Himmelstein et al., 1992). Approximately half of the uninsured persons are in low-wage employment that does not provide health insurance benefits nor allow them to qualify for Medicaid (Pepper Commission, 1990). Personal health care costs now exceed 11% of the U.S. gross domestic product, a significantly higher percentage than that found in other industrialized nations (Consumer Reports, 1990b). Within the current system, is health care distributed in a fair or moral manner? What are the effects of the allocation scheme? Possible changes in health care financing and delivery are examined and basic ethical and social issues associated with a changing U.S. health care delivery system are explored. PMID:8130247

  8. Three-Dimensional Bioprinting for Regenerative Dentistry and Craniofacial Tissue Engineering.

    PubMed

    Obregon, F; Vaquette, C; Ivanovski, S; Hutmacher, D W; Bertassoni, L E

    2015-09-01

    Craniofacial tissues are organized with complex 3-dimensional (3D) architectures. Mimicking such 3D complexity and the multicellular interactions naturally occurring in craniofacial structures represents one of the greatest challenges in regenerative dentistry. Three-dimensional bioprinting of tissues and biological structures has been proposed as a promising alternative to address some of these key challenges. It enables precise manufacture of various biomaterials with complex 3D architectures, while being compatible with multiple cell sources and being customizable to patient-specific needs. This review describes different 3D bioprinting methods and summarizes how different classes of biomaterials (polymer hydrogels, ceramics, composites, and cell aggregates) may be used for 3D biomanufacturing of scaffolds, as well as craniofacial tissue analogs. While the fabrication of scaffolds upon which cells attach, migrate, and proliferate is already in use, printing of all the components that form a tissue (living cells and matrix materials together) to produce tissue constructs is still in its early stages. In summary, this review seeks to highlight some of the key advantages of 3D bioprinting technology for the regeneration of craniofacial structures. Additionally, it stimulates progress on the development of strategies that will promote the translation of craniofacial tissue engineering from the laboratory bench to the chair side. PMID:26124216

  9. Crude oil exposures reveal roles for intracellular calcium cycling in haddock craniofacial and cardiac development

    NASA Astrophysics Data System (ADS)

    Sørhus, Elin; Incardona, John P.; Karlsen, Ørjan; Linbo, Tiffany; Sørensen, Lisbet; Nordtug, Trond; van der Meeren, Terje; Thorsen, Anders; Thorbjørnsen, Maja; Jentoft, Sissel; Edvardsen, Rolf B.; Meier, Sonnich

    2016-08-01

    Recent studies have shown that crude oil exposure affects cardiac development in fish by disrupting excitation-contraction (EC) coupling. We previously found that eggs of Atlantic haddock (Melanogrammus aeglefinus) bind dispersed oil droplets, potentially leading to more profound toxic effects from uptake of polycyclic aromatic hydrocarbons (PAHs). Using lower concentrations of dispersed crude oil (0.7–7 μg/L ∑PAH), here we exposed a broader range of developmental stages over both short and prolonged durations. We quantified effects on cardiac function and morphogenesis, characterized novel craniofacial defects, and examined the expression of genes encoding potential targets underlying cardiac and craniofacial defects. Because of oil droplet binding, a 24-hr exposure was sufficient to create severe cardiac and craniofacial abnormalities. The specific nature of the craniofacial abnormalities suggests that crude oil may target common craniofacial and cardiac precursor cells either directly or indirectly by affecting ion channels and intracellular calcium in particular. Furthermore, down-regulation of genes encoding specific components of the EC coupling machinery suggests that crude oil disrupts excitation-transcription coupling or normal feedback regulation of ion channels blocked by PAHs. These data support a unifying hypothesis whereby depletion of intracellular calcium pools by crude oil-derived PAHs disrupts several pathways critical for organogenesis in fish.

  10. Crude oil exposures reveal roles for intracellular calcium cycling in haddock craniofacial and cardiac development.

    PubMed

    Sørhus, Elin; Incardona, John P; Karlsen, Ørjan; Linbo, Tiffany; Sørensen, Lisbet; Nordtug, Trond; van der Meeren, Terje; Thorsen, Anders; Thorbjørnsen, Maja; Jentoft, Sissel; Edvardsen, Rolf B; Meier, Sonnich

    2016-01-01

    Recent studies have shown that crude oil exposure affects cardiac development in fish by disrupting excitation-contraction (EC) coupling. We previously found that eggs of Atlantic haddock (Melanogrammus aeglefinus) bind dispersed oil droplets, potentially leading to more profound toxic effects from uptake of polycyclic aromatic hydrocarbons (PAHs). Using lower concentrations of dispersed crude oil (0.7-7 μg/L ∑PAH), here we exposed a broader range of developmental stages over both short and prolonged durations. We quantified effects on cardiac function and morphogenesis, characterized novel craniofacial defects, and examined the expression of genes encoding potential targets underlying cardiac and craniofacial defects. Because of oil droplet binding, a 24-hr exposure was sufficient to create severe cardiac and craniofacial abnormalities. The specific nature of the craniofacial abnormalities suggests that crude oil may target common craniofacial and cardiac precursor cells either directly or indirectly by affecting ion channels and intracellular calcium in particular. Furthermore, down-regulation of genes encoding specific components of the EC coupling machinery suggests that crude oil disrupts excitation-transcription coupling or normal feedback regulation of ion channels blocked by PAHs. These data support a unifying hypothesis whereby depletion of intracellular calcium pools by crude oil-derived PAHs disrupts several pathways critical for organogenesis in fish. PMID:27506155

  11. The face, the future, and dental practice: how research in craniofacial biology will influence patient care.

    PubMed

    Townsend, G C; Brook, A H

    2014-06-01

    It has been a privilege to assemble a group of Australian and international researchers to produce a special issue of the Australian Dental Journal that reflects the cutting edge of research in different aspects of craniofacial biology, and also considers how these advances will influence future education and practice within dentistry. The aim of this special issue is to provide a collection of concept papers and critical reviews on key topics that cover both fundamental and applied research in craniofacial biology and to consider the clinical implications. To do this, four questions have been addressed that lead to the four sections of this issue. These are: How have we come to the present exciting position in craniofacial biology with breakthroughs over the past 50 years? What are current fundamental research topics that are helping us to understand more about craniofacial and general development, possibly leading to future clinical developments? What are the current applied research topics that will influence future clinical practice? Looking forward, what new developments in craniofacial biology may come about that will change the face of dental education and practice? The refereed papers in this special issue are grouped into the four sections that seek to respond to these demanding questions. PMID:24646132

  12. Craniofacial morphometric analysis of individuals with X-linked hypohidrotic ectodermal dysplasia

    PubMed Central

    Goodwin, Alice F; Larson, Jacinda R; Jones, Kyle B; Liberton, Denise K; Landan, Maya; Wang, Zhifeng; Boekelheide, Anne; Langham, Margaret; Mushegyan, Vagan; Oberoi, Snehlata; Brao, Rosalie; Wen, Timothy; Johnson, Ramsey; Huttner, Kenneth; Grange, Dorothy K; Spritz, Richard A; Hallgrímsson, Benedikt; Jheon, Andrew H; Klein, Ophir D

    2014-01-01

    Hypohidrotic ectodermal dysplasia (HED) is the most prevalent type of ectodermal dysplasia (ED). ED is an umbrella term for a group of syndromes characterized by missing or malformed ectodermal structures, including skin, hair, sweat glands, and teeth. The X-linked recessive (XL), autosomal recessive (AR), and autosomal dominant (AD) types of HED are caused by mutations in the genes encoding ectodysplasin (EDA1), EDA receptor (EDAR), or EDAR-associated death domain (EDARADD). Patients with HED have a distinctive facial appearance, yet a quantitative analysis of the HED craniofacial phenotype using advanced three-dimensional (3D) technologies has not been reported. In this study, we characterized craniofacial morphology in subjects with X-linked hypohidrotic ectodermal dysplasia (XLHED) by use of 3D imaging and geometric morphometrics (GM), a technique that uses defined landmarks to quantify size and shape in complex craniofacial morphologies. We found that the XLHED craniofacial phenotype differed significantly from controls. Patients had a smaller and shorter face with a proportionally longer chin and midface, prominent midfacial hypoplasia, a more protrusive chin and mandible, a narrower and more pointed nose, shorter philtrum, a narrower mouth, and a fuller and more rounded lower lip. Our findings refine the phenotype of XLHED and may be useful both for clinical diagnosis of XLHED and to extend understanding of the role of EDA in craniofacial development. PMID:25333067

  13. Application of three-dimensional computed tomography in craniofacial clinical practice and research.

    PubMed

    Anderson, P J; Yong, R; Surman, T L; Rajion, Z A; Ranjitkar, S

    2014-06-01

    Following the invention of the first computed tomography (CT) scanner in the early 1970s, many innovations in three-dimensional (3D) diagnostic imaging technology have occurred, leading to a wide range of applications in craniofacial clinical practice and research. Three-dimensional image analysis provides superior and more detailed information compared with conventional plain two-dimensional (2D) radiography, with the added benefit of 3D printing for preoperative treatment planning and regenerative therapy. Current state-of-the-art multidetector CT (MDCT), also known as medical CT, has an important role in the diagnosis and management of craniofacial injuries and pathology. Three-dimensional cone beam CT (CBCT), pioneered in the 1990s, is gaining increasing popularity in dental and craniofacial clinical practice because of its faster image acquisition at a lower radiation dose, but sound guidelines are needed to ensure its optimal clinical use. Recent innovations in micro-computed tomography (micro-CT) have revolutionized craniofacial biology research by enabling higher resolution scanning of teeth beyond the capabilities of MDCT and CBCT, presenting new prospects for translational clinical research. Even after four decades of refinement, CT technology continues to advance and broaden the horizons of craniofacial clinical practice and phenomics research. PMID:24611727

  14. Perinatal stem cells: A promising cell resource for tissue engineering of craniofacial bone

    PubMed Central

    Si, Jia-Wen; Wang, Xu-Dong; Shen, Steve GF

    2015-01-01

    In facing the mounting clinical challenge and suboptimal techniques of craniofacial bone defects resulting from various conditions, such as congenital malformations, osteomyelitis, trauma and tumor resection, the ongoing research of regenerative medicine using stem cells and concurrent advancement in biotechnology have shifted the focus from surgical reconstruction to a novel stem cell-based tissue engineering strategy for customized and functional craniofacial bone regeneration. Given the unique ontogenetical and cell biological properties of perinatal stem cells, emerging evidence has suggested these extraembryonic tissue-derived stem cells to be a promising cell source for extensive use in regenerative medicine and tissue engineering. In this review, we summarize the current achievements and obstacles in stem cell-based craniofacial bone regeneration and subsequently we address the characteristics of various types of perinatal stem cells and their novel application in tissue engineering of craniofacial bone. We propose the promising feasibility and scope of perinatal stem cell-based craniofacial bone tissue engineering for future clinical application. PMID:25621114

  15. Utilizing the chicken as an animal model for human craniofacial ciliopathies.

    PubMed

    Schock, Elizabeth N; Chang, Ching-Fang; Youngworth, Ingrid A; Davey, Megan G; Delany, Mary E; Brugmann, Samantha A

    2016-07-15

    The chicken has been a particularly useful model for the study of craniofacial development and disease for over a century due to their relatively large size, accessibility, and amenability for classical bead implantation and transplant experiments. Several naturally occurring mutant lines with craniofacial anomalies also exist and have been heavily utilized by developmental biologist for several decades. Two of the most well known lines, talpid(2) (ta(2)) and talpid(3) (ta(3)), represent the first spontaneous mutants to have the causative genes identified. Despite having distinct genetic causes, both mutants have recently been identified as ciliopathic. Excitingly, both of these mutants have been classified as models for human craniofacial ciliopathies: Oral-facial-digital syndrome (ta(2)) and Joubert syndrome (ta(3)). Herein, we review and compare these two models of craniofacial disease and highlight what they have revealed about the molecular and cellular etiology of ciliopathies. Furthermore, we outline how applying classical avian experiments and new technological advances (transgenics and genome editing) with naturally occurring avian mutants can add a tremendous amount to what we currently know about craniofacial ciliopathies. PMID:26597494

  16. Crude oil exposures reveal roles for intracellular calcium cycling in haddock craniofacial and cardiac development

    PubMed Central

    Sørhus, Elin; Incardona, John P.; Karlsen, Ørjan; Linbo, Tiffany; Sørensen, Lisbet; Nordtug, Trond; van der Meeren, Terje; Thorsen, Anders; Thorbjørnsen, Maja; Jentoft, Sissel; Edvardsen, Rolf B.; Meier, Sonnich

    2016-01-01

    Recent studies have shown that crude oil exposure affects cardiac development in fish by disrupting excitation-contraction (EC) coupling. We previously found that eggs of Atlantic haddock (Melanogrammus aeglefinus) bind dispersed oil droplets, potentially leading to more profound toxic effects from uptake of polycyclic aromatic hydrocarbons (PAHs). Using lower concentrations of dispersed crude oil (0.7–7 μg/L ∑PAH), here we exposed a broader range of developmental stages over both short and prolonged durations. We quantified effects on cardiac function and morphogenesis, characterized novel craniofacial defects, and examined the expression of genes encoding potential targets underlying cardiac and craniofacial defects. Because of oil droplet binding, a 24-hr exposure was sufficient to create severe cardiac and craniofacial abnormalities. The specific nature of the craniofacial abnormalities suggests that crude oil may target common craniofacial and cardiac precursor cells either directly or indirectly by affecting ion channels and intracellular calcium in particular. Furthermore, down-regulation of genes encoding specific components of the EC coupling machinery suggests that crude oil disrupts excitation-transcription coupling or normal feedback regulation of ion channels blocked by PAHs. These data support a unifying hypothesis whereby depletion of intracellular calcium pools by crude oil-derived PAHs disrupts several pathways critical for organogenesis in fish. PMID:27506155

  17. The canonical Wnt signaling activator, R-spondin2, regulates craniofacial patterning and morphogenesis within the branchial arch through ectodermal-mesenchymal interaction

    PubMed Central

    Jin, Yong-Ri; Turcotte, Taryn J.; Crocker, Alison L.; Han, Xiang Hua; Yoon, Jeong Kyo

    2011-01-01

    R-spondins are a recently characterized family of secreted proteins that activate Wnt/β-catenin signaling. Herein, we determine R-spondin2 (Rspo2) function in craniofacial development in mice. Mice lacking a functional Rspo2 gene exhibit craniofacial abnormalities such as mandibular hypoplasia, maxillary and mandibular skeletal deformation, and cleft palate. We found that loss of the mouse Rspo2 gene significantly disrupted Wnt/β-catenin signaling and gene expression within the first branchial arch (BA1). Rspo2, which is normally expressed in BA1 mesenchymal cells, regulates gene expression through a unique ectoderm-mesenchyme interaction loop. The Rspo2 protein, potentially in combination with ectoderm-derived Wnt ligands, up-regulates Msx1 and Msx2 expression within mesenchymal cells. In contrast, Rspo2 regulates expression of the Dlx5, Dlx6, and Hand2 genes in mesenchymal cells via inducing expression of their upstream activator, Endothelin1 (Edn1), within ectodermal cells. Loss of Rspo2 also causes increased cell apoptosis, especially within the aboral (or caudal) domain of the BA1, resulting in hypoplasia of the BA1. Severely reduced expression of Fgf8, a survival factor for mesenchymal cells, in the ectoderm of Rspo2−/− embryos is likely responsible for increased cell apoptosis. Additionally, we found that cleft palate in Rspo2−/− mice is not associated with defects intrinsic to the palatal shelves. A possible cause of cleft palate is a delay of proper palatal shelf elevation that may result from the small mandible and a failure of lowering the tongue. Thus, our study identifies Rspo2 as a mesenchyme-derived factor that plays critical roles in regulating BA1 patterning and morphogenesis through ectodermal-mesenchymal interaction and a novel genetic factor for cleft palate. PMID:21237142

  18. Radiology of skeletal trauma

    SciTech Connect

    Rogers, L.F.

    1982-01-01

    This 1000-page book contains over 1700 illustrations, is presented in two volumes and subdivided into 23 chapters. After brief chapters of Introduction and General Anatomy, a section on Skeletal Biomechanics is presented. The Epidemiology of Fractures chapter examines, among other things, the effects of age on the frequency and distribution of fractures. In the chapter on Classifications of Fractures, the author describes the character of traumatic forces such as angulating, torsional, avulsive, and compressive, and then relates these to the resultant fracture configurations. The Fracture Treatment chapter presents an overview of treatment principles. Other chapters deal with specific problems in pediatric trauma, fracture healing and nonhealing, and fracture complications.

  19. Glucocorticoids and Skeletal Muscle.

    PubMed

    Bodine, Sue C; Furlow, J David

    2015-01-01

    Glucocorticoids are known to regulate protein metabolism in skeletal muscle, producing a catabolic effect that is opposite that of insulin. In many catabolic diseases, such as sepsis, starvation, and cancer cachexia, endogenous glucocorticoids are elevated contributing to the loss of muscle mass and function. Further, exogenous glucocorticoids are often given acutely and chronically to treat inflammatory conditions such as asthma, chronic obstructive pulmonary disease, and rheumatoid arthritis, resulting in muscle atrophy. This chapter will detail the nature of glucocorticoid-induced muscle atrophy and discuss the mechanisms thought to be responsible for the catabolic effects of glucocorticoids on muscle. PMID:26215994

  20. An Interesting Case of Penetrating Craniofacial Trauma Involving a Wooden Stick

    PubMed Central

    Kulkarni, Ambadas; Chandrasala, Soumithran; Vishnudas, Praveesh; Dev, Arul

    2016-01-01

    Penetrating craniofacial trauma, although uncommon, has a high potential for death or catastrophic consequences from head injury or vital neurovascular injuries. The foreign body may cause significant challenge, especially when it is a large one. Airway obstruction, vascular injuries, intracranial communication, ocular injury and injuries to any other adjacent vital structures when involved may change the treatment objectives from simple foreign body retrieval to a comprehensive multidisciplinary approach to stabilize the patient. Retrieval of foreign bodies may be challenging because of many factors including the size of the object, its site, and the surrounding anatomical structures. Accurate localization of the foreign body before removal is essential in craniofacial region. We present a case of penetrating craniofacial trauma from a wooden stick, with an in situ foreign body, that was managed by emergency surgical exploration in general anaesthesia and retrieval of foreign body in Toto under antibiotic coverage and tetanus prophylaxis. PMID:27190963

  1. Clinical Application of Three-Dimensional Printing Technology in Craniofacial Plastic Surgery

    PubMed Central

    Kim, Namkug

    2015-01-01

    Three-dimensional (3D) printing has been particularly widely adopted in medical fields. Application of the 3D printing technique has even been extended to bio-cell printing for 3D tissue/organ development, the creation of scaffolds for tissue engineering, and actual clinical application for various medical parts. Of various medical fields, craniofacial plastic surgery is one of areas that pioneered the use of the 3D printing concept. Rapid prototype technology was introduced in the 1990s to medicine via computer-aided design, computer-aided manufacturing. To investigate the current status of 3D printing technology and its clinical application, a systematic review of the literature was conducted. In addition, the benefits and possibilities of the clinical application of 3D printing in craniofacial surgery are reviewed, based on personal experiences with more than 500 craniofacial cases conducted using 3D printing tactile prototype models. PMID:26015880

  2. SRF regulates craniofacial development through selective recruitment of MRTF cofactors by PDGF signaling

    PubMed Central

    Vasudevan, Harish N.; Soriano, Philippe

    2014-01-01

    Summary Receptor tyrosine kinase signaling is critical for mammalian craniofacial development, but the key downstream transcriptional effectors remain unknown. We demonstrate that SRF is induced by both PDGF and FGF signaling in mouse embryonic palatal mesenchyme cells, and Srf neural crest conditional mutants exhibit facial clefting accompanied by proliferation and migration defects. Srf and Pdgfra mutants interact genetically in craniofacial development, but Srf and Fgfr1 mutants do not. This signal specificity is recapitulated at the level of cofactor activation: while both PDGF and FGF target gene promoters show enriched genome-wide overlap with SRF ChIP-seq peaks, PDGF selectively activates a network of MRTF-dependent cytoskeletal genes. Collectively, our results identify a novel role for SRF in proliferation and migration during craniofacial development and delineate a mechanism of receptor tyrosine kinase specificity mediated through differential cofactor usage, leading to a unique PDGF-responsive SRF-driven transcriptional program in the midface. PMID:25453829

  3. Dental and Nondental Stem Cell Based Regeneration of the Craniofacial Region: A Tissue Based Approach

    PubMed Central

    Hughes, Declan; Song, Bing

    2016-01-01

    Craniofacial reconstruction may be a necessary treatment for those who have been affected by trauma, disease, or pathological developmental conditions. The use of stem cell therapy and tissue engineering shows massive potential as a future treatment modality. Currently in the literature, there is a wide variety of published experimental studies utilising the different stem cell types available and the plethora of available scaffold materials. This review investigates different stem cell sources and their unique characteristics to suggest an ideal cell source for regeneration of individual craniofacial tissues. At present, understanding and clinical applications of stem cell therapy remain in their infancy with numerous challenges to overcome. In spite of this, the field displays immense capacity and will no doubt be utilised in future clinical treatments of craniofacial regeneration. PMID:27143979

  4. An Interesting Case of Penetrating Craniofacial Trauma Involving a Wooden Stick.

    PubMed

    Kulkarni, Ambadas; Chandrasala, Soumithran; Nimbeni, Basavaraj; Vishnudas, Praveesh; Dev, Arul

    2016-04-01

    Penetrating craniofacial trauma, although uncommon, has a high potential for death or catastrophic consequences from head injury or vital neurovascular injuries. The foreign body may cause significant challenge, especially when it is a large one. Airway obstruction, vascular injuries, intracranial communication, ocular injury and injuries to any other adjacent vital structures when involved may change the treatment objectives from simple foreign body retrieval to a comprehensive multidisciplinary approach to stabilize the patient. Retrieval of foreign bodies may be challenging because of many factors including the size of the object, its site, and the surrounding anatomical structures. Accurate localization of the foreign body before removal is essential in craniofacial region. We present a case of penetrating craniofacial trauma from a wooden stick, with an in situ foreign body, that was managed by emergency surgical exploration in general anaesthesia and retrieval of foreign body in Toto under antibiotic coverage and tetanus prophylaxis. PMID:27190963

  5. 3D modeling, custom implants and its future perspectives in craniofacial surgery

    PubMed Central

    Parthasarathy, Jayanthi

    2014-01-01

    Custom implants for the reconstruction of craniofacial defects have gained importance due to better performance over their generic counterparts. This is due to the precise adaptation to the region of implantation, reduced surgical times and better cosmesis. Application of 3D modeling in craniofacial surgery is changing the way surgeons are planning surgeries and graphic designers are designing custom implants. Advances in manufacturing processes and ushering of additive manufacturing for direct production of implants has eliminated the constraints of shape, size and internal structure and mechanical properties making it possible for the fabrication of implants that conform to the physical and mechanical requirements of the region of implantation. This article will review recent trends in 3D modeling and custom implants in craniofacial reconstruction. PMID:24987592

  6. Who decides? Patients, parents, or gatekeepers: pediatric decisions in the craniofacial setting.

    PubMed

    Mouradian, W E

    1995-11-01

    Special ethical issues arise for the craniofacial team dealing with pediatric patients, which include competency, surrogacy, and the "best interests" standard. Medical decisions for children are made by surrogates, usually parents, who must use the "best interests" standard. The team's primary responsibility is to the child, not the parents. Children should participate as abilities allow, especially for elective procedures. Increasingly, cost considerations also influence medical decisions. The craniofacial team is often a de factor gatekeeper. Ethically responsible team behavior includes: weighing risks and benefits of proposed interventions; promoting discussion with families and patients to identify "best interests;" monitoring outcomes; and advocacy for craniofacial patients individually and at a policy level. Care guidelines and definitions of basic levels of care should be developed to assist teams with decision-making and advocacy efforts. Ethical analysis is part of both good patient care and good policy formation, and should be a part of regular team deliberations. PMID:8547294

  7. Oral and Craniofacial Clinical Signs Associated to Genetic Conditions in Human Identification Part I: A Review

    PubMed Central

    Ayoub, Fouad; Aoun, Nicole; el Husseini, Hassan; Jassar, Houssam; Sayah, Fida; Salameh, Ziad

    2015-01-01

    Background: Forensic dentistry is one of the most reliable methods used in human identification when other technique as fingerprint, DNA, visual identification cannot be used. Genetic disorders have several manifestations that can target the intra-oral cavity, the cranio-facial area or any location in the human body. Materials and Methods: A literature search of the scientific database (Medline and Science Direct) for the years 1990 to 2014 was carried out to find out all the available papers that indicate oral, cranio-facial signs, genetic and human identification. Results: A table with 10 genetic conditions was described with oral and cranio-facial signs that can help forensic specialist in human identification. Conclusion: This review showed a correlation between genetics, facial and intra-oral signs that would help forensic ondontologist in the identification procedures. PMID:26028912

  8. Clinical application of three-dimensional printing technology in craniofacial plastic surgery.

    PubMed

    Choi, Jong Woo; Kim, Namkug

    2015-05-01

    Three-dimensional (3D) printing has been particularly widely adopted in medical fields. Application of the 3D printing technique has even been extended to bio-cell printing for 3D tissue/organ development, the creation of scaffolds for tissue engineering, and actual clinical application for various medical parts. Of various medical fields, craniofacial plastic surgery is one of areas that pioneered the use of the 3D printing concept. Rapid prototype technology was introduced in the 1990s to medicine via computer-aided design, computer-aided manufacturing. To investigate the current status of 3D printing technology and its clinical application, a systematic review of the literature was conducted. In addition, the benefits and possibilities of the clinical application of 3D printing in craniofacial surgery are reviewed, based on personal experiences with more than 500 craniofacial cases conducted using 3D printing tactile prototype models. PMID:26015880

  9. Scientific research in Latin America: experiences of collaborative projects on craniofacial anomalies.

    PubMed

    Trindade, Inge Elly Kiemle

    2006-11-01

    Scientists based in Latin America, particularly in Argentina, Brazil, Chile, and Mexico, substantially increased their rate of scientific publications during the past decades. Brazil experienced the most growth with the implementation of an efficient postgraduate system that is tripling the number of doctors every 10 years. Research on craniofacial anomalies is similarly increasing in Latin American countries. A PUBMED search using the key word "cleft" and a particular country's name showed that Brazil has published the most articles in that field during the past few years, many of which were published by research groups linked to the Hospital for Rehabilitation of Craniofacial Anomalies located in Bauru, which provides cleft and craniofacial care for more than 2500 new patients every year. Based on experiences with international collaboration, this report discusses obstacles to collaborative research and presents recommendations to enhance the possibility of creating successful partnerships among international research teams. PMID:17105326

  10. [Skeletal nuclear medicine].

    PubMed

    Yamamoto, I

    1995-05-01

    Bone scintigraphy with 99mTc-phosphate compounds is the most popular examination in clinical nuclear medicine. This was developed more than 20 years ago and its roles in various skeletal disorders are well established. Furthermore, improvement of imaging apparatus and application of SPECT strengthened its value extensively. From scintigram alone, in many cases, differentiation between bone metastasis and other "benign" disorders is easily capable. Further improvement in resolution of scinticamera should strengthen its value more. Other recent developments in skeletal nuclear medicine are those in bone densitometry and in measurement of metabolic bone markers. Bone densitometry using DXA is applied on diagnosis and monitoring of therapeutic effects in various metabolic bone diseases, especially, in osteoporosis. Bone mass measurement combined with assessments of specific bone markers such as bone specific alkaline phosphatase and collagen cross-link metabolites might replace the bone biopsy in evaluating bone metabolism. Treatment of bone metastasis in patients with prostate cancer by administering radiolabeled bone seeking substances is another topics in this field and awaits for more extensive clinical evaluation. PMID:7596073

  11. A partial skeletal proteome of the brittle star Ophiocoma wendtii

    NASA Astrophysics Data System (ADS)

    Seaver, Ryan W.

    The formation of mineralized tissue was critical to the evolution and diversification of metazoans and remains functionally significant in most animal lineages. Of special importance is the protein found occluded within the mineral matrix, which facilitates the process of biomineralization and modulates the final mineral structure. These skeletal matrix proteins have well been described in several species, including the sea urchin Stronglyocentrotus purpuratus, an important model organism. Biomineralization research is limited in other echinoderm classes. This research encompasses the first description of mineral matrix proteins in a member of the echinoderm class Ophiuroidea. This work describes the skeletal matrix proteins of the brittle star Ophiocoma wendtii using bioinformatic and proteomic techniques. General characteristics of matrix protein are described and a number of candidate biomineralization related genes have been identified, cloned, and sequenced. The unique evolutionary and biochemical properties of brittle star skeletal matrix proteins are also described.

  12. Diagnosis and treatment planning of skeletal asymmetry with the submental-vertical radiograph.

    PubMed

    Forsberg, C T; Burstone, C J; Hanley, K J

    1984-03-01

    The purpose of this study was to assess the reproducibility of landmarks visible in the submental-vertical radiographic projection. Ten subjects with at least a 2 mm apical base discrepancy as diagnosed by means of a posteroanterior headfilm were selected. Mean tracing and measurement error was found to be less than 1 mm for all landmarks. A system of patient orientation and radiographic technique is presented. The radiographs were made at 90 kVp, 15 mA, 1 second exposure, using Kodak Lanex X-D film with a speed of 600. A system of cephalometric analysis is presented for the assessment of skeletal asymmetry in the horizontal plane. This system of analysis uses landmarks within the cranial base, maxilla, and mandible to construct reference lines with which to assess asymmetry. These reference systems allow the assessment of asymmetry within each component part of the craniofacial complex as well as the relative relationship of these parts to one another. Examples are presented to demonstrate the use of this system in assessing skeletal asymmetry. These examples show how this system of analysis can be incorporated into the data base for a particular patient and how it can be useful in making treatment decisions for patients with skeletal asymmetries. This method lends itself to future incorporation into a three-dimensional computerized cephalometric analysis. PMID:6584032

  13. Craniofacial Sutures: Morphology, Growth, and In Vivo Masticatory Strains

    PubMed Central

    RAFFERTY, KATHERINE L.; HERRING, SUSAN W.

    2010-01-01

    The growth and morphology of craniofacial sutures are thought to reflect their functional environment. However, little is known about in vivo sutural mechanics. The present study investigates the strains experienced by the internasal, nasofrontal, and anterior interfrontal sutures during masticatory activity in 4–6-month-old miniature swine (Sus scrofa). Measurements of the bony/fibrous arrangements and growth rates of these sutures were then examined in the context of their mechanical environment. Large tensile strains were measured in the interfrontal suture (1,036 με ± 400 SD), whereas the posterior internasal suture was under moderate compression (−440 με ± 238) and the nasofrontal suture experienced large compression (−1,583 με ± 506). Sutural interdigitation was associated with compressive strain. The collagen fibers of the internasal and interfrontal sutures were clearly arranged to resist compression and tension, respectively, whereas those of the nasofrontal suture could not be readily characterized as either compression or tension resisting. The average linear rate of growth over a 1-week period at the nasofrontal suture (133.8 μm, ± 50.9 S.D) was significantly greater than that of both the internasal and interfrontal sutures (39.2 μm ± 11.4 and 65.5 μm ± 14.0, respectively). Histological observations suggest that the nasofrontal suture contains chondroid tissue, which may explain the unexpected combination of high compressive loading and rapid growth in this suture. PMID:10521876

  14. Craniofacial injuries in professional cricket: no more a red herring.

    PubMed

    Tripathi, Manjul; Shukla, Dhaval P; Bhat, Dhananjaya Ishwar; Bhagavatula, Indira Devi; Mishra, Tejesh

    2016-04-01

    The issue of head injury in a noncontact sport like cricket is a matter of great debate and it carries more questions than answers. Recent incidents of fatal head injuries in individuals wearing a helmet have caused some to question the protective value of the helmet. The authors discuss the pattern, type of injury, incidents, and location of cranio-facio-ocular injuries in professional cricket to date. They evaluate the history of usage of the helmet in cricket, changes in design, and the protective value, and they compare the efficacy of various sports' helmets with injury profiles similar to those in cricket. The drop test and air cannon test are compared for impact energy attenuation performance of cricket helmets. A total of 36 cases of head injuries were identified, of which 5 (14%) were fatal and 9 (22%) were career-terminating events. Batsmen are the most vulnerable to injury, bearing 86% of the burden, followed by wicketkeepers (8%) and fielders (5.5%). In 53% of cases, the ball directly hit the head, while in 19.5% of cases the ball entered the gap between the peak and the faceguard. Ocular injuries to 3 wicketkeepers proved to be career-terminating injuries. The air cannon test is a better test for evaluating cricket helmets than the drop test. Craniofacial injuries are more common than popularly believed. There is an urgent need to improve the efficacy and compliance of protective restraints in cricket. A strict injury surveillance system with universal acceptance is needed to identify the burden of injuries and modes for their prevention. PMID:27032914

  15. Histone Deacetylases in Bone Development and Skeletal Disorders.

    PubMed

    Bradley, Elizabeth W; Carpio, Lomeli R; van Wijnen, Andre J; McGee-Lawrence, Meghan E; Westendorf, Jennifer J

    2015-10-01

    Histone deacetylases (Hdacs) are conserved enzymes that remove acetyl groups from lysine side chains in histones and other proteins. Eleven of the 18 Hdacs encoded by the human and mouse genomes depend on Zn(2+) for enzymatic activity, while the other 7, the sirtuins (Sirts), require NAD2(+). Collectively, Hdacs and Sirts regulate numerous cellular and mitochondrial processes including gene transcription, DNA repair, protein stability, cytoskeletal dynamics, and signaling pathways to affect both development and aging. Of clinical relevance, Hdacs inhibitors are United States Food and Drug Administration-approved cancer therapeutics and are candidate therapies for other common diseases including arthritis, diabetes, epilepsy, heart disease, HIV infection, neurodegeneration, and numerous aging-related disorders. Hdacs and Sirts influence skeletal development, maintenance of mineral density and bone strength by affecting intramembranous and endochondral ossification, as well as bone resorption. With few exceptions, inhibition of Hdac or Sirt activity though either loss-of-function mutations or prolonged chemical inhibition has negative and/or toxic effects on skeletal development and bone mineral density. Specifically, Hdac/Sirt suppression causes abnormalities in physiological development such as craniofacial dimorphisms, short stature, and bone fragility that are associated with several human syndromes or diseases. In contrast, activation of Sirts may protect the skeleton from aging and immobilization-related bone loss. This knowledge may prolong healthspan and prevent adverse events caused by epigenetic therapies that are entering the clinical realm at an unprecedented rate. In this review, we summarize the general properties of Hdacs/Sirts and the research that has revealed their essential functions in bone forming cells (e.g., osteoblasts and chondrocytes) and bone resorbing osteoclasts. Finally, we offer predictions on future research in this area and the

  16. A Critical Role of TRPM7 As an Ion Channel Protein in Mediating the Mineralization of the Craniofacial Hard Tissues

    PubMed Central

    Nakano, Yukiko; Le, Michael H.; Abduweli, Dawud; Ho, Sunita P.; Ryazanova, Lillia V.; Hu, Zhixian; Ryazanov, Alexey G.; Den Besten, Pamela K.; Zhang, Yan

    2016-01-01

    Magnesium ion (Mg2+) is the fourth most common cation in the human body, and has a crucial role in many physiological functions. Mg2+ homeostasis is an important contributor to bone development, however, its roles in the development of dental mineralized tissues have not yet been well known. We identified that transient receptor potential cation channel, subfamily M, member 7 (TRPM7), was significantly upregulated in the mature ameloblasts as compared to other ameloblasts through our whole transcript microarray analyses of the ameloblasts. TRPM7, an ion channel for divalent metal cations with an intrinsic serine/threonine protein kinase activity, has been characterized as a key regulator of whole body Mg2+ homeostasis. Semi-quantitative PCR and immunostaining for TRMP7 confirmed its upregulation during the maturation stage of enamel formation, at which ameloblasts direct rapid mineralization of the enamel matrix. The significantly hypomineralized craniofacial structures, including incisors, molars, and cranial bones were demonstrated by microCT analysis, von Kossa and trichrome staining in Trpm7Δkinase∕+ mice. A previously generated heterozygous mouse model with the deletion of the TRPM7 kinase domain. Interestingly, the skeletal phenotype of Trpm7Δkinase∕+ mice resembled those found in the tissue-nonspecific alkaline phosphatase (Alpl) KO mice, thus we further examined whether ALPL protein content and alkaline phosphatase (ALPase) activity in ameloblasts, odontoblasts and osteoblasts were affected in those mice. While ALPL protein in Trpm7Δkinase∕+ mice remained at the similar level as that in wt mice, ALPase activities in the Trpm7Δkinase∕+ mice were almost nonexistent. Supplemented magnesium successfully rescued the activities of ALPase in ameloblasts, odontoblasts and osteoblasts of Trpm7Δkinase∕+ mice. These results suggested that TRPM7 is essential for mineralization of enamel as well as dentin and bone by providing sufficient Mg2+ for the ALPL

  17. Dental and craniofacial characteristics in a patient with Hutchinson-Gilford progeria syndrome.

    PubMed

    Reichert, Christoph; Gölz, Lina; Götz, Werner; Wolf, Michael; Deschner, James; Jäger, Andreas

    2014-07-01

    The Hutchinson-Gilford progeria syndrome (HGPS) is an exceptionally rare medical disorder caused by mutations in the lamin A/C gene. Affected patients display typical features of premature aging. Beside general medical disorders, these patients have several specific features related to the craniofacial phenotype and the oral cavity. In this article, the dental and craniofacial characteristics of a 9-year-old girl with HGPS are presented. It is the first report addressing orthodontic tooth movement and microbiological features in a HGPS patient. We describe and discuss pathologic findings and provide a detailed histology of the teeth which had to be extracted during initial treatment. PMID:25001855

  18. Disorders of Sex Development: Lessons to be Learned from Studies of Spina Bifida and Craniofacial Conditions.

    PubMed

    Holmbeck, G N; Aspinall, C L

    2015-05-01

    The purpose of this review is to discuss research methods and clinical management strategies employed with other conditions (i. e., spina bifida and craniofacial conditions) and how these methods and strategies could be applied to youth with disorders of sex development (DSD). The review focuses specifically on the potential overlap between DSD and these other conditions across the following 3 areas: (1) developmentally-oriented theories that underlie the research base for chronic physical conditions; (2) research designs and methodological features that have proved fruitful in these areas; and (3) the potential applicability to DSD of clinical management practices for youth with craniofacial conditions. PMID:25719736

  19. Heritability of Craniofacial Structures in Normal Subjects and Patients with Sleep Apnea

    PubMed Central

    Chi, Luqi; Comyn, Francois-Louis; Keenan, Brendan T.; Cater, Jacqueline; Maislin, Greg; Pack, Allan I.; Schwab, Richard J.

    2014-01-01

    Objectives: Accumulating evidence has shown that there is a genetic contribution to obstructive sleep apnea (OSA).The objectives were to use magnetic resonance imaging (MRI) cephalometry to (1) confirm heritability of craniofacial risk factors for OSA previously shown by cephalometrics; and (2) examine the heritability of new craniofacial structures that are measurable with MRI. Design: A sib pair “quad” design examining apneics, apneic siblings, controls, and control siblings. The study design used exact matching on ethnicity and sex, frequency matching on age, and statistical control for differences in age, sex, ethnicity, height, and weight. Setting: Academic medical center. Patients: We examined 55 apneic probands (apnea-hypopnea index [AHI]: 46.8 ± 33.5 events/h), 55 proband siblings (AHI: 11.1 ± 15.9 events/h), 55 controls (AHI: 2.2 ± 1.7 events/h), and 55 control siblings (AHI: 4.1 ± 4.0 events/h). Interventions: N/A. Measurements and Results: Five independent domains reflecting different aspects of the craniofacial structure were examined. We confirmed heritability of sella–nasion–subspinale (38%, P = 0.002), saddle angle (55%, P < 0.0001), mandibular length (24%, P = 0.02) and lower facial height (33%, P = 0.006) previously measured by cephalometry. In addition, the current study added new insights by demonstrating significant heritability of mandibular width (30%, P = 0.005), maxillary width (47%, P < 0.0001), distance from the hyoid bone to the retropogonion (36%, P = 0.0018) and size of the oropharyngeal space (31%, P = 0.004). Finally, our data indicate that heritability of the craniofacial structures is similar in normal patients and those with apnea. Conclusions: The data support our a priori hypothesis that the craniofacial structures that have been associated with obstructive sleep apnea (OSA) are heritable. We have demonstrated heritability for several intermediate craniofacial phenotypes for OSA. Thus, we believe that future studies

  20. Engineering skeletal muscle repair.

    PubMed

    Juhas, Mark; Bursac, Nenad

    2013-10-01

    Healthy skeletal muscle has a remarkable capacity for regeneration. Even at a mature age, muscle tissue can undergo a robust rebuilding process that involves the formation of new muscle cells and extracellular matrix and the re-establishment of vascular and neural networks. Understanding and reverse-engineering components of this process is essential for our ability to restore loss of muscle mass and function in cases where the natural ability of muscle for self-repair is exhausted or impaired. In this article, we will describe current approaches to restore the function of diseased or injured muscle through combined use of myogenic stem cells, biomaterials, and functional tissue-engineered muscle. Furthermore, we will discuss possibilities for expanding the future use of human cell sources toward the development of cell-based clinical therapies and in vitro models of human muscle disease. PMID:23711735

  1. Mechanotransduction in skeletal muscle

    PubMed Central

    Burkholder, Thomas J.

    2007-01-01

    Mechanical signals are critical to the development and maintenance of skeletal muscle, but the mechanisms that convert these shape changes to biochemical signals is not known. When a deformation is imposed on a muscle, changes in cellular and molecular conformations link the mechanical forces with biochemical signals, and the close integration of mechanical signals with electrical, metabolic, and hormonal signaling may disguise the aspect of the response that is specific to the mechanical forces. The mechanically induced conformational change may directly activate downstream signaling and may trigger messenger systems to activate signaling indirectly. Major effectors of mechanotransduction include the ubiquitous mitogen activated protein kinase (MAP) and phosphatidylinositol-3’ kinase (PI-3K), which have well described receptor dependent cascades, but the chain of events leading from mechanical stimulation to biochemical cascade is not clear. This review will discuss the mechanics of biological deformation, loading of cellular and molecular structures, and some of the principal signaling mechanisms associated with mechanotransduction. PMID:17127292

  2. Reversibility of skeletal fluorosis.

    PubMed Central

    Grandjean, P; Thomsen, G

    1983-01-01

    At two x ray examinations in 1957 and 1967, 17 cases of skeletal fluorosis were identified among long term cryolite workers in Copenhagen. In 1982 four of these patients were alive, eight to 15 years after exposure had ended. Radiographs were obtained, and the urinary fluoride excretion was measured. A similar picture emerged in all four cases: extensive fading of the sclerosis of trabecular bone in ribs, vertebral bodies, and pelvis, whereas cortical bone thickening and calcification of muscle insertions and ligaments remained virtually unchanged. The fluoride excretion was increased in three cases (with the shortest exposure free period). These findings indicate that with continuous remodelling of bone tissue trabecular sclerosis is slowly reversible and the excess fluoride is excreted in the urine. Images PMID:6626475

  3. Reversibility of skeletal fluorosis.

    PubMed

    Grandjean, P; Thomsen, G

    1983-11-01

    At two x ray examinations in 1957 and 1967, 17 cases of skeletal fluorosis were identified among long term cryolite workers in Copenhagen. In 1982 four of these patients were alive, eight to 15 years after exposure had ended. Radiographs were obtained, and the urinary fluoride excretion was measured. A similar picture emerged in all four cases: extensive fading of the sclerosis of trabecular bone in ribs, vertebral bodies, and pelvis, whereas cortical bone thickening and calcification of muscle insertions and ligaments remained virtually unchanged. The fluoride excretion was increased in three cases (with the shortest exposure free period). These findings indicate that with continuous remodelling of bone tissue trabecular sclerosis is slowly reversible and the excess fluoride is excreted in the urine. PMID:6626475

  4. A genome-wide linkage scan for quantitative trait loci influencing the craniofacial complex in humans(Homo sapiens sapiens)

    PubMed Central

    Sherwood, Richard J.; Duren, Dana L.; Mahaney, Michael C.; Blangero, John; Dyer, Thomas D.; Cole, Shelley A.; Czerwinski, Stefan A.; Chumlea, Wm. Cameron; Siervogel, Roger M.; Choh, Audrey C.; Nahhas, Ramzi W.; Lee, Miryoung; Towne, Bradford

    2011-01-01

    The genetic architecture of the craniofacial complex has been the subject of intense scrutiny because of the high frequency of congenital malformations. Numerous animal models have been used to document the early development of the craniofacial complex, but few studies have focused directly on the genetic underpinnings of normal variation in the human craniofacial complex. The current study examines 80 quantitative traits derived from lateral cephalographs of 981 participants in the Fels Longitudinal Study, Wright State University, Dayton, Ohio. Quantitative genetic analyses were conducted using the SOLAR analytic platform, a maximum-likelihood variance components method that incorporates all familial information for parameter estimation. Heritability estimates were significant and of moderate to high magnitude for all craniofacial traits. Additionally, significant quantitative trait loci (QTL) were identified for 10 traits from the three developmental components (basicranium, splanchnocranium, and neurocranium) of the craniofacial complex. These QTL were found on chromosomes 3, 6, 11, 12, and 14. This study of the genetic architecture of the craniofacial complex elucidates fundamental information of the genetic architecture of the craniofacial complex in humans. PMID:21328561

  5. Effect of cleft lip palate repair on craniofacial growth

    PubMed Central

    Naqvi, Zuber Ahamed; Shivalinga, BM; Ravi, S; Munawwar, Syeda Sarah

    2015-01-01

    Objective: The aim of this cross-sectional study was to compare craniofacial growth among operated and unoperated unilateral cleft lip and palate non-syndromic subjects. Materials and Methods: A sample of 180 subjects of Indian origin was selected. Of them, 90 were operated, and 90 were unoperated complete unilateral cleft lip and palate individuals. The subjects were divided into three age groups of 3–5, 8–10, and 20–25 years comprised of 30 patients in each group. The following measurements were evaluated: Angle and length of the cranial base; maxillary spatial positioning and length; mandibular spatial positioning; morphology and length; maxillomandibular relationship. Comparative analysis of the means between the groups was performed with Student's t-test at the significance levels of 5%. The ANOVA test has been performed to test the effect of time. Results: No significant differences were observed between the measurements that represented the angle and length of the cranial base of unoperated and the operated patients (P>0.05). There was statistically significant decrease (P˂0.05) in the maxillary length (Co-A; 69.00 mm in 3–5 years, 68.33 mm in 8–10 years, and 67.17 mm in 20–25 years age group), and SNA angle (74.83° in 3–5 years, 74.17 ° in 8–10 years and 73.17 ° in 20–25 years age group) in operated group. No significant difference noticed on cephalometric values of the mandible, except Ar-Go-Me angle (P˂0.05), which showed vertical growth pattern in unoperated patients (132.50 ° in 3–5 years, 132.00 ° I 8–10 years and 138.33 ° in 20–25 years age group). Conclusion: Lip and palate repair has a significant influence on the maxilla and resulting in retarded growth of maxilla, which causes midface deficiency beyond acceptable sagittal limits. The Gonial angle showed vertical growth pattern in unoperated patients, but the cranial base angle and length of unoperated and the operated patients were similar. PMID:26229945

  6. The FaceBase Consortium: a comprehensive resource for craniofacial researchers

    PubMed Central

    Brinkley, James F.; Fisher, Shannon; Harris, Matthew P.; Holmes, Greg; Hooper, Joan E.; Wang Jabs, Ethylin; Jones, Kenneth L.; Kesselman, Carl; Klein, Ophir D.; Maas, Richard L.; Marazita, Mary L.; Selleri, Licia; Spritz, Richard A.; van Bakel, Harm; Visel, Axel; Williams, Trevor J.; Wysocka, Joanna

    2016-01-01

    The FaceBase Consortium, funded by the National Institute of Dental and Craniofacial Research, National Institutes of Health, is designed to accelerate understanding of craniofacial developmental biology by generating comprehensive data resources to empower the research community, exploring high-throughput technology, fostering new scientific collaborations among researchers and human/computer interactions, facilitating hypothesis-driven research and translating science into improved health care to benefit patients. The resources generated by the FaceBase projects include a number of dynamic imaging modalities, genome-wide association studies, software tools for analyzing human facial abnormalities, detailed phenotyping, anatomical and molecular atlases, global and specific gene expression patterns, and transcriptional profiling over the course of embryonic and postnatal development in animal models and humans. The integrated data visualization tools, faceted search infrastructure, and curation provided by the FaceBase Hub offer flexible and intuitive ways to interact with these multidisciplinary data. In parallel, the datasets also offer unique opportunities for new collaborations and training for researchers coming into the field of craniofacial studies. Here, we highlight the focus of each spoke project and the integration of datasets contributed by the spokes to facilitate craniofacial research. PMID:27287806

  7. Bilateral lambdoid and sagittal synostosis (BLSS): a unique craniosynostosis syndrome or predictable craniofacial phenotype?

    PubMed

    Hing, Anne V; Click, Eleanor S; Holder, Ursula; Seto, Marianne L; Vessey, Kyle; Gruss, Joseph; Hopper, Richard; Cunningham, Michael L

    2009-05-01

    Multisutural craniosynostosis that includes bilateral lambdoid and sagittal synostosis (BLSS) results in a very characteristic head shape with frontal bossing, turribrachycephaly, biparietal narrowing, occipital concavity, and inferior displacement of the ears. This entity has been reported both in the genetics literature as craniofacial dyssynostosis and in the surgical literature as "Mercedes Benz" syndrome. Craniofacial dyssynostosis was first described in 1976 by Dr. Neuhauser when he presented a series of seven patients with synostosis of the sagittal and lambdoid sutures, short stature, and developmental delay. Over the past 30 years nine additional patients with craniofacial dyssynostosis have been reported in the literature adding to the growing evidence for a distinct craniosynostosis syndrome. The term "Mercedes Benz" syndrome was coined by Moore et al. in 1998 due to the characteristic appearance of the fused sutures on three-dimensional CT imaging. In contrast to the aforementioned reported cases of craniofacial dyssynostosis, all three patients had normal development. Recently, there have been several case reports of patients with BLSS and distinct chromosomal anomalies. These findings suggest that BLSS is a heterogeneous disorder perhaps with syndromic, chromosomal, and isolated forms. In this manuscript we will present the largest series of patients with BLSS and review clinical, CT, and molecular findings. PMID:19396832

  8. Sh3pxd2b Mice Are a Model for Craniofacial Dysmorphology and Otitis Media

    PubMed Central

    Yang, Bin; Tian, Cong; Zhang, Zhi-guang; Han, Feng-chan; Azem, Rami; Yu, Heping; Zheng, Ye; Jin, Ge; Arnold, James E.; Zheng, Qing Y.

    2011-01-01

    Craniofacial defects that occur through gene mutation during development increase vulnerability to eustachian tube dysfunction. These defects can lead to an increased incidence of otitis media. We examined the effects of a mutation in the Sh3pxd2b gene (Sh3pxd2bnee) on the progression of otitis media and hearing impairment at various developmental stages. We found that all mice that had the Sh3pxd2bnee mutation went on to develop craniofacial dysmorphologies and subsequently otitis media, by as early as 11 days of age. We found noteworthy changes in cilia and goblet cells of the middle ear mucosa in Sh3pxd2bnee mutant mice using scanning electronic microscopy. By measuring craniofacial dimensions, we determined for the first time in an animal model that this mouse has altered eustachian tube morphology consistent with a more horizontal position of the eustachian tube. All mutants were found to have hearing impairment. Expression of TNF-α and TLR2, which correlates with inflammation in otitis media, was up-regulated in the ears of mutant mice when examined by immunohistochemistry and semi-quantitative RT-PCR. The mouse model with a mutation in the Sh3pxd2b gene (Sh3pxd2bnee) mirrors craniofacial dysmorphology and otitis media in humans. PMID:21818352

  9. The influence of craniofacial to standing height proportion on perceived attractiveness.

    PubMed

    Naini, F B; Cobourne, M T; McDonald, F; Donaldson, A N A

    2008-10-01

    An idealised male image, based on Vitruvian Man, was created. The craniofacial height was altered from a proportion of 1/6 to 1/10 of standing height, creating 10 images shown in random order to 89 observers (74 lay people; 15 clinicians), who ranked the images from the most to the least attractive. The main outcome was the preference ranks of image attractiveness given by the observers. Linear regressions were used to assess what influences the choice for the most and the least attractive images, followed by a multivariate rank ordinal logistic regression to test the influence of age, gender, ethnicity and professional status of the observer. A craniofacial height to standing height proportion of 1/7.5 was perceived as the most attractive (36%), followed by a proportion of 1/8 (26%). The images chosen as most attractive by more than 10% of observers had a mean proportion of 1/7.8(min=1/7; max=1/8.5). The images perceived as most unattractive had a proportion of 1/6 and 1/10. The choice of images was not influenced by the age, gender, ethnicity or professional status of the observers. The ideal craniofacial height to standing height proportion is in the range 1/7 to 1/8.5. This finding should be considered when planning treatment to alter craniofacial or facial height. PMID:18778915

  10. Dental and Craniofacial Anomalies Associated with Axenfeld-Rieger Syndrome with PITX2 Mutation

    PubMed Central

    Dressler, Simone; Meyer-Marcotty, Philipp; Weisschuh, Nicole; Jablonski-Momeni, Anahita; Pieper, Klaus; Gramer, Gwendolyn; Gramer, Eugen

    2010-01-01

    Axenfeld-Rieger syndrome (ARS) (OMIM Nr.: 180500) is a rare autosomal dominant disorder (1  :  200000) with genetic and morphologic variability. Glaucoma is associated in 50% of the patients. Craniofacial and dental anomalies are frequently reported with ARS. The present study was designed as a multidisciplinary analysis of orthodontic, ophthalmologic, and genotypical features. A three-generation pedigree was ascertained through a family with ARS. Clinically, radiographic and genetic analyses were performed. Despite an identical genotype in all patients, the phenotype varies in expressivity of craniofacial and dental morphology. Screening for PITX2 and FOXC1 mutations by direct DNA-sequencing revealed a P64L missense mutation in PITX2 in all family members, supporting earlier reports that PITX2 is an essential factor in morphogenesis of teeth and craniofacial skeleton. Despite the fact that the family members had identical mutations, morphologic differences were evident. The concomitant occurrence of rare dental and craniofacial anomalies may be early diagnostic indications of ARS. Early detection of ARS and elevated intraocular pressure (IOP) helps to prevent visual field loss. PMID:20339518

  11. 78 FR 50426 - National Institute of Dental & Craniofacial Research; Notice of Closed Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-08-19

    ... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF HEALTH AND HUMAN SERVICES National Institutes of Health National Institute of Dental & Craniofacial Research; Notice of Closed Meeting Pursuant to section 10(d) of the Federal Advisory Committee Act, as amended (5...

  12. 76 FR 57748 - National Institute of Dental & Craniofacial Research Notice of Closed Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-09-16

    ... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF HEALTH AND HUMAN SERVICES National Institutes of Health National Institute of Dental & Craniofacial Research Notice of Closed Meeting Pursuant to section 10(d) of the Federal Advisory Committee Act, as amended (5...

  13. 77 FR 29673 - National Institute of Dental & Craniofacial Research; Notice of Closed Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-05-18

    ... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF HEALTH AND HUMAN SERVICES National Institutes of Health National Institute of Dental & Craniofacial Research; Notice of Closed Meeting Pursuant to section 10(d) of the Federal Advisory Committee Act, as amended (5...

  14. 76 FR 79199 - National Institute of Dental & Craniofacial Research; Notice of Closed Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-12-21

    ... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF HEALTH AND HUMAN SERVICES National Institutes of Health National Institute of Dental & Craniofacial Research; Notice of Closed Meeting Pursuant to section 10(d) of the Federal Advisory Committee Act, as amended (5...

  15. 77 FR 50140 - National Institute of Dental & Craniofacial Research; Notice of Closed Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-08-20

    ... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF HEALTH AND HUMAN SERVICES National Institutes of Health National Institute of Dental & Craniofacial Research; Notice of Closed Meeting Pursuant to section 10(d) of the Federal Advisory Committee Act, as amended (5...

  16. 78 FR 65345 - National Institute of Dental & Craniofacial Research; Amended Notice of Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-10-31

    ... the Federal Register on August 19, 2013, 78 FR 50426. Meeting date has changed from October 17-18... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF HEALTH AND HUMAN SERVICES National Institutes of Health National Institute of Dental & Craniofacial...

  17. Esthetic Craniofacial Bony and Skull Base Reconstruction Using Flap Wrapping Technique.

    PubMed

    Yano, Tomoyuki; Suesada, Nobuko; Usami, Satoshi

    2016-07-01

    For a safe and esthetic skull base reconstruction combined with repair of craniofacial bone defects, the authors introduce the flap wrapping technique in this study. This technique consists of skull base reconstruction using the vastus lateralis muscle of an anterolateral thigh (ALT) free flap, and structural craniofacial bony reconstruction using an autologous calvarial bone graft. The key to this technique is that all of the grafted autologous bone is wrapped with the vascularized fascia of the ALT free flap to protect the grafted bone from infection and exposure. Two anterior skull base tumors combined with craniofacial bony defects were included in this study. The subjects were a man and a woman, aged 18 and 64. Both patients had preoperative proton beam therapy. First, the skull base defect was filled with vastus lateralis muscle, and then structural reconstruction was performed with an autologous bone graft and a fabricated inner layer of calvarial bone, and then the grafted bone was completely wrapped in the vascularized fascia of the ALT free flap. By applying this technique, there was no intracranial infection or grafted bone exposure in these 2 patients postoperatively, even though both patients had preoperative proton beam therapy. Additionally, the vascularized fascia wrapped bone graft could provide a natural contour and prevent collapse of the craniofacial region, and this gives patients a better facial appearance even though they have had skull base surgery. PMID:27300454

  18. The FaceBase Consortium: a comprehensive resource for craniofacial researchers.

    PubMed

    Brinkley, James F; Fisher, Shannon; Harris, Matthew P; Holmes, Greg; Hooper, Joan E; Jabs, Ethylin Wang; Jones, Kenneth L; Kesselman, Carl; Klein, Ophir D; Maas, Richard L; Marazita, Mary L; Selleri, Licia; Spritz, Richard A; van Bakel, Harm; Visel, Axel; Williams, Trevor J; Wysocka, Joanna; Chai, Yang

    2016-07-15

    The FaceBase Consortium, funded by the National Institute of Dental and Craniofacial Research, National Institutes of Health, is designed to accelerate understanding of craniofacial developmental biology by generating comprehensive data resources to empower the research community, exploring high-throughput technology, fostering new scientific collaborations among researchers and human/computer interactions, facilitating hypothesis-driven research and translating science into improved health care to benefit patients. The resources generated by the FaceBase projects include a number of dynamic imaging modalities, genome-wide association studies, software tools for analyzing human facial abnormalities, detailed phenotyping, anatomical and molecular atlases, global and specific gene expression patterns, and transcriptional profiling over the course of embryonic and postnatal development in animal models and humans. The integrated data visualization tools, faceted search infrastructure, and curation provided by the FaceBase Hub offer flexible and intuitive ways to interact with these multidisciplinary data. In parallel, the datasets also offer unique opportunities for new collaborations and training for researchers coming into the field of craniofacial studies. Here, we highlight the focus of each spoke project and the integration of datasets contributed by the spokes to facilitate craniofacial research. PMID:27287806

  19. G-Protein α-Subunit Gsα Is Required for Craniofacial Morphogenesis

    PubMed Central

    Wei, Yanxia; Chen, Min; Weinstein, Lee S.; Hong, Yang; Zhu, Minyan; Li, Hongchang; Li, Huashun

    2016-01-01

    The heterotrimeric G protein subunit Gsα couples receptors to activate adenylyl cyclase and is required for the intracellular cAMP response and protein kinase A (PKA) activation. Gsα is ubiquitously expressed in many cell types; however, the role of Gsα in neural crest cells (NCCs) remains unclear. Here we report that NCCs-specific Gsα knockout mice die within hours after birth and exhibit dramatic craniofacial malformations, including hypoplastic maxilla and mandible, cleft palate and craniofacial skeleton defects. Histological and anatomical analysis reveal that the cleft palate in Gsα knockout mice is a secondary defect resulting from craniofacial skeleton deficiencies. In Gsα knockout mice, the morphologies of NCCs-derived cranial nerves are normal, but the development of dorsal root and sympathetic ganglia are impaired. Furthermore, loss of Gsα in NCCs does not affect cranial NCCs migration or cell proliferation, but significantly accelerate osteochondrogenic differentiation. Taken together, our study suggests that Gsα is required for neural crest cells-derived craniofacial development. PMID:26859889

  20. Sh3pxd2b mice are a model for craniofacial dysmorphology and otitis media.

    PubMed

    Yang, Bin; Tian, Cong; Zhang, Zhi-guang; Han, Feng-chan; Azem, Rami; Yu, Heping; Zheng, Ye; Jin, Ge; Arnold, James E; Zheng, Qing Y

    2011-01-01

    Craniofacial defects that occur through gene mutation during development increase vulnerability to eustachian tube dysfunction. These defects can lead to an increased incidence of otitis media. We examined the effects of a mutation in the Sh3pxd2b gene (Sh3pxd2b(nee)) on the progression of otitis media and hearing impairment at various developmental stages. We found that all mice that had the Sh3pxd2b(nee) mutation went on to develop craniofacial dysmorphologies and subsequently otitis media, by as early as 11 days of age. We found noteworthy changes in cilia and goblet cells of the middle ear mucosa in Sh3pxd2b(nee) mutant mice using scanning electronic microscopy. By measuring craniofacial dimensions, we determined for the first time in an animal model that this mouse has altered eustachian tube morphology consistent with a more horizontal position of the eustachian tube. All mutants were found to have hearing impairment. Expression of TNF-α and TLR2, which correlates with inflammation in otitis media, was up-regulated in the ears of mutant mice when examined by immunohistochemistry and semi-quantitative RT-PCR. The mouse model with a mutation in the Sh3pxd2b gene (Sh3pxd2b(nee)) mirrors craniofacial dysmorphology and otitis media in humans. PMID:21818352

  1. 45,X/46,XX karyotype mitigates the aberrant craniofacial morphology in Turner syndrome.

    PubMed

    Rizell, Sara; Barrenäs, Marie-Louise; Andlin-Sobocki, Anna; Stecksén-Blicks, Christina; Kjellberg, Heidrun

    2013-08-01

    The aim of this project was to study the impact on craniofacial morphology from Turner syndrome (TS) karyotype, number of intact X chromosomal p-arms, and age as well as to compare craniofacial morphology in TS with healthy females. Lateral radiographs from 108 females with TS, ranging from 5.4 to 61.6 years, were analysed. The TS females were divided into four karyotype groups: 1. monosomy (45,X), 2. mosaic (45,X/46,XX), 3. isochromosome, and 4. other, as well as according to the number of intact X chromosomal p-arms. The karyotype was found to have an impact on craniofacial growth, where the mosaic group, with presence of 46,XX cell lines, seems to exhibit less mandibular retrognathism as well as fewer statistically significant differences compared to the reference group than the 45,X karyotype. Isochromosomes had more significant differences versus the reference group than 45,X/46,XX but fewer than 45,X. To our knowledge, this is the first time the 45,X/46,XX and isochromosome karyotypes are divided into separate groups studying craniofacial morphology. Impact from p-arm was found on both maxillary and mandibular length. Compared to healthy females, TS expressed a shorter posterior and flattened cranial base, retrognathic, short and posteriorly rotated maxilla and mandible, increased height of ramus, and relatively shorter posterior facial height. The impact of age was found mainly on mandibular morphology since mandibular retrognathism and length were more discrepant in older TS females than younger. PMID:22531663

  2. 77 FR 11563 - National Institute of Dental and Craniofacial Research; Notice of Closed Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-02-27

    ... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF HEALTH AND HUMAN SERVICES National Institutes of Health National Institute of Dental and Craniofacial Research; Notice of Closed Meeting Pursuant to section 10(d) of the Federal Advisory Committee Act, as amended (5 U.S.C. App.), notice is hereby given of...

  3. 75 FR 28028 - National Institute of Dental and Craniofacial Research; Notice of Closed Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-05-19

    ... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF HEALTH AND HUMAN SERVICES National Institutes of Health National Institute of Dental and Craniofacial Research; Notice of Closed Meeting Pursuant to section 10(d) of the Federal Advisory Committee Act, as amended (5 U.S.C. App.), notice is hereby given of...

  4. 76 FR 58284 - National Institute of Dental and Craniofacial Research; Notice of Closed Meetings

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-09-20

    ... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF HEALTH AND HUMAN SERVICES National Institutes of Health National Institute of Dental and Craniofacial Research; Notice of Closed Meetings Pursuant to section 10(d) of the Federal Advisory Committee Act, as amended (5 U.S.C. App.), notice is hereby given of...

  5. 77 FR 35988 - National Institute of Dental and Craniofacial Research; Notice of Closed Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-06-15

    ... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF HEALTH AND HUMAN SERVICES National Institutes of Health National Institute of Dental and Craniofacial Research; Notice of Closed Meeting Pursuant to section 10(d) of the Federal Advisory Committee Act, as amended (5 U.S.C. App.), notice is hereby given of...

  6. 75 FR 82036 - National Institute of Dental and Craniofacial Research; Notice of Closed Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-12-29

    ... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF HEALTH AND HUMAN SERVICES National Institutes of Health National Institute of Dental and Craniofacial Research; Notice of Closed Meeting Pursuant to section 10(d) of the Federal Advisory Committee Act, as amended (5 U.S.C. App.), notice is hereby given of...

  7. 76 FR 78013 - National Institute of Dental and Craniofacial Research; Notice of Closed Meetings

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-12-15

    ... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF HEALTH AND HUMAN SERVICES National Institutes of Health National Institute of Dental and Craniofacial Research; Notice of Closed Meetings Pursuant to section 10(d) of the Federal Advisory Committee Act, as amended (5 U.S.C. App.), notice is hereby given of...

  8. 75 FR 67381 - National Institute of Dental and Craniofacial Research; Notice of Closed Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-11-02

    ... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF HEALTH AND HUMAN SERVICES National Institutes of Health National Institute of Dental and Craniofacial Research; Notice of Closed Meeting Pursuant to section 10(d) of the Federal Advisory Committee Act, as amended (5 U.S.C. App.), notice is hereby given of...

  9. 75 FR 1063 - National Institute of Dental & Craniofacial Research; Notice of Closed Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-01-08

    ... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF HEALTH AND HUMAN SERVICES National Institutes of Health National Institute of Dental & Craniofacial Research; Notice of Closed Meeting Pursuant to section 10(d) of the Federal Advisory Committee Act, as amended (5 U.S.C. App.), notice is hereby given of...

  10. Transnasal illumination to guide the craniofacial resection of anterior skull base neoplasms.

    PubMed

    Cohen, A R; Tartell, P B

    1993-11-01

    The authors describe use of a flexible fiberoptic light source to guide the craniofacial resection of anterior skull base neoplasms. The light is introduced transnasally and serves to outline the perimeter of the tumor, helping to direct the safe placement of intracranial osteotomies and en bloc tumor removal. PMID:8211661

  11. [Key regulators of skeletal myogenesis].

    PubMed

    Kopantseva, E E; Belyavsky, A V

    2016-01-01

    Skeletal myogenesis has been extensively studied at both morphological and molecular levels. This review considers the main stages of embryonic skeletal myogenesis and myogenic factors that trigger their initiation, focusing on specific protein interactions involved in somitic myogenesis, head myogenesis, and limb myogenesis. The second part of the review describes the role of noncoding RNAs (microRNAs and long noncoding RNAs) in myogenesis. This information is of particular interest, because regulation of cell processes by noncoding RNAs is an actively developing field of molecular biology. Knowledge of mechanisms of skeletal myogenesis is of applied significance. Various transcription factors, noncoding RNAs, and other myogenic regulators can be employed in the induction of myogenic reprogramming in stem cells and differentiated somatic cells. Current trends and strategies in the field of skeletal myogenic reprogramming are discussed in the last part of the review. PMID:27239841

  12. The effect of dam strain on the craniofacial morphogenesis of CL/Fr mouse fetuses.

    PubMed

    Martin, D A; Nonaka, K; Yanagita, K; Nakata, M

    1995-01-01

    The embryo transfer technique and cephalometry were used to investigate the effect of dam strain in intrauterine craniofacial growth and the severity of cleft lip and palate (CLP) in a CLP-susceptible CL/Fr strain of embryos. The CL/Fr strain of embryos at early blastocyst stage was transferred to the same dam strain and to the CLP-resistant C57BL dam strain. On the 18th gestational day, each dam was laparotomized to take out the fetuses. The spontaneous incidence of CLP in the fetuses was checked and a cephalometric observation of the craniofacial complex of each fetus was done just after laparotomy. The dorsoventral craniofacial size of the unaffected fetuses and the severity of CLP i the affected ones were compared between both dam strains. The following results were obtained: 1) The overall craniofacial sizes of the unaffected fetuses observed in the CL/Fr dam strain were significantly smaller than those seen in the C57/BL dam strain. Those of the affected fetuses observed in the CL/Fr dam strain were smaller than those seen in the C57BL dam strain although the interstrain difference was not significant. 20 The dam strain had a highly significant effect on the craniofacial size of the unaffected fetuses. 3) The CLP frequency in the CL/Fr dam strain was significantly higher than that in the C57BL dam strain. 4) The severity of CLP in the affected fetuses observed in the CL/Fr dam strain was significantly more serious than that seen in the C57BL dam strain. These results indicated that the CLP-susceptible CL/Fr dam strain retarded the intrauterine craniofacial growth of the fetuses and that the cleft condition in the affected fetuses observed in the CL/Fr dam strain was more seriously affected than that seen in the CLP-resistant C57BL dam strain. Thus, it can be concluded that the effect of the dam strain played an important role in the craniofacial morphogenesis of the CL/Fr strain of mouse fetuses that developed from the embryo transferred to the CL/Fr and C57

  13. American Association of Orthodontists Foundation Craniofacial Growth Legacy Collection: Overview of a powerful tool for orthodontic research and teaching.

    PubMed

    Baumrind, Sheldon; Curry, Sean

    2015-08-01

    This article reports on the current status of the American Association of Orthodontists Foundation (AAOF) Craniofacial Growth Legacy Collection--an AAOF-supported multi-institutional project that uses the Internet and cloud computing to collect and share craniofacial images and data for orthodontic research and education. The project gives investigators and clinicians all over the world online access to longitudinal information on craniofacial development in untreated children with malocclusions of various types. It also is a unique source of control samples for testing the validity of consensually accepted beliefs about the effects of orthodontic treatment or of failure to treat. PMID:26232829

  14. Nested Levels of Adaptive Divergence: The Genetic Basis of Craniofacial Divergence and Ecological Sexual Dimorphism

    PubMed Central

    Parsons, Kevin J.; Wang, Jason; Anderson, Graeme; Albertson, R. Craig

    2015-01-01

    Exemplary systems for adaptive divergence are often characterized by their large degrees of phenotypic variation. This variation represents the outcome of generations of diversifying selection. However, adaptive radiations can also contain a hierarchy of differentiation nested within them where species display only subtle phenotypic differences that still have substantial effects on ecology, function, and ultimately fitness. Sexual dimorphisms are also common in species displaying adaptive divergence and can be the result of differential selection between sexes that produce ecological differences between sexes. Understanding the genetic basis of subtle variation (between certain species or sexes) is therefore important for understanding the process of adaptive divergence. Using cichlids from the dramatic adaptive radiation of Lake Malawi, we focus on understanding the genetic basis of two aspects of relatively subtle phenotypic variation. This included a morphometric comparison of the patterns of craniofacial divergence between two ecologically similar species in relation to the larger adaptive radiation of Malawi, and male–female morphological divergence between their F2 hybrids. We then genetically map craniofacial traits within the context of sex and locate several regions of the genome that contribute to variation in craniofacial shape that is relevant to sexual dimorphism within species and subtle divergence between closely related species, and possibly to craniofacial divergence in the Malawi radiation as a whole. To enhance our search for candidate genes we take advantage of population genomic data and a genetic map that is anchored to the cichlid genome to determine which genes within our QTL regions are associated with SNPs that are alternatively fixed between species. This study provides a holistic understanding of the genetic underpinnings of adaptive divergence in craniofacial shape. PMID:26038365

  15. Ellis Van Creveld2 is Required for Postnatal Craniofacial Bone Development.

    PubMed

    Badri, Mohammed K; Zhang, Honghao; Ohyama, Yoshio; Venkitapathi, Sundharamani; Kamiya, Nobuhiro; Takeda, Haruko; Ray, Manas; Scott, Greg; Tsuji, Takehito; Kunieda, Tetsuo; Mishina, Yuji; Mochida, Yoshiyuki

    2016-08-01

    Ellis-van Creveld (EvC) syndrome is a genetic disorder with mutations in either EVC or EVC2 gene. Previous case studies reported that EvC patients underwent orthodontic treatment, suggesting the presence of craniofacial bone phenotypes. To investigate whether a mutation in EVC2 gene causes a craniofacial bone phenotype, Evc2 knockout (KO) mice were generated and cephalometric analysis was performed. The heads of wild type (WT), heterozygous (Het) and homozygous Evc2 KO mice (1-, 3-, and 6-week-old) were prepared and cephalometric analysis based on the selected reference points on lateral X-ray radiographs was performed. The linear and angular bone measurements were then calculated, compared between WT, Het and KO and statistically analyzed at each time point. Our data showed that length of craniofacial bones in KO was significantly lowered by ∼20% to that of WT and Het, the growth of certain bones, including nasal bone, palatal length, and premaxilla was more affected in KO, and the reduction in these bone length was more significantly enhanced at later postnatal time points (3 and 6 weeks) than early time point (1 week). Furthermore, bone-to-bone relationship to cranial base and cranial vault in KO was remarkably changed, i.e. cranial vault and nasal bone were depressed and premaxilla and mandible were developed in a more ventral direction. Our study was the first to show the cause-effect relationship between Evc2 deficiency and craniofacial defects in EvC syndrome, demonstrating that Evc2 is required for craniofacial bone development and its deficiency leads to specific facial bone growth defect. Anat Rec, 299:1110-1120, 2016. © 2016 Wiley Periodicals, Inc. PMID:27090777

  16. Craniofacial anomalies associated with hypospadias. Description of a hospital based population in South America

    PubMed Central

    Fernandez, Nicolas; Escobar, Rebeca; Zarante, Ignacio

    2016-01-01

    ABSTRACT Introduction: Hypospadias is a congenital abnormality of the penis, in which there is incomplete development of the distal urethra. There are numerous reports showing an increase of prevalence of hypospadias. Association of craniofacial malformations in patients diagnosed with hypospadias is rare. The aim of this study is to describe the association between hypospadias and craniofacial congenital anomalies. Materials and Methods: A retrospective review of the Latin-American collaborative study of congenital malformations (ECLAMC) data was performed between January 1982 and December 2011. We included children diagnosed with associated hypospadias and among them we selected those that were associated with any craniofacial congenital anomaly. Results: Global prevalence was 11.3 per 10.000 newborns. In this population a total of 809 patients with 1117 associated anomalies were identified. On average there were 1.7 anomalies per patient. Facial anomalies were present in 13.2%. The most commonly major facial anomaly associated to hypospadias was cleft lip/palate with 52 cases. We identified that 18% have an association with other anomalies, and found an association between craniofacial anomalies and hypospadias in 0.59 cases/10.000 newborns. Discussion: Hypospadias is the most common congenital anomaly affecting the genitals. Its association with other anomalies is rare. It has been reported that other malformations occur in 29.3% of the cases with hypospadias. The more proximal the meatus, the higher the risk for having another associated anomaly. Conclusion: Associated hypospadias are rare, and it is important to identify the concurrent occurrence of craniofacial anomalies to better treat patients that might need a multidisciplinary approach. PMID:27564292

  17. Screening for obstructive sleep apnea in children treated at a major craniofacial center.

    PubMed

    Paliga, J Thomas; Tahiri, Youssef; Silvestre, Jason; Taylor, Jesse A

    2014-09-01

    Timely diagnosis of obstructive sleep apnea (OSA) in patients with craniofacial disorders may help prevent long-term adverse sequelae of upper airway obstruction, namely pulmonary hypertension, failure to thrive, and impaired neurocognitive development. Currently, little is known about the incidence of OSA in this high-risk population. A prospective study examining the incidence of positive screening for OSA in patients cared for by the craniofacial team at a large, urban referral center was performed. From January 2011 to August 2013, all patient families were asked to complete the Pediatric Sleep Questionnaire. This validated tool has a sensitivity of 85% and specificity of 87% in predicting a positive sleep study when the ratio of positive-total responses is 0.33 or greater. Screening results were evaluated via Chi-squared and Fisher tests according to demographic and clinical variables. A total of 234 children seen in our craniofacial clinic completed the Pediatric Sleep Questionnaire. The mean screening age was 8.38 years, and 47% were male (110/234). Total incidence of positive OSA screening was 28.2% (66/234). Of the total population, 128 patients had an underlying syndrome (54.7%), whereas 106 patients were nonsyndromic (45.3%). Both groups were at equivalent risk for screening positive for OSA (28.1% versus 28.3%, P = 1.0). Among children with a craniofacial diagnosis, patients with a cleft lip and/or palate were at equivalent risk for screening positive for OSA as patients without a cleft (25.5% versus 32.6%, P = 0.24). The OSA symptoms affect almost one third of patients seen by our craniofacial team. Syndromic and nonsyndromic patients seem to be at equivalent risk as those patients with and without an oropharyngeal cleft. Future work will correlate these findings with formal polysomnography and may serve to heighten awareness of OSA in this at-risk population. PMID:25162551

  18. A regional method for craniofacial reconstruction based on coordinate adjustments and a new fusion strategy.

    PubMed

    Deng, Qingqiong; Zhou, Mingquan; Wu, Zhongke; Shui, Wuyang; Ji, Yuan; Wang, Xingce; Liu, Ching Yiu Jessica; Huang, Youliang; Jiang, Haiyan

    2016-02-01

    Craniofacial reconstruction recreates a facial outlook from the cranium based on the relationship between the face and the skull to assist identification. But craniofacial structures are very complex, and this relationship is not the same in different craniofacial regions. Several regional methods have recently been proposed, these methods segmented the face and skull into regions, and the relationship of each region is then learned independently, after that, facial regions for a given skull are estimated and finally glued together to generate a face. Most of these regional methods use vertex coordinates to represent the regions, and they define a uniform coordinate system for all of the regions. Consequently, the inconsistence in the positions of regions between different individuals is not eliminated before learning the relationships between the face and skull regions, and this reduces the accuracy of the craniofacial reconstruction. In order to solve this problem, an improved regional method is proposed in this paper involving two types of coordinate adjustments. One is the global coordinate adjustment performed on the skulls and faces with the purpose to eliminate the inconsistence of position and pose of the heads; the other is the local coordinate adjustment performed on the skull and face regions with the purpose to eliminate the inconsistence of position of these regions. After these two coordinate adjustments, partial least squares regression (PLSR) is used to estimate the relationship between the face region and the skull region. In order to obtain a more accurate reconstruction, a new fusion strategy is also proposed in the paper to maintain the reconstructed feature regions when gluing the facial regions together. This is based on the observation that the feature regions usually have less reconstruction errors compared to rest of the face. The results demonstrate that the coordinate adjustments and the new fusion strategy can significantly improve the

  19. Genetics of murine craniofacial morphology: diallel analysis of the eight founders of the Collaborative Cross.

    PubMed

    Percival, Christopher J; Liberton, Denise K; Pardo-Manuel de Villena, Fernando; Spritz, Richard; Marcucio, Ralph; Hallgrímsson, Benedikt

    2016-01-01

    Using eight inbred founder strains of the mouse Collaborative Cross (CC) project and their reciprocal F1 hybrids, we quantified variation in craniofacial morphology across mouse strains, explored genetic contributions to craniofacial variation that distinguish the founder strains, and tested whether specific or summary measures of craniofacial shape display stronger additive genetic contributions. This study thus provides critical information about phenotypic diversity among CC founder strains and about the genetic contributions to this phenotypic diversity, which is relevant to understanding the basis of variation in standard laboratory strains and natural populations. Craniofacial shape was quantified as a series of size-adjusted linear dimensions (RDs) and by principal components (PC) analysis of morphological landmarks captured from computed tomography images from 62 of the 64 reciprocal crosses of the CC founder strains. We first identified aspects of skull morphology that vary between these phenotypically 'normal' founder strains and that are defining characteristics of these strains. We estimated the contributions of additive and various non-additive genetic factors to phenotypic variation using diallel analyses of a subset of these strongly differing RDs and the first eight PCs of skull shape variation. We find little difference in the genetic contributions to RD measures and PC scores, suggesting fundamental similarities in the magnitude of genetic contributions to both specific and summary measures of craniofacial phenotypes. Our results indicate that there are stronger additive genetic effects associated with defining phenotypic characteristics of specific founder strains, suggesting these distinguishing measures are good candidates for use in genotype-phenotype association studies of CC mice. Our results add significantly to understanding of genotype-phenotype associations in the skull, which serve as a foundation for modeling the origins of medically

  20. Effects in skeletal muscle.

    PubMed

    Young, Andrew

    2005-01-01

    The first biological action of amylin to be described was the inhibition of insulin-stimulated incorporation of radiolabeled glucose into glycogen in the isolated soleus muscle of the rat. This antagonism of insulin action in muscle was non-competitive, occurring with equal potency and efficacy at all insulin concentrations. Amylin inhibited activation of glycogen synthase, partially accounting for the inhibition of radiolabeled glucose incorporation. However, this did not account for a low rate of labeling at higher amylin concentrations, wherein the radioglycogen accumulation was even less than in incubations where insulin was absent. The principal action of amylin accounting for reduction of insulin-stimulated accumulation of glycogen was activation of glycogen phosphorylase via a cyclic AMP-, protein kinase C-dependent signaling pathway to cause glycogenolysis (glycogen breakdown). At physiological concentrations, amylin activated glycogen phosphorylase at its ED50, but because glycogen phosphorylase is present in such high activity, the resulting flux out of glycogen was estimated to be similar to insulin-mediated flux of glucosyl moieties into glycogen. Thus, in the rat, endogenous amylin secreted in response to meals appeared to mobilize carbon from skeletal muscle. Amylin-induced glycogenolysis resulted in intramuscular accumulation of glucose-6-phosphate and release of lactate from tissue beds that included muscle. When muscle glycogen was pre-labeled with tritium in the three position, amylin could be shown to evoke the release of free glucose. This is made possible by glucosyl moieties cleaved at the branch points in glycogen being released as free glucose, rather than being phosphorylated, as occurs with the bulk of the glycogen glucosyls. Free glucose is free to exit cells via facilitated transport, down a concentration gradient that might exist under such circumstances. When measured by a sensitive technique utilizing efflux of labeled glucose, amylin

  1. The neurobiology of skeletal pain.

    PubMed

    Mantyh, Patrick W

    2014-02-01

    Disorders of the skeleton are one of the most common causes of chronic pain and long-term physical disability in the world. Chronic skeletal pain is caused by a remarkably diverse group of conditions including trauma-induced fracture, osteoarthritis, osteoporosis, low back pain, orthopedic procedures, celiac disease, sickle cell disease and bone cancer. While these disorders are diverse, what they share in common is that when chronic skeletal pain occurs in these disorders, there are currently few therapies that can fully control the pain without significant unwanted side effects. In this review we focus on recent advances in our knowledge concerning the unique population of primary afferent sensory nerve fibers that innervate the skeleton, the nociceptive and neuropathic mechanisms that are involved in driving skeletal pain, and the neurochemical and structural changes that can occur in sensory and sympathetic nerve fibers and the CNS in chronic skeletal pain. We also discuss therapies targeting nerve growth factor or sclerostin for treating skeletal pain. These therapies have provided unique insight into the factors that drive skeletal pain and the structural decline that occurs in the aging skeleton. We conclude by discussing how these advances have changed our understanding and potentially the therapeutic options for treating and/or preventing chronic pain in the injured, diseased and aged skeleton. PMID:24494689

  2. Correlation between Chronological Age, Dental Age and Skeletal Age among Monozygoyic and Dizygotic Twins

    PubMed Central

    Gupta, Mohit; Divyashree, R; Abhilash, PR; A Bijle, Mohammed Nadeem; Murali, KV

    2013-01-01

    Introduction: Chronological age, dental development, height and weight measurements, sexual maturation characteristics and skeletal age are some biological indicators that have been used to identify time of growth. Many researchers have agreed that skeletal maturity is closely related to the craniofacial growth, and bones of hand and wrist are reliable parameters in assessing it. The complete hand and wrist radiograph involves 30 bones and assessment of these bones is one elaborate task. The present study is therefore, undertaken to assess the correlation between the chronological age, dental age and skeletal ages among different types of twins. Materials and Methods: The study consisted of 60 subjects (30 twins) aged 8 to 16 years, divided into group of 10 monozygotic, 10 dizygotic and 10 mixed sex twins. The sample was selected from Twin Survey- 2008 conducted by Department of Orthodontics and Dentofacial Orthopaedics, Sree Balaji Dental College and Hospital, Chennai. Their zygosity was determined by sex, blood groups and by the parent. The chronological age was measured by the date of birth given by the parents. Panoramic and hand wrist x-rays were taken. Dental age was assessed by Demerjian et al method and skeletal age by Greulich and Pyle method. The correlation among twins in dental and skeletal ages with the chronological age was assessed using Correlation Coefficient and Student's't' Test. Results: The obtained data was fed into the computer and statistical analysis was done for the same using the SPSS version 10.0. Statistical significance was tested at P<0.05 level. Mean and Standard Deviation, Correlation Coefficient, Student's't' Test statistical methods were employed. The result showed highly significant 'p' value as <0.001 in all the correlations except for mixed pairs. Descriptive statistics in most of the areas demonstrated a non-significant result between zygosity groups. Conclusion: There is a correlation existing between the individual

  3. Craniofacial divergence by distinct prenatal growth patterns in Fgfr2 mutant mice

    PubMed Central

    2014-01-01

    mutation-driven changes in cranial growth provides a previously missing piece of knowledge necessary for explaining variation in emergent cranial morphologies and may ultimately be helpful in managing human cases carrying these same mutations. This information is critical to the understanding of craniofacial development, disease and evolution and may contribute to the evaluation of incipient therapeutic strategies. PMID:24580805

  4. Glycosylation of Skeletal Calsequestrin

    PubMed Central

    Sanchez, Emiliano J.; Lewis, Kevin M.; Munske, Gerhard R.; Nissen, Mark S.; Kang, ChulHee

    2012-01-01

    Calsequestrin (CASQ) serves as a major Ca2+ storage/buffer protein in the sarcoplasmic reticulum (SR). When purified from skeletal muscle, CASQ1 is obtained in its glycosylated form. Here, we have confirmed the specific site and degree of glycosylation of native rabbit CASQ1 and have investigated its effect on critical properties of CASQ by comparison with the non-glycosylated recombinant form. Based on our comparative approach utilizing crystal structures, Ca2+ binding capacities, analytical ultracentrifugation, and light-scattering profiles of the native and recombinant rabbit CASQ1, we propose a novel and dynamic role for glycosylation in CASQ. CASQ undergoes a unique degree of mannose trimming as it is trafficked from the proximal endoplasmic reticulum to the SR. The major glycoform of CASQ (GlcNAc2Man9) found in the proximal endoplasmic reticulum can severely hinder formation of the back-to-back interface, potentially preventing premature Ca2+-dependent polymerization of CASQ and ensuring its continuous mobility to the SR. Only trimmed glycans can stabilize both front-to-front and the back-to-back interfaces of CASQ through extensive hydrogen bonding and electrostatic interactions. Therefore, the mature glycoform of CASQ (GlcNAc2Man1–4) within the SR can be retained upon establishing a functional high capacity Ca2+ binding polymer. In addition, based on the high resolution structures, we propose a molecular mechanism for the catecholaminergic polymorphic ventricular tachycardia (CPVT2) mutation, K206N. PMID:22170046

  5. Aneuploidy and Skeletal Health

    PubMed Central

    Kamalakar, Archana; Harris, John R.; McKelvey, Kent D.; Suva, Larry J.

    2014-01-01

    The normal human chromosome complement consists of 46 chromosomes comprising 22 morphologically different pairs of autosomes and one pair of sex chromosomes. Variations in either chromosome number and/or structure frequently result in significant mental impairment, and/or a variety of other clinical problems, among them, altered bone mass and strength. Chromosomal syndromes associated with specific chromosomal abnormalities are classified as either numerical or structural and may involve more than one chromosome. Aneuploidy refers to the presence of an extra copy of a specific chromosome, or trisomy, as seen in Down’s syndrome (trisomy 21), or the absence of a single chromosome, or monosomy, as seen in Turner syndrome (a single X chromosome in females: 45, X). Aneuploidies have diverse phenotypic consequences, ranging from severe mental retardation and developmental abnormalities to increased susceptibility to various neoplasms and premature death. In fact, trisomy 21 is the prototypical aneuploidy in humans, is the most common genetic abnormality associated with longevity and is one of the most widespread genetic causes of intellectual disability. In this review, the impact of trisomy 21 on the bone mass, architecture, skeletal health and quality of life of people with Down syndrome will be discussed. PMID:24980541

  6. Evolution of the Vertebrate Cranium: Viewed from Hagfish Developmental Studies.

    PubMed

    Kuratani, Shigeru; Oisi, Yasuhiro; Ota, Kinya G

    2016-06-01

    Our knowledge of vertebrate cranium evolution has relied largely on the study of gnathostomes. Recent evolutionary and developmental studies of cyclostomes have shed new light on the history of the vertebrate skull. The recent ability to obtain embryos of the hagfish, Eptatretus burgeri, has enabled new studies which have suggested an embryonic morphological pattern (the "cyclostome pattern") of craniofacial development. This pattern is shared by cyclostomes, but not by modern jawed vertebrates. Because this pattern of embryonic head development is thought to be present in some stem gnathostomes (ostracoderms), it is possible that the cyclostome pattern represents the vertebrate ancestral pattern. The study of cyclostomes may thus lead to an understanding of the most ancestral basis of craniofacial development. In this review, we summarize the development of the hagfish chondrocranium in light of the cyclostome pattern, present an updated comparison of the cyclostome chondrocranium, and discuss several aspects of the evolution and development of the vertebrate skull. PMID:27268976

  7. Skeletal muscle involvement in cardiomyopathies.

    PubMed

    Limongelli, Giuseppe; D'Alessandro, Raffaella; Maddaloni, Valeria; Rea, Alessandra; Sarkozy, Anna; McKenna, William J

    2013-12-01

    The link between heart and skeletal muscle disorders is based on similar molecular, anatomical and clinical features, which are shared by the 'primary' cardiomyopathies and 'primary' neuromuscular disorders. There are, however, some peculiarities that are typical of cardiac and skeletal muscle disorders. Skeletal muscle weakness presenting at any age may indicate a primary neuromuscular disorder (associated with creatine kinase elevation as in dystrophinopathies), a mitochondrial disease (particularly if encephalopathy, ocular myopathy, retinitis, neurosensorineural deafness, lactic acidosis are present), a storage disorder (progressive exercise intolerance, cognitive impairment and retinitis pigmentosa, as in Danon disease), or metabolic disorders (hypoglycaemia, metabolic acidosis, hyperammonaemia or other specific biochemical abnormalities). In such patients, skeletal muscle weakness usually precedes the cardiomyopathy and dominates the clinical picture. Nevertheless, skeletal involvement may be subtle, and the first clinical manifestation of a neuromuscular disorder may be the occurrence of heart failure, conduction disorders or ventricular arrhythmias due to cardiomyopathy. ECG and echocardiogram, and eventually, a more detailed cardiovascular evaluation may be required to identify early cardiac involvement. Paediatric and adult cardiologists should be proactive in screening for neuromuscular and related disorders to enable diagnosis in probands and evaluation of families with a focus on the identification of those at risk of cardiac arrhythmia and emboli who may require specific prophylactic treatments, for example, pacemaker, implantable cardioverter-defibrillator and anticoagulation. PMID:24149064

  8. Dental Approach to Craniofacial Syndromes: How Can Developmental Fields Show Us a New Way to Understand Pathogenesis?

    PubMed Central

    Kjær, Inger

    2012-01-01

    The paper consists of three parts. Part 1: Definition of Syndromes. Focus is given to craniofacial syndromes in which abnormal traits in the dentition are associated symptoms. In the last decade, research has concentrated on phenotype, genotype, growth, development, function, and treatment. Part 2: Syndromes before Birth. How can the initial malformation sites in these syndromes be studied and what can we learn from it? In this section, deviations observed in syndromes prenatally will be highlighted and compared to the normal human embryological craniofacial development. Specific focus will be given to developmental fields studied on animal tissue and transferred to human cranial development. Part 3: Developmental Fields Affected in Two Craniofacial Syndromes. Analysis of primary and permanent dentitions can determine whether a syndrome affects a single craniofacial field or several fields. This distinction is essential for insight into craniofacial syndromes. The dentition, thus, becomes central in diagnostics and evaluation of the pathogenesis. Developmental fields can explore and advance the concept of dental approaches to craniofacial syndromes. Discussion. As deviations in teeth persist and do not reorganize during growth and development, the dentition is considered useful for distinguishing between syndrome pathogenesis manifested in a single developmental field and in several fields. PMID:23091490

  9. Mechanical determinants of bone form: insights from skeletal remains.

    PubMed

    Ruff, C B

    2005-01-01

    Analysis of skeletal remains from humans living in the past forms an important complement to observational and experimental studies of living humans and animal models. Including earlier humans in such analyses increases the range of variation in both behavior and body size and shape that are represented, and can provide insights into the adaptive potential of the modern human skeleton. I review here a variety of studies of archaeological and paleontological remains that have investigated differences in skeletal structure from a mechanical perspective, focusing in particular on diaphyseal strength of the limb bones. Several conclusions can be drawn from these studies: 1) there has been a decline in overall skeletal strength relative to body size over the course of human evolution that has become progressively steeper in recent millennia, probably due to increased sedentism and technological advancement; 2) differences in pelvic structure and hip mechanical loadings affect femoral shape; 3) activity patterns affect overall strength and shape of both the lower and upper limb bones; and 4) responsiveness to changes in mechanical loading varies between skeletal features (e.g., articulations versus diaphyses) and by age. PMID:16172511

  10. Skeletal complications of eating disorders.

    PubMed

    Donaldson, Abigail A; Gordon, Catherine M

    2015-09-01

    Anorexia nervosa (AN) is a psychiatric illness with profound medical consequences. Among the many adverse physical sequelae of AN, bone health is impacted by starvation and can be permanently impaired over the course of the illness. In this review of skeletal complications associated with eating disorders, we discuss the epidemiology, neuroendocrine changes, adolescent vs. adult skeletal considerations, orthopedic concerns, assessment of bone health, and treatment options for individuals with AN. The focus of the review is the skeletal sequelae associated with anorexia nervosa, but we also briefly consider other eating disorders that may afflict adolescents and young adults. The review presents updates to the field of bone health in AN, and also suggests knowledge gaps and areas for future investigation. PMID:26166318

  11. Skeletal Complications of Eating Disorders

    PubMed Central

    Donaldson, Abigail A.; Gordon, Catherine M.

    2015-01-01

    Anorexia Nervosa (AN) is a psychiatric illness with profound medical consequences. Among the many adverse physical sequelae of AN, bone health is impacted by starvation and can be permanently impaired over the course of the illness. In this review of skeletal complications associated with eating disorders, we discuss the epidemiology, neuroendocrine changes, adolescent vs. adult skeletal considerations, orthopedic concerns, assessment of bone health, and treatment options for individuals with AN. The focus of the review is the skeletal sequelae associated with anorexia nervosa, but we also briefly consider other eating disorders that may afflict adolescents and young adults. The review presents updates to the field of bone health in AN, and also suggests knowledge gaps and areas for future investigation. PMID:26166318

  12. In-frame deletion in FLNA causing familial periventricular heterotopia with skeletal dysplasia in males.

    PubMed

    Parrini, Elena; Rivas, Isabel Llano; Toral, Joaquin Fernandez; Pucatti, Daniela; Giglio, Sabrina; Mei, Davide; Guerrini, Renzo

    2011-05-01

    Periventricular heterotopia (PH) is an etiologically heterogeneous disorder characterized by nodules of neurons ectopically placed along the lateral ventricles. Truncating and missense mutations of the FLNA gene have been identified in almost 100% of families and 26% of sporadic patients with PH. The otopalatodigital syndrome spectrum is caused by distinct FLNA missense mutations or in-frame deletions disrupting the development of craniofacial and long bones. We report on a clinical, neuroimaging, X-ray, and molecular study of a family in which classical bilateral PH appeared as an isolated anatomic feature in the mother and was associated with skeletal abnormalities and facial dysmorphisms in her two sons. Both boys exhibited PH associated with flat face and spatulate finger tips, short broad phalanx and metacarpus, and bowed radius with dislocated wrist joints. All three patients harbored the c.7865_7870del in-frame deletion (p.2622_2623delDK) in the carboxyl-terminal domain (repeat 24) of FLNA. The X-inactivation observed in the mother was skewed towards the mutant allele, resulting in the preferential expression of the wild-type allele. The in-frame deletion in the carboxyl-terminal domain of FLNA caused a phenotype in which PH was associated with skeletal features suggestive of the otopalatodigital syndrome spectrum in boys. There appears to be a continuum among allelic disorders due to FLNA mutations. PMID:21484998

  13. Experience of a skeletal dysplasia registry in Turkey: a five-years retrospective analysis.

    PubMed

    Kurt-Sukur, Eda Didem; Simsek-Kiper, Pelin Ozlem; Utine, Gülen Eda; Boduroglu, Koray; Alanay, Yasemin

    2015-09-01

    This study shares data on 417 patients with genetic disorders of skeleton including 10 fetal autopsies encountered in a 5-year period at a tertiary university hospital in Ankara, Turkey. We included patients with osteochondrodysplasias, excluding overgrowth syndromes, dysostoses, and craniofacial syndromes. When grouped according to the "International Skeletal Dysplasia Society 2010 classification" the most frequent group is "FGFR3 group" (achondroplasia). "Decreased bone density group" takes the second place, consistent with the literature. We also demonstrated, a relatively higher frequency of recessively inherited skeletal dysplasias when the diagnosis is an entity other than achondroplasia or osteogenesis imperfecta. The literature on the incidence of genetic disorders of skeleton from the Middle East and Eastern Mediterranean is limited to fetal and neonatal autopsies or birth prevelance reports. The higher rate of consanguineous marriages which increases the frequency of autosomal recessive entities makes it difficult to apply data from other parts of the world. Total consanguinity rate among parents in our study was 53% and there were regional differences. The highest (79%) was among parents from South-east Anatolia. This study is the first broad retrospective analysis of genetic disorders of skeleton from our region. We aim to provide a descriptive source for future studies and discuss our findings in comparison to reports from other parts of the world. PMID:25931420

  14. Entpd5 is essential for skeletal mineralization and regulates phosphate homeostasis in zebrafish

    PubMed Central

    Huitema, Leonie F. A.; Apschner, Alexander; Logister, Ive; Spoorendonk, Kirsten M.; Bussmann, Jeroen; Hammond, Chrissy L.; Schulte-Merker, Stefan

    2012-01-01

    Bone mineralization is an essential step during the embryonic development of vertebrates, and bone serves vital functions in human physiology. To systematically identify unique gene functions essential for osteogenesis, we performed a forward genetic screen in zebrafish and isolated a mutant, no bone (nob), that does not form any mineralized bone. Positional cloning of nob identified the causative gene to encode ectonucleoside triphosphate/diphosphohydrolase 5 (entpd5); analysis of its expression pattern demonstrates that entpd5 is specifically expressed in osteoblasts. An additional mutant, dragonfish (dgf), exhibits ectopic mineralization in the craniofacial and axial skeleton and encodes a loss-of-function allele of ectonucleotide pyrophosphatase phosphodiesterase 1 (enpp1). Intriguingly, generation of double-mutant nob/dgf embryos restored skeletal mineralization in nob mutants, indicating that mechanistically, Entpd5 and Enpp1 act as reciprocal regulators of phosphate/pyrophosphate homeostasis in vivo. Consistent with this, entpd5 mutant embryos can be rescued by high levels of inorganic phosphate, and phosphate-regulating factors, such as fgf23 and npt2a, are significantly affected in entpd5 mutant embryos. Our study demonstrates that Entpd5 represents a previously unappreciated essential player in phosphate homeostasis and skeletal mineralization. PMID:23236130

  15. [Compression of a nasotracheal tube in the nasal cavity of a patient with craniofacial fibrous dysplasia].

    PubMed

    Takasugi, Yoshihiro; Iwamoto, Tatsushige; Uehara, Keiji; Shiba, Mayuka; Koga, Yoshihisa

    2008-06-01

    A 42-year-old woman with craniofacial fibrous dysplasia underwent osteoplasty of maxillary and mandibular bone. Preoperative CT images showed osteosclerosis and ground glass appearance of the right side of the skull including the orbit, temporal bone, paranasal sinus, and maxillary and mandibular bones, as well as hypertrophy of the nasal septum. Inhalation anesthesia was induced and 8.0-mmID polyvinyl chloride endotracheal tube was inserted via the left nostril with slight resistance. At emergence, a 10-Fr suction catheter could not be passed throgh the tube but an 8-Fr nasogastric tube could be passed. A part of the tube positioned in the nasal cavity was apparently compressed. Preoperative examination of the nasal cavity and nasal septum using CT or MRI may be desirable for nasotracheal intubation in the patients with craniofacial tumor, and the application of a spiral reinforced endotracheal tube may contribute to prevent such cases of airway obstruction in the nasal cavity. PMID:18546906

  16. Atypical Case of Congenital Maxillomandibular Fusion with Duplication of the Craniofacial Midline

    PubMed Central

    Martín, Lorena Pingarrón; Pérez, Mercedes Martín; García, Elena Gómez; Martín-Moro, Javier González; González, Jose Ignacio Rodríguez; García, Miguel Burgueño

    2011-01-01

    We report the first case of syngnathia with hypophyseal duplication and describe the central nervous system (CNS) and craniofacial anomalies associated with hypophyseal duplication in the reported autopsy case. We studied clinical reports, scanner images, and autopsy results of a 2-months-old female baby. The propositus had frontonasal dysmorphism, retrognathia, and bifid tongue. She also presented maxillomandibular bony fusion (syngnathia) and an intraoral hairy polyp. In the cranium, the sella turcica was broadened, with two complete hypophyses and two infundibulums. The CNS had both olfactory bulbs and corpus callosum agenesis. There are 27 previous cases of maxillomandibular fusion and seven previous autopsy cases of hypophyseal duplication associated with other frontonasal malformations. As far as the authors know, this is the first case reported in the literature that associates syngnathia with duplication of the craniofacial midline including hypophyseal duplication. PMID:22655122

  17. Current Concepts of Bone Tissue Engineering for Craniofacial Bone Defect Repair

    PubMed Central

    Fishero, Brian Alan; Kohli, Nikita; Das, Anusuya; Christophel, John Jared; Cui, Quanjun

    2014-01-01

    Craniofacial fractures and bony defects are common causes of morbidity and contribute to increasing health care costs. Successful regeneration of bone requires the concomitant processes of osteogenesis and neovascularization. Current methods of repair and reconstruction include rigid fixation, grafting, and free tissue transfer. However, these methods carry innate complications, including plate extrusion, nonunion, graft/flap failure, and donor site morbidity. Recent research efforts have focused on using stem cells and synthetic scaffolds to heal critical-sized bone defects similar to those sustained from traumatic injury or ablative oncologic surgery. Growth factors can be used to augment both osteogenesis and neovascularization across these defects. Many different growth factor delivery techniques and scaffold compositions have been explored yet none have emerged as the universally accepted standard. In this review, we will discuss the recent literature regarding the use of stem cells, growth factors, and synthetic scaffolds as alternative methods of craniofacial fracture repair. PMID:25709750

  18. New Methods to Evaluate Craniofacial Deformity and to Plan Surgical Correction

    PubMed Central

    Gateno, Jaime; Xia, James J.; Teichgraeber, John F.

    2011-01-01

    The success of cranio-maxillofacial (CMF) surgery depends not only on surgical techniques, but also upon an accurate surgical plan. Unfortunately, traditional planning methods are often inadequate for planning complex cranio-maxillofacial deformities. To this end, we developed 3D computer-aided surgical simulation (CASS) technique. Using our CASS method, we are able to treat patients with significant asymmetries in a single operation which in the past was usually completed in two stages. The purpose of this article is to introduce our CASS method in evaluating craniofacial deformities and planning surgical correction. In addition, we discuss the problems associated with the traditional surgical planning methods. Finally, we discuss the strength and pitfalls of using three-dimensional measurements to evaluate craniofacial deformity. PMID:21927548

  19. The Ubiquitin E3 Ligase NOSIP Modulates Protein Phosphatase 2A Activity in Craniofacial Development

    PubMed Central

    Hoffmeister, Meike; Prelle, Carola; Küchler, Philipp; Kovacevic, Igor; Moser, Markus; Müller-Esterl, Werner; Oess, Stefanie

    2014-01-01

    Holoprosencephaly is a common developmental disorder in humans characterised by incomplete brain hemisphere separation and midface anomalies. The etiology of holoprosencephaly is heterogeneous with environmental and genetic causes, but for a majority of holoprosencephaly cases the genes associated with the pathogenesis could not be identified so far. Here we report the generation of knockout mice for the ubiquitin E3 ligase NOSIP. The loss of NOSIP in mice causes holoprosencephaly and facial anomalies including cleft lip/palate, cyclopia and facial midline clefting. By a mass spectrometry based protein interaction screen we identified NOSIP as a novel interaction partner of protein phosphatase PP2A. NOSIP mediates the monoubiquitination of the PP2A catalytic subunit and the loss of NOSIP results in an increase in PP2A activity in craniofacial tissue in NOSIP knockout mice. We conclude, that NOSIP is a critical modulator of brain and craniofacial development in mice and a candidate gene for holoprosencephaly in humans. PMID:25546391

  20. The role of physical therapy in craniofacial pain disorders: an adjunct to dental pain management.

    PubMed

    Heinrich, S

    1991-01-01

    Treatment of craniofacial pain disorders is often complicated by diverse factors such as acute or chronic trauma and persistent postural changes. In addition, emotional issues and life stress often cloud the recovery process. Physical therapists, with their diverse knowledge base and highly competent treatment skills, can be quite effective in assisting dentists and physicians with management of the many difficult upper quarter and craniofacial pain syndromes. This article reviews the role of myofascial and craniosacral dysfunction, as well as the function of posture, tension, and stress in the development of these syndromes. Additionally, it provides a comprehensive overview of the many evaluative techniques and treatment options that can be provided by today's physical therapists. PMID:1843484

  1. Holoprosencephaly with Multiple Anomalies of the Craniofacial Bones-An Autopsy Report

    PubMed Central

    Aruna, E.; Chakravarthy, V. Kalyan; Rao, D. Naveen Chandar; Rao, D. Ranga

    2013-01-01

    Holoprosencephaly (HPE), a disorder which results from a failure of cleavage or the incomplete differentiation of the forebrain structures at various levels or to various degrees, is related to hereditary factors, chromosomal anomalies, cytogenetic abnormalities, and environmental teratogenic factors. We are reporting a case of a multiparous woman who was G3,P3,L2, who delivered a full term foetus with holoprosencephaly and multiple craniofacial anomalies. An autopsy was conducted. Multiple anomalies of the craniofacial bones, which include hypoplasia and synostosis of the frontal bone, anophthalmia, absence of the anterior cranial fossa, hypoplasia of the maxillae, an absent antrum, cleft palate, a central hare lip and arrhinia which includes absence of the nostrils and hypotelorism of the eye placodes, were noted. This case is being reported for its rarity and the available literature was reviewed in this respect. PMID:24086891

  2. Hand1 phosphoregulation within the distal arch neural crest is essential for craniofacial morphogenesis.

    PubMed

    Firulli, Beth A; Fuchs, Robyn K; Vincentz, Joshua W; Clouthier, David E; Firulli, Anthony B

    2014-08-01

    In this study we examine the consequences of altering Hand1 phosphoregulation in the developing neural crest cells (NCCs) of mice. Whereas Hand1 deletion in NCCs reveals a nonessential role for Hand1 in craniofacial development and embryonic survival, altering Hand1 phosphoregulation, and consequently Hand1 dimerization affinities, in NCCs results in severe mid-facial clefting and neonatal death. Hand1 phosphorylation mutants exhibit a non-cell-autonomous increase in pharyngeal arch cell death accompanied by alterations in Fgf8 and Shh pathway expression. Together, our data indicate that the extreme distal pharyngeal arch expression domain of Hand1 defines a novel bHLH-dependent activity, and that disruption of established Hand1 dimer phosphoregulation within this domain disrupts normal craniofacial patterning. PMID:25053435

  3. Pediatric craniofacial surgery for craniosynostosis: Our experience and current concepts: Part -1

    PubMed Central

    Anantheswar, Y. N.; Venkataramana, N. K.

    2009-01-01

    Craniostenosis is a disease characterized by untimely fusion of cranial sutures resulting in a variety of craniofacial deformities and neurological sequelae due to alteration in cranial volume and restriction of brain growth. This involves vault sutures predominantly, but cranial base is not immune. Association with a variety of syndromes makes the management decision complex. These children need careful evaluation by multiple specialists to have strategic treatment options. Parental counseling is an important and integral part of the treatment. Recent advancements in the surgical techniques and concept of team approach have significantly enhanced the safety and outcome of these children. We had an opportunity of treating 57 children with craniostenosis in the last 15 years at our craniofacial service. Out of them, 40 were nonsyndromic and 17 were syndromic variety. We describe our successful results along with individualized operative technical modifications adopted based on the current understanding of the disease. PMID:21887189

  4. The organization and delivery of craniofacial health services: the state of the art.

    PubMed

    Strauss, R P

    1999-05-01

    The dominant organizational structure providing care for cleft palate and other craniofacial conditions is the health care team. Various types of health care team organization are profiled, including intradisciplinary, multidisciplinary, and interdisciplinary teams. Effective team-based care delivery has the ability to address the fragmentation and dehumanization that can result when a variety of specialists and disciplines are required to provide assessment and technical care. A team's leadership and its hierarchy of professional authority can be expected to affect its ability to function effectively. Health reform and managed care are considered for their impact on the team and on the doctor-patient relationship. Trends in team regionalization, quality assurance, outcomes research, and consumer advocacy are reviewed. The cleft palate and craniofacial team is profiled as an organizational model that is being affected by the forces of health system change. PMID:10342606

  5. [Fifty years of plastic surgery in the Netherlands. VIII. Craniofacial surgery].

    PubMed

    Vaandrager, J M; van der Meulen, J C

    2000-06-01

    Craniofacial surgery has developed its own identity in the last 3 decades. The Frenchman Tessier can be seen as the founding father. His concept of intracranial correction of craniofacial malformations is still valid today. There have been many new developments such as distraction osteogenesis and biodegradable miniplate fixation. Microvascular surgery and vascularised calvarial bone grafts help to obtain more predictable results. Three-dimensional CT imaging techniques and modelling result in better surgical planning and help to understand the underlying pathology. Biomolecular knowledge of gene mutations leads to better understanding of the clinical diagnosis. The future will bring minimalisation of surgery and more therapy focused on biomolecular science. The psychosocial welfare of the patient will play a central role in the multidisciplinary team treatment. PMID:10876706

  6. Transferrin receptor facilitates TGF-β and BMP signaling activation to control craniofacial morphogenesis.

    PubMed

    Lei, R; Zhang, K; Liu, K; Shao, X; Ding, Z; Wang, F; Hong, Y; Zhu, M; Li, H; Li, H

    2016-01-01

    The Pierre Robin Sequence (PRS), consisting of cleft palate, glossoptosis and micrognathia, is a common human birth defect. However, how this abnormality occurs remains largely unknown. Here we report that neural crest cell (NCC)-specific knockout of transferrin receptor (Tfrc), a well known transferrin transporter protein, caused micrognathia, cleft palate, severe respiratory distress and inability to suckle in mice, which highly resemble human PRS. Histological and anatomical analysis revealed that the cleft palate is due to the failure of palatal shelves elevation that resulted from a retarded extension of Meckel's cartilage. Interestingly, Tfrc deletion dramatically suppressed both transforming growth factor-β (TGF-β) and bone morphogenetic protein (BMP) signaling in cranial NCCs-derived mandibular tissues, suggesting that Tfrc may act as a facilitator of these two signaling pathways during craniofacial morphogenesis. Together, our study uncovers an unknown function of Tfrc in craniofacial development and provides novel insight into the etiology of PRS. PMID:27362800

  7. Craniofacial deformities in transfusion-dependent thalassemia patients in Malaysia: prevalence and effect of treatment.

    PubMed

    Toman, Heba Ahmed; Hassan, Rozita; Hassan, Rosline; Nasir, Ariffin

    2011-09-01

    This comparative cross-sectional study was conducted in the pediatric daycare unit, Hospital Universiti Sains Malaysia to determine the prevalence of craniofacial deformities (CFD) and the association between these deformities and different clinical presentations among thalassemia patients. Patients were classified as either craniofacial deformity positive (CFD+) or craniofacial deformity negative (CFD-) by two examiners based on the presence or absence of deformity of the cheeks, frontal and/or maxillary bones. Fifteen clinical parameters were compared between the groups. Nineteen out of 43 patients (44.2%; confidence interval, 30.2-58.2%) had craniofacial deformities (CFD+). Both groups were comparable among the clinical parameters studied. Patients in the CFD+ group did not start their blood transfusions significantly earlier than the CFD- group (p = 0.50) and had a nonsignificantly lower mean pretransfusion hemoglobin level than the CFD- group (p = 0.71). Patients receiving regular monthly blood transfusions had a nonsignificantly smaller percentage of CFD than those transfused less often (p = 0.495). CFD+ patients had a splenectomy at a nonsignificantly younger age than CFD- patients (p = 0.36). HbE/beta thalassemia patients were not significantly less likely to develop CFD than other varieties (p = 0.50) and males had a nonsignificantly higher percentage of CFD than females (p = 0.29). This study shows CFD in thalassemia patients are still prevalent but no significant associated factors were found; however, a nonsignificantly higher prevalence of CFD was observed in patients with signs of severe disease and less efficient treatment. PMID:22299450

  8. Caries management by risk assessment in a cleft and craniofacial center.

    PubMed

    Gaudilliere, Dyani; Thakur, Yogita; Ku, Manwai; Kaur, Ankita; Shrestha, Puja; Girod, Sabine C

    2014-11-01

    Patients with craniofacial anomalies have an increased incidence of dental caries. The prevention program "Caries Management By Risk Assessment" (CAMBRA) has been previously validated but has not yet been introduced at a widespread level in a medical setting, particularly for this high-risk population.In this cross-sectional study, we aimed to evaluate the feasibility of implementing CAMBRA during the medical visit at an institutional tertiary care center, which treats children with craniofacial anomalies. The study included 161 participants aged 1 to 18 years. Patients and parents received a personalized educational session, toothbrushing tutorial, and fluoride varnish application. We assessed the prevalence of dental caries, caries risk factors, and knowledge of oral hygiene in this patient population.The overall caries prevalence in this group was higher than average (57% compared with 42%, according to the Centers for Disease Control and Prevention). The most prevalent risk factors were developmental delay, deep pits/fissures, low socioeconomic status, orthodontic appliances, and carbohydrate snacks. The greatest predictors of dental caries were having 1 or more risk factors and having low socioeconomic status. In summary, children with craniofacial anomalies were at high risk for dental caries, with high rates of risk factors and low rates of preventive factors.Our findings revealed that basic oral hygiene standards are not being met in this high-risk population, highlighting the need for implementation of protocols such as CAMBRA. The results of this study can aid healthcare workers in craniofacial centers and children's hospitals to improve the understanding of oral hygiene and dental care of their patients. PMID:25377980

  9. Quantitative Comparison of Volume Maintenance between Inlay and Onlay Bone Grafts in the Craniofacial Skeleton

    PubMed Central

    Sugg, Kristoffer B.; Rosenthal, Andrew H.; Ozaki, Wayne; Buchman, Steven R.

    2015-01-01

    Background Nonvascularized autologous bone grafts are the criterion standard in craniofacial reconstruction for bony defects involving the craniofacial skeleton. The authors have previously demonstrated that graft microarchitecture is the major determinant of volume maintenance for both inlay and onlay bone grafts following transplantation. This study performs a head-to-head quantitative analysis of volume maintenance between inlay and onlay bone grafts in the craniofacial skeleton using a rabbit model to comparatively determine their resorptive kinetics over time. Methods Fifty rabbits were divided randomly into six experimental groups: 3-week inlay, 3-week onlay, 8-week inlay, 8-week onlay, 16-week inlay, and 16-week onlay. Cortical bone from the lateral mandible and both cortical and cancellous bone from the ilium were harvested from each animal and placed either in or on the cranium. All bone grafts underwent micro–computed tomographic analysis at 3, 8, and 16 weeks. Results All bone graft types in the inlay position increased their volume over time, with the greatest increase in endochondral cancellous bone. All bone graft types in the onlay position decreased their volume over time, with the greatest decrease in endochondral cancellous bone. Inlay bone grafts demonstrated increased volume compared with onlay bone grafts of identical embryologic origin and microarchitecture at all time points (p < 0.05). Conclusions Inlay bone grafts, irrespective of their embryologic origin, consistently display less resorption over time compared with onlay bone grafts in the craniofacial skeleton. Both inlay and onlay bone grafts are driven by the local mechanical environment to recapitulate the recipient bed. PMID:23629083

  10. Mapping of Craniofacial Traits in Outbred Mice Identifies Major Developmental Genes Involved in Shape Determination

    PubMed Central

    Pallares, Luisa F.; Carbonetto, Peter; Gopalakrishnan, Shyam; Parker, Clarissa C.; Ackert-Bicknell, Cheryl L.; Palmer, Abraham A.; Tautz, Diethard

    2015-01-01

    The vertebrate cranium is a prime example of the high evolvability of complex traits. While evidence of genes and developmental pathways underlying craniofacial shape determination is accumulating, we are still far from understanding how such variation at the genetic level is translated into craniofacial shape variation. Here we used 3D geometric morphometrics to map genes involved in shape determination in a population of outbred mice (Carworth Farms White, or CFW). We defined shape traits via principal component analysis of 3D skull and mandible measurements. We mapped genetic loci associated with shape traits at ~80,000 candidate single nucleotide polymorphisms in ~700 male mice. We found that craniofacial shape and size are highly heritable, polygenic traits. Despite the polygenic nature of the traits, we identified 17 loci that explain variation in skull shape, and 8 loci associated with variation in mandible shape. Together, the associated variants account for 11.4% of skull and 4.4% of mandible shape variation, however, the total additive genetic variance associated with phenotypic variation was estimated in ~45%. Candidate genes within the associated loci have known roles in craniofacial development; this includes 6 transcription factors and several regulators of bone developmental pathways. One gene, Mn1, has an unusually large effect on shape variation in our study. A knockout of this gene was previously shown to affect negatively the development of membranous bones of the cranial skeleton, and evolutionary analysis shows that the gene has arisen at the base of the bony vertebrates (Eutelostomi), where the ossified head first appeared. Therefore, Mn1 emerges as a key gene for both skull formation and within-population shape variation. Our study shows that it is possible to identify important developmental genes through genome-wide mapping of high-dimensional shape features in an outbred population. PMID:26523602

  11. Surgical Classification of the Mandibular Deformity in Craniofacial Microsomia Using 3-Dimensional Computed Tomography

    PubMed Central

    Swanson, Jordan W.; Mitchell, Brianne T.; Wink, Jason A.; Taylor, Jesse A.

    2016-01-01

    Background: Grading systems of the mandibular deformity in craniofacial microsomia (CFM) based on conventional radiographs have shown low interrater reproducibility among craniofacial surgeons. We sought to design and validate a classification based on 3-dimensional CT (3dCT) that correlates features of the deformity with surgical treatment. Methods: CFM mandibular deformities were classified as normal (T0), mild (hypoplastic, likely treated with orthodontics or orthognathic surgery; T1), moderate (vertically deficient ramus, likely treated with distraction osteogenesis; T2), or severe (ramus rudimentary or absent, with either adequate or inadequate mandibular body bone stock; T3 and T4, likely treated with costochondral graft or free fibular flap, respectively). The 3dCT face scans of CFM patients were randomized and then classified by craniofacial surgeons. Pairwise agreement and Fleiss' κ were used to assess interrater reliability. Results: The 3dCT images of 43 patients with CFM (aged 0.1–15.8 years) were reviewed by 15 craniofacial surgeons, representing an average 15.2 years of experience. Reviewers demonstrated fair interrater reliability with average pairwise agreement of 50.4 ± 9.9% (Fleiss' κ = 0.34). This represents significant improvement over the Pruzansky–Kaban classification (pairwise agreement, 39.2%; P = 0.0033.) Reviewers demonstrated substantial interrater reliability with average pairwise agreement of 83.0 ± 7.6% (κ = 0.64) distinguishing deformities requiring graft or flap reconstruction (T3 and T4) from others. Conclusion: The proposed classification, designed for the era of 3dCT, shows improved consensus with respect to stratifying the severity of mandibular deformity and type of operative management. PMID:27104097

  12. Genomic factors that shape craniofacial outcome and neural crest vulnerability in FASD

    PubMed Central

    Smith, Susan M.; Garic, Ana; Berres, Mark E.; Flentke, George R.

    2014-01-01

    Prenatal alcohol exposure (PAE) causes distinctive facial characteristics in some pregnancies and not others; genetic factors may contribute to this differential vulnerability. Ethanol disrupts multiple events of neural crest development, including induction, survival, migration, and differentiation. Animal models and genomic approaches have substantially advanced our understanding of the mechanisms underlying these facial changes. PAE during gastrulation produces craniofacial changes corresponding with human fetal alcohol syndrome. These result because PAE reduces prechordal plate extension and suppresses sonic hedgehog, leading to holoprosencephaly and malpositioned facial primordia. Haploinsufficiency in sonic hedgehog signaling increases vulnerability to facial deficits and may influence some PAE pregnancies. In contrast, PAE during early neurogenesis produces facial hypoplasia, preceded by neural crest reductions due to significant apoptosis. Factors mediating this apoptosis include intracellular calcium mobilization, elevated reactive oxygen species, and loss of trophic support from β-catenin/calcium, sonic hedgehog, and mTOR signaling. Genome-wide SNP analysis links PDGFRA with facial outcomes in human PAE. Multiple genomic-level comparisons of ethanol-sensitive and – resistant early embryos, in both mouse and chick, independently identify common candidate genes that may potentially modify craniofacial vulnerability, including ribosomal proteins, proteosome, RNA splicing, and focal adhesion. In summary, research using animal models with genome-level differences in ethanol vulnerability, as well as targeted loss-and gain-of-function mutants, has clarified the mechanisms mediating craniofacial change in PAE. The findings additionally suggest that craniofacial deficits may represent a gene–ethanol interaction for some affected individuals. Genetic-level changes may prime individuals toward greater sensitivity or resistance to ethanol’s neurotoxicity

  13. Pdgfra protects against ethanol-induced craniofacial defects in a zebrafish model of FASD.

    PubMed

    McCarthy, Neil; Wetherill, Leah; Lovely, C Ben; Swartz, Mary E; Foroud, Tatiana M; Eberhart, Johann K

    2013-08-01

    Human birth defects are highly variable and this phenotypic variability can be influenced by both the environment and genetics. However, the synergistic interactions between these two variables are not well understood. Fetal alcohol spectrum disorders (FASD) is the umbrella term used to describe the wide range of deleterious outcomes following prenatal alcohol exposure. Although FASD are caused by prenatal ethanol exposure, FASD are thought to be genetically modulated, although the genes regulating sensitivity to ethanol teratogenesis are largely unknown. To identify potential ethanol-sensitive genes, we tested five known craniofacial mutants for ethanol sensitivity: cyp26b1, gata3, pdgfra, smad5 and smoothened. We found that only platelet-derived growth factor receptor alpha (pdgfra) interacted with ethanol during zebrafish craniofacial development. Analysis of the PDGF family in a human FASD genome-wide dataset links PDGFRA to craniofacial phenotypes in FASD, prompting a mechanistic understanding of this interaction. In zebrafish, untreated pdgfra mutants have cleft palate due to defective neural crest cell migration, whereas pdgfra heterozygotes develop normally. Ethanol-exposed pdgfra mutants have profound craniofacial defects that include the loss of the palatal skeleton and hypoplasia of the pharyngeal skeleton. Furthermore, ethanol treatment revealed latent haploinsufficiency, causing palatal defects in ∼62% of pdgfra heterozygotes. Neural crest apoptosis partially underlies these ethanol-induced defects in pdgfra mutants, demonstrating a protective role for Pdgfra. This protective role is mediated by the PI3K/mTOR pathway. Collectively, our results suggest a model where combined genetic and environmental inhibition of PI3K/mTOR signaling leads to variability within FASD. PMID:23861062

  14. Pdgfra protects against ethanol-induced craniofacial defects in a zebrafish model of FASD

    PubMed Central

    McCarthy, Neil; Wetherill, Leah; Lovely, C. Ben; Swartz, Mary E.; Foroud, Tatiana M.; Eberhart, Johann K.

    2013-01-01

    Human birth defects are highly variable and this phenotypic variability can be influenced by both the environment and genetics. However, the synergistic interactions between these two variables are not well understood. Fetal alcohol spectrum disorders (FASD) is the umbrella term used to describe the wide range of deleterious outcomes following prenatal alcohol exposure. Although FASD are caused by prenatal ethanol exposure, FASD are thought to be genetically modulated, although the genes regulating sensitivity to ethanol teratogenesis are largely unknown. To identify potential ethanol-sensitive genes, we tested five known craniofacial mutants for ethanol sensitivity: cyp26b1, gata3, pdgfra, smad5 and smoothened. We found that only platelet-derived growth factor receptor alpha (pdgfra) interacted with ethanol during zebrafish craniofacial development. Analysis of the PDGF family in a human FASD genome-wide dataset links PDGFRA to craniofacial phenotypes in FASD, prompting a mechanistic understanding of this interaction. In zebrafish, untreated pdgfra mutants have cleft palate due to defective neural crest cell migration, whereas pdgfra heterozygotes develop normally. Ethanol-exposed pdgfra mutants have profound craniofacial defects that include the loss of the palatal skeleton and hypoplasia of the pharyngeal skeleton. Furthermore, ethanol treatment revealed latent haploinsufficiency, causing palatal defects in ∼62% of pdgfra heterozygotes. Neural crest apoptosis partially underlies these ethanol-induced defects in pdgfra mutants, demonstrating a protective role for Pdgfra. This protective role is mediated by the PI3K/mTOR pathway. Collectively, our results suggest a model where combined genetic and environmental inhibition of PI3K/mTOR signaling leads to variability within FASD. PMID:23861062

  15. Genomic factors that shape craniofacial outcome and neural crest vulnerability in FASD.

    PubMed

    Smith, Susan M; Garic, Ana; Berres, Mark E; Flentke, George R

    2014-01-01

    Prenatal alcohol exposure (PAE) causes distinctive facial characteristics in some pregnancies and not others; genetic factors may contribute to this differential vulnerability. Ethanol disrupts multiple events of neural crest development, including induction, survival, migration, and differentiation. Animal models and genomic approaches have substantially advanced our understanding of the mechanisms underlying these facial changes. PAE during gastrulation produces craniofacial changes corresponding with human fetal alcohol syndrome. These result because PAE reduces prechordal plate extension and suppresses sonic hedgehog, leading to holoprosencephaly and malpositioned facial primordia. Haploinsufficiency in sonic hedgehog signaling increases vulnerability to facial deficits and may influence some PAE pregnancies. In contrast, PAE during early neurogenesis produces facial hypoplasia, preceded by neural crest reductions due to significant apoptosis. Factors mediating this apoptosis include intracellular calcium mobilization, elevated reactive oxygen species, and loss of trophic support from β-catenin/calcium, sonic hedgehog, and mTOR signaling. Genome-wide SNP analysis links PDGFRA with facial outcomes in human PAE. Multiple genomic-level comparisons of ethanol-sensitive and - resistant early embryos, in both mouse and chick, independently identify common candidate genes that may potentially modify craniofacial vulnerability, including ribosomal proteins, proteosome, RNA splicing, and focal adhesion. In summary, research using animal models with genome-level differences in ethanol vulnerability, as well as targeted loss-and gain-of-function mutants, has clarified the mechanisms mediating craniofacial change in PAE. The findings additionally suggest that craniofacial deficits may represent a gene-ethanol interaction for some affected individuals. Genetic-level changes may prime individuals toward greater sensitivity or resistance to ethanol's neurotoxicity. PMID

  16. Cichlid fishes as a model to understand normal and clinical craniofacial variation.

    PubMed

    Powder, Kara E; Albertson, R Craig

    2016-07-15

    We have made great strides towards understanding the etiology of craniofacial disorders, especially for 'simple' Mendelian traits. However, the facial skeleton is a complex trait, and the full spectrum of genetic, developmental, and environmental factors that contribute to its final geometry remain unresolved. Forward genetic screens are constrained with respect to complex traits due to the types of genes and alleles commonly identified, developmental pleiotropy, and limited information about the impact of environmental interactions. Here, we discuss how studies in an evolutionary model - African cichlid fishes - can complement traditional approaches to understand the genetic and developmental origins of complex shape. Cichlids exhibit an unparalleled range of natural craniofacial morphologies that model normal human variation, and in certain instances mimic human facial dysmorphologies. Moreover, the evolutionary history and genomic architecture of cichlids make them an ideal system to identify the genetic basis of these phenotypes via quantitative trait loci (QTL) mapping and population genomics. Given the molecular conservation of developmental genes and pathways, insights from cichlids are applicable to human facial variation and disease. We review recent work in this system, which has identified lbh as a novel regulator of neural crest cell migration, determined the Wnt and Hedgehog pathways mediate species-specific bone morphologies, and examined how plastic responses to diet modulate adult facial shapes. These studies have not only revealed new roles for existing pathways in craniofacial development, but have identified new genes and mechanisms involved in shaping the craniofacial skeleton. In all, we suggest that combining work in traditional laboratory and evolutionary models offers significant potential to provide a more complete and comprehensive picture of the myriad factors that are involved in the development of complex traits. PMID:26719128

  17. Reconstruction of craniofacial image using rational cubic Ball interpolant and soft computing technique

    NASA Astrophysics Data System (ADS)

    Majeed, Abdul; Piah, Abd Rahni Mt

    2015-10-01

    Spline has been used extensively in engineering design and modelling for representation, analysis and manufacturing purposes. This paper presents an application of spline methods in bio-medical modelling. We reconstruct craniofacial fractured skull bone images using rational cubic Ball interpolant with two free parameters. The free parameters are optimized with the help of genetic algorithm. Our emphasis is placed on the accuracy and smoothness of the reconstructed images.

  18. A combined series of Fgf9 and Fgf18 mutant alleles identifies unique and redundant roles in skeletal development.

    PubMed

    Hung, Irene H; Schoenwolf, Gary C; Lewandoski, Mark; Ornitz, David M

    2016-03-01

    Fibroblast growth factor (FGF) signaling is a critical regulator of skeletal development. Fgf9 and Fgf18 are the only FGF ligands with identified functions in embryonic bone growth. Mice lacking Fgf9 or Fgf18 have distinct skeletal phenotypes; however, the extent of overlapping or redundant functions for these ligands and the stage-specific contributions of FGF signaling to chondrogenesis and osteogenesis are not known. To identify separate versus shared roles for FGF9 and FGF18, we generated a combined series of Fgf9 and Fgf18 null alleles. Analysis of embryos lacking alleles of Fgf9 and Fgf18 shows that both encoded ligands function redundantly to control all stages of skeletogenesis; however, they have variable potencies along the proximodistal limb axis, suggesting gradients of activity during formation of the appendicular skeleton. Congenital absence of both Fgf9 and Fgf18 results in a striking osteochondrodysplasia and revealed functions for FGF signaling in early proximal limb chondrogenesis. Additional defects were also noted in craniofacial bones, vertebrae, and ribs. Loss of alleles of Fgf9 and Fgf18 also affect the expression of genes encoding other key intrinsic skeletal regulators, including IHH, PTHLH (PTHrP), and RUNX2, revealing potential direct, indirect, and compensatory mechanisms to coordinate chondrogenesis and osteogenesis. PMID:26794256

  19. Uncoupling of chondrocyte differentiation and perichondrial mineralization underlies the skeletal dysplasia in tricho-rhino-phalangeal syndrome

    PubMed Central

    Napierala, Dobrawa; Sam, Kathy; Morello, Roy; Zheng, Qiping; Munivez, Elda; Shivdasani, Ramesh A.; Lee, Brendan

    2008-01-01

    Tricho-rhino-phalangeal syndrome (TRPS) is an autosomal dominant craniofacial and skeletal dysplasia that is caused by mutations involving the TRPS1 gene. Patients with TRPS have short stature, hip abnormalities, cone-shaped epiphyses and premature closure of growth plates reflecting defects in endochondral ossification. The TRPS1 gene encodes for the transcription factor TRPS1 that has been demonstrated to repress transcription in vitro. To elucidate the molecular mechanisms underlying skeletal abnormalities in TRPS, we analyzed Trps1 mutant mice (Trps1ΔGT mice). Analyses of growth plates demonstrated delayed chondrocyte differentiation and accelerated mineralization of perichondrium in Trps1 mutant mice. These abnormalities were accompanied by increased Runx2 and Ihh expression and increased Indian hedgehog signaling. We demonstrated that Trps1 physically interacts with Runx2 and represses Runx2-mediated trans-activation. Importantly, generation of Trps1ΔGT/+;Runx2+/− double heterozygous mice rescued the opposite growth plate phenotypes of single mutants, demonstrating the genetic interaction between Trps1 and Runx2 transcription factors. Collectively, these data suggest that skeletal dysplasia in TRPS is caused by dysregulation of chondrocyte and perichondrium development partially due to loss of Trps1 repression of Runx2. PMID:18424451

  20. Skeletal Muscle Hypertrophy after Aerobic Exercise Training

    PubMed Central

    Konopka, Adam R.; Harber, Matthew P.

    2014-01-01

    Current dogma suggests aerobic exercise training has minimal effect on skeletal muscle size. We and others have demonstrated that aerobic exercise acutely and chronically alters protein metabolism and induces skeletal muscle hypertrophy. These findings promote an antithesis to the status quo by providing novel perspective on skeletal muscle mass regulation and insight into exercise-countermeasures for populations prone to muscle loss. PMID:24508740

  1. The Popeye domain containing 2 (popdc2) gene in zebrafish is required for heart and skeletal muscle development

    PubMed Central

    Kirchmaier, Bettina C.; Poon, Kar Lai; Schwerte, Thorsten; Huisken, Jan; Winkler, Christoph; Jungblut, Benno; Stainier, Didier Y.; Brand, Thomas

    2013-01-01

    The Popeye domain containing (Popdc) genes encode a family of transmembrane proteins with an evolutionary conserved Popeye domain. These genes are abundantly expressed in striated muscle tissue, however their function is not well understood. In this study we have investigated the role of the popdc2 gene in zebrafish. Popdc2 transcripts were detected in the embryonic myocardium and transiently in the craniofacial and tail musculature. Morpholino oligonucleotide-mediated knockdown of popdc2 resulted in aberrant development of skeletal muscle and heart. Muscle segments in the trunk were irregularly shaped and craniofacial muscles were severely reduced or even missing. In the heart, pericardial edema was prevalent in the morphants and heart chambers were elongated and looping was abnormal. These pathologies in muscle and heart were alleviated after reducing the morpholino concentration. However the heart still was abnormal displaying cardiac arrhythmia at later stages of development. Optical recordings of cardiac contractility revealed irregular ventricular contractions with a 2:1, or 3:1 atrial/ventricular conduction ratio, which caused a significant reduction in heart frequency. Recordings of calcium transients with high spatiotemporal resolution using a transgenic calcium indicator line (Tg(cmlc2:gCaMP)s878) and SPIM microscopy confirmed the presence of a severe arrhythmia phenotype. Our results identify popdc2 as a gene important for striated muscle differentiation and cardiac morphogenesis. In addition it is required for the development of the cardiac conduction system. PMID:22290329

  2. CT and MR Imaging in a Large Series of Patients with Craniofacial Fibrous Dysplasia

    PubMed Central

    Atalar, Mehmet Haydar; Salk, Ismail; Savas, Recep; Uysal, Ismail Onder; Egilmez, Hulusi

    2015-01-01

    Summary Background In this retrospective review of patients with craniofacial fibrous dysplasia (FD), the clinical and radiological findings of CT and MR scan were analyzed. Material/Methods The study material included 32 patients, at 9 to 68 years of age that were directed for differential diagnostics of several disorders in the head. We recorded CT and MRI data related to the lesion number, location, sidedness, appearance, and sex of the cases with craniofacial FD. Results Of 32 patients involved in this study, 17 had monostotic and 15 had polyostotic involvement pattern. Bones most commonly involved by monostotic involvement in females were, in descending order, mandibular, maxillary, and sphenoid bones, while the sphenoid bone was involved the most in males. Leontiasis ossea was observed in 2 patients. Sclerotic and mixed lesion types were more common in both females and males. In T1- and T2-weighted MRI sequences, hypointensity was more common compared to hyperintensity or heterogeneous intensity. The type of enhancement of lesions was found similar after contrast medium administration. Conclusions In the presence of craniofacial FD during CT or MRI imaging of the head, a detailed description of FD lesions may provide an important clinical benefit by increasing radiological experience during the diagnostics of this rare disorder. PMID:26000068

  3. Bioabsorbable plates and screws in pediatric craniofacial surgery: a review of 22 cases.

    PubMed

    Kumar, A V; Staffenberg, D A; Petronio, J A; Wood, R J

    1997-03-01

    The purpose of this study was to evaluate the application of bioabsorbable fixation devices in reconstructive craniofacial procedures in the pediatric population. We reviewed 22 cases in which bioabsorbable plates and screws were used in craniofacial surgery for reconstruction. The procedures were performed in a 7-month period. The patients ranged in age from 5 to 228 months at the time of surgery (mean, 76.7 months). The postoperative clinical follow-up ranged from 2 to 16 weeks. The fixation devices were evaluated with regards to satisfactory fixation at the time of procedure. The postoperative follow-up evaluated clinical wound healing, signs of infection or local inflammation, and visibility or palpability of plates through the skin. All patients except one showed satisfactory wound healing with no sign of infection or local inflammation. The plates provided satisfactory fixation and were not visible through the skin. Two patients had plates that were palpable at the 4-month follow-up period. One patient with repair of a blow-out fracture of the orbit with resorbable mesh had redness and swelling over the wound site 2 weeks postoperatively with resolution 4 weeks postoperatively. Our early experience suggests reabsorbable fixation is an attractive option in pediatric plastic and craniofacial surgery. With further experience, this technology may represent the standard of care in reconstruction of the infant calvarium. PMID:10332274

  4. Interaction between otorhinolaryngology and orthodontics: correlation between the nasopharyngeal airway and the craniofacial complex

    PubMed Central

    Stellzig-Eisenhauer, Angelika; Meyer-Marcotty, Philipp

    2011-01-01

    In terms of pathophysiology, an anatomically narrow airway is a predisposing factor for obstruction of the upper respiratory tract. The correlation between the nasopharyngeal airway and the craniofacial structures is discussed in this context. Thus a mutual interaction between the pharynx and the mandibular position was demonstrated, whereby the transverse dimension of the nasopharynx was significantly larger in patients with prognathism than in patients with retrognathism. The influence of chronic obstruction of the nasal airway on craniofacial development was also discussed. The form-and-function interaction, which ought to explain the causal relationship between nasal obstruction and craniofacial growth, appears to be of a multifactorial rather than a one-dimensional, linear nature. It is not disputed, however, that expanding the maxilla improves not only nasal volume and nasal flow, but also the subjective sensation of patients, although it is not possible to make a prognostic statement about the extent of this improvement because of the differing reactions of individuals. Orthodontic appliances for advancing the mandible can also be successfully used in the treatment of mild obstructive sleep apnea syndrome. This treatment method should be considered particularly for patients who are unwilling to undergo or cannot tolerate CPAP (continuous positive airway pressure) treatment. PMID:22073108

  5. Indications for Computer-Aided Design and Manufacturing in Congenital Craniofacial Reconstruction.

    PubMed

    Fisher, Mark; Medina, Miguel; Bojovic, Branko; Ahn, Edward; Dorafshar, Amir H

    2016-09-01

    The complex three-dimensional relationships in congenital craniofacial reconstruction uniquely lend themselves to the ability to accurately plan and model the result provided by computer-aided design and manufacturing (CAD/CAM). The goal of this study was to illustrate indications where CAD/CAM would be helpful in the treatment of congenital craniofacial anomalies reconstruction and to discuss the application of this technology and its outcomes. A retrospective review was performed of all congenital craniofacial cases performed by the senior author between 2010 and 2014. Cases where CAD/CAM was used were identified, and illustrative cases to demonstrate the benefits of CAD/CAM were selected. Preoperative appearance, computerized plan, intraoperative course, and final outcome were analyzed. Preoperative planning enabled efficient execution of the operative plan with predictable results. Risk factors which made these patients good candidates for CAD/CAM were identified and compiled. Several indications, including multisuture and revisional craniosynostosis, facial bipartition, four-wall box osteotomy, reduction cranioplasty, and distraction osteogenesis could benefit most from this technology. We illustrate the use of CAD/CAM for these applications and describe the decision-making process both before and during surgery. We explore why we believe that CAD/CAM is indicated in these scenarios as well as the disadvantages and risks. PMID:27516839

  6. Analysis of the upper massif of the craniofacial with the radial method – practical use

    PubMed Central

    Lepich, Tomasz; Dąbek, Józefa; Stompel, Daniel; Gielecki, Jerzy S.

    2011-01-01

    Introduction The analysis of the upper massif of the craniofacial (UMC) is widely used in many fields of science. The aim of the study was to create a high resolution computer system based on a digital information record and on vector graphics, that could enable dimension measuring and evaluation of craniofacial shape using the radial method. Material and methods The study was carried out on 184 skulls, in a good state of preservation, from the early middle ages. The examined skulls were fixed into Molisson's craniostat in the author's own modification. They were directed in space towards the Frankfurt plane and photographed in frontal norm with a digital camera. The parameters describing the plane and dimensional structure of the UMC and orbits were obtained thanks to the computer analysis of the function recordings picturing the craniofacial structures and using software combining raster graphics with vector graphics. Results It was compared mean values of both orbits separately for male and female groups. In female skulls the comparison of the left and right side did not show statistically significant differences. In male group, higher values were observed for the right side. Only the circularity index presented higher values for the left side. Conclusions Computer graphics with the software used for analysing digital pictures of UMC and orbits increase the precision of measurements as well as the calculation possibilities. Recognition of the face in the post mortem examination is crucial for those working on identification in anthropology and criminology laboratories. PMID:22291834

  7. The Partnership of Medical Genetics and Oral and Maxillofacial Surgery When Evaluating Craniofacial Anomalies.

    PubMed

    Lin, Angela E

    2015-12-01

    A medical geneticist who has an interest in craniofacial anomalies forms a natural partnership with an oral and maxillofacial surgeon, which facilitates patient care. Using complementary diagnostic and therapeutic skills, the search for a recognizable pattern can lead to a syndrome diagnosis. After the initial examination, there is usually genetic testing to confirm the clinical diagnosis. Once established, care coordination and genetic counseling can be provided for the parents and the patient. Enrolling the patient into a research study could be helpful to understand the diagnosis but, in some circumstances, might not have immediate clinical relevance. A multidisciplinary craniofacial team is generally necessary for long-term management. This article discusses illustrative patients evaluated from 2007 through 2011 with the senior oral and maxillofacial surgeon at the Massachusetts General Hospital (Leonard B. Kaban, DMD, MD). These include single patients with the Nablus mask-like facies syndrome and auriculo-condylar syndrome and a series of 20 patients with Gorlin syndrome followed by a multispecialty team. A successful collaboration between a medical geneticist and an oral and maxillofacial surgeon optimizes the treatment of patients with craniofacial anomalies. PMID:26608141

  8. Lyophilized platelet-rich fibrin (PRF) promotes craniofacial bone regeneration through Runx2.

    PubMed

    Li, Qi; Reed, David A; Min, Liu; Gopinathan, Gokul; Li, Steve; Dangaria, Smit J; Li, Leo; Geng, Yajun; Galang, Maria-Therese; Gajendrareddy, Praveen; Zhou, Yanmin; Luan, Xianghong; Diekwisch, Thomas G H

    2014-01-01

    Freeze-drying is an effective means to control scaffold pore size and preserve its composition. The purpose of the present study was to determine the applicability of lyophilized Platelet-rich fibrin (LPRF) as a scaffold for craniofacial tissue regeneration and to compare its biological effects with commonly used fresh Platelet-rich fibrin (PRF). LPRF caused a 4.8-fold±0.4-fold elevation in Runt-related transcription factor 2 (Runx2) expression in alveolar bone cells, compared to a 3.6-fold±0.2-fold increase when using fresh PRF, and a more than 10-fold rise of alkaline phosphatase levels and mineralization markers. LPRF-induced Runx2 expression only occurred in alveolar bone and not in periodontal or dental follicle cells. LPRF also caused a 1.6-fold increase in osteoblast proliferation (p<0.001) when compared to fresh PRF. When applied in a rat craniofacial defect model for six weeks, LPRF resulted in 97% bony coverage of the defect, compared to 84% for fresh PRF, 64% for fibrin, and 16% without scaffold. Moreover, LPRF thickened the trabecular diameter by 25% when compared to fresh PRF and fibrin, and only LPRF and fresh PRF resulted in the formation of interconnected trabeculae across the defect. Together, these studies support the application of lyophilized PRF as a biomimetic scaffold for craniofacial bone regeneration and mineralized tissue engineering. PMID:24830554

  9. A role for chemokine signaling in neural crest cell migration and craniofacial development

    PubMed Central

    Killian, Eugenia C. Olesnicky; Birkholz, Denise A.; Artinger, Kristin Bruk

    2009-01-01

    Neural crest cells (NCCs) are a unique population of multipotent cells that migrate along defined pathways throughout the embryo and give rise to many diverse cell types including pigment cells, craniofacial cartilage and the peripheral nervous system (PNS). Aberrant migration of NCCs results in a wide variety of congenital birth defects including craniofacial abnormalities. The chemokine Sdf1 and its receptors, Cxcr4 and Cxcr7, have been identified as key components in the regulation of cell migration in a variety of tissues. Here we describe a novel role for the zebrafish chemokine receptor Cxcr4a in the development and migration of cranial NCCs (CNCCs). We find that loss of Cxcr4a, but not Cxcr7b results in aberrant CNCC migration, defects in the neurocranium, as well as cranial ganglia dismorphogenesis. Moreover, overexpression of either Sdf1b or Cxcr4a causes aberrant CNCC migration and results in ectopic craniofacial cartilages. We propose a model in which Sdf1b signaling from the pharyngeal arch endoderm and optic stalk to Cxcr4a expressing CNCCs is important for both the proper condensation of the CNCCs into pharyngeal arches and the subsequent patterning and morphogenesis of the neural crest derived tissues. PMID:19576198

  10. Lyophilized Platelet-Rich Fibrin (PRF) Promotes Craniofacial Bone Regeneration through Runx2

    PubMed Central

    Li, Qi; Reed, David A.; Min, Liu; Gopinathan, Gokul; Li, Steve; Dangaria, Smit J.; Li, Leo; Geng, Yajun; Galang, Maria-Therese; Gajendrareddy, Praveen; Zhou, Yanmin; Luan, Xianghong; Diekwisch, Thomas G. H.

    2014-01-01

    Freeze-drying is an effective means to control scaffold pore size and preserve its composition. The purpose of the present study was to determine the applicability of lyophilized Platelet-rich fibrin (LPRF) as a scaffold for craniofacial tissue regeneration and to compare its biological effects with commonly used fresh Platelet-rich fibrin (PRF). LPRF caused a 4.8-fold ± 0.4-fold elevation in Runt-related transcription factor 2 (Runx2) expression in alveolar bone cells, compared to a 3.6-fold ± 0.2-fold increase when using fresh PRF, and a more than 10-fold rise of alkaline phosphatase levels and mineralization markers. LPRF-induced Runx2 expression only occurred in alveolar bone and not in periodontal or dental follicle cells. LPRF also caused a 1.6-fold increase in osteoblast proliferation (p < 0.001) when compared to fresh PRF. When applied in a rat craniofacial defect model for six weeks, LPRF resulted in 97% bony coverage of the defect, compared to 84% for fresh PRF, 64% for fibrin, and 16% without scaffold. Moreover, LPRF thickened the trabecular diameter by 25% when compared to fresh PRF and fibrin, and only LPRF and fresh PRF resulted in the formation of interconnected trabeculae across the defect. Together, these studies support the application of lyophilized PRF as a biomimetic scaffold for craniofacial bone regeneration and mineralized tissue engineering. PMID:24830554

  11. Three-dimensional spiral CT for craniofacial surgical planning and evaluation

    NASA Astrophysics Data System (ADS)

    Cavalcanti, Marcelo G.; Vannier, Michael W.

    1998-06-01

    Purpose: To evaluate measurement accuracy of 3D volumetric medical imaging from Spiral CT for craniofacial surgical planing. Material and methods: The study population consisted of 5 cadaver heads that were imaged on a spiral CT scanner with volumetric technique high-resolution contiguous axial slices 3mm thickness and 2mm/sec table feed, with 120Kvp and 200 mA. The archived CT data were stored on optical disks to allow full retrospective review of any image. The data sets were transferred to a networked computer workstation, to generated 3D volumetric images for subsequent manipulation and analyses. The computer graphics workstation allowed to do measurements, based on conventional craniometric anatomic landmarks, by 2 observers with 2 sessions each. The specimens were then submitted to a dynamic blunt force, in an effort to simulate craniofacial fractures, scanned and measured again. The soft tissues were then partially subsequently removed and the measurements were repeated by electromagnetic digitizer. Statistical analysis was done using analysis of variance. Results: Measurements from 3D spiral CT scans can be precise with high repeatability and sufficient accuracy for surgical planing. Conclusion: 3D computer graphics by spiral CT allowed, in vitro, sufficient precision for assessment of surgical management. Digital volumetric spiral CT imaging is valid quantitatively and qualitatively for craniofacial surgical planning and evaluation.

  12. Inheritance of craniofacial features in Colombian families with class III malocclusion

    PubMed Central

    Otero, L; Quintero, L; Champsaur, D; Simanca, E

    2010-01-01

    Introduction The inheritance of class III malocclusion has been well documented, but the inheritance of craniofacial structures in Colombian families with this malocclusion has been not yet reported. Patients and methods The study sample of 25 families comprised 186 untreated orthodontic individuals from 8 to 60 years old. Pedigrees were drawn using Cyrillic software. Complete family histories for each proband were ascertained and the affection status of relatives was confirmed by lateral cephalograms and facial and dental photographs. Analysis of variance and odds ratio test for each parameter was performed to estimate inheritance from parents to offspring and to determine similar phenotypic features in relatives. Results The analysis of the pedigrees suggests autosomal dominant inheritance. The craniofacial characteristics that showed more resemblance between parents and offspring were middle facial height, shorter anterior cranial base and mandibular prognathism. In contrast the protrusion of upper lip and maxillary retrusion were the phenotypic features that contributed to class III in the majority of families. Conclusion Knowledge of the inheritance of craniofacial phenotypes in class III malocclusion will enable the design of new therapies to treat this malocclusion. PMID:23776347

  13. Neural Crest-Specific TSC1 Deletion in Mice Leads to Sclerotic Craniofacial Bone Lesion.

    PubMed

    Fang, Fang; Sun, Shaogang; Wang, Li; Guan, Jun-Lin; Giovannini, Marco; Zhu, Yuan; Liu, Fei

    2015-07-01

    Tuberous sclerosis complex (TSC) is an autosomal dominant disorder caused by mutations in either TSC1 or TSC2. TSC has high frequency of osseous manifestations such as sclerotic lesions in the craniofacial region. However, an animal model that replicates TSC craniofacial bone lesions has not yet been described. The roles of Tsc1 and the sequelae of Tsc1 dysfunction in bone are unknown. In this study, we generated a mouse model of TSC with a deletion of Tsc1 in neural crest-derived (NCD) cells that recapitulated the sclerotic craniofacial bone lesions in TSC. Analysis of this mouse model demonstrated that TSC1 deletion led to enhanced mTORC1 signaling in NCD bones and the increase in bone formation is responsible for the aberrantly increased bone mass. Lineage mapping revealed that TSC1 deficient NCD cells overpopulated the NCD bones. Mechanistically, hyperproliferation of osteoprogenitors at an early postnatal stage accounts for the increased osteoblast pool. Intriguingly, early postnatal treatment with rapamycin, an mTORC1 inhibitor, can completely rescue the aberrant bone mass, but late treatment cannot. Our data suggest that enhanced mTOR signaling in NCD cells can increase bone mass through enlargement of the osteoprogenitor pool, which likely explains the sclerotic bone lesion observed in TSC patients. PMID:25639352

  14. A cross-sectional study on the relationship between craniofacial morphology and the coronoid process.

    PubMed

    Torisu, Takahiro; Yamada, Kazuhiro; Fukui, Tadao; Yamaki, Masaki; Nakamura, Junichi; Saito, Isao

    2009-12-01

    Although there have been some reports on the relationship between craniofacial morphology and the activity of the temporal muscle attached to the coronoid process, such relationship is still unclear. The aim of the present study was therefore to investigate the relationship between the coronoid process and overall craniofacial morphology using lateral cephalograms of 60 female subjects (mean age 9.6 years) without mandibular deviation. Statistical testing was undertaken using stepwise regression analysis. Anterior coronoid marginal depth correlated negatively (r = 0.71) with gonial angle, SNA, and overjet. The coronoid angle also correlated negatively (r = 0.86) with both the vertical and horizontal lengths from sella to the coronoid tip as well as with the horizontal length from sella to the posterior ramus margin. Furthermore, the coronoid length correlated positively (r = 0.61) with the coronoid angle and the anterior coronoid marginal depth. The coronoid width was also positively (r = 0.69) correlated with overbite. Coronoid process morphology is related not only to mandibular morphology and position but also to maxillary position and the dental relationship in the anterior region. It therefore seems clear that coronoid process morphology might be related to temporal muscle functioning and its associated craniofacial morphological measurements. PMID:19622629

  15. Atlas of fetal skeletal radiology

    SciTech Connect

    Ornov, A.; Borochowitz, Z.; Lachman, R.; Rimoin, D.L.

    1987-01-01

    This atlas presents anterior, posterior and lateral views of normal but spontaneously aborted fetuses from 10 weeks through 27 weeks of gestation. The series of radiographs exhibits a wide array of skeletal dysplasia, and a chapter on the normal chondroosseous development - the formation of cartilage and bone and ossification of individual bones is included for further clarification.

  16. Skeletal myoblasts for cardiac repair

    PubMed Central

    Durrani, Shazia; Konoplyannikov, Mikhail; Ashraf, Muhammad; Haider, Khawaja Husnain

    2011-01-01

    Stem cells provide an alternative curative intervention for the infarcted heart by compensating for the cardiomyocyte loss subsequent to myocardial injury. The presence of resident stem and progenitor cell populations in the heart, and nuclear reprogramming of somatic cells with genetic induction of pluripotency markers are the emerging new developments in stem cell-based regenerative medicine. However, until safety and feasibility of these cells are established by extensive experimentation in in vitro and in vivo experimental models, skeletal muscle-derived myoblasts, and bone marrow cells remain the most well-studied donor cell types for myocardial regeneration and repair. This article provides a critical review of skeletal myoblasts as donor cells for transplantation in the light of published experimental and clinical data, and indepth discussion of the advantages and disadvantages of skeletal myoblast-based therapeutic intervention for augmentation of myocardial function in the infarcted heart. Furthermore, strategies to overcome the problems of arrhythmogenicity and failure of the transplanted skeletal myoblasts to integrate with the host cardiomyocytes are discussed. PMID:21082891

  17. Choosing a skeletal muscle relaxant.

    PubMed

    See, Sharon; Ginzburg, Regina

    2008-08-01

    Skeletal muscle relaxants are widely used in treating musculoskeletal conditions. However, evidence of their effectiveness consists mainly of studies with poor methodologic design. In addition, these drugs have not been proven to be superior to acetaminophen or nonsteroidal anti-inflammatory drugs for low back pain. Systematic reviews and meta-analyses support using skeletal muscle relaxants for short-term relief of acute low back pain when nonsteroidal anti-inflammatory drugs or acetaminophen are not effective or tolerated. Comparison studies have not shown one skeletal muscle relaxant to be superior to another. Cyclobenzaprine is the most heavily studied and has been shown to be effective for various musculoskeletal conditions. The sedative properties of tizanidine and cyclobenzaprine may benefit patients with insomnia caused by severe muscle spasms. Methocarbamol and metaxalone are less sedating, although effectiveness evidence is limited. Adverse effects, particularly dizziness and drowsiness, are consistently reported with all skeletal muscle relaxants. The potential adverse effects should be communicated clearly to the patient. Because of limited comparable effectiveness data, choice of agent should be based on side-effect profile, patient preference, abuse potential, and possible drug interactions. PMID:18711953

  18. Measurement of color for craniofacial structures using a 45/0-degree optical configuration

    PubMed Central

    Gozalo-Diaz, David J.; Lindsey, Delwin T.; Johnston, William M.; Wee, Alvin G.

    2007-01-01

    Statement of problem The color of vital craniofacial structures has not been measured accurately. Purpose The purpose of this study was to determine the color of vital craniofacial structures and evaluate the validity and test-retest reliability of a noncontacting 45/0-degree optical configuration. Material and methods A spectroradiometer and an external light source were configured in a noncontacting 45/0-degree (45-degree illumination and 0-degree observer) optical configuration to measure the color of subjects’ vital craniofacial structures (central and lateral incisor and canine, attached gingiva, lips, and facial skin). The 120 subjects were stratified into 5 age groups with 4 racial categories and balanced for gender. For evaluation of validity, linear regressions and 95% confidence intervals were calculated for ΔL*, Δa*, Δb* [color difference of (CIE) LAB values] between the measured and certified values of the 22 color patches of the DC Color Checker. For test-retest reliability, a random sample of 12 (10%) subjects was remeasured at a second visit. Paired t tests, correlations, and Bland-Altman analyses were performed between the first and second measurements of the 12 pairs of L*, a*, and b* values for the 6 craniofacial structures. Results For validity, the mean color difference and linear regression for Commission Internationale d’Eclair-age (CIE) LAB values between measured and certified color of the 22 opaque color patches were ΔE of 1.46 and 0.99 for all regressions, respectively. Only Δa* did not contain zero in its 95% confidence interval. For test-retest reliability, no paired t tests were significantly different from each other, and the Pearson correlation coefficient ranged from 0.9 (9 pairs) to 0.7 (3 pairs). Ten of the 18 Bland-Altman plots showed good reliability. Conclusion The spectral reflectance of craniofacial structures can be measured with acceptable validity and test-retest reliability using a noncontacting 45/0-degree

  19. A rapid, flexible method for incorporating controlled antibiotic release into porous polymethylmethacrylate space maintainers for craniofacial reconstruction.

    PubMed

    Mountziaris, P M; Shah, S R; Lam, J; Bennett, G N; Mikos, A G

    2016-01-01

    Severe injuries in the craniofacial complex, resulting from trauma or pathology, present several challenges to functional and aesthetic reconstruction. The anatomy and position of the craniofacial region make it vulnerable to injury and subsequent local infection due to external bacteria as well as those from neighbouring structures like the sinuses, nasal passages, and mouth. Porous polymethylmethacrylate (PMMA) "space maintainers" have proven useful in staged craniofacial reconstruction by promoting healing of overlying soft tissue prior to reconstruction of craniofacial bones. We describe herein a method by which the porosity of a prefabricated porous PMMA space maintainer, generated by porogen leaching, can be loaded with a thermogelling copolymer-based drug delivery system. Porogen leaching, space maintainer prewetting, and thermogel loading all significantly affected the loading of a model antibiotic, colistin. Weeks-long release of antibiotic at clinically relevant levels was achieved with several formulations. In vitro assays confirmed that the released colistin maintained its antibiotic activity against several bacterial targets. Our results suggest that this method is a valuable tool in the development of novel therapeutic approaches for the treatment of severe complex, infected craniofacial injuries. PMID:26340063

  20. Increased cranial capacity in hominid evolution and preeclampsia.

    PubMed

    Chaline, Jean

    2003-08-01

    One of the major trends in primate evolution generally and hominid evolution in particular, is cranio-facial contraction accompanied by an increase in cranial capacity. Landmark-based morphometric methods are applied to adult skulls of great apes (Gorilla, Pan), australopithecines (Australopithecus and Paranthropus), and humans (Homo eragster, erectus, neanderthalensis, and sapiens). Morphological changes quantified by vector fields (Procrustes methods) indicate that these skull plans are characterized by distinctive degrees of cranio-facial contraction. These suggest the existence of three discrete skull organization plans: "great ape", "australopithecine" and "Homo". This paper focuses on the "Homo" skull bauplan and discusses the possible relationships between greatly increased cranial capacity and preeclampsia. The earliest species of the human lineage exhibit less cranio-facial contraction and smaller cranial capacity than Homo neanderthalensis and modern Homo sapiens. Neandertalization introduces a posterior elongation of the skull and leads to a large increase in cranial capacity in the last Neandertals, with values as large as in present-day H. sapiens. Consequently, a new biological hypothesis is proposed to account for the unexplained disappearance of H. neanderthalensis some 30000 years ago related to the possible appearance of preeclampsia as a factor affecting the survival of the species. PMID:12896818

  1. Skeletal and body composition evaluation

    NASA Technical Reports Server (NTRS)

    Mazess, R. B.

    1983-01-01

    Research on radiation detectors for absorptiometry; analysis of errors affective single photon absorptiometry and development of instrumentation; analysis of errors affecting dual photon absorptiometry and development of instrumentation; comparison of skeletal measurements with other techniques; cooperation with NASA projects for skeletal evaluation in spaceflight (Experiment MO-78) and in laboratory studies with immobilized animals; studies of postmenopausal osteoporosis; organization of scientific meetings and workshops on absorptiometric measurement; and development of instrumentation for measurement of fluid shifts in the human body were performed. Instrumentation was developed that allows accurate and precise (2% error) measurements of mineral content in compact and trabecular bone and of the total skeleton. Instrumentation was also developed to measure fluid shifts in the extremities. Radiation exposure with those procedures is low (2-10 MREM). One hundred seventy three technical reports and one hundred and four published papers of studies from the University of Wisconsin Bone Mineral Lab are listed.

  2. Skeletal fluorosis in immobilized extremities.

    PubMed

    Rosenquist, J B

    1975-11-01

    The effect of immobilization on skeletal fluorosis was studied in growing rabbits. One hind leg was immobilized by an external fixation device extending below the wrist joint and above the knee joint, the extremity being in a straight position after severance of the sciatic nerve. The animals, aged 7 weeks at the beginning of the experiment, were given 10 mg of fluoride per kg body weight and day during 12 weeks. In the tibiae, development of the skeletal fluorosis was more irregular than that observed in previous studies of normally active animals, being most excessive in the mobile bone. The immobilization effect was most profound in the femora as the cortical thickness and the femur score were significantly higher than those in the mobile femora. It was suggested that an altered muscular activity was the reason for the observed changes. PMID:1189918

  3. The complexities of skeletal biology

    NASA Technical Reports Server (NTRS)

    Karsenty, Gerard

    2003-01-01

    For a long time, the skeleton was seen as an amorphous tissue of little biological interest. But such a view ignored the large number of genetic and degenerative diseases affecting this organ. Over the past 15 years, molecular and genetic studies have modified our understanding of skeletal biology. By so doing this progress has affected our understanding of diseases and suggested in many instances new therapeutic opportunities.

  4. Relationships between craniocervical posture and pain-related disability in patients with cervico-craniofacial pain

    PubMed Central

    López-de-Uralde-Villanueva, Ibai; Beltran-Alacreu, Hector; Paris-Alemany, Alba; Angulo-Díaz-Parreño, Santiago; La Touche, Roy

    2015-01-01

    Objectives This cross-sectional correlation study explored the relationships between craniocervical posture and pain-related disability in patients with chronic cervico-craniofacial pain (CCFP). Moreover, we investigated the test–retest intrarater reliability of two craniocervical posture measurements: head posture (HP) and the sternomental distance (SMD). Methods Fifty-three asymptomatic subjects and 60 CCFP patients were recruited. One rater measured HP and the SMD using a cervical range of motion device and a digital caliper, respectively. The Spanish versions of the neck disability index and the craniofacial pain and disability inventory were used to assess pain-related disability (neck disability and craniofacial disability, respectively). Results We found no statistically significant correlations between craniocervical posture and pain-related disability variables (HP and neck disability [r=0.105; P>0.05]; HP and craniofacial disability [r=0.132; P>0.05]; SMD and neck disability [r=0.126; P>0.05]; SMD and craniofacial disability [r=0.195; P>0.05]). A moderate positive correlation was observed between HP and SMD for both groups (asymptomatic subjects, r=0.447; CCFP patients, r=0.52). Neck disability was strongly positively correlated with craniofacial disability (r=0.79; P<0.001). The test–retest intrarater reliability of the HP measurement was high for asymptomatic subjects and CCFP patients (intraclass correlation coefficients =0.93 and 0.81, respectively) and for SMD (intra-class correlation coefficient range between 0.76 and 0.99); the test–retest intrarater reliability remained high when evaluated 9 days later. The HP standard error of measurement range was 0.54–0.75 cm, and the minimal detectable change was 1.27–1.74 cm. The SMD standard error of measurement was 2.75–6.24 mm, and the minimal detectable change was 6.42–14.55 mm. Independent t-tests showed statistically significant differences between the asymptomatic individuals and CCFP

  5. Contribution of genetics and environment to craniofacial anthropometric phenotypes in Belgian nuclear families.

    PubMed

    Jelenkovic, Aline; Poveda, Alaitz; Susanne, Charles; Rebato, Esther

    2008-12-01

    In this study we estimate relative genetic and environmental influences on head-related anthropometric phenotypes. The subject group consisted of 119 nuclear families living in Brussels, Belgium, and included 238 males and 236 females, ages 17 to 72 years. Two factor analyses with varimax rotation (the first one related to facial measurements and the second one to overall head morphology) were used to analyze 14 craniofacial size traits. The resulting four synthetic traits [HFCF, VFCF, HDF1, and HDF2-horizontal (breadth) and vertical (height) facial factors and two head horizontal (breadth) factors, respectively] were used as summary variables. Maximum heritabilities (H2) were estimated for all studied traits, and variance components analysis was applied to determine the contribution of genetics and environment on the four craniofacial factors. In addition, we examined the covariations between the face (HFCF and VFCF) and head-related factors (HDF1 and HDF2), separately. Quantitative genetic analysis showed that HFCF, VFCF, HDF1, and HDF2 variation was appreciably attributable to additive genetic effects, with heritability (h2) estimates of 67.62%, 54.97%, 70.76%, and 65.05%, respectively. The three variance components reflecting a shared familial environment were nonsignificant for these four phenotypes. Bivariate analysis revealed significant additive and residual correlations for both pair of traits. The results confirm the existence of a significant genetic component determining the four craniofacial synthetic traits, and common genetic and environmental effects shared by the two face-related phenotypes and by the head-related ones. PMID:19728541

  6. Activation of rostral ventromedial medulla neurons by noxious stimulation of cutaneous and deep craniofacial tissues.

    PubMed

    Khasabov, Sergey G; Malecha, Patrick; Noack, Joseph; Tabakov, Janneta; Okamoto, Keiichiro; Bereiter, David A; Simone, Donald A

    2015-01-01

    The rostral ventromedial medulla (RVM) projects to the medullary and spinal dorsal horns and is a major source of descending modulation of nociceptive transmission. Traditionally, neurons in the RVM are classified functionally as on, off, and neutral cells on the basis of responses to noxious cutaneous stimulation of the tail or hind paw. On cells facilitate nociceptive transmission, off cells are inhibitory, whereas neutral cells are unresponsive to noxious stimuli and their role in pain modulation is unclear. Classification of RVM neurons with respect to stimulation of craniofacial tissues is not well defined. In isoflurane-anesthetized male rats, RVM neurons first were classified as on (25.5%), off (25.5%), or neutral (49%) cells by noxious pinch applied to the hind paw. Pinching the skin overlying the temporomandibular joint (TMJ) altered the proportions of on (39.2%), off (42.2%), and neutral (19.6%) cells. To assess the response of RVM cells to specialized craniofacial inputs, adenosine triphosphate (ATP; 0.01-1 mM) was injected into the TMJ and capsaicin (0.1%) was applied to the ocular surface. TMJ and ocular surface stimulation also resulted in a reduced proportion of neutral cells compared with hind paw pinch. Dose-effect analyses revealed that on and off cells encoded the intra-TMJ concentration of ATP. These results suggest that somatotopy plays a significant role in the functional classification of RVM cells and support the notion that neutral cells likely are subgroups of on and off cells. It is suggested that a portion of RVM neurons serve different functions in modulating craniofacial and spinal pain conditions. PMID:25185804

  7. Activation of rostral ventromedial medulla neurons by noxious stimulation of cutaneous and deep craniofacial tissues

    PubMed Central

    Khasabov, Sergey G.; Malecha, Patrick; Noack, Joseph; Tabakov, Janneta; Okamoto, Keiichiro; Bereiter, David A.

    2014-01-01

    The rostral ventromedial medulla (RVM) projects to the medullary and spinal dorsal horns and is a major source of descending modulation of nociceptive transmission. Traditionally, neurons in the RVM are classified functionally as ON, OFF, and NEUTRAL cells on the basis of responses to noxious cutaneous stimulation of the tail or hind paw. ON cells facilitate nociceptive transmission, OFF cells are inhibitory, whereas NEUTRAL cells are unresponsive to noxious stimuli and their role in pain modulation is unclear. Classification of RVM neurons with respect to stimulation of craniofacial tissues is not well defined. In isoflurane-anesthetized male rats, RVM neurons first were classified as ON (25.5%), OFF (25.5%), or NEUTRAL (49%) cells by noxious pinch applied to the hind paw. Pinching the skin overlying the temporomandibular joint (TMJ) altered the proportions of ON (39.2%), OFF (42.2%), and NEUTRAL (19.6%) cells. To assess the response of RVM cells to specialized craniofacial inputs, adenosine triphosphate (ATP; 0.01–1 mM) was injected into the TMJ and capsaicin (0.1%) was applied to the ocular surface. TMJ and ocular surface stimulation also resulted in a reduced proportion of NEUTRAL cells compared with hind paw pinch. Dose-effect analyses revealed that ON and OFF cells encoded the intra-TMJ concentration of ATP. These results suggest that somatotopy plays a significant role in the functional classification of RVM cells and support the notion that NEUTRAL cells likely are subgroups of ON and OFF cells. It is suggested that a portion of RVM neurons serve different functions in modulating craniofacial and spinal pain conditions. PMID:25185804

  8. Relationship between BMI and Postoperative Complications with Free Flap in Anterolateral Craniofacial Reconstruction

    PubMed Central

    Yagi, Shunjiro; Toriyama, Kazuhiro; Takanari, Keisuke; Fujimoto, Yasushi; Nishio, Naoki; Fujii, Masazumi; Saito, Kiyoshi; Takahashi, Masakatsu; Kamei, Yuzuru

    2016-01-01

    Background: Although we have seen tremendous advancement in microsurgery over the last 2 decades and free tissue transfer has become standard for head and neck reconstruction, surgeons still struggle to prevent postoperative complications. We examined the relationship between body mass index (BMI) and postoperative complications in patients undergoing rectus abdominis free flap transfer after anterolateral craniofacial resection. Methods: This was a retrospective review of reconstructive surgery using rectus abdominis musculocutaneous free flap in patients with locally advanced maxillary sinus carcinoma from 2003 to 2014 (n = 35, 27 men and 8 women; average age, 60.9 ± 7.8 years). All patients underwent craniofacial reconstruction after anterior and middle cranial fossa skull base resection and maxillectomy (class IV, subtype a) with palatal resection. Patients were categorized based on sex, BMI, and other parameters. Results: Recipient-site infection occurred in 11 patients (31.4%), cerebrospinal fluid leakage in 6 (17.1%), partial flap necrosis in 2 (5.7%), total flap necrosis in 1 (2.9%), and facial fistula in 4 (11.4%). Women showed partial flap necrosis significantly more frequently (P = 0.047), probably owing to poor vascular supply of the subcutaneous fat layer. Patients with low BMI (<20 kg/m2) showed recipient-site infection (P = 0.02) and facial fistula (P = 0.01) significantly more frequently owing to insufficient tissue volume and poor vascular supply. Conclusion: Postoperative recipient-site infection and facial fistula occurred mainly in low-BMI patients. Surgeons should take care to achieve sufficient donor tissue on low-BMI patients. Using a prosthetic obturator in low-BMI patients for craniofacial reconstruction can be a good alternative option to reduce postoperative complications due to insufficient donor tissue volume. PMID:27257566

  9. A computerized tomography study of the morphological interrelationship between the temporal bones and the craniofacial complex

    PubMed Central

    Costa, Helder Nunes; Slavicek, Rudolf; Sato, Sadao

    2012-01-01

    The hypothesis that the temporal bones are at the center of the dynamics of the craniofacial complex, directly influencing facial morphology, has been put forward long ago. This study examines the role of the spatial positioning of temporal bones (frontal and sagittal inclination) in terms of influencing overall facial morphology. Several 3D linear, angular and orthogonal measurements obtained through computerized analysis of virtual models of 163 modern human skulls reconstructed from cone-beam computed tomography images were analyzed and correlated. Additionally, the sample was divided into two subgroups based on the median value of temporal bone sagittal inclination [anterior rotation group (n = 82); posterior rotation group (n = 81)], and differences between groups evaluated. Correlation coefficients showed that sagittal inclination of the temporal bone was significantly (P < 0.01) related to midline flexion, transversal width and anterior–posterior length of the basicranium, to the anterior–posterior positioning of the mandible and maxilla, and posterior midfacial height. Frontal inclination of the temporal bone was significantly related (P < 0.01) to basicranium anterior–posterior and transversal dimensions, and to posterior midfacial height. In comparison with the posterior rotation group, the anterior rotation group presented a less flexed and anterior–posteriorly longer cranial base, a narrower skull, porion and the articular eminence located more superiorly and posteriorly, a shorter posterior midfacial height, the palatal plane rotated clockwise, a more retrognathic maxilla and mandible, and the upper posterior occlusal plane more inclined and posteriorly located. The results suggest that differences in craniofacial morphology are highly integrated with differences in the positional relationship of the temporal bones. The sagittal inclination of the temporal bone seems to have a greater impact on the 3D morphology of the craniofacial complex than

  10. The Art of Coping with a Craniofacial Difference: Helping Others through “Positive Exposure”

    PubMed Central

    Loewenstein, Johanna; Sutton, Erica; Guidotti, Rick; Shapiro, Kristin; Ball, Karen; McLean, Diane; Biesecker, Barbara

    2011-01-01

    Finding ways to cope with social stigmatization is an important aspect of achieving adaptation for people living with visible genetic differences. This study describes the way individuals with craniofacial differences use an innovative photography and video experience with Positive Exposure (PE), a non-profit organization based in New York City, as a way to cope with their conditions. Thirty-five individuals between 12 and 61 years of age participated in this study. We administered surveys comprised of open-ended qualitative questions and quantitative measures designed to assess self-esteem, perceived stigma, and hopefulness. Data for this analysis was generated from the written questionnaires and interview transcripts. Most participants reported high levels of self-esteem and hopefulness, suggesting that they were relatively well adapted to their condition. Almost all participants described experiences of stigmatization throughout their lives. However, participants demonstrated their ability to implement a variety of coping strategies to manage stigma. ‘Helping others’ emerged as a prominent strategy among participants, aiding in the often lifelong process of adapting to their genetic difference. PE was described as an avenue through which participants could reach out to individuals and society at large, helping them adapt further to their condition. ‘Helping others’ may also benefit individuals with craniofacial differences who do not consider themselves to be well adapted to their condition. Health care providers can collaborate with PE, advocacy groups and other community or support groups to identify additional ways individuals with craniofacial differences can help themselves by reaching out to others. PMID:18478594

  11. Validation of Reference Genes for Expression Studies during Craniofacial Development in Arctic Charr

    PubMed Central

    Ahi, Ehsan Pashay; Guðbrandsson, Jóhannes; Kapralova, Kalina H.; Franzdóttir, Sigríður R.; Snorrason, Sigurður S.; Maier, Valerie H.; Jónsson, Zophonías O.

    2013-01-01

    Arctic charr (Salvelinus alpinus) is a highly polymorphic species and in Lake Thingvallavatn, Iceland, four phenotypic morphs have evolved. These differences in morphology, especially in craniofacial structures are already apparent during embryonic development, indicating that genes important in the formation of the craniofacial features are expressed differentially between the morphs. In order to generate tools to examine these expression differences in Arctic charr, the aim of the present study was to identify reference genes for quantitative real-time PCR (qPCR). The specific aim was to select reference genes which are able to detect very small expression differences among different morphs. We selected twelve candidate reference genes from the literature, identified corresponding charr sequences using data derived from transcriptome sequencing (RNA-seq) and examined their expression using qPCR. Many of the candidate reference genes were found to be stably expressed, yet their quality-rank as reference genes varied considerably depending on the type of analysis used. In addition to commonly used software for reference gene validation, we used classical statistics to evaluate expression profiles avoiding a bias for reference genes with similar expression patterns (co-regulation). Based on these analyses we chose three reference genes, ACTB, UB2L3 and IF5A1 for further evaluation. Their consistency was assessed in an expression study of three known craniofacially expressed genes, sparc (or osteonectin), matrix metalloprotease 2 (mmp2) and sox9 (sex-determining region Y box 9 protein) using qPCR in embryo heads derived from four charr groups at three developmental time points. The three reference genes were found to be very suitable for studying expression differences between the morphotypes, enabling robust detection of small relative expression changes during charr development. Further, the results showed that sparc and mmp2 are differentially expressed in embryos

  12. Exclusion of the PAX2 gene as a candidate gene for Crouzon craniofacial dysostosis

    SciTech Connect

    Preston, R.A.; Gorry, M.C.; Warman, M.

    1994-09-01

    Crouzon craniofacial dysostosis (CFD, MIM 123500) is an abnormality of craniofacial development characterized by premature craniosynostosis, maxillary hypoplasia, and shallow orbits. We have mapped the CFD gene locus using a candidate gene approach to a 7 centiMorgan region on chromosome 10q in three CFD families. A maximal multipoint LOD score of 12.33 was achieved for a locus 2 cM distal to the microsatellite marker D10S209. A comparison of several physical, cytogenetic, and linkage maps revealed that the cytogenetic bands, 10q25-q26, most likely contain this CFD locus. The PAX2 gene, which has been mapped near another marker which in turn has been mapped to 10q25, was analyzed as a candidate gene. PAX2 was chosen for analysis because mutations in other members of the PAX gene family have been identified with human craniofacial abnormalities (e.g. Waardenburg syndrome). A YAC contig, consisting of 5 overlapping groups and composed of 11 YACs that spans the entire 7 cM region, was assembled for PAX2 analyses. None of these YACs supported PAX2-specific amplification using primer sets for both the second and third PAX2 exons. Control amplifications for YAC vector sequences produced robust amplifications in all cases. In addition, SSCP analyses of amplification products generated from the second and third PAX2 exons and the 3{prime} untranslated region of the PAX2 gene from both affected and unaffected family members in two of the kindreds failed to reveal any polymorphisms. Although it remains theoretically possible, due to artifacts in the YAC contigs, it is unlikely that PAX2 is the CFD gene.

  13. DSPP Is Essential for Normal Development of the Dental-Craniofacial Complex.

    PubMed

    Chen, Y; Zhang, Y; Ramachandran, A; George, A

    2016-03-01

    The craniofacial skeleton is derived from both neural crest cells and mesodermal cells; however, the majority of the bone, cartilage, and connective tissue is derived from the neural crest. Dentin sialophosphoprotein (DSPP) is a precursor protein that is expressed by the connective tissues of the craniofacial skeleton, namely, bone and dentin with high expression levels in the dentin matrix. Gene ablation studies have shown severe dental defects in DSPP-null mutant mice. Therefore, to elucidate the role of DSPP on the developing dental-craniofacial complex, we evaluated phenotypic changes in the structure of intramembranous bone and dentin mineralization using 3 different age groups of DSPP-null and wild-type mice. Results from micro-computed tomographic, radiographic, and optical microscopic analyses showed defective dentin, alveolar and calvarial bones, and sutures during development. The impaired mineralization of the cranial bone correlated well with low expression levels of Runx2, Col1, and OPN identified using calvarial cells from DSPP-null and wild-type mice in an in vitro culture system. However, the upregulation of MMP9, MMP2, FN, and BSP was observed. Interestingly, the null mice also displayed low serum phosphate levels, while calcium levels remained unchanged. Alizarin red and von Kossa staining confirmed the dysfunction in the terminal differentiation of osteoblasts obtained from the developing calvaria of DSPP-null mice. Immunohistochemical analysis of the developing molars showed changes in Runx2, Gli1, Numb, and Notch expression in the dental pulp cells and odontoblasts of DSPP-null mice when compared with wild-type mice. Overall, these observations provide insight into the role of DSPP in the normal development of the calvaria, alveolar bone, and dentin-pulp complex. PMID:26503913

  14. Registries and evidence-based medicine in craniofacial and plastic surgery.

    PubMed

    Drolet, Brian C; Lorenzi, Nancy M

    2012-01-01

    Evidence-based medicine is a vital process for maintaining and improving quality and value in health care. However, evidence-based practice is most limited by the availability of research and outcomes data. Although randomized controlled trials (RCTs) have been identified by numerous research organizations as the criterion standard for research methodology (eg, "level I evidence"), the execution of well-designed RCTs has proved either challenging or impossible in many surgical fields and with rare disease conditions. In particular, craniofacial and plastic surgery has been noted to be lacking in both the number and quality of RCTs. Many reasons are discussed for this dearth of research including inadequate sample size and challenges in randomization, blinding, and clinical equipoise. Yet, data for outcomes assessment are highly valued by surgeons and by consumers and payers. Therefore, alternative and more practical means for research and data collection must be sought. Observational studies of clinical practice are particularly useful for outcomes assessment despite relegation to a lower tier of evidence (eg, "level II evidence"). Functional databases with well-defined processes for data collection, called medical data registries, are an essential informatics tool to collect and store outcomes data and produce high-quality observational, practice-based research studies. A properly designed and implemented registry can provide surgeons with an abundance of data to perform research and quality improvement projects. In fact, registries may be superior in many ways to RCTs for craniofacial and plastic surgeons both pragmatically and functionally. In this commentary, we discuss the production of such registries in the framework of evidence-based practice and the relevant studies in craniofacial surgery. PMID:22337430

  15. The bite force and craniofacial morphology in patients with acromegaly: A pilot study

    PubMed Central

    Aktas-Yılmaz, Banu; Dogan, Arife; Yetkin, Ilhan; Bek, Bulent

    2014-01-01

    Objectives: Acromegaly is a metabolic disorder caused by increased growth hormone secretion. As a consequence of acromegaly some typical craniofacial morphology changes appear. This pilot study was conducted to compare the bite force and the characteristic size and shape of the craniofacial components of acromegalic patients with the healthy Turkish individuals. In additon, the correlations between bite force and craniofacial morphology of patients with acromegaly and control individuals were evaluated. Study Design: The maximum bite force of the participants was recorded with strain-gage transducer. Lateral x-ray scans were made under standard conditions, in centric occlusion. On cephalograms, the linear and angular measurements was performed. Results: Patients with acromegaly showed increased anterior and posterior total face height, ramus length, width of frontal sinuse, gonial angle and a negative difference between maxillary and mandibular protrusions. In addition, females with acromegaly showed larger lower anterior face height and sella turcica, decreased facial angle, increased mandibular plane angle. The cephalometric measurements, except one did not showed correlation with the bite force in acromegalic patients. In control group, significant correlations were observed between anterior total face height and anterior lower face height, mandibular plane angle and gonial angle. Conclusions: The greater changes were observed in the mandible. The maximum bite force of patients with acromegaly showed no difference from healthy individuals. The non-significant difference of bite force between healthy participants and acromegalic patients provide important information for dental treatment and prosthetic rehabilitation of acromegalic patients. Key words:Acromegaly, bite force, cephalometric analysis, mandibular prognathism. PMID:23986010

  16. The accuracy of a designed software for automated localization of craniofacial landmarks on CBCT images

    PubMed Central

    2014-01-01

    Background Two-dimensional projection radiographs have been traditionally considered the modality of choice for cephalometric analysis. To overcome the shortcomings of two-dimensional images, three-dimensional computed tomography (CT) has been used to evaluate craniofacial structures. However, manual landmark detection depends on medical expertise, and the process is time-consuming. The present study was designed to produce software capable of automated localization of craniofacial landmarks on cone beam (CB) CT images based on image registration and to evaluate its accuracy. Methods The software was designed using MATLAB programming language. The technique was a combination of feature-based (principal axes registration) and voxel similarity-based methods for image registration. A total of 8 CBCT images were selected as our reference images for creating a head atlas. Then, 20 CBCT images were randomly selected as the test images for evaluating the method. Three experts twice located 14 landmarks in all 28 CBCT images during two examinations set 6 weeks apart. The differences in the distances of coordinates of each landmark on each image between manual and automated detection methods were calculated and reported as mean errors. Results The combined intraclass correlation coefficient for intraobserver reliability was 0.89 and for interobserver reliability 0.87 (95% confidence interval, 0.82 to 0.93). The mean errors of all 14 landmarks were <4 mm. Additionally, 63.57% of landmarks had a mean error of <3 mm compared with manual detection (gold standard method). Conclusion The accuracy of our approach for automated localization of craniofacial landmarks, which was based on combining feature-based and voxel similarity-based methods for image registration, was acceptable. Nevertheless we recommend repetition of this study using other techniques, such as intensity-based methods. PMID:25223399

  17. Massive transfusion and hyperkalaemic cardiac arrest in craniofacial surgery in a child.

    PubMed

    Buntain, S G; Pabari, M

    1999-10-01

    Hyperkalaemia is a recognised complication of massive blood transfusion. We present a case of hyperkalaemic cardiac arrest in a male infant of 12 months, who was undergoing craniofacial surgery for sagittal craniosynostosis. At the time of arrest the patient had received a massive transfusion of predominantly irradiated packed red cells over a two-hour period, and had a measured plasma potassium concentration of 10.1 mmol/l. Cardiopulmonary resuscitation was successful after 15 minutes. On the basis of our laboratory data and a review of the available literature, we recommend the use of fresh, non-irradiated packed red cells whenever possible in paediatric surgery. PMID:10520398

  18. Mineralization defects in cementum and craniofacial bone from loss of bone sialoprotein

    PubMed Central

    Foster, B.L.; Ao, M.; Willoughby, C.; Soenjaya, Y.; Holm, E.; Lukashova, L.; Tran, A. B.; Wimer, H.F.; Zerfas, P.M.; Nociti, F.H.; Kantovitz, K.R.; Quan, B.D.; Sone, E.D.; Goldberg, H.A.; Somerman, M.J.

    2015-01-01

    Bone sialoprotein (BSP) is a multifunctional extracellular matrix protein found in mineralized tissues, including bone, cartilage, tooth root cementum (both acellular and cellular types), and dentin. In order to define the role BSP plays in the process of biomineralization of these tissues, we analyzed cementogenesis, dentinogenesis, and osteogenesis (intramembranous and endochondral) in craniofacial bone in Bsp null mice and wild-type (WT) controls over a developmental period (1-60 days post natal; dpn) by histology, immunohistochemistry, undecalcified histochemistry, microcomputed tomography (microCT), scanning electron microscopy (SEM), transmission electron microscopy (TEM), and quantitative PCR (qPCR). Regions of intramembranous ossification in the alveolus, mandible, and calvaria presented delayed mineralization and osteoid accumulation, assessed by von Kossa and Goldner's trichrome stains at 1 and 14 dpn. Moreover, Bsp−/− mice featured increased cranial suture size at the early time point, 1 dpn. Immunostaining and PCR demonstrated that osteoblast markers, osterix, alkaline phosphatase, and osteopontin were unchanged in Bsp null mandibles compared to WT. Bsp−/− mouse molars featured a lack of functional acellular cementum formation by histology, SEM, and TEM, and subsequent loss of Sharpey's collagen fiber insertion into the tooth root structure. Bsp−/− mouse alveolar and mandibular bone featured equivalent or fewer osteoclasts at early ages (1 and 14 dpn), however, increased RANKL immunostaining and mRNA, and significantly increased number of osteoclast-like cells (2-5 fold) were found at later ages (26 and 60 dpn), corresponding to periodontal breakdown and severe alveolar bone resorption observed following molar teeth entering occlusion. Dentin formation was unperturbed in Bsp−/− mouse molars, with no delay in mineralization, no alteration in dentin dimensions, and no differences in odontoblast markers analyzed. No defects were identified

  19. Mineralization defects in cementum and craniofacial bone from loss of bone sialoprotein.

    PubMed

    Foster, B L; Ao, M; Willoughby, C; Soenjaya, Y; Holm, E; Lukashova, L; Tran, A B; Wimer, H F; Zerfas, P M; Nociti, F H; Kantovitz, K R; Quan, B D; Sone, E D; Goldberg, H A; Somerman, M J

    2015-09-01

    Bone sialoprotein (BSP) is a multifunctional extracellular matrix protein found in mineralized tissues, including bone, cartilage, tooth root cementum (both acellular and cellular types), and dentin. In order to define the role BSP plays in the process of biomineralization of these tissues, we analyzed cementogenesis, dentinogenesis, and osteogenesis (intramembranous and endochondral) in craniofacial bone in Bsp null mice and wild-type (WT) controls over a developmental period (1-60 days post natal; dpn) by histology, immunohistochemistry, undecalcified histochemistry, microcomputed tomography (microCT), scanning electron microscopy (SEM), transmission electron microscopy (TEM), and quantitative PCR (qPCR). Regions of intramembranous ossification in the alveolus, mandible, and calvaria presented delayed mineralization and osteoid accumulation, assessed by von Kossa and Goldner's trichrome stains at 1 and 14 dpn. Moreover, Bsp(-/-) mice featured increased cranial suture size at the early time point, 1 dpn. Immunostaining and PCR demonstrated that osteoblast markers, osterix, alkaline phosphatase, and osteopontin were unchanged in Bsp null mandibles compared to WT. Bsp(-/-) mouse molars featured a lack of functional acellular cementum formation by histology, SEM, and TEM, and subsequent loss of Sharpey's collagen fiber insertion into the tooth root structure. Bsp(-/-) mouse alveolar and mandibular bone featured equivalent or fewer osteoclasts at early ages (1 and 14 dpn), however, increased RANKL immunostaining and mRNA, and significantly increased number of osteoclast-like cells (2-5 fold) were found at later ages (26 and 60 dpn), corresponding to periodontal breakdown and severe alveolar bone resorption observed following molar teeth entering occlusion. Dentin formation was unperturbed in Bsp(-/-) mouse molars, with no delay in mineralization, no alteration in dentin dimensions, and no differences in odontoblast markers analyzed. No defects were identified in

  20. Using 501c3 Foundations in the Care of Cleft and Craniofacial Children.

    PubMed

    Smith, Kevin S; Henry, Byron T

    2016-05-01

    This article relates to the use of 501c3 foundations in the care of patients with cleft and craniofacial disorders. Both authors are medical directors and founders of foundations that serve these children: A Smile for a Child Foundation was set up to help children locally; Free to Smile was set up as an international missions foundation. This article explores the advantages and disadvantages of each type of foundation as well as the struggles and successes foundations face to help children locally and internationally. PMID:27150307

  1. Delayed detection of carotid-cavernous fistulas associated with wartime blast-induced craniofacial trauma.

    PubMed

    Vadivelu, Sudhakar; Bell, Randy Scott; Crandall, Ben; DeGraba, Tom; Armonda, Rocco A

    2010-05-01

    Blast-induced neurotrauma is a leading cause of military casualties. Its effects on cerebrovascular structures are not well understood. Vascular injury resulting from overpressure shock wave impact may have a delayed presentation and detection. The authors present the cases of 2 patients who sustained blast-induced craniofacial trauma and brain injury. Detection of a cervical dissection was delayed in one patient, and detection of carotid-cavernous fistulas was delayed in both patients. The authors report the successful obliteration of both the dissection and the carotidcavernous fistulas via an endovascular approach. Endovascular management provides both a reasonable and effective therapeutic option to blast-induced cerebrovascular injuries. PMID:20568946

  2. Craniofacial access to the anterior and middle cranial fossae and skull base.

    PubMed

    Lello, G; Statham, P; Steers, J; McGurk, M

    1997-12-01

    A profusion of surgical approaches to gain access to the anterior and middle cranial fossa and skull base have been described. An attempt has been made to simplify the position by suggesting a classification of surgical approaches and to describe a standard approach (of at most 4 defined osteotomies, or at least 2) to give a craniofacial approach to the anterior and middle cranial fossae, the infratemporal fossa, the orbit and the superior nasal cavity. The full extent of the osteotomies have been likened to an ancient Corinthian face mask, or to the stylized face-mask worn by the comic book hero, Batman. PMID:9504303

  3. Massive craniofacial injuries from recreational fireworks: a report of three cases.

    PubMed

    Hubbard, T J; Dado, D V; Izquierdo, R

    1992-11-01

    Recreational rocket injuries can result in massive destruction of facial soft tissues and bone and can produce long-term sequelae. This study reviews the cases of three patients who arrived at our medical center within a 3-week period in July 1990 who sustained severe craniofacial injuries from fireworks. A timely multidisciplinary approach is important in the care of these injuries, since there are usually associated serious ophthalmologic and cranial injuries that require immediate attention. We present the management dilemmas confronting the personnel who treat such injuries as well as tips on avoiding long-term complications. PMID:1464930

  4. The Extreme Anterior Domain Is an Essential Craniofacial Organizer Acting through Kinin-Kallikrein Signaling

    PubMed Central

    Jacox, Laura; Sindelka, Radek; Chen, Justin; Rothman, Alyssa; Dickinson, Amanda; Sive, Hazel

    2014-01-01

    SUMMARY The extreme anterior domain (EAD) is a conserved embryonic region that includes the presumptive mouth. We show that the Kinin-Kallikrein pathway is active in the EAD and necessary for craniofacial development in Xenopus and zebrafish. The mouth failed to form and neural crest (NC) development and migration was abnormal after loss of function (LOF) in the pathway genes kng, encoding Bradykinin (xBdk), carboxypeptidase-N (cpn) that cleaves Bradykinin and neuronal nitric oxide synthase. Consistent with a role for nitric oxide (NO) in face formation, endogenous NO levels declined after LOF in pathway genes but these were restored and a normal face formed after medial implantation of xBdk-beads into LOF embryos. Facial transplants demonstrated that Cpn function from within the EAD is necessary for migration of first arch cranial NC into the face and to promote mouth opening. The study identifies the EAD as an essential craniofacial organizer acting through Kinin-Kallikrein signaling. PMID:25043181

  5. The questionable contribution of the Neolithic and the Bronze Age to European craniofacial form

    PubMed Central

    Brace, C. Loring; Seguchi, Noriko; Quintyn, Conrad B.; Fox, Sherry C.; Nelson, A. Russell; Manolis, Sotiris K.; Qifeng, Pan

    2006-01-01

    Many human craniofacial dimensions are largely of neutral adaptive significance, and an analysis of their variation can serve as an indication of the extent to which any given population is genetically related to or differs from any other. When 24 craniofacial measurements of a series of human populations are used to generate neighbor-joining dendrograms, it is no surprise that all modern European groups, ranging all of the way from Scandinavia to eastern Europe and throughout the Mediterranean to the Middle East, show that they are closely related to each other. The surprise is that the Neolithic peoples of Europe and their Bronze Age successors are not closely related to the modern inhabitants, although the prehistoric/modern ties are somewhat more apparent in southern Europe. It is a further surprise that the Epipalaeolithic Natufian of Israel from whom the Neolithic realm was assumed to arise has a clear link to Sub-Saharan Africa. Basques and Canary Islanders are clearly associated with modern Europeans. When canonical variates are plotted, neither sample ties in with Cro-Magnon as was once suggested. The data treated here support the idea that the Neolithic moved out of the Near East into the circum-Mediterranean areas and Europe by a process of demic diffusion but that subsequently the in situ residents of those areas, derived from the Late Pleistocene inhabitants, absorbed both the agricultural life way and the people who had brought it. PMID:16371462

  6. The questionable contribution of the Neolithic and the Bronze Age to European craniofacial form.

    PubMed

    Brace, C Loring; Seguchi, Noriko; Quintyn, Conrad B; Fox, Sherry C; Nelson, A Russell; Manolis, Sotiris K; Qifeng, Pan

    2006-01-01

    Many human craniofacial dimensions are largely of neutral adaptive significance, and an analysis of their variation can serve as an indication of the extent to which any given population is genetically related to or differs from any other. When 24 craniofacial measurements of a series of human populations are used to generate neighbor-joining dendrograms, it is no surprise that all modern European groups, ranging all of the way from Scandinavia to eastern Europe and throughout the Mediterranean to the Middle East, show that they are closely related to each other. The surprise is that the Neolithic peoples of Europe and their Bronze Age successors are not closely related to the modern inhabitants, although the prehistoric/modern ties are somewhat more apparent in southern Europe. It is a further surprise that the Epipalaeolithic Natufian of Israel from whom the Neolithic realm was assumed to arise has a clear link to Sub-Saharan Africa. Basques and Canary Islanders are clearly associated with modern Europeans. When canonical variates are plotted, neither sample ties in with Cro-Magnon as was once suggested. The data treated here support the idea that the Neolithic moved out of the Near East into the circum-Mediterranean areas and Europe by a process of demic diffusion but that subsequently the in situ residents of those areas, derived from the Late Pleistocene inhabitants, absorbed both the agricultural life way and the people who had brought it. PMID:16371462

  7. Craniofacial abnormalities result from knock down of nonsyndromic clefting gene, crispld2, in zebrafish

    PubMed Central

    Yuan, Qiuping; Chiquet, Brett T.; DeVault, Laura; Warman, Matthew L.; Nakamura, Yukio; Swindell, Eric C.; Hecht, Jacqueline T.

    2012-01-01

    Nonsyndromic cleft lip and palate (NSCLP), a common birth defect, affects 4000 newborns in the US each year. Previously, we described an association between CRISPLD2 and NSCLP and showed Crispld2 expression in the murine palate. These results suggested that a perturbation in CRISPLD2 activity affects craniofacial development. Here, we describe crispld2 expression and the phenotypic consequence of its loss of function in zebrafish. crispld2 was expressed at all stages of zebrafish morphogenesis examined and localized to the rostral end by 1-day post fertilization. Morpholino knockdown of crispld2 resulted in significant jaw and palatal abnormalities in a dose dependent manner. Loss of crispld2 caused aberrant patterning of neural crest cells (NCC) suggesting that crispld2 is necessary for normal NCC formation. Altogether, we show that crispld2 plays a significant role in the development of the zebrafish craniofacies and alteration of normal protein levels disturbs palate and jaw formation. These data provide support for a role of CRISPLD2 in NSCLP. PMID:22887593

  8. In vitro antimicrobial effects of grape seed extract on peri-implantitis microflora in craniofacial implants

    PubMed Central

    Shrestha, Binit; Theerathavaj, M.L. Srithavaj; Thaweboon, Sroisiri; Thaweboon, Boonyanit

    2012-01-01

    Objective To determine the antimicrobial effects of grape seed on peri-implantitis microflora. Methods The grape seed extract was tested against peri-implantitis microflora most commonly found in craniofacial implants including reference strains of Staphylococcus aureus (S. aureus), Escherichia coli (E. coli), Candida albicans (C. albicans) and clinical strains of S. aureus, Klebsiella pneumonia (K. pneumonia) and Candida parapsilosis (C. parapsilosis) by disk diffusion test. Minimum inhibitory concentrations (MIC) and minimum cidal concentrations (MCC) were determined using modified agar dilution millpore method. The extract was further combined with polyethylene glycol and propylene glycol, and was tested for antimicrobial effects. Results Grape seed extract showed positive inhibitory effects with S. aureus at MIC of 0.625 mg/mL and MCC of 1.25 mg/mL respectively. However the extracts showed minimal or no reactivity against strains of E. coli, K. pneumonia, C. parapsilosis and C. albicans. The use of grape seed extract in combination with polyethylene glycol and propylene glycol also showed dose dependent inhibitory effect on S. aureus. Conclusions The results of the study showed that grape seed has potential antimicrobial effects which can be further studied and developed to be used in the treatment of infected skin-abutment interface of craniofacial implants. PMID:23569854

  9. A comparison of craniofacial Class I and Class II growth patterns.

    PubMed

    Riesmeijer, Arnold M; Prahl-Andersen, Birte; Mascarenhas, Anna K; Joo, Bert H; Vig, Katherine W L

    2004-04-01

    Longitudinal craniofacial databases, including the Fels Longitudinal Study, the Michigan Growth Study, and the Nijmegen (The Netherlands) Growth Study, were compared for a set of 12 craniofacial measurements on lateral skull cephalograms. The age ranges of the subjects were 7-14 years for females and 9-14 years for males. When we compared the normally distributed databases using multiple comparisons, a small sample test statistic t for differences between means of the databases showed few statistical differences. The databases were therefore pooled, and sex-specific Class I (ANB < 4 degrees), and Class II (ANB > or = 4 degrees) subsamples were analyzed with the same t test. The sizes of these subsamples ranged from 39 to 122 at the different ages. The findings showed that the Class II samples had greater SNA and SN-GoMe angles. Compared with the Class I group, shorter mandibles were found in the younger age groups of the Class II samples. No differences were found in mandibular length (Ar-Gn) and mandibular body length (Go-Gn) in the older Class II groups compared with the Class I groups. These findings indicate that the greater mandibular lengthening in the Class II groups might have contributed to successful Class II treatment in studies in which a Class I group was the control. Because of individual biological variability, the average Class I or Class II growth pattern might not be a realistic assumption or have clinical relevance for individual patients. PMID:15067263

  10. Genome-wide association study identifies multiple susceptibility loci for craniofacial microsomia

    PubMed Central

    Zhang, Yong-Biao; Hu, Jintian; Zhang, Jiao; Zhou, Xu; Li, Xin; Gu, Chaohao; Liu, Tun; Xie, Yangchun; Liu, Jiqiang; Gu, Mingliang; Wang, Panpan; Wu, Tingting; Qian, Jin; Wang, Yue; Dong, Xiaoqun; Yu, Jun; Zhang, Qingguo

    2016-01-01

    Craniofacial microsomia (CFM) is a rare congenital anomaly that involves immature derivatives from the first and second pharyngeal arches. The genetic pathogenesis of CFM is still unclear. Here we interrogate 0.9 million genetic variants in 939 CFM cases and 2,012 controls from China. After genotyping of an additional 443 cases and 1,669 controls, we identify 8 significantly associated loci with the most significant SNP rs13089920 (logistic regression P=2.15 × 10−120) and 5 suggestive loci. The above 13 associated loci, harboured by candidates of ROBO1, GATA3, GBX2, FGF3, NRP2, EDNRB, SHROOM3, SEMA7A, PLCD3, KLF12 and EPAS1, are found to be enriched for genes involved in neural crest cell (NCC) development and vasculogenesis. We then perform whole-genome sequencing on 21 samples from the case cohort, and identify several novel loss-of-function mutations within the associated loci. Our results provide new insights into genetic background of craniofacial microsomia. PMID:26853712

  11. Occipital nerve block is effective in craniofacial neuralgias but not in idiopathic persistent facial pain.

    PubMed

    Jürgens, T P; Müller, P; Seedorf, H; Regelsberger, J; May, A

    2012-04-01

    Occipital nerve block (ONB) has been used in several primary headache syndromes with good results. Information on its effects in facial pain is sparse. In this chart review, the efficacy of ONB using lidocaine and dexamethasone was evaluated in 20 patients with craniofacial pain syndromes comprising 8 patients with trigeminal neuralgia, 6 with trigeminal neuropathic pain, 5 with persistent idiopathic facial pain and 1 with occipital neuralgia. Response was defined as an at least 50% reduction of original pain. Mean response rate was 55% with greatest efficacy in trigeminal (75%) and occipital neuralgia (100%) and less efficacy in trigeminal neuropathic pain (50%) and persistent idiopathic facial pain (20%). The effects lasted for an average of 27 days with sustained benefits for 69, 77 and 107 days in three patients. Side effects were reported in 50%, albeit transient and mild in nature. ONBs are effective in trigeminal pain involving the second and third branch and seem to be most effective in craniofacial neuralgias. They should be considered in facial pain before more invasive approaches, such as thermocoagulation or vascular decompression, are performed, given that side effects are mild and the procedure is minimally invasive. PMID:22383125

  12. Vgll2a is required for neural crest cell survival during zebrafish craniofacial development

    PubMed Central

    Johnson, Christopher W.; Hernandez-Lagunas, Laura; Feng, Weiguo; Melvin, Vida Senkus; Williams, Trevor; Artinger, Kristin Bruk

    2011-01-01

    Invertebrate and vertebrate vestigial (vg) and vestigial-like (vgl) genes are involved in embryonic patterning and cell fate determination. These genes encode cofactors that interact with members of the TEAD/Scalloped family of transcription factors and modulate their activity. We have previously shown that, in mice, Vgll2 is differentially expressed in the developing facial prominences. In this study, we show that the zebrafish ortholog vgll2a is expressed in the pharyngeal endoderm and ectoderm surrounding the neural crest derived mesenchyme of the pharyngeal arches. Moreover, both the FGF and retinoic acid (RA) signaling pathways, which are critical components of the hierarchy controlling craniofacial patterning, regulate this domain of vgll2a expression. Consistent with these observations, vgll2a is required within the pharyngeal endoderm for NCC survival and pharyngeal cartilage development. Specifically, knockdown of Vgll2a in zebrafish embryos using Morpholino injection results in increased cell death within the pharyngeal arches, aberrant endodermal pouch morphogenesis, and hypoplastic cranial cartilages. Overall, our data reveal a novel non-cell autonomous role for Vgll2a in development of the NCC-derived vertebrate craniofacial skeleton. PMID:21741961

  13. Bis-GMA affects craniofacial development in zebrafish embryos (Danio rerio).

    PubMed

    Kramer, Alexander G; Vuthiganon, Jompobe; Lassiter, Christopher S

    2016-04-01

    Estrogen is a steroid hormone that is vital in vertebrate development and plays a role in a variety of developmental processes including cartilage and craniofacial formation. The effects of estrogen can be mimicked by other compounds found in the environment known as xenoestrogens. Bisphenol-A (BPA) is a known xenoestrogen and is combined with glycidyl methacrylate to make Bisphenol A glycidyl methacrylate (Bis-GMA), a major component in dental resin based composites (RBCs). Bis-GMA based RBCs can release their components into the saliva and bloodstream. Exposure to 1μM and 10μM Bis-GMA in Danio rerio embryos results in increased mortality of approximately 30% and 45% respectively. Changes to gross morphology, specifically craniofacial abnormalities, were seen at concentrations as low as 10nM. While the molecular pathways of Bis-GMA effects have not been studied extensively, more is known about one of the components, BPA. Further research of Bis-GMA could lead to a better understanding of xenoestrogenic activity resulting in improved public and environmental health. PMID:26994444

  14. Craniofacial variability and morphological integration in mice susceptible to cleft lip and palate

    PubMed Central

    Hallgrímsson, Benedikt; Dorval, Curtis J; Zelditch, Miriam Leah; German, Rebecca Z

    2004-01-01

    A/WySnJ mice are an inbred strain that develops cleft lip with or without cleft palate (CL/P) with a frequency of 25–30% and a predominantly unilateral expression pattern. As in humans, the pattern of incomplete penetrance, and variable and frequent unilateral expression suggests a role for altered regulation of variability (developmental stability, canalization and developmental integration) during growth. We compared both mean and variability parameters for craniofacial shape and size among A/WySnJ mice, a strain that does not develop CL/P (C57BL/6J) and their F1 cross. We show that adult A/WySnJ mice that do not express cleft lip exhibit decreased morphological integration of the cranium and that the co-ordination of overall shape and size variation is disrupted compared with both C57BL/6J mice and the F1 cross. The decrease in integration is most pronounced in the palate and face. The absence of this pattern in the F1 cross suggests that it is determined by recessive genetic factors. By contrast, the shape differences between the strains, which are thought to predispose A/WySnJ mice to CL/P, show a range of dominance which suggests a polygenic basis. We suggest that decreased integration of craniofacial growth may be an aetiological factor for CL/P in A/WySnJ mice. PMID:15610397

  15. Craniofacial surgical management of a patient with systematic juvenile idiopathic arthritis and Crohn's disease.

    PubMed

    Kasfikis, Georgios; Georgios, Kasfikis; Antoniades, Helias; Helias, Antoniades; Kyrgidis, Athanassios; Athanassios, Kyrgidis; Markovitsi, Eleni; Eleni, Markovitsi; Antoniades, Konstantinos; Konstantinos, Antoniades

    2009-05-01

    Juvenile idiopathic arthritis (JIA) is the most common chronic inflammatory disease in early age. It affects one or more joints, lasts more than 3 weeks, and appears in patients younger than 16 years. Juvenile idiopathic arthritis is classified according to the International League of Associations for Rheumatology consensus depending on the number of affected joints in the beginning of the disease. When JIA affects the temporomandibular joint, the development of the mandible is constrained. Patients show a tendency toward retrognathism and a vertical facial development pattern. The purpose of this study was to present a rare case of a young teenager who experienced JIA and Crohn's disease at the same time. The patient was referred to the hospital for aesthetic and functional problems, mainly convex facial profile and obstructive sleep apnea caused by the craniofacial abnormality. The patient was treated by sagittal split mandibular advancement osteotomy and advancement genioplasty. The mechanisms of obstructive sleep apnea development and the surgical treatment through osteotomies are commentated on. The surgical outcome is functionally and aesthetically favorable and solid 2 years after the operation. Surgical management of the craniofacial region can be a problem-solving treatment modality for patients with juvenile arthritis. PMID:19461338

  16. Genome-wide association study identifies multiple susceptibility loci for craniofacial microsomia.

    PubMed

    Zhang, Yong-Biao; Hu, Jintian; Zhang, Jiao; Zhou, Xu; Li, Xin; Gu, Chaohao; Liu, Tun; Xie, Yangchun; Liu, Jiqiang; Gu, Mingliang; Wang, Panpan; Wu, Tingting; Qian, Jin; Wang, Yue; Dong, Xiaoqun; Yu, Jun; Zhang, Qingguo

    2016-01-01

    Craniofacial microsomia (CFM) is a rare congenital anomaly that involves immature derivatives from the first and second pharyngeal arches. The genetic pathogenesis of CFM is still unclear. Here we interrogate 0.9 million genetic variants in 939 CFM cases and 2,012 controls from China. After genotyping of an additional 443 cases and 1,669 controls, we identify 8 significantly associated loci with the most significant SNP rs13089920 (logistic regression P=2.15 × 10(-120)) and 5 suggestive loci. The above 13 associated loci, harboured by candidates of ROBO1, GATA3, GBX2, FGF3, NRP2, EDNRB, SHROOM3, SEMA7A, PLCD3, KLF12 and EPAS1, are found to be enriched for genes involved in neural crest cell (NCC) development and vasculogenesis. We then perform whole-genome sequencing on 21 samples from the case cohort, and identify several novel loss-of-function mutations within the associated loci. Our results provide new insights into genetic background of craniofacial microsomia. PMID:26853712

  17. Does prenatal restraint stress change the craniofacial growth pattern of rat offspring?

    PubMed

    Aminabadi, Naser A; Behroozian, Ahmad; Talatahari, Elham; Samiei, Mohammad; Sadigh-Eteghad, Saeed; Shirazi, Sajjad

    2016-02-01

    A major and frequently encountered condition underlying the long-term programming effects of the intrauterine environment is exposure to stress. Gestational stress is an environmental factor that induces physical and behavioral alterations in offspring. Seventy female virgin Wistar rats were mated with one male rat for a maximum of four times, after which 52 pregnant rats were divided into two groups. In the experimental group the rats were exposed to restraint stress during pregnancy, whereas the control group did not receive the stress protocol. One male litter was randomly chosen from the offspring of each rat with 8-13 pups. A total of 40 male rat offspring were available for analysis. Thirty-one linear and angular measurements were analyzed in both study groups to investigate whether prenatal restraint stress changes the craniofacial growth pattern of rat offspring. In the prenatally stressed group, anterior cranial base length and viscerocranium measures were significantly increased compared with the control group, whereas cranial width, mandibular dimensions, and posterior cranial height and length remained unchanged. Furthermore, the prenatally stressed group showed backward rotation of the midface and decreased flattening of the cranial vault. It was concluded that prenatal chronic stress can induce alterations in the craniofacial growth pattern by promoting endochondral growth in the cranial base and nasal septum. PMID:26620628

  18. A microdeletion encompassing PHF21A in an individual with global developmental delay and craniofacial anomalies.

    PubMed

    Labonne, Jonathan D J; Vogt, Julie; Reali, Lisa; Kong, Il-Keun; Layman, Lawrence C; Kim, Hyung-Goo

    2015-12-01

    In Potocki-Shaffer syndrome (PSS), the full phenotypic spectrum is manifested when deletions are at least 2.1 Mb in size at 11p11.2. The PSS-associated genes EXT2 and ALX4, together with PHF21A, all map to this region flanked by markers D11S1393 and D11S1319. Being proximal to EXT2 and ALX4, a 1.1 Mb region containing 12 annotated genes had been identified by deletion mapping to explain PSS phenotypes except multiple exostoses and parietal foramina. Here, we report a male patient with partial PSS phenotypes including global developmental delay, craniofacial anomalies, minor limb anomalies, and micropenis. Using microarray, qPCR, RT-qPCR, and Western blot analyses, we refined the candidate gene region, which harbors five genes, by excluding two genes, SLC35C1 and CRY2, which resulted in a corroborating role of PHF21A in developmental delay and craniofacial anomalies. This microdeletion contains the least number of genes at 11p11.2 reported to date. Additionally, we also discuss the phenotypes observed in our patient with respect to those of published cases of microdeletions across the Potocki-Shaffer interval. PMID:26333423

  19. Surgical management of Eagle's syndrome: an approach to shooting craniofacial pain.

    PubMed

    Kumai, Yoshihiko; Hamasaki, Tadashi; Yumoto, Eiji

    2016-10-01

    Eagle's syndrome (ES) and glossopharyngeal neuralgia (GPN) display very similar symptoms preoperatively. The objective of this study is to determine the surgical outcome of intraoral resection of the styloid process (IRSP) for ES, and to observe preoperative findings and treatment outcome of our cases presenting shooting craniofacial pain. In total, 14 symptomatic patients who presented with typical shooting craniofacial pain, had a styloid process longer than 25 mm, and underwent surgical intervention or medication alone from 2011 to 2015 were involved. They were divided into two groups: Group I included eight patients who underwent surgery following 3 months of medication failure, and Group II included six patients who received medication alone. Preoperative physical, radiographic findings and surgical outcomes were examined. In Group I patients, six cases received IRSP and five of those six cases experienced complete relief from symptoms and were confirmed as ES. Two other cases in Group I received microvascular decompression. One showed complete relief from symptoms, and was confirmed as GPN. The other case showed recurrence 1 year postoperatively, received IRSP with complete relief from symptoms, and was confirmed as ES. In Group II, three cases experienced complete relief from symptoms with 3 months of medication alone. IRSP is an effective treatment for ES. There was no clear difference in the preoperative findings for ES and GPN, suggesting the difficulty in making a preoperative differential diagnosis between the two conditions. Close cooperation between ENT and neurosurgery surgeons is needed. PMID:27106095

  20. Craniofacial abnormalities result from knock down of nonsyndromic clefting gene, crispld2, in zebrafish.

    PubMed

    Yuan, Qiuping; Chiquet, Brett T; Devault, Laura; Warman, Matthew L; Nakamura, Yukio; Swindell, Eric C; Hecht, Jacqueline T

    2012-12-01

    Nonsyndromic cleft lip and palate (NSCLP), a common birth defect, affects 4,000 newborns in the US each year. Previously, we described an association between CRISPLD2 and NSCLP and showed Crispld2 expression in the murine palate. These results suggested that a perturbation in CRISPLD2 activity affects craniofacial development. Here, we describe crispld2 expression and the phenotypic consequence of its loss of function in zebrafish. crispld2 was expressed at all stages of zebrafish morphogenesis examined and localized to the rostral end by 1-day postfertilization. Morpholino knockdown of crispld2 resulted in significant jaw and palatal abnormalities in a dose-dependent manner. Loss of crispld2 caused aberrant patterning of neural crest cells (NCC) suggesting that crispld2 is necessary for normal NCC formation. Altogether, we show that crispld2 plays a significant role in the development of the zebrafish craniofacies and alteration of normal protein levels disturbs palate and jaw formation. These data provide support for a role of CRISPLD2 in NSCLP. PMID:22887593