NASA Astrophysics Data System (ADS)
Zhang, ZhenHua
2016-07-01
The high-spin rotational properties of two-quasiparticle bands in the doubly-odd 166Ta are analyzed using the cranked shell model with pairing correlations treated by a particle-number conserving method, in which the blocking effects are taken into account exactly. The experimental moments of inertia and alignments and their variations with the rotational frequency hω are reproduced very well by the particle-number conserving calculations, which provides a reliable support to the configuration assignments in previous works for these bands. The backbendings in these two-quasiparticle bands are analyzed by the calculated occupation probabilities and the contributions of each orbital to the total angular momentum alignments. The moments of inertia and alignments for the Gallagher-Moszkowski partners of these observed two-quasiparticle rotational bands are also predicted.
NASA Astrophysics Data System (ADS)
Li, Yu-Chun; He, Xiao-Tao
2016-07-01
Experimentally observed ground state band based on the 1/2-[521] Nilsson state and the first exited band based on the 7/2-[514] Nilsson state of the odd- Z nucleus 255Lr are studied by the cranked shell model (CSM) with the paring correlations treated by the particle-number-conserving (PNC) method. This is the first time the detailed theoretical investigations are performed on these rotational bands. Both experimental kinematic and dynamic moments of inertia ( J (1) and J (2)) versus rotational frequency are reproduced quite well by the PNC-CSM calculations. By comparing the theoretical kinematic moment of inertia J (1) with the experimental ones extracted from different spin assignments, the spin 17/2- → 13/2- is assigned to the lowest-lying 196.6(5) keV transition of the 1/2-[521] band, and 15/2- → 11/2- to the 189(1) keV transition of the 7/2-[514] band, respectively. The proton N = 7 major shell is included in the calculations. The intruder of the high- j low-Ω 1 j 15/2 (1/2-[770]) orbital at the high spin leads to band-crossings at ħω ≈ 0.20 ( ħω ≈ 0.25) MeV for the 7/2-[514] α = -1/2 ( α = +1/2) band, and at ħω ≈ 0.175 MeV for the 1/2-[521] α = -1/2 band, respectively. Further investigations show that the band-crossing frequencies are quadrupole deformation dependent.
Calculations of signature for Dy, Er, Yb nuclei
Mueller, W.F.; Jensen, H.J.; Reviot, W.
1993-10-01
Energy signature splitting {Delta}e` of rotational bands depends sensitively on deformation, pair correlations, and Fermi level in the particular nucleus. Calculating {Delta}e` is therefore very useful in understanding the experimentally observed properties of such bands. In principal, one can extract {Delta}e` from Total Routhian Surface (TRS) calculations as well as from the Cranked Shell Model (CSM). However, the codes available are not based on a fully self-consistent treatment of all critical parameters, deformation, pairing, and Fermi level. The TRS calculations, while modeling the deformation in a {open_quote}realistic{close_quotes} manner as a function of rotational frequency and changes in the quasiparticle configuration, have deficiencies particularly in the treatment of pairing. The CSM codes, on the other hand, estimate pairing and the location of the Fermi level more precisely than the TRS codes, but work under the assumption of a constant deformation. We have developed a method to calculate {Delta}e` that utilizes the most advanced features of both types of codes. This ensures that the best parameter values are used as input for calculating the routhians. As a test, we have used a series of odd-A Dy, Er, and Yb nuclei around A = 160 and compared the results for the vi{sub 13/2} shell with experimental data on {Delta}e`. Details of our method will be discussed and the comparison will be presented.
ON-LINE CALCULATOR: FORWARD CALCULATION JOHNSON ETTINGER MODEL
On-Site was developed to provide modelers and model reviewers with prepackaged tools ("calculators") for performing site assessment calculations. The philosophy behind OnSite is that the convenience of the prepackaged calculators helps provide consistency for simple calculations,...
Model calculations of lightning electric fields
NASA Technical Reports Server (NTRS)
Master, M. J.; Uman, M. A.; Krider, E. P.
1982-01-01
Calculated time-domain waveforms and frequency spectra are presented for three of the most important processes in a lightning discharge to ground: the return stroke, the stepped leader, and the preliminary breakdown. For each of these processes, the model calculations are given for 200 m and 50 km. The calculations are compared with available time and frequency domain measurements.
Precipitates/Salts Model Sensitivity Calculation
P. Mariner
2001-12-20
The objective and scope of this calculation is to assist Performance Assessment Operations and the Engineered Barrier System (EBS) Department in modeling the geochemical effects of evaporation on potential seepage waters within a potential repository drift. This work is developed and documented using procedure AP-3.12Q, ''Calculations'', in support of ''Technical Work Plan For Engineered Barrier System Department Modeling and Testing FY 02 Work Activities'' (BSC 2001a). The specific objective of this calculation is to examine the sensitivity and uncertainties of the Precipitates/Salts model. The Precipitates/Salts model is documented in an Analysis/Model Report (AMR), ''In-Drift Precipitates/Salts Analysis'' (BSC 2001b). The calculation in the current document examines the effects of starting water composition, mineral suppressions, and the fugacity of carbon dioxide (CO{sub 2}) on the chemical evolution of water in the drift.
Numerical Calculation of Model Rocket Trajectories.
ERIC Educational Resources Information Center
Keeports, David
1990-01-01
Discussed is the use of model rocketry to teach the principles of Newtonian mechanics. Included are forces involved; calculations for vertical launches; two-dimensional trajectories; and variations in mass, drag, and launch angle. (CW)
Hybrid reduced order modeling for assembly calculations
Bang, Youngsuk; Abdel-Khalik, Hany S.; Jessee, Matthew A.; Mertyurek, Ugur
2015-08-14
While the accuracy of assembly calculations has greatly improved due to the increase in computer power enabling more refined description of the phase space and use of more sophisticated numerical algorithms, the computational cost continues to increase which limits the full utilization of their effectiveness for routine engineering analysis. Reduced order modeling is a mathematical vehicle that scales down the dimensionality of large-scale numerical problems to enable their repeated executions on small computing environment, often available to end users. This is done by capturing the most dominant underlying relationships between the model's inputs and outputs. Previous works demonstrated the use of the reduced order modeling for a single physics code, such as a radiation transport calculation. This paper extends those works to coupled code systems as currently employed in assembly calculations. Finally, numerical tests are conducted using realistic SCALE assembly models with resonance self-shielding, neutron transport, and nuclides transmutation/depletion models representing the components of the coupled code system.
Hybrid reduced order modeling for assembly calculations
Bang, Y.; Abdel-Khalik, H. S.; Jessee, M. A.; Mertyurek, U.
2013-07-01
While the accuracy of assembly calculations has considerably improved due to the increase in computer power enabling more refined description of the phase space and use of more sophisticated numerical algorithms, the computational cost continues to increase which limits the full utilization of their effectiveness for routine engineering analysis. Reduced order modeling is a mathematical vehicle that scales down the dimensionality of large-scale numerical problems to enable their repeated executions on small computing environment, often available to end users. This is done by capturing the most dominant underlying relationships between the model's inputs and outputs. Previous works demonstrated the use of the reduced order modeling for a single physics code, such as a radiation transport calculation. This manuscript extends those works to coupled code systems as currently employed in assembly calculations. Numerical tests are conducted using realistic SCALE assembly models with resonance self-shielding, neutron transport, and nuclides transmutation/depletion models representing the components of the coupled code system. (authors)
Hybrid reduced order modeling for assembly calculations
Bang, Youngsuk; Abdel-Khalik, Hany S.; Jessee, Matthew A.; Mertyurek, Ugur
2015-08-14
While the accuracy of assembly calculations has greatly improved due to the increase in computer power enabling more refined description of the phase space and use of more sophisticated numerical algorithms, the computational cost continues to increase which limits the full utilization of their effectiveness for routine engineering analysis. Reduced order modeling is a mathematical vehicle that scales down the dimensionality of large-scale numerical problems to enable their repeated executions on small computing environment, often available to end users. This is done by capturing the most dominant underlying relationships between the model's inputs and outputs. Previous works demonstrated the usemore » of the reduced order modeling for a single physics code, such as a radiation transport calculation. This paper extends those works to coupled code systems as currently employed in assembly calculations. Finally, numerical tests are conducted using realistic SCALE assembly models with resonance self-shielding, neutron transport, and nuclides transmutation/depletion models representing the components of the coupled code system.« less
ON-LINE CALCULATOR: JOHNSON ETTINGER VAPOR INTRUSION MODEL
On-Site was developed to provide modelers and model reviewers with prepackaged tools ("calculators") for performing site assessment calculations. The philosophy behind OnSite is that the convenience of the prepackaged calculators helps provide consistency for simple calculations,...
On a model of calculating bond strength
NASA Technical Reports Server (NTRS)
Yue, A. S.; Yang, T. T.; Lin, T. S.
1976-01-01
Diffusion bonding is a fabricating process to join the fibers and a matrix together forming a composite. The efficiency of the bonding process depends on temperature, time, and pressure. Based on a simplified pair potential model, an expression for the bond-energy at the fiber-matrix interface is formulated in terms of the above-mentioned three parameters. From this expression and the mean atomic distance, the bond-strength between the fibers and the matrix can be calculated.
Modeling, calculating, and analyzing multidimensional vibrational spectroscopies.
Tanimura, Yoshitaka; Ishizaki, Akihito
2009-09-15
Spectral line shapes in a condensed phase contain information from various dynamic processes that modulate the transition energy, such as microscopic dynamics, inter- and intramolecular couplings, and solvent dynamics. Because nonlinear response functions are sensitive to the complex dynamics of chemical processes, multidimensional vibrational spectroscopies can separate these processes. In multidimensional vibrational spectroscopy, the nonlinear response functions of a molecular dipole or polarizability are measured using ultrashort pulses to monitor inter- and intramolecular vibrational motions. Because a complex profile of such signals depends on the many dynamic and structural aspects of a molecular system, researchers would like to have a theoretical understanding of these phenomena. In this Account, we explore and describe the roles of different physical phenomena that arise from the peculiarities of the system-bath coupling in multidimensional spectra. We also present simple analytical expressions for a weakly coupled multimode Brownian system, which we use to analyze the results obtained by the experiments and simulations. To calculate the nonlinear optical response, researchers commonly use a particular form of a system Hamiltonian fit to the experimental results. The optical responses of molecular vibrational motions have been studied in either an oscillator model or a vibration energy state model. In principle, both models should give the same results as long as the energy states are chosen to be the eigenstates of the oscillator model. The energy state model can provide a simple description of nonlinear optical processes because the diagrammatic Liouville space theory that developed in the electronically resonant spectroscopies can easily handle three or four energy states involved in high-frequency vibrations. However, the energy state model breaks down if we include the thermal excitation and relaxation processes in the dynamics to put the system in a
Isomer ratio calculations using modeled discrete levels
Gardner, M.A.; Gardner, D.G.; Hoff, R.W.
1984-10-16
Isomer ratio calculations were made for the reactions: /sup 175/Lu(n,..gamma..)/sup 176m,g/Lu, /sup 175/Lu(n,2n)/sup 174m,g/Lu, /sup 237/Np(n,2n)/sup 236m,g/Np, /sup 241/Am(n,..gamma..)/sup 242m,g/Am, and /sup 243/Am(n,..gamma..)/sup 244m,g/Am using modeled level structures in the deformed, odd-odd product nuclei. The hundreds of discrete levels and their gamma-ray branching ratios provided by the modeling are necessary to achieve agreement with experiment. Many rotational bands must be included in order to obtain a sufficiently representative selection of K quantum numbers. The levels of each band must be extended to appropriately high values of angular momentum.
Density functional calculations on model tyrosyl radicals.
Himo, F; Gräslund, A; Eriksson, L A
1997-01-01
A gradient-corrected density functional theory approach (PWP86) has been applied, together with large basis sets (IGLO-III), to investigate the structure and hyperfine properties of model tyrosyl free radicals. In nature, these radicals are observed in, e.g., the charge transfer pathways in photosystem II (PSII) and in ribonucleotide reductases (RNRs). By comparing spin density distributions and proton hyperfine couplings with experimental data, it is confirmed that the tyrosyl radicals present in the proteins are neutral. It is shown that hydrogen bonding to the phenoxyl oxygen atom, when present, causes a reduction in spin density on O and a corresponding increase on C4. Calculated proton hyperfine coupling constants for the beta-protons show that the alpha-carbon is rotated 75-80 degrees out of the plane of the ring in PSII and Salmonella typhimurium RNR, but only 20-30 degrees in, e.g., Escherichia coli, mouse, herpes simplex, and bacteriophage T4-induced RNRs. Furthermore, based on the present calculations, we have revised the empirical parameters used in the experimental determination of the oxygen spin density in the tyrosyl radical in E. coli RNR and of the ring carbon spin densities, from measured hyperfine coupling constants. Images FIGURE 1 FIGURE 5 PMID:9083661
SU(3) in shell-model calculations
Millener, D.J.
1991-10-01
The essential steps in the formalism for performing multi-shell calculations in an SU(3) basis are outlined and examples of applications in which the SU(3) classification aids in the physical interpretation of structure calculation are given.
A radiation model for geocentric trajectory calculations
NASA Technical Reports Server (NTRS)
Malchow, H. L.; Whitney, C. K.
1975-01-01
A solar cell degradation model developed for the SECKSPOT trajectory optimization code is presented. The model is based on two analytic expressions, one describing solar cell power degradation as a function of 1 MeV equivalent fluence and cell base resistivity and thickness, and one describing a spatial field of 1 MeV equivalent electron flux. The model extends the latitude range, provides a continuous and smooth representation of the flux field, and provides for changing the cell characteristics. Construction of a 1 MeV electron flux model and of a power loss model are described. It is shown that modeling the 1 MeV flux field as a separate entity allows simple consideration of both front and back shielding, and that the coefficients relating to specific cell damage data can be simply updated using the latest cell damage data once the general analytical characteristics of the model have been established.
Model potential calculations of lithium transitions.
NASA Technical Reports Server (NTRS)
Caves, T. C.; Dalgarno, A.
1972-01-01
Semi-empirical potentials are constructed that have eigenvalues close in magnitude to the binding energies of the valence electron in lithium. The potentials include the long range polarization force between the electron and the core. The corresponding eigenfunctions are used to calculate dynamic polarizabilities, discrete oscillator strengths, photoionization cross sections and radiative recombination coefficients. A consistent application of the theory imposes a modification on the transition operator, but its effects are small for lithium. The method presented can be regarded as a numerical generalization of the widely used Coulomb approximation.
Model calculates was deposition for North Sea oils
Majeed, A.; Bringedal, B.; Overa, S. )
1990-06-18
A model for calculation of wax formation and deposition in pipelines and process equipment has been developed along with a new method for wax-equilibrium calculations using input from TBP distillation cuts. Selected results from the wax formation and deposition model have been compared with laboratory data from wax equilibrium and deposition experiments, and there have been some field applications of the model.
THREE-DIMENSIONAL MODEL FOR HYPERTHERMIA CALCULATIONS
Realistic three-dimensional models that predict temperature distributions with a high degree of spatial resolution in bodies exposed to electromagnetic (EM) fields are required in the application of hyperthermia for cancer treatment. To ascertain the thermophysiologic response of...
CALCULATION OF PHYSICOCHEMICAL PROPERTIES FOR ENVIRONMENTAL MODELING
Recent trends in environmental regulatory strategies dictate that EPA will rely heavily on predictive modeling to carry out the increasingly complex array of exposure and risk assessments necessary to develop scientifically defensible regulations. In response to this need, resea...
Quantum Biological Channel Modeling and Capacity Calculation
Djordjevic, Ivan B.
2012-01-01
Quantum mechanics has an important role in photosynthesis, magnetoreception, and evolution. There were many attempts in an effort to explain the structure of genetic code and transfer of information from DNA to protein by using the concepts of quantum mechanics. The existing biological quantum channel models are not sufficiently general to incorporate all relevant contributions responsible for imperfect protein synthesis. Moreover, the problem of determination of quantum biological channel capacity is still an open problem. To solve these problems, we construct the operator-sum representation of biological channel based on codon basekets (basis vectors), and determine the quantum channel model suitable for study of the quantum biological channel capacity and beyond. The transcription process, DNA point mutations, insertions, deletions, and translation are interpreted as the quantum noise processes. The various types of quantum errors are classified into several broad categories: (i) storage errors that occur in DNA itself as it represents an imperfect storage of genetic information, (ii) replication errors introduced during DNA replication process, (iii) transcription errors introduced during DNA to mRNA transcription, and (iv) translation errors introduced during the translation process. By using this model, we determine the biological quantum channel capacity and compare it against corresponding classical biological channel capacity. We demonstrate that the quantum biological channel capacity is higher than the classical one, for a coherent quantum channel model, suggesting that quantum effects have an important role in biological systems. The proposed model is of crucial importance towards future study of quantum DNA error correction, developing quantum mechanical model of aging, developing the quantum mechanical models for tumors/cancer, and study of intracellular dynamics in general. PMID:25371271
Droplet distribution models for visibility calculation
NASA Astrophysics Data System (ADS)
Bernardin, F.; Colomb, M.; Egal, F.; Morange, P.; Boreux, J.-J.
2010-07-01
More efficient predictions of fog occurrence and visibility are required in order to improve both safety and traffic management in critical adverse weather situations. Observation and simulation of the fog characteristics contribute to a better understanding of the phenomena and to adapt technical solutions against visibility reduction. The simulation of visibility reduction by fog condition using light scattering model depends on the size and concentration of droplets. Therefore it is necessary to include in the software some functions for the droplet distribution model rather than some data file of single measurement. The aim of the present work is to revisit some droplet distribution models of fog (Shettle and Fenn 1979) in order to actualise them by using recent experimental measures. Indeed the models mentioned above were established thanks to experimental data obtained with sensors of 70’s. Actual sensors are able to take into account droplets with radius 0.2 μm which was not the case with older sensors. A surface observation campaign was carried out at Palaiseau and Toulouse, France, between 2006 and 2008. These experiments allowed to collect microphysical data of fog and particularly droplet distributions of the fog, thanks to a "Palas" optical granulometer. Based on these data an analysis is carried out in order to provide a droplet distribution model. The first approach consists in testing the four Gamma laws proposed by Shettle and Fenn (1979). The adjustment of coefficients allows changing the characteristics from advection to radiation fog. These functions did not fit the new set of data collected with the Palas sensor. New algorithms based on Gamma and Lognormal laws are proposed and discussed in comparison to the previous models. For a road application, the coefficients of the proposed models are evaluated for different classes of visibility, ranged from 50 to 200 meters.
Beyond standard model calculations with Sherpa
Höche, Stefan; Kuttimalai, Silvan; Schumann, Steffen; Siegert, Frank
2015-03-24
We present a fully automated framework as part of the Sherpa event generator for the computation of tree-level cross sections in beyond Standard Model scenarios, making use of model information given in the Universal FeynRules Output format. Elementary vertices are implemented into C++ code automatically and provided to the matrix-element generator Comix at runtime. Widths and branching ratios for unstable particles are computed from the same building blocks. The corresponding decays are simulated with spin correlations. Parton showers, QED radiation and hadronization are added by Sherpa, providing a full simulation of arbitrary BSM processes at the hadron level.
Martian Radiation Environment: Model Calculations and Recent Measurements with "MARIE"
NASA Technical Reports Server (NTRS)
Saganti, P. B.; Cucinotta, F. A.; zeitlin, C. J.; Cleghorn, T. F.
2004-01-01
The Galactic Cosmic Ray spectra in Mars orbit were generated with the recently expanded HZETRN (High Z and Energy Transport) and QMSFRG (Quantum Multiple-Scattering theory of nuclear Fragmentation) model calculations. These model calculations are compared with the first eighteen months of measured data from the MARIE (Martian Radiation Environment Experiment) instrument onboard the 2001 Mars Odyssey spacecraft that is currently in Martian orbit. The dose rates observed by the MARIE instrument are within 10% of the model calculated predictions. Model calculations are compared with the MARIE measurements of dose, dose-equivalent values, along with the available particle flux distribution. Model calculated particle flux includes GCR elemental composition of atomic number, Z = 1-28 and mass number, A = 1-58. Particle flux calculations specific for the current MARIE mapping period are reviewed and presented.
Precipitates/Salts Model Calculations for Various Drift Temperature Environments
P. Marnier
2001-12-20
The objective and scope of this calculation is to assist Performance Assessment Operations and the Engineered Barrier System (EBS) Department in modeling the geochemical effects of evaporation within a repository drift. This work is developed and documented using procedure AP-3.12Q, Calculations, in support of ''Technical Work Plan For Engineered Barrier System Department Modeling and Testing FY 02 Work Activities'' (BSC 2001a). The primary objective of this calculation is to predict the effects of evaporation on the abstracted water compositions established in ''EBS Incoming Water and Gas Composition Abstraction Calculations for Different Drift Temperature Environments'' (BSC 2001c). A secondary objective is to predict evaporation effects on observed Yucca Mountain waters for subsequent cement interaction calculations (BSC 2001d). The Precipitates/Salts model is documented in an Analysis/Model Report (AMR), ''In-Drift Precipitates/Salts Analysis'' (BSC 2001b).
Method and models for R-curve instability calculations
NASA Technical Reports Server (NTRS)
Orange, Thomas W.
1990-01-01
This paper presents a simple method for performing elastic R-curve instability calculations. For a single material-structure combination, the calculations can be done on some pocket calculators. On microcomputers and larger, it permits the development of a comprehensive program having libraries of driving force equations for different configurations and R-curve model equations for different materials. The paper also presents several model equations for fitting to experimental R-curve data, both linear elastic and elastoplastic. The models are fit to data from the literature to demonstrate their viability.
Method and models for R-curve instability calculations
NASA Technical Reports Server (NTRS)
Orange, Thomas W.
1988-01-01
This paper presents a simple method for performing elastic R-curve instability calculations. For a single material-structure combination, the calculations can be done on some pocket calculators. On microcomputers and larger, it permits the development of a comprehensive program having libraries of driving force equations for different configurations and R-curve model equations for different materials. The paper also presents several model equations for fitting to experimental R-curve data, both linear elastic and elastoplastic. The models are fit to data from the literature to demonstrate their viability.
Model calculations of nuclear data for biologically-important elements
Chadwick, M.B.; Blann, M.; Reffo, G.; Young, P.G.
1994-05-01
We describe calculations of neutron-induced reactions on carbon and oxygen for incident energies up to 70 MeV, the relevant clinical energy in radiation neutron therapy. Our calculations using the FKK-GNASH, GNASH, and ALICE codes are compared with experimental measurements, and their usefulness for modeling reactions on biologically-important elements is assessed.
In-Drift Microbial Communities Model Validation Calculations
D. M. Jolley
2001-09-24
The objective and scope of this calculation is to create the appropriate parameter input for MING 1.0 (CSCI 30018 V1.0, CRWMS M&O 1998b) that will allow the testing of the results from the MING software code with both scientific measurements of microbial populations at the site and laboratory and with natural analogs to the site. This set of calculations provides results that will be used in model validation for the ''In-Drift Microbial Communities'' model (CRWMS M&O 2000) which is part of the Engineered Barrier System Department (EBS) process modeling effort that eventually will feed future Total System Performance Assessment (TSPA) models. This calculation is being produced to replace MING model validation output that is effected by the supersession of DTN MO9909SPAMING1.003 using its replacement DTN MO0106SPAIDM01.034 so that the calculations currently found in the ''In-Drift Microbial Communities'' AMR (CRWMS M&O 2000) will be brought up to date. This set of calculations replaces the calculations contained in sections 6.7.2, 6.7.3 and Attachment I of CRWMS M&O (2000) As all of these calculations are created explicitly for model validation, the data qualification status of all inputs can be considered corroborative in accordance with AP-3.15Q. This work activity has been evaluated in accordance with the AP-2.21 procedure, ''Quality Determinations and Planning for Scientific, Engineering, and Regulatory Compliance Activities'', and is subject to QA controls (BSC 2001). The calculation is developed in accordance with the AP-3.12 procedure, Calculations, and prepared in accordance with the ''Technical Work Plan For EBS Department Modeling FY 01 Work Activities'' (BSC 2001) which includes controls for the management of electronic data.
In-Drift Microbial Communities Model Validation Calculation
D. M. Jolley
2001-10-31
The objective and scope of this calculation is to create the appropriate parameter input for MING 1.0 (CSCI 30018 V1.0, CRWMS M&O 1998b) that will allow the testing of the results from the MING software code with both scientific measurements of microbial populations at the site and laboratory and with natural analogs to the site. This set of calculations provides results that will be used in model validation for the ''In-Drift Microbial Communities'' model (CRWMS M&O 2000) which is part of the Engineered Barrier System Department (EBS) process modeling effort that eventually will feed future Total System Performance Assessment (TSPA) models. This calculation is being produced to replace MING model validation output that is effected by the supersession of DTN MO9909SPAMING1.003 using its replacement DTN MO0106SPAIDM01.034 so that the calculations currently found in the ''In-Drift Microbial Communities'' AMR (CRWMS M&O 2000) will be brought up to date. This set of calculations replaces the calculations contained in sections 6.7.2, 6.7.3 and Attachment I of CRWMS M&O (2000) As all of these calculations are created explicitly for model validation, the data qualification status of all inputs can be considered corroborative in accordance with AP-3.15Q. This work activity has been evaluated in accordance with the AP-2.21 procedure, ''Quality Determinations and Planning for Scientific, Engineering, and Regulatory Compliance Activities'', and is subject to QA controls (BSC 2001). The calculation is developed in accordance with the AP-3.12 procedure, Calculations, and prepared in accordance with the ''Technical Work Plan For EBS Department Modeling FY 01 Work Activities'' (BSC 2001) which includes controls for the management of electronic data.
IN-DRIFT MICROBIAL COMMUNITIES MODEL VALIDATION CALCULATIONS
D.M. Jolley
2001-12-18
The objective and scope of this calculation is to create the appropriate parameter input for MING 1.0 (CSCI 30018 V1.0, CRWMS M&O 1998b) that will allow the testing of the results from the MING software code with both scientific measurements of microbial populations at the site and laboratory and with natural analogs to the site. This set of calculations provides results that will be used in model validation for the ''In-Drift Microbial Communities'' model (CRWMS M&O 2000) which is part of the Engineered Barrier System Department (EBS) process modeling effort that eventually will feed future Total System Performance Assessment (TSPA) models. This calculation is being produced to replace MING model validation output that is effected by the supersession of DTN M09909SPAMINGl.003 using its replacement DTN M00106SPAIDMO 1.034 so that the calculations currently found in the ''In-Drift Microbial Communities'' AMR (CRWMS M&O 2000) will be brought up to date. This set of calculations replaces the calculations contained in sections 6.7.2, 6.7.3 and Attachment I of CRWMS M&O (2000) As all of these calculations are created explicitly for model validation, the data qualification status of all inputs can be considered corroborative in accordance with AP-3.15Q. This work activity has been evaluated in accordance with the AP-2.21 procedure, ''Quality Determinations and Planning for Scientific, Engineering, and Regulatory Compliance Activities'', and is subject to QA controls (BSC 2001). The calculation is developed in accordance with the AP-3.12 procedure, Calculations, and prepared in accordance with the ''Technical Work Plan For EBS Department Modeling FY 01 Work Activities'' (BSC 200 1) which includes controls for the management of electronic data.
Campbell, David L.; Watts, Raymond D.
1978-01-01
Program listing, instructions, and example problems are given for 12 programs for the interpretation of geophysical data, for use on Hewlett-Packard models 67 and 97 programmable hand-held calculators. These are (1) gravity anomaly over 2D prism with = 9 vertices--Talwani method; (2) magnetic anomaly (?T, ?V, or ?H) over 2D prism with = 8 vertices?Talwani method; (3) total-field magnetic anomaly profile over thick sheet/thin dike; (4) single dipping seismic refractor--interpretation and design; (5) = 4 dipping seismic refractors--interpretation; (6) = 4 dipping seismic refractors?design; (7) vertical electrical sounding over = 10 horizontal layers--Schlumberger or Wenner forward calculation; (8) vertical electric sounding: Dar Zarrouk calculations; (9) magnetotelluric planewave apparent conductivity and phase angle over = 9 horizontal layers--forward calculation; (10) petrophysics: a.c. electrical parameters; (11) petrophysics: elastic constants; (12) digital convolution with = 10-1ength filter.
Approximate flash calculations for equation-of-state compositional models
Nghiem, L.X.; Li, Y.K.
1985-02-01
An approximate method for flash calculations (AFC) with an equation of state is presented. The equations for AFC are obtained by linearizing the thermodynamic equilibrium equations at an equilibrium condition termed reference condition. The AFC equations are much simpler than the actual equations for flash calculations and yet give almost the same results. A procedure for generating new reference conditions to keep the AFC results close to the true flash calculation (TFC) results is described. AFC is compared to TFC in the calculation of standard laboratory tests and in the simulation of gas injection processes with a composition model. Excellent results are obtained with AFC in less than half the original execution time.
Effective UV radiation from model calculations and measurements
NASA Technical Reports Server (NTRS)
Feister, Uwe; Grewe, Rolf
1994-01-01
Model calculations have been made to simulate the effect of atmospheric ozone and geographical as well as meteorological parameters on solar UV radiation reaching the ground. Total ozone values as measured by Dobson spectrophotometer and Brewer spectrometer as well as turbidity were used as input to the model calculation. The performance of the model was tested by spectroradiometric measurements of solar global UV radiation at Potsdam. There are small differences that can be explained by the uncertainty of the measurements, by the uncertainty of input data to the model and by the uncertainty of the radiative transfer algorithms of the model itself. Some effects of solar radiation to the biosphere and to air chemistry are discussed. Model calculations and spectroradiometric measurements can be used to study variations of the effective radiation in space in space time. The comparability of action spectra and their uncertainties are also addressed.
HOM study and parameter calculation of the TESLA cavity model
NASA Astrophysics Data System (ADS)
Zeng, Ri-Hua; Schuh, Marcel; Gerigk, Frank; Wegner, Rolf; Pan, Wei-Min; Wang, Guang-Wei; Liu, Rong
2010-01-01
The Superconducting Proton Linac (SPL) is the project for a superconducting, high current H-accelerator at CERN. To find dangerous higher order modes (HOMs) in the SPL superconducting cavities, simulation and analysis for the cavity model using simulation tools are necessary. The existing TESLA 9-cell cavity geometry data have been used for the initial construction of the models in HFSS. Monopole, dipole and quadrupole modes have been obtained by applying different symmetry boundaries on various cavity models. In calculation, scripting language in HFSS was used to create scripts to automatically calculate the parameters of modes in these cavity models (these scripts are also available in other cavities with different cell numbers and geometric structures). The results calculated automatically are then compared with the values given in the TESLA paper. The optimized cavity model with the minimum error will be taken as the base for further simulation of the SPL cavities.
Microbial Communities Model Parameter Calculation for TSPA/SR
D. Jolley
2001-07-16
This calculation has several purposes. First the calculation reduces the information contained in ''Committed Materials in Repository Drifts'' (BSC 2001a) to useable parameters required as input to MING V1.O (CRWMS M&O 1998, CSCI 30018 V1.O) for calculation of the effects of potential in-drift microbial communities as part of the microbial communities model. The calculation is intended to replace the parameters found in Attachment II of the current In-Drift Microbial Communities Model revision (CRWMS M&O 2000c) with the exception of Section 11-5.3. Second, this calculation provides the information necessary to supercede the following DTN: M09909SPAMING1.003 and replace it with a new qualified dataset (see Table 6.2-1). The purpose of this calculation is to create the revised qualified parameter input for MING that will allow {Delta}G (Gibbs Free Energy) to be corrected for long-term changes to the temperature of the near-field environment. Calculated herein are the quadratic or second order regression relationships that are used in the energy limiting calculations to potential growth of microbial communities in the in-drift geochemical environment. Third, the calculation performs an impact review of a new DTN: M00012MAJIONIS.000 that is intended to replace the currently cited DTN: GS9809083 12322.008 for water chemistry data used in the current ''In-Drift Microbial Communities Model'' revision (CRWMS M&O 2000c). Finally, the calculation updates the material lifetimes reported on Table 32 in section 6.5.2.3 of the ''In-Drift Microbial Communities'' AMR (CRWMS M&O 2000c) based on the inputs reported in BSC (2001a). Changes include adding new specified materials and updating old materials information that has changed.
batman: BAsic Transit Model cAlculatioN in Python
NASA Astrophysics Data System (ADS)
Kreidberg, Laura
2015-11-01
I introduce batman, a Python package for modeling exoplanet transit and eclipse light curves. The batman package supports calculation of light curves for any radially symmetric stellar limb darkening law, using a new integration algorithm for models that cannot be quickly calculated analytically. The code uses C extension modules to speed up model calculation and is parallelized with OpenMP. For a typical light curve with 100 data points in transit, batman can calculate one million quadratic limb-darkened models in 30 s with a single 1.7 GHz Intel Core i5 processor. The same calculation takes seven minutes using the four-parameter nonlinear limb darkening model (computed to 1 ppm accuracy). Maximum truncation error for integrated models is an input parameter that can be set as low as 0.001 ppm, ensuring that the community is prepared for the precise transit light curves we anticipate measuring with upcoming facilities. The batman package is open source and publicly available at https://github.com/lkreidberg/batman.
Statistical Model Calculations for (n,γ) Reactions
NASA Astrophysics Data System (ADS)
Beard, Mary; Uberseder, Ethan; Wiescher, Michael
2015-05-01
Hauser-Feshbach (HF) cross sections are of enormous importance for a wide range of applications, from waste transmutation and nuclear technologies, to medical applications, and nuclear astrophysics. It is a well-observed result that different nuclear input models sensitively affect HF cross section calculations. Less well known however are the effects on calculations originating from model-specific implementation details (such as level density parameter, matching energy, back-shift and giant dipole parameters), as well as effects from non-model aspects, such as experimental data truncation and transmission function energy binning. To investigate the effects or these various aspects, Maxwellian-averaged neutron capture cross sections have been calculated for approximately 340 nuclei. The relative effects of these model details will be discussed.
Nonlinear triggered lightning models for use in finite difference calculations
NASA Technical Reports Server (NTRS)
Rudolph, Terence; Perala, Rodney A.; Ng, Poh H.
1989-01-01
Two nonlinear triggered lightning models have been developed for use in finite difference calculations. Both are based on three species of air chemistry physics and couple nonlinearly calculated air conductivity to Maxwell's equations. The first model is suitable for use in three-dimensional modeling and has been applied to the analysis of triggered lightning on the NASA F106B Thunderstorm Research Aircraft. The model calculates number densities of positive ions, negative ions, and electrons as a function of time and space through continuity equations, including convective derivative terms. The set of equations is closed by using experimentally determined mobilities, and the mobilities are also used to determine the air conductivity. Results from the model's application to the F106B are shown. The second model is two-dimensional and incorporates an enhanced air chemistry formulation. Momentum conservation equations replace the mobility assumption of the first model. Energy conservation equations for neutrals, heavy ions, and electrons are also used. Energy transfer into molecular vibrational modes is accounted for. The purpose for the enhanced model is to include the effects of temperature into the air breakdown, a necessary step if the model is to simulate more than the very earliest stages of breakdown. Therefore, the model also incorporates a temperature-dependent electron avalanche rate. Results from the model's application to breakdown around a conducting ellipsoid placed in an electric field are shown.
New generation of universal modeling for centrifugal compressors calculation
NASA Astrophysics Data System (ADS)
Galerkin, Y.; Drozdov, A.
2015-08-01
The Universal Modeling method is in constant use from mid - 1990th. Below is presented the newest 6th version of the Method. The flow path configuration of 3D impellers is presented in details. It is possible to optimize meridian configuration including hub/shroud curvatures, axial length, leading edge position, etc. The new model of vaned diffuser includes flow non-uniformity coefficient based on CFD calculations. The loss model was built from the results of 37 experiments with compressors stages of different flow rates and loading factors. One common set of empirical coefficients in the loss model guarantees the efficiency definition within an accuracy of 0.86% at the design point and 1.22% along the performance curve. The model verification was made. Four multistage compressors performances with vane and vaneless diffusers were calculated. As the model verification was made, four multistage compressors performances with vane and vaneless diffusers were calculated. Two of these compressors have quite unusual flow paths. The modeling results were quite satisfactory in spite of these peculiarities. One sample of the verification calculations is presented in the text. This 6th version of the developed computer program is being already applied successfully in the design practice.
Separated transonic airfoil flow calculations with a nonequilibrium turbulence model
NASA Technical Reports Server (NTRS)
King, L. S.; Johnson, D. A.
1985-01-01
Navier-Stokes transonic airfoil calculations based on a recently developed nonequilibrium, turbulence closure model are presented for a supercritical airfoil section at transonic cruise conditions and for a conventional airfoil section at shock-induced stall conditions. Comparisons with experimental data are presented which show that this nonequilibrium closure model performs significantly better than the popular Baldwin-Lomax and Cebeci-Smith equilibrium algebraic models when there is boundary-layer separation that results from the inviscid-viscous interactions.
An Improved Radiative Transfer Model for Climate Calculations
NASA Technical Reports Server (NTRS)
Bergstrom, Robert W.; Mlawer, Eli J.; Sokolik, Irina N.; Clough, Shepard A.; Toon, Owen B.
1998-01-01
This paper presents a radiative transfer model that has been developed to accurately predict the atmospheric radiant flux in both the infrared and the solar spectrum with a minimum of computational effort. The model is designed to be included in numerical climate models To assess the accuracy of the model, the results are compared to other more detailed models for several standard cases in the solar and thermal spectrum. As the thermal spectrum has been treated in other publications, we focus here on the solar part of the spectrum. We perform several example calculations focussing on the question of absorption of solar radiation by gases and aerosols.
Interactions of model biomolecules. Benchmark CC calculations within MOLCAS
NASA Astrophysics Data System (ADS)
Urban, Miroslav; PitoÅák, Michal; Neogrády, Pavel; Dedíková, Pavlína; Hobza, Pavel
2015-01-01
We present results using the OVOS approach (Optimized Virtual Orbitals Space) aimed at enhancing the effectiveness of the Coupled Cluster calculations. This approach allows to reduce the total computer time required for large-scale CCSD(T) calculations about ten times when the original full virtual space is reduced to about 50% of its original size without affecting the accuracy. The method is implemented in the MOLCAS computer program. When combined with the Cholesky decomposition of the two-electron integrals and suitable parallelization it allows calculations which were formerly prohibitively too demanding. We focused ourselves to accurate calculations of the hydrogen bonded and the stacking interactions of the model biomolecules. Interaction energies of the formaldehyde, formamide, benzene, and uracil dimers and the three-body contributions in the cytosine - guanine tetramer are presented. Other applications, as the electron affinity of the uracil affected by solvation are also shortly mentioned.
Interactions of model biomolecules. Benchmark CC calculations within MOLCAS
Urban, Miroslav; Pitoňák, Michal; Neogrády, Pavel; Dedíková, Pavlína; Hobza, Pavel
2015-01-22
We present results using the OVOS approach (Optimized Virtual Orbitals Space) aimed at enhancing the effectiveness of the Coupled Cluster calculations. This approach allows to reduce the total computer time required for large-scale CCSD(T) calculations about ten times when the original full virtual space is reduced to about 50% of its original size without affecting the accuracy. The method is implemented in the MOLCAS computer program. When combined with the Cholesky decomposition of the two-electron integrals and suitable parallelization it allows calculations which were formerly prohibitively too demanding. We focused ourselves to accurate calculations of the hydrogen bonded and the stacking interactions of the model biomolecules. Interaction energies of the formaldehyde, formamide, benzene, and uracil dimers and the three-body contributions in the cytosine – guanine tetramer are presented. Other applications, as the electron affinity of the uracil affected by solvation are also shortly mentioned.
Approximate flash calculations for equation-of-state compositional models--
Nghiem, L.X.; Li, Y.K. )
1990-02-01
An approximate flash-calculation (AFC) method with an equation of state (EOS) is presented. The equations for AFC are obtained by linearizing the thermodynamic equilibrium equations at an equilibrium condition called the reference condition. The AFC equations are much simpler than the actual equations for flash calculations and yet give almost the same results. A procedure for generating new reference conditions to keep the AFC results close to the true flash-calculation (TFC) results is described. AFC is compared with TFC in the calculation of standard laboratory tests and in the simulation of gas-injection processes with a compositional model. Excellent results are obtained with AFC in less than half the original execution time.
Fully Relativistic Calculations for Non-LTE Modeling
NASA Astrophysics Data System (ADS)
Fontes, Christopher J.; Zhang, Hong Lin; Abdallah, Joseph, Jr.; Clark, Robert E. H.; Kilcrease, David P.
1999-11-01
A set of fully relativistic codes has been developed to calculate non-LTE, configuration-average atomic models for use in ICF simulations. The codes are based on the same architecture as that used by existing atomic data codes at Los Alamos such as CATS, ACE, GIPPER and FINE. Therefore the new codes are just as easily used in detailed configuration calculations, similar to work reported at previous meetings. In keeping with earlier work we provide sample calculations for some simple gold models. The effect of a fully relativistic treatment on quantities such as average charge state, ion fractions and emissivity will be reported. The possibility of applying the new codes to a very large number of configurations will also be discussed.
Teaching Modelling Concepts: Enter the Pocket-Size Programmable Calculator.
ERIC Educational Resources Information Center
Gaar, Kermit A., Jr.
1980-01-01
Addresses the problem of the failure of students to see a physiological system in an integrated way. Programmable calculators armed with a printer are suggested as useful teaching devices that avoid the expense and the unavailability of computers for modelling in teaching physiology. (Author/SA)
Preliminary Modulus and Breakage Calculations on Cellulose Models
Technology Transfer Automated Retrieval System (TEKTRAN)
The Young’s modulus of polymers can be calculated by stretching molecular models with the computer. The molecule is stretched and the derivative of the changes in stored potential energy for several displacements, divided by the molecular cross-section area, is the stress. The modulus is the slope o...
Comparison of statistical model calculations for stable isotope neutron capture
NASA Astrophysics Data System (ADS)
Beard, M.; Uberseder, E.; Crowter, R.; Wiescher, M.
2014-09-01
It is a well-observed result that different nuclear input models sensitively affect Hauser-Feshbach (HF) cross-section calculations. Less well-known, however, are the effects on calculations originating from nonmodel aspects, such as experimental data truncation and transmission function energy binning, as well as code-dependent aspects, such as the definition of level-density matching energy and the inclusion of shell correction terms in the level-density parameter. To investigate these aspects, Maxwellian-averaged neutron capture cross sections (MACS) at 30 keV have been calculated using the well-established statistical Hauser-Feshbach model codes talys and non-smoker for approximately 340 nuclei. For the same nuclei, MACS predictions have also been obtained using two new HF codes, cigar and sapphire. Details of these two codes, which have been developed to contain an overlapping set of identically implemented nuclear physics input models, are presented. It is generally accepted that HF calculations are valid to within a factor of 3. It was found that this factor is dependent on both model and nonmodel details, such as the coarseness of the transmission function energy binning and data truncation, as well as variances in details regarding the implementation of level-density parameter, backshift, matching energy, and giant dipole strength function parameters.
Model calculations for diffuse molecular clouds. [interstellar hydrogen cloud model
NASA Technical Reports Server (NTRS)
Glassgold, A. E.; Langer, W. D.
1974-01-01
A steady state isobaric cloud model is developed. The pressure, thermal, electrical, and chemical balance equations are solved simultaneously with a simple one dimensional approximation to the equation of radiative transfer appropriate to diffuse clouds. Cooling is mainly by CII fine structure transitions, and a variety of heating mechanisms are considered. Particular attention is given to the abundance variation of H2. Inhomogeneous density distributions are obtained because of the attenuation of the interstellar UV field and the conversion from atomic to molecular hyrodgen. The effects of changing the model parameters are described and the applicability of the model to OAO-3 observations is discussed. Good qualitative agreement with the fractional H2 abundance determinations has been obtained. The observed kinetic temperatures near 80 K can also be achieved by grain photoelectron heating. The problem of the electron density is solved taking special account of the various hydrogen ions as well as heavier ones.
Microscopic Shell Model Calculations for the Fluorine Isotopes
NASA Astrophysics Data System (ADS)
Barrett, Bruce R.; Dikmen, Erdal; Maris, Pieter; Vary, James P.; Shirokov, Andrey M.
2015-10-01
Using a formalism based on the No Core Shell Model (NCSM), we have determined miscroscopically the core and single-particle energies and the effective two-body interactions that are the input to standard shell model (SSM) calculations. The basic idea is to perform a succession of a Okubo-Lee-Suzuki (OLS) transformation, a NCSM calculation, and a second OLS transformation to a further reduced space, such as the sd-shell, which allows the separation of the many-body matrix elements into an ``inert'' core part plus a few valence-nucleons calculation. In the present investigation we use this technique to calculate the properties of the nuclides in the Fluorine isotopic chain, using the JISP16 nucleon-nucleon interaction. The obtained SSM input, along with the results of the SSM calculations for the Fluorine isotopes, will be presented. This work supported in part by TUBITAK-BIDEB, the US DOE, the US NSF, NERSC, and the Russian Ministry of Education and Science.
On the pressure calculation for polarizable models in computer simulation.
Kiss, Péter T; Baranyai, András
2012-03-14
We present a short overview of pressure calculation in molecular dynamics or Monte Carlo simulations. The emphasis is given to polarizable models in order to resolve the controversy caused by the paper of M. J. Louwerse and E. J. Baerends [Chem. Phys. Lett. 421, 138 (2006)] about pressure calculation in systems with periodic boundaries. We systematically derive expressions for the pressure and show that despite the lack of explicit pairwise additivity, the pressure formula for polarizable models is identical with that of nonpolarizable ones. However, a strict condition for using this formula is that the induced dipole should be in perfect mechanical equilibrium prior to pressure calculation. The perfect convergence of induced dipoles ensures conservation of energy as well. We demonstrate using more cumbersome but exact methods that the derived expressions for the polarizable model of water provide correct numerical results. We also show that the inaccuracy caused by imperfect convergence of the induced dipoles correlates with the inaccuracy of the calculated pressure. PMID:22423830
Feasibility of supersonic diode pumped alkali lasers: Model calculations
Barmashenko, B. D.; Rosenwaks, S.
2013-04-08
The feasibility of supersonic operation of diode pumped alkali lasers (DPALs) is studied for Cs and K atoms applying model calculations, based on a semi-analytical model previously used for studying static and subsonic flow DPALs. The operation of supersonic lasers is compared with that measured and modeled in subsonic lasers. The maximum power of supersonic Cs and K lasers is found to be higher than that of subsonic lasers with the same resonator and alkali density at the laser inlet by 25% and 70%, respectively. These results indicate that for scaling-up the power of DPALs, supersonic expansion should be considered.
Hybrid Reduced Order Modeling Algorithms for Reactor Physics Calculations
NASA Astrophysics Data System (ADS)
Bang, Youngsuk
Reduced order modeling (ROM) has been recognized as an indispensable approach when the engineering analysis requires many executions of high fidelity simulation codes. Examples of such engineering analyses in nuclear reactor core calculations, representing the focus of this dissertation, include the functionalization of the homogenized few-group cross-sections in terms of the various core conditions, e.g. burn-up, fuel enrichment, temperature, etc. This is done via assembly calculations which are executed many times to generate the required functionalization for use in the downstream core calculations. Other examples are sensitivity analysis used to determine important core attribute variations due to input parameter variations, and uncertainty quantification employed to estimate core attribute uncertainties originating from input parameter uncertainties. ROM constructs a surrogate model with quantifiable accuracy which can replace the original code for subsequent engineering analysis calculations. This is achieved by reducing the effective dimensionality of the input parameter, the state variable, or the output response spaces, by projection onto the so-called active subspaces. Confining the variations to the active subspace allows one to construct an ROM model of reduced complexity which can be solved more efficiently. This dissertation introduces a new algorithm to render reduction with the reduction errors bounded based on a user-defined error tolerance which represents the main challenge of existing ROM techniques. Bounding the error is the key to ensuring that the constructed ROM models are robust for all possible applications. Providing such error bounds represents one of the algorithmic contributions of this dissertation to the ROM state-of-the-art. Recognizing that ROM techniques have been developed to render reduction at different levels, e.g. the input parameter space, the state space, and the response space, this dissertation offers a set of novel
Free energy calculations for a flexible water model.
Habershon, Scott; Manolopoulos, David E
2011-11-28
In this work, we consider the problem of calculating the classical free energies of liquids and solids for molecular models with intramolecular flexibility. We show that thermodynamic integration from the fully-interacting solid of interest to a Debye crystal reference state, with anisotropic harmonic interactions derived from the Hessian of the original crystal, provides a straightforward route to calculating the Gibbs free energy of the solid. To calculate the molecular liquid free energy, it is essential to correctly account for contributions from both intermolecular and intramolecular motion; we employ thermodynamic integration to a Lennard-Jones reference fluid, coupled with direct evaluation of the molecular ro-vibrational partition function. These approaches are used to study the low-pressure classical phase diagram of the flexible q-TIP4P/F water model. We find that, while the experimental ice-I/liquid and ice-III/liquid coexistence lines are described reasonably well by this model, the ice-II phase is predicted to be metastable. In light of this finding, we go on to examine how the coupling between intramolecular flexibility and intermolecular interactions influences the computed phase diagram by comparing our results with those of the underlying rigid-body water model. PMID:21887423
Calculating Free Energy Changes in Continuum Solvation Models.
Ho, Junming; Ertem, Mehmed Z
2016-02-25
We recently showed for a large data set of pKas and reduction potentials that free energies calculated directly within the SMD continuum model compares very well with corresponding thermodynamic cycle calculations in both aqueous and organic solvents [ Phys. Chem. Chem. Phys. 2015 , 17 , 2859 ]. In this paper, we significantly expand the scope of our study to examine the suitability of this approach for calculating general solution phase kinetics and thermodynamics, in conjunction with several commonly used solvation models (SMD-M062X, SMD-HF, CPCM-UAKS, and CPCM-UAHF) for a broad range of systems. This includes cluster-continuum schemes for pKa calculations as well as various neutral, radical, and ionic reactions such as enolization, cycloaddition, hydrogen and chlorine atom transfer, and SN2 and E2 reactions. On the basis of this benchmarking study, we conclude that the accuracies of both approaches are generally very similar-the mean errors for Gibbs free energy changes of neutral and ionic reactions are approximately 5 and 25 kJ mol(-1), respectively. In systems where there are significant structural changes due to solvation, as is the case for certain ionic transition states and amino acids, the direct approach generally afford free energy changes that are in better agreement with experiment. PMID:26878566
Sample size calculation for the proportional hazards cure model.
Wang, Songfeng; Zhang, Jiajia; Lu, Wenbin
2012-12-20
In clinical trials with time-to-event endpoints, it is not uncommon to see a significant proportion of patients being cured (or long-term survivors), such as trials for the non-Hodgkins lymphoma disease. The popularly used sample size formula derived under the proportional hazards (PH) model may not be proper to design a survival trial with a cure fraction, because the PH model assumption may be violated. To account for a cure fraction, the PH cure model is widely used in practice, where a PH model is used for survival times of uncured patients and a logistic distribution is used for the probability of patients being cured. In this paper, we develop a sample size formula on the basis of the PH cure model by investigating the asymptotic distributions of the standard weighted log-rank statistics under the null and local alternative hypotheses. The derived sample size formula under the PH cure model is more flexible because it can be used to test the differences in the short-term survival and/or cure fraction. Furthermore, we also investigate as numerical examples the impacts of accrual methods and durations of accrual and follow-up periods on sample size calculation. The results show that ignoring the cure rate in sample size calculation can lead to either underpowered or overpowered studies. We evaluate the performance of the proposed formula by simulation studies and provide an example to illustrate its application with the use of data from a melanoma trial. PMID:22786805
ILNCSIM: improved lncRNA functional similarity calculation model.
Huang, Yu-An; Chen, Xing; You, Zhu-Hong; Huang, De-Shuang; Chan, Keith C C
2016-05-01
Increasing observations have indicated that lncRNAs play a significant role in various critical biological processes and the development and progression of various human diseases. Constructing lncRNA functional similarity networks could benefit the development of computational models for inferring lncRNA functions and identifying lncRNA-disease associations. However, little effort has been devoted to quantifying lncRNA functional similarity. In this study, we developed an Improved LNCRNA functional SIMilarity calculation model (ILNCSIM) based on the assumption that lncRNAs with similar biological functions tend to be involved in similar diseases. The main improvement comes from the combination of the concept of information content and the hierarchical structure of disease directed acyclic graphs for disease similarity calculation. ILNCSIM was combined with the previously proposed model of Laplacian Regularized Least Squares for lncRNA-Disease Association to further evaluate its performance. As a result, new model obtained reliable performance in the leave-one-out cross validation (AUCs of 0.9316 and 0.9074 based on MNDR and Lnc2cancer databases, respectively), and 5-fold cross validation (AUCs of 0.9221 and 0.9033 for MNDR and Lnc2cancer databases), which significantly improved the prediction performance of previous models. It is anticipated that ILNCSIM could serve as an effective lncRNA function prediction model for future biomedical researches. PMID:27028993
Optical model calculations of heavy-ion target fragmentation
NASA Technical Reports Server (NTRS)
Townsend, L. W.; Wilson, J. W.; Cucinotta, F. A.; Norbury, J. W.
1986-01-01
The fragmentation of target nuclei by relativistic protons and heavy ions is described within the context of a simple abrasion-ablation-final-state interaction model. Abrasion is described by a quantum mechanical formalism utilizing an optical model potential approximation. Nuclear charge distributions of the excited prefragments are calculated by both a hypergeometric distribution and a method based upon the zero-point oscillations of the giant dipole resonance. Excitation energies are estimated from the excess surface energy resulting from the abrasion process and the additional energy deposited by frictional spectator interactions of the abraded nucleons. The ablation probabilities are obtained from the EVA-3 computer program. Isotope production cross sections for the spallation of copper targets by relativistic protons and for the fragmenting of carbon targets by relativistic carbon, neon, and iron projectiles are calculated and compared with available experimental data.
Effect of molecular models on viscosity and thermal conductivity calculations
NASA Astrophysics Data System (ADS)
Weaver, Andrew B.; Alexeenko, Alina A.
2014-12-01
The effect of molecular models on viscosity and thermal conductivity calculations is investigated. The Direct Simulation Monte Carlo (DSMC) method for rarefied gas flows is used to simulate Couette and Fourier flows as a means of obtaining the transport coefficients. Experimental measurements for argon (Ar) provide a baseline for comparison over a wide temperature range of 100-1,500 K. The variable hard sphere (VHS), variable soft sphere (VSS), and Lennard-Jones (L-J) molecular models have been implemented into a parallel version of Bird's one-dimensional DSMC code, DSMC1, and the model parameters have been recalibrated to the current experimental data set. While the VHS and VSS models only consider the short-range, repulsive forces, the L-J model also includes constributions from the long-range, dispersion forces. Theoretical results for viscosity and thermal conductivity indicate the L-J model is more accurate than the VSS model; with maximum errors of 1.4% and 3.0% in the range 300-1,500 K for L-J and VSS models, respectively. The range of validity of the VSS model is extended to 1,650 K through appropriate choices for the model parameters.
Infrared lens thermal effect: equivalent focal shift and calculating model
NASA Astrophysics Data System (ADS)
Zhang, Cheng-shuo; Shi, Zelin; Feng, Bin; Xu, Bao-shu
2014-11-01
It's well-know that the focal shift of infrared lens is the major factor in degeneration of imaging quality when temperature change. In order to figure out the connection between temperature change and focal shift, partial differential equations of thermal effect on light path are obtained by raytrace method, to begin with. The approximately solution of the PDEs show that focal shift is proportional to temperature change. And a formula to compute the proportional factor is given. In order to understand infrared lens thermal effect deeply, we use defocus by image plane shift at constant temperature to equivalently represent thermal effect on infrared lens. So equivalent focal shift (EFS) is defined and its calculating model is proposed at last. In order to verify EFS and its calculating model, Physical experimental platform including a motorized linear stage with built-in controller, blackbody, target, collimator, IR detector, computer and other devices is developed. The experimental results indicate that EFS make the image plane shift at constant temperature have the same influence on infrared lens as thermal effect and its calculating model is correct.
Freeway travel speed calculation model based on ETC transaction data.
Weng, Jiancheng; Yuan, Rongliang; Wang, Ru; Wang, Chang
2014-01-01
Real-time traffic flow operation condition of freeway gradually becomes the critical information for the freeway users and managers. In fact, electronic toll collection (ETC) transaction data effectively records operational information of vehicles on freeway, which provides a new method to estimate the travel speed of freeway. First, the paper analyzed the structure of ETC transaction data and presented the data preprocess procedure. Then, a dual-level travel speed calculation model was established under different levels of sample sizes. In order to ensure a sufficient sample size, ETC data of different enter-leave toll plazas pairs which contain more than one road segment were used to calculate the travel speed of every road segment. The reduction coefficient α and reliable weight θ for sample vehicle speed were introduced in the model. Finally, the model was verified by the special designed field experiments which were conducted on several freeways in Beijing at different time periods. The experiments results demonstrated that the average relative error was about 6.5% which means that the freeway travel speed could be estimated by the proposed model accurately. The proposed model is helpful to promote the level of the freeway operation monitoring and the freeway management, as well as to provide useful information for the freeway travelers. PMID:25580107
a Proposed Benchmark Problem for Scatter Calculations in Radiographic Modelling
NASA Astrophysics Data System (ADS)
Jaenisch, G.-R.; Bellon, C.; Schumm, A.; Tabary, J.; Duvauchelle, Ph.
2009-03-01
Code Validation is a permanent concern in computer modelling, and has been addressed repeatedly in eddy current and ultrasonic modeling. A good benchmark problem is sufficiently simple to be taken into account by various codes without strong requirements on geometry representation capabilities, focuses on few or even a single aspect of the problem at hand to facilitate interpretation and to avoid that compound errors compensate themselves, yields a quantitative result and is experimentally accessible. In this paper we attempt to address code validation for one aspect of radiographic modeling, the scattered radiation prediction. Many NDT applications can not neglect scattered radiation, and the scatter calculation thus is important to faithfully simulate the inspection situation. Our benchmark problem covers the wall thickness range of 10 to 50 mm for single wall inspections, with energies ranging from 100 to 500 keV in the first stage, and up to 1 MeV with wall thicknesses up to 70 mm in the extended stage. A simple plate geometry is sufficient for this purpose, and the scatter data is compared on a photon level, without a film model, which allows for comparisons with reference codes like MCNP. We compare results of three Monte Carlo codes (McRay, Sindbad and Moderato) as well as an analytical first order scattering code (VXI), and confront them to results obtained with MCNP. The comparison with an analytical scatter model provides insights into the application domain where this kind of approach can successfully replace Monte-Carlo calculations.
A PROPOSED BENCHMARK PROBLEM FOR SCATTER CALCULATIONS IN RADIOGRAPHIC MODELLING
Jaenisch, G.-R.; Bellon, C.; Schumm, A.; Tabary, J.; Duvauchelle, Ph.
2009-03-03
Code Validation is a permanent concern in computer modelling, and has been addressed repeatedly in eddy current and ultrasonic modeling. A good benchmark problem is sufficiently simple to be taken into account by various codes without strong requirements on geometry representation capabilities, focuses on few or even a single aspect of the problem at hand to facilitate interpretation and to avoid that compound errors compensate themselves, yields a quantitative result and is experimentally accessible. In this paper we attempt to address code validation for one aspect of radiographic modeling, the scattered radiation prediction. Many NDT applications can not neglect scattered radiation, and the scatter calculation thus is important to faithfully simulate the inspection situation. Our benchmark problem covers the wall thickness range of 10 to 50 mm for single wall inspections, with energies ranging from 100 to 500 keV in the first stage, and up to 1 MeV with wall thicknesses up to 70 mm in the extended stage. A simple plate geometry is sufficient for this purpose, and the scatter data is compared on a photon level, without a film model, which allows for comparisons with reference codes like MCNP. We compare results of three Monte Carlo codes (McRay, Sindbad and Moderato) as well as an analytical first order scattering code (VXI), and confront them to results obtained with MCNP. The comparison with an analytical scatter model provides insights into the application domain where this kind of approach can successfully replace Monte-Carlo calculations.
Freeway Travel Speed Calculation Model Based on ETC Transaction Data
Weng, Jiancheng; Yuan, Rongliang; Wang, Ru; Wang, Chang
2014-01-01
Real-time traffic flow operation condition of freeway gradually becomes the critical information for the freeway users and managers. In fact, electronic toll collection (ETC) transaction data effectively records operational information of vehicles on freeway, which provides a new method to estimate the travel speed of freeway. First, the paper analyzed the structure of ETC transaction data and presented the data preprocess procedure. Then, a dual-level travel speed calculation model was established under different levels of sample sizes. In order to ensure a sufficient sample size, ETC data of different enter-leave toll plazas pairs which contain more than one road segment were used to calculate the travel speed of every road segment. The reduction coefficient α and reliable weight θ for sample vehicle speed were introduced in the model. Finally, the model was verified by the special designed field experiments which were conducted on several freeways in Beijing at different time periods. The experiments results demonstrated that the average relative error was about 6.5% which means that the freeway travel speed could be estimated by the proposed model accurately. The proposed model is helpful to promote the level of the freeway operation monitoring and the freeway management, as well as to provide useful information for the freeway travelers. PMID:25580107
Pseudo-Reaction Zone model calibration for Programmed Burn calculations
NASA Astrophysics Data System (ADS)
Chiquete, Carlos; Meyer, Chad D.; Quirk, James J.; Short, Mark
2015-06-01
The Programmed Burn (PB) engineering methodology for efficiently calculating detonation timing and energy delivery within high explosive (HE) engineering geometries separates the calculation of these two core components. Modern PB approaches utilize Detonation Shock Dynamics (DSD) to provide accurate time-of-arrival information throughout a given geometry, via an experimentally calibrated propagation law relating the surface normal velocity to its local curvature. The Pseudo-Reaction Zone (PRZ) methodology is then used to release the explosive energy in a finite span following the prescribed arrival of the DSD propagated front through a reactive, hydrodynamic calculation. The PRZ energy release rate must be coupled to the local burn velocity set by the DSD surface evolution. In order to synchronize the energy release to the attendant timing calculation, detonation velocity and front shapes resulting from reactive burn simulations utilizing the PRZ rate law and parameters will be fitted to analogues generated via the applied DSD propagation law, thus yielding the PRZ model calibration for the HE.
Acoustic intensity calculations for axisymmetrically modeled fluid regions
NASA Technical Reports Server (NTRS)
Hambric, Stephen A.; Everstine, Gordon C.
1992-01-01
An algorithm for calculating acoustic intensities from a time harmonic pressure field in an axisymmetric fluid region is presented. Acoustic pressures are computed in a mesh of NASTRAN triangular finite elements of revolution (TRIAAX) using an analogy between the scalar wave equation and elasticity equations. Acoustic intensities are then calculated from pressures and pressure derivatives taken over the mesh of TRIAAX elements. Intensities are displayed as vectors indicating the directions and magnitudes of energy flow at all mesh points in the acoustic field. A prolate spheroidal shell is modeled with axisymmetric shell elements (CONEAX) and submerged in a fluid region of TRIAAX elements. The model is analyzed to illustrate the acoustic intensity method and the usefulness of energy flow paths in the understanding of the response of fluid-structure interaction problems. The structural-acoustic analogy used is summarized for completeness. This study uncovered a NASTRAN limitation involving numerical precision issues in the CONEAX stiffness calculation causing large errors in the system matrices for nearly cylindrical cones.
Hydrothermal hydration of Martian crust: illustration via geochemical model calculations.
Griffith, L L; Shock, E L
1997-04-25
If hydrothermal Systems existed on Mars, hydration of crustal rocks may have had the potential to affect the water budget of the planet. We have conducted geochemical model calculations to investigate the relative roles of host rock composition, temperature, water-to-rock ratio, and initial fluid oxygen fugacity on the mineralogy of hydrothermal alteration assemblages, as well as the effectiveness of alteration to store water in the crust as hydrous minerals. In order to place calculations for Mars in perspective, models of hydrothermal alteration of three genetically related Icelandic volcanics (a basalt, andesite, and rhyolite) are presented, together with results for compositions based on SNC meteorite samples (Shergotty and Chassigny). Temperatures from 150 degrees C to 250 degrees C, water-to-rock ratios from 0.1 to 1000, and two initial fluid oxygen fugacities are considered in the models. Model results for water-to-rock ratios less than 10 are emphasized because they are likely to be more applicable to Mars. In accord with studies of low-grade alteration of terrestrial rocks, we find that the major controls on hydrous mineral production are host rock composition and temperature. Over the range of conditions considered, the alteration of Shergotty shows the greatest potential for storing water as hydrous minerals, and the alteration of Icelandic rhyolite has the lowest potential. PMID:11541456
Hydrothermal hydration of Martian crust: illustration via geochemical model calculations
NASA Technical Reports Server (NTRS)
Griffith, L. L.; Shock, E. L.
1997-01-01
If hydrothermal Systems existed on Mars, hydration of crustal rocks may have had the potential to affect the water budget of the planet. We have conducted geochemical model calculations to investigate the relative roles of host rock composition, temperature, water-to-rock ratio, and initial fluid oxygen fugacity on the mineralogy of hydrothermal alteration assemblages, as well as the effectiveness of alteration to store water in the crust as hydrous minerals. In order to place calculations for Mars in perspective, models of hydrothermal alteration of three genetically related Icelandic volcanics (a basalt, andesite, and rhyolite) are presented, together with results for compositions based on SNC meteorite samples (Shergotty and Chassigny). Temperatures from 150 degrees C to 250 degrees C, water-to-rock ratios from 0.1 to 1000, and two initial fluid oxygen fugacities are considered in the models. Model results for water-to-rock ratios less than 10 are emphasized because they are likely to be more applicable to Mars. In accord with studies of low-grade alteration of terrestrial rocks, we find that the major controls on hydrous mineral production are host rock composition and temperature. Over the range of conditions considered, the alteration of Shergotty shows the greatest potential for storing water as hydrous minerals, and the alteration of Icelandic rhyolite has the lowest potential.
A review of Higgs mass calculations in supersymmetric models
NASA Astrophysics Data System (ADS)
Draper, Patrick; Rzehak, Heidi
2016-03-01
The discovery of the Higgs boson is both a milestone achievement for the Standard Model and an exciting probe of new physics beyond the SM. One of the most important properties of the Higgs is its mass, a number that has proven to be highly constraining for models of new physics, particularly those related to the electroweak hierarchy problem. Perhaps the most extensively studied examples are supersymmetric models, which, while capable of producing a 125 GeV Higgs boson with SM-like properties, do so in non-generic parts of their parameter spaces. We review the computation of the Higgs mass in the Minimal Supersymmetric Standard Model, in particular the large radiative corrections required to lift mh to 125 GeV and their calculation via Feynman-diagrammatic and effective field theory techniques. This review is intended as an entry point for readers new to the field, and as a summary of the current status, including the existing analytic calculations and publicly-available computer codes.
2HDMC — two-Higgs-doublet model calculator
NASA Astrophysics Data System (ADS)
Eriksson, David; Rathsman, Johan; Stål, Oscar
2010-04-01
We describe version 1.0.6 of the public C++ code 2HDMC, which can be used to perform calculations in a general, CP-conserving, two-Higgs-doublet model (2HDM). The program features simple conversion between different parametrizations of the 2HDM potential, a flexible Yukawa sector specification with choices of different Z-symmetries or more general couplings, a decay library including all two-body — and some three-body — decay modes for the Higgs bosons, and the possibility to calculate observables of interest for constraining the 2HDM parameter space, as well as theoretical constraints from positivity and unitarity. The latest version of the 2HDMC code and full documentation is available from: http://www.isv.uu.se/thep/MC/2HDMC. New version program summaryProgram title: 2HDMC Catalogue identifier: AEFI_v1_1 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AEFI_v1_1.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: GNU GPL No. of lines in distributed program, including test data, etc.: 12 110 No. of bytes in distributed program, including test data, etc.: 92 731 Distribution format: tar.gz Programming language: C++ Computer: Any computer running Linux Operating system: Linux RAM: 5 Mb Catalogue identifier of previous version: AEFI_v1_0 Journal reference of previous version: Comput. Phys. Comm. 180 (2010) 189 Classification: 11.1 External routines: GNU Scientific Library ( http://www.gnu.org/software/gsl/) Does the new version supersede the previous version?: Yes Nature of problem: Determining properties of the potential, calculation of mass spectrum, couplings, decay widths, oblique parameters, muon g-2, and collider constraints in a general two-Higgs-doublet model. Solution method: From arbitrary potential and Yukawa sector, tree-level relations are used to determine Higgs masses and couplings. Decay widths are calculated at leading order, including FCNC decays when applicable. Decays to off
Radiation Environment Variations at Mars - Model Calculations and Measurements
NASA Astrophysics Data System (ADS)
Saganti, Premkumar; Cucinotta, Francis
Variations in the space radiation environment due to changes in the GCR (Galactic Cosmic Ray) from the past (#23) solar cycle to the current one (#24) has been intriguing in many ways, with an unprecedented long duration of the recent solar minimum condition and a very low peak activity of the current solar maximum. Model calculated radiation data and assessment of variations in the particle flux - protons, alpha particles, and heavy ions of the GCR environment is essential for understanding radiation risk and for any future intended long-duration human exploration missions. During the past solar cycle, we have had most active and higher solar maximum (2001-2003) condition. In the beginning of the current solar cycle (#24), we experienced a very long duration of solar minimum (2009-2011) condition with a lower peak activity (2013-2014). At Mars, radiation measurements in orbit were obtained (onboard the 2001 Mars Odyssey spacecraft) during the past (#23) solar maximum condition. Radiation measurements on the surface of Mars are being currently measured (onboard the Mars Science Laboratory, 2012 - Curiosity) during the current (#24) solar peak activity (August 2012 - present). We present our model calculated radiation environment at Mars during solar maxima for solar cycles #23 and #24. We compare our earlier model calculations (Cucinotta et al., J. Radiat. Res., 43, S35-S39, 2002; Saganti et al., J. Radiat. Res., 43, S119-S124, 2002; and Saganti et al., Space Science Reviews, 110, 143-156, 2004) with the most recent radiation measurements on the surface of Mars (2012 - present).
Space resection model calculation based on Random Sample Consensus algorithm
NASA Astrophysics Data System (ADS)
Liu, Xinzhu; Kang, Zhizhong
2016-03-01
Resection has been one of the most important content in photogrammetry. It aims at the position and attitude information of camera at the shooting point. However in some cases, the observed values for calculating are with gross errors. This paper presents a robust algorithm that using RANSAC method with DLT model can effectually avoiding the difficulties to determine initial values when using co-linear equation. The results also show that our strategies can exclude crude handicap and lead to an accurate and efficient way to gain elements of exterior orientation.
Accurate pressure gradient calculations in hydrostatic atmospheric models
NASA Technical Reports Server (NTRS)
Carroll, John J.; Mendez-Nunez, Luis R.; Tanrikulu, Saffet
1987-01-01
A method for the accurate calculation of the horizontal pressure gradient acceleration in hydrostatic atmospheric models is presented which is especially useful in situations where the isothermal surfaces are not parallel to the vertical coordinate surfaces. The present method is shown to be exact if the potential temperature lapse rate is constant between the vertical pressure integration limits. The technique is applied to both the integration of the hydrostatic equation and the computation of the slope correction term in the horizontal pressure gradient. A fixed vertical grid and a dynamic grid defined by the significant levels in the vertical temperature distribution are employed.
Shape evolution of yrast-band in 78Kr
NASA Astrophysics Data System (ADS)
Joshi, P. K.; Jain, H. C.; Palit, R.; Mukherjee, G.; Nagaraj, S.
2002-03-01
Lifetimes have been measured up to the I=22 + level in the yrast positive-parity band for 78Kr using the recoil distance and lineshape analysis methods. The B(E2) and Qt values obtained from these measurements show a significant drop with increasing spin. The band crossings and the observed variation in Qt are understood through cranked shell-model, TRS and configuration-dependent shell-correction calculations assuming an oblate deformation for 78Kr at low spins.
Absorbed Dose and Dose Equivalent Calculations for Modeling Effective Dose
NASA Technical Reports Server (NTRS)
Welton, Andrew; Lee, Kerry
2010-01-01
While in orbit, Astronauts are exposed to a much higher dose of ionizing radiation than when on the ground. It is important to model how shielding designs on spacecraft reduce radiation effective dose pre-flight, and determine whether or not a danger to humans is presented. However, in order to calculate effective dose, dose equivalent calculations are needed. Dose equivalent takes into account an absorbed dose of radiation and the biological effectiveness of ionizing radiation. This is important in preventing long-term, stochastic radiation effects in humans spending time in space. Monte carlo simulations run with the particle transport code FLUKA, give absorbed and equivalent dose data for relevant shielding. The shielding geometry used in the dose calculations is a layered slab design, consisting of aluminum, polyethylene, and water. Water is used to simulate the soft tissues that compose the human body. The results obtained will provide information on how the shielding performs with many thicknesses of each material in the slab. This allows them to be directly applicable to modern spacecraft shielding geometries.
Calculations of hot gas ingestion for a STOVL aircraft model
NASA Technical Reports Server (NTRS)
Fricker, David M.; Holdeman, James D.; Vanka, Surya P.
1992-01-01
Hot gas ingestion problems for Short Take-Off, Vertical Landing (STOVL) aircraft are typically approached with empirical methods and experience. In this study, the hot gas environment around a STOVL aircraft was modeled as multiple jets in crossflow with inlet suction. The flow field was calculated with a Navier-Stokes, Reynolds-averaged, turbulent, 3D computational fluid dynamics code using a multigrid technique. A simple model of a STOVL aircraft with four choked jets at 1000 K was studied at various heights, headwind speeds, and thrust splay angles in a modest parametric study. Scientific visualization of the computed flow field shows a pair of vortices in front of the inlet. This and other qualitative aspects of the flow field agree well with experimental data.
Stealth Dark Matter: Model, lattice calculations, and constraints
NASA Astrophysics Data System (ADS)
Schaich, David; Lattice Strong Dynamics Collaboration
2016-03-01
A new strongly coupled dark sector can produce a well-motivated and phenomenologically interesting composite dark matter candidate. I will review a model recently proposed by the Lattice Strong Dynamics Collaboration in which the composite dark matter is naturally ``stealthy'': Although its constituents are charged the composite particle itself is electroweak neutral with vanishing magnetic moment and charge radius. This results in an extraordinarily small direct detection cross section dominated by the dimension-7 electromagnetic polarizability interaction. I will present direct detection constraints on the model that rely on our non-perturbative lattice calculations of the polarizability, as well as complementary constraints from collider experiments. Collider bounds require the stealth dark matter mass to be m > 300 GeV, while its cross section for spin-independent scattering with xenon is smaller than the coherent neutrino scattering background for m > 700 GeV.
Folding model calculations for 6He+12C elastic scattering
NASA Astrophysics Data System (ADS)
Awad, A. Ibraheem
2016-03-01
In the framework of the double folding model, we used the α+2n and di-triton configurations for the nuclear matter density of the 6He nucleus to generate the real part of the optical potential for the system 6He+12C. As an alternative, we also use the high energy approximation to generate the optical potential for the same system. The derived potentials are employed to analyze the elastic scattering differential cross section at energies of 38.3, 41.6 and 82.3 MeV/u. For the imaginary part of the potential we adopt the squared Woods-Saxon form. The obtained results are compared with the corresponding measured data as well as with available results in the literature. The calculated total reaction cross sections are investigated and compared with the optical limit Glauber model description.
Model for analytical calculation of nuclear photoabsorption at intermediate energies
NASA Astrophysics Data System (ADS)
Hütt, M.-Th.; Milstein, A. I.; Schumacher, M.
1997-02-01
The universal curve {σ}/{A} of nuclear photoabsorption is investigated within a Fermi gas model of nuclear matter. An energy range from pion threshold up to 400 MeV is considered. The interactions between nucleon, pion, Δ-isobar and photon are considered in the non-relativistic approximation with corrections of the order {1}/{M} taken into account with respect to proton mass. Analytical expressions are obtained, in which the influence of nuclear correlations and two-nucleon contributions is studied explicitly. The contributions of real and virtual pions are found to be sufficient to obtain agreement with experimental data in this energy range. An extension of the model calculation to nucleon knock-out reactions is discussed.
Plasmon-pole models affect band gaps in GW calculations
NASA Astrophysics Data System (ADS)
Larson, Paul; Wu, Zhigang
2013-03-01
Density functional theory calculations have long been known to underestimate the band gaps in semiconductors. Significant improvements have been made by using GW calculations that uses the self energy, defined as the product of the Green function (G) and screened Coulomb exchange (W). However, many approximations are made in the GW method, specifically the plasmon-pole approximation. This approximation replaces the integration necessary to produce W with a simple approximation to the inverse dielectric function. Four different plasmon-pole approximations have been tested using the tight-binding program ABINIT: Godby-Needs, Hybertsen-Louie, von der Linden-Horsch, and Engel-Farid. For many materials, the differences in the GW band gaps for the different plasmon-pole models are negligible, but for systems with localized electrons, the difference can be larger than 1 eV. The plasmon-pole approximation is generally chosen to best agree with experimental data, but this is misleading in that this ignores all of the other approximations used in the GW method. Improvements in plasmon-pole models in GW can only come about by trying to reproduce the results of the numerical integration rather than trying to reproduce experimental results.
Recent Developments in No-Core Shell-Model Calculations
Navratil, P; Quaglioni, S; Stetcu, I; Barrett, B R
2009-03-20
We present an overview of recent results and developments of the no-core shell model (NCSM), an ab initio approach to the nuclear many-body problem for light nuclei. In this aproach, we start from realistic two-nucleon or two- plus three-nucleon interactions. Many-body calculations are performed using a finite harmonic-oscillator (HO) basis. To facilitate convergence for realistic inter-nucleon interactions that generate strong short-range correlations, we derive effective interactions by unitary transformations that are tailored to the HO basis truncation. For soft realistic interactions this might not be necessary. If that is the case, the NCSM calculations are variational. In either case, the ab initio NCSM preserves translational invariance of the nuclear many-body problem. In this review, we, in particular, highlight results obtained with the chiral two- plus three-nucleon interactions. We discuss efforts to extend the applicability of the NCSM to heavier nuclei and larger model spaces using importance-truncation schemes and/or use of effective interactions with a core. We outline an extension of the ab initio NCSM to the description of nuclear reactions by the resonating group method technique. A future direction of the approach, the ab initio NCSM with continuum, which will provide a complete description of nuclei as open systems with coupling of bound and continuum states is given in the concluding part of the review.
2HDMC - two-Higgs-doublet model calculator
NASA Astrophysics Data System (ADS)
Eriksson, David; Rathsman, Johan; Stål, Oscar
2010-01-01
We describe the public C++ code 2HDMC which can be used to perform calculations in a general, CP-conserving, two-Higgs-doublet model (2HDM). The program features simple conversion between different parametrizations of the 2HDM potential, a flexible Yukawa sector specification with choices of different Z-symmetries or more general couplings, a decay library including all two-body - and some three-body - decay modes for the Higgs bosons, and the possibility to calculate observables of interest for constraining the 2HDM parameter space, as well as theoretical constraints from positivity and unitarity. The latest version of the 2HDMC code and full documentation is available from: http://www.isv.uu.se/thep/MC/2HDMC. Program summaryProgram title:2HDMC Catalogue identifier: AEFI_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AEFI_v1_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: GNU GPL No. of lines in distributed program, including test data, etc.: 12 032 No. of bytes in distributed program, including test data, etc.: 90 699 Distribution format: tar.gz Programming language: C++ Computer: Any computer running Linux Operating system: Linux RAM: 5 Mb Classification: 11.1 External routines: GNU Scientific Library ( http://www.gnu.org/software/gsl/) Nature of problem: Determining properties of the potential, calculation of mass spectrum, couplings, decay widths, oblique parameters, muon g-2, and collider constraints in a general two-Higgs-doublet model. Solution method: From arbitrary potential and Yukawa sector, tree-level relations are used to determine Higgs masses and couplings. Decay widths are calculated at leading order, including FCNC decays when applicable. Decays to off-shell vector bosons are obtained by numerical integration. Observables are computed (analytically or numerically) as function of the input parameters. Restrictions: CP-violation is not treated. Running time: Less than 0
Theoretical model for calculation of helicity in solar active regions
NASA Astrophysics Data System (ADS)
Chatterjee, P.
We (Choudhuri, Chatterjee and Nandy, 2005) calculate helicities of solar active regions based on the idea of Choudhuri (2003) that poloidal flux lines get wrapped around a toroidal flux tube rising through the convection zone, thereby giving rise to the helicity. Rough estimates based on this idea compare favourably with the observed magnitude of helicity. We use our solar dynamo model based on the Babcock--Leighton α-effect to study how helicity varies with latitude and time. At the time of solar maximum, our theoretical model gives negative helicity in the northern hemisphere and positive helicity in the south, in accordance with observed hemispheric trends. However, we find that, during a short interval at the beginning of a cycle, helicities tend to be opposite of the preferred hemispheric trends. Next we (Chatterjee, Choudhuri and Petrovay 2006) use the above idea along with the sunspot decay model of Petrovay and Moreno-Insertis, (1997) to estimate the distribution of helicity inside a flux tube as it keeps collecting more azimuthal flux during its rise through the convection zone and as turbulent diffusion keeps acting on it. By varying parameters over reasonable ranges in our simple 1-d model, we find that the azimuthal flux penetrates the flux tube to some extent instead of being confined to a narrow sheath outside.
Assessment of Some Atomization Models Used in Spray Calculations
NASA Technical Reports Server (NTRS)
Raju, M. S.; Bulzin, Dan
2011-01-01
The paper presents the results from a validation study undertaken as a part of the NASA s fundamental aeronautics initiative on high altitude emissions in order to assess the accuracy of several atomization models used in both non-superheat and superheat spray calculations. As a part of this investigation we have undertaken the validation based on four different cases to investigate the spray characteristics of (1) a flashing jet generated by the sudden release of pressurized R134A from cylindrical nozzle, (2) a liquid jet atomizing in a subsonic cross flow, (3) a Parker-Hannifin pressure swirl atomizer, and (4) a single-element Lean Direct Injector (LDI) combustor experiment. These cases were chosen because of their importance in some aerospace applications. The validation is based on some 3D and axisymmetric calculations involving both reacting and non-reacting sprays. In general, the predicted results provide reasonable agreement for both mean droplet sizes (D32) and average droplet velocities but mostly underestimate the droplets sizes in the inner radial region of a cylindrical jet.
Nonlinear damping calculation in cylindrical gear dynamic modeling
NASA Astrophysics Data System (ADS)
Guilbault, Raynald; Lalonde, Sébastien; Thomas, Marc
2012-04-01
The nonlinear dynamic problem posed by cylindrical gear systems has been extensively covered in the literature. Nonetheless, a significant proportion of the mechanisms involved in damping generation remains to be investigated and described. The main objective of this study is to contribute to this task. Overall, damping is assumed to consist of three sources: surrounding element contribution, hysteresis of the teeth, and oil squeeze damping. The first two contributions are considered to be commensurate with the supported load; for its part however, squeeze damping is formulated using expressions developed from the Reynolds equation. A lubricated impact analysis between the teeth is introduced in this study for the minimum film thickness calculation during contact losses. The dynamic transmission error (DTE) obtained from the final model showed close agreement with experimental measurements available in the literature. The nonlinear damping ratio calculated at different mesh frequencies and torque amplitudes presented average values between 5.3 percent and 8 percent, which is comparable to the constant 8 percent ratio used in published numerical simulations of an equivalent gear pair. A close analysis of the oil squeeze damping evidenced the inverse relationship between this damping effect and the applied load.
Selection of models to calculate the LLW source term
Sullivan, T.M. )
1991-10-01
Performance assessment of a LLW disposal facility begins with an estimation of the rate at which radionuclides migrate out of the facility (i.e., the source term). The focus of this work is to develop a methodology for calculating the source term. In general, the source term is influenced by the radionuclide inventory, the wasteforms and containers used to dispose of the inventory, and the physical processes that lead to release from the facility (fluid flow, container degradation, wasteform leaching, and radionuclide transport). In turn, many of these physical processes are influenced by the design of the disposal facility (e.g., infiltration of water). The complexity of the problem and the absence of appropriate data prevent development of an entirely mechanistic representation of radionuclide release from a disposal facility. Typically, a number of assumptions, based on knowledge of the disposal system, are used to simplify the problem. This document provides a brief overview of disposal practices and reviews existing source term models as background for selecting appropriate models for estimating the source term. The selection rationale and the mathematical details of the models are presented. Finally, guidance is presented for combining the inventory data with appropriate mechanisms describing release from the disposal facility. 44 refs., 6 figs., 1 tab.
Ultrasonic energy in liposome production: process modelling and size calculation.
Barba, A A; Bochicchio, S; Lamberti, G; Dalmoro, A
2014-04-21
The use of liposomes in several fields of biotechnology, as well as in pharmaceutical and food sciences is continuously increasing. Liposomes can be used as carriers for drugs and other active molecules. Among other characteristics, one of the main features relevant to their target applications is the liposome size. The size of liposomes, which is determined during the production process, decreases due to the addition of energy. The energy is used to break the lipid bilayer into smaller pieces, then these pieces close themselves in spherical structures. In this work, the mechanisms of rupture of the lipid bilayer and the formation of spheres were modelled, accounting for how the energy, supplied by ultrasonic radiation, is stored within the layers, as the elastic energy due to the curvature and as the tension energy due to the edge, and to account for the kinetics of the bending phenomenon. An algorithm to solve the model equations was designed and the relative calculation code was written. A dedicated preparation protocol, which involves active periods during which the energy is supplied and passive periods during which the energy supply is set to zero, was defined and applied. The model predictions compare well with the experimental results, by using the energy supply rate and the time constant as fitting parameters. Working with liposomes of different sizes as the starting point of the experiments, the key parameter is the ratio between the energy supply rate and the initial surface area. PMID:24647821
Equilibrium Chemistry Calculations for Model Hot-Jupiter Atmospheres
NASA Astrophysics Data System (ADS)
Blumenthal, Sarah; Harrington, Joseph; Bowman, M. Oliver; Blecic, Jasmina
2014-11-01
Every planet in our solar system has different elemental abundances from our sun's. It is thus necessary to explore a variety of elemental abundances when investigating exoplanet atmospheres. Composition is key to unraveling a planet's formation history and determines the radiative behavior of an atmosphere, including its spectrum (Moses et al. 2013). We consider here two commonly discussed situations: [C]/[O] > 1 and 10x and 100x heavy-element enrichment. For planets above 1200 K, equilibrium chemistry is a valid starting point in atmospheric analysis. For HD 209458b, this assumption was verified by comparing the results of a robust kinetics code (non-ideal behavior) to the results of an equilibrium chemistry code (ideal behavior). Both codes output similar results for the dayside of the planet (Agundez et al. 2012). Using NASA's open-source Chemical Equilibrium Abundances code (McBride and Gordon 1996), we calculate the molecular abundances of species of interest across the dayside of model planets with a range of: elemental abundance profiles, degree of redistribution, relevant substellar temperatures, and pressures. We then explore the compositional gradient of each model planet atmosphere layer using synthetic abundance images of target spectroscopic species (water, methane, carbon monoxide). This work was supported by the NASA Planetary Atmospheres grant NNX12AI69G and NASA Astrophysics Data Analysis Program NNX13AF38G.
Full waveform modelling and misfit calculation using the VERCE platform
NASA Astrophysics Data System (ADS)
Garth, Thomas; Spinuso, Alessandro; Casarotti, Emanuele; Magnoni, Federica; Krischner, Lion; Igel, Heiner; Schwichtenberg, Horst; Frank, Anton; Vilotte, Jean-Pierre; Rietbrock, Andreas
2016-04-01
simulated and recorded waveforms, enabling seismologists to specify and steer their misfit analyses using existing python tools and libraries such as Pyflex and the dispel4py data-intensive processing library. All these processes, including simulation, data access, pre-processing and misfit calculation, are presented to the users of the gateway as dedicated and interactive workspaces. The VERCE platform can also be used to produce animations of seismic wave propagation through the velocity model, and synthetic shake maps. We demonstrate the functionality of the VERCE platform with two case studies, using the pre-loaded velocity model and mesh for Chile and Northern Italy. It is envisioned that this tool will allow a much greater range of seismologists to access these full waveform inversion tools, and aid full waveform tomographic and source inversion, synthetic shake map production and other full waveform applications, in a wide range of tectonic settings.
Effective Inflow Conditions for Turbulence Models in Aerodynamic Calculations
NASA Technical Reports Server (NTRS)
Spalart, Philippe R.; Rumsey, Christopher L.
2007-01-01
The selection of inflow values at boundaries far upstream of an aircraft is considered, for one- and two-equation turbulence models. Inflow values are distinguished from the ambient values near the aircraft, which may be much smaller. Ambient values should be selected first, and inflow values that will lead to them after the decay second; this is not always possible, especially for the time scale. The two-equation decay during the approach to the aircraft is shown; often, the time scale has been set too short for this decay to be calculated accurately on typical grids. A simple remedy for both issues is to impose floor values for the turbulence variables, outside the viscous sublayer, and it is argued that overriding the equations in this manner is physically justified. Selecting laminar ambient values is easy, if the boundary layers are to be tripped, but a more common practice is to seek ambient values that will cause immediate transition in boundary layers. This opens up a wide range of values, and selection criteria are discussed. The turbulent Reynolds number, or ratio of eddy viscosity to laminar viscosity has a huge dynamic range that makes it unwieldy; it has been widely mis-used, particularly by codes that set upper limits on it. The value of turbulent kinetic energy in a wind tunnel or the atmosphere is also of dubious value as an input to the model. Concretely, the ambient eddy viscosity must be small enough to preserve potential cores in small geometry features, such as flap gaps. The ambient frequency scale should also be small enough, compared with shear rates in the boundary layer. Specific values are recommended and demonstrated for airfoil flows
MCNPX Cosmic Ray Shielding Calculations with the NORMAN Phantom Model
NASA Technical Reports Server (NTRS)
James, Michael R.; Durkee, Joe W.; McKinney, Gregg; Singleterry Robert
2008-01-01
The United States is planning manned lunar and interplanetary missions in the coming years. Shielding from cosmic rays is a critical aspect of manned spaceflight. These ventures will present exposure issues involving the interplanetary Galactic Cosmic Ray (GCR) environment. GCRs are comprised primarily of protons (approx.84.5%) and alpha-particles (approx.14.7%), while the remainder is comprised of massive, highly energetic nuclei. The National Aeronautics and Space Administration (NASA) Langley Research Center (LaRC) has commissioned a joint study with Los Alamos National Laboratory (LANL) to investigate the interaction of the GCR environment with humans using high-fidelity, state-of-the-art computer simulations. The simulations involve shielding and dose calculations in order to assess radiation effects in various organs. The simulations are being conducted using high-resolution voxel-phantom models and the MCNPX[1] Monte Carlo radiation-transport code. Recent advances in MCNPX physics packages now enable simulated transport over 2200 types of ions of widely varying energies in large, intricate geometries. We report here initial results obtained using a GCR spectrum and a NORMAN[3] phantom.
Calculation of canopy resistance with a recursive evapotranspiration model
Technology Transfer Automated Retrieval System (TEKTRAN)
The calculation of hourly and daily crop evapotranspiration (ETc) from weather variables requires a corresponding hourly or daily value of canopy resistance (rc). An iterative method first proposed by MI Budyko to calculate ETc finds the surface canopy temperature (Ts) that satisfies the crop’s ener...
National Stormwater Calculator - Version 1.1 (Model)
EPA’s National Stormwater Calculator (SWC) is a desktop application that estimates the annual amount of rainwater and frequency of runoff from a specific site anywhere in the United States (including Puerto Rico). The SWC estimates runoff at a site based on available information ...
Carbon dioxide fluid-flow modeling and injectivity calculations
Burke, Lauri
2011-01-01
These results were used to classify subsurface formations into three permeability classifications for the probabilistic calculations of storage efficiency and containment risk of the U.S. Geological Survey geologic carbon sequestration assessment methodology. This methodology is currently in use to determine the total carbon dioxide containment capacity of the onshore and State waters areas of the United States.
A simplified model for unstable temperature field calculation of gas turbine rotor
NASA Astrophysics Data System (ADS)
He, Guangxin
1989-06-01
A simplified model is presented for calculating the unstable temperature field of a cooled turbine rotor by the finite element method. In the simplified model, an outer radius for calculating has been chosen which is smaller than the radius of the fir-tree root groove's bottom. And an equivalent heat release coefficient has been introduced. Thus, the calculation can be treated as an axial symmetrical problem and carried out on a microcomputer. The simplified model has been used to calculate the unstable temperature field during the start-up of a rotor. A comparison with the three-dimensional calculated result shows that the simplified model is satisfactory.
[An empirical model for calculating electron dose distributions].
Leistner, H; Schüler, W
1990-01-01
Dose-distributions in radiation fields are calculated for purpose of irradiation planning from measured depth dose and cross-distributions predominantly. Especially in electron fields the measuring effort is high to this, because these distributions have to be measured for all occurring irradiation parameters and in many different tissue depths. At the very least it can be shown for the 6...10 MeV electron radiation of the linear accelerator Neptun 10p that all required distributions can be calculated from each separately measured depth dose and cross-distribution. For this depth dose distribution and the measured border decrease of cross-distribution are tabulated and the abscissas are submitted to a linear transformation x' = k.x. In case of depth dose distribution the transformation factor k is dependent on electron energy only and in cross-distribution on tissue depth and source-surface-distance additionally. PMID:2356295
NASA Astrophysics Data System (ADS)
Panov, G. A.; Zakharov, M. A.
2015-11-01
The present work is devoted to the phase diagrams calculation of AIIIBV systems within the framework of the generalized lattice model taking account of volume effects. The theoretically calculated phase diagram is compared with the corresponding experimental diagrams.
Thermochemical data for CVD modeling from ab initio calculations
Ho, P.; Melius, C.F.
1993-12-31
Ab initio electronic-structure calculations are combined with empirical bond-additivity corrections to yield thermochemical properties of gas-phase molecules. A self-consistent set of heats of formation for molecules in the Si-H, Si-H-Cl, Si-H-F, Si-N-H and Si-N-H-F systems is presented, along with preliminary values for some Si-O-C-H species.
Calculation of the Aerodynamic Behavior of the Tilt Rotor Aeroacoustic Model (TRAM) in the DNW
NASA Technical Reports Server (NTRS)
Johnson, Wayne
2001-01-01
Comparisons of measured and calculated aerodynamic behavior of a tiltrotor model are presented. The test of the Tilt Rotor Aeroacoustic Model (TRAM) with a single, 1/4-scale V- 22 rotor in the German-Dutch Wind Tunnel (DNW) provides an extensive set of aeroacoustic, performance, and structural loads data. The calculations were performed using the rotorcraft comprehensive analysis CAMRAD II. Presented are comparisons of measured and calculated performance and airloads for helicopter mode operation, as well as calculated induced and profile power. An aerodynamic and wake model and calculation procedure that reflects the unique geometry and phenomena of tiltrotors has been developed. There are major differences between this model and the corresponding aerodynamic and wake model that has been established for helicopter rotors. In general, good correlation between measured and calculated performance and airloads behavior has been shown. Two aspects of the analysis that clearly need improvement are the stall delay model and the trailed vortex formation model.
Moeller, M. P.; Urbanik, II, T.; Desrosiers, A. E.
1982-03-01
This paper describes the methodology and application of the computer model CLEAR (Calculates Logical Evacuation And Response) which estimates the time required for a specific population density and distribution to evacuate an area using a specific transportation network. The CLEAR model simulates vehicle departure and movement on a transportation network according to the conditions and consequences of traffic flow. These include handling vehicles at intersecting road segments, calculating the velocity of travel on a road segment as a function of its vehicle density, and accounting for the delay of vehicles in traffic queues. The program also models the distribution of times required by individuals to prepare for an evacuation. In order to test its accuracy, the CLEAR model was used to estimate evacuatlon tlmes for the emergency planning zone surrounding the Beaver Valley Nuclear Power Plant. The Beaver Valley site was selected because evacuation time estimates had previously been prepared by the licensee, Duquesne Light, as well as by the Federal Emergency Management Agency and the Pennsylvania Emergency Management Agency. A lack of documentation prevented a detailed comparison of the estimates based on the CLEAR model and those obtained by Duquesne Light. However, the CLEAR model results compared favorably with the estimates prepared by the other two agencies.
NASA Astrophysics Data System (ADS)
Dekker, C. M.; Sliggers, C. J.
To spur on quality assurance for models that calculate air pollution, quality criteria for such models have been formulated. By satisfying these criteria the developers of these models and producers of the software packages in this field can assure and account for the quality of their products. In this way critics and users of such (computer) models can gain a clear understanding of the quality of the model. Quality criteria have been formulated for the development of mathematical models, for their programming—including user-friendliness, and for the after-sales service, which is part of the distribution of such software packages. The criteria have been introduced into national and international frameworks to obtain standardization.
A stirling engine computer model for performance calculations
NASA Technical Reports Server (NTRS)
Tew, R.; Jefferies, K.; Miao, D.
1978-01-01
To support the development of the Stirling engine as a possible alternative to the automobile spark-ignition engine, the thermodynamic characteristics of the Stirling engine were analyzed and modeled on a computer. The modeling techniques used are presented. The performance of an existing rhombic-drive Stirling engine was simulated by use of this computer program, and some typical results are presented. Engine tests are planned in order to evaluate this model.
Chemically reacting supersonic flow calculation using an assumed PDF model
NASA Technical Reports Server (NTRS)
Farshchi, M.
1990-01-01
This work is motivated by the need to develop accurate models for chemically reacting compressible turbulent flow fields that are present in a typical supersonic combustion ramjet (SCRAMJET) engine. In this paper the development of a new assumed probability density function (PDF) reaction model for supersonic turbulent diffusion flames and its implementation into an efficient Navier-Stokes solver are discussed. The application of this model to a supersonic hydrogen-air flame will be considered.
BEN: A model to calculate the economic benefit of noncompliance. User's manual
Not Available
1992-10-01
The Agency developed the BEN computer model to calculate the economic benefit a violator derives from delaying or avoiding compliance with environmental statutes. In general, the Agency uses the BEN computer model to assist its own staff in developing settlement penalty figures. While the primary purpose of the BEN model is to calculate the economic benefit of noncompliance, the model may also be used to calculate the after tax net present value of a pollution prevention or mitigation project and to calculate 'cash outs' in Superfund cases. The document, the BEN User's Manual, contains all the formulas that make up the BEN computer model and is freely available to the public upon request.
Comparison of electron width models for fast line profile calculations
NASA Astrophysics Data System (ADS)
Iglesias, Carlos A.
2016-03-01
The first non-vanishing term in the perturbation expansion of the electron contribution to the line width, commonly used in spectral line broadening by plasmas, was previously expressed in terms of the thermally averaged bremsstrahlung Gaunt factor. The approximations in the derivation, however, suggest that the result is uncertain. The electron width formula is tested with the hydrogen Balmer series and found suspect. Calculations for the He II Lyman series also display similar difficulties. The limitation of this electron width formulation is traced to the absence of an explicit strong collision cutoff beyond which the second-order theory is invalid.
Code System for Calculating Ion Track Condensed Collision Model.
Energy Science and Technology Software Center (ESTSC)
1997-05-21
Version 00 ICOM calculates the transport characteristics of ion radiation for applicaton to radiation protection, dosimetry and microdosimetry, and radiation physics of solids. Ions in the range Z=1-92 are handled. The energy range for protons is 0.001-10,000 MeV. For other ions the energy range is 0.001-100MeV/nucleon. Computed quantities include stopping powers, ranges; spatial, angular and energy distributions of particle current and fluence; spatial distributions of the absorbed dose; and spatial distributions of thermalized ions.
Calculation of astrophysical spallation reactions using the RENO model
NASA Technical Reports Server (NTRS)
Ayres, C. L.; Schmitt, W. F.; Merker, M.; Shen, B. S. P.
1974-01-01
The RENO model for the Monte-Carlo treatment of astrophysical spallation reactions has been used to generate preliminary cross-sections for the purpose of illustrating the discrete-nucleon approach to spallation modeling and to exhibit differences between two versions of RENO. Comparisons with experimental, theoretical, and semiempirical data demonstrate the practicability of the discrete-nucleon approach.-
Carbon fiber dispersion models used for risk analysis calculations
NASA Technical Reports Server (NTRS)
1979-01-01
For evaluating the downwind, ground level exposure contours from carbon fiber dispersion, two fiber release scenarios were chosen. The first is the fire and explosion release in which all of the fibers are released instantaneously. This model applies to accident scenarios where an explosion follows a short-duration fire in the aftermath of the accident. The second is the plume release scenario in which the total mass of fibers is released into the fire plume. This model applies to aircraft accidents where only a fire results. These models are described in detail.
NASA Technical Reports Server (NTRS)
Maples, A. L.
1980-01-01
The operation of solidification model 1 is described. Model 1 calculates the macrosegregation in a rectangular ingot of a binary alloy as a result of horizontal axisymmetric bidirectional solidification. The calculation is restricted to steady-state solidification; there is no variation in final local average composition in the direction of isotherm movement. The physics of the model are given.
40 CFR 600.207-93 - Calculation of fuel economy values for a model type.
Code of Federal Regulations, 2010 CFR
2010-07-01
... a model type. 600.207-93 Section 600.207-93 Protection of Environment ENVIRONMENTAL PROTECTION... Economy Regulations for 1977 and Later Model Year Automobiles-Procedures for Calculating Fuel Economy Values § 600.207-93 Calculation of fuel economy values for a model type. (a) Fuel economy values for...
Detailed Configuration Calculations for Non-LTE Modeling
NASA Astrophysics Data System (ADS)
Fontes, Christopher J.; Abdallah, Joseph, Jr.; Clark, Robert E. H.; Kilcrease, David P.
1998-11-01
We continue our work to explore the feasibility of creating detailed atomic models for radiation-hydrodynamics simulations of ICF applications. By further optimizing our atomic data codes we are able to create non-LTE models with a level of complexity approximately one order of magnitude greater (in size) than previously obtained. We present emissivities for gold which include on the order of 75,000 configurations per temperature-density point. The inclusion of additional configurations has yielded improved results for quantities such as the ion fraction distributions, but the question of spectral convergence is yet unanswered. The creation of still larger models will be discussed as well as comparison with experiment and other theories. The possibility of using these models for in-line simulations will also be discussed.
STREAM MODELS FOR CALCULATING POLLUTIONAL EFFECTS OF STORMWATER RUNOFF
Three related studies are described which provide the means to quantify the pollutional and hydraulic effects on flowing streams caused by stormwater runoff. Mathematical stream models were developed to simulate the biological, physical, chemical, and hydraulic reactions which oc...
The Martian Plasma Environment: Model Calculations and Observations
NASA Astrophysics Data System (ADS)
Lichtenegger, H. I. M.; Dubinin, E.; Schwingenschuh, K.; Riedler, W.
Based on a modified version of the model of an induced martian magnetosphere developed by Luhmann (1990), the dynamics and spatial distribution of different planetary ion species is examined. Three main regions are identified: A cloud of ions travelling along cycloidal trajectories, a plasma mantle and a plasma sheet. The latter predominantly consists of oxygen ions of ionospheric origin with minor portions of light particles. Comparison of model results with Phobos-2 observations shows reasonable agreement.
Mathematical model partitioning and packing for parallel computer calculation
NASA Technical Reports Server (NTRS)
Arpasi, Dale J.; Milner, Edward J.
1986-01-01
This paper deals with the development of multiprocessor simulations from a serial set of ordinary differential equations describing a physical system. The identification of computational parallelism within the model equations is discussed. A technique is presented for identifying this parallelism and for partitioning the equations for parallel solution on a multiprocessor. Next, an algorithm which packs the equations into a minimum number of processors is described. The results of applying the packing algorithm to a turboshaft engine model are presented.
A simple model for calculating air pollution within street canyons
NASA Astrophysics Data System (ADS)
Venegas, Laura E.; Mazzeo, Nicolás A.; Dezzutti, Mariana C.
2014-04-01
This paper introduces the Semi-Empirical Urban Street (SEUS) model. SEUS is a simple mathematical model based on the scaling of air pollution concentration inside street canyons employing the emission rate, the width of the canyon, the dispersive velocity scale and the background concentration. Dispersive velocity scale depends on turbulent motions related to wind and traffic. The parameterisations of these turbulent motions include two dimensionless empirical parameters. Functional forms of these parameters have been obtained from full scale data measured in street canyons at four European cities. The sensitivity of SEUS model is studied analytically. Results show that relative errors in the evaluation of the two dimensionless empirical parameters have less influence on model uncertainties than uncertainties in other input variables. The model estimates NO2 concentrations using a simple photochemistry scheme. SEUS is applied to estimate NOx and NO2 hourly concentrations in an irregular and busy street canyon in the city of Buenos Aires. The statistical evaluation of results shows that there is a good agreement between estimated and observed hourly concentrations (e.g. fractional bias are -10.3% for NOx and +7.8% for NO2). The agreement between the estimated and observed values has also been analysed in terms of its dependence on wind speed and direction. The model shows a better performance for wind speeds >2 m s-1 than for lower wind speeds and for leeward situations than for others. No significant discrepancies have been found between the results of the proposed model and that of a widely used operational dispersion model (OSPM), both using the same input information.
Statistical-mechanical aids to calculating term-structure models
NASA Astrophysics Data System (ADS)
Ingber, Lester
1990-12-01
Recent work in statistical mechanics has developed new analytical and numerical techniques to solve coupled stochastic equations. This paper describes application of the very fast simulated reannealing and path-integral methodologies to the estimation of the Brennan and Schwartz two-factor term-structure (time-dependent) model of bond prices. It is shown that these methodologies can be utilized to estimate more complicated n-factor nonlinear models. Applications to other systems are stressed.
Remote field eddy current technique - Phantom exciter model calculations
NASA Astrophysics Data System (ADS)
Atherton, D. L.; Czura, W.
1993-03-01
High resolution results of finite element calculations for remote field eddy current 'phantom exciter' simulations of slit defect interactions using single through wall transit are presented. These show that fine circumferential slits cause almost no field perturbations in the case of nonferromagnetic tubes but big perturbations in ferromagnetic tubes where high magnetic H fields occur in the slits. Defect-induced magnetic field perturbations must therefore be considered in addition to eddy current perturbations when ferromagnetic materials are inspected, particularly in the case of fine slits orthogonal to the magnetic field direction. Additional details seen are the funnelling of energy into slits in ferromagnetic pipes and precursor disturbances of fields approaching defects. It is suggested that these are due to the reflection of the electromagnetic waves dictated by boundary conditions at the near-side defect boundary.
Model Calculations of Continuous-Wave Laser Ionization of Krypton
Bret D. Cannon
1999-07-27
This report describes modeling of a scheme that uses continuous-wave (CW) lasers to ionize selected isotopes of krypton with high isotopic selectivity. The models predict that combining this ionization scheme with mass spectrometric measurement of the resulting ions can be the basis for ultra-sensitive methods to measure {sup 85}Kr in the presence of a 10{sup 11} excess of the stable krypton isotopes. Two experimental setups are considered in this model: the first setup is for krypton as a static gas, the second is for krypton in an atomic beam. In the static gas experiment, for a total krypton press of 10{sup {minus}4} torr and 10 W of power in the cavity, the model predicts a total krypton ion current of 4.6 x 10{sup 8} s{sup {minus}1} and for a {sup 85}Kr/Kr of 10{sup {minus}11} a {sup 85}Kr ion current of 3.5 s{sup {minus}1} or about 10,000 per hour. The atomic beam setup allowed higher isotopic selectivity; the model predicts a {sup 85}Kr ion current of 18 s{sup {minus}1} or 65,000 per hour.
Improved Dielectric Solvation Model for Electronic Structure Calculations
Chipman, Daniel
2015-12-16
This project was originally funded for the three year period from 09/01/2009 to 08/31/2012. Subsequently a No-Cost Extension was approved for a revised end date of 11/30/2013. The primary goals of the project were to develop continuum solvation models for nondielectric short-range interactions between solvent and solute that arise from dispersion, exchange, and hydrogen bonding. These goals were accomplished and are reported in the five peer-reviewed journal publications listed in the bibliography below. The secondary goals of the project included derivation of analytic gradients for the models, improvement of the cavity integration scheme, application of the models to the core-level spectroscopy of water, and several other miscellaneous items. These goals were not accomplished because they depended on completion of the primary goals, after which there was a lack of time for any additional effort.
Glass viscosity calculation based on a global statistical modelling approach
Fluegel, Alex
2007-02-01
A global statistical glass viscosity model was developed for predicting the complete viscosity curve, based on more than 2200 composition-property data of silicate glasses from the scientific literature, including soda-lime-silica container and float glasses, TV panel glasses, borosilicate fiber wool and E type glasses, low expansion borosilicate glasses, glasses for nuclear waste vitrification, lead crystal glasses, binary alkali silicates, and various further compositions from over half a century. It is shown that within a measurement series from a specific laboratory the reported viscosity values are often over-estimated at higher temperatures due to alkali and boron oxide evaporation during the measurement and glass preparation, including data by Lakatos et al. (1972) and the recently published High temperature glass melt property database for process modeling by Seward et al. (2005). Similarly, in the glass transition range many experimental data of borosilicate glasses are reported too high due to phase separation effects. The developed global model corrects those errors. The model standard error was 9-17°C, with R^2 = 0.985-0.989. The prediction 95% confidence interval for glass in mass production largely depends on the glass composition of interest, the composition uncertainty, and the viscosity level. New insights in the mixed-alkali effect are provided.
Modeling the aeroacoustics of axial fans from CFD calculations
NASA Astrophysics Data System (ADS)
Salesky, Alexandre; Hennemand, Vincent; Kouidri, Smaine; Berthelot, Yves
2002-11-01
The main source of aeroacoustic noise in axial fans is the distribution of the fluctuating, unsteady, aerodynamic forces on the blades. Numerical simulations were carried out with the CFD code (NUMECA), first with steady flow conditions to validate the aerolic performances (pressure drop as a function of flow rate) of the simulated six-bladed axial fans. Simulations were then made with unsteady flows to compute the fluctuating force distributions on the blades. The turbulence was modeled either with the Baldwin-Lomax model or with the K-epsilon model (extended wall function). The numerical results were satisfactory both in terms of numerical convergence and in terms of the physical characteristic of the forces acting on the blades. The numerical results were then coupled into an in-house aeroacoustics code that computes the farfield radiated noise spectrum and directivity, based on the Ffowcs-Williams Hawkings formulation, or alternatively, on the simpler Lowson model. Results compared favorably with data obtained under nonanechoic conditions, based upon ISO 5801 and ISO 5136 standards.
The use of model potentials in molecular calculations. II
NASA Astrophysics Data System (ADS)
Sakai, Y.; Huzinaga, S.
1982-03-01
The model potential method is applied to CO, HCl, P2, Cl2, SH2, Cu2, Br2, Ni(CO)4, and Pd(CO)4. The results are generally very satisfactory. Reduction of computing cost is substantial for molecules containing heavy atoms.
On the figure of merit model for SEU rate calculations
Barak, J.; Reed, R.A.; LaBel, K.A.
1999-12-01
Petersen has introduced a one parameter characterization of a device by the Figure of Merit (FOM). It was claimed that this parameter was sufficient to estimate the SEU rate in almost all orbits. The present paper presents an analytic study of the FOM concept and compares the FOM model with other empirical models. It is found that indeed the FOM parameter gives, in most cases, a good agreement with the rates found using the full SEU cross section plots of the devices. The agreement is poorer in cases where a high portion of the proton flux comes from low energy protons and for very SEU-hard devices. This is demonstrated for certain devices (FPGAs) where the FOM predicted by proton may be smaller by an order of magnitude than the FOM from heavy ions.
Aeroelastic Calculations Using CFD for a Typical Business Jet Model
NASA Technical Reports Server (NTRS)
Gibbons, Michael D.
1996-01-01
Two time-accurate Computational Fluid Dynamics (CFD) codes were used to compute several flutter points for a typical business jet model. The model consisted of a rigid fuselage with a flexible semispan wing and was tested in the Transonic Dynamics Tunnel at NASA Langley Research Center where experimental flutter data were obtained from M(sub infinity) = 0.628 to M(sub infinity) = 0.888. The computational results were computed using CFD codes based on the inviscid TSD equation (CAP-TSD) and the Euler/Navier-Stokes equations (CFL3D-AE). Comparisons are made between analytical results and with experiment where appropriate. The results presented here show that the Navier-Stokes method is required near the transonic dip due to the strong viscous effects while the TSD and Euler methods used here provide good results at the lower Mach numbers.
Progress in Earth System Modeling since the ENIAC Calculation
NASA Astrophysics Data System (ADS)
Fung, I.
2009-05-01
The success of the first numerical weather prediction experiment on the ENIAC computer in 1950 was hinged on the expansion of the meteorological observing network, which led to theoretical advances in atmospheric dynamics and subsequently the implementation of the simplified equations on the computer. This paper briefly reviews the progress in Earth System Modeling and climate observations, and suggests a strategy to sustain and expand the observations needed to advance climate science and prediction.
Suomi NPP VIIRS Striping Analysis using Radiative Transfer Model Calculations
NASA Astrophysics Data System (ADS)
Wang, Z.; Cao, C.
2015-12-01
Modern satellite radiometers such as VIIRS have many detectors with slightly different relative spectral response (RSR). These differences can introduce artifacts such as striping in the imagery. In recent studies we have analyzed the striping pattern related to the detector level RSR difference in VIIRS Thermal Emissive Bands (TEB) M15 and M16, which includes line-by-line radiative transfer model (LBLRTM) detector level response study and onboard detector stability evaluation using the solar diffuser. Now we extend these analysis to the Reflective Solar Bands (RSB) using MODTRAN atmospheric radiative transfer model (RTM) for detector level radiance simulation. Previous studies analyzed the striping pattern in the images of VIIRS ocean color and reflectance in RSB, further studies about the root cause for striping are still needed. In this study, we will use the MODTRAN model at spectral resolution of 1 cm^-1 under different atmospheric conditions for VIIRS RSB, for example band M1 centered at 410nm which is used for Ocean Color product retrieval. The impact of detector level RSR difference, atmospheric dependency, and solar geometry on the striping in VIIRS SDR imagery will be investigated. The cumulative histogram method used successfully for the TEB striping analysis will be used to quantify the striping. These analysis help S-NPP and J1 to better understand the root cause for VIIRS image artifacts and reduce the uncertainties in geophysical retrievals to meet the user needs.
Chambers, R.; Laats, E.T.
1981-01-01
A preliminary set of nine evaluation models (EMs) was added to the FRAPCON-1 computer code, which is used to calculate fuel rod behavior in a nuclear reactor during steady-state operation. The intent was to provide an audit code to be used in the United States Nuclear Regulatory Commission (NRC) licensing activities when calculations of conservative fuel rod temperatures are required. The EMs place conservatisms on the calculation of rod temperature by modifying the calculation of rod power history, fuel and cladding behavior models, and materials properties correlations. Three of the nine EMs provide either input or model specifications, or set the reference temperature for stored energy calculations. The remaining six EMs were intended to add thermal conservatism through model changes. To determine the relative influence of these six EMs upon fuel behavior calculations for commercial power reactors, a sensitivity study was conducted. That study is the subject of this paper.
Some atmospheric scattering considerations relevant to BATSE: A model calculation
NASA Technical Reports Server (NTRS)
Young, John H.
1986-01-01
The orbiting Burst and Transient Source Experiement (BATSE) will locate gamma ray burst sources by analysis of the relative numbers of photons coming directly from a source and entering its prescribed array of detectors. In order to accurately locate burst sources it is thus necessary to identify and correct for any counts contributed by events other than direct entry by a mainstream photon. An effort is described which estimates the photon numbers which might be scattered into the BATSE detectors from interactions with the Earth atmosphere. A model was developed which yielded analytical expressions for single-scatter photon contributions in terms of source and satellite locations.
RADIOGRAPHIC BENCHMARK PROBLEM 2009 - SCATTER CALCULATIONS IN MODELLING
Jaenisch, G.-R.; Bellon, C.; Schumm, A.; Tabary, J.; Duvauchelle, Ph.
2010-02-22
Code Validation is a permanent concern in computer simulation, and has been addressed repeatedly in eddy current and ultrasonic modelling. A good benchmark problem is sufficiently simple to be taken into account by various codes without strong requirements on geometry representation capabilities, focuses on few or even a single aspect of the problem at hand to facilitate interpretation and to avoid that compound errors compensate themselves, yields a quantitative result and is experimentally accessible. In this paper we attempt to address code validation for one aspect of radio-graphic modelling, the scattered radiation prediction. An update of the results of the 2008 benchmark is presented. Additionally we discuss the extension of this benchmark on the lower energy part for 60 and 80 keV as well as for higher energies up to 10 MeV to study the contribution of pair production. Of special interest will be the primary radiation (attenuation law as reference), the total scattered radiation, the relative contribution of scattered radiation separated by order of scatter events (1st, 2nd, ..., 20th), and the spectrum of scattered radiation. We present the results of three Monte Carlo codes (MC-Ray, Sindbad and Moderato) as well as an analytical first order scattering code (VXI) and compare to MCNP as reference.
Nuclear model calculations and their role in space radiation research
NASA Technical Reports Server (NTRS)
Townsend, L. W.; Cucinotta, F. A.; Heilbronn, L. H.
2002-01-01
Proper assessments of spacecraft shielding requirements and concomitant estimates of risk to spacecraft crews from energetic space radiation requires accurate, quantitative methods of characterizing the compositional changes in these radiation fields as they pass through thick absorbers. These quantitative methods are also needed for characterizing accelerator beams used in space radiobiology studies. Because of the impracticality/impossibility of measuring these altered radiation fields inside critical internal body organs of biological test specimens and humans, computational methods rather than direct measurements must be used. Since composition changes in the fields arise from nuclear interaction processes (elastic, inelastic and breakup), knowledge of the appropriate cross sections and spectra must be available. Experiments alone cannot provide the necessary cross section and secondary particle (neutron and charged particle) spectral data because of the large number of nuclear species and wide range of energies involved in space radiation research. Hence, nuclear models are needed. In this paper current methods of predicting total and absorption cross sections and secondary particle (neutrons and ions) yields and spectra for space radiation protection analyses are reviewed. Model shortcomings are discussed and future needs presented. c2002 COSPAR. Published by Elsevier Science Ltd. All right reserved.
Nuclear model calculations and their role in space radiation research.
Townsend, L W; Cucinotta, F A; Heilbronn, L H
2002-01-01
Proper assessments of spacecraft shielding requirements and concomitant estimates of risk to spacecraft crews from energetic space radiation requires accurate, quantitative methods of characterizing the compositional changes in these radiation fields as they pass through thick absorbers. These quantitative methods are also needed for characterizing accelerator beams used in space radiobiology studies. Because of the impracticality/impossibility of measuring these altered radiation fields inside critical internal body organs of biological test specimens and humans, computational methods rather than direct measurements must be used. Since composition changes in the fields arise from nuclear interaction processes (elastic, inelastic and breakup), knowledge of the appropriate cross sections and spectra must be available. Experiments alone cannot provide the necessary cross section and secondary particle (neutron and charged particle) spectral data because of the large number of nuclear species and wide range of energies involved in space radiation research. Hence, nuclear models are needed. In this paper current methods of predicting total and absorption cross sections and secondary particle (neutrons and ions) yields and spectra for space radiation protection analyses are reviewed. Model shortcomings are discussed and future needs presented. PMID:12539757
NASA Astrophysics Data System (ADS)
Preobrazhenskii, M. P.; Rudakov, O. B.
2016-01-01
A regression model for calculating the boiling point isobars of tetrachloromethane-organic solvent binary homogeneous systems is proposed. The parameters of the model proposed were calculated for a series of solutions. The correlation between the nonadditivity parameter of the regression model and the hydrophobicity criterion of the organic solvent is established. The parameter value of the proposed model is shown to allow prediction of the potential formation of azeotropic mixtures of solvents with tetrachloromethane.
The report describes a version of EPA's electrostatic precipitator (ESP) model suitable for use on a Texas Instruments Programmable 59 (TI-59) hand-held calculator. This version of the model allows the calculation of ESP collection efficiency, including corrections for non-ideal ...
Efficient distance calculation using the spherically-extended polytope (s-tope) model
NASA Technical Reports Server (NTRS)
Hamlin, Gregory J.; Kelley, Robert B.; Tornero, Josep
1991-01-01
An object representation scheme which allows for Euclidean distance calculation is presented. The object model extends the polytope model by representing objects as the convex hull of a finite set of spheres. An algorithm for calculating distances between objects is developed which is linear in the total number of spheres specifying the two objects.
Refilling of a Hydraulically Isolated Embolized Xylem Vessel: Model Calculations
VESALA, TIMO; HÖLTTÄ, TEEMU; PERÄMÄKI, MARTTI; NIKINMAA, EERO
2003-01-01
When they are hydraulically isolated, embolized xylem vessels can be refilled, while adjacent vessels remain under tension. This implies that the pressure of water in the refilling vessel must be equal to the bubble gas pressure, which sets physical constraints for recovery. A model of water exudation into the cylindrical vessel and of bubble dissolution based on the assumption of hydraulic isolation is developed. Refilling is made possible by the turgor of the living cells adjacent to the refilling vessel, and by a reflection coefficient below 1 for the exchange of solutes across the interface between the vessel and the adjacent cells. No active transport of solutes is assumed. Living cells are also capable of importing water from the water‐conducting vessels. The most limiting factors were found to be the osmotic potential of living cells and the ratio of the volume of the adjacent living cells to that of the embolized vessel. With values for these of 1·5 MPa and 1, respectively, refilling times were in the order of hours for a broad range of possible values of water conductivity coefficients and effective diffusion distances for dissolved air, when the xylem water tension was below 0·6 MPa and constant. Inclusion of the daily pattern for xylem tension improved the simulations. The simulated gas pressure within the refilling vessel was in accordance with recent experimental results. The study shows that the refilling process is physically possible under hydraulic isolation, while water in surrounding vessels is under negative pressure. However, the osmotic potentials in the refilling vessel tend to be large (in the order of 1 MPa). Only if the xylem water tension is, at most, twice atmospheric pressure, the reflection coefficient remains close to 1 (0·95) and the ratio of the volume of the adjacent living cells to that of the embolized vessel is about 2, does the osmotic potential stay below 0·4 MPa. PMID:12588721
Model Calculations of Ocean Acidification at the End Cretaceous
NASA Astrophysics Data System (ADS)
Tyrrell, T.; Merico, A.; Armstrong McKay, D. I.
2014-12-01
Most episodes of ocean acidification (OA) in Earth's past were either too slow or too minor to provide useful lessons for understanding the present. The end-Cretaceous event (66 Mya) is special in this sense, both because of its rapid onset and also because many calcifying species (including 100% of ammonites and >95% of calcareous nannoplankton and planktonic foraminifera) went extinct at this time. We used box models of the ocean carbon cycle to evaluate whether impact-generated OA could feasibly have been responsible for the calcifier mass extinctions. We simulated several proposed consequences of the asteroid impact: (1) vaporisation of gypsum (CaSO4) and carbonate (CaCO3) rocks at the point of impact, producing sulphuric acid and CO2 respectively; (2) generation of NOx by the impact pressure wave and other sources, producing nitric acid; (3) release of CO2 from wildfires, biomass decay and disinterring of fossil organic carbon and hydrocarbons; and (4) ocean stirring leading to introduction into the surface layer of deep water with elevated CO2. We simulated additions over: (A) a few years (e-folding time of 6 months), and also (B) a few days (e-folding time of 10 hours) for SO4 and NOx, as recently proposed by Ohno et al (2014. Nature Geoscience, 7:279-282). Sulphuric acid as a consequence of gypsum vaporisation was found to be the most important acidifying process. Results will also be presented of the amounts of SO4 required to make the surface ocean become extremely undersaturated (Ωcalcite<0.5) for different e-folding times and combinations of processes. These will be compared to estimates in the literature of how much SO4 was actually released.
A computer program for calculating relative-transmissivity input arrays to aid model calibration
Weiss, Emanuel
1982-01-01
A program is documented that calculates a transmissivity distribution for input to a digital ground-water flow model. Factors that are taken into account in the calculation are: aquifer thickness, ground-water viscosity and its dependence on temperature and dissolved solids, and permeability and its dependence on overburden pressure. Other factors affecting ground-water flow are indicated. With small changes in the program code, leakance also could be calculated. The purpose of these calculations is to provide a physical basis for efficient calibration, and to extend rational transmissivity trends into areas where model calibration is insensitive to transmissivity values.
Er, Li; Xiangying, Zeng
2014-01-01
To simulate the variation of biochemical oxygen demand (BOD) in the tidal Foshan River, inverse calculations based on time domain are applied to the longitudinal dispersion coefficient (E(x)) and BOD decay rate (K(x)) in the BOD model for the tidal Foshan River. The derivatives of the inverse calculation have been respectively established on the basis of different flow directions in the tidal river. The results of this paper indicate that the calculated values of BOD based on the inverse calculation developed for the tidal Foshan River match the measured ones well. According to the calibration and verification of the inversely calculated BOD models, K(x) is more sensitive to the models than E(x) and different data sets of E(x) and K(x) hardly affect the precision of the models. PMID:25026574
A Unified Approach to Power Calculation and Sample Size Determination for Random Regression Models
ERIC Educational Resources Information Center
Shieh, Gwowen
2007-01-01
The underlying statistical models for multiple regression analysis are typically attributed to two types of modeling: fixed and random. The procedures for calculating power and sample size under the fixed regression models are well known. However, the literature on random regression models is limited and has been confined to the case of all…
S-values calculated from a tomographic head/brain model for brain imaging
NASA Astrophysics Data System (ADS)
Chao, Tsi-chian; Xu, X. George
2004-11-01
A tomographic head/brain model was developed from the Visible Human images and used to calculate S-values for brain imaging procedures. This model contains 15 segmented sub-regions including caudate nucleus, cerebellum, cerebral cortex, cerebral white matter, corpus callosum, eyes, lateral ventricles, lenses, lentiform nucleus, optic chiasma, optic nerve, pons and middle cerebellar peduncle, skull CSF, thalamus and thyroid. S-values for C-11, O-15, F-18, Tc-99m and I-123 have been calculated using this model and a Monte Carlo code, EGS4. Comparison of the calculated S-values with those calculated from the MIRD (1999) stylized head/brain model shows significant differences. In many cases, the stylized head/brain model resulted in smaller S-values (as much as 88%), suggesting that the doses to a specific patient similar to the Visible Man could have been underestimated using the existing clinical dosimetry.
Rapid calculation of terrain parameters for radiation modeling from digital elevation data
NASA Technical Reports Server (NTRS)
Dozier, Jeff; Frew, James
1990-01-01
Digital elevation models are now widely used to calculate terrain parameters to determine incoming solar and longwave radiation for use in surface climate models, interpretation of remote-sensing data, and parameters in hydrologic models. Because of the large number of points in an elevation grid, fast algorithms are useful to save computation time. A description is given of rapid methods for calculating slope and azimuth, solar illumination angle, horizons, and view factors for radiation from sky and terrain. Calculation time is reduced by fast algorithms and lookup tables.
Application of Dynamic Grey-Linear Auto-regressive Model in Time Scale Calculation
NASA Astrophysics Data System (ADS)
Yuan, H. T.; Don, S. W.
2009-01-01
Because of the influence of different noise and the other factors, the running of an atomic clock is very complex. In order to forecast the velocity of an atomic clock accurately, it is necessary to study and design a model to calculate its velocity in the near future. By using the velocity, the clock could be used in the calculation of local atomic time and the steering of local universal time. In this paper, a new forecast model called dynamic grey-liner auto-regressive model is studied, and the precision of the new model is given. By the real data of National Time Service Center, the new model is tested.
Airloads and Wake Geometry Calculations for an Isolated Tiltrotor Model in a Wind Tunnel
NASA Technical Reports Server (NTRS)
Johnson, Wayne
2001-01-01
Comparisons of measured and calculated aerodynamic behavior of a tiltrotor model are presented. The test of the Tilt Rotor Aeroacoustic Model (TRAM) with a single, 0.25-scale V-22 rotor in the German-Dutch Wind Tunnel (DNW) provides an extensive set of aeroacoustic, performance, and structural loads data. The calculations were performed using the rotorcraft comprehensive analysis CAMRAD II. Presented are comparisons of measured and calculated performance for hover and helicopter mode operation, and airloads for helicopter mode. Calculated induced power, profile power, and wake geometry provide additional information about the aerodynamic behavior. An aerodynamic and wake model and calculation procedure that reflects the unique geometry and phenomena of tiltrotors has been developed. There are major differences between this model and the corresponding aerodynamic and wake model that has been established for helicopter rotors. In general, good correlation between measured and calculated performance and airloads behavior has been shown. Two aspects of the analysis that clearly need improvement are the stall delay model and the trailed vortex formation model.
Difficult Budgetary Decisions: A Desk-Top Calculator Model to Facilitate Executive Decisions.
ERIC Educational Resources Information Center
Tweddale, R. Bruce
Presented is a budgetary decision model developed to aid the executive officers in arriving at tentative decisions on enrollment, tuition rates, increased compensation, and level of staffing as they affect the total institutional budget. The model utilizes a desk-top programmable calculator (in this case, a Burroughs Model C 3660). The model…
NASA Technical Reports Server (NTRS)
Maples, A. L.
1980-01-01
The software developed for the solidification model is presented. A link between the calculations and the FORTRAN code is provided, primarily in the form of global flow diagrams and data structures. A complete listing of the solidification code is given.
Band Model Calculations for CFCl3 in the 8-12 micron Region
NASA Technical Reports Server (NTRS)
Silvaggio, Peter M.; Boese, Robert W.; Nanes, Roger
1980-01-01
A Goody random band model with a Voigt line profile is used to calculate the band absorption of CFCB at various pressures at room and stratospheric (216 K) temperatures. Absorption coefficients and line spacings are computed.
Large-scale shell-model calculations on the spectroscopy of N <126 Pb isotopes
NASA Astrophysics Data System (ADS)
Qi, Chong; Jia, L. Y.; Fu, G. J.
2016-07-01
Large-scale shell-model calculations are carried out in the model space including neutron-hole orbitals 2 p1 /2 ,1 f5 /2 ,2 p3 /2 ,0 i13 /2 ,1 f7 /2 , and 0 h9 /2 to study the structure and electromagnetic properties of neutron-deficient Pb isotopes. An optimized effective interaction is used. Good agreement between full shell-model calculations and experimental data is obtained for the spherical states in isotopes Pb-206194. The lighter isotopes are calculated with an importance-truncation approach constructed based on the monopole Hamiltonian. The full shell-model results also agree well with our generalized seniority and nucleon-pair-approximation truncation calculations. The deviations between theory and experiment concerning the excitation energies and electromagnetic properties of low-lying 0+ and 2+ excited states and isomeric states may provide a constraint on our understanding of nuclear deformation and intruder configuration in this region.
Analytical approach to calculation of response spectra from seismological models of ground motion
Safak, Erdal
1988-01-01
An analytical approach to calculate response spectra from seismological models of ground motion is presented. Seismological models have three major advantages over empirical models: (1) they help in an understanding of the physics of earthquake mechanisms, (2) they can be used to predict ground motions for future earthquakes and (3) they can be extrapolated to cases where there are no data available. As shown with this study, these models also present a convenient form for the calculation of response spectra, by using the methods of random vibration theory, for a given magnitude and site conditions. The first part of the paper reviews the past models for ground motion description, and introduces the available seismological models. Then, the random vibration equations for the spectral response are presented. The nonstationarity, spectral bandwidth and the correlation of the peaks are considered in the calculation of the peak response.
Collins, William; Iacono, Michael J.; Delamere, Jennifer S.; Mlawer, Eli J.; Shephard, Mark W.; Clough, Shepard A.; Collins, William D.
2008-04-01
A primary component of the observed, recent climate change is the radiative forcing from increased concentrations of long-lived greenhouse gases (LLGHGs). Effective simulation of anthropogenic climate change by general circulation models (GCMs) is strongly dependent on the accurate representation of radiative processes associated with water vapor, ozone and LLGHGs. In the context of the increasing application of the Atmospheric and Environmental Research, Inc. (AER) radiation models within the GCM community, their capability to calculate longwave and shortwave radiative forcing for clear sky scenarios previously examined by the radiative transfer model intercomparison project (RTMIP) is presented. Forcing calculations with the AER line-by-line (LBL) models are very consistent with the RTMIP line-by-line results in the longwave and shortwave. The AER broadband models, in all but one case, calculate longwave forcings within a range of -0.20 to 0.23 W m{sup -2} of LBL calculations and shortwave forcings within a range of -0.16 to 0.38 W m{sup -2} of LBL results. These models also perform well at the surface, which RTMIP identified as a level at which GCM radiation models have particular difficulty reproducing LBL fluxes. Heating profile perturbations calculated by the broadband models generally reproduce high-resolution calculations within a few hundredths K d{sup -1} in the troposphere and within 0.15 K d{sup -1} in the peak stratospheric heating near 1 hPa. In most cases, the AER broadband models provide radiative forcing results that are in closer agreement with high 20 resolution calculations than the GCM radiation codes examined by RTMIP, which supports the application of the AER models to climate change research.
Energy Science and Technology Software Center (ESTSC)
2007-07-09
Version 02 PRECO-2006 is a two-component exciton model code for the calculation of double differential cross sections of light particle nuclear reactions. PRECO calculates the emission of light particles (A = 1 to 4) from nuclear reactions induced by light particles on a wide variety of target nuclei. Their distribution in both energy and angle is calculated. Since it currently only considers the emission of up to two particles in any given reaction, it ismore » most useful for incident energies of 14 to 30 MeV when used as a stand-alone code. However, the preequilibrium calculations are valid up to at least around 100 MeV, and these can be used as input for more complete evaporation calculations, such as are performed in a Hauser-Feshbach model code. Finally, the production cross sections for specific product nuclides can be obtained« less
Evaluation model calculations with the water reactor analysis package (WRAP-EM)
Gregory, M.V.; Beranek, F.
1982-01-01
The Water Reactor Analysis Package-Evaluation Model (WRAP-EM) is a modular system of computer codes designed to provide the safety analyst with the capability of performing complete loss-of-coolant calculations for both pressurized- and boiling-water reactor systems. The system provides a licensing-type calculation capability and thus contains most of the Nuclear Regulatory Commission-Approved EM options, as described in the Code of Federal Regulations, Title 10, Part 50, Appendix K. All phases of an accident (blowdown, refill, and reflood) are modeled. The WRAP consists of modified versions of five preexisting codes (RELAP4/MOD5, GAPCON, FRAP, MOXY, and NORCOOL), the necessary interfaces to permit automatic transition from one code to the next during the transient calculations, plus a host of user-convenience features to aid the analyst faced with a multitude of EM calculations. The WRAP has been verified against both calculated and experimental results.
New quark-model calculations of photo-and electroproduction of N* and and Delta * resonances
Capstick, Simon
1992-06-01
An introduction is given to the calculation of resonance electromagnetic coupling in the nonrelativistic quark model. Recent improvements brought about by the inclusion of relativistic corrections to the transition operator are described. We show how such calculations may be further improved by the use of relativized-model wave functions, a modestly increased effective quark mass, and an ab initio calculation of the signs of the N-pidecay amplitudes of the resonances. A summary is given of the results for the photocouplings of all nonstrage baryons, as well as for certain amplitude ratios in electroproduction.
Calculation of delayed-neutron energy spectra in a QRPA-Hauser-Feshbach model
Kawano, Toshihiko; Moller, Peter; Wilson, William B
2008-01-01
Theoretical {beta}-delayed-neutron spectra are calculated based on the Quasiparticle Random-Phase Approximation (QRPA) and the Hauser-Feshbach statistical model. Neutron emissions from an excited daughter nucleus after {beta} decay to the granddaughter residual are more accurately calculated than in previous evaluations, including all the microscopic nuclear structure information, such as a Gamow-Teller strength distribution and discrete states in the granddaughter. The calculated delayed-neutron spectra agree reasonably well with those evaluations in the ENDF decay library, which are based on experimental data. The model was adopted to generate the delayed-neutron spectra for all 271 precursors.
Comparison of results of experimental research with numerical calculations of a model one-sided seal
NASA Astrophysics Data System (ADS)
Joachimiak, Damian; Krzyślak, Piotr
2015-06-01
Paper presents the results of experimental and numerical research of a model segment of a labyrinth seal for a different wear level. The analysis covers the extent of leakage and distribution of static pressure in the seal chambers and the planes upstream and downstream of the segment. The measurement data have been compared with the results of numerical calculations obtained using commercial software. Based on the flow conditions occurring in the area subjected to calculations, the size of the mesh defined by parameter y+ has been analyzed and the selection of the turbulence model has been described. The numerical calculations were based on the measurable thermodynamic parameters in the seal segments of steam turbines. The work contains a comparison of the mass flow and distribution of static pressure in the seal chambers obtained during the measurement and calculated numerically in a model segment of the seal of different level of wear.
Thomas-Fermi Quark Model and Techniques to Improve Lattice QCD Calculation
NASA Astrophysics Data System (ADS)
Liu, Quan
Two topics are discussed separately in this thesis. In the first part a semiclassical quark model, called the Thomas-Fermi quark model, is reviewed. After a modified approach to spin in the model is introduced, I present the calculation of the spectra of octet and decuplet baryons. The six-quark doubly strange H-dibaryon state is also investigated. In the second part, two numerical techniques which improve latice QCD calculations are covered. The first one, which we call Polynomial-Preconditioned GMRES-DR(PP-GMRESDR), is used to speed up the calculation of large systems of linear equations in LQCD. The second one, called the Polynomial-Subtraction method, is used to help reduce the noise variance of the calculations for disconnected loops in LQCD.
The Calculation of Theoretical Chromospheric Models and the Interpretation of the Solar Spectrum
NASA Technical Reports Server (NTRS)
Avrett, Eugene H.
1998-01-01
Since the early 1970s we have been developing the extensive computer programs needed to construct models of the solar atmosphere and to calculate detailed spectra for use in the interpretation of solar observations. This research involves two major related efforts: work by Avrett and Loeser on the Pandora computer program for non-LTE modeling of the solar atmosphere including a wide range of physical processes, and work by Rurucz on the detailed synthesis of the solar spectrum based on opacity data or over 58 million atomic and molecular lines. our goals are: to determine models of the various features observed on the Sun (sunspots, different components of quiet and active regions, and flares) by means of physically realistic models, and to calculate detailed spectra at all wavelengths that match observations of those features. These two goals are interrelated: discrepancies between calculated and observed spectra are used to determine improvements in the structure of the models, and in the detailed physical processes used in both the model calculations and the spectrum calculations. The atmospheric models obtained in this way provide not only the depth variation of various atmospheric parameters, but also a description of the internal physical processes that are responsible for non-radiative heating, and for solar activity in general.
Multi-Scale Thermohydrologic Model Sensitivity-Study Calculations in Support of the SSPA
Glascoe, L G; Buscheck, T A; Loosmore, G A; Sun, Y
2001-12-20
The purpose of this calculation report is to document the thermohydrologic (TH) model calculations performed for the Supplemental Science and Performance Analysis (SSPA), Volume 1, Section 5 and Volume 2 (BSC 2001d [DIRS 155950], BSC 2001e [DIRS 154659]). The calculations are documented here in accordance with AP-3.12Q REV0 ICN4 [DIRS 154418]. The Technical Working Plan (Twp) for this document is TWP-NGRM-MD-000015 Real. These TH calculations were primarily conducted using three model types: (1) the Multiscale Thermohydrologic (MSTH) model, (2) the line-averaged-heat-source, drift-scale thermohydrologic (LDTH) model, and (3) the discrete-heat-source, drift-scale thermal (DDT) model. These TH-model calculations were conducted to improve the implementation of the scientific conceptual model, quantify previously unquantified uncertainties, and evaluate how a lower-temperature operating mode (LTOM) would affect the in-drift TH environment. Simulations for the higher-temperature operating mode (HTOM), which is similar to the base case analyzed for the Total System Performance Assessment for the Site Recommendation (TSPA-SR) (CRWMS M&O 2000j [DIRS 153246]), were also conducted for comparison with the LTOM. This Calculation Report describes (1) the improvements to the MSTH model that were implemented to reduce model uncertainty and to facilitate model validation, and (2) the sensitivity analyses conducted to better understand the influence of parameter and process uncertainty. The METHOD Section (Section 2) describes the improvements to the MSTH-model methodology and submodels. The ASSUMPTIONS Section (Section 3) lists the assumptions made (e.g., boundaries, material properties) for this methodology. The USE OF SOFTWARE Section (Section 4) lists the software, routines and macros used for the MSTH model and submodels supporting the SSPA. The CALCULATION Section (Section 5) lists the data used in the model and the manner in which the MSTH model is prepared and executed. And
Calculation of individual isotope equilibrium constants for implementation in geochemical models
Thorstenson, Donald C.; Parkhurst, David L.
2002-01-01
Theory is derived from the work of Urey to calculate equilibrium constants commonly used in geochemical equilibrium and reaction-transport models for reactions of individual isotopic species. Urey showed that equilibrium constants of isotope exchange reactions for molecules that contain two or more atoms of the same element in equivalent positions are related to isotope fractionation factors by , where is n the number of atoms exchanged. This relation is extended to include species containing multiple isotopes, for example and , and to include the effects of nonideality. The equilibrium constants of the isotope exchange reactions provide a basis for calculating the individual isotope equilibrium constants for the geochemical modeling reactions. The temperature dependence of the individual isotope equilibrium constants can be calculated from the temperature dependence of the fractionation factors. Equilibrium constants are calculated for all species that can be formed from and selected species containing , in the molecules and the ion pairs with where the subscripts g, aq, l, and s refer to gas, aqueous, liquid, and solid, respectively. These equilibrium constants are used in the geochemical model PHREEQC to produce an equilibrium and reaction-transport model that includes these isotopic species. Methods are presented for calculation of the individual isotope equilibrium constants for the asymmetric bicarbonate ion. An example calculates the equilibrium of multiple isotopes among multiple species and phases.
Hagedorn Model of Critical Behavior: Comparison of Lattice and SBM Calculations
NASA Astrophysics Data System (ADS)
Turko, Ludwik
The Statistical Bootstrap Model and the related concept of the limiting temperature began the discussion about phase transitions in the hadronic matter. This was also the origin of the quark-gluon plasma concept. We discuss here to which extent lattice studies of QCD critical behavior at non-zero chemical potential are compatible with the statistical bootstrap model calculations.
40 CFR 600.207-86 - Calculation of fuel economy values for a model type.
Code of Federal Regulations, 2011 CFR
2011-07-01
...) The manufacturer shall supply total model year sales projections for each car line/vehicle... a model type. 600.207-86 Section 600.207-86 Protection of Environment ENVIRONMENTAL PROTECTION... Procedures for Calculating Fuel Economy and Carbon-Related Exhaust Emission Values for 1977 and Later...
OFF-CENTER SPHERICAL MODEL FOR DOSIMETRY CALCULATIONS IN CHICK BRAIN TISSUE
The paper presents calculations for the electric field and absorbed power density distribution in chick brain tissue inside a test tube, using an off-center spherical model. It is shown that the off-center spherical model overcomes many of the limitations of the concentric spheri...
The contrast model method for the thermodynamical calculation of air-air wet heat exchanger
NASA Astrophysics Data System (ADS)
Yuan, Xiugan; Mei, Fang
1989-02-01
The 'contrast model' method thermodynamic calculation of air-air crossflow wet heat exchangers with initial air condensation is presented. Contrast-model equations are derived from the actual heat exchanger equations as well as imaginary ones; it is then possible to proceed to a proof that the enthalpy efficiency of the contrast model equations is similar to the temperature efficiency of the dry heat exchanger. Conditions are noted under which it becomes possible to unify thermodynamic calculations for wet and dry heat exchangers.
Radiation damage in NaCl: Calculations with an extended Jain-Lidiard model
Soppe, W.J.; Prij, J.
1993-12-31
The colloid growth due to irradiation in a rock salt formation is calculated with an extended version of the Jain-Lidiard model. The extensions of the model comprise a description of the nucleation stage of the colloids and the role of impurities on the formation of defect centers. Results of model calculations are shown for a representative design for a high-level radioactive waste repository in a rock salt formation. It is concluded that it is unlikely that, near the waste containers, the fraction of NaCl that will be converted to metallic Na and molecular Cl centers will exceed a few mole percent.
Dobos, A. P.
2012-05-01
This paper describes an improved algorithm for calculating the six parameters required by the California Energy Commission (CEC) photovoltaic (PV) Calculator module model. Rebate applications in California require results from the CEC PV model, and thus depend on an up-to-date database of module characteristics. Currently, adding new modules to the database requires calculating operational coefficients using a general purpose equation solver - a cumbersome process for the 300+ modules added on average every month. The combination of empirical regressions and heuristic methods presented herein achieve automated convergence for 99.87% of the 5487 modules in the CEC database and greatly enhance the accuracy and efficiency by which new modules can be characterized and approved for use. The added robustness also permits general purpose use of the CEC/6 parameter module model by modelers and system analysts when standard module specifications are known, even if the module does not exist in a preprocessed database.
Accurate calculation of conductive conductances in complex geometries for spacecrafts thermal models
NASA Astrophysics Data System (ADS)
Garmendia, Iñaki; Anglada, Eva; Vallejo, Haritz; Seco, Miguel
2016-02-01
The thermal subsystem of spacecrafts and payloads is always designed with the help of Thermal Mathematical Models. In the case of the Thermal Lumped Parameter (TLP) method, the non-linear system of equations that is created is solved to calculate the temperature distribution and the heat power that goes between nodes. The accuracy of the results depends largely on the appropriate calculation of the conductive and radiative conductances. Several established methods for the determination of conductive conductances exist but they present some limitations for complex geometries. Two new methods are proposed in this paper to calculate accurately these conductive conductances: The Extended Far Field method and the Mid-Section method. Both are based on a finite element calculation but while the Extended Far Field method uses the calculation of node mean temperatures, the Mid-Section method is based on assuming specific temperature values. They are compared with traditionally used methods showing the advantages of these two new methods.
NASA Astrophysics Data System (ADS)
Paranin, Y.; Burmistrov, A.; Salikeev, S.; Fomina, M.
2015-08-01
Basic propositions of calculation procedures for oil free scroll compressors characteristics are presented. It is shown that mathematical modelling of working process in a scroll compressor makes it possible to take into account such factors influencing the working process as heat and mass exchange, mechanical interaction in working chambers, leakage through slots, etc. The basic mathematical model may be supplemented by taking into account external heat exchange, elastic deformation of scrolls, inlet and outlet losses, etc. To evaluate the influence of procedure on scroll compressor characteristics calculations accuracy different calculations were carried out. Internal adiabatic efficiency was chosen as a comparative parameter which evaluates the perfection of internal thermodynamic and gas-dynamic compressor processes. Calculated characteristics are compared with experimental values obtained for the compressor pilot sample.
The Individual Virtual Eye: a Computer Model for Advanced Intraocular Lens Calculation
Einighammer, Jens; Oltrup, Theo; Bende, Thomas; Jean, Benedikt
2010-01-01
Purpose To describe the individual virtual eye, a computer model of a human eye with respect to its optical properties. It is based on measurements of an individual person and one of its major application is calculating intraocular lenses (IOLs) for cataract surgery. Methods The model is constructed from an eye's geometry, including axial length and topographic measurements of the anterior corneal surface. All optical components of a pseudophakic eye are modeled with computer scientific methods. A spline-based interpolation method efficiently includes data from corneal topographic measurements. The geometrical optical properties, such as the wavefront aberration, are simulated with real ray-tracing using Snell's law. Optical components can be calculated using computer scientific optimization procedures. The geometry of customized aspheric IOLs was calculated for 32 eyes and the resulting wavefront aberration was investigated. Results The more complex the calculated IOL is, the lower the residual wavefront error is. Spherical IOLs are only able to correct for the defocus, while toric IOLs also eliminate astigmatism. Spherical aberration is additionally reduced by aspheric and toric aspheric IOLs. The efficient implementation of time-critical numerical ray-tracing and optimization procedures allows for short calculation times, which may lead to a practicable method integrated in some device. Conclusions The individual virtual eye allows for simulations and calculations regarding geometrical optics for individual persons. This leads to clinical applications like IOL calculation, with the potential to overcome the limitations of those current calculation methods that are based on paraxial optics, exemplary shown by calculating customized aspheric IOLs.
Absorbing-sphere model for calculating ion-ion recombination total cross sections.
NASA Technical Reports Server (NTRS)
Olson, R. E.
1972-01-01
An 'absorbing-sphere' model based on the Landau-Zener method is set up for calculating the upper limit thermal energy (300 K) reaction rate and the energy dependence of the total cross sections. The crucial parameter needed for the calculation is the electron detachment energy for the outer electron on the anion. It is found that the cross sections increase with decreasing electron detachment energy.
NASA Astrophysics Data System (ADS)
Piringer, Martin; Knauder, Werner; Petz, Erwin; Schauberger, Günther
2016-09-01
Direction-dependent separation distances to avoid odour annoyance, calculated with the Gaussian Austrian Odour Dispersion Model AODM and the Lagrangian particle diffusion model LASAT at two sites, are analysed and compared. The relevant short-term peak odour concentrations are calculated with a stability-dependent peak-to-mean algorithm. The same emission and meteorological data, but model-specific atmospheric stability classes are used. The estimate of atmospheric stability is obtained from three-axis ultrasonic anemometers using the standard deviations of the three wind components and the Obukhov stability parameter. The results are demonstrated for the Austrian villages Reidling and Weissbach with very different topographical surroundings and meteorological conditions. Both the differences in the wind and stability regimes as well as the decrease of the peak-to-mean factors with distance lead to deviations in the separation distances between the two sites. The Lagrangian model, due to its model physics, generally calculates larger separation distances. For worst-case calculations necessary with environmental impact assessment studies, the use of a Lagrangian model is therefore to be preferred over that of a Gaussian model. The study and findings relate to the Austrian odour impact criteria.
Code System to Calculate Nuclear Reaction Cross Sections by Evaporation Model.
Energy Science and Technology Software Center (ESTSC)
2000-11-27
Version: 00 Both STAPRE and STAPREF are included in this package. STAPRE calculates energy-averaged cross sections for nuclear reactions with emission of particles and gamma rays and fission. The models employed are the evaporation model with inclusion of pre-equilibrium decay and a gamma-ray cascade model. Angular momentum and parity conservation are accounted for. Major improvement in the 1976 STAPRE program relates to level density approach, implemented in subroutine ZSTDE. Generalized superfluid model is incorporated, boltzman-gasmore » modeling of intrinsic state density and semi-empirical modeling of a few-quasiparticle effects in total level density at equilibrium and saddle deformations of actinide nuclei. In addition to the activation cross sections, particle and gamma-ray production spectra are calculated. Isomeric state populations and production cross sections for gamma rays from low excited levels are obtained, too. For fission a single or a double humped barrier may be chosen.« less
Calculations of diffuser flows with an anisotropic K-epsilon model
NASA Astrophysics Data System (ADS)
Zhu, J.; Shih, T.-H.
1995-10-01
A newly developed anisotropic K-epsilon model is applied to calculate three axisymmetric diffuser flows with or without separation. The new model uses a quadratic stress-strain relation and satisfies the realizability conditions, i.e., it ensures both the positivity of the turbulent normal stresses and the Schwarz' inequality between any fluctuating velocities. Calculations are carried out with a finite-element method. A second-order accurate, bounded convection scheme and sufficiently fine grids are used to ensure numerical credibility of the solutions. The standard K-epsilon model is also used in order to highlight the performance of the new model. Comparison with the experimental data shows that the anisotropic K-epsilon model performs consistently better than does the standard K-epsilon model in all of the three test cases.
Calculations of Diffuser Flows with an Anisotropic K-Epsilon Model
NASA Technical Reports Server (NTRS)
Zhu, J.; Shih, T.-H.
1995-01-01
A newly developed anisotropic K-epsilon model is applied to calculate three axisymmetric diffuser flows with or without separation. The new model uses a quadratic stress-strain relation and satisfies the realizability conditions, i.e., it ensures both the positivity of the turbulent normal stresses and the Schwarz' inequality between any fluctuating velocities. Calculations are carried out with a finite-element method. A second-order accurate, bounded convection scheme and sufficiently fine grids are used to ensure numerical credibility of the solutions. The standard K-epsilon model is also used in order to highlight the performance of the new model. Comparison with the experimental data shows that the anisotropic K-epsilon model performs consistently better than does the standard K-epsilon model in all of the three test cases.
NASA Technical Reports Server (NTRS)
Avrett, E. H.
1984-01-01
Models and spectra of sunspots were studied, because they are important to energy balance and variability discussions. Sunspot observations in the ultraviolet region 140 to 168 nn was obtained by the NRL High Resolution Telescope and Spectrograph. Extensive photometric observations of sunspot umbrae and prenumbrae in 10 chanels covering the wavelength region 387 to 3800 nm were made. Cool star opacities and model atmospheres were computed. The Sun is the first testcase, both to check the opacity calculations against the observed solar spectrum, and to check the purely theoretical model calculation against the observed solar energy distribution. Line lists were finally completed for all the molecules that are important in computing statistical opacities for energy balance and for radiative rate calculations in the Sun (except perhaps for sunspots). Because many of these bands are incompletely analyzed in the laboratory, the energy levels are not well enough known to predict wavelengths accurately for spectrum synthesis and for detailed comparison with the observations.
Tabulation of Mie scattering calculation results for microwave radiative transfer modeling
NASA Technical Reports Server (NTRS)
Yeh, Hwa-Young M.; Prasad, N.
1988-01-01
In microwave radiative transfer model simulations, the Mie calculations usually consume the majority of the computer time necessary for the calculations (70 to 86 percent for frequencies ranging from 6.6 to 183 GHz). For a large array of atmospheric profiles, the repeated calculations of the Mie codes make the radiative transfer computations not only expensive, but sometimes impossible. It is desirable, therefore, to develop a set of Mie tables to replace the Mie codes for the designated ranges of temperature and frequency in the microwave radiative transfer calculation. Results of using the Mie tables in the transfer calculations show that the total CPU time (IBM 3081) used for the modeling simulation is reduced by a factor of 7 to 16, depending on the frequency. The tables are tested by computing the upwelling radiance of 144 atmospheric profiles generated by a 3-D cloud model (Tao, 1986). Results are compared with those using Mie quantities computed from the Mie codes. The bias and root-mean-square deviation (RMSD) of the model results using the Mie tables, in general, are less than 1 K except for 37 and 90 GHz. Overall, neither the bias nor RMSD is worse than 1.7 K for any frequency and any viewing angle.
Eged, Katalin; Kis, Zoltán; Voigt, Gabriele
2006-01-01
After an accidental release of radionuclides to the inhabited environment the external gamma irradiation from deposited radioactivity contributes significantly to the radiation exposure of the population for extended periods. For evaluating this exposure pathway, three main model requirements are needed: (i) to calculate the air kerma value per photon emitted per unit source area, based on Monte Carlo (MC) simulations; (ii) to describe the distribution and dynamics of radionuclides on the diverse urban surfaces; and (iii) to combine all these elements in a relevant urban model to calculate the resulting doses according to the actual scenario. This paper provides an overview about the different approaches to calculate photon transport in urban areas and about several dose calculation codes published. Two types of Monte Carlo simulations are presented using the global and the local approaches of photon transport. Moreover, two different philosophies of the dose calculation, the "location factor method" and a combination of relative contamination of surfaces with air kerma values are described. The main features of six codes (ECOSYS, EDEM2M, EXPURT, PARATI, TEMAS, URGENT) are highlighted together with a short model-model features intercomparison. PMID:16095771
NASA Technical Reports Server (NTRS)
Kim, S.-W.
1989-01-01
Numerical calculations of turbulent reattaching shear layers in a divergent channel are presented. The turbulence is described by a multiple-time-scale turbulence model. The turbulent flow equations are solved by a control-volume based finite difference method. The computational results are compared with those obtained using k-epsilon turbulence models and algebraic Reynolds stress turbulence models. It is shown that the multiple-time-scale turbulence model yields significantly improved computational results than the other turbulence models in the region where the turbulence is in a strongly inequilibrium state.
Modification of the Simons model for calculation of nonradial expansion plumes
NASA Technical Reports Server (NTRS)
Boyd, I. D.; Stark, J. P. W.
1989-01-01
The Simons model is a simple model for calculating the expansion plumes of rockets and thrusters and is a widely used engineering tool for the determination of spacecraft impingement effects. The model assumes that the density of the plume decreases radially from the nozzle exit. Although a high degree of success has been achieved in modeling plumes with moderate Mach numbers, the accuracy obtained under certain conditions is unsatisfactory. A modification made to the model that allows effective description of nonradial behavior in plumes is presented, and the conditions under which its use is preferred are prescribed.
A New Model to Calculate Friction Coefficients and Shear Stresses in Thermal Drilling
Qu, Jun; Blau, Peter Julian
2008-01-01
A new analytical model for thermal drilling (also known as friction drilling) has been developed. The model distinguishes itself from recent work of other investigators by improving on two aspects: (1) the new model defines material plastic flow in terms of the yield in shear rather than the yield in compression, and (2) it uses a single, variable friction coefficient instead of assuming two unrelated friction coefficients in fixed values. The time dependence of the shear stress and friction coefficient at the hole walls, which cannot be measured directly in thermal drilling, can be calculated using this model from experimentally-measured values of the instantaneous thrust force and torque. Good matches between the calculated shear strengths and the handbook values for thermally drilling low carbon steel confirm the model's validity.
Photon and electron absorbed fractions calculated from a new tomographic rat model
NASA Astrophysics Data System (ADS)
Peixoto, P. H. R.; Vieira, J. W.; Yoriyaz, H.; Lima, F. R. A.
2008-10-01
This paper describes the development of a tomographic model of a rat developed using CT images of an adult male Wistar rat for radiation transport studies. It also presents calculations of absorbed fractions (AFs) under internal photon and electron sources using this rat model and the Monte Carlo code MCNP. All data related to the developed phantom were made available for the scientific community as well as the MCNP inputs prepared for AF calculations in that phantom and also all estimated AF values, which could be used to obtain absorbed dose estimates—following the MIRD methodology—in rats similar in size to the presently developed model. Comparison between the rat model developed in this study and that published by Stabin et al (2006 J. Nucl. Med. 47 655) for a 248 g Sprague-Dawley rat, as well as between the estimated AF values for both models, has been presented.
Photon and electron absorbed fractions calculated from a new tomographic rat model.
Peixoto, P H R; Vieira, J W; Yoriyaz, H; Lima, F R A
2008-10-01
This paper describes the development of a tomographic model of a rat developed using CT images of an adult male Wistar rat for radiation transport studies. It also presents calculations of absorbed fractions (AFs) under internal photon and electron sources using this rat model and the Monte Carlo code MCNP. All data related to the developed phantom were made available for the scientific community as well as the MCNP inputs prepared for AF calculations in that phantom and also all estimated AF values, which could be used to obtain absorbed dose estimates--following the MIRD methodology--in rats similar in size to the presently developed model. Comparison between the rat model developed in this study and that published by Stabin et al (2006 J. Nucl. Med. 47 655) for a 248 g Sprague-Dawley rat, as well as between the estimated AF values for both models, has been presented. PMID:18758003
A model of the circulating blood for use in radiation dose calculations
Hui, T.E.; Poston, J.W. Sr.
1987-01-01
Over the last few years there has been a significant increase in the use of radionuclides in leukocyte, platelet, and erythrocyte imaging procedures. Radiopharmaceutical used in these procedures are confined primarily to the blood, have short half-lives, and irradiate the body as they move through the circulatory system. There is a need for a model, to describe the circulatory system in an adult human, which can be used to provide radiation absorbed dose estimates for these procedures. A simplified model has been designed assuming a static circulatory system and including major organs of the body. The model has been incorporated into the MIRD phantom and calculations have been completed for a number of exposure situations and radionuclides of clinical importance. The model will be discussed in detail and results of calculations using this model will be presented.
A model of the circulating blood for use in radiation dose calculations
Hui, T.E.; Poston, J.W. Sr.
1987-12-31
Over the last few years there has been a significant increase in the use of radionuclides in leukocyte, platelet, and erythrocyte imaging procedures. Radiopharmaceutical used in these procedures are confined primarily to the blood, have short half-lives, and irradiate the body as they move through the circulatory system. There is a need for a model, to describe the circulatory system in an adult human, which can be used to provide radiation absorbed dose estimates for these procedures. A simplified model has been designed assuming a static circulatory system and including major organs of the body. The model has been incorporated into the MIRD phantom and calculations have been completed for a number of exposure situations and radionuclides of clinical importance. The model will be discussed in detail and results of calculations using this model will be presented.
NASA Astrophysics Data System (ADS)
Kazantzidis, A.; Balis, D. S.; Bais, A. F.; Kazadzis, S.; Galani, E.; Kosmidis, E.; Blumthaler, M.
2001-06-01
Spectral measurements of global solar irradiance, obtained under cloud-free conditions during the SUSPEN campaign (July 1997) in Thessaloniki, Greece, are compared with radiative transfer model calculations, showing an agreement to within ±5% for wavelengths higher that 305 nm. The uncertainties in the modeled spectra were analyzed with respect to the aerosol-related model input parameters (single-scattering albedo and asymmetry factor), which were not derivable from measurements. A range of single-scattering albedo values was used to investigate its impact on surface UV irradiance through comparison of measurements with model calculations. It was found that a difference in the single-scattering albedo of 0.1 changes the model-measurement ratio by 7%-14%, depending on solar zenith angle. Finally, an attempt was made to relate the estimated values of single-scattering albedo to wind direction and relative humidity, which control the origin and type of the aerosols in the area.
Two-loop Higgs mass calculations in supersymmetric models beyond the MSSM with SARAH and SPheno
NASA Astrophysics Data System (ADS)
Goodsell, Mark D.; Nickel, Kilian; Staub, Florian
2015-01-01
We present an extension to the Mathematica package SARAH which allows for Higgs mass calculations at the two-loop level in a wide range of supersymmetric (SUSY) models beyond the MSSM. These calculations are based on the effective potential approach and include all two-loop corrections which are independent of electroweak gauge couplings. For the numerical evaluation Fortran code for SPheno is generated by SARAH. This allows the prediction of the Higgs mass in more complicated SUSY models with the same precision that most state-of-the-art spectrum generators provide for the MSSM.
Model calculations of radiative capture of nucleons in MeV region
Betak, E.
2006-03-13
We address calculations of the neutron and the proton radiative capture at incident energies up to 20 MeV on medium and heavy nuclei. The main formalism used is the pre-equilibrium (exciton) model of {gamma} emission. A link to the Consistent Direct-Semidirect model is noticed as well. The resulting pre-equilibrium (plus equilibrium) calculations of the radiative capture excitation functions are compared to experimental data and also some cross section trends important for possible production of therapeutic radioisotopes are extracted.
Calculation of the Entropy of Lattice Polymer Models from Monte Carlo Trajectories.
White, Ronald P; Funt, Jason; Meirovitch, Hagai
2005-07-20
While lattice models are used extensively for macromolecules (synthetic polymers proteins, etc), calculation of the absolute entropy, S, and the free energy, F, from a given Monte Carlo (MC) trajectory is not straightforward. Recently we have developed the hypothetical scanning MC (HSMC) method for calculating S and F of fluids. Here we extend HSMC to self-avoiding walks on a square lattice and discuss its wide applicability to complex polymer lattice models. HSMC is independent of existing techniques and thus constitutes an independent research tool; it provides rigorous upper and lower bounds for F, which can be obtained from a very small sample and even from a single chain conformation. PMID:16912812
Recoilless fractions calculated with the nearest-neighbour interaction model by Kagan and Maslow
NASA Astrophysics Data System (ADS)
Kemerink, G. J.; Pleiter, F.
1986-08-01
The recoilless fraction is calculated for a number of Mössbauer atoms that are natural constituents of HfC, TaC, NdSb, FeO, NiO, EuO, EuS, EuSe, EuTe, SnTe, PbTe and CsF. The calculations are based on a model developed by Kagan and Maslow for binary compounds with rocksalt structure. With the exception of SnTe and, to a lesser extent, PbTe, the results are in reasonable agreement with the available experimental data and values derived from other models.
A model to calculate the induced dose rate around an 18 MV ELEKTA linear accelerator.
Perrin, Bruce; Walker, Anne; Mackay, Ranald
2003-03-01
The dose rate due to activity induced by (gamma, n) reactions around an ELEKTA Precise accelerator running at 18 MV is reported. A model to calculate the induced dose rate for a variety of working practices has been derived and compared to the measured values. From this model, the dose received by the staff using the machine can be estimated. From measured dose rates at the face of the linear accelerator for a 10 x 10 cm2 jaw setting at 18 MV an activation coefficient per MU was derived for each of the major activation products. The relative dose rates at points around the linac head, for different energy and jaw settings, were measured. Dose rates adjacent to the patient support system and portal imager were also measured. A model to calculate the dose rate at these points was derived, and compared to those measured over a typical working week. The model was then used to estimate the maximum dose to therapists for the current working schedule on this machine. Calculated dose rates at the linac face agreed to within +/- 12% of those measured over a week, with a typical dose rate of 4.5 microSv h(-1) 2 min after the beam has stopped. The estimated maximum annual whole body dose for a treatment therapist, with the machine treating at only 18 MV, for 60000 MUs per week was 2.5 mSv. This compares well with value of 2.9 mSv published for a Clinac 21EX. A model has been derived to calculate the dose from the four dominant activation products of an ELEKTA Precise 18 MV linear accelerator. This model is a useful tool to calculate the induced dose rate around the treatment head. The model can be used to estimate the dose to the staff for typical working patterns. PMID:12696804
A comparison of Monte Carlo and model-based dose calculations in radiotherapy using MCNPTV
NASA Astrophysics Data System (ADS)
Wyatt, Mark S.; Miller, Laurence F.
2006-06-01
Monte Carlo calculations for megavoltage radiotherapy beams represent the next generation of dose calculation in the clinical environment. In this paper, calculations obtained by the MCNP code based on CT data from a human pelvis are compared against those obtained by a commercial radiotherapy treatment system (CMS XiO). The MCNP calculations are automated by the use of MCNPTV (MCNP Treatment Verification), an integrated application developed in Visual Basic that runs on a Windows-based PC. The linear accelerator beam is modeled as a finite point source, and validated by comparing depth dose curves and lateral profiles in a water phantom to measured data. Calculated water phantom PDDs are within 1% of measured data, but the lateral profiles exhibit differences of 2.4, 5.5, and 5.7 mm at the 60%, 40%, and 20% isodose lines, respectively. A MCNP calculation is performed using the CT data and 15 points are selected for comparison with XiO. Results are generally within the uncertainty of the MCNP calculation, although differences up to 13.2% are seen in the presence of large heterogeneities.
Missing final states and the spectral endpoint in exciton model calculations
Kalbach, C.
2006-02-15
Recent studies of (n, xp) spectra at incident energies of 28 to 63 MeV have emphasized a previously noted trend that exciton model calculations do not extend to high enough emission energies in some (p, xn) and (n, xp) reactions. Improved agreement between experiment and calculation is achieved by including in the residual nucleus state density those configurations that can be populated but were not being counted because the Fermi level moves down during particle emission. This necessitates minor adjustments in other model parameters. The situation is generalized to reactions with complex particle channels, and significant effects are seen in the calculations for a few reactions on light targets, though the average level of agreement with experiment is unchanged from earlier work.
A finite element method for shear stresses calculation in composite blade models
NASA Astrophysics Data System (ADS)
Paluch, B.
1991-09-01
A finite-element method is developed for accurately calculating shear stresses in helicopter blade models, induced by torsion and shearing forces. The method can also be used to compute the equivalent torsional stiffness of the section, their transverse shear coefficient, and the position of their center of torsion. A grid generator method which is a part of the calculation program is also described and used to discretize the sections quickly and to condition the grid data reliably. The finite-element method was validated on a few sections composed of isotropic materials and was then applied to a blade model sections made of composite materials. Good agreement was obtained between the calculated and experimental data.
Honda, M.; Kajita, T.; Kasahara, K.; Midorikawa, S.
2011-06-15
We present the calculation of the atmospheric neutrino fluxes with an interaction model named JAM, which is used in PHITS (Particle and Heavy-Ion Transport code System) [K. Niita et al., Radiation Measurements 41, 1080 (2006).]. The JAM interaction model agrees with the HARP experiment [H. Collaboration, Astropart. Phys. 30, 124 (2008).] a little better than DPMJET-III[S. Roesler, R. Engel, and J. Ranft, arXiv:hep-ph/0012252.]. After some modifications, it reproduces the muon flux below 1 GeV/c at balloon altitudes better than the modified DPMJET-III, which we used for the calculation of atmospheric neutrino flux in previous works [T. Sanuki, M. Honda, T. Kajita, K. Kasahara, and S. Midorikawa, Phys. Rev. D 75, 043005 (2007).][M. Honda, T. Kajita, K. Kasahara, S. Midorikawa, and T. Sanuki, Phys. Rev. D 75, 043006 (2007).]. Some improvements in the calculation of atmospheric neutrino flux are also reported.
Spin-splitting calculation for zincblende semiconductors using an atomic bond-orbital model.
Kao, Hsiu-Fen; Lo, Ikai; Chiang, Jih-Chen; Chen, Chun-Nan; Wang, Wan-Tsang; Hsu, Yu-Chi; Ren, Chung-Yuan; Lee, Meng-En; Wu, Chieh-Lung; Gau, Ming-Hong
2012-10-17
We develop a 16-band atomic bond-orbital model (16ABOM) to compute the spin splitting induced by bulk inversion asymmetry in zincblende materials. This model is derived from the linear combination of atomic-orbital (LCAO) scheme such that the characteristics of the real atomic orbitals can be preserved to calculate the spin splitting. The Hamiltonian of 16ABOM is based on a similarity transformation performed on the nearest-neighbor LCAO Hamiltonian with a second-order Taylor expansion k at the Γ point. The spin-splitting energies in bulk zincblende semiconductors, GaAs and InSb, are calculated, and the results agree with the LCAO and first-principles calculations. However, we find that the spin-orbit coupling between bonding and antibonding p-like states, evaluated by the 16ABOM, dominates the spin splitting of the lowest conduction bands in the zincblende materials. PMID:23014503
Spin-splitting calculation for zincblende semiconductors using an atomic bond-orbital model
NASA Astrophysics Data System (ADS)
Kao, Hsiu-Fen; Lo, Ikai; Chiang, Jih-Chen; Chen, Chun-Nan; Wang, Wan-Tsang; Hsu, Yu-Chi; Ren, Chung-Yuan; Lee, Meng-En; Wu, Chieh-Lung; Gau, Ming-Hong
2012-10-01
We develop a 16-band atomic bond-orbital model (16ABOM) to compute the spin splitting induced by bulk inversion asymmetry in zincblende materials. This model is derived from the linear combination of atomic-orbital (LCAO) scheme such that the characteristics of the real atomic orbitals can be preserved to calculate the spin splitting. The Hamiltonian of 16ABOM is based on a similarity transformation performed on the nearest-neighbor LCAO Hamiltonian with a second-order Taylor expansion over \\vec{k} at the Γ point. The spin-splitting energies in bulk zincblende semiconductors, GaAs and InSb, are calculated, and the results agree with the LCAO and first-principles calculations. However, we find that the spin-orbit coupling between bonding and antibonding p-like states, evaluated by the 16ABOM, dominates the spin splitting of the lowest conduction bands in the zincblende materials.
NASA Astrophysics Data System (ADS)
Akasaka, Ryo
2008-08-01
An assessment of thermodynamic models for HFC refrigerant mixtures based on Helmholtz energy equations of state was made through critical-point calculations for ternary and quaternary mixtures. The calculations were performed using critical-point criteria expressed in terms of the Helmholtz free energy. For three ternary mixtures: difluoromethane (R-32) + pentafluoroethane (R-125) + 1,1,1,2-tetrafluoroethane (R-134a), R-125 + R-134a + 1,1,1-trifluoroethane (R-143a), and carbon dioxide (CO2) + R-32 + R-134a, and one quaternary mixture, R-32 + R-125 + R-134a + R-143a, calculated critical points were compared with experimental values, and the capability of the mixture models for representing the critical behavior was discussed.
Modelling lateral beam quality variations in pencil kernel based photon dose calculations
NASA Astrophysics Data System (ADS)
Nyholm, T.; Olofsson, J.; Ahnesjö, A.; Karlsson, M.
2006-08-01
Standard treatment machines for external radiotherapy are designed to yield flat dose distributions at a representative treatment depth. The common method to reach this goal is to use a flattening filter to decrease the fluence in the centre of the beam. A side effect of this filtering is that the average energy of the beam is generally lower at a distance from the central axis, a phenomenon commonly referred to as off-axis softening. The off-axis softening results in a relative change in beam quality that is almost independent of machine brand and model. Central axis dose calculations using pencil beam kernels show no drastic loss in accuracy when the off-axis beam quality variations are neglected. However, for dose calculated at off-axis positions the effect should be considered, otherwise errors of several per cent can be introduced. This work proposes a method to explicitly include the effect of off-axis softening in pencil kernel based photon dose calculations for arbitrary positions in a radiation field. Variations of pencil kernel values are modelled through a generic relation between half value layer (HVL) thickness and off-axis position for standard treatment machines. The pencil kernel integration for dose calculation is performed through sampling of energy fluence and beam quality in sectors of concentric circles around the calculation point. The method is fully based on generic data and therefore does not require any specific measurements for characterization of the off-axis softening effect, provided that the machine performance is in agreement with the assumed HVL variations. The model is verified versus profile measurements at different depths and through a model self-consistency check, using the dose calculation model to estimate HVL values at off-axis positions. A comparison between calculated and measured profiles at different depths showed a maximum relative error of 4% without explicit modelling of off-axis softening. The maximum relative error
NASA Technical Reports Server (NTRS)
Boudreau, R. D.
1973-01-01
A numerical model is developed which calculates the atmospheric corrections to infrared radiometric measurements due to absorption and emission by water vapor, carbon dioxide, and ozone. The corrections due to aerosols are not accounted for. The transmissions functions for water vapor, carbon dioxide, and water are given. The model requires as input the vertical distribution of temperature and water vapor as determined by a standard radiosonde. The vertical distribution of carbon dioxide is assumed to be constant. The vertical distribution of ozone is an average of observed values. The model also requires as input the spectral response function of the radiometer and the nadir angle at which the measurements were made. A listing of the FORTRAN program is given with details for its use and examples of input and output listings. Calculations for four model atmospheres are presented.
Electron-N/sub 2/ scattering calculations with a parameter-free model polarization potential
Morrison, M.A.; Saha, B.C.; Gibson, T.L.
1987-10-15
We have extended our variationally determined nonadiabatic polarization potential (Gibson and Morrison, Phys. Rev. A 29, 2497 (1984)) to the e-N/sub 2/ system and calculated elastic, total momentum transfer, and rotational excitation cross sections. This model potential, which requires no scaling and contains no adjustable parameters, is presented in tabular and analytic (fitted) form for possible use in future studies. We evaluated the static potential at the near-Hartree-Fock level of accuracy and included exchange effects exactly via the linear algebraic method of Collins and Schneider (Phys. Rev. A 24, 2387 (1981)). Diverse cross sections based on this model are in excellent agreement with existing experiment. We also compare various scattering quantities calculated with our model to prior theoretical results and to newly determined numbers using two other model potentials: a cutoff phenomenological form and the correlation-polarization potential of O'Connell and Lane (Phys. Rev. A 27, 1893 (1983)).
Improved Ionospheric Electrodynamic Models and Application to Calculating Joule Heating Rates
NASA Technical Reports Server (NTRS)
Weimer, D. R.
2004-01-01
Improved techniques have been developed for empirical modeling of the high-latitude electric potentials and magnetic field aligned currents (FAC) as a function of the solar wind parameters. The FAC model is constructed using scalar magnetic Euler potentials, and functions as a twin to the electric potential model. The improved models have more accurate field values as well as more accurate boundary locations. Non-linear saturation effects in the solar wind-magnetosphere coupling are also better reproduced. The models are constructed using a hybrid technique, which has spherical harmonic functions only within a small area at the pole. At lower latitudes the potentials are constructed from multiple Fourier series functions of longitude, at discrete latitudinal steps. It is shown that the two models can be used together in order to calculate the total Poynting flux and Joule heating in the ionosphere. An additional model of the ionospheric conductivity is not required in order to obtain the ionospheric currents and Joule heating, as the conductivity variations as a function of the solar inclination are implicitly contained within the FAC model's data. The models outputs are shown for various input conditions, as well as compared with satellite measurements. The calculations of the total Joule heating are compared with results obtained by the inversion of ground-based magnetometer measurements. Like their predecessors, these empirical models should continue to be a useful research and forecast tools.
NASA Technical Reports Server (NTRS)
Avrett, E. H.
1985-01-01
Solar chromospheric models are described. The models included are based on the observed spectrum, and on the assumption of hydrostatic equilibrium. The calculations depend on realistic solutions of the radiative transfer and statistical equilibrium equations for optically thick lines and continua, and on including the effects of large numbers of lines throughout the spectrum. Although spectroheliograms show that the structure of the chromosphere is highly complex, one-dimensional models of particular features are reasonably successful in matching observed spectra. Such models were applied to the interpretation of chromospheric observations.
Stochastic estimation of level density in nuclear shell-model calculations
NASA Astrophysics Data System (ADS)
Shimizu, Noritaka; Utsuno, Yutaka; Futamura, Yasunori; Sakurai, Tetsuya; Mizusaki, Takahiro; Otsuka, Takaharu
2016-06-01
An estimation method of the nuclear level density stochastically based on nuclear shell-model calculations is introduced. In order to count the number of the eigen-values of the shell-model Hamiltonian matrix, we perform the contour integral of the matrix element of a resolvent. The shifted block Krylov subspace method enables us its efficient computation. Utilizing this method, the contamination of center-of-mass motion is clearly removed.
Optical model calculations of 14.6A GeV silicon fragmentation cross sections
NASA Technical Reports Server (NTRS)
Townsend, Lawrence W.; Khan, Ferdous; Tripathi, Ram K.
1993-01-01
An optical potential abrasion-ablation collision model is used to calculate hadronic dissociation cross sections for a 14.6 A GeV(exp 28) Si beam fragmenting in aluminum, tin, and lead targets. The frictional-spectator-interaction (FSI) contributions are computed with two different formalisms for the energy-dependent mean free path. These estimates are compared with experimental data and with estimates obtained from semi-empirical fragmentation models commonly used in galactic cosmic ray transport studies.
NASA Technical Reports Server (NTRS)
Popinceanu, N. G.; Kremmer, I.
1974-01-01
A mechano-acoustic model is reported for calculating acoustic energy radiated by a working gear. According to this model, a gear is an acoustic coublet formed of the two wheels. The wheel teeth generate cylindrical acoustic waves while the front surfaces of the teeth behave like vibrating pistons. Theoretical results are checked experimentally and good agreement is obtained with open gears. The experiments show that the air noise effect is negligible as compared with the structural noise transmitted to the gear box.
Martelli, Saulo; Kersh, Mariana E; Pandy, Marcus G
2015-10-15
The determination of femoral strain in post-menopausal women is important for studying bone fragility. Femoral strain can be calculated using a reference musculoskeletal model scaled to participant anatomies (referred to as scaled-generic) combined with finite-element models. However, anthropometric errors committed while scaling affect the calculation of femoral strains. We assessed the sensitivity of femoral strain calculations to scaled-generic anthropometric errors. We obtained CT images of the pelves and femora of 10 healthy post-menopausal women and collected gait data from each participant during six weight-bearing tasks. Scaled-generic musculoskeletal models were generated using skin-mounted marker distances. Image-based models were created by modifying the scaled-generic models using muscle and joint parameters obtained from the CT data. Scaled-generic and image-based muscle and hip joint forces were determined by optimisation. A finite-element model of each femur was generated from the CT images, and both image-based and scaled-generic principal strains were computed in 32 regions throughout the femur. The intra-participant regional RMS error increased from 380 με (R2=0.92, p<0.001) to 4064 με (R2=0.48, p<0.001), representing 5.2% and 55.6% of the tensile yield strain in bone, respectively. The peak strain difference increased from 2821 με in the proximal region to 34,166 με at the distal end of the femur. The inter-participant RMS error throughout the 32 femoral regions was 430 με (R2=0.95, p<0.001), representing 5.9% of bone tensile yield strain. We conclude that scaled-generic models can be used for determining cohort-based averages of femoral strain whereas image-based models are better suited for calculating participant-specific strains throughout the femur. PMID:26315919
The 'Little Ice Age' - Northern Hemisphere average observations and model calculations
NASA Technical Reports Server (NTRS)
Robock, A.
1979-01-01
Numerical energy balance climate model calculations of the average surface temperature of the Northern Hemisphere for the past 400 years are compared with a new reconstruction of the past climate. Forcing with volcanic dust produces the best simulation, whereas expressing the solar constant as a function of the envelope of the sunspot number gives very poor results.
NASA Technical Reports Server (NTRS)
Svizhenko, Alexel; Anantram, M. P.; Maiti, Amitesh
2003-01-01
This paper presents viewgraphs on the modeling of the electromechanical response of carbon nanotubes, utilizing molecular dynamics and transport calculations. The topics include: 1) Simulations of the experiment; 2) Effect of diameter, length and temperature; and 3) Study of sp3 coordination-"The Table experiment".
Inductance Calculation and New Modeling of a Synchronous Reluctance Motor Using Flux Linkages
NASA Astrophysics Data System (ADS)
Nashiki, Masayuki; Inoue, Yoshimitu; Kawai, Youichi; Okuma, Shigeru
New modeling of a synchronous reluctance motor SynRM which has non-linear magnetic characteristics is proposed. And a control method of the SynRM using the new model is developed. The new model is based on the inductance data table or the flux linkage data table which is calculated with the flux linkages of the SynRM at each current (id, iq). Detailed calculation method of the inductances is described. The calculated torque TA with the inductance data table is compared with the torque Tfem which is calculated by FEM and the difference is less than 5% at the rated torque. Therefore the accuracy of the new model is certified. And the same method is applicable to an interior permanent magnet synchronous motor IPMSM. The high performance motor control is realized. The exact current commands (id, iq), the exact voltage feed-forward commands (FFd, FFq) and the adaptive current loop gain (Gd, Gq) are obtained using the FEM data of the motor.
40 CFR 600.207-86 - Calculation of fuel economy values for a model type.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 40 Protection of Environment 29 2010-07-01 2010-07-01 false Calculation of fuel economy values for a model type. 600.207-86 Section 600.207-86 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) ENERGY POLICY FUEL ECONOMY AND CARBON-RELATED EXHAUST EMISSIONS OF MOTOR VEHICLES Fuel Economy Regulations for 1977 and Later...
Nuclear shell model calculations of the effective interaction and other effective operators
NASA Astrophysics Data System (ADS)
Thoresen, Michael Joseph
1997-12-01
Recent breakthroughs in effective interaction and effective operator techniques allow us to take a new look at this field that has seen limited progress in the past twenty years. A comparison of the old and new techniques will shed some new light on the use of effective interactions and effective operators in shell model calculations of light nuclei. Three different methods of calculating the effective interaction and effective operators are described and compared. A large model-space no-core shell-model calculation for 6Li is used as the basis for comparison. In the no-core calculation all nucleons are active in a model space involving all configurations with energies up to 8/hbar/Omega. The second method is a perturbation expansion for the effective interaction and effective operators, using an inert 4He core and two valence particles. In particular, the electric quadrupole and magnetic dipole operators are studied to determine the effective charges to be used in connection with one- body operators in this shell-model space. The third method is a model-space truncation scheme, which maps operators in a large model space into operators in smaller, truncated model spaces. The effect of going to larger excitation spaces will be examined as well as the convergence trends regarding increases in the excitation space. The results from these three approaches are compared in order to gain new insight into the nature of effective interactions and operators in truncated model spaces. We find that by going to energies of 8/hbar/Omega we can accurately reproduce the experimental values for the binding energy, excitation spectrum, electric quadrupole moment and magnetic dipole moment of 6Li and that there is a definite model-space dependence for these operators. To obtain results similar to the 8/hbar/Omega ones in a truncated 2/hbar/Omega model space we use effective operators and effective charges. Effective charges of approximately 1.1e for the effective proton charge and 0
A mathematical model of the nine-month pregnant woman for calculating specific absorbed fractions
Watson, E.E.; Stabin, M.G.
1986-01-01
Existing models that allow calculation of internal doses from radionuclide intakes by both men and women are based on a mathematical model of Reference Man. No attempt has been made to allow for the changing geometric relationships that occur during pregnancy which would affect the doses to the mother's organs and to the fetus. As pregnancy progresses, many of the mother's abdominal organs are repositioned, and their shapes may be somewhat changed. Estimation of specific absorbed fractions requires that existing mathematical models be modified to accommodate these changes. Specific absorbed fractions for Reference Woman at three, six, and nine months of pregnancy should be sufficient for estimating the doses to the pregnant woman and the fetus. This report describes a model for the pregnant woman at nine months. An enlarged uterus was incorporated into a model for Reference Woman. Several abdominal organs as well as the exterior of the trunk were modified to accommodate the new uterus. This model will allow calculation of specific absorbed fractions for the fetus from photon emitters in maternal organs. Specific absorbed fractions for the repositioned maternal organs from other organs can also be calculated. 14 refs., 2 figs.
Goorley, J T; Kiger, W S; Zamenhof, R G
2002-02-01
As clinical trials of Neutron Capture Therapy (NCT) are initiated in the U.S. and other countries, new treatment planning codes are being developed to calculate detailed dose distributions in patient-specific models. The thorough evaluation and comparison of treatment planning codes is a critical step toward the eventual standardization of dosimetry, which, in turn, is an essential element for the rational comparison of clinical results from different institutions. In this paper we report development of a reference suite of computational test problems for NCT dosimetry and discuss common issues encountered in these calculations to facilitate quantitative evaluations and comparisons of NCT treatment planning codes. Specifically, detailed depth-kerma rate curves were calculated using the Monte Carlo radiation transport code MCNP4B for four different representations of the modified Snyder head phantom, an analytic, multishell, ellipsoidal model, and voxel representations of this model with cubic voxel sizes of 16, 8, and 4 mm. Monoenergetic and monodirectional beams of 0.0253 eV, 1, 2, 10, 100, and 1000 keV neutrons, and 0.2, 0.5, 1, 2, 5, and 10 MeV photons were individually simulated to calculate kerma rates to a statistical uncertainty of <1% (1 std. dev.) in the center of the head model. In addition, a "generic" epithermal neutron beam with a broad neutron spectrum, similar to epithermal beams currently used or proposed for NCT clinical trials, was computed for all models. The thermal neutron, fast neutron, and photon kerma rates calculated with the 4 and 8 mm voxel models were within 2% and 4%, respectively, of those calculated for the analytical model. The 16 mm voxel model produced unacceptably large discrepancies for all dose components. The effects from different kerma data sets and tissue compositions were evaluated. Updating the kerma data from ICRU 46 to ICRU 63 data produced less than 2% difference in kerma rate profiles. The depth-dose profile data
The impact of MM5 and WRF meteorology over complex terrain on CHIMERE model calculations
NASA Astrophysics Data System (ADS)
de Meij, A.; Gzella, A.; Thunis, P.; Cuvelier, C.; Bessagnet, B.; Vinuesa, J. F.; Menut, L.
2009-01-01
The objective of this study is to evaluate the impact of meteorological input data on calculated gas and aerosol concentrations. We use two different meteorological models (MM5 and WRF) together with the chemistry transport model CHIMERE. We focus on the Po valley area (Italy) for January and June 2005. Firstly we evaluate the meteorological parameters with observations. The analysis shows that the performance of both models is similar, however some small differences are still noticeable. Secondly, we analyze the impact of using MM5 and WRF on calculated PM10 and O3 concentrations. In general CHIMERE/MM5 and CHIMERE/WRF underestimate the PM10 concentrations for January. The difference in PM10 concentrations for January between CHIMERE/MM5 and CHIMERE/WRF is around a factor 1.6 (PM10 higher for CHIMERE/MM5). This difference and the larger underestimation in PM10 concentrations by CHIMERE/WRF are related to the differences in heat fluxes and the resulting PBL heights calculated by WRF. In general the PBL height by WRF meteorology is a factor 2.8 higher at noon in January than calculated by MM5. This study showed that the difference in microphysics scheme has an impact on the profile of cloud liquid water (CLW) calculated by the meteorological driver and therefore on the production of SO4 aerosol. A sensitivity analysis shows that changing the Noah Land Surface Model (LSM) for the 5-layer soil temperature model, the calculated monthly mean PM10 concentrations increase by 30%, due to the change in the heat fluxes and the resulting PBL heights. For June, PM10 calculated concentrations by CHIMERE/MM5 and CHIMERE/WRF are similar and agree with the observations. Calculated O3 values for June are in general overestimated by a factor 1.3 by CHIMERE/MM5 and CHIMRE/WRF. The reason for this is that daytime NO2 concentrations are a higher than the observations and nighttime NO concentrations (titration effect) are underestimated.
The role of convective model choice in calculating the climate impact of doubling CO2
NASA Technical Reports Server (NTRS)
Lindzen, R. S.; Hou, A. Y.; Farrell, B. F.
1982-01-01
The role of the parameterization of vertical convection in calculating the climate impact of doubling CO2 is assessed using both one-dimensional radiative-convective vertical models and in the latitude-dependent Hadley-baroclinic model of Lindzen and Farrell (1980). Both the conventional 6.5 K/km and the moist-adiabat adjustments are compared with a physically-based, cumulus-type parameterization. The model with parameterized cumulus convection has much less sensitivity than the 6.5 K/km adjustment model at low latitudes, a result that can be to some extent imitiated by the moist-adiabat adjustment model. However, when averaged over the globe, the use of the cumulus-type parameterization in a climate model reduces sensitivity only approximately 34% relative to models using 6.5 K/km convective adjustment. Interestingly, the use of the cumulus-type parameterization appears to eliminate the possibility of a runaway greenhouse.
A global average model of atmospheric aerosols for radiative transfer calculations
NASA Technical Reports Server (NTRS)
Toon, O. B.; Pollack, J. B.
1976-01-01
A global average model is proposed for the size distribution, chemical composition, and optical thickness of stratospheric and tropospheric aerosols. This aerosol model is designed to specify the input parameters to global average radiative transfer calculations which assume the atmosphere is horizontally homogeneous. The model subdivides the atmosphere at multiples of 3 km, where the surface layer extends from the ground to 3 km, the upper troposphere from 3 to 12 km, and the stratosphere from 12 to 45 km. A list of assumptions made in construction of the model is presented and discussed along with major model uncertainties. The stratospheric aerosol is modeled as a liquid mixture of 75% H2SO4 and 25% H2O, while the tropospheric aerosol consists of 60% sulfate and 40% soil particles above 3 km and of 50% sulfate, 35% soil particles, and 15% sea salt below 3 km. Implications and consistency of the model are discussed.
NASA Astrophysics Data System (ADS)
Leal, Allan M. M.; Blunt, Martin J.; LaForce, Tara C.
2014-04-01
Chemical equilibrium calculations are essential for many environmental problems. It is also a fundamental tool for chemical kinetics and reactive transport modelling, since these applications may require hundreds to billions equilibrium calculations in a single simulation. Therefore, an equilibrium method for such critical applications must be very efficient, robust and accurate. In this work we demonstrate the potential effectiveness of a novel Gibbs energy minimisation algorithm for reactive transport simulations. The algorithm includes strategies to converge from poor initial guesses; capabilities to specify non-linear equilibrium constraints such as pH of an aqueous solution and activity or fugacity of a species; a rigorous phase stability test to determine the unstable phases; and a strategy to boost the convergence speed of the calculations to quadratic rates, requiring only few iterations to converge. We use this equilibrium method to solve geochemical problems relevant to carbon storage in saline aquifers, where aqueous, gaseous and minerals phases are present. The problems are formulated to mimic the ones found in kinetics and transport simulations, where a sequence of equilibrium calculations are performed, each one using the previous solution as the initial guess. The efficiency and convergence rates of the calculations are presented, which require an average of 1-2 iterations. These results indicate that critical applications such as chemical kinetics and reactive transport modelling can potentially benefit by using this multiphase equilibrium algorithm.
NASA Astrophysics Data System (ADS)
Kopparla, P.; Natraj, V.; Spurr, R. J. D.; Shia, R. L.; Yung, Y. L.
2014-12-01
Radiative transfer (RT) computations are an essential component of energy budget calculations in climate models. However, full treatment of RT processes is computationally expensive, prompting usage of 2-stream approximations in operational climate models. This simplification introduces errors of the order of 10% in the top of the atmosphere (TOA) fluxes [Randles et al., 2013]. Natraj et al. [2005, 2010] and Spurr and Natraj [2013] demonstrated the ability of a technique using principal component analysis (PCA) to speed up RT simulations. In the PCA method for RT performance enhancement, empirical orthogonal functions are developed for binned sets of inherent optical properties that possess some redundancy; costly multiple-scattering RT calculations are only done for those (few) optical states corresponding to the most important principal components, and correction factors are applied to approximate radiation fields. Here, we extend the PCA method to a broadband spectral region from the ultraviolet to the shortwave infrared (0.3-3 micron), accounting for major gas absorptions in this region. Comparisons between the new model, called Universal Principal Component Analysis model for Radiative Transfer (UPCART), 2-stream models (such as those used in climate applications) and line-by-line RT models are performed, in order for spectral radiances, spectral fluxes and broadband fluxes. Each of these are calculated at the TOA for several scenarios with varying aerosol types, extinction and scattering optical depth profiles, and solar and viewing geometries. We demonstrate that very accurate radiative forcing estimates can be obtained, with better than 1% accuracy in all spectral regions and better than 0.1% in most cases as compared to an exact line-by-line RT model. The model is comparable in speeds to 2-stream models, potentially rendering UPCART useful for operational General Circulation Models (GCMs). The operational speed and accuracy of UPCART can be further
Turner, D.R.; Pabalan, R.T. )
1999-01-01
Sorption onto minerals in the geologic setting may help to mitigate potential radionuclide transport from the proposed high-level radioactive waste repository at Yucca Mountain (YM), Nevada. An approach is developed for including aspects of more mechanistic sorption models into current probabilistic performance assessment (PA) calculations. Data on water chemistry from the vicinity of YM are screened and used to calculate the ranges in parameters that could exert control on radionuclide corruption behavior. Using a diffuse-layer surface complexation model, sorption parameters for Np(V) and U(VI) are calculated based on the chemistry of each water sample. Model results suggest that log normal probability distribution functions (PDFs) of sorption parameters are appropriate for most of the samples, but the calculated range is almost five orders of magnitude for Np(V) sorption and nine orders of magnitude for U(VI) sorption. Calculated sorption parameters may also vary at a single sample location by almost a factor of 10 over time periods of the order of days to years due to changes in chemistry, although sampling and analytical methodologies may introduce artifacts that add uncertainty to the evaluation of these fluctuations. Finally, correlation coefficients between the calculated Np(V) and U(VI) sorption parameters can be included as input into PA sampling routines, so that the value selected for one radionuclide sorption parameter is conditioned by its statistical relationship to the others. The approaches outlined here can be adapted readily to current PA efforts, using site-specific information to provide geochemical constraints on PDFs for radionuclide transport parameters.
Turner, D.R.; Pabalan, R.T.
1999-11-01
Sorption onto minerals in the geologic setting may help to mitigate potential radionuclide transport from the proposed high-level radioactive waste repository at Yucca Mountain (YM), Nevada. An approach is developed for including aspects of more mechanistic sorption models into current probabilistic performance assessment (PA) calculations. Data on water chemistry from the vicinity of YM are screened and used to calculate the ranges in parameters that could exert control on radionuclide corruption behavior. Using a diffuse-layer surface complexation model, sorption parameters for Np(V) and U(VI) are calculated based on the chemistry of each water sample. Model results suggest that log normal probability distribution functions (PDFs) of sorption parameters are appropriate for most of the samples, but the calculated range is almost five orders of magnitude for Np(V) sorption and nine orders of magnitude for U(VI) sorption. Calculated sorption parameters may also vary at a single sample location by almost a factor of 10 over time periods of the order of days to years due to changes in chemistry, although sampling and analytical methodologies may introduce artifacts that add uncertainty to the evaluation of these fluctuations. Finally, correlation coefficients between the calculated Np(V) and U(VI) sorption parameters can be included as input into PA sampling routines, so that the value selected for one radionuclide sorption parameter is conditioned by its statistical relationship to the others. The approaches outlined here can be adapted readily to current PA efforts, using site-specific information to provide geochemical constraints on PDFs for radionuclide transport parameters.
A simple model for calculating the kinetics of protein folding from three-dimensional structures.
Muñoz, V; Eaton, W A
1999-09-28
An elementary statistical mechanical model was used to calculate the folding rates for 22 proteins from their known three-dimensional structures. In this model, residues come into contact only after all of the intervening chain is in the native conformation. An additional simplifying assumption is that native structure grows from localized regions that then fuse to form the complete native molecule. The free energy function for this model contains just two contributions-conformational entropy of the backbone and the energy of the inter-residue contacts. The matrix of inter-residue interactions is obtained from the atomic coordinates of the three-dimensional structure. For the 18 proteins that exhibit two-state equilibrium and kinetic behavior, profiles of the free energy versus the number of native peptide bonds show two deep minima, corresponding to the native and denatured states. For four proteins known to exhibit intermediates in folding, the free energy profiles show additional deep minima. The calculated rates of folding the two-state proteins, obtained by solving a diffusion equation for motion on the free energy profiles, reproduce the experimentally determined values surprisingly well. The success of these calculations suggests that folding speed is largely determined by the distribution and strength of contacts in the native structure. We also calculated the effect of mutations on the folding kinetics of chymotrypsin inhibitor 2, the most intensively studied two-state protein, with some success. PMID:10500173
Poston, J.W.
1989-01-01
This presentation will review and describe the development of pediatric phantoms for use in radiation dose calculations . The development of pediatric models for dose calculations essentially paralleled that of the adult. In fact, Snyder and Fisher at the Oak Ridge National Laboratory reported on a series of phantoms for such calculations in 1966 about two years before the first MIRD publication on the adult human phantom. These phantoms, for a newborn, one-, five-, ten-, and fifteen-year old, were derived from the adult phantom. The pediatric'' models were obtained through a series of transformations applied to the major dimensions of the adult, which were specified in a Cartesian coordinate system. These phantoms suffered from the fact that no real consideration was given to the influence of these mathematical transformations on the actual organ sizes in the other models nor to the relation of the resulting organ masses to those in humans of the particular age. Later, an extensive effort was invested in designing individual'' pediatric phantoms for each age based upon a careful review of the literature. Unfortunately, the phantoms had limited use and only a small number of calculations were made available to the user community. Examples of the phantoms, their typical dimensions, common weaknesses, etc. will be discussed.
Poston, J.W.
1989-12-31
This presentation will review and describe the development of pediatric phantoms for use in radiation dose calculations . The development of pediatric models for dose calculations essentially paralleled that of the adult. In fact, Snyder and Fisher at the Oak Ridge National Laboratory reported on a series of phantoms for such calculations in 1966 about two years before the first MIRD publication on the adult human phantom. These phantoms, for a newborn, one-, five-, ten-, and fifteen-year old, were derived from the adult phantom. The ``pediatric`` models were obtained through a series of transformations applied to the major dimensions of the adult, which were specified in a Cartesian coordinate system. These phantoms suffered from the fact that no real consideration was given to the influence of these mathematical transformations on the actual organ sizes in the other models nor to the relation of the resulting organ masses to those in humans of the particular age. Later, an extensive effort was invested in designing ``individual`` pediatric phantoms for each age based upon a careful review of the literature. Unfortunately, the phantoms had limited use and only a small number of calculations were made available to the user community. Examples of the phantoms, their typical dimensions, common weaknesses, etc. will be discussed.
NASA Astrophysics Data System (ADS)
Yano, Masato; Hirose, Kenji; Yoshikawa, Minoru; Thermal management technology Team
Facile property calculation model for adsorption chillers was developed based on equilibrium adsorption cycles. Adsorption chillers are one of promising systems that can use heat energy efficiently because adsorption chillers can generate cooling energy using relatively low temperature heat energy. Properties of adsorption chillers are determined by heat source temperatures, adsorption/desorption properties of adsorbent, and kinetics such as heat transfer rate and adsorption/desorption rate etc. In our model, dependence of adsorption chiller properties on heat source temperatures was represented using approximated equilibrium adsorption cycles instead of solving conventional time-dependent differential equations for temperature changes. In addition to equilibrium cycle calculations, we calculated time constants for temperature changes as functions of heat source temperatures, which represent differences between equilibrium cycles and real cycles that stemmed from kinetic adsorption processes. We found that the present approximated equilibrium model could calculate properties of adsorption chillers (driving energies, cooling energies, and COP etc.) under various driving conditions quickly and accurately within average errors of 6% compared to experimental data.
Calculation of signal-to-noise ratio (SNR) of infrared detection system based on MODTRAN model
NASA Astrophysics Data System (ADS)
Lu, Xue; Li, Chuang; Fan, Xuewu
2013-09-01
Signal-to-noise ratio (SNR) is an important parameter of infrared detection system. SNR of infrared detection system is determined by the target infrared radiation, atmospheric transmittance, background infrared radiation and the detector noise. The infrared radiation flux in the atmosphere is determined by the selective absorption of the gas molecules, the atmospheric environment, and the transmission distance of the radiation, etc, so the atmospheric transmittance and infrared radiance flux are intricate parameters. A radiometric model for the calculation of SNR of infrared detection system is developed and used to evaluate the effects of various parameters on signal-to-noise ratio (SNR). An atmospheric modeling tool, MODTRAN, is used to model wavelength-dependent atmospheric transmission and sky background radiance. Then a new expression of SNR is deduced. Instead of using constants such as average atmospheric transmission and average wavelength in traditional method, it uses discrete values for atmospheric transmission and sky background radiance. The integrals in general expression of SNR are converted to summations. The accuracy of SNR obtained from the new method can be improved. By adopting atmospheric condition of the 1976 US standard, no clouds urban aerosols, fall-winter aerosol profiles, the typical spectrum characters of sky background radiance and transmittance are computed by MODTRON. Then the operating ranges corresponding to the threshold quantity of SNR are calculated with the new method. The calculated operating ranges are more close to the measured operating range than those calculated with the traditional method.
Bimodality emerges from transport model calculations of heavy ion collisions at intermediate energy
NASA Astrophysics Data System (ADS)
Mallik, S.; Das Gupta, S.; Chaudhuri, G.
2016-04-01
This work is a continuation of our effort [S. Mallik, S. Das Gupta, and G. Chaudhuri, Phys. Rev. C 91, 034616 (2015)], 10.1103/PhysRevC.91.034616 to examine if signatures of a phase transition can be extracted from transport model calculations of heavy ion collisions at intermediate energy. A signature of first-order phase transition is the appearance of a bimodal distribution in Pm(k ) in finite systems. Here Pm(k ) is the probability that the maximum of the multiplicity distribution occurs at mass number k . Using a well-known model for event generation [Botzmann-Uehling-Uhlenbeck (BUU) plus fluctuation], we study two cases of central collision: mass 40 on mass 40 and mass 120 on mass 120. Bimodality is seen in both the cases. The results are quite similar to those obtained in statistical model calculations. An intriguing feature is seen. We observe that at the energy where bimodality occurs, other phase-transition-like signatures appear. There are breaks in certain first-order derivatives. We then examine if such breaks appear in standard BUU calculations without fluctuations. They do. The implication is interesting. If first-order phase transition occurs, it may be possible to recognize that from ordinary BUU calculations. Probably the reason this has not been seen already is because this aspect was not investigated before.
Voxel2MCNP: software for handling voxel models for Monte Carlo radiation transport calculations.
Hegenbart, Lars; Pölz, Stefan; Benzler, Andreas; Urban, Manfred
2012-02-01
Voxel2MCNP is a program that sets up radiation protection scenarios with voxel models and generates corresponding input files for the Monte Carlo code MCNPX. Its technology is based on object-oriented programming, and the development is platform-independent. It has a user-friendly graphical interface including a two- and three-dimensional viewer. A row of equipment models is implemented in the program. Various voxel model file formats are supported. Applications include calculation of counting efficiency of in vivo measurement scenarios and calculation of dose coefficients for internal and external radiation scenarios. Moreover, anthropometric parameters of voxel models, for instance chest wall thickness, can be determined. Voxel2MCNP offers several methods for voxel model manipulations including image registration techniques. The authors demonstrate the validity of the program results and provide references for previous successful implementations. The authors illustrate the reliability of calculated dose conversion factors and specific absorbed fractions. Voxel2MCNP is used on a regular basis to generate virtual radiation protection scenarios at Karlsruhe Institute of Technology while further improvements and developments are ongoing. PMID:22217596
Bonn potential and shell-model calculations for N=126 isotones
Coraggio, L.; Covello, A.; Gargano, A.; Itaco, N.; Kuo, T. T. S.
1999-12-01
We have performed shell-model calculations for the N=126 isotones {sup 210}Po, {sup 211}At, and {sup 212}Rn using a realistic effective interaction derived from the Bonn-A nucleon-nucleon potential by means of a G-matrix folded-diagram method. The calculated binding energies, energy spectra, and electromagnetic properties show remarkably good agreement with the experimental data. The results of this paper complement those of our previous study on neutron hole Pb isotopes, confirming that realistic effective interactions are now able to reproduce with quantitative accuracy the spectroscopic properties of complex nuclei. (c) 1999 The American Physical Society.
Shell model calculation for Te and Sn isotopes in the vicinity of {sup 100}Sn
Yakhelef, A.; Bouldjedri, A.
2012-06-27
New Shell Model calculations for even-even isotopes {sup 104-108}Sn and {sup 106,108}Te, in the vicinity of {sup 100}Sn have been performed. The calculations have been carried out using the windows version of NuShell-MSU. The two body matrix elements TBMEs of the effective interaction between valence nucleons are obtained from the renormalized two body effective interaction based on G-matrix derived from the CD-bonn nucleon-nucleon potential. The single particle energies of the proton and neutron valence spaces orbitals are defined from the available spectra of lightest odd isotopes of Sb and Sn respectively.
Model potential calculation of the thermal donor energy spectrum in silicon
NASA Astrophysics Data System (ADS)
Chen, C. S.; Schroder, D. K.
1988-06-01
The two-parameter model potential originally proposed by Ning and Sah [Phys. Rev. B 4, 3468 (1971)] for calculating the ground-state energies of group V and group VI impurities in silicon is extended to the variational calculation of the thermal donor ionization energies. In the multivalley effective mass approximation, the theoretical results are in excellent agreement with the reported experimental data. This provides additional evidence for the assumption that thermal donors consist of five to thirteen oxygen atoms, as first proposed by Ourmazd, Schröter, and Bourret [J. Appl. Phys. 56, 1670 (1984)].
Model potential calculation of the thermal donor energy spectrum in silicon
Chen, C.S.; Schroder, D.K.
1988-06-15
The two-parameter model potential originally proposed by Ning and Sah (Phys. Rev. B 4, 3468 (1971)) for calculating the ground-state energies of group V and group VI impurities in silicon is extended to the variational calculation of the thermal donor ionization energies. In the multivalley effective mass approximation, the theoretical results are in excellent agreement with the reported experimental data. This provides additional evidence for the assumption that thermal donors consist of five to thirteen oxygen atoms, as first proposed by Ourmazd, Schroeter, and Bourret (J. Appl. Phys. 56, 1670 (1984)).
Development of a New Shielding Model for JB-Line Dose Rate Calculations
Buckner, M.R.
2001-08-09
This report describes the shielding model development for the JB-Line Upgrade project. The product of this effort is a simple-to-use but accurate method of estimating the personnel dose expected for various operating conditions on the line. The current techniques for shielding calculations use transport codes such as ANISN which, while accurate for geometries which can be accurately approximated as one dimensional slabs, cylinders or spheres, fall short in calculating configurations in which two-or three-dimensional effects (e.g., streaming) play a role in the dose received by workers.
PNS calculations for 3-D hypersonic corner flow with two turbulence models
NASA Technical Reports Server (NTRS)
Smith, Gregory E.; Liou, May-Fun; Benson, Thomas J.
1988-01-01
A three-dimensional parabolized Navier-Stokes code has been used as a testbed to investigate two turbulence models, the McDonald Camarata and Bushnell Beckwith model, in the hypersonic regime. The Bushnell Beckwith form factor correction to the McDonald Camarata mixing length model has been extended to three-dimensional flow by use of an inverse averaging of the resultant length scale contributions from each wall. Two-dimensional calculations are compared with experiment for Mach 18 helium flow over a 4-deg wedge. Corner flow calculations have been performed at Mach 11.8 for a Reynolds number of .67 x 10 to the 6th, based on the duct half-width, and a freestream stagnation temperature of 1750-deg Rankine.
Molecular Modeling for Calculation of Mechanical Properties of Epoxies with Moisture Ingress
NASA Technical Reports Server (NTRS)
Clancy, Thomas C.; Frankland, Sarah J.; Hinkley, J. A.; Gates, T. S.
2009-01-01
Atomistic models of epoxy structures were built in order to assess the effect of crosslink degree, moisture content and temperature on the calculated properties of a typical representative generic epoxy. Each atomistic model had approximately 7000 atoms and was contained within a periodic boundary condition cell with edge lengths of about 4 nm. Four atomistic models were built with a range of crosslink degree and moisture content. Each of these structures was simulated at three temperatures: 300 K, 350 K, and 400 K. Elastic constants were calculated for these structures by monitoring the stress tensor as a function of applied strain deformations to the periodic boundary conditions. The mechanical properties showed reasonably consistent behavior with respect to these parameters. The moduli decreased with decreasing crosslink degree with increasing temperature. The moduli generally decreased with increasing moisture content, although this effect was not as consistent as that seen for temperature and crosslink degree.
A hybrid model to calculate the forward delay time of heterojunction bipolar transistors
NASA Astrophysics Data System (ADS)
Kumar, T.; Cahay, M.; Shi, S.; Roenker, K.; Stanchina, W. E.
1995-07-01
The forward delay time (τ F) of heterojunction bipolar transistors (HBTs) is calculated using a hybrid model of carrier transport. A rigorous quantum-mechanical treatment of electron tunneling and thermionic emission across the spike at the emitter-base junction is used to determine the energy of the electron flux injected into the base region. This flux is used as an initial distribution in a regional Monte Carlo simulator to model electron transport from base to sub-collector. In this paper, we estimate the base transit time using the impulse response technique and the collector delay time using the expression of Laux and Lai (IEEE Electron Device Letters, 11, 174, 1990). Improvements to the hybrid model proposed here to reduce some of the discrepancies between measured and calculated values of ƒ τ for some InAlAs/InGaAs and InP/InGaAs structures reported in the literature are discussed.
A novel model for calculating the inter-electrode capacitance of wedge-strip anode
NASA Astrophysics Data System (ADS)
Zhao, Airong; Ni, Qiliang
2016-04-01
The wedge strip anode (WSA) detector has been widely used in particle detection. In this work, a novel model for calculating the inter-electrode capacitance of WSA was proposed on the basis of conformal transformations and the partial capacitance method. Based on the model, the inter-electrode capacitance within a period was calculated besides the total inter-electrode capacitance. As a result, the effects of the WSA design parameters on the inter-electrode capacitance are systematically analyzed. It is found that the inter-electrode capacitance monotonically increases with insulated gap and substrate permittivity but not with the period. In order to prove the validation of the model, two round WSAs were manufactured by employing the picosecond laser micro-machining technology. It is found that 9%-15% errors between the theoretical and experimental results can be obtained, which is better than that obtained by employing ANSYS software.
A novel model for calculating the inter-electrode capacitance of wedge-strip anode.
Zhao, Airong; Ni, Qiliang
2016-04-01
The wedge strip anode (WSA) detector has been widely used in particle detection. In this work, a novel model for calculating the inter-electrode capacitance of WSA was proposed on the basis of conformal transformations and the partial capacitance method. Based on the model, the inter-electrode capacitance within a period was calculated besides the total inter-electrode capacitance. As a result, the effects of the WSA design parameters on the inter-electrode capacitance are systematically analyzed. It is found that the inter-electrode capacitance monotonically increases with insulated gap and substrate permittivity but not with the period. In order to prove the validation of the model, two round WSAs were manufactured by employing the picosecond laser micro-machining technology. It is found that 9%-15% errors between the theoretical and experimental results can be obtained, which is better than that obtained by employing ANSYS software. PMID:27131648
Calculating kaon fragmentation functions from the Nambu-Jona-Lasinio jet model
Matevosyan, Hrayr H.; Thomas, Anthony W.; Bentz, Wolfgang
2011-04-01
The Nambu-Jona-Lasinio (NJL)-jet model provides a sound framework for calculating the fragmentation functions in an effective chiral quark theory, where the momentum and isospin sum rules are satisfied without the introduction of ad hoc parameters. Earlier studies of the pion fragmentation functions using the NJL model within this framework showed qualitative agreement with the empirical parametrizations. Here we extend the NJL-jet model by including the strange quark. The corrections to the pion fragmentation functions and corresponding kaon fragmentation functions are calculated using the elementary quark to quark-meson fragmentation functions from NJL. The results for the kaon fragmentation functions exhibit a qualitative agreement with the empirical parametrizations, while the unfavored strange quark fragmentation to pions is shown to be of the same order of magnitude as the unfavored light quark. The results of these studies are expected to provide important guidance for the analysis of a large variety of semi-inclusive data.
Direct comparison between two {gamma}-alumina structural models by DFT calculations
Ferreira, Ary R.; Martins, Mateus J.F.; Konstantinova, Elena; Capaz, Rodrigo B.; Souza, Wladmir F.; Chiaro, Sandra Shirley X.; Leitao, Alexandre A.
2011-05-15
We selected two important {gamma}-alumina models proposed in literature, a spinel-like one and a nonspinel one, to perform a theoretical comparison. Using ab initio calculations, the models were compared regarding their thermodynamic stability, lattice vibrational modes, and bulk electronic properties. The spinel-like model is thermodynamically more stable by 4.55 kcal/mol per formula unit on average from 0 to 1000 K. The main difference between the models is in their simulated infrared spectra, with the spinel-like model showing the best agreement with experimental data. Analysis of the electronic density of states and charge transfer between atoms reveal the similarity on the electronic structure of the two models, despite some minor differences. -- Graphical abstract: Two {gamma}-Alumina bulk models selected in this work for a comparison focusing in the electronic structure and thermodynamics of the systems. (a) The nonspinel model and (b) the spinel-like model. Display Omitted Highlights: {yields} There is still a debate about the {gamma}-Alumina structure in the literature. {yields} Models of surfaces are constructed from different bulk structural models. {yields} Two models commonly used in the literate were selected and compared. {yields} One model reproduce better the experimental data. {yields} Both presented a similar electronic structure.
Wang, Junmei; Hou, Tingjun
2012-05-25
It is of great interest in modern drug design to accurately calculate the free energies of protein-ligand or nucleic acid-ligand binding. MM-PBSA (molecular mechanics Poisson-Boltzmann surface area) and MM-GBSA (molecular mechanics generalized Born surface area) have gained popularity in this field. For both methods, the conformational entropy, which is usually calculated through normal-mode analysis (NMA), is needed to calculate the absolute binding free energies. Unfortunately, NMA is computationally demanding and becomes a bottleneck of the MM-PB/GBSA-NMA methods. In this work, we have developed a fast approach to estimate the conformational entropy based upon solvent accessible surface area calculations. In our approach, the conformational entropy of a molecule, S, can be obtained by summing up the contributions of all atoms, no matter they are buried or exposed. Each atom has two types of surface areas, solvent accessible surface area (SAS) and buried SAS (BSAS). The two types of surface areas are weighted to estimate the contribution of an atom to S. Atoms having the same atom type share the same weight and a general parameter k is applied to balance the contributions of the two types of surface areas. This entropy model was parametrized using a large set of small molecules for which their conformational entropies were calculated at the B3LYP/6-31G* level taking the solvent effect into account. The weighted solvent accessible surface area (WSAS) model was extensively evaluated in three tests. For convenience, TS values, the product of temperature T and conformational entropy S, were calculated in those tests. T was always set to 298.15 K through the text. First of all, good correlations were achieved between WSAS TS and NMA TS for 44 protein or nucleic acid systems sampled with molecular dynamics simulations (10 snapshots were collected for postentropy calculations): the mean correlation coefficient squares (R²) was 0.56. As to the 20 complexes, the TS
Rock Physics Model and Brittleness Index Calculation for Shale Gas Study in Jambi Basin, Indonesia
NASA Astrophysics Data System (ADS)
Fatkhan, Fatkhan; Fauzi, Inusa P.; Sule, Rachmat; Usman, Alfian
2014-05-01
Research about shale gas is often conducted in oil and gas industries since the demand of energy supply has increased recently. Indonesia is newly interested on researching, exploring and even producing shale gas. To seek prospects of shale gas play in an area, one needs to look into some of characteristics. This paper describes about rock physics model that is used to investigate a prospect zone of shale gas play by looking into percentage of TOC and brittleness index. Method used to modeling rock physics are as follows, first Hashin-Shtrikman bound is employed to estimate percentage of minerals, then inclusions are modeled by Kuster-Toksoz method and finally kerogens are calculated by Ciz and Shapiro's model. In addition, we compared between inclusion saturated by kerogen and water and inclusion filled up by only kerogen. Modulus Young is used to estimate brittleness index. Then in order to map and delineate brittle area, simultaneous seismic inversion method using pre stack data is employed to generate volume of P-wave, S-wave and density. Finally, these volumes are used to calculate Modulus Young value. Since the area of study has a very thick shale then the area is divided into four zones based on modulus shear and bulk values. The rock physics model shows that there are two zones having quartz-rich mineral and the inclusion saturated by water and kerogen. More over Modulus Young calculations show there are two zones having high values or more than 50%. The rock physics model can be used for predicting mineralogy leading into zones of prospect brittle shale. These zones are then correlated with brittleness index calculations. In addition, results show that the study area has a shale gas prospect for further exploration.
On calculating the transfer of carbon-13 in reservoir models of the carbon cycle
TANS, PIETER P.
1980-10-01
An approach to calculating the transfer of isotopic tracers in reservoir models is outlined that takes into account the effects of isotopic fractionation at phase boundaries without any significant approximations. Simultaneous variations in both the rare isotopic tracer and the total elemental (the sum of its isotopes) concentration are considered. The proposed procedure is applicable to most models of the carbon cycle and a four-box model example is discussed. Although the exact differential equations are non-linear, a simple linear approximation exists that gives insight into the nature of the solution. The treatment will be in terms of isotopic ratios which are the directly measured quantities.
Surface water management: a user's guide to calculate a water balance using the CREAMS model
Lane, L.J.
1984-11-01
The hydrologic component of the CREAMS model is described and discussed in terms of calculating a surface water balance for shallow land burial systems used for waste disposal. Parameter estimates and estimation procedures are presented in detail in the form of a user's guide. Use of the model is illustrated with three examples based on analysis of data from Los Alamos, New Mexico and Rock Valley, Nevada. Use of the model in design of trench caps for shallow land burial systems is illustrated with the example applications at Los Alamos.
The EXPURT model for calculating external gamma doses from deposited material in inhabited areas.
Jones, J A; Singer, L N; Brown, J
2006-01-01
EXPURT, NRPB's model for calculating external gamma doses in inhabited areas, was originally developed in the mid-1980s. Deposition on surfaces in the area, the subsequent transfer of material between different surfaces or its removal from the system, and dose rates in various locations from material on the different surfaces are modelled. The model has been updated to take account of more recent experimental data on the transfer rates between surfaces and to make it more flexible for use in assessing dose rates following an accidental release. EXPURT is a compartmental model and models the transfer of material between the surfaces using a set of first order differential equations. It enables the impact of the decontamination of surfaces on doses and dose rates to be explored. The paper describes the EXPURT model and presents some preliminary results obtained using it. PMID:16242820
Calculated flame temperature (CFT) modeling of fuel mixture lower flammability limits.
Zhao, Fuman; Rogers, William J; Mannan, M Sam
2010-02-15
Heat loss can affect experimental flammability limits, and it becomes indispensable to quantify flammability limits when apparatus quenching effect becomes significant. In this research, the lower flammability limits of binary hydrocarbon mixtures are predicted using calculated flame temperature (CFT) modeling, which is based on the principle of energy conservation. Specifically, the hydrocarbon mixture lower flammability limit is quantitatively correlated to its final flame temperature at non-adiabatic conditions. The modeling predictions are compared with experimental observations to verify the validity of CFT modeling, and the minor deviations between them indicated that CFT modeling can represent experimental measurements very well. Moreover, the CFT modeling results and Le Chatelier's Law predictions are also compared, and the agreement between them indicates that CFT modeling provides a theoretical justification for the Le Chatelier's Law. PMID:19819067
Direct comparison between two γ-alumina structural models by DFT calculations
NASA Astrophysics Data System (ADS)
Ferreira, Ary R.; Martins, Mateus J. F.; Konstantinova, Elena; Capaz, Rodrigo B.; Souza, Wladmir F.; Chiaro, Sandra Shirley X.; Leitão, Alexandre A.
2011-05-01
We selected two important γ-alumina models proposed in literature, a spinel-like one and a nonspinel one, to perform a theoretical comparison. Using ab initio calculations, the models were compared regarding their thermodynamic stability, lattice vibrational modes, and bulk electronic properties. The spinel-like model is thermodynamically more stable by 4.55 kcal/mol per formula unit on average from 0 to 1000 K. The main difference between the models is in their simulated infrared spectra, with the spinel-like model showing the best agreement with experimental data. Analysis of the electronic density of states and charge transfer between atoms reveal the similarity on the electronic structure of the two models, despite some minor differences.
The impact of nuclear mass models on r-process nucleosynthesis network calculations
NASA Astrophysics Data System (ADS)
Vaughan, Kelly
2002-10-01
An insight into understanding various nucleosynthesis processes is via modelling of the process with network calculations. My project focus is r-process network calculations where the r-process is nucleosynthesis via rapid neutron capture thought to take place in high entropy supernova bubbles. One of the main uncertainties of the simulations is the Nuclear Physics input. My project investigates the role that nuclear masses play in the resulting abundances. The code tecode, involves rapid (n,γ) capture reactions in competition with photodisintegration and β decay onto seed nuclei. In order to fully analyze the effects of nuclear mass models on the relative isotopic abundances, calculations were done from the network code, keeping the initial environmental parameters constant throughout. The supernova model investigated by Qian et al (1996) in which two r-processes, of high and low frequency with seed nucleus ^90Se and of fixed luminosity (fracL_ν_e(0)r_7(0)^2 ˜= 8.77), contribute to the nucleosynthesis of the heavier elements. These two r-processes, however, do not contribute equally to the total abundance observed. The total isotopic abundance produced from both events was therefore calculated using equation refabund. Y(H+L) = fracY(H)+fY(L)f+1 <~belabund where Y(H) denotes the relative isotopic abundance produced in the high frequency event, Y(L) corresponds to the low freqeuncy event and f is the ratio of high event matter to low event matter produced. Having established reliable, fixed parameters, the network code was run using data files containing parameters such as the mass excess, neutron separation energy, β decay rates and neutron capture rates based around three different nuclear mass models. The mass models tested are the HFBCS model (Hartree-Fock BCS) derived from first principles, the ETFSI-Q model (Extended Thomas-Fermi with Strutinsky Integral including shell Quenching) known for its particular successes in the replication of Solar System
Model calculations of extreme ultraviolet gain from laser-irradiated aluminium foils
NASA Astrophysics Data System (ADS)
Pert, G. J.; Tallents, G. J.
1981-05-01
Calculations are presented on the development of gain in expanding aluminum plasmas produced by the irradiation of thin foil targets with laser radiation. The atomic physics of the expanding aluminum plasma is also considered together with the question of whether such plasmas can indeed be generated by laser irradiation of foil targets. Two-dimensional fluid code calculations are discussed to demonstrate that the model used in the atomic calculations gives a reasonable representation of the expanding laser plasma. It is pointed out that the development of the hydrogen-like ion recombination laser as an X-ray laser requires the use of ions with Z of about 25. Laser action with aluminum at 38.7 A would be an encouraging step towards X-ray laser action, being about mid-way between the current carbon fiber experiments at 182 A and true X-ray laser action at about 10 A.
A new method for modeling rough membrane surface and calculation of interfacial interactions.
Zhao, Leihong; Zhang, Meijia; He, Yiming; Chen, Jianrong; Hong, Huachang; Liao, Bao-Qiang; Lin, Hongjun
2016-01-01
Membrane fouling control necessitates the establishment of an effective method to assess interfacial interactions between foulants and rough surface membrane. This study proposed a new method which includes a rigorous mathematical equation for modeling membrane surface morphology, and combination of surface element integration (SEI) method and the composite Simpson's approach for assessment of interfacial interactions. The new method provides a complete solution to quantitatively calculate interfacial interactions between foulants and rough surface membrane. Application of this method in a membrane bioreactor (MBR) showed that, high calculation accuracy could be achieved by setting high segment number, and moreover, the strength of three energy components and energy barrier was remarkably impaired by the existence of roughness on the membrane surface, indicating that membrane surface morphology exerted profound effects on membrane fouling in the MBR. Good agreement between calculation prediction and fouling phenomena was found, suggesting the feasibility of this method. PMID:26519696
Study on the Calculation Models of Bus Delay at Bays Using Queueing Theory and Markov Chain
Sun, Li; Sun, Shao-wei; Wang, Dian-hai
2015-01-01
Traffic congestion at bus bays has decreased the service efficiency of public transit seriously in China, so it is crucial to systematically study its theory and methods. However, the existing studies lack theoretical model on computing efficiency. Therefore, the calculation models of bus delay at bays are studied. Firstly, the process that buses are delayed at bays is analyzed, and it was found that the delay can be divided into entering delay and exiting delay. Secondly, the queueing models of bus bays are formed, and the equilibrium distribution functions are proposed by applying the embedded Markov chain to the traditional model of queuing theory in the steady state; then the calculation models of entering delay are derived at bays. Thirdly, the exiting delay is studied by using the queueing theory and the gap acceptance theory. Finally, the proposed models are validated using field-measured data, and then the influencing factors are discussed. With these models the delay is easily assessed knowing the characteristics of the dwell time distribution and traffic volume at the curb lane in different locations and different periods. It can provide basis for the efficiency evaluation of bus bays. PMID:25759720