Science.gov

Sample records for cre-loxp recombination vectors

  1. THE CRE-LOXP RECOMBINATION-BASED REPORTER SYSTEM FOR PLANT TRANSCRIPTIONAL EXPRESSION STUDIES

    Technology Transfer Automated Retrieval System (TEKTRAN)

    To facilitate the characterization of plant genes, the Cre-loxP site-specific recombination system was adapted to make reporter vectors for plant expression studies. This system allows promoter fragments to be cloned into a small vector (univector) and subsequently recombined in vitro with binary ve...

  2. Evaluation of nestin or osterix promoter-driven cre/loxp system in studying the biological functions of murine osteoblastic cells

    PubMed Central

    Su, Xinlin; Yu, Mei; Qiu, Guixing; Zheng, Yongwei; Chen, Yuhong; Wen, Renren; Fu, Guoping; Zhu, Wen; Chen, Jun; Wu, Nan; Ma, Pei; Chen, Weisheng; Wu, Zhihong; Wang, Demin

    2016-01-01

    Objective: To compare Osterix and Nestin-Cre/Loxp system in studying the biological functions of murine osteoblastic cells including primary osteoblasts (OBs) and osteolineage mesenchymal progenitor cells (MPCs). Methods: We isolated primary osteoblasts (OBs) from neonatal Nestin-cre-R26-loxP-YFP (Nes-OBs) and Osterix-cre-R26-loxP-YFP (Osx-OBs) mice and bone marrow mesenchymal stromal cells (BMMSCs) from the adults (termed as Nes-BMMSCs and Osx-BMMSCs). Then we detected the percentage of YFP+ subpopulation in Nes/Osx-OBs and the percentage of CD45-YFP+ progenitor population in Nes/Osx-BMMSCs and sorted them out (termed as Nes/Osx-YFP+ OBs and Nes/Osx-CD45-YFP+ MPCs) by using the sorting machine. We also analyzed the expression of surface antigens on Nes/Osx-YFP+ OBs and Nes/Osx-CD45-YFP+ MPCs by Flow cytometry. PDGF-BB induced proliferation of Nes/Osx-YFP+ OBs and Nes/Osx-CD45-YFP+ MPCs was measured by H3-Thymidine incorporation assay. We then did OB maturation and mineralization assays of Nes/Osx-YFP+ OBs and CFU and multi-lineage differentiation assays of Nes/Osx-CD45-YFP+ MPCs. Results: YFP+% in Nes-OBs and Osx-OBs and CD45-YFP+% in Nes-BMMSCs and Osx-BMMSCs was respectively 5.56%±3.56% (n=5), 10.12%±2.7% (n=4), 1.29%±0.98% (n=13) and 16.38%±6.98% (n=17). Both Nes-YFP+ OBs and Osx-YFP+ OBs were positive for CD51. Nes/Osx-CD45-YFP+ MPCs were positive for CD51, CD105 and Sca1, and negative for CD31 and CD45. PDGFR expression in Osx-YFP+ OBs was a bit higher than that in Nes-YFP+ OBs, and slightly higher in Osx-CD45-YFP+ MPCs than in Nes-CD45-YFP+ MPCs. Proliferation ability of Nes/Osx-YFP+ OBs increased dramatically after stimulated with PDGF-BB for 48 h, while it was not statistically significant that PDGF-BB induced the increase of proliferation ability in either Nes-CD45-YFP+ MPCs or Osx-CD45-YFP+ MPCs. We observed that no significant difference of OB maturation and mineralization ability existed between Nes-YFP+ OBs and Osx-YFP+ OBs, and there was little

  3. A marker-free system for highly efficient construction of vaccinia virus vectors using CRISPR Cas9

    PubMed Central

    Yuan, Ming; Gao, Xuefei; Chard, Louisa S; Ali, Zarah; Ahmed, Jahangir; Li, Yunqing; Liu, Pentao; Lemoine, Nick R; Wang, Yaohe

    2015-01-01

    The current method for creation of vaccinia virus (VACV) vectors involves using a selection and purification marker, however inclusion of a gene without therapeutic value in the resulting vector is not desirable for clinical use. The Cre-LoxP system has been used to make marker-free Poxviruses, but the efficiency was very low. To obtain a marker-free VACV vector, we developed marker gene excision systems to modify the thymidine kinase (TK) region and N1L regions using Cre-Loxp and Flp-FRET systems respectively. CRISPR-Cas9 system significantly resulted in a high efficiency (~90%) in generation of marker gene-positive TK-mutant VACV vector. The marker gene (RFP) could be excised from the recombinant virus using Cre recombinase. To make a marker-free VV vector with double gene deletions targeting the TK and N1L gene, we constructed a donor repair vector targeting the N1L gene, which can carry a therapeutic gene and the marker (RFP) that could be excised from the recombinant virus using Flp recombinase. The marker-free system developed here can be used to efficiently construct VACV vectors armed with any therapeutic genes in the TK region or N1L region without marker genes. Our marker-free system platform has significant potential for development of new marker-free VACV vectors for clinical application. PMID:26417609

  4. HSV Recombinant Vectors for Gene Therapy

    PubMed Central

    Manservigi, Roberto; Argnani, Rafaela; Marconi, Peggy

    2010-01-01

    The very deep knowledge acquired on the genetics and molecular biology of herpes simplex virus (HSV), has allowed the development of potential replication-competent and replication-defective vectors for several applications in human healthcare. These include delivery and expression of human genes to cells of the nervous systems, selective destruction of cancer cells, prophylaxis against infection with HSV or other infectious diseases, and targeted infection to specific tissues or organs. Replication-defective recombinant vectors are non-toxic gene transfer tools that preserve most of the neurotropic features of wild type HSV-1, particularly the ability to express genes after having established latent infections, and are thus proficient candidates for therapeutic gene transfer settings in neurons. A replication-defective HSV vector for the treatment of pain has recently entered in phase 1 clinical trial. Replication-competent (oncolytic) vectors are becoming a suitable and powerful tool to eradicate brain tumours due to their ability to replicate and spread only within the tumour mass, and have reached phase II/III clinical trials in some cases. The progress in understanding the host immune response induced by the vector is also improving the use of HSV as a vaccine vector against both HSV infection and other pathogens. This review briefly summarizes the obstacle encountered in the delivery of HSV vectors and examines the various strategies developed or proposed to overcome such challenges. PMID:20835362

  5. Recombinant vector and eukaryotic host transformed thereby

    SciTech Connect

    Sugden, W.M.

    1987-08-11

    A recombinant plasmid is described comprising: a segment from a first plasmid which is not a lymphotrophic herpes virus segment and which facilitates the replication of the recombinant plasmid in a prokaryotic host; a segment from a lymphotrophic herpes virus which is linked to the first plasmid segment such that is a capable of assisting in maintaining the recombinant plasmid as a plasmid if the recombinant plasmid is inserted into a eukaryotic host that has been transformed by the lymphotrophic herpes virus; and a foreign eukaryotic gene component linked as part of the recombinant plasmid.

  6. Antigenic structures stably expressed by recombinant TGEV-derived vectors.

    PubMed

    Becares, Martina; Sanchez, Carlos M; Sola, Isabel; Enjuanes, Luis; Zuñiga, Sonia

    2014-09-01

    Coronaviruses (CoVs) are positive-stranded RNA viruses with potential as immunization vectors, expressing high levels of heterologous genes and eliciting both secretory and systemic immune responses. Nevertheless, its high recombination rate may result in the loss of the full-length foreign gene, limiting their use as vectors. Transmissible gastroenteritis virus (TGEV) was engineered to express porcine reproductive and respiratory syndrome virus (PRRSV) small protein domains, as a strategy to improve heterologous gene stability. After serial passage in tissue cultures, stable expression of small PRRSV protein antigenic domains was achieved. Therefore, size reduction of the heterologous genes inserted in CoV-derived vectors led to the stable expression of antigenic domains. Immunization of piglets with these TGEV vectors led to partial protection against a challenge with a virulent PRRSV strain, as immunized animals showed reduced clinical signs and lung damage. Further improvement of TGEV-derived vectors will require the engineering of vectors with decreased recombination rate. PMID:25108114

  7. Retroviral Vectors for Analysis of Viral Mutagenesis and Recombination

    PubMed Central

    Rawson, Jonathan M.O.; Mansky, Louis M.

    2014-01-01

    Retrovirus population diversity within infected hosts is commonly high due in part to elevated rates of replication, mutation, and recombination. This high genetic diversity often complicates the development of effective diagnostics, vaccines, and antiviral drugs. This review highlights the diverse vectors and approaches that have been used to examine mutation and recombination in retroviruses. Retroviral vectors for these purposes can broadly be divided into two categories: those that utilize reporter genes as mutation or recombination targets and those that utilize viral genes as targets of mutation or recombination. Reporter gene vectors greatly facilitate the detection, quantification, and characterization of mutants and/or recombinants, but may not fully recapitulate the patterns of mutagenesis or recombination observed in native viral gene sequences. In contrast, the detection of mutations or recombination events directly in viral genes is more biologically relevant but also typically more challenging and inefficient. We will highlight the advantages and disadvantages of the various vectors and approaches used as well as propose ways in which they could be improved. PMID:25254386

  8. Vaxvec: The first web-based recombinant vaccine vector database and its data analysis.

    PubMed

    Deng, Shunzhou; Martin, Carly; Patil, Rasika; Zhu, Felix; Zhao, Bin; Xiang, Zuoshuang; He, Yongqun

    2015-11-27

    A recombinant vector vaccine uses an attenuated virus, bacterium, or parasite as the carrier to express a heterologous antigen(s). Many recombinant vaccine vectors and related vaccines have been developed and extensively investigated. To compare and better understand recombinant vectors and vaccines, we have generated Vaxvec (http://www.violinet.org/vaxvec), the first web-based database that stores various recombinant vaccine vectors and those experimentally verified vaccines that use these vectors. Vaxvec has now included 59 vaccine vectors that have been used in 196 recombinant vector vaccines against 66 pathogens and cancers. These vectors are classified to 41 viral vectors, 15 bacterial vectors, 1 parasitic vector, and 1 fungal vector. The most commonly used viral vaccine vectors are double-stranded DNA viruses, including herpesviruses, adenoviruses, and poxviruses. For example, Vaxvec includes 63 poxvirus-based recombinant vaccines for over 20 pathogens and cancers. Vaxvec collects 30 recombinant vector influenza vaccines that use 17 recombinant vectors and were experimentally tested in 7 animal models. In addition, over 60 protective antigens used in recombinant vector vaccines are annotated and analyzed. User-friendly web-interfaces are available for querying various data in Vaxvec. To support data exchange, the information of vaccine vectors, vaccines, and related information is stored in the Vaccine Ontology (VO). Vaxvec is a timely and vital source of vaccine vector database and facilitates efficient vaccine vector research and development. PMID:26403370

  9. Characterization of recombinant Raccoonpox Vaccine Vectors in Chickens

    USGS Publications Warehouse

    Hwa, S.-H.; Iams, K.P.; Hall, J.S.; Kingstad, B.A.; Osorio, J.E.

    2010-01-01

    Raccoonpox virus (RCN) has been used as a recombinant vector against several mammalian pathogens but has not been tested in birds. The replication of RCN in chick embryo fibroblasts (CEFs) and chickens was studied with the use of highly pathogenic avian influenza virus H5N1 hemagglutinin (HA) as a model antigen and luciferase (luc) as a reporter gene. Although RCN replicated to low levels in CEFs, it efficiently expressed recombinant proteins and, in vivo, elicited anti-HA immunoglobulin yolk (IgY) antibody responses comparable to inactivated influenza virus. Biophotonic in vivo imaging of 1-wk-old chicks with RCN-luc showed strong expression of the luc reporter gene lasting up to 3 days postinfection. These studies demonstrate the potential of RCN as a vaccine vector for avian influenza and other poultry pathogens. ?? American Association of Avian Pathologists 2010.

  10. Recombinant baculovirus vectors expressing glutathione-S-transferase fusion proteins.

    PubMed

    Davies, A H; Jowett, J B; Jones, I M

    1993-08-01

    Recombinant baculoviruses are a popular means of producing heterologous protein in eukaryotic cells. Purification of recombinant proteins away from the insect cell background can, however, remain an obstacle for many developments. Recently, prokaryotic fusion protein expression systems have been developed allowing single-step purification of the heterologous protein and specific proteolytic cleavage of the affinity tag moiety from the desired antigen. Here we report the introduction of these attributes to the baculovirus system. "Baculo-GEX" vectors enable baculovirus production of fusion proteins with the above advantages, but in a eukaryotic post-translational processing environment. Glutathione-S-transferase (GST) fusions are stable cytoplasmic proteins in insect cells and may therefore be released by sonication alone, avoiding the solubility problems and detergent requirements of bacterial systems. Thus large amounts of authentic antigen may be purified in a single, non-denaturing step. PMID:7763917

  11. Combination recombinant simian or chimpanzee adenoviral vectors for vaccine development.

    PubMed

    Cheng, Cheng; Wang, Lingshu; Ko, Sung-Youl; Kong, Wing-Pui; Schmidt, Stephen D; Gall, Jason G D; Colloca, Stefano; Seder, Robert A; Mascola, John R; Nabel, Gary J

    2015-12-16

    Recombinant adenoviral vector (rAd)-based vaccines are currently being developed for several infectious diseases and cancer therapy, but pre-existing seroprevalence to such vectors may prevent their use in broad human populations. In this study, we investigated the potential of low seroprevalence non-human primate rAd vectors to stimulate cellular and humoral responses using HIV/SIV Env glycoprotein (gp) as the representative antigen. Mice were immunized with novel simian or chimpanzee rAd (rSAV or rChAd) vectors encoding HIV gp or SIV gp by single immunization or in heterologous prime/boost combinations (DNA/rAd; rAd/rAd; rAd/NYVAC or rAd/rLCM), and adaptive immunity was assessed. Among the rSAV and rChAd tested, rSAV16 or rChAd3 vector alone generated the most potent immune responses. The DNA/rSAV regimen also generated immune responses similar to the DNA/rAd5 regimen. rChAd63/rChAd3 and rChAd3 /NYVAC induced similar or even higher levels of CD4+ and CD8+ T-cell and IgG responses as compared to rAd28/rAd5, one of the most potent combinations of human rAds. The optimized vaccine regimen stimulated improved cellular immune responses and neutralizing antibodies against HIV compared to the DNA/rAd5 regimen. Based on these results, this type of novel rAd vector and its prime/boost combination regimens represent promising candidates for vaccine development. PMID:26514419

  12. Recombinant Mycobacterium bovis BCG as an HIV vaccine vector.

    PubMed

    Chapman, Rosamund; Chege, Gerald; Shephard, Enid; Stutz, Helen; Williamson, Anna-Lise

    2010-06-01

    HIV-1 has resulted in a devastating AIDS pandemic. An effective HIV/AIDS vaccine that can be used to either, prevent HIV infection, control infection or prevent progression of the disease to AIDS is needed. In this review we discuss the use of Mycobacterium bovis BCG, the tuberculosis vaccine, as a vaccine vector for an HIV vaccine. Numerous features make BCG an attractive vehicle to deliver HIV antigens. It has a good safety profile, elicits long-lasting cellular immune responses and in addition manufacturing costs are affordable, a necessary consideration for developing countries. In this review we discuss the numerous factors that influence generation of a genetically stable recombinant BCG vaccine for HIV. PMID:20353397

  13. Design and generation of recombinant rabies virus vectors

    PubMed Central

    Osakada, Fumitaka; Callaway, Edward M.

    2014-01-01

    Rabies viruses, negative-strand RNA viruses, infect neurons through axon terminals and spread transsynaptically in a retrograde direction between neurons. Rabies viruses whose glycoprotein (G) gene is deleted from the genome cannot spread across synapses. Complementation of G in trans, however, enables transsynaptic spreading of G-deleted rabies viruses to directly-connected, presynaptic neurons. Recombinant rabies viruses can encode genes of interest for labeling cells, controlling gene expression, and monitoring or manipulating neural activity. Cre-dependent or bridge-protein-mediated transduction and single-cell electroporation via EnvA/TVA or EnvB/TVB system allow cell-type-specific or single-cell-specific targeting. These rabies virus-based approaches permit the linking of connectivity to cell morphology and circuit function for particular cell types or single cells. Here we describe methods for construction of rabies viral vectors, recovery of G-deleted rabies viruses from cDNA, amplification of the viruses, pseudotyping them with EnvA or EnvB, and concentration and titration of the viruses. The entire protocol takes 6–8 weeks. PMID:23887178

  14. Retroviral vectors for homologous recombination provide efficient cloning and expression in mammalian cells.

    PubMed

    Kobayashi, Eiji; Kishi, Hiroyuki; Ozawa, Tatsuhiko; Horii, Masae; Hamana, Hiroshi; Nagai, Terumi; Muraguchi, Atsushi

    2014-02-14

    Homologous recombination technologies enable high-throughput cloning and the seamless insertion of any DNA fragment into expression vectors. Additionally, retroviral vectors offer a fast and efficient method for transducing and expressing genes in mammalian cells, including lymphocytes. However, homologous recombination cannot be used to insert DNA fragments into retroviral vectors; retroviral vectors contain two homologous regions, the 5'- and 3'-long terminal repeats, between which homologous recombination occurs preferentially. In this study, we have modified a retroviral vector to enable the cloning of DNA fragments through homologous recombination. To this end, we inserted a bacterial selection marker in a region adjacent to the gene insertion site. We used the modified retroviral vector and homologous recombination to clone T-cell receptors (TCRs) from single Epstein Barr virus-specific human T cells in a high-throughput and comprehensive manner and to efficiently evaluate their function by transducing the TCRs into a murine T-cell line through retroviral infection. In conclusion, the modified retroviral vectors, in combination with the homologous recombination method, are powerful tools for the high-throughput cloning of cDNAs and their efficient functional analysis. PMID:24462869

  15. Construction of Yeast Recombinant Expression Vector Containing Human Epidermal Growth Factor (hEGF)

    PubMed Central

    Mohammadian, Jamal; Mansoori-Derakhshan, Sima; Mohammadian, Masood; Shekari-Khaniani, Mahmoud

    2013-01-01

    Purpose: The objective of this study was construction of recombinant hEGF-pPIC9 which may be used for expression of recombinant hEGF in following studies. Methods: EGF cDNA was purchased from Genecopoeia Company and used for PCR amplification. Prior to ligation, the PCR product and pPIC9 vector was digested with EcoRI and XhoI and ligated in pPIC9 vector and subjected to colony PCR screening and sequencing analysis. Results: PCR amplification of EGF cDNA using recombinant hEGF-pPIC9 vector as template was concluded in amplification of 197bp fragment. Construction of recombinant hEGF-pPIC9 of EGf gene was verified by PCR and sequencing. Conclusion: Construction of Recombinant hEGF-pPIC9 was the primary stage for production and expression of EFG in the future study. PMID:24312882

  16. Development of non-defective recombinant densovirus vectors for microRNA delivery in the invasive vector mosquito, Aedes albopictus

    PubMed Central

    Liu, Peiwen; Li, Xiaocong; Gu, Jinbao; Dong, Yunqiao; Liu, Yan; Santhosh, Puthiyakunnon; Chen, Xiaoguang

    2016-01-01

    We previously reported that mosquito densoviruses (MDVs) are potential vectors for delivering foreign nucleic acids into mosquito cells. However, considering existing expression strategies, recombinant viruses would inevitably become replication-defective viruses and lose their ability for secondary transmission. The packaging limitations of the virion represent a barrier for the development of MDVs for viral paratransgenesis or as high-efficiency bioinsecticides. Herein, we report the development of a non-defective recombinant Aedes aegypti densovirus (AaeDV) miRNA expression system, mediated by an artificial intron, using an intronic miRNA expression strategy. We demonstrated that this recombinant vector could be used to overexpress endogenous miRNAs or to decrease endogenous miRNAs by generating antisense sponges to explore the biological functions of miRNAs. In addition, the vector could express antisense-miRNAs to induce efficient gene silencing in vivo and in vitro. The recombinant virus effectively self-replicated and retained its secondary transmission ability, similar to the wild-type virus. The recombinant virus was also genetically stable. This study demonstrated the first construction of a non-defective recombinant MDV miRNA expression system, which represents a tool for the functional analysis of mosquito genes and lays the foundation for the application of viral paratransgenesis for dengue virus control. PMID:26879823

  17. [Construction of recombinant yellow fever virus 17D containing 2A fragment as a vaccine vector].

    PubMed

    Xiaowu, Pang; Fu, Wen-Chuan; Guo, Yin-Han; Zhang, Li-Shu; Xie, Tian-Pei; Xinbin, Gu

    2006-05-01

    The Yellow Fever (YF) vaccine, an attenuated yellow fever 17D (YF-17D) live vaccine, is one of the most effective and safest vaccines in the world and is regarded as one of the best candidates for viral expression vector. We here first reported in China the construction and characterization of the recombinant expression vector of yellow fever 17D which contained the proteinase 2A fragment of foot-and-mouth disease virus (FMDV). Three cDNA fragments representing the full-length YF-17D genome, named 5'-end cDNA (A), 3'-end cDNA (B) and middle cDNA (C), were obtained by reverse transcription polymerase chain reaction (RT-PCR), together with the introduction of SP6 enhancer, necessary restriction sites and overlaps for homologous recombination in yeast. Fragment A and B were then introduced into pRS424 in turn by DNA recombination, followed by transfection of fragment C and the recombinant pRS424 containing A and B (pRS-A-B) into yeast. A recombinant vector containing full length cDNA of YF-17D (pRS-YF) was obtained by screening on medium lack of tryptophan and uracil. A recombinant YF-17D expression vector containing FMDV-2A gene fragment (pRS-YF-2A1) was then constructed by methods of DNA recombination and homologous recombination in yeast described above. In vitro transcription of the recombinant vector pRS-YF-2A1 was then carried out and introduced into BHK-21 cells by electroporation. Results of indirect immunofluorescence assay (IFA) and titer determination showed a stable infectious recombinant virus was gotten, whose features such as growth curve were similar to those of the parental YF-17D. The results suggest that the recombinant vector pRS-YF-2A1, by introduction of heterogenous genes via 2A region, is potential to be an effective live vaccine expression vector. PMID:16755933

  18. Efficient construction of recombinant adenovirus expression vector of the Qinchuan cattle LYRM1 gene.

    PubMed

    Li, Y K; Fu, C Z; Zhang, Y R; Zan, L S

    2015-01-01

    In this study, we cloned the coding DNA sequence (CDS) region of Qinchuan cattle LYR motif-containing 1 (LYRM1) and constructed a recombinant adenovirus expression vector to examine the function of LYRM1 on the cellular level. Total RNA was extracted from the adipose tissue of Qinchuan cattle, cDNA was obtained by reverse transcription, and polymerase chain reaction was used to amplify the CDS region of the LYRM1 gene. The CDS-containing fragment was inserted into the shuttle vector pAdTrack-CMV to construct pAdTrack-CMV-LYRM1 vector. After linearization of pAdTrack-CMV-LYRM1 and the negative control vector pAdTrack-CMV by restriction endonuclease PmeI, the vectors were transformed into Escherichia coli BJ5183 containing pAdEasy-1 to obtain the recombinant adenovirus vector pAd-LYRM1 and pAd-CMV through homologous recombination. pAd-LYRM1 and pAd-CMV were then digested by PacI and transfected into the 293A cell line. The recombinant adenovirus Ad-LYRM1 and Ad-CMV was obtained at a concentration of 7 x 108 and 1.3 x 109 green fluorescent units/mL, respectively. Preadipocytes derived from Qinchuan cattle were separately infected with Ad-LYRM1 and Ad- CMV. Quantitative real-time polymerase chain reaction demonstrated that the expression of LYRM1 was increased by approximate 28,000-folds after the infection with recombinant adenovirus for 48 h. In conclusion, we successfully cloned the CDS region of the Qinchuan cattle LYRM1 gene, constructed the recombinant adenovirus expression vector, and obtained the adenovirus with high titer, providing valuable materials for studying the function of LYRM1 at the cellular level. PMID:26345880

  19. Construction and characterization of a recombinant human adenovirus vector expressing bone morphogenetic protein 2.

    PubMed

    Zhang, Zheng; Wang, Guoxian; Li, Chen; Liu, Danping

    2013-08-01

    The aim of this study was to construct and characterize a novel recombinant human adenovirus vector expressing bone morphogenetic protein 2 (BMP2) and green fluorescent protein (GFP). The BMP2 gene in the plasmid pcDNA3-BMP2 was sequenced and the restriction enzyme recognition sites were analyzed. Following mutagenesis using polymerase chain reaction (PCR), the gene sequence after the translation termination codon was removed and new restriction sites were added. The mutated BMP2 gene (BMP2(+) gene) was cloned into an adenovirus shuttle vector to obtain pShuttle cytomegalovirus (CMV)-BMP2(+)-internal ribosome entry site (IRES)-hrGFP-1. The adenovirus plasmid pAd CMV-BMP2(+)-IRES-hrGFP-1 was constructed by homologous recombination and was transfected into HEK293A cells, followed by adenovirus packaging. pAd CMV-BMP2 was used as the control. The two types of adenovirus were transfected into marrow stromal cells (MSCs). The expression of BMP2 and GFP, as well as the alkaline phosphatase (ALP) activity of expressed BMP2 were detected. Following mutagenesis, the BMP2 gene sequence and recombinant adenovirus vector were as predicted. The novel adenovirus vector expressed both BMP2 and GFP, indicating that a novel recombinant human adenovirus vector expressing BMP2 had been successfully constructed. PMID:24137184

  20. Plasmid-Chromosome Recombination of Irradiated Shuttle Vector DNA in African Green Monkey Kidney Cells.

    NASA Astrophysics Data System (ADS)

    Mudgett, John Stuart

    1987-09-01

    An autonomously replicating shuttle vector was used to investigate the enhancement of plasmid-chromosome recombination in mammalian host cells by ultraviolet light and gamma radiation. Sequences homologous to the shuttle vector were stably inserted into the genome of African Green Monkey kidney cells to act as the target substrate for these recombination events. The SV40- and pBR322-derived plasmid DNA was irradiated with various doses of radiation before transfection into the transformed mammalian host cells. The successful homologous transfer of the bacterial ampicillin resistance (amp^{rm r}) gene from the inserted sequences to replace a mutant amp^->=ne on the shuttle vector was identified by plasmid extraction and transformation into E. coli host cells. Ultraviolet light (UV) was found not to induce homologous plasmid-chromosome recombination, while gamma radiation increased the frequency of recombinant plasmids detected. The introduction of specific double -strand breaks in the plasmid or prolonging the time of plasmid residence in the mammalian host cells also enhanced plasmid-chromosome recombination. In contrast, plasmid mutagenesis was found to be increased by plasmid UV irradiation, but not to change with time. Plasmid survival, recombination, and mutagenesis were not affected by treating the mammalian host cells with UV light prior to plasmid transfection. The amp^{rm r} recombinant plasmid molecules analyzed were found to be mostly the result of nonconservative exchanges which appeared to involve both homologous and possibly nonhomologous interactions with the host chromosome. The observation that these recombinant structures were obtained from all of the plasmid alterations investigated suggests a common mechanistic origin for plasmid -chromosome recombination in these mammalian cells.

  1. Analytical Ultracentrifugation as an Approach to Characterize Recombinant Adeno-Associated Viral Vectors.

    PubMed

    Burnham, Brenda; Nass, Shelley; Kong, Elton; Mattingly, MaryEllen; Woodcock, Denise; Song, Antonius; Wadsworth, Samuel; Cheng, Seng H; Scaria, Abraham; O'Riordan, Catherine R

    2015-12-01

    Recombinant adeno-associated viral (rAAV) vectors represent a novel class of biopharmaceutical drugs. The production of clinical-grade rAAV vectors for gene therapy would benefit from analytical methods that are able to monitor drug product quality with regard to homogeneity, purity, and manufacturing consistency. Here, we demonstrate the novel application of analytical ultracentrifugation (AUC) to characterize the homogeneity of preparations of rAAV vectors. We show that a single sedimentation velocity run of rAAV vectors detected and quantified a number of different viral species, such as vectors harboring an intact genome, lacking a vector genome (empty particles), and containing fragmented or incomplete vector genomes. This information is obtained by direct boundary modeling of the AUC data generated from refractometric or UV detection systems using the computer program SEDFIT. Using AUC, we show that multiple parameters contributed to vector quality, including the AAV genome form (i.e., self-complementary vs. single-stranded), vector genome size, and the production and purification methods. Hence, AUC is a critical tool for identifying optimal production and purification processes and for monitoring the physical attributes of rAAV vectors to ensure their quality. PMID:26414997

  2. Recombinant viral vectored vaccines for the control of avian influenza: a review

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The poultry industry has been at the forefront of developing recombinant viral vectored vaccines in an attempt to improve the immune response to vaccination. With AIV, the hemagglutinin surface glycoprotein is the key antigen for protection against infection. This allows a single gene to be transf...

  3. [Construction of recombinant adenoviral vector expressing genes of the conservative influenza proteins M2 and nucleoprotein].

    PubMed

    Esmagambetov, I B; Sedova, E S; Shcherbinin, D N; Lysenko, A A; Garas, M N; Shmarov, M M; Logunov, D Iu

    2014-01-01

    Influenza is a highly contagious and one of the most massive infection diseases. General epidemiological significance has a strain, which belongs to subtype A. A high degree of genetic variety leads to the permanent changes in the antigenic structure of the influenza virus. Therefore, the current influenza vaccines require periodic updating of the composition of strains. Presently, it is important to develop a universal vaccine that can protect against different strains of influenza A virus at the same time and is based on the conserved antigens of the influenza virus. The recombinant adenovirus vectors expressing genes of conserved viral antigenes may be a promising candidate vaccine against influenza A. Using the method of the homologous recombination, we developed in this study recombinant adenovirus of fifth serotype that expresses genes of the ion channel M2 and nucleoprotein NP of the influenza virus A. Genes of the consensus protein M2 and NP of human influenza A virus were included into the structure of the viral genome. The expression of the antigens M2 and NP using recombinant adenovirus vector was detected by a Western blot assay. The immunogenicity of the developed recombinant adenovirus vector was demonstrated by the intranasal immunization of laboratory mice. PMID:25080815

  4. Subcloning plus insertion (SPI)--a novel recombineering method for the rapid construction of gene targeting vectors.

    PubMed

    Reddy, Thimma R; Kelsall, Emma J; Fevat, Léna M S; Munson, Sarah E; Cowley, Shaun M

    2015-01-01

    Gene targeting refers to the precise modification of a genetic locus using homologous recombination. The generation of novel cell lines and transgenic mouse models using this method necessitates the construction of a 'targeting' vector, which contains homologous DNA sequences to the target gene, and has for many years been a limiting step in the process. Vector construction can be performed in vivo in Escherichia coli cells using homologous recombination mediated by phage recombinases using a technique termed recombineering. Recombineering is the preferred technique to subclone the long homology sequences (>4 kb) and various targeting elements including selection markers that are required to mediate efficient allelic exchange between a targeting vector and its cognate genomic locus. Typical recombineering protocols follow an iterative scheme of step-wise integration of the targeting elements and require intermediate purification and transformation steps. Here, we present a novel recombineering methodology of vector assembly using a multiplex approach. Plasmid gap repair is performed by the simultaneous capture of genomic sequence from mouse Bacterial Artificial Chromosome libraries and the insertion of dual bacterial and mammalian selection markers. This subcloning plus insertion method is highly efficient and yields a majority of correct recombinants. We present data for the construction of different types of conditional gene knockout, or knock-in, vectors and BAC reporter vectors that have been constructed using this method. SPI vector construction greatly extends the repertoire of the recombineering toolbox and provides a simple, rapid and cost-effective method of constructing these highly complex vectors. PMID:25590226

  5. A Novel and Simple Method for Rapid Generation of Recombinant Porcine Adenoviral Vectors for Transgene Expression

    PubMed Central

    Ma, Jing; Wang, Wenbin; Zhang, Lu; Tikoo, Suresh K.; Yang, Zengqi

    2015-01-01

    Many human (different serotypes) and nonhuman adenovirus vectors are being used for gene delivery. However, the current system for isolating recombinant adenoviral vectors is either time-consuming or expensive, especially for the generation of recombinant non-human adenoviral vectors. We herein report a new and simple cloning approach for the rapid generation of a porcine adenovirus (PAdV-3) vector which shows promise for gene transfer to human cells and evasion of human adenovirus type 5 (HAdV-5) immunity. Based on the final cloning plasmid, pFPAV3-CcdB-Cm, and our modified SLiCE strategy (SLiCE cloning and lethal CcdB screening), the process for generating recombinant PAdV-3 plasmids required only one step in 3 days, with a cloning efficiency as high as 620±49.56 clones/ng and zero background (100% accuracy). The recombinant PAdV-3 plasmids could be successfully rescued in porcine retinal pigment epithelium cells (VR1BL), which constitutively express the HAdV-5 E1 and PAdV-3 E1B 55k genes, and the foreign genes were highly expressed at 24 h after transduction into swine testicle (ST) cells. In conclusion, this strategy for generating recombinant PAdV-3 vectors based on our modified SLiCE cloning system was rapid and cost-efficient, which could be used as universal cloning method for modification the other regions of PAdV-3 genome as well as other adenoviral genomes. PMID:26011074

  6. SK-HEP cells and lentiviral vector for production of human recombinant factor VIII.

    PubMed

    da Rosa, Nathalia Gonsales; Swiech, Kamilla; Picanço-Castro, Virgínia; Russo-Carbolante, Elisa Maria de Sousa; Soares Neto, Mario Abreu; de Castilho-Fernandes, Andrielle; Faça, Vitor Marcel; Fontes, Aparecida Maria; Covas, Dimas Tadeu

    2012-08-01

    Hemophilia A is caused by a deficiency in coagulation factor VIII. Recombinant factor VIII can be used as an alternative although it is unavailable for most patients. Here, we describe the production of a human recombinant B-domain-deleted FVIII (rBDDFVIII) by the human cell line SK-HEP-1, modified by a lentiviral vector rBDDFVIII was produced by recombinant SK-HEP cells (rSK-HEP) at 1.5-2.1 IU/10(6) in 24 h. The recombinant factor had increased in vitro stability when compared to commercial pdFVIII. The functionality of rBDDFVIII was shown by its biological activity and by tail-clip challenge in hemophilia A mice. The rSK-HEP cells grew in a scalable system and produced active rBDDFVIII, indicating that this platform production can be optimized to meet the commercial production scale needs. PMID:22488441

  7. Lentiviral Vectors for the Engineering of Implantable Cells Secreting Recombinant Antibodies.

    PubMed

    Lathuilière, Aurélien; Schneider, Bernard L

    2016-01-01

    The implantation of genetically modified cells is considered for the chronic delivery of therapeutic recombinant proteins in vivo. In the context of gene therapy, the genetic engineering of cells faces two main challenges. First, it is critical to generate expandable cell sources, which can maintain stable high productivity of the recombinant protein of interest over time, both in culture and after transplantation. In addition, gene transfer techniques need to be developed to engineer cells synthetizing complex polypeptides, such as recombinant monoclonal antibodies, to broaden the range of potential therapeutic applications. Here, we provide a workflow for the use of lentiviral vectors as a flexible tool to generate antibody-producing cells. In particular, lentiviral vectors can be used to genetically engineer the cell types compatible with encapsulation devices protecting the implanted cells from the host immune system. Detailed methods are provided for the design and production of lentiviral vectors, optimization of cell transduction, as well as for the quantification and quality control of the produced recombinant antibody. PMID:27317179

  8. Protection against infectious laryngotracheitis by in ovo vaccination with commercially available viral vector recombinant vaccines.

    PubMed

    Johnson, Deirdre I; Vagnozzi, Ariel; Dorea, Fernanda; Riblet, Sylva M; Mundt, Alice; Zavala, Guillermo; García, Maricarmen

    2010-12-01

    Infectious laryngotracheitis (ILT) is a highly contagious respiratory disease of chickens caused by infectious laryngotracheitis virus (ILTV). The disease is mainly controlled through biosecurity and by vaccination with live-attenuated vaccines. The chicken embryo origin (CEO) vaccines, although proven to be effective in experimental settings, have limited efficacy in controlling the disease in dense broiler production sites due to unrestricted use and poor mass vaccination coverage. These factors allowed CEO vaccines to regain virulence, causing long lasting and, consequently, severe outbreaks of the disease. A new generation of viral vector fowl poxvirus (FPV) and herpesvirus of turkey (HVT) vaccines carrying ILTV genes has been developed and such vaccines are commercially available. These vaccines are characterized by their lack of transmission, lack of ILTV-associated latent infections, and no reversion to virulence. HVT-vectored ILTV recombinant vaccines were originally approved for subcutaneous HVT or transcutaneous (pox) delivery. The increased incidence of ILTV outbreaks in broiler production sites encouraged the broiler industry to deliver the FPV-LT and HVT-LT recombinant vaccines in ovo. The objective of this study was to evaluate the protection induced by ILTV viral vector recombinant vaccines after in ovo application in 18-day-old commercial broiler embryos. The protection induced by recombinant ILTV vaccines was assessed by their ability to prevent clinical signs and mortality; to reduce challenge virus replication in the trachea; to prevent an increase in body temperature; and to prevent a decrease in body weight gain after challenge. In this study, both recombinant-vectored ILTV vaccines provided partial protection, thereby mitigating the disease, but did not reduce challenge virus loads in the trachea. PMID:21313847

  9. Yeast recombination-based cloning as an efficient way of constructing vectors for Zymoseptoria tritici.

    PubMed

    Kilaru, S; Steinberg, G

    2015-06-01

    Many pathogenic fungi are genetically tractable. Analysis of their cellular organization and invasion mechanisms underpinning virulence determinants profits from exploiting such molecular tools as fluorescent fusion proteins or conditional mutant protein alleles. Generation of these tools requires efficient cloning methods, as vector construction is often a rate-limiting step. Here, we introduce an efficient yeast recombination-based cloning (YRBC) method to construct vectors for the fungus Zymoseptoria tritici. This method is of low cost and avoids dependency on the availability of restriction enzyme sites in the DNA sequence, as needed in more conventional restriction/ligation-based cloning procedures. Furthermore, YRBC avoids modification of the DNA of interest, indeed this potential risk limits the use of site-specific recombination systems, such as Gateway cloning. Instead, in YRBC, multiple DNA fragments, with 30bp overlap sequences, are transformed into Saccharomyces cerevisiae, whereupon homologous recombination generates the vector in a single step. Here, we provide a detailed experimental protocol and four vectors, each encoding a different dominant selectable marker cassette, that enable YRBC of constructs to be used in the wheat pathogen Z. tritici. PMID:26092792

  10. Yeast recombination-based cloning as an efficient way of constructing vectors for Zymoseptoria tritici

    PubMed Central

    Kilaru, S.; Steinberg, G.

    2015-01-01

    Many pathogenic fungi are genetically tractable. Analysis of their cellular organization and invasion mechanisms underpinning virulence determinants profits from exploiting such molecular tools as fluorescent fusion proteins or conditional mutant protein alleles. Generation of these tools requires efficient cloning methods, as vector construction is often a rate-limiting step. Here, we introduce an efficient yeast recombination-based cloning (YRBC) method to construct vectors for the fungus Zymoseptoria tritici. This method is of low cost and avoids dependency on the availability of restriction enzyme sites in the DNA sequence, as needed in more conventional restriction/ligation-based cloning procedures. Furthermore, YRBC avoids modification of the DNA of interest, indeed this potential risk limits the use of site-specific recombination systems, such as Gateway cloning. Instead, in YRBC, multiple DNA fragments, with 30 bp overlap sequences, are transformed into Saccharomyces cerevisiae, whereupon homologous recombination generates the vector in a single step. Here, we provide a detailed experimental protocol and four vectors, each encoding a different dominant selectable marker cassette, that enable YRBC of constructs to be used in the wheat pathogen Z. tritici. PMID:26092792

  11. Strategies to generate high-titer, high-potency recombinant AAV3 serotype vectors

    PubMed Central

    Ling, Chen; Yin, Zifei; Li, Jun; Zhang, Daniel; Aslanidi, George; Srivastava, Arun

    2016-01-01

    Although recombinant adeno-associated virus serotype 3 (AAV3) vectors were largely ignored previously, owing to their poor transduction efficiency in most cells and tissues examined, our initial observation of the selective tropism of AAV3 serotype vectors for human liver cancer cell lines and primary human hepatocytes has led to renewed interest in this serotype. AAV3 vectors and their variants have recently proven to be extremely efficient in targeting human and nonhuman primate hepatocytes in vitro as well as in vivo. In the present studies, we wished to evaluate the relative contributions of the cis-acting inverted terminal repeats (ITRs) from AAV3 (ITR3), as well as the trans-acting Rep proteins from AAV3 (Rep3) in the AAV3 vector production and transduction. To this end, we utilized two helper plasmids: pAAVr2c3, which carries rep2 and cap3 genes, and pAAVr3c3, which carries rep3 and cap3 genes. The combined use of AAV3 ITRs, AAV3 Rep proteins, and AAV3 capsids led to the production of recombinant vectors, AAV3-Rep3/ITR3, with up to approximately two to fourfold higher titers than AAV3-Rep2/ITR2 vectors produced using AAV2 ITRs, AAV2 Rep proteins, and AAV3 capsids. We also observed that the transduction efficiency of Rep3/ITR3 AAV3 vectors was approximately fourfold higher than that of Rep2/ITR2 AAV3 vectors in human hepatocellular carcinoma cell lines in vitro. The transduction efficiency of Rep3/ITR3 vectors was increased by ~10-fold, when AAV3 capsids containing mutations in two surface-exposed residues (serine 663 and threonine 492) were used to generate a S663V+T492V double-mutant AAV3 vector. The Rep3/ITR3 AAV3 vectors also transduced human liver tumors in vivo approximately twofold more efficiently than those generated with Rep2/ITR2. Our data suggest that the transduction efficiency of AAV3 vectors can be significantly improved both using homologous Rep proteins and ITRs as well as by capsid optimization. Thus, the combined use of homologous Rep

  12. Practical utilization of recombinant AAV vector reference standards: focus on vector genomes titration by free ITR qPCR

    PubMed Central

    D’Costa, Susan; Blouin, Veronique; Broucque, Frederic; Penaud-Budloo, Magalie; François, Achille; Perez, Irene C; Le Bec, Christine; Moullier, Philippe; Snyder, Richard O; Ayuso, Eduard

    2016-01-01

    Clinical trials using recombinant adeno-associated virus (rAAV) vectors have demonstrated efficacy and a good safety profile. Although the field is advancing quickly, vector analytics and harmonization of dosage units are still a limitation for commercialization. AAV reference standard materials (RSMs) can help ensure product safety by controlling the consistency of assays used to characterize rAAV stocks. The most widely utilized unit of vector dosing is based on the encapsidated vector genome. Quantitative polymerase chain reaction (qPCR) is now the most common method to titer vector genomes (vg); however, significant inter- and intralaboratory variations have been documented using this technique. Here, RSMs and rAAV stocks were titered on the basis of an inverted terminal repeats (ITRs) sequence-specific qPCR and we found an artificial increase in vg titers using a widely utilized approach. The PCR error was introduced by using single-cut linearized plasmid as the standard curve. This bias was eliminated using plasmid standards linearized just outside the ITR region on each end to facilitate the melting of the palindromic ITR sequences during PCR. This new “Free-ITR” qPCR delivers vg titers that are consistent with titers obtained with transgene-specific qPCR and could be used to normalize in-house product-specific AAV vector standards and controls to the rAAV RSMs. The free-ITR method, including well-characterized controls, will help to calibrate doses to compare preclinical and clinical data in the field. PMID:27069952

  13. Transgene expression in Penaeus monodon cells: evaluation of recombinant baculoviral vectors with shrimp specific hybrid promoters.

    PubMed

    Puthumana, Jayesh; Philip, Rosamma; Bright Singh, I S

    2016-08-01

    It has been realized that shrimp cell immortalization may not be accomplished without in vitro transformation by expressing immortalizing gene in cells. In this process, efficiency of transgene expression is confined to the ability of vectors to transmit gene of interests to the genome. Over the years, unavailability of such vectors has been hampering application of such a strategy in shrimp cells. We report the use of recombinant baculovirus mediated transduction using hybrid promoter system for transgene expression in lymphoid cells of Penaeus monodon. Two recombinant baculovirus vectors with shrimp viral promoters (WSSV-Ie1 and IHHNV-P2) were constructed (BacIe1-GFP and BacP2-GFP) and green fluorescent protein (GFP) used as the transgene. The GFP expression in cells under the control of hybrid promoters, PH-Ie1 or PH-P2, were analyzed and confirmed in shrimp cells. The results indicate that the recombinant baculovirus with shrimp specific viral promoters (hybrid) can be employed for delivery of foreign genes to shrimp cells for in vitro transformation. PMID:25982944

  14. Characterization of parameters required for effective use of tamoxifen-regulated recombination.

    PubMed

    Buelow, Ben; Scharenberg, Andrew M

    2008-01-01

    Conditional gene targeting using the Cre-loxp system is a well established technique in numerous in vitro and in vivo systems. Ligand regulated forms of Cre have been increasingly used in these applications in order to gain temporal and spatial control over conditional targeting. The tamoxifen-regulated Cre variant mer-Cre-mer (mCrem) is widely utilized because of its reputation for tight regulation in the absence of its tamoxifen ligand. In the DT40 chicken B cell line, we generated an mCrem-based reversible switch for conditional regulation of a transgene, and in contrast with previous work, observed significant constitutive activity of mCrem. This prompted us to use our system for analysis of the parameters governing tamoxifen-regulated mCrem recombination of a genomic target. We find that robust mCrem expression correlates with a high level of tamoxifen-independent Cre activity, while clones expressing mCrem at the limit of western blot detection exhibit extremely tight regulation. We also observe time and dose-dependent effects on mCrem activity which suggest limitations on the use of conditional targeting approaches for applications which require tight temporal coordination of Cre action within a cell population. PMID:18810268

  15. Novel Recombinant Hepatitis B Virus Vectors Efficiently Deliver Protein and RNA Encoding Genes into Primary Hepatocytes

    PubMed Central

    Hong, Ran; Bai, Weiya; Zhai, Jianwei; Liu, Wei; Li, Xinyan; Zhang, Jiming; Cui, Xiaoxian; Zhao, Xue; Ye, Xiaoli; Deng, Qiang; Tiollais, Pierre; Wen, Yumei

    2013-01-01

    Hepatitis B virus (HBV) has extremely restricted host and hepatocyte tropism. HBV-based vectors could form the basis of novel therapies for chronic hepatitis B and other liver diseases and would also be invaluable for the study of HBV infection. Previous attempts at developing HBV-based vectors encountered low yields of recombinant viruses and/or lack of sufficient infectivity/cargo gene expression in primary hepatocytes, which hampered follow-up applications. In this work, we constructed a novel vector based on a naturally occurring, highly replicative HBV mutant with a 207-bp deletion in the preS1/polymerase spacer region. By applying a novel insertion strategy that preserves the continuity of the polymerase open reading frame (ORF), recombinant HBV (rHBV) carrying protein or small interfering RNA (siRNA) genes were obtained that replicated and were packaged efficiently in cultured hepatocytes. We demonstrated that rHBV expressing a fluorescent reporter (DsRed) is highly infective in primary tree shrew hepatocytes, and rHBV expressing HBV-targeting siRNA successfully inhibited antigen expression from coinfected wild-type HBV. This novel HBV vector will be a powerful tool for hepatocyte-targeting gene delivery, as well as the study of HBV infection. PMID:23552416

  16. A novel baculovirus vector for the production of nonfucosylated recombinant glycoproteins in insect cells

    PubMed Central

    Mabashi-Asazuma, Hideaki; Kuo, Chu-Wei; Khoo, Kay-Hooi; Jarvis, Donald L

    2014-01-01

    Glycosylation is an important attribute of baculovirus-insect cell expression systems, but some insect cell lines produce core α1,3-fucosylated N-glycans, which are highly immunogenic and render recombinant glycoproteins unsuitable for human use. To address this problem, we exploited a bacterial enzyme, guanosine-5′-diphospho (GDP)-4-dehydro-6-deoxy-d-mannose reductase (Rmd), which consumes the GDP-l-fucose precursor. We expected this enzyme to block glycoprotein fucosylation by blocking the production of GDP-l-fucose, the donor substrate required for this process. Initially, we engineered two different insect cell lines to constitutively express Rmd and isolated subclones with fucosylation-negative phenotypes. However, we found the fucosylation-negative phenotypes induced by Rmd expression were unstable, indicating that this host cell engineering approach is ineffective in insect systems. Thus, we constructed a baculovirus vector designed to express Rmd immediately after infection and facilitate the insertion of genes encoding any glycoprotein of interest for expression later after infection. We used this vector to produce a daughter encoding rituximab and found, in contrast to an Rmd-negative control, that insect cells infected with this virus produced a nonfucosylated form of this therapeutic antibody. These results indicate that our Rmd+ baculoviral vector can be used to solve the immunogenic core α1,3-fucosylation problem associated with the baculovirus-insect cell system. In conjunction with existing glycoengineered insect cell lines, this vector extends the utility of the baculovirus-insect cell system to include therapeutic glycoprotein production. This new vector also extends the utility of the baculovirus-insect cell system to include the production of recombinant antibodies with enhanced effector functions, due to its ability to block core α1,6-fucosylation. PMID:24362443

  17. Advances and future challenges in recombinant adenoviral vectored H5N1 influenza vaccines.

    PubMed

    Zhang, Jianfeng

    2012-11-01

    The emergence of a highly pathogenic avian influenza virus H5N1 has increased the potential for a new pandemic to occur. This event highlights the necessity for developing a new generation of influenza vaccines to counteract influenza disease. These vaccines must be manufactured for mass immunization of humans in a timely manner. Poultry should be included in this policy, since persistent infected flocks are the major source of avian influenza for human infections. Recombinant adenoviral vectored H5N1 vaccines are an attractive alternative to the currently licensed influenza vaccines. This class of vaccines induces a broadly protective immunity against antigenically distinct H5N1, can be manufactured rapidly, and may allow mass immunization of human and poultry. Recombinant adenoviral vectors derived from both human and non-human adenoviruses are currently being investigated and appear promising both in nonclinical and clinical studies. This review will highlight the current status of various adenoviral vectored H5N1 vaccines and will outline novel approaches for the future. PMID:23202501

  18. Advances and Future Challenges in Recombinant Adenoviral Vectored H5N1 Influenza Vaccines

    PubMed Central

    Zhang, Jianfeng

    2012-01-01

    The emergence of a highly pathogenic avian influenza virus H5N1 has increased the potential for a new pandemic to occur. This event highlights the necessity for developing a new generation of influenza vaccines to counteract influenza disease. These vaccines must be manufactured for mass immunization of humans in a timely manner. Poultry should be included in this policy, since persistent infected flocks are the major source of avian influenza for human infections. Recombinant adenoviral vectored H5N1 vaccines are an attractive alternative to the currently licensed influenza vaccines. This class of vaccines induces a broadly protective immunity against antigenically distinct H5N1, can be manufactured rapidly, and may allow mass immunization of human and poultry. Recombinant adenoviral vectors derived from both human and non-human adenoviruses are currently being investigated and appear promising both in nonclinical and clinical studies. This review will highlight the current status of various adenoviral vectored H5N1 vaccines and will outline novel approaches for the future. PMID:23202501

  19. A Universal Vector for High-Efficiency Multi-Fragment Recombineering of BACs and Knock-In Constructs

    PubMed Central

    Miller-Hodges, Eve; Slight, Joan; Thornburn, Anna; Devenney, Paul S.; Hohenstein, Peter

    2013-01-01

    There is an increasing need for more efficient generation of transgenic constructs. Here we present a universal multi-site Gateway vector for use in recombineering reactions. Using transgenic mouse models, we show its use for the generation of BAC transgenics and targeting vectors. The modular nature of the vector allows for rapid modification of constructs to generate different versions of the same construct. As such it will help streamline the generation of series of related transgenic models. PMID:23637962

  20. A protocol for construction of gene targeting vectors and generation of homologous recombinant ES cells

    PubMed Central

    Bouabe, Hicham; Okkenhaug, Klaus

    2015-01-01

    Summary The completion of human and mouse genome sequencing has confronted us with huge amount of data sequences that certainly need decades and many generations of scientists to be reasonably interpreted and assigned to physiological functions, and subsequently fruitfully translated into medical application. A means to assess the function of genes provides gene targeting in mouse embryonic stem (ES) cells that enables to introduce site-specific modifications in the mouse genome, and analyze their physiological consequences. Gene targeting enables almost any type of genetic modifications of interest, ranging from gene insertion (e.g. insertion of human-specific genes or reporter genes), gene disruption, point mutations, short and long range deletions, inversions. Site-specific modification into the genome of ES cells can be reached by homologous recombination using targeting vectors. Here, we describe a protocol to generate targeting constructs and homologous recombinant ES cells. PMID:23996269

  1. Production of Recombinant Cholera Toxin B Subunit in Nicotiana benthamiana Using GENEWARE® Tobacco Mosaic Virus Vector.

    PubMed

    Moore, Lauren; Hamorsky, Krystal; Matoba, Nobuyuki

    2016-01-01

    Here, we describe a method to produce a recombinant cholera toxin B subunit in Nicotiana benthamiana plants (CTBp) using the GENEWARE(®) tobacco mosaic virus vector system. Infectious transcripts of the vector RNA are generated in vitro and inoculated on N. benthamiana seedlings. After 11 days, CTBp is extracted in a simple tris buffer at room temperature. No protease inhibitor is required. The leaf homogenate is treated with mild heat and a pH shift to selectively precipitate host-derived proteins. CTBp is purified to >95 % homogeneity by two-step chromatography using immobilized metal affinity and ceramic hydroxyapatite resins. This procedure yields on average 400 mg of low-endotoxin CTBp from 1 kg of fresh leaf material. PMID:26614286

  2. Manufacturing of recombinant adeno-associated viral vectors for clinical trials

    PubMed Central

    Clément, Nathalie; Grieger, Joshua C

    2016-01-01

    The ability to elicit robust and long-term transgene expression in vivo together with minimal immunogenicity and little to no toxicity are only a few features that make recombinant adeno-associated virus (rAAV) vectors ideally suited for many gene therapy applications. Successful preclinical studies have encouraged the use of rAAV for therapeutic gene transfer to patients in the clinical setting. Nevertheless, the use of rAAV in clinical trials has underscored the need for production and purification systems capable of generating large amounts of highly pure rAAV particles. To date, generating vector quantities sufficient to meet the expanding clinical demand is still a hurdle when using current production systems. In this chapter, we will provide a description of the current methods to produce clinical grade of rAAV under current good manufacturing practice (cGMP) settings. PMID:27014711

  3. New Recombinant Mycobacterium bovis BCG Expression Vectors: Improving Genetic Control over Mycobacterial Promoters

    PubMed Central

    Kanno, Alex I.; Goulart, Cibelly; Rofatto, Henrique K.; Oliveira, Sergio C.; Leite, Luciana C. C.

    2016-01-01

    The expression of many antigens, stimulatory molecules, or even metabolic pathways in mycobacteria such as Mycobacterium bovis BCG or M. smegmatis was made possible through the development of shuttle vectors, and several recombinant vaccines have been constructed. However, gene expression in any of these systems relied mostly on the selection of natural promoters expected to provide the required level of expression by trial and error. To establish a systematic selection of promoters with a range of strengths, we generated a library of mutagenized promoters through error-prone PCR of the strong PL5 promoter, originally from mycobacteriophage L5. These promoters were cloned upstream of the enhanced green fluorescent protein reporter gene, and recombinant M. smegmatis bacteria exhibiting a wide range of fluorescence levels were identified. A set of promoters was selected and identified as having high (pJK-F8), intermediate (pJK-B7, pJK-E6, pJK-D6), or low (pJK-C1) promoter strengths in both M. smegmatis and M. bovis BCG. The sequencing of the promoter region demonstrated that it was extensively modified (6 to 11%) in all of the plasmids selected. To test the functionality of the system, two different expression vectors were demonstrated to allow corresponding expression levels of the Schistosoma mansoni antigen Sm29 in BCG. The approach used here can be used to adjust expression levels for synthetic and/or systems biology studies or for vaccine development to maximize the immune response. PMID:26850295

  4. Immortalisation of human oesophageal epithelial cells by a recombinant SV40 adenovirus vector.

    PubMed Central

    Inokuchi, S.; Handa, H.; Imai, T.; Makuuchi, H.; Kidokoro, M.; Tohya, H.; Aizawa, S.; Shimamura, K.; Ueyama, Y.; Mitomi, T.

    1995-01-01

    We introduced the origin-defective SV40 early gene into cultured human oesophageal epithelial cells by infection of a recombinant SV40 adenovirus vector. The virus-infected cells formed colonies 3-4 weeks after infection in medium containing fetal calf serum. When the cells derived from 'serum-resistant' colonies were then maintained in the serum-free medium with a low calcium ion concentration, some of them passed the cell crisis and kept growing for over 12 months. These cells, regarded as immortalised cells, resembled the primarily cultured oesophageal epithelial cells in morphology and had some of their original characteristics. Treatment of the cells with a high calcium concentration induced phenotypic changes. These cells still responded to transforming growth factor beta. When the immortalised cells were injected into severe combined immunodeficient mice, they transiently formed epithelial cysts, although the typical differentiation pattern of the oesophageal epithelium was not observed. These cysts regressed within 2 months without development into tumours. The results indicated that human oesophageal epithelial cells were reproducibly immortalised by infection with a recombinant SV40 adenovirus vector at relatively high efficiency. The immortalised cells should be useful in studies on oesophageal carcinogenesis and in assessing the cooperative effects with other oncogene products or carcinogens. Images Figure 1 Figure 2 Figure 3 Figure 4 Figure 5 PMID:7536023

  5. New Recombinant Mycobacterium bovis BCG Expression Vectors: Improving Genetic Control over Mycobacterial Promoters.

    PubMed

    Kanno, Alex I; Goulart, Cibelly; Rofatto, Henrique K; Oliveira, Sergio C; Leite, Luciana C C; McFadden, Johnjoe

    2016-04-01

    The expression of many antigens, stimulatory molecules, or even metabolic pathways in mycobacteria such as Mycobacterium bovis BCG or M. smegmatis was made possible through the development of shuttle vectors, and several recombinant vaccines have been constructed. However, gene expression in any of these systems relied mostly on the selection of natural promoters expected to provide the required level of expression by trial and error. To establish a systematic selection of promoters with a range of strengths, we generated a library of mutagenized promoters through error-prone PCR of the strong PL5 promoter, originally from mycobacteriophage L5. These promoters were cloned upstream of the enhanced green fluorescent protein reporter gene, and recombinant M. smegmatis bacteria exhibiting a wide range of fluorescence levels were identified. A set of promoters was selected and identified as having high (pJK-F8), intermediate (pJK-B7, pJK-E6, pJK-D6), or low (pJK-C1) promoter strengths in both M. smegmatis and M. bovisBCG. The sequencing of the promoter region demonstrated that it was extensively modified (6 to 11%) in all of the plasmids selected. To test the functionality of the system, two different expression vectors were demonstrated to allow corresponding expression levels of the Schistosoma mansoni antigen Sm29 in BCG. The approach used here can be used to adjust expression levels for synthetic and/or systems biology studies or for vaccine development to maximize the immune response. PMID:26850295

  6. [Construction and identification of recombinant lentiviral vector of hNoc4L gene].

    PubMed

    Wang, Tingting; Wang, Shujuan; Yan, Jinghua

    2010-11-01

    Formation and nuclear export of pre-ribosomes requires many nucleolar complexes, hNoc4L which contains a conserved Noc doman is a homolog of nucleolar complex associated 4 (S. cerevisiae), but its function is completely unclear. Here, we successfully got the recombinant lentiviral vector p113.7-EF1-hNoc4L-Flag by replacing the U6 promoter in p113.7 with EF1alpha promoter, and then inserted hNoc4L to down-stream of the EF1alpha prompter. We determined the transduction efficiency in different mammalian cell lines based on lentiviral packaging system. Subsequently, we analyzed the immunogenicity of the recombinant lentivirus and stable expression of hNoc4L in RAW264.7 cells. The results showed that the recombinant lentivirus characterized a high transduction efficiency, long-term expression and low immunogenicity. Therefore, we pave the way for further identification of the biological activity of hNoc4L protein during ribosome biogenesis in mammalian. PMID:21284218

  7. The pCri System: a vector collection for recombinant protein expression and purification.

    PubMed

    Goulas, Theodoros; Cuppari, Anna; Garcia-Castellanos, Raquel; Snipas, Scott; Glockshuber, Rudi; Arolas, Joan L; Gomis-Rüth, F Xavier

    2014-01-01

    A major bottleneck in structural, biochemical and biophysical studies of proteins is the need for large amounts of pure homogenous material, which is generally obtained by recombinant overexpression. Here we introduce a vector collection, the pCri System, for cytoplasmic and periplasmic/extracellular expression of heterologous proteins that allows the simultaneous assessment of prokaryotic and eukaryotic host cells (Escherichia coli, Bacillus subtilis, and Pichia pastoris). By using a single polymerase chain reaction product, genes of interest can be directionally cloned in all vectors within four different rare restriction sites at the 5'end and multiple cloning sites at the 3'end. In this way, a number of different fusion tags but also signal peptides can be incorporated at the N- and C-terminus of proteins, facilitating their expression, solubility and subsequent detection and purification. Fusion tags can be efficiently removed by treatment with site-specific peptidases, such as tobacco etch virus proteinase, thrombin, or sentrin specific peptidase 1, which leave only a few extra residues at the N-terminus of the protein. The combination of different expression systems in concert with the cloning approach in vectors that can fuse various tags makes the pCri System a valuable tool for high throughput studies. PMID:25386923

  8. Nonreplicating viral vectors as potential vaccines: recombinant canarypox virus expressing measles virus fusion (F) and hemagglutinin (HA) glycoproteins.

    PubMed

    Taylor, J; Weinberg, R; Tartaglia, J; Richardson, C; Alkhatib, G; Briedis, D; Appel, M; Norton, E; Paoletti, E

    1992-03-01

    The development of canarypox virus (CPV) recombinants expressing the hemagglutinin (HA) and fusion (F) glycoproteins of measles virus (MV) is described. Inoculation of the CPV-MV recombinants into avian or nonavian tissue culture substrates led to the expression of authentic MVF and MVHA as determined by radioimmunoprecipitation and surface immunofluorescence. In contrast to avian-derived tissue culture, no productive replication of the CPV recombinant was evident in tissue culture cells derived from nonavian origin. On inoculation of dogs, a species restricted for avipoxvirus replication, the recombinants elicited a protective immune response against a lethal canine distemper virus (CDV) challenge. The level of MV neutralizing antibodies and the level of protection induced against CDV challenge achieved by the host-restricted CPV vector were equivalent to that obtained by vaccinia virus vectors expressing the same MV antigens. PMID:1736535

  9. Current good manufacturing practice production of an oncolytic recombinant vesicular stomatitis viral vector for cancer treatment.

    PubMed

    Ausubel, L J; Meseck, M; Derecho, I; Lopez, P; Knoblauch, C; McMahon, R; Anderson, J; Dunphy, N; Quezada, V; Khan, R; Huang, P; Dang, W; Luo, M; Hsu, D; Woo, S L C; Couture, L

    2011-04-01

    Vesicular stomatitis virus (VSV) is an oncolytic virus currently being investigated as a promising tool to treat cancer because of its ability to selectively replicate in cancer cells. To enhance the oncolytic property of the nonpathologic laboratory strain of VSV, we generated a recombinant vector [rVSV(MΔ51)-M3] expressing murine gammaherpesvirus M3, a secreted viral chemokine-binding protein that binds to a broad range of mammalian chemokines with high affinity. As previously reported, when rVSV(MΔ51)-M3 was used in an orthotopic model of hepatocellular carcinoma (HCC) in rats, it suppressed inflammatory cell migration to the virus-infected tumor site, which allowed for enhanced intratumoral virus replication leading to increased tumor necrosis and substantially prolonged survival. These encouraging results led to the development of this vector for clinical translation in patients with HCC. However, a scalable current Good Manufacturing Practice (cGMP)-compliant manufacturing process has not been described for this vector. To produce the quantities of high-titer virus required for clinical trials, a process that is amenable to GMP manufacturing and scale-up was developed. We describe here a large-scale (50-liter) vector production process capable of achieving crude titers on the order of 10(9) plaque-forming units (PFU)/ml under cGMP. This process was used to generate a master virus seed stock and a clinical lot of the clinical trial agent under cGMP with an infectious viral titer of approximately 2 × 10(10) PFU/ml (total yield, 1 × 10(13) PFU). The lot has passed all U.S. Food and Drug Administration-mandated release testing and will be used in a phase 1 clinical translational trial in patients with advanced HCC. PMID:21083425

  10. Current Good Manufacturing Practice Production of an Oncolytic Recombinant Vesicular Stomatitis Viral Vector for Cancer Treatment

    PubMed Central

    Meseck, M.; Derecho, I.; Lopez, P.; Knoblauch, C.; McMahon, R.; Anderson, J.; Dunphy, N.; Quezada, V.; Khan, R.; Huang, P.; Dang, W.; Luo, M.; Hsu, D.; Woo, S.L.C.; Couture, L.

    2011-01-01

    Abstract Vesicular stomatitis virus (VSV) is an oncolytic virus currently being investigated as a promising tool to treat cancer because of its ability to selectively replicate in cancer cells. To enhance the oncolytic property of the nonpathologic laboratory strain of VSV, we generated a recombinant vector [rVSV(MΔ51)-M3] expressing murine gammaherpesvirus M3, a secreted viral chemokine-binding protein that binds to a broad range of mammalian chemokines with high affinity. As previously reported, when rVSV(MΔ51)-M3 was used in an orthotopic model of hepatocellular carcinoma (HCC) in rats, it suppressed inflammatory cell migration to the virus-infected tumor site, which allowed for enhanced intratumoral virus replication leading to increased tumor necrosis and substantially prolonged survival. These encouraging results led to the development of this vector for clinical translation in patients with HCC. However, a scalable current Good Manufacturing Practice (cGMP)-compliant manufacturing process has not been described for this vector. To produce the quantities of high-titer virus required for clinical trials, a process that is amenable to GMP manufacturing and scale-up was developed. We describe here a large-scale (50-liter) vector production process capable of achieving crude titers on the order of 109 plaque-forming units (PFU)/ml under cGMP. This process was used to generate a master virus seed stock and a clinical lot of the clinical trial agent under cGMP with an infectious viral titer of approximately 2 × 1010 PFU/ml (total yield, 1 × 1013 PFU). The lot has passed all U.S. Food and Drug Administration-mandated release testing and will be used in a phase 1 clinical translational trial in patients with advanced HCC. PMID:21083425

  11. [Increased efficiency of recombinant proteins production in plants due to optimized translation of RNA of viral vector].

    PubMed

    Mardanova, E S; Kotliarov, R Iu; Ravin, N V

    2009-01-01

    One of the most efficient methods for fast and efficient production of the target proteins in plants is based on the use of self-replicating recombinant viral vectors. We constructed phytoviral vector based on the genome of potato X virus containing the sequence of 5'-untranslated region of RNA 4 of alfalfa mosaic virus immediately upstream of the target gene. We demonstrated that incorporation of this sequence into the viral vector results in 3-4 fold elevation of the level of production of the target protein in plant due to increased efficiency of translation of viral subgenomic RNA comprising the target gene. The new vector may be used for production of recombinant proteins in plants. PMID:19548543

  12. Successful Interference with Cellular Immune Responses to Immunogenic Proteins Encoded by Recombinant Viral Vectors

    PubMed Central

    Sarukhan, Adelaida; Camugli, Sabine; Gjata, Bernard; von Boehmer, Harald; Danos, Olivier; Jooss, Karin

    2001-01-01

    Vectors derived from the adeno-associated virus (AAV) have been successfully used for the long-term expression of therapeutic genes in animal models and patients. One of the major advantages of these vectors is the absence of deleterious immune responses following gene transfer. However, AAV vectors, when used in vaccination studies, can result in efficient humoral and cellular responses against the transgene product. It is therefore important to understand the factors which influence the establishment of these immune responses in order to design safe and efficient procedures for AAV-based gene therapies. We have compared T-cell activation against a strongly immunogenic protein, the influenza virus hemagglutinin (HA), which is synthesized in skeletal muscle following gene transfer with an adenovirus (Ad) or an AAV vector. In both cases, cellular immune responses resulted in the elimination of transduced muscle fibers within 4 weeks. However, the kinetics of CD4+ T-cell activation were markedly delayed when AAV vectors were used. Upon recombinant Ad (rAd) gene transfer, T cells were activated both by direct transduction of dendritic cells and by cross-presentation of the transgene product, while upon rAAV gene transfer T cells were only activated by the latter mechanism. These results suggested that activation of the immune system by the transgene product following rAAV-mediated gene transfer might be easier to control than that following rAd-mediated gene transfer. Therefore, we tested protocols aimed at interfering with either antigen presentation by blocking the CD40/CD40L pathway or with the T-cell response by inducing transgene-specific tolerance. Long-term expression of the AAV-HA was achieved in both cases, whereas immune responses against Ad-HA could not be prevented. These data clearly underline the importance of understanding the mechanisms by which vector-encoded proteins are recognized by the immune system in order to specifically interfere with them and

  13. Neurovirulence Properties of Recombinant Vesicular Stomatitis Virus Vectors in Non-Human Primates

    PubMed Central

    Johnson, J. Erik; Nasar, Farooq; Coleman, John W.; Price, Roger E.; Javadian, Ali; Draper, Kenneth; Lee, Margaret; Reilly, Patricia A.; Clarke, David K.; Hendry, R. Michael; Udem, Stephen A.

    2007-01-01

    Although vesicular stomatitis virus (VSV) neurovirulence and pathogenicity in rodents have been well studied, little is known about VSV pathogenicity in non-human primates. To address this question, we measured VSV viremia, shedding, and neurovirulence in macaques. Following intranasal inoculation, macaques shed minimal recombinant VSV (rVSV) in nasal washes for one day post-inoculation; viremia was not detected. Following intranasal inoculation of macaques, wild type (wt) VSV, rVSV, and two rVSV-HIV vectors showed no evidence of spread to CNS tissues. However, macaques inoculated intrathalamically with wt VSV developed severe neurological disease. One of four macaques receiving rVSV developed clinical and histological signs similar to the wt group, while the remaining three macaques in this group and all of the macaques in the rVSV-HIV vector groups showed no clinical signs of disease and reduced severity of histopathology compared to the wt group. The implications of these findings for rVSV vaccine development are discussed. PMID:17098273

  14. Construction and evaluation of a plasmid vector for the expression of recombinant lipoproteins in Escherichia coli.

    PubMed

    Cullen, Paul A; Lo, Miranda; Bulach, Dieter M; Cordwell, Stuart J; Adler, Ben

    2003-01-01

    Outer membrane lipoproteins are emerging as key targets for protective immunity to many bacterial pathogens. Heterologous expression of lipoproteins in Escherichia coli does not always result in high level expression of acylated recombinant protein. Thus, these proteins do not take up their correct membrane topology and are lacking the immunostimulatory properties endowed by the lipid. To this end, we have designed a lipoprotein expression vector (pDUMP) that results in the production of fusion proteins containing the E. coli major outer membrane lipoprotein (Lpp) signal sequence, lipoprotein signal peptidase recognition site, and the +2 outer membrane sorting signal at their N termini. To test the ability of pDUMP to express lipoproteins from heterologous hosts, the surface lipoprotein PsaA from the Gram-positive organism Streptococcus pneumoniae and the outer membrane lipoproteins MlpA from the Gram-negative Pasteurella multocida and BlpA from the spirochete Brachyspira hyodysenteriae were cloned into both hexahistidine fusion vectors and pDUMP. High level expression of antigenically active protein from both the hexahistidine fusion vectors and pDUMP resulted in abundant bands of the predicted molecular masses when analyzed by SDS-PAGE. When grown in the presence of 3[H]palmitic acid, proteins encoded by pDUMP were observed to incorporate palmitic acid whilst the hexahistidine fusion proteins did not. Using mass spectrometry and image analysis we determined the efficiency of lipidation between the three clones to vary from 31.7 to 100%. In addition, lipidated, but not hexahistidine, forms of the proteins were presented on the E. coli surface. PMID:12583997

  15. Re-Designed Recombinant Hepatitis B Virus Vectors Enable Efficient Delivery of Versatile Cargo Genes to Hepatocytes with Improved Safety

    PubMed Central

    Bai, Weiya; Cui, Xiaoxian; Chen, Ruidong; Tao, Shuai; Hong, Ran; Zhang, Jiming; Zhang, Junqi; Wang, Yongxiang; Xie, Youhua; Liu, Jing

    2016-01-01

    Hepatitis B virus (HBV) takes humans as its sole natural host, and productive infection in vivo is restricted exclusively to hepatocytes in the liver. Consequently, HBV-derived viral vectors are attractive candidates for liver-targeting gene therapies. Previously, we developed a novel recombinant HBV vector, designated 5c3c, from a highly replicative clinical isolate. 5c3c was demonstrated to be capable of efficiently delivering protein or RNA expression into infected primary tupaia hepatocytes (PTH), but the design of 5c3c imposes stringent restrictions on inserted sequences, which have limited its wider adoption. In this work, we addressed issues with 5c3c by re-designing the insertion strategy. The resultant vector, designated 5dCG, was more replicative than parental 5c3c, imposed no specific restrictions on inserted sequences, and allowed insertion of a variety of cargo genes without significant loss of replication efficiency. 5dCG-based recombinant HBV effectively delivered protein and RNA expression into infected PTH. Furthermore, due to the loss of functional core ORF, 5dCG vectors depend on co-infecting wild type HBV for replication and efficient expression of cargo genes. Development of the improved 5dCG vector makes wider applications of recombinant HBV possible, while dependence on co-infecting wild type HBV results in improved safety for certain in vivo applications. PMID:27171107

  16. Re-Designed Recombinant Hepatitis B Virus Vectors Enable Efficient Delivery of Versatile Cargo Genes to Hepatocytes with Improved Safety.

    PubMed

    Bai, Weiya; Cui, Xiaoxian; Chen, Ruidong; Tao, Shuai; Hong, Ran; Zhang, Jiming; Zhang, Junqi; Wang, Yongxiang; Xie, Youhua; Liu, Jing

    2016-01-01

    Hepatitis B virus (HBV) takes humans as its sole natural host, and productive infection in vivo is restricted exclusively to hepatocytes in the liver. Consequently, HBV-derived viral vectors are attractive candidates for liver-targeting gene therapies. Previously, we developed a novel recombinant HBV vector, designated 5c3c, from a highly replicative clinical isolate. 5c3c was demonstrated to be capable of efficiently delivering protein or RNA expression into infected primary tupaia hepatocytes (PTH), but the design of 5c3c imposes stringent restrictions on inserted sequences, which have limited its wider adoption. In this work, we addressed issues with 5c3c by re-designing the insertion strategy. The resultant vector, designated 5dCG, was more replicative than parental 5c3c, imposed no specific restrictions on inserted sequences, and allowed insertion of a variety of cargo genes without significant loss of replication efficiency. 5dCG-based recombinant HBV effectively delivered protein and RNA expression into infected PTH. Furthermore, due to the loss of functional core ORF, 5dCG vectors depend on co-infecting wild type HBV for replication and efficient expression of cargo genes. Development of the improved 5dCG vector makes wider applications of recombinant HBV possible, while dependence on co-infecting wild type HBV results in improved safety for certain in vivo applications. PMID:27171107

  17. Near-perfect infectivity of wild-type AAV as benchmark for infectivity of recombinant AAV vectors

    PubMed Central

    Zeltner, Nadja; Kohlbrenner, Erik; Clément, Nathalie; Weber, Thomas; Linden, R. Michael

    2010-01-01

    Viral vectors derived from adeno-associated viruses (AAV) are widely used for gene transfer both in vitro and in vivo. The increasing use of AAV as a gene transfer vector, as well as recently demonstrated immunological complications in clinical trials, highlight the necessity to define the specific activity of vector preparations beyond current standards. In this report, we determined the infectious, physical and genome-containing particle titers of several wild-type AAV type 2 (wtAAV2) and recombinant AAV type 2 (rAAV2) preparations that were produced and purified by standard methods. We found that the infectivity of wtAAV2 approaches a physical-to-infectious particle ratio of one. This near-perfect physical-to-infectious particle ratio defines a “ceiling” for the theoretically achievable quality of recombinant AAV vectors. In comparison, for rAAV2, only approximately 50 out of 100 viral particles contained a genome and more strikingly only approximately one of the 100 viral particles was infectious. Our findings suggest that current strategies for rAAV vector design, production and/or purification should be amenable to improvements. Ultimately, this could result in the generation of near-perfect vector particles, a prospect with significant implications for gene therapy. PMID:20336156

  18. BTK gene targeting by homologous recombination using a helper-dependent adenovirus/adeno-associated virus hybrid vector.

    PubMed

    Yamamoto, H; Ishimura, M; Ochiai, M; Takada, H; Kusuhara, K; Nakatsu, Y; Tsuzuki, T; Mitani, K; Hara, T

    2016-02-01

    X-linked agammaglobulinemia (XLA) is one of the most common humoral immunodeficiencies, which is caused by mutations in Bruton's tyrosine kinase (BTK) gene. To examine the possibility of using gene therapy for XLA, we constructed a helper-dependent adenovirus/adeno-associated virus BTK targeting vector (HD-Ad.AAV BTK vector) composed of a genomic sequence containing BTK exons 6-19 and a green fluorescence protein-hygromycin cassette driven by a cytomegalovirus promoter. We first used NALM-6, a human male pre-B acute lymphoblastic leukemia cell line, as a recipient to measure the efficiency of gene targeting by homologous recombination. We identified 10 clones with the homologous recombination of the BTK gene among 107 hygromycin-resistant stable clones isolated from two independent experiments. We next used cord blood CD34⁺ cells as the recipient cells for the gene targeting. We isolated colonies grown in medium containing cytokines and hygromycin. We found that the targeting of the BTK gene occurred in four of the 755 hygromycin-resistant colonies. Importantly, the gene targeting was also observed in CD19⁺ lymphoid progenitor cells that were differentiated from the homologous recombinant CD34⁺ cells during growth in selection media. Our study shows the potential for the BTK gene therapy using the HD-Ad.AAV BTK vector via homologous recombination in hematopoietic stem cells. PMID:26280081

  19. Effects of vector fusion peptides on the conformation and immune reactivity of epitope-shuffled, recombinant multi-epitope antigens.

    PubMed

    Wang, Jian; Lin, Yahui; Cai, Pengfei; Wang, Heng

    2011-01-01

    The use of multi-epitopes has been considered as a promising strategy to overcome the obstacle of antigenic variation in malarial vaccine development. Previously, we constructed a multi-epitope artificial antigen, Malaria Random Constructed Antigen-1(M.RCAg-1), to optimize expression of the antigen, and we subcloned the gene into three prokaryotic expression vectors that contain different fusion tags at the N-terminus. Three recombinant proteins expressed by these vectors, named M.RCAg-1/Exp.V-1, V-2, and V-3, were purified after the cleavage of the fusion tag. All three recombinant proteins were able to induce similar levels of antigenicity in BALB/c murine models. However, the antibody responses against the individual epitope peptides of the recombinant products were dramatically different. Additionally, the different epitopes elicited various CD4(+) T-cell responses, as shown by the resulting lymphocyte proliferation and varied IFN-γ and IL-4 levels determined by EILSPOT; however, each could be distinctly recognized by sera derived from malaria patients. Additionally, the rabbit antibody induced by these proteins showed diverse efficacy in malaria parasite growth inhibition assays in vitro. Furthermore, analysis via circular dichroism spectroscopy confirmed that the secondary structure was different among these recombinant proteins. These results suggest that the expressed multi-epitope artificial antigens originating from the different vector fusion peptides indeed affect the protein folding and, subsequently, the epitope exposure. Thus, these proteins are able to induce both distinct humoral and cellular immune responses in animal models, and they affect the efficacy of immune inhibition against the parasite. This work should lead to a further understanding of the impact of vector fusion peptides on the conformation and immune reactivity of recombinant proteins and could provide a useful reference for the development of artificial multi-epitope vaccines. PMID

  20. Use of replication restricted recombinant vesicular stomatitis virus vectors for detection of antigen-specific T cells.

    PubMed

    Moseley, Nelson B; Laur, Oskar; Ibegbu, Chris C; Loria, Gilbert D; Ikwuenzunma, Gini; Jayakar, Himangi R; Whitt, Michael A; Altman, John D

    2012-01-31

    Detection of antigen-specific T cells at the single-cell level by ELISpot or flow cytometry techniques employing intracellular cytokine staining (ICS) is now an indispensable tool in many areas of immunology. When precisely mapped, optimal MHC-binding peptide epitopes are unknown, these assays use antigen in a variety of forms, including recombinant proteins, overlapping peptide sets representing one or more target protein sequences, microbial lysates, lysates of microbially-infected cells, or gene delivery vectors such as DNA expression plasmids or recombinant vaccinia or adenoviruses expressing a target protein of interest. Here we introduce replication-restricted, recombinant vesicular stomatitis virus (VSV) vectors as a safe, easy to produce, simple to use, and highly effective vector for genetic antigen delivery for the detection of human antigen-specific helper and cytotoxic T cells. To demonstrate the broad applicability of this approach, we have used these vectors to detect human T cell responses to the immunodominant pp65 antigen of human cytomegalovirus, individual segments of the yellow fever virus polyprotein, and to various influenza proteins. PMID:22004852

  1. Assessment of toxicity and biodistribution of recombinant AAV8 vector-mediated immunomodulatory gene therapy in mice with Pompe disease.

    PubMed

    Wang, Gensheng; Young, Sarah P; Bali, Deeksha; Hutt, Julie; Li, Songtao; Benson, Janet; Koeberl, Dwight D

    2014-01-01

    A preclinical safety study was conducted to evaluate the short- and long-term toxicity of a recombinant adeno-associated virus serotype 8 (AAV2/8) vector that has been developed as an immune-modulatory adjunctive therapy to recombinant human acid α-glucosidase (rhGAA, Myozyme) enzyme replacement treatment (ERT) for patients with Pompe disease (AAV2/8-LSPhGAApA). The AAV2/8-LSPhGAApA vector at 1.6 × 10(13) vector particles/kg, after intravenous injection, did not cause significant short- or long-term toxicity. Recruitment of CD4(+) (but not CD8(+)) lymphocytes to the liver was elevated in the vector-dosed male animals at study day (SD) 15, and in group 8 animals at SD 113, in comparison to their respective control animals. Administration of the vector, either prior to or after the one ERT injection, uniformly prevented the hypersensitivity induced by subsequent ERT in males, but not always in female animals. The vector genome was sustained in all tissues through 16-week postdosing, except for in blood with a similar tissue tropism between males and females. Administration of the vector alone, or combined with the ERT, was effective in producing significantly increased GAA activity and consequently decreased glycogen accumulation in multiple tissues, and the urine biomarker, Glc4, was significantly reduced. The efficacy of the vector (or with ERT) was better in males than in females, as demonstrated both by the number of tissues showing significantly effective responses and the extent of response in a given tissue. Given the lack of toxicity for AAV2/8LSPhGAApA, further consideration of clinical translation is warranted in Pompe disease. PMID:26015962

  2. Recombinant rubella vectors elicit SIV Gag-specific T cell responses with cytotoxic potential in rhesus macaques.

    PubMed

    Rosati, Margherita; Alicea, Candido; Kulkarni, Viraj; Virnik, Konstantin; Hockenbury, Max; Sardesai, Niranjan Y; Pavlakis, George N; Valentin, Antonio; Berkower, Ira; Felber, Barbara K

    2015-04-27

    Live-attenuated rubella vaccine strain RA27/3 has been demonstrated to be safe and immunogenic in millions of children. The vaccine strain was used to insert SIV gag sequences and the resulting rubella vectors were tested in rhesus macaques alone and together with SIV gag DNA in different vaccine prime-boost combinations. We previously reported that such rubella vectors induce robust and durable SIV-specific humoral immune responses in macaques. Here, we report that recombinant rubella vectors elicit robust de novo SIV-specific cellular immune responses detectable for >10 months even after a single vaccination. The antigen-specific responses induced by the rubella vector include central and effector memory CD4(+) and CD8(+) T cells with cytotoxic potential. Rubella vectors can be administered repeatedly even after vaccination with the rubella vaccine strain RA27/3. Vaccine regimens including rubella vector and SIV gag DNA in different prime-boost combinations resulted in robust long-lasting cellular responses with significant increase of cellular responses upon boost. Rubella vectors provide a potent platform for inducing HIV-specific immunity that can be combined with DNA in a prime-boost regimen to elicit durable cellular immunity. PMID:25802183

  3. A dual-functional E. coli vector for expressing recombinant protein with high solubility and antigen presentation ability.

    PubMed

    Chuang, Chin-Kai; Su, Yu-Show; Fan, Chiu-Tin; Lee, Wen-Chuan; Chen, Ming-Yu

    2009-05-01

    A dual-functional Escherichia coli expression vector capable of producing soluble recombinant proteins with high immunogenicity in animals is introduced. This vector expresses polypeptides fused to a PTD-J-domain peptide. The J-domain peptide is derived from murine Hsp40 by using optimized codons for E. coli. The association of the J-domain to the nucleotide binding domain of the DnaK chaperone increases the probability that the fused polypeptide will be folded by the DnaK and hence increases the solubility of the recombinant protein. The PTD-J-domain can also enhance the immunogenicity of the fused chicken IGF-I polypeptide as well as an oligo-peptide derived from haptoglobin in rodents, possibly via the association with either the extracellular or intracellular Hsp70 proteins. PMID:19162194

  4. In vitro characterization of felid herpesvirus 1 (FHV-1) mutants generated by recombineering in a recombinant BAC vector

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Felid herpesvirus 1 (FHV-1) mutants were constructed using two-step Red-mediated recombination techniques based on a virulent full-length FHV-1 BAC clone. The individual mutant viruses generated were deficient in glycoprotein C (gC), glycoprotein E (gE),US3 serine/threonine protein kinase (PK), or b...

  5. Recombinant Newcastle disease viral vector expressing hemagglutinin or fusion of canine distemper virus is safe and immunogenic in minks.

    PubMed

    Ge, Jinying; Wang, Xijun; Tian, Meijie; Gao, Yuwei; Wen, Zhiyuan; Yu, Guimei; Zhou, Weiwei; Zu, Shulong; Bu, Zhigao

    2015-05-15

    Canine Distemper Virus (CDV) infects many carnivores and cause several high-mortality disease outbreaks. The current CDV live vaccine cannot be safely used in some exotic species, such as mink and ferret. Here, we generated recombinant lentogenic Newcastle disease virus (NDV) LaSota expressing either envelope glycoproyein, heamagglutinine (H) or fusion protein (F), named as rLa-CDVH and rLa-CDVF, respectively. The feasibility of these recombinant NDVs to serve as live virus-vectored CD vaccine was evaluated in minks. rLa-CDVH induced significant neutralization antibodies (NA) to CDV and provided solid protection against virulent CDV challenge. On the contrast, rLa-CDVF induced much lower NA to CDV and fail to protected mink from virulent CDV challenge. Results suggest that recombinant NDV expressing CDV H is safe and efficient candidate vaccine against CDV in mink, and maybe other host species. PMID:25865465

  6. MAC-T cells as a tool to evaluate lentiviral vector construction targeting recombinant protein expression in milk.

    PubMed

    Monzani, Paulo S; Guemra, Samuel; Adona, Paulo R; Ohashi, Otavio M; Meirelles, Flávio V; Wheeler, Matthew B

    2015-01-01

    Prior to generating transgenic animals for bioreactors, it is important to evaluate the vector constructed to avoid poor protein expression. Mammary epithelial cells cultured in vitro have been proposed as a model to reproduce the biology of the mammary gland. In the present work, three lentiviral vectors were constructed for the human growth hormone (GH), interleukin 2 (IL2), and granulocyte colony-stimulating factor 3 (CSF3) genes driven by the bovine β-casein promoter. The lentiviruses were used to transduce mammary epithelial cells (MAC-T), and the transformed cells were cultured on polystyrene in culture medium with and without prolactin. The gene expression of transgenes was evaluated by PCR using cDNA, and recombinant protein expression was evaluated by Western-blotting using concentrated medium and cellular extracts. The gene expression, of the three introduced genes, was detected in both induced and non induced MAC-T cells. The human GH protein was detected in the concentrated medium, whereas CSF3 was detected in the cellular extract. Apparently, the cellular extract is more appropriate than the concentrated medium to detect recombinant protein, principally because concentrated medium has a high concentration of bovine serum albumin. The results suggest that MAC-T cells may be a good system to evaluate vector construction targeting recombinant protein expression in milk. PMID:25380466

  7. A vector system for ABC transporter-mediated secretion and purification of recombinant proteins in Pseudomonas species.

    PubMed

    Ryu, Jaewook; Lee, Ukjin; Park, Jiye; Yoo, Do-Hyun; Ahn, Jung Hoon

    2015-03-01

    Pseudomonas fluorescens is an efficient platform for recombinant protein production. P. fluorescens has an ABC transporter secreting endogenous thermostable lipase (TliA) and protease, which can be exploited to transport recombinant proteins across the cell membrane. In this study, the expression vector pDART was constructed by inserting tliDEF, genes encoding the ABC transporter, along with the construct of the lipase ABC transporter recognition domain (LARD), into pDSK519, a widely used shuttle vector. When the gene for the target protein was inserted into the vector, the C-terminally fused LARD allowed it to be secreted through the ABC transporter into the extracellular medium. After secretion of the fused target protein, the LARD containing a hydrophobic C terminus enabled its purification through hydrophobic interaction chromatography (HIC) using a methyl-Sepharose column. Alkaline phosphatase (AP) and green fluorescent protein (GFP) were used to validate the expression, export, and purification of target proteins by the pDART system. Both proteins were secreted into the extracellular medium in P. fluorescens. In particular, AP was secreted in several Pseudomonas species with its enzymatic activity in extracellular media. Furthermore, purification of the target protein using HIC yielded some degree of AP and GFP purification, where AP was purified to almost a single product. The pDART system will provide greater convenience for the secretory production and purification of recombinant proteins in Gram-negative bacteria, such as Pseudomonas species. PMID:25548043

  8. Recombinant baculoviruses as vectors for identifying proteins encoded by intron-containing members of complex multigene families.

    PubMed Central

    Iatrou, K; Meidinger, R G; Goldsmith, M R

    1989-01-01

    Using a transfer vector derived from Bombyx mori nuclear polyhedrosis virus (BmNPV), we have constructed recombinant baculoviruses that contain complete silk moth chorion chromosomal genes encoding high-cysteine proteins under the control of the polyhedrin promoter. Silk moth tissue culture cells infected with these recombinant viruses were found to contain abundant RNA sequences of sizes similar to those of the authentic chorion mRNAs. Chorion transcripts present in infected cells were initiated almost exclusively at the cap site of the polyhedrin start site. Primer extension and RNase protection experiments revealed that a considerable proportion of the resultant transcripts were spliced at the same sites as those utilized in follicular cells for the production of functional chorion mRNA. Electrophoretic analysis and immunoprecipitation of the proteins of host cells infected with the recombinant viruses revealed the presence of the corresponding chorion proteins. We conclude that baculovirus vectors can be used for expressing efficiently not only cDNAs or simple genes devoid of intervening sequences but also intron-containing chromosomal genes. Thus, recombinant baculoviruses offer a powerful alternative to hybrid-selected translation, particularly when the identification of proteins encoded by members of complex multigene families is required. Images PMID:2556701

  9. Production of immunogenic West Nile virus-like particles using a herpes simplex virus 1 recombinant vector.

    PubMed

    Taylor, Travis J; Diaz, Fernando; Colgrove, Robert C; Bernard, Kristen A; DeLuca, Neal A; Whelan, Sean P J; Knipe, David M

    2016-09-01

    West Nile virus (WNV) is a flavivirus that swept rapidly across North America in 1999, declined in prevalence, and then resurged in 2012. To date, no vaccine is available to prevent infection in the human population. Herpes simplex virus (HSV) replication-defective vaccine vectors induce a durable immunity characterized by strong antibody and CD8(+) T cell responses even in HSV-immune animals. In this study, a WNV protein expression cassette was optimized for virus-like particle (VLP) production in transfection studies, and the cassette was recombined into an HSV-1 d106-WNV virus vector, which produced extracellular VLPs, as confirmed by immunoelectron microscopy. Immunization of mice with the d106-WNV recombinant vector elicited a specific anti-WNV IgG response. This study highlights the flavivirus coding sequences needed for efficient assembly of virus-like particles. This information will facilitate generation of additional vaccine vectors against other flaviviruses including the recently emerged Zika virus. PMID:27336950

  10. Recombinant Adeno-Associated Virus Vector Genomes Take the Form of Long-Lived, Transcriptionally Competent Episomes in Human Muscle.

    PubMed

    Schnepp, Bruce C; Chulay, Jeffrey D; Ye, Guo-Jie; Flotte, Terence R; Trapnell, Bruce C; Johnson, Philip R

    2016-01-01

    Gene augmentation therapy as a strategy to treat alpha-1 antitrypsin (AAT) deficiency has reached phase 2 clinical testing in humans. Sustained serum levels of AAT have been observed beyond one year after intramuscular administration of a recombinant adeno-associated virus (rAAV) vector expressing the AAT gene. In this study, sequential muscle biopsies obtained at 3 and 12 months after vector injection were examined for the presence of rAAV vector genomes. Each biopsy sample contained readily detectable vector DNA, the majority of which existed as double-stranded supercoiled and open circular episomes. Episomes persisted through 12 months, although at slightly lower levels than observed at 3 months. There was a clear dose response when comparing the low- and mid-vector-dose groups to the high-dose group. The highest absolute copy numbers were found in a high-dose subject, and serum AAT levels at 12 months confirmed that the high-dose group also had the highest sustained serum AAT levels. Sequence analysis revealed that the vast majority of episomes contained double-D inverted terminal repeats ranging from fully intact to severely deleted. Molecular clones of vector genomes derived directly from the biopsies were transcriptionally active, potentially identifying them as the source of serum AAT in the trial subjects. PMID:26650966

  11. Role of cellular FKBP52 protein in intracellular trafficking of recombinant adeno-associated virus 2 vectors

    SciTech Connect

    Zhao Weihong; Wu Jianqing ||; Zhong Li; Chen Linyuan; Weigel-Kelley, Kirsten A. |; Qing Keyun; Larsen, Steven H.; Shou Weinian; Warrington, Kenneth H. |; Srivastava, Arun |. E-mail: asrivastava@gtc.ufl.edu

    2006-09-30

    We have reported that tyrosine-phosphorylated forms of a cellular protein, FKBP52, inhibit the second-strand DNA synthesis of adeno-associated virus 2 (AAV), leading to inefficient transgene expression from recombinant AAV vectors. To further explore the role of FKBP52 in AAV-mediated transduction, we established murine embryo fibroblasts (MEFs) cultures from FKBP52 wild-type (WT), heterozygous (HE), and knockout (KO) mice. Conventional AAV vectors failed to transduce WT MEFs efficiently, and the transduction efficiency was not significantly increased in HE or KO MEFs. AAV vectors failed to traffic efficiently to the nucleus in these cells. Treatment with hydroxyurea (HU) increased the transduction efficiency of conventional AAV vectors by {approx}25-fold in WT MEFs, but only by {approx}4-fold in KO MEFs. The use of self-complementary AAV (scAAV) vectors, which bypass the requirement of viral second-strand DNA synthesis, revealed that HU treatment increased the transduction efficiency {approx}23-fold in WT MEFs, but only {approx}4-fold in KO MEFs, indicating that the lack of HU treatment-mediated increase in KO MEFs was not due to failure of AAV to undergo viral second-strand DNA synthesis. Following HU treatment, {approx}59% of AAV genomes were present in the nuclear fraction from WT MEFs, but only {approx}28% in KO MEFs, indicating that the pathway by which HU treatment mediates nuclear transport of AAV was impaired in KO MEFs. When KO MEFs were stably transfected with an FKBP52 expression plasmid, HU treatment-mediated increase in the transduction efficiency was restored in these cells, which correlated directly with improved intracellular trafficking. Intact AAV particles were also shown to interact with FKBP52 as well as with dynein, a known cellular protein involved in AAV trafficking. These studies suggest that FKBP52, being a cellular chaperone protein, facilitates intracellular trafficking of AAV, which has implications in the optimal use of recombinant

  12. Comparison of recombinant α-hemoglobin from Crocodylus siamensis expressed in different cloning vectors and their biological properties.

    PubMed

    Maijaroen, Surachai; Anwised, Preeyanan; Klaynongsruang, Sompong; Daduang, Sakda; Boonmee, Atcha

    2016-02-01

    Hemoglobin (Hb) is an important component in red blood cells of the vertebrate. It is a major respiratory protein with oxygen or carbon dioxide transport function. Hb has been reported to contain bioactive peptides which have antibacterial and antioxidant activities. In this study, the alpha-chain hemoglobin(αHb) gene of Crocodylus siamensis was cloned into the three different expression vectors and expressed in Escherichia coli BL21 (DE3). The recombinant αHb proteins from all constructs could be expressed and purified. The result from UV-visible absorption spectra showed a similar pattern of all recombinant proteins to the oxy-hemoglobin form of intact Hb. The different recombinant αHb could exhibit antioxidant activities. All recombinant proteins could inhibit the growth of Bacillus spp. Especially, most of the recombinant proteins could inhibit the growth of Bacillus amyloliquefaciens TISTR 1045 better than intact one. The result obtained from this study can provide us further information about the possibility using of αHb as a supplementary food. PMID:26455814

  13. Frequency and Spectrum of Genomic Integration of Recombinant Adeno-Associated Virus Serotype 8 Vector in Neonatal Mouse Liver▿

    PubMed Central

    Inagaki, Katsuya; Piao, Chuncheng; Kotchey, Nicole M.; Wu, Xiaolin; Nakai, Hiroyuki

    2008-01-01

    Neonatal injection of recombinant adeno-associated virus serotype 8 (rAAV8) vectors results in widespread transduction in multiple organs and therefore holds promise in neonatal gene therapy. On the other hand, insertional mutagenesis causing liver cancer has been implicated in rAAV-mediated neonatal gene transfer. Here, to better understand rAAV integration in neonatal livers, we investigated the frequency and spectrum of genomic integration of rAAV8 vectors in the liver following intraperitoneal injection of 2.0 × 1011 vector genomes at birth. This dose was sufficient to transduce a majority of hepatocytes in the neonatal period. In the first approach, we injected mice with a β-galactosidase-expressing vector at birth and quantified rAAV integration events by taking advantage of liver regeneration in a chronic hepatitis animal model and following partial hepatectomy. In the second approach, we performed a new, quantitative rAAV vector genome rescue assay by which we identified rAAV integration sites and quantified integrations. As a result, we find that at least ∼0.05% of hepatocytes contained rAAV integration, while the average copy number of integrated double-stranded vector genome per cell in the liver was ∼0.2, suggesting concatemer integration. Twenty-three of 34 integrations (68%) occurred in genes, but none of them were near the mir-341 locus, the common rAAV integration site found in mouse hepatocellular carcinoma. Thus, rAAV8 vector integration occurs preferentially in genes at a frequency of 1 in approximately 103 hepatocytes when a majority of hepatocytes are once transduced in the neonatal period. Further studies are warranted to elucidate the relationship between vector dose and integration frequency or spectrum. PMID:18614641

  14. Organ distribution of transgene expression following intranasal mucosal delivery of recombinant replication-defective adenovirus gene transfer vector

    PubMed Central

    Damjanovic, Daniela; Zhang, Xizhong; Mu, Jingyu; Fe Medina, Maria; Xing, Zhou

    2008-01-01

    It is believed that respiratory mucosal immunization triggers more effective immune protection than parenteral immunization against respiratory infection caused by viruses and intracellular bacteria. Such understanding has led to the successful implementation of intranasal immunization in humans with a live cold-adapted flu virus vaccine. Furthermore there has been an interest in developing effective mucosal-deliverable genetic vaccines against other infectious diseases. However, there is a concern that intranasally delivered recombinant viral-based vaccines may disseminate to the CNS via the olfactory tissue. Initial experimental evidence suggests that intranasally delivered recombinant adenoviral gene transfer vector may transport to the olfactory bulb. However, there is a lack of quantitative studies to compare the relative amounts of transgene products in the respiratory tract, lung, olfactory bulb and brain after intranasal mucosal delivery of viral gene transfer vector. To address this issue, we have used fluorescence macroscopic imaging, luciferase quantification and PCR approaches to compare the relative distribution of transgene products or adenoviral gene sequences in the respiratory tract, lung, draining lymph nodes, olfactory bulb, brain and spleen. Intranasal mucosal delivery of replication-defective recombinant adenoviral vector results in gene transfer predominantly in the respiratory system including the lung while it does lead to a moderate level of gene transfer in the olfactory bulb. However, intranasal inoculation of adenoviral vector leads to little or no viral dissemination to the major region of the CNS, the brain. These experimental findings support the efficaciousness of intranasal adenoviral-mediated gene transfer for the purpose of mucosal immunization and suggest that it may not be of significant safety concern. PMID:18261231

  15. Screening for recombinants of Crambe abyssynica after transformation by the pMF1 marker-free vector based on chemical selection and meristematic regeneration.

    PubMed

    Qi, Weicong; Tinnenbroek-Capel, Iris E M; Salentijn, Elma M J; Schaart, Jan G; Cheng, Jihua; Denneboom, Christel; Zhang, Zhao; Zhang, Xiaolin; Zhao, Han; Visser, Richard G F; Huang, Bangquan; Van Loo, Eibertus N; Krens, Frans A

    2015-01-01

    The T-DNA region of pMF1 vector of marker-free system developed by Wageningen UR, has Recombinase R-LBD gene fusion and nptII and codA gene fusion between two recombination sites. After transformation applying dexamethasone (DEX) can activate the recombinase to remove the T-DNA fragment between recombination sites. The recombinant ought to be selected on 5-fluorocytocine (5-FC) because of codA converting 5-FC into 5-fluorouracil the toxic. A PMF1 vector was transformed into hexaploid species Crambe abyssinica. Two independent transformants were chosen for DEX-induced recombination and later 5-FC selection. In contrast to earlier pMF1 experiments, the strategy of stepwise selection based on meristematic regeneration was engaged. After a long period of 5-FC selection, recombinants were obtained successfully, but most of the survivors were wildtype and non-recombinant. The results revealed when applying the PMF1 marker-free system on C. abyssinica, 1) Increasing in the DEX concentration did not correspondingly enhance the success of recombination; 2) both of the DEX-induced recombination and 5-FC negative selection were apparently insufficient which was leading to the extremely high frequency in chimerism occurring for recombinant and non-recombinant cells in tissues; 3) the strategy of stepwise selection based on meristem tissue regeneration was crucial for successfully isolating the recombinant germplasm from the chimera. PMID:26358007

  16. Screening for recombinants of Crambe abyssynica after transformation by the pMF1 marker-free vector based on chemical selection and meristematic regeneration

    PubMed Central

    Qi, Weicong; Tinnenbroek-Capel, Iris E. M.; Salentijn, Elma M. J.; Schaart, Jan G.; Cheng, Jihua; Denneboom, Christel; Zhang, Zhao; Zhang, Xiaolin; Zhao, Han; Visser, Richard G. F.; Huang, Bangquan; Van Loo, Eibertus N.; Krens, Frans A.

    2015-01-01

    The T-DNA region of pMF1 vector of marker-free system developed by Wageningen UR, has Recombinase R-LBD gene fusion and nptII and codA gene fusion between two recombination sites. After transformation applying dexamethasone (DEX) can activate the recombinase to remove the T-DNA fragment between recombination sites. The recombinant ought to be selected on 5-fluorocytocine (5-FC) because of codA converting 5-FC into 5-fluorouracil the toxic. A PMF1 vector was transformed into hexaploid species Crambe abyssinica. Two independent transformants were chosen for DEX-induced recombination and later 5-FC selection. In contrast to earlier pMF1 experiments, the strategy of stepwise selection based on meristematic regeneration was engaged. After a long period of 5-FC selection, recombinants were obtained successfully, but most of the survivors were wildtype and non-recombinant. The results revealed when applying the PMF1 marker-free system on C. abyssinica, 1) Increasing in the DEX concentration did not correspondingly enhance the success of recombination; 2) both of the DEX-induced recombination and 5-FC negative selection were apparently insufficient which was leading to the extremely high frequency in chimerism occurring for recombinant and non-recombinant cells in tissues; 3) the strategy of stepwise selection based on meristem tissue regeneration was crucial for successfully isolating the recombinant germplasm from the chimera. PMID:26358007

  17. A versatile bacterial expression vector designed for single-step cloning of multiple DNA fragments using homologous recombination.

    PubMed

    Holmberg, Mats A; Gowda, Naveen Kumar Chandappa; Andréasson, Claes

    2014-06-01

    Production of recombinant proteins is the starting point for biochemical and biophysical analyses and requires methodology to efficiently proceed from gene sequence to purified protein. While optimized strategies for the efficient cloning of single-gene fragments for bacterial expression is available, efficient multiple DNA fragment cloning still presents a challenge. To facilitate this step, we have developed an efficient cloning strategy based on yeast homologous recombination cloning (YHRC) into the new pET-based bacterial expression vector pSUMO-YHRC. The vector supports cloning for untagged expression as well as fusions to His6-SUMO or His6 tags. We demonstrate that YHRC from single PCR products of 6 independent genes into the vector results in virtually no background. Importantly, in a quantitative assay for functional expression we find that single-step YHRC of 7 DNA fragments can be performed with very high cloning efficiencies. The method and reagents described in this paper significantly simplifies the construction of expression plasmids from multiple DNA fragments, including complex gene fusions, chimeric genes and polycistronic constructs. PMID:24631626

  18. Increased recombinant protein production owing to expanded opportunities for vector integration in high chromosome number Chinese hamster ovary cells.

    PubMed

    Yamano, Noriko; Takahashi, Mai; Ali Haghparast, Seyed Mohammad; Onitsuka, Masayoshi; Kumamoto, Toshitaka; Frank, Jana; Omasa, Takeshi

    2016-08-01

    Chromosomal instability is a characteristic of Chinese hamster ovary (CHO) cells. Cultures of these cells gradually develop heterogeneity even if established from a single cell clone. We isolated cells containing different numbers of chromosomes from a CHO-DG44-based human granulocyte-macrophage colony stimulating factor (hGM-CSF)-producing cell line and found that high chromosome number cells showed higher hGM-CSF productivity. Therefore, we focused on the relationship between chromosome aneuploidy of CHO cells and high recombinant protein-producing cell lines. Distribution and stability of chromosomes were examined in CHO-DG44 cells, and two cell lines expressing different numbers of chromosomes were isolated from the original CHO-DG44 cell line to investigate the effect of aneuploid cells on recombinant protein production. Both cell lines were stably transfected with a vector that expresses immunoglobulin G3 (IgG3), and specific antibody production rates were compared. Cells containing more than 30 chromosomes had higher specific antibody production rates than those with normal chromosome number. Single cell analysis of enhanced green fluorescent protein (Egfp)-gene transfected cells revealed that increased GFP expression was relative to the number of gene integration sites rather than the difference in chromosome numbers or vector locations. Our results suggest that CHO cells with high numbers of chromosomes contain more sites for vector integration, a characteristic that could be advantageous in biopharmaceutical production. PMID:26850366

  19. Method for concentrating and purifying recombinant autonomous parvovirus vectors designed for tumour-cell-targeted gene therapy.

    PubMed

    Avalosse, B; Dupont, F; Spegelaere, P; Mine, N; Burny, A

    1996-12-01

    Recent work has highlighted the use of parvoviruses as potential vectors for tumour-cell-targeted gene therapy. The oncotropic properties of the prototype strain of minute virus of mice (MVMp) suggest that this virus might be a useful vehicle for introducing selectively therapeutic genes, e.g. lymphokine or suicide genes, into tumour cells and preferentially expressing them. But the low titre of recombinant virus stocks (10(5)-10(6) infectious units per ml) and their high level of contamination by cell proteins make it practically impossible to evaluate their efficacy in in vivo systems. A technique is described for producing cellular contaminant-free stocks of recombinant virus particles, with titres up to 5 x 10(8) IU/ml. PMID:9002076

  20. Examining Human T-Lymphotropic Virus Type 1 Infection and Replication by Cell-Free Infection with Recombinant Virus Vectors

    PubMed Central

    Derse, David; Hill, Shawn A.; Lloyd, Patricia A.; Chung, Hye-kyung; Morse, Barry A.

    2001-01-01

    A sensitive and quantitative cell-free infection assay, utilizing recombinant human T-cell leukemia virus type 1 (HTLV-1)-based vectors, was developed in order to analyze early events in the virus replication cycle. Previous difficulties with the low infectivity and restricted expression of the virus have prevented a clear understanding of these events. Virus stocks were generated by transfecting cells with three plasmids: (i) a packaging plasmid encoding HTLV-1 structural and regulatory proteins, (ii) an HTLV-1 transfer vector containing either firefly luciferase or enhanced yellow fluorescent protein genes, and (iii) an envelope expression plasmid. Single-round infections were initiated by exposing target cells to filtered supernatants and quantified by assaying for luciferase activity in cell extracts or by enumerating transduced cells by flow cytometry. Transduction was dependent on reverse transcription and integration of the recombinant virus genome, as shown by the effects of the reverse transcriptase inhibitor 3′-azido-3′-deoxythymidine (AZT) and by mutation of the integrase gene in the packaging vector, respectively. The 50% inhibitory concentration of AZT was determined to be 30 nM in this HTLV-1 replication system. The stability of HTLV-1 particles, pseudotyped with either vesicular stomatitis virus G protein or HTLV-1 envelope, was typical of retroviruses, exhibiting a half-life of approximately 3.5 h at 37°C. The specific infectivity of recombinant HTLV-1 virions was at least 3 orders of magnitude lower than that of analogous HIV-1 particles, though both were pseudotyped with the same envelope. Thus, the low infectivity of HTLV-1 is determined in large part by properties of the core particle and by the efficiency of postentry processes. PMID:11507191

  1. [Transcatheter delivery of recombinant adenovirus vector containing exogenous aquaporin gene in treatment of Sjögren's syndrome].

    PubMed

    Hong, H E; Jieqiong, Zhang; Yan, Fan; Xiaoshuang, Sun; Yuhao, Zhu

    2016-05-25

    Sjögren's syndrome is a kind of autoimmune disease, whose main clinical symptoms are dry mouth, dry eye and chronic parotid glandular inflammation. The conservative treatments include artificial tears or saliva,oral administration of corticosteroids,and immunosuppressantsl with limited effectiveness. Along with the development of molecular biology, vast attentions are being paid to researches on gene therapy for Sjögren's syndrome, hopefully to bring gospel to patients with Sjögren's syndrome. This article reviews the recent research progresses on transcatheter delivery of recombinant adenovirus vector with aquaporin gene in experimental treatment of Sjögren's syndrome. PMID:27045247

  2. In vitro characterization of felid herpesvirus 1 (FHV-1) mutants generated by recombineering in a recombinant BAC vector.

    PubMed

    Tai, S-H Sheldon; Holz, Carine; Engstrom, Michael D; Cheng, Hans H; Maes, Roger K

    2016-08-01

    Felid herpesvirus 1 (FHV-1) mutants were constructed using two-step Red-mediated recombination techniques based on a virulent full-length FHV-1 BAC clone. The individual mutant viruses generated were deficient in glycoprotein C (gC), glycoprotein E (gE), US3 serine/threonine protein kinase (PK), or both gE and thymidine kinase (TK). The gC- mutant virus produced plaques that were similar in size to those resulting from infection with the C-27 parent strain. In contrast, the gE(-), PK(-), and gE(-)PK(-) deletion mutants produced plaques that were significantly smaller. Multistep in vitro growth kinetics of the gE(-), PK(-), and gE(-)PK(-) viruses were slightly delayed compared to those of the C-27 parent strain. Peak progeny titers of these three mutants were approximately 10-fold lower than those generated with the C-27 strain. There was no delay in the growth kinetics of the gC- mutant, but the progeny virus titer obtained with this mutant was at least 3 logs lower compared to the parental strain titer. Based upon their in vitro characteristics, these mutants will be useful for the development of novel immunization strategies against this important feline pathogen. PMID:27157860

  3. Enhancing Transgene Expression from Recombinant AAV8 Vectors in Different Tissues Using Woodchuck Hepatitis Virus Post-Transcriptional Regulatory Element

    PubMed Central

    Wang, Lizheng; Wang, Zixuan; Zhang, Fangfang; Zhu, Rui; Bi, Jinpeng; Wu, Jiaxin; Zhang, Haihong; Wu, Hui; Kong, Wei; Yu, Bin; Yu, Xianghui

    2016-01-01

    Adeno-associated virus (AAV) vectors have been utilized extensively in gene therapy and gene function studies, as strong transgene expression is a prerequisite for positive outcomes. AAV8 was reported as the most efficient AAV serotype for transduction of the liver, brain and muscle compared with other serotypes. However, AAV8-mediated transduction of human hepatocytes is rather poor with approximately 20-fold lower efficiency compared with that of mouse hepatocytes. Therefore, we applied the woodchuck hepatitis virus post-transcriptional regulatory element (WPRE) to enhance AAV8-mediated transgene expression driven by a combination promoter (CAG promoter) with a CMV-IE enhancer and chicken beta-actin promoter for a more efficient viral vector. Transgene expression from recombinant AAV8 (rAAV8) vectors harboring a red fluorescent protein (RFP) reporter gene with or without WPRE were evaluated in vitro and in vivo. The results demonstrated that WPRE improved AAV8-mediated RFP expression in different cell lines with clear increases of transgene expression in the liver, brain or muscle of animals. The findings of this study will help to substantially reduce the quantity of viral particles that must be injected in order to reach a therapeutic level of transgene expression in gene therapy. Consequently, such dose reductions may lessen the potential risks associated with high doses of viral vectors. PMID:27076785

  4. Genetic Manipulation of Brown Fat Via Oral Administration of an Engineered Recombinant Adeno-associated Viral Serotype Vector.

    PubMed

    Huang, Wei; McMurphy, Travis; Liu, Xianglan; Wang, Chuansong; Cao, Lei

    2016-06-01

    Recombinant adeno-associated virus (rAAV) vectors are attractive vehicles for gene therapy. Gene delivery to the adipose tissue using naturally occurring AAV serotypes is less successful compared to liver and muscle. Here, we demonstrate that oral administration of an engineered serotype Rec2 led to preferential transduction of brown fat with absence of transduction in the gastrointestinal track. Among the six natural and engineered serotypes being compared, Rec2 was the most efficient serotype achieving high level transduction at a dose 1~2 orders lower than reported doses for systemic administration. Overexpressing vascular endothelial growth factor (VEGF) in brown fat via oral administration of Rec2-VEGF vector increased the brown fat mass and enhanced thermogenesis. In contrast, knockdown VEGF in brown fat of VEGF (loxP) mice via Rec2-Cre vector hampered cold response and decreased brown fat mass. Oral administration of Rec2 vector provides a novel tool to genetically manipulate brown fat for research and therapeutic applications. PMID:26857843

  5. Generation of Recombinant Capripoxvirus Vectors for Vaccines and Gene Knockout Function Studies.

    PubMed

    Boshra, Hani; Cao, Jingxin; Babiuk, Shawn

    2016-01-01

    The ability to manipulate capripoxvirus through gene knockouts and gene insertions has become an increasingly valuable research tool in elucidating the function of individual genes of capripoxvirus, as well as in the development of capripoxvirus-based recombinant vaccines. The homologous recombination technique is used to generate capripoxvirus knockout viruses (KO), and is based on the targeting a particular viral gene of interest. This technique can also be used to insert a gene of interest. A protocol for the generation of a viral gene knockout is described. This technique involves the use of a plasmid which encodes the flanking sequences of the regions where the homologous recombination will occur, and will result in the insertion of an EGFP reporter gene for visualization of recombinant virus, as well as the E. coli gpt gene as a positive selection marker. If an additional gene is to be incorporated, this can be achieved by inserting a gene of interest for expression under a poxvirus promoter into the plasmid between the flanking regions for insertion. This chapter describes a protocol for generating such recombinant capripoxviruses. PMID:26458835

  6. Properties of a herpes simplex virus multiple immediate-early gene-deleted recombinant as a vaccine vector

    SciTech Connect

    Watanabe, Daisuke; Brockman, Mark A.; Ndung'u, Thumbi; Mathews, Lydia; Lucas, William T.; Murphy, Cynthia G.; Felber, Barbara K.; Pavlakis, George N.; Deluca, Neal A.; Knipe, David M. . E-mail: david_knipe@hms.harvard.edu

    2007-01-20

    Herpes simplex virus (HSV) recombinants induce durable immune responses in rhesus macaques and mice and have induced partial protection in rhesus macaques against mucosal challenge with virulent simian immunodeficiency virus (SIV). In this study, we evaluated the properties of a new generation HSV vaccine vector, an HSV-1 multiple immediate-early (IE) gene deletion mutant virus, d106, which contains deletions in the ICP4, ICP27, ICP22, and ICP47 genes. Because several of the HSV IE genes have been implicated in immune evasion, inactivation of the genes encoding these proteins was expected to result in enhanced immunogenicity. The d106 virus expresses few HSV gene products and shows minimal cytopathic effect in cultured cells. When d106 was inoculated into mice, viral DNA accumulated at high levels in draining lymph nodes, consistent with an ability to transduce dendritic cells and activate their maturation and movement to lymph nodes. A d106 recombinant expressing Escherichia coli {beta}-galactosidase induced durable {beta}-gal-specific IgG and CD8{sup +} T cell responses in naive and HSV-immune mice. Finally, d106-based recombinants have been constructed that express simian immunodeficiency virus (SIV) gag, env, or a rev-tat-nef fusion protein for several days in cultured cells. Thus, d106 shows many of the properties desirable in a vaccine vector: limited expression of HSV gene products and cytopathogenicity, high level expression of transgenes, ability to induce durable immune responses, and an ability to transduce dendritic cells and induce their maturation and migration to lymph nodes.

  7. Recombinant AAV Vectors for Enhanced Expression of Authentic IgG

    PubMed Central

    Fuchs, Sebastian P.; Martinez-Navio, José M.; Gao, Guangping; Desrosiers, Ronald C.

    2016-01-01

    Adeno-associated virus (AAV) has become a vector of choice for the treatment of a variety of genetic diseases that require safe and long-term delivery of a missing protein. Muscle-directed gene transfer for delivery of protective antibodies against AIDS viruses and other pathogens has been used experimentally in mice and monkeys. Here we examined a number of variations to AAV vector design for the ability to produce authentic immunoglobulin G (IgG) molecules. Expression of rhesus IgG from a single single-stranded AAV (ssAAV) vector (one vector approach) was compared to expression from two self-complementary AAV (scAAV) vectors, one for heavy chain and one for light chain (two vector approach). Both the one vector and the two vector approaches yielded considerable levels of expressed full-length IgG. A number of modifications to the ssAAV expression system were then examined for their ability to increase the efficiency of IgG expression. Inclusion of a furin cleavage sequence with a linker peptide just upstream of the 2A self-cleaving sequence from foot-and-mouth disease virus (F2A) increased IgG expression approximately 2 fold. Inclusion of these sequences also helped to ensure a proper sequence at the C-terminal end of the heavy chain. Inclusion of the post-transcriptional regulatory element from woodchuck hepatitis virus (WPRE) further increased IgG expression 1.5–2.0 fold. IgG1 versions of the two rhesus IgGs that were examined consistently expressed better than the IgG2 forms. In contrast to what has been reported for AAV2-mediated expression of other proteins, introduction of capsid mutations Y445F and Y731F did not increase ssAAV1-mediated expression of IgG as determined by transduction experiments in cell culture. Our findings provide a rational basis for AAV vector design for expression of authentic IgG. PMID:27332822

  8. [Construction of IK6 recombinant lentiviral vector and its expression and biologic feature in THP1 cells].

    PubMed

    Zhang, Na; Liu, Ya-Nan; Xiao, Min; Ding, Xiao-Yi; Zhou, Jian-Feng; Li, Chun-Rui

    2014-08-01

    The purpose of this study was to construct a lentiviral vector carrying IK6 gene and to observe the expression of IK6 as well as related biologic feature in THP1 cells, so as to provide an effective method to further investigate the role of this gene in leukemia. The IK6 gene was obtained by using reverse transcription polymerase chain reaction (RT-PCR). Then IK6 was recombined with the pGC-FU vector to construct a recombinant lentiviral vector named pGC-FU-IK6 gene-GFP,which was confirmed by PCR and sequencing. The 293T cells were transfected with pGC-FU- IK6-GFP by using Lipofectamine 2000. After examining the titer of the virus, pGC-FU- IK6-GFP was used to transfect THP1 cells. The transfection efficiency was detected by flow cytometry, and the expression level of mRNA and IK6-GFP fusion protein were confirmed by RT-PCR and Western blot respectively. Then the impact of IK6 on apoptosis and cell cycle was analyzed. The results showed that the IK6 gene was obtained by RT-PCR and connected into the linearized lentiviral vector to successfully constructed target plasmid named pGC-FU-IK6-GFP with Amp resistant. The target plasmid was transfected into 293T cells and the virus titer was 2.0×10(9)TU/ml. Next, THP1 cells were transfected with pGC-FU-IK6-GFP and the efficiency was up to 90%. The detection of the IK6 mRNA and IK6-GFP fusion protein in target cells showed that IK6 could promote target cell clone formation and inhibit apoptosis, but had no significant effect on the cell cycle. It is concluded that virus vector carrying IK6 gene had been successfully constructed and expressed in THP1 stably. Biology studies of target THP1 cell shows that the IK6 is likely to interfere with the function of normal Ikaros protein as tumor suppressor, and it exerts a potential anti-apoptotic effect. Thus, IK6 can promote leukemia cell growth. However, there is no significant effect on the cell cycle. It provides an effective method for exploring the function of IK6 in acute

  9. Rapid, scalable, and low-cost purification of recombinant adeno-associated virus produced by baculovirus expression vector system

    PubMed Central

    Buclez, Pierre-Olivier; Dias Florencio, Gabriella; Relizani, Karima; Beley, Cyriaque; Garcia, Luis; Benchaouir, Rachid

    2016-01-01

    Recombinant adeno-associated viruses (rAAV) are largely used for gene transfer in research, preclinical developments, and clinical trials. Their broad in vivo biodistribution and long-term efficacy in postmitotic tissues make them good candidates for numerous gene transfer applications. Upstream processes able to produce large amounts of rAAV were developed, particularly those using baculovirus expression vector system. In parallel, downstream processes present a large panel of purification methods, often including multiple and time consuming steps. Here, we show that simple tangential flow filtration, coupled with an optimized iodixanol-based isopycnic density gradient, is sufficient to purify several liters of crude lysate produced by baculovirus expression vector system in only one working day, leading to high titers and good purity of rAAV products. Moreover, we show that the viral vectors retain their in vitro and in vivo functionalities. Our results demonstrate that simple, rapid, and relatively low-cost methods can easily be implemented for obtaining a high-quality grade of gene therapy products based on rAAV technology. PMID:27226971

  10. A novel Gateway®-compatible binary vector allows direct selection of recombinant clones in Agrobacterium tumefaciens

    PubMed Central

    2011-01-01

    Background Cloning genes into plasmid vectors is one of the key steps for studying gene function. Recently, Invitrogen™ developed a convenient Gateway® cloning system based on the site-specific DNA recombination properties of bacteriophage lambda and the cytotoxic protein ccdB, which is lethal to most E. coli strains. The ccdB protein, however, is not toxic to Agrobacterium tumefaciens, an important player often used for studying gene function in planta. This limits the direct application of the Gateway® cloning system in plant transformation-mediated research. Results In this study, we constructed a novel Gateway®-compatible destination vector, pEG101-SacB/R, by replacing the ccdB gene with a SacB-SacR gene cassette as the negative selectable marker. Conclusion Our results demonstrate that the new pEG101-SacB/R destination vector can be used for Gateway® cloning in Agrobacterium tumefaciens. pEG101-SacB/R will be a valuable tool for high-throughput functional analysis of genes in planta. PMID:22145613

  11. A novel expression vector, designated as pHisJM, for producing recombinant His-fusion proteins.

    PubMed

    Masuda, Junko; Takayama, Eiji; Satoh, Ayano; Kojima-Aikawa, Kyoko; Suzuki, Kimihiro; Matsumoto, Isamu

    2004-10-01

    Compared to glutathione S -transferase (GST), tagging with hexahistidine residues (His) has several merits: low levels of toxicity and immunogenicity, a smaller size and no electric charge. We have constructed a novel expression vector, designated as pHisJM (EMBL/GenBank/DDJB accession no. AB116367), for producing recombinant His-fusion proteins. This vector was constructed by replacing GST and multiple cloning site (MCS) cassettes in pGEX-5X-3 with those of hexahistidine and MCS derived from pRSET C vector. Human annexin IV (Anx IV) was used as target protein. His-Anx IV fusion protein was expressed using pHisJM and gave a 40 kDa band when immuno-stained with anti-His mAb or anti-Anx IV mAb as predicted. To compare expression efficiency, a Anx IV cDNA inserted-pHisJM or pGEX-5X-3 was transformed into Escherichia coli DH5alpha, JM109, BL21 and BL21(DE3). Using pHisJM, Anx IV protein was highly expressed in all cell strains. In addition to the merits of using His-tag, pHisJM has several advantages: 1) it has high expression efficiency; 2) it can be used in any Escherichia coli strain; and 3) it can be used in a single strain of Escherichia coli in all steps from plasmid construction to the expression of the target gene. PMID:15604794

  12. Improved expression of recombinant GFP using a replicating vector based on Beet curly top virus in leaf-disks and infiltrated Nicotiana benthamiana leaves.

    PubMed

    Kim, Kyung Il; Sunter, Garry; Bisaro, David M; Chung, In Sik

    2007-05-01

    Recombinant green fluorescent protein (GFP) with a molecular mass of 29 kDa was transiently expressed in Agrobacterium-inoculated leaf-disks prepared from Nicotiana benthamiana plants. Expression of GFP from the Cauliflower mosaic virus (CaMV) 35 S promoter within a replicating vector based on the geminivirus Beet curly top virus (BCTV) was more than 3 times higher than from a control, non-replicating vector. Use of the Cassava vein mosaic virus (CsVMV) promoter in the BCTV replicating vector increased the expression of recombinant GFP 320% at the transcript level, compared to use of the control CaMV 35 S promoter. Expression of recombinant GFP from Agrobacterium-inoculated leaf-disks of N. benthamiana was further enhanced up to 240% in the presence of post-transcriptional gene silencing suppressor p19. PMID:17294255

  13. Safety of recombinant VSV-Ebola virus vaccine vector in pigs.

    PubMed

    de Wit, Emmie; Marzi, Andrea; Bushmaker, Trenton; Brining, Doug; Scott, Dana; Richt, Juergen A; Geisbert, Thomas W; Feldmann, Heinz

    2015-04-01

    The ongoing Ebola outbreak in West Africa has resulted in fast-track development of vaccine candidates. We tested a vesicular stomatitis virus vector expressing Ebola virus glycoprotein for safety in pigs. Inoculation did not cause disease and vaccine virus shedding was minimal, which indicated that the vaccine virus does not pose a risk of dissemination in pigs. PMID:25811738

  14. Noninvasive Imaging Reveals Stable Transgene Expression in Mouse Airways After Delivery of a Nonintegrating Recombinant Adeno-Associated Viral Vector.

    PubMed

    Vidović, Dragana; Gijsbers, Rik; Jimenez, Ana Quiles; Dooley, James; Van den Haute, Chris; Van der Perren, Anke; Liston, Adrian; Baekelandt, Veerle; Debyser, Zeger; Carlon, Marianne Sylvia

    2016-01-01

    Gene therapy holds promise to cure a wide range of genetic and acquired diseases. Recent successes in recombinant adeno-associated viral vector (rAAV)-based gene therapy in the clinic for hereditary disorders such as Leber's congenital amaurosis and hemophilia B encouraged us to reexplore an rAAV approach for pulmonary gene transfer. Only limited clinical successes have been achieved for airway gene transfer so far, underscoring the need for further preclinical development of rAAV-based gene therapy for pulmonary disorders. We sought to determine the preclinical potential of an airway-tropic serotype, rAAV2/5, encoding reporter genes when delivered to mouse airways. Although several groups have assessed the stability of gene transfer using a nonintegrating rAAV in mouse airways, long-term stability for more than a year has not been reported. Additionally, an extensive quantitative analysis of the specific cell types targeted by rAAV2/5 using cell-specific markers is lacking. We obtained sustained gene expression in upper and lower airways up to 15 months after vector administration, a substantial proportion of the lifespan of a laboratory mouse. In addition, we demonstrated that readministration of rAAV2/5 to the airways is feasible and increases gene expression 14 months after primary vector administration, despite the presence of circulating neutralizing antibodies. Finally, identification of transduced cell types revealed different subpopulations being targeted by rAAV2/5, with 64% of β-galactosidase-positive cells being ciliated cells, 34% club cells in the conducting airways, and 75% alveolar type II cells in the alveoli at 1 month postinjection. This underscores the therapeutic potential of a nonintegrating rAAV vector to develop a gene therapeutic drug for a variety of pulmonary disorders, such as cystic fibrosis, primary ciliary dyskinesia, and surfactant deficiencies. PMID:26567984

  15. Development of anaerobically inducible nar promoter expression vectors for the expression of recombinant proteins in Escherichia coli.

    PubMed

    Kim, Nag-Jong; Choi, Jong Hyun; Kim, Yeon Chul; Lee, Jongwon; Lee, Sang Yup; Chang, Ho Nam; Lee, Pyung Cheon

    2011-01-10

    Dissolved oxygen (DO)-controlled nar promoter expression vectors were constructed, and their expression efficiency was compared with that of the T7 promoter pET22 expression vector by expressing human growth hormone (hGH), enhanced green fluorescence protein (EGFP), and β-tyrosinase in Escherichia coli cells. The nar promoter expression vector pRBS, which was engineered with a 5'-untranslated region and ribosomal binding site for the T7 promoter, expressed hGH at a rate of up to 32% of the total cellular proteins (TCP) in E. coli W3110narL⁻. The expression level of hGH was further enhanced, up to ~42% of the TCP, by adding the N-terminal peptide tag of β-galactosidase to hGH, which was comparable to the expression of ~43% of the TCP in pET-lac:hGH/BL21(DE3). A further engineered expression vector, pRBS(fnr), which coexpressed fumarate/nitrate reductase (fnr), expressed more EGFP than pET22 in BL21(DE3). In addition, recombinant β-tyrosinase was successfully expressed at a rate of up to ~45% of the TCP in pRBS(fnr) in W3110narL⁻. From these results, the DO-controlled nar promoter system developed in this study can be considered a reliable and cost-effective expression system for protein production, especially in large-scale fermentation, as an alternative to the pET/BL(DE3) system. PMID:21111764

  16. Interaction between hexon and L4-100K determines virus rescue and growth of hexon-chimeric recombinant Ad5 vectors

    PubMed Central

    Yan, Jingyi; Dong, Jianing; Wu, Jiaxin; Zhu, Rui; Wang, Zhen; Wang, Baoming; Wang, Lizheng; Wang, Zixuan; Zhang, Haihong; Wu, Hui; Yu, Bin; Kong, Wei; Yu, Xianghui

    2016-01-01

    The immunogenicity of recombinant adenovirus serotype 5 (rAd5) vectors has been shown to be suppressed by neutralizing antibodies (NAbs) directed primarily against hexon hypervariable regions (HVRs). Preexisting immunity can be circumvented by replacing HVRs of rAd5 hexon with those derived from alternate adenovirus serotypes. However, chimeric modification of rAd5 hexon HVRs tends to cause low packaging efficiency or low proliferation of rAd5 vectors, but the related mechanism remains unclear. In this study, several Ad5-based vectors with precise replacement of HVRs with those derived from Ad37 and Ad43 were generated. We first observed that a HVR-exchanged rAd5 vector displayed a higher efficacy of the recombinant virus rescue and growth improvement compared with the rAd5 vector, although most hexon-chimeric rAd5 vectors constructed by us and other groups have proven to be nonviable or growth defective. We therefore evaluated the structural stability of the chimeric hexons and their interactions with the L4-100K chaperone. We showed that the viability of hexon-chimeric Ad5 vectors was not attributed to the structural stability of the chimeric hexon, but rather to the hexon maturation which was assisted by L4-100K. Our results suggested that the intricate interaction between hexon and L4-100K would determine the virus rescue and proliferation efficiency of hexon-chimeric rAd5 vectors. PMID:26934960

  17. Three-year duration of immunity in dogs vaccinated with a canarypox-vectored recombinant canine distemper virus vaccine.

    PubMed

    Larson, L J; Schultz, R D

    2007-01-01

    Two studies evaluated the duration of serologic response to the recombinant, canarypox-vectored canine distemper virus vaccine (Recombitek, Merial). Serologic duration of immunity was shown to be at least 36 months. Thus, Recombitek provides protection when administered less frequently than the manufacturer's label. After the initial vaccination protocol of two or more doses administered approximately 4 weeks apart, with the last dose given at 12 to 16 weeks of age or older, and re-vaccination at 1 year of age, Recombitek can confidently be readministered every 3 years with assurance of protection in immunocompetent dogs. This allows the vaccine to be administered in accordance with the recommendations of the American Animal Hospital Association Canine Vaccine Task Force and others. PMID:17616944

  18. Characterization of Wild-Type Adeno-Associated Virus Type 2-Like Particles Generated during Recombinant Viral Vector Production and Strategies for Their Elimination

    PubMed Central

    Wang, Xu-Shan; Khuntirat, Benjawan; Qing, Keyun; Ponnazhagan, Selvarangan; Kube, Dagmar M.; Zhou, Shangzhen; Dwarki, Varavani J.; Srivastava, Arun

    1998-01-01

    The pSub201-pAAV/Ad plasmid cotransfection system was developed to eliminate homologous recombination which leads to generation of the wild-type (wt) adeno-associated virus type 2 (AAV) during recombinant vector production. The extent of contamination with wt AAV has been documented to range between 0.01 and 10%. However, the precise mechanism of generation of the contaminating wt AAV remains unclear. To characterize the wt AAV genomes, recombinant viral stocks were used to infect human 293 cells in the presence of adenovirus. Southern blot analyses of viral replicative DNA intermediates revealed that the contaminating AAV genomes were not authentic wt but rather wt AAV-like sequences derived from recombination between (i) AAV inverted terminal repeats (ITRs) in the recombinant plasmid and (ii) AAV sequences in the helper plasmid. Replicative AAV DNA fragments, isolated following amplification through four successive rounds of amplification in adenovirus-infected 293 cells, were molecularly cloned and subjected to nucleotide sequencing to identify the recombinant junctions. Following sequence analyses of 31 different ends of AAV-like genomes derived from two different recombinant vector stocks, we observed that all recombination events involved 10 nucleotides in the AAV D sequence distal to viral hairpin structures. We have recently documented that the first 10 nucleotides in the D sequence proximal to the AAV hairpin structures are essential for successful replication and encapsidation of the viral genome (X.-S. Wang et al., J. Virol. 71:3077–3082, 1997), and it was noteworthy that in each recombinant junction sequenced, the same 10 nucleotides were retained. We also observed that adenovirus ITRs in the helper plasmid were involved in illegitimate recombination with AAV ITRs, deletions of which significantly reduced the extent of wt AAV-like particles. Furthermore, the combined use of recombinant AAV plasmids lacking the distal 10 nucleotides in the D sequence

  19. The pURI family of expression vectors: a versatile set of ligation independent cloning plasmids for producing recombinant His-fusion proteins.

    PubMed

    Curiel, José Antonio; de Las Rivas, Blanca; Mancheño, José Miguel; Muñoz, Rosario

    2011-03-01

    A family of restriction enzyme- and ligation-independent cloning vectors has been developed for producing recombinant His-tagged fusion proteins in Escherichia coli. These are based on pURI2 and pURI3 expression vectors which have been previously used for the successful production of recombinant proteins at the milligram scale. The newly designed vectors combines two different promoters (lpp(p)-5 and T7 RNA polymerase Ø10), two different endoprotease recognition sites for the His₆-tag removal (enterokinase and tobacco etch virus), different antibiotic selectable markers (ampicillin and erythromycin resistance), and different placements of the His₆-tag (N- and C-terminus). A single gene can be cloned and further expressed in the eight pURI vectors by using six nucleotide primers, avoiding the restriction enzyme and ligation steps. A unique NotI site was introduced to facilitate the selection of the recombinant plasmid. As a case study, the new vectors have been used to clone the gene coding for the phenolic acid decarboxylase from Lactobacillus plantarum. Interestingly, the obtained results revealed markedly different production levels of the target protein, emphasizing the relevance of the cloning strategy on soluble protein production yield. Efficient purification and tag removal steps showed that the affinity tag and the protease cleavage sites functioned properly. The novel family of pURI vectors designed for parallel cloning is a useful and versatile tool for the production and purification of a protein of interest. PMID:21055470

  20. Stable Expression of Lentiviral Antigens by Quality-Controlled Recombinant Mycobacterium bovis BCG Vectors.

    PubMed

    Hart, Bryan E; Asrican, Rose; Lim, So-Yon; Sixsmith, Jaimie D; Lukose, Regy; Souther, Sommer J R; Rayasam, Swati D G; Saelens, Joseph W; Chen, Ching-Ju; Seay, Sarah A; Berney-Meyer, Linda; Magtanong, Leslie; Vermeul, Kim; Pajanirassa, Priyadharshini; Jimenez, Amanda E; Ng, Tony W; Tobin, David M; Porcelli, Steven A; Larsen, Michelle H; Schmitz, Joern E; Haynes, Barton F; Jacobs, William R; Lee, Sunhee; Frothingham, Richard

    2015-07-01

    The well-established safety profile of the tuberculosis vaccine strain, Mycobacterium bovis bacille Calmette-Guérin (BCG), makes it an attractive vehicle for heterologous expression of antigens from clinically relevant pathogens. However, successful generation of recombinant BCG strains possessing consistent insert expression has encountered challenges in stability. Here, we describe a method for the development of large recombinant BCG accession lots which stably express the lentiviral antigens, human immunodeficiency virus (HIV) gp120 and simian immunodeficiency virus (SIV) Gag, using selectable leucine auxotrophic complementation. Successful establishment of vaccine stability stems from stringent quality control criteria which not only screen for highly stable complemented BCG ΔleuCD transformants but also thoroughly characterize postproduction quality. These parameters include consistent production of correctly sized antigen, retention of sequence-pure plasmid DNA, freeze-thaw recovery, enumeration of CFU, and assessment of cellular aggregates. Importantly, these quality assurance procedures were indicative of overall vaccine stability, were predictive for successful antigen expression in subsequent passaging both in vitro and in vivo, and correlated with induction of immune responses in murine models. This study has yielded a quality-controlled BCG ΔleuCD vaccine expressing HIV gp120 that retained stable full-length expression after 10(24)-fold amplification in vitro and following 60 days of growth in mice. A second vaccine lot expressed full-length SIV Gag for >10(68)-fold amplification in vitro and induced potent antigen-specific T cell populations in vaccinated mice. Production of large, well-defined recombinant BCG ΔleuCD lots can allow confidence that vaccine materials for immunogenicity and protection studies are not negatively affected by instability or differences between freshly grown production batches. PMID:25924766

  1. Stable Expression of Lentiviral Antigens by Quality-Controlled Recombinant Mycobacterium bovis BCG Vectors

    PubMed Central

    Hart, Bryan E.; Asrican, Rose; Lim, So-Yon; Sixsmith, Jaimie D.; Lukose, Regy; Souther, Sommer J. R.; Rayasam, Swati D. G.; Saelens, Joseph W.; Chen, Ching-ju; Seay, Sarah A.; Berney-Meyer, Linda; Magtanong, Leslie; Vermeul, Kim; Pajanirassa, Priyadharshini; Jimenez, Amanda E.; Ng, Tony W.; Tobin, David M.; Porcelli, Steven A.; Larsen, Michelle H.; Schmitz, Joern E.; Haynes, Barton F.; Jacobs, William R.; Lee, Sunhee

    2015-01-01

    The well-established safety profile of the tuberculosis vaccine strain, Mycobacterium bovis bacille Calmette-Guérin (BCG), makes it an attractive vehicle for heterologous expression of antigens from clinically relevant pathogens. However, successful generation of recombinant BCG strains possessing consistent insert expression has encountered challenges in stability. Here, we describe a method for the development of large recombinant BCG accession lots which stably express the lentiviral antigens, human immunodeficiency virus (HIV) gp120 and simian immunodeficiency virus (SIV) Gag, using selectable leucine auxotrophic complementation. Successful establishment of vaccine stability stems from stringent quality control criteria which not only screen for highly stable complemented BCG ΔleuCD transformants but also thoroughly characterize postproduction quality. These parameters include consistent production of correctly sized antigen, retention of sequence-pure plasmid DNA, freeze-thaw recovery, enumeration of CFU, and assessment of cellular aggregates. Importantly, these quality assurance procedures were indicative of overall vaccine stability, were predictive for successful antigen expression in subsequent passaging both in vitro and in vivo, and correlated with induction of immune responses in murine models. This study has yielded a quality-controlled BCG ΔleuCD vaccine expressing HIV gp120 that retained stable full-length expression after 1024-fold amplification in vitro and following 60 days of growth in mice. A second vaccine lot expressed full-length SIV Gag for >1068-fold amplification in vitro and induced potent antigen-specific T cell populations in vaccinated mice. Production of large, well-defined recombinant BCG ΔleuCD lots can allow confidence that vaccine materials for immunogenicity and protection studies are not negatively affected by instability or differences between freshly grown production batches. PMID:25924766

  2. Recombinant adeno-associated virus vector: use for transgene expression and anterograde tract tracing in the CNS

    PubMed Central

    Chamberlin, Nancy L.; Du, Bin; de Lacalle, Sonsoles; Saper, Clifford B.

    2016-01-01

    We used a recombinant adeno-associated virus vector (AAV) to deliver a foreign gene, green fluorescent protein (GFP), into mature neurons in adult rat CNS in vivo. Microinjections of AAV as small as 50 nl transduced hundreds of neurons at the injection site. There was virtually no retrograde transport as fewer than one neuron per brain was found distant from the injection site that exhibited GFP immunoreactivity. The gene product, GFP, filled the entire neuronal cytoplasmic compartment; GFP immunoreactivity was robust in cell bodies, axons, and nerve terminals. There was no tissue damage at the injection sites or pathogenicity indicated by changes in astrocytic or microglial markers. There was no inflammatory response as judged by leukocytic invasion. Gene expression in transduced cells was robust and apparently permanent: there was no evidence of phenotypic reversion up to 12 weeks following infection. AAV is an excellent vector for introducing foreign genes into mature CNS neurons. Not only might it be an ideal vehicle for gene therapy, but also the GFP-containing AAV presents a new strategy for tracing long axonal pathways in the CNS, which is difficult with current tracers (PHAL, biotinylated dextrans). PMID:9630611

  3. Preferential Targeting of Disseminated Liver Tumors Using a Recombinant Adeno-Associated Viral Vector

    PubMed Central

    Della Peruta, Marco; Badar, Adam; Rosales, Cecilia; Chokshi, Shilpa; Kia, Azadeh; Nathwani, Devhrut; Galante, Eva; Yan, Ran; Arstad, Erik; Davidoff, Andrew M.; Williams, Roger; Lythgoe, Mark F.

    2015-01-01

    Abstract A novel selectively targeting gene delivery approach has been developed for advanced hepatocellular carcinoma (HCC), a leading cause of cancer mortality whose prognosis remains poor. We combine the strong liver tropism of serotype-8 capsid-pseudotyped adeno-associated viral vectors (AAV8) with a liver-specific promoter (HLP) and microRNA-122a (miR-122a)-mediated posttranscriptional regulation. Systemic administration of our AAV8 construct resulted in preferential transduction of the liver and encouragingly of HCC at heterotopic sites, a finding that could be exploited to target disseminated disease. Tumor selectivity was enhanced by inclusion of miR-122a-binding sequences (ssAAV8-HLP-TK-122aT4) in the expression cassette, resulting in abrogation of transgene expression in normal murine liver but not in HCC. Systemic administration of our tumor-selective vector encoding herpes simplex virus-thymidine kinase (TK) suicide gene resulted in a sevenfold reduction in HCC growth in a syngeneic murine model without toxicity. In summary, we have developed a systemically deliverable gene transfer approach that enables high-level expression of therapeutic genes in HCC but not normal tissues, thus improving the prospects of safe and effective treatment for advanced HCC. PMID:25569358

  4. Stability of vaccinia-vectored recombinant oral rabies vaccine under field conditions: A 3-year study

    PubMed Central

    Hermann, Joseph R.; Fry, Alethea M.; Siev, David; Slate, Dennis; Lewis, Charles; Gatewood, Donna M.

    2011-01-01

    Rabies is an incurable zoonotic disease caused by rabies virus, a member of the rhabdovirus family. It is transmitted through the bite of an infected animal. Control methods, including oral rabies vaccination (ORV) programs, have led to a reduction in the spread and prevalence of the disease in wildlife. This study evaluated the stability of RABORAL, a recombinant vaccinia virus vaccine that is used in oral rabies vaccination programs. The vaccine was studied in various field microenvironments in order to describe its viability and facilitate effective baiting strategies. Field microenvironments influenced the stability of this vaccine in this study. This study emphasizes the importance of understanding how vaccines perform under varying field conditions in order to plan effective baiting strategies. PMID:22468025

  5. Complete correction of hyperphenylalaninemia following liver-directed, recombinant AAV2/8 vector-mediated gene therapy in murine phenylketonuria

    PubMed Central

    Harding, CO; Gillingham, MB; Hamman, K; Clark, H; Goebel-Daghighi, E; Bird, A; Koeberl, DD

    2009-01-01

    Novel recombinant adeno-associated virus vectors pseudo-typed with serotype 8 capsid (rAAV2/8) have recently shown exciting promise as effective liver-directed gene transfer reagents. We have produced a novel liver-specific rAAV2/8 vector expressing the mouse phenylalanine hydroxylase (Pah) cDNA and have administered this vector to hyperphenylalaninemic PAH-deficient Pahenu2 mice, a model of human phenylketonuria (PKU). Our hypothesis was that this vector would produce sufficient hepatocyte transduction frequency and PAH activity to correct blood phenylalanine levels in murine PKU. Portal vein injection of recombinant AAV2/8 vector into five adult Pahenu2 mice yielded complete and stable (up to 17 weeks) correction of serum phenylalanine levels. Liver PAH activity was corrected to 11.5±2.4% of wild type liver activity and was associated with a significant increase in phenylalanine clearance following parenteral phenylalanine challenge. Although questions of long-term safety and stability of expression remain, recombinant AAV2/8-mediated, liver-directed gene therapy is a promising novel treatment approach for PKU and allied inborn errors of metabolism. PMID:16319949

  6. Complete correction of hyperphenylalaninemia following liver-directed, recombinant AAV2/8 vector-mediated gene therapy in murine phenylketonuria.

    PubMed

    Harding, C O; Gillingham, M B; Hamman, K; Clark, H; Goebel-Daghighi, E; Bird, A; Koeberl, D D

    2006-03-01

    Novel recombinant adeno-associated virus vectors pseudotyped with serotype 8 capsid (rAAV2/8) have recently shown exciting promise as effective liver-directed gene transfer reagents. We have produced a novel liver-specific rAAV2/8 vector expressing the mouse phenylalanine hydroxylase (Pah) cDNA and have administered this vector to hyperphenylalaninemic PAH-deficient Pah(enu2) mice, a model of human phenylketonuria (PKU). Our hypothesis was that this vector would produce sufficient hepatocyte transduction frequency and PAH activity to correct blood phenylalanine levels in murine PKU. Portal vein injection of recombinant AAV2/8 vector into five adult Pah(enu2) mice yielded complete and stable (up to 17 weeks) correction of serum phenylalanine levels. Liver PAH activity was corrected to 11.5+/-2.4% of wild type liver activity and was associated with a significant increase in phenylalanine clearance following parenteral phenylalanine challenge. Although questions of long-term safety and stability of expression remain, recombinant AAV2/8-mediated, liver-directed gene therapy is a promising novel treatment approach for PKU and allied inborn errors of metabolism. PMID:16319949

  7. Different levels of immunogenicity of two strains of Fowlpox virus as recombinant vaccine vectors eliciting T-cell responses in heterologous prime-boost vaccination strategies.

    PubMed

    Cottingham, Matthew G; van Maurik, Andre; Zago, Manola; Newton, Angela T; Anderson, Richard J; Howard, M Keith; Schneider, Jörg; Skinner, Michael A

    2006-07-01

    The FP9 strain of F has been described as a more immunogenic recombinant vaccine vector than the Webster FPV-M (FPW) strain (R. J. Anderson et al., J. Immunol. 172:3094-3100, 2004). This study expands the comparison to include two separate recombinant antigens and multiple, rather than single, independent viral clones derived from the two strains. Dual-poxvirus heterologous prime-boost vaccination regimens using individual clones of recombinant FP9 or FPW in combination with recombinant modified V Ankara expressing the same antigen were evaluated for their ability to elicit T-cell responses against recombinant antigens from Plasmodium berghei (circumsporozoite protein) or human immunodeficiency virus type 1 (a Gag-Pol-Nef fusion protein). Gamma interferon enzyme-linked immunospot assay and fluorescence-activated cell sorting assays of the responses to specific epitopes confirmed the approximately twofold-greater cellular immunogenicity of FP9 compared to FPW, when given as the priming or boosting immunization. Equality of transgene expression in mouse cells infected with the two strains in vitro was verified by Western blotting. Directed partial sequence analysis and PCR analysis of FPW and comparison to available whole-genome sequences revealed that many loci that are mutated in the highly attenuated and culture-adapted FP9 strain are wild type in FPW, including the seven multikilobase deletions. These "passage-specific" alterations are hypothesized to be involved in determining the immunogenicity of fowlpox virus as a recombinant vaccine vector. PMID:16829611

  8. Protection against henipavirus infection by use of recombinant adeno-associated virus-vector vaccines.

    PubMed

    Ploquin, Aurélie; Szécsi, Judit; Mathieu, Cyrille; Guillaume, Vanessa; Barateau, Véronique; Ong, Kien Chai; Wong, Kum Thong; Cosset, François-Loïc; Horvat, Branka; Salvetti, Anna

    2013-02-01

    Nipah virus (NiV) and Hendra virus (HeV) are closely related, recently emerged paramyxoviruses that are capable of causing considerable morbidity and mortality in several mammalian species, including humans. Henipavirus-specific vaccines are still commercially unavailable, and development of novel antiviral strategies to prevent lethal infections due to henipaviruses is highly desirable. Here we describe the development of adeno-associated virus (AAV) vaccines expressing the NiV G protein. Characterization of these vaccines in mice demonstrated that a single intramuscular AAV injection was sufficient to induce a potent and long-lasting antibody response. Translational studies in hamsters further demonstrated that all vaccinated animals were protected against lethal challenge with NiV. In addition, this vaccine induced a cross-protective immune response that was able to protect 50% of the animals against a challenge by HeV. This study presents a new efficient vaccination strategy against henipaviruses and opens novel perspectives on the use of AAV vectors as vaccines against emergent diseases. PMID:23175762

  9. In vivo analysis of fibroin heavy chain signal peptide of silkworm Bombyx mori using recombinant baculovirus as vector

    SciTech Connect

    Wang Shengpeng; Guo Tingqing; Guo Xiuyang; Huang Junting; Lu Changde . E-mail: cdlu@sibs.ac.cn

    2006-03-24

    In order to investigate the functional signal peptide of silkworm fibroin heavy chain (FibH) and the effect of N- and C-terminal parts of FibH on the secretion of FibH in vivo, N- and C-terminal segments of fibh gene were fused with enhanced green fluorescent protein (EGFP) gene. The fused gene was then introduced into silkworm larvae and expressed in silk gland using recombinant AcMNPV (Autographa californica multiple nuclear polyhedrosis virus) as vector. The fluorescence of EGFP was observed with fluorescence microscope. FibH-EGFP fusion proteins extracted from silk gland were analyzed by Western blot. Results showed that the two alpha helices within N-terminal 163 amino acid residues and the C-terminal 61 amino acid residues were not necessary for cleavage of signal peptide and secretion of the fusion protein into silk gland. Then the C-terminal 61 amino acid residues were substituted with a His-tag in the fusion protein to facilitate the purification. N-terminal sequencing of the purified protein showed that the signal cleavage site is between position 21 and 22 amino acid residues.

  10. Systemic Administration of a Recombinant AAV1 Vector Encoding IGF-1 Improves Disease Manifestations in SMA Mice

    PubMed Central

    Tsai, Li-Kai; Chen, Chien-Lin; Ting, Chen-Hung; Lin-Chao, Sue; Hwu, Wuh-Liang; Dodge, James C; Passini, Marco A; Cheng, Seng H

    2014-01-01

    Spinal muscular atrophy is a progressive motor neuron disease caused by a deficiency of survival motor neuron. In this study, we evaluated the efficacy of intravenous administration of a recombinant adeno-associated virus (AAV1) vector encoding human insulin-like growth factor-1 (IGF-1) in a severe mouse model of spinal muscular atrophy. Measurable quantities of human IGF-1 transcripts and protein were detected in the liver (up to 3 months postinjection) and in the serum indicating that IGF-1 was secreted from the liver into systemic circulation. Spinal muscular atrophy mice administered AAV1-IGF-1 on postnatal day 1 exhibited a lower extent of motor neuron degeneration, cardiac and muscle atrophy as well as a greater extent of innervation at the neuromuscular junctions compared to untreated controls at day 8 posttreatment. Importantly, treatment with AAV1-IGF-1 prolonged the animals' lifespan, increased their body weights and improved their motor coordination. Quantitative polymerase chain reaction and western blot analyses showed that AAV1-mediated expression of IGF-1 led to an increase in survival motor neuron transcript and protein levels in the spinal cord, brain, muscles, and heart. These data indicate that systemically delivered AAV1-IGF-1 can correct several of the biochemical and behavioral deficits in spinal muscular atrophy mice through increasing tissue levels of survival motor neuron. PMID:24814151

  11. Evolutionary genetics and vector adaptation of recombinant viruses of the western equine encephalitis antigenic complex provides new insights into alphavirus diversity and host switching

    PubMed Central

    Allison, Andrew B.; Stallknecht, David E.; Holmes, Edward C.

    2014-01-01

    Western equine encephalitis virus (WEEV), Highlands J virus (HJV), and Fort Morgan virus (FMV) are the sole representatives of the WEE antigenic complex of the genus Alphavirus, family Togaviridae, that are endemic to North America. All three viruses have their ancestry in a recombination event involving eastern equine encephalitis virus (EEEV) and a Sindbis (SIN)-like virus that gave rise to a chimeric alphavirus that subsequently diversified into the present-day WEEV, HJV, and FMV. Here, we present a comparative analysis of the genetic, ecological, and evolutionary relationships among these recombinant-origin viruses, including the description of a nsP4 polymerase mutation in FMV that allows it to circumvent the host range barrier to Asian tiger mosquito cells, a vector species that is normally refractory to infection. Notably, we also provide evidence that the recombination event that gave rise to these three WEEV antigenic complex viruses may have occurred in North America. PMID:25463613

  12. Functional analysis of N-linked glycosylation mutants of the measles virus fusion protein synthesized by recombinant vaccinia virus vectors.

    PubMed Central

    Alkhatib, G; Shen, S H; Briedis, D; Richardson, C; Massie, B; Weinberg, R; Smith, D; Taylor, J; Paoletti, E; Roder, J

    1994-01-01

    The role of N-linked glycosylation in the biological activity of the measles virus (MV) fusion (F) protein was analyzed by expressing glycosylation mutants with recombinant vaccinia virus vectors. There are three potential N-linked glycosylation sites located on the F2 subunit polypeptide of MV F, at asparagine residues 29, 61, and 67. Each of the three potential glycosylation sites was mutated separately as well as in combination with the other sites. Expression of mutant proteins in mammalian cells showed that all three sites are used for the addition of N-linked oligosaccharides. Cell surface expression of mutant proteins was reduced by 50% relative to the wild-type level when glycosylation at either Asn-29 or Asn-61 was abolished. Despite the similar levels of cell surface expression, the Asn-29 and Asn-61 mutant proteins had different biological activities. While the Asn-61 mutant was capable of inducing syncytium formation, the Asn-29 mutant protein did not exhibit any significant cell fusion activity. Inactivation of the Asn-67 glycosylation site also reduced cell surface transport of mutant protein but had little effect on its ability to cause cell fusion. However, when the Asn-67 mutation was combined with mutations at either of the other two sites, cleavage-dependent activation, cell surface expression, and cell fusion activity were completely abolished. Our data show that the loss of N-linked oligosaccharides markedly impaired the proteolytic cleavage, stability, and biological activity of the MV F protein. The oligosaccharide side chains in MV F are thus essential for optimum conformation of the extracellular F2 subunit that is presumed to bind cellular membranes. Images PMID:8107215

  13. Distribution of AAV8 particles in cell lysates and culture media changes with time and is dependent on the recombinant vector.

    PubMed

    Piras, Bryan A; Drury, Jason E; Morton, Christopher L; Spence, Yunyu; Lockey, Timothy D; Nathwani, Amit C; Davidoff, Andrew M; Meagher, Michael M

    2016-01-01

    With clinical trials ongoing, efficient clinical production of adeno-associated virus (AAV) to treat large numbers of patients remains a challenge. We compared distribution of AAV8 packaged with Factor VIII (FVIII) in cell culture media and lysates on days 3, 5, 6, and 7 post-transfection and found increasing viral production through day 6, with the proportion of viral particles in the media increasing from 76% at day 3 to 94% by day 7. Compared to FVIII, AAV8 packaged with Factor IX and Protective Protein/Cathepsin A vectors demonstrated a greater shift from lysate towards media from day 3 to 6, implying that particle distribution is dependent on recombinant vector. Larger-scale productions showed that the ratio of full-to-empty AAV particles is similar in media and lysate, and that AAV harvested on day 6 post-transfection provides equivalent function in mice compared to AAV harvested on day 3. This demonstrates that AAV8 production can be optimized by prolonging the duration of culture post-transfection, and simplified by allowing harvest of media only, with disposal of cells that contain 10% or less of total vector yield. Additionally, the difference in particle distribution with different expression cassettes implies a recombinant vector-dependent processing mechanism which should be taken into account during process development. PMID:27069949

  14. Distribution of AAV8 particles in cell lysates and culture media changes with time and is dependent on the recombinant vector

    PubMed Central

    Piras, Bryan A; Drury, Jason E; Morton, Christopher L; Spence, Yunyu; Lockey, Timothy D; Nathwani, Amit C; Davidoff, Andrew M; Meagher, Michael M

    2016-01-01

    With clinical trials ongoing, efficient clinical production of adeno-associated virus (AAV) to treat large numbers of patients remains a challenge. We compared distribution of AAV8 packaged with Factor VIII (FVIII) in cell culture media and lysates on days 3, 5, 6, and 7 post-transfection and found increasing viral production through day 6, with the proportion of viral particles in the media increasing from 76% at day 3 to 94% by day 7. Compared to FVIII, AAV8 packaged with Factor IX and Protective Protein/Cathepsin A vectors demonstrated a greater shift from lysate towards media from day 3 to 6, implying that particle distribution is dependent on recombinant vector. Larger-scale productions showed that the ratio of full-to-empty AAV particles is similar in media and lysate, and that AAV harvested on day 6 post-transfection provides equivalent function in mice compared to AAV harvested on day 3. This demonstrates that AAV8 production can be optimized by prolonging the duration of culture post-transfection, and simplified by allowing harvest of media only, with disposal of cells that contain 10% or less of total vector yield. Additionally, the difference in particle distribution with different expression cassettes implies a recombinant vector-dependent processing mechanism which should be taken into account during process development. PMID:27069949

  15. Heterologous prime-boost-boost immunisation of Chinese cynomolgus macaques using DNA and recombinant poxvirus vectors expressing HIV-1 virus-like particles

    PubMed Central

    2011-01-01

    Background There is renewed interest in the development of poxvirus vector-based HIV vaccines due to the protective effect observed with repeated recombinant canarypox priming with gp120 boosting in the recent Thai placebo-controlled trial. This study sought to investigate whether a heterologous prime-boost-boost vaccine regimen in Chinese cynomolgus macaques with a DNA vaccine and recombinant poxviral vectors expressing HIV virus-like particles bearing envelopes derived from the most prevalent clades circulating in sub-Saharan Africa, focused the antibody response to shared neutralising epitopes. Methods Three Chinese cynomolgus macaques were immunised via intramuscular injections using a regimen composed of a prime with two DNA vaccines expressing clade A Env/clade B Gag followed by boosting with recombinant fowlpox virus expressing HIV-1 clade D Gag, Env and cholera toxin B subunit followed by the final boost with recombinant modified vaccinia virus Ankara expressing HIV-1 clade C Env, Gag and human complement protein C3d. We measured the macaque serum antibody responses by ELISA, enumerated T cell responses by IFN-γ ELISpot and assessed seroneutralisation of HIV-1 using the TZM-bl β-galactosidase assay with primary isolates of HIV-1. Results This study shows that large and complex synthetic DNA sequences can be successfully cloned in a single step into two poxvirus vectors: MVA and FPV and the recombinant poxviruses could be grown to high titres. The vaccine candidates showed appropriate expression of recombinant proteins with the formation of authentic HIV virus-like particles seen on transmission electron microscopy. In addition the b12 epitope was shown to be held in common by the vaccine candidates using confocal immunofluorescent microscopy. The vaccine candidates were safely administered to Chinese cynomolgus macaques which elicited modest T cell responses at the end of the study but only one out of the three macaques elicited an HIV-specific antibody

  16. Construction of infectious cDNA clone derived from a classical swine fever virus field isolate in BAC vector using in vitro overlap extension PCR and recombination.

    PubMed

    Kamboj, Aman; Saini, Mohini; Rajan, Lekshmi S; Patel, Chhabi Lal; Chaturvedi, V K; Gupta, Praveen K

    2015-12-15

    To develop reverse genetics system of RNA viruses, cloning of full-length viral genome is required which is often challenging due to many steps involved. In this study, we report cloning of full-length cDNA from an Indian field isolate (CSFV/IVRI/VB-131) of classical swine fever virus (CSFV) using in vitro overlap extension PCR and recombination which drastically reduced the number of cloning steps. The genome of CSFV was amplified in six overlapping cDNA fragments, linked by overlap extension PCR and cloned in a bacterial artificial chromosome (BAC) vector using in vitro recombination method to generate full-length cDNA clone. The full-length CSFV cDNA clone was found stable in E. coli Stellar and DH10B cells. The full-length RNA was transcribed in vitro using T7 RNA polymerase and transfected in PK15 cells using Neon-tip electroporator to rescue infectious CSFV. The progeny CSFV was propagated in PK15 cells and found indistinguishable from the parent virus. The expression of CSFV proteins were detected in cytoplasm of PK15 cells infected with progeny CSFV at 72 h post-infection. We concluded that the in vitro overlap extension PCR and recombination method is useful to construct stable full-length cDNA clone of RNA virus in BAC vector. PMID:26478540

  17. Clinical Assessment of a Novel Recombinant Simian Adenovirus ChAdOx1 as a Vectored Vaccine Expressing Conserved Influenza A Antigens

    PubMed Central

    Antrobus, Richard D; Coughlan, Lynda; Berthoud, Tamara K; Dicks, Matthew D; Hill, Adrian VS; Lambe, Teresa; Gilbert, Sarah C

    2014-01-01

    Adenoviruses are potent vectors for inducing and boosting cellular immunity to encoded recombinant antigens. However, the widespread seroprevalence of neutralizing antibodies to common human adenovirus serotypes limits their use. Simian adenoviruses do not suffer from the same drawbacks. We have constructed a replication-deficient chimpanzee adenovirus-vectored vaccine expressing the conserved influenza antigens, nucleoprotein (NP), and matrix protein 1 (M1). Here, we report safety and T-cell immunogenicity following vaccination with this novel recombinant simian adenovirus, ChAdOx1 NP+M1, in a first in human dose-escalation study using a 3+3 study design, followed by boosting with modified vaccinia virus Ankara expressing the same antigens in some volunteers. We demonstrate ChAdOx1 NP+M1 to be safe and immunogenic. ChAdOx1 is a promising vaccine vector that could be used to deliver vaccine antigens where strong cellular immune responses are required for protection. PMID:24374965

  18. Clinical assessment of a novel recombinant simian adenovirus ChAdOx1 as a vectored vaccine expressing conserved Influenza A antigens.

    PubMed

    Antrobus, Richard D; Coughlan, Lynda; Berthoud, Tamara K; Dicks, Matthew D; Hill, Adrian Vs; Lambe, Teresa; Gilbert, Sarah C

    2014-03-01

    Adenoviruses are potent vectors for inducing and boosting cellular immunity to encoded recombinant antigens. However, the widespread seroprevalence of neutralizing antibodies to common human adenovirus serotypes limits their use. Simian adenoviruses do not suffer from the same drawbacks. We have constructed a replication-deficient chimpanzee adenovirus-vectored vaccine expressing the conserved influenza antigens, nucleoprotein (NP), and matrix protein 1 (M1). Here, we report safety and T-cell immunogenicity following vaccination with this novel recombinant simian adenovirus, ChAdOx1 NP+M1, in a first in human dose-escalation study using a 3+3 study design, followed by boosting with modified vaccinia virus Ankara expressing the same antigens in some volunteers. We demonstrate ChAdOx1 NP+M1 to be safe and immunogenic. ChAdOx1 is a promising vaccine vector that could be used to deliver vaccine antigens where strong cellular immune responses are required for protection. PMID:24374965

  19. Induction of a Protective Heterosubtypic Immune Response Against the Influenza Virus by using Recombinant Adenoviral Vectors Expressing Hemagglutinin of the Influenza H5 Virus.

    PubMed

    Shmarov, M M; Sedova, E S; Verkhovskaya, L V; Rudneva, I A; Bogacheva, E A; Barykova, Yu A; Shcherbinin, D N; Lysenko, A A; Tutykhina, I L; Logunov, D Y; Smirnov, Yu A; Naroditsky, B S; Gintsburg, A L

    2010-04-01

    Influenza viruses are characterized by a high degree of antigenic variability, which causes the annual emergence of flu epidemics and irregularly timed pandemics caused by viruses with new antigenic and biological traits. Novel approaches to vaccination can help circumvent this problem. One of these new methods incorporates genetic vaccines based on adenoviral vectors. Recombinant adenoviral vectors which contain hemagglutinin-encoding genes from avian H5N1 and H5N2 (Ad-HA5-1 and Ad-HA5-2) influenza viruses were obtained using the AdEasy Adenoviral Vector System (Stratagene). Laboratory mice received a double intranasal vaccination with Ad-HA5-1 and Ad-HA5-2. This study demonstrates that immunization with recombinant adenoviruses bearing the Н 5 influenza virus hemagglutinin gene induces a immune response which protects immunized mice from a lethal dose of the H5 influenza virus. Moreover, it also protects the host from a lethal dose of the H1 virus, which belongs to the same clade as H5, but does not confer protection from the subtype H3 influenza virus, which belongs to a different clade. PMID:22649637

  20. Safety and Biodistribution Evaluation in Cynomolgus Macaques of rAAV2tYF-CB-hRS1, a Recombinant Adeno-Associated Virus Vector Expressing Retinoschisin

    PubMed Central

    Ye, Guo-Jie; Budzynski, Ewa; Sonnentag, Peter; Miller, Paul E.; Sharma, Alok K.; Ver Hoeve, James N.; Howard, Kellie; Knop, David R.; Neuringer, Martha; McGill, Trevor; Stoddard, Jonathan; Chulay, Jeffrey D.

    2015-01-01

    Applied Genetic Technologies Corporation is developing rAAV2tYF-CB-hRS1, a recombinant adeno-associated virus (rAAV) vector for treatment of X-linked retinoschisis (XLRS), an inherited retinal disease characterized by splitting (schisis) of retinal layers causing poor vision. We report here results of a study evaluating the safety and biodistribution of rAAV2tYF-CB-hRS1 in normal cynomolgus macaques. Three groups of male animals (n = 6 per group) received an intravitreal injection in one eye of either vehicle, or rAAV2tYF-CB-hRS1 at one of two dose levels (4 × 1010 or 4 × 1011 vg/eye). Half the animals were sacrificed after 14 days and the others after 91 or 115 days. The intravitreal injection procedure was well tolerated in all groups. Serial ophthalmic examinations demonstrated a dose-related anterior and posterior segment inflammatory response that improved over time. There were no test article-related effects on intraocular pressure, electroretinography, visual evoked potential, hematology, coagulation, clinical chemistry, or gross necropsy observations. Histopathological examination demonstrated minimal or moderate mononuclear infiltrates in 6 of 12 vector-injected eyes. Immunohistochemical staining showed RS1 labeling of the ganglion cell layer at the foveal slope in vector-injected eyes at both dose levels. Serum anti-AAV antibodies were detected in 4 of 6 vector-injected animals at the day 15 sacrifice and all vector-injected animals at later time points. No animals developed antibodies to RS1. Biodistribution studies demonstrated high levels of vector DNA in the injected eye but minimal or no vector DNA in any other tissue. These results support the use of rAAV2tYF-CB-hRS1 in clinical studies in patients with XLRS. PMID:26390090

  1. Hexon-modified recombinant E1-deleted adenovirus vectors as dual specificity vaccine carriers for influenza virus.

    PubMed

    Zhou, Dongming; Wu, Te-Lang; Emmer, Kristel L; Kurupati, Raj; Tuyishime, Steven; Li, Yan; Giles-Davis, Wynetta; Zhou, Xiangyang; Xiang, Zhiquan; Liu, Qin; Ratcliffe, Sarah J; Ertl, Hildegund C J

    2013-03-01

    To determine if an ordered and repetitive display of an epitope promoted induction of superior antibody responses, we compared B-cell responses to an influenza A virus epitope that was either encoded as a transgene by an adenovirus (Ad) vector or expressed on the vector's surface. To this end, we constructed a panel of influenza A virus vaccines based on chimpanzee-derived replication-defective adenovirus (AdC) vectors of serotype SAd-V25 also called AdC68. AdC68 vectors were modified to express a linear B-cell epitope of the ectodomain of matrix 2 (M2e) within variable regions 1 (VR1) or 4 (VR4) of the adenovirus hexon. Additional vectors with wild-type or M2e-modified hexon encoded M2e fused to the influenza A virus nucleoprotein (NP) as a transgene product. Hexon-modified vectors were tested for immunogenicity and efficacy in mice in comparison to vectors with native hexon expressing the M2e-NP fusion protein. Upon priming, vectors expressing M2e within VR1 of hexon induced M2e-specific antibody responses of higher magnitude and avidity than those carrying M2e within VR4 or vectors expressing the M2e as part of a transgene product. CD8(+) T-cell responses to the transgenic NP were comparable between vectors. M2e-specific antibody responses could be boosted by a second dose of the VR1 hexon-modified vector but not by repeated immunization with the VR4 hexon-modified vector. PMID:23229092

  2. [Construction and transfection of eucaryotic expression recombinant vector containing truncated region of UL83 gene of human cytomegalovirus and it's sheltered effect as DNA vaccine].

    PubMed

    Gao, Rong-Bao; Li, Yan-Qiu; Wang, Ming-Li

    2006-06-01

    To construct eucaryotic expression recombinant vector containing vivo truncated region of UL83 gene of human cytomegalovirus, realize its steady expression in Hep-2 cell, and study sheltered effect of the eucaryotic expression recombinant vector as DNA vaccine. A vivo truncated UL83 gene fragment encoding for truncated HCMV pp65 was obtained by PCR from human cytomegalovirus AD169 stock genome. By gene recombinant ways, the truncated UL83 gene fragment was cloned into eucaryotic expression vector pEGFP-C1 with reported gene coding GFP to construct recombinant vector pEGFP-C1-UL83. The recombinant vector pEGFP-C1-UL83 was tested by different methods including PCR, restriction digestion and gene sequencing. Test results showed the recombinant vector was constructed successfully. After pEGFP-C1-UL83 was transfected into Hep-2 cell by lipofectin mediation, expression of GFP and truncated pp65 fusion protein in Hep-2 cell was observed at different time points by fluorescence microscope. Results showed that quantity of fusion protein expression was the highest at 36h point. Then, Hep-2 cell was cultured selectively by RPMI-1640 containing G418 (200 microg/mL) to obtain a new cell stock of expressing truncated UL83 Gene fragment steadily. RT-PCR and Western blot results showed the truncated fragment of UL83 gene could be expressed steadily in Hep-2 cell. The result showed a new cell stock of expressing Tpp65 was established. This cell stock could be useful in some HCMV research fields, for example, it could be a tool in study of pp65 and HCMV infection, and it could provide a platform for the research into the therapy of HCMV infection. Immune sheltered effect of pEGFP-C1-UL83 as DNA vaccine was studied in vivo of HCMV congenital infection mouse model. The mouse model was immunized solely by pEGFP-C1-UL83, and was immunized jointly by pEGFP-C1-UL83 and its expression product. When the mouse was pregnant and brought to bed, differential antibody of anti-HCMV pp65 was

  3. The successful induction of T-cell and antibody responses by a recombinant measles virus-vectored tetravalent dengue vaccine provides partial protection against dengue-2 infection.

    PubMed

    Hu, Hui-Mei; Chen, Hsin-Wei; Hsiao, Yu-Ju; Wu, Szu-Hsien; Chung, Han-Hsuan; Hsieh, Chun-Hsiang; Chong, Pele; Leng, Chih-Hsiang; Pan, Chien-Hsiung

    2016-07-01

    Dengue has a major impact on global public health, and the use of dengue vaccine is very limited. In this study, we evaluated the immunogenicity and protective efficacy of a dengue vaccine made from a recombinant measles virus (MV) that expresses envelope protein domain III (ED3) of dengue-1 to 4. Following immunization with the MV-vectored dengue vaccine, mice developed specific interferon-gamma and antibody responses against dengue virus and MV. Neutralizing antibodies against MV and dengue viruses were also induced, and protective levels of FRNT50 ≥ 10 to 4 serotypes of dengue viruses were detected in the MV-vectored dengue vaccine-immunized mice. In addition, specific interferon-gamma and antibody responses to dengue viruses were still induced by the MV-vectored dengue vaccine in mice that were pre-infected with MV. This finding suggests that the pre-existing immunity to MV did not block the initiation of immune responses. By contrast, mice that were pre-infected with dengue-3 exhibited no effect in terms of their antibody responses to MV and dengue viruses, but a dominant dengue-3-specific T-cell response was observed. After injection with dengue-2, a detectable but significantly lower viremia and a higher titer of anti-dengue-2 neutralizing antibodies were observed in MV-vectored dengue vaccine-immunized mice versus the vector control, suggesting that an anamnestic antibody response that provided partial protection against dengue-2 was elicited. Our results with regard to T-cell responses and the effect of pre-immunity to MV or dengue viruses provide clues for the future applications of an MV-vectored dengue vaccine. PMID:26901482

  4. Comparison of antibody response to a non-adjuvanted, live canarypox-vectored recombinant rabies vaccine and a killed, adjuvanted rabies vaccine in Eld's deer (Rucervus eldi thamin).

    PubMed

    Marrow, Judilee C; Padilla, Luis R; Hayek, Lee-Ann C; Bush, Mitch; Murray, Suzan

    2014-06-01

    Captive Eld's deer (Rucervus eldi thamin) were evaluated for the presence of rabies virus-neutralizing antibodies using a rapid fluorescent focus inhibition after vaccination with either a live canarypox-vectored recombinant rabies vaccine or a killed monovalent rabies vaccine. Twelve deer were vaccinated with 1.0 ml of killed, adjuvanted, monovalent rabies vaccine at 5-33 mo of age then annually thereafter, and 14 deer were vaccinated with 1.0 ml nonadjuvanted, live canarypox-vectored rabies vaccine at 3-15 mo of age then annually thereafter. Banked serum was available or collected prospectively from deer at 6 mo and 1 yr after initial vaccination, then collected annually. Rabies virus-neutralizing antibodies considered adequate (>0.5 IU/ml) were present in 20/34 samples vaccinated with canarypox-vectored rabies vaccine and in 12/14 samples vaccinated with killed adjuvanted rabies vaccine. Poor seroconversion was noted in deer less than 6 mo of age vaccinated with the canarypox-vectored rabies vaccine. PMID:25000692

  5. Oral Delivery of a Novel Recombinant Streptococcus mitis Vector Elicits Robust Vaccine Antigen-Specific Oral Mucosal and Systemic Antibody Responses and T Cell Tolerance

    PubMed Central

    Xie, Emily; Kotha, Abhiroop; Biaco, Tracy; Sedani, Nikita; Zou, Jonathan; Stashenko, Phillip; Duncan, Margaret J.; Campos-Neto, Antonio; Cayabyab, Mark J.

    2015-01-01

    The pioneer human oral commensal bacterium Streptococcus mitis has unique biologic features that make it an attractive mucosal vaccine or therapeutic delivery vector. S. mitis is safe as a natural persistent colonizer of the mouth, throat and nasopharynx and the oral commensal bacterium is capable of inducing mucosal antibody responses. A recombinant S. mitis (rS. mitis) that stably expresses HIV envelope protein was generated and tested in the germ-free mouse model to evaluate the potential usefulness of this vector as a mucosal vaccine against HIV. Oral vaccination led to the efficient and persistent bacterial colonization of the mouth and the induction of both salivary and systemic antibody responses. Interestingly, persistently colonized animals developed antigen-specific systemic T cell tolerance. Based on these findings we propose the use of rS. mitis vaccine vector for the induction of mucosal antibodies that will prevent the penetration of the mucosa by pathogens such as HIV. Moreover, the first demonstration of rS. mitis having the ability to elicit T cell tolerance suggest the potential use of rS. mitis as an immunotherapeutic vector to treat inflammatory, allergic and autoimmune diseases. PMID:26618634

  6. Daedalus: a robust, turnkey platform for rapid production of decigram quantities of active recombinant proteins in human cell lines using novel lentiviral vectors

    PubMed Central

    Bandaranayake, Ashok D.; Correnti, Colin; Ryu, Byoung Y.; Brault, Michelle; Strong, Roland K.; Rawlings, David J.

    2011-01-01

    A key challenge for the academic and biopharmaceutical communities is the rapid and scalable production of recombinant proteins for supporting downstream applications ranging from therapeutic trials to structural genomics efforts. Here, we describe a novel system for the production of recombinant mammalian proteins, including immune receptors, cytokines and antibodies, in a human cell line culture system, often requiring <3 weeks to achieve stable, high-level expression: Daedalus. The inclusion of minimized ubiquitous chromatin opening elements in the transduction vectors is key for preventing genomic silencing and maintaining the stability of decigram levels of expression. This system can bypass the tedious and time-consuming steps of conventional protein production methods by employing the secretion pathway of serum-free adapted human suspension cell lines, such as 293 Freestyle. Using optimized lentiviral vectors, yields of 20–100 mg/l of correctly folded and post-translationally modified, endotoxin-free protein of up to ~70 kDa in size, can be achieved in conventional, small-scale (100 ml) culture. At these yields, most proteins can be purified using a single size-exclusion chromatography step, immediately appropriate for use in structural, biophysical or therapeutic applications. PMID:21911364

  7. Immune response to recombinant adenovirus in humans: capsid components from viral input are targets for vector-specific cytotoxic T lymphocytes.

    PubMed

    Molinier-Frenkel, V; Gahery-Segard, H; Mehtali, M; Le Boulaire, C; Ribault, S; Boulanger, P; Tursz, T; Guillet, J G; Farace, F

    2000-08-01

    We previously demonstrated that a single injection of 10(9) PFU of recombinant adenovirus into patients induces strong vector-specific immune responses (H. Gahéry-Ségard, V. Molinier-Frenkel, C. Le Boulaire, P. Saulnier, P. Opolon, R. Lengagne, E. Gautier, A. Le Cesne, L. Zitvogel, A. Venet, C. Schatz, M. Courtney, T. Le Chevalier, T. Tursz, J.-G. Guillet, and F. Farace, J. Clin. Investig. 100:2218-2226, 1997). In the present study we analyzed the mechanism of vector recognition by cytotoxic T lymphocytes (CTL). CD8(+) CTL lines were derived from two patients and maintained in long-term cultures. Target cell infections with E1-deleted and E1-plus E2-deleted adenoviruses, as well as transcription-blocking experiments with actinomycin D, revealed that host T-cell recognition did not require viral gene transcription. Target cells treated with brefeldin A were not lysed, indicating that viral input protein-derived peptides are associated with HLA class I molecules. Using recombinant capsid component-loaded targets, we observed that the three major proteins could be recognized. These results raise the question of the use of multideleted adenoviruses for gene therapy in the quest to diminish antivector CTL responses. PMID:10906225

  8. Immune Response to Recombinant Adenovirus in Humans: Capsid Components from Viral Input Are Targets for Vector-Specific Cytotoxic T Lymphocytes

    PubMed Central

    Molinier-Frenkel, Valérie; Gahery-Segard, Hanne; Mehtali, Majid; Le Boulaire, Christophe; Ribault, Sébastien; Boulanger, Pierre; Tursz, Thomas; Guillet, Jean-Gérard; Farace, Françoise

    2000-01-01

    We previously demonstrated that a single injection of 109 PFU of recombinant adenovirus into patients induces strong vector-specific immune responses (H. Gahéry-Ségard, V. Molinier-Frenkel, C. Le Boulaire, P. Saulnier, P. Opolon, R. Lengagne, E. Gautier, A. Le Cesne, L. Zitvogel, A. Venet, C. Schatz, M. Courtney, T. Le Chevalier, T. Tursz, J.-G. Guillet, and F. Farace, J. Clin. Investig. 100:2218–2226, 1997). In the present study we analyzed the mechanism of vector recognition by cytotoxic T lymphocytes (CTL). CD8+ CTL lines were derived from two patients and maintained in long-term cultures. Target cell infections with E1-deleted and E1-plus E2-deleted adenoviruses, as well as transcription-blocking experiments with actinomycin D, revealed that host T-cell recognition did not require viral gene transcription. Target cells treated with brefeldin A were not lysed, indicating that viral input protein-derived peptides are associated with HLA class I molecules. Using recombinant capsid component-loaded targets, we observed that the three major proteins could be recognized. These results raise the question of the use of multideleted adenoviruses for gene therapy in the quest to diminish antivector CTL responses. PMID:10906225

  9. Heterologous Prime-Boost Regimens with a Recombinant Chimpanzee Adenoviral Vector and Adjuvanted F4 Protein Elicit Polyfunctional HIV-1-Specific T-Cell Responses in Macaques

    PubMed Central

    Lorin, Clarisse; Vanloubbeeck, Yannick; Baudart, Sébastien; Ska, Michaël; Bayat, Babak; Brauers, Geoffroy; Clarinval, Géraldine; Donner, Marie-Noëlle; Marchand, Martine; Koutsoukos, Marguerite; Mettens, Pascal; Cohen, Joe; Voss, Gerald

    2015-01-01

    HIV-1-specific CD4+ and CD8+ T lymphocytes are important for HIV-1 replication control. F4/AS01 consists of F4 recombinant fusion protein (containing clade B Gag/p24, Pol/RT, Nef and Gag/p17) formulated in AS01 Adjuvant System, and was shown to induce F4-specific polyfunctional CD4+ T-cell responses in humans. While replication-incompetent recombinant HIV-1/SIV antigen-expressing human adenoviral vectors can elicit high-frequency antigen-specific CD8+ T-cell responses, their use is hampered by widespread pre-existing immunity to human serotypes. Non-human adenovirus serotypes associated with lower prevalence may offer an alternative strategy. We evaluated the immunogenicity of AdC7-GRN (‘A’), a recombinant chimpanzee adenovirus type 7 vector expressing clade B Gag, RT and Nef, and F4/AS01 (‘P’), when delivered intramuscularly in homologous (PP or AA) and heterologous (AAPP or PPAA) prime-boost regimens, in macaques and mice. Vaccine-induced HIV-1-antigen-specific T cells in peripheral blood (macaques), liver, spleen, and intestinal and genital mucosa (mice) were characterized by intracellular cytokine staining. Vaccine-specific IgG antibodies (macaques) were detected using ELISA. In macaques, only the heterologous prime-boost regimens induced polyfunctional, persistent and balanced CD4+ and CD8+ T-cell responses specific to each HIV-1 vaccine antigen. AdC7-GRN priming increased the polyfunctionality of F4/AS01-induced CD4+ T cells. Approximately 50% of AdC7-GRN-induced memory CD8+ T cells exhibited an effector-memory phenotype. HIV-1-specific antibodies were detected with each regimen. In mice, antigen-specific CD4+ and CD8+ T-cell responses were detected in the mucosal and systemic anatomical compartments assessed. When administered in heterologous prime-boost regimens, AdC7-GRN and F4/AS01 candidate vaccines acted complementarily in inducing potent and persistent peripheral blood HIV-1-specific CD4+ and CD8+ T-cell responses and antibodies in macaques

  10. Comparative immunogenicity of recombinant adenovirus-vectored vaccines expressing different forms of hemagglutinin (HA) proteins from the H5 serotype of influenza A viruses in mice.

    PubMed

    Hu, Xiangjing; Meng, Weixu; Dong, Zhenyuan; Pan, Weiqi; Sun, Caijun; Chen, Ling

    2011-01-01

    Recent outbreaks of highly pathogenic avian influenza (HPAI) H5N1 viruses in poultry and their subsequent transmission to humans have highlighted an urgent need to develop preventive vaccines in the event of a pandemic. In this paper we constructed recombinant adenovirus (rAd)-vectored influenza vaccines expressing different forms of H5 hemagglutinin (HA) from the A/Vietnam/1194/04 (VN/1194/04) virus, a wild-type HA, a sequence codon-optimized HA and a transmembrane (TM) domain-truncated HA. Compared to the rAd vectors expressing the wild-type HA (rAd-04wtHA) and the TM-truncated form of HA (rAd-04optHA-dTM), the rAd vectored vaccine with the sequence codon-optimized HA (rAd-04optHA) showed a tendency to induce much higher hemagglutinin inhibition (HI) antibody titers in mice immunized with a prime-boost vaccine. Furthermore, administration of the rAd-04optHA vaccine to mice could elicit cross-reactive immune responses against the antigenically distinct HK/482/97 virus. Additionally, we constructed another vector containing the codon-optimized HA of the A/Hong Kong/482/97 (HK/482/97) virus. Administration of a bivalent immunization formulation including the rAd-04optHA and rAd-97optHA vaccines to mice induced a stronger immune response against HK/482/97 virus than the monovalent formulation. Taken together, these findings may have some implications for the development of rAd-vectored vaccines in the event of the pandemic spread of HPAI. PMID:20883733

  11. Novel recombinant binary vectors harbouring Basta (bar) gene as a plant selectable marker for genetic transformation of plants.

    PubMed

    Nada, Reham M

    2016-04-01

    Genetic transformation is one of the most widely used technique in crop improvement. However, most of the binary vectors used in this technique, especially cloning based, contain antibiotic genes as selection marker that raise serious consumer and environmental concerns; moreover, they could be transferred to non-target hosts with deleterious effects. Therefore, the goal of this study was reconstruction of the widely used pBI121 binary vector by substituting the harmful antibiotic selection marker gene with a less-harmful selection marker, Basta (herbicide resistance gene). The generated vectors were designated as pBI121NB and pBI121CB, in which Basta gene was expressed under the control of Nos or CaMV 35S promoter, respectively. The successful integration of the new inserts into both the vectors was confirmed by PCR, restriction digestion and sequencing. Both these vectors were used in transforming Arabidopsis, Egyptian wheat and barley varieties using LBA4404 and GV3101 Agrobacterium strains. The surfactant Tween-20 resulted in an efficient transformation and the number of Arabidopsis transformants was about 6-9 %. Soaked seeds of wheat and barley were transformed with Agrobacterium to introduce the bacteria to the growing shoot apices. The percentage of transgenic lines was around 16-17 and 14-15 % for wheat and barley, respectively. The quantitative studies presented in this work showed that both LBA4404 and GV3101 strains were suitable for transforming Egyptian wheat and barley. PMID:27436915

  12. Comparative Analysis of Cesium Chloride- and Iodixanol-Based Purification of Recombinant Adeno-Associated Viral Vectors for Preclinical Applications.

    PubMed

    Strobel, Benjamin; Miller, Felix D; Rist, Wolfgang; Lamla, Thorsten

    2015-08-01

    Cesium chloride (CsCl)- and iodixanol-based density gradients represent the core step in most protocols for serotype-independent adeno-associated virus (AAV) purification established to date. However, despite controversial reports about the purity and bioactivity of AAV vectors derived from each of these protocols, systematic comparisons of state-of-the-art variants of these methods are sparse. To define exact conditions for such a comparison, we first fractionated both gradients to analyze the distribution of intact, bioactive AAVs and contaminants, respectively. Moreover, we tested four different polishing methods (ultrafiltration, size-exclusion chromatography, hollow-fiber tangential flow filtration, and polyethylene glycol precipitation) implemented after the iodixanol gradient for their ability to deplete iodixanol and protein contaminations. Last, we conducted a side-by-side comparison of the CsCl and iodixanol/ultrafiltration protocol. Our results demonstrate that iodixanol-purified AAV preparations show higher vector purity but harbor more (∼20%) empty particles as compared with CsCl-purified vectors (<1%). Using mass spectrometry, we analyzed prominent protein impurities in the AAV vector product, thereby identifying known and new, possibly AAV-interacting proteins as major contaminants. Thus, our study not only provides a helpful guide for the many laboratories entering the AAV field, but also builds a basis for further investigation of cellular processes involved in AAV vector assembly and trafficking. PMID:26222983

  13. Comparative Analysis of Cesium Chloride- and Iodixanol-Based Purification of Recombinant Adeno-Associated Viral Vectors for Preclinical Applications

    PubMed Central

    Strobel, Benjamin; Miller, Felix D.; Rist, Wolfgang; Lamla, Thorsten

    2015-01-01

    Cesium chloride (CsCl)- and iodixanol-based density gradients represent the core step in most protocols for serotype-independent adeno-associated virus (AAV) purification established to date. However, despite controversial reports about the purity and bioactivity of AAV vectors derived from each of these protocols, systematic comparisons of state-of-the-art variants of these methods are sparse. To define exact conditions for such a comparison, we first fractionated both gradients to analyze the distribution of intact, bioactive AAVs and contaminants, respectively. Moreover, we tested four different polishing methods (ultrafiltration, size-exclusion chromatography, hollow-fiber tangential flow filtration, and polyethylene glycol precipitation) implemented after the iodixanol gradient for their ability to deplete iodixanol and protein contaminations. Last, we conducted a side-by-side comparison of the CsCl and iodixanol/ultrafiltration protocol. Our results demonstrate that iodixanol-purified AAV preparations show higher vector purity but harbor more (∼20%) empty particles as compared with CsCl-purified vectors (<1%). Using mass spectrometry, we analyzed prominent protein impurities in the AAV vector product, thereby identifying known and new, possibly AAV-interacting proteins as major contaminants. Thus, our study not only provides a helpful guide for the many laboratories entering the AAV field, but also builds a basis for further investigation of cellular processes involved in AAV vector assembly and trafficking. PMID:26222983

  14. Pre-Clinical Development of a Recombinant, Replication-Competent Adenovirus Serotype 4 Vector Vaccine Expressing HIV-1 Envelope 1086 Clade C

    PubMed Central

    Alexander, Jeff; Mendy, Jason; Vang, Lo; Avanzini, Jenny B.; Garduno, Fermin; Manayani, Darly J.; Ishioka, Glenn; Farness, Peggy; Ping, Li-Hua; Swanstrom, Ronald; Parks, Robert; Liao, Hua-Xin; Haynes, Barton F.; Montefiori, David C.; LaBranche, Celia; Smith, Jonathan; Gurwith, Marc; Mayall, Tim

    2013-01-01

    Background There is a well-acknowledged need for an effective AIDS vaccine that protects against HIV-1 infection or limits in vivo viral replication. The objective of these studies is to develop a replication-competent, vaccine vector based on the adenovirus serotype 4 (Ad4) virus expressing HIV-1 envelope (Env) 1086 clade C glycoprotein. Ad4 recombinant vectors expressing Env gp160 (Ad4Env160), Env gp140 (Ad4Env140), and Env gp120 (Ad4Env120) were evaluated. Methods The recombinant Ad4 vectors were generated with a full deletion of the E3 region of Ad4 to accommodate the env gene sequences. The vaccine candidates were assessed in vitro following infection of A549 cells for Env-specific protein expression and for posttranslational transport to the cell surface as monitored by the binding of broadly neutralizing antibodies (bNAbs). The capacity of the Ad4Env vaccines to induce humoral immunity was evaluated in rabbits for Env gp140 and V1V2-specific binding antibodies, and HIV-1 pseudovirus neutralization. Mice immunized with the Ad4Env160 vaccine were assessed for IFNγ T cell responses specific for overlapping Env peptide sets. Results Robust Env protein expression was confirmed by western blot analysis and recognition of cell surface Env gp160 by multiple bNAbs. Ad4Env vaccines induced humoral immune responses in rabbits that recognized Env 1086 gp140 and V1V2 polypeptide sequences derived from 1086 clade C, A244 clade AE, and gp70 V1V2 CASE A2 clade B fusion protein. The immune sera efficiently neutralized tier 1 clade C pseudovirus MW965.26 and neutralized the homologous and heterologous tier 2 pseudoviruses to a lesser extent. Env-specific T cell responses were also induced in mice following Ad4Env160 vector immunization. Conclusions The Ad4Env vaccine vectors express high levels of Env glycoprotein and induce both Env-specific humoral and cellular immunity thus supporting further development of this new Ad4 HIV-1 Env vaccine platform in Phase 1 clinical

  15. Preclinical safety evaluation of recombinant adeno-associated virus 2 vector encoding human tumor necrosis factor receptor-immunoglobulin Fc fusion gene.

    PubMed

    Zhou, Xiaobing; Shen, Lianzhong; Liu, Li; Wang, Chao; Qi, Weihong; Zhao, Aizhi; Wu, Xiaobing; Li, Bo

    2016-03-01

    Recombinant adeno-associated virus (rAAV) 2 vector gene therapy offers promise for the healing of Rheumatoid arthritis. To support the clinical development of the candidate gene therapeutic product in China, a comprehensive preclinical safety assessment of rAAV2 encoding human TNF receptor-immunoglobulin Fc fusion gene (rAAV2/human TNFR:Fc), were conducted in 3 species of experimental animals. No abnormal findings were observed in mice following single intravenous administration with test article. Compared with the control group, no differences in mean body weight, food consumption in rats and monkeys following the repeated intraarticular administration with rAAV2/human TNFR:Fc. There were also no significant adverse effects due to treatment noted by clinical chemistry, hematology and pathology assessments. After intraarticular administration with rAAV2/human TNFR:Fc, the vector DNA initially distributed to spleen, lymph nodes, and joint synovium. The vector DNA cleared rapidly as it could be detected mainly at the site of injection by 91 d post-administration (182 d for monkey). Taken together, localized delivery of rAAV2/human TNFR:Fc showed no significant toxicity in mice, rats, and monkeys, which support the planned clinical evaluation of this product. PMID:26837862

  16. Evaluation of the immune response to Anaplasma marginale MSP5 protein using a HSV-1 amplicon vector system or recombinant protein.

    PubMed

    Palacios, Carlos; Torioni de Echaide, Susana; Mattion, Nora

    2014-12-01

    Anaplasma marginale is an intraerythrocytic vector-borne infectious agent of cattle. Immunization with the current vaccine, based on parasitized erythrocytes with live Anaplasma centrale, shows some constraints and confers partial protection, suggesting the feasibility for the development of new generation of vaccines. The aim of the present study was to assess the effect of sequential immunization of BALB/c mice, with herpesvirus amplicon vector-based vaccines combined with protein-based vaccines, on the quality of the immune response against the major surface protein 5 of A. marginale. The highest antibody titers against MSP5 were elicited in mice that received two doses of adjuvanted recombinant protein (p < 0.0001). Mice treated with a heterologous prime-boost strategy generated sustained antibody titers at least up to 200 days, and a higher specific cellular response. The results presented here showed that sequential immunization with HSV-based vectors and purified antigen enhances the quality of the immune response against A. marginale. PMID:25458492

  17. Protection induced by commercially available live-attenuated and recombinant viral vector vaccines against infectious laryngotracheitis virus in broiler chickens.

    PubMed

    Vagnozzi, Ariel; Zavala, Guillermo; Riblet, Sylva M; Mundt, Alice; García, Maricarmen

    2012-01-01

    Viral vector vaccines using fowl poxvirus (FPV) and herpesvirus of turkey (HVT) as vectors and carrying infectious laryngotracheitis virus (ILTV) genes are commercially available to the poultry industry in the USA. Different sectors of the broiler industry have used these vaccines in ovo or subcutaneously, achieving variable results. The objective of the present study was to determine the efficacy of protection induced by viral vector vaccines as compared with live-attenuated ILTV vaccines. The HVT-LT vaccine was more effective than the FPV-LT vaccine in mitigating the disease and reducing levels of challenge virus when applied in ovo or subcutaneously, particularly when the challenge was performed at 57 days rather than 35 days of age. While the FPV-LT vaccine mitigated clinical signs more effectively when administered subcutaneously than in ovo, it did not reduce the concentration of challenge virus in the trachea by either application route. Detection of antibodies against ILTV glycoproteins expressed by the viral vectors was a useful criterion to assess the immunogenicity of the vectors. The presence of glycoprotein I antibodies detected pre-challenge and post challenge in chickens vaccinated with HVT-LT indicated that the vaccine induced a robust antibody response, which was paralleled by significant reduction of clinical signs. The chicken embryo origin vaccine provided optimal protection by significantly mitigating the disease and reducing the challenge virus in chickens vaccinated via eye drop. The viral vector vaccines, applied in ovo and subcutaneously, provided partial protection, reducing to some degree clinical signs, and challenge VIRUS replication in the trachea. PMID:22845318

  18. Safety and Immunogenicity of a Recombinant Adenovirus Serotype 35-Vectored HIV-1 Vaccine in Adenovirus Serotype 5 Seronegative and Seropositive Individuals

    PubMed Central

    Fuchs, Jonathan D; Bart, Pierre-Alexandre; Frahm, Nicole; Morgan, Cecilia; Gilbert, Peter B; Kochar, Nidhi; DeRosa, Stephen C; Tomaras, Georgia D; Wagner, Theresa M; Baden, Lindsey R; Koblin, Beryl A; Rouphael, Nadine G; Kalams, Spyros A; Keefer, Michael C; Goepfert, Paul A; Sobieszczyk, Magdalena E; Mayer, Kenneth H; Swann, Edith; Liao, Hua-Xin; Haynes, Barton F; Graham, Barney S; McElrath, M Juliana

    2015-01-01

    Background Recombinant adenovirus serotype 5 (rAd5)-vectored HIV-1 vaccines have not prevented HIV-1 infection or disease and pre-existing Ad5 neutralizing antibodies may limit the clinical utility of Ad5 vectors globally. Using a rare Ad serotype vector, such as Ad35, may circumvent these issues, but there are few data on the safety and immunogenicity of rAd35 directly compared to rAd5 following human vaccination. Methods HVTN 077 randomized 192 healthy, HIV-uninfected participants into one of four HIV-1 vaccine/placebo groups: rAd35/rAd5, DNA/rAd5, and DNA/rAd35 in Ad5-seronegative persons; and DNA/rAd35 in Ad5-seropositive persons. All vaccines encoded the HIV-1 EnvA antigen. Antibody and T-cell responses were measured 4 weeks post boost immunization. Results All vaccines were generally well tolerated and similarly immunogenic. As compared to rAd5, rAd35 was equally potent in boosting HIV-1-specific humoral and cellular immunity and responses were not significantly attenuated in those with baseline Ad5 seropositivity. Like DNA, rAd35 efficiently primed rAd5 boosting. All vaccine regimens tested elicited cross-clade antibody responses, including Env V1/V2-specific IgG responses. Conclusions Vaccine antigen delivery by rAd35 is well-tolerated and immunogenic as a prime to rAd5 immunization and as a boost to prior DNA immunization with the homologous insert. Further development of rAd35-vectored prime-boost vaccine regimens is warranted. PMID:26587311

  19. Cationic Liposomes Enhance the Rate of Transduction by a Recombinant Retroviral Vector In Vitro and In Vivo

    PubMed Central

    Porter, Colin D.; Lukacs, Katalin V.; Box, Gary; Takeuchi, Yasuhiro; Collins, Mary K. L.

    1998-01-01

    Cationic liposomes enhanced the rate of transduction of target cells with retroviral vectors. The greatest effect was seen with the formulation DC-Chol/DOPE, which gave a 20-fold increase in initial transduction rate. This allowed an efficiency of transduction after brief exposure of target cells to virus plus liposome that could be achieved only after extensive exposure to virus alone. Enhancement with DC-Chol/DOPE was optimal when stable virion-liposome complexes were preformed. The transduction rate for complexed virus, as for virus used alone or with the polycation Polybrene, showed first-order dependence on virus concentration. Cationic liposomes, but not Polybrene, were able to mediate envelope-independent transduction, but optimal efficiency required envelope-receptor interaction. When virus complexed with DC-Chol/DOPE was used to transduce human mesothelioma xenografts, transduction was enhanced four- to fivefold compared to that for virus alone. Since the efficacy of gene therapy is dependent on the number of cells modified, which is in turn dependent upon the balance between transduction and biological clearance of the vector, the ability of cationic liposomes to form stable complexes with retroviral vectors and enhance their rate of infection is likely to be important for in vivo application. PMID:9573249

  20. A pilot study comparing the development of EIAV Env-specific antibodies induced by DNA/recombinant vaccinia-vectored vaccines and an attenuated Chinese EIAV vaccine.

    PubMed

    Meng, Qinglai; Lin, Yuezhi; Ma, Jian; Ma, Yan; Zhao, Liping; Li, Shenwei; Yang, Kai; Zhou, Jianhua; Shen, Rongxian; Zhang, Xiaoyan; Shao, Yiming

    2012-12-01

    Data from successful attenuated lentiviral vaccine studies indicate that fully mature Env-specific antibodies characterized by high titer, high avidity, and the predominant recognition of conformational epitopes are associated with protective efficacy. Although vaccination with a DNA prime/recombinant vaccinia-vectored vaccine boost strategy has been found to be effective in some trials with non-human primate/simian/human immunodeficiency virus (SHIV) models, it remains unclear whether this vaccination strategy could elicit mature equine infectious anemia virus (EIAV) Env-specific antibodies, thus protecting vaccinated horses against EIAV infection. Therefore, in this pilot study we vaccinated horses using a strategy based on DNA prime/recombinant Tiantan vaccinia (rTTV)-vectored vaccines encoding EIAV env and gag genes, and observed the development of Env-specific antibodies, neutralizing antibodies, and p26-specific antibodies. Vaccination with DNA induced low titer, low avidity, and the predominant recognition of linear epitopes by Env-specific antibodies, which was enhanced by boosting vaccinations with rTTV vaccines. However, the maturation levels of Env-specific antibodies induced by the DNA/rTTV vaccines were significantly lower than those induced by the attenuated vaccine EIAV(FDDV). Additionally, DNA/rTTV vaccines did not elicit broadly neutralizing antibodies. After challenge with a virulent EIAV strain, all of the vaccinees and control horses died from EIAV disease. These data indicate that the regimen of DNA prime/rTTV vaccine boost did not induce mature Env-specific antibodies, which might have contributed to immune protection failure. PMID:23171359

  1. Expression of a recombinant chimeric protein of hepatitis A virus VP1-Fc using a replicating vector based on Beet curly top virus in tobacco leaves and its immunogenicity in mice.

    PubMed

    Chung, Ho Yong; Lee, Hyun Ho; Kim, Kyung Il; Chung, Ha Young; Hwang-Bo, Jeon; Park, Jong Hwa; Sunter, Garry; Kim, Jong Bum; Shon, Dong Hwa; Kim, Wonyong; Chung, In Sik

    2011-08-01

    We describe the expression and immunogenicity of a recombinant chimeric protein (HAV VP1-Fc) consisting of human hepatitis A virus VP1 and an Fc antibody fragment using a replicating vector based on Beet curly top virus (BCTV) in Agrobacterium-infiltrated Nicotiana benthamiana leaves. Recombinant HAV VP1-Fc was expressed with a molecular mass of approximately 68 kDa. Recombinant HAV VP1-Fc, purified using Protein A Sepharose affinity chromatography, elicited production of specific IgG antibodies in the serum after intraperitoneal immunization. Following vaccination with recombinant HAV VP1-Fc protein, expressions of IFN-γ and IL-4 were increased in splenocytes at the time of sacrifice. Recombinant VP1-Fc from infiltrated tobacco plants can be used as an effective experimental immunogen for research into vaccine development. PMID:21442402

  2. Immunogenicity of next-generation HPV vaccines in non-human primates: Measles-vectored HPV vaccine versus Pichia pastoris recombinant protein vaccine.

    PubMed

    Gupta, Gaurav; Giannino, Viviana; Rishi, Narayan; Glueck, Reinhard

    2016-09-01

    Human papillomavirus (HPV) infection is the most common sexually transmitted disease worldwide. HPVs are oncogenic small double-stranded DNA viruses that are the primary causal agent of cervical cancer and other types of cancers, including in the anus, oropharynx, vagina, vulva, and penis. Prophylactic vaccination against HPV is an attractive strategy for preventing cervical cancer and some other types of cancers. However, there are few safe and effective vaccines against HPV infections. Current first-generation commercial HPV vaccines are expensive to produce and deliver. The goal of this study was to develop an alternate potent HPV recombinant L1-based vaccines by producing HPV virus-like particles into a vaccine that is currently used worldwide. Live attenuated measles virus (MV) vaccines have a well-established safety and efficacy record, and recombinant MV (rMV) produced by reverse genetics may be useful for generating candidate HPV vaccines to meet the needs of the developing world. We studied in non-human primate rMV-vectored HPV vaccine in parallel with a classical alum adjuvant recombinant HPV16L1 and 18L1 protein vaccine produced in Pichia pastoris. A combined prime-boost approach using both vaccines was evaluated, as well as immune interference due to pre-existing immunity against the MV. The humoral immune response induced by the MV, Pichia-expressed vaccine, and their combination as priming and boosting approaches was found to elicit HPV16L1 and 18L1 specific total IgG and neutralizing antibody titres. Pre-existing antibodies against measles did not prevent the immune response against HPV16L1 and 18L1. PMID:27523740

  3. Significant differences in integration sites of Moloney murine leukemia virus/Moloney murine sarcoma virus retroviral vector carrying recombinant coagulation factor IX in two human cell lines.

    PubMed

    Castilho-Fernandes, Andrielle; Fontes, Aparecida Maria; Abraham, Kuruvilla Joseph; de Freitas, Marcela Cristina Corrêa; da Rosa, Nathalia Gonsales; Picanço-Castro, Virginia; de Sousa Russo-Carbolante, Elisa Maria; Covas, Dimas Tadeu

    2015-05-01

    Ligation-mediated-PCR was performed followed by the mapping of 177 and 150 integration sites from HepG2 and Hek293 transduced with chimera vector carrying recombinant human Factor IX (rhFIX) cDNA, respectively. The sequences were analyzed for chromosome preference, CpG, transcription start site (TSS), repetitive elements, fragile sites and target genes. In HepG2, rhFIX was had an increased preference for chromosomes 6 and 17; the median distance to the nearest CpG islands was 15,240 base pairs and 37 % of the integrations occurred in RefSeq genes. In Hek293, rhFIX had an increased preference for chromosome 5; the median distance to the nearest CpG islands was 209,100 base pairs and 74 % of the integrations occurred in RefSeq genes. The integrations in both cell lines were distant from the TSS. The integration patterns associated with this vector are different in each cell line. PMID:25650340

  4. Hybrid lentivirus-phiC31-int-NLS vector allows site-specific recombination in murine and human cells but induces DNA damage.

    PubMed

    Grandchamp, Nicolas; Altémir, Dorothée; Philippe, Stéphanie; Ursulet, Suzanna; Pilet, Héloïse; Serre, Marie-Claude; Lenain, Aude; Serguera, Che; Mallet, Jacques; Sarkis, Chamsy

    2014-01-01

    Gene transfer allows transient or permanent genetic modifications of cells for experimental or therapeutic purposes. Gene delivery by HIV-derived lentiviral vector (LV) is highly effective but the risk of insertional mutagenesis is important and the random/uncontrollable integration of the DNA vector can deregulate the cell transcriptional activity. Non Integrative Lentiviral Vectors (NILVs) solve this issue in non-dividing cells, but they do not allow long term expression in dividing cells. In this context, obtaining stable expression while avoiding the problems inherent to unpredictable DNA vector integration requires the ability to control the integration site. One possibility is to use the integrase of phage phiC31 (phiC31-int) which catalyzes efficient site-specific recombination between the attP site in the phage genome and the chromosomal attB site of its Streptomyces host. Previous studies showed that phiC31-int is active in many eukaryotic cells, such as murine or human cells, and directs the integration of a DNA substrate into pseudo attP sites (pattP) which are homologous to the native attP site. In this study, we combined the efficiency of NILV for gene delivery and the specificity of phiC31-int for DNA substrate integration to engineer a hybrid tool for gene transfer with the aim of allowing long term expression in dividing and non-dividing cells preventing genotoxicity. We demonstrated the feasibility to target NILV integration in human and murine pattP sites with a dual NILV vectors system: one which delivers phiC31-int, the other which constitute the substrate containing an attB site in its DNA sequence. These promising results are however alleviated by the occurrence of significant DNA damages. Further improvements are thus required to prevent chromosomal rearrangements for a therapeutic use of the system. However, its use as a tool for experimental applications such as transgenesis is already applicable. PMID:24956106

  5. Validation of Recombinant Salivary Protein PpSP32 as a Suitable Marker of Human Exposure to Phlebotomus papatasi, the Vector of Leishmania major in Tunisia

    PubMed Central

    Bettaieb, Jihene; Abdeladhim, Maha; Hadj Kacem, Saoussen; Abdelkader, Rania; Gritli, Sami; Chemkhi, Jomaa; Aslan, Hamide; Kamhawi, Shaden; Ben Salah, Afif; Louzir, Hechmi; Valenzuela, Jesus G.; Ben Ahmed, Melika

    2015-01-01

    Background During a blood meal, female sand flies, vectors of Leishmania parasites, inject saliva into the host skin. Sand fly saliva is composed of a large variety of components that exert different pharmacological activities facilitating the acquisition of blood by the insect. Importantly, proteins present in saliva are able to elicit the production of specific anti-saliva antibodies, which can be used as markers for exposure to vector bites. Serological tests using total sand fly salivary gland extracts are challenging due to the difficulty of obtaining reproducible salivary gland preparations. Previously, we demonstrated that PpSP32 is the immunodominant salivary antigen in humans exposed to Phlebotomus papatasi bites and established that humans exposed to P. perniciosus bites do not recognize it. Methodology/Principal Findings Herein, we have validated, in a large cohort of 522 individuals, the use of the Phlebotomus papatasi recombinant salivary protein PpSP32 (rPpSP32) as an alternative method for testing exposure to the bite of this sand fly. We also demonstrated that screening for total anti-rPpSP32 IgG antibodies is sufficient, being comparable in efficacy to the screening for IgG2, IgG4 and IgE antibodies against rPpSP32. Additionally, sera obtained from dogs immunized with saliva of P. perniciosus, a sympatric and widely distributed sand fly in Tunisia, did not recognize rPpSP32 demonstrating its suitability as a marker of exposure to P. papatasi saliva. Conclusions/Significance Our data indicate that rPpSP32 constitutes a useful epidemiological tool to monitor the spatial distribution of P. papatasi in a particular region, to direct control measures against zoonotic cutaneous leishmaniasis, to assess the efficiency of vector control interventions and perhaps to assess the risk of contracting the disease. PMID:26368935

  6. Time-dependent biodistribution and transgene expression of a recombinant human adenovirus serotype 5-luciferase vector as a surrogate agent for rAd5-FMDV vaccines in cattle

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Replication-defective recombinant adenovirus 5 (rAd5) vectors carrying foot-and-mouth disease virus (FMDV) transgenes elicit a robust immune response to FMDV challenge in cattle; however vaccine function mechanisms are incompletely understood. Recent efforts addressing critical interactions of rAd5 ...

  7. Three-year duration of immunity in cats vaccinated with a canarypox-vectored recombinant rabies virus vaccine.

    PubMed

    Jas, D; Coupier, C; Toulemonde, C Edlund; Guigal, P-M; Poulet, H

    2012-11-19

    Despite the availability of efficacious vaccines for animals and humans, rabies is still a major zoonosis. Prevention of rabies in dogs and cats is key for reducing the risk of transmission of this deadly disease to humans. Most veterinary vaccines are adjuvanted inactivated vaccines and have been shown to provide one to four-year duration of immunity. In response to debates about the safety of adjuvanted vaccines in cats, a non-adjuvanted feline rabies vaccine with one-year duration of immunity claim was specifically developed using the canarypoxvirus vector technology. The objective of this study was to validate a vaccination program based on primary vaccination, revaccination one year later and boosters every three years. Seronegative cats were vaccinated at 12 weeks of age and received a booster vaccination one year later. This vaccination regimen induced a strong and sustained antibody response, and all vaccinated animals were protected against virulent rabies challenge carried out 3 years after vaccination. These results validated 3-year duration of immunity after a complete basic vaccination program consisting in primary vaccination from 12 weeks of age followed by revaccination one year later with a non-adjuvanted canarypox-vectored vaccine. PMID:23059358

  8. Production of Recombinant Adeno-associated Virus Vectors Using Suspension HEK293 Cells and Continuous Harvest of Vector From the Culture Media for GMP FIX and FLT1 Clinical Vector.

    PubMed

    Grieger, Joshua C; Soltys, Stephen M; Samulski, Richard Jude

    2016-02-01

    Adeno-associated virus (AAV) has shown great promise as a gene therapy vector in multiple aspects of preclinical and clinical applications. Many developments including new serotypes as well as self-complementary vectors are now entering the clinic. With these ongoing vector developments, continued effort has been focused on scalable manufacturing processes that can efficiently generate high-titer, highly pure, and potent quantities of rAAV vectors. Utilizing the relatively simple and efficient transfection system of HEK293 cells as a starting point, we have successfully adapted an adherent HEK293 cell line from a qualified clinical master cell bank to grow in animal component-free suspension conditions in shaker flasks and WAVE bioreactors that allows for rapid and scalable rAAV production. Using the triple transfection method, the suspension HEK293 cell line generates greater than 1 × 10(5) vector genome containing particles (vg)/cell or greater than 1 × 10(14) vg/l of cell culture when harvested 48 hours post-transfection. To achieve these yields, a number of variables were optimized such as selection of a compatible serum-free suspension media that supports both growth and transfection, selection of a transfection reagent, transfection conditions and cell density. A universal purification strategy, based on ion exchange chromatography methods, was also developed that results in high-purity vector preps of AAV serotypes 1-6, 8, 9 and various chimeric capsids tested. This user-friendly process can be completed within 1 week, results in high full to empty particle ratios (>90% full particles), provides postpurification yields (>1 × 10(13) vg/l) and purity suitable for clinical applications and is universal with respect to all serotypes and chimeric particles. To date, this scalable manufacturing technology has been utilized to manufacture GMP phase 1 clinical AAV vectors for retinal neovascularization (AAV2), Hemophilia B (scAAV8), giant axonal

  9. Recombinant vaccinia virus GLV-1h68 is a promising oncolytic vector in the treatment of cholangiocarcinoma.

    PubMed

    Pugalenthi, Amudhan; Mojica, Kelly; Ady, Justin W; Johnsen, Clark; Love, Damon; Chen, Nanhai G; Aguilar, Richard J; Szalay, Aladar A; Fong, Yuman

    2015-12-01

    Although early stage cholangiocarcinoma (CC) can be cured by surgical extirpation, the options for treatment of advanced stage CC are very few and suboptimal. Oncolytic virotherapy using replication-competent vaccinia virus (VACV) is a promising new strategy to treat human cancers. The ability of oncolytic VACV GLV-1h68 to infect, replicate in, and lyse three human CC cell lines was assayed in vitro and in subcutaneous flank xenografts in athymic nude mice. In this study, we have demonstrated that GLV-1h68 effectively infects and lyses three CC cell lines (KMC-1, KMBC, and KMCH-1) in vitro. Expression of the viral marker gene ruc-gfp facilitated real-time monitoring of infection and replication. Furthermore in athymic nude mice, a single dose of GLV-1h68 significantly suppressed tumor growth. The treatment was well tolerated in all animals. Recombinant VACV GLV-1h68 has significant oncolytic ability against CC both in vitro and in vivo. GLV-1h68 has the potential to be used clinically as a therapeutic agent against CC. PMID:26584530

  10. Hexon-modified recombinant E1-deleted adenoviral vectors as bivalent vaccine carriers for Coxsackievirus A16 and Enterovirus 71.

    PubMed

    Zhang, Chao; Yang, Yong; Chi, Yudan; Yin, Jieyun; Yan, Lijun; Ku, Zhiqiang; Liu, Qingwei; Huang, Zhong; Zhou, Dongming

    2015-09-22

    Hand, foot and mouth disease (HFMD) is a major public health concern in Asia; more efficient vaccines against HFMD are urgently required. Adenoviral (Ad) capsids have been used widely for the presentation of foreign antigens to induce specific immune responses in the host. Here, we describe a novel bivalent vaccine for HFMD based on the hexon-modified, E1-deleted chimpanzee adenovirus serotype 68 (AdC68). The novel vaccine candidate was generated by incorporating the neutralising epitope of Coxsackievirus A16 (CA16), PEP71, into hypervariable region 1 (HVR1), and a shortened neutralising epitope of Enterovirus 71 (EV71), sSP70, into HVR2 of the AdC68 hexon. In order to enhance the immunogenicity of EV71, VP1 of EV71 was cloned into the E1-region of the AdC68 vectors. The results demonstrated that these two epitopes were well presented on the virion surface and had high affinity towards specific antibodies, and VP1 of EV71 was also significantly expressed. In pre-clinical mouse models, the hexon-modified AdC68 elicited neutralising antibodies against both CA16 and EV71, which conferred protection to suckling mice against a lethal challenge of CA16 and EV71. In summary, this study demonstrates that the hexon-modified AdC68 may represent a promising bivalent vaccine carrier against EV71 and CA16 and an epitope-display platform for other pathogens. PMID:26296491

  11. Heat-shock Treatment-mediated Increase in Transduction by Recombinant Adeno-associated Virus 2 Vectors Is Independent of the Cellular Heat-shock Protein 90*

    PubMed Central

    Zhong, Li; Qing, Keyun; Si, Yue; Chen, Linyuan; Tan, Mengqun; Srivastava, Arun

    2007-01-01

    Recombinant adeno-associated virus 2 (AAV) vectors transduction efficiency varies greatly in different cell types. We have described that a cellular protein, FKBP52, in its phosphorylated form interacts with the D-sequence in the viral inverted terminal repeat, inhibits viral second strand DNA synthesis, and limits transgene expression. Here we investigated the role of cellular heat-shock protein 90 (HSP90) in AAV transduction because FKBP52 forms a complex with HSP90, and because heat-shock treatment augments AAV transduction efficiency. Heat-shock treatment of HeLa cells resulted in tyrosine dephosphorylation of FKBP52, led to stabilization of the FKBP52-HSP90 complex, and resulted in ∼6-fold increase in AAV transduction. However, when HeLa cells were pre-treated with tyrphostin 23, a specific inhibitor of cellular epidermal growth factor receptor tyrosine kinase, which phosphorylates FKBP52 at tyrosine residues, heat-shock treatment resulted in a further 18-fold increase in AAV transduction. HSP90 was shown to be a part of the FKBP52-AAV D-sequence complex, but HSP90 by itself did not bind to the D-sequence. Geldanamycin treatment, which disrupts the HSP90-FKBP52 complex, resulted in >22-fold increase in AAV transduction in heat-shock-treated cells compared with heat shock alone. Deliberate overexpression of the human HSP90 gene resulted in a significant decrease in AAV-mediated transduction in tyrphostin 23-treated cells, whereas down-modulation of HSP90 levels led to a decrease in HSP90-FKBP52-AAV D-sequence complex formation, resulting in a significant increase in AAV transduction following pre-treatment with tyrphostin 23. These studies suggest that the observed increase in AAV transduction efficiency following heat-shock treatment is unlikely to be mediated by HSP90 alone and that increased levels of HSP90, in the absence of heat shock, facilitate binding of FKBP52 to the AAV D-sequence, thereby leading to inhibition of AAV-mediated transgene expression

  12. Evaluation of the Newcastle Disease Virus F and HN Proteins in Protective Immunity by Using a Recombinant Avian Paramyxovirus Type 3 Vector in Chickens▿

    PubMed Central

    Kumar, Sachin; Nayak, Baibaswata; Collins, Peter L.; Samal, Siba K.

    2011-01-01

    Newcastle disease virus (NDV) belongs to serotype 1 of the avian paramyxoviruses (APMV-1) and causes severe disease in chickens. Current live attenuated NDV vaccines are not fully satisfactory. An alternative is to use a viral vector vaccine that infects chickens but does not cause disease. APMV serotype 3 infects a wide variety of avian species but does not cause any apparent disease in chickens. In this study, we constructed a reverse-genetics system for recovery of infectious APMV-3 strain Netherlands from cloned cDNAs. Two recombinant viruses, rAPMV3-F and rAPMV3-HN, were generated expressing the NDV fusion (F) and hemagglutinin-neuraminidase (HN) proteins, respectively, from added genes. These viruses were used to immunize 2-week-old chickens by the oculonasal route in order to evaluate the contribution of each protein to the induction of NDV-specific neutralizing antibodies and protective immunity. Each virus induced high titers of NDV-specific hemagglutination inhibition and serum neutralizing antibodies, but the response to F protein was greater. Protective immunity was evaluated by challenging the immunized birds 21 days later with virulent NDV via the oculonasal, intramuscular, or intravenous route. With oculonasal or intramuscular challenge, all three recombinant viruses (rAPMV3, rAPMV3-F, and rAPMV3-HN) were protective, while all unvaccinated birds succumbed to death. These results indicated that rAPMV3 alone can provide cross-protection against NDV challenge. However, with intravenous challenge, birds immunized with rAPMV3 were not protected, whereas birds immunized with rAPMV3-F alone or in combination with rAPMV3-HN were completely protected, and birds immunized with rAPMV3-HN alone were partially protected. These results indicate that the NDV F and HN proteins are independent neutralization and protective antigens, but the contribution by F is greater. rAMPV3 represents an avirulent vaccine vector that can be used against NDV and other poultry

  13. Suppression effect of recombinant adenovirus vector containing hIL-24 on Hep-2 laryngeal carcinoma cells

    PubMed Central

    CHEN, XUEMEI; LIU, DI; WANG, JUNFU; SU, QINGHONG; ZHOU, PENG; LIU, JINSHENG; LUAN, MENG; XU, XIAOQUN

    2014-01-01

    The melanoma differentiation-associated gene-7 [MDA-7; renamed interleukin (IL)-24] was isolated from human melanoma cells induced to terminally differentiate by treatment with interferon and mezerein. MDA-7/IL-24 functions as a multimodality anticancer agent, possessing proapoptotic, antiangiogenic and immunostimulatory properties. All these attributes make MDA-7/IL-24 an ideal candidate for cancer gene therapy. In the present study, the human MDA-7/IL-24 gene was transfected into the human laryngeal cancer Hep-2 cell line and human umbilical vein endothelial cells (HUVECs) with a replication-incompetent adenovirus vector. Reverse transcription polymerase chain reaction and western blot analysis confirmed that the Ad-hIL-24 was expressed in the two cells. The expression of the antiapoptotic gene, Bcl-2, was significantly decreased and the IL-24 receptor was markedly expressed in Hep-2 cells following infection with Ad-hIL-24, but not in HUVECs. In addition, the expression of the proapoptotic gene, Bax, was induced and the expression of caspase-3 was increased in the Hep-2 cells and HUVECs. Methyl thiazolyl tetrazolium assay indicated that Ad-hIL-24 may induce growth suppression in Hep-2 cells but not in HUVECs. In conclusion, Ad-hIL-24 selectively inhibits proliferation and induces apoptosis in Hep-2 cells. No visible damage was found in HUVECs. Therefore, the results of the current study indicated that Ad-hIL-24 may have a potent suppressive effect on human laryngeal carcinoma cell lines, but is safe for healthy cells. PMID:24527085

  14. Glycan masking of hemagglutinin for adenovirus vector and recombinant protein immunizations elicits broadly neutralizing antibodies against H5N1 avian influenza viruses.

    PubMed

    Lin, Shih-Chang; Liu, Wen-Chun; Jan, Jia-Tsrong; Wu, Suh-Chin

    2014-01-01

    The highly pathogenic avian influenza (HPAI) H5N1 virus, a known trigger of diseases in poultry and humans, is perceived as a serious threat to public health. There is a clear need for a broadly protective H5N1 vaccine or vaccines for inducing neutralizing antibodies against multiple clades/subclades. We constructed single, double, and triple mutants of glycan-masked hemagglutiinin (HA) antigens at residues 83, 127 and 138 (i.e., g83, g127, g138, g83+g127, g127+g138, g83+g138 and g83+g127+g138), and then obtained their corresponding HA-expressing adenovirus vectors and recombinant HA proteins using a prime-boost immunization strategy. Our results indicate that the glycan-masked g127+g138 double mutant induced more potent HA-inhibition, virus neutralization antibodies, cross-clade protection against heterologous H5N1 clades, correlated with the enhanced bindings to the receptor binding sites and the highly conserved stem region of HA. The immune refocusing stem-specific antibodies elicited by the glycan-masked H5HA g127+g138 and g83+g127+g138 mutants overlapped with broadly neutralizing epitopes of the CR6261 monoclonal antibody that neutralizes most group 1 subtypes. These findings may provide useful information in the development of a broadly protective H5N1 influenza vaccine. PMID:24671139

  15. Temperature-sensitive miR-483 is a conserved regulator of recombinant protein and viral vector production in mammalian cells.

    PubMed

    Emmerling, Verena V; Fischer, Simon; Stiefel, Fabian; Holzmann, Karlheinz; Handrick, René; Hesse, Friedemann; Hörer, Markus; Kochanek, Stefan; Otte, Kerstin

    2016-04-01

    Cell engineering and bioprocess optimizations such as low temperature cultivation represent powerful tools to improve cellular performance and product yields of mammalian production cells. Besides monoclonal antibodies (mABs), novel biotherapeutic formats such as viral vectors will gain increasing importance. Here, we demonstrate that similar to Chinese hamster ovary (CHO) cells, product yields of recombinant adeno-associated virus (rAAV) producing HeLa cells can be markedly increased by low temperature cultivation. MicroRNAs (miRNAs) are small non-coding RNAs that critically regulate cell phenotypes. We thus investigated differential miRNA expression in response to mild hypothermia in CHO and HeLa production cells. We discovered miR-483 to be substantially up-regulated upon temperature down-shift in both cell types. Functional validation experiments revealed that introduction of miR-483 mimics led to a significant increase in both rAAV and mAB production in HeLa and CHO cells, respectively. Furthermore, inhibition of miR-483 up-regulation during mild hypothermia significantly decreased product yields, suggesting that miR-483 is a key regulator of cellular productivity in mammalian cells. In addition, miRNA target gene identification indicated that miR-483 might regulate genes directly involved in cellular survival and protein expression. Our results highlight that miR-483 is a valuable tool for product-independent engineering of mammalian production cells. PMID:26461143

  16. Recombineering homologous recombination constructs in Drosophila.

    PubMed

    Carreira-Rosario, Arnaldo; Scoggin, Shane; Shalaby, Nevine A; Williams, Nathan David; Hiesinger, P Robin; Buszczak, Michael

    2013-01-01

    The continued development of techniques for fast, large-scale manipulation of endogenous gene loci will broaden the use of Drosophila melanogaster as a genetic model organism for human-disease related research. Recent years have seen technical advancements like homologous recombination and recombineering. However, generating unequivocal null mutations or tagging endogenous proteins remains a substantial effort for most genes. Here, we describe and demonstrate techniques for using recombineering-based cloning methods to generate vectors that can be used to target and manipulate endogenous loci in vivo. Specifically, we have established a combination of three technologies: (1) BAC transgenesis/recombineering, (2) ends-out homologous recombination and (3) Gateway technology to provide a robust, efficient and flexible method for manipulating endogenous genomic loci. In this protocol, we provide step-by-step details about how to (1) design individual vectors, (2) how to clone large fragments of genomic DNA into the homologous recombination vector using gap repair, and (3) how to replace or tag genes of interest within these vectors using a second round of recombineering. Finally, we will also provide a protocol for how to mobilize these cassettes in vivo to generate a knockout, or a tagged gene via knock-in. These methods can easily be adopted for multiple targets in parallel and provide a means for manipulating the Drosophila genome in a timely and efficient manner. PMID:23893070

  17. Characterization of Cognitive Deficits in Rats Overexpressing Human Alpha-Synuclein in the Ventral Tegmental Area and Medial Septum Using Recombinant Adeno-Associated Viral Vectors

    PubMed Central

    Hall, Hélène; Jewett, Michael; Landeck, Natalie; Nilsson, Nathalie; Schagerlöf, Ulrika; Leanza, Giampiero; Kirik, Deniz

    2013-01-01

    Intraneuronal inclusions containing alpha-synuclein (a-syn) constitute one of the pathological hallmarks of Parkinson's disease (PD) and are accompanied by severe neurodegeneration of A9 dopaminergic neurons located in the substantia nigra. Although to a lesser extent, A10 dopaminergic neurons are also affected. Neurodegeneration of other neuronal populations, such as the cholinergic, serotonergic and noradrenergic cell groups, has also been documented in PD patients. Studies in human post-mortem PD brains and in rodent models suggest that deficits in cholinergic and dopaminergic systems may be associated with the cognitive impairment seen in this disease. Here, we investigated the consequences of targeted overexpression of a-syn in the mesocorticolimbic dopaminergic and septohippocampal cholinergic pathways. Rats were injected with recombinant adeno-associated viral vectors encoding for either human wild-type a-syn or green fluorescent protein (GFP) in the ventral tegmental area and the medial septum/vertical limb of the diagonal band of Broca, two regions rich in dopaminergic and cholinergic neurons, respectively. Histopathological analysis showed widespread insoluble a-syn positive inclusions in all major projections areas of the targeted nuclei, including the hippocampus, neocortex, nucleus accumbens and anteromedial striatum. In addition, the rats overexpressing human a-syn displayed an abnormal locomotor response to apomorphine injection and exhibited spatial learning and memory deficits in the Morris water maze task, in the absence of obvious spontaneous locomotor impairment. As losses in dopaminergic and cholinergic immunoreactivity in both the GFP and a-syn expressing animals were mild-to-moderate and did not differ from each other, the behavioral impairments seen in the a-syn overexpressing animals appear to be determined by the long term persisting neuropathology in the surviving neurons rather than by neurodegeneration. PMID:23705016

  18. Stable expression of Shigella sonnei form I O-polysaccharide genes recombineered into the chromosome of live Salmonella oral vaccine vector Ty21a.

    PubMed

    Dharmasena, Madushini N; Hanisch, Brock W; Wai, Tint T; Kopecko, Dennis J

    2013-04-01

    Live, attenuated Salmonella enterica serovar Typhi strain Ty21a, a licensed oral typhoid fever vaccine, has also been employed for use as a vector to deliver protective antigens of Shigella and other pathogens. Importantly, lipopolysaccharide (LPS) alone has been shown to be a potent antigen for specific protection against shigellosis. We reported previously the plasmid cloning of heterologous LPS biosynthetic genes and the expression in Ty21a of either S. sonnei or of S. dysenteriae 1 LPS's. The resulting plasmids encoding Shigella LPS's were reasonably stable for >50 generations of growth in nonselective media, but still contained an antibiotic resistance marker that is objectionable to vaccine regulatory authorities. Deletion of this antibiotic-resistance marker inexplicably resulted in significant plasmid instability. Thus, we sought a method to insert the large ∼12kb S. sonnei LPS gene region into the chromosome, that would allow for subsequent removal of a selectable marker and would result in 100% genetic stability. Toward this objective, we optimized an existing recombination method to mediate the insertion of a ∼12kb region encoding the S. sonnei LPS genes into the Ty21a genome in a region that is nonfunctional due to mutation. The resulting strain Ty21a-Ss simultaneously expresses both homologous Ty21a and heterologous S. sonnei O-antigens. This chromosomal insert was shown to be 100% genetically stable in vitro and in vivo. Moreover, Ty21a-Ss elicited strong dual anti-LPS serum immune responses and 100% protection in mice against a virulent S. sonnei challenge. This new vaccine candidate, absolutely stable for vaccine manufacture, should provide combined protection against enteric fevers due to Salmonella serovar Typhi as shown previously (and some Paratyphi infections) and against shigellosis due to S. sonnei. PMID:23474241

  19. A replication-competent retrovirus arising from a split-function packaging cell line was generated by recombination events between the vector, one of the packaging constructs, and endogenous retroviral sequences.

    PubMed

    Chong, H; Starkey, W; Vile, R G

    1998-04-01

    Previously we reported the presence of a replication-competent retrovirus in supernatant from a vector-producing line derived from a widely used split-function amphotropic packaging cell line. Rigorous routine screening of all retroviral stocks produced in our laboratory has not, previously or since, indicated the presence of such a virus. Replication-competent retroviruses have never previously been used in our laboratory, and stringent screening of all routinely used cell lines has not revealed the presence of any helper viruses. Therefore, it is highly unlikely that this virus represents an adventitious cross-contaminant or had been imported unknowingly with our cell line stocks. PCR studies with DNA from infected cell lines and Northern blot analysis and reverse transcriptase PCR with RNA from infected cells suggest that the helper virus arose by recombination events, at sites of partial homology, between sequences in the vector, one of the packaging constructs, and endogenous retroviral elements. These recombinations were not present in stocks of the packaging cell line or in an initial stock of the vector-producing line, indicating that these events occurred while the vector-producing line was being passaged for harvest of supernatant stocks. PMID:9525583

  20. Enhanced Transgene Expression from Recombinant Single-Stranded D-Sequence-Substituted Adeno-Associated Virus Vectors in Human Cell Lines In Vitro and in Murine Hepatocytes In Vivo

    PubMed Central

    Wang, Yuan; Lu, Yuan; Wang, Lina; Jayandharan, Giridhara R.; Aslanidi, George V.; Li, Baozheng; Cheng, Binbin; Ma, Wenqin; Lentz, Thomas; Ling, Changquan; Xiao, Xiao; Samulski, R. Jude; Muzyczka, Nicholas

    2014-01-01

    ABSTRACT We have previously reported that the removal of a 20-nucleotide sequence, termed the D sequence, from both ends of the inverted terminal repeats (ITRs) in the adeno-associated virus serotype 2 (AAV2) genome significantly impairs rescue, replication, and encapsidation of the viral genomes (X. S. Wang, S. Ponnazhagan, and A. Srivastava, J Mol Biol 250:573–580, 1995; X. S. Wang, S. Ponnazhagan, and A. Srivastava, J Virol 70:1668–1677, 1996). Here we describe that replacement of only one D sequence in either ITR restores each of these functions, but DNA strands of only single polarity are encapsidated in mature progeny virions. Since most commonly used recombinant AAV vectors contain a single-stranded DNA (ssDNA), which is transcriptionally inactive, efficient transgene expression from AAV vectors is dependent upon viral second-strand DNA synthesis. We have also identified a transcription suppressor sequence in one of the D sequences, which shares homology with the binding site for the cellular NF-κB-repressing factor (NRF). The removal of this D sequence from, and replacement with a sequence containing putative binding sites for transcription factors in, single-stranded AAV (ssAAV) vectors significantly augments transgene expression both in human cell lines in vitro and in murine hepatocytes in vivo. The development of these genome-modified ssAAV vectors has implications not only for the basic biology of AAV but also for the optimal use of these vectors in human gene therapy. IMPORTANCE The results of the studies described here not only have provided novel insights into some of the critical steps in the life cycle of a human virus, the adeno-associated virus (AAV), that causes no known disease but have also led to the development of novel recombinant AAV vectors which are more efficient in allowing increased levels of gene expression. Thus, these studies have significant implications for the potential use of these novel AAV vectors in human gene therapy

  1. GENERATION OF RECOMBINANT BACULOVIRUS VIA LIPOSOME MEDIATED TRANSFECTION

    EPA Science Inventory

    Baculovirus expression vectors have become a popular method of producing recombinant proteins. Production of recombinant virus requires the transfection of both the native viral DNA and a transfer plasmid into insect cells where recombination takes place. While several methods of...

  2. Recombinant adeno-associated virus-mediated high-efficiency, transient expression of the murine cationic amino acid transporter (ecotropic retroviral receptor) permits stable transduction of human HeLa cells by ecotropic retroviral vectors.

    PubMed Central

    Bertran, J; Miller, J L; Yang, Y; Fenimore-Justman, A; Rueda, F; Vanin, E F; Nienhuis, A W

    1996-01-01

    Adeno-associated virus has a broad host range, is nonpathogenic, and integrates into a preferred location on chromosome 19, features that have fostered development of recombinant adeno-associated viruses (rAAV) as gene transfer vectors for therapeutic applications. We have used an rAAV to transfer and express the murine cationic amino acid transporter which functions as the ecotropic retroviral receptor, thereby rendering human cells conditionally susceptible to infection by an ecotropic retroviral vector. The proportion of human HeLa cells expressing the receptor at 60 h varied as a function of the multiplicity of infection (MOI) with the rAAV. Cells expressing the ecotropic receptor were efficiently transduced with an ecotropic retroviral vector encoding a nucleus-localized form of beta-galactosidase. Cells coexpressing the ecotropic receptor and nucleus-localized beta-galactosidase were isolated by fluorescence-activated cell sorting, and cell lines were recovered by cloning at limiting dilution. After growth in culture, all clones contained the retroviral vector genome, but fewer than 10% (3 of 47) contained the rAAV genome and continued to express the ecotropic receptor. The ecotropic receptor coding sequences in the rAAV genome were under the control of a tetracycline-modulated promoter. In the presence of tetracycline, receptor expression was low and the proportion of cells transduced by the ecotropic retroviral vector was decreased. Modulation of receptor expression was achieved with both an episomal and an integrated form of the rAAV genome. These data establish that functional gene expression from an rAAV genome can occur transiently without genome integration. PMID:8794313

  3. Synergistic inhibition of PARP-1 and NF-κB signaling downregulates immune response against recombinant AAV2 vectors during hepatic gene therapy.

    PubMed

    Hareendran, Sangeetha; Ramakrishna, Banumathi; Jayandharan, Giridhara R

    2016-01-01

    Host immune response remains a key obstacle to widespread application of adeno-associated virus (AAV) based gene therapy. Thus, targeted inhibition of the signaling pathways that trigger such immune responses will be beneficial. Previous studies have reported that DNA damage response proteins such as poly(ADP-ribose) polymerase-1 (PARP-1) negatively affect the integration of AAV in the host genome. However, the role of PARP-1 in regulating AAV transduction and the immune response against these vectors has not been elucidated. In this study, we demonstrate that repression of PARP-1 improves the transduction of single-stranded AAV vectors both in vitro (∼174%) and in vivo (two- to 3.4-fold). Inhibition of PARP-1, also significantly downregulated the expression of several proinflammatory and cytokine markers such as TLRs, ILs, NF-κB subunit proteins associated with the host innate response against self-complementary AAV2 vectors. The suppression of the inflammatory response targeted against these vectors was more effective upon combined inhibition of PARP-1 and NF-κB signaling. This strategy also effectively attenuated the AAV capsid-specific cytotoxic T-cell response, with minimal effect on vector transduction, as demonstrated in normal C57BL/6 and hemophilia B mice. These data suggest that targeting specific host cellular proteins could be useful to attenuate the immune barriers to AAV-mediated gene therapy. PMID:26443873

  4. The recombinant adeno-associated virus vector (rAAV2)-mediated apolipoprotein B mRNA-specific hammerhead ribozyme: a self-complementary AAV2 vector improves the gene expression

    PubMed Central

    Zhong, Shumei; Sun, Shihua; Teng, Ba-Bie

    2004-01-01

    Background In humans, overproduction of apolipoprotein B (apoB) is positively associated with premature coronary artery diseases. To reduce the levels of apoB mRNA, we have designed an apoB mRNA-specific hammerhead ribozyme targeted at nucleotide sequences GUA6679 (RB15) mediated by adenovirus, which efficiently cleaves and decreases apoB mRNA by 80% in mouse liver and attenuates the hyperlipidemic condition. In the current study, we used an adeno-associated virus vector, serotype 2 (AAV2) and a self-complementary AAV2 vector (scAAV2) to demonstrate the effect of long-term tissue-specific gene expression of RB15 on the regulation apoB mRNA in vivo. Methods We constructed a hammerhead ribozyme RB15 driven by a liver-specific transthyretin (TTR) promoter using an AAV2 vector (rAAV2-TTR-RB15). HepG2 cells and hyperlipidemic mice deficient in both the low density lipoprotein receptor and the apoB mRNA editing enzyme genes (LDLR-/-Apobec1-/-; LDb) were transduced with rAAV2-TTR-RB15 and a control vector rAAV-TTR-RB15-mutant (inactive ribozyme). The effects of ribozyme RB15 on apoB metabolism and atherosclerosis development were determined in LDb mice at 5-month after transduction. A self-complementary AAV2 vector expressing ribozyme RB15 (scAAV2-TTR-RB15) was also engineered and used to transduce HepG2 cells. Studies were designed to compare the gene expression efficiency between rAAV2-TTR-RB15 and scAAV2-TTR-RB15. Results The effect of ribozyme RB15 RNA on reducing apoB mRNA levels in HepG2 cells was observed only on day-7 after rAAV2-TTR-RB15 transduction. And, at 5-month after rAAV2-TTR-RB15 treatment, the apoB mRNA levels in LDb mice were significantly decreased by 43%, compared to LDb mice treated with control vector rAAV2-TTR-RB15-mutant. Moreover, both the rAAV2-TTR-RB15 viral DNA and ribozyme RB15 RNA were still detectable in mice livers at 5-month after treatment. However, this rAAV2-TTR-RB15 vector mediated a prolonged but low level of ribozyme RB15 gene

  5. Comparative Analysis of the Magnitude, Quality, Phenotype and Protective Capacity of SIV Gag-Specific CD8+ T Cells Following Human-, Simian- and Chimpanzee-Derived Recombinant Adenoviral Vector Immunisation

    PubMed Central

    Quinn, Kylie M.; Costa, Andreia Da; Yamamoto, Ayako; Berry, Dana; Lindsay, Ross W.B.; Darrah, Patricia A.; Wang, Lingshu; Cheng, Cheng; Kong, Wing-Pui; Gall, Jason G.D.; Nicosia, Alfredo; Folgori, Antonella; Colloca, Stefano; Cortese, Riccardo; Gostick, Emma; Price, David A.; Gomez, Carmen E.; Esteban, Mariano; Wyatt, Linda S.; Moss, Bernard; Morgan, Cecilia; Roederer, Mario; Bailer, Robert T.; Nabel, Gary J.; Koup, Richard A.; Seder, Robert A.

    2013-01-01

    Recombinant adenoviral vectors (rAds) are the most potent recombinant vaccines for eliciting CD8+ T cell-mediated immunity in humans; however, prior exposure from natural adenoviral infection can decrease such responses. Here we show low seroreactivity in humans against simian- (sAd11, sAd16), or chimpanzee-derived (chAd3, chAd63) compared to human-derived (rAd5, rAd28, rAd35) vectors across multiple geographic regions. We then compared the magnitude, quality, phenotype and protective capacity of CD8+ T cell responses in mice vaccinated with rAds encoding SIV Gag. Using a dose range (1 × 107 to 109 PU), we defined a hierarchy among rAd vectors based on the magnitude and protective capacity of CD8+ T cell responses, from most to least as: rAd5 and chAd3, rAd28 and sAd11, chAd63, sAd16, and rAd35. Selection of rAd vector or dose could modulate the proportion and/or frequency of IFNγ+TNFα+IL-2+ and KLRG1+CD127- CD8+ T cells, but strikingly ~30–80% of memory CD8+ T cells co-expressed CD127 and KLRG1. To further optimise CD8+ T cell responses, we assessed rAds as part of prime-boost regimens. Mice primed with rAds and boosted with NYVAC generated Gag-specific responses that approached ~60% of total CD8+ T cells at peak. Alternatively, priming with DNA or rAd28 and boosting with rAd5 or chAd3 induced robust and equivalent CD8+ T cell responses compared to prime or boost alone. Collectively, these data provide the immunologic basis for using specific rAd vectors alone or as part of prime-boost regimens to induce CD8+ T cells for rapid effector function or robust long-term memory, respectively. PMID:23390298

  6. Recombinant influenza vaccines.

    PubMed

    Sedova, E S; Shcherbinin, D N; Migunov, A I; Smirnov, Iu A; Logunov, D Iu; Shmarov, M M; Tsybalova, L M; Naroditskiĭ, B S; Kiselev, O I; Gintsburg, A L

    2012-10-01

    This review covers the problems encountered in the construction and production of new recombinant influenza vaccines. New approaches to the development of influenza vaccines are investigated; they include reverse genetics methods, production of virus-like particles, and DNA- and viral vector-based vaccines. Such approaches as the delivery of foreign genes by DNA- and viral vector-based vaccines can preserve the native structure of antigens. Adenoviral vectors are a promising gene-delivery platform for a variety of genetic vaccines. Adenoviruses can efficiently penetrate the human organism through mucosal epithelium, thus providing long-term antigen persistence and induction of the innate immune response. This review provides an overview of the practicability of the production of new recombinant influenza cross-protective vaccines on the basis of adenoviral vectors expressing hemagglutinin genes of different influenza strains. PMID:23346377

  7. Safety and Biodistribution Evaluation in CNGB3-Deficient Mice of rAAV2tYF-PR1.7-hCNGB3, a Recombinant AAV Vector for Treatment of Achromatopsia.

    PubMed

    Ye, Guo-Jie; Budzynski, Ewa; Sonnentag, Peter; Nork, T Michael; Miller, Paul E; McPherson, Leslie; Ver Hoeve, James N; Smith, Leia M; Arndt, Tara; Mandapati, Savitri; Robinson, Paulette M; Calcedo, Roberto; Knop, David R; Hauswirth, William W; Chulay, Jeffrey D

    2016-03-01

    Applied Genetic Technologies Corporation (AGTC) is developing rAAV2tYF-PR1.7-hCNGB3, a recombinant adeno-associated virus (rAAV) vector expressing the human CNGB3 gene, for treatment of achromatopsia, an inherited retinal disorder characterized by markedly reduced visual acuity, extreme light sensitivity, and absence of color discrimination. We report here results of a study evaluating safety and biodistribution of rAAV2tYF-PR1.7-hCNGB3 in CNGB3-deficient mice. Three groups of animals (n = 35 males and 35 females per group) received a subretinal injection in one eye of 1 μl containing either vehicle or rAAV2tYF-PR1.7-hCNGB3 at one of two dose concentrations (1 × 10(12) or 4.2 × 10(12) vg/ml) and were euthanized 4 or 13 weeks later. There were no test-article-related changes in clinical observations, body weights, food consumption, ocular examinations, clinical pathology parameters, organ weights, or macroscopic observations at necropsy. Cone-mediated electroretinography (ERG) responses were detected after vector administration in the treated eyes in 90% of animals in the higher dose group and 31% of animals in the lower dose group. Rod-mediated ERG responses were reduced in the treated eye for all groups, with the greatest reduction in males given the higher dose of vector, but returned to normal by the end of the study. Microscopic pathology results demonstrated minimal mononuclear cell infiltrates in the retina and vitreous of some animals at the interim euthanasia and in the vitreous of some animals at the terminal euthanasia. Serum anti-AAV antibodies developed in most vector-injected animals. No animals developed antibodies to hCNGB3. Biodistribution studies demonstrated high levels of vector DNA in vector-injected eyes but little or no vector DNA in nonocular tissue. These results support the use of rAAV2tYF-PR1.7-hCNGB3 in clinical studies in patients with achromatopsia caused by CNGB3 mutations. PMID:27003752

  8. Vaccine protection against lethal homologous and heterologous challenge using recombinant AAV vectors expressing codon-optimized genes from pandemic swine origin influenza virus (SOIV).

    PubMed

    Sipo, Isaac; Knauf, Mathias; Fechner, Henry; Poller, Wolfgang; Planz, Oliver; Kurth, Reinhard; Norley, Stephen

    2011-02-11

    The recent H1N1 influenza pandemic and the inevitable delay between identification of the virus and production of the specific vaccine have highlighted the urgent need for new generation influenza vaccines that can preemptively induce broad immunity to different strains of the virus. In this study we have produced AAV-based vectors expressing the A/Mexico/4603/2009 (H1N1) hemagglutinin (HA), nucleocapsid (NP) and the matrix protein M1 and have evaluated their ability to induce specific immune response and protect mice against homologous and heterologous challenge. Each of the vaccine vectors elicited potent cellular and humoral immune responses in mice. Although immunization with AAV-M1 did not improve survival after challenge with the homologous strain, immunization with the AAV-H1 and AAV-NP vectors resulted in survival of all mice, as did inoculation with a combination of all three vectors. Furthermore, trivalent vaccination also conferred partial protection against challenge with the highly heterologous and virulent A/PR/8/34 strain of H1N1 influenza. PMID:21195079

  9. In Vitro and In Vivo Biology of Recombinant Adenovirus Vectors with E1, E1/E2A, or E1/E4 Deleted

    PubMed Central

    Lusky, M.; Christ, M.; Rittner, K.; Dieterle, A.; Dreyer, D.; Mourot, B.; Schultz, H.; Stoeckel, F.; Pavirani, A.; Mehtali, M.

    1998-01-01

    Isogenic, E3-deleted adenovirus vectors defective in E1, E1 and E2A, or E1 and E4 were generated in complementation cell lines expressing E1, E1 and E2A, or E1 and E4 and characterized in vitro and in vivo. In the absence of complementation, deletion of both E1 and E2A completely abolished expression of early and late viral genes, while deletion of E1 and E4 impaired expression of viral genes, although at a lower level than the E1/E2A deletion. The in vivo persistence of these three types of vectors was monitored in selected strains of mice with viral genomes devoid of transgenes to exclude any interference by immunogenic transgene-encoded products. Our studies showed no significant differences among the vectors in the short-term maintenance and long-term (4-month) persistence of viral DNA in liver and lung cells of immunocompetent and immunodeficient mice. Furthermore, all vectors induced similar antibody responses and comparable levels of adenovirus-specific cytotoxic T lymphocytes. These results suggest that in the absence of transgenes, the progressive deletion of the adenovirus genome does not extend the in vivo persistence of the transduced cells and does not reduce the antivirus immune response. In addition, our data confirm that, in the absence of transgene expression, mouse cellular immunity to viral antigens plays a minor role in the progressive elimination of the virus genome. PMID:9499056

  10. λ Recombination and Recombineering.

    PubMed

    Murphy, Kenan C

    2016-05-01

    The bacteriophage λ Red homologous recombination system has been studied over the past 50 years as a model system to define the mechanistic details of how organisms exchange DNA segments that share extended regions of homology. The λ Red system proved useful as a system to study because recombinants could be easily generated by co-infection of genetically marked phages. What emerged from these studies was the recognition that replication of phage DNA was required for substantial Red-promoted recombination in vivo, and the critical role that double-stranded DNA ends play in allowing the Red proteins access to the phage DNA chromosomes. In the past 16 years, however, the λ Red recombination system has gained a new notoriety. When expressed independently of other λ functions, the Red system is able to promote recombination of linear DNA containing limited regions of homology (∼50 bp) with the Escherichia coli chromosome, a process known as recombineering. This review explains how the Red system works during a phage infection, and how it is utilized to make chromosomal modifications of E. coli with such efficiency that it changed the nature and number of genetic manipulations possible, leading to advances in bacterial genomics, metabolic engineering, and eukaryotic genetics. PMID:27223821

  11. Ocular and systemic safety of a recombinant AAV8 vector for X-linked retinoschisis gene therapy: GLP studies in rabbits and Rs1-KO mice.

    PubMed

    Marangoni, Dario; Bush, Ronald A; Zeng, Yong; Wei, Lisa L; Ziccardi, Lucia; Vijayasarathy, Camasamudram; Bartoe, Joshua T; Palyada, Kiran; Santos, Maria; Hiriyanna, Suja; Wu, Zhijian; Colosi, Peter; Sieving, Paul A

    2016-01-01

    X-linked retinoschisis (XLRS) is a retinal disease caused by mutations in the gene encoding the protein retinoschisin (RS1) and is one of the most common causes of macular degeneration in young men. Our therapeutic approach for XLRS is based on the administration of AAV8-scRS/IRBPhRS, an adeno-associated viral vector coding the human RS1 protein, via the intravitreal (IVT) route. Two Good Laboratory Practice studies, a 9-month study in New Zealand White rabbits (n = 124) injected with AAV8-scRS/IRBPhRS at doses of 2E9, 2E10, 2E11, and 1.5E12 vector genomes/eye (vg/eye), and a 6-month study in Rs1-KO mice (n = 162) dosed with 2E9 and 2E10 vg/eye of the same vector were conducted to assess ocular and systemic safety. A self-resolving, dose-dependent vitreal inflammation was the main ocular finding, and except for a single rabbit dosed with 1.5E12 vg/eye, which showed a retinal detachment, no other ocular adverse event was reported. Systemic toxicity was not identified in either species. Biodistribution analysis in Rs1-KO mice detected spread of vector genome in extraocular tissues, but no evidence of organ or tissues damage was found. These studies indicate that IVT administration of AAV8-scRS/IRBPhRS is safe and well tolerated and support its advancement into a phase 1/2a clinical trial for XLRS. PMID:27626041

  12. Ocular and systemic safety of a recombinant AAV8 vector for X-linked retinoschisis gene therapy: GLP studies in rabbits and Rs1-KO mice

    PubMed Central

    Marangoni, Dario; Bush, Ronald A; Zeng, Yong; Wei, Lisa L; Ziccardi, Lucia; Vijayasarathy, Camasamudram; Bartoe, Joshua T; Palyada, Kiran; Santos, Maria; Hiriyanna, Suja; Wu, Zhijian; Colosi, Peter; Sieving, Paul A

    2016-01-01

    X-linked retinoschisis (XLRS) is a retinal disease caused by mutations in the gene encoding the protein retinoschisin (RS1) and is one of the most common causes of macular degeneration in young men. Our therapeutic approach for XLRS is based on the administration of AAV8-scRS/IRBPhRS, an adeno-associated viral vector coding the human RS1 protein, via the intravitreal (IVT) route. Two Good Laboratory Practice studies, a 9-month study in New Zealand White rabbits (n = 124) injected with AAV8-scRS/IRBPhRS at doses of 2E9, 2E10, 2E11, and 1.5E12 vector genomes/eye (vg/eye), and a 6-month study in Rs1-KO mice (n = 162) dosed with 2E9 and 2E10 vg/eye of the same vector were conducted to assess ocular and systemic safety. A self-resolving, dose-dependent vitreal inflammation was the main ocular finding, and except for a single rabbit dosed with 1.5E12 vg/eye, which showed a retinal detachment, no other ocular adverse event was reported. Systemic toxicity was not identified in either species. Biodistribution analysis in Rs1-KO mice detected spread of vector genome in extraocular tissues, but no evidence of organ or tissues damage was found. These studies indicate that IVT administration of AAV8-scRS/IRBPhRS is safe and well tolerated and support its advancement into a phase 1/2a clinical trial for XLRS. PMID:27626041

  13. One-prime multi-boost strategy immunization with recombinant DNA, adenovirus, and MVA vector vaccines expressing HPV16 L1 induces potent, sustained, and specific immune response in mice.

    PubMed

    Li, Li-Li; Wang, He-Rong; Zhou, Zhi-Yi; Luo, Jing; Xiao, Xiang-Qian; Wang, Xiao-Li; Li, Jin-Tao; Zhou, Yu-Bai; Zeng, Yi

    2016-04-01

    Human papillomavirus (HPV) is associated with various human diseases, including cancer, and developing vaccines is a cost-efficient strategy to prevent HPV-related disease. The major capsid protein L1, which an increasing number of studies have confirmed is typically expressed early in infection, is a promising antigen for such a vaccine, although the E6 and E7 proteins have been characterized more extensively. Thus, the L1 gene from HPV16 was inserted into a recombinant vector, AdHu5, and MVA viral vectors, and administered by prime-boost immunization. Virus-like particles were used as control antigens. Our results indicate that prime-boost immunization with heterologous vaccines induced robust and sustained cellular and humoral response specific to HPV16 L1. In particular, sera obtained from mice immunized with DNA + DNA + Ad + MVA had excellent antitumor activity in vivo. However, the data also confirm that virus-like particles can only elicit low levels cellular immunity and not be long-lasting, and are therefore unsuitable for treatment of existing HPV infections. PMID:26821205

  14. Canine recombinant adenovirus vector induces an immunogenicity-related gene expression profile in skin-migrated CD11b⁺ -type DCs.

    PubMed

    Contreras, Vanessa; Urien, Céline; Jouneau, Luc; Bourge, Mickael; Bouet-Cararo, Coraline; Bonneau, Michel; Zientara, Stephan; Klonjkowski, Bernard; Schwartz-Cornil, Isabelle

    2012-01-01

    Gene expression profiling of the blood cell response induced early after vaccination has previously been demonstrated to predict the immunogenicity of vaccines. In this study, we evaluated whether the analysis of the gene expression profile of skin-migrated dendritic cells (DCs) could be informative for the in vitro prediction of immunogenicity of vaccine, using canine adenovirus serotype 2 (CAV2) as vaccine vector. CAV2 has been shown to induce immunity to transgenes in several species including sheep and is an interesting alternative to human adenovirus-based vectors, based on the safety records of the parental strain in dogs and the lack of pre-existing immunity in non-host species. Skin-migrated DCs were collected from pseudo-afferent lymph in sheep. Both the CD11b(+) -type and CD103(+) -type skin-migrated DCs were transduced by CAV2. An analysis of the global gene response to CAV2 in the two skin DC subsets showed that the gene response in CD11b(+) -type DCs was far higher and broader than in the CD103(+) -type DCs. A newly released integrative analytic tool from Ingenuity systems revealed that the CAV2-modulated genes in the CD11b(+) -type DCs clustered in several activated immunogenicity-related functions, such as immune response, immune cell trafficking and inflammation. Thus gene profiling in skin-migrated DC in vitro indicates that the CD11b(+) DC type is more responsive to CAV2 than the CD103(+) DC type, and provides valuable information to help in evaluating and possibly improving viral vector vaccine effectiveness. PMID:23300693

  15. Canine Recombinant Adenovirus Vector Induces an Immunogenicity-Related Gene Expression Profile in Skin-Migrated CD11b+ -Type DCs

    PubMed Central

    Jouneau, Luc; Bourge, Mickael; Bouet-Cararo, Coraline; Bonneau, Michel; Zientara, Stephan; Klonjkowski, Bernard; Schwartz-Cornil, Isabelle

    2012-01-01

    Gene expression profiling of the blood cell response induced early after vaccination has previously been demonstrated to predict the immunogenicity of vaccines. In this study, we evaluated whether the analysis of the gene expression profile of skin-migrated dendritic cells (DCs) could be informative for the in vitro prediction of immunogenicity of vaccine, using canine adenovirus serotype 2 (CAV2) as vaccine vector. CAV2 has been shown to induce immunity to transgenes in several species including sheep and is an interesting alternative to human adenovirus-based vectors, based on the safety records of the parental strain in dogs and the lack of pre-existing immunity in non-host species. Skin-migrated DCs were collected from pseudo-afferent lymph in sheep. Both the CD11b+ -type and CD103+ -type skin-migrated DCs were transduced by CAV2. An analysis of the global gene response to CAV2 in the two skin DC subsets showed that the gene response in CD11b+ -type DCs was far higher and broader than in the CD103+ -type DCs. A newly released integrative analytic tool from Ingenuity systems revealed that the CAV2-modulated genes in the CD11b+ -type DCs clustered in several activated immunogenicity-related functions, such as immune response, immune cell trafficking and inflammation. Thus gene profiling in skin-migrated DC in vitro indicates that the CD11b+ DC type is more responsive to CAV2 than the CD103+ DC type, and provides valuable information to help in evaluating and possibly improving viral vector vaccine effectiveness. PMID:23300693

  16. Recombinant vesicular stomatitis virus vectors expressing herpes simplex virus type 2 gD elicit robust CD4+ Th1 immune responses and are protective in mouse and guinea pig models of vaginal challenge.

    PubMed

    Natuk, Robert J; Cooper, David; Guo, Min; Calderon, Priscilla; Wright, Kevin J; Nasar, Farooq; Witko, Susan; Pawlyk, Diane; Lee, Margaret; DeStefano, Joanne; Tummolo, Donna; Abramovitz, Aaron S; Gangolli, Seema; Kalyan, Narender; Clarke, David K; Hendry, R Michael; Eldridge, John H; Udem, Stephen A; Kowalski, Jacek

    2006-05-01

    Recombinant vesicular stomatitis virus (rVSV) vectors offer an attractive approach for the induction of robust cellular and humoral immune responses directed against human pathogen target antigens. We evaluated rVSV vectors expressing full-length glycoprotein D (gD) from herpes simplex virus type 2 (HSV-2) in mice and guinea pigs for immunogenicity and protective efficacy against genital challenge with wild-type HSV-2. Robust Th1-polarized anti-gD immune responses were demonstrated in the murine model as measured by induction of gD-specific cytotoxic T lymphocytes and increased gamma interferon expression. The isotype makeup of the serum anti-gD immunoglobulin G (IgG) response was consistent with the presence of a Th1-CD4+ anti-gD response, characterized by a high IgG2a/IgG1 IgG subclass ratio. Functional anti-HSV-2 neutralizing serum antibody responses were readily demonstrated in both guinea pigs and mice that had been immunized with rVSV-gD vaccines. Furthermore, guinea pigs and mice were prophylactically protected from genital challenge with high doses of wild-type HSV-2. In addition, guinea pigs were highly protected against the establishment of latent infection as evidenced by low or absent HSV-2 genome copies in dorsal root ganglia after virus challenge. In summary, rVSV-gD vectors were successfully used to elicit potent anti-gD Th1-like cellular and humoral immune responses that were protective against HSV-2 disease in guinea pigs and mice. PMID:16611905

  17. Construction of a stable plasmid vector for industrial production of poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) by a recombinant Cupriavidus necator H16 strain.

    PubMed

    Sato, Shunsuke; Fujiki, Tetsuya; Matsumoto, Keiji

    2013-12-01

    A new stable plasmid vector (pCUP3) was developed for high and stable production of poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) (PHBH) using Cupriavidus necator H16 as the host strain. In pCUP3, it was found that the plasmid partition and replication region of the megaplasmid pMOL28 in the Cupriavidus metallidurans CH34 strain plays an important role in plasmid stability in C. necator H16. Moreover, the partition locus (comprising parA28 and parB28 and the parS28 region) is essential for plasmid maintenance under high-PHBH-accumulation. PHBH productivity by the C. necator H16/ds strain (phaC1 deactivated mutant strain) harboring a phaCAc NSDG within pCUP3 was identical to the productivity of poly(3-hydroxybutyrate) by the C. necator H16 strain when palm kernel oil was used as the sole carbon source without any antibiotics. This new vector is important for industrial mass production of polyhydroxyalkanoates using the C. necator H16 strain as the host, dispensing the necessity of the application of selective pressure such as antibiotics. PMID:23816763

  18. Construction of a recombinant human insulin expression vector for mammary gland-specific expression in buffalo (Bubalus bubalis) mammary epithelial cell line.

    PubMed

    Kaushik, Ramakant; Singh, Karn Pratap; Kumari, Archana; Rameshbabu, K; Singh, Manoj Kumar; Manik, Radhey Shyam; Palta, Prabhat; Singla, Suresh Kumar; Chauhan, Manmohan Singh

    2014-09-01

    The aim of the present study was construction of mammary gland specific expression vector for high level of human insulin (hINS) expression in transgenic buffalo for therapeutic use. We have constructed mammary gland specific vector containing human insulin gene and there expression efficiency was checked into in vitro cultured buffalo mammary epithelial cells (BuMECs). Human pro-insulin coding region was isolated from human genomic DNA by intron skipping PCR primer and furin cleavage site was inserted between B-C and C-A chain of human insulin by overlap extension PCR. A mammary gland-specific buffalo beta-lactoglobulin promoter was isolated from buffalo DNA and used for human insulin expression in BuMEC cells. The construct was transfected into BuMECs by lipofection method and positive transgene cell clones were obtained by G418 selection after 3 weeks. Expression of hINS in transfected cells were confirmed by RT-PCR, Immunocytochemistry, Western Blotting and ELISA. The pAcISUBC insulin-expressing clones secreted insulin at varying levels between 0.18 - 1.43 ng/ml/24 h/2.0 × 10(6) cells. PMID:24969480

  19. Preclinical Dose-Finding Study With a Liver-Tropic, Recombinant AAV-2/8 Vector in the Mouse Model of Galactosialidosis

    PubMed Central

    Hu, Huimin; Gomero, Elida; Bonten, Erik; Gray, John T; Allay, Jim; Wu, Yanan; Wu, Jianrong; Calabrese, Christopher; Nienhuis, Arthur; d'Azzo, Alessandra

    2012-01-01

    Galactosialidosis (GS) is a lysosomal storage disease linked to deficiency of the protective protein/cathepsin A (PPCA). Similarly to GS patients, Ppca-null mice develop a systemic disease of the reticuloendothelial system, affecting most visceral organs and the nervous system. Symptoms include severe nephropathy, visceromegaly, infertility, progressive ataxia, and shortened life span. Here, we have conducted a preclinical, dose-finding study on a large cohort of GS mice injected intravenously at 1 month of age with increasing doses of a GMP-grade rAAV2/8 vector, expressing PPCA under the control of a liver-specific promoter. Treated mice, monitored for 16 weeks post-treatment, had normal physical appearance and behavior without discernable side effects. Despite the restricted expression of the transgene in the liver, immunohistochemical and biochemical analyses of other systemic organs, serum, and urine showed a dose-dependent, widespread correction of the disease phenotype, suggestive of a protein-mediated mechanism of cross-correction. A notable finding was that rAAV-treated GS mice showed high expression of PPCA in the reproductive organs, which resulted in reversal of their infertility. Together these results support the use of this rAAV-PPCA vector as a viable and safe method of gene delivery for the treatment of systemic disease in non-neuropathic GS patients. PMID:22008912

  20. Improvement of Ethanol Production in Saccharomyces cerevisiae by High-Efficient Disruption of the ADH2 Gene Using a Novel Recombinant TALEN Vector.

    PubMed

    Ye, Wei; Zhang, Weimin; Liu, Taomei; Tan, Guohui; Li, Haohua; Huang, Zilei

    2016-01-01

    Bioethanol is becoming increasingly important in energy supply and economic development. However, the low yield of bioethanol and the insufficiency of high-efficient genetic manipulation approaches limit its application. In this study, a novel transcription activator-like effector nuclease (TALEN) vector containing the left and right arms of TALEN was electroporated into Saccharomyces cerevisiae strain As2.4 to sequence the alcohol dehydrogenase gene ADH2 and the hygromycin-resistant gene hyg. Western blot analysis using anti-FLAG monoclonal antibody proved the successful expression of TALE proteins in As2.4 strains. qPCR and sequencing demonstrated the accurate knockout of the 17 bp target gene with 80% efficiency. The TALEN vector and ADH2 PCR product were electroporated into ΔADH2 to complement the ADH2 gene (ADH2 (+) As2.4). LC-MS and GC were employed to detect ethanol yields in the native As2.4, ΔADH2 As2.4, and ADH2 (+) As2.4 strains. Results showed that ethanol production was improved by 52.4 ± 5.3% through the disruption of ADH2 in As2.4. The bioethanol yield of ADH2 (+) As2.4 was nearly the same as that of native As2.4. This study is the first to report on the disruption of a target gene in S. cerevisiae by employing Fast TALEN technology to improve bioethanol yield. This work provides a novel approach for the disruption of a target gene in S. cerevisiae with high efficiency and specificity, thereby promoting the improvement of bioethanol production in S. cerevisiae by metabolic engineering. PMID:27462304

  1. Improvement of Ethanol Production in Saccharomyces cerevisiae by High-Efficient Disruption of the ADH2 Gene Using a Novel Recombinant TALEN Vector

    PubMed Central

    Ye, Wei; Zhang, Weimin; Liu, Taomei; Tan, Guohui; Li, Haohua; Huang, Zilei

    2016-01-01

    Bioethanol is becoming increasingly important in energy supply and economic development. However, the low yield of bioethanol and the insufficiency of high-efficient genetic manipulation approaches limit its application. In this study, a novel transcription activator-like effector nuclease (TALEN) vector containing the left and right arms of TALEN was electroporated into Saccharomyces cerevisiae strain As2.4 to sequence the alcohol dehydrogenase gene ADH2 and the hygromycin-resistant gene hyg. Western blot analysis using anti-FLAG monoclonal antibody proved the successful expression of TALE proteins in As2.4 strains. qPCR and sequencing demonstrated the accurate knockout of the 17 bp target gene with 80% efficiency. The TALEN vector and ADH2 PCR product were electroporated into ΔADH2 to complement the ADH2 gene (ADH2+ As2.4). LC–MS and GC were employed to detect ethanol yields in the native As2.4, ΔADH2 As2.4, and ADH2+ As2.4 strains. Results showed that ethanol production was improved by 52.4 ± 5.3% through the disruption of ADH2 in As2.4. The bioethanol yield of ADH2+ As2.4 was nearly the same as that of native As2.4. This study is the first to report on the disruption of a target gene in S. cerevisiae by employing Fast TALEN technology to improve bioethanol yield. This work provides a novel approach for the disruption of a target gene in S. cerevisiae with high efficiency and specificity, thereby promoting the improvement of bioethanol production in S. cerevisiae by metabolic engineering. PMID:27462304

  2. Oral Immunization with a Salmonella typhimurium Vaccine Vector Expressing Recombinant Enterotoxigenic Escherichia coli K99 Fimbriae Elicits Elevated Antibody Titers for Protective Immunity

    PubMed Central

    Ascón, Miguel A.; Hone, David M.; Walters, Nancy; Pascual, David W.

    1998-01-01

    Bovine enterotoxigenic Escherichia coli (ETEC) continues to cause mortality in piglets and newborn calves. In an effort to develop a safe and effective vaccine for the prevention of F5+ ETEC infections, a balanced lethal asd+ plasmid carrying the complete K99 operon was constructed and designated pMAK99-asd+. Introduction of this plasmid into an attenuated Salmonella typhimurium Δaro Δasd strain, H683, resulted in strain AP112, which stably expresses E. coli K99 fimbriae. A single oral immunization of BALB/c and CD-1 mice with strain AP112 elicited significant mucosal immunoglobulin A (IgA) titers that remained elevated for >11 weeks. IgA and IgG responses in serum specific for K99 fimbriae were also induced, with a prominent IgG1, as well as IgG2a and IgG2b, titer. To assess the derivation of these antibodies, a K99 isotype-specific B-cell ELISPOT analysis was conducted by using mononuclear cells from the lamina propria of the small intestines (LP), Peyer’s patches (PP), and spleens of vaccinated and control BALB/c mice. This analysis revealed elevated numbers of K99 fimbria-specific IgA-producing cells in the LP, PP, and spleen, whereas elevated K99 fimbria-specific IgG-producing cells were detected only in the PP and spleen. These antibodies were important for protective immunity. One-day-old neonates from dams orally immunized with AP112 were provided passive protection against oral challenge with wild-type ETEC, in contrast to challenged neonates from unvaccinated dams or from dams vaccinated with a control Salmonella vector. These results confirm that oral Salmonella vaccine vectors effectively deliver K99 fimbriae to mucosal inductive sites for sustained elevation of IgA and IgG antibodies and for eliciting protective immunity. PMID:9784559

  3. Introducing Vectors.

    ERIC Educational Resources Information Center

    Roche, John

    1997-01-01

    Suggests an approach to teaching vectors that promotes active learning through challenging questions addressed to the class, as opposed to subtle explanations. Promotes introducing vector graphics with concrete examples, beginning with an explanation of the displacement vector. Also discusses artificial vectors, vector algebra, and unit vectors.…

  4. Genetic stability of a recombinant adenovirus vaccine vector seed library expressing human papillomavirus type 16 E6 and E7 proteins

    PubMed Central

    WU, JIE; CHEN, KE-DA; GAO, MENG; CHEN, GANG; JIN, SU-FENG; ZHUANG, FANG-CHENG; WU, XIAO-HONG; JIANG, YUN-SHUI; LI, JIAN-BO

    2015-01-01

    The aim of the present study was to understand the genetic stability of a master seed bank (MSB) and a working seed bank (WSB) of an adenovirus vector vaccine expressing the human papillomavirus (HPV) type 16 E6 and E7 fusion proteins (Ad-HPV16E6E7). Microscopic examination and viral infectious efficacy were used to measure the infectious titers of the Ad-HPV16E6E7 MSB and WSB. Polymerase chain reaction was used to analyze the stability of the Ad-HPV16E6E7 target gene insertion, while western blot analysis and immunofluorescence were used to assess the expression levels of the Ad-HPV16E6E7 target protein. A C57BL/6 mouse TC-1 tumor cell growth inhibition model was used to evaluate the biological effect of Ad-HPV16E6E7 administration. The infectious titers of the Ad-HPV16E6E7 MSB and WSB were 6.31×109 IU/ml and 3.0×109 IU/ml, respectively. In addition, the expression levels of the inserted target genes and target proteins were found to be stable. In the mouse TC-1 tumor inhibition analysis, when the virus titers of the Ad-HPV16E6E7 MSB and WSB were 109 IU/ml, the tumor inhibition rate was 100%, which was significantly different when compared with the control group (χ2MSB=20.00 and χ2WSB=20.00; P<0.01). Therefore, the Ad-HPV16E6E7 vaccine seed bank is genetically stable and meets the requirements for vaccine development. PMID:25780403

  5. Rational vector design and multi-pathway modulation of HEK 293E cells yield recombinant antibody titers exceeding 1 g/l by transient transfection under serum-free conditions

    PubMed Central

    Backliwal, Gaurav; Hildinger, Markus; Chenuet, Sebastien; Wulhfard, Sarah; De Jesus, Maria; Wurm, Florian M.

    2008-01-01

    Transient transfection allows for fast production of recombinant proteins. However, the current bottlenecks in transient transfection are low titers and low specific productivity compared to stable cell lines. Here, we report an improved transient transfection protocol that yields titers exceeding 1 g/l in HEK293E cells. This was achieved by combining a new highly efficient polyethyleneimine (PEI)-based transfection protocol, optimized gene expression vectors, use of cell cycle regulators p18 and p21, acidic Fibroblast Growth Factor, exposure of cells to valproic acid and consequently the maintenance of cells at high cell densities (4 million cells/ml). This protocol was reproducibly scaled-up to a working volume of 2 l, thus delivering >1 g of purified protein just 2 weeks after transfection. This is the fastest approach to gram quantities of protein ever reported from cultivated mammalian cells and could initiate, upon further scale-up, a paradigm shift in industrial production of such proteins for any application in biotechnology. PMID:18617574

  6. [Vaccine application of recombinant herpesviruses].

    PubMed

    Yokoyama, N; Xuan, X; Mikami, T

    2000-04-01

    Recently, genetic engineering using recombinant DNA techniques has been applied to design new viral vaccines in order to reduce some problems which the present viral vaccines have. Up to now, many viruses have been investigated for development of recombinant attenuated vaccines or live viral vectors for delivery of foreign genes coding immunogenic antigens. In this article, we introduced the new vaccine strategy using genetically engineered herpesviruses. PMID:10774221

  7. Prime-boost vaccination with recombinant H5-fowlpox and Newcastle disease virus vectors affords lasting protection in SPF Muscovy ducks against highly pathogenic H5N1 influenza virus.

    PubMed

    Niqueux, Eric; Guionie, Olivier; Amelot, Michel; Jestin, Véronique

    2013-08-28

    Vaccination protocols were evaluated in one-day old Muscovy ducklings, using an experimental Newcastle disease recombinant vaccine (vNDV-H5) encoding an optimized synthetic haemagglutinin gene from a clade 2.2.1 H5N1 highly pathogenic (HP) avian influenza virus (AIV), either as a single administration or as a boost following a prime inoculation with a fowlpox vectored vaccine (vFP89) encoding a different H5 HP haemagglutinin from an Irish H5N8 strain. These vaccination schemes did not induce detectable levels of serum antibodies in HI test using a clade 2.2.1 H5N1 antigen, and only induced H5 ELISA positive response in less than 10% of vaccinated ducks. However, following challenge against a clade 2.2.1 HPAIV, both protocols afforded full clinical protection at six weeks of age, and full protection against mortality at nine weeks. Only the prime-boost vaccination (vFP89+vNDV-H5) was still fully protecting Muscovy ducks against disease and mortality at 12 weeks of age. Reduction of oropharyngeal shedding levels was also constantly observed from the onset of the follow-up at 2.5 or three days post-infection in vaccinated ducks compared to unvaccinated controls, and was significantly more important for vFP89+vNDV-H5 vaccination than for vNDV-H5 alone. Although the latter vaccine is shown immunogenic in one-day old Muscovy ducks, the present work is original in demonstrating the high efficacy of the successive administration of two different vector vaccines encoding two different H5 in inducing lasting protection (at least similar to the one induced by an inactivated reassortant vaccine, Re-5). In addition, such a prime-boost schedule allows implementation of a DIVA strategy (to differentiate vaccinated from infected ducks) contrary to Re-5, involves easy practice on the field (with injection at the hatchery and mass vaccination later on), and should avoid eventual interference with NDV maternally derived antibodies. Last, the HA insert could be updated according to

  8. Experimental and Field Results Regarding Immunity Induced by a Recombinant Turkey Herpesvirus H5 Vector Vaccine Against H5N1 and Other H5 Highly Pathogenic Avian Influenza Virus Challenges.

    PubMed

    Gardin, Yannick; Palya, Vilmos; Dorsey, Kristi Moore; El-Attrache, John; Bonfante, Francesco; Wit, Sjaak de; Kapczynski, Darrell; Kilany, Walid Hamdy; Rauw, Fabienne; Steensels, Mieke; Soejoedono, Retno D

    2016-05-01

    Vaccination against H5N1 highly pathogenic avian influenza (AI) virus (HPAIV) is one of the possible complementary means available for affected countries to control AI when the disease has become, or with a high risk of becoming, endemic. Efficacy of the vaccination against AI relies essentially, but not exclusively, on the capacity of the vaccine to induce immunity against the targeted virus (which is prone to undergo antigenic variations), as well as its capacity to overcome interference with maternal immunity transmitted by immunized breeding hens to their progeny. This property of the vaccine is a prerequisite for its administration at the hatchery, which assures higher and more reliable vaccine coverage of the populations than vaccination at the farm. A recombinant vector vaccine (Vectormune® AI), based on turkey herpesvirus expressing the hemagglutinin gene of an H5N1 HPAIV as an insert, has been used in several experiments conducted in different research laboratories, as well as in controlled field trials. The results have demonstrated a high degree of homologous and cross protection against different genetic clades of the H5N1 HPAIV. Furthermore, vaccine-induced immunity was not impaired by the presence of passive immunity, but on the contrary, cumulated with it for improved early protection. The demonstrated levels of protection against the different challenge viruses exhibited variations in terms of postchallenge mortality, as well as challenge virus shedding. The data presented here highlight the advantages of this vaccine as a useful and reliable tool to complement biosecurity and sanitary policies for better controlling the disease due to HPAIV of H5 subtypes, when the vaccination is applied as a control measure. PMID:27309060

  9. Immunization with Recombinant Adenoviral Vectors Expressing HCV Core or F Proteins Leads to T Cells with Reduced Effector Molecules Granzyme B and IFN-γ: A Potential New Strategy for Immune Evasion in HCV Infection.

    PubMed

    Samrat, Subodh Kumar; Vedi, Satish; Singh, Shakti; Li, Wen; Kumar, Rakesh; Agrawal, Babita

    2015-01-01

    Multispecific, broad, and potent T cell responses have been correlated with viral clearance in hepatitis C virus (HCV) infection. However, the majority of infected patients develop chronic infection, suggesting that natural infection mostly leads to development of inefficient T cell immunity. Multiple mechanisms of immune modulation and evasion have been shown in HCV infection through various investigations. This study examined the generation and modulation of T cell responses against core and frameshift (F) proteins of HCV. A single immunization of mice with replication incompetent recombinant adenovirus vectors encoding for F or core antigens induces poor T cell responses and leads to generation of CD4+ and CD8+ T cells with low granzyme B (GrB) expression. These T cells have impaired GrB enzyme activity and are unable to kill peptide loaded target cells. The low intracellular expression of GrB is not due to degranulation of cytotoxic granules containing cytotoxic T cells. Addition of exogenous IL-2 in in vitro cultures leads to partial recovery of GrB production, whereas immunization with the Toll-like receptor (TLR) agonist poly I:C leads to complete restoration of GrB expression in both CD4+ and CD8+ T cells. Thus, a possible new strategy of T cell modulation is recognized wherein effector T cells are caused to be dysfunctional by HCV-derived antigens F or core, and strategies are also delineated to overcome this dysfunction. These studies are important in the investigation of prophylactic vaccine and immunotherapy strategies for HCV infection. PMID:26133045

  10. Genetic Recombination

    ERIC Educational Resources Information Center

    Whitehouse, H. L. K.

    1973-01-01

    Discusses the mechanisms of genetic recombination with particular emphasis on the study of the fungus Sordaria brevicollis. The study of recombination is facilitated by the use of mutants of this fungus in which the color of the ascospores is affected. (JR)

  11. Recombinant Swinepox Virus for Veterinary Vaccine Development.

    PubMed

    Fan, Hong-Jie; Lin, Hui-Xing

    2016-01-01

    Poxvirus-vectors have been widely used in vaccine development for several important human and animal diseases; some of these vaccines have been licensed and used extensively. Swinepox virus (SPV) is well suited to develop recombinant vaccines because of its large packaging capacity for recombinant DNA, its host range specificity, and its ability to induce appropriate immune responses. PMID:26458836

  12. Bacteriophage recombination systems and biotechnical applications.

    PubMed

    Nafissi, Nafiseh; Slavcev, Roderick

    2014-04-01

    Bacteriophage recombination systems have been widely used in biotechnology for modifying prokaryotic species, for creating transgenic animals and plants, and more recently, for human cell gene manipulation. In contrast to homologous recombination, which benefits from the endogenous recombination machinery of the cell, site-specific recombination requires an exogenous source of recombinase in mammalian cells. The mechanism of bacteriophage evolution and their coexistence with bacterial cells has become a point of interest ever since bacterial viruses' life cycles were first explored. Phage recombinases have already been exploited as valuable genetic tools and new phage enzymes, and their potential application to genetic engineering and genome manipulation, vectorology, and generation of new transgene delivery vectors, and cell therapy are attractive areas of research that continue to be investigated. The significance and role of phage recombination systems in biotechnology is reviewed in this paper, with specific focus on homologous and site-specific recombination conferred by the coli phages, λ, and N15, the integrase from the Streptomyces phage, ΦC31, the recombination system of phage P1, and the recently characterized recombination functions of Yersinia phage, PY54. Key steps of the molecular mechanisms involving phage recombination functions and their application to molecular engineering, our novel exploitations of the PY54-derived recombination system, and its application to the development of new DNA vectors are discussed. PMID:24442504

  13. Baculovirus as a vaccine vector

    PubMed Central

    Lu, Hsin-Yu; Chen, Yi-Hsuan; Liu, Hung-Jen

    2012-01-01

    Baculovirus is extensively utilized as an excellent tool for production of recombinant protein in insect cells. Baculovirus infects insects in nature and is non-pathogenic to humans. In addition to insect cells, baculovirus is capable of transducing a broad range of animal cells. Due to its biosafety, large cloning capacity, low cytotoxicity, and non-replication nature in the transduced cells as well as the ease of manipulation and production, baculovirus has been utilized as RNA interference mediators, gene delivery vectors, and vaccine vectors for a wide variety of applications. This article focuses on the utilization of baculoviruses as vaccine vectors to prepare antigen or subunit vaccines. PMID:22705893

  14. Cosmological Recombination

    NASA Astrophysics Data System (ADS)

    Wong, Wan Yan

    2008-11-01

    In this thesis we focus on studying the physics of cosmological recombination and how the details of recombination affect the Cosmic Microwave Background (CMB) anisotropies. We present a detailed calculation of the spectral line distortions on the CMB spectrum arising from the Lyman-alpha and the lowest two-photon transitions in the recombination of hydrogen (H), and the corresponding lines from helium (He). The peak of these distortions mainly comes from the Lyman-alpha transition and occurs at about 170 microns, which is the Wien part of the CMB. The major theoretical limitation for extracting cosmological parameters from the CMB sky lies in the precision with which we can calculate the cosmological recombination process. With this motivation, we perform a multi-level calculation of the recombination of H and He with the addition of the spin-forbidden transition for neutral helium (He I), plus the higher order two-photon transitions for H and among singlet states of He I. We find that the inclusion of the spin-forbidden transition results in more than a percent change in the ionization fraction, while the other transitions give much smaller effects. Last we modify RECFAST by introducing one more parameter to reproduce recent numerical results for the speed-up of helium recombination. Together with the existing hydrogen `fudge factor', we vary these two parameters to account for the remaining dominant uncertainties in cosmological recombination. By using a Markov Chain Monte Carlo method with Planck forecast data, we find that we need to determine the parameters to better than 10% for He I and 1% for H, in order to obtain negligible effects on the cosmological parameters.

  15. Gene targeting with retroviral vectors

    SciTech Connect

    Ellis, J.; Bernstein, A. )

    1989-04-01

    The authors have designed and constructed integration-defective retroviral vectors to explore their potential for gene targeting in mammalian cells. Two nonoverlapping deletion mutants of the bacterial neomycin resistance (neo) gene were used to detect homologous recombination events between viral and chromosomal sequences. Stable neo gene correction events were selected at a frequency of approximately 1 G418/sup r/ cell per 3 x 10/sup 6/ infected cells. Analysis of the functional neo gene in independent targeted cell clones indicated that unintegrated retroviral linear DNA recombined with the target by gene conversion for variable distances into regions of nonhomology. In addition, transient neo gene correction events which were associated with the complete loss of the chromosomal target sequences were observed. These results demonstrated that retroviral vectors can recombine with homologous chromosomal sequences in rodent and human cells.

  16. Spectrum Recombination.

    ERIC Educational Resources Information Center

    Greenslade, Thomas B., Jr.

    1984-01-01

    Describes several methods of executing lecture demonstrations involving the recombination of the spectrum. Groups the techniques into two general classes: bringing selected portions of the spectrum together using lenses or mirrors and blurring the colors by rapid movement or foreshortening. (JM)

  17. Effect of gamma radiation on retroviral recombination.

    PubMed

    Hu, W S; Temin, H M

    1992-07-01

    To elucidate the mechanism(s) of retroviral recombination, we exposed virions to gamma radiation prior to infecting target cells. By using previously described spleen necrosis virus-based vectors containing multiple markers, recombinant proviruses were studied after a single round of retrovirus replication. The current models of retroviral recombination predict that breaking virion RNA should promote minus-strand recombination (forced copy-choice model), decrease or not affect plus-strand recombination (strand displacement/assimilation model), and shift plus-strand recombination towards the 3' end of the genome. However, we found that while gamma irradiation of virions reduced the amount of recoverable viral RNA, it did not primarily cause breaks. Thus, the frequency of selected recombinants was not significantly altered with greater doses of radiation. In spite of this, the irradiation did decrease the number of recombinants with only one internal template switch. As a result, the average number of additional internal template switches in the recombinant proviruses increased from 0.7 to 1.4 as infectivity decreased to 6%. The unselected internal template switches tended to be 5' of the selected crossover even in the recombinants from irradiated viruses, inconsistent with a plus-strand recombination mechanism. PMID:1602553

  18. Vector Video

    NASA Astrophysics Data System (ADS)

    Taylor, David P.

    2001-01-01

    Vector addition is an important skill for introductory physics students to master. For years, I have used a fun example to introduce vector addition in my introductory physics classes based on one with which my high school physics teacher piqued my interest many years ago.

  19. Cloning vector

    DOEpatents

    Guilfoyle, Richard A.; Smith, Lloyd M.

    1994-01-01

    A vector comprising a filamentous phage sequence containing a first copy of filamentous phage gene X and other sequences necessary for the phage to propagate is disclosed. The vector also contains a second copy of filamentous phage gene X downstream from a promoter capable of promoting transcription in a bacterial host. In a preferred form of the present invention, the filamentous phage is M13 and the vector additionally includes a restriction endonuclease site located in such a manner as to substantially inactivate the second gene X when a DNA sequence is inserted into the restriction site.

  20. Cloning vector

    DOEpatents

    Guilfoyle, R.A.; Smith, L.M.

    1994-12-27

    A vector comprising a filamentous phage sequence containing a first copy of filamentous phage gene X and other sequences necessary for the phage to propagate is disclosed. The vector also contains a second copy of filamentous phage gene X downstream from a promoter capable of promoting transcription in a bacterial host. In a preferred form of the present invention, the filamentous phage is M13 and the vector additionally includes a restriction endonuclease site located in such a manner as to substantially inactivate the second gene X when a DNA sequence is inserted into the restriction site. 2 figures.

  1. Impact of vector-priming on the immunogenicity of a live recombinant Salmonella enterica serovar typhi Ty21a vaccine expressing urease A and B from Helicobacter pylori in human volunteers.

    PubMed

    Metzger, W G; Mansouri, E; Kronawitter, M; Diescher, S; Soerensen, M; Hurwitz, R; Bumann, D; Aebischer, T; Von Specht, B-U; Meyer, T F

    2004-06-01

    Orally administered recombinant Salmonella vaccines represent an attractive option for mass vaccination programmes against various infectious diseases. Therefore, it is crucial to gather knowledge about the possible impact of preexisiting immunity to carrier antigens on the immunogenicity of recombinant vaccines. Thirteen volunteers were preimmunized with Salmonella typhi Ty21a in order to evaluate the effects of prior immunization with the carrier strain. Then, they received three doses of 1-2 x 10(10) viable organisms of either the vaccine strain S. typhi Ty21a (pDB1) expressing subunits A and B of recombinant Helicobacter pylori urease (n = 9), or placebo strain S. typhi Ty21a (n = 4). Four volunteers were preimmunized and boosted with the vaccine strain S. typhi Ty21a (pDB1). No serious adverse effects were observed in any of the volunteers. Whereas none of the volunteers primed and boosted with the vaccine strain responded to the recombinant antigen, five of the nine volunteers preimmunized with the carrier strain showed cellular immune responses to H. pylori urease (56%). This supports the results of a previous study in non-preimmunized volunteers where 56% (five of nine) of the volunteers showed a cellular immune response to urease after immunisation with S. typhi Ty21a (pDB1). PMID:15149786

  2. Vector quantization

    NASA Technical Reports Server (NTRS)

    Gray, Robert M.

    1989-01-01

    During the past ten years Vector Quantization (VQ) has developed from a theoretical possibility promised by Shannon's source coding theorems into a powerful and competitive technique for speech and image coding and compression at medium to low bit rates. In this survey, the basic ideas behind the design of vector quantizers are sketched and some comments made on the state-of-the-art and current research efforts.

  3. Equivalent Vectors

    ERIC Educational Resources Information Center

    Levine, Robert

    2004-01-01

    The cross-product is a mathematical operation that is performed between two 3-dimensional vectors. The result is a vector that is orthogonal or perpendicular to both of them. Learning about this for the first time while taking Calculus-III, the class was taught that if AxB = AxC, it does not necessarily follow that B = C. This seemed baffling. The…

  4. Enhancing poxvirus vectors vaccine immunogenicity

    PubMed Central

    García-Arriaza, Juan; Esteban, Mariano

    2014-01-01

    Attenuated recombinant poxvirus vectors expressing heterologous antigens from pathogens are currently at various stages in clinical trials with the aim to establish their efficacy. This is because these vectors have shown excellent safety profiles, significant immunogenicity against foreign expressed antigens and are able to induce protective immune responses. In view of the limited efficacy triggered by some poxvirus strains used in clinical trials (i.e, ALVAC in the RV144 phase III clinical trial for HIV), and of the restrictive replication capacity of the highly attenuated vectors like MVA and NYVAC, there is a consensus that further improvements of these vectors should be pursuit. In this review we considered several strategies that are currently being implemented, as well as new approaches, to improve the immunogenicity of the poxvirus vectors. This includes heterologous prime/boost protocols, use of co-stimulatory molecules, deletion of viral immunomodulatory genes still present in the poxvirus genome, enhancing virus promoter strength, enhancing vector replication capacity, optimizing expression of foreign heterologous sequences, and the combined use of adjuvants. An optimized poxvirus vector triggering long-lasting immunity with a high protective efficacy against a selective disease should be sought. PMID:25424927

  5. Recombination between linear double-stranded DNA substrates in vivo

    PubMed Central

    Narayanan, Kumaran; Sim, Edmund Ui-Hang; Ravin, Nikolai V.; Lee, Choon-Weng

    2009-01-01

    Recombineering technology in E. coli enables targeting of linear donor DNA to circular recipient DNA using short shared homology sequences. In this work, we demonstrate that recombineering is also able to support recombination between a pair of linear DNA substrates (linear/linear recombineering) in vivo in E. coli. Linear DNA up to 100 kb is accurately modified and remains intact without undergoing rearrangements after recombination. This system will be valuable for direct in vivo manipulation of large linear DNA including the N15 and PY54 prophages and linear animal viruses, and for assembly of linear constructs as artificial chromosome vectors. PMID:19454252

  6. [Methods for construction of transgenic plant expression vector: a review].

    PubMed

    Zhang, Yangpu; Yang, Shushen

    2015-03-01

    Construction of recombinant plasmid vector for gene expression is a key step in making transgenic plants and important to study gene function and plant genetic engineering. A right choice of gene construction method can be cost-effective and achieve more diverse recombinant plasmids. In addition to the traditional methods in construction of plant gene expression vectors, such as Gateway technology, three DNA method and one step cloning, a few novel methods have been developed in recent years. These methods include oligonucleotide synthesis-based construction of small fragment gene expression vectors via competitive connection; construction of small RNA expression vector using pre-microRNA; recombination-fusion PCR method which inserts DNA fragments of multiple restriction sites into the target vector; and insertion of a DNA fragment into any region of a linear vector via In-Fusion Kit. Construction of complex vectors with many fragments uses sequence and ligation-independent cloning method, Gibson isothermal assembly or Golden Gate assembly. This paper summarizes our working experience in the area of recombinant vector construction and reports from others with an intention to disseminate ideas about currently widely used DNA recombination methods for plant transformation. PMID:26204753

  7. Intracerebral Gene Therapy Using AAVrh.10-hARSA Recombinant Vector to Treat Patients with Early-Onset Forms of Metachromatic Leukodystrophy: Preclinical Feasibility and Safety Assessments in Nonhuman Primates.

    PubMed

    Zerah, Michel; Piguet, Françoise; Colle, Marie-Anne; Raoul, Sylvie; Deschamps, Jack-Yves; Deniaud, Johan; Gautier, Benoit; Toulgoat, Frédérique; Bieche, Ivan; Laurendeau, Ingrid; Sondhi, Dolan; Souweidane, Mark M; Cartier-Lacave, Nathalie; Moullier, Philippe; Crystal, Ronald G; Roujeau, Thomas; Sevin, Caroline; Aubourg, Patrick

    2015-06-01

    No treatment is available for early-onset forms of metachromatic leukodystrophy (MLD), a lysosomal storage disease caused by autosomal recessive defect in arylsulfatase A (ARSA) gene causing severe demyelination in central and peripheral nervous systems. We have developed a gene therapy approach, based on intracerebral administration of AAVrh.10-hARSA vector, coding for human ARSA enzyme. We have previously demonstrated potency of this approach in MLD mice lacking ARSA expression. We describe herein the preclinical efficacy, safety, and biodistribution profile of intracerebral administration of AAVrh.10-hARSA to nonhuman primates (NHPs). NHPs received either the dose planned for patients adjusted to the brain volume ratio between child and NHP (1×dose, 1.1×10(11) vg/hemisphere, unilateral or bilateral injection) or 5-fold this dose (5×dose, 5.5×10(11) vg/hemisphere, bilateral injection). NHPs were subjected to clinical, biological, and brain imaging observations and were euthanized 7 or 90 days after injection. There was no toxicity based on clinical and biological parameters, nor treatment-related histological findings in peripheral organs. A neuroinflammatory process correlating with brain MRI T2 hypersignals was observed in the brain 90 days after administration of the 5×dose, but was absent or minimal after administration of the 1×dose. Antibody response to AAVrh.10 and hARSA was detected, without correlation with brain lesions. After injection of the 1×dose, AAVrh.10-hARSA vector was detected in a large part of the injected hemisphere, while ARSA activity exceeded the normal endogenous activity level by 14-31%. Consistently with other reports, vector genome was detected in off-target organs such as liver, spleen, lymph nodes, or blood, but not in gonads. Importantly, AAVrh.10-hARSA vector was no longer detectable in urine at day 7. Our data demonstrate requisite safe and effective profile for intracerebral AAVrh.10-hARSA delivery in NHPs, supporting its

  8. From gateway to multisite gateway in one recombination event

    Technology Transfer Automated Retrieval System (TEKTRAN)

    We created a construct, pDONR-R4-R3, to easily convert any available Gateway destination vector to a MultiSite Gateway vector in a single recombination reaction. In addition, we designed pDONR-R4-R3 so that DNA fragments already cloned upstream or downstream of the Gateway cassette in the original d...

  9. Gateway®-compatible plant transformation vectors.

    PubMed

    Smedley, Mark A; Harwood, Wendy A

    2015-01-01

    Studies in functional genomics and crop improvement programs often rely on the introduction and expression of transgenes in plants. There are two essential components required for in planta transgene expression, a plasmid vector on which the transgene sequence is carried and a delivery system capable of transferring the vector to the target cells. Agrobacterium-mediated plant transformation and the binary plasmid vector system is the preferred method of transgene delivery. The cloning technologies used for DNA manipulation underpin many of these studies. Increased demand for efficient high-throughput transformation systems is driving forward improvements in gene cloning techniques. This chapter gives an overview of Gateway(®)-compatible binary vectors for use in Agrobacterium-mediated transformation systems. It describes a fast, efficient, and robust cloning protocol for the production of an over-expression binary vector using Gateway(®) recombinational cloning. PMID:25300827

  10. Genetically engineering adenoviral vectors for gene therapy.

    PubMed

    Coughlan, Lynda

    2014-01-01

    Adenoviral (Ad) vectors are commonly used for various gene therapy applications. Significant advances in the genetic engineering of Ad vectors in recent years has highlighted their potential for the treatment of metastatic disease. There are several methods to genetically modify the Ad genome to incorporate retargeting peptides which will redirect the natural tropism of the viruses, including homologous recombination in bacteria or yeast. However, homologous recombination in yeast is highly efficient and can be achieved without the need for extensive cloning strategies. In addition, the method does not rely on the presence of unique restriction sites within the Ad genome and the reagents required for this method are widely available and inexpensive. Large plasmids containing the entire adenoviral genome (~36 kbp) can be modified within Saccharomyces cerevisiae yeast and genomes easily rescued in Escherichia coli hosts for analysis or amplification. A method for two-step homologous recombination in yeast is described in this chapter. PMID:24243238

  11. In vitro analysis of a primary, major histocompatibility complex (MHC)-restricted, cytotoxic T-lymphocyte response to avian leukosis virus (ALV), using target cells expressing MHC class I cDNA inserted into a recombinant ALV vector.

    PubMed

    Thacker, E L; Fulton, J E; Hunt, H D

    1995-10-01

    The interaction between the major histocompatibility complex (MHC) and cytotoxic T lymphocytes (CTLs) is an important component of the host's resistance to viral infections and tumor formation. In this study, an avian leukosis virus (ALV) vector system, RCASBP, expressing MHC chicken class I (B-F) cDNA was used to develop target cells expressing the chicken class I glycoproteins complexed with ALV antigens on the cell surface. Peripheral blood from chickens inoculated with ALV was shown to contain antigen-specific, MHC-restricted, CD8+ effector CTLs, using a 51Cr release assay utilizing the RCASBP B-F target cells. The stimulated effector cells were also predominantly alpha beta T-cell receptor-positive (TCR2) T cells. The CTL response varied between two haplotypes of chickens which differed in their response to Rous sarcoma virus (RSV)-induced tumors. Chickens with the B21 haplotype which regress RSV-induced tumors showed maximal cytolytic activity, while chickens with the B13 haplotype which do not regress RSV-induced tumors had minimal to no cytolytic activity. In addition to assessing the CTL response to ALV, the creation of MHC-specific immortal target cell lines will be extremely useful in evaluating CTL responses to other viral disease in chickens. PMID:7666545

  12. Immunization with a Recombinant Expression Vector Encoding NS3/NS4A of Hepatitis C Virus Genotype 3a Elicits Cell-Mediated Immune Responses in C57BL/6 Mice.

    PubMed

    Behzadi, Mohammad Amin; Alborzi, Abdolvahab; Kalani, Mehdi; Pouladfar, Gholamreza; Dianatpour, Mehdi; Ziyaeyan, Mazyar

    2016-04-01

    Today, hepatitis C virus (HCV) infection is considered as one of the most significant international health concerns. Although novel therapeutic regimens against the infection have shown satisfactory results, no approved vaccine exists yet. This study aimed to evaluate the immunogenicity of a DNA vaccine candidate for HCV-3a, based on nonstructural proteins NS3/NS4A, in C57BL/6 mice. Immunogenicity effect of pDisplay-NS3/NS4A was analyzed through immunization with 100 and 200 μg concentrations of the construct with complete Freund's adjuvant, monophosphoryl lipid A (MPL), or without adjuvant. The frequencies of different splenic mononuclear cells were measured using the Mouse Th1/Th2/Th17 Phenotyping Kit. Moreover, the number of T-CD8(+) cells was determined using conjugated anti-CD8a and anti-CD3e antibodies by flow cytometry. As observed, the frequencies of Th1, T-CD8(+), and Th2 cells increased in all the experimental groups, compared with the controls. The highest levels of the respective cells were seen in the group immunized with 200 μg of the construct with MPL. Also, there were positive correlations between the frequency of Th1 cells and those of Th2 and T-CD8(+) cells in all the immunized groups, but were significant in those receiving adjuvants. The frequency of Th17 cells did not statistically change among the groups. Taken together, our findings revealed that the constructed DNA vaccine encoding HCV-3a NS3/NS4A gene induces the cell-mediated immune responses significantly. However, its coadministration with adjuvants exhibits more efficient results than the recombinant plasmid alone. Further study is currently underway to evaluate the specific immune responses and recognize the responsible antigenic epitopes. PMID:26909520

  13. Potential use of a recombinant replication-defective adenovirus vector carrying the C-terminal portion of the P97 adhesin protein as a vaccine against Mycoplasma hyopneumoniae in swine.

    PubMed

    Okamba, Faust René; Arella, Maximilien; Music, Nedzad; Jia, Jian Jun; Gottschalk, Marcelo; Gagnon, Carl A

    2010-07-01

    Mycoplasma hyopneumoniae causes severe economic losses to the swine industry worldwide and the prevention of its related disease, enzootic porcine pneumonia, remains a challenge. The P97 adhesin protein of M. hyopneumoniae should be a good candidate for the development of a subunit vaccine because antibodies produced against P97 could prevent the adhesion of the pathogen to the respiratory epithelial cells in vitro. In the present study, a P97 recombinant replication-defective adenovirus (rAdP97c) subunit vaccine efficiency was evaluated in pigs. The rAdP97c vaccine was found to induce both strong P97 specific humoral and cellular immune responses. The rAdP97c vaccinated pigs developed a lower amount of macroscopic lung lesions (18.5 + or - 9.6%) compared to the unvaccinated and challenged animals (45.8 + or - 11.5%). rAdP97c vaccine reduced significantly the severity of inflammatory response and the amount of M. hyopneumoniae in the respiratory tract. Furthermore, the average daily weight gain was slightly improved in the rAdP97c vaccinated pigs (0.672 + or - 0.068 kg/day) compared to the unvaccinated and challenged animals (0.568 + or - 0.104 kg/day). A bacterin-based commercial vaccine (Suvaxyn MH-one) was more efficient to induce a protective immune response than rAdP97c even if it did not evoke a P97 specific immune response. These results suggest that immunodominant antigens other than P97 adhesin are also important in the induction of a protective immune response and should be taken into account in the future development of M. hyopneumoniae subunit vaccines. PMID:20472025

  14. Recombinant bacteria for mosquito control.

    PubMed

    Federici, B A; Park, H-W; Bideshi, D K; Wirth, M C; Johnson, J J

    2003-11-01

    Bacterial insecticides have been used for the control of nuisance and vector mosquitoes for more than two decades. Nevertheless, due primarily to their high cost and often only moderate efficacy, these insecticides remain of limited use in tropical countries where mosquito-borne diseases are prevalent. Recently, however, recombinant DNA techniques have been used to improve bacterial insecticide efficacy by markedly increasing the synthesis of mosquitocidal proteins and by enabling new endotoxin combinations from different bacteria to be produced within single strains. These new strains combine mosquitocidal Cry and Cyt proteins of Bacillus thuringiensis with the binary toxin of Bacillus sphaericus, improving efficacy against Culex species by 10-fold and greatly reducing the potential for resistance through the presence of Cyt1A. Moreover, although intensive use of B. sphaericus against Culex populations in the field can result in high levels of resistance, most of this can be suppressed by combining this bacterial species with Cyt1A; the latter enables the binary toxin of this species to enter midgut epithelial cells via the microvillar membrane in the absence of a midgut receptor. The availability of these novel strains and newly discovered mosquitocidal proteins, such as the Mtx toxins of B. sphaericus, offers the potential for constructing a range of recombinant bacterial insecticides for more effective control of the mosquito vectors of filariasis, Dengue fever and malaria. PMID:14506223

  15. The impact of minimally oversized adeno-associated viral vectors encoding human factor VIII on vector potency in vivo

    PubMed Central

    Kyostio-Moore, Sirkka; Berthelette, Patricia; Piraino, Susan; Sookdeo, Cathleen; Nambiar, Bindu; Jackson, Robert; Burnham, Brenda; O’Riordan, Catherine R; Cheng, Seng H; Armentano, Donna

    2016-01-01

    Recombinant adeno-associated viral (rAAV) vectors containing oversized genomes provide transgene expression despite low efficiency packaging of complete genomes. Here, we characterized the properties of oversized rAAV2/8 vectors (up to 5.4 kb) encoding human factor VIII (FVIII) under the transcriptional control of three liver promoters. All vectors provided sustained production of active FVIII in mice for 7 months and contained comparable levels of vector genomes and complete expression cassettes in liver. Therefore, for the 5.4 kb genome size range, a strong expression cassette was more important for FVIII production than the vector genome size. To evaluate the potency of slightly oversized vectors, a 5.1 kb AAVrh8R/FVIII vector was compared to a 4.6 kb (wild-type size) vector with an identical expression cassette (but containing a smaller C1-domain deleted FVIII) for 3 months in mice. The 5.1 kb vector had twofold to threefold lower levels of plasma FVIII protein and liver vector genomes than that obtained with the 4.6 kb vector. Vector genomes for both vectors persisted equally and existed primarily as high molecular weight concatemeric circular forms in liver. Taken together, these results indicate that the slightly oversized vectors containing heterogeneously packaged vector genomes generated a functional transgene product but exhibited a twofold to threefold lower in vivo potency. PMID:26958574

  16. Recombinant DNA products: Insulin, interferon and growth hormone

    SciTech Connect

    Bollon, A.P.

    1984-01-01

    This book provides the discussion of products of biotechnology of recombinant DNA. The contents include: Recombinant DNA techniques; isolation, cloning, and expression of genes; from somatostatin to human insulin; yeast; an alternative organism for foreign protein production; background in human interferon; preclinical assessment of biological properties of recombinant DNA derived human interferons; human clinical trials of bacteria-derived human ..cap alpha.. interferon.f large scale production of human alpha interferon from bacteria; direct expression of human growth hormone in escherichia coli with the lipoprotein promoter; biological actions in humans of recombinant DNA synthesized human growth hormone; NIH guidelines for research involving recombinant DNA molecules; appendix; viral vectors and the NHY guidelines; FDA's role in approval and regulation of recombinant DNA drugs; and index.

  17. Recombinant protein production technology

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Recombinant protein production is an important technology for antibody production, biochemical activity study, and structural determination during the post-genomic era. Limiting factors in recombinant protein production include low-level protein expression, protein precipitation, and loss of protein...

  18. Targeted DNA recombination in vivo using an adenovirus carrying the cre recombinase gene.

    PubMed Central

    Wang, Y; Krushel, L A; Edelman, G M

    1996-01-01

    Conditional gene expression and gene deletion are important experimental approaches for examining the functions of particular gene products in development and disease. The cre-loxP system from bacteriophage P1 has been used in transgenic animals to induce site-specific DNA recombination leading to gene activation or deletion. To regulate the recombination in a spatiotemporally controlled manner, we constructed a recombinant adenoviral vector, Adv/cre, that contained the cre recombinase gene under regulation of the herpes simplex virus thymidine kinase promoter. The efficacy and target specificity of this vector in mediating loxP-dependent recombination were analyzed in mice that had been genetically engineered to contain loxP sites in their genome. After intravenous injection of the Adv/cre vector into adult animals, the liver and spleen showed the highest infectivity of the adenovirus as well as the highest levels of recombination, whereas other tissues such as kidney, lung, and heart had lower levels of infection and recombination. Only trace levels of recombination were detected in the brain. However, when the Adv/cre vector was injected directly into specific regions of the adult brain, including the cerebral cortex, hippocampus, and cerebellum, recombination was detectable at the injection site. Furthermore, when the Adv/cre vector was injected into the forebrains of neonatal mice, the rearranged toxP locus from recombination could be detected in the injected regions for at least 8 weeks. Taken together, these results demonstrate that the Adv/cre vector expressing a functional cre protein is capable of mediating loxP-dependent recombination in various tissues and the recombined gene locus may in some cases be maintained for an extended period. The use of the adenovirus vector expressing cre combined with localized delivery to specific tissues may provide an efficient means to achieve conditional gene expression or knockout with precise spatiotemporal control

  19. Therapeutic Recombinant Monoclonal Antibodies

    ERIC Educational Resources Information Center

    Bakhtiar, Ray

    2012-01-01

    During the last two decades, the rapid growth of biotechnology-derived techniques has led to a myriad of therapeutic recombinant monoclonal antibodies with significant clinical benefits. Recombinant monoclonal antibodies can be obtained from a number of natural sources such as animal cell cultures using recombinant DNA engineering. In contrast to…

  20. Viral vectors for cancer immunotherapy.

    PubMed

    Harrop, Richard; Carroll, Miles W

    2006-01-01

    Over the last decade, immunotherapy approaches for the treatment of cancer have been investigated with renewed vigour, perhaps catalyzed by the clinical successes seen with monoclonal antibody and cytokine based therapies. The identification of tumor-associated antigens (TAAs) in multiple cancer types has enabled the development of targeted immunotherapies and allayed some of the safety concerns associated with the induction of deleterious autoimmune reactions. In addition to the TAA or therapeutic gene, the antigen delivery system is equally as important for the development of a successful cancer vaccine. One approach to induce a potent and targeted antitumor response is to use viruses to deliver the TAA to cells of the immune system. A diverse array of oncolytic viruses and recombinant viral vectors encoding numerous therapeutic genes or TAAs have been tested in pre-clinical studies and produced results which, in some cases, justify their clinical development as potential cancer immunotherapies. Within the last 5-10 years, many such recombinant vectors have made the transition from pre-clinical research to clinical development and it is these, which are given most weight in this review. PMID:16146772

  1. Photoionization and Recombination

    NASA Technical Reports Server (NTRS)

    Nahar, Sultana N.

    2000-01-01

    Theoretically self-consistent calculations for photoionization and (e + ion) recombination are described. The same eigenfunction expansion for the ion is employed in coupled channel calculations for both processes, thus ensuring consistency between cross sections and rates. The theoretical treatment of (e + ion) recombination subsumes both the non-resonant recombination ("radiative recombination"), and the resonant recombination ("di-electronic recombination") processes in a unified scheme. In addition to the total, unified recombination rates, level-specific recombination rates and photoionization cross sections are obtained for a large number of atomic levels. Both relativistic Breit-Pauli, and non-relativistic LS coupling, calculations are carried out in the close coupling approximation using the R-matrix method. Although the calculations are computationally intensive, they yield nearly all photoionization and recombination parameters needed for astrophysical photoionization models with higher precision than hitherto possible, estimated at about 10-20% from comparison with experimentally available data (including experimentally derived DR rates). Results are electronically available for over 40 atoms and ions. Photoionization and recombination of He-, and Li-like C and Fe are described for X-ray modeling. The unified method yields total and complete (e+ion) recombination rate coefficients, that can not otherwise be obtained theoretically or experimentally.

  2. The molecular basis of multiple vector insertion by gene targeting in mammalian cells.

    PubMed Central

    Ng, P; Baker, M D

    1999-01-01

    Gene targeting using sequence insertion vectors generally results in integration of one copy of the targeting vector generating a tandem duplication of the cognate chromosomal region of homology. However, occasionally the target locus is found to contain >1 copy of the integrated vector. The mechanism by which the latter recombinants arise is not known. In the present study, we investigated the molecular basis by which multiple vectors become integrated at the chromosomal immunoglobulin mu locus in a murine hybridoma. To accomplish this, specially designed insertion vectors were constructed that included six diagnostic restriction enzyme markers in the Cmu region of homology to the target chromosomal mu locus. This enabled contributions by the vector-borne and chromosomal Cmu sequences at the recombinant locus to be ascertained. Targeted recombinants were isolated and analyzed to determine the number of vector copies integrated at the chromosomal immunoglobulin mu locus. Targeted recombinants identified as bearing >1 copy of the integrated vector resulted from a Cmu triplication formed by two vector copies in tandem. Examination of the fate of the Cmu region markers suggested that this class of recombinant was generated predominantly, if not exclusively, by two targeted vector integration events, each involving insertion of a single copy of the vector. Both vector insertion events into the chromosomal mu locus were consistent with the double-strand-break repair mechanism of homologous recombination. We interpret our results, taken together, to mean that a proportion of recipient cells is in a predetermined state that is amenable to targeted but not random vector integration. PMID:10049930

  3. The uses of poxviruses as vectors.

    PubMed

    Vanderplasschen, A; Pastoret, P-P

    2003-12-01

    Poxviruses have played an amazing role in the development of virology, immunology and vaccinology. In 1796, deliberate inoculation of cowpox virus to humans was proved by Dr. Edward Jenner to protect against the antigenically related smallpox virus (variola). This discovery founded the science of immunology and eventually led to smallpox eradication from the earth in 1980 after a world wide vaccination campaign with vaccinia virus (another poxvirus). Paradoxically, despite the eradication of smallpox, there has been an explosion of interest in vaccinia virus in the eighties. This interest has stemmed in part from the application of molecular genetics to clone and express foreign genes from recombinant vaccinia virus. The use of these recombinant vaccinia viruses as efficacious in vitro expression system and live vaccine has raised concerns about their safety. The work of the scientific community of the last 20 years has contributed to improve drastically the safety of poxvirus derived vectors. Firstly, the safety of vaccinia virus has been enhanced by production of genetically attenuated strains. Secondly, alternative poxvirus vectors, such as avipoxviruses, were proved to be extremely safe and efficacious non-replicating vectors when used in non avian species. In the present chapter, the basic concepts of poxvirus biology required to assess the safety of a poxvirus derived vector are provided. The principal poxvirus vectors available to date are described in regards to their biosafety. PMID:14683453

  4. Incorporation of a lambda phage recombination system and EGFP detection to simplify mutagenesis of Herpes simplex virus bacterial artificial chromosomes

    PubMed Central

    Schmeisser, Falko; Weir, Jerry P

    2007-01-01

    Background Targeted mutagenesis of the herpesvirus genomes has been facilitated by the use of bacterial artificial chromosome (BAC) technology. Such modified genomes have potential uses in understanding viral pathogenesis, gene identification and characterization, and the development of new viral vectors and vaccines. We have previously described the construction of a herpes simplex virus 2 (HSV-2) BAC and the use of an allele replacement strategy to construct HSV-2 recombinants. While the BAC mutagenesis procedure is a powerful method to generate HSV-2 recombinants, particularly in the absence of selective marker in eukaryotic culture, the mutagenesis procedure is still difficult and cumbersome. Results Here we describe the incorporation of a phage lambda recombination system into an allele replacement vector. This strategy enables any DNA fragment containing the phage attL recombination sites to be efficiently inserted into the attR sites of the allele replacement vector using phage lambda clonase. We also describe how the incorporation of EGFP into the allele replacement vector can facilitate the selection of the desired cross-over recombinant BACs when the allele replacement reaction is a viral gene deletion. Finally, we incorporate the lambda phage recombination sites directly into an HSV-2 BAC vector for direct recombination of gene cassettes using the phage lambda clonase-driven recombination reaction. Conclusion Together, these improvements to the techniques of HSV BAC mutagenesis will facilitate the construction of recombinant herpes simplex viruses and viral vectors. PMID:17501993

  5. Permissive growth of human adenovirus type 4 vaccine strain-based vector in porcine cell lines.

    PubMed

    Gao, Dong-Sheng; Li, Xiao-Jing; Wan, Wen-Yan; Li, Hong-Jie; Wang, Xiao-Xue; Yang, Xia; Li, Yong-Tao; Chang, Hong-Tao; Chen, Lu; Wang, Chuan-Qing; Zhao, Jun

    2016-02-01

    In recent years, there has been considerable interest in using adenoviruses as live vectors to develop recombinant vaccines. Previous studies have demonstrated the safety and effectiveness of HIV/SIV and influenza vaccine candidates based on human adenovirus type 4 (Ad4) replication-competent vectors in rhesus macaque and human model. To explore the possibility of human Ad4 vaccine strain used as a vector in developing porcine vaccines, the growth properties of replication-competent human Ad4 vaccine strain recombinant encoding EGFP in different porcine cell lines were investigated. All tested cell lines are permissive for Ad4 vaccine strain vector with varied replication efficiency. Thus, human Ad4 based vectors would be promising supplement to adenovirus vectors as a delivery vehicle for recombinant vaccines in swine industry. PMID:26850542

  6. Rotations with Rodrigues' Vector

    ERIC Educational Resources Information Center

    Pina, E.

    2011-01-01

    The rotational dynamics was studied from the point of view of Rodrigues' vector. This vector is defined here by its connection with other forms of parametrization of the rotation matrix. The rotation matrix was expressed in terms of this vector. The angular velocity was computed using the components of Rodrigues' vector as coordinates. It appears…

  7. Foamy virus vectors.

    PubMed Central

    Russell, D W; Miller, A D

    1996-01-01

    Human foamy virus (HFV) is a retrovirus of the spumavirus family. We have constructed vectors based on HFV that encode neomycin phosphotransferase and alkaline phosphatase. These vectors are able to transduce a wide variety of vertebrate cells by integration of the vector genome. Unlike vectors based on murine leukemia virus, HFV vectors are not inactivated by human serum, and they transduce stationary-phase cultures more efficiently than murine leukemia virus vectors. These properties, as well as their large packaging capacity, make HFV vectors promising gene transfer vehicles. PMID:8523528

  8. Recombination of cluster ions

    NASA Technical Reports Server (NTRS)

    Johnsen, Rainer

    1993-01-01

    Some of our recent work on molecular band emissions from recombination of molecular dimer ions (N4(+) and CO(+) CO) is discussed. Much of the experimental work was done by Y. S. Cao; the results on N4(+) recombination have been published. A brief progress report is given on our ongoing measurements of neutral products of recombination using the flowing-afterglow Langmuir-probe technique in conjunction with laser-induced fluorescence.

  9. Utilization of Site-Specific Recombination in Biopharmaceutical Production

    PubMed Central

    Ahmadi, Maryam; Damavandi, Narges; Akbari, Mohammad Reza; Davami, Fatemeh

    2016-01-01

    Mammalian expression systems, due to their capacity in post-translational modification, are preferred systems for biopharmaceutical protein production. Several recombinant protein systems have been introduced to the market, most of which are under clinical development. In spite of significant improvements such as cell line engineering, introducing novel expression methods, gene silencing and process development, expression level is unpredictable and unstable because of the random location of integration in the genome. Site-specific recombination techniques are capable of producing stable and high producer clonal cells; therefore, they are gaining more importance in the biopharmaceutical production. Site-specific recombination methods increase the recombinant protein production by specifically inserting a vector at a locus with specific expression trait. The present review focused on the latest developments in site-specific recombination techniques, their specific features and comparisons. PMID:26602035

  10. Production and secretion of recombinant proteins in Dictyostelium discoideum.

    PubMed

    Dittrich, W; Williams, K L; Slade, M B

    1994-06-01

    We have expressed useful amounts of three recombinant proteins in a new eukaryotic host/vector system. The cellular slime mold Dictyostelium discoideum efficiently secreted two recombinant products, a soluble form of the normally cell surface associated D. discoideum glycoprotein (PsA) and the heterologous protein glutathione-S-transferase (GST) from Schistosoma japonicum, while the enzyme beta-glucuronidase (GUS) from Escherichia coli was cell associated. Up to 20mg/l of recombinant PsA and 1mg/l of GST were obtained after purification from a standard, peptone based growth medium. The secretion signal peptide was correctly cleaved from the recombinant GST- and PsA-proteins and the expression of recombinant PsA was shown to be stable for at least one hundred generations in the absence of selection. PMID:7764951

  11. Recombination in electron coolers

    NASA Astrophysics Data System (ADS)

    Wolf, A.; Gwinner, G.; Linkemann, J.; Saghiri, A. A.; Schmitt, M.; Schwalm, D.; Grieser, M.; Beutelspacher, M.; Bartsch, T.; Brandau, C.; Hoffknecht, A.; Müller, A.; Schippers, S.; Uwira, O.; Savin, D. W.

    2000-02-01

    An introduction to electron-ion recombination processes is given and recent measurements are described as examples, focusing on low collision energies. Discussed in particular are fine-structure-mediated dielectronic recombination of fluorine-like ions, the moderate recombination enhancement by factors of typically 1.5-4 found for most ion species at relative electron-ion energies below about 10 meV, and the much larger enhancement occurring for specific highly charged ions of complex electronic structure, apparently caused by low-energy dielectronic recombination resonances. Recent experiments revealing dielectronic resonances with very large natural width are also described.

  12. Genetic recombination. [Escherichia coli

    SciTech Connect

    Stahl, F.W.

    1987-02-01

    The molecular pathways of gene recombination are explored and compared in studies of the model organisms, Escherichia coli and phase lambda. In the discussion of data from these studies it seems that recombination varies with the genetic idiosyncrasies of the organism and may also vary within a single organism.

  13. Virus-Vectored Influenza Virus Vaccines

    PubMed Central

    Tripp, Ralph A.; Tompkins, S. Mark

    2014-01-01

    Despite the availability of an inactivated vaccine that has been licensed for >50 years, the influenza virus continues to cause morbidity and mortality worldwide. Constant evolution of circulating influenza virus strains and the emergence of new strains diminishes the effectiveness of annual vaccines that rely on a match with circulating influenza strains. Thus, there is a continued need for new, efficacious vaccines conferring cross-clade protection to avoid the need for biannual reformulation of seasonal influenza vaccines. Recombinant virus-vectored vaccines are an appealing alternative to classical inactivated vaccines because virus vectors enable native expression of influenza antigens, even from virulent influenza viruses, while expressed in the context of the vector that can improve immunogenicity. In addition, a vectored vaccine often enables delivery of the vaccine to sites of inductive immunity such as the respiratory tract enabling protection from influenza virus infection. Moreover, the ability to readily manipulate virus vectors to produce novel influenza vaccines may provide the quickest path toward a universal vaccine protecting against all influenza viruses. This review will discuss experimental virus-vectored vaccines for use in humans, comparing them to licensed vaccines and the hurdles faced for licensure of these next-generation influenza virus vaccines. PMID:25105278

  14. Vectored vaccines to protect against PRRSV.

    PubMed

    Cruz, Jazmina L G; Zúñiga, Sonia; Bécares, Martina; Sola, Isabel; Ceriani, Juan E; Juanola, Sandra; Plana, Juan; Enjuanes, Luis

    2010-12-01

    PRRSV is the causative agent of the most important infectious disease affecting swine herds worldwide, producing great economic losses. Commercially available vaccines are only partially effective in protection against PRRSV. Moreover, modified live vaccines may allow virus shedding, and could revert generating virulent phenotypes. Therefore, new efficient vaccines are required. Vaccines based on recombinant virus genomes (virus vectored vaccines) against PRRSV could represent a safe alternative for the generation of modified live vaccines. In this paper, current vectored vaccines to protect against PRRSV are revised, including those based on pseudorabies virus, poxvirus, adenovirus, and virus replicons. Special attention has been provided to the use of transmissible gastroenteritis virus (TGEV) as vector for the expression of PRRSV antigens. This vector has the capability of expressing high levels of heterologous genes, is a potent interferon-α inducer, and presents antigens in mucosal surfaces, eliciting both secretory and systemic immunity. A TGEV derived vector (rTGEV) was generated, expressing PRRSV wild type or modified GP5 and M proteins, described as the main inducers of neutralizing antibodies and cellular immune response, respectively. Protection experiments showed that vaccinated animals developed a faster and stronger humoral immune response than the non-vaccinated ones. Partial protection in challenged animals was observed, as vaccinated pigs showed decreased lung damage when compared with the non-vaccinated ones. Nevertheless, the level of neutralizing antibodies was low, what may explain the limited protection observed. Several strategies are proposed to improve current rTGEV vectors expressing PRRSV antigens. PMID:20600388

  15. Reduced Vector Preisach Model

    NASA Technical Reports Server (NTRS)

    Patel, Umesh D.; Torre, Edward Della; Day, John H. (Technical Monitor)

    2002-01-01

    A new vector Preisach model, called the Reduced Vector Preisach model (RVPM), was developed for fast computations. This model, derived from the Simplified Vector Preisach model (SVPM), has individual components that like the SVPM are calculated independently using coupled selection rules for the state vector computation. However, the RVPM does not require the rotational correction. Therefore, it provides a practical alternative for computing the magnetic susceptibility using a differential approach. A vector version, using the framework of the DOK model, is implemented. Simulation results for the reduced vector Preisach model are also presented.

  16. Non-replicating expression vectors: applications in vaccine development and gene therapy

    PubMed Central

    Limbach, K. J.; Paoletti, E.

    1996-01-01

    This review presents experimental, preclinical and clinical data illustrating the multiple uses of recombinant non-replicating virus vectors in the fields of immunoprophylaxis and gene therapy. PMID:8666067

  17. Cyanobacterium sp. host cell and vector for production of chemical compounds in cyanobacterial cultures

    DOEpatents

    Piven, Irina; Friedrich, Alexandra; Duhring, Ulf; Uliczka, Frank; Baier, Kerstin; Inaba, Masami; Shi, Tuo; Wang, Kui; Enke, Heike; Kramer, Dan

    2014-09-30

    A cyanobacterial host cell, Cyanobacterium sp., that harbors at least one recombinant gene for the production of a chemical compounds is provided, as well as vectors derived from an endogenous plasmid isolated from the cell.

  18. Cyanobacterium sp. host cell and vector for production of chemical compounds in Cyanobacterial cultures

    DOEpatents

    Piven, Irina; Friedrich, Alexandra; Duhring, Ulf; Uliczka, Frank; Baier, Kerstin; Inaba, Masami; Shi, Tuo; Wang, Kui; Enke, Heike; Kramer, Dan

    2016-04-19

    A cyanobacterial host cell, Cyanobacterium sp., that harbors at least one recombinant gene for the production of a chemical compounds is provided, as well as vectors derived from an endogenous plasmid isolated from the cell.

  19. Understanding Singular Vectors

    ERIC Educational Resources Information Center

    James, David; Botteron, Cynthia

    2013-01-01

    matrix yields a surprisingly simple, heuristical approximation to its singular vectors. There are correspondingly good approximations to the singular values. Such rules of thumb provide an intuitive interpretation of the singular vectors that helps explain why the SVD is so…

  20. The vector ruling protractor

    NASA Technical Reports Server (NTRS)

    Zahm, A F

    1924-01-01

    The theory, structure and working of a vector slide rule is presented in this report. This instrument is used for determining a vector in magnitude and position when given its components and its moment about a point in their plane.

  1. Recombinant lentivector as a genetic immunization vehicle for antitumor immunity

    PubMed Central

    He, Yukai; Munn, David; Falo, Louis D

    2011-01-01

    Summary Encouraged by remarkable successes in preventing infectious diseases and by the well established potential of immune system for controlling tumor growth, active therapeutic immunization approaches hold great promise for treating malignant tumors. In recent years, engineered recombinant viral vectors have been carefully examined as genetic immunization vehicles and have been demonstrated to induce potent T cell mediated immune responses that can control tumor growth. Very recent efforts suggest that lentivectors possess important advantages over other candidate recombinant viral vectors for genetic immunization. Here we review the development of recombinant lentivectors and the characteristics of T cell immune responses elicited by lentivector immunization, including the mechanism of T cell priming with a focus on the role of skin dendritic cells (DC) and potential applications for tumor immunotherapy. PMID:18377355

  2. Systems and methods for the secretion of recombinant proteins in gram negative bacteria

    DOEpatents

    Withers, III, Sydnor T.; Dominguez, Miguel A; DeLisa, Matthew P.; Haitjema, Charles H.

    2016-08-09

    Disclosed herein are systems and methods for producing recombinant proteins utilizing mutant E. coli strains containing expression vectors carrying nucleic acids encoding the proteins, and secretory signal sequences to direct the secretion of the proteins to the culture medium. Host cells transformed with the expression vectors are also provided.

  3. Rhotrix Vector Spaces

    ERIC Educational Resources Information Center

    Aminu, Abdulhadi

    2010-01-01

    By rhotrix we understand an object that lies in some way between (n x n)-dimensional matrices and (2n - 1) x (2n - 1)-dimensional matrices. Representation of vectors in rhotrices is different from the representation of vectors in matrices. A number of vector spaces in matrices and their properties are known. On the other hand, little seems to be…

  4. MATRIX AND VECTOR SERVICES

    Energy Science and Technology Software Center (ESTSC)

    2001-10-18

    PETRA V2 provides matrix and vector services and the ability construct, query, and use matrix and vector objects that are used and computed by TRILINOS solvers. It provides all basic matr5ix and vector operations for solvers in TRILINOS.

  5. Restart 68000 vector remapping

    SciTech Connect

    Gustin, J.

    1984-05-03

    The circuit described allows power-on-reset (POR) vector fetch from ROM for a 68000 microprocessor. It offers programmability of exception vectors, including the restart vector. This method eliminates the need for high-resolution, address-decoder peripheral circuitry.

  6. Insulated Foamy Viral Vectors.

    PubMed

    Browning, Diana L; Collins, Casey P; Hocum, Jonah D; Leap, David J; Rae, Dustin T; Trobridge, Grant D

    2016-03-01

    Retroviral vector-mediated gene therapy is promising, but genotoxicity has limited its use in the clinic. Genotoxicity is highly dependent on the retroviral vector used, and foamy viral (FV) vectors appear relatively safe. However, internal promoters may still potentially activate nearby genes. We developed insulated FV vectors, using four previously described insulators: a version of the well-studied chicken hypersensitivity site 4 insulator (650cHS4), two synthetic CCCTC-binding factor (CTCF)-based insulators, and an insulator based on the CCAAT box-binding transcription factor/nuclear factor I (7xCTF/NF1). We directly compared these insulators for enhancer-blocking activity, effect on FV vector titer, and fidelity of transfer to both proviral long terminal repeats. The synthetic CTCF-based insulators had the strongest insulating activity, but reduced titers significantly. The 7xCTF/NF1 insulator did not reduce titers but had weak insulating activity. The 650cHS4-insulated FV vector was identified as the overall most promising vector. Uninsulated and 650cHS4-insulated FV vectors were both significantly less genotoxic than gammaretroviral vectors. Integration sites were evaluated in cord blood CD34(+) cells and the 650cHS4-insulated FV vector had fewer hotspots compared with an uninsulated FV vector. These data suggest that insulated FV vectors are promising for hematopoietic stem cell gene therapy. PMID:26715244

  7. Recombineering BAC transgenes for protein tagging.

    PubMed

    Ciotta, Giovanni; Hofemeister, Helmut; Maresca, Marcello; Fu, Jun; Sarov, Mihail; Anastassiadis, Konstantinos; Stewart, A Francis

    2011-02-01

    Protein tagging offers many advantages for proteomic and regulomic research, particularly due to the use of generic and highly sensitive methods that can be applied with reasonable throughput. Ideally, protein tagging is equivalent to having a high affinity antibody for every chosen protein. However, these advantages are compromised if the tagged protein is overexpressed, which is usually the case from cDNA expression vectors. BAC (bacterial artificial chromosome) transgenes present a way to express a chosen protein at physiological levels with all regulatory elements in their native configurations, including cell cycle, alternative splicing and microRNA regulation. Recombineering has become the method of choice for modifying large constructs like BACs. Here, we present a method for protein tagging by recombineering BACs, transfecting cells and evaluating tagged protein expression. PMID:20868752

  8. [Recombinant antibodies against bioweapons].

    PubMed

    Thullier, Philippe; Pelat, Thibaut; Vidal, Dominique

    2009-12-01

    The threat posed by bioweapons (BW) could lead to the re-emergence of such deadly diseases as plague or smallpox, now eradicated from industrialized countries. The development of recombinant antibodies allows tackling this risk because these recombinant molecules are generally well tolerated in human medicine, may be utilized for prophylaxis and treatment, and because antibodies neutralize many BW. Recombinant antibodies neutralizing the lethal toxin of anthrax, botulinum toxins and the smallpox virus have in particular been isolated recently, with different technologies. Our approach, which uses phage-displayed immune libraries built from non-human primates (M. fascicularis) to obtain recombinant antibodies, which may later be super-humanized (germlinized), has allowed us to obtain such BWs-neutralizing antibodies. PMID:20035695

  9. Covariantized vector Galileons

    NASA Astrophysics Data System (ADS)

    Hull, Matthew; Koyama, Kazuya; Tasinato, Gianmassimo

    2016-03-01

    Vector Galileons are ghost-free systems containing higher derivative interactions of vector fields. They break the vector gauge symmetry, and the dynamics of the longitudinal vector polarizations acquire a Galileon symmetry in an appropriate decoupling limit in Minkowski space. Using an Arnowitt-Deser-Misner approach, we carefully reconsider the coupling with gravity of vector Galileons, with the aim of studying the necessary conditions to avoid the propagation of ghosts. We develop arguments that put on a more solid footing the results previously obtained in the literature. Moreover, working in analogy with the scalar counterpart, we find indications for the existence of a "beyond Horndeski" theory involving vector degrees of freedom that avoids the propagation of ghosts thanks to secondary constraints. In addition, we analyze a Higgs mechanism for generating vector Galileons through spontaneous symmetry breaking, and we present its consistent covariantization.

  10. Activated recombinant adenovirus proteinases

    DOEpatents

    Anderson, C.W.; Mangel, W.F.

    1999-08-10

    This application describes methods and expression constructs for producing activatable recombinant adenovirus proteinases. Purified activatable recombinant adenovirus proteinases and methods of purification are described. Activated adenovirus proteinases and methods for obtaining activated adenovirus proteinases are further included. Isolated peptide cofactors of adenovirus proteinase activity, methods of purifying and identifying peptide cofactors are also described. Antibodies immunoreactive with adenovirus proteinases, immunospecific antibodies, and methods for preparing them are also described. Other related methods and materials are also described. 29 figs.