Science.gov

Sample records for creating intelligent recharging

  1. Instruction: Does It Mean Creating Intelligence?

    ERIC Educational Resources Information Center

    Brethower, Dale

    1990-01-01

    Argues that the mission of the university is to create intelligence. Defines intelligence, discusses research on cognitive processes of learning, and discusses obstacles to using the demonstrate-label-coach-mastery strategy emphasizing the value of the clinical approach used to teach seven specific skills. Presents a classroom illustration of this…

  2. Recharge

    SciTech Connect

    Fayer, Michael J.

    2008-01-17

    This chapter describes briefly the nature and measurement of recharge in support of the CH2M HILL Tank Farm Vadose Zone Project. Appendix C (Recharge) and the Recharge Data Package (Fayer and Keller 2007) provide a more thorough and extensive review of the recharge process and the estimation of recharge rates for the forthcoming RCRA Facility Investigation report for Hanford single-shell tank (SST) Waste Management Areas (WMAs).

  3. Creating Business Intelligence from Course Management Systems

    ERIC Educational Resources Information Center

    van Dyk, Liezl; Conradie, Pieter

    2007-01-01

    Purpose: This article seeks to address the interface between individual learning facilitators that use course management systems (CMS) data to support decision-making and course design and institutional infrastructure providers that are responsible for institutional business intelligence. Design/methodology/approach: The design of a data warehouse…

  4. The 15 TH annual intelligent ground vehicle competition: intelligent ground robots created by intelligent students

    NASA Astrophysics Data System (ADS)

    Theisen, Bernard L.

    2007-09-01

    The Intelligent Ground Vehicle Competition (IGVC) is one of three, unmanned systems, student competitions that were founded by the Association for Unmanned Vehicle Systems International (AUVSI) in the 1990s. The IGVC is a multidisciplinary exercise in product realization that challenges college engineering student teams to integrate advanced control theory, machine vision, vehicular electronics, and mobile platform fundamentals to design and build an unmanned system. Teams from around the world focus on developing a suite of dual-use technologies to equip ground vehicles of the future with intelligent driving capabilities. Over the past 15 years, the competition has challenged undergraduate, graduate and Ph.D. students with real world applications in intelligent transportation systems, the military and manufacturing automation. To date, teams from over 50 universities and colleges have participated. This paper describes some of the applications of the technologies required by this competition and discusses the educational benefits. The primary goal of the IGVC is to advance engineering education in intelligent vehicles and related technologies. The employment and professional networking opportunities created for students and industrial sponsors through a series of technical events over the four-day competition are highlighted. Finally, an assessment of the competition based on participation is presented.

  5. The 13 th Annual Intelligent Ground Vehicle Competition: intelligent ground vehicles created by intelligent teams

    NASA Astrophysics Data System (ADS)

    Theisen, Bernard L.

    2005-10-01

    The Intelligent Ground Vehicle Competition (IGVC) is one of three, unmanned systems, student competitions that were founded by the Association for Unmanned Vehicle Systems International (AUVSI) in the 1990s. The IGVC is a multidisciplinary exercise in product realization that challenges college engineering student teams to integrate advanced control theory, machine vision, vehicular electronics, and mobile platform fundamentals to design and build an unmanned system. Teams from around the world focus on developing a suite of dual-use technologies to equip ground vehicles of the future with intelligent driving capabilities. Over the past 13 years, the competition has challenged undergraduate, graduate and Ph.D. students with real world applications in intelligent transportation systems, the military and manufacturing automation. To date, teams from over 50 universities and colleges have participated. This paper describes some of the applications of the technologies required by this competition and discusses the educational benefits. The primary goal of the IGVC is to advance engineering education in intelligent vehicles and related technologies. The employment and professional networking opportunities created for students and industrial sponsors through a series of technical events over the three-day competition are highlighted. Finally, an assessment of the competition based on participant feedback is presented.

  6. The 16th annual intelligent ground vehicle competition: intelligent students creating intelligent vehicles

    NASA Astrophysics Data System (ADS)

    Theisen, Bernard L.

    2009-01-01

    The Intelligent Ground Vehicle Competition (IGVC) is one of three, unmanned systems, student competitions that were founded by the Association for Unmanned Vehicle Systems International (AUVSI) in the 1990s. The IGVC is a multidisciplinary exercise in product realization that challenges college engineering student teams to integrate advanced control theory, machine vision, vehicular electronics and mobile platform fundamentals to design and build an unmanned system. Teams from around the world focus on developing a suite of dual-use technologies to equip ground vehicles of the future with intelligent driving capabilities. Over the past 16 years, the competition has challenged undergraduate, graduate and Ph.D. students with real world applications in intelligent transportation systems, the military and manufacturing automation. To date, teams from nearly 70 universities and colleges have participated. This paper describes some of the applications of the technologies required by this competition and discusses the educational benefits. The primary goal of the IGVC is to advance engineering education in intelligent vehicles and related technologies. The employment and professional networking opportunities created for students and industrial sponsors through a series of technical events over the four-day competition are highlighted. Finally, an assessment of the competition based on participation is presented.

  7. The 14 TH Annual Intelligent Ground Vehicle Competition: intelligent teams creating intelligent ground robots

    NASA Astrophysics Data System (ADS)

    Theisen, Bernard L.; Nguyen, Dmitri

    2006-10-01

    The Intelligent Ground Vehicle Competition (IGVC) is one of three, unmanned systems, student competitions that were founded by the Association for Unmanned Vehicle Systems International (AUVSI) in the 1990s. The IGVC is a multidisciplinary exercise in product realization that challenges college engineering student teams to integrate advanced control theory, machine vision, vehicular electronics, and mobile platform fundamentals to design and build an unmanned system. Teams from around the world focus on developing a suite of dual-use technologies to equip ground vehicles of the future with intelligent driving capabilities. Over the past 14 years, the competition has challenged undergraduate, graduate and Ph.D. students with real world applications in intelligent transportation systems, the military and manufacturing automation. To date, teams from over 50 universities and colleges have participated. This paper describes some of the applications of the technologies required by this competition and discusses the educational benefits. The primary goal of the IGVC is to advance engineering education in intelligent vehicles and related technologies. The employment and professional networking opportunities created for students and industrial sponsors through a series of technical events over the three-day competition are highlighted. Finally, an assessment of the competition based on participant feedback is presented.

  8. Creating "Intelligent" Ensemble Averages Using a Process-Based Framework

    NASA Astrophysics Data System (ADS)

    Baker, Noel; Taylor, Patrick

    2014-05-01

    The CMIP5 archive contains future climate projections from over 50 models provided by dozens of modeling centers from around the world. Individual model projections, however, are subject to biases created by structural model uncertainties. As a result, ensemble averaging of multiple models is used to add value to individual model projections and construct a consensus projection. Previous reports for the IPCC establish climate change projections based on an equal-weighted average of all model projections. However, individual models reproduce certain climate processes better than other models. Should models be weighted based on performance? Unequal ensemble averages have previously been constructed using a variety of mean state metrics. What metrics are most relevant for constraining future climate projections? This project develops a framework for systematically testing metrics in models to identify optimal metrics for unequal weighting multi-model ensembles. The intention is to produce improved ("intelligent") unequal-weight ensemble averages. A unique aspect of this project is the construction and testing of climate process-based model evaluation metrics. A climate process-based metric is defined as a metric based on the relationship between two physically related climate variables—e.g., outgoing longwave radiation and surface temperature. Several climate process metrics are constructed using high-quality Earth radiation budget data from NASA's Clouds and Earth's Radiant Energy System (CERES) instrument in combination with surface temperature data sets. It is found that regional values of tested quantities can vary significantly when comparing the equal-weighted ensemble average and an ensemble weighted using the process-based metric. Additionally, this study investigates the dependence of the metric weighting scheme on the climate state using a combination of model simulations including a non-forced preindustrial control experiment, historical simulations, and

  9. Creating Value: Unifying Silos into Public Health Business Intelligence

    PubMed Central

    Davidson, Arthur J.

    2014-01-01

    Introduction: Through September 2014, federal investments in health information technology have been unprecedented, with more than 25 billion dollars in incentive funds distributed to eligible hospitals and providers. Over 85 percent of eligible United States hospitals and 60 percent of eligible providers have used certified electronic health record (EHR) technology and received Meaningful Use incentive funds (HITECH Act1). Technology: Certified EHR technology could create new public health (PH) value through novel and rapidly evolving data-use opportunities, never before experienced by PH. The long-standing “silo” approach to funding has fragmented PH programs and departments,2 but the components for integrated business intelligence (i.e., tools and applications to help users make informed decisions) and maximally reuse data are available now. Systems: Challenges faced by PH agencies on the road to integration are plentiful, but an emphasis on PH systems and services research (PHSSR) may identify gaps and solutions for the PH community to address. Conclusion: Technology and system approaches to leverage this information explosion to support a transformed health care system and population health are proposed. By optimizing this information opportunity, PH can play a greater role in the learning health system. PMID:25995989

  10. Development of a Control Optimization System for Real Time Monitoring of Managed Aquifer Recharge and Recovery Systems Using Intelligent Sensors

    NASA Astrophysics Data System (ADS)

    Smits, K. M.; Drumheller, Z. W.; Lee, J. H.; Illangasekare, T. H.; Regnery, J.; Kitanidis, P. K.

    2015-12-01

    Aquifers around the world show troubling signs of irreversible depletion and seawater intrusion as climate change, population growth, and urbanization lead to reduced natural recharge rates and overuse. Scientists and engineers have begun to revisit the technology of managed aquifer recharge and recovery (MAR) as a means to increase the reliability of the diminishing and increasingly variable groundwater supply. Unfortunately, MAR systems remain wrought with operational challenges related to the quality and quantity of recharged and recovered water stemming from a lack of data-driven, real-time control. This research seeks to develop and validate a general simulation-based control optimization algorithm that relies on real-time data collected though embedded sensors that can be used to ease the operational challenges of MAR facilities. Experiments to validate the control algorithm were conducted at the laboratory scale in a two-dimensional synthetic aquifer under both homogeneous and heterogeneous packing configurations. The synthetic aquifer used well characterized technical sands and the electrical conductivity signal of an inorganic conservative tracer as a surrogate measure for water quality. The synthetic aquifer was outfitted with an array of sensors and an autonomous pumping system. Experimental results verified the feasibility of the approach and suggested that the system can improve the operation of MAR facilities. The dynamic parameter inversion reduced the average error between the simulated and observed pressures between 12.5 and 71.4%. The control optimization algorithm ran smoothly and generated optimal control decisions. Overall, results suggest that with some improvements to the inversion and interpolation algorithms, which can be further advanced through testing with laboratory experiments using sensors, the concept can successfully improve the operation of MAR facilities.

  11. Intelligence.

    PubMed

    Deary, Ian J

    2012-01-01

    Individual differences in human intelligence are of interest to a wide range of psychologists and to many people outside the discipline. This overview of contributions to intelligence research covers the first decade of the twenty-first century. There is a survey of some of the major books that appeared since 2000, at different levels of expertise and from different points of view. Contributions to the phenotype of intelligence differences are discussed, as well as some contributions to causes and consequences of intelligence differences. The major causal issues covered concern the environment and genetics, and how intelligence differences are being mapped to brain differences. The major outcomes discussed are health, education, and socioeconomic status. Aging and intelligence are discussed, as are sex differences in intelligence and whether twins and singletons differ in intelligence. More generally, the degree to which intelligence has become a part of broader research in neuroscience, health, and social science is discussed. PMID:21943169

  12. A Vision for the Future of Environmental Research: Creating Environmental Intelligence Centers

    NASA Astrophysics Data System (ADS)

    Barron, E. J.

    2002-12-01

    being in the context of global, national and regional stewardship. These societal needs lead to a vision that uses a regional framework as a stepping-stone to a comprehensive national or global capability. The development of a comprehensive regional framework depends on a new approach to environmental research - the creation of regional Environmental Intelligence Centers. A key objective is to bring a demanding level of discipline to "forecasting" in a broad arena of environmental issues. The regional vision described above is designed to address a broad range of current and future environmental issues by creating a capability based on integrating diverse observing systems, making data readily accessible, developing an increasingly comprehensive predictive capability at the spatial and temporal scales appropriate for examining societal issues, and creating a vigorous intersection with decision-makers. With demonstrated success over a few large-scale regions of the U.S., this strategy will very likely grow into a national capability that far exceeds current capabilities.

  13. An Architecture and Methodology for Creating a Domain-Independent, Plan-Based Intelligent Tutoring System.

    ERIC Educational Resources Information Center

    Vassileva, Julita

    1990-01-01

    Discusses the structure of intelligent tutoring systems (ITSs) and describes the development of a new structure for ITSs that is not domain dependent and is more readily adaptable by individual teachers. Pedagogical rules that help decide how much student control versus how much teacher control is present in the system are discussed. (14…

  14. Intelligence.

    PubMed

    Sternberg, Robert J

    2012-09-01

    Intelligence is the ability to learn from past experience and, in general, to adapt to, shape, and select environments. Aspects of intelligence are measured by standardized tests of intelligence. Average raw (number-correct) scores on such tests vary across the life span and also across generations, as well as across ethnic and socioeconomic groups. Intelligence can be understood in part in terms of the biology of the brain-especially with regard to the functioning in the prefrontal cortex. Measured values correlate with brain size, at least within humans. The heritability coefficient (ratio of genetic to phenotypic variation) is between 0.4 and 0.8. But genes always express themselves through environment. Heritability varies as a function of a number of factors, including socioeconomic status and range of environments. Racial-group differences in measured intelligence have been reported, but race is a socially constructed rather than biological variable. As a result, these differences are difficult to interpret. Different cultures have different conceptions of the nature of intelligence, and also require different skills in order to express intelligence in the environment. WIREs Cogn Sci 2012 doi: 10.1002/wcs.1193 For further resources related to this article, please visit the WIREs website. PMID:26302705

  15. Intelligence

    PubMed Central

    Sternberg, Robert J.

    2012-01-01

    Intelligence is the ability to learn from experience and to adapt to, shape, and select environments. Intelligence as measured by (raw scores on) conventional standardized tests varies across the lifespan, and also across generations. Intelligence can be understood in part in terms of the biology of the brain—especially with regard to the functioning in the prefrontal cortex—and also correlates with brain size, at least within humans. Studies of the effects of genes and environment suggest that the heritability coefficient (ratio of genetic to phenotypic variation) is between .4 and .8, although heritability varies as a function of socioeconomic status and other factors. Racial differences in measured intelligence have been observed, but race is a socially constructed rather than biological variable, so such differences are difficult to interpret. PMID:22577301

  16. Intelligence.

    PubMed

    Sternberg, Robert J

    2012-03-01

    Intelligence is the ability to learn from experience and to adapt to, shape, and select environments. Intelligence as measured by (raw scores on) conventional standardized tests varies across the lifespan, and also across generations. Intelligence can be understood in part in terms of the biology of the brain-especially with regard to the functioning in the prefrontal cortex-and also correlates with brain size, at least within humans. Studies of the effects of genes and environment suggest that the heritability coefficient (ratio of genetic to phenotypic variation) is between .4 and .8, although heritability varies as a function of socioeconomic status and other factors. Racial differences in measured intelligence have been observed, but race is a socially constructed rather than biological variable, so such differences are difficult to interpret. PMID:22577301

  17. Creating "Intelligent" Climate Model Ensemble Averages Using a Process-Based Framework

    NASA Astrophysics Data System (ADS)

    Baker, N. C.; Taylor, P. C.

    2014-12-01

    The CMIP5 archive contains future climate projections from over 50 models provided by dozens of modeling centers from around the world. Individual model projections, however, are subject to biases created by structural model uncertainties. As a result, ensemble averaging of multiple models is often used to add value to model projections: consensus projections have been shown to consistently outperform individual models. Previous reports for the IPCC establish climate change projections based on an equal-weighted average of all model projections. However, certain models reproduce climate processes better than other models. Should models be weighted based on performance? Unequal ensemble averages have previously been constructed using a variety of mean state metrics. What metrics are most relevant for constraining future climate projections? This project develops a framework for systematically testing metrics in models to identify optimal metrics for unequal weighting multi-model ensembles. A unique aspect of this project is the construction and testing of climate process-based model evaluation metrics. A climate process-based metric is defined as a metric based on the relationship between two physically related climate variables—e.g., outgoing longwave radiation and surface temperature. Metrics are constructed using high-quality Earth radiation budget data from NASA's Clouds and Earth's Radiant Energy System (CERES) instrument and surface temperature data sets. It is found that regional values of tested quantities can vary significantly when comparing weighted and unweighted model ensembles. For example, one tested metric weights the ensemble by how well models reproduce the time-series probability distribution of the cloud forcing component of reflected shortwave radiation. The weighted ensemble for this metric indicates lower simulated precipitation (up to .7 mm/day) in tropical regions than the unweighted ensemble: since CMIP5 models have been shown to

  18. Functional materials for rechargeable batteries.

    PubMed

    Cheng, Fangyi; Liang, Jing; Tao, Zhanliang; Chen, Jun

    2011-04-19

    There is an ever-growing demand for rechargeable batteries with reversible and efficient electrochemical energy storage and conversion. Rechargeable batteries cover applications in many fields, which include portable electronic consumer devices, electric vehicles, and large-scale electricity storage in smart or intelligent grids. The performance of rechargeable batteries depends essentially on the thermodynamics and kinetics of the electrochemical reactions involved in the components (i.e., the anode, cathode, electrolyte, and separator) of the cells. During the past decade, extensive efforts have been dedicated to developing advanced batteries with large capacity, high energy and power density, high safety, long cycle life, fast response, and low cost. Here, recent progress in functional materials applied in the currently prevailing rechargeable lithium-ion, nickel-metal hydride, lead acid, vanadium redox flow, and sodium-sulfur batteries is reviewed. The focus is on research activities toward the ionic, atomic, or molecular diffusion and transport; electron transfer; surface/interface structure optimization; the regulation of the electrochemical reactions; and the key materials and devices for rechargeable batteries. PMID:21394791

  19. Distributed Intelligence.

    ERIC Educational Resources Information Center

    McLagan, Patricia A.

    2003-01-01

    Distributed intelligence occurs when people in an organization take responsibility for creating innovations, solving problems, and making decisions. Organizations that have it excel in their markets and the global environment. (Author/JOW)

  20. Appendix C: Recharge

    SciTech Connect

    Fayer, Michael J.; Keller, Jason M.

    2008-01-17

    This appendix provides estimates of recharge rates for the soil and vegetation conditions in and around the single-shell tank (SST) waste management areas (WMAs). The purpose is to combine published data with recent information to provide the most current recharge estimates. Recharge rates were estimated for areas that remain natural and undisturbed, areas where the vegetation has been disturbed, areas where both the vegetation and the soil have been disturbed, and areas that are engineered (e.g., surface barrier). Methods used include lysimetry, tracers, and simuations. This appendix summarizes the information in the recharge data package for the SST Waste Management Areas), which builds upon previous reports on the Hanford vadose zone data and Integrated Disposal Facility recharge with information available after those reports were published, including field measurements and simulations using weather data through 2006.

  1. The Exxon rechargeable cells. [solar rechargeable clocks

    NASA Technical Reports Server (NTRS)

    Malachesky, P. A.

    1980-01-01

    The design and performance of ambient temperature secondary cells based on the titanium disulfide cathode are discussed. These limited performance products were developed for microelectronic applications such as solar rechargeable watches and clocks which require low drain rate and do not require many deep cycles.

  2. Estimating groundwater recharge

    USGS Publications Warehouse

    Stonestrom, David A.

    2011-01-01

    Groundwater recharge is the entry of fresh water into the saturated portion of the subsurface part of the hydrologic cycle, the modifier "saturated" indicating that the pressure of the pore water is greater than atmospheric.

  3. Intelligence: Real or artificial?

    PubMed Central

    Schlinger, Henry D.

    1992-01-01

    Throughout the history of the artificial intelligence movement, researchers have strived to create computers that could simulate general human intelligence. This paper argues that workers in artificial intelligence have failed to achieve this goal because they adopted the wrong model of human behavior and intelligence, namely a cognitive essentialist model with origins in the traditional philosophies of natural intelligence. An analysis of the word “intelligence” suggests that it originally referred to behavior-environment relations and not to inferred internal structures and processes. It is concluded that if workers in artificial intelligence are to succeed in their general goal, then they must design machines that are adaptive, that is, that can learn. Thus, artificial intelligence researchers must discard their essentialist model of natural intelligence and adopt a selectionist model instead. Such a strategic change should lead them to the science of behavior analysis. PMID:22477051

  4. Advances of aqueous rechargeable lithium-ion battery: A review

    NASA Astrophysics Data System (ADS)

    Alias, Nurhaswani; Mohamad, Ahmad Azmin

    2015-01-01

    The electrochemical characteristic of the aqueous rechargeable lithium-ion battery has been widely investigated in efforts to design a green and safe technology that can provide a highly specific capacity, high efficiency and long life for high power applications such as the smart grid and electric vehicle. It is believed that the advantages of this battery will overcome the limitations of the rechargeable lithium-ion battery with organic electrolytes that comprise safety and create high fabrication cost issues. This review focuses on the opportunities of the aqueous rechargeable lithium-ion battery compared to the conventional rechargeable lithium-ion battery with organic-based electrolytes. Previously reported studies are briefly summarised, together with the presentation of new findings based on the conductivity, morphology, electrochemical performance and cycling stability results. The factors that influence the electrochemical performance, the challenges and potential of the aqueous rechargeable lithium-ion battery are highlighted in order to understand and maintained the excellent battery performance.

  5. Rechargeable hybrid aqueous batteries

    NASA Astrophysics Data System (ADS)

    Yan, Jing; Wang, Jing; Liu, Hao; Bakenov, Zhumabay; Gosselink, Denise; Chen, P.

    2012-10-01

    A new aqueous rechargeable battery combining an intercalation cathode with a metal (first order electrode) anode has been developed. The concept is demonstrated using LiMn2O4 and zinc metal electrodes in an aqueous electrolyte containing two electrochemically active ions (Li+ and Zn2+). The battery operates at about 2 V and preliminarily tests show excellent cycling performance, with about 90% initial capacity retention over 1000 charge-discharge cycles. Use of cation-doped LiMn2O4 cathode further improves the cyclability of the system, which reaches 95% capacity retention after 4000 cycles. The energy density for a prototype battery, estimated at 50-80 Wh kg-1, is comparable or superior to commercial 2 V rechargeable batteries. The combined performance attributes of this new rechargeable aqueous battery indicate that it constitutes a viable alternative to commercial lead-acid system and for large scale energy storage application.

  6. Recharging Batteries Chemically

    NASA Technical Reports Server (NTRS)

    Williams, R. M.; Rowlette, J.; Graf, J.

    1985-01-01

    Iron/air batteries recharged chemically by solution of strong base in alcohol or by basic alcohol solution of reducing agent. Although method still experimental, it has potential for batteries in electric automobiles or as energy system in remote applications. Also used in quiet operations where noise or infrared signature of diesel engine is not desired.

  7. Rechargeable Magnesium Power Cells

    NASA Technical Reports Server (NTRS)

    Koch, Victor R.; Nanjundiah, Chenniah; Orsini, Michael

    1995-01-01

    Rechargeable power cells based on magnesium anodes developed as safer alternatives to high-energy-density cells like those based on lithium and sodium anodes. At cost of some reduction in energy density, magnesium-based cells safer because less susceptible to catastrophic meltdown followed by flames and venting of toxic fumes. Other advantages include ease of handling, machining, and disposal, and relatively low cost.

  8. REMOTELY RECHARGEABLE EPD

    SciTech Connect

    Vrettos, N; Athneal Marzolf, A; Scott Bowser, S

    2007-11-13

    Radiation measurements inside the Contact Decon Maintenance Cell (CDMC) in the Defense Waste Processing Facility (DWPF) at the Savannah River Site (SRS) are required to determine stay times for personnel. A system to remotely recharge the transmitter of an Electronic Personnel Dosimeter (EPD) and bail assembly to transport the EPD within the CDMC was developed by the Savannah River National Laboratory (SRNL) to address this need.

  9. Advanced Small Rechargeable Batteries

    NASA Technical Reports Server (NTRS)

    Halpert, Gerald

    1989-01-01

    Lithium-based units offer highest performance. Paper reviews status of advanced, small rechargeable batteries. Covers aqueous systems including lead/lead dioxide, cadmium/nickel oxide, hydrogen/nickel oxide, and zinc/nickel oxide, as well as nonaqueous systems. All based on lithium anodes, nonaqueous systems include solid-cathode cells (lithium/molybdenum disulfide, lithium/titanium disulfide, and lithium/vanadium oxide); liquid-cathode cells (lithium/sulfur dioxide cells); and new category, lithium/polymer cells.

  10. Recharge into a shingle beach

    NASA Astrophysics Data System (ADS)

    Keating, T.

    1984-04-01

    Traditionally, groundwater recharge in the U.K. has been calculated by the Penman method on a monthly basis, using values of potential evaporation derived from averaged meteorological data and monthly totals of rainfall. Recent work by K.W.F. Howard and J.W. Lloyd has shown that these monthly totals considerably underestimate recharge calculated over shorter time periods and they suggested that 1-day, or at worst, 10-day intervals should be used. In this paper field experiments to measure recharge into a shingle beach are reported. These experiments were made with a lysimeter over a 6-yr. period and have shown that recharge into the shingle occurs whenever significant precipitation occurs, even during the summer months. The Penman model is shown to be unrealistic for estimating recharge into such a beach and an alternative model for calculating recharge is proposed. This model is shown to yield good results.

  11. Intelligent Agents as Cognitive Tools for Education.

    ERIC Educational Resources Information Center

    Baylor, Amy

    1999-01-01

    Examines the educational potential for intelligent agents as cognitive tools. Discusses the role of intelligent agents: managing large amounts of information (information overload), serving as a pedagogical expert, and creating programming environments for the learner. (AEF)

  12. FLUIDIC: Metal Air Recharged

    SciTech Connect

    Friesen, Cody

    2014-03-07

    Fluidic, with the help of ARPA-E funding, has developed and deployed the world's first proven high cycle life metal air battery. Metal air technology, often used in smaller scale devices like hearing aids, has the lowest cost per electron of any rechargeable battery storage in existence. Deploying these batteries for grid reliability is competitive with pumped hydro installations while having the advantages of a small footprint. Fluidic's battery technology allows utilities and other end users to store intermittent energy generated from solar and wind, as well as maintain reliable electrical delivery during power outages. The batteries are manufactured in the US and currently deployed to customers in emerging markets for cell tower reliability. As they continue to add customers, they've gained experience and real world data that will soon be leveraged for US grid reliability.

  13. FLUIDIC: Metal Air Recharged

    ScienceCinema

    Friesen, Cody

    2014-04-02

    Fluidic, with the help of ARPA-E funding, has developed and deployed the world's first proven high cycle life metal air battery. Metal air technology, often used in smaller scale devices like hearing aids, has the lowest cost per electron of any rechargeable battery storage in existence. Deploying these batteries for grid reliability is competitive with pumped hydro installations while having the advantages of a small footprint. Fluidic's battery technology allows utilities and other end users to store intermittent energy generated from solar and wind, as well as maintain reliable electrical delivery during power outages. The batteries are manufactured in the US and currently deployed to customers in emerging markets for cell tower reliability. As they continue to add customers, they've gained experience and real world data that will soon be leveraged for US grid reliability.

  14. Beyond CMOS: heterogeneous integration of III-V devices, RF MEMS and other dissimilar materials/devices with Si CMOS to create intelligent microsystems.

    PubMed

    Kazior, Thomas E

    2014-03-28

    Advances in silicon technology continue to revolutionize micro-/nano-electronics. However, Si cannot do everything, and devices/components based on other materials systems are required. What is the best way to integrate these dissimilar materials and to enhance the capabilities of Si, thereby continuing the micro-/nano-electronics revolution? In this paper, I review different approaches to heterogeneously integrate dissimilar materials with Si complementary metal oxide semiconductor (CMOS) technology. In particular, I summarize results on the successful integration of III-V electronic devices (InP heterojunction bipolar transistors (HBTs) and GaN high-electron-mobility transistors (HEMTs)) with Si CMOS on a common silicon-based wafer using an integration/fabrication process similar to a SiGe BiCMOS process (BiCMOS integrates bipolar junction and CMOS transistors). Our III-V BiCMOS process has been scaled to 200 mm diameter wafers for integration with scaled CMOS and used to fabricate radio-frequency (RF) and mixed signals circuits with on-chip digital control/calibration. I also show that RF microelectromechanical systems (MEMS) can be integrated onto this platform to create tunable or reconfigurable circuits. Thus, heterogeneous integration of III-V devices, MEMS and other dissimilar materials with Si CMOS enables a new class of high-performance integrated circuits that enhance the capabilities of existing systems, enable new circuit architectures and facilitate the continued proliferation of low-cost micro-/nano-electronics for a wide range of applications. PMID:24567473

  15. Beyond CMOS: heterogeneous integration of III–V devices, RF MEMS and other dissimilar materials/devices with Si CMOS to create intelligent microsystems

    PubMed Central

    Kazior, Thomas E.

    2014-01-01

    Advances in silicon technology continue to revolutionize micro-/nano-electronics. However, Si cannot do everything, and devices/components based on other materials systems are required. What is the best way to integrate these dissimilar materials and to enhance the capabilities of Si, thereby continuing the micro-/nano-electronics revolution? In this paper, I review different approaches to heterogeneously integrate dissimilar materials with Si complementary metal oxide semiconductor (CMOS) technology. In particular, I summarize results on the successful integration of III–V electronic devices (InP heterojunction bipolar transistors (HBTs) and GaN high-electron-mobility transistors (HEMTs)) with Si CMOS on a common silicon-based wafer using an integration/fabrication process similar to a SiGe BiCMOS process (BiCMOS integrates bipolar junction and CMOS transistors). Our III–V BiCMOS process has been scaled to 200 mm diameter wafers for integration with scaled CMOS and used to fabricate radio-frequency (RF) and mixed signals circuits with on-chip digital control/calibration. I also show that RF microelectromechanical systems (MEMS) can be integrated onto this platform to create tunable or reconfigurable circuits. Thus, heterogeneous integration of III–V devices, MEMS and other dissimilar materials with Si CMOS enables a new class of high-performance integrated circuits that enhance the capabilities of existing systems, enable new circuit architectures and facilitate the continued proliferation of low-cost micro-/nano-electronics for a wide range of applications. PMID:24567473

  16. Thermally-Rechargeable Electrochemical Cell

    NASA Technical Reports Server (NTRS)

    Richter, R.

    1985-01-01

    Proposed liquid-sodium/sulfur electrochemical cell recharged by heat, rather than electric generator. Concept suitable for energy storage for utilites, mobile electronic equipment, and solar thermoelectric power systems. Sodium ions driven across membrane with aid of temperature differential.

  17. Teaching & Learning through Multiple Intelligences.

    ERIC Educational Resources Information Center

    Campbell, Linda; Campbell, Bruce; Dickinson, Dee

    In his studies of human capacity, Howard Gardner revealed a wider family of human intelligences than previously suggested. Noting that restricting educational programs to focusing on a preponderance of linguistic and mathematical intelligences minimizes the importance of other forms of knowing, this book presents strategies for creating open…

  18. Stupid Tutoring Systems, Intelligent Humans

    ERIC Educational Resources Information Center

    Baker, Ryan S.

    2016-01-01

    The initial vision for intelligent tutoring systems involved powerful, multi-faceted systems that would leverage rich models of students and pedagogies to create complex learning interactions. But the intelligent tutoring systems used at scale today are much simpler. In this article, I present hypotheses on the factors underlying this development,…

  19. When Is a Program Intelligent?

    ERIC Educational Resources Information Center

    Whaland, Norman

    1981-01-01

    The current status of creating artificial intelligence (AI) in computers is viewed in terms of what has been accomplished, what the current limitations are, and how vague the concept of intelligent behavior is in today's world. Progress is expected to accelerate once sufficient fundamental knowledge is available. (MP)

  20. Artificial Intelligence.

    ERIC Educational Resources Information Center

    Waltz, David L.

    1982-01-01

    Describes kinds of results achieved by computer programs in artificial intelligence. Topics discussed include heuristic searches, artificial intelligence/psychology, planning program, backward chaining, learning (focusing on Winograd's blocks to explore learning strategies), concept learning, constraint propagation, language understanding…

  1. Artificial Intelligence.

    ERIC Educational Resources Information Center

    Information Technology Quarterly, 1985

    1985-01-01

    This issue of "Information Technology Quarterly" is devoted to the theme of "Artificial Intelligence." It contains two major articles: (1) Artificial Intelligence and Law" (D. Peter O'Neill and George D. Wood); (2) "Artificial Intelligence: A Long and Winding Road" (John J. Simon, Jr.). In addition, it contains two sidebars: (1) "Calculating and…

  2. Artificial Intelligence.

    ERIC Educational Resources Information Center

    Thornburg, David D.

    1986-01-01

    Overview of the artificial intelligence (AI) field provides a definition; discusses past research and areas of future research; describes the design, functions, and capabilities of expert systems and the "Turing Test" for machine intelligence; and lists additional sources for information on artificial intelligence. Languages of AI are also briefly…

  3. Competitive Intelligence.

    ERIC Educational Resources Information Center

    Bergeron, Pierrette; Hiller, Christine A.

    2002-01-01

    Reviews the evolution of competitive intelligence since 1994, including terminology and definitions and analytical techniques. Addresses the issue of ethics; explores how information technology supports the competitive intelligence process; and discusses education and training opportunities for competitive intelligence, including core competencies…

  4. Organisational Intelligence

    ERIC Educational Resources Information Center

    Yolles, Maurice

    2005-01-01

    Purpose: Seeks to explore the notion of organisational intelligence as a simple extension of the notion of the idea of collective intelligence. Design/methodology/approach: Discusses organisational intelligence using previous research, which includes the Purpose, Properties and Practice model of Dealtry, and the Viable Systems model. Findings: The…

  5. Robotic Intelligence Kernel: Architecture

    Energy Science and Technology Software Center (ESTSC)

    2009-09-16

    The INL Robotic Intelligence Kernel Architecture (RIK-A) is a multi-level architecture that supports a dynamic autonomy structure. The RIK-A is used to coalesce hardware for sensing and action as well as software components for perception, communication, behavior and world modeling into a framework that can be used to create behaviors for humans to interact with the robot.

  6. Database in Artificial Intelligence.

    ERIC Educational Resources Information Center

    Wilkinson, Julia

    1986-01-01

    Describes a specialist bibliographic database of literature in the field of artificial intelligence created by the Turing Institute (Glasgow, Scotland) using the BRS/Search information retrieval software. The subscription method for end-users--i.e., annual fee entitles user to unlimited access to database, document provision, and printed awareness…

  7. Intelligent Testing: Integrating Psychological Theory and Clinical Practice

    ERIC Educational Resources Information Center

    Kaufman, James C., Ed.

    2009-01-01

    The field of intelligence testing has been revolutionized by Alan S. Kaufman. He developed the Wechsler Intelligence Scale for Children-Revised (WISC-R) with David Wechsler, and his best-selling book, Intelligent Testing with the WISC-R, introduced the phrase "intelligent testing." Kaufman, with his wife, Nadeen, then created his own series of…

  8. Reusable Energy and Power Sources: Rechargeable Batteries

    ERIC Educational Resources Information Center

    Hsiung, Steve C.; Ritz, John M.

    2007-01-01

    Rechargeable batteries are very popular within consumer electronics. If one uses a cell phone or portable electric tool, she/he understands the need to have a reliable product and the need to remember to use the recharging systems that follow a cycle of charge/discharge. Rechargeable batteries are being called "green" energy sources. They are a…

  9. Choosing appropriate techniques for quantifying groundwater recharge

    USGS Publications Warehouse

    Scanlon, B.R.; Healy, R.W.; Cook, P.G.

    2002-01-01

    Various techniques are available to quantify recharge; however, choosing appropriate techniques is often difficult. Important considerations in choosing a technique include space/time scales, range, and reliability of recharge estimates based on different techniques; other factors may limit the application of particular techniques. The goal of the recharge study is important because it may dictate the required space/time scales of the recharge estimates. Typical study goals include water-resource evaluation, which requires information on recharge over large spatial scales and on decadal time scales; and evaluation of aquifer vulnerability to contamination, which requires detailed information on spatial variability and preferential flow. The range of recharge rates that can be estimated using different approaches should be matched to expected recharge rates at a site. The reliability of recharge estimates using different techniques is variable. Techniques based on surface-water and unsaturated-zone data provide estimates of potential recharge, whereas those based on groundwater data generally provide estimates of actual recharge. Uncertainties in each approach to estimating recharge underscore the need for application of multiple techniques to increase reliability of recharge estimates.

  10. Rechargeable nickel-zinc batteries

    NASA Technical Reports Server (NTRS)

    Soltis, D. G.

    1977-01-01

    Device proves superiority in having two and one half to three times the energy content of popular lead-zinc or nickel-cadmium batteries. Application to electric utility vehicles improved acceleration rate and nearly doubled driving range between rechargings. Unit contributes substantially toward realization of practical urban electrical automobiles.

  11. Probabilistic Analysis of Rechargeable Batteries in a Photovoltaic Power Supply System

    SciTech Connect

    Barney, P.; Ingersoll, D.; Jungst, R.; O'Gorman, C.; Paez, T.L.; Urbina, A.

    1998-11-24

    We developed a model for the probabilistic behavior of a rechargeable battery acting as the energy storage component in a photovoltaic power supply system. Stochastic and deterministic models are created to simulate the behavior of the system component;. The components are the solar resource, the photovoltaic power supply system, the rechargeable battery, and a load. Artificial neural networks are incorporated into the model of the rechargeable battery to simulate damage that occurs during deep discharge cycles. The equations governing system behavior are combined into one set and solved simultaneously in the Monte Carlo framework to evaluate the probabilistic character of measures of battery behavior.

  12. Plant intelligence

    NASA Astrophysics Data System (ADS)

    Trewavas, Anthony

    2005-09-01

    Intelligent behavior is a complex adaptive phenomenon that has evolved to enable organisms to deal with variable environmental circumstances. Maximizing fitness requires skill in foraging for necessary resources (food) in competitive circumstances and is probably the activity in which intelligent behavior is most easily seen. Biologists suggest that intelligence encompasses the characteristics of detailed sensory perception, information processing, learning, memory, choice, optimisation of resource sequestration with minimal outlay, self-recognition, and foresight by predictive modeling. All these properties are concerned with a capacity for problem solving in recurrent and novel situations. Here I review the evidence that individual plant species exhibit all of these intelligent behavioral capabilities but do so through phenotypic plasticity, not movement. Furthermore it is in the competitive foraging for resources that most of these intelligent attributes have been detected. Plants should therefore be regarded as prototypical intelligent organisms, a concept that has considerable consequences for investigations of whole plant communication, computation and signal transduction.

  13. Architecture for robot intelligence

    NASA Technical Reports Server (NTRS)

    Peters, II, Richard Alan (Inventor)

    2004-01-01

    An architecture for robot intelligence enables a robot to learn new behaviors and create new behavior sequences autonomously and interact with a dynamically changing environment. Sensory information is mapped onto a Sensory Ego-Sphere (SES) that rapidly identifies important changes in the environment and functions much like short term memory. Behaviors are stored in a DBAM that creates an active map from the robot's current state to a goal state and functions much like long term memory. A dream state converts recent activities stored in the SES and creates or modifies behaviors in the DBAM.

  14. Identifying Groundwater Recharge in Arid Regions

    NASA Astrophysics Data System (ADS)

    Thomas, B. F.; Famiglietti, J. S.

    2015-12-01

    Recharge epodicity in arid regions provides a method to estimate annual groundwater recharge given a relationship expressed as the recharge to precipitation ratio. Traditionally, in-situ observations are required to identify aquifer recharge events, while more advanced approaches such as the water-table fluctuation method or the episodic master recession method are necessary to delineate the recharge event. Our study uses the Gravity Recovery and Climate Experiment (GRACE) observations to estimate monthly changes in groundwater storage which are attributed to the combination of groundwater abstraction and episodic recharge in the arid southwestern United States. Our results illustrate the ability of remote sensing technologies to identify episodic groundwater recharge in arid regions which can be used within sustainable groundwater management frameworks to effectively manage groundwater resources.

  15. Recharge Data for Hawaii Island

    DOE Data Explorer

    Nicole Lautze

    2015-01-01

    Recharge data for Hawaii Island in shapefile format. The data are from the following sources: Whittier, R.B and A.I. El-Kadi. 2014. Human Health and Environmental Risk Ranking of On-Site Sewage Disposal systems for the Hawaiian Islands of Kauai, Molokai, Maui, and Hawaii – Final, Prepared for Hawaii Dept. of Health, Safe Drinking Water Branch by the University of Hawaii, Dept. of Geology and Geophysics. Oki, D. S. 1999. Geohydrology and Numerical Simulation of the Ground-Water Flow System of Kona, Island of Hawaii. U.S. Water-Resources Investigation Report: 99-4073. Oki, D. S. 2002. Reassessment of Ground-water Recharge and Simulated Ground-Water Availability for the Hawi Area of North Kohala, Hawaii. U.S. Geological Survey Water-Resources Investigation report 02-4006.

  16. Research on rechargeable oxygen electrodes

    NASA Technical Reports Server (NTRS)

    Giner, J.; Malachesky, P. A.; Holleck, G.

    1971-01-01

    Studies were carried out on a number of factors which may influence the behavior of the platinum electrocatalyst of oxygen electrodes for use in rechargeable metal-oxygen batteries or hydrogen-oxygen fuel cells. The effects of pretreatments for various potentials and added ionic species, which could be present in such systems, were studied with reguard to: (1) the state of surface oxidation, (2) platinum dissolution, (3) the kinetics of oxygen evolution and reduction (including the role of hydrogen peroxide), and (4) changes in porous electrode structure. These studies were carried out on smooth platinum, platinized platinum, and Teflon-bonded platinum black electrodes in carefully purified electrolyte solutions. The main factors which appear to affect rechargeable oxygen electrode performance and life are: (1) the buildup of a refractory anodic layer on extended cycling, and (2) the dissolution of platinum.

  17. Electrically rechargeable REDOX flow cell

    NASA Technical Reports Server (NTRS)

    Thaller, L. H. (Inventor)

    1976-01-01

    A bulk energy storage system is designed with an electrically rechargeable reduction-oxidation (REDOX) cell divided into two compartments by a membrane, each compartment containing an electrode. An anode fluid is directed through the first compartment at the same time that a cathode fluid is directed through the second compartment. Means are provided for circulating the anode and cathode fluids, and the electrodes are connected to an intermittent or non-continuous electrical source, which when operating, supplies current to a load as well as to the cell to recharge it. Ancillary circuitry is provided for disconnecting the intermittent source from the cell at prescribed times and for circulating the anode and cathode fluids according to desired parameters and conditions.

  18. Rechargeable Aluminum-Ion Batteries

    SciTech Connect

    Paranthaman, Mariappan Parans; Liu, Hansan; Sun, Xiao-Guang; Dai, Sheng; Brown, Gilbert M

    2015-01-01

    This chapter reports on the development of rechargeable aluminum-ion batteries. A possible concept of rechargeable aluminum/aluminum-ion battery based on low-cost, earth-abundant Al anode, ionic liquid EMImCl:AlCl3 (1-ethyl-3-methyl imidazolium chloroaluminate) electrolytes and MnO2 cathode has been proposed. Al anode has been reported to show good reversibility in acid melts. However, due to the problems in demonstrating the reversibility in cathodes, alternate battery cathodes and battery concepts have also been presented. New ionic liquid electrolytes for reversible Al dissolution and deposition are needed in the future for replacing corrosive EMImCl:AlCl3 electrolytes.

  19. Nanomaterials for rechargeable lithium batteries.

    PubMed

    Bruce, Peter G; Scrosati, Bruno; Tarascon, Jean-Marie

    2008-01-01

    Energy storage is more important today than at any time in human history. Future generations of rechargeable lithium batteries are required to power portable electronic devices (cellphones, laptop computers etc.), store electricity from renewable sources, and as a vital component in new hybrid electric vehicles. To achieve the increase in energy and power density essential to meet the future challenges of energy storage, new materials chemistry, and especially new nanomaterials chemistry, is essential. We must find ways of synthesizing new nanomaterials with new properties or combinations of properties, for use as electrodes and electrolytes in lithium batteries. Herein we review some of the recent scientific advances in nanomaterials, and especially in nanostructured materials, for rechargeable lithium-ion batteries. PMID:18338357

  20. Survey of rechargeable battery technology

    SciTech Connect

    Not Available

    1993-07-01

    We have reviewed rechargeable battery technology options for a specialized application in unmanned high altitude aircraft. Consideration was given to all rechargeable battery technologies that are available commercially or might be available in the foreseeable future. The LLNL application was found to impose very demanding performance requirements which cannot be met by existing commercially available battery technologies. The most demanding requirement is for high energy density. The technology that comes closest to providing the LLNL requirements is silver-zinc, although the technology exhibits significant shortfalls in energy density, charge rate capability and cyclability. There is no battery technology available ``off-the-shelf` today that can satisfy the LLNL performance requirements. All rechargeable battery technologies with the possibility of approaching/meeting the energy density requirements were reviewed. Vendor interviews were carried out for all relevant technologies. A large number of rechargeable battery systems have been developed over the years, though a much smaller number have achieved commercial success and general availability. The theoretical energy densities for these systems are summarized. It should be noted that a generally useful ``rule-of-thumb`` is that the ratio of packaged to theoretical energy density has proven to be less than 30%, and generally less than 25%. Data developed for this project confirm the usefulness of the general rule. However, data shown for the silver-zinc (AgZn) system show a greater conversion of theoretical to practical energy density than would be expected due to the very large cell sizes considered and the unusually high density of the active materials.

  1. Iron-Air Rechargeable Battery

    NASA Technical Reports Server (NTRS)

    Narayan, Sri R. (Inventor); Prakash, G.K. Surya (Inventor); Kindler, Andrew (Inventor)

    2014-01-01

    Embodiments include an iron-air rechargeable battery having a composite electrode including an iron electrode and a hydrogen electrode integrated therewith. An air electrode is spaced from the iron electrode and an electrolyte is provided in contact with the air electrode and the iron electrodes. Various additives and catalysts are disclosed with respect to the iron electrode, air electrode, and electrolyte for increasing battery efficiency and cycle life.

  2. Charge Characteristics of Rechargeable Batteries

    NASA Astrophysics Data System (ADS)

    Maheswaranathan, Ponn; Kelly, Cormac

    2014-03-01

    Rechargeable batteries play important role in technologies today and they are critical for the future. They are used in many electronic devices and their capabilities need to keep up with the accelerated pace of technology. Efficient energy capture and storage is necessary for the future rechargeable batteries. Charging and discharging characteristics of three popular commercially available re-chargeable batteries (NiCd, NiMH, and Li Ion) are investigated and compared with regular alkaline batteries. Pasco's 850 interface and their voltage & current sensors are used to monitor the current through and the potential difference across the battery. The discharge current and voltage stayed fairly constant until the end, with a slightly larger drop in voltage than current, which is more pronounced in the alkaline batteries. After 25 charge/discharge cycling there is no appreciable loss of charge capacities in the Li Ion battery. Energy densities, cycle characteristics, and memory effects will also be presented. Sponsored by the South Carolina Governor's school for Science and Mathematics under the Summer Program for Research Interns program.

  3. Groundwater recharge and agricultural contamination

    USGS Publications Warehouse

    Böhlke, J.K.

    2002-01-01

    Agriculture has had direct and indirect effects on the rates and compositions of groundwater recharge and aquifer biogeochemistry. Direct effects include dissolution and transport of excess quantities of fertilizers and associated materials and hydrologic alterations related to irrigation and drainage. Some indirect effects include changes in water-rock reactions in soils and aquifers caused by increased concentrations of dissolved oxidants, protons, and major ions. Agrilcultural activities have directly or indirectly affected the concentrations of a large number of inorganic chemicals in groundwater, for example NO3-, N2, Cl, SO42-, H+, P, C, K, Mg, Ca, Sr, Ba, Ra, and As, as well a wide variety of pesticides and other organic compounds. For reactive contaminants like NO3-, a combination of chemical, isotopic, and environmental-tracer analytical approaches might be required to resolve changing inputs from subsequent alterations as causes of concentration gradients in groundwater. Groundwater records derived from multi-component hydrostratigraphic data can be used to quantify recharge rates and residence times of water and dissolved contaminants, document past variations in recharging contaminant loads, and identify natural contaminant-remediation processes. These data indicate that many of the world's surficial aquifers contain transient records of changing agricultural contamination from the last half of the 20th century. The transient agricultural groundwater signal has important implications for long-term trends and spatial heterogeneity in discharge.

  4. Artificial Intelligence.

    ERIC Educational Resources Information Center

    Wash, Darrel Patrick

    1989-01-01

    Making a machine seem intelligent is not easy. As a consequence, demand has been rising for computer professionals skilled in artificial intelligence and is likely to continue to go up. These workers develop expert systems and solve the mysteries of machine vision, natural language processing, and neural networks. (Editor)

  5. Artificial Intelligence.

    ERIC Educational Resources Information Center

    Smith, Linda C.; And Others

    1988-01-01

    A series of articles focuses on artificial intelligence research and development to enhance information systems and services. Topics discussed include knowledge base designs, expert system development tools, natural language processing, expert systems for reference services, and the role that artificial intelligence concepts should have in…

  6. Artificial intelligence

    SciTech Connect

    Firschein, O.

    1984-01-01

    This book presents papers on artificial intelligence. Topics considered include knowledge engineering, expert systems, applications of artificial intelligence to scientific reasoning, planning and problem solving, error recovery in robots through failure reason analysis, programming languages, natural language, speech recognition, map-guided interpretation of remotely-sensed imagery, and image understanding architectures.

  7. Research on Intelligent Synthesis Environments

    NASA Astrophysics Data System (ADS)

    Noor, Ahmed K.; Loftin, R. Bowen

    2002-12-01

    Four research activities related to Intelligent Synthesis Environment (ISE) have been performed under this grant. The four activities are: 1) non-deterministic approaches that incorporate technologies such as intelligent software agents, visual simulations and other ISE technologies; 2) virtual labs that leverage modeling, simulation and information technologies to create an immersive, highly interactive virtual environment tailored to the needs of researchers and learners; 3) advanced learning modules that incorporate advanced instructional, user interface and intelligent agent technologies; and 4) assessment and continuous improvement of engineering team effectiveness in distributed collaborative environments.

  8. Research on Intelligent Synthesis Environments

    NASA Technical Reports Server (NTRS)

    Noor, Ahmed K.; Lobeck, William E.

    2002-01-01

    Four research activities related to Intelligent Synthesis Environment (ISE) have been performed under this grant. The four activities are: 1) non-deterministic approaches that incorporate technologies such as intelligent software agents, visual simulations and other ISE technologies; 2) virtual labs that leverage modeling, simulation and information technologies to create an immersive, highly interactive virtual environment tailored to the needs of researchers and learners; 3) advanced learning modules that incorporate advanced instructional, user interface and intelligent agent technologies; and 4) assessment and continuous improvement of engineering team effectiveness in distributed collaborative environments.

  9. Intelligent aircraft/airspace systems

    NASA Technical Reports Server (NTRS)

    Wangermann, John P.

    1995-01-01

    Projections of future air traffic predict at least a doubling of the number of revenue passenger miles flown by the year 2025. To meet this demand, an Intelligent Aircraft/Airspace System (IAAS) has been proposed. The IAAS operates on the basis of principled negotiation between intelligent agents. The aircraft/airspace system today consists of many agents, such as airlines, control facilities, and aircraft. All the agents are becoming increasingly capable as technology develops. These capabilities should be exploited to create an Intelligent Aircraft/Airspace System (IAAS) that would meet the predicted traffic levels of 2005.

  10. Variability in simulated recharge using different GCMs

    NASA Astrophysics Data System (ADS)

    Allen, D. M.; Cannon, A. J.; Toews, M. W.; Scibek, J.

    2010-10-01

    Variations in the prediction of recharge is addressed by comparing recharge simulated using climate data generated using a state-of-the-art downscaling method, TreeGen, with a range of global climate models (GCMs). The study site is the transnational Abbotsford-Sumas aquifer in coastal British Columbia, Canada and Washington State, USA, and is representative of a wet coastal climate. Sixty-four recharge zones were defined based on combinations of classed soil permeability, vadose zone permeability, and unsaturated zone depth (or depth to water table) mapped in the study area. One-dimensional recharge simulations were conducted for each recharge zone using the HELP hydrologic model, which simulates percolation through a vertical column. The HELP model is driven by mean daily temperature, daily precipitation, and daily solar radiation. For the historical recharge simulations, the climate data series was generated using the LARS-WG stochastic weather generator. Historical recharge was compared to recharge simulated using climate data series derived from the TreeGen downscaling model for three future time periods: 2020s (2010-2039), 2050s (2040-2069), and 2080s (2070-2099) for each of four GCMs (CGCM3.1, ECHAM5, PCM1, and CM2.1). Recharge results are compared on an annual basis for the entire aquifer area. Both increases and decreases relative to historical recharge are simulated depending on time period and model. By the 2080s, the range of model predictions spans -10.5% to +23.2% relative to historical recharge. This variability in recharge predictions suggests that the seasonal performance of the downscaling tool is important and that a range of GCMs should be considered for water management planning.

  11. Rechargeable lithium battery technology - A survey

    NASA Technical Reports Server (NTRS)

    Halpert, Gerald; Surampudi, Subbarao

    1990-01-01

    The technology of the rechargeable lithium battery is discussed with special attention given to the types of rechargeable lithium cells and to their expected performance and advantages. Consideration is also given to the organic-electrolyte and polymeric-electrolyte cells and to molten salt lithium cells, as well as to technical issues, such as the cycle life, charge control, rate capability, cell size, and safety. The role of the rechargeable lithium cell in future NASA applications is discussed.

  12. Creating Poetry.

    ERIC Educational Resources Information Center

    Drury, John

    Encouraging exploration and practice, this book offers hundreds of exercises and numerous tips covering every step involved in creating poetry. Each chapter is a self-contained unit offering an overview of material in the chapter, a definition of terms, and poetry examples from well-known authors designed to supplement the numerous exercises.…

  13. Use of the water-table fluctuation method to identify and characterize discrete episodes of positive and zero recharge

    NASA Astrophysics Data System (ADS)

    Horowitz, C.; Nimmo, J. R.; Mitchell, L.

    2011-12-01

    As demand increases for limited water supplies, accurate estimates of groundwater recharge become more important from both a water supply and a water quality perspective. The water table fluctuation (WTF) method is often applied for this purpose. The principle of the WTF method is that recharge is equal to the product of specific yield and the water table rise over a particular time interval or episode. Previous research has demonstrated that recharge estimates based on the WTF method have strong sensitivity to the length of the designated time interval. We have developed a method of choosing time intervals for WTF recharge analysis based on intensity and duration of recharge events, correlating specific events with the rainfall that initiated them. In the absence of recharge, the rate of water-table recession can be taken to have a direct functional relationship with the water-table elevation (H). This relationship is referred to as a master recession curve (MRC). A robust MRC (i.e., one that is accurate over the relevant range of H) is essential for accurate WTF-based estimates of groundwater recharge. Where there is a high degree of subsurface heterogeneity, a simple functional form of the MRC (e.g., one based on the concept of a single pour point) may not accurately represent actual conditions. In a numerical algorithm for determining an MRC, we incorporated consistent criteria which allow the MRC to be based only on data representing receding water-tables during periods of negligible recharge. Another algorithm was created to utilize that MRC in estimations of recharge in an episodic fashion, based on a systematic designation of events, i.e. intervals of recharge and their associated rainfall and intervals of zero recharge, also with associated rainfall. We tested these methods using a data set exhibiting rapid water-table fluctuations at the Masser Site in Pennsylvania. The aquifer medium is a highly fractured sandstone with a small specific yield (0.001 < Sy

  14. Creating Community

    PubMed Central

    Budin, Wendy C.

    2009-01-01

    In this column, the editor of The Journal of Perinatal Education describes ways that Lamaze International is helping to create a community for those who share a common interest in promoting, supporting, and protecting natural, safe, and healthy childbirth. The editor also describes the contents of this issue, which offer a broad range of resources, research, and inspiration for childbirth educators in their efforts to promote normal birth. PMID:19936112

  15. Intelligent buildings

    SciTech Connect

    Atkin, B.

    1989-01-01

    The term intelligent buildings refers to today's sophisticated living environments that must support communication, energy, fire and security protection systems. This book examines a variety of topics including building automation, information technology, and systems and facilities management.

  16. NORTH CAROLINA GROUNDWATER RECHARGE RATES 1994

    EPA Science Inventory

    North Carolina Groundwater Recharge Rates, from Heath, R.C., 1994, Ground-water recharge in North Carolina: North Carolina State University, as prepared for the NC Department of Environment, Health and Natural Resources (NC DEHNR) Division of Enviromental Management Groundwater S...

  17. INTRODUCTION TO ARTIFICIAL GROUND-WATER RECHARGE

    EPA Science Inventory

    Artificial ground-water recharge has been practiced for scores of years throughout the world. The purpose of artificial recharge is to increase the rate at which water infiltrates the land surface in order to supplement the quantity of ground water in storage. A variety of rechar...

  18. Identifying and quantifying urban recharge: a review

    NASA Astrophysics Data System (ADS)

    Lerner, David N.

    2002-02-01

    The sources of and pathways for groundwater recharge in urban areas are more numerous and complex than in rural environments. Buildings, roads, and other surface infrastructure combine with man-made drainage networks to change the pathways for precipitation. Some direct recharge is lost, but additional recharge can occur from storm drainage systems. Large amounts of water are imported into most cities for supply, distributed through underground pipes, and collected again in sewers or septic tanks. The leaks from these pipe networks often provide substantial recharge. Sources of recharge in urban areas are identified through piezometry, chemical signatures, and water balances. All three approaches have problems. Recharge is quantified either by individual components (direct recharge, water-mains leakage, septic tanks, etc.) or holistically. Working with individual components requires large amounts of data, much of which is uncertain and is likely to lead to large uncertainties in the final result. Recommended holistic approaches include the use of groundwater modelling and solute balances, where various types of data are integrated. Urban recharge remains an under-researched topic, with few high-quality case studies reported in the literature.

  19. Improved Carbon Anodes For Rechargeable Lithium Cells

    NASA Technical Reports Server (NTRS)

    Huang, Chen-Kuo; Surampudi, Subbarao; Attia, Alan; Halpert, Gerald

    1994-01-01

    Carbon anodes for rechargeable lithium cells improved by choosing binder contents and fabrication conditions to achieve maximum porosity, uniform loading, and maximum reversible lithium capacity. Stacking electrodes under pressure during assembly of cells increases cyclability of lithium. Rechargeable, high-energy-density lithium cells containing improved carbon anodes find use in spacecraft, military, communications, automotive, and other demanding applications.

  20. Transformer Recharging with Alpha Channeling in Tokamaks

    SciTech Connect

    N.J. Fisch

    2009-12-21

    Transformer recharging with lower hybrid waves in tokamaks can give low average auxiliary power if the resistivity is kept high enough during the radio frequency (rf) recharging stage. At the same time, operation in the hot ion mode via alpha channeling increases the effective fusion reactivity. This paper will address the extent to which these two large cost saving steps are compatible. __________________________________________________

  1. Reflections on Dry-Zone Recharge

    NASA Astrophysics Data System (ADS)

    Gee, G. W.

    2005-05-01

    Quantifying recharge in regions of low precipitation remains a challenging task. The design of permanent nuclear-waste isolation at Yucca Mountain, Nevada, the design of arid-site landfill covers and the pumping of groundwater in desert cities, like Las Vegas, are examples where accurate recharge estimates are needed because they affect billion-dollar decisions. Recharge cannot be measured directly and must rely on estimation methods of various kinds including chemical tracers, thermal profiling, lysimetry, and water-balance modeling. Chemical methods, like chloride-mass-balance can significantly underestimate actual recharge rates and water-balance models are generally limited by large uncertainties. Studies at the U. S. Department of Energy's Hanford Site in Washington State, USA illustrate how estimates of recharge rates have changed over time and how these estimates can affect waste management decisions. Lysimetry has provided reliable estimates of recharge for a wide range of surface condittions. Lysimetric observations of reduced recharge, resulting from advective drying of coarse rock piles, suggest a way to avoid costly recharge protection using titanium shields at Yucca Mountain. The Pacific Northwest National Laboratory is funded by the U. S. Department of Energy under contract DE-AC05-76-RL01830.

  2. Recharge at the Hanford Site: Status report

    SciTech Connect

    Gee, G.W.

    1987-11-01

    A variety of field programs designed to evaluate recharge and other water balance components including precipitation, infiltration, evaporation, and water storage changes, have been carried out at the Hanford Site since 1970. Data from these programs have indicated that a wide range of recharge rates can occur depending upon specific site conditions. Present evidence suggests that minimum recharge occurs where soils are fine-textured and surfaces are vegetated with deep-rooted plants. Maximum recharge occurs where coarse soils or gravels exist at the surface and soils are kept bare. Recharge can occur in areas where shallow-rooted plants dominate the surface, particularly where soils are coarse-textured. Recharge estimates have been made for the site using simulation models. A US Geological Survey model that attempts to account for climate variability, soil storage parameters, and plant factors has calculated recharge values ranging from near zero to an average of about 1 cm/yr for the Hanford Site. UNSAT-H, a deterministic model developed for the site, appears to be the best code available for estimating recharge on a site-specific basis. Appendix I contains precipitation data from January 1979 to June 1987. 42 refs., 11 figs., 11 tabs.

  3. Monitoring induced denitrification in an artificial aquifer recharge system.

    NASA Astrophysics Data System (ADS)

    Grau-Martinez, Alba; Torrentó, Clara; Folch, Albert; Domènech, Cristina; Otero, Neus; Soler, Albert

    2014-05-01

    As demands on groundwater increase, artificial recharge is becoming a common method for enhancing groundwater supply. The Llobregat River is a strategic water supply resource to the Barcelona metropolitan area (Catalonia, NE Spain). Aquifer overexploitation has leaded to both a decrease of groundwater level and seawater intrusion, with the consequent deterioration of water quality. In the middle section of the aquifer, in Sant Vicenç del Horts, decantation and infiltration ponds recharged by water from the Llobregat River (highly affected from wastewater treatment plant effluents), were installed in 2007, in the framework of the ENSAT Life+ project. At the bottom of the infiltration pond, a vegetal compost layer was installed to promote the growth of bacteria, to induce denitrification and to create favourable conditions for contaminant biodegradation. This layer consists on a mixture of compost, aquifer material, clay and iron oxide. Understanding the fate of contaminants, such as nitrate, during artificial aquifer recharge is required to evaluate the impact of artificial recharge in groundwater quality. In order to distinguish the source of nitrate and to evaluate the capability of the organic reactive layer to induce denitrification, a multi-isotopic approach coupled with hydrogeochemical data was performed. Groundwater samples, as well as river samples, were sampled during artificial and natural recharge periods. The isotopic analysis included: δ15N and δ18O of dissolved nitrate, δ34S and δ18O of dissolved sulphate, δ13C of dissolved inorganic carbon, and δ2H and δ18O of water. Dissolved nitrate isotopic composition (δ15NNO3 from +9 to +21 o and δ18ONO3 from +3 to +16 ) demonstrated that heterotrophic denitrification induced by the reactive layer was taking place during the artificial recharge periods. An approximation to the extent of nitrate attenuation was calculated, showing a range between 95 and 99% or between 35 and 45%, by using the extreme

  4. Recharge mixing in a complex distributary spring system in the Missouri Ozarks, USA

    NASA Astrophysics Data System (ADS)

    Miller, Benjamin V.; Lerch, Robert N.; Groves, Christopher G.; Polk, Jason S.

    2015-05-01

    Toronto Springs is a complex distributary karst spring system with 11 perennial springs in the Missouri Ozarks, USA. Carroll Cave (CC) and Wet Glaize Creek (WG) were previously identified as principal recharge sources. This study (1) characterized physical and chemical properties of springs and recharge sources; (2) developed end-member mixing models to estimate contributing proportions of CC and WG; and (3) created a conceptual model for the system. Samples analyzed for major ions and specific conductivity, in conjunction with a rotating continuous monitoring program to identify statistically comparable baseflow conditions, were used to assess differences among the sites. Monitoring data showed that the springs differed depending upon recharge proportions. Cluster analysis of average ion concentrations supported the choice of CC and WG as mixing model end members. Results showed a range in the proportions of the recharge sources, from surface-water to groundwater dominated. A conceptual model suggests that a system of distinct conduits beneath the WG flood plain transmits water to the individual springs. These conduits controlled the end-member recharge contributions and water chemistry of the springs. Interpretation of relative proportions of recharge contributions extends existing knowledge of karst hydrologic geometry beyond that of point-to-point connections to revealing complex surface-water/groundwater mixing in heterogeneous distributary spring systems.

  5. Musical Intelligence and the Benefits of Music Education.

    ERIC Educational Resources Information Center

    Colwell, Richard; Davidson, Lyle

    1996-01-01

    The multiple-intelligences perspective underlines the need to expand the musical intelligence concept and stress appreciation over performance. Music should be part of the curriculum. Successful music creates a more satisfied student body. Musical intelligence requires frequent instruction and clear instructional goals. It is not developed through…

  6. Lithium ion rechargeable systems studies

    SciTech Connect

    Levy, S.C.; Lasasse, R.R.; Cygan, R.T.; Voigt, J.A.

    1995-02-01

    Lithium ion systems, although relatively new, have attracted much interest worldwide. Their high energy density, long cycle life and relative safety, compared with metallic lithium rechargeable systems, make them prime candidates for powering portable electronic equipment. Although lithium ion cells are presently used in a few consumer devices, e.g., portable phones, camcorders, and laptop computers, there is room for considerable improvement in their performance. Specific areas that need to be addressed include: (1) carbon anode--increase reversible capacity, and minimize passivation; (2) cathode--extend cycle life, improve rate capability, and increase capacity. There are several programs ongoing at Sandia National Laboratories which are investigating means of achieving the stated objectives in these specific areas. This paper will review these programs.

  7. Lithium ion rechargeable systems studies

    NASA Astrophysics Data System (ADS)

    Levy, Samuel C.; Lasasse, Robert R.; Cygan, Randall T.; Voigt, James A.

    Lithium ion systems, although relatively new, have attracted much interest worldwide. Their high energy density, long cycle life and relative safety, compared with metallic lithium rechargeable systems, make them prime candidates for powering portable electronic equipment. Although lithium ion cells are presently used in a few consumer devices, e.g., portable phones, camcorders, and laptop computers, there is room for considerable improvement in their performance. Specific areas that need to be addressed include: (1) carbon anode-increase reversible capacity, and minimize passivation; (2) cathode-extend cycle life, improve rate capability, and increase capacity. There are several programs ongoing at Sandia National Laboratories which are investigating means of achieving the stated objectives in these specific areas. This paper will review these programs.

  8. Rechargeable lithium-ion cell

    DOEpatents

    Bechtold, Dieter; Bartke, Dietrich; Kramer, Peter; Kretzschmar, Reiner; Vollbert, Jurgen

    1999-01-01

    The invention relates to a rechargeable lithium-ion cell, a method for its manufacture, and its application. The cell is distinguished by the fact that it has a metallic housing (21) which is electrically insulated internally by two half shells (15), which cover electrode plates (8) and main output tabs (7) and are composed of a non-conductive material, where the metallic housing is electrically insulated externally by means of an insulation coating. The cell also has a bursting membrane (4) which, in its normal position, is located above the electrolyte level of the cell (1). In addition, the cell has a twisting protection (6) which extends over the entire surface of the cover (2) and provides centering and assembly functions for the electrode package, which comprises the electrode plates (8).

  9. Rechargeable lead-acid batteries.

    PubMed

    1990-09-01

    Batteries used in medical equipment, like their counterparts in consumer products, attract little attention until they fail to function effectively. In some applications, such as in emergency medical devices, battery failure can have fatal consequences. While modern batteries are usually quite reliable, ECRI has received 53 written problem reports and countless verbal reports or questions related to battery problems in hospitals during the past five years. This large number of reports is due, at least in part, to the enormous quality of batteries used to operate or provide backup power in contemporary hospital equipment. As part of an ongoing evaluation of rehabilitation assistive equipment, ECRI has been studying the performance of 12 V rechargeable deep-cycle lead-acid batteries used in powered wheelchairs. During the course of this evaluation, it has become apparent that many professionals, both clinical and industrial, regard batteries as "black box" devices and know little about proper care and maintenance--and even less about battery selection and purchase. Because equipment performance and reliability can be strongly influenced by different battery models, an understanding of battery characteristics and how they affect performance is essential when selecting and purchasing batteries. The types of rechargeable batteries used most commonly in hospitals are lead-acid and nickel-cadmium (nicad), which we compare below; however, the guidance we provide in this article focuses on lead-acid batteries. While the examples given are for high-capacity 12 V deep-cycle batteries, similar analyses can be applied to smaller lead-acid batteries of different voltages. PMID:2211174

  10. Intelligence: Theories and Testing.

    ERIC Educational Resources Information Center

    Papanastasiou, Elena C.

    This paper reviews what is known about intelligence and the use of intelligence tests. Environmental and hereditary factors that affect performance on intelligence tests are reviewed, along with various theories that have been proposed about the basis of intelligence. Intelligence tests do not test intelligence per se but make inferences about a…

  11. Faire preuve d'intelligence collective (To Display Collective Intelligence).

    ERIC Educational Resources Information Center

    Laferriere, Therese

    2000-01-01

    The need for lifelong learning is increasing as humanity transforms the planet into a global village. The growing number of people using the electronic infrastructure is creating new practices in which learning and work are intertwined. Professional educators must build the collective intelligence required for a knowledge-based society, and in…

  12. Searching for corrosion intelligence

    SciTech Connect

    Roberge, P.R.

    1999-11-01

    The incredible progress in computing power and availability has created a tremendous wealth of information available at the touch of a few buttons. However, such wealth can easily provoke what is commonly described as `information overload.` The massive number of connections produced by a single search of the Web, for example, can greatly overwhelm users of this new technology. The rapidity of Web searches is due to the synergy between progress made in network connectivity protocols, intelligent search strategies and supporting hardware. This paper will attempt to define the basic elements of machine intelligence in the context of corrosion engineering and examine what has been done or could be done to introduce artificial thinking into daily operations.

  13. Recharge and groundwater models: An overview

    USGS Publications Warehouse

    Sanford, W.

    2002-01-01

    Recharge is a fundamental component of groundwater systems, and in groundwater-modeling exercises recharge is either measured and specified or estimated during model calibration. The most appropriate way to represent recharge in a groundwater model depends upon both physical factors and study objectives. Where the water table is close to the land surface, as in humid climates or regions with low topographic relief, a constant-head boundary condition is used. Conversely, where the water table is relatively deep, as in drier climates or regions with high relief, a specified-flux boundary condition is used. In most modeling applications, mixed-type conditions are more effective, or a combination of the different types can be used. The relative distribution of recharge can be estimated from water-level data only, but flux observations must be incorporated in order to estimate rates of recharge. Flux measurements are based on either Darcian velocities (e.g., stream base-flow) or seepage velocities (e.g., groundwater age). In order to estimate the effective porosity independently, both types of flux measurements must be available. Recharge is often estimated more efficiently when automated inverse techniques are used. Other important applications are the delineation of areas contributing recharge to wells and the estimation of paleorecharge rates using carbon-14.

  14. Intelligent Fasteners

    NASA Technical Reports Server (NTRS)

    1997-01-01

    Under a Small Business Innovation Research contract from Marshall Space Flight Center, Ultrafast, Inc. developed the world's first, high-temperature resistant, "intelligent" fastener. NASA needed a critical-fastening appraisal and validation of spacecraft segments that are coupled together in space. The intelligent-bolt technology deletes the self-defeating procedure of having to untighten the fastener, and thus upset the joint, during inspection and maintenance. The Ultrafast solution yielded an innovation that is likely to revolutionize manufacturing assembly, particularly the automobile industry. Other areas of application range from aircraft, computers and fork-lifts to offshore platforms, buildings, and bridges.

  15. Effective use of business intelligence.

    PubMed

    Glaser, John; Stone, John

    2008-02-01

    Business intelligence--technology to manage and leverage an organization's data--can enhance healthcare organizations' financial and operational performance and quality of patient care. Effective BI management requires five preliminary steps: Establish business needs and value. Obtain buy-in from managers. Create an end-to-end vision. Establish BI governance. Implement specific roles for managing data quality. PMID:18309596

  16. Integrating Raster Based GIS with Land Use, Surface Soil and Rainfall Records for the Estimation of Groundwater Recharge

    NASA Astrophysics Data System (ADS)

    Yu, C. H.; Chen, Y. W.; Chang, L. C.

    2015-12-01

    In Taiwan, groundwater resource plays a vital role in regional water supply because the quantity of groundwater pumpage has exceeded 1/3 of the total quantity of water supply. However, without proper management of groundwater usage, series environmental impacts such as land subsidence and seawater intrusions have occurred. To achieve the goal of sustainable management of groundwater resource, an accurate estimation of groundwater recharge is required. This study proposes to integrate PCRaster with maps of land use and surface soil and rainfall records to determine the spatial and temporal variations of groundwater recharge. PCRaster is a kind of raster based GIS software and its scripting interface is easy to create a spatio-temporal recharge estimation model. In the first step, the map of land use is re-grouped into three categories, impermeable zones, permeable zones and water bodies. For impermeable zones, the recharge quantities are assumed as zeros. Two kinds of estimating equations, a rainfall-infiltration equation and a saturated recharge equation, are respectively used to calculate the recharges of permeable zones and water bodies. The map of surface soil is used to define the spatial distribution of soil parameters in two equations. The temporal records of rainfall define the temporal variable in the rainfall-infiltration equation. The study area is Pingtung Plain which is 1,229 km2 in southern of Taiwan. In the process of estimation, the size of cells is 20 meters by 20 meters. The horizontal of estimation is during 1999 to 2010. The accumulated recharge is about 20.11 billion m3. (1.67 m3/yr). The annual recharge in 2008 is 1.89 billion m3. The annual recharges vary from 1.3 to 2.1 billion m3 because of different hydrological conditions. The infiltrated recharge in May and November in 2008 respectively are 430 (22.73%) and 67 (3.53%) million m3.

  17. Speech Intelligibility

    NASA Astrophysics Data System (ADS)

    Brand, Thomas

    Speech intelligibility (SI) is important for different fields of research, engineering and diagnostics in order to quantify very different phenomena like the quality of recordings, communication and playback devices, the reverberation of auditoria, characteristics of hearing impairment, benefit using hearing aids or combinations of these things.

  18. Intelligence Studies

    ERIC Educational Resources Information Center

    Monaghan, Peter

    2009-01-01

    To make an academic study of matters inherently secret and potentially explosive seems a tall task. But a growing number of scholars are drawn to understanding spycraft. The interdisciplinary field of intelligence studies is mushrooming, as scholars trained in history, international studies, and political science examine such subjects as the…

  19. Groundwater recharge estimation and regionalization: the Great Bend Prairie of central Kansas and its recharge statistics

    USGS Publications Warehouse

    Sophocleous, M.

    1992-01-01

    The results of a 6 year recharge study in the Great Bend Prairie of central Kansas are statistically analyzed to regionalize the limited number of site-specific but year-round measurements. Emphasis is placed on easily measured parameters and field-measured data. The results of the statistical analysis reveal that a typical recharge event in central Kansas lasts 5-7 days, out of which 3 or 4 days are precipitation days with total precipitation of ??? 83 mm. The maximum soil-profile water storage and the maximum groundwater level resulting from the recharge event exhibit the lowest coefficients of variation, whereas the amount of recharge exhibits the highest coefficient of variation. The yearly recharge in the Great Bend Prairie ranged from 0 to 177 mm with a mean of 56 mm. Most of the recharge events occur during the months of April, May, and June, which coincide with the months of highest precipitation in the region. A multiple regression analysis revealed that the most influential variables affecting recharge are, in order of decreasing importance, total annual precipitation average maximum soil-profile water storage during the spring months, average shallowest depth to water table during the same period, and spring rainfall rate. Classification methods, whereby relatively homogeneous hydrologic-unit areas based on the four recharge-affecting variables are identified, were combined with a Geographic Information Systems (ARC/INFO) overlay analysis to derive an area-wide map of differing recharge regions. This recharge zonation is in excellent agreement with the field-site recharge values. The resulting area-weighted average annual recharge for the region is 36 mm. ?? 1992.

  20. SP CREATE. Creating Sample Plans

    SciTech Connect

    Spears, J.H.; Seebode, L.

    1998-11-10

    The program has been designed to increase the accuracy and reduce the preparation time for completing sampling plans. It consists of our files 1. Analyte/Combination (AnalCombo) A list of analytes and combinations of analytes that can be requested of the onsite and offsite labs. Whenever a specific combination of analytes or suite names appear on the same line as the code number, this indicates that one sample can be placed in one bottle to be analyzed for these paremeters. A code number is assigned for each analyte and combination of analytes. 2. Sampling Plans Database (SPDb) A database that contains all of the analytes and combinations of analytes along with the basic information required for preparing a sample plan. That basic information includes the following fields; matrix, hold time, preservation, sample volume, container size, if the bottle caps are taped, acceptable choices. 3. Sampling plans create (SPcreate) a file that will lookup information from the Sampling Plans Database and the Job Log File (JLF98) A major database used by Sample Managemnet Services for recording more than 100 fields of information.

  1. REVISED NORTH CAROLINA GROUNDWATER RECHARGE RATES 1998

    EPA Science Inventory

    Revised North Carolina Groundwater Recharge Rates, from Heath, R.C., 1994, unpublished map: North Carolina State University, as modified by the NC Department of Environment and Natural Resources (DENR) Division of Water Quality (DWQ) Groundwater Section, (polygons)

  2. Issues and challenges facing rechargeable lithium batteries.

    PubMed

    Tarascon, J M; Armand, M

    2001-11-15

    Technological improvements in rechargeable solid-state batteries are being driven by an ever-increasing demand for portable electronic devices. Lithium-ion batteries are the systems of choice, offering high energy density, flexible and lightweight design, and longer lifespan than comparable battery technologies. We present a brief historical review of the development of lithium-based rechargeable batteries, highlight ongoing research strategies, and discuss the challenges that remain regarding the synthesis, characterization, electrochemical performance and safety of these systems. PMID:11713543

  3. Proposed artificial recharge studies in northern Qatar

    USGS Publications Warehouse

    Kimrey, J.O.

    1985-01-01

    The aquifer system in northern Qatar comprises a water-table aquifer in the Rus Formation which is separated by an aquitard from a partially confined aquifer in the top of the overlying Umm er Radhuma Formation. These two aquifers are composed of limestone and dolomite of Eocene and Paleocene age and contain a fragile lens of freshwater which is heavily exploited as a source of water for agricultural irrigation. Net withdrawals are greatly in excess of total recharge, and quality of ground water is declining. Use of desalinated seawater for artificial recharge has been proposed for the area. Artificial recharge, on a large scale, could stabilize the decline in ground-water quality while allowing increased withdrawals for irrigation. The proposal appears technically feasible. Recharge should be by injection to the Umm er Radhuma aquifer whose average transmissivity is about 2,000 meters squared per day (as compared to an average of about 200 meters squared per day for the Rus aquifer). Implementation of artificial recharge should be preceded by a hydrogeologic appraisal. These studies should include test drilling, conventional aquifer tests, and recharge-recovery tests at four sites in northern Qatar. (USGS)

  4. Artificial recharge of groundwater: hydrogeology and engineering

    NASA Astrophysics Data System (ADS)

    Bouwer, Herman

    2002-02-01

    Artificial recharge of groundwater is achieved by putting surface water in basins, furrows, ditches, or other facilities where it infiltrates into the soil and moves downward to recharge aquifers. Artificial recharge is increasingly used for short- or long-term underground storage, where it has several advantages over surface storage, and in water reuse. Artificial recharge requires permeable surface soils. Where these are not available, trenches or shafts in the unsaturated zone can be used, or water can be directly injected into aquifers through wells. To design a system for artificial recharge of groundwater, infiltration rates of the soil must be determined and the unsaturated zone between land surface and the aquifer must be checked for adequate permeability and absence of polluted areas. The aquifer should be sufficiently transmissive to avoid excessive buildup of groundwater mounds. Knowledge of these conditions requires field investigations and, if no fatal flaws are detected, test basins to predict system performance. Water-quality issues must be evaluated, especially with respect to formation of clogging layers on basin bottoms or other infiltration surfaces, and to geochemical reactions in the aquifer. Clogging layers are managed by desilting or other pretreatment of the water, and by remedial techniques in the infiltration system, such as drying, scraping, disking, ripping, or other tillage. Recharge wells should be pumped periodically to backwash clogging layers. Electronic supplementary material to this paper can be obtained by using the Springer LINK server located at http://dx.doi.org/10.1007/s10040-001-0182-4.

  5. Artificial Intelligence.

    PubMed

    Lawrence, David R; Palacios-González, César; Harris, John

    2016-04-01

    It seems natural to think that the same prudential and ethical reasons for mutual respect and tolerance that one has vis-à-vis other human persons would hold toward newly encountered paradigmatic but nonhuman biological persons. One also tends to think that they would have similar reasons for treating we humans as creatures that count morally in our own right. This line of thought transcends biological boundaries-namely, with regard to artificially (super)intelligent persons-but is this a safe assumption? The issue concerns ultimate moral significance: the significance possessed by human persons, persons from other planets, and hypothetical nonorganic persons in the form of artificial intelligence (AI). This article investigates why our possible relations to AI persons could be more complicated than they first might appear, given that they might possess a radically different nature to us, to the point that civilized or peaceful coexistence in a determinate geographical space could be impossible to achieve. PMID:26957450

  6. Intelligence: Knowns and Unknowns.

    ERIC Educational Resources Information Center

    Neisser, Ulric; And Others

    1996-01-01

    As a response to recent public debate about the nature of intelligence, this article reviews the "state of the art" in the study of intelligence, exploring significant conceptualizations of intelligence, the use and interpretation of intelligence tests, racial or ethnic differences in intelligence, and major issues yet to be resolved. (SLD)

  7. Team B Intelligence Coups

    ERIC Educational Resources Information Center

    Mitchell, Gordon R.

    2006-01-01

    The 2003 Iraq prewar intelligence failure was not simply a case of the U.S. intelligence community providing flawed data to policy-makers. It also involved subversion of the competitive intelligence analysis process, where unofficial intelligence boutiques "stovepiped" misleading intelligence assessments directly to policy-makers and undercut…

  8. Intelligent Tutor

    NASA Technical Reports Server (NTRS)

    1990-01-01

    NASA also seeks to advance American education by employing the technology utilization process to develop a computerized, artificial intelligence-based Intelligent Tutoring System (ITS) to help high school and college physics students. The tutoring system is designed for use with the lecture and laboratory portions of a typical physics instructional program. Its importance lies in its ability to observe continually as a student develops problem solutions and to intervene when appropriate with assistance specifically directed at the student's difficulty and tailored to his skill level and learning style. ITS originated as a project of the Johnson Space Center (JSC). It is being developed by JSC's Software Technology Branch in cooperation with Dr. R. Bowen Loftin at the University of Houston-Downtown. Program is jointly sponsored by NASA and ACOT (Apple Classrooms of Tomorrow). Other organizations providing support include Texas Higher Education Coordinating Board, the National Research Council, Pennzoil Products Company and the George R. Brown Foundation. The Physics I class of Clear Creek High School, League City, Texas are providing the classroom environment for test and evaluation of the system. The ITS is a spinoff product developed earlier to integrate artificial intelligence into training/tutoring systems for NASA astronauts flight controllers and engineers.

  9. Intelligent Design and Intelligent Failure

    NASA Technical Reports Server (NTRS)

    Jerman, Gregory

    2015-01-01

    Good Evening, my name is Greg Jerman and for nearly a quarter century I have been performing failure analysis on NASA's aerospace hardware. During that time I had the distinct privilege of keeping the Space Shuttle flying for two thirds of its history. I have analyzed a wide variety of failed hardware from simple electrical cables to cryogenic fuel tanks to high temperature turbine blades. During this time I have found that for all the time we spend intelligently designing things, we need to be equally intelligent about understanding why things fail. The NASA Flight Director for Apollo 13, Gene Kranz, is best known for the expression "Failure is not an option." However, NASA history is filled with failures both large and small, so it might be more accurate to say failure is inevitable. It is how we react and learn from our failures that makes the difference.

  10. An Intelligent Tutoring System.

    ERIC Educational Resources Information Center

    Corbett, Albert

    1988-01-01

    Discusses a research project that uses artificial intelligence techniques to help teach programing. Describes principles and implementation of the LISP Intelligent Tutoring System (LISPITS). Explains how the artificial intelligence technique was developed and possible future research. (MVL)

  11. The Modification of Intelligence.

    ERIC Educational Resources Information Center

    Pinillos, Jose Luis

    1982-01-01

    Reviews the arguments supporting and opposing the idea that human intelligence can be improved. Research on the hereditary and environmental determinants of intelligence is examined. Problems in defining and measuring intelligence are discussed. (AM)

  12. Estimated recharge rates at the Hanford Site

    SciTech Connect

    Fayer, M.J.; Walters, T.B.

    1995-02-01

    The Ground-Water Surveillance Project monitors the distribution of contaminants in ground water at the Hanford Site for the U.S. Department of Energy. A subtask called {open_quotes}Water Budget at Hanford{close_quotes} was initiated in FY 1994. The objective of this subtask was to produce a defensible map of estimated recharge rates across the Hanford Site. Methods that have been used to estimate recharge rates at the Hanford Site include measurements (of drainage, water contents, and tracers) and computer modeling. For the simulations of 12 soil-vegetation combinations, the annual rates varied from 0.05 mm/yr for the Ephrata sandy loam with bunchgrass to 85.2 mm/yr for the same soil without vegetation. Water content data from the Grass Site in the 300 Area indicated that annual rates varied from 3.0 to 143.5 mm/yr during an 8-year period. The annual volume of estimated recharge was calculated to be 8.47 {times} 10{sup 9} L for the potential future Hanford Site (i.e., the portion of the current Site bounded by Highway 240 and the Columbia River). This total volume is similar to earlier estimates of natural recharge and is 2 to 10x higher than estimates of runoff and ground-water flow from higher elevations. Not only is the volume of natural recharge significant in comparison to other ground-water inputs, the distribution of estimated recharge is highly skewed to the disturbed sandy soils (i.e., the 200 Areas, where most contaminants originate). The lack of good estimates of the means and variances of the supporting data (i.e., the soil map, the vegetation/land use map, the model parameters) translates into large uncertainties in the recharge estimates. When combined, the significant quantity of estimated recharge, its high sensitivity to disturbance, and the unquantified uncertainty of the data and model parameters suggest that the defensibility of the recharge estimates should be improved.

  13. Transient, spatially varied groundwater recharge modeling

    NASA Astrophysics Data System (ADS)

    Assefa, Kibreab Amare; Woodbury, Allan D.

    2013-08-01

    The objective of this work is to integrate field data and modeling tools in producing temporally and spatially varying groundwater recharge in a pilot watershed in North Okanagan, Canada. The recharge modeling is undertaken by using the Richards equation based finite element code (HYDRUS-1D), ArcGIS™, ROSETTA, in situ observations of soil temperature and soil moisture, and a long-term gridded climate data. The public version of HYDUS-1D and another version with detailed freezing and thawing module are first used to simulate soil temperature, snow pack, and soil moisture over a one year experimental period. Statistical analysis of the results show both versions of HYDRUS-1D reproduce observed variables to the same degree. After evaluating model performance using field data and ROSETTA derived soil hydraulic parameters, the HYDRUS-1D code is coupled with ArcGIS™ to produce spatially and temporally varying recharge maps throughout the Deep Creek watershed. Temporal and spatial analysis of 25 years daily recharge results at various representative points across the study watershed reveal significant temporal and spatial variations; average recharge estimated at 77.8 ± 50.8 mm/year. Previous studies in the Okanagan Basin used Hydrologic Evaluation of Landfill Performance without any attempt of model performance evaluation, notwithstanding its inherent limitations. Thus, climate change impact results from this previous study and similar others, such as Jyrkama and Sykes (2007), need to be interpreted with caution.

  14. Towards a calcium-based rechargeable battery

    NASA Astrophysics Data System (ADS)

    Ponrouch, A.; Frontera, C.; Bardé, F.; Palacín, M. R.

    2016-02-01

    The development of a rechargeable battery technology using light electropositive metal anodes would result in a breakthrough in energy density. For multivalent charge carriers (Mn+), the number of ions that must react to achieve a certain electrochemical capacity is diminished by two (n = 2) or three (n = 3) when compared with Li+ (ref. ). Whereas proof of concept has been achieved for magnesium, the electrodeposition of calcium has so far been thought to be impossible and research has been restricted to non-rechargeable systems. Here we demonstrate the feasibility of calcium plating at moderate temperatures using conventional organic electrolytes, such as those used for the Li-ion technology. The reversibility of the process on cycling has been ascertained and thus the results presented here constitute the first step towards the development of a new rechargeable battery technology using calcium anodes.

  15. Towards a calcium-based rechargeable battery.

    PubMed

    Ponrouch, A; Frontera, C; Bardé, F; Palacín, M R

    2016-02-01

    The development of a rechargeable battery technology using light electropositive metal anodes would result in a breakthrough in energy density. For multivalent charge carriers (M(n+)), the number of ions that must react to achieve a certain electrochemical capacity is diminished by two (n = 2) or three (n = 3) when compared with Li(+) (ref. ). Whereas proof of concept has been achieved for magnesium, the electrodeposition of calcium has so far been thought to be impossible and research has been restricted to non-rechargeable systems. Here we demonstrate the feasibility of calcium plating at moderate temperatures using conventional organic electrolytes, such as those used for the Li-ion technology. The reversibility of the process on cycling has been ascertained and thus the results presented here constitute the first step towards the development of a new rechargeable battery technology using calcium anodes. PMID:26501412

  16. Using groundwater levels to estimate recharge

    USGS Publications Warehouse

    Healy, R.W.; Cook, P.G.

    2002-01-01

    Accurate estimation of groundwater recharge is extremely important for proper management of groundwater systems. Many different approaches exist for estimating recharge. This paper presents a review of methods that are based on groundwater-level data. The water-table fluctuation method may be the most widely used technique for estimating recharge; it requires knowledge of specific yield and changes in water levels over time. Advantages of this approach include its simplicity and an insensitivity to the mechanism by which water moves through the unsaturated zone. Uncertainty in estimates generated by this method relate to the limited accuracy with which specific yield can be determined and to the extent to which assumptions inherent in the method are valid. Other methods that use water levels (mostly based on the Darcy equation) are also described. The theory underlying the methods is explained. Examples from the literature are used to illustrate applications of the different methods.

  17. Experimental studies in natural groundwater-recharge dynamics: The analysis of observed recharge events

    USGS Publications Warehouse

    Sophocleous, M.; Perry, C.A.

    1985-01-01

    The amounts and time distribution of groundwater recharge from precipitation over an approximately 19-month period were investigated at two instrumented sites in south-central Kansas. Precipitation and evapotranspiration sequences, soil-moisture profiles and storage changes, water fluxes in the unsaturated zone and hydraulic gradients in the saturated zone at various depths, soil temperatures, water-table hydrographs, and water-level changes in nearby wells clearly depict the recharge process. Antecedent moisture conditions and the thickness and nature of the unsaturated zone were found to be the major factors affecting recharge. Although the two instrumented sites are located in sand-dune environments in areas characterized by shallow water table and subhumid continental climate, a significant difference was observed in the estimated effective recharge. The estimates ranged from less than 2.5 to approximately 154 mm at the two sites from February to June 1983. The main reasons for this large difference in recharge estimates were the greater thickness of the unsaturated zone and the lower moisture content in that zone resulting from lower precipitation and higher potential evapotranspiration for one of the sites. Effective recharge took place only during late winter and spring. No summer or fall recharge was observed at either site during the observation period of this study. ?? 1985.

  18. Groundwater recharge from point to catchment scale

    NASA Astrophysics Data System (ADS)

    Leterme, Bertrand; Di Ciacca, Antoine; Laloy, Eric; Jacques, Diederik

    2016-04-01

    Accurate estimation of groundwater recharge is a challenging task as only a few devices (if any) can measure it directly. In this study, we discuss how groundwater recharge can be calculated at different temporal and spatial scales in the Kleine Nete catchment (Belgium). A small monitoring network is being installed, that is aimed to monitor the changes in dominant processes and to address data availability as one goes from the point to the catchment scale. At the point scale, groundwater recharge is estimated using inversion of soil moisture and/or water potential data and stable isotope concentrations (Koeniger et al. 2015). At the plot scale, it is proposed to monitor the discharge of a small drainage ditch in order to calculate the field groundwater recharge. Electrical conductivity measurements are necessary to separate shallow from deeper groundwater contribution to the ditch discharge (see Di Ciacca et al. poster in session HS8.3.4). At this scale, two or three-dimensional process-based vadose zone models will be used to model subsurface flow. At the catchment scale though, using a mechanistic, process-based model to estimate groundwater recharge is debatable (because of, e.g., the presence of numerous drainage ditches, mixed land use pixels, etc.). We therefore investigate to which extent various types of surrogate models can be used to make the necessary upscaling from the plot scale to the scale of the whole Kleine Nete catchment. Ref. Koeniger P, Gaj M, Beyer M, Himmelsbach T (2015) Review on soil water isotope based groundwater recharge estimations. Hydrological Processes, DOI: 10.1002/hyp.10775

  19. Negotiating Intelligently

    NASA Astrophysics Data System (ADS)

    Debenham, John; Simoff, Simeon

    The predominant approaches to automating competitive interaction appeal to the central notion of a utility function that represents an agent's preferences. Agent's are then endowed with machinery that enables them to perform actions that are intended to optimise their expected utility. Despite the extent of this work, the deployment of automatic negotiating agents in real world scenarios is rare. We propose that utility functions, or preference orderings, are often not known with certainty; further, the uncertainty that underpins them is typically in a state of flux. We propose that the key to building intelligent negotiating agents is to take an agent's historic observations as primitive, to model that agent's changing uncertainty in that information, and to use that model as the foundation for the agent's reasoning. We describe an agent architecture, with an attendant theory, that is based on that model. In this approach, the utility of contracts, and the trust and reliability of a trading partner are intermediate concepts that an agent may estimate from its information model. This enables us to describe intelligent agents that are not necessarily utility optimisers, that value information as a commodity, and that build relationships with other agents through the trusted exchange of information as well as contracts.

  20. Improved Separators For Rechargeable Lithium Cells

    NASA Technical Reports Server (NTRS)

    Shen, David; Surampudi, Subbarao; Huang, Chen-Kuo; Halpert, Gerald

    1994-01-01

    Improved pairs of separators proposed for use in rechargeable lithium cells operating at ambient temperature. Block growth of lithium dendrites and help prevent short circuits. Each cell contains one separator made of microporous polypropylene placed next to anode, and one separator made of microporous polytetrafluoroethylene (PTFE) next to cathode. Separators increase cycle lives of secondary lithium cells. Cells to which concept applicable those of Li/TiS(2), Li/NbSe(3), Li/CoO(2), Li/MoS(2), Li/VO(x), and Li/MnO(2) chemical systems. Advantageous in spacecraft, military, communications, automotive, and other applications in which high energy density and rechargeability needed.

  1. Global-scale modeling of groundwater recharge

    NASA Astrophysics Data System (ADS)

    Döll, P.; Fiedler, K.

    2007-11-01

    Long-term average groundwater recharge, which is equivalent to renewable groundwater resources, is the major limiting factor for the sustainable use of groundwater. Compared to surface water resources, groundwater resources are more protected from pollution, and their use is less restricted by seasonal and inter-annual flow variations. To support water management in a globalized world, it is necessary to estimate groundwater recharge at the global scale. Here, we present a best estimate of global-scale long-term average diffuse groundwater recharge (i.e. renewable groundwater resources) that has been calculated by the most recent version of the WaterGAP Global Hydrology Model WGHM (spatial resolution of 0.5° by 0.5°, daily time steps). The estimate was obtained using two state-of-the art global data sets of gridded observed precipitation that we corrected for measurement errors, which also allowed to quantify the uncertainty due to these equally uncertain data sets. The standard WGHM groundwater recharge algorithm was modified for semi-arid and arid regions, based on independent estimates of diffuse groundwater recharge, which lead to an unbiased estimation of groundwater recharge in these regions. WGHM was tuned against observed long-term average river discharge at 1235 gauging stations by adjusting, individually for each basin, the partitioning of precipitation into evapotranspiration and total runoff. We estimate that global groundwater recharge was 12 666 km3/yr for the climate normal 1961-1990, i.e. 32% of total renewable water resources. In semi-arid and arid regions, mountainous regions, permafrost regions and in the Asian Monsoon region, groundwater recharge accounts for a lower fraction of total runoff, which makes these regions particularly vulnerable to seasonal and inter-annual precipitation variability and water pollution. Average per-capita renewable groundwater resources of countries vary between 8 m3/(capita yr) for Egypt to more than 1 million m3

  2. Global-scale modeling of groundwater recharge

    NASA Astrophysics Data System (ADS)

    Döll, P.; Fiedler, K.

    2008-05-01

    Long-term average groundwater recharge, which is equivalent to renewable groundwater resources, is the major limiting factor for the sustainable use of groundwater. Compared to surface water resources, groundwater resources are more protected from pollution, and their use is less restricted by seasonal and inter-annual flow variations. To support water management in a globalized world, it is necessary to estimate groundwater recharge at the global scale. Here, we present a best estimate of global-scale long-term average diffuse groundwater recharge (i.e. renewable groundwater resources) that has been calculated by the most recent version of the WaterGAP Global Hydrology Model WGHM (spatial resolution of 0.5° by 0.5°, daily time steps). The estimate was obtained using two state-of-the-art global data sets of gridded observed precipitation that we corrected for measurement errors, which also allowed to quantify the uncertainty due to these equally uncertain data sets. The standard WGHM groundwater recharge algorithm was modified for semi-arid and arid regions, based on independent estimates of diffuse groundwater recharge, which lead to an unbiased estimation of groundwater recharge in these regions. WGHM was tuned against observed long-term average river discharge at 1235 gauging stations by adjusting, individually for each basin, the partitioning of precipitation into evapotranspiration and total runoff. We estimate that global groundwater recharge was 12 666 km3/yr for the climate normal 1961-1990, i.e. 32% of total renewable water resources. In semi-arid and arid regions, mountainous regions, permafrost regions and in the Asian Monsoon region, groundwater recharge accounts for a lower fraction of total runoff, which makes these regions particularly vulnerable to seasonal and inter-annual precipitation variability and water pollution. Average per-capita renewable groundwater resources of countries vary between 8 m3/(capita yr) for Egypt to more than 1 million m3

  3. Web Intelligence and Artificial Intelligence in Education

    ERIC Educational Resources Information Center

    Devedzic, Vladan

    2004-01-01

    This paper surveys important aspects of Web Intelligence (WI) in the context of Artificial Intelligence in Education (AIED) research. WI explores the fundamental roles as well as practical impacts of Artificial Intelligence (AI) and advanced Information Technology (IT) on the next generation of Web-related products, systems, services, and…

  4. Karst and artificial recharge: Theoretical and practical problems. A preliminary approach to artificial recharge assessment

    NASA Astrophysics Data System (ADS)

    Daher, Walid; Pistre, Séverin; Kneppers, Angeline; Bakalowicz, Michel; Najem, Wajdi

    2011-10-01

    SummaryManaged Aquifer Recharge (MAR) is an emerging sustainable technique that has already generated successful results and is expected to solve many water resource problems, especially in semi-arid and arid zones. It is of great interest for karst aquifers that currently supply 20-25% of the world's potable water, particularly in Mediterranean countries. However, the high heterogeneity in karst aquifers is too complex to be able to locate and describe them simply via field observations. Hence, as compared to projects in porous media, MAR is still marginal in karst aquifers. Accordingly, the present work presents a conceptual methodology for Aquifer Rechargeability Assessment in Karst - referred to as ARAK. The methodology was developed noting that artificial recharge in karst aquifers is considered an improbable challenge to solve since karst conduits may drain off recharge water without any significant storage, or recharge water may not be able to infiltrate. The aim of the ARAK method is to determine the ability of a given karst aquifer to be artificially recharged and managed, and the best sites for implementing artificial recharge from the surface. ARAK is based on multi-criteria indexation analysis modeled on karst vulnerability assessment methods. ARAK depends on four independent criteria, i.e. Epikarst, Rock, Infiltration and Karst. After dividing the karst domain into grids, these criteria are indexed using geological and topographic maps refined by field observations. ARAK applies a linear formula that computes the intrinsic rechargeability index based on the indexed map for every criterion, coupled with its attributed weighting rate. This index indicates the aptitude for recharging a given karst aquifer, as determined by studying its probability first on a regional scale for the whole karst aquifer, and then by characterizing the most favorable sites. Subsequently, for the selected sites, a technical and economic feasibility factor is applied, weighted

  5. Characteristics of groundwater recharge on the North China Plain.

    PubMed

    Tan, Xiu-Cui; Wu, Jing-Wei; Cai, Shu-Ying; Yang, Jin-Zhong

    2014-01-01

    Groundwater recharge is an important component of the groundwater system. On the North China Plain (NCP), groundwater is the main water supply. Because of large-scale overexploitation, the water table has declined, which has produced severe adverse effects on the environment and ecosystem. In this article, tracer experiment and watershed model were used to calculate and analyze NCP groundwater recharge. In the tracer experiment, average recharge was 108 mm/year and recharge coefficient 0.16. With its improved irrigation, vegetation coverage and evapotranspiration modules, the INFIL3.0 model was used for calculation of groundwater recharge. Regional modeling results showed an average recharge of 102 mm/year and recharge coefficient 0.14, for 2001-2009. These values are very similar to those from the field tracer experiment. Influences in the two methods were analyzed. The results can provide an important reference for NCP groundwater recharge. PMID:24032445

  6. REFLEAK: NIST Leak/Recharge Simulation Program for Refrigerant Mixtures

    National Institute of Standards and Technology Data Gateway

    SRD 73 NIST REFLEAK: NIST Leak/Recharge Simulation Program for Refrigerant Mixtures (PC database for purchase)   REFLEAK estimates composition changes of zeotropic mixtures in leak and recharge processes.

  7. Pathogen intelligence

    PubMed Central

    Steinert, Michael

    2014-01-01

    Different species inhabit different sensory worlds and thus have evolved diverse means of processing information, learning and memory. In the escalated arms race with host defense, each pathogenic bacterium not only has evolved its individual cellular sensing and behavior, but also collective sensing, interbacterial communication, distributed information processing, joint decision making, dissociative behavior, and the phenotypic and genotypic heterogeneity necessary for epidemiologic success. Moreover, pathogenic populations take advantage of dormancy strategies and rapid evolutionary speed, which allow them to save co-generated intelligent traits in a collective genomic memory. This review discusses how these mechanisms add further levels of complexity to bacterial pathogenicity and transmission, and how mining for these mechanisms could help to develop new anti-infective strategies. PMID:24551600

  8. Natural vs. artificial groundwater recharge, quantification through inverse modeling

    NASA Astrophysics Data System (ADS)

    Hashemi, H.; Berndtsson, R.; Kompani-Zare, M.; Persson, M.

    2012-08-01

    Estimating the change in groundwater recharge from an introduced artificial recharge system is important in order to evaluate future water availability. This paper presents an inverse modeling approach to quantify the recharge contribution from both an ephemeral river channel and an introduced artificial recharge system based on floodwater spreading in arid Iran. The study used the MODFLOW-2000 to estimate recharge for both steady and unsteady-state conditions. The model was calibrated and verified based on the observed hydraulic head in observation wells and model precision, uncertainty, and model sensitivity were analyzed in all modeling steps. The results showed that in a normal year without extreme events the floodwater spreading system is the main contributor to recharge with 80% and the ephemeral river channel with 20% of total recharge in the studied area. Uncertainty analysis revealed that the river channel recharge estimation represents relatively more uncertainty in comparison to the artificial recharge zones. The model is also less sensitive to the river channel. The results show that by expanding the artificial recharge system the recharge volume can be increased even for small flood events while the recharge through the river channel increases only for major flood events.

  9. Natural vs. artificial groundwater recharge, quantification through inverse modeling

    NASA Astrophysics Data System (ADS)

    Hashemi, H.; Berndtsson, R.; Kompani-Zare, M.; Persson, M.

    2013-02-01

    Estimating the change in groundwater recharge from an introduced artificial recharge system is important in order to evaluate future water availability. This paper presents an inverse modeling approach to quantify the recharge contribution from both an ephemeral river channel and an introduced artificial recharge system based on floodwater spreading in arid Iran. The study used the MODFLOW-2000 to estimate recharge for both steady- and unsteady-state conditions. The model was calibrated and verified based on the observed hydraulic head in observation wells and model precision, uncertainty, and model sensitivity were analyzed in all modeling steps. The results showed that in a normal year without extreme events, the floodwater spreading system is the main contributor to recharge with 80% and the ephemeral river channel with 20% of total recharge in the studied area. Uncertainty analysis revealed that the river channel recharge estimation represents relatively more uncertainty in comparison to the artificial recharge zones. The model is also less sensitive to the river channel. The results show that by expanding the artificial recharge system, the recharge volume can be increased even for small flood events, while the recharge through the river channel increases only for major flood events.

  10. Culture and intelligence.

    PubMed

    Sternberg, Robert J

    2004-01-01

    Intelligence cannot be fully or even meaningfully understood outside its cultural context. Work that seeks to study intelligence acontextually risks the imposition of an investigator's view of the world on the rest of the world. Moreover, work on intelligence within a single culture mayfail to do justice to the range of skills and knowledge that may constitute intelligence broadly defined and risks drawing false and hasty generalizations. This article considers the relevance of culture to intelligence, as well as its investigation, assessment, and development. Studies that show the importance of understanding intelligence in its cultural context are described; the author concludes that intelligence must be understood in such context. PMID:15511120

  11. Design considerations for rechargeable lithium batteries

    NASA Technical Reports Server (NTRS)

    Shen, D. H.; Huang, C.-K.; Davies, E.; Perrone, D.; Surampudi, S.; Halpert, Gerald

    1993-01-01

    Viewgraphs of a discussion of design considerations for rechargable lithium batteries. The objective is to determine the influence of cell design parameters on the performance of Li-TiS2 cells. Topics covered include cell baseline design and testing, cell design and testing, cell design parameters studies, and cell cycling performance.

  12. Alloys of clathrate allotropes for rechargeable batteries

    SciTech Connect

    Chan, Candace K; Miller, Michael A; Chan, Kwai S

    2014-12-09

    The present disclosure is directed at an electrode for a battery wherein the electrode comprises clathrate alloys of silicon, germanium or tin. In method form, the present disclosure is directed at methods of forming clathrate alloys of silicon, germanium or tin which methods lead to the formation of empty cage structures suitable for use as electrodes in rechargeable type batteries.

  13. Anodes for Rechargeable Lithium-Sulfur Batteries

    SciTech Connect

    Cao, Ruiguo; Xu, Wu; Lu, Dongping; Xiao, Jie; Zhang, Jiguang

    2015-04-10

    In this work, we will review the recent developments on the protection of Li metal anode in Li-S batteries. Various strategies used to minimize the corrosion of Li anode and reducing its impedance increase will be analyzed. Other potential anodes used in sulfur based rechargeable batteries will also be discussed.

  14. Anode for rechargeable ambient temperature lithium cells

    NASA Technical Reports Server (NTRS)

    Huang, Chen-Kuo (Inventor); Surampudi, Subbarao (Inventor); Attia, Alan I. (Inventor); Halpert, Gerald (Inventor)

    1994-01-01

    An ambient room temperature, high density, rechargeable lithium battery includes a Li(x)Mg2Si negative anode which intercalates lithium to form a single crystalline phase when x is up to 1.0 and an amorphous phase when x is from 1 to 2.0. The electrode has good reversibility and mechanical strength after cycling.

  15. Rechargeable solid polymer electrolyte battery cell

    DOEpatents

    Skotheim, Terji

    1985-01-01

    A rechargeable battery cell comprising first and second electrodes sandwiching a solid polymer electrolyte comprising a layer of a polymer blend of a highly conductive polymer and a solid polymer electrolyte adjacent said polymer blend and a layer of dry solid polymer electrolyte adjacent said layer of polymer blend and said second electrode.

  16. Application potential of rechargeable lithium batteries

    SciTech Connect

    Hunger, H.F.; Bramhall, P.J.

    1983-10-01

    Rechargeable lithium cells with Cr /SUB 0.5/ V/sub 0/ /sub 5/S/sub 2/ and MoO/sub 3/ cathodes were investigated in the temperature range of -30/sup 0/C to +25/sup 0/C. The electrolyte was 1.5M LiAsF/sub 6/ in 2-methyl tetrahydrofuran with tetrahydrofuran (50:50 V percent). Current densities and capacities as a function of temperature, cathode utilization efficiencies versus cycle life, and shelf lives were determined. The state of charge could be related to open circuit voltages after partial discharge. The potential of the system for communication applications is discussed. Recent advances in rechargeable lithium batteries were mainly due to the discovery of stable, cyclic ether electrolyte solvents (1) and to the use of rechargeable cathode materials (2). The practical usefulness of rechargeable lithium cells with Cr /SUB 0.5/ V /SUB 0.5/ S/sub 2/ and MoO/sub 3/ cathodes was investigated in the temperature range of -30/sup 0/C to +25/sup 0/C. The electrolyte was mainly 1.5M LiAsF/sub 6/ in 2-methyl tetrahydrofuran with tetrahydrofuran (50:50 V percent). The two cathode materials were chosen because Cr /SUB 0.5/ V /SUB 0.5/ S/sub 2/ resembles TiS/sub 2/ in capacity and cycling behavior and MoO/sub 3/ is a low cost cathode material of interest.

  17. Recharging Our Sense of Idealism: Concluding Thoughts

    ERIC Educational Resources Information Center

    D'Andrea, Michael; Dollarhide, Colette T.

    2011-01-01

    In this article, the authors aim to recharge one's sense of idealism. They argue that idealism is the Vitamin C that sustains one's commitment to implementing humanistic principles and social justice practices in the work of counselors and educators. The idealism that characterizes counselors and educators who are humanistic and social justice…

  18. Regional Analysis of Ground-Water Recharge

    USGS Publications Warehouse

    Flint, Lorraine E.; Flint, Alan L.

    2007-01-01

    A modeling analysis of runoff and ground-water recharge for the arid and semiarid southwestern United States was performed to investigate the interactions of climate and other controlling factors and to place the eight study-site investigations into a regional context. A distributed-parameter water-balance model (the Basin Characterization Model, or BCM) was used in the analysis. Data requirements of the BCM included digital representations of topography, soils, geology, and vegetation, together with monthly time-series of precipitation and air-temperature data. Time-series of potential evapotranspiration were generated by using a submodel for solar radiation, taking into account topographic shading, cloudiness, and vegetation density. Snowpack accumulation and melting were modeled using precipitation and air-temperature data. Amounts of water available for runoff and ground-water recharge were calculated on the basis of water-budget considerations by using measured- and generated-meteorologic time series together with estimates of soil-water storage and saturated hydraulic conductivity of subsoil geologic units. Calculations were made on a computational grid with a horizontal resolution of about 270 meters for the entire 1,033,840 square-kilometer study area. The modeling analysis was composed of 194 basins, including the eight basins containing ground-water recharge-site investigations. For each grid cell, the BCM computed monthly values of potential evapotranspiration, soil-water storage, in-place ground-water recharge, and runoff (potential stream flow). A fixed percentage of runoff was assumed to become recharge beneath channels operating at a finer resolution than the computational grid of the BCM. Monthly precipitation and temperature data from 1941 to 2004 were used to explore climatic variability in runoff and ground-water recharge. The selected approach provided a framework for classifying study-site basins with respect to climate and dominant recharge

  19. Genetic Fuzzy Trees for Intelligent Control of Unmanned Combat Aerial Vehicles

    NASA Astrophysics Data System (ADS)

    Ernest, Nicholas D.

    Fuzzy Logic Control is a powerful tool that has found great success in a variety of applications. This technique relies less on complex mathematics and more "expert knowledge" of a system to bring about high-performance, resilient, and efficient control through linguistic classification of inputs and outputs and if-then rules. Genetic Fuzzy Systems (GFSs) remove the need of this expert knowledge and instead rely on a Genetic Algorithm (GA) and have similarly found great success. However, the combination of these methods suffer severely from scalability; the number of rules required to control the system increases exponentially with the number of states the inputs and outputs can take. Therefor GFSs have thus far not been applicable to complex, artificial intelligence type problems. The novel Genetic Fuzzy Tree (GFT) method breaks down complex problems hierarchically, makes sub-decisions when possible, and thus greatly reduces the burden on the GA. This development significantly changes the field of possible applications for GFSs. Within this study, this is demonstrated through applying this technique to a difficult air combat problem. Looking forward to an autonomous Unmanned Combat Aerial Vehicle (UCAV) in the 2030 time-frame, it becomes apparent that the mission, flight, and ground controls will utilize the emerging paradigm of Intelligent Systems (IS); namely, the ability to learn, adapt, exhibit robustness in uncertain situations, make sense of the data collected in real-time and extrapolate when faced with scenarios significantly different from those used in training. LETHA (Learning Enhanced Tactical Handling Algorithm) was created to develop intelligent controllers for these advanced unmanned craft as the first GFT. A simulation space referred to as HADES (Hoplological Autonomous Defend and Engage Simulation) was created in which LETHA can train the UCAVs. Equipped with advanced sensors, a limited supply of Self-Defense Missiles (SDMs), and a recharging

  20. Creationism and intelligent design.

    PubMed

    Pennock, Robert T

    2003-01-01

    Creationism, the rejection of evolution in favor of supernatural design, comes in many varieties besides the common young-earth Genesis version. Creationist attacks on science education have been evolving in the last few years through the alliance of different varieties. Instead of calls to teach "creation science," one now finds lobbying for "intelligent design" (ID). Guided by the Discovery Institute's "Wedge strategy," the ID movement aims to overturn evolution and what it sees as a pernicious materialist worldview and to renew a theistic foundation to Western culture, in which human beings are recognized as being created in the image of God. Common ID arguments involving scientific naturalism, "irreducible complexity," "complex specified information," and "icons of evolution," have been thoroughly examined and refuted. Nevertheless, from Kansas to Ohio to the U.S. Congress, ID continues lobbying to teach the controversy, and scientists need to be ready to defend good evolution education. PMID:14527300

  1. Simulated effects of an artificial-recharge experiment near Proctor, Logan County, Colorado

    USGS Publications Warehouse

    Burns, A.W.

    1984-01-01

    An artificial-recharge experiment was conducted near Proctor, Colorado in which a computed 620 acre-feet were pumped from a well during a 4-month period. A computed 420 acre-feet were delivered at the potential reservoir site, and the remaining 200 acre-feet leaked from the pipeline. No pond was created due to the high rates of infiltration. Water levels in the nearest well (about 0.1 mile from the recharge site) rose almost 25 feet. Computer simulations indicate that this 4-month pumping-recharge experiment would cause stream depletions from the nearby South Platte River for the first 16 months, thereafter, stream accretions due to the recharge would exceed stream depletions due to pumpage. If the experiment was conducted annually, the simulations indicate that stream depletions would occur for 6 months of each year and stream acretions for the remaining 6 months once the system reached an equilibrium condition. To reach the cyclic equilibrium condition would take at least 7 years. (USGS)

  2. Manganese oxide cathodes for rechargeable batteries

    NASA Astrophysics Data System (ADS)

    Im, Dongmin

    Manganese oxides are considered as promising cathodes for rechargeable batteries due to their low cost and low toxicity as well as the abundant natural resources. In this dissertation, manganese oxides have been investigated as cathodes for both rechargeable lithium and alkaline batteries. Nanostructured lithium manganese oxides designed for rechargeable lithium cells have been synthesized by reducing lithium permanganate with methanol or hydrogen in various solvents followed by firing at moderate temperatures. The samples have been characterized by wet-chemical analyses, thermal methods, spectroscopic methods, and electron microscopy. It has been found that chemical residues in the oxides such as carboxylates and hydroxyl groups, which could be controlled by varying the reaction medium, reducing agents, and additives, make a significant influence on the electrochemical properties. The Li/Mn ratio in the material has also been found to be a critical factor in determining the rechargeability of the cathodes. The optimized samples exhibit a high capacity of close to 300 mAh/g with good cyclability and charge efficiency. The high capacity with a lower discharge voltage may make these nanostructured oxides particularly attractive for lithium polymer batteries. The research on the manganese oxide cathodes for alkaline batteries is focused on an analysis of the reaction products generated during the charge/discharge processes or by some designed chemical reactions mimicking the electrochemical processes. The factors influencing the formation of Mn3O4 in the two-electron redox process of delta-MnO2 have been studied with linear sweep voltammetry combined with X-ray diffraction. The presence of bismuth, the discharge rate, and the microstructure of the electrodes are found to affect the formation of Mn3O4, which is known to be electrochemically inactive. A faster voltage sweep and a more intimate mixing of the manganese oxide and carbon in the cathode are found to suppress

  3. Assessing controls on diffuse groundwater recharge using unsaturated flow modeling

    NASA Astrophysics Data System (ADS)

    Keese, K. E.; Scanlon, B. R.; Reedy, R. C.

    2005-06-01

    Understanding climate, vegetation, and soil controls on recharge is essential for estimating potential impacts of climate variability and land use/land cover change on recharge. Recharge controls were evaluated by simulating drainage in 5-m-thick profiles using a one-dimensional (1-D) unsaturated flow code (UNSAT-H), climate data, and vegetation and soil coverages from online sources. Soil hydraulic properties were estimated from STATSGO/SSURGO soils data using pedotransfer functions. Vegetation parameters were obtained from the literature. Long-term (1961-1990) simulations were conducted for 13 county-scale regions representing arid to humid climates and different vegetation and soil types, using data for Texas. Areally averaged recharge rates are most appropriate for water resources; therefore Geographic Information Systems were used to determine spatial weighting of recharge results from 1-D models for the combination of vegetation and soils in each region. Simulated 30-year mean annual recharge in bare sand is high (51-709 mm/yr) and represents 23-60% (arid-humid) of mean annual precipitation (MAP). Adding vegetation reduced recharge by factors of 2-30 (humid-arid), and soil textural variability reduced recharge by factors of 2-11 relative to recharge in bare sand. Vegetation and soil textural variability both resulted in a large range of recharge rates within each region; however, spatially weighted, long-term recharge rates were much less variable and were positively correlated with MAP (r2 = 0.85 for vegetated sand; r2 = 0.62 for variably textured soils). The most realistic simulations included vegetation and variably textured soils, which resulted in recharge rates from 0.2 to 118 mm/yr (0.1-10% of MAP). Mean annual precipitation explains 80% of the variation in recharge and can be used to map recharge.

  4. The Personal Intelligences: Promoting Social and Emotional Learning.

    ERIC Educational Resources Information Center

    Ellison, Launa

    This book blends two of the multiple intelligences (intrapersonal and interpersonal) with current research on the brain and learning to create a new foundation for K-8 classrooms. It shares a teacher's classroom practices linking brain functions with the development of interpersonal and intrapersonal intelligence. Nine chapters include (1) "In the…

  5. Nanocomposite polymer electrolyte for rechargeable magnesium batteries

    SciTech Connect

    Shao, Yuyan; Rajput, Nav Nidhi; Hu, Jian Z.; Hu, Mary Y.; Liu, Tianbiao L.; Wei, Zhehao; Gu, Meng; Deng, Xuchu; Xu, Suochang; Han, Kee Sung; Wang, Jiulin; Nie, Zimin; Li, Guosheng; Zavadil, K.; Xiao, Jie; Wang, Chong M.; Henderson, Wesley A.; Zhang, Jiguang; Wang, Yong; Mueller, Karl T.; Persson, Kristin A.; Liu, Jun

    2014-12-28

    Nanocomposite polymer electrolytes present new opportunities for rechargeable magnesium batteries. However, few polymer electrolytes have demonstrated reversible Mg deposition/dissolution and those that have still contain volatile liquids such as tetrahydrofuran (THF). In this work, we report a nanocomposite polymer electrolyte based on poly(ethylene oxide) (PEO), Mg(BH4)2 and MgO nanoparticles for rechargeable Mg batteries. Cells with this electrolyte have a high coulombic efficiency of 98% for Mg plating/stripping and a high cycling stability. Through combined experiment-modeling investigations, a correlation between improved solvation of the salt and solvent chain length, chelation and oxygen denticity is established. Following the same trend, the nanocomposite polymer electrolyte is inferred to enhance the dissociation of the salt Mg(BH4)2 and thus improve the electrochemical performance. The insights and design metrics thus obtained may be used in nanocomposite electrolytes for other multivalent systems.

  6. Recharge and Evapotranspiration Assessment In Kalahari

    NASA Astrophysics Data System (ADS)

    Lubczynski, M.; Obakeng, O.

    2006-12-01

    Sustainability of groundwater resources in Kalahri is constrained not only by recharge to the aquifers but also by discharge from them. Natural groundwater discharge takes place in 3 different ways, as aquifer groundwater outflow, direct tree root water uptake called groundwater transpiration (Tg) and as upward vapor-liquid water movement called groundwater evaporation (Eg), the latter two called groundwater evapotranspiration (ETg). The evaluation of ETg and recharge was the main goal of this study. Due to generally large depth of groundwater table in Kalahari, >60 m, Eg was assumed as negligible component of groundwater balances while in contrast Tg has been considered significant already since 90-ties. This was because of fragments of tree roots of Boscia albitrunca and Acacia erioloba found in borehole cores at depth of >60 m. Some of those roots reach groundwater, which allow them to remain green throughout dry seasons. This study was carried out using hydrological monitoring consisting of 10 multi-sensor towers and 17 groundwater monitoring points. Soil moisture movement was investigated by profile monitoring. The deepest profile was down to 76 m depth. The soil moisture results revealed complicated pattern characterized by a combination of diffuse and preferential flow. The actual evapotranspiration was estimated by the Bowen-ratio and temperature-profile methods which provided overestimated results as compared with rainfall so the recharge could not be deduced directly. Therefore recharge was derived indirectly, through 1D lumped parameter model that used rainfall and PET as input and heads as calibration reference. That model indicated recharge 0-50 mm/yr. For understanding tree impact upon groundwater recharge, tree sap velocity was monitored for 2 years using the Granier method on 41 trees of 9 species in 8 plots of 30x30m. The estimated plot transpirations showed large spatio-temporal variability, 3-71 mm/yr and occasionally exceeded recharge. In order

  7. Educational Programs for Intelligence Professionals.

    ERIC Educational Resources Information Center

    Miller, Jerry P.

    1994-01-01

    Discusses the need for education programs for competitive intelligence professionals. Highlights include definitions of intelligence functions, focusing on business intelligence; information utilization by decision makers; information sources; competencies for intelligence professionals; and the development of formal education programs. (38…

  8. Solid-state rechargeable magnesium battery

    DOEpatents

    Shao, Yuyan; Liu, Jun; Liu, Tianbiao; Li, Guosheng

    2016-09-06

    Embodiments of a solid-state electrolyte comprising magnesium borohydride, polyethylene oxide, and optionally a Group IIA or transition metal oxide are disclosed. The solid-state electrolyte may be a thin film comprising a dispersion of magnesium borohydride and magnesium oxide nanoparticles in polyethylene oxide. Rechargeable magnesium batteries including the disclosed solid-state electrolyte may have a coulombic efficiency .gtoreq.95% and exhibit cycling stability for at least 50 cycles.

  9. Inorganic rechargeable non-aqueous cell

    SciTech Connect

    Bowden, William L.; Dey, Arabinda N.

    1985-05-07

    A totally inorganic non-aqueous rechargeable cell having an alkali or alkaline earth metal anode such as of lithium, a sulfur dioxide containing electrolyte and a discharging metal halide cathode, such as of CuCl.sub.2, CuBr.sub.2 and the like with said metal halide being substantially totally insoluble in SO.sub.2 and admixed with a conductive carbon material.

  10. The rechargeable aluminum-ion battery.

    PubMed

    Jayaprakash, N; Das, S K; Archer, L A

    2011-12-21

    We report a novel aluminium-ion rechargeable battery comprised of an electrolyte containing AlCl(3) in the ionic liquid, 1-ethyl-3-methylimidazolium chloride, and a V(2)O(5) nano-wire cathode against an aluminium metal anode. The battery delivered a discharge capacity of 305 mAh g(-1) in the first cycle and 273 mAh g(-1) after 20 cycles, with very stable electrochemical behaviour. PMID:22051794

  11. Charge Control Investigation of Rechargeable Lithium Cells

    NASA Technical Reports Server (NTRS)

    Otzinger, B.; Somoano, R.

    1984-01-01

    An ambient temperature rechargeable Li-TiS2 cell was cycled under conditions which simulate aerospace applications. A novel charge/discharge state-of-charge control scheme was used, together with tapered current charging, to overcome deleterious effects associated with end-of-charge and end-of-discharge voltages. The study indicates that Li-TiS2 cells hold promise for eventual synchronous satellite-type applications. Problem areas associated with performance degradation and reconditioning effects are identified.

  12. The rechargeable aluminum-ion battery

    SciTech Connect

    Navaneedhakrishnan, Jayaprakash; Das, Shyamal K; Archer, Lynden A.

    2011-01-01

    We report a novel aluminium-ion rechargeable battery comprised of an electrolyte containing AlCl₃ in the ionic liquid, 1-ethyl-3-methylimidazolium chloride, and a V₂O₅ nano-wire cathode against an aluminium metal anode. The battery delivered a discharge capacity of 305 mAh g⁻¹ in the first cycle and 273 mAh g⁻¹ after 20 cycles, with very stable electrochemical behaviour.

  13. Ampere-Hour Meter For Rechargeable Battery

    NASA Technical Reports Server (NTRS)

    Tripp, John S.; Schott, Timothy D.; Tcheng, Ping

    1993-01-01

    Low-power analog/digital electronic circuit meters discharge of storage battery in ampere-hours. By metering discharge, one obtains indication of state of charge of battery and avoids unnecessary recharging, maintaining capacity of battery and prolonging life. Because of its small size and low power consumption, useful in such applications as portable video cameras, communication equipment on boats, portable audio equipment, and portable medical equipment.

  14. Eight Ways of Teaching: The Artistry of Teaching with Multiple Intelligences. Fourth Edition.

    ERIC Educational Resources Information Center

    Lazear, David

    This book goes through the eight intelligences (verbal/linguistic, logical/mathematical, visual, bodily/kinesthetic, musical/rhythmic, interpersonal, intrapersonal, and naturalist), showing teachers new ways to create their own lessons using these intelligences. It also describes how to use technology to enhance each of the intelligences. The book…

  15. The 17th Annual Intelligent Ground Vehicle Competition: intelligent robots built by intelligent students

    NASA Astrophysics Data System (ADS)

    Theisen, Bernard L.

    2010-01-01

    The Intelligent Ground Vehicle Competition (IGVC) is one of four unmanned systems student competitions that were founded by the Association for Unmanned Vehicle Systems International (AUVSI). The IGVC is a multidisciplinary exercise in product realization that challenges college engineering student teams to integrate advanced control theory, machine vision, vehicular electronics and mobile platform fundamentals to design and build an unmanned ground vehicle. Teams from around the world focus on developing a suite of dual-use technologies to equip their system of the future with intelligent driving capabilities. Over the past 17 years, the competition has challenged undergraduate, graduate and Ph.D. students with real world applications in intelligent transportation systems, the military and manufacturing automation. To date, teams from over 70 universities and colleges have participated. This paper describes some of the applications of the technologies required by this competition and discusses the educational benefits. The primary goal of the IGVC is to advance engineering education in intelligent vehicles and related technologies. The employment and professional networking opportunities created for students and industrial sponsors through a series of technical events over the four-day competition are highlighted. Finally, an assessment of the competition based on participation is presented.

  16. Intelligent Extruder

    SciTech Connect

    AlperEker; Mark Giammattia; Paul Houpt; Aditya Kumar; Oscar Montero; Minesh Shah; Norberto Silvi; Timothy Cribbs

    2003-04-24

    ''Intelligent Extruder'' described in this report is a software system and associated support services for monitoring and control of compounding extruders to improve material quality, reduce waste and energy use, with minimal addition of new sensors or changes to the factory floor system components. Emphasis is on process improvements to the mixing, melting and de-volatilization of base resins, fillers, pigments, fire retardants and other additives in the :finishing'' stage of high value added engineering polymer materials. While GE Plastics materials were used for experimental studies throughout the program, the concepts and principles are broadly applicable to other manufacturers materials. The project involved a joint collaboration among GE Global Research, GE Industrial Systems and Coperion Werner & Pleiderer, USA, a major manufacturer of compounding equipment. Scope of the program included development of a algorithms for monitoring process material viscosity without rheological sensors or generating waste streams, a novel detection scheme for rapid detection of process upsets and an adaptive feedback control system to compensate for process upsets where at line adjustments are feasible. Software algorithms were implemented and tested on a laboratory scale extruder (50 lb/hr) at GE Global Research and data from a production scale system (2000 lb/hr) at GE Plastics was used to validate the monitoring and detection software. Although not evaluated experimentally, a new concept for extruder process monitoring through estimation of high frequency drive torque without strain gauges is developed and demonstrated in simulation. A plan to commercialize the software system is outlined, but commercialization has not been completed.

  17. Ground water recharge from Lake Chad

    SciTech Connect

    Isiorho, S.; Matisoff, G.; McCall, P.L.

    1985-01-01

    Lake Chad is a shallow, closed basin lake located in Sub-Sharan Africa. It has the largest drainage basin of any lake in the world, and is also very old, being formed by tectonic processes during the Cretaceous. These features should combine to form a saline lake, but the open waters of Lake Chad are reasonably fresh, having a total dissolved solids concentration of about 320 mg/1. This apparent discrepancy can be explained by noting that recharge of the unconfined aquifer to the SW in Nigeria by ground water infiltration through the lakebed can remove significant quantities of water and dissolved solutes from the lake. The authors have measured and calculated ground water infiltration and velocities by several techniques. Direct, volumetric measurements of ground water recharge seepage give velocities on the order of .28-8.8 x 10/sup -3/ m/day. Tracer monitoring in a borehole dilution test yielded ground water velocities of 3.6 m/day to the SW (away from the lake). Hydraulic conductivities approx. .004-.6 m/day were determined by falling head measurements. Finally, using static water levels, the potentiometric surface within approx. 80 km of the southwest portion of Lake Chad yields water table gradients of 1.0-1.7 x 10/sup -4/ away from the lake. These results confirm that surface water and solute inflow to Lake Chad is removed by recharge to the unconfined aquifer in Nigeria.

  18. Dendrites Inhibition in Rechargeable Lithium Metal Batteries

    NASA Astrophysics Data System (ADS)

    Aryanfar, Asghar

    The specific high energy and power capacities of rechargeable lithium metal (Li0) batteries are ideally suited to portable devices and are valuable as storage units for intermittent renewable energy sources. Lithium, the lightest and most electropositive metal, would be the optimal anode material for rechargeable batteries if it were not for the fact that such devices fail unexpectedly by short-circuiting via the dendrites that grow across electrodes upon recharging. This phenomenon poses a major safety issue because it triggers a series of adverse events that start with overheating, potentially followed by the thermal decomposition and ultimately the ignition of the organic solvents used in such devices. In this thesis, we developed experimental platform for monitoring and quantifying the dendrite populations grown in a Li battery prototype upon charging under various conditions. We explored the effects of pulse charging in the kHz range and temperature on dendrite growth, and also on loss capacity into detached "dead" lithium particles. Simultaneously, we developed a computational framework for understanding the dynamics of dendrite propagation. The coarse-grained Monte Carlo model assisted us in the interpretation of pulsing experiments, whereas MD calculations provided insights into the mechanism of dendrites thermal relaxation. We also developed a computational framework for measuring the dead lithium crystals from the experimental images.

  19. Quantifying Potential Groundwater Recharge In South Texas

    NASA Astrophysics Data System (ADS)

    Basant, S.; Zhou, Y.; Leite, P. A.; Wilcox, B. P.

    2015-12-01

    Groundwater in South Texas is heavily relied on for human consumption and irrigation for food crops. Like most of the south west US, woody encroachment has altered the grassland ecosystems here too. While brush removal has been widely implemented in Texas with the objective of increasing groundwater recharge, the linkage between vegetation and groundwater recharge in South Texas is still unclear. Studies have been conducted to understand plant-root-water dynamics at the scale of plants. However, little work has been done to quantify the changes in soil water and deep percolation at the landscape scale. Modeling water flow through soil profiles can provide an estimate of the total water flowing into deep percolation. These models are especially powerful with parameterized and calibrated with long term soil water data. In this study we parameterize the HYDRUS soil water model using long term soil water data collected in Jim Wells County in South Texas. Soil water was measured at every 20 cm intervals up to a depth of 200 cm. The parameterized model will be used to simulate soil water dynamics under a variety of precipitation regimes ranging from well above normal to severe drought conditions. The results from the model will be compared with the changes in soil moisture profile observed in response to vegetation cover and treatments from a study in a similar. Comparative studies like this can be used to build new and strengthen existing hypotheses regarding deep percolation and the role of soil texture and vegetation in groundwater recharge.

  20. An ultrafast rechargeable aluminium-ion battery

    NASA Astrophysics Data System (ADS)

    Lin, Meng-Chang; Gong, Ming; Lu, Bingan; Wu, Yingpeng; Wang, Di-Yan; Guan, Mingyun; Angell, Michael; Chen, Changxin; Yang, Jiang; Hwang, Bing-Joe; Dai, Hongjie

    2015-04-01

    The development of new rechargeable battery systems could fuel various energy applications, from personal electronics to grid storage. Rechargeable aluminium-based batteries offer the possibilities of low cost and low flammability, together with three-electron-redox properties leading to high capacity. However, research efforts over the past 30 years have encountered numerous problems, such as cathode material disintegration, low cell discharge voltage (about 0.55 volts ref. 5), capacitive behaviour without discharge voltage plateaus (1.1-0.2 volts or 1.8-0.8 volts) and insufficient cycle life (less than 100 cycles) with rapid capacity decay (by 26-85 per cent over 100 cycles). Here we present a rechargeable aluminium battery with high-rate capability that uses an aluminium metal anode and a three-dimensional graphitic-foam cathode. The battery operates through the electrochemical deposition and dissolution of aluminium at the anode, and intercalation/de-intercalation of chloroaluminate anions in the graphite, using a non-flammable ionic liquid electrolyte. The cell exhibits well-defined discharge voltage plateaus near 2 volts, a specific capacity of about 70 mA h g-1 and a Coulombic efficiency of approximately 98 per cent. The cathode was found to enable fast anion diffusion and intercalation, affording charging times of around one minute with a current density of ~4,000 mA g-1 (equivalent to ~3,000 W kg-1), and to withstand more than 7,500 cycles without capacity decay.

  1. A regression model to estimate regional ground water recharge.

    PubMed

    Lorenz, David L; Delin, Geoffrey N

    2007-01-01

    A regional regression model was developed to estimate the spatial distribution of ground water recharge in subhumid regions. The regional regression recharge (RRR) model was based on a regression of basin-wide estimates of recharge from surface water drainage basins, precipitation, growing degree days (GDD), and average basin specific yield (SY). Decadal average recharge, precipitation, and GDD were used in the RRR model. The RRR estimates were derived from analysis of stream base flow using a computer program that was based on the Rorabaugh method. As expected, there was a strong correlation between recharge and precipitation. The model was applied to statewide data in Minnesota. Where precipitation was least in the western and northwestern parts of the state (50 to 65 cm/year), recharge computed by the RRR model also was lowest (0 to 5 cm/year). A strong correlation also exists between recharge and SY. SY was least in areas where glacial lake clay occurs, primarily in the northwest part of the state; recharge estimates in these areas were in the 0- to 5-cm/year range. In sand-plain areas where SY is greatest, recharge estimates were in the 15- to 29-cm/year range on the basis of the RRR model. Recharge estimates that were based on the RRR model compared favorably with estimates made on the basis of other methods. The RRR model can be applied in other subhumid regions where region wide data sets of precipitation, streamflow, GDD, and soils data are available. PMID:17335484

  2. A regression model to estimate regional ground water recharge

    USGS Publications Warehouse

    Lorenz, D.L.; Delin, G.N.

    2007-01-01

    A regional regression model was developed to estimate the spatial distribution of ground water recharge in subhumid regions. The regional regression recharge (RRR) model was based on a regression of basin-wide estimates of recharge from surface water drainage basins, precipitation, growing degree days (GDD), and average basin specific yield (SY). Decadal average recharge, precipitation, and GDD were used in the RRR model. The RRR estimates were derived from analysis of stream base flow using a computer program that was based on the Rorabaugh method. As expected, there was a strong correlation between recharge and precipitation. The model was applied to statewide data in Minnesota. Where precipitation was least in the western and northwestern parts of the state (50 to 65 cm/year), recharge computed by the RRR model also was lowest (0 to 5 cm/year). A strong correlation also exists between recharge and SY. SY was least in areas where glacial lake clay occurs, primarily in the northwest part of the state; recharge estimates in these areas were in the 0- to 5-cm/year range. In sand-plain areas where SY is greatest, recharge estimates were in the 15- to 29-cm/year range on the basis of the RRR model. Recharge estimates that were based on the RRR model compared favorably with estimates made on the basis of other methods. The RRR model can be applied in other subhumid regions where region wide data sets of precipitation, streamflow, GDD, and soils data are available.

  3. Basin-scale recharge in the Southwestern United States

    NASA Astrophysics Data System (ADS)

    Hogan, J. F.; Duffy, C.; Eastoe, C.; Ferre, T. P. A.; Goodrich, D.; Hendrickx, J.; Hibbs, B.; Phillips, F.; Small, E.; Wilson, J.

    2003-04-01

    The major domestic water source in the arid southwestern United States is groundwater from alluvial basin aquifers. Accurate estimates of basin-scale groundwater recharge rates are a critical need for developing sustainable or "safe yield" groundwater pumping. Basin-scale recharge rates are typically estimated using inverse hydrologic modeling or geochemical tracers (e.g. chloride mass balance). These methods, while useful, have a high level of uncertainty and provide no information about the mechanisms of groundwater recharge. SAHRA - an NSF Science and Technology Center focused on the Sustainability of semi-Arid Hydrology and Riparian Areas - has developed an integrated research plan to address this problem. Our approach is two-fold. First we are investigating the "input" components that comprise basin-scale recharge: basin floor recharge, alluvial channel recharge, mountain front recharge, and mountain block recharge. Each component has unique spatial and temporal scales and thus requires distinct methods. Our research is aimed at understanding the factors (e.g. vegetation type, bedrock lithology, soil structure) that control recharge rates in each of these locations. With such an understanding one could then scale from point measurements to the basin-scale using remote sensing data. Our second approach is to employ isotopic tracers to determine water sources, groundwater ages and residence times of the groundwater and surface water "outputs"; these values can then be used to better calibrate recharge rates in groundwater models. By focusing our studies on two basins, the San Pedro River Basin in Arizona and the Rio Grande in New Mexico, we hope to develop a better understanding of the importance of different recharge pathways for basin-scale recharge and which methods are best suited for estimating basin-scale recharge.

  4. Intelligent Virtual Station (IVS)

    NASA Technical Reports Server (NTRS)

    2002-01-01

    The Intelligent Virtual Station (IVS) is enabling the integration of design, training, and operations capabilities into an intelligent virtual station for the International Space Station (ISS). A viewgraph of the IVS Remote Server is presented.

  5. Intelligence: Genetic and Environmental Influences.

    ERIC Educational Resources Information Center

    Cancro, Robert, Ed.

    This book on the genetic and environmental influences on intelligence is comprised of the following papers: "The Structure of Intelligence in Relation to the Nature-Nurture Controversy," R. B. Cattell; "Theory of Intelligence," L. G. Humphreys; "Using Measured Intelligence Intelligently," P. R. Merrifield; "Intelligence: Definition, Theory, and…

  6. Rechargeable Lithium-Air Batteries: Development of Ultra High Specific Energy Rechargeable Lithium-Air Batteries Based on Protected Lithium Metal Electrodes

    SciTech Connect

    2010-07-01

    BEEST Project: PolyPlus is developing the world’s first commercially available rechargeable lithium-air (Li-Air) battery. Li-Air batteries are better than the Li-Ion batteries used in most EVs today because they breathe in air from the atmosphere for use as an active material in the battery, which greatly decreases its weight. Li-Air batteries also store nearly 700% as much energy as traditional Li-Ion batteries. A lighter battery would improve the range of EVs dramatically. Polyplus is on track to making a critical breakthrough: the first manufacturable protective membrane between its lithium–based negative electrode and the reaction chamber where it reacts with oxygen from the air. This gives the battery the unique ability to recharge by moving lithium in and out of the battery’s reaction chamber for storage until the battery needs to discharge once again. Until now, engineers had been unable to create the complex packaging and air-breathing components required to turn Li-Air batteries into rechargeable systems.

  7. Intelligent card processing terminal of urban rail transit in Nanjing

    NASA Astrophysics Data System (ADS)

    Xia, Dechuan; Zhang, Xiaojun; Song, Yana; He, Tiejun

    2011-10-01

    In order to improve the compatibility, security and expandability of Automatic Fare Collection System in rail transit, and reduce the maintenance cost, intelligent card processing terminal is proposed in this paper. The operation flow and features of intelligent card processing terminal are analyzed in detailed, and the software and hardware structures and business treatment process are designed. Finally, the security mechanism of intelligent card processing terminal is summarized. The application results shows that Intelligent card processing terminal makes interconnection among lines easier, creates considerable economic efficiency and the social efficiency, and can be widely used.

  8. Openness, Intelligence, and Self-Report Intelligence

    ERIC Educational Resources Information Center

    Gignac, Gilles E.; Stough, Con; Loukomitis, Sue

    2004-01-01

    Past studies that have examined the relationship between Openness and crystallized ability have failed to account statistically for the fact that subtests commonly regarded as measures of crystallized intelligence (e.g., Vocabulary) are contaminated substantially by general intelligence. A method using residuals derived from a regression is…

  9. Recharge Data Package for the Immobilized Low-Activity Waste 2001 Performance Assessment

    SciTech Connect

    MJ Fayer; EM Murphy; JL Downs; FO Khan; CW Lindenmeier; BN Bjornstad

    2000-01-18

    time periods evaluated. The most important feature, the surface cover, is expected to be the modified RCRA Subtitle C design. This design uses a 1-m-thick silt loam layer above sand and gravel filter layers to create a capillary break. A 0.15-m-thick asphalt layer underlies the filter layers to function as a backup barrier and to promote lateral drainage. Cover sideslopes are expected to be constructed with 1V:10H slopes using sandy gravel. The recharge estimates for each scenario were derived from lysimeter and tracer data collected by the ILAW PA and other projects and from modeling analyses.

  10. Calendrical Calculation and Intelligence.

    ERIC Educational Resources Information Center

    O'Connor, Neil; Cowan, Richard; Samella, Katerina

    2000-01-01

    Studied the ability to name the days of the week for dates in the past and future (calendrical calculation) of 10 calendrical savants with Wechlser Adult Intelligence Scale scores from 50 to 97. Results suggest that although low intelligence does not prevent the development of this skill, the talent depends on general intelligence. (SLD)

  11. Orchestrating Multiple Intelligences

    ERIC Educational Resources Information Center

    Moran, Seana; Kornhaber, Mindy; Gardner, Howard

    2006-01-01

    Education policymakers often go astray when they attempt to integrate multiple intelligences theory into schools, according to the originator of the theory, Howard Gardner, and his colleagues. The greatest potential of a multiple intelligences approach to education grows from the concept of a profile of intelligences. Each learner's intelligence…

  12. Jensen and Intelligence.

    ERIC Educational Resources Information Center

    Brody, Nathan

    1998-01-01

    Discusses the contributions of Arthur Jensen to the study of intelligence and considers his writings on the topic of racial differences in scores on tests of intelligence. Concludes with a discussion of his work on the correlates of the "g" vector (general intelligence factor). (Author/SLD)

  13. Intelligence: A Skeptical View.

    ERIC Educational Resources Information Center

    Ebel, Robert L.

    1979-01-01

    This essay provides an overview of the controversies surrounding intelligence: its definition, its genetic or environmental basis, its relationship to achievement and learning ability, cultural factors, and the use of intelligence tests in the schools. This article is part of a theme issue on intelligence. (SJL)

  14. Diversity in Our Intelligence.

    ERIC Educational Resources Information Center

    Martinez, Jesus I.

    2002-01-01

    Babies and young children learn through extensive experimenting and by being encouraged, unknowingly, by parents to use their multiple intelligences. Later, children are forced to conform to the narrow intelligence valued by the formal education system; those who can not adapt drop out. By using multiple intelligences, we access a greater portion…

  15. Intelligence and Adult Learning.

    ERIC Educational Resources Information Center

    Fellenz, Robert A., Ed.; Conti, Gary J., Ed.

    "Understanding Adult Intelligence" (Robert Sternberg) focuses on the nature of intelligence. It explains Sternberg's triarchic theory, in which he posits three main aspects of intelligence: its relation to the internal or mental world of the learner, its relation to experience, and its relation to the surrounding world. "Strategies and Learning"…

  16. Categorization Parameters and Intelligence.

    ERIC Educational Resources Information Center

    Meiran, Nachshon; Fischman, Eliezer

    1989-01-01

    To establish the relationship between categorization ability and psychometric intelligence, 98 ninth graders in Israel were instructed to group 28 common Hebrew nouns into categories and were given a battery of intelligence tests. Results are discussed in terms of their impact on the design of intelligence testing. (SLD)

  17. Intelligence and Creativity

    ERIC Educational Resources Information Center

    Ferrando, M.; Prieto, M. D.; Ferrandiz, C.; Sanchez, C.

    2005-01-01

    Introduction: Numerous authors have investigated the relationship which exists between creativity and intelligence, and diverse results were found. Thus, Guilford (1950) includes creativity within the intelligence construct, Sternberg (1988) alludes to creativity as encompassing the intelligence construct; Gardner (1995) indicates a close…

  18. Culture and Intelligence

    ERIC Educational Resources Information Center

    Sternberg, Robert J.

    2004-01-01

    Intelligence cannot be fully or even meaningfully understood outside its cultural context. Work that seeks to study intelligence acontextually risks the imposition of an investigator's view of the world on the rest of the world. Moreover, work on intelligence within a single culture may fail to do justice to the range of skills and knowledge that…

  19. Macromolecular networks and intelligence in microorganisms

    PubMed Central

    Westerhoff, Hans V.; Brooks, Aaron N.; Simeonidis, Evangelos; García-Contreras, Rodolfo; He, Fei; Boogerd, Fred C.; Jackson, Victoria J.; Goncharuk, Valeri; Kolodkin, Alexey

    2014-01-01

    Living organisms persist by virtue of complex interactions among many components organized into dynamic, environment-responsive networks that span multiple scales and dimensions. Biological networks constitute a type of information and communication technology (ICT): they receive information from the outside and inside of cells, integrate and interpret this information, and then activate a response. Biological networks enable molecules within cells, and even cells themselves, to communicate with each other and their environment. We have become accustomed to associating brain activity – particularly activity of the human brain – with a phenomenon we call “intelligence.” Yet, four billion years of evolution could have selected networks with topologies and dynamics that confer traits analogous to this intelligence, even though they were outside the intercellular networks of the brain. Here, we explore how macromolecular networks in microbes confer intelligent characteristics, such as memory, anticipation, adaptation and reflection and we review current understanding of how network organization reflects the type of intelligence required for the environments in which they were selected. We propose that, if we were to leave terms such as “human” and “brain” out of the defining features of “intelligence,” all forms of life – from microbes to humans – exhibit some or all characteristics consistent with “intelligence.” We then review advances in genome-wide data production and analysis, especially in microbes, that provide a lens into microbial intelligence and propose how the insights derived from quantitatively characterizing biomolecular networks may enable synthetic biologists to create intelligent molecular networks for biotechnology, possibly generating new forms of intelligence, first in silico and then in vivo. PMID:25101076

  20. Macromolecular networks and intelligence in microorganisms.

    PubMed

    Westerhoff, Hans V; Brooks, Aaron N; Simeonidis, Evangelos; García-Contreras, Rodolfo; He, Fei; Boogerd, Fred C; Jackson, Victoria J; Goncharuk, Valeri; Kolodkin, Alexey

    2014-01-01

    Living organisms persist by virtue of complex interactions among many components organized into dynamic, environment-responsive networks that span multiple scales and dimensions. Biological networks constitute a type of information and communication technology (ICT): they receive information from the outside and inside of cells, integrate and interpret this information, and then activate a response. Biological networks enable molecules within cells, and even cells themselves, to communicate with each other and their environment. We have become accustomed to associating brain activity - particularly activity of the human brain - with a phenomenon we call "intelligence." Yet, four billion years of evolution could have selected networks with topologies and dynamics that confer traits analogous to this intelligence, even though they were outside the intercellular networks of the brain. Here, we explore how macromolecular networks in microbes confer intelligent characteristics, such as memory, anticipation, adaptation and reflection and we review current understanding of how network organization reflects the type of intelligence required for the environments in which they were selected. We propose that, if we were to leave terms such as "human" and "brain" out of the defining features of "intelligence," all forms of life - from microbes to humans - exhibit some or all characteristics consistent with "intelligence." We then review advances in genome-wide data production and analysis, especially in microbes, that provide a lens into microbial intelligence and propose how the insights derived from quantitatively characterizing biomolecular networks may enable synthetic biologists to create intelligent molecular networks for biotechnology, possibly generating new forms of intelligence, first in silico and then in vivo. PMID:25101076

  1. Can We Mitigate Climate Extremes using Managed Aquifer Recharge: Case Studies California Central Valley and South-Central Arizona, USA

    NASA Astrophysics Data System (ADS)

    Scanlon, B. R.; Reedy, R. C.; Faunt, C. C.; Pool, D. R.; Uhlman, K.

    2015-12-01

    Frequent long-term droughts interspersed with intense floods in the southwestern U.S. underscore the need to store more water to manage these climate extremes. Here we show how managed aquifer recharge can enhance drought resilience in the southwestern U.S. with ~ 70% of California under extreme drought and 75% of Arizona under moderate drought. Data on water sources, transportation, and users were compiled for managed aquifer recharge systems in the Central Valley and south-central Arizona. Groundwater depletion of 115 to 145 km3 in the 1900s created large subsurface reservoirs in thick alluvial basins in these regions. Large canals and aqueducts up to several 100 km long allow water to be imported from reservoirs, mostly in more humid regions. Imported water is either used instead of groundwater or is applied in surface spreading basins primarily during wet periods (≤1.3 km3/yr Central Valley, ≤0.7 km3/yr Arizona) and is extracted during droughts. The dominant water users include irrigators and municipalities both within and outside the managed aquifer recharge systems. Groundwater modeling indicates that recharge basins significantly increase groundwater storage in the Central Valley. Managed aquifer recharge systems significantly enhance drought resilience and increase sustainability of water resources in semiarid regions, complementing surface water reservoirs and conjunctive surface water/groundwater use by providing longer term storage.

  2. Assessing the Sensitivity of a Semi-arid Aquifer to the Quantity of Recharge and Evapotranspiration using a Seasonalized Model

    NASA Astrophysics Data System (ADS)

    Neff, K.; Maddock, T.; Meixner, T.; Mallakpour, I.

    2013-12-01

    The Upper San Pedro River basin aquifer in Southern Arizona has been modeled using MODFLOW several times, most recently by Goode and Maddock (2000) and Pool and Dickinson (2006). It is the last free-flowing river in Arizona and its riparian area serves as habitat for migrating birds and several endangered species. The current model improves upon previous models by switching from the Stream Package to the Streamflow Routing Package and adding a third season to represent the wet summer monsoon season, thereby creating a seasonalized steady-state oscillatory model. Recharge was seasonalized using an isotope-ratio method (Wahi et al, 2008), and maximum evapotranspiration (ET) was seasonalized according to estimates of riparian groundwater consumption by vegetation in the study area (Scott et al., 2005). The model was run with inputs of 80%, 100% and 120% of base values for recharge and maximum ET rates. This sensitivity analysis was done in order to assess the impact on river baseflow of the quantity of recharge and ET under a three-season recharge regime that reflects the natural system. Annual river baseflow was found to increase by 5.8% with each 20% increase in recharge, and to decrease by 10.5% with each 20% increase in ET. The majority of baseflow, 47%, occurred during the wet winter season (Oct-Feb). 35% occurred during the dry summer (Mar-Jun), and 18% during the wet summer monsoon season (Jul-Sept), when maximum ET rates peaked.

  3. Modelling overbank flood recharge at a continental scale

    NASA Astrophysics Data System (ADS)

    Doble, R.; Crosbie, R.; Peeters, L.; Joehnk, K.; Ticehurst, C.

    2013-10-01

    Accounting for groundwater recharge from overbank flooding is required to reduce uncertainty and error in river loss terms and groundwater sustainable yield calculations. However, continental and global scale models of surface water-groundwater interactions rarely include an explicit process to account for overbank flood recharge (OFR). This paper upscales previously derived analytical equations to a continental scale using national soil atlas data and satellite imagery of flood inundation, resulting in recharge maps for seven hydrologically distinct Australian catchments. Recharge for three of the catchments was validated against independent recharge estimates from bore hydrograph responses and one catchment was additionally validated against point scale recharge modelling and catchment scale change in groundwater storage. Flood recharge was predicted for four of the seven catchments modelled, but there was also unexplained recharge present from the satellite flood inundation mapping data. At a catchment scale, recharge from overbank flooding was somewhat under predicted using the analytical equations, but there was good confidence in the spatial patterns of flood recharge produced. Due to the scale of the input data, there were no significant relationships found when compared at a point scale. Satellite derived flood inundation data and uncertainty in soil maps were the key limitations to the accuracy of the modelled recharge. Use of this method to model OFR was found to be appropriate at a catchment to continental scale, given appropriate data sources. The proportion of OFR was found to be at least 4% of total change in groundwater storage in one of the catchments for the period modelled, and at least 15% of the riparian recharge. Accounting for OFR is an important, and often overlooked, requirement for closing water balances in both the surface water and groundwater domains.

  4. Modelling overbank flood recharge at a continental scale

    NASA Astrophysics Data System (ADS)

    Doble, R.; Crosbie, R.; Peeters, L.; Joehnk, K.; Ticehurst, C.

    2014-04-01

    Accounting for groundwater recharge from overbank flooding is required to reduce uncertainty and error in river-loss terms and groundwater sustainable-yield calculations. However, continental- and global-scale models of surface water-groundwater interactions rarely include an explicit process to account for overbank flood recharge (OFR). This paper upscales previously derived analytical equations to a continental scale using national soil atlas data and satellite imagery of flood inundation, resulting in recharge maps for seven hydrologically distinct Australian catchments. Recharge for three of the catchments was validated against independent recharge estimates from bore hydrograph responses and one catchment was additionally validated against point-scale recharge modelling and catchment-scale change in groundwater storage. Flood recharge was predicted for four of the seven catchments modelled, but there was also unexplained recharge present from the satellite's flood inundation mapping data. At a catchment scale, recharge from overbank flooding was somewhat under-predicted using the analytical equations, but there was good confidence in the spatial patterns of flood recharge produced. Due to the scale of the input data, there were no significant relationships found when compared at a point scale. Satellite-derived flood inundation data and uncertainty in soil maps were the key limitations to the accuracy of the modelled recharge. Use of this method to model OFR was found to be appropriate at a catchment to continental scale, given appropriate data sources. The proportion of OFR was found to be at least 4% of total change in groundwater storage in one of the catchments for the period modelled, and at least 15% of the riparian recharge. Accounting for OFR is an important, but often overlooked, requirement for closing water balances in both the surface water and groundwater domains.

  5. Generator and rechargeable battery system for pedal powered vehicles

    SciTech Connect

    Ryan, D.

    1985-11-26

    A generator and rechargeable battery system for use with pedal powered vehicles, such as bicycles, and where either the generator or battery can intermittently power a load such as a lighting system of the vehicle in one mode of operation, and in which the generator can recharge the battery in another mode of operation. A simple selection switch which is manually operable by the operator of the vehicle enables selection between powering of the load or recharging of the battery.

  6. [Study on the guideline for groundwater recharge with reclaimed water].

    PubMed

    He, Xing-hai; Ma, Shi-hao

    2004-09-01

    Groundwater recharge with reclaimed water is the most beneficial way to extend reuse applications, and has the vast development foreground. In this paper, the domestic and international applications and guidelines for groundwater recharge with reclaimed water were summarized. Based on the quality of reclaimed water and the conditions of hydrological geology, the reclaimed water quality criteria for groundwater recharge was suggested including 22 basic controlling items and 52 selective controlling items, and the control technology was presented. PMID:15623024

  7. Leveraging business intelligence to make better decisions: Part I.

    PubMed

    Reimers, Mona

    2014-01-01

    Data is the new currency. Business intelligence tools will provide better performing practices with a competitive intelligence advantage that will separate the high performers from the rest of the pack. Given the investments of time and money into our data systems, practice leaders must work to take every advantage and look at the datasets as a potential goldmine of business intelligence decision tools. A fresh look at decision tools created from practice data will create efficiencies and improve effectiveness for end-users and managers. PMID:24873133

  8. Ionic liquid electrolytes as a platform for rechargeable metal-air batteries: a perspective.

    PubMed

    Kar, Mega; Simons, Tristan J; Forsyth, Maria; MacFarlane, Douglas R

    2014-09-21

    Metal-air batteries are a well-established technology that can offer high energy densities, low cost and environmental responsibility. Despite these favourable characteristics and utilisation of oxygen as the cathode reactant, these devices have been limited to primary applications, due to a number of problems that occur when the cell is recharged, including electrolyte loss and poor efficiency. Overcoming these obstacles is essential to creating a rechargeable metal-air battery that can be utilised for efficiently capturing renewable energy. Despite the first metal-air battery being created over 100 years ago, the emergence of reactive metals such as lithium has reinvigorated interest in this field. However the reactivity of some of these metals has generated a number of different philosophies regarding the electrolyte of the metal-air battery. Whilst much is already known about the anode and cathode processes in aqueous and organic electrolytes, the shortcomings of these electrolytes (i.e. volatility, instability, flammability etc.) have led some of the metal-air battery community to study room temperature ionic liquids (RTILs) as non-volatile, highly stable electrolytes that have the potential to support rechargeable metal-air battery processes. In this perspective, we discuss how some of these initial studies have demonstrated the capabilities of RTILs as metal-air battery electrolytes. We will also show that much of the long-held mechanistic knowledge of the oxygen electrode processes might not be applicable in RTIL based electrolytes, allowing for creative new solutions to the traditional irreversibility of the oxygen reduction reaction. Our understanding of key factors such as the effect of catalyst chemistry and surface structure, proton activity and interfacial reactions is still in its infancy in these novel electrolytes. In this perspective we highlight the key areas that need the attention of electrochemists and battery engineers, in order to progress

  9. A review of groundwater recharge under irrigated agriculture in Australia

    NASA Astrophysics Data System (ADS)

    Riasat, Ali; Mallants, Dirk; Walker, Glen; Silberstein, Richard

    2014-05-01

    Quantification of recharge under irrigated agriculture is one of the most important but difficult tasks. It is the least understood component in groundwater studies because of its large variability in space and time and the difficulty of direct measurement. Better management of groundwater resources is only possible if we can accurately determine all fluxes going into and out of a groundwater system. One of the major challenges facing irrigated agriculture in Australia, and the world, is to reduce uncertainty in estimating or measuring the recharge flux. Reducing uncertainty in groundwater recharge under irrigated agriculture is a pre-requisite for effective, efficient and sustainable groundwater resource management especially in dry areas where groundwater usage is often the key to economic development. An accurate quantification of groundwater recharge under irrigated systems is also crucial because of its potential impacts on soil profile salinity, groundwater levels and groundwater quality. This paper aims to identify the main recharge control parameters thorough a review of past field and modelling recharge studies in Australia. We find that the main recharge control parameters under irrigated agriculture are soil type, irrigation management, watertable depth, land cover or plant water uptake, soil surface conditions, and soil, irrigation water and groundwater chemistry. The most commonly used recharge estimation approaches include chloride mass balance, water budget equation, lysimeters, Darcy's law and numerical models. Main sources and magnitude of uncertainty in recharge estimates associated with these approaches are discussed.

  10. Making Li-air batteries rechargeable: material challenges

    SciTech Connect

    Shao, Yuyan; Ding, Fei; Xiao, Jie; Zhang, Jian; Xu, Wu; Park, Seh Kyu; Zhang, Jiguang; Wang, Yong; Liu, Jun

    2013-02-25

    A Li-air battery could potentially provide three to five times higher energy density/specific energy than conventional batteries, thus enable the driving range of an electric vehicle comparable to a gasoline vehicle. However, making Li-air batteries rechargeable presents significant challenges, mostly related with materials. Herein, we discuss the key factors that influence the rechargeability of Li-air batteries with a focus on nonaqueous system. The status and materials challenges for nonaqueous rechargeable Li-air batteries are reviewed. These include electrolytes, cathode (electocatalysts), lithium metal anodes, and oxygen-selective membranes (oxygen supply from air). The perspective of rechargeable Li-air batteries is provided.

  11. Geophysical Methods for Investigating Ground-Water Recharge

    USGS Publications Warehouse

    Ferre, Ty P.A.; Binley, Andrew M.; Blasch, Kyle W.; Callegary, James B.; Crawford, Steven M.; Fink, James B.; Flint, Alan L.; Flint, Lorraine E.; Hoffmann, John P.; Izbicki, John A.; Levitt, Marc T.; Pool, Donald R.; Scanlon, Bridget R.

    2007-01-01

    While numerical modeling has revolutionized our understanding of basin-scale hydrologic processes, such models rely almost exclusively on traditional measurements?rainfall, streamflow, and water-table elevations?for calibration and testing. Model calibration provides initial estimates of ground-water recharge. Calibrated models are important yet crude tools for addressing questions about the spatial and temporal distribution of recharge. An inverse approach to recharge estimation is taken of necessity, due to inherent difficulties in making direct measurements of flow across the water table. Difficulties arise because recharging fluxes are typically small, even in humid regions, and because the location of the water table changes with time. Deep water tables in arid and semiarid regions make recharge monitoring especially difficult. Nevertheless, recharge monitoring must advance in order to improve assessments of ground-water recharge. Improved characterization of basin-scale recharge is critical for informed water-resources management. Difficulties in directly measuring recharge have prompted many efforts to develop indirect methods. The mass-balance approach of estimating recharge as the residual of generally much larger terms has persisted despite the use of increasing complex and finely gridded large-scale hydrologic models. Geophysical data pertaining to recharge rates, timing, and patterns have the potential to substantially improve modeling efforts by providing information on boundary conditions, by constraining model inputs, by testing simplifying assumptions, and by identifying the spatial and temporal resolutions needed to predict recharge to a specified tolerance in space and in time. Moreover, under certain conditions, geophysical measurements can yield direct estimates of recharge rates or changes in water storage, largely eliminating the need for indirect measures of recharge. This appendix presents an overview of physically based, geophysical methods

  12. Conceptualisation of groundwater recharge from the Wairau River, New Zealand

    NASA Astrophysics Data System (ADS)

    Wilson, Scott; Wöhling, Thomas; Davidson, Peter

    2016-04-01

    lateral direction than it can be recharged from above. We propose that this stratigraphic anisotropy can inherently create hydraulic a disconnection in a braided river environment. A numerical model of the Wairau Aquifer has been developed to test our conceptual understanding of river-aquifer exchange dynamics (Wöhling et al. 2015). The numerical model is only able to integrate and accurately simulate the variety of available observational types if disconnected conditions are simulated consistently over the majority of the recharge area. This confirms our hypothesis drawn from indirect observations. References Brunner, P, Cook, PG, & Simmons, CT, 2011. Disconnected surface water and groundwater: From theory to practice. Ground Water, vol. 49, no. 4, pp. 460-467. Wöhling, T, Gosses, M, Troyer, J, Ede, M, Davidson, P, Wilson, S (2015). Towards modelling Wairau river - aquifer exchange flux dynamics: Data integration and upscaling. 2015 NZHS Conference, Hamilton, New Zealand.

  13. An ultrafast rechargeable aluminium-ion battery.

    PubMed

    Lin, Meng-Chang; Gong, Ming; Lu, Bingan; Wu, Yingpeng; Wang, Di-Yan; Guan, Mingyun; Angell, Michael; Chen, Changxin; Yang, Jiang; Hwang, Bing-Joe; Dai, Hongjie

    2015-04-16

    The development of new rechargeable battery systems could fuel various energy applications, from personal electronics to grid storage. Rechargeable aluminium-based batteries offer the possibilities of low cost and low flammability, together with three-electron-redox properties leading to high capacity. However, research efforts over the past 30 years have encountered numerous problems, such as cathode material disintegration, low cell discharge voltage (about 0.55 volts; ref. 5), capacitive behaviour without discharge voltage plateaus (1.1-0.2 volts or 1.8-0.8 volts) and insufficient cycle life (less than 100 cycles) with rapid capacity decay (by 26-85 per cent over 100 cycles). Here we present a rechargeable aluminium battery with high-rate capability that uses an aluminium metal anode and a three-dimensional graphitic-foam cathode. The battery operates through the electrochemical deposition and dissolution of aluminium at the anode, and intercalation/de-intercalation of chloroaluminate anions in the graphite, using a non-flammable ionic liquid electrolyte. The cell exhibits well-defined discharge voltage plateaus near 2 volts, a specific capacity of about 70 mA h g(-1) and a Coulombic efficiency of approximately 98 per cent. The cathode was found to enable fast anion diffusion and intercalation, affording charging times of around one minute with a current density of ~4,000 mA g(-1) (equivalent to ~3,000 W kg(-1)), and to withstand more than 7,500 cycles without capacity decay. PMID:25849777

  14. Electrical Resistivity Imaging and Depression Focused Recharge

    NASA Astrophysics Data System (ADS)

    Bentley, L. R.; Hayashi, M.; Berthold, S.

    2003-12-01

    Seasonal wetlands and small depressions play a fundamental role in recharging regional aquifers in the northern glaciated planes. Water from snowmelt collects in the depressions in the spring and infiltrates into the ground after the soil unfreezes. Infiltrating water leaches salts from the soil beneath depressions. The majority of the infiltrating water moves to the local uplands where it leaves the ground through ET leaving behind zones of evaporitically concentrated salts. A small percentage infiltrates down to the regional aquifer. Leaching and concentrating salts effect the electrical resistivity distribution of the subsurface. Three-dimensional electrical resistivity imaging (ERI) was combined with groundwater and soil measurements to generate a conceptual model of three dimensional fluid flow at San Denis, Saskatchewan. Water chemistry was used to generate a conceptual model of different geochemical zones which could be distinguished by the electrical conductivity of pore water. The Waxman-Smits equation was used to link groundwater electrical conductivity to in situ bulk resistivity. Electrical resisistivity from ERI was then used to map geochemical zones in the subsurface. ERI and chemistry show that infiltrating water reaches a regional aquifer at 20 meters depth. Seasonal wetlands have large zones of high resistivity that reach to the regional water table indicating that salts have been leached out of the tills to the depth of the regional aquifer. Small local depressions also have zones of leached soil beneath them indicating that they contribute to regional groundwater recharge. Since there are millions of small depressions, they may play a fundamental role in groundwater recharge and must be considered in land management. The images show a complex distribution of salts. Most of the salt is located in the upper weathered zone in the glacial tills and the horizontal distribution is controled by the locations of wetlands, steepness of slopes and the

  15. Thin-film Rechargeable Lithium Batteries

    DOE R&D Accomplishments Database

    Dudney, N. J.; Bates, J. B.; Lubben, D.

    1995-06-01

    Thin film rechargeable lithium batteries using ceramic electrolyte and cathode materials have been fabricated by physical deposition techniques. The lithium phosphorous oxynitride electrolyte has exceptional electrochemical stability and a good lithium conductivity. The lithium insertion reaction of several different intercalation materials, amorphous V{sub 2}O{sub 5}, amorphous LiMn{sub 2}O{sub 4}, and crystalline LiMn{sub 2}O{sub 4} films, have been investigated using the completed cathode/electrolyte/lithium thin film battery.

  16. Evolution of strategies for modern rechargeable batteries.

    PubMed

    Goodenough, John B

    2013-05-21

    This Account provides perspective on the evolution of the rechargeable battery and summarizes innovations in the development of these devices. Initially, I describe the components of a conventional rechargeable battery along with the engineering parameters that define the figures of merit for a single cell. In 1967, researchers discovered fast Na(+) conduction at 300 K in Na β,β''-alumina. Since then battery technology has evolved from a strongly acidic or alkaline aqueous electrolyte with protons as the working ion to an organic liquid-carbonate electrolyte with Li(+) as the working ion in a Li-ion battery. The invention of the sodium-sulfur and Zebra batteries stimulated consideration of framework structures as crystalline hosts for mobile guest alkali ions, and the jump in oil prices in the early 1970s prompted researchers to consider alternative room-temperature batteries with aprotic liquid electrolytes. With the existence of Li primary cells and ongoing research on the chemistry of reversible Li intercalation into layered chalcogenides, industry invested in the production of a Li/TiS2 rechargeable cell. However, on repeated recharge, dendrites grew across the electrolyte from the anode to the cathode, leading to dangerous short-circuits in the cell in the presence of the flammable organic liquid electrolyte. Because lowering the voltage of the anode would prevent cells with layered-chalcogenide cathodes from competing with cells that had an aqueous electrolyte, researchers quickly abandoned this effort. However, once it was realized that an oxide cathode could offer a larger voltage versus lithium, researchers considered the extraction of Li from the layered LiMO2 oxides with M = Co or Ni. These oxide cathodes were fabricated in a discharged state, and battery manufacturers could not conceive of assembling a cell with a discharged cathode. Meanwhile, exploration of Li intercalation into graphite showed that reversible Li insertion into carbon occurred

  17. Recharge from rectangular areas to finite aquifers

    NASA Astrophysics Data System (ADS)

    Rao, N. H.; Sarma, P. B. S.

    1981-10-01

    A generalized analytical solution is derived for the growth of groundwater mound in finite aquifers bounded by open water bodies, in response to recharge from rectangular areas. Finite Fourier transforms are used to solve the linearized differential equation of groundwater flow. Unlike earlier solutions, the method presented here does not require the use of tables for evaluation of complicated functions. The solution is evaluated by comparison with existing numerical and analytical results. In stream-aquifer systems similar to those described above, application of the proposed solution is more realistic than using solutions available for infinite aquifers.

  18. Glossary of testing terminology for rechargeable batteries

    SciTech Connect

    Butler, P.C.

    1988-10-01

    The Battery Test Working Task Force was formed in 1983 for the purpose of coordinating the evaluation of development rechargeable batteries by DOE-funded labs. The Task Force developed this glossary of testing terminology to improve the accuracy of communication and to permit meaningful comparisons of test results. It consists of a section of technical terms and a separate section of programmatic phrases and acronyms. The glossary emphasizes terms related to electric vehicle batteries due to the significant development and testing activities in this area. 8 refs.

  19. Thin-film rechargeable lithium batteries

    SciTech Connect

    Dudney, N.J.; Bates, J.B.; Lubben, D.

    1995-06-01

    Thin-film rechargeable lithium batteries using ceramic electrolyte and cathode materials have been fabricated by physical deposition techniques. The lithium phosphorous oxynitride electrolyte has exceptional electrochemical stability and a good lithium conductivity. The lithium insertion reaction of several different intercalation materials, amorphous V{sub 2}O{sub 5}, amorphous LiMn{sub 2}O{sub 4}, and crystalline LiMn{sub 2}O{sub 4} films, have been investigated using the completed cathode/electrolyte/lithium thin-film battery.

  20. Organic Cathode Materials for Rechargeable Batteries

    SciTech Connect

    Cao, Ruiguo; Qian, Jiangfeng; Zhang, Jiguang; Xu, Wu

    2015-06-28

    This chapter will primarily focus on the advances made in recent years and specify the development of organic electrode materials for their applications in rechargeable lithium batteries, sodium batteries and redox flow batteries. Four various organic cathode materials, including conjugated carbonyl compounds, conducting polymers, organosulfides and free radical polymers, are introduced in terms of their electrochemical performances in these three battery systems. Fundamental issues related to the synthesis-structure-activity correlations, involved work principles in energy storage systems, and capacity fading mechanisms are also discussed.

  1. The intelligent automotive battery, "CYBOX ®"

    NASA Astrophysics Data System (ADS)

    Yamada, Keizo; Yamada, Yoshifumi; Otsu, Koji; Machiyama, Yoshiaki; Emori, Akihiko; Okoshi, Teturo

    An intelligent battery to monitor battery states for an automotive use was newly developed. A main parameter to monitor battery states are based on the measurement of voltage variations that are to fluctuate immediately after an engine ignition. The developed monitoring unit is embedded into the lead-acid battery "CYBOX ®" which does not have a current monitoring unit. The monitoring unit that has an alarm system which is compact and highly reliable essentially diagnoses the state of charge and the state of health of battery states in order to inform automotive user of the adequate timing of replace, recharge, and the hazardous state of overcharge of batteries. The battery-monitoring unit has an optical data transfer system to extract internal data from external device. The battery-monitoring unit also has a data acquisition instrument which receives more detailed monitored historical data from the optical data transfer system of the monitoring unit.

  2. Relationship Between Intelligence and Self-Perceived Intelligence.

    ERIC Educational Resources Information Center

    Kulkarni, A. V.

    1982-01-01

    To investigate the relationship of self-perceived intelligence to measured intelligence across age and instrumentation, two intelligence tests and two self-concept tests were administered to postgraduate students and to high school students. Intelligence and self-perceived intelligence were found to be independent of each other. (Author/CM)

  3. Artificial recharge of groundwater and its role in water management

    USGS Publications Warehouse

    Kimrey, J.O.

    1989-01-01

    This paper summarizes and discusses the various aspects and methods of artificial recharge with particular emphasis on its uses and potential role in water management in the Arabian Gulf region. Artificial recharge occurs when man's activities cause more water to enter an aquifer, either under pumping or non-pumping conditions, than otherwise would enter the aquifer. Use of artificial recharge can be a practical means of dealing with problems of overdraft of groundwater. Methods of artificial recharge may be grouped under two broad types: (a) water spreading techniques, and (b) well-injection techniques. Successful use of artificial recharge requires a thorough knowledge of the physical and chemical characteristics of the aquifier system, and extensive onsite experimentation and tailoring of the artificial-recharge technique to fit the local or areal conditions. In general, water spreading techniques are less expensive than well injection and large quantities of water can be handled. Water spreading can also result in significant improvement in quality of recharge waters during infiltration and movement through the unsaturated zone and the receiving aquifer. In comparison, well-injection techniques are often used for emplacement of fresh recharge water into saline aquifer zones to form a manageable lens of fresher water, which may later be partially withdrawn for use or continue to be maintained as a barrier against salt-water encroachment. A major advantage in use of groundwater is its availability, on demand to wells, from a natural storage reservoir that is relatively safe from pollution and from damage by sabotage or other hostile action. However, fresh groundwater occurs only in limited quantities in most of the Arabian Gulf region; also, it is heavily overdrafted in many areas, and receives very little natural recharge. Good use could be made of artificial recharge by well injection in replenishing and managing aquifers in strategic locations if sources of

  4. Using noble gases to investigate mountain-front recharge

    USGS Publications Warehouse

    Manning, A.H.; Solomon, D.K.

    2003-01-01

    Mountain-front recharge is a major component of recharge to inter-mountain basin-fill aquifers. The two components of mountain-front recharge are (1) subsurface inflow from the mountain block (subsurface inflow), and (2) infiltration from perennial and ephemeral streams near the mountain front (stream seepage). The magnitude of subsurface inflow is of central importance in source protection planning for basin-fill aquifers and in some water rights disputes, yet existing estimates carry large uncertainties. Stable isotope ratios can indicate the magnitude of mountain-front recharge relative to other components, but are generally incapable of distinguishing subsurface inflow from stream seepage. Noble gases provide an effective tool for determining the relative significance of subsurface inflow, specifically. Dissolved noble gas concentrations allow for the determination of recharge temperature, which is correlated with recharge elevation. The nature of this correlation cannot be assumed, however, and must be derived for the study area. The method is applied to the Salt Lake Valley Principal Aquifer in northern Utah to demonstrate its utility. Samples from 16 springs and mine tunnels in the adjacent Wasatch Mountains indicate that recharge temperature decreases with elevation at about the same rate as the mean annual air temperature, but is on average about 2??C cooler. Samples from 27 valley production wells yield recharge elevations ranging from the valley elevation (about 1500 m) to mid-mountain elevation (about 2500 m). Only six of the wells have recharge elevations less than 1800 m. Recharge elevations consistently greater than 2000 m in the southeastern part of the basin indicate that subsurface inflow constitutes most of the total recharge in this area. ?? 2003 Published by Elsevier Science B.V.

  5. Social Intelligence: Next Generation Business Intelligence

    SciTech Connect

    Troy Hiltbrand

    2010-09-01

    In order for Business Intelligence to truly move beyond where it is today, a shift in approach must occur. Currently, much of what is accomplished in the realm of Business Intelligence relies on reports and dashboards to summarize and deliver information to end users. As we move into the future, we need to get beyond these reports and dashboards to a point where we break out the individual metrics that are embedded in these reports and interact with these components independently. Breaking these pieces of information out of the confines of reports and dashboards will allow them to be dynamically assembled for delivery in the way that makes most sense to each consumer. With this change in ideology, Business Intelligence will move from the concept of collections of objects, or reports and dashboards, to individual objects, or information components. The Next Generation Business Intelligence suite will translate concepts popularized in Facebook, Flickr, and Digg into enterprise worthy communication vehicles.

  6. Lithium Metal Anodes for Rechargeable Batteries

    SciTech Connect

    Xu, Wu; Wang, Jiulin; Ding, Fei; Chen, Xilin; Nasybulin, Eduard N.; Zhang, Yaohui; Zhang, Jiguang

    2013-10-29

    Rechargeable lithium metal batteries have much higher energy density than those of lithium ion batteries using graphite anode. Unfortunately, uncontrollable dendritic lithium growth inherent in these batteries (upon repeated charge/discharge cycling) and limited Coulombic efficiency during lithium deposition/striping has prevented their practical application over the past 40 years. With the emerging of post Li-ion batteries, safe and efficient operation of lithium metal anode has become an enabling technology which may determine the fate of several promising candidates for the next generation of energy storage systems, including rechargeable Li-air battery, Li-S battery, and Li metal battery which utilize lithium intercalation compounds as cathode. In this work, various factors which affect the morphology and Coulombic efficiency of lithium anode will be analyzed. Technologies used to characterize the morphology of lithium deposition and the results obtained by modeling of lithium dendrite growth will also be reviewed. At last, recent development in this filed and urgent need in this field will also be discussed.

  7. Prototype systems for rechargeable magnesium batteries.

    PubMed

    Aurbach, D; Lu, Z; Schechter, A; Gofer, Y; Gizbar, H; Turgeman, R; Cohen, Y; Moshkovich, M; Levi, E

    2000-10-12

    The thermodynamic properties of magnesium make it a natural choice for use as an anode material in rechargeable batteries, because it may provide a considerably higher energy density than the commonly used lead-acid and nickel-cadmium systems. Moreover, in contrast to lead and cadmium, magnesium is inexpensive, environmentally friendly and safe to handle. But the development of Mg batteries has been hindered by two problems. First, owing to the chemical activity of Mg, only solutions that neither donate nor accept protons are suitable as electrolytes; but most of these solutions allow the growth of passivating surface films, which inhibit any electrochemical reaction. Second, the choice of cathode materials has been limited by the difficulty of intercalating Mg ions in many hosts. Following previous studies of the electrochemistry of Mg electrodes in various non-aqueous solutions, and of a variety of intercalation electrodes, we have now developed rechargeable Mg battery systems that show promise for applications. The systems comprise electrolyte solutions based on Mg organohaloaluminate salts, and Mg(x)Mo3S4 cathodes, into which Mg ions can be intercalated reversibly, and with relatively fast kinetics. We expect that further improvements in the energy density will make these batteries a viable alternative to existing systems. PMID:11048714

  8. Electrochemically active polymers for rechargeable batteries

    SciTech Connect

    Novak, P.; Haas, O.; Santhanam, K.S.V.; Mueller, K.

    1997-01-01

    Electrochemical energy storage systems (batteries) have a tremendous role in technical applications. In this review the authors examine the prospects of electroactive polymers in view of the properties required for such batteries. Conducting organic polymers are considered here in the light of their rugged chemical environment: organic solvents, acids, and alkalis. The goal of the present article is to provide, first of all in tabular form, a survey of electroactive polymers in view of potential applications in rechargeable batteries. It reviews the preparative methods and the electrochemical performance of polymers as rechargeable battery electrodes. The theoretical values of specific charge of the polymers are comparable to those of metal oxide electrodes, but are not as high as those of most of the metal electrodes normally used in batteries. Therefore, it is an advantage in conventional battery designs to use the conducting polymer as a positive electrode material in combination with a negative electrode such as Li, Na, Mg, Zn, MeH{sub x}, etc. 504 refs.

  9. Urban Network Implications On Groundwater Recharge

    NASA Astrophysics Data System (ADS)

    Duque, J.; Chambel, A.

    Urbanisation has had a major impact on groundwater beneath Évora city (South Portu- gal). Évora is an ancient city and the growth of impermeable areas due to urbanisation has lead to a reduction in groundwater recharge. The specific type of residential land use has a major influence on the permeability of the recharge area. The use of ground- water inside the city of Évora is largely for particular gardening and small farming supplies. In the oldest part of the city (inside of the city walls) there is little use of groundwater, while in the part of the city outside the city walls usage is more effec- tive. This study provides evidence that the municipality or particular people can use groundwater to irrigate the majority gardens, instead of using cleaned water from the Monte Novo Dam. This will also provide a solution to the control of pollution that occurs due to losses from the sewerage system of the city.

  10. Rechargeable Thin-film Lithium Batteries

    DOE R&D Accomplishments Database

    Bates, J. B.; Gruzalski, G. R.; Dudney, N. J.; Luck, C. F.; Yu, Xiaohua

    1993-08-01

    Rechargeable thin film batteries consisting of lithium metal anodes, an amorphous inorganic electrolyte, and cathodes of lithium intercalation compounds have recently been developed. The batteries, which are typically less than 6 {mu}m thick, can be fabricated to any specified size, large or small, onto a variety of substrates including ceramics, semiconductors, and plastics. The cells that have been investigated include Li TiS{sub 2}, Li V{sub 2}O{sub 5}, and Li Li{sub x}Mn{sub 2}O{sub 4}, with open circuit voltages at full charge of about 2.5, 3.6, and 4.2, respectively. The development of these batteries would not have been possible without the discovery of a new thin film lithium electrolyte, lithium phosphorus oxynitride, that is stable in contact with metallic lithium at these potentials. Deposited by rf magnetron sputtering of Li{sub 3}PO{sub 4} in N{sub 2}, this material has a typical composition of Li{sub 2.9}PO{sub 3.3}N{sub 0.46} and a conductivity at 25{degrees}C of 2 {mu}S/cm. The maximum practical current density obtained from the thin film cells is limited to about 100 {mu}A/cm{sup 2} due to a low diffusivity of Li{sup +} ions in the cathodes. In this work, the authors present a short review of their work on rechargeable thin film lithium batteries.

  11. Design of Scale Intelligent Vehicle System

    NASA Astrophysics Data System (ADS)

    Wang, Junliang; Zhang, Zufeng; Jia, Peng; Luo, Shaohua; Zhang, Zufeng

    Nowadays, intelligent vehicle is widely studied all over the world. On considering cost and safety of test on real vehicle, it takes scale intelligent vehicle as a carrier platform, which uses visual sensors to capture the environmental information in a Wi-Fi wireless communication network environment, and creates a system including video surveillance system, monitoring command terminal, data server and three-dimensional simulating test traffic environment. The core algorithms, such as road recognition perception, image data processing, path planning and the implementation of motion control, have been completely designed and applying on the vehicle platform. The experimental results verified its good effects and the robustness and stability of the algorithm.

  12. Swarm Intelligence Optimization and Its Applications

    NASA Astrophysics Data System (ADS)

    Ding, Caichang; Lu, Lu; Liu, Yuanchao; Peng, Wenxiu

    Swarm Intelligence is a computational and behavioral metaphor for solving distributed problems inspired from biological examples provided by social insects such as ants, termites, bees, and wasps and by swarm, herd, flock, and shoal phenomena in vertebrates such as fish shoals and bird flocks. An example of successful research direction in Swarm Intelligence is ant colony optimization (ACO), which focuses on combinatorial optimization problems. Ant algorithms can be viewed as multi-agent systems (ant colony), where agents (individual ants) solve required tasks through cooperation in the same way that ants create complex social behavior from the combined efforts of individuals.

  13. Current collectors for rechargeable Li-Air batteries

    SciTech Connect

    Veith, Gabriel M; Dudney, Nancy J

    2011-01-01

    Here we report the negative influence of porous nickel foam for use as current collectors in rechargeable Li-air batteries. Uncoated nickel foam promotes the decomposition of LiPF6-organic carbonate electrolytes under normal charging conditions reported for rechargeable Li-air cells. We have identified Ni free porous carbon supports as more appropriate cathode current collectors.

  14. Architecture for Multiple Interacting Robot Intelligences

    NASA Technical Reports Server (NTRS)

    Peters, Richard Alan, II (Inventor)

    2008-01-01

    An architecture for robot intelligence enables a robot to learn new behaviors and create new behavior sequences autonomously and interact with a dynamically changing environment. Sensory information is mapped onto a Sensory Ego-Sphere (SES) that rapidly identifies important changes in the environment and functions much like short term memory. Behaviors are stored in a database associative memory (DBAM) that creates an active map from the robot's current state to a goal state and functions much like long term memory. A dream state converts recent activities stored in the SES and creates or modifies behaviors in the DBAM.

  15. Global synthesis of groundwater recharge in semiarid and arid regions

    USGS Publications Warehouse

    Scanlon, B.R.; Keese, K.E.; Flint, A.L.; Flint, L.E.; Gaye, C.B.; Edmunds, W.M.; Simmers, I.

    2006-01-01

    Global synthesis of the findings from ???140 recharge study areas in semiarid and arid regions provides important information on recharge rates, controls, and processes, which are critical for sustainable water development. Water resource evaluation, dryland salinity assessment (Australia), and radioactive waste disposal (US) are among the primary goals of many of these recharge studies. The chloride mass balance (CMB) technique is widely used to estimate recharge. Average recharge rates estimated over large areas (40-374000 km2) range from 0.2 to 35 mm year-1, representing 0.1-5% of long-term average annual precipitation. Extreme local variability in recharge, with rates up to ???720 m year-1, results from focussed recharge beneath ephemeral streams and lakes and preferential flow mostly in fractured systems. System response to climate variability and land use/land cover (LU/LC) changes is archived in unsaturated zone tracer profiles and in groundwater level fluctuations. Inter-annual climate variability related to El Nin??o Southern Oscillation (ENSO) results in up to three times higher recharge in regions within the SW US during periods of frequent El Nin??os (1977-1998) relative to periods dominated by La Nin??as (1941-1957). Enhanced recharge related to ENSO is also documented in Argentina. Climate variability at decadal to century scales recorded in chloride profiles in Africa results in recharge rates of 30 mm year-1 during the Sahel drought (1970-1986) to 150 mm year-1 during non-drought periods. Variations in climate at millennial scales in the SW US changed systems from recharge during the Pleistocene glacial period (??? 10 000 years ago) to discharge during the Holocene semiarid period. LU/LC changes such as deforestation in Australia increased recharge up to about 2 orders of magnitude. Changes from natural grassland and shrublands to dryland (rain-fed) agriculture altered systems from discharge (evapotranspiration, ET) to recharge in the SW US. The

  16. Progress in understanding water balance, transmission loss, and groundwater recharge dynamics in drylands

    NASA Astrophysics Data System (ADS)

    Larsen, Joshua

    2016-04-01

    Water resources of sufficient quality for human and ecosystem use are by definition limited within dryland environments. A critical determination of surface water resource availability in drylands is the loss of water as flow is transmitted downstream. These losses can occur via infiltration, evaporation, and terminal ponding, and provide the pathways for groundwater recharge. However, improving our understanding of these dynamics is hampered by the lack of monitoring data and high degree of hydrological variability, which in combination impacts our ability to create calibrated models or indeed validate their results. A summary of progress in understanding transmission losses is presented, which highlights the main limitations and pathways forward. In addition, new research using novel analysis of groundwater hydrographs for recharge estimation, storage - discharge analysis for recharge estimation, geochemical tracers, remote sensing for the calibration of flow hydraulic models, and ecohydrology feedbacks will be presented that in combination pave the way for a greater understanding of how the water budget is partitioned in dryland areas and the sensitivity of this partitioning to change.

  17. Stable isotope and groundwater flow dynamics of agricultural irrigation recharge into groundwater resources of the Central Valley, California

    SciTech Connect

    Davisson, M.L.; Criss, R.E.

    1995-01-01

    Intensive agricultural irrigation and overdraft of groundwater in the Central Valley of California profoundly affect the regional quality and availability of shallow groundwater resources. In the natural state, the {delta}{sup 18}O values of groundwater were relatively homogeneous (mostly -7.0 {+-} 0.5{per_thousand}), reflecting local meteoric recharge that slowly (1-3m/yr) flowed toward the valley axis. Today, on the west side of the valley, the isotope distribution is dominated by high {sup 18}O enclosures formed by recharge of evaporated irrigation waters, while the east side has bands of low {sup 18}O groundwater indicating induced recharge from rivers draining the Sierra Nevada mountains. Changes in {delta}{sup 18}O values caused by the agricultural recharge strongly correlate with elevated nitrate concentrations (5 to >100 mg/L) that form pervasive, non-point source pollutants. Small, west-side cities dependent solely on groundwater resources have experienced increases of >1.0 mg/L per year of nitrate for 10-30 years. The resultant high nitrates threaten the economical use of the groundwater for domestic purposes, and have forced some well shut-downs. Furthermore, since >80% of modern recharge is now derived from agricultural irrigation, and because modern recharge rates are {approximately}10 times those of the natural state, agricultural land retirement by urbanization will severely curtail the current safe-yields and promote overdraft pumping. Such overdrafting has occurred in the Sacramento metropolitan area for {approximately}40 years, creating cones of depression {approximately}25m deep. Today, groundwater withdrawal in Sacramento is approximately matched by infiltration of low {sup 18}O water (-11.0{per_thousand}) away from the Sacramento and American Rivers, which is estimated to occur at 100-300m/year from the sharp {sup 18}O gradients in our groundwater isotope map.

  18. Intelligence as Developing Expertise.

    PubMed

    Sternberg

    1999-10-01

    This essay describes how intelligence can be viewed as developing expertise. The general conception of intelligence as developing expertise is described. Then research examples are given that, in conjunction, seem odd under traditional interpretations of abilities but that make sense as a whole in the context of the developing-expertise model. It is concluded that this new model offers potential for better understanding intelligence-related phenomena. Copyright 1999 Academic Press. PMID:10508532

  19. Chloride-Mass-Balance: Cautions in Predicting Increased Recharge Rates

    SciTech Connect

    Gee, Glendon W.; Zhang, Z. F.; Tyler , S. W.; Albright , W. H.; Singleton , M. J.

    2005-02-01

    The chloride-mass-balance (CMB) method has been used extensively to estimate recharge in arid and semi-arid environments. Required data include estimates of annual precipitation, total chloride input (from dry fallout and precipitation), and pore-water chloride concentrations. Typically, CMB has been used to estimate ancient recharge but recharge from recent land-use change has also been documented. Recharge rates below a few mm/yr are reliably detected with CMB; however, estimates above a few mm/yr appear to be less reliable. We tested the CMB method against 26 years of drainage from a 7.6 m deep lysimeter at a simulated waste-burial ground, located on the Department of Energy’s Hanford Site in southeastern Washington State, USA where land-use change has increased recharge rates. Measured drainage from the lysimeter for the past 26 years averaged 62 mm/yr. Precipitation averaged 190 mm/yr with an estimated chloride input of 0.225 mg/L. Initial pore-water chloride concentration was 88 mg/L and decreased to about 6 mg/L after 26 years, while the drainage water decreased to less than 1 mg/L. A recharge estimate made using chloride concentrations in drain water was within 20% of the measured drainage rate. In contrast, recharge estimates using 1:1 (water: soil) extracts were lower than actual by factors ranging from 2 to 8 or more. The results suggest that when recharge is above a few mm/yr, soil water extracts can lead to unreliable estimates of recharge. For conditions of elevated recharge, direct sampling of pore water is the preferred method, because chloride concentrations are often 20 to 50 times higher in directly-sampled pore water than in pore-water extracts.

  20. Groundwater recharge rate and zone structure estimation using PSOLVER algorithm.

    PubMed

    Ayvaz, M Tamer; Elçi, Alper

    2014-01-01

    The quantification of groundwater recharge is an important but challenging task in groundwater flow modeling because recharge varies spatially and temporally. The goal of this study is to present an innovative methodology to estimate groundwater recharge rates and zone structures for regional groundwater flow models. Here, the unknown recharge field is partitioned into a number of zones using Voronoi Tessellation (VT). The identified zone structure with the recharge rates is associated through a simulation-optimization model that couples MODFLOW-2000 and the hybrid PSOLVER optimization algorithm. Applicability of this procedure is tested on a previously developed groundwater flow model of the Tahtalı Watershed. Successive zone structure solutions are obtained in an additive manner and penalty functions are used in the procedure to obtain realistic and plausible solutions. One of these functions constrains the optimization by forcing the sum of recharge rates for the grid cells that coincide with the Tahtalı Watershed area to be equal to the areal recharge rate determined in the previous modeling by a separate precipitation-runoff model. As a result, a six-zone structure is selected as the best zone structure that represents the areal recharge distribution. Comparison to results of a previous model for the same study area reveals that the proposed procedure significantly improves model performance with respect to calibration statistics. The proposed identification procedure can be thought of as an effective way to determine the recharge zone structure for groundwater flow models, in particular for situations where tangible information about groundwater recharge distribution does not exist. PMID:23746002

  1. Improved Recharge Estimation from Portable, Low-Cost Weather Stations.

    PubMed

    Holländer, Hartmut M; Wang, Zijian; Assefa, Kibreab A; Woodbury, Allan D

    2016-03-01

    Groundwater recharge estimation is a critical quantity for sustainable groundwater management. The feasibility and robustness of recharge estimation was evaluated using physical-based modeling procedures, and data from a low-cost weather station with remote sensor techniques in Southern Abbotsford, British Columbia, Canada. Recharge was determined using the Richards-based vadose zone hydrological model, HYDRUS-1D. The required meteorological data were recorded with a HOBO(TM) weather station for a short observation period (about 1 year) and an existing weather station (Abbotsford A) for long-term study purpose (27 years). Undisturbed soil cores were taken at two locations in the vicinity of the HOBO(TM) weather station. The derived soil hydraulic parameters were used to characterize the soil in the numerical model. Model performance was evaluated using observed soil moisture and soil temperature data obtained from subsurface remote sensors. A rigorous sensitivity analysis was used to test the robustness of the model. Recharge during the short observation period was estimated at 863 and 816 mm. The mean annual recharge was estimated at 848 and 859 mm/year based on a time series of 27 years. The relative ratio of annual recharge-precipitation varied from 43% to 69%. From a monthly recharge perspective, the majority (80%) of recharge due to precipitation occurred during the hydrologic winter period. The comparison of the recharge estimates with other studies indicates a good agreement. Furthermore, this method is able to predict transient recharge estimates, and can provide a reasonable tool for estimates on nutrient leaching that is often controlled by strong precipitation events and rapid infiltration of water and nitrate into the soil. PMID:26011672

  2. The effects of a dry sand layer on groundwater recharge in extremely arid areas: field study in the western Hexi Corridor of northwestern China

    NASA Astrophysics Data System (ADS)

    Sun, Peng; Ma, Jinzhu; Qi, Shi; Zhao, Wei; Zhu, Gaofeng

    2016-04-01

    Evaporation capacity is an important factor that cannot be ignored when judging whether extreme precipitation events will produce groundwater recharge. The evaporation layer's role in groundwater recharge was evaluated using a lysimeter simulation experiment in the desert area of Dunhuang, in the western part of the Hexi Corridor in northwestern China's Gansu Province. The annual precipitation in the study area is extremely low, averaging 38.87 mm during the 60-year study period, and daily pan evaporation amounts to 2,486 mm. Three simulated precipitation regimes (normal, 10 mm; ordinary annual maximum, 21 mm; and extreme, 31 mm) were used in the lysimeter simulation to allow monitoring of water movement and weighing to detect evaporative losses. The differences in soil-water content to a depth of 50 cm in the soil profile significantly affected rainfall infiltration during the initial stages of rainfall events. It was found that the presence of a dry 50-cm-deep sand layer was the key factor for "potential recharge" after the three rainfall events. Daily precipitation events less than 20 mm did not produce groundwater recharge because of the barrier effect created by the dry sand. Infiltration totaled 0.68 mm and penetrated to a depth below 50 cm with 31 mm of rainfall, representing potential recharge equivalent to 1.7 % of the rainfall. This suggests that only extreme precipitation events offer the possibility of recharge of groundwater in this extremely arid area.

  3. The search for intelligence

    NASA Astrophysics Data System (ADS)

    Coffey, E. J.

    1980-12-01

    Implications of current understandings of the nature of human intelligence for the possibility of extraterrestrial intelligence are discussed. The perceptual theory of intelligence as the manipulation of perceptual images rather than language is introduced, and conditions leading to the ascendancy of man over other hominids with similar conceptual abilities are discussed, including the liberation of the hands from a locomotive function and the evolution of neoteny. It is argued that the specificity of the environmental, behavioral and physiological conditions which lead to the emergence of technologically oriented, and communicative intelligent creatures suggests that any SETI would most likely be fruitless.

  4. Intelligence and childlessness.

    PubMed

    Kanazawa, Satoshi

    2014-11-01

    Demographers debate why people have children in advanced industrial societies where children are net economic costs. From an evolutionary perspective, however, the important question is why some individuals choose not to have children. Recent theoretical developments in evolutionary psychology suggest that more intelligent individuals may be more likely to prefer to remain childless than less intelligent individuals. Analyses of the National Child Development Study show that more intelligent men and women express preference to remain childless early in their reproductive careers, but only more intelligent women (not more intelligent men) are more likely to remain childless by the end of their reproductive careers. Controlling for education and earnings does not at all attenuate the association between childhood general intelligence and lifetime childlessness among women. One-standard-deviation increase in childhood general intelligence (15 IQ points) decreases women's odds of parenthood by 21-25%. Because women have a greater impact on the average intelligence of future generations, the dysgenic fertility among women is predicted to lead to a decline in the average intelligence of the population in advanced industrial nations. PMID:25131282

  5. Nanocarbon networks for advanced rechargeable lithium batteries.

    PubMed

    Xin, Sen; Guo, Yu-Guo; Wan, Li-Jun

    2012-10-16

    Carbon is one of the essential elements in energy storage. In rechargeable lithium batteries, researchers have considered many types of nanostructured carbons, such as carbon nanoparticles, carbon nanotubes, graphene, and nanoporous carbon, as anode materials and, especially, as key components for building advanced composite electrode materials. Nanocarbons can form efficient three-dimensional conducting networks that improve the performance of electrode materials suffering from the limited kinetics of lithium storage. Although the porous structure guarantees a fast migration of Li ions, the nanocarbon network can serve as an effective matrix for dispersing the active materials to prevent them from agglomerating. The nanocarbon network also affords an efficient electron pathway to provide better electrical contacts. Because of their structural stability and flexibility, nanocarbon networks can alleviate the stress and volume changes that occur in active materials during the Li insertion/extraction process. Through the elegant design of hierarchical electrode materials with nanocarbon networks, researchers can improve both the kinetic performance and the structural stability of the electrode material, which leads to optimal battery capacity, cycling stability, and rate capability. This Account summarizes recent progress in the structural design, chemical synthesis, and characterization of the electrochemical properties of nanocarbon networks for Li-ion batteries. In such systems, storage occurs primarily in the non-carbon components, while carbon acts as the conductor and as the structural buffer. We emphasize representative nanocarbon networks including those that use carbon nanotubes and graphene. We discuss the role of carbon in enhancing the performance of various electrode materials in areas such as Li storage, Li ion and electron transport, and structural stability during cycling. We especially highlight the use of graphene to construct the carbon conducting

  6. Lithium electronic environments in rechargeable battery electrodes

    NASA Astrophysics Data System (ADS)

    Hightower, Adrian

    This work investigates the electronic environments of lithium in the electrodes of rechargeable batteries. The use of electron energy-loss spectroscopy (EELS) in conjunction with transmission electron microscopy (TEM) is a novel approach, which when coupled with conventional electrochemical experiments, yield a thorough picture of the electrode interior. Relatively few EELS experiments have been preformed on lithium compounds owing to their reactivity. Experimental techniques were established to minimize sample contamination and control electron beam damage to studied compounds. Lithium hydroxide was found to be the most common product of beam damaged lithium alloys. Under an intense electron beam, halogen atoms desorbed by radiolysis in lithium halides. EELS spectra from a number of standard lithium compounds were obtained in order to identify the variety of spectra encountered in lithium rechargeable battery electrodes. Lithium alloys all displayed characteristically broad Li K-edge spectra, consistent with transitions to continuum states. Transitions to bound states were observed in the Li K and oxygen K-edge spectra of lithium oxides. Lithium halides were distinguished by their systematic chemical shift proportional to the anion electronegativity. Good agreement was found with measured lithium halide spectra and electron structure calculations using a self-consistant multiscattering code. The specific electrode environments of LiC6, LiCoO2, and Li-SnO were investigated. Contrary to published XPS predictions, lithium in intercalated graphite was determined to be in more metallic than ionic. We present the first experimental evidence of charge compensation by oxygen ions in deintercalated LiCoO2. Mossbauer studies on cycled Li-SnO reveal severely defective structures on an atomic scale. Metal hydride systems are presented in the appendices of this thesis. The mechanical alloying of immiscible Fe and Mg powders resulted in single-phase bcc alloys of less than 20

  7. Towards an Intelligent Textbook of Neurology

    PubMed Central

    Reggia, James A.; Pula, Thaddeus P.; Price, Thomas R.; Perricone, Barry T.

    1980-01-01

    We define an intelligent textbook of medicine to be a computer system that: (1) provides for storage and selective retrieval of synthesized clinical knowledge for reference purposes; and (2) supports the application by computer of its knowledge to patient information to assist physicians with decision making. This paper describes an experimental system called KMS (a Knowledge Management System) for creating and using intelligent medical textbooks. KMS is domain-independent, supports multiple inference methods and representation languages, and is designed for direct use by physicians during the knowledge acquisition process. It is presented here in the context of the development of an Intelligent Textbook of Neurology. We suggest that KMS has the potential to overcome some of the problems that have inhibited the use of knowledge-based systems by physicians in the past.

  8. Artificial Intelligence and the High School Computer Curriculum.

    ERIC Educational Resources Information Center

    Dillon, Richard W.

    1993-01-01

    Describes a four-part curriculum that can serve as a model for incorporating artificial intelligence (AI) into the high school computer curriculum. The model includes examining questions fundamental to AI, creating and designing an expert system, language processing, and creating programs that integrate machine vision with robotics and…

  9. 75 FR 76423 - Defense Intelligence Agency National Defense Intelligence College Board of Visitors Closed Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-12-08

    ... of the Secretary Defense Intelligence Agency National Defense Intelligence College Board of Visitors Closed Meeting AGENCY: National Defense Intelligence College, Defense Intelligence Agency, Department of... a closed meeting of the Defense Intelligence Agency National Defense Intelligence College Board...

  10. 76 FR 28960 - Defense Intelligence Agency National Defense Intelligence College Board of Visitors Closed Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-05-19

    ... of the Secretary Defense Intelligence Agency National Defense Intelligence College Board of Visitors Closed Meeting AGENCY: National Defense Intelligence College, Defense Intelligence Agency, Department of... a closed meeting of the Defense Intelligence Agency National Defense Intelligence College Board...

  11. 77 FR 32952 - Defense Intelligence Agency National Intelligence University Board of Visitors Closed Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-06-04

    ... of the Secretary Defense Intelligence Agency National Intelligence University Board of Visitors Closed Meeting AGENCY: Department of Defense, Defense Intelligence Agency, National Intelligence... a closed meeting of the Defense Intelligence Agency National Intelligence University Board...

  12. Artificial Recharge Coupled with Flood Mitigation in Jeju, Korea

    NASA Astrophysics Data System (ADS)

    Kim, Y.; Koo, M.; Lee, K.; Moon, D.; Barry, J. M.; Park, W.

    2010-12-01

    The primary goal of this study is to develop and apply the artificial recharge system at Han Stream in Jeju Island, Korea, for not only securing sustainable groundwater resources, but also mitigating severe floods occurred due to the global climate changes. Jeju-friendly Aquifer Recharge Technology (J-ART) in this study has been developed by capturing ephemeral stream water with no interference in the environments such as natural recharge or eco-system, storing the flood water in the reservoirs, recharging it through designed borehole after appropriate water treatment, and then making it to be used at down-gradient production wells. For optimal design of J-ART, we conducted injection tests at the monitoring well (MW5) as well as at the planned recharge site during drilling the recharge wells and performed a modeling with the data obtained. Based on the modeling results, the artificial recharge wells were developed with a design of 10-meter spacing between the wells and 35-40 meter depths, which has a capacity of more than 2,500,000 m3 of groundwater resources in a year. Characterizing groundwater flow from recharge area to discharge area should be achieved to assess the efficiency of J-ART. The resistivity logging employed to predict water flow in unsaturated zone during artificial recharge based on the inverse modeling and resistivity change patterns. Stable isotope studies of deuterium and oxygen-18 of surface waters and groundwaters were carried out to interpret mixing and flow in groundwaters impacted by artificial recharge. Transient models were developed to predict the effects of artificial recharge using the hydraulic properties of aquifers, groundwater levels, and meteorological data. Time series changes of water balance after artificial recharge were analyzed, and residence time of the recharged water was also predicted with a certain degree of uncertainty. Keywords: J-ART, Hydrogeological methods, Geophysical survey, Stable isotopes, Groundwater modeling

  13. Rechargeable metal hydrides for spacecraft application

    NASA Technical Reports Server (NTRS)

    Perry, J. L.

    1988-01-01

    Storing hydrogen on board the Space Station presents both safety and logistics problems. Conventional storage using pressurized bottles requires large masses, pressures, and volumes to handle the hydrogen to be used in experiments in the U.S. Laboratory Module and residual hydrogen generated by the ECLSS. Rechargeable metal hydrides may be competitive with conventional storage techniques. The basic theory of hydride behavior is presented and the engineering properties of LaNi5 are discussed to gain a clear understanding of the potential of metal hydrides for handling spacecraft hydrogen resources. Applications to Space Station and the safety of metal hydrides are presented and compared to conventional hydride storage. This comparison indicates that metal hydrides may be safer and require lower pressures, less volume, and less mass to store an equivalent mass of hydrogen.

  14. Nanostructured cathode materials for rechargeable lithium batteries

    NASA Astrophysics Data System (ADS)

    Myung, Seung-Taek; Amine, Khalil; Sun, Yang-Kook

    2015-06-01

    The prospect of drastic climate change and the ceaseless fluctuation of fossil fuel prices provide motivation to reduce the use of fossil fuels and to find new energy conversion and storage systems that are able to limit carbon dioxide generation. Among known systems, lithium-ion batteries are recognized as the most appropriate energy storage system because of their high energy density and thus space saving in applications. Introduction of nanotechnology to electrode material is beneficial to improve the resulting electrode performances such as capacity, its retention, and rate capability. The nanostructure is highly available not only when used alone but also is more highlighted when harmonized in forms of core-shell structure and composites with carbon nanotubes, graphene or reduced graphene oxides. This review covers syntheses and electrochemical properties of nanoscale, nanosized, and nanostructured cathode materials for rechargeable lithium batteries.

  15. Rechargeable high-temperature batteries [Book Chapter

    SciTech Connect

    Cairns, Elton J.

    1981-01-01

    There has been growing research and development effort in the area of high-specific-energy, high-specific-power rechargeable batteries since the mid 1960s and it has been used in electric vehicles, electric utility networks, and solar- and wind-powered electric generator systems. Nonaqueous systems have been found to be the most attractive candidates for the above relatively large-scale applications. Only the high-temperature cells offer the attractive combination of features sought for the cited applications: a specific energy above 100 Wh/kg, a specific power above 100 W/kg, a cycle life in excess of 500 cycles (at 100% depth of discharge), and a projected cost of less than $50† per kWh of energy storage capability.

  16. Polymer Energy Rechargeable System Battery Being Developed

    NASA Technical Reports Server (NTRS)

    Manzo, Michelle A.

    2003-01-01

    Long description. Illustrations of discotic liquid crystals, rod-coil polymers, lithium-ion conducting channel dilithium phthalocyanine (Li2Pc) from top and side, novel star polyethylene oxide structures, composite polyethylene oxide materials (showing polyethylene oxide + lithium salt, carbon atoms and oxygen atoms), homopolyrotaxanes, and diblock copolymers In fiscal year 2000, NASA established a program to develop the next generation, lithium-based, polymer electrolyte batteries for aerospace applications. The goal of this program, known as Polymer Energy Rechargeable Systems (PERS), is to develop a space-qualified, advanced battery system embodying polymer electrolyte and lithium-based electrode technologies and to establish world-class domestic manufacturing capabilities for advanced batteries with improved performance characteristics that address NASA s future aerospace battery requirements.

  17. Spinel electrodes for rechargeable lithium batteries.

    SciTech Connect

    Thackeray, M. M.

    1999-11-10

    This paper gives a historical account of the development of spinel electrodes for rechargeable lithium batteries. Research in the late 1970's and early 1980's on high-temperature . Li/Fe{sub 3}O{sub 4} cells led to the evaluation of lithium spinels Li[B{sub 2}]X{sub 4} at room temperature (B = metal cation). This work highlighted the importance of the [B{sub 2}]X{sub 4}spinel framework as a host electrode structure and the ability to tailor the cell voltage by selection of different B cations. Examples of lithium-ion cells that operate with spinel anode/spinel cathode couples are provided. Particular attention is paid to spinels within the solid solution system Li{sub 1+x}Mn{sub 2-x}O{sub 4} (0 {le} x {le} 0.33).

  18. Unlinkable Priced Oblivious Transfer with Rechargeable Wallets

    NASA Astrophysics Data System (ADS)

    Camenisch, Jan; Dubovitskaya, Maria; Neven, Gregory

    We present the first truly unlinkable priced oblivious transfer protocol. Our protocol allows customers to buy database records while remaining fully anonymous, i.e., (1) the database does not learn who purchases a record, and cannot link purchases by the same customer; (2) the database does not learn which record is being purchased, nor the price of the record that is being purchased; (3) the customer can only obtain a single record per purchase, and cannot spend more than his account balance; (4) the database does not learn the customer's remaining balance. In our protocol customers keep track of their own balances, rather than leaving this to the database as done in previous protocols. Our priced oblivious transfer protocol is also the first to allow customers to (anonymously) recharge their balances. Finally, we prove our protocol secure in the standard model (i.e., without random oracles).

  19. Polymer Energy Rechargeable System (PERS) Development Program

    NASA Technical Reports Server (NTRS)

    Baldwin, Richard S.; Manzo, Michelle A.; Dalton, Penni J.; Marsh, Richard A.; Surampudi, Rao

    2001-01-01

    The National Aeronautics and Space Administration (NASA) and the Air Force Research Laboratory (AFRL) have recently established a collaborative effort to support the development of polymer-based, lithium-based cell chemistries and battery technologies to address the next generation of aerospace applications and mission needs. The overall objective of this development program, which is referred to as PERS, Polymer Energy Rechargeable System, is to establish a world-class technology capability and U.S. leadership in polymer-based battery technology for aerospace applications. Programmatically, the PERS initiative will exploit both interagency collaborations to address common technology and engineering issues and the active participation of academia and private industry. The initial program phases will focus on R&D activities to address the critical technical issues and challenges at the cell level.

  20. Advances in rechargeable lithium molybdenum disulfide batteries

    NASA Technical Reports Server (NTRS)

    Brandt, K.; Stiles, J. A. R.

    1985-01-01

    The lithium molybdenum disulfide system as demonstrated in a C size cell, offers performance characteristics for applications where light weight and low volume are important. A gravimetric energy density of 90 watt hours per kilogram can be achieved in a C size cell package. The combination of charge retention capabilities, high energy density and a state of charge indicator in a rechargeable cell provides power package for a wide range of devices. The system overcomes the memory effect in Nicads where the full capacity of the battery cannot be utilized unless it was utilized on previous cycles. The development of cells with an advanced electrolyte formulation led to an improved rate capability especially at low temperatures and to a significantly improved life cycle.

  1. Oxygen electrodes for rechargeable alkaline fuel cells

    NASA Technical Reports Server (NTRS)

    Swette, Larry; Giner, Jose

    1987-01-01

    Electrocatalysts and supports for the positive electrode of moderate temperature single unit rechargeable alkaline fuel cells were investigated and developed. The electrocatalysts are defined as the material with a higher activity for the oxygen electrode reaction than the support. Advanced development will require that the materials be prepared in high surface area forms, and may also entail integration of various candidate materials. Eight candidate support materials and seven electrocatalysts were investigated. Of the 8 support, 3 materials meet the preliminary requirements in terms of electrical conductivity and stability. Emphasis is now on preparing in high surface area form and testing under more severe corrosion stress conditions. Of the 7 electrocatalysts prepared and evaluated, at least 5 materials remain as potential candidates. The major emphasis remains on preparation, physical characterization and electrochemical performance testing.

  2. Advanced rechargeable sodium batteries with novel cathodes

    NASA Technical Reports Server (NTRS)

    Distefano, S.; Ratnakumar, B. V.; Bankston, C. P.

    1989-01-01

    Various high energy density rechargeable batteries are being considered for future space applications. Of these, the sodium sulfur battery is one of the leading candidates. The primary advantage is the high energy density (760 Wh/kg theoretical). Energy densities in excess of 180 Wh/kg have been realized in practical batteries. More recently, cathodes other than sulfur are being evaluated. Researchers at JPL are evaluating various new cathode materials for use in high energy density sodium batteries for advanced space applications. The approach is to carry out basic electrochemical studies of these materials in a sodium cell configuration in order to understand their fundamental behaviors. Thus far studies have focused on alternate metal chlorides such as CuCl2 and organic cathode materials such as tetracyanoethylene (TCNE).

  3. Advanced rechargeable sodium batteries with novel cathodes

    NASA Technical Reports Server (NTRS)

    Di Stefano, S.; Ratnakumar, B. V.; Bankston, C. P.

    1990-01-01

    Various high energy density rechargeable batteries are being considered for future space applications. Of these, the sodium-sulfur battery is one of the leading candidates. The primary advantage is the high energy density (760 W h/kg theoretical). Energy densities in excess of 180 W h/kg have been realized in practical batteries. More recently, cathodes other than sulfur are being evaluated. Various new cathode materials are presently being evaluated for use in high energy density sodium batteries for advanced space applications. The approach is to carry out basic electrochemical studies of these materials in a sodium cell configuration in order to understand their fundamental behaviors. Thus far, the studies have focussed on alternative metal chlorides such as CuCl2 and organic cathode materials such as TCNE.

  4. Firearm microstamping technology: counterinsurgency intelligence gathering tool

    NASA Astrophysics Data System (ADS)

    Lizotte, Todd E.; Ohar, Orest P.

    2009-05-01

    Warfare relies on effective, accurate and timely intelligence an especially critical task when conducting a counterinsurgency operation [1]. Simply stated counterinsurgency is an intelligence war. Both insurgents and counterinsurgents need effective intelligence capabilities to be successful. Insurgents and counterinsurgents therefore attempt to create and maintain intelligence networks and fight continuously to neutralize each other's intelligence capabilities [1][2]. In such an environment it is obviously an advantage to target or proactively create opportunities to track and map an insurgent movement. Quickly identifying insurgency intelligence assets (Infiltrators) within a host government's infrastructure is the goal. Infiltrators can occupy various areas of government such as security personnel, national police force, government offices or military units. Intentional Firearm Microstamping offers such opportunities when implemented into firearms. Outfitted within firearms purchased and distributed to the host nation's security forces (civilian and military), Intentional Firearm Microstamping (IFM) marks bullet cartridge casings with codes as they are fired from the firearm. IFM is incorporated onto optimum surfaces with the firearm mechanism. The intentional microstamp tooling marks can take the form of alphanumeric codes or encoded geometric codes that identify the firearm. As the firearm is discharged the intentional tooling marks transfer a code to the cartridge casing which is ejected out of the firearm. When recovered at the scene of a firefight or engagement, the technology will provide forensic intelligence allowing the mapping and tracking of small arms traffic patterns within the host nation or identify insurgency force strength and pinpoint firearm sources, such as corrupt/rogue military units or police force. Intentional Firearm Microstamping is a passive mechanical trace technology that can be outfitted or retrofitted to semiautomatic handguns and

  5. Simulation of the xerographic recharge process

    SciTech Connect

    Feng, Chang; Parker, S.E.; Lean, Meng H.

    1996-12-31

    Laser xerography (e.g. laser printing, photo-copying, etc.) involves the sequential steps: uniform charging of the photoconductor surface, discharging spots with a laser beam, developing the latent image on the photoconductor surface by the attachment of charged toner particles, and finally transfer-ring the image to paper through mechanical and electrostatic forces. Simulations have been developed that model these process from first-principles. Color reproduction involves multiple passes through these steps; once for each color separation (e.g. multiple toner layers on the photoconductor). Here we study the charging of the photoconductor surface, in situations of high mass-coverage with a 2D fluid model, and low mass coverage with a 3D particle model. Charge is sprayed using a corona, type discharge called a scorotron. We axe developing a 2D fluid model of the recharge process based on extending existing models. We use empirical IN data for the scorotron. A Boundary Integral Equation Method (BIEM) is used to solve for the field, and method of characteristics (MOC) to solve the charge continuity equation. Also developed, is a 3D particle model, where the field is solved using 3D BIEM and ionized air molecules axe treated as point charges which follow their average drift motion. Diffusion can be neglected because of the high voltage bias. Toner particles axe treated as finite size spherical dielectrics with nonuniform attached surface charge. We will show initial numerical results for both models. The purpose of this work is to develop a better understanding of how charge in transported through the toner layers in subsequent recharging during color laser xerography.

  6. Spiritual Intelligence: The Tenth Intelligence that Integrates All Other Intelligences.

    ERIC Educational Resources Information Center

    Sisk, Dorothy

    2002-01-01

    This article discusses seven ways to develop spiritual intelligence, including: think about goals and identify values; access inner processes and use visualization to see goals fulfilled; integrate personal and universal vision; take responsibility for goals; develop a sense of community; focus on love and compassion; and take advantages of…

  7. Intelligent user interface for intelligent multimedia repository

    NASA Astrophysics Data System (ADS)

    Rhee, Phill-Kyu; Kim, Yong-Hwan; Sim, B. S.; Zhoo, Z. C.; Park, D.-I.

    1997-10-01

    Recently, much effort has been made for efficiency of user interface since the assumption of expertise or well-trained users is nor more valid these days. Today's users of computer systems are expanded to ordinary people. Furthermore, too much network accessible information resources in the form of various media increases rapidly everyday. The primary goal of the intelligent multimedia repository (IMR) is to assist users in accessing multimedia information efficiently. Primary users of the IMR are assumed to be novice users even though the system can be used for users at different levels of expertise. Users are not well-trained people in using computer system. Thus, the semantic gap between users and the system must be mainly reduced form the system site. The technology of intelligent user interface is adopted to minimize the semantic gap. For the intelligent user interface of been designed and developed. Machine learning technologies have been employed to provide user adaptation/intelligent capability to the system. The IUI of the IMR consist user interface manager (UIM), and user model (UM). The UIM performs the function of managing intelligent user interface. The UM stores the behavioral knowledge of the user. The UM stores the history of query and response interactions to absorb communication errors due to semantic gaps between the user and the IMR. The UM is implemented by decision tree based case- based reasoning and back propagation neural networks. Experimental result show the IUI can improve the performance of the IMR.

  8. Echo Meadows Project Winter Artificial Recharge.

    SciTech Connect

    Ziari, Fred

    2002-12-19

    This report discusses the findings of the Echo Meadows Project (BPA Project 2001-015-00). The main purpose of this project is to artificially recharge an alluvial aquifer, WITH water from Umatilla River during the winter high flow period. In turn, this recharged aquifer will discharge an increased flow of cool groundwater back to the river, thereby improving Umatilla River water quality and temperature. A considerable side benefit is that the Umatilla River should improve as a habitat for migration, spanning, and rearing of anadromous and resident fish. The scope of this project is to provide critical baseline information about the Echo Meadows and the associated reach of the Umatilla River. Key elements of information that has been gathered include: (1) Annual and seasonal groundwater levels in the aquifer with an emphasis on the irrigation season, (2) Groundwater hydraulic properties, particularly hydraulic conductivity and specific yield, and (3) Groundwater and Umatilla River water quality including temperature, nutrients and other indicator parameters. One of the major purposes of this data gathering was to develop input to a groundwater model of the area. The purpose of the model is to estimate our ability to recharge this aquifer using water that is only available outside of the irrigation season (December through the end of February) and to estimate the timing of groundwater return flow back to the river. We have found through the data collection and modeling efforts that this reach of the river had historically returned as much as 45 cubic feet per second (cfs) of water to the Umatilla River during the summer and early fall. However, this return flow was reduced to as low as 10 cfs primarily due to reduced quantities of irrigation application, gain in irrigation efficiencies and increased groundwater pumping. Our modeling indicated that it is possible to restore these critical return flows using applied water outside of the irrigation season. We further

  9. Stable isotope tracers: natural and anthropogenic recharge, Orange County, California

    NASA Astrophysics Data System (ADS)

    Williams, Alan E.

    1997-12-01

    Stable isotopic techniques have been utilized to locate occurrences and trace movements of a variety of naturally and anthropogenically recharged waters in aquifers of Orange County, California. This basin is of particular interest not only because it provides the dominant water supply for the two million residents of this well-populated county, but also because it is representative of a common arid environment where natural recharge is dominated by distant, high-elevation precipitation transported by a major river. Such arid basins are particularly sensitive to climatic and anthropogenic disturbance of their recharge and their subsurface hydrology. In order to identify distinctive waters, oxygen and hydrogen stable isotope ratios from Orange County wells have been compared with a regional database including an array of surface water samples representative of watershed runoff. Four distinctive subsurface water types can be resolved. Waters of "local" rainfall and imported, "Colorado" River aqueduct origins are easily distinguished from dominant, "native" Santa Ana river compositions by use of hydrogen and oxygen stable isotope analysis. Recent human interference with Santa Ana river flow and recharge is also marginally resolvable by isotopic techniques. Distinguishable isotopic signatures of "recent" Santa Ana recharge appear to be due to evaporative loss, perhaps during storage in the Prado Reservoir or in percolation ponds, prior to recharge into Orange County aquifers. Characterization of traceable isotopic signatures of distinct natural and anthropogenic recharge components provides a major advance towards use of such techniques for developing a well constrained, three-dimensional hydrologic model for this complex basin.

  10. Quantifying potential recharge in mantled sinkholes using ERT.

    PubMed

    Schwartz, Benjamin F; Schreiber, Madeline E

    2009-01-01

    Potential recharge through thick soils in mantled sinkholes was quantified using differential electrical resistivity tomography (ERT). Conversion of time series two-dimensional (2D) ERT profiles into 2D volumetric water content profiles using a numerically optimized form of Archie's law allowed us to monitor temporal changes in water content in soil profiles up to 9 m in depth. Combining Penman-Monteith daily potential evapotranspiration (PET) and daily precipitation data with potential recharge calculations for three sinkhole transects indicates that potential recharge occurred only during brief intervals over the study period and ranged from 19% to 31% of cumulative precipitation. Spatial analysis of ERT-derived water content showed that infiltration occurred both on sinkhole flanks and in sinkhole bottoms. Results also demonstrate that mantled sinkholes can act as regions of both rapid and slow recharge. Rapid recharge is likely the result of flow through macropores (such as root casts and thin gravel layers), while slow recharge is the result of unsaturated flow through fine-grained sediments. In addition to developing a new method for quantifying potential recharge at the field scale in unsaturated conditions, we show that mantled sinkholes are an important component of storage in a karst system. PMID:18823398

  11. Geostatistical estimates of future recharge for the Death Valley region

    SciTech Connect

    Hevesi, J.A.; Flint, A.L.

    1998-12-01

    Spatially distributed estimates of regional ground water recharge rates under both current and potential future climates are needed to evaluate a potential geologic repository for high-level nuclear waste at Yucca Mountain, Nevada, which is located within the Death Valley ground-water region (DVGWR). Determining the spatial distribution of recharge is important for regional saturated-zone ground-water flow models. In the southern Nevada region, the Maxey-Eakin method has been used for estimating recharge based on average annual precipitation. Although this method does not directly account for a variety of location-specific factors which control recharge (such as bedrock permeability, soil cover, and net radiation), precipitation is the primary factor that controls in the region. Estimates of recharge obtained by using the Maxey-Eakin method are comparable to estimates of recharge obtained by using chloride balance studies. The authors consider the Maxey-Eakin approach as a relatively simple method of obtaining preliminary estimates of recharge on a regional scale.

  12. Powerful Writing: Description in Creating Monster Trading Cards.

    ERIC Educational Resources Information Center

    Kimbro, Michelle

    Description can make a piece of writing come alive. This lesson plan combines art and word play, emphasizing writing for an audience while drawing on multiple intelligences. Peer review and feedback reinforces the revision process as students create trading cards by drawing pictures of monsters and describing and categorizing them in detail.…

  13. Creating an Online Library To Support a Virtual Learning Community.

    ERIC Educational Resources Information Center

    Sandelands, Eric

    1998-01-01

    International Management Centres (IMC), an independent business school, and Anbar Electronic Intelligence (AEI), a database publisher, have created a virtual library for IMC's virtual business school. Topics discussed include action learning; IMC's partnership with AEI; the virtual university model; designing virtual library resources; and…

  14. Universal Nonverbal Intelligence Test.

    ERIC Educational Resources Information Center

    Bracken, Bruce A.; McCallum, R. Steve

    This kit presents all components of the Universal Nonverbal Intelligence Test (UNIT), a newly developed instrument designed to measure the general intelligence and cognitive abilities of children and adolescents (ages 5 through 17) who may be disadvantaged by traditional verbal and language-loaded measures such as children with speech, language,…

  15. Emotional Intelligence through Literature.

    ERIC Educational Resources Information Center

    Ghosn, Irma K.

    Children develop emotional intelligence during the early years of life, and according to some experts, emotional intelligence is a more reliable predictor of academic achievement than is IQ. However, today's children appear to be low on emotional well-being. This has potentially negative consequences, not only for academic achievement but also for…

  16. Applying Multiple Intelligences

    ERIC Educational Resources Information Center

    Christodoulou, Joanna A.

    2009-01-01

    The ideas of multiple intelligences introduced by Howard Gardner of Harvard University more than 25 years ago have taken form in many ways, both in schools and in other sometimes-surprising settings. The silver anniversary of Gardner's learning theory provides an opportunity to reflect on the ways multiple intelligences theory has taken form and…

  17. Intelligence and Educational Achievement

    ERIC Educational Resources Information Center

    Deary, Ian J.; Strand, Steve; Smith, Pauline; Fernandes, Cres

    2007-01-01

    This 5-year prospective longitudinal study of 70,000+ English children examined the association between psychometric intelligence at age 11 years and educational achievement in national examinations in 25 academic subjects at age 16. The correlation between a latent intelligence trait (Spearman's "g"from CAT2E) and a latent trait of educational…

  18. Intelligence, Race, and Genetics

    ERIC Educational Resources Information Center

    Sternberg, Robert J.; Grigorenko, Elena L.; Kidd, Kenneth K.

    2005-01-01

    In this article, the authors argue that the overwhelming portion of the literature on intelligence, race, and genetics is based on folk taxonomies rather than scientific analysis. They suggest that because theorists of intelligence disagree as to what it is, any consideration of its relationships to other constructs must be tentative at best. They…

  19. Ironising with Intelligence

    ERIC Educational Resources Information Center

    Erlandson, Peter; Beach, Dennis

    2014-01-01

    This article is part of a project that seeks in part to explore how students understand and use the concept of intelligence. It is based on an ethnographically contextualized study of linguistic events and was conducted in an inner-city upper secondary school in Sweden. The article shows that the concept of intelligence is not spontaneously used…

  20. Heidegger and artificial intelligence

    SciTech Connect

    Diaz, G.

    1987-01-01

    The discipline of Artificial Intelligence, in its quest for machine intelligence, showed great promise as long as its areas of application were limited to problems of a scientific and situation neutral nature. The attempts to move beyond these problems to a full simulation of man's intelligence has faltered and slowed it progress, largely because of the inability of Artificial Intelligence to deal with human characteristic, such as feelings, goals, and desires. This dissertation takes the position that an impasse has resulted because Artificial Intelligence has never been properly defined as a science: its objects and methods have never been identified. The following study undertakes to provide such a definition, i.e., the required ground for Artificial Intelligence. The procedure and methods employed in this study are based on Heidegger's philosophy and techniques of analysis as developed in Being and Time. Results of this study show that both the discipline of Artificial Intelligence and the concerns of Heidegger in Being and Time have the same object; fundamental ontology. The application of Heidegger's conclusions concerning fundamental ontology unites the various aspects of Artificial Intelligence and provides the articulation which shows the parts of this discipline and how they are related.

  1. The Reproduction of Intelligence

    ERIC Educational Resources Information Center

    Meisenberg, Gerhard

    2010-01-01

    Although a negative relationship between fertility and education has been described consistently in most countries of the world, less is known about the relationship between intelligence and reproductive outcomes. Also the paths through which intelligence influences reproductive outcomes are uncertain. The present study uses the NLSY79 to analyze…

  2. The Concept of Intelligence.

    ERIC Educational Resources Information Center

    Neisser, Ulric

    1979-01-01

    Because no single characteristic defines intelligence, there can be no adequate process-based definition of intelligence. In principle, a combination of many empirically derived measures into a single index, as in a Binet test, would be appropriate. In practice, many of the relevant characteristics are simply impossible to measure. (Author/RD)

  3. The Physics of Intelligence

    ERIC Educational Resources Information Center

    Escultura, E. E.

    2012-01-01

    This paper explores the physics of intelligence and provides an overview of what happens in the brain when a person is engaged in mental activity that we classify under thought or intelligence. It traces the formation of a concept starting with reception of visible or detectable signals from the real world by and external to the sense organs,…

  4. Expanding Human Intelligence.

    ERIC Educational Resources Information Center

    Galyean, Beverly-Colleene

    1983-01-01

    The human brain is capable of mastering skills far beyond those it is now used for. Three questions about the further evolution of human intelligence are raised: What will be the next step in human intelligence? How is the next step manifesting itself? How can we prepare for those changes? (IS)

  5. The Intelligence of Leaders.

    ERIC Educational Resources Information Center

    Gardner, Howard

    1998-01-01

    Leaders possess certain intelligences. They are linguistically gifted; they can tell good stories and usually can write well. They have strong interpersonal skills, have a good intrapersonal sense of their abilities, and can help others address existential questions and feel engaged in meaningful quests. However, intelligence is no guarantor of…

  6. Intelligent Tutoring Systems

    NASA Astrophysics Data System (ADS)

    Anderson, John R.; Boyle, C. Franklin; Reiser, Brian J.

    1985-04-01

    Cognitive psychology, artificial intelligence, and computer technology have advanced to the point where it is feasible to build computer systems that are as effective as intelligent human tutors. Computer tutors based on a set of pedagogical principles derived from the ACT theory of cognition have been developed for teaching students to do proofs in geometry and to write computer programs in the language LISP.

  7. Intelligence and Education

    ERIC Educational Resources Information Center

    Baskas, Richard S.

    2011-01-01

    The purpose of this research is to examine how intelligence is used to acquire education to make positives changes for oneself and for others. For change to occur, intelligence is required to understand which changes need to be made and how to make them. A literature review was conducted through the Educational Resources Information Center (ERIC)…

  8. Systems Intelligence Inventory

    ERIC Educational Resources Information Center

    Törmänen, Juha; Hämäläinen, Raimo P.; Saarinen, Esa

    2016-01-01

    Purpose: Systems intelligence (SI) (Saarinen and Hämäläinen, 2004) is a construct defined as a person's ability to act intelligently within complex systems involving interaction and feedback. SI relates to our ability to act in systems and reason about systems to adaptively carry out productive actions within and with respect to systems such as…

  9. Intelligence and Physical Attractiveness

    ERIC Educational Resources Information Center

    Kanazawa, Satoshi

    2011-01-01

    This brief research note aims to estimate the magnitude of the association between general intelligence and physical attractiveness with large nationally representative samples from two nations. In the United Kingdom, attractive children are more intelligent by 12.4 IQ points (r=0.381), whereas in the United States, the correlation between…

  10. Beyond Intelligence Testing.

    ERIC Educational Resources Information Center

    White, Stephen; And Others

    1988-01-01

    Articles on IQ testing are presented: "Opportunity and Intelligence" (Stephen White); "Beyond the IQ: Education and Human Development" (Howard Gardner); "Beyond IQ Testing" (Robert J. Sternberg); "Working Smarter" (Roger J. Peters); "Varieties of Mind" (John L. Doris, Stephen J. Ceci); "Human Intelligence Testing: A Cultural-Ecological…

  11. Intelligent Tutoring Systems.

    ERIC Educational Resources Information Center

    Anderson, John R.; And Others

    1985-01-01

    Cognitive psychology, artificial intelligence, and computer technology have advanced so much that it is feasible to build computer systems that are as effective as intelligent human tutors. Computer tutors have been developed for teaching students to do proofs in geometry and to write computer programs in the LISP language. (JN)

  12. Intelligent Tutoring Systems.

    ERIC Educational Resources Information Center

    Ross, Peter

    1987-01-01

    Discusses intelligent tutoring systems (ITS), one application of artificial intelligence to computers used in education. Basic designs of ITSs are described; examples are given including PROUST, GREATERP, and the use of simulation with ITSs; protocol analysis is discussed; and 38 prototype ITSs are listed. (LRW)

  13. Problem Solving and Intelligence.

    ERIC Educational Resources Information Center

    Resnick, Lauren B.; Glaser, Robert

    This paper argues that a major aspect of intelligence is the ability to solve problems and that careful analysis of problem-solving behavior is a means of specifying many of the psychological processes that make up intelligence. The focus is on the mechanisms involved when, in the absence of complete instruction, a person must "invent" a new…

  14. On modeling and controlling intelligent systems

    SciTech Connect

    Dress, W.B.

    1993-11-01

    The aim of this paper is to show how certain diverse and advanced techniques of information processing and system theory might be integrated into a model of an intelligent, complex entity capable of materially enhancing an advanced information management system. To this end, we first examine the notion of intelligence and ask whether a semblance thereof can arise in a system consisting of ensembles of finite-state automata. Our goal is to find a functional model of intelligence in an information-management setting that can be used as a tool. The purpose of this tool is to allow us to create systems of increasing complexity and utility, eventually reaching the goal of an intelligent information management system that provides and anticipates needed data and information. We base our attempt on the ideas of general system theory where the four topics of system identification, modeling, optimization, and control provide the theoretical framework for constructing a complex system that will be capable of interacting with complex systems in the real world. These four key topics are discussed within the purview of cellular automata, neural networks, and evolutionary programming. This is a report of ongoing work, and not yet a success story of a synthetic intelligent system.

  15. Visualizing intelligence information using correlation graphs

    NASA Astrophysics Data System (ADS)

    Verma, Vivek; Gagvani, Nikhil

    2005-03-01

    This paper presents a new information model to help intelligence analysts in organizing, querying, and visualizing the information present in large volumes of unstructured data sources such as text reports, multi-media, and human discourse. Our primary goal is to create a system that would combine the human pattern recognition abilities of intelligence analysis with the storage and processing capabilities of computers. Our system models the collective mental map of intelligence analysts in the form of the Correlation Graph, a modified graph data structure with objects and events as nodes and subjective probabilistic correlations between them as edges. Objects are entities such as people, places, and things. Events are actions that involve the objects. A taxonomy is also associated with the model to enable intelligence domain specific querying of the data. Graph drawing techniques are used to visualize the information represented by the correlation graph. Through real world examples, we demonstrate that the resulting information model can be used for efficient representation, presentation, and querying to discover novel patterns in the intelligence data via graph visualization techniques.

  16. Effects of artificial recharge on the Ogallala aquifer, Texas

    USGS Publications Warehouse

    Brown, Richmond Flint; Keys, W.S.

    1985-01-01

    Four recharge tests were conducted by injecting water from playa lakes through wells into the Ogallala Formation. Injection was by gravity flow and by pumping under pressure. At one site, 34-acre feet of water was injected by gravity and produced a significant increase in yield of the well. At a second site, gravity injection of only 0.58 acre-foot caused a significant decrease in permeability due to plugging by suspended sediment. At two other sites, injection by pumping 6 and 14 acre-feet respectively, resulted in discharge of water at the surface and in perching of water above the water table. Differences in success of recharge were largely due to aquifer lithology and, therefore, the type of permeability; the concentration of suspended solids in the recharge water; and the injection technique. The injection technique can be controlled and the concentration of suspended solids can be minimized by treatment, but the site for well recharge will accept water most rapidly if it is selected on the basis of a favorable geohydrologic environment. Geophysical logs were used to study the effect of aquifer lithology on recharge and to understand the movement of injected water. Temperature logs were particularly useful in tracing the movement of recharged water. Natural-gamma, gamma-gamma, and neutron logs provided important data on lithology and porosity in the aquifer and changes in porosity and water distribution resulting from recharge. Effective recharge of the Ogallala Formation, using water from playa lakes, is possible where geohydrologic conditions are favorable and the recharge system is properly constructed.

  17. Recharge and discharge calculations to characterize the groundwater hydrologic balance

    SciTech Connect

    Liddle, R.G.

    1998-12-31

    Several methods are presented to quantify the ground water component of the hydrologic balance; including (1) hydrograph separation techniques, (2) water budget calculations, (3) spoil discharge techniques, and (4) underground mine inflow studies. Stream hydrograph analysis was used to calculate natural groundwater recharge and discharge rates. Yearly continuous discharge hydrographs were obtained for 16 watersheds in the Cumberland Plateau area of Tennessee. Baseflow was separated from storm runoff using computerized hydrograph analysis techniques developed by the USGS. The programs RECESS, RORA, and PART were used to develop master recession curves, calculate ground water recharge, and ground water discharge respectively. Station records ranged from 1 year of data to 60 years of data with areas of 0.67 to 402 square miles. Calculated recharge ranged from 7 to 28 inches of precipitation while ground water discharge ranged from 6 to 25 inches. Baseflow ranged from 36 to 69% of total flow. For sites with more than 4 years of data the median recharge was 20 inches/year and the 95% confidence interval for the median was 16.4 to 23.8 inches of recharge. Water budget calculations were also developed independently by a mining company in southern Tennessee. Results showed about 19 inches of recharge is available on a yearly basis. A third method used spoil water discharge measurements to calculate average recharge rate to the mine. Results showed 21.5 inches of recharge for this relatively flat area strip mine. In a further analysis it was shown that premining soil recharge rates of 19 inches consisted of about 17 inches of interflow and 2 inches of deep aquifer recharge while postmining recharge to the spoils had almost no interflow component. OSM also evaluated underground mine inflow data from northeast Tennessee and southeast Kentucky. This empirical data showed from 0.38 to 1.26 gallons per minute discharge per unit acreage of underground workings. This is the

  18. Geophysical expression of natural recharge in different geological terrains.

    PubMed

    Hodlur, G K; Singh, U K; Das, R K; Rangarajan, R; Chand, Ramesh; Singh, S B

    2003-01-01

    Behavior of the Dar-Zarrouk parameters--longitudinal unit conductance, transverse unit resistance, longitudinal resistivity, and transverse resistivity--has been compared with the behavior of the natural recharge in two geological terrains. Contour patterns of the geophysical parameters and those of natural recharge have been analyzed and a qualitative relation in their behavior was recognized. Graphical comparison of the geophysical and hydrogeological parameters clearly illustrates a qualitative relationship between the two parameters. Use of such qualitative relation in the field of ground water exploration and management studies is explained. A modest beginning is attempted to arrive at a quantitative relation between natural recharge and Dar-Zarrouk parameters. PMID:14649869

  19. Artificial Intelligence, Knowledge Extraction and the Study of Human Intelligence.

    ERIC Educational Resources Information Center

    d'Ydewalle, Gery; Delhaye, Patrick

    1988-01-01

    Describes artificial intelligence (AI) as the study of intelligence with the ideas and methods of computation. States that the goal is to make computers more intelligent and thereby uncover the principles that make intelligent behavior possible. Discusses knowledge representations, production (if-then) systems, and expert systems as forms of AI.…

  20. Development of an intelligent hypertext system for wind tunnel testing

    NASA Technical Reports Server (NTRS)

    Lo, Ching F.; Shi, George Z.; Steinle, Frank W.; Wu, Y. C. L. Susan; Hoyt, W. Andes

    1991-01-01

    This paper summarizes the results of a system utilizing artificial intelligence technology to improve the productivity of project engineers who conduct wind tunnel tests. The objective was to create an intelligent hypertext system which integrates a hypertext manual and expert system that stores experts' knowledge and experience. The preliminary (Phase I) effort implemented a prototype IHS module encompassing a portion of the manuals and knowledge used for wind tunnel testing. The effort successfully demonstrated the feasibility of the intelligent hypertext system concept. A module for the internal strain gage balance, implemented on both IBM-PC and Macintosh computers, is presented. A description of the Phase II effort is included.

  1. Improved zinc electrode and rechargeable zinc-air battery

    SciTech Connect

    Ross, P.N. Jr.

    1988-06-21

    The invention comprises an improved rechargeable zinc-air cell/battery having recirculating alkaline electrolyte and a zinc electrode comprising a porous foam support material which carries the active zinc electrode material. 5 figs.

  2. Bipolar rechargeable lithium battery for high power applications

    NASA Technical Reports Server (NTRS)

    Hossain, Sohrab; Kozlowski, G.; Goebel, F.

    1993-01-01

    Viewgraphs of a discussion on bipolar rechargeable lithium battery for high power applications are presented. Topics covered include cell chemistry, electrolytes, reaction mechanisms, cycling behavior, cycle life, and cell assembly.

  3. ENGINEERING ECONOMIC ANALYSIS OF A PROGRAM FOR ARTIFICIAL GROUNDWATER RECHARGE.

    USGS Publications Warehouse

    Reichard, Eric G.; Bredehoeft, John D.

    1984-01-01

    This study describes and demonstrates two alternate methods for evaluating the relative costs and benefits of artificial groundwater recharge using percolation ponds. The first analysis considers the benefits to be the reduction of pumping lifts and land subsidence; the second considers benefits as the alternative costs of a comparable surface delivery system. Example computations are carried out for an existing artificial recharge program in Santa Clara Valley in California. A computer groundwater model is used to estimate both the average long term and the drought period effects of artificial recharge in the study area. Results indicate that the costs of artificial recharge are considerably smaller than the alternative costs of an equivalent surface system. Refs.

  4. Reliability of Rechargeable Batteries in a Photovoltaic Power Supply System

    SciTech Connect

    Barney, P.; Jungst, R.G., Ingersoll, D.; O'Gorman, C.; Paez, T.L.; Urbina, A.

    1998-11-30

    We investigate the reliability If a rechargeable battery acting as the energy storage component in a photovoltaic power supply system. A model system was constructed for this that includes the solar resource, the photovoltaic power supp Iy system, the rechargeable battery and a load. The solar resource and the system load are modeled as SI ochastic processes. The photovoltaic system and the rechargeable battery are modeled deterministically, imd an artificial neural network is incorporated into the model of the rechargeable battery to simulate dartage that occurs during deep discharge cycles. The equations governing system behavior are solved simultaneously in the Monte Carlo framework and a fwst passage problem is solved to assess system reliability.

  5. Conceptions of Intelligence and Giftedness.

    ERIC Educational Resources Information Center

    Bireley, Marlene

    This paper presents a review of the major ideas on the nature of intelligence and giftedness. Especially noted are theories of Howard Gardner, Robert Sternberg, and J.P. Das. Gardner expanded traditional notions of intelligence to include such talents as spatial ability, musical intelligence, bodily-kinesthetic intelligence, and interpersonal and…

  6. Universities and the Intelligence Community.

    ERIC Educational Resources Information Center

    Baratz, Morton S.; And Others

    1979-01-01

    Statements before the Senate Select Committee on Intelligence with regard to the National Intelligence Reorganization and Reform Act and the relations of the intelligence agencies to the academic community are reported. Issues include covert recruitment and operational use of academics by the Central Intelligence Agency. (JMD)

  7. Courseware Evaluation: Where's the Intelligence?

    ERIC Educational Resources Information Center

    MacKenzie, I. Scott

    1990-01-01

    Discusses the concept of intelligence and the extent to which it is present in intelligent tutoring systems and intelligent computer-assisted instruction. Topics discussed include courseware evaluation; artificial intelligence; the degree of learner control; knowledge acquisition; fault tolerance; and feedback and self-evaluation. (23 references)…

  8. Moral Intelligence in the Schools

    ERIC Educational Resources Information Center

    Clarken, Rodney H.

    2009-01-01

    Moral intelligence is newer and less studied than the more established cognitive, emotional and social intelligences, but has great potential to improve our understanding of learning and behavior. Moral intelligence refers to the ability to apply ethical principles to personal goals, values and actions. The construct of moral intelligence consists…

  9. Cryogenic Transport of High-Pressure-System Recharge Gas

    NASA Technical Reports Server (NTRS)

    Ungar, Eugene K,; Ruemmele, Warren P.; Bohannon, Carl

    2010-01-01

    A method of relatively safe, compact, efficient recharging of a high-pressure room-temperature gas supply has been proposed. In this method, the gas would be liquefied at the source for transport as a cryogenic fluid at or slightly above atmospheric pressure. Upon reaching the destination, a simple heating/expansion process would be used to (1) convert the transported cryogenic fluid to the room-temperature, high-pressure gaseous form in which it is intended to be utilized and (2) transfer the resulting gas to the storage tank of the system to be recharged. In conventional practice for recharging high-pressure-gas systems, gases are transported at room temperature in high-pressure tanks. For recharging a given system to a specified pressure, a transport tank must contain the recharge gas at a much higher pressure. At the destination, the transport tank is connected to the system storage tank to be recharged, and the pressures in the transport tank and the system storage tank are allowed to equalize. One major disadvantage of the conventional approach is that the high transport pressure poses a hazard. Another disadvantage is the waste of a significant amount of recharge gas. Because the transport tank is disconnected from the system storage tank when it is at the specified system recharge pressure, the transport tank still contains a significant amount of recharge gas (typically on the order of half of the amount transported) that cannot be used. In the proposed method, the cryogenic fluid would be transported in a suitably thermally insulated tank that would be capable of withstanding the recharge pressure of the destination tank. The tank would be equipped with quick-disconnect fluid-transfer fittings and with a low-power electric heater (which would not be used during transport). In preparation for transport, a relief valve would be attached via one of the quick-disconnect fittings (see figure). During transport, the interior of the tank would be kept at a near

  10. Intelligent Design and Earth History

    NASA Astrophysics Data System (ADS)

    Elders, W. A.

    2001-05-01

    Intelligent Design (ID), the idea that the Earth's biota was intelligently designed and created, is not a new species recently evolved by allopatric speciation at the fringes of the creationist gene pool. In spite of its new veneer of sophistication, ID is a variant of an already extant species of religious polemics. In the western world, arguments about causative relationships between the complexity of nature and the supernatural can be traced from the fifth century St. Augustine, to the eighteenth century David Hume and the nineteenth century William Paley. Along this descent tree some argued from the existence of supernatural agencies to the creation of nature with its complexities, while others argued from the complexities of nature to the existence of supernatural agencies. Today, Phillip Johnson promotes ID by attacking evolution rather than by presenting evidence for ID. He argues that the evidence for macroevolution is either absent, misinterpreted or fraudulent. His "Wedge Strategy" attempts to separate his "objective science" from the "philosophical mechanistic naturalism" which he posits is responsible for the survival of Darwinism. To make his appeal as wide as possible he tries not to offend anyone (except evolutionists) by deliberately avoiding discussion of biblical literalism or the age of the Earth. Although in 1859 Darwin admitted that the geological evidence was "the most obvious and gravest objection which can be urged against my theory", subsequently geological evidence has become one of the chief supports of his theory. However, the fossil record is now seen to be not simply one of slow gradual descent with modification. Rates of divergence and disappearance of organisms have varied enormously through time. Repeated mass extinctions indicate a strong element of contingency in evolution. Accepting the postulate of an intelligent designer also requires the postulate of an intelligent destroyer. Darwin hinted at this when he referred to, "The

  11. Investigation of artificial recharge of aquifers in Nebraska

    USGS Publications Warehouse

    Lichtler, William F.; Stannard, David I.; Kouma, Edwin

    1980-01-01

    Progressive declines of ground-water levels in some areas of Nebraska prompted this investigation into the technical feasibility of recharging aquifers through wells, impoundments, pits, and canals. Information gained from a literature search and from preliminary tests was used to design several artificial-recharge experiments in Nebraska from 1977 to 1979. In well experiments, 0.46 billion gallons of water from an aquifer recharged by the Platte River was transported by pipeline and injected through a well into a sand and gravel aquifer near Aurora. Recharge was at about 730 gallons per minute during tests of 6- and 8-months duration. No evidence of clogging of the aquifer due to chemical reactions, air entrainment, or bacteria was detected in either test. In the 6-month test, evidence of clogging due to fine sediment in the recharge water was detected; however, analysis of this test indicated that recharge could have continued for several years before rehabilitation would have become necessary. Results of the 8-month test confirmed results of the earlier test until casing failure in the supply well and subsequent sediment deposition in the recharge well caused rapid water-level rise in the recharge well. In surface-spreading experiments, maximum infiltration rates from 24-foot-diameter ring infiltrometers near Aurora and Tryon were 0.4 and 11 feet per day, respectively. Results indicate that large-scale surface spreading is feasible only where low-permeability layers are absent in the subsurface. Infiltration rates from reuse pits ranged from 0.01 to 1.6 feet per day, indicating highly variable subsurface permeability. Flow measurements in an irrigation canal near Farwell indicate an infiltration rate of 0.37 feet per day. (USGS)

  12. Modelling of groundwater mound formation resulting from transient recharge

    NASA Astrophysics Data System (ADS)

    Rai, S. N.; Ramana, D. V.; Thiagarajan, S.; Manglik, A.

    2001-06-01

    An analytical solution of a linearized Boussinesq equation is obtained to predict water table fluctuations as a result of time varying recharge from a strip basin for any number of recharge cycles. The analytical solution is obtained by using finite Fourier sine transform. Applications of the solution for the prediction of water table fluctuations and sensitivity analysis are demonstrated with the help of example problems.

  13. Zinc electrode and rechargeable zinc-air battery

    SciTech Connect

    Ross, P.N. Jr.

    1989-06-27

    This patent describes an improved zinc electrode for a rechargeable zinc-air battery comprising an outer frame and a porous foam electrode support within the frame which is treated prior to the deposition of zinc thereon to inhibit the formation of zinc dendrites on the external surface thereof. The outer frame is provided with passageways for circulating an alkaline electrolyte through the treated zinc-coated porous foam. A novel rechargeable zinc-air battery system is also disclosed.

  14. Intelligent flight control systems

    NASA Technical Reports Server (NTRS)

    Stengel, Robert F.

    1993-01-01

    The capabilities of flight control systems can be enhanced by designing them to emulate functions of natural intelligence. Intelligent control functions fall in three categories. Declarative actions involve decision-making, providing models for system monitoring, goal planning, and system/scenario identification. Procedural actions concern skilled behavior and have parallels in guidance, navigation, and adaptation. Reflexive actions are spontaneous, inner-loop responses for control and estimation. Intelligent flight control systems learn knowledge of the aircraft and its mission and adapt to changes in the flight environment. Cognitive models form an efficient basis for integrating 'outer-loop/inner-loop' control functions and for developing robust parallel-processing algorithms.

  15. Create a Logo.

    ERIC Educational Resources Information Center

    Duchen, Gail

    2002-01-01

    Presents an art lesson that introduced students to graphic art as a career path. Explains that the students met a graphic artist and created a logo for a pretend client. Explains that the students researched logos. (CMK)

  16. Intelligence supportability in future systems

    NASA Astrophysics Data System (ADS)

    Gold, Brian; Watson, Mariah; Vayette, Corey; Fiduk, Francis

    2010-08-01

    Advanced weaponry is providing an exponential increase in intelligence data collection capabilities and the Intelligence Community (IC) is not properly positioned for the influx of intelligence supportabilitiy requirements the defense acquisition community is developing for it. The Air Force Material Command (AFMC) has initiated the Intelligence Supportability Analysis (ISA) process to allow the IC to triage programs for intelligence sensitivities as well as begin preparations within the IC for the transition of future programs to operational status. The ISA process is accomplished through system decomposition, allowing analysts to identify intelligence requirements and deficiencies. Early collaboration and engagement by program managers and intelligence analysts is crucial to the success of intelligence sensitive programs through the utilization of a repeatable analytical framework for evaluating and making cognizant trade-offs between cost, schedule and performance. Addressing intelligence supportability early in the acquisition process will also influence system design and provide the necessary lead time for intelligence community to react and resource new requirements.

  17. Soil Water Balance and Recharge Monitoring at the Hanford Site – FY 2010 Status Report

    SciTech Connect

    Fayer, Michael J.; Saunders, Danielle L.; Herrington, Ricky S.; Felmy, Diana

    2010-10-27

    This report summarizes the recharge data collected in FY 2010 at five locations on the Hanford Site in southeastern Washington State. Average monthly precipitation and temperature conditions in FY 2010 were near normal and did not present an opportunity for increased recharge. The recharge monitoring data confirmed those conditions, showing normal behavior in water content, matric head, and recharge rates. Also provided in this report is a strategy for recharge estimation for the next 5 years.

  18. Rechargeable Magnesium Batteries: Low-Cost Rechargeable Magnesium Batteries with High Energy Density

    SciTech Connect

    2010-10-01

    BEEST Project: Pellion Technologies is developing rechargeable magnesium batteries that would enable an EV to travel 3 times farther than it could using Li-ion batteries. Prototype magnesium batteries demonstrate excellent electrochemical behavior; delivering thousands of charge cycles with very little fade. Nevertheless, these prototypes have always stored too little energy to be commercially viable. Pellion Technologies is working to overcome this challenge by rapidly screening potential storage materials using proprietary, high-throughput computer models. To date, 12,000 materials have been identified and analyzed. The resulting best materials have been electrochemically tested, yielding several very promising candidates.

  19. Transient Rechargeable Batteries Triggered by Cascade Reactions.

    PubMed

    Fu, Kun; Liu, Zhen; Yao, Yonggang; Wang, Zhengyang; Zhao, Bin; Luo, Wei; Dai, Jiaqi; Lacey, Steven D; Zhou, Lihui; Shen, Fei; Kim, Myeongseob; Swafford, Laura; Sengupta, Louise; Hu, Liangbing

    2015-07-01

    Transient battery is a new type of technology that allows the battery to disappear by an external trigger at any time. In this work, we successfully demonstrated the first transient rechargeable batteries based on dissoluble electrodes including V2O5 as the cathode and lithium metal as the anode as well as a biodegradable separator and battery encasement (PVP and sodium alginate, respectively). All the components are robust in a traditional lithium-ion battery (LIB) organic electrolyte and disappear in water completely within minutes due to triggered cascade reactions. With a simple cut-and-stack method, we designed a fully transient device with an area of 0.5 cm by 1 cm and total energy of 0.1 J. A shadow-mask technique was used to demonstrate the miniature device, which is compatible with transient electronics manufacturing. The materials, fabrication methods, and integration strategy discussed will be of interest for future developments in transient, self-powered electronics. The demonstration of a miniature Li battery shows the feasibility toward system integration for all transient electronics. PMID:26083530

  20. Thin-film Rechargeable Lithium Batteries

    DOE R&D Accomplishments Database

    Bates, J. B.; Gruzalski, G. R.; Dudney, N. J.; Luck, C. F.; Yu, X.

    1993-11-01

    Rechargeable thin films batteries with lithium metal anodes, an amorphous inorganic electrolyte, and cathodes of lithium intercalation compounds have been fabricated and characterized. The cathodes include TiS{sub 2}, the {omega} phase of V{sub 2}O{sub 5}, and the cubic spinel Li{sub x}Mn{sub 2}O{sub 4} with open circuit voltages at full charge of about 2.5 V, 3.7 V, and 4.2 V, respectively. The development of these robust cells, which can be cycled thousands of times, was possible because of the stability of the amorphous lithium electrolyte, lithium phosphorus oxynitride. This material has a typical composition of Li{sub 2.9}PO{sub 3.3}N{sub 0.46} and a conductivity at 25 C of 2 {mu}S/cm. Thin film cells have been cycled at 100% depth of discharge using current densities of 2 to 100 {mu}A/cm{sup 2}. The polarization resistance of the cells is due to the slow insertion rate of Li{sup +} ions into the cathode. Chemical diffusion coefficients for Li{sup +} ions in the three types of cathodes have been estimated from the analysis of ac impedance measurements.

  1. Recharge to the North Richland well field

    SciTech Connect

    Law, A.G.

    1989-07-01

    The investigation was based on a preliminary ground-water flow model of the 1100 Area. Because few local data were available for this effort, an existing regional ground-water flow model of the Hanford Site was applied, which is based on the Variable Thickness Transient (VTT) ground-water flow code (Kipp et al., 1976). A submodel of the Hanford Site model was developed based on the VTT code. An independent model consisting of a simple representation of the local conditions in the vicinity of the North Richland well field was also used in the investigation. This model, based on the MODFLOW code (McDonald and Harbaugh, 1984), was used in a series of transient simulations to examine dynamic aspects of the well field/recharge basin. Results from this simple model also provide an independent, qualitative check of results produced with the 1100 Area model based on the VTT code. This report summarizes the 1100 Area modeling investigation, including the approach used to generate results for the regional and 1100 Area VTT models, the approach used in the transient MODFLOW model, results from some initial steady-state and transient simulations with the submodel and the MODFLOW models, and resulting conclusions and recommendations. Because local data were lacking to develop and calibrate the models, the investigation described in this report can best be described as a ''sensitivity analysis'' of ground-water flow in the 1100 Area. 4 refs., 10 figs., 2 tabs.

  2. Wearable textile battery rechargeable by solar energy.

    PubMed

    Lee, Yong-Hee; Kim, Joo-Seong; Noh, Jonghyeon; Lee, Inhwa; Kim, Hyeong Jun; Choi, Sunghun; Seo, Jeongmin; Jeon, Seokwoo; Kim, Taek-Soo; Lee, Jung-Yong; Choi, Jang Wook

    2013-01-01

    Wearable electronics represent a significant paradigm shift in consumer electronics since they eliminate the necessity for separate carriage of devices. In particular, integration of flexible electronic devices with clothes, glasses, watches, and skin will bring new opportunities beyond what can be imagined by current inflexible counterparts. Although considerable progresses have been seen for wearable electronics, lithium rechargeable batteries, the power sources of the devices, do not keep pace with such progresses due to tenuous mechanical stabilities, causing them to remain as the limiting elements in the entire technology. Herein, we revisit the key components of the battery (current collector, binder, and separator) and replace them with the materials that support robust mechanical endurance of the battery. The final full-cells in the forms of clothes and watchstraps exhibited comparable electrochemical performance to those of conventional metal foil-based cells even under severe folding-unfolding motions simulating actual wearing conditions. Furthermore, the wearable textile battery was integrated with flexible and lightweight solar cells on the battery pouch to enable convenient solar-charging capabilities. PMID:24164580

  3. Advanced rechargeable sodium batteries with novel cathodes

    NASA Technical Reports Server (NTRS)

    Distefano, S.; Ratnakumar, B. V.; Bankston, C. P.

    1989-01-01

    Various high energy density rechargeable batteries are being considered for future space applications. Of these, the sodium-sulfur battery is one of the leading candidates. The primary advantage is the high energy density (760 Wh/kg theoretical). Energy densities in excess of 180 Wh/kg were realized in practical batteries. Other technological advantages include its chemical simplicity, absence of self-discharge, and long cycle life possibility. More recently, other high temperature sodium batteries have come into the spotlight. These systems can be described as follow: Na/Beta Double Prime-Al2O3/NaAlCl4/Metal Dichloride Sodium/metal dichloride systems are colloquially known as the zebra system and are currently being developed for traction and load leveling applications. The sodium-metal dichloride systems appear to offer many of the same advantages of the Na/S system, especially in terms of energy density and chemical simplicity. The metal dichloride systems offer increased safety and good resistance to overcharge and operate over a wide range of temperatures from 150 to 400 C with less corrosion problems.

  4. Seasonal variation in natural recharge of coastal aquifers

    NASA Astrophysics Data System (ADS)

    Mollema, Pauline N.; Antonellini, Marco

    2013-06-01

    Many coastal zones around the world have irregular precipitation throughout the year. This results in discontinuous natural recharge of coastal aquifers, which affects the size of freshwater lenses present in sandy deposits. Temperature data for the period 1960-1990 from LocClim (local climate estimator) and those obtained from the Intergovernmental Panel on Climate Change (IPCC) SRES A1b scenario for 2070-2100, have been used to calculate the potential evapotranspiration with the Thornthwaite method. Potential recharge (difference between precipitation and potential evapotranspiration) was defined at 12 locations: Ameland (The Netherlands), Auckland and Wellington (New Zealand); Hong Kong (China); Ravenna (Italy), Mekong (Vietnam), Mumbai (India), New Jersey (USA), Nile Delta (Egypt), Kobe and Tokyo (Japan), and Singapore. The influence of variable/discontinuous recharge on the size of freshwater lenses was simulated with the SEAWAT model. The discrepancy between models with continuous and with discontinuous recharge is relatively small in areas where the total annual recharge is low (258-616 mm/year); but in places with Monsoon-dominated climate (e.g. Mumbai, with recharge up to 1,686 mm/year), the difference in freshwater-lens thickness between the discontinuous and the continuous model is larger (up to 5 m) and thus important to consider in numerical models that estimate freshwater availability.

  5. Ground-water flow and numerical simulation of recharge from streamflow infiltration near Pine Nut Creek, Douglas County, Nevada

    USGS Publications Warehouse

    Maurer, Douglas K.

    2002-01-01

    Ground-water flow and recharge from infiltration near Pine Nut Creek, east of Gardnerville, Nevada, were simulated using a single-layer numerical finite-difference model as part of a study made by the U.S. Geological Survey in cooperation with the Carson Water Subconservancy District. The model was calibrated to 190 water-level measurements made in 27 wells in December 2000, and in 9 wells from August 1999 through April 2001. The purpose of this study was to estimate reasonable limits for the approximate volume of water that may be stored by recharge through infiltration basins, and the rate at which recharged water would dissipate or move towards the valley floor. Measured water levels in the study area show that infiltration from the Allerman Canal and reservoir has created a water-table mound beneath them that decreases the hydraulic gradient east of the canal and increases the gradient west of the canal. North of Pine Nut Creek, the mound causes ground water to flow toward the northern end of the reservoir. South of Pine Nut Creek, relatively high water levels probably are maintained by the mound beneath the Allerman Canal and possibly by greater rates of recharge from the southeast. Water-level declines near Pine Nut Creek from August 1999 through April 2001 probably are caused by dissipation of recharge from infiltration of Pine Nut Creek streamflow in the springs of 1998 and 1999. Using the calibrated model, a simulation of recharge through a hypothetical infiltration basin covering 12.4 acres near Pine Nut Creek applied 700 acre-feet per year of recharge over a six-month period, for a total of 3,500 acre-feet after 5 consecutive years. This recharge requires a diversion rate of about 2 cubic feet per second and an infiltration rate of 0.3 foot per day. The simulations showed that recharge of 3,500 acre-feet caused water levels near the basin to rise over 70 feet, approaching land surface, indicating 3,500 acre-feet is the maximum that may be stored in a 5

  6. Intelligent robots and computer vision

    SciTech Connect

    Casasent, D.P.

    1985-01-01

    This book presents the papers given at a conference which examined artificial intelligence and image processing in relation to robotics. Topics considered at the conference included feature extraction and pattern recognition for computer vision, image processing for intelligent robotics, robot sensors, image understanding and artificial intelligence, optical processing techniques in robotic applications, robot languages and programming, processor architectures for computer vision, mobile robots, multisensor fusion, three-dimensional modeling and recognition, intelligent robots applications, and intelligent robot systems.

  7. Introduction to artificial intelligence

    SciTech Connect

    Gevarter, W.B.

    1987-09-01

    The author discusses the development of artificial intelligence (AI). He explains the basic elements of AI: Heuristic search, knowledge representation, AI languages and tools, Natural Language Processing, computer vision, expert systems and problem solving and planning.

  8. Modelling intelligent behavior

    NASA Technical Reports Server (NTRS)

    Green, H. S.; Triffet, T.

    1993-01-01

    An introductory discussion of the related concepts of intelligence and consciousness suggests criteria to be met in the modeling of intelligence and the development of intelligent materials. Methods for the modeling of actual structure and activity of the animal cortex have been found, based on present knowledge of the ionic and cellular constitution of the nervous system. These have led to the development of a realistic neural network model, which has been used to study the formation of memory and the process of learning. An account is given of experiments with simple materials which exhibit almost all properties of biological synapses and suggest the possibility of a new type of computer architecture to implement an advanced type of artificial intelligence.

  9. Genetic Differences in Intelligence

    ERIC Educational Resources Information Center

    Intellect, 1977

    1977-01-01

    The Genetics Society of America has released a statement saying that the possibility of a "genetic difference in intelligence between races" is still an open question and warning against "the misuse of genetics for political purposes". (Editor)

  10. Robotic Intelligence Kernel: Communications

    SciTech Connect

    Walton, Mike C.

    2009-09-16

    The INL Robotic Intelligence Kernel-Comms is the communication server that transmits information between one or more robots using the RIK and one or more user interfaces. It supports event handling and multiple hardware communication protocols.

  11. Intelligent metro network

    NASA Astrophysics Data System (ADS)

    Luo, Zhongsheng; Kan, Yulun; Wang, Licun

    2001-10-01

    Metro networks have evolved dynamically since its position in the network infrastructure. To gain competitive advantage in this attractive market, carriers should emphasize not only just the power of their networks in terms of the speed, number of channels, distance covered, but also the network's versatility in supporting variety of access interfaces, flexibility in bandwidth provisioning, ability of differentiated service offering, and capability of network management. Based on an overview of four emerging metro network technologies, an intelligent metro network control platform is introduced. The intelligent control platform is necessary for carriers to meet the new metro requirements. Intelligent control and management functions of the platform are proposed respectively. Intelligent metro network will bridge the metro gap and open up a whole new set of services and applications.

  12. Intelligence, race, and genetics.

    PubMed

    Sternberg, Robert J; Grigorenko, Elena L; Kidd, Kenneth K

    2005-01-01

    In this article, the authors argue that the overwhelming portion of the literature on intelligence, race, and genetics is based on folk taxonomies rather than scientific analysis. They suggest that because theorists of intelligence disagree as to what it is, any consideration of its relationships to other constructs must be tentative at best. They further argue that race is a social construction with no scientific definition. Thus, studies of the relationship between race and other constructs may serve social ends but cannot serve scientific ends. No gene has yet been conclusively linked to intelligence, so attempts to provide a compelling genetic link of race to intelligence are not feasible at this time. The authors also show that heritability, a behavior-genetic concept, is inadequate in regard to providing such a link. PMID:15641921

  13. Artificial intelligence in medical diagnosis.

    PubMed

    Szolovits, P; Patil, R S; Schwartz, W B

    1988-01-01

    In an attempt to overcome limitations inherent in conventional computer-aided diagnosis, investigators have created programs that simulate expert human reasoning. Hopes that such a strategy would lead to clinically useful programs have not been fulfilled, but many of the problems impeding creation of effective artificial intelligence programs have been solved. Strategies have been developed to limit the number of hypotheses that a program must consider and to incorporate pathophysiologic reasoning. The latter innovation permits a program to analyze cases in which one disorder influences the presentation of another. Prototypes embodying such reasoning can explain their conclusions in medical terms that can be reviewed by the user. Despite these advances, further major research and developmental efforts will be necessary before expert performance by the computer becomes a reality. PMID:3276267

  14. Economic reasoning and artificial intelligence.

    PubMed

    Parkes, David C; Wellman, Michael P

    2015-07-17

    The field of artificial intelligence (AI) strives to build rational agents capable of perceiving the world around them and taking actions to advance specified goals. Put another way, AI researchers aim to construct a synthetic homo economicus, the mythical perfectly rational agent of neoclassical economics. We review progress toward creating this new species of machine, machina economicus, and discuss some challenges in designing AIs that can reason effectively in economic contexts. Supposing that AI succeeds in this quest, or at least comes close enough that it is useful to think about AIs in rationalistic terms, we ask how to design the rules of interaction in multi-agent systems that come to represent an economy of AIs. Theories of normative design from economics may prove more relevant for artificial agents than human agents, with AIs that better respect idealized assumptions of rationality than people, interacting through novel rules and incentive systems quite distinct from those tailored for people. PMID:26185245

  15. Robotic Intelligence Kernel: Driver

    SciTech Connect

    2009-09-16

    The INL Robotic Intelligence Kernel-Driver is built on top of the RIK-A and implements a dynamic autonomy structure. The RIK-D is used to orchestrate hardware for sensing and action as well as software components for perception, communication, behavior and world modeling into a single cognitive behavior kernel that provides intrinsic intelligence for a wide variety of unmanned ground vehicle systems.

  16. Intelligent Elements for ISHM

    NASA Technical Reports Server (NTRS)

    Schmalzel, John L.; Morris, Jon; Turowski, Mark; Figueroa, Fernando; Oostdyk, Rebecca

    2008-01-01

    There are a number of architecture models for implementing Integrated Systems Health Management (ISHM) capabilities. For example, approaches based on the OSA-CBM and OSA-EAI models, or specific architectures developed in response to local needs. NASA s John C. Stennis Space Center (SSC) has developed one such version of an extensible architecture in support of rocket engine testing that integrates a palette of functions in order to achieve an ISHM capability. Among the functional capabilities that are supported by the framework are: prognostic models, anomaly detection, a data base of supporting health information, root cause analysis, intelligent elements, and integrated awareness. This paper focuses on the role that intelligent elements can play in ISHM architectures. We define an intelligent element as a smart element with sufficient computing capacity to support anomaly detection or other algorithms in support of ISHM functions. A smart element has the capabilities of supporting networked implementations of IEEE 1451.x smart sensor and actuator protocols. The ISHM group at SSC has been actively developing intelligent elements in conjunction with several partners at other Centers, universities, and companies as part of our ISHM approach for better supporting rocket engine testing. We have developed several implementations. Among the key features for these intelligent sensors is support for IEEE 1451.1 and incorporation of a suite of algorithms for determination of sensor health. Regardless of the potential advantages that can be achieved using intelligent sensors, existing large-scale systems are still based on conventional sensors and data acquisition systems. In order to bring the benefits of intelligent sensors to these environments, we have also developed virtual implementations of intelligent sensors.

  17. Applications Of Artificial Intelligence

    NASA Astrophysics Data System (ADS)

    Trivedi, Mohan M.; Gilmore, John F.

    1986-03-01

    Intelligence evolves out of matter, so said the Sankhya philosophers of ancient India. The discipline of artificial intelligence (Al), which was established some 30 years ago, has confirmed the validity of the above assertion. Recently, a number of AI applications have been successfully demonstrated, generating a great deal of excitement and interest in scientific and technical circles. In this special issue of Optical Engineering a representative set of applications that incorporate Al principles is presented.

  18. Artificial Intelligence in Astronomy

    NASA Astrophysics Data System (ADS)

    Devinney, E. J.; Prša, A.; Guinan, E. F.; Degeorge, M.

    2010-12-01

    From the perspective (and bias) as Eclipsing Binary researchers, we give a brief overview of the development of Artificial Intelligence (AI) applications, describe major application areas of AI in astronomy, and illustrate the power of an AI approach in an application developed under the EBAI (Eclipsing Binaries via Artificial Intelligence) project, which employs Artificial Neural Network technology for estimating light curve solution parameters of eclipsing binary systems.

  19. The Convergence of Intelligences

    NASA Astrophysics Data System (ADS)

    Diederich, Joachim

    Minsky (1985) argued an extraterrestrial intelligence may be similar to ours despite very different origins. ``Problem- solving'' offers evolutionary advantages and individuals who are part of a technical civilisation should have this capacity. On earth, the principles of problem-solving are the same for humans, some primates and machines based on Artificial Intelligence (AI) techniques. Intelligent systems use ``goals'' and ``sub-goals'' for problem-solving, with memories and representations of ``objects'' and ``sub-objects'' as well as knowledge of relations such as ``cause'' or ``difference.'' Some of these objects are generic and cannot easily be divided into parts. We must, therefore, assume that these objects and relations are universal, and a general property of intelligence. Minsky's arguments from 1985 are extended here. The last decade has seen the development of a general learning theory (``computational learning theory'' (CLT) or ``statistical learning theory'') which equally applies to humans, animals and machines. It is argued that basic learning laws will also apply to an evolved alien intelligence, and this includes limitations of what can be learned efficiently. An example from CLT is that the general learning problem for neural networks is intractable, i.e. it cannot be solved efficiently for all instances (it is ``NP-complete''). It is the objective of this paper to show that evolved intelligences will be constrained by general learning laws and will use task-decomposition for problem-solving. Since learning and problem-solving are core features of intelligence, it can be said that intelligences converge despite very different origins.

  20. Estimated Infiltration, Percolation, and Recharge Rates at the Rillito Creek Focused Recharge Investigation Site, Pima County, Arizona

    USGS Publications Warehouse

    Hoffmann, John P.; Blasch, Kyle W.; Pool, Don R.; Bailey, Matthew A.; Callegary, James B.

    2007-01-01

    A large fraction of ground water stored in the alluvial aquifers in the Southwest is recharged by water that percolates through ephemeral stream-channel deposits. The amount of water currently recharging many of these aquifers is insufficient to meet current and future demands. Improving the understanding of streambed infiltration and the subsequent redistribution of water within the unsaturated zone is fundamental to quantifying and forming an accurate description of streambed recharge. In addition, improved estimates of recharge from ephemeral-stream channels will reduce uncertainties in water-budget components used in current ground-water models. This chapter presents a summary of findings related to a focused recharge investigation along Rillito Creek in Tucson, Arizona. A variety of approaches used to estimate infiltration, percolation, and recharge fluxes are presented that provide a wide range of temporal- and spatial-scale measurements of recharge beneath Rillito Creek. The approaches discussed include analyses of (1) cores and cuttings for hydraulic and textural properties, (2) environmental tracers from the water extracted from the cores and cuttings, (3) seepage measurements made during sustained streamflow, (4) heat as a tracer and numerical simulations of the movement of heat through the streambed sediments, (5) water-content variations, (6) water-level responses to streamflow in piezometers within the stream channel, and (7) gravity changes in response to recharge events. Hydraulic properties of the materials underlying Rillito Creek were used to estimate long-term potential recharge rates. Seepage measurements and analyses of temperature and water content were used to estimate infiltration rates, and environmental tracers were used to estimate percolation rates through the thick unsaturated zone. The presence or lack of tritium in the water was used to determine whether or not water in the unsaturated zone infiltrated within the past 40 years

  1. Arsenic release during managed aquifer recharge (MAR)

    NASA Astrophysics Data System (ADS)

    Pichler, T.; Lazareva, O.; Druschel, G.

    2013-12-01

    The mobilization and addition of geogenic trace metals to groundwater is typically caused by anthropogenic perturbations of the physicochemical conditions in the aquifer. This can add dangerously high levels of toxins to groundwater, thus compromising its use as a source of drinking water. In several regions world-wide, aquifer storage and recovery (ASR), a form of managed aquifer recharge (MAR), faces the problem of arsenic release due to the injection of oxygenated storage water. To better understand this process we coupled geochemical reactive transport modeling to bench-scale leaching experiments to investigate and verify the mobilization of geogenic arsenic (As) under a range of redox conditions from an arsenic-rich pyrite bearing limestone aquifer in Central Florida. Modeling and experimental observations showed similar results and confirmed the following: (1) native groundwater and aquifer matrix, including pyrite, were in chemical equilibrium, thus preventing the release of As due to pyrite dissolution under ambient conditions; (2) mixing of oxygen-rich surface water with oxygen-depleted native groundwater changed the redox conditions and promoted the dissolution of pyrite, and (3) the behavior of As along a flow path was controlled by a complex series of interconnected reactions. This included the oxidative dissolution of pyrite and simultaneous sorption of As onto neo-formed hydrous ferric oxides (HFO), followed by the reductive dissolution of HFO and secondary release of adsorbed As under reducing conditions. Arsenic contamination of drinking water in these systems is thus controlled by the re-equilibration of the system to more reducing conditions rather than a purely oxidative process.

  2. Design and simulation of lithium rechargeable batteries

    SciTech Connect

    Doyle, C.M.

    1995-08-01

    Lithium -based rechargeable batteries that utilize insertion electrodes are being considered for electric-vehicle applications because of their high energy density and inherent reversibility. General mathematical models are developed that apply to a wide range of lithium-based systems, including the recently commercialized lithium-ion cell. The modeling approach is macroscopic, using porous electrode theory to treat the composite insertion electrodes and concentrated solution theory to describe the transport processes in the solution phase. The insertion process itself is treated with a charge-transfer process at the surface obeying Butler-Volmer kinetics, followed by diffusion of the lithium ion into the host structure. These models are used to explore the phenomena that occur inside of lithium cells under conditions of discharge, charge, and during periods of relaxation. Also, in order to understand the phenomena that limit the high-rate discharge of these systems, we focus on the modeling of a particular system with well-characterized material properties and system parameters. The system chosen is a lithium-ion cell produced by Bellcore in Red Bank, NJ, consisting of a lithium-carbon negative electrode, a plasticized polymer electrolyte, and a lithium-manganese-oxide spinel positive electrode. This battery is being marketed for consumer electronic applications. The system is characterized experimentally in terms of its transport and thermodynamic properties, followed by detailed comparisons of simulation results with experimental discharge curves. Next, the optimization of this system for particular applications is explored based on Ragone plots of the specific energy versus average specific power provided by various designs.

  3. Oxygen electrodes for rechargeable alkaline fuel cells

    NASA Technical Reports Server (NTRS)

    Swette, L.; Kackley, N.

    1989-01-01

    Electrocatalysts and supports for the positive electrode of moderate temperature single-unit rechargeable alkaline fuel cells are being investigated and developed. Candidate support materials were drawn from transition metal carbides, borides, nitrides and oxides which have high conductivity (greater than 1 ohm/cm). Candidate catalyst materials were selected largely from metal oxides of the form ABO sub x (where A = Pb, Cd, Mn, Ti, Zr, La, Sr, Na, and B = Pt, Pd, Ir, Ru, Ni (Co) which were investigated and/or developed for one function only, O2 reduction or O2 evolution. The electrical conductivity requirement for catalysts may be lower, especially if integrated with a higher conductivity support. All candidate materials of acceptable conductivity are subjected to corrosion testing. Materials that survive chemical testing are examined for electrochemical corrosion activity. For more stringent corrosion testing, and for further evaluation of electrocatalysts (which generally show significant O2 evolution at at 1.4 V), samples are held at 1.6 V or 0.6 V for about 100 hours. The surviving materials are then physically and chemically analyzed for signs of degradation. To evaluate the bifunctional oxygen activity of candidate catalysts, Teflon-bonded electrodes are fabricated and tested in a floating electrode configuration. Many of the experimental materials being studied have required development of a customized electrode fabrication procedure. In advanced development, the goal is to reduce the polarization to about 300 to 350 mV. Approximately six support materials and five catalyst materials were identified to date for further development. The test results will be described.

  4. 78 FR 90 - Defense Intelligence Agency National Intelligence University Board of Visitors Closed Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-01-02

    ... of the Secretary Defense Intelligence Agency National Intelligence University Board of Visitors Closed Meeting AGENCY: National Intelligence University, Defense Intelligence Agency, Department of... a closed meeting of the National Intelligence University Board of Visitors has been scheduled...

  5. 78 FR 32241 - Defense Intelligence Agency National Intelligence University Board of Visitors; Notice of Closed...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-05-29

    ... of the Secretary Defense Intelligence Agency National Intelligence University Board of Visitors; Notice of Closed Meeting AGENCY: National Intelligence University, Defense Intelligence Agency... given that a closed meeting of the National Intelligence University Board of Visitors has been...

  6. Creating Pupils' Internet Magazine

    ERIC Educational Resources Information Center

    Bognar, Branko; Šimic, Vesna

    2014-01-01

    This article presents an action research, which aimed to improve pupils' literary creativity and enable them to use computers connected to the internet. The study was conducted in a small district village school in Croatia. Creating a pupils' internet magazine appeared to be an excellent way for achieving the educational aims of almost all…

  7. Creating an Interactive Globe.

    ERIC Educational Resources Information Center

    Martin, Kurt D.

    1989-01-01

    Describes a hands-on geography activity that is designed to teach longitude and latitude to fifth-grade students. Children create a scale model of the earth from a 300 gram weather balloon. This activity incorporates geography, mathematics, science, art, and homework. Provides information for obtaining materials. (KO)

  8. How Banks Create Money.

    ERIC Educational Resources Information Center

    Beale, Lyndi

    This teaching module explains how the U.S. banking system uses excess reserves to create money in the form of new deposits for borrowers. The module is part of a computer-animated series of four-to-five-minute modules illustrating standard concepts in high school economics. Although the module is designed to accompany the video program, it may be…

  9. Creating Quality Media Materials.

    ERIC Educational Resources Information Center

    Hortin, John A.; Bailey, Gerald D.

    1982-01-01

    Innovation, imagination, and student creativity are key ingredients in creating quality media materials for the small school. Student-produced media materials, slides without a camera, personalized slide programs and copy work, self-made task cards, self-made overhead transparencies, graphic materials, and utilization of the mass media are some of…

  10. Creating a Reference Toolbox.

    ERIC Educational Resources Information Center

    Scott, Jane

    1997-01-01

    To help students understand that references are tools used to locate specific information, one librarian has her third-grade students create their own reference toolboxes as she introduces dictionaries, atlases, encyclopedias, and thesauri. Presents a lesson plan to introduce print and nonprint thesauri to third and fourth graders and includes a…

  11. Creating Photo Illustrations.

    ERIC Educational Resources Information Center

    Wilson, Bradley

    2003-01-01

    Explains the uses of photo illustrations. Notes that the key to developing a successful photo illustration is collaborative planning. Outlines the following guidelines for photo illustrations: never set up a photograph to mimic reality; create only abstractions with photo illustrations; clearly label photo illustrations; and never play photo…

  12. Creating Happy Memories.

    ERIC Educational Resources Information Center

    Weeks, Denise Jarrett

    2001-01-01

    Some teachers are building and sharing their wisdom and know-how through lesson study, in the process creating memorable learning experiences for students and for each other. This paper describes how lesson study can transform teaching and how schools are implementing lesson study. A sidebar presents questions to consider in lesson study. (SM)

  13. Creating dedicated bioenergy crops

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Bioenergy is one of the current mechanisms of producing renewable energy to reduce our use of nonrenewable fossil fuels and to reduce carbon emissions into the atmosphere. Humans have been using bioenergy since we first learned to create and control fire - burning manure, peat, and wood to cook food...

  14. Create a Critter Collector.

    ERIC Educational Resources Information Center

    Hinchey, Elizabeth K.; Nestlerode, Janet A.

    2001-01-01

    Presents methods for creating appropriate ways of collecting live specimens to use for firsthand observation in the classroom. Suggests ecological questions for students to address using these devices. This project is ideal for schools that have access to piers or bridges on a coastal body of water. (NB)

  15. Creating a Market.

    ERIC Educational Resources Information Center

    Kazimirski, J.; And Others

    The second in a series of programmed books, "Creating a Market" is published by the International Labour Office as a manual for persons studying marketing. This manual was designed to meet the needs of the labor organization's technical cooperation programs and is primarily concerned with consumer goods industries. Using a fill-in-the-blanks and…

  16. Looking, Writing, Creating.

    ERIC Educational Resources Information Center

    Katzive, Bonnie

    1997-01-01

    Describes how a middle school language arts teacher makes analyzing and creating visual art a partner to reading and writing in her classroom. Describes a project on art and Vietnam which shows how background information can add to and influence interpretation. Describes a unit on Greek mythology and Greek vases which leads to a related visual…

  17. Creating an Interactive PDF

    ERIC Educational Resources Information Center

    Branzburg, Jeffrey

    2008-01-01

    There are many ways to begin a PDF document using Adobe Acrobat. The easiest and most popular way is to create the document in another application (such as Microsoft Word) and then use the Adobe Acrobat software to convert it to a PDF. In this article, the author describes how he used Acrobat's many tools in his project--an interactive…

  18. Creating a Classroom Makerspace

    ERIC Educational Resources Information Center

    Rivas, Luz

    2014-01-01

    What is a makerspace? Makerspaces are community-operated physical spaces where people (makers) create do-it-yourself projects together. These membership spaces serve as community labs where people learn together and collaborate on projects. Makerspaces often have tools and equipment like 3-D printers, laser cutters, and soldering irons.…

  19. Creating a Virtual Gymnasium

    ERIC Educational Resources Information Center

    Fiorentino, Leah H.; Castelli, Darla

    2005-01-01

    Physical educators struggle with the challenges of assessing student performance, providing feedback about motor skills, and creating opportunities for all students to engage in game-play on a daily basis. The integration of technology in the gymnasium can address some of these challenges by improving teacher efficiency and increasing student…

  20. Creating Special Events

    ERIC Educational Resources Information Center

    deLisle, Lee

    2009-01-01

    "Creating Special Events" is organized as a systematic approach to festivals and events for students who seek a career in event management. This book looks at the evolution and history of festivals and events and proceeds to the nuts and bolts of event management. The book presents event management as the means of planning, organizing, directing,…

  1. Creating Dialogue by Storytelling

    ERIC Educational Resources Information Center

    Passila, Anne; Oikarinen, Tuija; Kallio, Anne

    2013-01-01

    Purpose: The objective of this paper is to develop practice and theory from Augusto Boal's dialogue technique (Image Theatre) for organisational use. The paper aims to examine how the members in an organisation create dialogue together by using a dramaturgical storytelling framework where the dialogue emerges from storytelling facilitated by…

  2. Create Your State

    ERIC Educational Resources Information Center

    Dunham, Kris; Melvin, Samantha

    2011-01-01

    Students are often encouraged to work together with their classmates, sometimes with other classes, occasionally with kids at other schools, but rarely with kids across the country. In this article the authors describe the Create Your State project, a collaborative nationwide project inspired by the Texas Chair Project wherein the artist, Damien…

  3. Creating Quality Schools.

    ERIC Educational Resources Information Center

    American Association of School Administrators, Arlington, VA.

    This booklet presents information on how total quality management can be applied to school systems to create educational improvement. Total quality management offers education a systemic approach and a new set of assessment tools. Chapter 1 provides a definition and historical overview of total quality management. Chapter 2 views the school…

  4. Hydrologic analysis of the proposed Badger-Beaver Creeks Artificial-Recharge Project : Morgan County, Colorado

    USGS Publications Warehouse

    Burns, Alan W.

    1980-01-01

    A hydrologic analysis of the proposed Badger-Beaver Creeks artificial-recharge project in Morgan County, Colo., was made with the aid of three digital computer models: A canal-distribution model, a ground-water flow model, and a stream-aquifer model. Statistical summaries of probable diversions from the South Platte River based on a 27-year period of historical flows indicate that an average-annual diversion of 96,000 acre-feet and a median-annual diversion of 43,000 acre-feet would be available. Diversions would sustain water in ponds for waterfowl habitat for an average of about five months per year, with a miximum pond surface area of about 300 acres with the median diversions and a maximum pond surface area of about 1,250 acres at least one-half of the years with the historic diversions. If the annual diversion were 43,000 acre-feet, recharge to the two alluvial aquifers would raise water levels sufficiently to create flowing streams in the channels of Beaver and Badger Creeks while allowing an increase in current ground-water pumping. The only area of significant waterlogging would be along the proposed delivery canal on the west edge of Badger Creek valley. If the total water available were diverted, the aquifer system could not transmit the water fast enough to the irrigation areas to avoid considerable waterlogging in the recharge areas. The impact of the proposed project on the South Platte River basin would be minimal once the ground-water system attained steady-state conditions, but that may take decades with a uniform diversion of the 43,000 acre-feet annually. (USGS)

  5. Selective recharge and isotopic composition of shallow groundwater within temperate, epigenic carbonate aquifers

    NASA Astrophysics Data System (ADS)

    Florea, Lee J.

    2013-05-01

    This paper considers the variation of δ18O and δ2H (VSMOW) in precipitation and shallow groundwater from carbonate aquifers that lend insight into the source and timing of recharge within temperate, epigenic karst. The shallow groundwater collected during 2010 and 2011 at Stream Cave (SC) and Natural Bridge Caverns (NBC) represent one input to and the primary output from the Redmond Creek karst aquifer in the Cumberland Plateau of southeast Kentucky, respectively. These data are compared with the isotopic composition of concurrent samples of precipitation from the same watershed that covers some 1900 ha. Values of δ18O and δ2H at SC and NBC are statistically similar and cluster at the midpoint of the local meteoric water line. These values remain surprisingly constant despite seasonal changes in temperature regimens and discharge. Samples in 2012 from regional springs that include Redmond Creek are more depleted in the heavier isotope and similarly stable despite coming from aquifers of a range of sizes and physical characteristics. Applying a Priestly-Taylor model for daily values of potential evapotranspiration, only 43% of the 1.10 m of precipitation in the 2010-2011 dataset remains as potential recharge, primarily during cooler months with lower solar insolation. Weighting δ18O and δ2H values of precipitation by potential recharge creates a better match with the isotopic composition of shallow groundwater than by weighting by precipitation amount. The isotopic composition and deuterium excess of precipitation samples are directly and inversely proportional to temperature, respectively. Deuterium excess in this study and displays intra- and inter-annual variation that ranges from a minimum of +11.1‰ to a maximum of +29.5‰ that demonstrate the higher-than-average deuterium excess in greater Appalachia and the shifting latitude of moisture sources, including a significant winter component of re-evaporated, continental moisture.

  6. Climate Change Impacts on Winter and Spring Runoff and Recharge in Wisconsin

    NASA Astrophysics Data System (ADS)

    Murdock, E. A.; Potter, K. W.

    2011-12-01

    Our research seeks to quantify the impacts of warming winter temperatures and increased winter precipitation on water resources in Wisconsin. We are currently working to calibrate a Precipitation-Runoff Modeling System (PRMS) model of the Black Earth Creek Watershed, and will be using a newly-created frost module to examine the impacts of warming winter temperatures on winter and spring infiltration. As a class 1 trout stream, Black Earth Creek is of particular interest as a sensitive and economically important natural resource. Research carried out over 2010 utilized a one-dimensional soil model (Simultaneous Heat and Water, or SHAW) that simulates heat and water fluxes as well as frost processes. This model was driven by climate data obtained from a set of statistically-downscaled and de-biased General Circulation Model (GCM) data for historic and projected future for the years 2046-2065 and 2081-2100 under the SRES A1B emissions scenario. This research suggested that warming temperatures and reduced snow cover, along with a projected increase in winter precipitation, would lead to decreased soil frost formation and a commensurate increase in winter and spring infiltration and recharge. The one-dimensional structure of the model, however, made it difficult to calibrate at the landscape scale, as it is fundamentally unable to replicate the complex spatial processes that are critically important to hydrologic response. We hope that the PRMS model, driven with the same modeled climatic data, will be able to confirm the results of our SHAW modeling; namely that winter and spring recharge will increase significantly in a warming climate. Such an increase in recharge could have profound impacts on Wisconsin fisheries, agriculture, and development.

  7. Thermal Methods for Investigating Ground-Water Recharge

    USGS Publications Warehouse

    Blasch, Kyle W.; Constantz, Jim; Stonestrom, David A.

    2007-01-01

    Recharge of aquifers within arid and semiarid environments is defined as the downward flux of water across the regional water table. The introduction of recharging water at the land surface can occur at discreet locations, such as in stream channels, or be distributed over the landscape, such as across broad interarroyo areas within an alluvial ground-water basin. The occurrence of recharge at discreet locations is referred to as focused recharge, whereas the occurrence of recharge over broad regions is referred to as diffuse recharge. The primary interest of this appendix is focused recharge, but regardless of the type of recharge, estimation of downward fluxes is essential to its quantification. Like chemical tracers, heat can come from natural sources or be intentionally introduced to infer transport properties and aquifer recharge. The admission and redistribution of heat from natural processes such as insolation, infiltration, and geothermal activity can be used to quantify subsurface flow regimes. Heat is well suited as a ground-water tracer because it provides a naturally present dynamic signal and is relatively harmless over a useful range of induced perturbations. Thermal methods have proven valuable for recharge investigations for several reasons. First, theoretical descriptions of coupled water-and-heat transport are available for the hydrologic processes most often encountered in practice. These include land-surface mechanisms such as radiant heating from the sun, radiant cooling into space, and evapotranspiration, in addition to the advective and conductive mechanisms that usually dominate at depth. Second, temperature is theoretically well defined and readily measured. Third, thermal methods for depths ranging from the land surface to depths of hundreds of meters are based on similar physical principles. Fourth, numerical codes for simulating heat and water transport have become increasingly reliable and widely available. Direct measurement of water

  8. A new approach to model the variability of karstic recharge

    NASA Astrophysics Data System (ADS)

    Hartmann, A.; Lange, J.; Weiler, M.; Arbel, Y.; Greenbaum, N.

    2012-02-01

    In karst systems, surface near dissolution carbonate rock results in a high spatial and temporal variability of groundwater recharge. To adequately represent the dominating recharge processes in hydrological models is still a challenge, especially in data scare regions. In this study, we developed a recharge model that is based on a perceptual model of the epikarst. It represents epikarst heterogeneity as a set of system property distributions to produce not only a single recharge time series, but a variety of time series representing the spatial recharge variability. We tested the new model with a unique set of spatially distributed flow and tracer observations in a karstic cave at Mt. Carmel, Israel. We transformed the spatial variability into statistical variables and apply an iterative calibration strategy in which more and more data was added to the calibration. Thereby, we could show that the model is only able to produce realistic results when the information about the spatial variability of the observations was included into the model calibration. We could also show that tracer information improves the model performance if data about the variability is not included.

  9. Groundwater recharge from Long Lake, Indiana Dunes National Lakeshore

    SciTech Connect

    Isiorho, S.A.; Beeching, F.M. . Geosciences Dept.); Whitman, R.L.; Stewart, P.M. . Indiana Dunes National Lakeshore); Gentleman, M.A.

    1992-01-01

    Long Lake, located between Lake Michigan and the Dune-complexes of Indiana Dunes, was formed during Pleistocene and Holocene epochs. The lake is currently being studied to understand the detailed hydrology. One of the objective of the study is to understand the hydrologic relationship between the lake and a water treatment holding pond to the northeast. Understanding the water movement between the two bodies of water, if any, would be very important in the management and protection of nature preserves in the area. Seepage measurement and minipiezometric tests indicate groundwater recharge from Long Lake. The groundwater recharge rate is approximately 1.40 to 22.28 x 10[sup [minus]4] m/day. An estimate of the amount of recharge of 7.0 x 10[sup 6] m[sup 3]/y may be significant in terms of groundwater recharge of the upper aquifer system of the Dunes area. The water chemistry of the two bodies of water appears to be similar, however, the pH of the holding pond is slightly alkaline (8.5) while that of Long Lake is less alkaline (7.7). There appears to be no direct contact between the two bodies of water (separated by approximately six meters of clay rich sediment). The geology of the area indicates a surficial aquifer underlying Long Lake. The lake should be regarded as a recharge area and should be protected from pollutants as the degradation of the lake would contaminate the underlying aquifer.

  10. Fate of human viruses in groundwater recharge systems

    SciTech Connect

    Vaughn, J.M.; Landry, E.F.

    1980-03-01

    The overall objective of this research program was to determine the ability of a well-managed tertiary effluent-recharge system to return virologically acceptable water to the groundwater aquifer. The study assessed the quality of waters renovated by indigenous recharge operations and investigated a number of virus-soil interrelationships. The elucidation of the interactions led to the establishment of basin operating criteria for optimizing virus removal. Raw influents, chlorinated tertiary effluents, and renovated wastewater from the aquifer directly beneath a uniquely designed recharge test basin were assayed on a weekly basis for the presence of human enteroviruses and coliform bacteria. High concentrations of viruses were routinely isolated from influents but were isolated only on four occasions from tertiary-treated sewage effluents. In spite of the high quality effluent being recharged, viruses were isolated from the groundwater observation well, indicating their ability to penetrate the unsaturated zone. Results of poliovirus seeding experiments carried out in the test basin clearly indicated the need to operate recharge basins at low (e.g. 1 cm/h) infiltration rates in areas having soil types similar to those found at the study site. The method selected for reducing the test basin infiltration rate involved clogging the basin surface with settled organic material from highly turbid effluent. Alternative methods for slowing infiltration rates are discussed in the text.

  11. Geochemical Triggers of Arsenic Mobilization during Managed Aquifer Recharge.

    PubMed

    Fakhreddine, Sarah; Dittmar, Jessica; Phipps, Don; Dadakis, Jason; Fendorf, Scott

    2015-07-01

    Mobilization of arsenic and other trace metal contaminants during managed aquifer recharge (MAR) poses a challenge to maintaining local groundwater quality and to ensuring the viability of aquifer storage and recovery techniques. Arsenic release from sediments into solution has occurred during purified recycled water recharge of shallow aquifers within Orange County, CA. Accordingly, we examine the geochemical processes controlling As desorption and mobilization from shallow, aerated sediments underlying MAR infiltration basins. Further, we conducted a series of batch and column experiments to evaluate recharge water chemistries that minimize the propensity of As desorption from the aquifer sediments. Within the shallow Orange County Groundwater Basin sediments, the divalent cations Ca(2+) and Mg(2+) are critical for limiting arsenic desorption; they promote As (as arsenate) adsorption to the phyllosilicate clay minerals of the aquifer. While native groundwater contains adequate concentrations of dissolved Ca(2+) and Mg(2+), these cations are not present at sufficient concentrations during recharge of highly purified recycled water. Subsequently, the absence of dissolved Ca(2+) and Mg(2+) displaces As from the sediments into solution. Increasing the dosages of common water treatment amendments including quicklime (Ca(OH)2) and dolomitic lime (CaO·MgO) provides recharge water with higher concentrations of Ca(2+) and Mg(2+) ions and subsequently decreases the release of As during infiltration. PMID:26057865

  12. Artificial-Recharge Experiments and Operations on the Southern High Plains of Texas and New Mexico

    USGS Publications Warehouse

    Brown, Richmond F.; Signor, Donald C.

    1973-01-01

    Experiments using highly turbid water from playa lakes for injection into the Ogallala Formation have resulted in greatly decreased yield of the recharge wells, Recharge of ground or surface water of good quality has indicated, however, that injection through wells is an effective method of recharging the aquifer. Water that is slightly turbid can be successfully injected for a period of time, but generally results in constantly declining yields and capacity for recharge. Redevelopment through pumping and surging significantly prolongs the life of recharge wells under some conditions. Surface spreading is little practiced on the High Plains, but locally may be a feasible means of artificial recharge.

  13. Artificial-recharge experiments and operations on the Southern High Plains of Texas and New Mexico

    USGS Publications Warehouse

    Brown, Richmond F.; Signor, Donald C.

    1973-01-01

    Experiments using highly turbid water from playa lakes for injection into the Ogallala Formation have resulted in greatly decreased yield of the recharge wells, Recharge of ground or surface water of good quality has indicated, however, that injection through wells is an effective method of recharging the aquifer. Water that is slightly turbid can be successfully injected for a period of time, but generally results in constantly declining yields and capacity for recharge. Redevelopment through pumping and surging significantly prolongs the life of recharge wells under some conditions. Surface spreading is little practiced on the High Plains, but locally may be a feasible means of artificial recharge.

  14. Test Review: L. Brown, R. J. Sherbenou, & S. K. Johnsen "Test of Nonverbal Intelligence-4" (Toni-4). Austin, TX--PRO-ED, 2010

    ERIC Educational Resources Information Center

    Ritter, Nicola; Kilinc, Emin; Navruz, Bilgin; Bae, Yunhee

    2011-01-01

    This article reviews Test of Nonverbal Intelligence-Fourth Edition (TONI-4), an individually administered instrument created to assess intelligence. The distinguishing characteristic of the TONI-4 is the nonverbal, motor-reduced format that assesses common elements of intelligence without the confounding effects of motor or linguistic skills. The…

  15. Test Review: Hammill, D. D., Pearson, N. A., & Weiderholt, J. L. (2009). "Comprehensive Test of Nonverbal Intelligence-Second Edition (CTONI-2)." Austin, TX: PRO-ED

    ERIC Educational Resources Information Center

    Delen, Erhan; Kaya, Fatih; Ritter, Nicola L.

    2012-01-01

    This article presents a review of the Comprehensive Test of Nonverbal Intelligence-Second Edition (CTONI-2), a nonverbal intelligence test created to assess reasoning and problem solving of children and adults. The goal of the CTONI-2 is to minimize the influence of language ability on intelligence test scores. Oral or pantomime instructions can…

  16. Architectures for intelligent machines

    NASA Technical Reports Server (NTRS)

    Saridis, George N.

    1991-01-01

    The theory of intelligent machines has been recently reformulated to incorporate new architectures that are using neural and Petri nets. The analytic functions of an intelligent machine are implemented by intelligent controls, using entropy as a measure. The resulting hierarchical control structure is based on the principle of increasing precision with decreasing intelligence. Each of the three levels of the intelligent control is using different architectures, in order to satisfy the requirements of the principle: the organization level is moduled after a Boltzmann machine for abstract reasoning, task planning and decision making; the coordination level is composed of a number of Petri net transducers supervised, for command exchange, by a dispatcher, which also serves as an interface to the organization level; the execution level, include the sensory, planning for navigation and control hardware which interacts one-to-one with the appropriate coordinators, while a VME bus provides a channel for database exchange among the several devices. This system is currently implemented on a robotic transporter, designed for space construction at the CIRSSE laboratories at the Rensselaer Polytechnic Institute. The progress of its development is reported.

  17. Intelligent life in cosmology

    NASA Astrophysics Data System (ADS)

    Tipler, Frank J.

    2003-04-01

    I shall present three arguments for the proposition that intelligent life is very rare in the universe. First, I shall summarize the consensus opinion of the founders of the modern synthesis (Simpson, Dobzhanski and Mayr) that the evolution of intelligent life is exceedingly improbable. Secondly, I shall develop the Fermi paradox: if they existed, they would be here. Thirdly, I shall show that if intelligent life were too common, it would use up all available resources and die out. But I shall show that the quantum mechanical principle of unitarity (actually a form of teleology!) requires intelligent life to survive to the end of time. Finally, I shall argue that, if the universe is indeed accelerating, then survival to the end of time requires that intelligent life, though rare, to have evolved several times in the visible universe. I shall argue that the acceleration is a consequence of the excess of matter over antimatter in the universe. I shall suggest experiments to test these claims.

  18. Intelligent Potroom Operation

    SciTech Connect

    Jan Berkow; Larry Banta

    2003-07-29

    The Intelligent Potroom Operation project focuses on maximizing the performance of an aluminum smelter by innovating components for an intelligent manufacturing system. The Intelligent Potroom Advisor (IPA) monitors process data to identify reduction cells exhibiting behaviors that require immediate attention. It then advises operational personnel on those heuristic-based actions to bring the cell back to an optimal operating state in order to reduce the duration and frequency of substandard reduction cell performance referred to as ''Off-Peak Modes'' (OPMs). Techniques developed to identify cells exhibiting OPMs include the use of a finite element model-based cell state estimator for defining the cell's current operating state via advanced cell noise analyses. In addition, rule induction was also employed to identify statistically significant complex behaviors that occur prior to OPMs. The intelligent manufacturing system design, concepts and formalisms developed in this project w ere used as a basis for an intelligent manufacturing system design. Future research will incorporate an adaptive component to automate continuous process improvement, a technology platform with the potential to improve process performance in many of the other Industries of the Future applications as well.

  19. Creating bulk nanocrystalline metal.

    SciTech Connect

    Fredenburg, D. Anthony; Saldana, Christopher J.; Gill, David D.; Hall, Aaron Christopher; Roemer, Timothy John; Vogler, Tracy John; Yang, Pin

    2008-10-01

    Nanocrystalline and nanostructured materials offer unique microstructure-dependent properties that are superior to coarse-grained materials. These materials have been shown to have very high hardness, strength, and wear resistance. However, most current methods of producing nanostructured materials in weapons-relevant materials create powdered metal that must be consolidated into bulk form to be useful. Conventional consolidation methods are not appropriate due to the need to maintain the nanocrystalline structure. This research investigated new ways of creating nanocrystalline material, new methods of consolidating nanocrystalline material, and an analysis of these different methods of creation and consolidation to evaluate their applicability to mesoscale weapons applications where part features are often under 100 {micro}m wide and the material's microstructure must be very small to give homogeneous properties across the feature.

  20. Intelligence Reframed: Multiple Intelligences for the 21st Century.

    ERIC Educational Resources Information Center

    Gardner, Howard

    This book presents evidence that human beings possess a range of capabilities and potentials (multiple intelligences) that, both individually and together, can be put to many productive uses. Chapter 1, "Intelligence and Individuality," introduces the issue. Chapter 2, "Before Multiple Intelligences," describes the traditional scientific view of…

  1. Multiple Intelligences: Profiling Dominant Intelligences of Grade Eight Students.

    ERIC Educational Resources Information Center

    Morris, Clifford; Leblanc, Raymond

    1996-01-01

    Outlines how verbal protocols were used to compare self-perceived intelligences of students to teachers' evaluations of students based on Howard Gardner's theorized intelligences. Results indicate a strong agreement between teacher perceptions and student identifications of Gardner's intelligences. Argues for more detailed studies before…

  2. Creating Geoscience Leaders

    NASA Astrophysics Data System (ADS)

    Buskop, J.; Buskop, W.

    2013-12-01

    The United Nations Educational, Scientific, and Cultural Organization recognizes 21 World Heritage in the United States, ten of which have astounding geological features: Wrangell St. Elias National Park, Olympic National Park, Mesa Verde National Park, Chaco Canyon, Glacier National Park, Carlsbad National Park, Mammoth Cave, Great Smokey Mountains National Park, Hawaii Volcanoes National Park, and Everglades National Park. Created by a student frustrated with fellow students addicted to smart phones with an extreme lack of interest in the geosciences, one student visited each World Heritage site in the United States and created one e-book chapter per park. Each chapter was created with original photographs, and a geological discovery hunt to encourage teen involvement in preserving remarkable geological sites. Each chapter describes at least one way young adults can get involved with the geosciences, such a cave geology, glaciology, hydrology, and volcanology. The e-book describes one park per chapter, each chapter providing a geological discovery hunt, information on how to get involved with conservation of the parks, geological maps of the parks, parallels between archaeological and geological sites, and how to talk to a ranger. The young author is approaching UNESCO to publish the work as a free e-book to encourage involvement in UNESCO sites and to prove that the geosciences are fun.

  3. Heat transport in the vicinity of an artificial recharge site

    NASA Astrophysics Data System (ADS)

    Vandenbohede, Alexander; van Houtte, Emmanuel; Lebbe, Luc

    2010-05-01

    Since July 2002, the Intermunicipal Water Company of the Veurne region (IWVA) artificially recharges fresh water in the dunes of the western Belgian coastal plain by means of two recharge ponds. This recharge water is produced from secondary treated waste water effluent by the combination of ultra filtration and reverse osmosis. Extraction wells (112) are located north and south of the ponds. The artificial recharge project loops the water cycle: extracted water goes to the users and their waste water is purified and re-used. Therefore, it is an example of sustainable water management in coastal aquifers. Groundwater flow of this recharge site has been examined in the past by the use of a tracer test, hydrochemistry (environmental isotopes, conservative tracers) and groundwater flow modelling. Temperature, however, forms a relatively easy measurement which can add to or confirm the knowledge of the groundwater flow. Temperature time series (temperature as function of time) were measured at different levels in a number of wells located between the recharge ponds and the extraction wells, and in one well south of the recharge and extraction area. Secondly, temperature logs (temperature as function of depth) were measured in these wells at different times over the course of 2 years. Finally, the temperature of the recharged and extracted water is constantly monitored by the water company. The temperature of the recharge water shows a yearly fluctuation, ranging from 25 °C during summer to slightly above 0 °C during the winter. The temperature of the extracted water (combination of water extracted in all the wells) ranges between 17 °C during summer and 10 °C during winter. Minima and maxima in the extracted water are observed between 76 and 110 days (mean of 90 days and standard deviation of 13.5 days) later in the extracted water with respect to the recharged water. Measurements show that the difference in time when maxima and minima are observed in an

  4. The Literature of Competitive Intelligence.

    ERIC Educational Resources Information Center

    Walker, Thomas D.

    1994-01-01

    Describes competitive intelligence (CI) literature in terms of its location, quantity, authorship, length, and problems of bibliographic access. Highlights include subject access; competitive intelligence research; espionage and security; monographs; and journals. (21 references) (LRW)

  5. The Problem of Defining Intelligence.

    ERIC Educational Resources Information Center

    Lubar, David

    1981-01-01

    The major philosophical issues surrounding the concept of intelligence are reviewed with respect to the problems surrounding the process of defining and developing artificial intelligence (AI) in computers. Various current definitions and problems with these definitions are presented. (MP)

  6. Artificial intelligence in nanotechnology

    NASA Astrophysics Data System (ADS)

    Sacha, G. M.; Varona, P.

    2013-11-01

    During the last decade there has been increasing use of artificial intelligence tools in nanotechnology research. In this paper we review some of these efforts in the context of interpreting scanning probe microscopy, the study of biological nanosystems, the classification of material properties at the nanoscale, theoretical approaches and simulations in nanoscience, and generally in the design of nanodevices. Current trends and future perspectives in the development of nanocomputing hardware that can boost artificial-intelligence-based applications are also discussed. Convergence between artificial intelligence and nanotechnology can shape the path for many technological developments in the field of information sciences that will rely on new computer architectures and data representations, hybrid technologies that use biological entities and nanotechnological devices, bioengineering, neuroscience and a large variety of related disciplines.

  7. Intelligent Agents: The Measure of their Intelligence

    NASA Astrophysics Data System (ADS)

    Arlabosse, François

    2002-09-01

    This paper presents an original attempt for testing the level of autonomy of intelligent physical agents. After a short review of the architectural problematic of designing such artefacts, we try to situate the place of uncertainty modelling in mobile robotic and complex control systems. We then briefly describe a design for giving to an industrial control problem the highest level of autonomy for performing its tasks. We give some hints how to extend these tests on physical agents exhibiting adaptive behaviours. Future works for applying this methodology will be illustrated.

  8. Groundwater surface water interactions and the role of phreatophytes in identifying recharge zones

    NASA Astrophysics Data System (ADS)

    Ahring, T. S.; Steward, D. R.

    2012-11-01

    Groundwater and surface water interactions within riparian corridors impact the distribution of phreatophytes that tap into groundwater stores. The changes in canopy area of phreatophytes over time is related to changes in depth to groundwater, distance from a stream or river, and hydrologic soil group. Remote sensing was used to determine the location of trees with pre-development and post-development aerial photography over the Ogallala Aquifer in the central plains of the United States. It was found that once the depth to groundwater becomes greater than about 3 m, tree populations decrease as depth to water increases. This subsequently limited the extent of phreatophytes to within 700 m of the river. It was also found that phreatophytes have a higher likelihood of growing on hydrologic soil groups with higher saturated hydraulic conductivity. Phreatophytes exist along portions of the Arkansas River corridor where significant decreases in groundwater occurred as long as alluvium exists to create perched conditions where trees survive dry periods. Significant decreases (more that 50%) in canopy cover exists along river segments where groundwater declined by more than 10 m, indicating areas with good hydraulic connectivity between surface water and groundwater. Thus, interpretation of changes in phreatophyte distribution using historical and recent aerial photography is important in delineating zones of enhanced recharge where aquifers might be effectively recharged through diversion of surface water runoff.

  9. Groundwater surface water interactions through streambeds and the role of phreatophytes in identifying important recharge zones

    NASA Astrophysics Data System (ADS)

    Ahring, T. S.; Steward, D. R.

    2012-06-01

    Groundwater and surface water interactions within riparian corridors impact the distribution of phreatophytes that tap into groundwater stores. The changes in canopy area of phreatophytes over time is related to changes in depth to groundwater, distance from a stream or river, and hydrologic soil group. Remote sensing was used to determine the location of trees with predevelopment and post-development aerial photography over the Ogallala Aquifer in the central plains of the United States. It was found that once the depth to groundwater becomes greater than about 3 m, tree populations decrease as depth to water increases. This subsequently limited the extent of phreatophytes to within 700 m of the river. It was also found that phreatophytes have a higher likelihood of growing on hydrologic soil groups with higher saturated hydraulic conductivity. Phreatophytes exist along portions of the Arkansas River corridor where significant decreases in groundwater occurred as long as alluvium exists to create perched conditions where trees survive dry periods. Significant decreases (more that 50%) in canopy cover exists along river segments where groundwater declined by more than 10 m, indicating areas with good hydraulic connectivity between surface water and groundwater. Thus, interpretation of changes in phreatophyte distribution using historical and recent aerial photophaphy is important in delineating zones of enhanced recharge where aquifers might be effectively recharged through diversion of surface water runoff.

  10. Intelligent computer-aided training authoring environment

    NASA Technical Reports Server (NTRS)

    Way, Robert D.

    1994-01-01

    Although there has been much research into intelligent tutoring systems (ITS), there are few authoring systems available that support ITS metaphors. Instructional developers are generally obliged to use tools designed for creating on-line books. We are currently developing an authoring environment derived from NASA's research on intelligent computer-aided training (ICAT). The ICAT metaphor, currently in use at NASA has proven effective in disciplines from satellite deployment to high school physics. This technique provides a personal trainer (PT) who instructs the student using a simulated work environment (SWE). The PT acts as a tutor, providing individualized instruction and assistance to each student. Teaching in an SWE allows the student to learn tasks by doing them, rather than by reading about them. This authoring environment will expedite ICAT development by providing a tool set that guides the trainer modeling process. Additionally, this environment provides a vehicle for distributing NASA's ICAT technology to the private sector.

  11. Crab Burrows are Important Conduits for Groundwater Recharge in Bangladesh

    NASA Astrophysics Data System (ADS)

    Stahl, M.; Tarek, M. H.; Yeo, D. C.; Badruzzaman, A.; Harvey, C. F.

    2013-12-01

    Recent research suggests that recharge from man-made ponds may stimulate arsenic mobilization within Bangladeshi aquifers. Man-made ponds are widespread throughout Bangladesh and are generally underlain by low permeability clays that could potentially limit flow to the sandy aquifer below if they are not compromised by preferential flow paths. Animal borrows are one common type of preferential flow path through surface clays. Across the Ganges Delta, terrestrial crabs dig borrows, sometimes as long as 10 meters. In our study pond in Munshiganj, Bangladesh we found crab burrows extending through the surficial clays and down into the shallow aquifer spaced approximately every meter. We use these field observations along with a novel, coupled isotope and water balance model to quantify the fluxes into and out of the pond. We show that nearly all of the aquifer recharge from the pond is through crab burrows which have enhanced the hydraulic conductivity of the surficial sediments by several orders of magnitude. In addition we show that the recharging pond water is shifting the solute composition of water beneath the pond. We suggest that, as a result of crab burrows, young ponds may contribute large fluxes of recharge water whereas older ponds may contribute little recharge to the aquifer. All terrestrial crabs have gills that must remain moist to allow for respiration. So, to ensure an uninterrupted water source, their borrows must reach the maximum depth that the water table drops to seasonally after irrigation ceases and before the onset of the monsoon. Once a pond is installed crabs living within the sediments that now make up the new pond bottom would no longer need to construct burrows to ensure a constant supply of water. Over time, burrows that existed prior to pond construction can clog. Water balance data for an old pond at our study site indicates that this pond contributes less recharge than our newly constructed pond.

  12. Neurobiology of intelligence: Health implications?

    PubMed

    Gray, Jeremy R; Thompson, Paul M

    2004-06-01

    Extract: Understanding the neurobiology of intelligence may, in turn, help illuminate the complex relationships between intelligence and health. There is strong evidence that the lateral prefrontal cortex and possibly other brain areas support intelligent behavior. Variations in intelligence and brain structure are heritable, but are also influenced by factors such as education, family environment, and environmental hazards. These exciting scientific advances encourage renewed responsiveness to the social and ethical dimensions of such research, including its health-relevance. PMID:20704978

  13. Contour trenching, a contribution to artificial recharge in a semi-arid area in Vietnam

    NASA Astrophysics Data System (ADS)

    Pramana, K. E. R.; Ertsen, M. W.; Uhlenbrook, S.; van de Giesen, N. C.

    2010-05-01

    The long term impact of contour trenching tends to be that more runoff turns into groundwater recharge. In 2008, the contribution of recharge at a contour trench plot was determined as potential and not quite visible. Recharge has not been confirmed, since groundwater level data at the contour trench plot were not available. For further study, 4 new observation wells were installed on 8 hectares contour trench plot to asses the impact of the trenches to the groundwater system. This investigation was conducted during a single rainy season in 2009, shortly after the construction of the new observation wells. The subsurface conditions seemed to be an important feature controlling recharge processes and groundwater flow. Well logs data indicated granite bedrock at about 25 m below loamy sand and weathered granite layer respectively. The groundwater measurements are showing almost constant and fluctuated groundwater level between 1 to 15 meters deep below the trenches. More important is that data are showing a rising trend because of the infiltration of ponding water in the trenches. Additionally, water logging could be found remaining in weeks after rainfall events at the most downhill of the contour trench plot. Annual rainfall reached 1303 mm, suggesting a rarely wet year. After 4 heavy rainfall events, runoff from uphill and outside the contour trench plot randomly filled up the trenches, yielded to roughly 4 times filling up the volume of the trenches. Ponding water infiltrated further in different temporal scale. Whilst at the same time, erosion occurred at the uphill area, bringing along fine sediment towards the trenches. It eventually creates a sediment layer at the bottom the trenches which in accordance reduces the infiltration capacity and thus increases the time of ponding of water. MODHMS from HydroGeologic Inc. (a fully coupled surface water, unsaturated zone and groundwater model) was used to simulate the hydrological condition and measured groundwater

  14. Introducing artificial intelligence

    SciTech Connect

    Simons, G.L.

    1984-01-01

    This book describes the background to AI, explores some characteristic objectives and methods, and indicates some of the practical ramifications for expert, robotic and other types of systems. Following a brief discussion of the nature of intelligence, the recent history of AI is outlined. Characteristic activities of AI systems are explored in Part II. Here it is emphasized that AI systems are not only concerned with ''thought'' but with ''action''-it is an obvious requirement of intelligent commercial and other systems that they behave with competence in a real-world environment. Finally some of the current and future uses of AI systems are explored.

  15. Reverberant word intelligibility and psychological models of dereverberation

    NASA Astrophysics Data System (ADS)

    Libbey, Brad W.

    Reverberation interferes with the ability to understand speech in small rooms, so most listeners use binaural information to improve intelligibility. This could mean that reverberation is reduced neurologically before the word is identified. For example, each echo contains binaural cues that might be used for localization and echo reduction. These cues are weak and it is difficult to imagine a binaural process capable of reducing thousands of coherent echoes. Overlap-masking explains intelligibility loss due to reverberation in terms of noise masking. It assumes reverberant phonemes endure in time and mask subsequent phonemes. In this case, the binaural system may be able to reduce reverberation based on the uncorrelated signals at each ear. It is also possible that reverberation is not reduced, but binaural information is used by higher level neurological processes to improve intelligibility. These high level processes might gather phonetic information from each ear to improve intelligibility. The binaural word intelligibility advantage is investigated through a series of word intelligibility tests conducted in reverberant rooms. These measure the intelligibility of phonetically balanced word lists diotically and binaurally to determine the magnitude of the intelligibility difference. In later tests, reverberation is modified to create reverberation-like noise. The reverberation-like noise has similar temporal and spectral properties to reverberation, but does not contain binaural localization cues. This noise is used to test the hypothesis that the binaural word intelligibility advantage is a result of binaural masking release as opposed to binaural localization and echo reduction. The results show that a small binaural intelligibility advantage exists, and that binaural masking release accounts for only a small portion of this advantage. Either localization cues of the echoes are necessary to achieve the advantage or higher level processing is utilizing the

  16. Rechargeable Zn-MnO sub 2 alkaline batteries

    SciTech Connect

    Wruck, W.J.; Reichman, B.; Bullock, K.R.; Kao, W.H. )

    1991-12-01

    In this paper progress in the development of rechargeable alkaline zinc-manganese dioxide cells is described. The advantages and limitations of the system are evaluated. Laboratory tests run on commercial primary alkaline cells as well as model simulations of a bipolar MnO{sub 2} electrode show that the rechargeable alkaline battery may be able to compete with lead-acid, nickel-cadmium, and secondary lithium cells for low- to moderate-rate applications. However, because of this poor performance at high rates and low temperatures, the alkaline MnO{sub 2} battery is not suitable for present automotive starting applications.

  17. Focused Ground-Water Recharge in the Amargosa Desert Basin

    USGS Publications Warehouse

    Stonestrom, David A.; Prudic, David E.; Walvoord, Michelle A.; Abraham, Jared D.; Stewart-Deaker, Amy E.; Glancy, Patrick A.; Constantz, Jim; Laczniak, Randell J.; Andraski, Brian J.

    2007-01-01

    The Amargosa River is an approximately 300-kilometer long regional drainage connecting the northern highlands on the Nevada Test Site in Nye County, Nev., to the floor of Death Valley in Inyo County, Calif. Streamflow analysis indicates that the Amargosa Desert portion of the river is dry more than 98 percent of the time. Infiltration losses during ephemeral flows of the Amargosa River and Fortymile Wash provide the main sources of ground-water recharge on the desert-basin floor. The primary use of ground water is for irrigated agriculture. The current study examined ground-water recharge from ephemeral flows in the Amargosa River by using streamflow data and environmental tracers. The USGS streamflow-gaging station at Beatty, Nev., provided high-frequency data on base flow and storm runoff entering the basin during water years 1998?2001. Discharge into the basin during the four-year period totaled 3.03 million cubic meters, three quarters of which was base flow. Streambed temperature anomalies indicated the distribution of ephemeral flows and infiltration losses within the basin. Major storms that produced regional flow during the four-year period occurred in February 1998, during a strong El Ni?o that more than doubled annual precipitation, and in July 1999. The study also quantified recharge beneath undisturbed native vegetation and irrigation return flow beneath irrigated fields. Vertical profiles of water potential and environmental tracers in the unsaturated zone provided estimates of recharge beneath the river channel (0.04?0.09 meter per year) and irrigated fields (0.1?0.5 meter per year). Chloride mass-balance estimates indicate that 12?15 percent of channel infiltration becomes ground-water recharge, together with 9?22 percent of infiltrated irrigation. Profiles of potential and chloride beneath the dominant desert-shrub vegetation suggest that ground-water recharge has been negligible throughout most of the basin since at least the early Holocene

  18. Thin Rechargeable Batteries for CMOS SRAM Memory Protection

    NASA Technical Reports Server (NTRS)

    Crouse, Dennis N.

    1993-01-01

    New rechargeable battery technology is described and compared with classical primary battery back-up of SRAM PC cards. Thin solid polymer electrolyte cells with the thickness of TSOP memory components (1 mm nominal, 1.1 mm max) and capacities of 14 mAh/sq cm can replace coin cells. The SRAM PC cards with permanently installed rechargeable cells and optional electrochromic low battery voltage indicators will free the periodic PC card user from having to 'feed' their PC cards with coin cells and will allow a quick visual check of stored cards for their battery voltage status.

  19. Digital Intelligence Fostered by Technology

    ERIC Educational Resources Information Center

    Adams, Nan B.

    2004-01-01

    Through interaction with digital technologies for work, play, and communication, the pattern for intellectual development is being altered. The multiple intelligences theoretical framework developed by Gardner (1983) is easily employed to provide evidence that yet another intelligence, digital intelligence, has emerged. In a postmodern pluralistic…

  20. Hostile intelligence threat: US technology

    SciTech Connect

    Whitman, D.

    1988-11-01

    This publication outlines the hostile intelligence threat to U.S. industry and Western technology, including the operational capabilities of hostile intelligence services and their scientific and technological (S T) targets. Current intelligence strategies used against the United States are described and sources of information providing countermeasures guidance are listed. Points of contact for security and counterintelligence assistance are also included.

  1. An Overview of Intelligence Testing.

    ERIC Educational Resources Information Center

    White, Margaret B.; Hall, Alfred E.

    1980-01-01

    This article briefly traces the development of intelligence testing from its beginnings in 1905 with Alfred Binet; cites the intelligence theories of Spearman, Thurstone, and Guilford; and examines current objections to intelligence tests in terms of what they test and how they are interpreted. (SJL)

  2. Political Orientations, Intelligence and Education

    ERIC Educational Resources Information Center

    Rindermann, Heiner; Flores-Mendoza, Carmen; Woodley, Michael A.

    2012-01-01

    The social sciences have traditionally assumed that education is a major determinant of citizens' political orientations and behavior. Several studies have also shown that intelligence has an impact. According to a theory that conceptualizes intelligence as a "burgher" (middle-class, civil) phenomenon--intelligence should promote civil attitudes,…

  3. Artificial Intelligence and Information Retrieval.

    ERIC Educational Resources Information Center

    Teodorescu, Ioana

    1987-01-01

    Compares artificial intelligence and information retrieval paradigms for natural language understanding, reviews progress to date, and outlines the applicability of artificial intelligence to question answering systems. A list of principal artificial intelligence software for database front end systems is appended. (CLB)

  4. Teaching EFL to Multiple Intelligences.

    ERIC Educational Resources Information Center

    Ghosn, Irma K.

    This paper is in large part a critique of Howard Gardner's theory of multiple intelligences presented in his 1983 book "Frames of Mind: The Theory of Multiple Intelligences," and asserts that the multiple intelligences (MI) concept has been widely misinterpreted. The paper outlines some of the misconceptions of Gardner's theory as identified by…

  5. Mathematics, Computation, and Psychic Intelligence.

    ERIC Educational Resources Information Center

    Moise, Edwin E.

    1984-01-01

    Defines psychic intelligence as an inclination all children possess to use whatever cognitive intelligence they have for learning, adaptive behavior, and pleasure; strongly suggests that algorithmic drill usually damages the mentality of children by stifling psychic intelligence; and discusses the use of pocket calculators to prevent this effect.…

  6. World-Wide Intelligent Textbooks

    ERIC Educational Resources Information Center

    Schwarz, Elmar; Brusilovsky, Peter; Weber, Gerhard

    2005-01-01

    New WWW technologies allow for integrating distance education power of WWW with interactivity and intelligence. Integrating on-line presentation of learning materials with the interactivity of problem solving environments and the intelligence of intelligent tutoring systems results in a new quality of learning materials that we call I3-textbooks.…

  7. Competitive Intelligence and Social Advantage.

    ERIC Educational Resources Information Center

    Davenport, Elisabeth; Cronin, Blaise

    1994-01-01

    Presents an overview of issues concerning civilian competitive intelligence (CI). Topics discussed include competitive advantage in academic and research environments; public domain information and libraries; covert and overt competitive intelligence; data diversity; use of the Internet; cooperative intelligence; and implications for library and…

  8. Instructional Applications of Artificial Intelligence.

    ERIC Educational Resources Information Center

    Halff, Henry M.

    1986-01-01

    Surveys artificial intelligence and the development of computer-based tutors and speculates on the future of artificial intelligence in education. Includes discussion of the definitions of knowledge, expert systems (computer systems that solve tough technical problems), intelligent tutoring systems (ITS), and specific ITSs such as GUIDON, MYCIN,…

  9. EEG Alpha Power and Intelligence.

    ERIC Educational Resources Information Center

    Doppelmayr, M.; Klimesch, W.; Stadler, W.; Pollhuber, D.; Heine, C.

    2002-01-01

    Tested whether alpha power in different sub-bands is selectively related to intelligence. For 74 Austrian subjects, the EEG was recorded during a resting session and 2 different intelligence tests were performed. Findings show a strong positive correlation between intelligence and alpha power. (SLD)

  10. Intelligent mobility research for robotic locomotion in complex terrain

    NASA Astrophysics Data System (ADS)

    Trentini, Michael; Beckman, Blake; Digney, Bruce; Vincent, Isabelle; Ricard, Benoit

    2006-05-01

    The objective of the Autonomous Intelligent Systems Section of Defence R&D Canada - Suffield is best described by its mission statement, which is "to augment soldiers and combat systems by developing and demonstrating practical, cost effective, autonomous intelligent systems capable of completing military missions in complex operating environments." The mobility requirement for ground-based mobile systems operating in urban settings must increase significantly if robotic technology is to augment human efforts in these roles and environments. The intelligence required for autonomous systems to operate in complex environments demands advances in many fields of robotics. This has resulted in large bodies of research in areas of perception, world representation, and navigation, but the problem of locomotion in complex terrain has largely been ignored. In order to achieve its objective, the Autonomous Intelligent Systems Section is pursuing research that explores the use of intelligent mobility algorithms designed to improve robot mobility. Intelligent mobility uses sensing, control, and learning algorithms to extract measured variables from the world, control vehicle dynamics, and learn by experience. These algorithms seek to exploit available world representations of the environment and the inherent dexterity of the robot to allow the vehicle to interact with its surroundings and produce locomotion in complex terrain. The primary focus of the paper is to present the intelligent mobility research within the framework of the research methodology, plan and direction defined at Defence R&D Canada - Suffield. It discusses the progress and future direction of intelligent mobility research and presents the research tools, topics, and plans to address this critical research gap. This research will create effective intelligence to improve the mobility of ground-based mobile systems operating in urban settings to assist the Canadian Forces in their future urban operations.

  11. Creating new growth platforms.

    PubMed

    Laurie, Donald L; Doz, Yves L; Sheer, Claude P

    2006-05-01

    Sooner or later, most companies can't attain the growth rates expected by their boards and CEOs and demanded by investors. To some extent, such businesses are victims of their own successes. Many were able to sustain high growth rates for a long time because they were in high-growth industries. But once those industries slowed down, the businesses could no longer deliver the performance that investors had come to take for granted. Often, companies have resorted to acquisition, though this strategy has a discouraging track record. Over time, 65% of acquisitions destroy more value than they create. So where does real growth come from? For the past 12 years, the authors have been researching and advising companies on this issue. With the support of researchers at Harvard Business School and Insead, they instituted a project titled "The CEO Agenda and Growth". They identified and approached 24 companies that had achieved significant organic growth and interviewed their CEOs, chief strategists, heads of R&D, CFOs, and top-line managers. They asked, "Where does your growth come from?" and found a consistent pattern in the answers. All the businesses grew by creating new growth platforms (NGPs) on which they could build families of products and services and extend their capabilities into multiple new domains. Identifying NGP opportunities calls for executives to challenge conventional wisdom. In all the companies studied, top management believed that NGP innovation differed significantly from traditional product or service innovation. They had independent, senior-level units with a standing responsibility to create NGPs, and their CEOs spent as much as 50% of their time working with these units. The payoff has been spectacular and lasting. For example, from 1985 to 2004, the medical devices company Medtronic grew revenues at 18% per year, earnings at 20%, and market capitalization at 30%. PMID:16649700

  12. 76 FR 54527 - Fourth Meeting: RTCA Special Committee 225: Rechargeable Lithium Batteries and Battery Systems...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-09-01

    ... Federal Aviation Administration Fourth Meeting: RTCA Special Committee 225: Rechargeable Lithium Batteries and Battery Systems--Small and Medium Sizes AGENCY: Federal Aviation Administration (FAA), DOT. ACTION: Notice of RTCA Special Committee 225 meeting: Rechargeable Lithium Batteries and Battery...

  13. 76 FR 22161 - Second Meeting: RTCA Special Committee 225: Rechargeable Lithium Batteries and Battery Systems...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-04-20

    ... Federal Aviation Administration Second Meeting: RTCA Special Committee 225: Rechargeable Lithium Batteries and Battery Systems--Small and Medium Sizes AGENCY: Federal Aviation Administration (FAA), DOT. ACTION: Notice of RTCA Special Committee 225 meeting: Rechargeable Lithium Batteries and Battery...

  14. 76 FR 6180 - First Meeting: RTCA Special Committee 225: Rechargeable Lithium Batteries and Battery Systems...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-02-03

    ... Federal Aviation Administration First Meeting: RTCA Special Committee 225: Rechargeable Lithium Batteries and Battery Systems--Small and Medium Sizes AGENCY: Federal Aviation Administration (FAA), DOT. ACTION: Notice of RTCA Special Committee 225 meeting: Rechargeable Lithium Batteries and Battery...

  15. 76 FR 38741 - Third Meeting: RTCA Special Committee 225: Rechargeable Lithium Batteries and Battery Systems...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-07-01

    ... Federal Aviation Administration Third Meeting: RTCA Special Committee 225: Rechargeable Lithium Batteries and Battery Systems--Small and Medium Sizes AGENCY: Federal Aviation Administration (FAA), DOT. ACTION: Notice of RTCA Special Committee 225 meeting: Rechargeable Lithium Batteries and Battery...

  16. Creating healthy camp experiences.

    PubMed

    Walton, Edward A; Tothy, Alison S

    2011-04-01

    The American Academy of Pediatrics has created recommendations for health appraisal and preparation of young people before participation in day or resident camps and to guide health and safety practices for children at camp. These recommendations are intended for parents, primary health care providers, and camp administration and health center staff. Although camps have diverse environments, there are general guidelines that apply to all situations and specific recommendations that are appropriate under special conditions. This policy statement has been reviewed and is supported by the American Camp Association. PMID:21444589

  17. Using Intelligent Simulation to Enhance Human Performance in Aircraft Maintenance

    NASA Technical Reports Server (NTRS)

    Johnson, William B.; Norton, Jeffrey E.

    1992-01-01

    Human factors research and development investigates the capabilities and limitations of the human within a system. Of the many variables affecting human performance in the aviation maintenance system, training is among the most important. The advent of advanced technology hardware and software has created intelligent training simulations. This paper describes one advanced technology training system under development for the Federal Aviation Administration.

  18. A Vermont School's Rebirth via Four-Quadrant Intelligence

    ERIC Educational Resources Information Center

    Stone, Joyce E.

    2009-01-01

    In this article, the author discusses how a Vermont school improved their performance via four-quadrant intelligence. Teachers use this four-quadrant model that consists of sensing-thinking (mastery of information), sensing-feeling (personal involvement), intuitive-thinking (understanding concepts) and intuitive-feeling (creating something to…

  19. "Intelligent Design" Wants God Across All the Curriculum

    ERIC Educational Resources Information Center

    Terry, Mark

    2005-01-01

    Science and religion are two contradicting aspects when it comes to tracing evolution and creationism. Considering that these are two important things, revising statewide science or eliminating evolution and changing it to Intelligent Design (ID) may be the best thing to be done to create a curriculum that has a better science teaching. In this…

  20. Assessing the Use of Dry Wells as a Tool for Stormwater Management and Groundwater Recharge in Urban Areas

    NASA Astrophysics Data System (ADS)

    Edwards, E.; Harter, T.; Fogg, G. E.; Washburn, B.; Bryson, R.; Meirovitz, C.; Fawcett, J.; Kretsinger Grabert, V. J.; Bowles, C.; Carr, M.; Nelson, C.

    2014-12-01

    well. The results of water quality sampling will determine the contaminants of interest, and a model of the fate and transport of these contaminants in the vadose zone will be coupled with hydraulic models to estimate the response of the hydrogeologic system to dry well recharge, with the goal of creating a tool that can be used to evaluate future dry well locations.

  1. Creating corporate advantage.

    PubMed

    Collis, D J; Montgomery, C A

    1998-01-01

    What differentiates truly great corporate strategies from the merely adequate? How can executives at the corporate level create tangible advantage for their businesses that makes the whole more than the sum of the parts? This article presents a comprehensive framework for value creation in the multibusiness company. It addresses the most fundamental questions of corporate strategy: What businesses should a company be in? How should it coordinate activities across businesses? What role should the corporate office play? How should the corporation measure and control performance? Through detailed case studies of Tyco International, Sharp, the Newell Company, and Saatchi and Saatchi, the authors demonstrate that the answers to all those questions are driven largely by the nature of a company's special resources--its assets, skills, and capabilities. These range along a continuum from the highly specialized at one end to the very general at the other. A corporation's location on the continuum constrains the set of businesses it should compete in and limits its choices about the design of its organization. Applying the framework, the authors point out the common mistakes that result from misaligned corporate strategies. Companies mistakenly enter businesses based on similarities in products rather than the resources that contribute to competitive advantage in each business. Instead of tailoring organizational structures and systems to the needs of a particular strategy, they create plain-vanilla corporate offices and infrastructures. The company examples demonstrate that one size does not fit all. One can find great corporate strategies all along the continuum. PMID:10179655

  2. Creating sustainable performance.

    PubMed

    Spreitzer, Gretchen; Porath, Christine

    2012-01-01

    What makes for sustainable individual and organizational performance? Employees who are thriving-not just satisfied and productive but also engaged in creating the future. The authors found that people who fit this description demonstrated 16% better overall performance, 125% less burnout, 32% more commitment to the organization, and 46% more job satisfaction than their peers. Thriving has two components: vitality, or the sense of being alive and excited, and learning, or the growth that comes from gaining knowledge and skills. Some people naturally build vitality and learning into their jobs, but most employees are influenced by their environment. Four mechanisms, none of which requires heroic effort or major resources, create the conditions for thriving: providing decision-making discretion, sharing information about the organization and its strategy, minimizing incivility, and offering performance feedback. Organizations such as Alaska Airlines, Zingerman's, Quicken Loans, and Caiman Consulting have found that helping people grow and remain energized at work is valiant on its own merits-but it can also boost performance in a sustainable way. PMID:22299508

  3. Entanglement Created by Dissipation

    SciTech Connect

    Alharbi, Abdullah F.; Ficek, Zbigniew

    2011-10-27

    A technique for entangling closely separated atoms by the process of dissipative spontaneous emission is presented. The system considered is composed of two non-identical two-level atoms separated at the quarter wavelength of a driven standing wave laser field. At this atomic distance, only one of the atoms can be addressed by the laser field. In addition, we arrange the atomic dipole moments to be oriented relative to the inter-atomic axis such that the dipole-dipole interaction between the atoms is zero at this specific distance. It is shown that an entanglement can be created between the atoms on demand by tuning the Rabi frequency of the driving field to the difference between the atomic transition frequencies. The amount of the entanglement created depends on the ratio between the damping rates of the atoms, but is independent of the frequency difference between the atoms. We also find that the transient buildup of an entanglement between the atoms may differ dramatically for different initial atomic conditions.

  4. Genetical background of intelligence.

    PubMed

    Junkiert-Czarnecka, Anna; Haus, Olga

    2016-01-01

    Intelligence as an ability to reason, think abstractly and adapt effectively to the environment is a subject of research in the field of psychology, neurobiology, and in the last twenty years genetics as well. Genetical testing of twins carried out from XX century indicated heritebility of intelligence, therefore confirmed an influence of genetic factor on cognitive processes. Studies on genetic background of intelligence focus on dopaminergic (DRD2, DRD4, COMT, SLC6A3, DAT1, CCKAR) and adrenergic system (ADRB2, CHRM2) genes as well as, neutrofins (BDNF) and oxidative stress genes (LTF, PRNP). Positive effect of investigated gene polymorphism was indicated by variation c.957C>T DRD2 gene (if in polymorphic site is thymine), polymorphism c.472G>A COMT gene (presence of adenine) and also gene ADRB2 c.46A->G (guanine), CHRM2 (thymine in place c.1890A>T) and BDNF (guanine in place c.472G>A) Obtained results indicate that intelligence is a feature dependent not only on genetic but also an environmental factor. PMID:27333929

  5. Artificial Intelligence and CALL.

    ERIC Educational Resources Information Center

    Underwood, John H.

    The potential application of artificial intelligence (AI) to computer-assisted language learning (CALL) is explored. Two areas of AI that hold particular interest to those who deal with language meaning--knowledge representation and expert systems, and natural-language processing--are described and examples of each are presented. AI contribution…

  6. Improving Alaryngeal Speech Intelligibility.

    ERIC Educational Resources Information Center

    Christensen, John M.; Dwyer, Patricia E.

    1990-01-01

    Laryngectomized patients using esophageal speech or an electronic artificial larynx have difficulty producing correct voicing contrasts between homorganic consonants. This paper describes a therapy technique that emphasizes "pushing harder" on voiceless consonants to improve alaryngeal speech intelligibility and proposes focusing on the production…

  7. Intelligent inspection system

    NASA Astrophysics Data System (ADS)

    May, Jeniece; Dale, Ken; Holloway, Mike; Gaby, Willard

    1997-01-01

    The intelligent inspection system is an advanced controller and analysis system for dimensional measuring machines dedicated to measuring surface of revolution mechanical parts. IIS was developed by the Lockheed Martin Energy Systems, Inc. Oak Ridge Y-12 plant because no commercial product was available to replace the obsolete computing systems on these important machines.

  8. Intelligent test integration system

    NASA Technical Reports Server (NTRS)

    Sztipanovits, J.; Padalkar, S.; Rodriguez-Moscoso, J.; Kawamura, K.; Purves, B.; Williams, R.; Biglari, H.

    1988-01-01

    A new test technology is described which was developed for space system integration. The ultimate purpose of the system is to support the automatic generation of test systems in real time, distributed computing environments. The Intelligent Test Integration System (ITIS) is a knowledge based layer above the traditional test system components which can generate complex test configurations from the specification of test scenarios.

  9. Applications of artificial intelligence

    SciTech Connect

    Gilmore, J.F.

    1984-01-01

    This book presents papers given at a conference on expert systems and artificial intelligence. Topics considered at the conference included the location of multiple faults by diagnostic expert systems, knowledge-based systems, natural language, image processing, computer vision, and identification systems.

  10. Intelligent Data Reduction (IDARE)

    NASA Technical Reports Server (NTRS)

    Brady, D. Michael; Ford, Donnie R.

    1990-01-01

    A description of the Intelligent Data Reduction (IDARE) expert system and an IDARE user's manual are given. IDARE is a data reduction system with the addition of a user profile infrastructure. The system was tested on a nickel-cadmium battery testbed. Information is given on installing, loading, maintaining the IDARE system.

  11. Johannes Kepler's Intelligent Design

    NASA Astrophysics Data System (ADS)

    Wallace, Paul M.

    2006-12-01

    In the last decade, the theory labeled "Intelligent Design" has exacerbated long-standing conflicts between religion and science. This issue will be addressed from the perspective of the philosophy and science of Johannes Kepler (1571-1630), whose unconventional belief in design lived in harmony with his revolutionary physical astronomy.

  12. Race and Intelligence.

    ERIC Educational Resources Information Center

    Brace, C. Loring, Ed.; And Others

    Contents of this book include: an introductory preface by C. Loring Brace; "Introduction to Jensenism," C. Loring Brace; "Can we and should we study race differences?" Arthur R. Jensen; "Intelligence in Black and White," Alexander Alland, Jr.; "Whose is the failure?" Vera John; "The influence of conceptual rule-sets on measures of learning…

  13. INTELLIGENCE, PERSONALITY AND ACHIEVEMENT.

    ERIC Educational Resources Information Center

    MUIR, R.C.; AND OTHERS

    A LONGITUDINAL DEVELOPMENTAL STUDY OF A GROUP OF MIDDLE CLASS CHILDREN IS DESCRIBED, WITH EMPHASIS ON A SEGMENT OF THE RESEARCH INVESTIGATING THE RELATIONSHIP OF ACHIEVEMENT, INTELLIGENCE, AND EMOTIONAL DISTURBANCE. THE SUBJECTS WERE 105 CHILDREN AGED FIVE TO 6.3 ATTENDING TWO SCHOOLS IN MONTREAL. EACH CHILD WAS ASSESSED IN THE AREAS OF…

  14. Engineering robust intelligent robots

    NASA Astrophysics Data System (ADS)

    Hall, E. L.; Ali, S. M. Alhaj; Ghaffari, M.; Liao, X.; Cao, M.

    2010-01-01

    The purpose of this paper is to discuss the challenge of engineering robust intelligent robots. Robust intelligent robots may be considered as ones that not only work in one environment but rather in all types of situations and conditions. Our past work has described sensors for intelligent robots that permit adaptation to changes in the environment. We have also described the combination of these sensors with a "creative controller" that permits adaptive critic, neural network learning, and a dynamic database that permits task selection and criteria adjustment. However, the emphasis of this paper is on engineering solutions which are designed for robust operations and worst case situations such as day night cameras or rain and snow solutions. This ideal model may be compared to various approaches that have been implemented on "production vehicles and equipment" using Ethernet, CAN Bus and JAUS architectures and to modern, embedded, mobile computing architectures. Many prototype intelligent robots have been developed and demonstrated in terms of scientific feasibility but few have reached the stage of a robust engineering solution. Continual innovation and improvement are still required. The significance of this comparison is that it provides some insights that may be useful in designing future robots for various manufacturing, medical, and defense applications where robust and reliable performance is essential.

  15. Wisdom, Intelligence & Creativity Synthesized

    ERIC Educational Resources Information Center

    Sternberg, Robert J.

    2009-01-01

    How is it that smart administrators who want to do a good job often find themselves in situations that degenerate into confrontation and, ultimately, termination? In this article, the author discusses why in terms of a model of leadership--which he refers to it as WICS, an acronym for wisdom, intelligence and creativity synthesized. He describes…

  16. Neuroanatomical Correlates of Intelligence

    ERIC Educational Resources Information Center

    Luders, Eileen; Narr, Katherine L.; Thompson, Paul M.; Toga, Arthur W.

    2009-01-01

    With the advancement of image acquisition and analysis methods in recent decades, unique opportunities have emerged to study the neuroanatomical correlates of intelligence. Traditional approaches examining global measures have been complemented by insights from more regional analyses based on pre-defined areas. Newer state-of-the-art approaches…

  17. Priming Ability Emotional Intelligence

    ERIC Educational Resources Information Center

    Schutte, Nicola S.; Malouff, John M.

    2012-01-01

    Two studies examined whether priming self-schemas relating to successful emotional competency results in better emotional intelligence performance. In the first study participants were randomly assigned to a successful emotional competency self-schema prime condition or a control condition and then completed an ability measure of emotional…

  18. Artificial intelligence and robotics

    SciTech Connect

    Peden, I.C.; Braddock, J.V.; Brown, W.; Langendorf, R.M.

    1982-09-01

    This report examines the state-of-the-art in artificial intelligence and robotics technologies and their potential in terms of Army needs. Assessment includes battlefield technology, research and technology insertions, management considerations and recommendations related to research and development personnel, and recommendations regarding the Army's involvement in the automated plant.

  19. Metacognition, Intelligence and Giftedness.

    ERIC Educational Resources Information Center

    Shore, Bruce M.; Dover, Arlene C.

    1987-01-01

    The triarchic theory of intelligence (Sternberg et al.) includes three types of intellectual elements: metacomponents, performance components, and knowledge-acquisition components. Recent research on metacognition and giftedness and on availability and flexibility of cognitive style indicates that interaction among all these elements may provide a…

  20. Intelligence control systems

    NASA Technical Reports Server (NTRS)

    Saridis, G. N.

    1980-01-01

    The evolution of ideas of intelligent controls and their application to high level man machine interactive systems like general purpose manipulators, industrial robots, prosthetic devices for amputees, and orthotic devices for paralyzed persons are discussed. Some case studies are presented to demonstrate the feasibility of the approach.

  1. Artificial intelligence. Second edition

    SciTech Connect

    Winston, P.H.

    1984-01-01

    This book introduces the basic concepts of the field of artificial intelligence. It contains material covering the latest advances in control, representation, language, vision, and problem solving. Problem solving in design and analysis systems is addressed. Mitcell's version-space learning procedure, Morevec's reduced-images stereo procedure, and the Strips problem solver are covered.

  2. Multiple Intelligences Meet Standards.

    ERIC Educational Resources Information Center

    Greenhawk, Jan

    1997-01-01

    In the five years since a Trappe, Maryland elementary school put Gardner's multiple-intelligences theory into practice, students' overall achievement and confidence have risen substantially. Specialists helped teachers develop standards for grading students' art work and oral presentations. To prepare students for state assessments, written…

  3. Evolution & Intelligent Design

    ERIC Educational Resources Information Center

    Staver, John R.

    2003-01-01

    Advocates of Intelligent Design (ID) theory argue that evolution is a theory in crisis, ID is a legitimate scientific theory, and biology teachers should teach the controversy. Supporters of evolutionary theory testify that ID is a religious, not scientific, concept, and evolution is in no danger of bankruptcy, having survived 140 years of…

  4. Artificial Intelligence in Education.

    ERIC Educational Resources Information Center

    Ruyle, Kim E.

    Expert systems have made remarkable progress in areas where the knowledge of an expert can be codified and represented, and these systems have many potentially useful applications in education. Expert systems seem "intelligent" because they do not simply repeat a set of predetermined questions during a consultation session, but will have a reason…

  5. Profiles of Intelligence.

    ERIC Educational Resources Information Center

    Vialle, Wilma

    1994-01-01

    Describes an eight-month study conducted in five day care centers for children of impoverished families, using Gardner's theory of Multiple Intelligences as a framework to train the day care providers and to work with preschool children. Suggests that Gardner's framework is productive for all children, and is particularly applicable to children…

  6. Artificial intelligence within AFSC

    NASA Technical Reports Server (NTRS)

    Gersh, Mark A.

    1990-01-01

    Information on artificial intelligence research in the Air Force Systems Command is given in viewgraph form. Specific research that is being conducted at the Rome Air Development Center, the Space Technology Center, the Human Resources Laboratory, the Armstrong Aerospace Medical Research Laboratory, the Armamant Laboratory, and the Wright Research and Development Center is noted.

  7. Robotic Intelligence Kernel: Visualization

    Energy Science and Technology Software Center (ESTSC)

    2009-09-16

    The INL Robotic Intelligence Kernel-Visualization is the software that supports the user interface. It uses the RIK-C software to communicate information to and from the robot. The RIK-V illustrates the data in a 3D display and provides an operating picture wherein the user can task the robot.

  8. Knowledge formalization of intelligent building

    NASA Astrophysics Data System (ADS)

    Žáček, Martin

    2016-06-01

    This article aim is understanding the basic knowledge about an intelligent building. The notion of the intelligent building can be called any building equipped with computer and communication technology, which can automatically respond to internal or external stimuli. The result of the intelligent building is an automated and foreseeing of activities that enable to reduce operating costs and increase comfort. The best way to use the intelligent building is for a low-energy building, a passive building, or for building with high savings. The output of this article is the formalization of basic knowledge of the intelligent building by RDF graph.

  9. 77 FR 2437 - Special Conditions: Gulfstream Aerospace Corporation, Model GVI Airplane; Rechargeable Lithium...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-01-18

    ... Privacy Act Statement can be found in the Federal Register published on April 11, 2000 (65 FR 19477-19478...; Rechargeable Lithium Batteries and Rechargeable Lithium- Battery Systems AGENCY: Federal Aviation... batteries and rechargeable lithium-battery systems. The applicable airworthiness regulations do not...

  10. Physical Intelligent Sensors

    NASA Technical Reports Server (NTRS)

    Bandhil, Pavan; Chitikeshi, Sanjeevi; Mahajan, Ajay; Figueroa, Fernando

    2005-01-01

    This paper proposes the development of intelligent sensors as part of an integrated systems approach, i.e. one treats the sensors as a complete system with its own sensing hardware (the traditional sensor), A/D converters, processing and storage capabilities, software drivers, self-assessment algorithms, communication protocols and evolutionary methodologies that allow them to get better with time. Under a project being undertaken at the NASA s Stennis Space Center, an integrated framework is being developed for the intelligent monitoring of smart elements. These smart elements can be sensors, actuators or other devices. The immediate application is the monitoring of the rocket test stands, but the technology should be generally applicable to the Integrated Systems Health Monitoring (ISHM) vision. This paper outlines progress made in the development of intelligent sensors by describing the work done till date on Physical Intelligent Sensors (PIS). The PIS discussed here consists of a thermocouple used to read temperature in an analog form which is then converted into digital values. A microprocessor collects the sensor readings and runs numerous embedded event detection routines on the collected data and if any event is detected, it is reported, stored and sent to a remote system through an Ethernet connection. Hence the output of the PIS is data coupled with confidence factor in the reliability of the data which leads to information on the health of the sensor at all times. All protocols are consistent with IEEE 1451.X standards. This work lays the foundation for the next generation of smart devices that have embedded intelligence for distributed decision making capabilities.

  11. Drain discharge monitoring to estimate plot scale groundwater recharge

    NASA Astrophysics Data System (ADS)

    Di Ciacca, Antoine; Leterme, Bertrand; Jacques, Diederik; Vanderborght, Jan

    2016-04-01

    Spatially and temporally distributed representation of groundwater recharge is known as an important issue in hydrogeological modelling. Therefore, monitored groundwater recharge data are crucial to parameterize and/or validate groundwater flow models. Generally, river base flow measurements are used for this purpose with the assumption that these catchment-scale spatially aggregated measurements are suitable to assess the internal catchment behaviour. However, the signal of different soil and vegetation types is lost and this limits our ability to validate mechanistic, process-based models used at the plot scale. A suitable alternative in lowland drained areas could lie in monitoring drain discharge. The present poster describes the set-up of such a monitoring device in a ditch drain located in the Kleine Nete catchment (Belgium). To calculate groundwater recharge rate from drain discharge monitoring, some intermediate steps are required. The contributing area has to be delimited and the contribution of recharge water from this area has to be separated from other possible sources (e.g. deeper groundwater flow, run-off). To handle this, some assumptions regarding the features of the plot and some additional measurements have been used.

  12. Effects of recharge wells and flow barriers on seawater intrusion.

    PubMed

    Luyun, Roger; Momii, Kazuro; Nakagawa, Kei

    2011-01-01

    The installation of recharge wells and subsurface flow barriers are among several strategies proposed to control seawater intrusion on coastal groundwater systems. In this study, we performed laboratory-scale experiments and numerical simulations to determine the effects of the location and application of recharge wells, and of the location and penetration depth of flow barriers, on controlling seawater intrusion in unconfined coastal aquifers. We also compared the experimental results with existing analytical solutions. Our results showed that more effective saltwater repulsion is achieved when the recharge water is injected at the toe of the saltwater wedge. Point injection yields about the same repulsion compared with line injection from a screened well for the same recharge rate. Results for flow barriers showed that more effective saltwater repulsion is achieved with deeper barrier penetration and with barriers located closer to the coast. When the flow barrier is installed inland from the original toe position however, saltwater intrusion increases with deeper barrier penetration. Saltwater repulsion due to flow barrier installation was found to be linearly related to horizontal barrier location and a polynomial function of the barrier penetration depth. PMID:20533955

  13. WASTEWATER CONTAMINATE REMOVAL FOR GROUNDWATER RECHARGE AT WATER FACTORY 21

    EPA Science Inventory

    This is the second report in a series which describes the performance of Water Factory 21, a 0.66 cu m/s advanced wastewater treatment plant designed to reclaim secondary effluent from a municipal wastewater treatment plant so that it can be used for injection and recharge of a g...

  14. PRINCIPALS OF ORGANIC CONTAMINANT BEHAVIOR DURING ARTIFICIAL RECHARGE

    EPA Science Inventory

    The behavior of a variety of organic contaminants having low molecular weight has been observed during groundwater recharge with reclaimed water. The evidence is site-specific, but is believed to have broader implications regarding the general behavior of organic contaminants in ...

  15. Preferred water flow and localised recharge in a variable regolith

    NASA Astrophysics Data System (ADS)

    Johnston, Colin D.

    1987-10-01

    The mechanisms of water flow and recharge to groundwater were investigated in a deep clayey regolith in southwest Western Australia. A 700 m 2 area was intensively studied for a period of two years. Vertical distributions of natural chloride in thirteen profiles up to 31 m deep were used to estimate the distribution of vertical soil-water flux density in the 16 m unsaturated zone and rates of recharge to groundwater. Groundwater dynamics were monitored using ten single and four multilevel piezometers. The regolith showed marked heterogeneity over horizontal and vertical distances of only a few metres. This resulted in complex patterns of water and solute movement through the profiles. Over most of the experimental area, vertical water flux density below 5 m in the unsaturated zone was from 2.2 to 7.2 mm yr -1. However, within a relatively small portion of the site, vertical soil-water flux density was 50-100 mm yr -1 throughout the unsaturated zone. This flux more closely matched the apparent rate of recharge to groundwater. The area of preferred flow is apparently due to a discontinuity within the regolith. A groundwater mound was seen to develop below the localised recharge area within 12-14 h of intense rainstorms, and then dissipated over a period of 2-4 days.

  16. A device for recharging evaporation sources in ultrahigh vacuum systems

    NASA Astrophysics Data System (ADS)

    Fuenzalida, V. M.; Grahmann, C. R.; Herrera, C.

    1998-08-01

    We describe a device capable of recharging the evaporation sources of ultrahigh vacuum systems without breaking the vacuum. The device is operated through the same load lock used for the introduction of the substrates and is able to place grains of materials on resistively heated boats.

  17. DELINEATING KARST RECHARGE AREAS AT ONONDAGA CAVE STATE PARK

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Onondaga Cave State Park is located in the north central portion of the Ozarks near Leasburg, Missouri. The park is known for two extensive cave systems, Onondaga Cave and Cathedral Cave. Both of these cave systems have active streams (1-2 cfs at baseflow) which have unknown recharge areas. As a man...

  18. Estimating High Plains Aquifer Recharge Using Temperature Probes

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The magnitude of recharge through playa wetlands in the High Plains Region of the United States has been debated, but rarely quantified. The ephemeral nature of water in playas makes it difficult and expensive to observe filling and drying/draining cycles. Inexpensive tools are needed to quantify ...

  19. PRIORITY POLLUTANTS IN THE CEDAR CREEK WASTEWATER RECLAMATION - RECHARGE FACILITIES

    EPA Science Inventory

    The Cedar Creek Wastewater Reclamation Plant (CCWRP) located in Nassau County, NY is a 0.24 cu m/s (5.5 mgd) advanced wastewater treatment (AWT) plant designed to produce a high quality effluent suitable for groundwater recharge. The CCWRP was constructed as a demonstration proje...

  20. Managed Aquifer Recharge in Italy: present and prospects.

    NASA Astrophysics Data System (ADS)

    Rossetto, Rudy

    2015-04-01

    On October the 3rd 2014, a one-day Workshop on Managed Aquifer Recharge (MAR) experiences in Italy took place at the GEOFLUID fair in Piacenza. It was organized within the framework of the EIP AG 128 - MAR Solutions - Managed Aquifer Recharge Strategies and Actions and the EU FPVII MARSOL. The event aimed at showcasing present experiences on MAR in Italy while at the same time starting a network among all the Institutions involved. In this contribution, we discuss the state of MAR application in Italy and summarize the outcomes of that event. In Italy aquifer recharge is traditionally applied unintentionally, by increasing riverbank filtration or because of excess irrigation. A certain interest for artificial recharge of aquifers arose at the end of the '70s and the beginning of the '80s and tests have been carried out in Tuscany, Veneto and Friuli Venezia Giulia. During the last years some projects on aquifer recharge were co-financed by the European Commission mainly through the LIFE program. Nearly all of them use the terminology of artificial recharge instead of MAR. They are: - TRUST (Tool for regional - scale assessment of groundwater storage improvement in adaptation to climate change, LIFE07 ENV/IT/000475; Marsala 2014); - AQUOR (Implementation of a water saving and artificial recharging participated strategy for the quantitative groundwater layer rebalance of the upper Vicenza's plain - LIFE 2010 ENV/IT/380; Mezzalira et al. 2014); - WARBO (Water re-born - artificial recharge: innovative technologies for the sustainable management of water resources, LIFE10 ENV/IT/000394; 2014). While the TRUST project dealt in general with aquifer recharge, AQUOR and WARBO focused essentially on small scale demonstration plants. Within the EU FPVII-ENV-2013 MARSOL project (Demonstrating Managed Aquifer Recharge as a Solution to Water Scarcity and Drought; 2014), a dedicated monitoring and decision support system is under development to manage recharge at a large scale

  1. LOCALIZED RECHARGE INFLUENCES ON MTBE TRANSPORT AND WELL PLACEMENT CONSIDERATIONS

    EPA Science Inventory

    Vertical characterization of a gasoline release site at East Patchogue, New York showed that methyl tert-butyl ether (MTBE) and aromatic plumes "dived" as they passed beneath a sand pit. That this behavior was caused by aquifer recharge was shown by two pieces of evidence. Fir...

  2. Effects of variations in recharge on groundwater quality

    USGS Publications Warehouse

    Whittemore, D.O.; McGregor, K.M.; Marotz, G.A.

    1989-01-01

    The predominant regional effect of recharge on municipal groundwater quality in Kansas is the dilution of mineralized water in aquifers with relatively shallow water tables. The individual dissolved constituents contributing most to the water-quality variations are sulfate and chloride, and the calcium and sodium accompanying them, which are derived from the dissolution of evaporite minerals within the aquifer or from saline formation water in bedrock underlying the aquifer. The relationship between recharge and groundwater-quality variation can be quantified by associating certain climatic indices, especially the Palmer Drought Index, with quality observations. The response time of the maximum water-quality change relative to the occurrence of drought or substantial recharge ranges from a month to 3 years depending on the aquifer characteristics, and is generally proportional to the saturated thickness and specific yield. The response time is also affected by discharge to and recharge from nearby streams and by the well construction, particularly the placement of the screened interval, and pumping stress. ?? 1989.

  3. Electrolytes for rechargeable lithium batteries. Research and development technical report

    SciTech Connect

    Hunger, H.F.

    1981-09-01

    Theoretical considerations predict increased stability of cyclic ethers and diethers against reductive cleavage by lithium if the ethers have 2 methyl substitution. Diethers are solvents with low viscosity which are desirable for high rate rechargeable lithium batteries. Synergistic, mixed solvent effects increase electrolyte conductance and rate capability of lithium intercalating cathodes.

  4. Implantable wireless battery recharging system for bladder pressure chronic monitoring.

    PubMed

    Young, Darrin J; Cong, Peng; Suster, Michael A; Damaser, Margot

    2015-11-21

    This paper presents an implantable wireless battery recharging system design for bladder pressure chronic monitoring. The wireless recharging system consists of an external 15 cm-diameter 6-turn powering coil and a silicone-encapsulated implantable rectangular coil with a dimension of 7 mm × 17 mm × 2.5 mm and 18 turns, which further encloses a 3 mm-diameter and 12 mm-long rechargeable battery, two ferrite rods, an ASIC, and a tuning capacitor. For a constant recharging current of 100 μA, an RF power of 700 μW needs to be coupled into the implantable module through the tuned coils. Analyses and experiments confirm that with the two coils aligned coaxially or with a 6 cm axial offset and a tilting angle of 30°, an external power of 3.5 W or 10 W is required, respectively, at an optimal frequency of 3 MHz to cover a large implant depth of 20 cm. PMID:26419677

  5. Oxygen electrodes for rechargeable alkaline fuel cells. II

    NASA Technical Reports Server (NTRS)

    Swette, L.; Kackley, N.

    1990-01-01

    The primary objective of this program is the investigation and development of electrocatalysts and supports for the positive electrode of moderate temperature, single-unit, rechargeable alkaline fuel cells. Approximately six support materials and five catalyst materials have been identified to date for further development.

  6. Oxygen electrodes for rechargeable alkaline fuel cells, 3

    NASA Technical Reports Server (NTRS)

    Swette, L.; Kackley, N.; Mccatty, S. A.

    1991-01-01

    The investigation and development of electrocatalysts and supports for the positive electrode of moderate temperature single unit rechargeable alkaline fuel cells is described. Focus is on chemical and electrochemical stability and O2 reduction/evolution activity of the electrode in question.

  7. Oxygen electrodes for rechargeable alkaline fuel cells-II

    NASA Technical Reports Server (NTRS)

    Swette, L.; Kackley, N.

    1989-01-01

    The primary objective of this program is the investigation and development of electrocatalysts and supports for the positive electrode of moderate temperature single-unit rechargeable alkaline fuel cells. Approximately six support materials and five catalyst materials have been identified to date for further development.

  8. A novel high energy density rechargeable lithium/air battery.

    PubMed

    Zhang, Tao; Imanishi, Nobuyuki; Shimonishi, Yuta; Hirano, Atsushi; Takeda, Yasuo; Yamamoto, Osamu; Sammes, Nigel

    2010-03-14

    A novel rechargeable lithium/air battery was fabricated, which consisted of a water-stable multilayer Li-metal anode, acetic acid-water electrolyte, and a fuel-cell analogous air-diffusion cathode and possessed a high energy density of 779 W h kg(-1), twice that of the conventional graphite/LiCoO(2) cell. PMID:20177608

  9. Moderate temperature rechargeable NaNiS2 cells

    NASA Technical Reports Server (NTRS)

    Abraham, K. M.

    1983-01-01

    A rechargeable sodium battery of the configuration, liquid Na/beta double prime -Al2O3/molten NaAlCl4, NiS2, operating in the temperature range of 170 to 190 C, is described. This battery is capable of delivering or = to 50 W-hr/1b and 1000 deep discharge/charge cycles.

  10. 24. APPERATUS FOR RECHARGING MINERS' HEADLAMPS, LOCATED AGAINST THE NORTH ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    24. APPERATUS FOR RECHARGING MINERS' HEADLAMPS, LOCATED AGAINST THE NORTH WALL OF THE LOWER LEVEL OF THE CHIPPY HOIST HOUSE, LOOKING NORTHWEST. SOME OF THE BATTERY PACKS ARE STILL IN PLACE, AND ONE HAS A LAMP HANGING AT THE END - Butte Mineyards, Anselmo Mine, Butte, Silver Bow County, MT

  11. Creating innovative departments.

    PubMed

    von Segesser, Ludwig K

    2004-12-01

    'Creating an innovative department' as an objective implies further improvements in organization, function, and progression of a surgical unit active in patient care, research, and education. It is of prime importance to stress here the mutual benefits of patient care, research (the basis for future patient care) and education (the channel for training health care professionals in future patient care). Neither innovation (from latin innovare: to renew, revive) nor creation (from latin creare: to make, produce) is something that will fall from heaven without effort any time soon. Hence, a pro-active attitude towards progress is indicated. This requires searching for new ideas, allocation of resources, finding allies, getting focussed, and being persistent. One word says it all: WORK! PMID:15776856

  12. Creating With Carbon

    NASA Technical Reports Server (NTRS)

    2003-01-01

    A subsidiary of SI Diamond Technology, Inc., Applied Nanotech, of Austin, Texas, is creating a buzz among various technology firms and venture capital groups interested in the company s progressive research on carbon-related field emission devices, including carbon nanotubes, filaments of pure carbon less than one ten-thousandth the width of human hair. Since their discovery in 1991, carbon nanotubes have gained considerable attention due to their unique physical properties. For example, a single perfect carbon nanotube can range from 10 to 100 times stronger than steel, per unit weight. Recent studies also indicate that the nanotubes may be the best heat-conducting material in existence. These properties, combined with the ease of growing thin films or nanotubes by a variety of deposition techniques, make the carbon-based material one of the most desirable for cold field emission cathodes.

  13. Creating the living brand.

    PubMed

    Bendapudi, Neeli; Bendapudi, Venkat

    2005-05-01

    It's easy to conclude from the literature and the lore that top-notch customer service is the province of a few luxury companies and that any retailer outside that rarefied atmosphere is condemned to offer mediocre service at best. But even companies that position themselves for the mass market can provide outstanding customer-employee interactions and profit from them, if they train employees to reflect the brand's core values. The authors studied the convenience store industry in depth and focused on two that have developed a devoted following: QuikTrip (QT) and Wawa. Turnover rates at QT and Wawa are 14% and 22% respectively, much lower than the typical rate in retail. The authors found six principles that both firms embrace to create a strong culture of customer service. Know what you're looking for: A focus on candidates' intrinsic traits allows the companies to hire people who will naturally bring the right qualities to the job. Make the most of talent: In mass-market retail, talent is generally viewed as a commodity, but that outlook becomes a self-fulfilling prophesy. Create pride in the brand: Service quality depends directly on employees' attachment to the brand. Build community: Wawa and QT have made concerted efforts to build customer loyalty through a sense of community. Share the business context: Employees need a clear understanding of how their company operates and how it defines success. Satisfy the soul: To win an employee's passionate engagement, a company must meet his or her needs for security, esteem, and justice. PMID:15929408

  14. Creating Griffith Observatory

    NASA Astrophysics Data System (ADS)

    Cook, Anthony

    2013-01-01

    Griffith Observatory has been the iconic symbol of the sky for southern California since it began its public mission on May 15, 1935. While the Observatory is widely known as being the gift of Col. Griffith J. Griffith (1850-1919), the story of how Griffith’s gift became reality involves many of the people better known for other contributions that made Los Angeles area an important center of astrophysics in the 20th century. Griffith began drawing up his plans for an observatory and science museum for the people of Los Angeles after looking at Saturn through the newly completed 60-inch reflector on Mt. Wilson. He realized the social impact that viewing the heavens could have if made freely available, and discussing the idea of a public observatory with Mt. Wilson Observatory’s founder, George Ellery Hale, and Director, Walter Adams. This resulted, in 1916, in a will specifying many of the features of Griffith Observatory, and establishing a committee managed trust fund to build it. Astronomy popularizer Mars Baumgardt convinced the committee at the Zeiss Planetarium projector would be appropriate for Griffith’s project after the planetarium was introduced in Germany in 1923. In 1930, the trust committee judged funds to be sufficient to start work on creating Griffith Observatory, and letters from the Committee requesting help in realizing the project were sent to Hale, Adams, Robert Millikan, and other area experts then engaged in creating the 200-inch telescope eventually destined for Palomar Mountain. A Scientific Advisory Committee, headed by Millikan, recommended that Caltech Physicist Edward Kurth be put in charge of building and exhibit design. Kurth, in turn, sought help from artist Russell Porter. The architecture firm of John C. Austin and Fredrick Ashley was selected to design the project, and they adopted the designs of Porter and Kurth. Philip Fox of the Adler Planetarium was enlisted to manage the completion of the Observatory and become its

  15. Quantifying Groundwater Recharge During Dynamic Seasonality in Cold Climates

    NASA Astrophysics Data System (ADS)

    Pasha, E.; Rudolph, D. L.

    2015-12-01

    Estimating groundwater recharge in cold climates, during periods of dynamic seasonality such as winter and spring freshets is challenging due to subsurface heterogeneities and the complexity of vadose zone processes under partially frozen conditions. In order to obtain robust recharge estimates, numerical models simulating these complex processes need to be based on reliable parameter estimates and closely calibrated to field observations. This study focuses on quantifying recharge under an ephemeral stream that develops in the vicinity of a municipal well field during spring and winter freshets at a site in Southern Ontario. Temperature and moisture content profiles in the vadose zone were obtained during the 2015 spring melt at three different locations, using a variety of hydrogeological instruments. Temperature thermisters and Tid-Bit transducers were both installed at 15-30 cm spacings to the depth of the water table in order to compare and calibrate the results. Similarly, Time Domain Reflectometry probes were placed to the depth of the water table and the results were calibrated to daily moisture content readings taken with a Neutron Probe. Water table fluctuations were monitored and regular water samples were taken for analysis of geochemistry and isotope fractionation. This data provided the boundary conditions for the numerical model (Hydrus 1D) and allowed for its calibration and validation. Regions of rapid infiltration were observed at the site, as well as steep temperature gradients that could be used as a tracer for estimating recharge in cold climates. The geochemistry and isotope fractionation results provided support of surface water groundwater interaction within event based time periods predicted by the numerical models. Furthermore, the surface water samples were found to have high concentrations of microbial indicator species, and therefore the intense recharge phenomena observed at the site has significant implications to groundwater

  16. Defining Flood Recharge Processes: Lower Bill Williams River, Western Arizona

    NASA Astrophysics Data System (ADS)

    Simpson, S. C.; Meixner, T.; Hogan, J.

    2008-12-01

    River networks provide hydrologic connections between upland and headwater catchments and downstream reaches. In arid and semi-arid regions, full connectivity of a river system is rare and moments of connection may only occur during large flood events. Here we investigate the Bill Williams River, among the most arid river basins in the United States. The aridity of this system-and the associated lack of complicating hillslope processes adjacent to the river-provides a unique opportunity to study flood recharge processes in relative isolation. During all but the highest flows, the river infiltrates completely at the east end of Planet Valley and reemerges at the west end where it enters the Bill Williams River National Wildlife Refuge (NWR). Determining the source of baseflow in the lower Bill Williams/NWR, and the residence time of this water in the Planet Valley aquifer, will provide insight into the dependence of streamflow on earlier recharge-inducing floods. Defining this dependence more clearly is the next step toward a detailed knowledge of the long-term, basin-scale impacts of floods on water quality and quantity. To determine the impact of floods and the recharge they induce, surface and groundwater samples were collected during high and low flows throughout the basin from April 2007 through the present. Isotopic (δ18OH2O, δ2HH2O) and chemical differences (most notably SO4) in streamflow and groundwater along the system indicate the importance of older groundwater in NWR baseflow-either in the form of prior flood recharge or influxes from local springs. Sulfate isotope analysis (δ34SSO4, δ18OSO4) is pending for samples throughout the lower basin and this information should allow streamflow sources to be defined and quantified. This study provides a better characterization of the hydrologic and hydrochemical behavior of a Basin and Range river, and allows the effects of flood recharge processes to be more clearly defined at the basin scale.

  17. Groundwater suitability recharge zones modelling - A GIS application

    NASA Astrophysics Data System (ADS)

    Dabral, S.; Bhatt, B.; Joshi, J. P.; Sharma, N.

    2014-11-01

    Groundwater quality in Gujarat state is highly variable and due to multiplicity of factors viz. influenced by direct sea water encroachment, inherent sediment salinity, water logging, overexploitation leading to overall deterioration in ground water quality, coupled with domestic and industrial pollution etc. The groundwater scenario in the state is not very encouraging due to imbalance between recharge and groundwater exploitation. Further, the demand for water has increased manifold owing to agricultural, industrial and domestic requirement and this has led to water scarcity in many parts of the state, which is likely to become more severe in coming future due to both natural and manmade factors. Therefore, sustainable development of groundwater resource requires precise quantitative assessment based on reasonably valid scientific principles. Hence, delineation of groundwater potential zones (GWPZ), has acquired great significance. The present study focuses on the integrated Geospatial and Multi-Criteria Decision Making (MCDM) techniques to determine the most important contributing factors that affect the groundwater resources and also to delineate the potential zones for groundwater recharge. The multiple thematic layers of influencing parameters viz. geology, geomorphology, soil, slope, drainage density and land use, weightages were assigned to the each factor according to their relative importance as per subject experts opinion owing to the natural setup of the region. The Analytical Hierarchy Process (AHP) was applied to these factors and potential recharge zones were identified. The study area for the assessment of groundwater recharge potential zones is Mahi-Narmada inter-stream region of Gujarat state. The study shows that around 28 % region has the excellent suitability of the ground water recharge.

  18. Enhanced recharge and karst, Edwards aquifer, south central Texas

    SciTech Connect

    Hammond, W.W. Jr. . Center for Water Research)

    1993-02-01

    Enhanced recharge is a water management strategy which can add significant quantities of ground water to the available water resources of the San Antonio region by utilizing the immense storage capacity of the unconfined zone of the Edwards aquifer. The Edwards aquifer presently is the sole source of water for a population of over 1,200,000, meeting public supply, industrial, and irrigation demands over a wide area of south central Texas. Valdina Farms Sinkhole is located adjacent to Seco Creek in Medina County and is in the recharge zone of the aquifer. Initial studies indicated that the sinkholes was capable of taking flood flows from Seco Creek and functioning as a recharge structure. Stream channels in the cavern system associated with Valdina Farms Sinkhole were incised into cave deposits and flood debris was present in the caverns at some distance from the sinkhole. Chemical analyses of samples of water from the cave and from nearby wells showed nitrate concentrations that decreased with distance from the cavern. Gradient of the potentiometric surface in the vicinity of the cave was very low, indicating high values of hydraulic conductivity for the aquifer. Based on evidence from these field studies a dam was constructed in 1982 on Seco Creek and a flood diversion channel was excavated to the sinkhole. Reservoir capacity is 2 acre-feet and design recharge rate is 3.8-6.7 m[sup 3]/sec. Annual recharge at the sinkhole has varied from 0 during periods of low runoff to 12,915 acre-feet.

  19. Groundwater recharge dynamics in unsaturated fractured chalk: a case study

    NASA Astrophysics Data System (ADS)

    Cherubini, Claudia; Pastore, Nicola; Giasi, Concetta I.; Allegretti, Nicolaetta M.

    2016-04-01

    The heterogeneity of the unsaturated zone controls its hydraulic response to rainfall and the extent to which pollutants are delayed or attenuated before reaching groundwater. It plays therefore a very important role in the recharge of aquifers and the transfer of pollutants because of the presence of temporary storage zones and preferential flows. A better knowledge of the physical processes in the unsaturated zone would allow an improved assessment of the natural recharge in a heterogeneous aquifer and of its vulnerability to surface-applied pollution. The case study regards the role of the thick unsaturated zone of the Cretaceous chalk aquifer in Picardy (North of France) that controls the hydraulic response to rainfall. In the North Paris Basin, much of the recharge must pass through a regional chalk bed that is composed of a porous matrix with embedded fractures. Different types of conceptual models have been formulated to explain infiltration and recharge processes in the unsaturated fractured rock. The present study analyses the episodic recharge in fractured Chalk aquifer using the kinematic diffusion theory to predict water table fluctuation in response to rainfall. From an analysis of the data, there is the evidence of 1) a seasonal behavior characterized by a constant increase in the water level during the winter/spring period and a recession period, 2) a series of episodic behaviors during the summer/autumn. Kinematic diffusion models are useful for predict preferential fluxes and dynamic conditions. The presented approach conceptualizes the unsaturated flow as a combination of 1) diffusive flow refers to the idealized portion of the pore space of the medium within the flow rate is driven essentially by local gradient of potential; 2) preferential flow by which water moves across macroscopic distances through conduits of macropore length.

  20. Global transpiration, recharge and runoff tracked with stable isotopes

    NASA Astrophysics Data System (ADS)

    Jasechko, S.

    2015-12-01

    The transformations of precipitation into soil-, ground- or stream-water constitute fundamental components of the hydrologic cycle. Hydrometric data are well suited to track propagations of pressures through the landscape, but tell us little about the transport of water itself. Conversely, isotopic data track movements of molecules, providing quantitative insights into subsurface processes. This presentation reviews recent uses of isotopic data to quantify the velocity, storage and mixing of precipitation as it flushes into plants (1. transpiration), aquifers (2. recharge) and streams (3. runoff). (1) Plant transpiration comprises the largest flux of fresh water from the continents, exceeding global river flows by a factor of ~1.5. Mounting evidence suggests that water used by plants is poorly connected to water flowing into streams and aquifers, contrasting most earth system model parameterizations. (2) This partitioning of precipitation into "blue" (recharge, runoff) and "green" (transpiration) water storages is further evidenced by relating precipitation and groundwater isotope contents. Global precipitation-groundwater isotope data show that snowmelt pulses (extratropics) and intensive rainfall (tropics) lead to disproportionately large groundwater recharge fluxes—that is, recharge/precipitation ratios exceeding the local annual average. Across the low latitudes, these results mean that the ongoing intensification of precipitation brought on by global warming may serve to promote groundwater recharge in the tropics, where, by 2050, half of the world's population is projected to live. (3) This presentation concludes by relating precipitation and streamflow isotope contents to show that ~1/3 of global river discharges are generated by precipitation that reaches the stream in less than 3 months (i.e., "young water" in rivers). Substantial and pervasive young, month(s)-old water in global rivers means that biogeochemical processes taking place in the critical

  1. Multidimensional visualization and browsing for intelligence analysis

    SciTech Connect

    Crow, V.; Pottier, M.; Thomas, J.

    1994-09-01

    Visualization tools have been invaluable in the process of scientific discovery by providing researchers with insights gained through graphical tools and techniques. At PNL, the Multidimensional Visualization and Advanced Browsing (MVAB) project is extending visualization technology to the problems of intelligence analysis of textual documents by creating spatial representations of textual information. By representing an entire corpus of documents as points in a coordinate space of two or more dimensions, the tools developed by the MVAB team give the analyst the ability to quickly browse the entire document base and determine relationships among documents and publication patterns not readily discernible through traditional lexical means.

  2. Applying business intelligence innovations to emergency management.

    PubMed

    Schlegelmilch, Jeffrey; Albanese, Joseph

    2014-01-01

    The use of business intelligence (BI) is common among corporations in the private sector to improve business decision making and create insights for competitive advantage. Increasingly, emergency management agencies are using tools and processes similar to BI systems. With a more thorough understanding of the principles of BI and its supporting technologies, and a careful comparison to the business model of emergency management, this paper seeks to provide insights into how lessons from the private sector can contribute to the development of effective and efficient emergency management BI utilisation. PMID:25193454

  3. The twelfth annual Intelligent Ground Vehicle Competition: team approaches to intelligent vehicles

    NASA Astrophysics Data System (ADS)

    Theisen, Bernard L.; Maslach, Daniel

    2004-10-01

    The Intelligent Ground Vehicle Competition (IGVC) is one of three, unmanned systems, student competitions that were founded by the Association for Unmanned Vehicle Systems International (AUVSI) in the 1990s. The IGVC is a multidisciplinary exercise in product realization that challenges college engineering student teams to integrate advanced control theory, machine vision, vehicular electronics, and mobile platform fundamentals to design and build an unmanned system. Both U.S. and international teams focus on developing a suite of dual-use technologies to equip ground vehicles of the future with intelligent driving capabilities. Over the past 12 years, the competition has challenged undergraduate, graduate and Ph.D. students with real world applications in intelligent transportation systems, the military and manufacturing automation. To date, teams from over 43 universities and colleges have participated. This paper describes some of the applications of the technologies required by this competition and discusses the educational benefits. The primary goal of the IGVC is to advance engineering education in intelligent vehicles and related technologies. The employment and professional networking opportunities created for students and industrial sponsors through a series of technical events over the three-day competition are highlighted. Finally, an assessment of the competition based on participant feedback is presented.

  4. The 18th Annual Intelligent Ground Vehicle Competition: trends and influences for intelligent ground vehicle control

    NASA Astrophysics Data System (ADS)

    Theisen, Bernard L.; Frederick, Philip; Smuda, William

    2011-01-01

    The Intelligent Ground Vehicle Competition (IGVC) is one of four, unmanned systems, student competitions that were founded by the Association for Unmanned Vehicle Systems International (AUVSI). The IGVC is a multidisciplinary exercise in product realization that challenges college engineering student teams to integrate advanced control theory, machine vision, vehicular electronics and mobile platform fundamentals to design and build an unmanned system. Teams from around the world focus on developing a suite of dual-use technologies to equip ground vehicles of the future with intelligent driving capabilities. Over the past 18 years, the competition has challenged undergraduate, graduate and Ph.D. students with real world applications in intelligent transportation systems, the military and manufacturing automation. To date, teams from over 75 universities and colleges have participated. This paper describes some of the applications of the technologies required by this competition and discusses the educational benefits. The primary goal of the IGVC is to advance engineering education in intelligent vehicles and related technologies. The employment and professional networking opportunities created for students and industrial sponsors through a series of technical events over the four-day competition are highlighted. Finally, an assessment of the competition based on participation is presented.

  5. Classification of ground-water recharge potential in three parts of Santa Cruz County, California

    USGS Publications Warehouse

    Muir, K.S.; Johnson, Michael J.

    1979-01-01

    Ground-water recharge potential was classified in the Santa Cruz coastal area, North-central area, and Soquel-Aptos area in Santa Cruz County, Calif., for three data elements that affect recharge; slope, soils, and geology. Separate numerical maps for each element were composited into a single numerical map using a classification system that ranked the numbers into areas of good , fair, and poor recharge potential. Most of the Santa Cruz coastal area and the Norht-central area have a poor recharge potential, and much of the Soquel-Aptos area has a good to fair recharge potential. (Kosco-USGS)

  6. Creating new market space.

    PubMed

    Kim, W C; Mauborgne, R

    1999-01-01

    Most companies focus on matching and beating their rivals. As a result, their strategies tend to take on similar dimensions. What ensues is head-to-head competition based largely on incremental improvements in cost, quality, or both. The authors have studied how innovative companies break free from the competitive pack by staking out fundamentally new market space--that is, by creating products or services for which there are no direct competitors. This path to value innovation requires a different competitive mind-set and a systematic way of looking for opportunities. Instead of looking within the conventional boundaries that define how an industry competes, managers can look methodically across them. By so doing, they can find unoccupied territory that represents real value innovation. Rather than looking at competitors within their own industry, for example, managers can ask why customers make the trade-off between substitute products or services. Home Depot, for example, looked across the substitutes serving home improvement needs. Intuit looked across the substitutes available to individuals managing their personal finances. In both cases, powerful insights were derived from looking at familiar data from a new perspective. Similar insights can be gleaned by looking across strategic groups within an industry; across buyer groups; across complementary product and service offerings; across the functional-emotional orientation of an industry; and even across time. To help readers explore new market space systematically, the authors developed a tool, the value curve, that can be used to represent visually a range of value propositions. PMID:10345394

  7. Creating alternatives in science

    PubMed Central

    2009-01-01

    Traditional scientist training at the PhD level does not prepare students to be competitive in biotechnology or other non-academic science careers. Some universities have developed biotechnology-relevant doctoral programmes, but most have not. Forming a life science career club makes a statement to university administrators that it is time to rework the curriculum to include biotechnology-relevant training. A career club can supplement traditional PhD training by introducing students to available career choices, help them develop a personal network and teach the business skills that they will need to be competitive in science outside of academia. This paper is an instructional guide designed to help students create a science career club at their own university. These suggestions are based on the experience gained in establishing such a club for the Graduate School at the University of Colorado Denver. We describe the activities that can be offered, the job descriptions for the offices required and potential challenges. With determination, a creative spirit, and the guidance of this paper, students should be able to greatly increase awareness of science career options, and begin building the skills necessary to become competitive in non-academic science. PMID:20161069

  8. Creating Sample Plans

    SciTech Connect

    Spears, Joseph H.; Seebode, Linda C.

    1999-03-24

    The program has been designed to increase the accuracy and reduce the preparation time for completing sampling plans. It consists of our files 1. Analyte/Combination (AnalCombo) A list of analytes and combinations of analytes that can be requested of the onsite and offsite labs. Whenever a specific combination of analytes or suite names appear on the same line as the code number, this indicates that one sample can be placed in one bottle to be analyzed for these paremeters. A code number is assigned for each analyte and combination of analytes. 2. Sampling Plans Database (SPDb) A database that contains all of the analytes and combinations of analytes along with the basic information required for preparing a sample plan. That basic information includes the following fields; matrix, hold time, preservation, sample volume, container size, if the bottle caps are taped, acceptable choices. 3. Sampling plans create (SPcreate) a file that will lookup information from the Sampling Plans Database and the Job Log File (JLF98) A major database used by Sample Managemnet Services for recording more than 100 fields of information.

  9. Creating Sample Plans

    Energy Science and Technology Software Center (ESTSC)

    1999-03-24

    The program has been designed to increase the accuracy and reduce the preparation time for completing sampling plans. It consists of our files 1. Analyte/Combination (AnalCombo) A list of analytes and combinations of analytes that can be requested of the onsite and offsite labs. Whenever a specific combination of analytes or suite names appear on the same line as the code number, this indicates that one sample can be placed in one bottle to bemore » analyzed for these paremeters. A code number is assigned for each analyte and combination of analytes. 2. Sampling Plans Database (SPDb) A database that contains all of the analytes and combinations of analytes along with the basic information required for preparing a sample plan. That basic information includes the following fields; matrix, hold time, preservation, sample volume, container size, if the bottle caps are taped, acceptable choices. 3. Sampling plans create (SPcreate) a file that will lookup information from the Sampling Plans Database and the Job Log File (JLF98) A major database used by Sample Managemnet Services for recording more than 100 fields of information.« less

  10. Self Creating Universe

    NASA Astrophysics Data System (ADS)

    Terry, Bruce

    2001-04-01

    Cosmology has deduced that our existence began 15 billion years ago but that does not constitute a true story. When compared against infinity, the true question one must as is, ‘why did creation begin now (a mere 15 billion give or take years ago) and not at some infinite point before? What could keep the one common original source static for an infinity, and then spring forth into existence?’ Also, accelerators are actually creating atmospheres much like that within quasars, black holes and stars. This destructive/creative environment is not that of original creation, it is of that which occurs in a later stage of cosmic evolution. Knowing that it is only a matter of movement or change, understanding what is moving is the key. Regardless of how much power is used to alter the character of a particle’s matter, it does not make its essence go away, nor does it make the understanding of original essence clearer. To find the true answer of what occurred, one must look back in time and think carefully over the process of elimination to find the original creation of matter, albeit different than that of the later processes. Matter and the physical laws formed themselves in an absolute infinity of blackness prior to light and no Big Bang scenario was necessary.

  11. Transient, spatially-varied recharge for groundwater modeling

    NASA Astrophysics Data System (ADS)

    Assefa, K.; Woodbury, A. D.

    2012-12-01

    This study is aimed at producing spatially and temporally varying groundwater recharge for transient groundwater modeling in a pilot watershed in the North Okanagan, Canada. The recharge modeling is undertaken by using a Richard's equation based finite element code (HYDRUS-1D) [Simunek et al., 2002], ArcGISTM [ESRI, 2011], ROSETTA [Schaap et al., 2001], in situ observations of soil temperature and soil moisture and a long term gridded climate data [Nielsen et al., 2010]. The public version of HYDUS-1D [Simunek et al., 2002] and another beta version with a detailed freezing and thawing module [Hansson et al., 2004] are first used to simulate soil temperature, snow pack and soil moisture over a one year experimental period. Statistical analysis of the results show both versions of HYDRUS-1D reproduce observed variables to the same degree. Correlation coefficients for soil temperature simulation were estimated at 0.9 and 0.8, at depths of 10 cm and 50 cm respectively; and for soil moisture, 0.8 and 0.6 at 10 cm and 50 cm respectively. This and other standard measures of model performance (root mean square error and average error) showed a promising performance of the HYDRUS-1D code in our pilot watershed. After evaluating model performance using field data and ROSETTA derived soil hydraulic parameters, the HYDRUS-1D code is coupled with ArcGISTM to produce spatially and temporally varying recharge maps throughout the Deep Creek watershed. Temporal and spatial analysis of 25 years daily recharge results at various representative points across the study watershed reveal significant temporal and spatial variations; average recharge estimated at 77.8 ± 50.8mm /year. This significant variation over the years, caused by antecedent soil moisture condition and climatic condition, illustrates the common flaw of assigning a constant percentage of precipitation throughout the simulation period. Groundwater recharge modeling has previously been attempted in the Okanagan Basin

  12. Transient,spatially-varied recharge for groundwater modeling

    NASA Astrophysics Data System (ADS)

    Assefa, Kibreab; Woodbury, Allan

    2013-04-01

    This study is aimed at producing spatially and temporally varying groundwater recharge for transient groundwater modeling in a pilot watershed in the North Okanagan, Canada. The recharge modeling is undertaken by using a Richard's equation based finite element code (HYDRUS-1D) [Simunek et al., 2002], ArcGISTM [ESRI, 2011], ROSETTA [Schaap et al., 2001], in situ observations of soil temperature and soil moisture and a long term gridded climate data [Nielsen et al., 2010]. The public version of HYDUS-1D [Simunek et al., 2002] and another beta version with a detailed freezing and thawing module [Hansson et al., 2004] are first used to simulate soil temperature, snow pack and soil moisture over a one year experimental period. Statistical analysis of the results show both versions of HYDRUS-1D reproduce observed variables to the same degree. Correlation coefficients for soil temperature simulation were estimated at 0.9 and 0.8, at depths of 10 cm and 50 cm respectively; and for soil moisture, 0.8 and 0.6 at 10 cm and 50 cm respectively. This and other standard measures of model performance (root mean square error and average error) showed a promising performance of the HYDRUS-1D code in our pilot watershed. After evaluating model performance using field data and ROSETTA derived soil hydraulic parameters, the HYDRUS-1D code is coupled with ArcGISTM to produce spatially and temporally varying recharge maps throughout the Deep Creek watershed. Temporal and spatial analysis of 25 years daily recharge results at various representative points across the study watershed reveal significant temporal and spatial variations; average recharge estimated at 77.8 ± 50.8mm /year. This significant variation over the years, caused by antecedent soil moisture condition and climatic condition, illustrates the common flaw of assigning a constant percentage of precipitation throughout the simulation period. Groundwater recharge modeling has previously been attempted in the Okanagan Basin

  13. Aspects of Plant Intelligence

    PubMed Central

    TREWAVAS, ANTHONY

    2003-01-01

    Intelligence is not a term commonly used when plants are discussed. However, I believe that this is an omission based not on a true assessment of the ability of plants to compute complex aspects of their environment, but solely a reflection of a sessile lifestyle. This article, which is admittedly controversial, attempts to raise many issues that surround this area. To commence use of the term intelligence with regard to plant behaviour will lead to a better understanding of the complexity of plant signal transduction and the discrimination and sensitivity with which plants construct images of their environment, and raises critical questions concerning how plants compute responses at the whole‐plant level. Approaches to investigating learning and memory in plants will also be considered. PMID:12740212

  14. Computationally intelligent pulsed photoacoustics

    NASA Astrophysics Data System (ADS)

    Lukić, Mladena; Ćojbašić, Žarko; Rabasović, Mihailo D.; Markushev, Dragan D.

    2014-12-01

    In this paper, the application of computational intelligence in pulsed photoacoustics is discussed. Feedforward multilayer perception networks are applied for real-time simultaneous determination of the laser beam spatial profile and vibrational-to-translational relaxation time of the polyatomic molecules in gases. Networks are trained and tested with theoretical data adjusted for a given experimental set-up. Genetic optimization has been used for calculation of the same parameters, fitting the photoacoustic signals with a different number of generations. Observed benefits from the application of computational intelligence in pulsed photoacoustics and advantages over previously developed methods are discussed, such as real-time operation, high precision and the possibility of finding solutions in a wide range of parameters, similar to in experimental conditions. In addition, the applicability for practical uses, such as the real-time in situ measurements of atmospheric pollutants, along with possible further developments of obtained results, is argued.

  15. Intelligent Sensors Security

    PubMed Central

    Bialas, Andrzej

    2010-01-01

    The paper is focused on the security issues of sensors provided with processors and software and used for high-risk applications. Common IT related threats may cause serious consequences for sensor system users. To improve their robustness, sensor systems should be developed in a restricted way that would provide them with assurance. One assurance creation methodology is Common Criteria (ISO/IEC 15408) used for IT products and systems. The paper begins with a primer on the Common Criteria, and then a general security model of the intelligent sensor as an IT product is discussed. The paper presents how the security problem of the intelligent sensor is defined and solved. The contribution of the paper is to provide Common Criteria (CC) related security design patterns and to improve the effectiveness of the sensor development process. PMID:22315571

  16. Intelligent Flow Control Valve

    NASA Technical Reports Server (NTRS)

    Kelley, Anthony R (Inventor)

    2015-01-01

    The present invention is an intelligent flow control valve which may be inserted into the flow coming out of a pipe and activated to provide a method to stop, measure, and meter flow coming from the open or possibly broken pipe. The intelligent flow control valve may be used to stop the flow while repairs are made. Once repairs have been made, the valve may be removed or used as a control valve to meter the amount of flow from inside the pipe. With the addition of instrumentation, the valve may also be used as a variable area flow meter and flow controller programmed based upon flowing conditions. With robotic additions, the valve may be configured to crawl into a desired pipe location, anchor itself, and activate flow control or metering remotely.

  17. Sail intelligent terminal evaluation

    NASA Technical Reports Server (NTRS)

    Pruitt, J. L.

    1977-01-01

    Engineering assessments, recommendations, and equipment necessary to solve the operational problems are described, and operational flexibility of the intelligent terminal facility are extended. The following capabilities were considered: (1) the operation of at least two D/D stations and one remote graphics terminal simultaneously; (2) the capability to run plotter, AIDS and FORTRAN programs simultaneously; (3) simultaneous use of system utility routines of D/D stations and remote graphics terminal; (4) the capability to provide large volume hardcopy of data and graphics; and (5) the capability to eliminate or at least ease the current operation/programming problems with related labor costs. The overall intelligent terminal development, and plans guiding the analysis and equipment acquisitions were studied, and the assessments and analyses performed are also summarized.

  18. Patterns and Intelligent Systems

    SciTech Connect

    Cordes, Gail A.

    2003-01-15

    The recognition and analysis of evolving patterns provides a unifying concept for studying and implementing intelligent information processing for open feedback control systems within the nuclear industry. Control is considered as influence of a large system to achieve the goals of the human (who might or might not be part of an open feedback loop) and is not limited to operation of a component within a nuclear power plant. The intelligent control system includes open logic and can automatically react to new data in an unprogrammed way. This application of evolving patterns integrates current research developments in human cognition and scientific semiotics with traditional feedback control. A preliminary implementation of such a system using existing computational techniques is postulated, and tools that are lacking at this time are identified. Proof-of-concept applications for the nuclear industry are referenced.

  19. Geospatial intelligence workforce

    NASA Astrophysics Data System (ADS)

    Showstack, Randy

    2013-02-01

    A report on the future U.S. workforce for geospatial intelligence, requested by the U.S. National Geospatial-Intelligence Agency (NGA), found that the agency—which hires about 300 scientists and analysts annually—is probably finding sufficient experts to fill the needs in all of its core areas, with the possible exception of geographic information systems (GIS) and remote sensing. The report by the U.S. National Research Council, released on 25 January, noted that competition for GIS applications analysts is strong. While there appear to be enough cartographers, photogrammetrists, and geodesists to meet NGA's current needs in those core areas, the report cautioned that future shortages in these areas seem likely because of a relatively small number of graduates.

  20. Introduction to Physical Intelligence

    NASA Technical Reports Server (NTRS)

    Zak, Michail

    2011-01-01

    A slight deviation from Newtonian dynamics can lead to new effects associated with the concept of physical intelligence. Non-Newtonian effects such as deviation from classical thermodynamic as well as quantum-like properties have been analyzed. A self-supervised (intelligent) particle that can escape from Brownian motion autonomously is introduced. Such a capability is due to a coupling of the particle governing equation with its own Liouville equation via an appropriate feedback. As a result, the governing equation is self-stabilized, and random oscillations are suppressed, while the Liouville equation takes the form of the Fokker-Planck equation with negative diffusion. Non- Newtonian properties of such a dynamical system as well as thermodynamical implications have been evaluated.

  1. The spatial and temporal variability of groundwater recharge in a forested basin in northern Wisconsin

    USGS Publications Warehouse

    Dripps, W.R.; Bradbury, K.R.

    2010-01-01

    Recharge varies spatially and temporally as it depends on a wide variety of factors (e.g. vegetation, precipitation, climate, topography, geology, and soil type), making it one of the most difficult, complex, and uncertain hydrologic parameters to quantify. Despite its inherent variability, groundwater modellers, planners, and policy makers often ignore recharge variability and assume a single average recharge value for an entire watershed. Relatively few attempts have been made to quantify or incorporate spatial and temporal recharge variability into water resource planning or groundwater modelling efforts. In this study, a simple, daily soil-water balance model was developed and used to estimate the spatial and temporal distribution of groundwater recharge of the Trout Lake basin of northern Wisconsin for 1996-2000 as a means to quantify recharge variability. For the 5 years of study, annual recharge varied spatially by as much as 18 cm across the basin; vegetation was the predominant control on this variability. Recharge also varied temporally with a threefold annual difference over the 5-year period. Intra-annually, recharge was limited to a few isolated events each year and exhibited a distinct seasonal pattern. The results suggest that ignoring recharge variability may not only be inappropriate, but also, depending on the application, may invalidate model results and predictions for regional and local water budget calculations, water resource management, nutrient cycling, and contaminant transport studies. Recharge is spatially and temporally variable, and should be modelled as such. Copyright ?? 2009 John Wiley & Sons, Ltd.

  2. Intelligent adaptive structures

    NASA Technical Reports Server (NTRS)

    Wada, Ben K.

    1990-01-01

    'Intelligent Adaptive Structures' (IAS) refers to structural systems whose geometric and intrinsic structural characteristics can be automatically changed to meet mission requirements with changing operational scenarios. An IAS is composed of actuators, sensors, and a control logic; these are integrated in a distributed fashion within the elements of the structure. The IAS concepts thus far developed for space antennas and other precision structures should be applicable to civil, marine, automotive, and aeronautical structural systems.

  3. Halmahera (Molukkas): terrain intelligence

    USGS Publications Warehouse

    U.S. Geological Survey

    1944-01-01

    This folio was rushed to completion on urgent request from the Strategic Intelligence Branch, Office of Chief of Engineers. The geologists, soils scientists, and ground-water hydrologists had completed their studies in manu- script form, but time was not available for editing the folio, coordinating its different parts, or checking it for inconsistencies. Parts of the text have not even been proof-read for typing mistakes.

  4. Perspective on intelligent avionics

    SciTech Connect

    Jones, H.L.

    1987-01-01

    Technical issues which could potentially limit the capability and acceptibility of expert systems decision-making for avionics applications are addressed. These issues are: real-time AI, mission-critical software, conventional algorithms, pilot interface, knowledge acquisition, and distributed expert systems. Examples from on-going expert system development programs are presented to illustrate likely architectures and applications of future intelligent avionic systems. 13 references.

  5. A new method for estimating recharge to unconfined aquifers using differential river gauging.

    PubMed

    McCallum, Andrew M; Andersen, Martin S; Acworth, R Ian

    2014-01-01

    In semiarid and arid environments, leakage from rivers is a major source of recharge to underlying unconfined aquifers. Differential river gauging is widely used to estimate the recharge. However, the methods commonly applied are limited in that the temporal resolution is event-scale or longer. In this paper, a novel method is presented for quantifying both the total recharge volume for an event, and variation in recharge rate during an event from hydrographs recorded at the upstream and downstream ends of a river reach. The proposed method is applied to river hydrographs to illustrate the method steps and investigate recharge processes occurring in a sub-catchment of the Murray Darling Basin (Australia). Interestingly, although it is the large flood events which are commonly assumed to be the main source of recharge to an aquifer, our analysis revealed that the smaller flow events were more important in providing recharge. PMID:23550897

  6. Multiple Intelligences: Current Trends in Assessment

    ERIC Educational Resources Information Center

    Harman, Marsha J.; Kordinak, S. Thomas; Bruce, A. Jerry

    2009-01-01

    With his theory of multiple intelligences, Howard Gardner challenged the presumption that intelligence is a single innate entity. He maintained that multiple intelligences exist and are related to specific brain areas and symbol systems. Each of the intelligences has its merits and limits, but by using a multiple intelligences approach, more…

  7. The Secret Sentinels: Careers in Intelligence.

    ERIC Educational Resources Information Center

    Stanton, Michael

    1985-01-01

    This article profiles the principal practitioners of the craft of intelligence. It also examines other agencies that play supporting roles in this arcane arena, including the Central Intelligence Agency, the State Department's Bureau of Intelligence and Research, the Defense Intelligence Agency, the service intelligence branches of the Department…

  8. Neurotechnology for intelligence analysts

    NASA Astrophysics Data System (ADS)

    Kruse, Amy A.; Boyd, Karen C.; Schulman, Joshua J.

    2006-05-01

    Geospatial Intelligence Analysts are currently faced with an enormous volume of imagery, only a fraction of which can be processed or reviewed in a timely operational manner. Computer-based target detection efforts have failed to yield the speed, flexibility and accuracy of the human visual system. Rather than focus solely on artificial systems, we hypothesize that the human visual system is still the best target detection apparatus currently in use, and with the addition of neuroscience-based measurement capabilities it can surpass the throughput of the unaided human severalfold. Using electroencephalography (EEG), Thorpe et al1 described a fast signal in the brain associated with the early detection of targets in static imagery using a Rapid Serial Visual Presentation (RSVP) paradigm. This finding suggests that it may be possible to extract target detection signals from complex imagery in real time utilizing non-invasive neurophysiological assessment tools. To transform this phenomenon into a capability for defense applications, the Defense Advanced Research Projects Agency (DARPA) currently is sponsoring an effort titled Neurotechnology for Intelligence Analysts (NIA). The vision of the NIA program is to revolutionize the way that analysts handle intelligence imagery, increasing both the throughput of imagery to the analyst and overall accuracy of the assessments. Successful development of a neurobiologically-based image triage system will enable image analysts to train more effectively and process imagery with greater speed and precision.

  9. What Makes Nations Intelligent?

    PubMed

    Hunt, Earl

    2012-05-01

    Modern society is driven by the use of cognitive artifacts: physical instruments or styles of reasoning that amplify our ability to think. The artifacts range from writing systems to computers. In everyday life, a person demonstrates intelligence by showing skill in using these artifacts. Intelligence tests and their surrogates force examinees to exhibit some of these skills but not others. This is why test scores correlate substantially but not perfectly with a variety of measures of socioeconomic success. The same thing is true at the international level. Nations can be evaluated by the extent to which their citizens score well on cognitive tests, including both avowed intelligence tests and a variety of tests of academic achievement. The resulting scores are substantially correlated with various indices of national wealth, health, environmental quality, and schooling and with a vaguer variable, social commitment to innovation. These environmental variables are suggested as causes of the differences in general cognitive skills between national populations. It is conceivable that differences in gene pools also contribute to international and, within nations, group differences in cognitive skills, but at present it is impossible to evaluate the extent of genetic influences. PMID:26168467

  10. Intelligent route surveillance

    NASA Astrophysics Data System (ADS)

    Schoemaker, Robin; Sandbrink, Rody; van Voorthuijsen, Graeme

    2009-05-01

    Intelligence on abnormal and suspicious behaviour along roads in operational domains is extremely valuable for countering the IED (Improvised Explosive Device) threat. Local sensor networks at strategic spots can gather data for continuous monitoring of daily vehicle activity. Unattended intelligent ground sensor networks use simple sensing nodes, e.g. seismic, magnetic, radar, or acoustic, or combinations of these in one housing. The nodes deliver rudimentary data at any time to be processed with software that filters out the required information. At TNO (Netherlands Organisation for Applied Scientific Research) research has started on how to equip a sensor network with data analysis software to determine whether behaviour is suspicious or not. Furthermore, the nodes should be expendable, if necessary, and be small in size such that they are hard to detect by adversaries. The network should be self-configuring and self-sustaining and should be reliable, efficient, and effective during operational tasks - especially route surveillance - as well as robust in time and space. If data from these networks are combined with data from other remote sensing devices (e.g. UAVs (Unmanned Aerial Vehicles)/aerostats), an even more accurate assessment of the tactical situation is possible. This paper shall focus on the concepts of operation towards a working intelligent route surveillance (IRS) research demonstrator network for monitoring suspicious behaviour in IED sensitive domains.

  11. Delineation and Prediction Uncertainty of Areas Contributing Recharge to Selected Well Fields in Wetland and Coastal Settings, Southern Rhode Island

    USGS Publications Warehouse

    Friesz, Paul J.

    2010-01-01

    coastal setting. The wells are screened in a coarse-grained, ice-proximal part of a morphosequence with saturated thicknesses generally less than 30 feet on the peninsula. The simulated area contributing recharge for the average withdrawal (16 gallons per minute) during 2003-07 was 0.018 square mile. The contributing area extended southwestward from the well fields to a simulated groundwater mound; it underlay part of a small nearby wetland, and it included isolated areas on the side of the wetland opposite the well fields. For the maximum pumping rate (230 gallons per minute), the simulated area contributing recharge (0.26 square mile) expanded in all directions; it included a till area on the peninsula, and it underlay part of a nearby pond. Because the well fields are screened in a thin aquifer, simulated groundwater traveltimes from recharge locations to the discharging wells were short: 94 percent of the traveltimes were 10 years or less, and the median traveltime was 1.3 years. Model-prediction uncertainty was evaluated using a Monte Carlo analysis; the parameter variance-covariance matrix from nonlinear regression was used to create parameter sets for the analysis. Important parameters for model prediction that could not be estimated by nonlinear regression were incorporated into the variance-covariance matrix. For the South Kingstown study site, observations provided enough information to constrain the uncertainty of these parameters within realistic ranges, but for the Charlestown study site, prior information on parameters was required. Thus, the uncertainty analysis for the South Kingstown study site was an outcome of calibrating the model to available observations, but the Charlestown study site was also dependent on information provided by the modeler. A water budget and model-fit statistical criteria were used to assess parameter sets so that prediction uncertainty was not overestimated. For the scenarios using maximum pumping rates at both study

  12. Geochemical analyses of ground-water ages, recharge rates, and hydraulic conductivity of the N aquifer, Black Mesa area, Arizona

    USGS Publications Warehouse

    Lopes, Thomas J.; Hoffmann, John P.

    1997-01-01

    The Navajo Nation and Hopi Tribe of the Black Mesa area, Arizona, depend on ground water from the N aquifer to meet most tribal and industrial needs. Increasing use of this aquifer is creating concerns about possible adverse effects of increased ground-water withdrawals on the water resources of the region. A thorough understanding of the N aquifer is necessary to assess the aquifer's response to ground-water withdrawals. This study used geochemical techniques as an independent means of improving the conceptual model of ground-water flow in the N aquifer and to estimate recharge rates and hydraulic conductivity. Ground water flows in a south-southeastward direction from the recharge area around Shonto into the confined part of the N aquifer underneath Black Mesa. Ground-water flow paths diverge in the confined part of the aquifer to the northeast and south. The N aquifer thins to extinction south of Black Mesa. This discontinuity could force ground water to diverge along paths of least resistance. Ground water discharges from the confined part of the aquifer into Laguna Creek and Moenkopi Wash and from springs southwest of Kykotsmovi and southeast of Rough Rock after a residence time of about 35,000 years or more. Recent recharge along the periphery of Black Mesa mixes with older ground water that discharges from the confined part of the aquifer and flows away from Black Mesa. Dissolved-ion concentrations, ratios of dissolved ions, dissolved-gas concentrations, tritium, carbon-13, and chlorine-36 data indicate that water in the overlying D aquifer could be leaking into the confined part of the N aquifer in the southeastern part of Black Mesa. The boundary between the leaky and nonleaky zones is defined roughly by a line from Rough Rock to Second Mesa and separates ground waters that have significantly different chemistries. The Dakota Sandstone and Entrada Formation of the D aquifer could be the sources of leakage. Adjusted radiocarbon ground-water ages and data on

  13. Modelling perched river recharge to the Wairau aquifer, New Zealand

    NASA Astrophysics Data System (ADS)

    Wöhling, Thomas; Gosses, Moritz; Wilson, Scott; Davidson, Peter

    2015-04-01

    The Wairau Aquifer in Marlborough, New Zealand, consists of coarse, high-conductive alluvial gravels and is almost exclusively recharged by surface water from the braided Wairau River. Recent experimental evidence suggests that the river is perched in the upstream recharge region of the aquifer. The aquifer serves as the major drinking water resource for the city of Blenheim and the surrounding settlements on the Wairau Plain and thus is a key natural resource for the region. To ensure the sustainable management of the resource, it is essential to better understand the limits and the mechanics of the recharge mechanism. One efficient way to test hypotheses of the mechanisms for river-groundwater exchange fluxes between the Wairau river and aquifer is by data integration into numerical models that mimic the flow regime of the coupled hydrological system. For that purpose, a Modflow model for the Wairau Aquifer was to set up and calibrated under summer conditions when the flow in the river is low and the aquifer is most vulnerable to over-allocation. The model is constrained by knowledge about the hydrogeological settings as well as observations of groundwater levels, river and spring flow gaugings, and analysis of aquifer pumping tests. Both historic and more recent concurrent river flow measurements under low flow conditions suggest that approximately 7-8 m³/s is recharged into the aquifer along the upper and middle reaches, at least partly under perched conditions. At the eastern side of the aquifer, a small proportion of that water flows back into the river, whereas a greater proportion emerges in springs. Spring creek is the largest spring with an estimated mean flow of 4.0 m³/s. This flow rate is vulnerable to an excessive decline in groundwater levels. The simulations with the calibrated flow model fit well to the observations of current mean groundwater heads as well as to mean Wairau river and Spring creek flows. Modeling results suggest a large spatial

  14. Recharge Estimation Using Water, Chloride and Isotope Mass Balances

    NASA Astrophysics Data System (ADS)

    Dogramaci, S.; Firmani, G.; Hedley, P.; Skrzypek, G.; Grierson, P. F.

    2014-12-01

    Discharge of surplus mine water into ephemeral streams may elevate groundwater levels and alter the exchange rate between streams and underlying aquifers but it is unclear whether volumes and recharge processes are within the range of natural variability. Here, we present a case study of an ephemeral creek in the semi-arid subtropical Hamersley Basin that has received continuous mine discharge for more than five years. We used a numerical model coupled with repeated measurements of water levels, chloride concentrations and the hydrogen and oxygen stable isotope composition (δ2H and δ18O) to estimate longitudinal evapotranspiration and recharge rates along a 27 km length of Weeli Wolli Creek. We found that chloride increased from 74 to 120 mg/L across this length, while δ18O increased from -8.24‰ to -7.00‰. Groundwater is directly connected to the creek for the first 13 km and recharge rates are negligible. Below this point, the creek flows over a highly permeable aquifer and water loss by recharge increases to a maximum rate of 4.4 mm/d, which accounts for ~ 65% of the total water discharged to the creek. Evapotranspiration losses account for the remaining ~35%. The calculated recharge from continuous flow due to surplus water discharge is similar to that measured for rainfall-driven flood events along the creek. Groundwater under the disconnected section of the creek is characterised by a much lower Cl concentration and more depleted δ18O value than mining discharge water but is similar to flood water generated by large episodic rainfall events. Our results suggest that the impact of recharge from continuous flow on the creek has not extended beyond 27 km from the discharge point. Our approach using a combination of hydrochemical and isotope methods coupled with classical surface flow hydraulic modelling allowed evaluation of components of water budget otherwise not possible in a highly dynamic system that is mainly driven by infrequent but large episodic

  15. Intelligent Viscoelastic Polyurethane Intrinsic Nanocomposites

    NASA Astrophysics Data System (ADS)

    Bilal Khan, M.

    2010-04-01

    Polyurethanes are multiphase systems comprising intrinsically variant nanodomains. The material properties can be tailored by adjusting the relative proportions and organizing the structure of the hard and soft segments akin to the spring-dashpot system in an automobile. This article describes how an intelligent polyurethane (PU) system is created to offer smart response to mechanical and vibration stimuli. In this work, unidirectional, dynamic mechanical thermal analysis (DMTA), acoustic, and impact testing results are qualified with the unique viscoelastic character that determines the rate-temperature response of the nanocomposite. Attenuated total reflection- infrared spectroscopy (ATR-IR) and DMTA offer a logical explanation of the observed viscoelastic behavior in terms of the nanodomains. Enhanced nanophase segregation between the polymer building blocks (hard and soft segments) is the primary mechanism that leads to a higher loss tangent peak in DMTA at a lower glass transition temperature ( T g ) for greater energy dissipation in the polymer matrix. Acoustic and impact attenuation are correlated with the mechanical modulus and loss tangent of the polymer. Finally, autodyne simulation reveals the unique shock absorbent behavior of the material layer when retrofitted to concrete structure. Typically, shock overpressure spikes of the order of 9.97 × 104 MPa experienced by the unprotected surface are entirely evened out at a lower overpressure threshold.

  16. A framework for autonomous and continuous aerial intelligence, surveillance, and reconnaissance operations

    NASA Astrophysics Data System (ADS)

    Korpela, Christopher; Root, Philip; Kim, Jinho; Wilkerson, Stephen; Gadsden, S. Andrew

    2016-05-01

    We propose a framework for intelligence, reconnaissance, and surveillance using an aerial vehicle with multiple sensor payloads to provide autonomous and continuous security operations at a fixed location. A control scheme and a graphical user interface between the vehicle and operator is strictly mandated for tasks requiring remote and unattended inspection. By leveraging existing navigation and path planning algorithms, the system can autonomously patrol large areas, automatically recharge when required, and relay on-demand data back to the user. This paper presents recent validation results of the system and its sensors using the proposed framework.

  17. Impact of model geometry and recharge rates on catchment's residence time distributions - numerical experiments

    NASA Astrophysics Data System (ADS)

    Neubauer, M.; Musolff, A.; Fleckenstein, J. H.

    2013-12-01

    Residence time distributions (RTD) of water in catchments are promising tools to characterize and model solute transport on a larger scale. In the last decade, much research has been conducted on the estimation and the application of RTD's. However, there are still some major issues to be addressed to complex derivation, parameterization and transient behavior. Through improved remote sensing data, the surface elevation can mostly be resolved in detail, while subsurface volumes and boundaries remain highly undetermined. Our objectives are to systematically evaluate the impact of different depths and geometries of the domain bottom and groundwater recharge rates on RTD's. The study site is a small (1.6 km2) headwater catchment located within the Harz Mountains, Germany. For this catchment long time series of climate, discharge and hydrochemistry are available while groundwater flow field and subsurface structure are less known. The site is intensively influenced by agricultural land use and exhibits strong seasonal dynamics of water flow and hydrochemistry due to the snowmelt. The modeling was performed using HydroGeoSphere, a coupled surface and subsurface model, which solves the Richards Equation for variable saturated soils. The Open Source software Paraview and R was chosen as postprocessors to perform and analyze forward particle tracking algorithms under steady state conditions. Ten depth and geometry scenarios of the domain bottom were created (5 horizontal bottom geometries - constant base and 5 variable bottom geometries - parallel to surface topography; both minimum depths ranging from 2 m to 50 m). The model's internal structure was discretized by two homogenous layers (averaged catchment representation) parallel to the input digital elevation model (2x2 m). The geometry scenarios were combined with fifteen steady state simulations for different groundwater recharge rate scenarios (0.1 mm up to 15 mm per day). Model results indicate a strong influence of

  18. Managed Aquifer Recharge in Italy: present and prospects.

    NASA Astrophysics Data System (ADS)

    Rossetto, Rudy

    2015-04-01

    On October the 3rd 2014, a one-day Workshop on Managed Aquifer Recharge (MAR) experiences in Italy took place at the GEOFLUID fair in Piacenza. It was organized within the framework of the EIP AG 128 - MAR Solutions - Managed Aquifer Recharge Strategies and Actions and the EU FPVII MARSOL. The event aimed at showcasing present experiences on MAR in Italy while at the same time starting a network among all the Institutions involved. In this contribution, we discuss the state of MAR application in Italy and summarize the outcomes of that event. In Italy aquifer recharge is traditionally applied unintentionally, by increasing riverbank filtration or because of excess irrigation. A certain interest for artificial recharge of aquifers arose at the end of the '70s and the beginning of the '80s and tests have been carried out in Tuscany, Veneto and Friuli Venezia Giulia. During the last years some projects on aquifer recharge were co-financed by the European Commission mainly through the LIFE program. Nearly all of them use the terminology of artificial recharge instead of MAR. They are: - TRUST (Tool for regional - scale assessment of groundwater storage improvement in adaptation to climate change, LIFE07 ENV/IT/000475; Marsala 2014); - AQUOR (Implementation of a water saving and artificial recharging participated strategy for the quantitative groundwater layer rebalance of the upper Vicenza's plain - LIFE 2010 ENV/IT/380; Mezzalira et al. 2014); - WARBO (Water re-born - artificial recharge: innovative technologies for the sustainable management of water resources, LIFE10 ENV/IT/000394; 2014). While the TRUST project dealt in general with aquifer recharge, AQUOR and WARBO focused essentially on small scale demonstration plants. Within the EU FPVII-ENV-2013 MARSOL project (Demonstrating Managed Aquifer Recharge as a Solution to Water Scarcity and Drought; 2014), a dedicated monitoring and decision support system is under development to manage recharge at a large scale

  19. End-user Customisation of Intelligent Environments

    NASA Astrophysics Data System (ADS)

    Chin, Jeannette; Callaghan, Victor; Clarke, Graham

    One of the striking aspects of world-wide-web is how it has empowered ordinary non-technical people to participate in a digital revolution by transforming the way services such as shopping, education and entertainment are offered and consumed. The proliferation of networked appliances, sensors and actuators, such as those found in digital homes heralds a similar 'sea change' in the capabilities of ordinary people to customise and utilise the electronic spaces they inhabit. By coordinating the actions of networked devices or services, it is possible for the environment to behave in a holistic and reactive manner to satisfy the occupants needs; creating an intelligent environment. Further, by deconstructing traditional home appliances into sets of more elemental network accessible services, it is possible to reconstruct either the original appliance or to create new user defined appliances by combining basic network services in novel ways; creating a so called virtual appliance. This principle can be extended to decompose and re-compose software applications allowing users to create their own bespoke applications. Collectively, such user created entities are referred to as Meta - appliances or - applications, more generally abbreviated to MAps.

  20. Intelligent Software for System Design and Documentation

    NASA Technical Reports Server (NTRS)

    2002-01-01

    In an effort to develop a real-time, on-line database system that tracks documentation changes in NASA's propulsion test facilities, engineers at Stennis Space Center teamed with ECT International of Brookfield, WI, through the NASA Dual-Use Development Program to create the External Data Program and Hyperlink Add-on Modules for the promis*e software. Promis*e is ECT's top-of-the-line intelligent software for control system design and documentation. With promis*e the user can make use of the automated design process to quickly generate control system schematics, panel layouts, bills of material, wire lists, terminal plans and more. NASA and its testing contractors currently use promis*e to create the drawings and schematics at the E2 Cell 2 test stand located at Stennis Space Center.