Science.gov

Sample records for creating virtual humans

  1. Creating virtual humans for simulation-based training and planning

    SciTech Connect

    Stansfield, S.; Sobel, A.

    1998-05-12

    Sandia National Laboratories has developed a distributed, high fidelity simulation system for training and planning small team Operations. The system provides an immersive environment populated by virtual objects and humans capable of displaying complex behaviors. The work has focused on developing the behaviors required to carry out complex tasks and decision making under stress. Central to this work are techniques for creating behaviors for virtual humans and for dynamically assigning behaviors to CGF to allow scenarios without fixed outcomes. Two prototype systems have been developed that illustrate these capabilities: MediSim, a trainer for battlefield medics and VRaptor, a system for planning, rehearsing and training assault operations.

  2. Creating a Virtual Gymnasium

    ERIC Educational Resources Information Center

    Fiorentino, Leah H.; Castelli, Darla

    2005-01-01

    Physical educators struggle with the challenges of assessing student performance, providing feedback about motor skills, and creating opportunities for all students to engage in game-play on a daily basis. The integration of technology in the gymnasium can address some of these challenges by improving teacher efficiency and increasing student…

  3. Creating a "Virtual" Magnet School.

    ERIC Educational Resources Information Center

    Goodrich, Burton E.

    1994-01-01

    Describes a "virtual" magnet school in Massachusetts for high school math and science that uses telecommunications to link students, universities, and corporate advisors. University and corporate roles are discussed, a summer institute is described, and sample research activities are included. (LRW)

  4. Student-Created Virtual Tours.

    ERIC Educational Resources Information Center

    Lewis, Sharon

    1995-01-01

    Describes a virtual museum tour project developed by Eastview Community School (Red Deer, Alberta) eighth grade students that used telecommunications and multimedia. Discusses the project's educational objectives, methods of collecting information, preparing hypertext documents, writing dialogue, the final presentation, and key components for a…

  5. Virtual Human Project

    SciTech Connect

    Ward, RD

    2001-06-12

    This paper describes the development of a comprehensive human modeling environment, the Virtual Human, which will be used initially to model the human respiratory system for purposes of predicting pulmonary disease or injury using lung sounds. The details of the computational environment, including the development of a Virtual Human Thorax, a database for storing models, model parameters, and experimental data, and a Virtual Human web interface are outlined. Preliminary progress in developing this environment will be presented. A separate paper at the conference describes the modeling of sound generation using computational fluid dynamics and the modeling of sound propagation in the human respiratory system.

  6. Virtual Human project

    NASA Astrophysics Data System (ADS)

    Ward, Richard C.; Kruse, Kara L.; Allgood, Glenn O.; Hively, Lee M.; Fischer, K. N.; Munro, Nancy B.; Easterly, Clay E.

    2001-08-01

    This paper describes the development of a comprehensive human modeling environment, the Virtual Human, which will be used initially to model the human respiratory system for purposes of predicting pulmonary disease or injury using lung sounds. The details of the computational environment, including the development of a Virtual Human Thorax, a database for storing models, model parameters, and experimental data, and a Virtual Human web interface are outlined. Preliminary progress in developing this environment will be presented. A separate paper at the conference describes the modeling of sound generation using computational fluid dynamics and the modeling of sound propagation in the human respiratory system.

  7. Creating an Online Library To Support a Virtual Learning Community.

    ERIC Educational Resources Information Center

    Sandelands, Eric

    1998-01-01

    International Management Centres (IMC), an independent business school, and Anbar Electronic Intelligence (AEI), a database publisher, have created a virtual library for IMC's virtual business school. Topics discussed include action learning; IMC's partnership with AEI; the virtual university model; designing virtual library resources; and…

  8. Creating the virtual Eiger North Face

    NASA Astrophysics Data System (ADS)

    Buchroithner, Manfred

    The described activities aim at combining the potentials of photogrammetry, remote sensing, digital cartography and virtual reality/photorealism with the needs of modern spatial information systems for tourism and for alpinism in particular (the latter aspect is, however, not covered in the paper). Since for slopes steeper than 45°, a digital relief model in nadir projection cannot adequately depict the terrain even in low-angle views, digital Steep Slope Models (SSMs) with a rather vertical reference plane are desirable. This condition very much applies to the Eiger North Face which has been chosen as a testbed for the realisation of a virtual rock face and which shall later be embedded into a lower resolution synthetic landscape of the Eiger-Moench-Jungfrau Region generated from a DTM and satellite imagery. Our "SSM approach" seems justified by the fact that except for the visualisation, commercial software was used which is very limited both in DTM modelling and texture mapping. For the creation of the actual SSM, a pair of oblique coloured air photos has been used, resulting in both a digital face model of 3.7 m grid size and an orthophoto with a resolution of 0.25 m. To demonstrate the alpinistic potential of the product, climbing routes have been inserted into the face model, thus enabling even non-experienced individuals to enjoy the "virtual reality conquest" of the Eiger North Face and potential climbing candidates to prepare themselves for the actual "real world" enterprise.

  9. Creating a Virtual Tour of the American Indian.

    ERIC Educational Resources Information Center

    Roy, Loriene; Christal, Mark

    This paper describes how Potawatomi and Santa Clara Pueblo children came to create a virtual tour of cultural exhibits from the National Museum of the American Indian (NMAI). The first part of this paper explores the nature of museums, how people interact with them, the concept of a virtual museum, and a brief history of NMAI. In addition to three…

  10. Creating photorealistic virtual model with polarization-based vision system

    NASA Astrophysics Data System (ADS)

    Shibata, Takushi; Takahashi, Toru; Miyazaki, Daisuke; Sato, Yoichi; Ikeuchi, Katsushi

    2005-08-01

    Recently, 3D models are used in many fields such as education, medical services, entertainment, art, digital archive, etc., because of the progress of computational time and demand for creating photorealistic virtual model is increasing for higher reality. In computer vision field, a number of techniques have been developed for creating the virtual model by observing the real object in computer vision field. In this paper, we propose the method for creating photorealistic virtual model by using laser range sensor and polarization based image capture system. We capture the range and color images of the object which is rotated on the rotary table. By using the reconstructed object shape and sequence of color images of the object, parameter of a reflection model are estimated in a robust manner. As a result, then, we can make photorealistic 3D model in consideration of surface reflection. The key point of the proposed method is that, first, the diffuse and specular reflection components are separated from the color image sequence, and then, reflectance parameters of each reflection component are estimated separately. In separation of reflection components, we use polarization filter. This approach enables estimation of reflectance properties of real objects whose surfaces show specularity as well as diffusely reflected lights. The recovered object shape and reflectance properties are then used for synthesizing object images with realistic shading effects under arbitrary illumination conditions.

  11. Validation of virtual spectrometer created in RADlab1.03

    PubMed Central

    Pandey, Anil Kumar; Patel, Chetan; Bal, Chandrasekhar; Kumar, Rakesh

    2015-01-01

    Spectrometer is used to perform various in vitro tests. The ability to successfully perform these tests depends on technologist's skill. Therefore, proper training of technologists is mandatory in gamma spectrometry. During the training, they need to have sufficient practice to gain sound theoretical and practical knowledge. High cost of spectrometer and risk of their damage during independent practice may hamper the process of proper training. Hence, there is a need of cheaper and more feasible option. Virtual spectrometer created in RADlab1.03 can address this issue. The immediate objective of this paper is to validate this virtual spectrometer so as to be used as an educational and research tool for trainees. Virtual spectrometer was calibrated using Cs-137 standard source and Cs-137 spectrum was recorded by positioning 28106 Bq Cs-137 source at 2.35 cm above top surface of the well, 1 cm above from the bottom of the well and at the bottom of the well. Ba-133 and Co-60 spectrum were also recorded. The experiments were repeated with real spectrometer for exactly the same conditions as applied to the virtual spectrometer. The paired t-test was applied to find the difference in mean photopeak at 5% level of significance. The sample data provided satisfactory evidence that mean photopeak obtained with real as well as virtual spectrometer were same at P value of 4.641 × 10−4,1.57 × 10−12,1.40 × 10−24, 1.26 × 10−16, and 8.7 × 10−9 for Cs-137 (photopeak: 664 keV, Co-60 (photopeak: 1181 keV), Co-60 (photopeak: Co-1348 keV), Ba-133 (photopeak: 304 keV) and Ba-133 (photopeak: 364 keV) respectively. PMID:25589799

  12. Creating technical heritage object replicas in a virtual environment

    NASA Astrophysics Data System (ADS)

    Egorova, Olga; Shcherbinin, Dmitry

    2016-03-01

    The paper presents innovative informatics methods for creating virtual technical heritage replicas, which are of significant scientific and practical importance not only to researchers but to the public in general. By performing 3D modeling and animation of aircrafts, spaceships, architectural-engineering buildings, and other technical objects, the process of learning is achieved while promoting the preservation of the replicas for future generations. Modern approaches based on the wide usage of computer technologies attract a greater number of young people to explore the history of science and technology and renew their interest in the field of mechanical engineering.

  13. Communicating with Virtual Humans.

    ERIC Educational Resources Information Center

    Thalmann, Nadia Magnenat

    The face is a small part of a human, but it plays an essential role in communication. An open hybrid system for facial animation is presented. It encapsulates a considerable amount of information regarding facial models, movements, expressions, emotions, and speech. The complex description of facial animation can be handled better by assigning…

  14. Virtual physiological human: training challenges.

    PubMed

    Lawford, Patricia V; Narracott, Andrew V; McCormack, Keith; Bisbal, Jesus; Martin, Carlos; Bijnens, Bart; Brook, Bindi; Zachariou, Margarita; Freixa, Jordi Villà I; Kohl, Peter; Fletcher, Katherine; Diaz-Zuccarini, Vanessa

    2010-06-28

    The virtual physiological human (VPH) initiative encompasses a wide range of activities, including structural and functional imaging, data mining, knowledge discovery tool and database development, biomedical modelling, simulation and visualization. The VPH community is developing from a multitude of relatively focused, but disparate, research endeavours into an integrated effort to bring together, develop and translate emerging technologies for application, from academia to industry and medicine. This process initially builds on the evolution of multi-disciplinary interactions and abilities, but addressing the challenges associated with the implementation of the VPH will require, in the very near future, a translation of quantitative changes into a new quality of highly trained multi-disciplinary personnel. Current strategies for undergraduate and on-the-job training may soon prove insufficient for this. The European Commission seventh framework VPH network of excellence is exploring this emerging need, and is developing a framework of novel training initiatives to address the predicted shortfall in suitably skilled VPH-aware professionals. This paper reports first steps in the implementation of a coherent VPH training portfolio. PMID:20478909

  15. Integrating multi-scale data to create a virtual physiological mouse heart.

    PubMed

    Land, Sander; Niederer, Steven A; Louch, William E; Sejersted, Ole M; Smith, Nicolas P

    2013-04-01

    While the virtual physiological human (VPH) project has made great advances in human modelling, many of the tools and insights developed as part of this initiative are also applicable for facilitating mechanistic understanding of the physiology of a range of other species. This process, in turn, has the potential to provide human relevant insights via a different scientific path. Specifically, the increasing use of mice in experimental research, not yet fully complemented by a similar increase in computational modelling, is currently missing an important opportunity for using and interpreting this growing body of experimental data to improve our understanding of cardiac function. This overview describes our work to address this issue by creating a virtual physiological mouse model of the heart. We describe the similarities between human- and mouse-focused modelling, including the reuse of VPH tools, and the development of methods for investigating parameter sensitivity that are applicable across species. We show how previous results using this approach have already provided important biological insights, and how these can also be used to advance VPH heart models. Finally, we show an example application of this approach to test competing multi-scale hypotheses by investigating variations in length-dependent properties of cardiac muscle. PMID:24427525

  16. Western Governors University: Creating the First Virtual University

    ERIC Educational Resources Information Center

    Meyer, Katrina A.

    2009-01-01

    Distance education in its many forms had been around for decades, but the Western Governors University (WGU) was arguably the first "virtual university" (VU) in the United States, or at least the first VU that gained widespread attention from the press and public. After the governors in the Western Governors Association announced they would create…

  17. i-MMOLE: Instructional Framework for Creating Virtual World Lessons

    ERIC Educational Resources Information Center

    Downey, Steve

    2011-01-01

    Today virtual world instruction faces many of the same educational challenges faced by Web-based instruction during its infancy. There is a lot of jargon and visions of the future being bandied about, but as Hirumi et al. note in the May/June and July/August 2010 issues of "TechTrends" "there little understanding of how to apply" pedagogical…

  18. Creating a Web-based Virtual Tour at Purdue University.

    ERIC Educational Resources Information Center

    Mohler, James L.

    2000-01-01

    Describes planning, development, implementation, and features of a Web-based "virtual tour" information and marketing resource developed at Purdue University (West Lafayette, Indiana). The result is an interactive campus map that provides information about the various campus buildings using text, photographs, and movie clips. (DB)

  19. The assessment of virtual reality for human anatomy instruction

    NASA Technical Reports Server (NTRS)

    Benn, Karen P.

    1994-01-01

    This research project seeks to meet the objective of science training by developing, assessing, and validating virtual reality as a human anatomy training medium. In ideal situations, anatomic models, computer-based instruction, and cadaver dissection are utilized to augment the traditional methods of instruction. At many institutions, lack of financial resources limits anatomy instruction to textbooks and lectures. However, human anatomy is three dimensional, unlike the one dimensional depiction found in textbooks and the two dimensional depiction found on the computer. Virtual reality is a breakthrough technology that allows one to step through the computer screen into a three dimensional world. This technology offers many opportunities to enhance science education. Therefore, a virtual testing environment of the abdominopelvic region of a human cadaver was created to study the placement of body parts within the nine anatomical divisions of the abdominopelvic region and the four abdominal quadrants.

  20. Human responses to augmented virtual scaffolding models.

    PubMed

    Hsiao, Hongwei; Simeonov, Peter; Dotson, Brian; Ammons, Douglas; Kau, Tsui-Ying; Chiou, Sharon

    2005-08-15

    This study investigated the effect of adding real planks, in virtual scaffolding models of elevation, on human performance in a surround-screen virtual reality (SSVR) system. Twenty-four construction workers and 24 inexperienced controls performed walking tasks on real and virtual planks at three virtual heights (0, 6 m, 12 m) and two scaffolding-platform-width conditions (30, 60 cm). Gait patterns, walking instability measurements and cardiovascular reactivity were assessed. The results showed differences in human responses to real vs. virtual planks in walking patterns, instability score and heart-rate inter-beat intervals; it appeared that adding real planks in the SSVR virtual scaffolding model enhanced the quality of SSVR as a human - environment interface research tool. In addition, there were significant differences in performance between construction workers and the control group. The inexperienced participants were more unstable as compared to construction workers. Both groups increased their stride length with repetitions of the task, indicating a possibly confidence- or habit-related learning effect. The practical implications of this study are in the adoption of augmented virtual models of elevated construction environments for injury prevention research, and the development of programme for balance-control training to reduce the risk of falls at elevation before workers enter a construction job. PMID:16253942

  1. Human rights monitoring in virtual community.

    PubMed

    El Morr, Christo

    2012-01-01

    Holistic disability rights monitoring is essential in order to translate rights on paper into rights in reality for people with disabilities. At the same time, evidence-based knowledge produced through holistic monitoring has to be made accessible to a broad range of groups - researchers, representatives of disability community, people with disabilities, the media, policy makers, general public - and also has to contribute to building capacity within disability community around human rights issues. This article focuses on the design process of a complex Virtual Knowledge Network (VKN) as an operational tool to support mobilization and dissemination of evidence-based knowledge produced by the Disability Rights Promotion International Canada (DRPI-Canada) project. This tool is embedded in the more general framework of the project grounded in a human rights approach to disability and that acknowledges the importance of creating knowledgeable communities in order to make the disability rights monitoring efforts sustainable, advancing thus the decision making process in Canada in order to enhance the quality of life of people with disabilities. PMID:22874302

  2. MASCARET: creating virtual learning environments from system modelling

    NASA Astrophysics Data System (ADS)

    Querrec, Ronan; Vallejo, Paola; Buche, Cédric

    2013-03-01

    The design process for a Virtual Learning Environment (VLE) such as that put forward in the SIFORAS project (SImulation FOR training and ASsistance) means that system specifications can be differentiated from pedagogical specifications. System specifications can also be obtained directly from the specialists' expertise; that is to say directly from Product Lifecycle Management (PLM) tools. To do this, the system model needs to be considered as a piece of VLE data. In this paper we present Mascaret, a meta-model which can be used to represent such system models. In order to ensure that the meta-model is capable of describing, representing and simulating such systems, MASCARET is based SysML1, a standard defined by Omg.

  3. The Virtual Insect Brain protocol: creating and comparing standardized neuroanatomy

    PubMed Central

    Jenett, Arnim; Schindelin, Johannes E; Heisenberg, Martin

    2006-01-01

    Background In the fly Drosophila melanogaster, new genetic, physiological, molecular and behavioral techniques for the functional analysis of the brain are rapidly accumulating. These diverse investigations on the function of the insect brain use gene expression patterns that can be visualized and provide the means for manipulating groups of neurons as a common ground. To take advantage of these patterns one needs to know their typical anatomy. Results This paper describes the Virtual Insect Brain (VIB) protocol, a script suite for the quantitative assessment, comparison, and presentation of neuroanatomical data. It is based on the 3D-reconstruction and visualization software Amira, version 3.x (Mercury Inc.) [1]. Besides its backbone, a standardization procedure which aligns individual 3D images (series of virtual sections obtained by confocal microscopy) to a common coordinate system and computes average intensities for each voxel (volume pixel) the VIB protocol provides an elaborate data management system for data administration. The VIB protocol facilitates direct comparison of gene expression patterns and describes their interindividual variability. It provides volumetry of brain regions and helps to characterize the phenotypes of brain structure mutants. Using the VIB protocol does not require any programming skills since all operations are carried out at an intuitively usable graphical user interface. Although the VIB protocol has been developed for the standardization of Drosophila neuroanatomy, the program structure can be used for the standardization of other 3D structures as well. Conclusion Standardizing brains and gene expression patterns is a new approach to biological shape and its variability. The VIB protocol provides a first set of tools supporting this endeavor in Drosophila. The script suite is freely available at [2] PMID:17196102

  4. Estimating the gaze of a virtuality human.

    PubMed

    Roberts, David J; Rae, John; Duckworth, Tobias W; Moore, Carl M; Aspin, Rob

    2013-04-01

    The aim of our experiment is to determine if eye-gaze can be estimated from a virtuality human: to within the accuracies that underpin social interaction; and reliably across gaze poses and camera arrangements likely in every day settings. The scene is set by explaining why Immersive Virtuality Telepresence has the potential to meet the grand challenge of faithfully communicating both the appearance and the focus of attention of a remote human participant within a shared 3D computer-supported context. Within the experiment n=22 participants rotated static 3D virtuality humans, reconstructed from surround images, until they felt most looked at. The dependent variable was absolute angular error, which was compared to that underpinning social gaze behaviour in the natural world. Independent variables were 1) relative orientations of eye, head and body of captured subject; and 2) subset of cameras used to texture the form. Analysis looked for statistical and practical significance and qualitative corroborating evidence. The analysed results tell us much about the importance and detail of the relationship between gaze pose, method of video based reconstruction, and camera arrangement. They tell us that virtuality can reproduce gaze to an accuracy useful in social interaction, but with the adopted method of Video Based Reconstruction, this is highly dependent on combination of gaze pose and camera arrangement. This suggests changes in the VBR approach in order to allow more flexible camera arrangements. The work is of interest to those wanting to support expressive meetings that are both socially and spatially situated, and particular those using or building Immersive Virtuality Telepresence to accomplish this. It is also of relevance to the use of virtuality humans in applications ranging from the study of human interactions to gaming and the crossing of the stage line in films and TV. PMID:23428453

  5. Human hippocampal theta activity during virtual navigation.

    PubMed

    Ekstrom, Arne D; Caplan, Jeremy B; Ho, Emily; Shattuck, Kirk; Fried, Itzhak; Kahana, Michael J

    2005-01-01

    This study examines whether 4-8-Hz theta oscillations can be seen in the human hippocampus, and whether these oscillations increase during virtual movement and searching, as they do in rodents. Recordings from both hippocampal and neocortical depth electrodes were analyzed while six epileptic patients played a virtual taxi-driver game. During the game, the patients alternated between searching for passengers, whose locations were random, and delivering them to stores, whose locations remained constant. In both hippocampus and neocortex, theta increased during virtual movement in all phases of the game. Hippocampal and neocortical theta activity were also significantly correlated with each other, but this correlation did not differ between neocortex and hippocampus and within disparate neocortical electrodes. Our findings demonstrate the existence of movement-related theta oscillations in human hippocampus, and suggest that both cortical and hippocampal oscillations play a role in attention and sensorimotor integration. PMID:16114040

  6. The Human Element in the Virtual Library.

    ERIC Educational Resources Information Center

    Saunders, Laverna M.

    1999-01-01

    Introduces the concept of the virtual library and explores how the increasing reliance on computers and digital information has affected library users and staff. Discusses users' expectations, democratization of access, human issues, organizational change, technostress, ergonomics, assessment, and strategies for success and survival. Contains 35…

  7. Physical environment virtualization for human activities recognition

    NASA Astrophysics Data System (ADS)

    Poshtkar, Azin; Elangovan, Vinayak; Shirkhodaie, Amir; Chan, Alex; Hu, Shuowen

    2015-05-01

    Human activity recognition research relies heavily on extensive datasets to verify and validate performance of activity recognition algorithms. However, obtaining real datasets are expensive and highly time consuming. A physics-based virtual simulation can accelerate the development of context based human activity recognition algorithms and techniques by generating relevant training and testing videos simulating diverse operational scenarios. In this paper, we discuss in detail the requisite capabilities of a virtual environment to aid as a test bed for evaluating and enhancing activity recognition algorithms. To demonstrate the numerous advantages of virtual environment development, a newly developed virtual environment simulation modeling (VESM) environment is presented here to generate calibrated multisource imagery datasets suitable for development and testing of recognition algorithms for context-based human activities. The VESM environment serves as a versatile test bed to generate a vast amount of realistic data for training and testing of sensor processing algorithms. To demonstrate the effectiveness of VESM environment, we present various simulated scenarios and processed results to infer proper semantic annotations from the high fidelity imagery data for human-vehicle activity recognition under different operational contexts.

  8. Human-Computer Interaction and Virtual Environments

    NASA Technical Reports Server (NTRS)

    Noor, Ahmed K. (Compiler)

    1995-01-01

    The proceedings of the Workshop on Human-Computer Interaction and Virtual Environments are presented along with a list of attendees. The objectives of the workshop were to assess the state-of-technology and level of maturity of several areas in human-computer interaction and to provide guidelines for focused future research leading to effective use of these facilities in the design/fabrication and operation of future high-performance engineering systems.

  9. Illustrating the "Virtual" in Virtual Schooling: Challenges and Strategies for Creating Real Tools to Prepare Virtual Teachers

    ERIC Educational Resources Information Center

    Davis, Niki; Roblyer, M. D.; Charania, Amina; Ferdig, Rick; Harms, Chad; Compton, Lily Ko Li; Cho, Mi Ok

    2007-01-01

    Virtual schooling, or the practice of offering K-12 courses via distance technologies, has rapidly increased in popularity since its beginning in 1994. Although effective interaction with and support for students in these environments requires a unique set of skills and experiences, teacher education programs currently place very little emphasis…

  10. Virtual reality: Avatars in human spaceflight training

    NASA Astrophysics Data System (ADS)

    Osterlund, Jeffrey; Lawrence, Brad

    2012-02-01

    With the advancements in high spatial and temporal resolution graphics, along with advancements in 3D display capabilities to model, simulate, and analyze human-to-machine interfaces and interactions, the world of virtual environments is being used to develop everything from gaming, movie special affects and animations to the design of automobiles. The use of multiple object motion capture technology and digital human tools in aerospace has demonstrated to be a more cost effective alternative to the cost of physical prototypes, provides a more efficient, flexible and responsive environment to changes in the design and training, and provides early human factors considerations concerning the operation of a complex launch vehicle or spacecraft. United Space Alliance (USA) has deployed this technique and tool under Research and Development (R&D) activities on both spacecraft assembly and ground processing operations design and training on the Orion Crew Module. USA utilizes specialized products that were chosen based on functionality, including software and fixed based hardware (e.g., infrared and visible red cameras), along with cyber gloves to ensure fine motor dexterity of the hands. The key findings of the R&D were: mock-ups should be built to not obstruct cameras from markers being tracked; a mock-up toolkit be assembled to facilitate dynamic design changes; markers should be placed in accurate positions on humans and flight hardware to help with tracking; 3D models used in the virtual environment be striped of non-essential data; high computational capable workstations are required to handle the large model data sets; and Technology Interchange Meetings with vendors and other industries also utilizing virtual reality applications need to occur on a continual basis enabling USA to maintain its leading edge within this technology. Parameters of interest and benefit in human spaceflight simulation training that utilizes virtual reality technologies are to

  11. Scripting human animations in a virtual environment

    NASA Technical Reports Server (NTRS)

    Goldsby, Michael E.; Pandya, Abhilash K.; Maida, James C.

    1994-01-01

    The current deficiencies of virtual environment (VE) are well known: annoying lag time in drawing the current view, drastically simplified environments to reduce that time lag, low resolution and narrow field of view. Animation scripting is an application of VE technology which can be carried out successfully despite these deficiencies. The final product is a smoothly moving high resolution animation displaying detailed models. In this system, the user is represented by a human computer model with the same body proportions. Using magnetic tracking, the motions of the model's upper torso, head and arms are controlled by the user's movements (18 degrees of freedom). The model's lower torso and global position and orientation are controlled by a spaceball and keypad (12 degrees of freedom). Using this system human motion scripts can be extracted from the user's movements while immersed in a simplified virtual environment. Recorded data is used to define key frames; motion is interpolated between them and post processing adds a more detailed environment. The result is a considerable savings in time and a much more natural-looking movement of a human figure in a smooth and seamless animation.

  12. A Virtual Campus Based on Human Factor Engineering

    ERIC Educational Resources Information Center

    Yang, Yuting; Kang, Houliang

    2014-01-01

    Three Dimensional or 3D virtual reality has become increasingly popular in many areas, especially in building a digital campus. This paper introduces a virtual campus, which is based on a 3D model of The Tourism and Culture College of Yunnan University (TCYU). Production of the virtual campus was aided by Human Factor and Ergonomics (HF&E), an…

  13. Visualization and simulated surgery of the left ventricle in the virtual pathological heart of the Virtual Physiological Human.

    PubMed

    McFarlane, N J B; Lin, X; Zhao, Y; Clapworthy, G J; Dong, F; Redaelli, A; Parodi, O; Testi, D

    2011-06-01

    Ischaemic heart failure remains a significant health and economic problem worldwide. This paper presents a user-friendly software system that will form a part of the virtual pathological heart of the Virtual Physiological Human (VPH2) project, currently being developed under the European Commission Virtual Physiological Human (VPH) programme. VPH2 is an integrated medicine project, which will create a suite of modelling, simulation and visualization tools for patient-specific prediction and planning in cases of post-ischaemic left ventricular dysfunction. The work presented here describes a three-dimensional interactive visualization for simulating left ventricle restoration surgery, comprising the operations of cutting, stitching and patching, and for simulating the elastic deformation of the ventricle to its post-operative shape. This will supply the quantitative measurements required for the post-operative prediction tools being developed in parallel in the same project. PMID:22670207

  14. Inverse focusing inside turbid media by creating an opposite virtual objective.

    PubMed

    Yu, Yeh-Wei; Chen, Szu-Yu; Lin, Che-Chu; Sun, Ching-Cherng

    2016-01-01

    Limited by the penetration depth, imaging of thick bio-tissues can be achieved only by epi-detection geometry. Applications based on forward-emitted signals or bidirectional illumination are restricted by lack of an opposite objective. A method for creating an opposite virtual objective inside thick media through phase conjugation was first proposed. Under forward illumination, the backward scattering light from the media was collected to generate a phase conjugate wave, which was sent back to the media and formed an inverse focusing light. Samples combined with a diffuser or a mouse skin were used as specimens. Inverse focusing was successfully demonstrated by applying holography-based optical phase conjugation with a BaTiO3. This result indicates the capability to create an opposite virtual objective inside live tissues. The proposed method is compatible with current coherent imaging and super-resolution imaging technologies. It creates a possible way for forward-emitted signals collection and bidirectional illumination in thick specimens. PMID:27404383

  15. Inverse focusing inside turbid media by creating an opposite virtual objective

    NASA Astrophysics Data System (ADS)

    Yu, Yeh-Wei; Chen, Szu-Yu; Lin, Che-Chu; Sun, Ching-Cherng

    2016-07-01

    Limited by the penetration depth, imaging of thick bio-tissues can be achieved only by epi-detection geometry. Applications based on forward-emitted signals or bidirectional illumination are restricted by lack of an opposite objective. A method for creating an opposite virtual objective inside thick media through phase conjugation was first proposed. Under forward illumination, the backward scattering light from the media was collected to generate a phase conjugate wave, which was sent back to the media and formed an inverse focusing light. Samples combined with a diffuser or a mouse skin were used as specimens. Inverse focusing was successfully demonstrated by applying holography-based optical phase conjugation with a BaTiO3. This result indicates the capability to create an opposite virtual objective inside live tissues. The proposed method is compatible with current coherent imaging and super-resolution imaging technologies. It creates a possible way for forward-emitted signals collection and bidirectional illumination in thick specimens.

  16. Inverse focusing inside turbid media by creating an opposite virtual objective

    PubMed Central

    Yu, Yeh-Wei; Chen, Szu-Yu; Lin, Che-Chu; Sun, Ching-Cherng

    2016-01-01

    Limited by the penetration depth, imaging of thick bio-tissues can be achieved only by epi-detection geometry. Applications based on forward-emitted signals or bidirectional illumination are restricted by lack of an opposite objective. A method for creating an opposite virtual objective inside thick media through phase conjugation was first proposed. Under forward illumination, the backward scattering light from the media was collected to generate a phase conjugate wave, which was sent back to the media and formed an inverse focusing light. Samples combined with a diffuser or a mouse skin were used as specimens. Inverse focusing was successfully demonstrated by applying holography-based optical phase conjugation with a BaTiO3. This result indicates the capability to create an opposite virtual objective inside live tissues. The proposed method is compatible with current coherent imaging and super-resolution imaging technologies. It creates a possible way for forward-emitted signals collection and bidirectional illumination in thick specimens. PMID:27404383

  17. Human Factors in Virtual Reality Development

    NASA Technical Reports Server (NTRS)

    Kaiser, Mary K.; Proffitt, Dennis R.; Null, Cynthia H. (Technical Monitor)

    1995-01-01

    This half-day tutorial will provide an overview of basic perceptual functioning as it relates to the design of virtual environment systems. The tutorial consists of three parts. First, basic issues in visual perception will be presented, including discussions of the visual sensations of brightness and color, and the visual perception of depth relationships in three-dimensional space (with a special emphasis on motion -specified depth). The second section will discuss the importance of conducting human-factors user studies and evaluations. Examples and suggestions on how best to get help with user studies will be provided. Finally, we will discuss how, by drawing on their complementary competencies, perceptual psychologists and computer engineers can work as a team to develop optimal VR systems, technologies, and techniques.

  18. Project ATHENA Creates Surrogate Human Organ Systems

    SciTech Connect

    MacQueen, Luke; Knospel, Fanny; Sherrod, Stacy; Iyer, Rashi

    2015-06-15

    The development of miniature surrogate human organs, coupled with highly sensitive mass spectrometry technologies, could one day revolutionize the way new drugs and toxic agents are studied. “By developing this ‘homo minutus,’ we are stepping beyond the need for animal or Petri dish testing: There are huge benefits in developing drug and toxicity analysis systems that can mimic the response of actual human organs,” said Rashi Iyer, a senior scientist at Los Alamos National Laboratory. ATHENA, the Advanced Tissue-engineered Human Ectypal Network Analyzer project team, is nearing the full integration of four human organ constructs — liver, heart, lung and kidney — each organ component is about the size of a smartphone screen, and the whole ATHENA “body” of interconnected organs will fit neatly on a desk. A new video available on the Los Alamos National Laboratory YouTube channel updates the ATHENA project as it begins to integrate the various organ systems into a single system (link to video here). Some 40 percent of pharmaceuticals fail their clinical trials and there are thousands of chemicals whose effects on humans are simply unknown. Providing a realistic, cost-effective and rapid screening system such as ATHENA with high-throughput capabilities could provide major benefits to the medical field, screening more accurately and offering a greater chance of clinical trial success. ATHENA is funded by the Defense Threat Reduction Agency (DTRA) and is a collaboration of Los Alamos National Laboratory, Harvard University, Vanderbilt University, Charité Universitätsmedizin, Berlin, Germany, CFD Research Corporation, and the University of California San Francisco.

  19. A posthuman liturgy? Virtual worlds, robotics, and human flourishing.

    PubMed

    Shatzer, Jacob

    2013-01-01

    In order to inspire a vision of biotechnology that affirms human dignity and human flourishing, the author poses questions about virtual reality and the use of robotics in health care. Using the concept of 'liturgy' and an anthropology of humans as lovers, the author explores how virtual reality and robotics in health care shape human moral agents, and how such shaping could influence the way we do or do not pursue a 'posthuman' future. PMID:24707596

  20. Interactive virtual navigation in human organs

    NASA Astrophysics Data System (ADS)

    Li, Guangming; Tian, Jie; Zhao, Mingchang; He, Huiguang

    2003-09-01

    Virtual endoscopy is meaningful for medical diagnosis and surgery. In this paper, a system framework for virtual endoscopy is proposed including automatic centerline extraction and view-dependent level-of-detail rendering techniques. Combining Hessian Matrix with distance mapping, our path planning method can generate accurate skeleton for virtual navigation. Furthermore real tim rendering can be achieved with our new view-dependent subdivision algorithm. The experimental results show the efficiency of our methods.

  1. Partner choice creates fairness in humans.

    PubMed

    Debove, Stéphane; André, Jean-Baptiste; Baumard, Nicolas

    2015-06-01

    Many studies demonstrate that partner choice has played an important role in the evolution of human cooperation, but little work has tested its impact on the evolution of human fairness. In experiments involving divisions of money, people become either over-generous or over-selfish when they are in competition to be chosen as cooperative partners. Hence, it is difficult to see how partner choice could result in the evolution of fair, equal divisions. Here, we show that this puzzle can be solved if we consider the outside options on which partner choice operates. We conduct a behavioural experiment, run agent-based simulations and analyse a game-theoretic model to understand how outside options affect partner choice and fairness. All support the conclusion that partner choice leads to fairness only when individuals have equal outside options. We discuss how this condition has been met in our evolutionary history, and the implications of these findings for our understanding of other aspects of fairness less specific than preferences for equal divisions of resources. PMID:25972467

  2. Partner choice creates fairness in humans

    PubMed Central

    Debove, Stéphane; André, Jean-Baptiste; Baumard, Nicolas

    2015-01-01

    Many studies demonstrate that partner choice has played an important role in the evolution of human cooperation, but little work has tested its impact on the evolution of human fairness. In experiments involving divisions of money, people become either over-generous or over-selfish when they are in competition to be chosen as cooperative partners. Hence, it is difficult to see how partner choice could result in the evolution of fair, equal divisions. Here, we show that this puzzle can be solved if we consider the outside options on which partner choice operates. We conduct a behavioural experiment, run agent-based simulations and analyse a game-theoretic model to understand how outside options affect partner choice and fairness. All support the conclusion that partner choice leads to fairness only when individuals have equal outside options. We discuss how this condition has been met in our evolutionary history, and the implications of these findings for our understanding of other aspects of fairness less specific than preferences for equal divisions of resources. PMID:25972467

  3. How Health Care Professionals Use Social Media to Create Virtual Communities: An Integrative Review

    PubMed Central

    2016-01-01

    target group ranged from 1.6% to 29% (n=4). Evaluation using related theories of “planned behavior” and the “technology acceptance model” (n=3) suggests that social media use is mediated by an individual’s positive attitude toward and accessibility of the media, which is reinforced by credible peers. The most common reason to establish a virtual community was to create a forum where relevant specialty knowledge could be shared and professional issues discussed (n=17). Most members demonstrated low posting behaviors but more frequent reading or accessing behaviors. The most common Web-based activity was request for and supply of specialty-specific clinical information. This knowledge sharing is facilitated by a Web-based culture of collectivism, reciprocity, and a respectful noncompetitive environment. Findings suggest that health care professionals view virtual communities as valuable knowledge portals for sourcing clinically relevant and quality information that enables them to make more informed practice decisions. Conclusions There is emerging evidence that health care professionals use social media to develop virtual communities to share domain knowledge. These virtual communities, however, currently reflect tribal behaviors of clinicians that may continue to limit knowledge sharing. Further research is required to evaluate the effects of social media on knowledge distribution in clinical practice and importantly whether patient outcomes are significantly improved. PMID:27328967

  4. The Virtual Hospital: experiences in creating and sustaining a digital library.

    PubMed Central

    D'Alessandro, M P; Galvin, J R; Erkonen, W E; Choi, T A; Lacey, D L; Colbert, S I

    1998-01-01

    A university and its faculty encompass a wealth of content, which is often freely supplied to commercial publishers who profit from it. Emerging digital library technology holds promise for allowing the creation of digital libraries and digital presses that can allow faculty and universities to bypass commercial publishers, retain control of their content, and distribute it directly to users, allowing the university and faculty to better serve their constituencies. The purpose of this paper is to show how this can be done. A methodology for overcoming the technical, social, political, and economic barriers involved in creating, distributing and organizing a digital library was developed, implemented, and refined over seven years. Over the seven years, 120 textbooks and booklets were placed in the Virtual Hospital digital library, from 159 authors in twenty-nine departments and four colleges at The University of Iowa. The digital library received extensive use by individuals around the world. A new paradigm for academic publishing was created, involving a university and faculty owned peer reviewed digital press implemented using digital library technology. The concept has been embraced by The University of Iowa, and it has pledged to sustain the digital press in order to allow. The University of Iowa to fulfill its mission of creating, organizing, and disseminating information better. PMID:9803300

  5. Virtual Australia and New Zealand (VANZ): Creating a piece of Digital Earth

    NASA Astrophysics Data System (ADS)

    Haines, M.

    2014-02-01

    VANZ is an Initiative of a wide group of research, government, industry, technology and legal stakeholders in Australia and New Zealand. Its purpose is to broker development of the 'Authorised Virtual World' that brings together 3D Spatial and Building Information Modelling within a proposed new Legal Framework. The aim is to create an 'authoritative' and 'enduring' 3D model of both the 'physical attributes', and 'legal entitlements' relating to every property. This 'authorised virtual world' would be used in all 'property-related' activities - to deliver better, quicker and cheaper outcomes. It would also be used as the context for serious games and to model dynamic processes within the built environment, as well as for emergency response and disaster recovery. Productivity savings across Australia have been estimated at 5 billion pa for the design and construct phases alone. The problem for owners, bankers, insurers, architects, engineers and construction companies, and others, is that they require access to 'authoritative' and detailed 3D data for their own purposes, that must also be securely shared with others up and down the 'property' chain, and over time. All parties also need to know what are the rights, responsibilities and restrictions applying to the data, as well as to the land and buildings that it models. VANZ proposes the creation of a network of Data Banks, to hold the 'authoritative data set', 'in perpetuity', along with the associated software and virtual hardware used to model it. Under the proposal, rights of access to the 'authoritative data' will mirror each person's rights in the property that the data models. As more and more buildings are modelled (inside and out), privacy, security and liability become issues of paramount importance. This paper offers a way for the global community to address these issues. It is targeted at all who have an interest in the practical implementation of Digital Earth for the built environment - including new

  6. The Virtual Physiological Human: Ten Years After.

    PubMed

    Viceconti, Marco; Hunter, Peter

    2016-07-11

    Biomedical research and clinical practice are struggling to cope with the growing complexity that the progress of health care involves. The most challenging diseases, those with the largest socioeconomic impact (cardiovascular conditions; musculoskeletal conditions; cancer; metabolic, immunity, and neurodegenerative conditions), are all characterized by a complex genotype-phenotype interaction and by a "systemic" nature that poses a challenge to the traditional reductionist approach. In 2005 a small group of researchers discussed how the vision of computational physiology promoted by the Physiome Project could be translated into clinical practice and formally proposed the term Virtual Physiological Human. Our knowledge about these diseases is fragmentary, as it is associated with molecular and cellular processes on the one hand and with tissue and organ phenotype changes (related to clinical symptoms of disease conditions) on the other. The problem could be solved if we could capture all these fragments of knowledge into predictive models and then compose them into hypermodels that help us tame the complexity that such systemic behavior involves. In 2005 this was simply not possible-the necessary methods and technologies were not available. Now, 10 years later, it seems the right time to reflect on the original vision, the results achieved so far, and what remains to be done. PMID:27420570

  7. The role of intellectual property in creating, sharing and repurposing virtual patients.

    PubMed

    Campbell, Gabrielle; Miller, Angela; Balasubramaniam, Chara

    2009-08-01

    Medical schools are integrating more technology into the training of health care practitioners. Electronic Virtual Patients (VPs) provide interactive simulations to facilitate learning. The time, cost and effort required to create robust VPs on an individual school basis are significant; sharing of VPs by medical schools allows for access to a broad range of VPs across a variety of disciplines with lower investment. When this digital content is shared with other schools and distributed widely, digital copyright issues come into play. Unless all intellectual property rights (IPRs) and plans of the authors regarding the VP are confirmed upfront, the ability of the school to share the VP may be inhibited. Schools should also identify under what licensing/sharing model they plan to distribute the VPs - how do you plan to share the VPs and what will allow users to do with the VPs in the context of IPRs? This article highlights the role of IPRs in VPs and discusses a case-study of a European Virtual Patient collaboration to demonstrate how IPRs were managed. PMID:19811206

  8. Human Rights and Private Ordering in Virtual Worlds

    NASA Astrophysics Data System (ADS)

    Oosterbaan, Olivier

    This paper explores the application of human rights in (persistent) virtual world environments. The paper begins with describing a number of elements that most virtual environments share and that are relevant for the application of human rights in such a setting; and by describing in a general nature the application of human rights between private individuals. The paper then continues by discussing the application in virtual environments of two universally recognized human rights, namely freedom of expression, and freedom from discrimination. As these specific rights are discussed, a number of more general conclusions on the application of human rights in virtual environments are drawn. The first general conclusion being that, because virtual worlds are private environments, participants are subject to private ordering. The second general conclusion being that participants and non-participants alike have to accept at times that in-world expressions are to an extent private speech. The third general conclusion is that, where participants represent themselves in-world, other participants cannot assume that such in-world representation share the characteristics of the human player; and that where virtual environments contain game elements, participants and non-participants alike should not take everything that happens in the virtual environment at face value or literally, which does however not amount to having to accept a higher level of infringement on their rights for things that happen in such an environment.

  9. A New Method for Creating Efficient Security Policies in Virtual Private Network

    NASA Astrophysics Data System (ADS)

    Sadeghi, Mohammad Mehdi Gilanian; Mohd Ali, Borhanuddin; Pedram, Hossein; Deghan, Mehdi; Sabaei, Masoud

    One of the most important protocols for implementing tunnels in order to take action of secure virtual private network is IPsec protocol. IPsec policies are used widely in order to limit access to information in security gateways or firewalls. The security treatment, namely (Deny, Allow or Encrypt) is done for outbound as well as inbound traffic by security policies. It is so important that they adjust properly. The current methods for security policies creation as seen in given security requirements are not efficient enough i.e. there are much more created policies than requirements. In this paper, we define a new method to decrease adopted security policies for a specific set of security requirements without any undesirable effect. Our measurement shows that security policies creation will be improved efficiently, and their updating time will be decreased.

  10. Going from lectures to expeditions: Creating a virtual voyage in undergraduate ocean science education

    NASA Astrophysics Data System (ADS)

    Reed, D.; Garfield, N.; Locke, J.; Anglin, J.; Karl, H.; Edwards, B.

    2003-04-01

    The WWW provides for new collaborations in distributed learning in higher education. The lead author has developed a highly successful online course at the undergraduate level with an enrollment of more than 300 non-science majors each year, We are currently initiating a new focus for the course by emphasizing sea-going research, primarily in the northeastern Pacific Ocean, through the development of a virtual oceanographic voyage over the WWW. The "virtual voyage" courseware combines elements of experiential learning with anytime, anywhere access of the WWW to stimulate inquiry-based learning in the ocean sciences. The first leg of the voyage is currently being synthesized from contemporary ocean research sponsored by a collaboration of U.S. government agencies, including NSF, NOAA, and the USGS. The initial portion of this effort involves transforming portions of USGS Circular 1198, Beyond the Golden Gate -- Oceanography, Geology, Biology, and Environmental Issues in the Gulf of the Farallones, into an interactive expedition by which students participate as scientists aboard a research vessel departing from San Francisco. Virtual experiments on the voyage are patterned after research cruises over the past decade in two national marine sanctuaries and include the technologies of data acquisition and data analysis, as well as providing insight into the methodologies of working marine scientists. Real-time data for monitoring the marine environment are embedded into several modules; for example, students will analyze data from offshore buoys and satellite imagery to assess ocean conditions prior to departing from port. Multibeam sonar is used to create seafloor maps near the Golden Gate Bridge and sediment cores provide evidence of sea-level change in the region. Environmental studies in the region include locating canisters of low-level radioactive waste and assessing potential sites for the disposal for dredged materials from the San Francisco Bay. Upon completion

  11. Creating Humane Climates Outdoors: A People Skills Primer.

    ERIC Educational Resources Information Center

    Knapp, Clifford E.

    Designed to provide practical assistance in implementing outdoor learning experiences for youth and adults, this book helps professionals plan their leadership development programs and create more humane climates in a variety of outdoor settings. The book treats the three topics of self-knowledge, human communities, and outdoor-environmental…

  12. Conditioned place preferences in humans using virtual reality.

    PubMed

    Astur, Robert S; Carew, Andrew W; Deaton, Bonnie E

    2014-07-01

    To extend a standard paradigm of conditioning in nonhumans to humans, we created a virtual reality (VR) conditioned place preference task, with real-life food rewards. Undergraduates were placed into a VR environment consisting of 2 visually distinct rooms. On Day 1, participants underwent 6 pairing sessions in which they were confined into one of the two rooms and explored the VR environment. Room A was paired with real-life M&Ms for 3 sessions, and Room B was paired with no food for 3 sessions. Day 2 was the test day, administered the next day, and participants were given free access to the entire VR environment for 5min. In experiment 1, participants were food restricted, and we observed that on the test day, participants display a significant conditioned place preference for the VR room previously paired with food (p<0.001). Additionally, they display a significant explicit preference for the M&M-paired room in a forced-choice of "Which room do you like best?". In experiment 2, when participants were not food restricted, there was no evidence of a place preference, either implicitly (e.g. dwell time) or explicitly. Hence, we show that we can reliably establish a place preference in humans, but that the preference is contingent on the participants' hunger state. Future research will examine the extent to which these preferences can be blocked or extinguished as well as whether these preferences are evident using other reinforcers. PMID:24657735

  13. Evaluation of human behavior in collision avoidance: a study inside immersive virtual reality.

    PubMed

    Ouellette, Michel; Chagnon, Miguel; Faubert, Jocelyn

    2009-04-01

    During our daily displacements, we should consider the individuals advancing toward us in order to avoid a possible collision with our congeneric. We developed an experimental design in a virtual immersion room, which allows us to evaluate human capacities for avoiding collisions with other people. In addition, the design allows participants to interact naturally inside this immersive virtual reality setup when a pedestrian is moving toward them, creating a possible risk of collision. Results suggest that the performance is associated with visual and motor capacities and could be adjusted by cognitive social perception. PMID:19250010

  14. Human Machine Interfaces for Teleoperators and Virtual Environments

    NASA Technical Reports Server (NTRS)

    Durlach, Nathaniel I. (Compiler); Sheridan, Thomas B. (Compiler); Ellis, Stephen R. (Compiler)

    1991-01-01

    In Mar. 1990, a meeting organized around the general theme of teleoperation research into virtual environment display technology was conducted. This is a collection of conference-related fragments that will give a glimpse of the potential of the following fields and how they interplay: sensorimotor performance; human-machine interfaces; teleoperation; virtual environments; performance measurement and evaluation methods; and design principles and predictive models.

  15. NanTroSEIZE in 3-D: Creating a Virtual Research Experience in Undergraduate Geoscience Courses

    NASA Astrophysics Data System (ADS)

    Reed, D. L.; Bangs, N. L.; Moore, G. F.; Tobin, H.

    2009-12-01

    Marine research programs, both large and small, have increasingly added a web-based component to facilitate outreach to K-12 and the public, in general. These efforts have included, among other activities, information-rich websites, ship-to-shore communication with scientists during expeditions, blogs at sea, clips on YouTube, and information about daily shipboard activities. Our objective was to leverage a portion of the vast collection of data acquired through the NSF-MARGINS program to create a learning tool with a long lifespan for use in undergraduate geoscience courses. We have developed a web-based virtual expedition, NanTroSEIZE in 3-D, based on a seismic survey associated with the NanTroSEIZE program of NSF-MARGINS and IODP to study the properties of the plate boundary fault system in the upper limit of the seismogenic zone off Japan. The virtual voyage can be used in undergraduate classes at anytime, since it is not directly tied to the finite duration of a specific seagoing project. The website combines text, graphics, audio and video to place learning in an experiential framework as students participate on the expedition and carry out research. Students learn about the scientific background of the program, especially the critical role of international collaboration, and meet the chief scientists before joining the sea-going expedition. Students are presented with the principles of 3-D seismic imaging, data processing and interpretation while mapping and identifying the active faults that were the likely sources of devastating earthquakes and tsunamis in Japan in 1944 and 1948. They also learn about IODP drilling that began in 2007 and will extend through much of the next decade. The website is being tested in undergraduate classes in fall 2009 and will be distributed through the NSF-MARGINS website (http://www.nsf-margins.org/) and the MARGINS Mini-lesson section of the Science Education Resource Center (SERC) (http

  16. Getting the point across: exploring the effects of dynamic virtual humans in an interactive museum exhibit on user perceptions.

    PubMed

    Rivera-Gutierrez, Diego; Ferdig, Rick; Li, Jian; Lok, Benjamin

    2014-04-01

    We have created “You, M.D.”, an interactive museum exhibit in which users learn about topics in public health literacy while interacting with virtual humans. You, M.D. is equipped with a weight sensor, a height sensor and a Microsoft Kinect that gather basic user information. Conceptually, You, M.D. could use this user information to dynamically select the appearance of the virtual humans in the interaction attempting to improve learning outcomes and user perception for each particular user. For this concept to be possible, a better understanding of how different elements of the visual appearance of a virtual human affects user perceptions is required. In this paper, we present the results of an initial user study with a large sample size (n =333) ran using You, M.D. The study measured users’ reactions based on the user’s gender and body-mass index (BMI) when facing virtual humans with BMI either concordant or discordant from the user’s BMI. The results of the study indicate that concordance between the users’ BMI and the virtual human’s BMI affects male and female users differently. The results also show that female users rate virtual humans as more knowledgeable than male users rate the same virtual humans. PMID:24650991

  17. Human Resource Management in Virtual Organizations. Research in Human Resource Management Series.

    ERIC Educational Resources Information Center

    Heneman, Robert L., Ed.; Greenberger, David B., Ed.

    This document contains 14 papers on human resources (HR) and human resource management (HRM) in virtual organizations. The following papers are included: "Series Preface" (Rodger Griffeth); "Volume Preface" (Robert L. Heneman, David B. Greenberger); "The Virtual Organization: Definition, Description, and Identification" (David B. Greenberger,…

  18. [Virtual Campus of Public Health: six years of human resources education in Mexico].

    PubMed

    Ramos Herrera, Igor; Alfaro Alfaro, Noé; Fonseca León, Joel; García Sandoval, Cristóbal; González Castañeda, Miguel; López Zermeño, María Del Carmen; Benítez Morales, Ricardo

    2014-11-01

    This paper discusses the gestation process, implementation methodology, and results obtained from the initiative to use e-learning to train human resources for health, six years after the launch of the Virtual Campus of Public Health of the University of Guadalajara (Mexico); the discussion is framed by Pan American Health Organization (PAHO) standards and practices. This is a special report on the work done by the institutional committee of the Virtual Campus in western Mexico to create an Internet portal that follows the guidelines of the strategic model established by Nodo México and PAHO for the Region of the Americas. This Virtual Campus began its activities in 2007, on the basis of the use of free software and institutional collaboration. Since the initial year of implementation of the node, over 500 health professionals have been trained using virtual courses, the node's educational platform, and a repository of virtual learning resources that are interoperable with other repositories in Mexico and the Region of the Americas. The University of Guadalajara Virtual Campus committee has followed the proposed model as much as possible, thereby achieving most of the goals set in the initial work plan, despite a number of administrative challenges and the difficulty of motivating committee members. PMID:25604105

  19. Virtual Environment Computer Simulations to Support Human Factors Engineering and Operations Analysis for the RLV Program

    NASA Technical Reports Server (NTRS)

    Lunsford, Myrtis Leigh

    1998-01-01

    The Army-NASA Virtual Innovations Laboratory (ANVIL) was recently created to provide virtual reality tools for performing Human Engineering and operations analysis for both NASA and the Army. The author's summer research project consisted of developing and refining these tools for NASA's Reusable Launch Vehicle (RLV) program. Several general simulations were developed for use by the ANVIL for the evaluation of the X34 Engine Changeout procedure. These simulations were developed with the software tool dVISE 4.0.0 produced by Division Inc. All software was run on an SGI Indigo2 High Impact. This paper describes the simulations, various problems encountered with the simulations, other summer activities, and possible work for the future. We first begin with a brief description of virtual reality systems.

  20. Virtual Fiber Networking and Impact of Optical Path Grooming on Creating Efficient Layer One Services

    NASA Astrophysics Data System (ADS)

    Naruse, Fumisato; Yamada, Yoshiyuki; Hasegawa, Hiroshi; Sato, Ken-Ichi

    This paper presents a novel “virtual fiber” network service that exploits wavebands. This service provides virtual direct tunnels that directly convey wavelength paths to connect customer facilities. To improve the resource utilization efficiency of the service, a network design algorithm is developed that can allow intermediate path grooming at limited nodes and can determine the best node location. Numerical experiments demonstrate the effectiveness of the proposed service architecture.

  1. Using virtual reality technology and hand tracking technology to create software for training surgical skills in 3D game

    NASA Astrophysics Data System (ADS)

    Zakirova, A. A.; Ganiev, B. A.; Mullin, R. I.

    2015-11-01

    The lack of visible and approachable ways of training surgical skills is one of the main problems in medical education. Existing simulation training devices are not designed to teach students, and are not available due to the high cost of the equipment. Using modern technologies such as virtual reality and hands movements fixation technology we want to create innovative method of learning the technics of conducting operations in 3D game format, which can make education process interesting and effective. Creating of 3D format virtual simulator will allow to solve several conceptual problems at once: opportunity of practical skills improvement unlimited by the time without the risk for patient, high realism of environment in operational and anatomic body structures, using of game mechanics for information perception relief and memorization of methods acceleration, accessibility of this program.

  2. The German VR Simulation Realism Scale--psychometric construction for virtual reality applications with virtual humans.

    PubMed

    Poeschl, Sandra; Doering, Nicola

    2013-01-01

    Virtual training applications with high levels of immersion or fidelity (for example for social phobia treatment) produce high levels of presence and therefore belong to the most successful Virtual Reality developments. Whereas display and interaction fidelity (as sub-dimensions of immersion) and their influence on presence are well researched, realism of the displayed simulation depends on the specific application and is therefore difficult to measure. We propose to measure simulation realism by using a self-report questionnaire. The German VR Simulation Realism Scale for VR training applications was developed based on a translation of scene realism items from the Witmer-Singer-Presence Questionnaire. Items for realism of virtual humans (for example for social phobia training applications) were supplemented. A sample of N = 151 students rated simulation realism of a Fear of Public Speaking application. Four factors were derived by item- and principle component analysis (Varimax rotation), representing Scene Realism, Audience Behavior, Audience Appearance and Sound Realism. The scale developed can be used as a starting point for future research and measurement of simulation realism for applications including virtual humans. PMID:23792838

  3. Workspace zone differentiation and visualization for virtual humans.

    PubMed

    Yang, J; Sinokrot, T; Abdel-Malek, K; Beck, S; Nebel, K

    2008-03-01

    Human performance measures such as discomfort and joint displacement play an important role in product design. The virtual human Santos, a new generation of virtual humans developed at the University of Iowa, goes directly to the computer-aided design model to evaluate a design, saving time and money. This paper presents an optimization-based workspace zone differentiation and visualization. Around the workspace of virtual humans, a volume is discretized to small zones and the posture prediction on each central point of the zone will determine whether the points are outside the workspace as well as the values of different objective functions. Visualization of zone differentiation is accomplished by showing different colours based on values of human performance measures on points that are located inside the workspace. The proposed method can subsequently help ergonomic design. For example, in a vehicle's interior, the controls should not only lie inside the workspace, but also in the zone that encloses the most comfortable points. Using the palette of colours inside the workspace as a visual guide, a designer can obtain a reading of the discomfort level of product users. PMID:18311614

  4. Virtual electron microscopy: a simple implementation creating a new paradigm in ultrastructural examination.

    PubMed

    Lee, King-Chung; Mak, Lap-Sam

    2011-10-01

    Ultrastructural examination is a time-consuming and tiring process, requiring search for diagnostic features on a low-contrast screen in a dim environment. This article describes a method to circumvent these problems through the creation of a virtual ultrathin slide. This can be achieved by automated capturing of hundreds of images at high magnification and stitching them together into a digital image with a resolution of 4 nm/pixel. The pathologist can then navigate the virtual slide at his/her workstation computer. The image shows good contrast and resolution for diagnostic purposes, and most important, the pathologist can precisely note where the specific ultrastructural features are located. The setup required to implement virtual electron microscopy includes a transmission electron microscope equipped with motorized stage and automated digital image capture function, 2 free software components, self-developed software, and a desktop-grade computer. Besides use in daily diagnosis, virtual electron microscopy can open up many new applications such as undergraduate teaching, pathology resident training, external quality assurance program, and expert consultation. PMID:21903681

  5. Touring by Design: Using Information Architecture To Create a Virtual Library Tour.

    ERIC Educational Resources Information Center

    Kittelson, Pat; Jones, Sarah

    2002-01-01

    Describes the development of a Web-based virtual tour of the University of Otago (New Zealand) science library. Highlights include information literacy learning outcomes; information architecture, including information organization and navigation; integrating the tour into course work; and evaluation results. (LRW)

  6. Creating a Virtual World Mindset: A Guide for First Time Second Life Teachers

    ERIC Educational Resources Information Center

    Stoerger, Sharon

    2010-01-01

    Education technology proponents argue that tech-savvy students want active learning opportunities that enable them to produce, as well as consume, content. Some educators have responded to this rhetoric by appropriating virtual worlds such as Second Life (SL) for teaching and learning. While SL rewards exploration and experimentation, the…

  7. Object Creation and Human Factors Evaluation for Virtual Environments

    NASA Technical Reports Server (NTRS)

    Lindsey, Patricia F.

    1998-01-01

    The main objective of this project is to provide test objects for simulated environments utilized by the recently established Army/NASA Virtual Innovations Lab (ANVIL) at Marshall Space Flight Center, Huntsville, Al. The objective of the ANVIL lab is to provide virtual reality (VR) models and environments and to provide visualization and manipulation methods for the purpose of training and testing. Visualization equipment used in the ANVIL lab includes head-mounted and boom-mounted immersive virtual reality display devices. Objects in the environment are manipulated using data glove, hand controller, or mouse. These simulated objects are solid or surfaced three dimensional models. They may be viewed or manipulated from any location within the environment and may be viewed on-screen or via immersive VR. The objects are created using various CAD modeling packages and are converted into the virtual environment using dVise. This enables the object or environment to be viewed from any angle or distance for training or testing purposes.

  8. Telexistence: Enabling Humans to Be Virtually Ubiquitous.

    PubMed

    Tachi, Susumu

    2016-01-01

    Telecommunication and remote-controlled operations are becoming increasingly common in our daily lives. While performing these operations, ideally users would feel as if they were actually present at the remote sites. However, the present commercially available telecommunication and telepresence systems do not provide the sensation of self-presence or self-existence, and hence, users do not get the feeling of being spatially present or that they are directly performing spatial tasks, rather than simply controlling them remotely. This article describes the TELESAR V telexistence master-slave system that enables a human user to feel present in a remote environment. TELESAR V can transmit not only visual and auditory sensations, but also haptic sensations, which are conveyed using the principle of haptic primary colors. PMID:26780759

  9. A first-generation integrated tammar wallaby map and its use in creating a tammar wallaby first-generation virtual genome map

    PubMed Central

    2011-01-01

    Background The limited (2X) coverage of the tammar wallaby (Macropus eugenii) genome sequence dataset currently presents a challenge for assembly and anchoring onto chromosomes. To provide a framework for this assembly, it would be a great advantage to have a dense map of the tammar wallaby genome. However, only limited mapping data are available for this non-model species, comprising a physical map and a linkage map. Results We combined all available tammar wallaby mapping data to create a tammar wallaby integrated map, using the Location DataBase (LDB) strategy. This first-generation integrated map combines all available information from the second-generation tammar wallaby linkage map with 148 loci, and extensive FISH mapping data for 492 loci, especially for genes likely to be located at the ends of wallaby chromosomes or at evolutionary breakpoints inferred from comparative information. For loci whose positions are only approximately known, their location in the integrated map was refined on the basis of comparative information from opossum (Monodelphis domestica) and human. Interpolation of segments from the opossum and human assemblies into the integrated map enabled the subsequent construction of a tammar wallaby first-generation virtual genome map, which comprises 14336 markers, including 13783 genes recruited from opossum and human assemblies. Both maps are freely available at http://compldb.angis.org.au. Conclusions The first-generation integrated map and the first-generation virtual genome map provide a backbone for the chromosome assembly of the tammar wallaby genome sequence. For example, 78% of the 10257 gene-scaffolds in the Ensembl annotation of the tammar wallaby genome sequence (including 10522 protein-coding genes) can now be given a chromosome location in the tammar wallaby virtual genome map. PMID:21854555

  10. A JAVA User Interface for the Virtual Human

    SciTech Connect

    Easterly, C E; Strickler, D J; Tolliver, J S; Ward, R C

    1999-10-13

    A human simulation environment, the Virtual Human (VH), is under development at the Oak Ridge National Laboratory (ORNL). Virtual Human connects three-dimensional (3D) anatomical models of the body with dynamic physiological models to investigate a wide range of human biological and physical responses to stimuli. We have utilized the Java programming language to develop a flexible user interface to the VH. The Java prototype interface has been designed to display dynamic results from selected physiological models, with user control of the initial model parameters and ability to steer the simulation as it is proceeding. Taking advantage of Java's Remote Method Invocation (RMI) features, the interface runs as a Java client that connects to a Java RMI server process running on a remote server machine. The RMI server can couple to physiological models written in Java, or in other programming languages, including C and FORTRAN. Future versions of the interface will be linked to 3D anatomical models of the human body to complete the development of the VH.

  11. Human Machine Interfaces for Teleoperators and Virtual Environments Conference

    NASA Technical Reports Server (NTRS)

    1990-01-01

    In a teleoperator system the human operator senses, moves within, and operates upon a remote or hazardous environment by means of a slave mechanism (a mechanism often referred to as a teleoperator). In a virtual environment system the interactive human machine interface is retained but the slave mechanism and its environment are replaced by a computer simulation. Video is replaced by computer graphics. The auditory and force sensations imparted to the human operator are similarly computer generated. In contrast to a teleoperator system, where the purpose is to extend the operator's sensorimotor system in a manner that facilitates exploration and manipulation of the physical environment, in a virtual environment system, the purpose is to train, inform, alter, or study the human operator to modify the state of the computer and the information environment. A major application in which the human operator is the target is that of flight simulation. Although flight simulators have been around for more than a decade, they had little impact outside aviation presumably because the application was so specialized and so expensive.

  12. Creating a virtual community of practice to investigate legitimate peripheral participation by African American middle school girls in science activities

    NASA Astrophysics Data System (ADS)

    Edwards, Leslie D.

    How do teenage girls develop an interest in science? What kinds of opportunities can science teachers present to female students that support their engagement with learning science? I studied one aspect of this issue by focusing on ways students could use science to enhance or gain identities that they (probably) already valued. To do that I created technology-rich activities and experiences for an after school class in science and technology for middle school girls who lived in a low socio-economic urban neighborhood. These activities and experiences were designed to create a virtual community of practice whose members used science in diverse ways. Student interest was made evident in their responses to the activities. Four conclusions emerged. (1) Opportunities to learn about the lives and work of admired African American business women interested students in learning by linking it to their middle-class aspirations and their interest in things that money and status can buy. (2) Opportunities to learn about the lives and work of African American women experts in science in a classroom context where students then practiced similar kinds of actual scientific tasks engaged students in relations of legitimate peripheral participation in a virtual and diverse community of practice focused on science which was created in the after-school classes. (3) Opportunities where students used science to show off for family, friends, and supporters of the after-school program, identities they valued, interested them enough that they engaged in long-term science and technology projects that required lots of revisions. (4) In response to the opportunities presented, new and enhanced identities developed around becoming a better student or becoming some kind of scientist.

  13. Openwebglobe - AN Open Source Sdk for Creating Large-Scale Virtual Globes on a Webgl Basis

    NASA Astrophysics Data System (ADS)

    Loesch, B.; Christen, M.; Nebiker, S.

    2012-07-01

    This paper introduces the OpenWebGlobe project (www.openwebglobe.org) and the OpenWebGlobe SDK (Software Development Kit) - an open source virtual globe environment using WebGL. Unlike other (web-based) 3d geovisualisation technologies and toolkits, the OpenWebGlobe SDK not only supports the content authoring and web visualization aspects, but also the data processing functionality for generating multi-terabyte terrain, image, map and 3d point cloud data sets in high-performance and cloud-based parallel computing environments. The OpenWebGlobe architecture is described and the paper outlines the processing and the viewer functionality provided by the OpenWebGlobe SDK. It then discusses the generation and updating of a global 3d base map using OpenStreetMap data and finally presents two show cases employing the technology a) for implementing an interactive national 3d geoportal incorporating high resolution national geodata sets and b) for implementing a 3d geoinformation service supporting the real-time incorporation of 3d point cloud data.

  14. Creating knowledge structures in the pharmaceutical industry: the increasing significance of virtual organisation.

    PubMed

    Salazar, A; Howells, J

    2000-01-01

    This paper explores the specific trend and challenges facing the pharmaceutical industry regarding the exploitation of Internet e-commerce technology and virtual organisation to develop and maintain competitive advantage. There are two important facets of the current trend. One is the rapid development of a complex network of alliances between the established pharmaceutical companies and the specialised biotechnology company start-ups. The other is the rapid growth of internet e-commerce companies dedicated to developing specialised technological platforms for acquiring and selling genetic and biochemical knowledge. The underlying challenge is how big pharmaceutical companies can emulate some of the innovation processes of smaller biotechnology company start-ups, and how they can appropriate and applied new technological knowledge on the development of new drugs. Pharmaceutical companies in order to retain competitive advantage need to continuously monitor all aspects of knowledge management with regard to the R&D and manufacturing process (as well as customer management and marketing). Technological change and organisational restructuring should be aimed at boosting the capacity of large firms to innovate rapidly. PMID:11214458

  15. Strategic Tool for Students with Disabilities: Creating and Implementing Virtual Learning Environments without Barriers

    ERIC Educational Resources Information Center

    Barrett, Bob G., Jr.

    2011-01-01

    While some organizations have made strides in employing workers with disabilities as an act of social responsibility, other entities have started to realize the need and value of this untapped human resource (Thakker, 1997). Research has shown that employees with disabilities have low turnover rates, low absenteeism, and high motivation to prove…

  16. Errors in Seismic Hazard Assessment are Creating Huge Human Losses

    NASA Astrophysics Data System (ADS)

    Bela, J.

    2015-12-01

    GSHAP team; even though the obvious inadequacy of the GSHAP map could have been established in the course of a simple check before the project completion. The doctrine of "psha exceptionalism" that created the maps can only be esponged by carefully examining the facts . . . which unfortunately include huge human losses!

  17. Creating Virtual Fieldwork Experiences of Geoheritage Sites as Educator Professional Development (Invited)

    NASA Astrophysics Data System (ADS)

    Duggan-Haas, D.

    2013-12-01

    Geoheritage sites are identified as such because they include excellent examples of geologic features or processes, or they have played an important role in the development of geologic understandings. These characteristics also make them excellent sites for teaching in the field, for teaching educators about the nature of fieldwork, and for making Virtual Fieldwork Experiences (VFEs, multimedia representations of field sites). Through the NSF-funded Regional and Local Earth (ReaL) Earth Inquiry Project, we have engaged educators in these practices. The nature of geoheritage sites is anomalous -- if this were not the case, the sites would not gain recognition. Anomalous features or processes can be powerful learning tools when placed into comparison with the more mundane, and the Earth system science of sites local to schools is likely to be mundane. By comparing the mundane and the extraordinary, it is hoped we can learn more about both. The professional development (PD) in ReaL Earth Inquiry begins with a face-to-face workshop within the teachers' region at a site that is interesting from an Earth system science perspective. Though we recognize and emphasize that all sites are interesting from an ESS perspective if you know how to look, the sites typically have features worthy of geoheritage designation. PD does not end with the end of the workshop but continues with online study groups where teachers work together to complete the workshop site VFE, and transition to work on VFEs of sites local to their schools. Throughout the program, participants engage in: - mentored fieldwork that pays attention to the skills and knowledge needed to lead fieldwork; - instruction in and use of a wide range of technologies for making VFEs; - study of a coherent conceptual framework connected to the project's driving question: Why does this place look the way it does? - and, use of resources for supporting all of the above The resources include templates for making VFEs and a

  18. Enhancing Geologic Education in Grades 5-12: Creating Virtual Field Trips

    NASA Astrophysics Data System (ADS)

    Vitek, J. D.; Gamache, K. R.; Giardino, J. R.; Schroeder, C. E.

    2011-12-01

    New tools of technology enhance and facilitate the ability to bring the "field experience" into the classroom as part of the effort necessary to turn students onto the geosciences. The real key is high-speed computers and high-definition cameras with which to capture visual images. Still and movie data are easily obtained as are large and small-scale images from space, available through "Google Earth°". GPS information provides accurate location data to enhance mapping efforts. One no longer needs to rely on commercial ventures to show students any aspect of the "real" world. The virtual world is a viable replacement. The new cost-effective tools mean everyone can be a producer of information critical to understanding Earth. During the last four summers (2008-2011), Texas teachers have participated in G-Camp, an effort to instill geologic and geomorphic knowledge such that the information will make its way into classrooms. Teachers have acquired thousands of images and developed concepts that are being used to enhance their ability to promote geology in their classrooms. Texas will soon require four years of science at the high-school level, and we believe that geology or Earth science needs to be elevated to the required level of biology, chemistry and physics. Teachers need to be trained and methodology developed that is exciting to students. After all, everyone on Earth needs to be aware of the hazardous nature of geologic events not just to pass an exam, but for a lifetime. We use a video, which is a composite of our ventures, to show how data collected during these trips can be used in the classroom. . Social media, Facebook°, blogs, and email facilitate sharing information such that everyone can learn from each other about the best way to do things. New tools of technology are taking their place in every classroom to take advantage of the skills students bring to the learning environment. Besides many of these approaches are common to video gaming, and

  19. The (human) science of medical virtual learning environments

    PubMed Central

    Stone, Robert J.

    2011-01-01

    The uptake of virtual simulation technologies in both military and civilian surgical contexts has been both slow and patchy. The failure of the virtual reality community in the 1990s and early 2000s to deliver affordable and accessible training systems stems not only from an obsessive quest to develop the ‘ultimate’ in so-called ‘immersive’ hardware solutions, from head-mounted displays to large-scale projection theatres, but also from a comprehensive lack of attention to the needs of the end users. While many still perceive the science of simulation to be defined by technological advances, such as computing power, specialized graphics hardware, advanced interactive controllers, displays and so on, the true science underpinning simulation—the science that helps to guarantee the transfer of skills from the simulated to the real—is that of human factors, a well-established discipline that focuses on the abilities and limitations of the end user when designing interactive systems, as opposed to the more commercially explicit components of technology. Based on three surgical simulation case studies, the importance of a human factors approach to the design of appropriate simulation content and interactive hardware for medical simulation is illustrated. The studies demonstrate that it is unnecessary to pursue real-world fidelity in all instances in order to achieve psychological fidelity—the degree to which the simulated tasks reproduce and foster knowledge, skills and behaviours that can be reliably transferred to real-world training applications. PMID:21149363

  20. The (human) science of medical virtual learning environments.

    PubMed

    Stone, Robert J

    2011-01-27

    The uptake of virtual simulation technologies in both military and civilian surgical contexts has been both slow and patchy. The failure of the virtual reality community in the 1990s and early 2000s to deliver affordable and accessible training systems stems not only from an obsessive quest to develop the 'ultimate' in so-called 'immersive' hardware solutions, from head-mounted displays to large-scale projection theatres, but also from a comprehensive lack of attention to the needs of the end users. While many still perceive the science of simulation to be defined by technological advances, such as computing power, specialized graphics hardware, advanced interactive controllers, displays and so on, the true science underpinning simulation--the science that helps to guarantee the transfer of skills from the simulated to the real--is that of human factors, a well-established discipline that focuses on the abilities and limitations of the end user when designing interactive systems, as opposed to the more commercially explicit components of technology. Based on three surgical simulation case studies, the importance of a human factors approach to the design of appropriate simulation content and interactive hardware for medical simulation is illustrated. The studies demonstrate that it is unnecessary to pursue real-world fidelity in all instances in order to achieve psychological fidelity--the degree to which the simulated tasks reproduce and foster knowledge, skills and behaviours that can be reliably transferred to real-world training applications. PMID:21149363

  1. Virtual model of the human brain for neurosurgical simulation.

    PubMed

    De Paolis, Lucio T; De Mauro, Alessandro; Raczkowsky, Joerg; Aloisio, Giovanni

    2009-01-01

    The aim of this work is to develop a realistic virtual model of the human brain that could be used in a neurosurgical simulation for both educational and preoperative planning purposes. The goal of such a system would be to enhance the practice of surgery students, avoiding the use of animals, cadavers and plastic phantoms. A surgeon, before carrying out the real procedure, will, with this system, be able to rehearse by using a surgical simulator based on detailed virtual reality models of the human brain, reconstructed with real patient's medical images. In order to obtain a realistic and useful simulation we focused our research on the physical modelling of the brain as a deformable body and on the interactions with surgical instruments. The developed prototype is based on the mass-spring-damper model and, in order to obtain deformations similar to the real ones, a three tiered structure has been built. In this way, we have obtained local and realistic deformations using an ad-hoc point distribution in the volume where the contact between the brain surface and a surgical instrument takes place. PMID:19745425

  2. Symbiota - A virtual platform for creating voucher-based biodiversity information communities.

    PubMed

    Gries, Corinna; Gilbert, Edward E; Franz, Nico M

    2014-01-01

    We review the Symbiota software platform for creating voucher-based biodiversity information portals and communities. Symbiota was originally conceived to promote small- to medium-sized, regionally and/or taxonomically themed collaborations of natural history collections. Over the past eight years the taxonomically diverse portals have grown into an important resource in North America and beyond for mobilizing, integrating, and using specimen- and observation-based occurrence records and derivative biodiversity information products. Designed to mirror the conceptual structure of traditional floras and faunas, Symbiota is exclusively web-based and employs a novel data model, information linking, and algorithms to provide highly dynamic customization. The themed portals enable meaningful access to biodiversity data for anyone from specialist to high school student. Symbiota emulates functionality of modern Content Management Systems, providing highly sophisticated yet intuitive user interfaces for data entry, batch processes, and editing. Each kind of content provision may be selectively accessed by authenticated information providers. Occupying a fairly specific niche in the biodiversity informatics arena, Symbiota provides extensive data exchange facilities and collaborates with other development projects to incorporate and not duplicate functionality as appropriate. PMID:25057252

  3. Symbiota – A virtual platform for creating voucher-based biodiversity information communities

    PubMed Central

    Gilbert, Edward E.; Franz, Nico M.

    2014-01-01

    Abstract We review the Symbiota software platform for creating voucher-based biodiversity information portals and communities. Symbiota was originally conceived to promote small- to medium-sized, regionally and/or taxonomically themed collaborations of natural history collections. Over the past eight years the taxonomically diverse portals have grown into an important resource in North America and beyond for mobilizing, integrating, and using specimen- and observation-based occurrence records and derivative biodiversity information products. Designed to mirror the conceptual structure of traditional floras and faunas, Symbiota is exclusively web-based and employs a novel data model, information linking, and algorithms to provide highly dynamic customization. The themed portals enable meaningful access to biodiversity data for anyone from specialist to high school student. Symbiota emulates functionality of modern Content Management Systems, providing highly sophisticated yet intuitive user interfaces for data entry, batch processes, and editing. Each kind of content provision may be selectively accessed by authenticated information providers. Occupying a fairly specific niche in the biodiversity informatics arena, Symbiota provides extensive data exchange facilities and collaborates with other development projects to incorporate and not duplicate functionality as appropriate. PMID:25057252

  4. Virtual sound for virtual reality

    SciTech Connect

    Blattner, M.M. ||; Papp, A.L. III |

    1993-02-01

    The computational limitations of real-time interactive computing do not meet our requirements for producing realistic images for virtual reality in a convincing manner. Regardless of the real-time restrictions on virtual reality interfaces, the representations can be no better than the graphics. Computer graphics is still limited in its ability to generate complex objects such as landscapes and humans. Nevertheless, useful and convincing visualizations are made through a variety of techniques. The central theme of this article is that a similar situation is true with sound for virtual reality. It is beyond our abilityto create interactive soundscapes that create a faithful reproduction of real world sounds, however, by choosing one`s application carefully and using sound to enhance a display rather than only mimic real-world scenes, a very effective use of sound can be made.

  5. Virtual sound for virtual reality

    SciTech Connect

    Blattner, M.M. Cancer Center, Houston, TX . Dept. of Biomathematics Lawrence Livermore National Lab., CA California Univ., Davis, CA ); Papp, A.L. III Lawrence Livermore National Lab., CA )

    1993-02-01

    The computational limitations of real-time interactive computing do not meet our requirements for producing realistic images for virtual reality in a convincing manner. Regardless of the real-time restrictions on virtual reality interfaces, the representations can be no better than the graphics. Computer graphics is still limited in its ability to generate complex objects such as landscapes and humans. Nevertheless, useful and convincing visualizations are made through a variety of techniques. The central theme of this article is that a similar situation is true with sound for virtual reality. It is beyond our abilityto create interactive soundscapes that create a faithful reproduction of real world sounds, however, by choosing one's application carefully and using sound to enhance a display rather than only mimic real-world scenes, a very effective use of sound can be made.

  6. A Test of Spatial Contiguity for Virtual Human's Gestures in Multimedia Learning Environments

    ERIC Educational Resources Information Center

    Craig, Scotty D.; Twyford, Jessica; Irigoyen, Norma; Zipp, Sarah A.

    2015-01-01

    Virtual humans are becoming an easily available and popular component of multimedia learning that are often used in online learning environments. There is still a need for systematic research into their effectiveness. The current study investigates the positioning of a virtual human's gestures when guiding the learner through a multimedia…

  7. Creating a Tiny Human Body on a Chip

    ScienceCinema

    Hunsberger, Maren; Soscia, Dave; Moya, Monica

    2016-03-16

    LLNL science communicator Maren Hunsberger takes us "Inside the Lab" to learn about the iChip (In-vitro Chip-based Human Investigational Platform) project at Lawrence Livermore National Laboratory. "One application of the iChip system would be to develop new pharmaceutical drugs," explains Dave Soscia, LLNL postdoc. "When you test in a mouse for example, it's not as close to the human system as you can get. If we can take human cells and put them on devices and actually mimic the structure and function of the organ systems in the human, we can actually replace animal testing and even make a better system for testing pharmaceutical drugs."

  8. Virtual PD Creates Connections

    ERIC Educational Resources Information Center

    Education Week, 2011

    2011-01-01

    This special report examines how K-12 professional development is taking a more digital and freewheeling approach to educator training. The report--which also features a webinar and online chat--shows how professional development programs are now blending face-to-face and online training, incorporating social networking tools, offering…

  9. Virtual Human: a diagnostic tool for human studies and health effects in the 21st century

    NASA Astrophysics Data System (ADS)

    Easterly, Clay E.; Allgood, Glenn O.; Eckerman, Keith; Knee, Helmut E.; Maston, Mike; McNeilly, Greg; Munro, John; Munro, Nancy B.; Toedte, Ross; Van Hoy, Blake; Ward, Richard C.

    1998-05-01

    The virtual human will be a research/simulation environment having an integrated system of biophysical models, data, and advanced computational algorithms. It will have a Web-based interface for easy, rapid access from several points of entry. The virtual human will serve as a platform for national and international users from governments, academia and industry to investigate the widest range of human biological and physical response to stimuli, be they biological, chemical, or physical. This effort will go far beyond the modeling of anatomy to incorporate refined computational models of whole-body processes, using mechanical and electrical tissue properties, and biology from physiology to biochemical information. The platform will respond mechanistically to varied and potentially iterative stimuli that can be visualized multi- dimensionally. This effort is in the formative stage of a several-year process that will lead to a program that is of similar proportion to the human genome, but will be much more computationally intensive. The main purpose of this paper is to communicate our early ideas about the philosophic basis of the program, to identify some of the applications for which the virtual human would be used, to elicit comments, and to provide a basis to identify prospective collaborators.

  10. Genetic Recombination between Human and Animal Parasites Creates Novel Strains of Human Pathogen

    PubMed Central

    Gibson, Wendy; Peacock, Lori; Ferris, Vanessa; Fischer, Katrin; Livingstone, Jennifer; Thomas, James; Bailey, Mick

    2015-01-01

    Genetic recombination between pathogens derived from humans and livestock has the potential to create novel pathogen strains, highlighted by the influenza pandemic H1N1/09, which was derived from a re-assortment of swine, avian and human influenza A viruses. Here we investigated whether genetic recombination between subspecies of the protozoan parasite, Trypanosoma brucei, from humans and animals can generate new strains of human pathogen, T. b. rhodesiense (Tbr) responsible for sleeping sickness (Human African Trypanosomiasis, HAT) in East Africa. The trait of human infectivity in Tbr is conferred by a single gene, SRA, which is potentially transferable to the animal pathogen Tbb by sexual reproduction. We tracked the inheritance of SRA in crosses of Tbr and Tbb set up by co-transmitting genetically-engineered fluorescent parental trypanosome lines through tsetse flies. SRA was readily transferred into new genetic backgrounds by sexual reproduction between Tbr and Tbb, thus creating new strains of the human pathogen, Tbr. There was no evidence of diminished growth or transmissibility of hybrid trypanosomes carrying SRA. Although expression of SRA is critical to survival of Tbr in the human host, we show that the gene exists as a single copy in a representative collection of Tbr strains. SRA was found on one homologue of chromosome IV in the majority of Tbr isolates examined, but some Ugandan Tbr had SRA on both homologues. The mobility of SRA by genetic recombination readily explains the observed genetic variability of Tbr in East Africa. We conclude that new strains of the human pathogen Tbr are being generated continuously by recombination with the much larger pool of animal-infective trypanosomes. Such novel recombinants present a risk for future outbreaks of HAT. PMID:25816228

  11. Genetic recombination between human and animal parasites creates novel strains of human pathogen.

    PubMed

    Gibson, Wendy; Peacock, Lori; Ferris, Vanessa; Fischer, Katrin; Livingstone, Jennifer; Thomas, James; Bailey, Mick

    2015-03-01

    Genetic recombination between pathogens derived from humans and livestock has the potential to create novel pathogen strains, highlighted by the influenza pandemic H1N1/09, which was derived from a re-assortment of swine, avian and human influenza A viruses. Here we investigated whether genetic recombination between subspecies of the protozoan parasite, Trypanosoma brucei, from humans and animals can generate new strains of human pathogen, T. b. rhodesiense (Tbr) responsible for sleeping sickness (Human African Trypanosomiasis, HAT) in East Africa. The trait of human infectivity in Tbr is conferred by a single gene, SRA, which is potentially transferable to the animal pathogen Tbb by sexual reproduction. We tracked the inheritance of SRA in crosses of Tbr and Tbb set up by co-transmitting genetically-engineered fluorescent parental trypanosome lines through tsetse flies. SRA was readily transferred into new genetic backgrounds by sexual reproduction between Tbr and Tbb, thus creating new strains of the human pathogen, Tbr. There was no evidence of diminished growth or transmissibility of hybrid trypanosomes carrying SRA. Although expression of SRA is critical to survival of Tbr in the human host, we show that the gene exists as a single copy in a representative collection of Tbr strains. SRA was found on one homologue of chromosome IV in the majority of Tbr isolates examined, but some Ugandan Tbr had SRA on both homologues. The mobility of SRA by genetic recombination readily explains the observed genetic variability of Tbr in East Africa. We conclude that new strains of the human pathogen Tbr are being generated continuously by recombination with the much larger pool of animal-infective trypanosomes. Such novel recombinants present a risk for future outbreaks of HAT. PMID:25816228

  12. Human Rights Education: Imaginative Possibilities for Creating Change

    ERIC Educational Resources Information Center

    Bajaj, Monisha

    2015-01-01

    Background/Context: Human rights education has proliferated in the past four decades and can be found in policy discussions, textbook reforms, and grassroots initiatives across the globe. This article specifically explores the role of creativity and imagination in human rights education (HRE) by focusing on a case study of one non-governmental…

  13. Human brain functional MRI and DTI visualization with virtual reality.

    PubMed

    Chen, Bin; Moreland, John; Zhang, Jingyu

    2011-12-01

    Magnetic resonance diffusion tensor imaging (DTI) and functional MRI (fMRI) are two active research areas in neuroimaging. DTI is sensitive to the anisotropic diffusion of water exerted by its macromolecular environment and has been shown useful in characterizing structures of ordered tissues such as the brain white matter, myocardium, and cartilage. The diffusion tensor provides two new types of information of water diffusion: the magnitude and the spatial orientation of water diffusivity inside the tissue. This information has been used for white matter fiber tracking to review physical neuronal pathways inside the brain. Functional MRI measures brain activations using the hemodynamic response. The statistically derived activation map corresponds to human brain functional activities caused by neuronal activities. The combination of these two methods provides a new way to understand human brain from the anatomical neuronal fiber connectivity to functional activities between different brain regions. In this study, virtual reality (VR) based MR DTI and fMRI visualization with high resolution anatomical image segmentation and registration, ROI definition and neuronal white matter fiber tractography visualization and fMRI activation map integration is proposed. Rationale and methods for producing and distributing stereoscopic videos are also discussed. PMID:23256049

  14. Human four-dimensional spatial intuition in virtual reality.

    PubMed

    Ambinder, Michael S; Wang, Ranxiao Frances; Crowell, James A; Francis, George K; Brinkmann, Peter

    2009-10-01

    It is a long-lasting question whether human beings, who evolved in a physical world of three dimensions, are capable of overcoming this fundamental limitation to develop an intuitive understanding of four-dimensional space. Techniques of analogy and graphical illustration have been developed with some subjective reports of success. However, there has been no objective evaluation of such achievements. Here, we show evidence that people with basic geometric knowledge can learn to make spatial judgments on the length of, and angle between, line segments embedded in four-dimensional space viewed in virtual reality with minimal exposure to the task and no feedback to their responses. Their judgments incorporated information from both the three-dimensional (3-D) projection and the fourth dimension, and the underlying representations were not algebraic in nature but based on visual imagery, although primitive and short lived. These results suggest that human spatial representations are not completely constrained by our evolution and development in a 3-D world. Illustration of the stimuli and experimental procedure (as video clips) and the instruction to participants (as a PDF file) may be downloaded from http://pbr.psychonomic-journals.org/content/supplemental. PMID:19815783

  15. Closed-loop dialog model of face-to-face communication with a photo-real virtual human

    NASA Astrophysics Data System (ADS)

    Kiss, Bernadette; Benedek, Balázs; Szijárto, Gábor; Takács, Barnabás

    2004-01-01

    We describe an advanced Human Computer Interaction (HCI) model that employs photo-realistic virtual humans to provide digital media users with information, learning services and entertainment in a highly personalized and adaptive manner. The system can be used as a computer interface or as a tool to deliver content to end-users. We model the interaction process between the user and the system as part of a closed loop dialog taking place between the participants. This dialog, exploits the most important characteristics of a face-to-face communication process, including the use of non-verbal gestures and meta communication signals to control the flow of information. Our solution is based on a Virtual Human Interface (VHI) technology that was specifically designed to be able to create emotional engagement between the virtual agent and the user, thus increasing the efficiency of learning and/or absorbing any information broadcasted through this device. The paper reviews the basic building blocks and technologies needed to create such a system and discusses its advantages over other existing methods.

  16. Volume rendering of visible human data for an anatomical virtual environment.

    PubMed

    Kerr, J; Ratiu, P; Sellberg, M

    1996-01-01

    of specific anatomical structures. We have the capability to generate images that are both accurate and lifelike, much like photographic anatomical atlases. We can also generate images, models, and textures that have the clarity of medical artwork/illustrations, by highlighting the coloring of the ray traced structures with conventional colors instead of the natural color of the specimen. We are currently in the process of generating a comprehensive reference atlas of volume rendered images of the human body, soon to be published by Mosby-Year Book. The segmentation techniques needed to create this atlas also offer the accuracy and realism needed to create surface models and texture maps for a virtual environment for surgery simulation. PMID:10163767

  17. What about the Firewall? Creating Virtual Worlds in a Public Primary School Using Sim-on-a-Stick

    ERIC Educational Resources Information Center

    Jacka, Lisa; Booth, Kate

    2012-01-01

    Virtual worlds are highly immersive, engaging and popular computer mediated environments being explored by children and adults. Why then aren't more teachers using virtual worlds in the classroom with primary and secondary school students? Reasons often cited are the learning required to master the technology, low-end graphics cards, poor…

  18. The Use of Virtual Reality for Creating Unusual Environmental Stimulation to Motivate Students to Explore Creative Ideas

    ERIC Educational Resources Information Center

    Lau, Kung Wong; Lee, Pui Yuen

    2015-01-01

    This paper discusses the roles of simulation in creativity education and how to apply immersive virtual environments to enhance students' learning experiences in university, through the provision of interactive simulations. An empirical study of a simulated virtual reality was carried out in order to investigate the effectiveness of providing…

  19. Spontaneous Recovery of Human Spatial Memory in a Virtual Water Maze

    ERIC Educational Resources Information Center

    Luna, David; Martínez, Héctor

    2015-01-01

    The occurrence of spontaneous recovery in human spatial memory was assessed using a virtual environment. In Experiment 1, spatial memory was established by training participants to locate a hidden platform in a virtual water maze using a set of four distal landmarks. In Experiment 2, after learning about the location of a hidden platform, the…

  20. Human Robotic Study at Houghton Crater - virtual reality study from NASA Ames (FFC) Future Fight

    NASA Technical Reports Server (NTRS)

    2002-01-01

    Human Robotic Study at Houghton Crater - virtual reality study from NASA Ames (FFC) Future Fight Central simulator tower L-R: Dr Geoffrey Briggs; Jen Jasper (seated); Dr Jan Akins and Mr. Tony Gross, Ames

  1. Creating Concepts from Converging Features in Human Cortex.

    PubMed

    Coutanche, Marc N; Thompson-Schill, Sharon L

    2015-09-01

    To make sense of the world around us, our brain must remember the overlapping features of millions of objects. Crucially, it must also represent each object's unique feature-convergence. Some theories propose that an integration area (or "convergence zone") binds together separate features. We report an investigation of our knowledge of objects' features and identity, and the link between them. We used functional magnetic resonance imaging to record neural activity, as humans attempted to detect a cued fruit or vegetable in visual noise. Crucially, we analyzed brain activity before a fruit or vegetable was present, allowing us to interrogate top-down activity. We found that pattern-classification algorithms could be used to decode the detection target's identity in the left anterior temporal lobe (ATL), its shape in lateral occipital cortex, and its color in right V4. A novel decoding-dependency analysis revealed that identity information in left ATL was specifically predicted by the temporal convergence of shape and color codes in early visual regions. People with stronger feature-and-identity dependencies had more similar top-down and bottom-up activity patterns. These results fulfill three key requirements for a neural convergence zone: a convergence result (object identity), ingredients (color and shape), and the link between them. PMID:24692512

  2. Ecological validity of virtual environments to assess human navigation ability

    PubMed Central

    van der Ham, Ineke J. M.; Faber, Annemarie M. E.; Venselaar, Matthijs; van Kreveld, Marc J.; Löffler, Maarten

    2015-01-01

    Route memory is frequently assessed in virtual environments. These environments can be presented in a fully controlled manner and are easy to use. Yet they lack the physical involvement that participants have when navigating real environments. For some aspects of route memory this may result in reduced performance in virtual environments. We assessed route memory performance in four different environments: real, virtual, virtual with directional information (compass), and hybrid. In the hybrid environment, participants walked the route outside on an open field, while all route information (i.e., path, landmarks) was shown simultaneously on a handheld tablet computer. Results indicate that performance in the real life environment was better than in the virtual conditions for tasks relying on survey knowledge, like pointing to start and end point, and map drawing. Performance in the hybrid condition however, hardly differed from real life performance. Performance in the virtual environment did not benefit from directional information. Given these findings, the hybrid condition may offer the best of both worlds: the performance level is comparable to that of real life for route memory, yet it offers full control of visual input during route learning. PMID:26074831

  3. Realistic Facial Expression of Virtual Human Based on Color, Sweat, and Tears Effects

    PubMed Central

    Alkawaz, Mohammed Hazim; Basori, Ahmad Hoirul; Mohamad, Dzulkifli; Mohamed, Farhan

    2014-01-01

    Generating extreme appearances such as scared awaiting sweating while happy fit for tears (cry) and blushing (anger and happiness) is the key issue in achieving the high quality facial animation. The effects of sweat, tears, and colors are integrated into a single animation model to create realistic facial expressions of 3D avatar. The physical properties of muscles, emotions, or the fluid properties with sweating and tears initiators are incorporated. The action units (AUs) of facial action coding system are merged with autonomous AUs to create expressions including sadness, anger with blushing, happiness with blushing, and fear. Fluid effects such as sweat and tears are simulated using the particle system and smoothed-particle hydrodynamics (SPH) methods which are combined with facial animation technique to produce complex facial expressions. The effects of oxygenation of the facial skin color appearance are measured using the pulse oximeter system and the 3D skin analyzer. The result shows that virtual human facial expression is enhanced by mimicking actual sweating and tears simulations for all extreme expressions. The proposed method has contribution towards the development of facial animation industry and game as well as computer graphics. PMID:25136663

  4. Realistic facial expression of virtual human based on color, sweat, and tears effects.

    PubMed

    Alkawaz, Mohammed Hazim; Basori, Ahmad Hoirul; Mohamad, Dzulkifli; Mohamed, Farhan

    2014-01-01

    Generating extreme appearances such as scared awaiting sweating while happy fit for tears (cry) and blushing (anger and happiness) is the key issue in achieving the high quality facial animation. The effects of sweat, tears, and colors are integrated into a single animation model to create realistic facial expressions of 3D avatar. The physical properties of muscles, emotions, or the fluid properties with sweating and tears initiators are incorporated. The action units (AUs) of facial action coding system are merged with autonomous AUs to create expressions including sadness, anger with blushing, happiness with blushing, and fear. Fluid effects such as sweat and tears are simulated using the particle system and smoothed-particle hydrodynamics (SPH) methods which are combined with facial animation technique to produce complex facial expressions. The effects of oxygenation of the facial skin color appearance are measured using the pulse oximeter system and the 3D skin analyzer. The result shows that virtual human facial expression is enhanced by mimicking actual sweating and tears simulations for all extreme expressions. The proposed method has contribution towards the development of facial animation industry and game as well as computer graphics. PMID:25136663

  5. Effects of virtual human animation on emotion contagion in simulated inter-personal experiences.

    PubMed

    Wu, Yanxiang; Babu, Sabarish V; Armstrong, Rowan; Bertrand, Jeffrey W; Luo, Jun; Roy, Tania; Daily, Shaundra B; Dukes, Lauren Cairco; Hodges, Larry F; Fasolino, Tracy

    2014-04-01

    We empirically examined the impact of virtual human animation on the emotional responses of participants in a medical virtual reality system for education in the signs and symptoms of patient deterioration. Participants were presented with one of two virtual human conditions in a between-subjects experiment, static (non-animated) and dynamic (animated). Our objective measures included the use of psycho-physical Electro Dermal Activity (EDA) sensors, and subjective measures inspired by social psychology research included the Differential Emotions Survey (DES IV) and Positive and Negative Affect Survey (PANAS). We analyzed the quantitative and qualitative measures associated with participants’ emotional state at four distinct time-steps in the simulated interpersonal experience as the virtual patient’s medical condition deteriorated. Results suggest that participants in the dynamic condition with animations exhibited a higher sense of co-presence and greater emotional response as compared to participants in the static condition, corresponding to the deterioration in the medical condition of the virtual patient. Negative affect of participants in the dynamic condition increased at a higher rate than for participants in the static condition. The virtual human animations elicited a stronger response in negative emotions such as anguish, fear, and anger as the virtual patient’s medical condition worsened. PMID:24650990

  6. Using Virtual Technology to Promote Functional Communication in Aphasia: Preliminary Evidence From Interactive Dialogues With Human and Virtual Clinicians

    PubMed Central

    Martin, Nadine; Keshner, Emily; Rudnicky, Alex; Shi, Justin; Teodoro, Gregory

    2015-01-01

    Purpose We investigated the feasibility of using a virtual clinician (VC) to promote functional communication abilities of persons with aphasia (PWAs). We aimed to determine whether the quantity and quality of verbal output in dialogues with a VC would be the same or greater than those with a human clinician (HC). Method Four PWAs practiced dialogues for 2 sessions each with a HC and VC. Dialogues from before and after practice were transcribed and analyzed for content. We compared measures taken before and after practice in the VC and HC conditions. Results Results were mixed. Participants either produced more verbal output with the VC or showed no difference on this measure between the VC and HC conditions. Participants also showed some improvement in postpractice narratives. Conclusion Results provide support for the feasibility and applicability of virtual technology to real-life communication contexts to improve functional communication in PWAs. PMID:26431390

  7. Suitability of virtual prototypes to support human factors/ergonomics evaluation during the design.

    PubMed

    Aromaa, Susanna; Väänänen, Kaisa

    2016-09-01

    In recent years, the use of virtual prototyping has increased in product development processes, especially in the assessment of complex systems targeted at end-users. The purpose of this study was to evaluate the suitability of virtual prototyping to support human factors/ergonomics evaluation (HFE) during the design phase. Two different virtual prototypes were used: augmented reality (AR) and virtual environment (VE) prototypes of a maintenance platform of a rock crushing machine. Nineteen designers and other stakeholders were asked to assess the suitability of the prototype for HFE evaluation. Results indicate that the system model characteristics and user interface affect the experienced suitability. The VE system was valued as being more suitable to support the assessment of visibility, reach, and the use of tools than the AR system. The findings of this study can be used as a guidance for the implementing virtual prototypes in the product development process. PMID:27184306

  8. Virtual Project Management: Examining the Roles and Functions of Online Instructors in Creating Learning Applications with Value

    ERIC Educational Resources Information Center

    Barrett, Bob

    2012-01-01

    While many students and instructors are transitioning from the brick-and-mortar classrooms to virtual classrooms, labs, and simulations, this requires a higher-level of expertise, control, and perseverance by the instructor. Traditional methods of teaching, leading, managing, and organizing learn activities has changed in terms of the virtual…

  9. Obtaining High-Quality, "Low-Maintenance" Stakeholder Input: How to Create a Virtual Statewide Extension Program Advisory Committee

    ERIC Educational Resources Information Center

    O'Neill, Barbara

    2010-01-01

    Effective advisory committees are the cornerstone of relevant, quality Extension programs. They provide stakeholder input to Extension personnel, which is required under the Agricultural Research, Extension, and Education Reform Act (AREERA) of 1998. This article describes the implementation of a virtual statewide Extension program advisory…

  10. Learning Intercultural Communication Skills with Virtual Humans: Feedback and Fidelity

    ERIC Educational Resources Information Center

    Lane, H. Chad; Hays, Matthew Jensen; Core, Mark G.; Auerbach, Daniel

    2013-01-01

    In the context of practicing intercultural communication skills, we investigated the role of fidelity in a game-based, virtual learning environment as well as the role of feedback delivered by an intelligent tutoring system. In 2 experiments, we compared variations on the game interface, use of the tutoring system, and the form of the feedback.…

  11. Immersive Virtual Worlds in University-Level Human Geography Courses

    ERIC Educational Resources Information Center

    Dittmer, Jason

    2010-01-01

    This paper addresses the potential for increased deployment of immersive virtual worlds in higher geographic education. An account of current practice regarding popular culture in the geography classroom is offered, focusing on the objectification of popular culture rather than its constitutive role vis-a-vis place. Current e-learning practice is…

  12. The EuroPhysiome, STEP and a roadmap for the virtual physiological human.

    PubMed

    Fenner, J W; Brook, B; Clapworthy, G; Coveney, P V; Feipel, V; Gregersen, H; Hose, D R; Kohl, P; Lawford, P; McCormack, K M; Pinney, D; Thomas, S R; Van Sint Jan, S; Waters, S; Viceconti, M

    2008-09-13

    Biomedical science and its allied disciplines are entering a new era in which computational methods and technologies are poised to play a prevalent role in supporting collaborative investigation of the human body. Within Europe, this has its focus in the virtual physiological human (VPH), which is an evolving entity that has emerged from the EuroPhysiome initiative and the strategy for the EuroPhysiome (STEP) consortium. The VPH is intended to be a solution to common infrastructure needs for physiome projects across the globe, providing a unifying architecture that facilitates integration and prediction, ultimately creating a framework capable of describing Homo sapiens in silico. The routine reliance of the biomedical industry, biomedical research and clinical practice on information technology (IT) highlights the importance of a tailor-made and robust IT infrastructure, but numerous challenges need to be addressed if the VPH is to become a mature technological reality. Appropriate investment will reap considerable rewards, since it is anticipated that the VPH will influence all sectors of society, with implications predominantly for improved healthcare, improved competitiveness in industry and greater understanding of (patho)physiological processes. This paper considers issues pertinent to the development of the VPH, highlighted by the work of the STEP consortium. PMID:18559316

  13. Human-human physical interaction in the joint control of an underactuated virtual object.

    PubMed

    De Santis, Dalia; Zenzeri, Jacopo; Masia, Lorenzo; Squeri, Valentina; Morasso, Pietro

    2014-01-01

    Human-human physical interaction has proven to be advantageous especially in contexts with high coordination requirements. But under which conditions can haptic communication bring to performance benefits in a challenging cooperative environment? In this work we investigate which are the dynamics that intervene when two subjects are required to switch from a bimanual to a dyadic configuration in order to solve a complex reaching and stabilization task of a virtual tool in the presence of an unstable dynamics. Results show that dyadic cooperation can improve the performance respect to the individual condition, while minimizing the effort. However, in the joint task, when the stiffness of the system becomes harder to manipulate the feedback delays appear to be critical in determining the maximum achievable level of performance. PMID:25570969

  14. Creating Clay Models of a Human Torso as an Alternative to Dissection

    ERIC Educational Resources Information Center

    Shipley, Gwendolyn

    2010-01-01

    Instead of dissecting animals, students create small clay models of human internal organs to demonstrate their understanding of the positioning and interlocking shapes of the organs. Not only is this approach more environmentally friendly, it also forces them to learn human anatomy--which is more relevant to them than the anatomy of other…

  15. A rapid algorithm for realistic human reaching and its use in a virtual reality system

    NASA Technical Reports Server (NTRS)

    Aldridge, Ann; Pandya, Abhilash; Goldsby, Michael; Maida, James

    1994-01-01

    The Graphics Analysis Facility (GRAF) at JSC has developed a rapid algorithm for computing realistic human reaching. The algorithm was applied to GRAF's anthropometrically correct human model and used in a 3D computer graphics system and a virtual reality system. The nature of the algorithm and its uses are discussed.

  16. Complementary Machine Intelligence and Human Intelligence in Virtual Teaching Assistant for Tutoring Program Tracing

    ERIC Educational Resources Information Center

    Chou, Chih-Yueh; Huang, Bau-Hung; Lin, Chi-Jen

    2011-01-01

    This study proposes a virtual teaching assistant (VTA) to share teacher tutoring tasks in helping students practice program tracing and proposes two mechanisms of complementing machine intelligence and human intelligence to develop the VTA. The first mechanism applies machine intelligence to extend human intelligence (teacher answers) to evaluate…

  17. Human sex differences in solving a virtual navigation problem.

    PubMed

    Astur, Robert S; Purton, Andrea J; Zaniewski, Melanie J; Cimadevilla, Jose; Markus, Etan J

    2016-07-15

    The current study examined sex differences in initial and subsequent strategies in solving a navigational problem within a virtual reality environment. We tested 163 undergraduates on a virtual T-maze task that included probe trials designed to assess whether participants were responding using either a place or response strategy. Participants were also tested on a mental rotation task and memory of the details of the virtual room. There were no differences between the sexes in copying or recalling a map of the room or on first trial performance of the T-maze. However, at trial two, males show a significant advantage in solving the task, and approximately 80% of the males adopt a place strategy to solve the T-maze whereas females at that point showed no strategy preference. Across all testing, both males and females preferentially used a place strategy. We discuss how factors such as spatial priming affect strategy preferences and how such factors may differentially affect males and females. PMID:27108050

  18. The use of a low-cost visible light 3D scanner to create virtual reality environment models of actors and objects

    NASA Astrophysics Data System (ADS)

    Straub, Jeremy

    2015-05-01

    A low-cost 3D scanner has been developed with a parts cost of approximately USD $5,000. This scanner uses visible light sensing to capture both structural as well as texture and color data of a subject. This paper discusses the use of this type of scanner to create 3D models for incorporation into a virtual reality environment. It describes the basic scanning process (which takes under a minute for a single scan), which can be repeated to collect multiple positions, if needed for actor model creation. The efficacy of visible light versus other scanner types is also discussed.

  19. A review of steps taken to create an international virtual laboratory at NASA Langley for aerodynamic prediction and comparison

    NASA Astrophysics Data System (ADS)

    Lamar, John E.; Cronin, Catherine K.; Scott, Laura E.

    2004-04-01

    A review of the steps taken to establish an international virtual laboratory (VL) at the NASA Langley Research Center for aerodynamic prediction and comparison of flight data in the post-09/11/2001 cyber-terrorist environment is detailed here. The key features of the VL include an intuitive, web-based user interface for ease of access, a secure high-speed Internet connection between browser and server, a relational database architecture for data and information search, and a secure file-storage system. The detailed planning and handling of such issues as security, computer firewall access and legal protection of data are provided.

  20. Modeling and simulation of virtual human's coordination based on multi-agent systems

    NASA Astrophysics Data System (ADS)

    Zhang, Mei; Wen, Jing-Hua; Zhang, Zu-Xuan; Zhang, Jian-Qing

    2006-10-01

    The difficulties and hotspots researched in current virtual geographic environment (VGE) are sharing space and multiusers operation, distributed coordination and group decision-making. The theories and technologies of MAS provide a brand-new environment for analysis, design and realization of distributed opening system. This paper takes cooperation among virtual human in VGE which multi-user participate in as main researched object. First we describe theory foundation truss of VGE, and present the formalization description of Multi-Agent System (MAS). Then we detailed analyze and research arithmetic of collectivity operating behavior learning of virtual human based on best held Genetic Algorithm(GA), and establish dynamics action model which Multi-Agents and object interact dynamically and colony movement strategy. Finally we design a example which shows how 3 evolutional Agents cooperate to complete the task of colony pushing column box, and design a virtual world prototype of virtual human pushing box collectively based on V-Realm Builder 2.0, moreover we make modeling and dynamic simulation with Simulink 6.

  1. Effects of Virtual Human Appearance Fidelity on Emotion Contagion in Affective Inter-Personal Simulations.

    PubMed

    Volante, Matias; Babu, Sabarish V; Chaturvedi, Himanshu; Newsome, Nathan; Ebrahimi, Elham; Roy, Tania; Daily, Shaundra B; Fasolino, Tracy

    2016-04-01

    Realistic versus stylized depictions of virtual humans in simulated inter-personal situations and their ability to elicit emotional responses in users has been an open question for artists and researchers alike. We empirically evaluated the effects of near visually realistic vs. non-realistic stylized appearance of virtual humans on the emotional response of participants in a medical virtual reality system that was designed to educate users in recognizing the signs and symptoms of patient deterioration. In a between-subjects experiment protocol, participants interacted with one of three different appearances of a virtual patient, namely visually realistic, cartoon-shaded and charcoal-sketch like conditions in a mixed reality simulation. Emotional impact were measured via a combination of quantitative objective measures were gathered using skin Electrodermal Activity (EDA) sensors, and quantitative subjective measures such as the Differential Emotion Survey (DES IV), Positive and Negative Affect Schedule (PANAS), and Social Presence questionnaire. The emotional states of the participants were analyzed across four distinct time steps during which the medical condition of the virtual patient deteriorated (an emotionally stressful interaction), and were contrasted to a baseline affective state. Objective EDA results showed that in all three conditions, male participants exhibited greater levels of arousal as compared to female participants. We found that negative affect levels were significantly lower in the visually realistic condition, as compared to the stylized appearance conditions. Furthermore, in emotional dimensions of interest-excitement, surprise, anger, fear and guilt participants in all conditions responded similarly. However, in social emotional constructs of shyness, presence, perceived personality, and enjoyment-joy, we found that participants responded differently in the visually realistic condition as compared to the cartoon and sketch conditions. Our

  2. Proportional myoelectric control of a virtual object to investigate human efferent control.

    PubMed

    Gordon, Keith E; Ferris, Daniel P

    2004-12-01

    We used proportional myoelectric control of a one-dimensional virtual object to investigate differences in efferent control between the proximal and distal muscles of the upper limbs. Eleven subjects placed one of their upper limbs in a brace that restricted movement while we recorded electromyography (EMG) signals from elbow flexors/extensors or wrist flexors/extensors during isometric contractions. By activating their muscles, subjects applied virtual forces to a virtual object using a real-time computer interface. The magnitudes of these forces were proportional to EMG amplitudes. Subjects used this proportional EMG control to move the virtual object through two tracking tasks, one with a static target and one with a moving target (i.show $132#e., a sine wave). We hypothesized that subjects would have better control over the virtual object using their distal muscles rather than using their proximal muscles because humans typically use more distal joints to perform fine motor tasks. The results indicated that there was no difference in subjects' ability to control virtual object movements when using either upper arm muscles or forearm muscles. These results suggest that differences in control accuracy between elbow joint movements and wrist joint movements are more likely to be a result of motor practice, proprioceptive feedback or joint mechanics rather than inherent differences in efferent control. PMID:15258714

  3. Virtual tomography: a new approach to efficient human-computer interaction for medical imaging

    NASA Astrophysics Data System (ADS)

    Teistler, Michael; Bott, Oliver J.; Dormeier, Jochen; Pretschner, Dietrich P.

    2003-05-01

    By utilizing virtual reality (VR) technologies the computer system virtusMED implements the concept of virtual tomography for exploring medical volumetric image data. Photographic data from a virtual patient as well as CT or MRI data from real patients are visualized within a virtual scene. The view of this scene is determined either by a conventional computer mouse, a head-mounted display or a freely movable flat panel. A virtual examination probe is used to generate oblique tomographic images which are computed from the given volume data. In addition, virtual models can be integrated into the scene such as anatomical models of bones and inner organs. virtusMED has shown to be a valuable tool to learn human anaotomy and to udnerstand the principles of medical imaging such as sonography. Furthermore its utilization to improve CT and MRI based diagnosis is very promising. Compared to VR systems of the past, the standard PC-based system virtusMED is a cost-efficient and easily maintained solution providing a highly intuitive time-saving user interface for medical imaging.

  4. Creating the optimal workspace for hospital staff using human centred design.

    PubMed

    Cawood, T; Saunders, E; Drennan, C; Cross, N; Nicholl, D; Kenny, A; Meates, D; Laing, R

    2016-07-01

    We were tasked with creating best possible non-clinical workspace solutions for approximately 450 hospital staff across 11 departments encompassing medical, nursing, allied health, administrative and other support staff. We used a Human-Centred Design process, involving 'Hear, Create and Deliver' stages. We used observations, contextual enquiry and role-specific workshops to understand needs, key interactions and drivers of behaviour. Co-design workshops were then used to explore and prototype-test concepts for the final design. With extensive employee engagement and design process expertise, an innovative solution was created that focussed on meeting the functional workspace needs of a diverse group of staff requiring a range of different spaces, incorporating space constraints and equity. This project demonstrated the strength of engaging employees in an expert-led Human-Centred Design process. We believe this is a successful blueprint process for other institutions to embrace when facing similar workspace design challenges. PMID:27405891

  5. How Therapeutic Intervention Does Create the Prerequisites of Change in Human Relations.

    ERIC Educational Resources Information Center

    Caille, Philippe

    1981-01-01

    Proposes that therapeutic intervention doesn't have the power to create durable, predetermined changes in human systems. Suggests the family's basic rules prohibit it from changing. Discusses a preferable goal of validating the family's present functioning through an understanding of different levels of its self-perception (phenomenological model,…

  6. Human Robotic (Virtual) study of houghton crater from NASA AMES Future Flight Central (FFC)

    NASA Technical Reports Server (NTRS)

    2002-01-01

    Human Robotic (Virtual) study of houghton crater from NASA AMES Future Flight Central (FFC) Simulator tower L-R: Dr Stephen Hoffman, JSC (seated); Dr. Kelly Snook, Ames/JSC: Dr Jeffry Moersch, Univ of Tenn; and Dr Jim Saunders, Auburn

  7. Study of Human Barriers upon Development of Virtual Disciplines at University of Isfahan

    ERIC Educational Resources Information Center

    Nikoonezhad, Sepideh; Nili, Mohammadreza; Esfahani, Ahmadreza Nasr

    2015-01-01

    The present study has been carried out to investigate the human barriers of developing virtual majors at Isfahan University; therefore, considering its objective, it is a functional research. It was conducted in combined (quantitative-qualitative) manner via descriptive survey method. In order to do the research, investigating the texts, interview…

  8. The Parametric Model of the Human Mandible Coronoid Process Created by Method of Anatomical Features

    PubMed Central

    Vitković, Nikola; Mitić, Jelena; Manić, Miodrag; Trajanović, Miroslav; Husain, Karim; Petrović, Slađana; Arsić, Stojanka

    2015-01-01

    Geometrically accurate and anatomically correct 3D models of the human bones are of great importance for medical research and practice in orthopedics and surgery. These geometrical models can be created by the use of techniques which can be based on input geometrical data acquired from volumetric methods of scanning (e.g., Computed Tomography (CT)) or on the 2D images (e.g., X-ray). Geometrical models of human bones created in such way can be applied for education of medical practitioners, preoperative planning, etc. In cases when geometrical data about the human bone is incomplete (e.g., fractures), it may be necessary to create its complete geometrical model. The possible solution for this problem is the application of parametric models. The geometry of these models can be changed and adapted to the specific patient based on the values of parameters acquired from medical images (e.g., X-ray). In this paper, Method of Anatomical Features (MAF) which enables creation of geometrically precise and anatomically accurate geometrical models of the human bones is implemented for the creation of the parametric model of the Human Mandible Coronoid Process (HMCP). The obtained results about geometrical accuracy of the model are quite satisfactory, as it is stated by the medical practitioners and confirmed in the literature. PMID:26064183

  9. CREATING A VIRTUAL SLIDE MAP FROM SPUTUM SMEAR IMAGES FOR REGION-OF-INTEREST LOCALISATION IN AUTOMATED MICROSCOPY

    PubMed Central

    Patel, Bhavin; Douglas, Tania S.

    2012-01-01

    We address the location of regions-of-interest in previously scanned sputum smear slides requiring reexamination in automated microscopy for tuberculosis (TB) detection. We focus on the core component of microscope auto-positioning, which is to find a point of reference, position and orientation, on the slide so that it can be used to automatically bring desired fields to the field-of-view of the microscope. We use virtual slide maps together with geometric hashing to localise a query image, which then acts as the point of reference. The true positive rate achieved by the algorithm was above 88% even for noisy query images captured at slide orientations up to 26°. The image registration error, computed as the average mean square error, was less than 14 pixel2 (corresponding to 1.02 μm2). The algorithm is inherently robust to changes in slide orientation and placement and showed high tolerance to illumination changes and robustness to noise. PMID:22257649

  10. Computational Virtual Reality (VR) as a human-computer interface in the operation of telerobotic systems

    NASA Technical Reports Server (NTRS)

    Bejczy, Antal K.

    1995-01-01

    This presentation focuses on the application of computer graphics or 'virtual reality' (VR) techniques as a human-computer interface tool in the operation of telerobotic systems. VR techniques offer very valuable task realization aids for planning, previewing and predicting robotic actions, operator training, and for visual perception of non-visible events like contact forces in robotic tasks. The utility of computer graphics in telerobotic operation can be significantly enhanced by high-fidelity calibration of virtual reality images to actual TV camera images. This calibration will even permit the creation of artificial (synthetic) views of task scenes for which no TV camera views are available.

  11. Varieties of virtualization

    NASA Technical Reports Server (NTRS)

    Ellis, Stephen R.

    1991-01-01

    Natural environments have a content, i.e., the objects in them; a geometry, i.e., a pattern of rules for positioning and displacing the objects; and a dynamics, i.e., a system of rules describing the effects of forces acting on the objects. Human interaction with most common natural environments has been optimized by centuries of evolution. Virtual environments created through the human-computer interface similarly have a content, geometry, and dynamics, but the arbitrary character of the computer simulation creating them does not insure that human interaction with these virtual environments will be natural. The interaction, indeed, could be supernatural but it also could be impossible. An important determinant of the comprehensibility of a virtual environment is the correspondence between the environmental frames of reference and those associated with the control of environmental objects. The effects of rotation and displacement of control frames of reference with respect to corresponding environmental references differ depending upon whether perceptual judgement or manual tracking performance is measured. The perceptual effects of frame of reference displacement may be analyzed in terms of distortions in the process of virtualizing the synthetic environment space. The effects of frame of reference displacement and rotation have been studied by asking subjects to estimate exocentric direction in a virtual space.

  12. Formulation of wire control mechanism for surgical robot to create virtual reality environment aimed at conducting surgery inside the body.

    PubMed

    Suzuki, Naoki; Hattori, Asaki; Ieiri, Satoshi; Tomikawa, Morimasa; Kenmotsu, Hajime; Hashizume, Makoto

    2013-01-01

    We here report on the process of developing a surgical robot that can conduct operation "going inside the body without spreading the operational region". The endoscopic robot that we are developing now has a flexible cylindrical body with functions of a set of human arms at the tip and also with vision and haptic sense functions. We evaluated necessary technology factor to complete this robot into categories such as, transmission of energy, adaptation to insides of the body. PMID:23400196

  13. Where to look? Automating attending behaviors of virtual human characters

    NASA Technical Reports Server (NTRS)

    Chopra Khullar, S.; Badler, N. I.

    2001-01-01

    This research proposes a computational framework for generating visual attending behavior in an embodied simulated human agent. Such behaviors directly control eye and head motions, and guide other actions such as locomotion and reach. The implementation of these concepts, referred to as the AVA, draws on empirical and qualitative observations known from psychology, human factors and computer vision. Deliberate behaviors, the analogs of scanpaths in visual psychology, compete with involuntary attention capture and lapses into idling or free viewing. Insights provided by implementing this framework are: a defined set of parameters that impact the observable effects of attention, a defined vocabulary of looking behaviors for certain motor and cognitive activity, a defined hierarchy of three levels of eye behavior (endogenous, exogenous and idling) and a proposed method of how these types interact.

  14. Virtual histology of the human heart using optical coherence tomography

    PubMed Central

    Ambrosi, Christina M.; Moazami, Nader; Rollins, Andrew M.; Efimov, Igor R.

    2009-01-01

    Optical coherence tomography (OCT) allows for the visualization of micron-scale structures within nontransparent biological tissues. For the first time, we demonstrate the use of OCT in identifying components of the cardiac conduction system and other structures in the explanted human heart. Reconstructions of cardiac structures up to 2 mm below the tissue surface were achieved and validated with Masson Trichrome histology in atrial, ventricular, sinoatrial nodal, and atrioventricular nodal preparations. The high spatial resolution of OCT provides visualization of cardiac fibers within the myocardium, as well as elements of the cardiac conduction system; however, a limiting factor remains its depth penetration, demonstrated to be ∼2 mm in cardiac tissues. Despite its currently limited imaging depth, the use of OCT to identify the structural determinants of both normal and abnormal function in the intact human heart is critical in its development as a potential aid to intracardiac arrhythmia diagnosis and therapy. PMID:19895104

  15. Virtual histology of the human heart using optical coherence tomography

    NASA Astrophysics Data System (ADS)

    Ambrosi, Christina M.; Moazami, Nader; Rollins, Andrew M.; Efimov, Igor R.

    2009-09-01

    Optical coherence tomography (OCT) allows for the visualization of micron-scale structures within nontransparent biological tissues. For the first time, we demonstrate the use of OCT in identifying components of the cardiac conduction system and other structures in the explanted human heart. Reconstructions of cardiac structures up to 2 mm below the tissue surface were achieved and validated with Masson Trichrome histology in atrial, ventricular, sinoatrial nodal, and atrioventricular nodal preparations. The high spatial resolution of OCT provides visualization of cardiac fibers within the myocardium, as well as elements of the cardiac conduction system; however, a limiting factor remains its depth penetration, demonstrated to be ~2 mm in cardiac tissues. Despite its currently limited imaging depth, the use of OCT to identify the structural determinants of both normal and abnormal function in the intact human heart is critical in its development as a potential aid to intracardiac arrhythmia diagnosis and therapy.

  16. Is it the real deal? Perception of virtual characters versus humans: an affective cognitive neuroscience perspective

    PubMed Central

    de Borst, Aline W.; de Gelder, Beatrice

    2015-01-01

    Recent developments in neuroimaging research support the increased use of naturalistic stimulus material such as film, avatars, or androids. These stimuli allow for a better understanding of how the brain processes information in complex situations while maintaining experimental control. While avatars and androids are well suited to study human cognition, they should not be equated to human stimuli. For example, the uncanny valley hypothesis theorizes that artificial agents with high human-likeness may evoke feelings of eeriness in the human observer. Here we review if, when, and how the perception of human-like avatars and androids differs from the perception of humans and consider how this influences their utilization as stimulus material in social and affective neuroimaging studies. First, we discuss how the appearance of virtual characters affects perception. When stimuli are morphed across categories from non-human to human, the most ambiguous stimuli, rather than the most human-like stimuli, show prolonged classification times and increased eeriness. Human-like to human stimuli show a positive linear relationship with familiarity. Secondly, we show that expressions of emotions in human-like avatars can be perceived similarly to human emotions, with corresponding behavioral, physiological and neuronal activations, with exception of physical dissimilarities. Subsequently, we consider if and when one perceives differences in action representation by artificial agents versus humans. Motor resonance and predictive coding models may account for empirical findings, such as an interference effect on action for observed human-like, natural moving characters. However, the expansion of these models to explain more complex behavior, such as empathy, still needs to be investigated in more detail. Finally, we broaden our outlook to social interaction, where virtual reality stimuli can be utilized to imitate complex social situations. PMID:26029133

  17. Virtual Habitat -a dynamic simulation of closed life support systems -human model status

    NASA Astrophysics Data System (ADS)

    Markus Czupalla, M. Sc.; Zhukov, Anton; Hwang, Su-Au; Schnaitmann, Jonas

    In order to optimize Life Support Systems on a system level, stability questions must be in-vestigated. To do so the exploration group of the Technical University of Munich (TUM) is developing the "Virtual Habitat" (V-HAB) dynamic LSS simulation software. V-HAB shall provide the possibility to conduct dynamic simulations of entire mission scenarios for any given LSS configuration. The Virtual Habitat simulation tool consists of four main modules: • Closed Environment Module (CEM) -monitoring of compounds in a closed environment • Crew Module (CM) -dynamic human simulation • P/C Systems Module (PCSM) -dynamic P/C subsystems • Plant Module (PM) -dynamic plant simulation The core module of the simulation is the dynamic and environment sensitive human module. Introduced in its basic version in 2008, the human module has been significantly updated since, increasing its capabilities and maturity significantly. In this paper three newly added human model subsystems (thermal regulation, digestion and schedule controller) are introduced touching also on the human stress subsystem which is cur-rently under development. Upon the introduction of these new subsystems, the integration of these into the overall V-HAB human model is discussed, highlighting the impact on the most important I/F. The overall human model capabilities shall further be summarized and presented based on meaningful test cases. In addition to the presentation of the results, the correlation strategy for the Virtual Habitat human model shall be introduced assessing the models current confidence level and giving an outlook on the future correlation strategy. Last but not least, the remaining V-HAB mod-ules shall be introduced shortly showing how the human model is integrated into the overall simulation.

  18. Web GIS in practice III: creating a simple interactive map of England's Strategic Health Authorities using Google Maps API, Google Earth KML, and MSN Virtual Earth Map Control

    PubMed Central

    Boulos, Maged N Kamel

    2005-01-01

    This eye-opener article aims at introducing the health GIS community to the emerging online consumer geoinformatics services from Google and Microsoft (MSN), and their potential utility in creating custom online interactive health maps. Using the programmable interfaces provided by Google and MSN, we created three interactive demonstrator maps of England's Strategic Health Authorities. These can be browsed online at – Google Maps API (Application Programming Interface) version, – Google Earth KML (Keyhole Markup Language) version, and – MSN Virtual Earth Map Control version. Google and MSN's worldwide distribution of "free" geospatial tools, imagery, and maps is to be commended as a significant step towards the ultimate "wikification" of maps and GIS. A discussion is provided of these emerging online mapping trends, their expected future implications and development directions, and associated individual privacy, national security and copyrights issues. Although ESRI have announced their planned response to Google (and MSN), it remains to be seen how their envisaged plans will materialize and compare to the offerings from Google and MSN, and also how Google and MSN mapping tools will further evolve in the near future. PMID:16176577

  19. Virtual embryology: a 3D library reconstructed from human embryo sections and animation of development process.

    PubMed

    Komori, M; Miura, T; Shiota, K; Minato, K; Takahashi, T

    1995-01-01

    The volumetric shape of a human embryo and its development is hard to comprehend as they have been viewed as a 2D schemes in a textbook or microscopic sectional image. In this paper, a CAI and research support system for human embryology using multimedia presentation techniques is described. In this system, 3D data is acquired from a series of sliced specimens. Its 3D structure can be viewed interactively by rotating, extracting, and truncating its whole body or organ. Moreover, the development process of embryos can be animated using a morphing technique applied to the specimen in several stages. The system is intended to be used interactively, like a virtual reality system. Hence, the system is called Virtual Embryology. PMID:8591413

  20. Understanding Human Perception of Building Categories in Virtual 3d Cities - a User Study

    NASA Astrophysics Data System (ADS)

    Tutzauer, P.; Becker, S.; Niese, T.; Deussen, O.; Fritsch, D.

    2016-06-01

    Virtual 3D cities are becoming increasingly important as a means of visually communicating diverse urban-related information. To get a deeper understanding of a human's cognitive experience of virtual 3D cities, this paper presents a user study on the human ability to perceive building categories (e.g. residential home, office building, building with shops etc.) from geometric 3D building representations. The study reveals various dependencies between geometric properties of the 3D representations and the perceptibility of the building categories. Knowledge about which geometries are relevant, helpful or obstructive for perceiving a specific building category is derived. The importance and usability of such knowledge is demonstrated based on a perception-guided 3D building abstraction process.

  1. Mussel-inspired human gelatin nanocoating for creating biologically adhesive surfaces

    PubMed Central

    Yang, Xi; Zhu, Liping; Tada, Seiichi; Zhou, Di; Kitajima, Takashi; Isoshima, Takashi; Yoshida, Yasuhiro; Nakamura, Mariko; Yan, Weiqun; Ito, Yoshihiro

    2014-01-01

    Recombinant human gelatin was conjugated with dopamine using carbodiimide as a surface modifier. This dopamine-coupled human gelatin (D-rhG) was characterized by 1H-nuclear magnetic resonance, mass spectroscopy, and circular dichroism. D-rhG-coated surface properties were analyzed by physicochemical methods. Additionally, cell attachment and growth on the modified surfaces was assessed using human umbilical endothelial cells. Binding of gelatin onto titanium was significantly enhanced by dopamine conjugation. The thickness of the D-rhG coating depended on the treatment pH; thicker layers were formed at higher pH values, with a maximum thickness of 30 nm. D-rhG enhanced the binding of collagen-binding vascular endothelial growth factor and cell adhesion as compared with gelatin alone, even at the same surface concentration. The D-rhG surface modifier enhanced substrate binding by creating an adhesive nanointerface that increased specific protein binding and cell attachment. PMID:24920909

  2. Mussel-inspired human gelatin nanocoating for creating biologically adhesive surfaces.

    PubMed

    Yang, Xi; Zhu, Liping; Tada, Seiichi; Zhou, Di; Kitajima, Takashi; Isoshima, Takashi; Yoshida, Yasuhiro; Nakamura, Mariko; Yan, Weiqun; Ito, Yoshihiro

    2014-01-01

    Recombinant human gelatin was conjugated with dopamine using carbodiimide as a surface modifier. This dopamine-coupled human gelatin (D-rhG) was characterized by (1)H-nuclear magnetic resonance, mass spectroscopy, and circular dichroism. D-rhG-coated surface properties were analyzed by physicochemical methods. Additionally, cell attachment and growth on the modified surfaces was assessed using human umbilical endothelial cells. Binding of gelatin onto titanium was significantly enhanced by dopamine conjugation. The thickness of the D-rhG coating depended on the treatment pH; thicker layers were formed at higher pH values, with a maximum thickness of 30 nm. D-rhG enhanced the binding of collagen-binding vascular endothelial growth factor and cell adhesion as compared with gelatin alone, even at the same surface concentration. The D-rhG surface modifier enhanced substrate binding by creating an adhesive nanointerface that increased specific protein binding and cell attachment. PMID:24920909

  3. Pacemaker Created in Human Ventricle by Depressing Inward-Rectifier K+ Current: A Simulation Study

    PubMed Central

    Zhang, Yue; Li, Qince; Zhang, Henggui

    2016-01-01

    Cardiac conduction disorders are common diseases which cause slow heart rate and syncope. The best way to treat these diseases by now is to implant electronic pacemakers, which, yet, have many disadvantages, such as the limited battery life and infection. Biopacemaker has been expected to replace the electronic devices. Automatic ventricular myocytes (VMs) could show pacemaker activity, which was induced by depressing inward-rectifier K+ current (IK1). In this study, a 2D model of human biopacemaker was created from the ventricular endocardial myocytes. We examined the stability of the created biopacemaker and investigated its driving capability by finding the suitable size and spatial distribution of the pacemaker for robust pacing and driving the surrounding quiescent cardiomyocytes. Our results suggest that the rhythm of the pacemaker is similar to that of the single cell at final stable state. The driving force of the biopacemaker is closely related to the pattern of spatial distribution of the pacemaker. PMID:26998484

  4. The Virtual Teacher (VT) Paradigm: Learning New Patterns of Interpersonal Coordination Using the Human Dynamic Clamp.

    PubMed

    Kostrubiec, Viviane; Dumas, Guillaume; Zanone, Pier-Giorgio; Kelso, J A Scott

    2015-01-01

    The Virtual Teacher paradigm, a version of the Human Dynamic Clamp (HDC), is introduced into studies of learning patterns of inter-personal coordination. Combining mathematical modeling and experimentation, we investigate how the HDC may be used as a Virtual Teacher (VT) to help humans co-produce and internalize new inter-personal coordination pattern(s). Human learners produced rhythmic finger movements whilst observing a computer-driven avatar, animated by dynamic equations stemming from the well-established Haken-Kelso-Bunz (1985) and Schöner-Kelso (1988) models of coordination. We demonstrate that the VT is successful in shifting the pattern co-produced by the VT-human system toward any value (Experiment 1) and that the VT can help humans learn unstable relative phasing patterns (Experiment 2). Using transfer entropy, we find that information flow from one partner to the other increases when VT-human coordination loses stability. This suggests that variable joint performance may actually facilitate interaction, and in the long run learning. VT appears to be a promising tool for exploring basic learning processes involved in social interaction, unraveling the dynamics of information flow between interacting partners, and providing possible rehabilitation opportunities. PMID:26569608

  5. The Virtual Teacher (VT) Paradigm: Learning New Patterns of Interpersonal Coordination Using the Human Dynamic Clamp

    PubMed Central

    2015-01-01

    The Virtual Teacher paradigm, a version of the Human Dynamic Clamp (HDC), is introduced into studies of learning patterns of inter-personal coordination. Combining mathematical modeling and experimentation, we investigate how the HDC may be used as a Virtual Teacher (VT) to help humans co-produce and internalize new inter-personal coordination pattern(s). Human learners produced rhythmic finger movements whilst observing a computer-driven avatar, animated by dynamic equations stemming from the well-established Haken-Kelso-Bunz (1985) and Schöner-Kelso (1988) models of coordination. We demonstrate that the VT is successful in shifting the pattern co-produced by the VT-human system toward any value (Experiment 1) and that the VT can help humans learn unstable relative phasing patterns (Experiment 2). Using transfer entropy, we find that information flow from one partner to the other increases when VT-human coordination loses stability. This suggests that variable joint performance may actually facilitate interaction, and in the long run learning. VT appears to be a promising tool for exploring basic learning processes involved in social interaction, unraveling the dynamics of information flow between interacting partners, and providing possible rehabilitation opportunities. PMID:26569608

  6. A new dynamic 3D virtual methodology for teaching the mechanics of atrial septation as seen in the human heart.

    PubMed

    Schleich, Jean-Marc; Dillenseger, Jean-Louis; Houyel, Lucile; Almange, Claude; Anderson, Robert H

    2009-01-01

    Learning embryology remains difficult, since it requires understanding of many complex phenomena. The temporal evolution of developmental events has classically been illustrated using cartoons, which create difficulty in linking spatial and temporal aspects, such correlation being the keystone of descriptive embryology. We synthesized the bibliographic data from recent studies of atrial septal development. On the basis of this synthesis, consensus on the stages of atrial septation as seen in the human heart has been reached by a group of experts in cardiac embryology and pediatric cardiology. This has permitted the preparation of three-dimensional (3D) computer graphic objects for the anatomical components involved in the different stages of normal human atrial septation. We have provided a virtual guide to the process of normal atrial septation, the animation providing an appreciation of the temporal and morphologic events necessary to separate the systemic and pulmonary venous returns. We have shown that our animations of normal human atrial septation increase significantly the teaching of the complex developmental processes involved, and provide a new dynamic for the process of learning. PMID:19363807

  7. Optical versus virtual: teaching assistant perceptions of the use of virtual microscopy in an undergraduate human anatomy course.

    PubMed

    Collier, Larissa; Dunham, Stacey; Braun, Mark W; O'Loughlin, Valerie Dean

    2012-01-01

    Many studies that evaluate the introduction of technology in the classroom focus on student performance and student evaluations. This study focuses on instructor evaluation of the introduction of virtual microscopy into an undergraduate anatomy class. Semi-structured interviews were conducted with graduate teaching assistants (TA) and analyzed through qualitative methods. This analysis showed that the teaching assistants found the virtual microscope to be an advantageous change in the classroom. They cite the ease of use of the virtual microscope, access to histology outside of designated laboratory time, and increasing student collaboration in class as the primary advantages. The teaching assistants also discuss principal areas where the use of the virtual microscope can be improved from a pedagogical standpoint, including requiring students to spend more time working on histology in class. PMID:22069298

  8. Web-based e-learning and virtual lab of human-artificial immune system.

    PubMed

    Gong, Tao; Ding, Yongsheng; Xiong, Qin

    2014-05-01

    Human immune system is as important in keeping the body healthy as the brain in supporting the intelligence. However, the traditional models of the human immune system are built on the mathematics equations, which are not easy for students to understand. To help the students to understand the immune systems, a web-based e-learning approach with virtual lab is designed for the intelligent system control course by using new intelligent educational technology. Comparing the traditional graduate educational model within the classroom, the web-based e-learning with the virtual lab shows the higher inspiration in guiding the graduate students to think independently and innovatively, as the students said. It has been found that this web-based immune e-learning system with the online virtual lab is useful for teaching the graduate students to understand the immune systems in an easier way and design their simulations more creatively and cooperatively. The teaching practice shows that the optimum web-based e-learning system can be used to increase the learning effectiveness of the students. PMID:24816704

  9. Virtual test: A student-centered software to measure student's critical thinking on human disease

    NASA Astrophysics Data System (ADS)

    Rusyati, Lilit; Firman, Harry

    2016-02-01

    The study "Virtual Test: A Student-Centered Software to Measure Student's Critical Thinking on Human Disease" is descriptive research. The background is importance of computer-based test that use element and sub element of critical thinking. Aim of this study is development of multiple choices to measure critical thinking that made by student-centered software. Instruments to collect data are (1) construct validity sheet by expert judge (lecturer and medical doctor) and professional judge (science teacher); and (2) test legibility sheet by science teacher and junior high school student. Participants consisted of science teacher, lecturer, and medical doctor as validator; and the students as respondent. Result of this study are describe about characteristic of virtual test that use to measure student's critical thinking on human disease, analyze result of legibility test by students and science teachers, analyze result of expert judgment by science teachers and medical doctor, and analyze result of trial test of virtual test at junior high school. Generally, result analysis shown characteristic of multiple choices to measure critical thinking was made by eight elements and 26 sub elements that developed by Inch et al.; complete by relevant information; and have validity and reliability more than "enough". Furthermore, specific characteristic of multiple choices to measure critical thinking are information in form science comic, table, figure, article, and video; correct structure of language; add source of citation; and question can guide student to critical thinking logically.

  10. Creating a Reinforcement Learning Controller for Functional Electrical Stimulation of a Human Arm.

    PubMed

    Thomas, Philip S; Branicky, Michael; van den Bogert, Antonie; Jagodnik, Kathleen

    2008-01-01

    Clinical tests have shown that the dynamics of a human arm, controlled using Functional Electrical Stimulation (FES), can vary significantly between and during trials. In this paper, we study the application of Reinforcement Learning to create a controller that can adapt to these changing dynamics of a human arm. Development and tests were done in simulation using a two-dimensional arm model and Hill-based muscle dynamics. An actor-critic architecture is used with artificial neural networks for both the actor and the critic. We begin by training it using a Proportional Derivative (PD) controller as a supervisor. We then make clinically relevant changes to the dynamics of the arm and test the actor-critic's ability to adapt without supervision in a reasonable number of episodes. PMID:22081795

  11. Discovery of Novel Human Epidermal Growth Factor Receptor-2 Inhibitors by Structure-based Virtual Screening

    PubMed Central

    Shi, Zheng; Yu, Tian; Sun, Rong; Wang, Shan; Chen, Xiao-Qian; Cheng, Li-Jia; Liu, Rong

    2016-01-01

    Background: Human epidermal growth factor receptor-2 (HER2) is a trans-membrane receptor like protein, and aberrant signaling of HER2 is implicated in many human cancers, such as ovarian cancer, gastric cancer, and prostate cancer, most notably breast cancer. Moreover, it has been in the spotlight in the recent years as a promising new target for therapy of breast cancer. Objective: Since virtual screening has become an integral part of the drug discovery process, it is of great significant to identify novel HER2 inhibitors by structure-based virtual screening. Materials and Methods: In this study, we carried out a series of elegant bioinformatics approaches, such as virtual screening and molecular dynamics (MD) simulations to identify HER2 inhibitors from Food and Drug Administration-approved small molecule drug as potential “new use” drugs. Results: Molecular docking identified top 10 potential drugs which showed spectrum affinity to HER2. Moreover, MD simulations suggested that ZINC08214629 (Nonoxynol-9) and ZINC03830276 (Benzonatate) might exert potential inhibitory effects against HER2-targeted anti-breast cancer therapeutics. Conclusion: Together, our findings may provide successful application of virtual screening studies in the lead discovery process, and suggest that our discovered small molecules could be effective HER2 inhibitor candidates for further study. SUMMARY A series of elegant bioinformatics approaches, including virtual screening and molecular dynamics (MD) simulations were took advantage to identify human epidermal growth factor receptor-2 (HER2) inhibitors. Molecular docking recognized top 10 candidate compounds, which showed spectrum affinity to HER2. Further, MD simulations suggested that ZINC08214629 (Nonoxynol-9) and ZINC03830276 (Benzonatate) in candidate compounds were identified as potential “new use” drugs against HER2-targeted anti-breast cancer therapeutics. Abbreviations used: HER2: Human epidermal growth factor receptor-2

  12. How Human Factors Drove the Design and Implementation of the Virtual Windtunnel

    NASA Technical Reports Server (NTRS)

    Bryson, Steve; Gerald-Yamasaki, Michael (Technical Monitor)

    1998-01-01

    This viewgraph presentation describes decisions made at the NASA Ames Research Center during its development of a virtual windtunnel to assist humans in visualizing computational fluid dynamics simulations. User requirements for the system include the simulation of vortical structure, pressure distribution, and overall sense of flow. In addition, the system needs to support a variety of interfaces, excluding head mounts, and needs to use an object oriented approach. Direct manipulation of the system is most user-friendly when limited to only grab and point gestures. 'Visualization control tools' (vtools) improve the realism of the system. The necessary object oriented programming is in C++ and openGL. Users interact with objects called 'tools', which include vtools and tools which control the virtual wind tunnel environment. Other objects include data objects accessed by the visualizations. Visualizations can be added to the system by the user. The presentation includes a discussion of run-time architecture, and issues related to computation and implementation.

  13. Stereolithographic biomodelling to create tangible hard copies of the ethmoidal labyrinth air cells based on the visible human project.

    PubMed

    Kapakin, S

    2011-02-01

    Rapid prototyping (RP), or stereolithography, is a new clinical application area, which is used to obtain accurate three-dimensional physical replicas of complex anatomical structures. The aim of this study was to create tangible hard copies of the ethmoidal labyrinth air cells (ELACs) with stereolithographic biomodelling. The visible human dataset (VHD) was used as the input imaging data. The Surfdriver software package was applied to these images to reconstruct the ELACs as three-dimensional DXF (data exchange file) models. These models were post-processed in 3D-Doctor software for virtual reality modelling language (VRML) and STL (Standard Triangulation Language) formats. Stereolithographic replicas were manufactured in a rapid prototyping machine by using the STL format. The total number of ELACs was 21. The dimensions of the ELACs on the right and left sides were 52.91 x 13.00 x 28.68 mm and 53.79 x 12.42 x 28.55 mm, respectively. The total volume of the ELACs was 4771.1003 mm(3). The mean ELAC distance was 27.29 mm from the nasion and 71.09 mm from the calotte topologically. In conclusion, the combination of Surfdriver and 3D-Doctor could be effectively used for manufacturing 3D solid models from serial sections of anatomical structures. Stereolithographic anatomical models provide an innovative and complementary tool for students, researchers, and surgeons to apprehend these anatomical structures tangibly. The outcomes of these attempts can provide benefits in terms of the visualization, perception, and interpretation of the structures in anatomy teaching and prior to surgical interventions. PMID:21604251

  14. The development, assessment and validation of virtual reality for human anatomy instruction

    NASA Technical Reports Server (NTRS)

    Marshall, Karen Benn

    1996-01-01

    This research project seeks to meet the objective of science training by developing, assessing, validating and utilizing VR as a human anatomy training medium. Current anatomy instruction is primarily in the form of lectures and usage of textbooks. In ideal situations, anatomic models, computer-based instruction, and cadaver dissection are utilized to augment traditional methods of instruction. At many institutions, lack of financial resources limits anatomy instruction to textbooks and lectures. However, human anatomy is three-dimensional, unlike the one-dimensional depiction found in textbooks and the two-dimensional depiction found on the computer. Virtual reality allows one to step through the computer screen into a 3-D artificial world. The primary objective of this project is to produce a virtual reality application of the abdominopelvic region of a human cadaver that can be taken back to the classroom. The hypothesis is that an immersive learning environment affords quicker anatomic recognition and orientation and a greater level of retention in human anatomy instruction. The goal is to augment not replace traditional modes of instruction.

  15. Human Motion Tracking and Glove-Based User Interfaces for Virtual Environments in ANVIL

    NASA Technical Reports Server (NTRS)

    Dumas, Joseph D., II

    2002-01-01

    The Army/NASA Virtual Innovations Laboratory (ANVIL) at Marshall Space Flight Center (MSFC) provides an environment where engineers and other personnel can investigate novel applications of computer simulation and Virtual Reality (VR) technologies. Among the many hardware and software resources in ANVIL are several high-performance Silicon Graphics computer systems and a number of commercial software packages, such as Division MockUp by Parametric Technology Corporation (PTC) and Jack by Unigraphics Solutions, Inc. These hardware and software platforms are used in conjunction with various VR peripheral I/O (input / output) devices, CAD (computer aided design) models, etc. to support the objectives of the MSFC Engineering Systems Department/Systems Engineering Support Group (ED42) by studying engineering designs, chiefly from the standpoint of human factors and ergonomics. One of the more time-consuming tasks facing ANVIL personnel involves the testing and evaluation of peripheral I/O devices and the integration of new devices with existing hardware and software platforms. Another important challenge is the development of innovative user interfaces to allow efficient, intuitive interaction between simulation users and the virtual environments they are investigating. As part of his Summer Faculty Fellowship, the author was tasked with verifying the operation of some recently acquired peripheral interface devices and developing new, easy-to-use interfaces that could be used with existing VR hardware and software to better support ANVIL projects.

  16. A Layered Approach for Robust Spatial Virtual Human Pose Reconstruction Using a Still Image.

    PubMed

    Guo, Chengyu; Ruan, Songsong; Liang, Xiaohui; Zhao, Qinping

    2016-01-01

    Pedestrian detection and human pose estimation are instructive for reconstructing a three-dimensional scenario and for robot navigation, particularly when large amounts of vision data are captured using various data-recording techniques. Using an unrestricted capture scheme, which produces occlusions or breezing, the information describing each part of a human body and the relationship between each part or even different pedestrians must be present in a still image. Using this framework, a multi-layered, spatial, virtual, human pose reconstruction framework is presented in this study to recover any deficient information in planar images. In this framework, a hierarchical parts-based deep model is used to detect body parts by using the available restricted information in a still image and is then combined with spatial Markov random fields to re-estimate the accurate joint positions in the deep network. Then, the planar estimation results are mapped onto a virtual three-dimensional space using multiple constraints to recover any deficient spatial information. The proposed approach can be viewed as a general pre-processing method to guide the generation of continuous, three-dimensional motion data. The experiment results of this study are used to describe the effectiveness and usability of the proposed approach. PMID:26907289

  17. A Layered Approach for Robust Spatial Virtual Human Pose Reconstruction Using a Still Image

    PubMed Central

    Guo, Chengyu; Ruan, Songsong; Liang, Xiaohui; Zhao, Qinping

    2016-01-01

    Pedestrian detection and human pose estimation are instructive for reconstructing a three-dimensional scenario and for robot navigation, particularly when large amounts of vision data are captured using various data-recording techniques. Using an unrestricted capture scheme, which produces occlusions or breezing, the information describing each part of a human body and the relationship between each part or even different pedestrians must be present in a still image. Using this framework, a multi-layered, spatial, virtual, human pose reconstruction framework is presented in this study to recover any deficient information in planar images. In this framework, a hierarchical parts-based deep model is used to detect body parts by using the available restricted information in a still image and is then combined with spatial Markov random fields to re-estimate the accurate joint positions in the deep network. Then, the planar estimation results are mapped onto a virtual three-dimensional space using multiple constraints to recover any deficient spatial information. The proposed approach can be viewed as a general pre-processing method to guide the generation of continuous, three-dimensional motion data. The experiment results of this study are used to describe the effectiveness and usability of the proposed approach. PMID:26907289

  18. Pharmacophore identification, in silico screening, and virtual library design for inhibitors of the human factor Xa.

    PubMed

    Krovat, Eva M; Frühwirth, Karin H; Langer, Thierry

    2005-01-01

    Factor Xa inhibitors are innovative anticoagulant agents that provide a better safety/efficacy profile compared to other anticoagulative drugs. A chemical feature-based modeling approach was applied to identify crucial pharmacophore patterns from 3D crystal structures of inhibitors bound to human factor Xa (Pdb entries 1fjs, 1kns, 1eqz) using the software LIGANDSCOUT and CATALYST. The complex structures were selected regarding the criteria of high inhibitory potency (i.e. all ligands show K(i) values against factor Xa in the subnanomolar range) and good resolution (i.e. at least 2.2 A) in order to generate selective and high quality pharmacophore models. The resulting chemical-feature based hypotheses were used for virtual screening of commercial molecular databases such as the WDI database. Furthermore, a ligand-based molecular modeling approach was performed to obtain common-feature hypotheses that represent the relevant chemical interactions between 10 bioactive factor Xa inhibitors and the protein, respectively. In a next step a virtual combinatorial library was designed in order to generate new compounds with similar chemical and spatial properties as known inhibitors. The software tool ILIB DIVERSE was used for this procedure in order to provide new scaffolds of this group of anticoagulants. Finally we present the combination of these two techniques, hence virtual screening was performed with selective pharmacophore models in a focused virtual combinatorial database. De novo derived molecular scaffolds that were able to adequately satisfy the pharmacophore criteria are revealed and are promising templates for candidates for further development. PMID:15667140

  19. Development of realistic physical breast phantoms matched to virtual breast phantoms based on human subject data

    SciTech Connect

    Kiarashi, Nooshin; Nolte, Adam C.; Sturgeon, Gregory M.; Ghate, Sujata V.; Segars, William P.; Nolte, Loren W.; Samei, Ehsan; and others

    2015-07-15

    Purpose: Physical phantoms are essential for the development, optimization, and evaluation of x-ray breast imaging systems. Recognizing the major effect of anatomy on image quality and clinical performance, such phantoms should ideally reflect the three-dimensional structure of the human breast. Currently, there is no commercially available three-dimensional physical breast phantom that is anthropomorphic. The authors present the development of a new suite of physical breast phantoms based on human data. Methods: The phantoms were designed to match the extended cardiac-torso virtual breast phantoms that were based on dedicated breast computed tomography images of human subjects. The phantoms were fabricated by high-resolution multimaterial additive manufacturing (3D printing) technology. The glandular equivalency of the photopolymer materials was measured relative to breast tissue-equivalent plastic materials. Based on the current state-of-the-art in the technology and available materials, two variations were fabricated. The first was a dual-material phantom, the Doublet. Fibroglandular tissue and skin were represented by the most radiographically dense material available; adipose tissue was represented by the least radiographically dense material. The second variation, the Singlet, was fabricated with a single material to represent fibroglandular tissue and skin. It was subsequently filled with adipose-equivalent materials including oil, beeswax, and permanent urethane-based polymer. Simulated microcalcification clusters were further included in the phantoms via crushed eggshells. The phantoms were imaged and characterized visually and quantitatively. Results: The mammographic projections and tomosynthesis reconstructed images of the fabricated phantoms yielded realistic breast background. The mammograms of the phantoms demonstrated close correlation with simulated mammographic projection images of the corresponding virtual phantoms. Furthermore, power

  20. Creating reproducible thoracolumbar burst fractures in human specimens: an in vitro experiment.

    PubMed

    Oberkircher, Ludwig; Schmuck, Maya; Bergmann, Martin; Lechler, Philipp; Ruchholtz, Steffen; Krüger, Antonio

    2016-04-01

    OBJECT The treatment of traumatic burst fractures unaccompanied by neurological impairment remains controversial and ranges from conservative management to 360° fusion. Because of the heterogeneity of fracture types, classification systems, and treatment options, comparative biomechanical studies might help to improve our knowledge. The aim of the current study was to create a standardized fracture model to investigate burst fractures in a multisegmental setting. METHODS A total of 28 thoracolumbar fresh-frozen human cadaveric spines were used. The spines were dissected into segments (T11-L3). The T-11 and L-3 vertebral bodies were embedded in Technovit 3040 (cold-curing resin for surface testing and impressions). To simulate high energy, a metallic drop tower was designed. Stress risers were used to ensure comparable fractures. CT scans were acquired before and after fracture. All fractures were classified using the AO/OTA classification. RESULTS The preparation and embedding of the spine segments worked well. No repositioning or second embedding of the specimen, even after fracture, was required. It was possible to create single burst fractures at the L-1 level in all 28 spine segments. Among the 28 fractures there were 16 incomplete burst fractures (Type A3.1), 8 burst-split fractures (Type A3.2), and 4 complete burst fractures (Type A3.3). The differences before and after fracture for stiffness and for anterior, posterior, and central heights were all significant (p < 0.05). CONCLUSIONS The ability to create reproducible burst fractures of a single vertebral body in a thoracolumbar spine segment may serve as a basis for future biomechanical studies that will provide better understanding of mechanical properties or fixation techniques. PMID:26682598

  1. Creating a controlled vocabulary for the ethics of human research: towards a biomedical ethics ontology.

    PubMed

    Koepsell, David; Arp, Robert; Fostel, Jennifer; Smith, Barry

    2009-03-01

    ONTOLOGIES DESCRIBE REALITY IN SPECIFIC domains in ways that can bridge various disciplines and languages. They allow easier access and integration of information that is collected by different groups. Ontologies are currently used in the biomedical sciences, geography, and law. A Biomedical Ethics Ontology (BMEO) would benefit members of ethics committees who deal with protocols and consent forms spanning numerous fields of inquiry. There already exists the Ontology for Biomedical Investigations (OBI); the proposed BMEO would interoperate with OBI, creating a powerful information tool. We define a domain ontology and begin to construct a BMEO, focused on the process of evaluating human research protocols. Finally, we show how our BMEO can have practical applications for ethics committees. This paper describes ongoing research and a strategy for its broader continuation and cooperation. PMID:19374479

  2. Optical versus Virtual: Teaching Assistant Perceptions of the Use of Virtual Microscopy in an Undergraduate Human Anatomy Course

    ERIC Educational Resources Information Center

    Collier, Larissa; Dunham, Stacey; Braun, Mark W.; O'Loughlin, Valerie Dean

    2012-01-01

    Many studies that evaluate the introduction of technology in the classroom focus on student performance and student evaluations. This study focuses on instructor evaluation of the introduction of virtual microscopy into an undergraduate anatomy class. Semi-structured interviews were conducted with graduate teaching assistants (TA) and analyzed…

  3. To react or not to react? Intrinsic stochasticity of human control in virtual stick balancing.

    PubMed

    Zgonnikov, Arkady; Lubashevsky, Ihor; Kanemoto, Shigeru; Miyazawa, Toru; Suzuki, Takashi

    2014-10-01

    Understanding how humans control unstable systems is central to many research problems, with applications ranging from quiet standing to aircraft landing. Increasingly, much evidence appears in favour of event-driven control hypothesis: human operators only start actively controlling the system when the discrepancy between the current and desired system states becomes large enough. The event-driven models based on the concept of threshold can explain many features of the experimentally observed dynamics. However, much still remains unclear about the dynamics of human-controlled systems, which likely indicates that humans use more intricate control mechanisms. This paper argues that control activation in humans may be not threshold-driven, but instead intrinsically stochastic, noise-driven. Specifically, we suggest that control activation stems from stochastic interplay between the operator's need to keep the controlled system near the goal state, on the one hand, and the tendency to postpone interrupting the system dynamics, on the other hand. We propose a model capturing this interplay and show that it matches the experimental data on human balancing of virtual overdamped stick. Our results illuminate that the noise-driven activation mechanism plays a crucial role at least in the considered task, and, hypothetically, in a broad range of human-controlled processes. PMID:25056217

  4. To react or not to react? Intrinsic stochasticity of human control in virtual stick balancing

    PubMed Central

    Zgonnikov, Arkady; Lubashevsky, Ihor; Kanemoto, Shigeru; Miyazawa, Toru; Suzuki, Takashi

    2014-01-01

    Understanding how humans control unstable systems is central to many research problems, with applications ranging from quiet standing to aircraft landing. Increasingly, much evidence appears in favour of event-driven control hypothesis: human operators only start actively controlling the system when the discrepancy between the current and desired system states becomes large enough. The event-driven models based on the concept of threshold can explain many features of the experimentally observed dynamics. However, much still remains unclear about the dynamics of human-controlled systems, which likely indicates that humans use more intricate control mechanisms. This paper argues that control activation in humans may be not threshold-driven, but instead intrinsically stochastic, noise-driven. Specifically, we suggest that control activation stems from stochastic interplay between the operator's need to keep the controlled system near the goal state, on the one hand, and the tendency to postpone interrupting the system dynamics, on the other hand. We propose a model capturing this interplay and show that it matches the experimental data on human balancing of virtual overdamped stick. Our results illuminate that the noise-driven activation mechanism plays a crucial role at least in the considered task, and, hypothetically, in a broad range of human-controlled processes. PMID:25056217

  5. Virtual dissection and comparative connectivity of the superior longitudinal fasciculus in chimpanzees and humans.

    PubMed

    Hecht, Erin E; Gutman, David A; Bradley, Bruce A; Preuss, Todd M; Stout, Dietrich

    2015-03-01

    Many of the behavioral capacities that distinguish humans from other primates rely on fronto-parietal circuits. The superior longitudinal fasciculus (SLF) is the primary white matter tract connecting lateral frontal with lateral parietal regions; it is distinct from the arcuate fasciculus, which interconnects the frontal and temporal lobes. Here we report a direct, quantitative comparison of SLF connectivity using virtual in vivo dissection of the SLF in chimpanzees and humans. SLF I, the superior-most branch of the SLF, showed similar patterns of connectivity between humans and chimpanzees, and was proportionally volumetrically larger in chimpanzees. SLF II, the middle branch, and SLF III, the inferior-most branch, showed species differences in frontal connectivity. In humans, SLF II showed greater connectivity with dorsolateral prefrontal cortex, whereas in chimps SLF II showed greater connectivity with the inferior frontal gyrus. SLF III was right-lateralized and proportionally volumetrically larger in humans, and human SLF III showed relatively reduced connectivity with dorsal premotor cortex and greater extension into the anterior inferior frontal gyrus, especially in the right hemisphere. These results have implications for the evolution of fronto-parietal functions including spatial attention to observed actions, social learning, and tool use, and are in line with previous research suggesting a unique role for the right anterior inferior frontal gyrus in the evolution of human fronto-parietal network architecture. PMID:25534109

  6. Virtual dissection and comparative connectivity of the superior longitudinal fasciculus in chimpanzees and humans

    PubMed Central

    Hecht, Erin E.; Gutman, David A.; Bradley, Bruce A.; Preuss, Todd M.; Stout, Dietrich

    2015-01-01

    Many of the behavioral capacities that distinguish humans from other primates rely on fronto-parietal circuits. The superior longitudinal fasciculus (SLF) is the primary white matter tract connecting lateral frontal with lateral parietal regions; it is distinct from the arcuate fasciculus, which interconnects the frontal and temporal lobes. Here we report a direct, quantitative comparison of SLF connectivity using virtual in vivo dissection of the SLF in chimpanzees and humans. SLF I, the superior-most branch of the SLF, showed similar patterns of connectivity between humans and chimpanzees, and was proportionally volumetrically larger in chimpanzees. SLF II, the middle branch, and SLF III, the inferior-most branch, showed species differences in frontal connectivity. In humans, SLF II showed greater connectivity with dorsolateral prefrontal cortex, whereas in chimps SLF II showed greater connectivity with the inferior frontal gyrus. SLF III was right-lateralized and proportionally volumetrically larger in humans, and human SLF III showed relatively reduced connectivity with dorsal premotor cortex and greater extension into the anterior inferior frontal gyrus, especially in the right hemisphere. These results have implications for the evolution of fronto-parietal functions including spatial attention to observed actions, social learning, and tool use, and are in line with previous research suggesting a unique role for the right anterior inferior frontal gyrus in the evolution of human fronto-parietal network architecture. PMID:25534109

  7. YouTube Videos to Create a “Virtual Hospital Experience” for Hip and Knee Replacement Patients to Decrease Preoperative Anxiety: A Randomized Trial

    PubMed Central

    Brennan, Katharyn; Kazmerchak, Shari; Pratt, Jason

    2016-01-01

    Background With declining reimbursement to health care systems, face-to-face time between patients and providers to optimize preoperative education and counseling may be challenging. Objective Because high patient anxiety prior to surgery has been linked to more severe and persistent pain after joint replacement surgery, the Orthopedic Surgery Department at Mayo Clinic in Florida created a playlist of 16 YouTube videos aimed at creating a virtual hospital experience for primary total hip and knee joint replacement patients. A randomized trial was then performed to evaluate the potential impact of viewing this playlist on preoperative anxiety. Methods Each patient completed a Generalized Anxiety Disorder (GAD) score assessment at the time of the routine preoperative clinic visit and then randomized based on his/her gender, type of surgery, and initial GAD score to either the control group of standard education (education at face-to-face clinical visits as well as printed educational materials) or the treatment group (standard education plus access to the YouTube playlist). On the morning of the patient’s surgery, the same survey was repeated. Of the 65 patients who consented to participate in the study, 53 completed the study (82%) with 28 of 29 (97% completed) in the control group and 25 of 36 (69% completed) in the treatment group. Results Overall, the results showed a trend toward less anxiety in patients who viewed the YouTube videos; this was exhibited by a reduction in the median GAD score by 1 point. This trend is more clearly present in patients with high preoperative anxiety (predominantly women), as seen in the reduction of the median GAD score by 6 points in the treatment group. Conclusions Although our experience is limited, our results indicate that a series of tailored videos may decrease patient anxiety preoperatively. We recommend further exploration of both this concept and the use of social media tools in preoperative patient education. Trial

  8. 3D virtual human atria: A computational platform for studying clinical atrial fibrillation.

    PubMed

    Aslanidi, Oleg V; Colman, Michael A; Stott, Jonathan; Dobrzynski, Halina; Boyett, Mark R; Holden, Arun V; Zhang, Henggui

    2011-10-01

    Despite a vast amount of experimental and clinical data on the underlying ionic, cellular and tissue substrates, the mechanisms of common atrial arrhythmias (such as atrial fibrillation, AF) arising from the functional interactions at the whole atria level remain unclear. Computational modelling provides a quantitative framework for integrating such multi-scale data and understanding the arrhythmogenic behaviour that emerges from the collective spatio-temporal dynamics in all parts of the heart. In this study, we have developed a multi-scale hierarchy of biophysically detailed computational models for the human atria--the 3D virtual human atria. Primarily, diffusion tensor MRI reconstruction of the tissue geometry and fibre orientation in the human sinoatrial node (SAN) and surrounding atrial muscle was integrated into the 3D model of the whole atria dissected from the Visible Human dataset. The anatomical models were combined with the heterogeneous atrial action potential (AP) models, and used to simulate the AP conduction in the human atria under various conditions: SAN pacemaking and atrial activation in the normal rhythm, break-down of regular AP wave-fronts during rapid atrial pacing, and the genesis of multiple re-entrant wavelets characteristic of AF. Contributions of different properties of the tissue to mechanisms of the normal rhythm and arrhythmogenesis were investigated. Primarily, the simulations showed that tissue heterogeneity caused the break-down of the normal AP wave-fronts at rapid pacing rates, which initiated a pair of re-entrant spiral waves; and tissue anisotropy resulted in a further break-down of the spiral waves into multiple meandering wavelets characteristic of AF. The 3D virtual atria model itself was incorporated into the torso model to simulate the body surface ECG patterns in the normal and arrhythmic conditions. Therefore, a state-of-the-art computational platform has been developed, which can be used for studying multi

  9. Future Evolution of Virtual Worlds as Communication Environments

    NASA Astrophysics Data System (ADS)

    Prisco, Giulio

    Extensive experience creating locations and activities inside virtual worlds provides the basis for contemplating their future. Users of virtual worlds are diverse in their goals for these online environments; for example, immersionists want them to be alternative realities disconnected from real life, whereas augmentationists want them to be communication media supporting real-life activities. As the technology improves, the diversity of virtual worlds will increase along with their significance. Many will incorporate more advanced virtual reality, or serve as major media for long-distance collaboration, or become the venues for futurist social movements. Key issues are how people can create their own virtual worlds, travel across worlds, and experience a variety of multimedia immersive environments. This chapter concludes by noting the view among some computer scientists that future technologies will permit uploading human personalities to artificial intelligence avatars, thereby enhancing human beings and rendering the virtual worlds entirely real.

  10. Human fear conditioning conducted in full immersion 3-dimensional virtual reality.

    PubMed

    Huff, Nicole C; Zeilinski, David J; Fecteau, Matthew E; Brady, Rachael; LaBar, Kevin S

    2010-01-01

    Fear conditioning is a widely used paradigm in non-human animal research to investigate the neural mechanisms underlying fear and anxiety. A major challenge in conducting conditioning studies in humans is the ability to strongly manipulate or simulate the environmental contexts that are associated with conditioned emotional behaviors. In this regard, virtual reality (VR) technology is a promising tool. Yet, adapting this technology to meet experimental constraints requires special accommodations. Here we address the methodological issues involved when conducting fear conditioning in a fully immersive 6-sided VR environment and present fear conditioning data. In the real world, traumatic events occur in complex environments that are made up of many cues, engaging all of our sensory modalities. For example, cues that form the environmental configuration include not only visual elements, but aural, olfactory, and even tactile. In rodent studies of fear conditioning animals are fully immersed in a context that is rich with novel visual, tactile and olfactory cues. However, standard laboratory tests of fear conditioning in humans are typically conducted in a nondescript room in front of a flat or 2D computer screen and do not replicate the complexity of real world experiences. On the other hand, a major limitation of clinical studies aimed at reducing (extinguishing) fear and preventing relapse in anxiety disorders is that treatment occurs after participants have acquired a fear in an uncontrolled and largely unknown context. Thus the experimenters are left without information about the duration of exposure, the true nature of the stimulus, and associated background cues in the environment. In the absence of this information it can be difficult to truly extinguish a fear that is both cue and context-dependent. Virtual reality environments address these issues by providing the complexity of the real world, and at the same time allowing experimenters to constrain fear

  11. Instructional Design Practices in the Design and Development of Digital Humanities Virtual Environments (DH-VEs)

    ERIC Educational Resources Information Center

    Kelly, Valerie Hunter

    2011-01-01

    Virtual environments, virtual worlds, simulations, 3D models are loaded with potential, promise, and problems. While learning in virtual settings is still being researched, instructional designers are challenged as to which instructional design practices are best suited for virtual environments (VEs). The problem is there is a lack of a conceptual…

  12. Using Virtual Reality to Investigate Comparative Spatial Cognitive Abilities in Chimpanzees and Humans

    PubMed Central

    Dolins, Francine L.; Klimowicz, Christopher; Kelley, John; Menzel, Charles R.

    2016-01-01

    The purpose of the present study was to determine the efficacy of investigating spatial cognitive abilities across two primate species using virtual reality. In this study, we presented four captive adult chimpanzees and sixteen humans (twelve children and four adults) with simulated environments of increasing complexity and size to compare species’ attention to visuo-spatial features during navigation. The specific task required participants to attend to landmarks in navigating along routes in order to localize the goal site. Both species were found to discriminate effectively between positive and negative landmarks. Assessing path efficiency revealed that both species and all age groups used relatively efficient, distance reducing routes during navigation. Compared to the chimpanzees and adult humans however, younger children’s performance decreased as maze complexity and size increased. Surprisingly, in the most complex maze category the humans’ performance was less accurate compared to one female chimpanzee. These results suggest that the method of using virtual reality to test captive primates, and in particular, chimpanzees, affords significant cross-species investigations of spatial cognitive and developmental comparisons. PMID:24390812

  13. The Water Suitcase of Migrants: Assessing Virtual Water Fluxes Associated to Human Migration

    PubMed Central

    Metulini, Rodolfo; Tamea, Stefania; Laio, Francesco; Riccaboni, Massimo

    2016-01-01

    Disentangling the relations between human migrations and water resources is relevant for food security and trade policy in water-scarce countries. It is commonly believed that human migrations are beneficial to the water endowments of origin countries for reducing the pressure on local resources. We show here that such belief is over-simplistic. We reframe the problem by considering the international food trade and the corresponding virtual water fluxes, which quantify the water used for the production of traded agricultural commodities. By means of robust analytical tools, we show that migrants strengthen the commercial links between countries, triggering trade fluxes caused by food consumption habits persisting after migration. Thus migrants significantly increase the virtual water fluxes and the use of water in the countries of origin. The flux ascribable to each migrant, i.e. the “water suitcase”, is found to have increased from 321 m3/y in 1990 to 1367 m3/y in 2010. A comparison with the water footprint of individuals shows that where the water suitcase exceeds the water footprint of inhabitants, migrations turn out to be detrimental to the water endowments of origin countries, challenging the common perception that migrations tend to relieve the pressure on the local (water) resources of origin countries. PMID:27124488

  14. Virtual Human Technology: Capturing Sex, Race, and Age Influences in Individual Pain Decision Policies

    PubMed Central

    Hirsh, Adam T.; Alqudah, Ashraf F.; Stutts, Lauren A.

    2008-01-01

    Pain assessment is subject to bias due to characteristics of the individual in pain and of the observing person. Few research studies have examined pain assessment biases in an experimental setting. The present study employs innovative virtual human technology to achieve greater experimental control. A lens model design was used to capture decision-making policies at the idiographic and nomothetic level. Seventy-five undergraduates viewed virtual humans (VH) that varied in sex, race, age, and pain expression. Participants provided computerized ratings with Visual Analogue Scales on the VH's pain intensity, pain unpleasantness, negative mood, coping, and need for medical treatment. Idiographic analyses revealed that individuals used pain expression most frequently as a significant cue. Nomothetic analyses showed that higher pain expression VH and female VH were viewed as having higher pain intensity, higher pain unpleasantness, greater negative mood, worse coping, and a greater need to seek medical treatment than lower pain expression VH and male VH, respectively. Older VH were viewed as having worse coping and a greater need to seek medical treatment than younger VH. This innovative paradigm involving VH technology and a lens model design was shown to be highly effective and could serve as a model for future studies investigating pain-related decision making in healthcare providers. PMID:18930596

  15. The Water Suitcase of Migrants: Assessing Virtual Water Fluxes Associated to Human Migration.

    PubMed

    Metulini, Rodolfo; Tamea, Stefania; Laio, Francesco; Riccaboni, Massimo

    2016-01-01

    Disentangling the relations between human migrations and water resources is relevant for food security and trade policy in water-scarce countries. It is commonly believed that human migrations are beneficial to the water endowments of origin countries for reducing the pressure on local resources. We show here that such belief is over-simplistic. We reframe the problem by considering the international food trade and the corresponding virtual water fluxes, which quantify the water used for the production of traded agricultural commodities. By means of robust analytical tools, we show that migrants strengthen the commercial links between countries, triggering trade fluxes caused by food consumption habits persisting after migration. Thus migrants significantly increase the virtual water fluxes and the use of water in the countries of origin. The flux ascribable to each migrant, i.e. the "water suitcase", is found to have increased from 321 m3/y in 1990 to 1367 m3/y in 2010. A comparison with the water footprint of individuals shows that where the water suitcase exceeds the water footprint of inhabitants, migrations turn out to be detrimental to the water endowments of origin countries, challenging the common perception that migrations tend to relieve the pressure on the local (water) resources of origin countries. PMID:27124488

  16. Virtual Reality for Artificial Intelligence: human-centered simulation for social science.

    PubMed

    Cipresso, Pietro; Riva, Giuseppe

    2015-01-01

    There is a long last tradition in Artificial Intelligence as use of Robots endowing human peculiarities, from a cognitive and emotional point of view, and not only in shape. Today Artificial Intelligence is more oriented to several form of collective intelligence, also building robot simulators (hardware or software) to deeply understand collective behaviors in human beings and society as a whole. Modeling has also been crucial in the social sciences, to understand how complex systems can arise from simple rules. However, while engineers' simulations can be performed in the physical world using robots, for social scientist this is impossible. For decades, researchers tried to improve simulations by endowing artificial agents with simple and complex rules that emulated human behavior also by using artificial intelligence (AI). To include human beings and their real intelligence within artificial societies is now the big challenge. We present an hybrid (human-artificial) platform where experiments can be performed by simulated artificial worlds in the following manner: 1) agents' behaviors are regulated by the behaviors shown in Virtual Reality involving real human beings exposed to specific situations to simulate, and 2) technology transfers these rules into the artificial world. These form a closed-loop of real behaviors inserted into artificial agents, which can be used to study real society. PMID:26799903

  17. A fast quaternion-based orientation optimizer via virtual rotation for human motion tracking.

    PubMed

    Lee, Jung Keun; Park, Edward J

    2009-05-01

    For real-time ambulatory human motion tracking with low-cost inertial/magnetic sensors, a computationally efficient and robust algorithm for estimating orientation is critical. This paper presents a quaternion-based orientation optimizer for tracking human body motion, using triaxis rate gyro, accelerometer, and magnetometer signals. The proposed optimizer uses a Gauss-Newton (G-N) method for finding the best-fit quaternion. In order to decrease the computing time, the optimizer is formulated using a virtual rotation concept that allows very fast quaternion updates compared to the conventional G-N method. In addition, to guard against the effects of fast body motions and temporary ferromagnetic disturbances, a situational measurement vector selection procedure is adopted in conjunction with the G-N optimizer. The accuracy of orientation estimates is validated experimentally, using arm motion trials. PMID:19473934

  18. Role of Broca's area in encoding sequential human actions: a virtual lesion study.

    PubMed

    Clerget, Emeline; Winderickx, Aline; Fadiga, Luciano; Olivier, Etienne

    2009-10-28

    The exact contribution of Broca's area to motor cognition is still controversial. Here we used repetitive transcranial magnetic stimulation (5 Hz, five pulses) to interfere transiently with the function of left BA44 in 13 healthy individuals; the task consisted of reordering human actions or nonbiological events based on three pictures presented on a computer screen and extracted from a video showing the entire sequence beforehand. We found that a virtual lesion of left BA44 impairs individual performance only for biological actions, and more specifically for object-oriented syntactic actions. Our finding provides evidence that Broca's area plays a crucial role in encoding complex human movements, a process which may be crucial for understanding and/or programming actions. PMID:19809371

  19. Virtual Worlds for Educators

    ERIC Educational Resources Information Center

    Dembo, Steve

    2008-01-01

    This article describes an online experience that has not only created a fantasy world for the general public but has enabled some tech-savvy educators to create virtual educational opportunities. Second Life, or SL, is a 3-D Internet-based virtual world created by Linden Lab and populated by nearly 1,000,000 active users worldwide since 2003.…

  20. Hypoxia Created Human Mesenchymal Stem Cell Sheet for Prevascularized 3D Tissue Construction.

    PubMed

    Zhang, Lijun; Xing, Qi; Qian, Zichen; Tahtinen, Mitchell; Zhang, Zhaoqiang; Shearier, Emily; Qi, Shaohai; Zhao, Feng

    2016-02-01

    3D tissue based on human mesenchymal stem cell (hMSC) sheets offers many interesting opportunities for regenerating multiple types of connective tissues. Prevascularizing hMSC sheets with endothelial cells (ECs) will improve 3D tissue performance by supporting cell survival and accelerating integration with host tissue. It is hypothesized that hypoxia cultured hMSC sheets can promote microvessel network formation and preserve stemness of hMSCs. This study investigates the vascularization of hMSC sheets under different oxygen tensions. It is found that the HN condition, in which hMSC sheets formed under physiological hypoxia (2% O2 ) and then cocultured with ECs under normoxia (20% O2 ), enables longer and more branched microvessel network formation. The observation is corroborated by higher levels of angiogenic factors in coculture medium. Additionally, the hypoxic hMSC sheet is more uniform and less defective, which facilitates fabrication of 3D prevascularized tissue construct by layering the prevascularized hMSC sheets and maturing in rotating wall vessel bioreactor. The hMSCs in the 3D construct still maintain multilineage differentiation ability, which indicates the possible application of the 3D construct for various connective tissues regeneration. These results demonstrate that hypoxia created hMSC sheets benefit the microvessel growth and it is feasible to construct 3D prevascularized tissue construct using the prevascularized hMSC sheets. PMID:26663707

  1. BrainK for Structural Image Processing: Creating Electrical Models of the Human Head

    PubMed Central

    Li, Kai; Papademetris, Xenophon; Tucker, Don M.

    2016-01-01

    BrainK is a set of automated procedures for characterizing the tissues of the human head from MRI, CT, and photogrammetry images. The tissue segmentation and cortical surface extraction support the primary goal of modeling the propagation of electrical currents through head tissues with a finite difference model (FDM) or finite element model (FEM) created from the BrainK geometries. The electrical head model is necessary for accurate source localization of dense array electroencephalographic (dEEG) measures from head surface electrodes. It is also necessary for accurate targeting of cerebral structures with transcranial current injection from those surface electrodes. BrainK must achieve five major tasks: image segmentation, registration of the MRI, CT, and sensor photogrammetry images, cortical surface reconstruction, dipole tessellation of the cortical surface, and Talairach transformation. We describe the approach to each task, and we compare the accuracies for the key tasks of tissue segmentation and cortical surface extraction in relation to existing research tools (FreeSurfer, FSL, SPM, and BrainVisa). BrainK achieves good accuracy with minimal or no user intervention, it deals well with poor quality MR images and tissue abnormalities, and it provides improved computational efficiency over existing research packages. PMID:27293419

  2. Human mesenchymal stem cells creating an immunosuppressive environment and promote breast cancer in mice.

    PubMed

    Ljujic, Biljana; Milovanovic, Marija; Volarevic, Vladislav; Murray, Bridgid; Bugarski, Diana; Przyborski, Stefan; Arsenijevic, Nebojsa; Lukic, Miodrag L; Stojkovic, Miodrag

    2013-01-01

    Human mesenchymal stem cells (hMSC) can home to tumor sites and promote tumor growth. The effects of hMSC on tumor growth are controversial and involvement of hMSC in tumor immunology has not been adequately addressed. Therefore, we investigated whether injection of hMSC affects tumor appearance, growth and metastasis, and anti-tumor immunity in an experimental animal model of metastatic breast cancer. Injection of hMSC in BALB/c mice bearing mammary carcinoma promoted tumor growth and metastasis, which was accompanied by lower cytotoxic activity of splenocytes, NK cells and CD8⁺ T cells in vitro. Tumor-bearing mice that received hMSC had significantly lower percentages of CD3⁺NKp46⁺ NKT-like, higher percentages of CD4⁺Foxp3⁺ T cells, increased serum levels of Th2 and decreased serum levels of Th1 cytokines, and significantly higher number of CD4⁺ cells expressing IL-10. These results demonstrate that immunosuppressive environment created by hMSC promoted breast tumor growth and metastasis in mice. PMID:23892388

  3. Human mesenchymal stem cells creating an immunosuppressive environment and promote breast cancer in mice

    PubMed Central

    Ljujic, Biljana; Milovanovic, Marija; Volarevic, Vladislav; Murray, Bridgid; Bugarski, Diana; Przyborski, Stefan; Arsenijevic, Nebojsa; Lukic, Miodrag L.; Stojkovic, Miodrag

    2013-01-01

    Human mesenchymal stem cells (hMSC) can home to tumor sites and promote tumor growth. The effects of hMSC on tumor growth are controversial and involvement of hMSC in tumor immunology has not been adequately addressed. Therefore, we investigated whether injection of hMSC affects tumor appearance, growth and metastasis, and anti-tumor immunity in an experimental animal model of metastatic breast cancer. Injection of hMSC in BALB/c mice bearing mammary carcinoma promoted tumor growth and metastasis, which was accompanied by lower cytotoxic activity of splenocytes, NK cells and CD8+ T cells in vitro. Tumor-bearing mice that received hMSC had significantly lower percentages of CD3+NKp46+ NKT-like, higher percentages of CD4+Foxp3+ T cells, increased serum levels of Th2 and decreased serum levels of Th1 cytokines, and significantly higher number of CD4+ cells expressing IL-10. These results demonstrate that immunosuppressive environment created by hMSC promoted breast tumor growth and metastasis in mice. PMID:23892388

  4. BrainK for Structural Image Processing: Creating Electrical Models of the Human Head.

    PubMed

    Li, Kai; Papademetris, Xenophon; Tucker, Don M

    2016-01-01

    BrainK is a set of automated procedures for characterizing the tissues of the human head from MRI, CT, and photogrammetry images. The tissue segmentation and cortical surface extraction support the primary goal of modeling the propagation of electrical currents through head tissues with a finite difference model (FDM) or finite element model (FEM) created from the BrainK geometries. The electrical head model is necessary for accurate source localization of dense array electroencephalographic (dEEG) measures from head surface electrodes. It is also necessary for accurate targeting of cerebral structures with transcranial current injection from those surface electrodes. BrainK must achieve five major tasks: image segmentation, registration of the MRI, CT, and sensor photogrammetry images, cortical surface reconstruction, dipole tessellation of the cortical surface, and Talairach transformation. We describe the approach to each task, and we compare the accuracies for the key tasks of tissue segmentation and cortical surface extraction in relation to existing research tools (FreeSurfer, FSL, SPM, and BrainVisa). BrainK achieves good accuracy with minimal or no user intervention, it deals well with poor quality MR images and tissue abnormalities, and it provides improved computational efficiency over existing research packages. PMID:27293419

  5. Human intestinal transporter database: QSAR modeling and virtual profiling of drug uptake, efflux and interactions

    PubMed Central

    Sedykh, Alexander; Fourches, Denis; Duan, Jianmin; Hucke, Oliver; Garneau, Michel; Zhu, Hao; Bonneau, Pierre; Tropsha, Alexander

    2013-01-01

    Purpose Membrane transporters mediate many biological effects of chemicals and play a major role in pharmacokinetics and drug resistance. The selection of viable drug candidates among biologically active compounds requires the assessment of their transporter interaction profiles. Methods Using public sources, we have assembled and curated the largest, to our knowledge, human intestinal transporter database (>5,000 interaction entries for >3,700 molecules). This data was used to develop thoroughly validated classification Quantitative Structure-Activity Relationship (QSAR) models of transport and/or inhibition of several major transporters including MDR1, BCRP, MRP1-4, PEPT1, ASBT, OATP2B1, OCT1, and MCT1. Results & Conclusions QSAR models have been developed with advanced machine learning techniques such as Support Vector Machines, Random Forest, and k Nearest Neighbors using Dragon and MOE chemical descriptors. These models afforded high external prediction accuracies of 71–100% estimated by 5-fold external validation, and showed hit retrieval rates with up to 20-fold enrichment in the virtual screening of DrugBank compounds. The compendium of predictive QSAR models developed in this study can be used for virtual profiling of drug candidates and/or environmental agents with the optimal transporter profiles. PMID:23269503

  6. eGY Education and Outreach: Creating a Virtual Educational Space that Pushes the Envelope for Connecting Teachers and Students to Data

    NASA Astrophysics Data System (ADS)

    Cobabe-Ammann, E.; Hardin, J.; Fox, P.

    2005-12-01

    The eGY Education and Outreach Program is developing an education portal that connects teachers around the world, in a well-defined way, to the virtual observatories and their data. Using Sakai as the course management platform and drawing on the OCW model, as well as content development models adapted from TERC's Earth Exploration Toolkit, the programming at the eGY portal would allow teachers to use the virtual observatories and its data in an educational context, with supporting materials and activities. Topics included in the eGY portal range from climate change to ocean sciences to the Sun-Earth connection to global seismology, with an emphasis on the intellectual themes that are the focus of other I*Y efforts. In addition, and perhaps as important, the portal will support virtual educational communities, both synchronously and asynchronously. The site will also support virtual seminars (on both science content and educational practices), multimedia assets for teachers, scientific talks, computer-based animations and interactives. Lastly, the eGY program also works with a variety of virtual observatories and other distributed data systems to develop a deeper understanding of the needs of the non-specialist users. The hallmark of the eGY educational program is the implementation of virtual teachers workshops for training high-school and junior college teachers around the world in the use of the portal and its assets. During 2007, as a lead into the eGY, a series of teacher workshops would be run in a virtual environment to an estimated 3000* teachers in over 20 countries. we anticipate that 50 pairs of master teachers in North America will be connected, point-to-point, to 150 to 200 international classrooms of teachers for the workshop. *Currently, in countries that have expressed interest in the program, requests for allotted teacher spots exceed expectation by an order of magnitude and this number is likely to increase.

  7. Interevent time distributions of human multi-level activity in a virtual world

    NASA Astrophysics Data System (ADS)

    Mryglod, O.; Fuchs, B.; Szell, M.; Holovatch, Yu.; Thurner, S.

    2015-02-01

    Studying human behavior in virtual environments provides extraordinary opportunities for a quantitative analysis of social phenomena with levels of accuracy that approach those of the natural sciences. In this paper we use records of player activities in the massive multiplayer online game Pardus over 1238 consecutive days, and analyze dynamical features of sequences of actions of players. We build on previous work where temporal structures of human actions of the same type were quantified, and provide an empirical understanding of human actions of different types. This study of multi-level human activity can be seen as a dynamic counterpart of static multiplex network analysis. We show that the interevent time distributions of actions in the Pardus universe follow highly non-trivial distribution functions, from which we extract action-type specific characteristic 'decay constants'. We discuss characteristic features of interevent time distributions, including periodic patterns on different time scales, bursty dynamics, and various functional forms on different time scales. We comment on gender differences of players in emotional actions, and find that while males and females act similarly when performing some positive actions, females are slightly faster for negative actions. We also observe effects on the age of players: more experienced players are generally faster in making decisions about engaging in and terminating enmity and friendship, respectively.

  8. Potent Human Telomerase Inhibitors: Molecular Dynamic Simulations, Multiple Pharmacophore-Based Virtual Screening, and Biochemical Assays.

    PubMed

    Shirgahi Talari, Faezeh; Bagherzadeh, Kowsar; Golestanian, Sahand; Jarstfer, Michael; Amanlou, Massoud

    2015-12-28

    Telomere maintenance is a universal cancer hallmark, and small molecules that disrupt telomere maintenance generally have anticancer properties. Since the vast majority of cancer cells utilize telomerase activity for telomere maintenance, the enzyme has been considered as an anticancer drug target. Recently, rational design of telomerase inhibitors was made possible by the determination of high resolution structures of the catalytic telomerase subunit from a beetle and subsequent molecular modeling of the human telomerase complex. A hybrid strategy including docking, pharmacophore-based virtual screening, and molecular dynamics simulations (MDS) were used to identify new human telomerase inhibitors. Docking methodology was applied to investigate the ssDNA telomeric sequence and two well-known human telomerase inhibitors' (BIBR1532 and MST-312) modes of interactions with hTERT TEN domain. Subsequently molecular dynamic simulations were performed to monitor and compare hTERT TEN domain, TEN-ssDNA, TEN-BIBR1532, TEN-MST-312, and TEN-ssDNA-BIBR1532 behavior in a dynamic environment. Pharmacophore models were generated considering the inhibitors manner in the TEN domain anchor site. These exploratory studies identified several new potent inhibitors whose IC50 values were generated experimentally in a low micromolar range with the aid of biochemical assays, including both the direct telomerase and the telomeric repeat amplification protocol (TRAP) assays. The results suggest that the current models of human telomerase are useful templates for rational inhibitor design. PMID:26529120

  9. Virtual Satellite

    NASA Technical Reports Server (NTRS)

    Hammrs, Stephan R.

    2008-01-01

    Virtual Satellite (VirtualSat) is a computer program that creates an environment that facilitates the development, verification, and validation of flight software for a single spacecraft or for multiple spacecraft flying in formation. In this environment, enhanced functionality and autonomy of navigation, guidance, and control systems of a spacecraft are provided by a virtual satellite that is, a computational model that simulates the dynamic behavior of the spacecraft. Within this environment, it is possible to execute any associated software, the development of which could benefit from knowledge of, and possible interaction (typically, exchange of data) with, the virtual satellite. Examples of associated software include programs for simulating spacecraft power and thermal- management systems. This environment is independent of the flight hardware that will eventually host the flight software, making it possible to develop the software simultaneously with, or even before, the hardware is delivered. Optionally, by use of interfaces included in VirtualSat, hardware can be used instead of simulated. The flight software, coded in the C or C++ programming language, is compilable and loadable into VirtualSat without any special modifications. Thus, VirtualSat can serve as a relatively inexpensive software test-bed for development test, integration, and post-launch maintenance of spacecraft flight software.

  10. Virtual seminars

    NASA Astrophysics Data System (ADS)

    Nelson, H. Roice

    1997-06-01

    A virtual seminar (SM) is an economic and effective instructional tool for teaching students who are at a distance from their instructor. Like conventional class room teaching, a virtual seminar requires an instructor, a student, and a method of communication. Teleconferencing, video conferencing, intranets and the Internet give learners in a Virtual Seminar the ability to interact immediately with their mentors and receive real and relevant answers. This paper shows how industry and academia can benefit from using methods developed and experience gained in presenting the first virtual seminars to academic and petroleum industry participants in mid-1996. The information explosion in industry means that business or technical information is worthless until it is assimilated into a corporate knowledge management system. A search for specific information often turns into a filtering exercise or an attempt to find patterns and classify retrieved material. In the setting of an interactive corporate information system, virtual seminars meet the need for a productive new relationship between creative people and the flux of corporate knowledge. Experience shows that it is more efficient to circulate timesensitive and confidential information electronically through a virtual seminar. Automating the classification of information and removing that task from the usual work load creates an electronic corporate memory and enhances the value of the knowledge to both users and a corporation. Catalogued benchmarks, best-practice standards, and Knowledge Maps (SM) of experience serve as key aids to communicating knowledge through virtual seminars and converting that knowledge into a profit-making asset.

  11. A vision and strategy for the virtual physiological human in 2010 and beyond

    PubMed Central

    Hunter, Peter; Coveney, Peter V.; de Bono, Bernard; Diaz, Vanessa; Fenner, John; Frangi, Alejandro F.; Harris, Peter; Hose, Rod; Kohl, Peter; Lawford, Pat; McCormack, Keith; Mendes, Miriam; Omholt, Stig; Quarteroni, Alfio; Skår, John; Tegner, Jesper; Randall Thomas, S.; Tollis, Ioannis; Tsamardinos, Ioannis; van Beek, Johannes H. G. M.; Viceconti, Marco

    2010-01-01

    European funding under framework 7 (FP7) for the virtual physiological human (VPH) project has been in place now for nearly 2 years. The VPH network of excellence (NoE) is helping in the development of common standards, open-source software, freely accessible data and model repositories, and various training and dissemination activities for the project. It is also helping to coordinate the many clinically targeted projects that have been funded under the FP7 calls. An initial vision for the VPH was defined by framework 6 strategy for a European physiome (STEP) project in 2006. It is now time to assess the accomplishments of the last 2 years and update the STEP vision for the VPH. We consider the biomedical science, healthcare and information and communications technology challenges facing the project and we propose the VPH Institute as a means of sustaining the vision of VPH beyond the time frame of the NoE. PMID:20439264

  12. Audited credential delegation: a usable security solution for the virtual physiological human toolkit

    PubMed Central

    Haidar, Ali N.; Zasada, Stefan J.; Coveney, Peter V.; Abdallah, Ali E.; Beckles, Bruce; Jones, Mike A. S.

    2011-01-01

    We present applications of audited credential delegation (ACD), a usable security solution for authentication, authorization and auditing in distributed virtual physiological human (VPH) project environments that removes the use of digital certificates from end-users' experience. Current security solutions are based on public key infrastructure (PKI). While PKI offers strong security for VPH projects, it suffers from serious usability shortcomings in terms of end-user acquisition and management of credentials which deter scientists from exploiting distributed VPH environments. By contrast, ACD supports the use of local credentials. Currently, a local ACD username–password combination can be used to access grid-based resources while Shibboleth support is underway. Moreover, ACD provides seamless and secure access to shared patient data, tools and infrastructure, thus supporting the provision of personalized medicine for patients, scientists and clinicians participating in e-health projects from a local to the widest international scale. PMID:22670214

  13. Frozen with fear: Conditioned suppression in a virtual reality model of human anxiety.

    PubMed

    Allcoat, Devon; Greville, W James; Newton, Philip M; Dymond, Simon

    2015-09-01

    Freezing-like topographies of behavior are elicited in conditioned suppression tasks whereby appetitive behavior is reduced by presentations of an aversively conditioned threat cue relative to a safety cue. Conditioned suppression of operant behavior by a Pavlovian threat cue is an established laboratory model of quantifying the response impairment seen in anxiety disorders. Little is known however about how different response topographies indicative of conditioned suppression are elicited in humans. Here, we refined a novel virtual reality (VR) paradigm in which presentations of a threat cue of unpredictable duration occurred while participants performed an operant response of shooting and destroying boxes searching for hidden gold. The VR paradigm detected significant suppression of response topographies (shots, hits and breaks) for a Pavlovian threat cue relative to a safety cue and novel cue presentations. Implications of the present findings for translational research on appetitive and aversive conflict in anxiety disorders are discussed. PMID:26115568

  14. Audited credential delegation: a usable security solution for the virtual physiological human toolkit.

    PubMed

    Haidar, Ali N; Zasada, Stefan J; Coveney, Peter V; Abdallah, Ali E; Beckles, Bruce; Jones, Mike A S

    2011-06-01

    We present applications of audited credential delegation (ACD), a usable security solution for authentication, authorization and auditing in distributed virtual physiological human (VPH) project environments that removes the use of digital certificates from end-users' experience. Current security solutions are based on public key infrastructure (PKI). While PKI offers strong security for VPH projects, it suffers from serious usability shortcomings in terms of end-user acquisition and management of credentials which deter scientists from exploiting distributed VPH environments. By contrast, ACD supports the use of local credentials. Currently, a local ACD username-password combination can be used to access grid-based resources while Shibboleth support is underway. Moreover, ACD provides seamless and secure access to shared patient data, tools and infrastructure, thus supporting the provision of personalized medicine for patients, scientists and clinicians participating in e-health projects from a local to the widest international scale. PMID:22670214

  15. The impact of social context on learning and cognitive demands for interactive virtual human simulations

    PubMed Central

    Lyons, Rebecca; Johnson, Teresa R.; Khalil, Mohammed K.

    2014-01-01

    Interactive virtual human (IVH) simulations offer a novel method for training skills involving person-to-person interactions. This article examines the effectiveness of an IVH simulation for teaching medical students to assess rare cranial nerve abnormalities in both individual and small-group learning contexts. Individual (n = 26) and small-group (n = 30) interaction with the IVH system was manipulated to examine the influence on learning, learner engagement, perceived cognitive demands of the learning task, and instructional efficiency. Results suggested the IVH activity was an equally effective and engaging instructional tool in both learning structures, despite learners in the group learning contexts having to share hands-on access to the simulation interface. Participants in both conditions demonstrated a significant increase in declarative knowledge post-training. Operation of the IVH simulation technology imposed moderate cognitive demand but did not exceed the demands of the task content or appear to impede learning. PMID:24883241

  16. Controlling a virtual forehand prosthesis using an adaptive and affective Human-Machine Interface.

    PubMed

    Rezazadeh, I Mohammad; Firoozabadi, S M P; Golpayegani, S M R Hashemi; Hu, H

    2011-01-01

    This paper presents the design of an adaptable Human-Machine Interface (HMI) for controlling virtual forearm prosthesis. Direct physical performance measures (obtained score and completion time) for the requested tasks were calculated. Furthermore, bioelectric signals from the forehead were recorded using one pair of electrodes placed on the frontal region of the subject head to extract the mental (affective) measures while performing the tasks. By employing the proposed algorithm and above measures, the proposed HMI can adapt itself to the subject's mental states, thus improving the usability of the interface. The quantitative results from 15 subjects show that the proposed HMI achieved better physical performance measures in comparison to a conventional non-adaptive myoelectric controller (p < 0.001). PMID:22255248

  17. Virtual Worlds for Virtual Organizing

    NASA Astrophysics Data System (ADS)

    Rhoten, Diana; Lutters, Wayne

    The members and resources of a virtual organization are dispersed across time and space, yet they function as a coherent entity through the use of technologies, networks, and alliances. As virtual organizations proliferate and become increasingly important in society, many may exploit the technical architecture s of virtual worlds, which are the confluence of computer-mediated communication, telepresence, and virtual reality originally created for gaming. A brief socio-technical history describes their early origins and the waves of progress followed by stasis that brought us to the current period of renewed enthusiasm. Examination of contemporary examples demonstrates how three genres of virtual worlds have enabled new arenas for virtual organizing: developer-defined closed worlds, user-modifiable quasi-open worlds, and user-generated open worlds. Among expected future trends are an increase in collaboration born virtually rather than imported from existing organizations, a tension between high-fidelity recreations of the physical world and hyper-stylized imaginations of fantasy worlds, and the growth of specialized worlds optimized for particular sectors, companies, or cultures.

  18. Virtual Reference Services.

    ERIC Educational Resources Information Center

    Brewer, Sally

    2003-01-01

    As the need to access information increases, school librarians must create virtual libraries. Linked to reliable reference resources, the virtual library extends the physical collection and library hours and lets students learn to use Web-based resources in a protected learning environment. The growing number of virtual schools increases the need…

  19. Information use by humans during dynamic route choice in virtual crowd evacuations

    PubMed Central

    Bode, Nikolai W. F.; Kemloh Wagoum, Armel U.; Codling, Edward A.

    2015-01-01

    We conducted a computer-based experiment with over 450 human participants and used a Bayesian model selection approach to explore dynamic exit route choice mechanisms of individuals in simulated crowd evacuations. In contrast to previous work, we explicitly explore the use of time-dependent and time-independent information in decision-making. Our findings suggest that participants tended to base their exit choices on time-dependent information, such as differences in queue lengths and queue speeds at exits rather than on time-independent information, such as differences in exit widths or exit route length. We found weak support for similar decision-making mechanisms under a stress-inducing experimental treatment. However, under this treatment participants were less able or willing to adjust their original exit choice in the course of the evacuation. Our experiment is not a direct test of behaviour in real evacuations, but it does highlight the role different types of information and stress play in real human decision-making in a virtual environment. Our findings may be useful in identifying topics for future study on real human crowd movements or for developing more realistic agent-based simulations. PMID:26064589

  20. Automatic Behavior Analysis During a Clinical Interview with a Virtual Human.

    PubMed

    Rizzo, Albert; Lucas, Gale; Gratch, Jonathan; Stratou, Giota; Morency, Louis-Philippe; Chavez, Kenneth; Shilling, Russ; Scherer, Stefan

    2016-01-01

    SimSensei is a Virtual Human (VH) interviewing platform that uses off-the-shelf sensors (i.e., webcams, Microsoft Kinect and a microphone) to capture and interpret real-time audiovisual behavioral signals from users interacting with the VH system. The system was specifically designed for clinical interviewing and health care support by providing a face-to-face interaction between a user and a VH that can automatically react to the inferred state of the user through analysis of behavioral signals gleaned from the user's facial expressions, body gestures and vocal parameters. Akin to how non-verbal behavioral signals have an impact on human-to-human interaction and communication, SimSensei aims to capture and infer user state from signals generated from user non-verbal communication to improve engagement between a VH and a user and to quantify user state from the data captured across a 20 minute interview. Results from of sample of service members (SMs) who were interviewed before and after a deployment to Afghanistan indicate that SMs reveal more PTSD symptoms to the VH than they report on the Post Deployment Health Assessment. Pre/Post deployment facial expression analysis indicated more sad expressions and few happy expressions at post deployment. PMID:27046598

  1. Quantitative and Qualitative Changes in Teaching Histology by Means of Virtual Microscopy in an Introductory Course in Human Anatomy

    ERIC Educational Resources Information Center

    Husmann, Polly R.; O'Loughlin, Valerie Dean; Braun, Mark W.

    2009-01-01

    This study compares overall laboratory averages and individual test scores along with a student survey to determine the effects of using virtual microscopy in place of optical microscopes in a large undergraduate human anatomy course. T-tests revealed that the first two laboratory examinations (of four) and the overall laboratory averages were…

  2. Virtual Reality Anatomy: Is It Comparable with Traditional Methods in the Teaching of Human Forearm Musculoskeletal Anatomy?

    ERIC Educational Resources Information Center

    Codd, Anthony M.; Choudhury, Bipasha

    2011-01-01

    The use of cadavers to teach anatomy is well established, but limitations with this approach have led to the introduction of alternative teaching methods. One such method is the use of three-dimensional virtual reality computer models. An interactive, three-dimensional computer model of human forearm anterior compartment musculoskeletal anatomy…

  3. On the Development of Human Representational Competence from an Evolutionary Point of View: From Episodic to Virtual Culture.

    ERIC Educational Resources Information Center

    Kaput, James J.

    Via computational media, humans are entering a fifth stage of cognitive development leading to a virtual culture. This culture is seen as replacing the writing-based theoretic culture. Background information about the first four stages of mental evolution or cognitive development is provided. It is suggested that the evolutionary perspective needs…

  4. Rat model of cholelithiasis with human gallstones implanted in cholestasis-induced virtual gallbladder

    PubMed Central

    Cona, Marlein Miranda; Liu, Yewei; Yin, Ting; Feng, Yuanbo; Chen, Feng; Mulier, Stefaan; Li, Yue; Zhang, Jian; Oyen, Raymond; Ni, Yicheng

    2016-01-01

    AIM: To facilitate translational research on cholelithiasis, we have developed a rat model of human gallstones by exploiting the unique biliopancreatic features of this species. METHODS: Under anesthesia, 16 adult rats of equal genders underwent two times of abdominal surgery. First, their common bile duct (CBD) was ligated to cause cholestasis by total biliary obstruction (TBO). On day 0, 1, 3, 7, 14, 21 and 28 after TBO, magnetic resonance imaging (MRI) was conducted to monitor the dilatation of the CBD, and blood was sampled to analyze total serum bilirubin (TSB). Secondly, on day 30, the abdomen was re-opened and gallstone(s) collected from human patients were implanted in the dilated CBD as a virtual gallbladder (VGB), which was closed by suture ligation. This rat cholelithiasis model was examined by MRI, clinical observation, microcholangiography and histology. RESULTS: All rats survived two laparotomies. After ligation, the CBD was dilated to a stable size of 4 to 30 mm in diameter on day 21-28, which became a VGB. The rats initially showed signs of jaundice that diminished over time, which paralleled with the evolving TSB levels from 0.6 ± 0.3 mg/dL before ligation, through a peak of 10.9 ± 1.9 mg/dL on day 14, until a nearly normalized value after day 28. The dilated CBD with thickened wall allowed an incision for implantation of human gallstones of 1-10 mm in diameter. The rat cholelithiasis was proven by in vivo MRI and postmortem microcholangiography and histomorphology. CONCLUSION: A rat model cholelithiasis with human gallstones has been established, which proves feasible, safe, reliable, nontoxic and cost-effective. Given the gallstones of human origin, applications of this model may be of help in translational research such as optical detection and lysis of gallstones by systemic drug administration. PMID:27376020

  5. Extinction in multiple virtual reality contexts diminishes fear reinstatement in humans

    PubMed Central

    Dunsmoor, Joseph E.; Åhs, Fredrik; Zielinski, David J.; LaBar, Kevin S.

    2014-01-01

    Although conditioned fear can be effectively extinguished by unreinforced exposure to a threat cue, fear responses tend to return when the cue is encountered some time after extinction (spontaneous recovery), in a novel environment (renewal), or following presentation of an aversive stimulus (reinstatement). As extinction represents a context-dependent form of new learning, one possible strategy to circumvent the return of fear is to conduct extinction across several environments. Here, we tested the effectiveness of multiple context extinction in a two-day fear conditioning experiment using 3-D virtual reality technology to create immersive, ecologically-valid context changes. Fear-potentiated startle served as the dependent measure. All three experimental groups initially acquired fear in a single context. A multiple extinction group then underwent extinction in three contexts, while a second group underwent extinction in the acquisition context and a third group underwent extinction in a single different context. All groups returned 24 hours later to test for return of fear in the extinction context (spontaneous recovery) and a novel context (renewal and reinstatement/test). Extinction in multiple contexts attenuated reinstatement of fear but did not reduce spontaneous recovery. Results from fear renewal were tendential. Our findings suggest that multi-context extinction can reduce fear relapse following an aversive event – an event that often induces return of fear in real-world settings -- and provides empirical support for conducting exposure-based clinical treatments across a variety of environments. PMID:24583374

  6. Extinction in multiple virtual reality contexts diminishes fear reinstatement in humans.

    PubMed

    Dunsmoor, Joseph E; Ahs, Fredrik; Zielinski, David J; LaBar, Kevin S

    2014-09-01

    Although conditioned fear can be effectively extinguished by unreinforced exposure to a threat cue, fear responses tend to return when the cue is encountered some time after extinction (spontaneous recovery), in a novel environment (renewal), or following presentation of an aversive stimulus (reinstatement). As extinction represents a context-dependent form of new learning, one possible strategy to circumvent the return of fear is to conduct extinction across several environments. Here, we tested the effectiveness of multiple context extinction in a two-day fear conditioning experiment using 3-D virtual reality technology to create immersive, ecologically-valid context changes. Fear-potentiated startle served as the dependent measure. All three experimental groups initially acquired fear in a single context. A multiple extinction group then underwent extinction in three contexts, while a second group underwent extinction in the acquisition context and a third group underwent extinction in a single different context. All groups returned 24h later to test for return of fear in the extinction context (spontaneous recovery) and a novel context (renewal and reinstatement/test). Extinction in multiple contexts attenuated reinstatement of fear but did not reduce spontaneous recovery. Results from fear renewal were tendential. Our findings suggest that multi-context extinction can reduce fear relapse following an aversive event--an event that often induces return of fear in real-world settings--and provides empirical support for conducting exposure-based clinical treatments across a variety of environments. PMID:24583374

  7. Not My Problem: Vicarious Conflict Adaptation with Human and Virtual Co-actors

    PubMed Central

    Spapé, Michiel M.; Ravaja, Niklas

    2016-01-01

    The Simon effect refers to an incompatibility between stimulus and response locations resulting in a conflict situation and, consequently, slower responses. Like other conflict effects, it is commonly reduced after repetitions, suggesting an executive control ability, which flexibly rewires cognitive processing and adapts to conflict. Interestingly, conflict is not necessarily individually defined: the Social Simon effect refers to a scenario where two people who share a task show a conflict effect where a single person does not. Recent studies showed these observations might converge into what could be called vicarious conflict adaptation, with evidence indicating that observing someone else's conflict may subsequently reduce one's own. While plausible, there is reason for doubt: both the social aspect of the Simon Effect, and the degree to which executive control accounts for the conflict adaptation effect, have become foci of debate in recent studies. Here, we present two experiments that were designed to test the social dimension of the effect by varying the social relationship between the actor and the co-actor. In Experiment 1, participants performed a conflict task with a virtual co-actor, while the actor-observer relationship was manipulated as a function of the similarity between response modalities. In Experiment 2, the same task was performed both with a virtual and with a human co-actor, while heart-rate measurements were taken to measure the impact of observed conflict on autonomous activity. While both experiments replicated the interpersonal conflict adaptation effects, neither showed evidence of the critical social dimension. We consider the findings as demonstrating that vicarious conflict adaptation does not rely on the social relationship between the actor and co-actor. PMID:27199839

  8. Not My Problem: Vicarious Conflict Adaptation with Human and Virtual Co-actors.

    PubMed

    Spapé, Michiel M; Ravaja, Niklas

    2016-01-01

    The Simon effect refers to an incompatibility between stimulus and response locations resulting in a conflict situation and, consequently, slower responses. Like other conflict effects, it is commonly reduced after repetitions, suggesting an executive control ability, which flexibly rewires cognitive processing and adapts to conflict. Interestingly, conflict is not necessarily individually defined: the Social Simon effect refers to a scenario where two people who share a task show a conflict effect where a single person does not. Recent studies showed these observations might converge into what could be called vicarious conflict adaptation, with evidence indicating that observing someone else's conflict may subsequently reduce one's own. While plausible, there is reason for doubt: both the social aspect of the Simon Effect, and the degree to which executive control accounts for the conflict adaptation effect, have become foci of debate in recent studies. Here, we present two experiments that were designed to test the social dimension of the effect by varying the social relationship between the actor and the co-actor. In Experiment 1, participants performed a conflict task with a virtual co-actor, while the actor-observer relationship was manipulated as a function of the similarity between response modalities. In Experiment 2, the same task was performed both with a virtual and with a human co-actor, while heart-rate measurements were taken to measure the impact of observed conflict on autonomous activity. While both experiments replicated the interpersonal conflict adaptation effects, neither showed evidence of the critical social dimension. We consider the findings as demonstrating that vicarious conflict adaptation does not rely on the social relationship between the actor and co-actor. PMID:27199839

  9. Climate for Learning: A Symposium. Creating a Climate for Learning, and the Humanizing Process. The Principal and School Discipline. Curriculum Bulletin Vol. XXXII, No. 341.

    ERIC Educational Resources Information Center

    Johnson, Simon O.; Chaky, June

    This publication contains two articles focusing on creating a climate for learning. In "Creating a Climate for Learning, and the Humanizing Process," Simon O. Johnson offers practical suggestions for creating a humanistic learning environment. The author begins by defining the basic concepts--humanism, affective education, affective situation,…

  10. Hippocampal Volume Reduction in Humans Predicts Impaired Allocentric Spatial Memory in Virtual-Reality Navigation

    PubMed Central

    Dzieciol, Anna M.; Gadian, David G.; Jentschke, Sebastian; Doeller, Christian F.; Burgess, Neil; Mishkin, Mortimer

    2015-01-01

    The extent to which navigational spatial memory depends on hippocampal integrity in humans is not well documented. We investigated allocentric spatial recall using a virtual environment in a group of patients with severe hippocampal damage (SHD), a group of patients with “moderate” hippocampal damage (MHD), and a normal control group. Through four learning blocks with feedback, participants learned the target locations of four different objects in a circular arena. Distal cues were present throughout the experiment to provide orientation. A circular boundary as well as an intra-arena landmark provided spatial reference frames. During a subsequent test phase, recall of all four objects was tested with only the boundary or the landmark being present. Patients with SHD were impaired in both phases of this task. Across groups, performance on both types of spatial recall was highly correlated with memory quotient (MQ), but not with intelligence quotient (IQ), age, or sex. However, both measures of spatial recall separated experimental groups beyond what would be expected based on MQ, a widely used measure of general memory function. Boundary-based and landmark-based spatial recall were both strongly related to bilateral hippocampal volumes, but not to volumes of the thalamus, putamen, pallidum, nucleus accumbens, or caudate nucleus. The results show that boundary-based and landmark-based allocentric spatial recall are similarly impaired in patients with SHD, that both types of recall are impaired beyond that predicted by MQ, and that recall deficits are best explained by a reduction in bilateral hippocampal volumes. SIGNIFICANCE STATEMENT In humans, bilateral hippocampal atrophy can lead to profound impairments in episodic memory. Across species, perhaps the most well-established contribution of the hippocampus to memory is not to episodic memory generally but to allocentric spatial memory. However, the extent to which navigational spatial memory depends on

  11. Smart Sensors and Virtual Physiology Human Approach as a Basis of Personalized Therapies in Diabetes Mellitus

    PubMed Central

    Fernández Peruchena, Carlos M; Prado-Velasco, Manuel

    2010-01-01

    Diabetes mellitus (DM) has a growing incidence and prevalence in modern societies, pushed by the aging and change of life styles. Despite the huge resources dedicated to improve their quality of life, mortality and morbidity rates, these are still very poor. In this work, DM pathology is revised from clinical and metabolic points of view, as well as mathematical models related to DM, with the aim of justifying an evolution of DM therapies towards the correction of the physiological metabolic loops involved. We analyze the reliability of mathematical models, under the perspective of virtual physiological human (VPH) initiatives, for generating and integrating customized knowledge about patients, which is needed for that evolution. Wearable smart sensors play a key role in this frame, as they provide patient’s information to the models. A telehealthcare computational architecture based on distributed smart sensors (first processing layer) and personalized physiological mathematical models integrated in Human Physiological Images (HPI) computational components (second processing layer), is presented. This technology was designed for a renal disease telehealthcare in earlier works and promotes crossroads between smart sensors and the VPH initiative. We suggest that it is able to support a truly personalized, preventive, and predictive healthcare model for the delivery of evolved DM therapies. PMID:21625646

  12. Body Image and Anti-Fat Attitudes: An Experimental Study Using a Haptic Virtual Reality Environment to Replicate Human Touch.

    PubMed

    Tremblay, Line; Roy-Vaillancourt, Mélina; Chebbi, Brahim; Bouchard, Stéphane; Daoust, Michael; Dénommée, Jessica; Thorpe, Moriah

    2016-02-01

    It is well documented that anti-fat attitudes influence the interactions individuals have with overweight people. However, testing attitudes through self-report measures is challenging. In the present study, we explore the use of a haptic virtual reality environment to physically interact with overweight virtual human (VH). We verify the hypothesis that duration and strength of virtual touch vary according to the characteristics of VH in ways similar to those encountered from interaction with real people in anti-fat attitude studies. A group of 61 participants were randomly assigned to one of the experimental conditions involving giving a virtual hug to a female or a male VH of either normal or overweight. We found significant associations between body image satisfaction and anti-fat attitudes and sex differences on these measures. We also found a significant interaction effect of the sex of the participants, sex of the VH, and the body size of the VH. Female participants hugged longer the overweight female VH than overweight male VH. Male participants hugged longer the normal-weight VH than the overweight VH. We conclude that virtual touch is a promising method of measuring attitudes, emotion and social interactions. PMID:26741706

  13. Creating human organs in chimaera pigs: an ethical source of immunocompatible organs?

    PubMed

    Shaw, David; Dondorp, Wybo; Geijsen, Niels; de Wert, Guido

    2015-12-01

    New techniques in regenerative medicine may soon enable the creation of human organs inside animals using induced pluripotent stem cells. This technology has the potential to solve the organ scarcity problem by providing a limitless source of personalised organs for transplantation, but also raises several ethical issues, particularly concerning animal welfare, the 'human features' problem and human dignity. PMID:25378549

  14. Virtual impact: visualizing the potential effects of cosmic impact in human history

    SciTech Connect

    Masse, W Bruce; Janecky, David R; Forte, Maurizio; Barrientos, Gustavo

    2009-01-01

    Current models indicate that catastrophic impacts by asteroids and comets capable of killing more than one quarter of Earth's human population have occurred on average once every million years; smaller impacts, such the 1908 Tunguska impact that leveled more than 2,000 square km of Siberian forest, occur every 200-300 years. Therefore, cosmic impact likely significantly affected hominine evolution and conceivably played a role in Holocene period human culture history. Regrettably, few archaeologists are trained to appreciate the nature and potential effects of cosmic impact. We have developed a conceptual model for an extensible set of educational and research tools based on virtual reality collaborative environments to engage archaeologists and the general public on the topic of the role of cosmic impact in human history. Our initial focus is on two documented asteroid impacts in Argentina during the period of 4000 to 1000 B.C. Campo del Cicio resulted in an energy release of around 2-3 megatons (100-150 times the Hiroshima atomic weapon), and left several craters and a strewn field covering 493 km{sup 2} in northeastern Argentina. Rio Cuarto was likely more than 1000 megatons and may have devastated an area greater than 50,000 km{sup 2} in central Argentina. We are focusing on reconstructions of these events and their potential effects on contemporary hunter and gatherers. Our vinual reality tools also introduce interactive variables (e.g., impactor physical properties, climate, vegetation, topography, and social complexity) to allow researchers and students to better investigate and evaluate the factors that significantly influence cosmic impact effects.

  15. Harnessing Gene Conversion in Chicken B Cells to Create a Human Antibody Sequence Repertoire

    PubMed Central

    Schusser, Benjamin; Yi, Henry; Collarini, Ellen J.; Izquierdo, Shelley Mettler; Harriman, William D.; Etches, Robert J.; Leighton, Philip A.

    2013-01-01

    Transgenic chickens expressing human sequence antibodies would be a powerful tool to access human targets and epitopes that have been intractable in mammalian hosts because of tolerance to conserved proteins. To foster the development of the chicken platform, it is beneficial to validate transgene constructs using a rapid, cell culture-based method prior to generating fully transgenic birds. We describe a method for the expression of human immunoglobulin variable regions in the chicken DT40 B cell line and the further diversification of these genes by gene conversion. Chicken VL and VH loci were knocked out in DT40 cells and replaced with human VK and VH genes. To achieve gene conversion of human genes in chicken B cells, synthetic human pseudogene arrays were inserted upstream of the functional human VK and VH regions. Proper expression of chimeric IgM comprised of human variable regions and chicken constant regions is shown. Most importantly, sequencing of DT40 genetic variants confirmed that the human pseudogene arrays contributed to the generation of diversity through gene conversion at both the Igl and Igh loci. These data show that engineered pseudogene arrays produce a diverse pool of human antibody sequences in chicken B cells, and suggest that these constructs will express a functional repertoire of chimeric antibodies in transgenic chickens. PMID:24278246

  16. The Transformation of Ms. Corazon: Creating Humanizing Spaces for Mexican Immigrant Students in Secondary ESL Classrooms

    ERIC Educational Resources Information Center

    Salazar, Maria del Carmen; Franquiz, Maria E.

    2008-01-01

    This article explores the journey of one English as a Second Language (ESL) teacher who held rigid boundaries that negatively impacted the academic resiliency of her Mexican immigrant students. As she transformed her pedagogical orientation, she created permeability in her curricular practices. With the elements of "respeto" (respect), "confianza"…

  17. Creating Cooperation: How States Develop Human Capital in Europe. Cornell Studies in Political Economy.

    ERIC Educational Resources Information Center

    Culpepper, Pepper D.

    This book looks at ways European governments can create changes in institutions that will foster cooperation among states, focusing on company investment in general skills and using data from France and Germany. Chapter one provides a general description of the challenges governments face in developing policies to change company-level vocational…

  18. Virtual Goods Recommendations in Virtual Worlds

    PubMed Central

    Chen, Kuan-Yu; Liao, Hsiu-Yu; Chen, Jyun-Hung; Liu, Duen-Ren

    2015-01-01

    Virtual worlds (VWs) are computer-simulated environments which allow users to create their own virtual character as an avatar. With the rapidly growing user volume in VWs, platform providers launch virtual goods in haste and stampede users to increase sales revenue. However, the rapidity of development incurs virtual unrelated items which will be difficult to remarket. It not only wastes virtual global companies' intelligence resources, but also makes it difficult for users to find suitable virtual goods fit for their virtual home in daily virtual life. In the VWs, users decorate their houses, visit others' homes, create families, host parties, and so forth. Users establish their social life circles through these activities. This research proposes a novel virtual goods recommendation method based on these social interactions. The contact strength and contact influence result from interactions with social neighbors and influence users' buying intention. Our research highlights the importance of social interactions in virtual goods recommendation. The experiment's data were retrieved from an online VW platform, and the results show that the proposed method, considering social interactions and social life circle, has better performance than existing recommendation methods. PMID:25834837

  19. Human responses to multiple sources of directional information in virtual crowd evacuations

    PubMed Central

    Bode, Nikolai W. F.; Kemloh Wagoum, Armel U.; Codling, Edward A.

    2014-01-01

    The evacuation of crowds from buildings or vehicles is one example that highlights the importance of understanding how individual-level interactions and decision-making combine and lead to the overall behaviour of crowds. In particular, to make evacuations safer, we need to understand how individuals make movement decisions in crowds. Here, we present an evacuation experiment with over 500 participants testing individual behaviour in an interactive virtual environment. Participants had to choose between different exit routes under the influence of three different types of directional information: static information (signs), dynamic information (movement of simulated crowd) and memorized information, as well as the combined effect of these different sources of directional information. In contrast to signs, crowd movement and memorized information did not have a significant effect on human exit route choice in isolation. However, when we combined the latter two treatments with additional directly conflicting sources of directional information, for example signs, they showed a clear effect by reducing the number of participants that followed the opposing directional information. This suggests that the signals participants observe more closely in isolation do not simply overrule alternative sources of directional information. Age and gender did not consistently explain differences in behaviour in our experiments. PMID:24258157

  20. Identification of the lateral position of a virtual object based on echoes by humans.

    PubMed

    Rowan, Daniel; Papadopoulos, Timos; Edwards, David; Holmes, Hannah; Hollingdale, Anna; Evans, Leah; Allen, Robert

    2013-06-01

    Echolocation offers a promising approach to improve the quality of life of people with blindness although little is known about the factors influencing object localisation using a 'searching' strategy. In this paper, we describe a series of experiments using sighted and blind human listeners and a 'virtual auditory space' technique to investigate the effects of the distance and orientation of a reflective object and the effect of stimulus bandwidth on ability to identify the right-versus-left position of the object, with bands of noise and durations from 10-400 ms. We found that performance reduced with increasing object distance. This was more rapid for object orientations where mirror-like reflection paths do not exist to both ears (i.e., most possible orientations); performance with these orientations was indistinguishable from chance at 1.8 m for even the best performing listeners in other conditions. Above-chance performance extended to larger distances when the echo was artificially presented in isolation, as might be achieved in practice by an assistive device. We also found that performance was primarily based on information above 2 kHz. Further research should extend these investigations to include other factors that are relevant to real-life echolocation. PMID:23538130

  1. Heightened potency of human pluripotent stem cell lines created by transient BMP4 exposure

    PubMed Central

    Yang, Ying; Adachi, Katsuyuki; Sheridan, Megan A.; Alexenko, Andrei P.; Schust, Danny J.; Schulz, Laura C.; Ezashi, Toshihiko; Roberts, R. Michael

    2015-01-01

    Human pluripotent stem cells (PSCs) show epiblast-type pluripotency that is maintained with ACTIVIN/FGF2 signaling. Here, we report the acquisition of a unique stem cell phenotype by both human ES cells (hESCs) and induced pluripotent stem cells (iPSCs) in response to transient (24–36 h) exposure to bone morphogenetic protein 4 (BMP4) plus inhibitors of ACTIVIN signaling (A83-01) and FGF2 (PD173074), followed by trypsin dissociation and recovery of colonies capable of growing on a gelatin substratum in standard medium for human PSCs at low but not high FGF2 concentrations. The self-renewing cell lines stain weakly for CDX2 and strongly for NANOG, can be propagated clonally on either Matrigel or gelatin, and are morphologically distinct from human PSC progenitors on either substratum but still meet standard in vitro criteria for pluripotency. They form well-differentiated teratomas in immune-compromised mice that secrete human chorionic gonadotropin (hCG) into the host mouse and include small areas of trophoblast-like cells. The cells have a distinct transcriptome profile from the human PSCs from which they were derived (including higher expression of NANOG, LEFTY1, and LEFTY2). In nonconditioned medium lacking FGF2, the colonies spontaneously differentiated along multiple lineages, including trophoblast. They responded to PD173074 in the absence of both FGF2 and BMP4 by conversion to trophoblast, and especially syncytiotrophoblast, whereas an A83-01/PD173074 combination favored increased expression of HLA-G, a marker of extravillous trophoblast. Together, these data suggest that the cell lines exhibit totipotent potential and that BMP4 can prime human PSCs to a self-renewing alternative state permissive for trophoblast development. The results may have implications for regulation of lineage decisions in the early embryo. PMID:25870291

  2. Sounds of silence: How to animate virtual worlds with sound

    NASA Technical Reports Server (NTRS)

    Astheimer, Peter

    1993-01-01

    Sounds are an integral and sometimes annoying part of our daily life. Virtual worlds which imitate natural environments gain a lot of authenticity from fast, high quality visualization combined with sound effects. Sounds help to increase the degree of immersion for human dwellers in imaginary worlds significantly. The virtual reality toolkit of IGD (Institute for Computer Graphics) features a broad range of standard visual and advanced real-time audio components which interpret an object-oriented definition of the scene. The virtual reality system 'Virtual Design' realized with the toolkit enables the designer of virtual worlds to create a true audiovisual environment. Several examples on video demonstrate the usage of the audio features in Virtual Design.

  3. Simulated interviews 3.0: virtual humans to train abilities of diagnosis--usability assessment.

    PubMed

    Peñaloza-Salazar, Claudia; Gutierrez-Maldonado, Jose; Ferrer-Garcia, Marta; Garcia-Palacios, Azucena; Andres-Pueyo, Antonio; Aguilar-Alonso, Angel

    2011-01-01

    Diagnostic interviews in Psychology require the mastery of several skills and abilities that are required and need to be trained. The purpose of this study was to develop a virtual environment that simulates a situation where trainees can interact with virtual patients. The usability of the application was assessed. Results suggested that simulated interviews are a friendly and motivating tool to train diagnostic abilities in psychology students. PMID:21685661

  4. A vision and strategy for the virtual physiological human: 2012 update

    PubMed Central

    Hunter, Peter; Chapman, Tara; Coveney, Peter V.; de Bono, Bernard; Diaz, Vanessa; Fenner, John; Frangi, Alejandro F.; Harris, Peter; Hose, Rod; Kohl, Peter; Lawford, Pat; McCormack, Keith; Mendes, Miriam; Omholt, Stig; Quarteroni, Alfio; Shublaq, Nour; Skår, John; Stroetmann, Karl; Tegner, Jesper; Thomas, S. Randall; Tollis, Ioannis; Tsamardinos, Ioannis; van Beek, Johannes H. G. M.; Viceconti, Marco

    2013-01-01

    European funding under Framework 7 (FP7) for the virtual physiological human (VPH) project has been in place now for 5 years. The VPH Network of Excellence (NoE) has been set up to help develop common standards, open source software, freely accessible data and model repositories, and various training and dissemination activities for the project. It is also working to coordinate the many clinically targeted projects that have been funded under the FP7 calls. An initial vision for the VPH was defined by the FP6 STEP project in 2006. In 2010, we wrote an assessment of the accomplishments of the first two years of the VPH in which we considered the biomedical science, healthcare and information and communications technology challenges facing the project (Hunter et al. 2010 Phil. Trans. R. Soc. A 368, 2595–2614 (doi:10.1098/rsta.2010.0048)). We proposed that a not-for-profit professional umbrella organization, the VPH Institute, should be established as a means of sustaining the VPH vision beyond the time-frame of the NoE. Here, we update and extend this assessment and in particular address the following issues raised in response to Hunter et al.: (i) a vision for the VPH updated in the light of progress made so far, (ii) biomedical science and healthcare challenges that the VPH initiative can address while also providing innovation opportunities for the European industry, and (iii) external changes needed in regulatory policy and business models to realize the full potential that the VPH has to offer to industry, clinics and society generally. PMID:24427536

  5. A vision and strategy for the virtual physiological human: 2012 update.

    PubMed

    Hunter, Peter; Chapman, Tara; Coveney, Peter V; de Bono, Bernard; Diaz, Vanessa; Fenner, John; Frangi, Alejandro F; Harris, Peter; Hose, Rod; Kohl, Peter; Lawford, Pat; McCormack, Keith; Mendes, Miriam; Omholt, Stig; Quarteroni, Alfio; Shublaq, Nour; Skår, John; Stroetmann, Karl; Tegner, Jesper; Thomas, S Randall; Tollis, Ioannis; Tsamardinos, Ioannis; van Beek, Johannes H G M; Viceconti, Marco

    2013-04-01

    European funding under Framework 7 (FP7) for the virtual physiological human (VPH) project has been in place now for 5 years. The VPH Network of Excellence (NoE) has been set up to help develop common standards, open source software, freely accessible data and model repositories, and various training and dissemination activities for the project. It is also working to coordinate the many clinically targeted projects that have been funded under the FP7 calls. An initial vision for the VPH was defined by the FP6 STEP project in 2006. In 2010, we wrote an assessment of the accomplishments of the first two years of the VPH in which we considered the biomedical science, healthcare and information and communications technology challenges facing the project (Hunter et al. 2010 Phil. Trans. R. Soc. A 368, 2595-2614 (doi:10.1098/rsta.2010.0048)). We proposed that a not-for-profit professional umbrella organization, the VPH Institute, should be established as a means of sustaining the VPH vision beyond the time-frame of the NoE. Here, we update and extend this assessment and in particular address the following issues raised in response to Hunter et al.: (i) a vision for the VPH updated in the light of progress made so far, (ii) biomedical science and healthcare challenges that the VPH initiative can address while also providing innovation opportunities for the European industry, and (iii) external changes needed in regulatory policy and business models to realize the full potential that the VPH has to offer to industry, clinics and society generally. PMID:24427536

  6. Inhibitor Discovery for the Human GLUT1 from Homology Modeling and Virtual Screening.

    PubMed

    Ung, Peter Man-Un; Song, Wenxin; Cheng, Lili; Zhao, Xinbin; Hu, Hailin; Chen, Ligong; Schlessinger, Avner

    2016-07-15

    The human Glucose Transporter 1 (hGLUT1 or SLC2A1) is a facilitative membrane transporter found in the liver, intestines, kidney, and brain, where it transports sugars such as d-glucose and d-galactose. Genetic variations in hGLUT1 are associated with a broad range of diseases and metabolic disorders. For example, hGLUT1 is upregulated in various cancer types (e.g., breast carcinoma) to support the increased anaerobic glycolysis and the Warburg effect. Thus, hGLUT1 is an emerging therapeutic target, which also transports commonly used cancer biomarkers (e.g., (18)F-DG). In this study, we use computational prediction followed by experimental testing, to characterize hGLUT1. We construct homology models of hGLUT1 in a partially occluded outward open ("occluded") conformation based on the X-ray structure of the E. coli xylose transporter, XylE. Comparison of the binding site of the occluded models to experimentally determined hGLUT structures revealed a hydrophobic pocket adjacent to the sugar-binding site, which was tested experimentally via site-directed mutagenesis. Virtual screening of various libraries of purchasable compounds against the occluded models, followed by experimental testing with cellular assays revealed seven previously unknown hGLUT1 ligands with IC50 values ranging from 0.45 μM to 59 μM. These ligands represent three unique chemotypes that are chemically different from any other known hGLUT1 ligands. The newly characterized hydrophobic pocket can potentially be utilized by the new ligands for increased affinity. Furthermore, the previously unknown hGLUT1 ligands can serve as chemical tools to further characterize hGLUT1 function or lead molecules for future drug development. PMID:27128978

  7. Virtual Humans Versus Standardized Patients: Which Lead Residents to More Correct Diagnoses?

    PubMed Central

    Wendling, Adam L.; Halan, Shivashankar; Tighe, Patrick; Le, Linda; Euliano, Tammy; Lok, Benjamin

    2011-01-01

    Purpose Medical educators frequently use standardized patient (SP) encounters to bridge the gap between didactic education and practical application. Typically, SPs are healthy adults with no consistent physical findings; however, highly immersive virtual humans (VHs) may enable the consistent presentation of abnormal physical findings to multiple learners across multiple repetitions. Thus, the authors conducted this study to compare how frequently junior anesthesiology residents suspected obstructive sleep apnea (OSA) in preoperative assessments of SPs vs a VH. Method The authors presented a patient whose case included the historical features of OSA (snoring, daytime fatigue, observed apnea, hypertension, and obesity). Three SPs (in 2008) and one VH (in 2009) were necessary to run the residents through the assessment. The VH appeared morbidly obese and had a neck circumference of 40 inches. An airway exam of the VH displayed an image of redundant soft tissue, prominent tongue, and tonsillar hypertrophy. The VH responded to natural speech by recognizing “triggers” in a human’s voice. The triggers (no. = 849) and VH responses (no. = 259) were designed with a technique that collects information from user interactions. Results Five of 21 residents (23.8%) suspected OSA after interviewing the SPs, while 11 of 13 residents (84.6%) suspected OSA after interviewing the VH (odds ratio of 17.6, 95% CI of 2.9 – 107). Conclusions Residents suspected OSA much more frequently after interviewing the VH than after interviewing the SPs. The VH provides a unique opportunity to display numerous abnormal physical findings as part of SP encounters. PMID:21248598

  8. A Human Relations Curriculum Development Project Created by the PACE Association.

    ERIC Educational Resources Information Center

    Program for Action by Citizens in Education, Cleveland, OH.

    After two years of experimental teaching and research in suburban high schools, the Cleveland area Human Relations Curriculum Program is being expanded to include the inner-city and elementary schools. In an attempt to increase man's ability to get along with his fellow man, it employs a multimedia approach including films, documentaries, news…

  9. Policies to Create and Destroy Human Capital in Europe. NBER Working Paper No. 15742

    ERIC Educational Resources Information Center

    Heckman, James J.; Jacobs, Bas

    2010-01-01

    Trends in skill bias and greater turbulence in modern labor markets put wages and employment prospects of unskilled workers under pressure. Weak incentives to utilize and maintain skills over the life-cycle become manifest with the ageing of the population. Policies to promote human capital formation reduce welfare state dependency among the…

  10. Special Issue: Creating a Tipping Point--Strategic Human Resources in Higher Education

    ERIC Educational Resources Information Center

    Evans, Alvin; Chun, Edna

    2012-01-01

    This monograph examines the emergence of strategic human resource (HR) practices in higher education at a time when the budgetary crisis in public higher education has never been more acute. The wave of financial pressures on public research universities today heralds the advent of an era of unprecedented change. Financial upheaval resulting from…

  11. Human Engineered Cardiac Tissues Created Using Induced Pluripotent Stem Cells Reveal Functional Characteristics of BRAF-Mediated Hypertrophic Cardiomyopathy.

    PubMed

    Cashman, Timothy J; Josowitz, Rebecca; Johnson, Bryce V; Gelb, Bruce D; Costa, Kevin D

    2016-01-01

    Hypertrophic cardiomyopathy (HCM) is a leading cause of sudden cardiac death that often goes undetected in the general population. HCM is also prevalent in patients with cardio-facio-cutaneous syndrome (CFCS), which is a genetic disorder characterized by aberrant signaling in the RAS/MAPK signaling cascade. Understanding the mechanisms of HCM development in such RASopathies may lead to novel therapeutic strategies, but relevant experimental models of the human condition are lacking. Therefore, the objective of this study was to develop the first 3D human engineered cardiac tissue (hECT) model of HCM. The hECTs were created using human cardiomyocytes obtained by directed differentiation of induced pluripotent stem cells derived from a patient with CFCS due to an activating BRAF mutation. The mutant myocytes were directly conjugated at a 3:1 ratio with a stromal cell population to create a tissue of defined composition. Compared to healthy patient control hECTs, BRAF-hECTs displayed a hypertrophic phenotype by culture day 6, with significantly increased tissue size, twitch force, and atrial natriuretic peptide (ANP) gene expression. Twitch characteristics reflected increased contraction and relaxation rates and shorter twitch duration in BRAF-hECTs, which also had a significantly higher maximum capture rate and lower excitation threshold during electrical pacing, consistent with a more arrhythmogenic substrate. By culture day 11, twitch force was no longer different between BRAF and wild-type hECTs, revealing a temporal aspect of disease modeling with tissue engineering. Principal component analysis identified diastolic force as a key factor that changed from day 6 to day 11, supported by a higher passive stiffness in day 11 BRAF-hECTs. In summary, human engineered cardiac tissues created from BRAF mutant cells recapitulated, for the first time, key aspects of the HCM phenotype, offering a new in vitro model for studying intrinsic mechanisms and screening new

  12. Human Engineered Cardiac Tissues Created Using Induced Pluripotent Stem Cells Reveal Functional Characteristics of BRAF-Mediated Hypertrophic Cardiomyopathy

    PubMed Central

    Johnson, Bryce V.; Gelb, Bruce D.; Costa, Kevin D.

    2016-01-01

    Hypertrophic cardiomyopathy (HCM) is a leading cause of sudden cardiac death that often goes undetected in the general population. HCM is also prevalent in patients with cardio-facio-cutaneous syndrome (CFCS), which is a genetic disorder characterized by aberrant signaling in the RAS/MAPK signaling cascade. Understanding the mechanisms of HCM development in such RASopathies may lead to novel therapeutic strategies, but relevant experimental models of the human condition are lacking. Therefore, the objective of this study was to develop the first 3D human engineered cardiac tissue (hECT) model of HCM. The hECTs were created using human cardiomyocytes obtained by directed differentiation of induced pluripotent stem cells derived from a patient with CFCS due to an activating BRAF mutation. The mutant myocytes were directly conjugated at a 3:1 ratio with a stromal cell population to create a tissue of defined composition. Compared to healthy patient control hECTs, BRAF-hECTs displayed a hypertrophic phenotype by culture day 6, with significantly increased tissue size, twitch force, and atrial natriuretic peptide (ANP) gene expression. Twitch characteristics reflected increased contraction and relaxation rates and shorter twitch duration in BRAF-hECTs, which also had a significantly higher maximum capture rate and lower excitation threshold during electrical pacing, consistent with a more arrhythmogenic substrate. By culture day 11, twitch force was no longer different between BRAF and wild-type hECTs, revealing a temporal aspect of disease modeling with tissue engineering. Principal component analysis identified diastolic force as a key factor that changed from day 6 to day 11, supported by a higher passive stiffness in day 11 BRAF-hECTs. In summary, human engineered cardiac tissues created from BRAF mutant cells recapitulated, for the first time, key aspects of the HCM phenotype, offering a new in vitro model for studying intrinsic mechanisms and screening new

  13. Aqueous humor outflow effects of partial thickness channel created by a femtosecond laser in ex-vivo human eyes

    NASA Astrophysics Data System (ADS)

    Chai, Dongyul; Chaudhary, Gautam; Kurtz, Ron; Juhasz, Tibor

    2007-02-01

    The reduced outflow rate caused by the increased resistance through trabecular meshwork (TM) has been thought to be the main reason for elevated intraocular pressure (IOP). It has been demonstrated that femtosecond laser pulses tuned to 1.7 μm wavelength can create the partial thickness channel in the sclera in ex vivo human eyes [1] and aqueous outflow can be increased by these channels in porcine eyes [2]. It was also shown that the outflow rate is reduced over time in ex vivo human eyes [3]. Therefore, the control experiment without laser treatment at the same condition was conducted and showed that outflow was reduced by 1.5 +/- 0.8 μl/min at 15mmHg and 1.8 +/- 1.0 μl/min at 25mmHg. However, the outflow rate increased by 0.26 μl/min at 15mmHg and 0.15 μl/min at 25mmHg after the partial thickness channel was created, meaning the amount of increased outflow rate might be more than measured considering the outflow reduction in control experiment. We suggest that the femtosecond laser created partial thickness channel can increase the outflow rate and delay the progression of glaucoma.

  14. Creating Communications, Computing, and Networking Technology Development Road Maps for Future NASA Human and Robotic Missions

    NASA Astrophysics Data System (ADS)

    Bhasin, Kul; Hayden, Jeffrey L.

    2005-02-01

    For human and robotic exploration missions envisioned in the Vision for Exploration, roadmaps are needed for capability development and investments based on advanced technology developments. A roadmap development process was undertaken for the needed communications, computing, and networking capabilities and technologies for the future human and robotics missions. The underlying processes are derived from work carried out during development of the future space communications architecture, and NASA's Space Architect Office (SAO) defined formats and structures for accumulating data. Interrelationships were established among emerging requirements, the capability analysis and technology status, and performance data. After developing an architectural communications and networking framework structured around the assumed needs for human and robotic exploration, in the vicinity of Earth, Moon, along the path to Mars, and in the vicinity of Mars, information was gathered from expert participants. This information was used to identify the capabilities expected from the new infrastructure and the technological gaps in the way of obtaining them. We define realistic, long-term space communication architectures based on emerging needs and translate the needs into interfaces, functions, and computer processing that will be required. In developing our roadmapping process, we defined requirements for achieving end-to-end activities that will be carried out by future NASA human and robotic missions. This paper describes: 1) the architectural framework developed for analysis; 2) our approach to gathering and analyzing data from NASA, industry, and academia; 3) an outline of the technology research to be done, including milestones for technology research and demonstrations with timelines; and 4) the technology roadmaps themselves.

  15. Creating Communications, Computing, and Networking Technology Development Road Maps for Future NASA Human and Robotic Missions

    NASA Technical Reports Server (NTRS)

    Bhasin, Kul; Hayden, Jeffrey L.

    2005-01-01

    For human and robotic exploration missions in the Vision for Exploration, roadmaps are needed for capability development and investments based on advanced technology developments. A roadmap development process was undertaken for the needed communications, and networking capabilities and technologies for the future human and robotics missions. The underlying processes are derived from work carried out during development of the future space communications architecture, an d NASA's Space Architect Office (SAO) defined formats and structures for accumulating data. Interrelationships were established among emerging requirements, the capability analysis and technology status, and performance data. After developing an architectural communications and networking framework structured around the assumed needs for human and robotic exploration, in the vicinity of Earth, Moon, along the path to Mars, and in the vicinity of Mars, information was gathered from expert participants. This information was used to identify the capabilities expected from the new infrastructure and the technological gaps in the way of obtaining them. We define realistic, long-term space communication architectures based on emerging needs and translate the needs into interfaces, functions, and computer processing that will be required. In developing our roadmapping process, we defined requirements for achieving end-to-end activities that will be carried out by future NASA human and robotic missions. This paper describes: 10 the architectural framework developed for analysis; 2) our approach to gathering and analyzing data from NASA, industry, and academia; 3) an outline of the technology research to be done, including milestones for technology research and demonstrations with timelines; and 4) the technology roadmaps themselves.

  16. Evidence for large diversity in the human transcriptome created by Alu RNA editing.

    PubMed

    Barak, Michal; Levanon, Erez Y; Eisenberg, Eli; Paz, Nurit; Rechavi, Gideon; Church, George M; Mehr, Ramit

    2009-11-01

    Adenosine-to-inosine (A-to-I) RNA editing alters the original genomic content of the human transcriptome and is essential for maintenance of normal life in mammals. A-to-I editing in Alu repeats is abundant in the human genome, with many thousands of expressed Alu sequences undergoing editing. Little is known so far about the contribution of Alu editing to transcriptome complexity. Transcripts derived from a single edited Alu sequence can be edited in multiple sites, and thus could theoretically generate a large number of different transcripts. Here we explored whether the combinatorial potential nature of edited Alu sequences is actually fulfilled in the human transcriptome. We analyzed datasets of editing sites and performed an analysis of a detailed transcript set of one edited Alu sequence. We found that editing appears at many more sites than detected by earlier genomic screens. To a large extent, editing of different sites within the same transcript is only weakly correlated. Thus, rather than finding a few versions of each transcript, a large number of edited variants arise, resulting in immense transcript diversity that eclipses alternative splicing as mechanism of transcriptome diversity, although with less impact on the proteome. PMID:19740767

  17. Alternative splicing creates two new architectures for human tyrosyl-tRNA synthetase

    PubMed Central

    Wei, Zhiyi; Xu, Zhiwen; Liu, Xiaotian; Lo, Wing-Sze; Ye, Fei; Lau, Ching-Fun; Wang, Feng; Zhou, Jie J.; Nangle, Leslie A.; Yang, Xiang-Lei; Zhang, Mingjie; Schimmel, Paul

    2016-01-01

    Many human tRNA synthetases evolved alternative functions outside of protein synthesis. These functions are associated with over 200 splice variants (SVs), most of which are catalytic nulls that engender new biology. While known to regulate non-translational activities, little is known about structures resulting from natural internal ablations of any protein. Here, we report analysis of two closely related, internally deleted, SVs of homodimeric human tyrosyl-tRNA synthetase (TyrRS). In spite of both variants ablating a portion of the catalytic core and dimer-interface contacts of native TyrRS, each folded into a distinct stable structure. Biochemical and nuclear magnetic resonance (NMR) analysis showed that the internal deletion of TyrRSΔE2–4 SV gave an alternative, neomorphic dimer interface ‘orthogonal’ to that of native TyrRS. In contrast, the internal C-terminal splice site of TyrRSΔE2–3 prevented either dimerization interface from forming, and yielded a predominantly monomeric protein. Unlike ubiquitous TyrRS, the neomorphs showed clear tissue preferences, which were distinct from each other. The results demonstrate a sophisticated structural plasticity of a human tRNA synthetase for architectural reorganizations that are preferentially elicited in specific tissues. PMID:26773056

  18. Alternative splicing creates two new architectures for human tyrosyl-tRNA synthetase.

    PubMed

    Wei, Zhiyi; Xu, Zhiwen; Liu, Xiaotian; Lo, Wing-Sze; Ye, Fei; Lau, Ching-Fun; Wang, Feng; Zhou, Jie J; Nangle, Leslie A; Yang, Xiang-Lei; Zhang, Mingjie; Schimmel, Paul

    2016-02-18

    Many human tRNA synthetases evolved alternative functions outside of protein synthesis. These functions are associated with over 200 splice variants (SVs), most of which are catalytic nulls that engender new biology. While known to regulate non-translational activities, little is known about structures resulting from natural internal ablations of any protein. Here, we report analysis of two closely related, internally deleted, SVs of homodimeric human tyrosyl-tRNA synthetase (TyrRS). In spite of both variants ablating a portion of the catalytic core and dimer-interface contacts of native TyrRS, each folded into a distinct stable structure. Biochemical and nuclear magnetic resonance (NMR) analysis showed that the internal deletion of TyrRSΔE2-4 SV gave an alternative, neomorphic dimer interface 'orthogonal' to that of native TyrRS. In contrast, the internal C-terminal splice site of TyrRSΔE2-3 prevented either dimerization interface from forming, and yielded a predominantly monomeric protein. Unlike ubiquitous TyrRS, the neomorphs showed clear tissue preferences, which were distinct from each other. The results demonstrate a sophisticated structural plasticity of a human tRNA synthetase for architectural reorganizations that are preferentially elicited in specific tissues. PMID:26773056

  19. Virtual colonoscopy

    MedlinePlus

    Colonoscopy - virtual; CT colonography; Computed tomographic colonography; Colography - virtual ... Virtual colonoscopy is different from regular colonoscopy . Regular colonoscopy uses a long, lighted tool called a colonoscope that is ...

  20. IAB presidential address: bioethics in a globalized world: creating space for flourishing human relationships.

    PubMed

    Biller-Andorno, Nikola

    2011-10-01

    Bioethics in a globalized world is meeting a number of challenges - fundamentalism in its different forms, and a focus on economic growth neglecting issues such as equity and sustainability, being prominent among them. How well are we as bioethicists equipped to make meaningful contributions in these times? The paper identifies a number of restraints and proceeds to probe potential resources such as the capability approach, care ethics, cosmopolitanism, and pragmatism. These elements serve to outline a perspective that focuses on the preconditions for flourishing human relationships as a way to address bioethical challenges in a globalized world. PMID:21929701

  1. Human embryonic stem cell research: why the discarded-created-distinction cannot be based on the potentiality argument.

    PubMed

    Devolder, Katrien

    2005-04-01

    Discussions about the use and derivation of pluripotent human embryonic stem cells are a stumbling block in developing public policy on stem cell research. On the one hand there is a broad consensus on the benefits of these cells for science and biomedicine; on the other hand there is the controversial issue of killing human embryos. I will focus on the compromise position that accepts research on spare embryos, but not on research embryos ('discarded-created-distinction', from now on d-c-d). I will point out that this viewpoint is hard to maintain. The main focus is that the 'revealed beliefs' of its defenders are inconsistent with their 'professed beliefs', more specifically with their main argument, i.e. the potentiality argument. I will point out that (1) the defenders of d-c-d actually grant a relative moral status to the human embryo, (2) this moral status is dependent on internal and external criteria of potentiality, (3) potentiality seen as a variable value that also depends on external criteria cannot justify d-c-d, and (4) an approach to human embryonic stem cell-research that would also allow the use of research embryos is more compatible with the feelings, attitudes and values of those who currently defend d-c-d and, therefore, could lead to a broader consensus and to actions that alleviate individual human suffering. PMID:15945151

  2. Virtual humans and formative assessment to train diagnostic skills in bulimia nervosa.

    PubMed

    Gutiérrez-Maldonado, José; Ferrer-Garcia, Marta; Pla, Joana; Andrés-Pueyo, Antonio

    2014-01-01

    Carrying out a diagnostic interview requires skills that need to be taught in a controlled environment. Virtual Reality (VR) environments are increasingly used in the training of professionals, as they offer the most realistic alternative while not requiring students to face situations for which they are yet unprepared. The results of the training of diagnostic skills can also be generalized to any other situation in which effective communication skills play a major role. Our aim with this study has been to develop a procedure of formative assessment in order to increment the effectiveness of virtual learning simulation systems and then to assess their efficacy. PMID:24875685

  3. Human Activity Behavior and Gesture Generation in Virtual Worlds for Long- Duration Space Missions. Chapter 8

    NASA Technical Reports Server (NTRS)

    Sierhuis, Maarten; Clancey, William J.; Damer, Bruce; Brodsky, Boris; vanHoff, Ron

    2007-01-01

    A virtual worlds presentation technique with embodied, intelligent agents is being developed as an instructional medium suitable to present in situ training on long term space flight. The system combines a behavioral element based on finite state automata, a behavior based reactive architecture also described as subsumption architecture, and a belief-desire-intention agent structure. These three features are being integrated to describe a Brahms virtual environment model of extravehicular crew activity which could become a basis for procedure training during extended space flight.

  4. A Virtual Good Idea

    ERIC Educational Resources Information Center

    Bolch, Matt

    2009-01-01

    School districts across the country have always had to do more with less. Funding goes only so far, leaving administrators and IT staff to find innovative ways to save money while maintaining a high level of academic quality. Creating virtual servers accomplishes both tasks, district technology personnel say. Virtual environments not only allow…

  5. ISIS Workshops Using Virtualization

    NASA Astrophysics Data System (ADS)

    Becker, K. J.; Becker, T. L.

    2015-06-01

    ISIS workshops are now using virtualization technology to improve the user experience and create a stable, consistent and useful ISIS installation for educational purposes as well as future processing needs.

  6. Creating and simulating skeletal muscle from the visible human data set.

    PubMed

    Teran, Joseph; Sifakis, Eftychios; Blemker, Silvia S; Ng-Thow-Hing, Victor; Lau, Cynthia; Fedkiw, Ronald

    2005-01-01

    Simulation of the musculoskeletal system has important applications in biomechanics, biomedical engineering, surgery simulation, and computer graphics. The accuracy of the muscle, bone, and tendon geometry as well as the accuracy of muscle and tendon dynamic deformation are of paramount importance in all these applications. We present a framework for extracting and simulating high resolution musculoskeletal geometry from the segmented visible human data set. We simulate 30 contact/collision coupled muscles in the upper limb and describe a computationally tractable implementation using an embedded mesh framework. Muscle geometry is embedded in a nonmanifold, connectivity preserving simulation mesh molded out of a lower resolution BCC lattice containing identical, well-shaped elements, leading to a relaxed time step restriction for stability and, thus, reduced computational cost. The muscles are endowed with a transversely isotropic, quasi-incompressible constitutive model that incorporates muscle fiber fields as well as passive and active components. The simulation takes advantage of a new robust finite element technique that handles both degenerate and inverted tetrahedra. PMID:15868831

  7. Objective and subjective quality assessment of geometry compression of reconstructed 3D humans in a 3D virtual room

    NASA Astrophysics Data System (ADS)

    Mekuria, Rufael; Cesar, Pablo; Doumanis, Ioannis; Frisiello, Antonella

    2015-09-01

    Compression of 3D object based video is relevant for 3D Immersive applications. Nevertheless, the perceptual aspects of the degradation introduced by codecs for meshes and point clouds are not well understood. In this paper we evaluate the subjective and objective degradations introduced by such codecs in a state of art 3D immersive virtual room. In the 3D immersive virtual room, users are captured with multiple cameras, and their surfaces are reconstructed as photorealistic colored/textured 3D meshes or point clouds. To test the perceptual effect of compression and transmission, we render degraded versions with different frame rates in different contexts (near/far) in the scene. A quantitative subjective study with 16 users shows that negligible distortion of decoded surfaces compared to the original reconstructions can be achieved in the 3D virtual room. In addition, a qualitative task based analysis in a full prototype field trial shows increased presence, emotion, user and state recognition of the reconstructed 3D Human representation compared to animated computer avatars.

  8. Hiding and Searching Strategies of Adult Humans in a Virtual and a Real-Space Room

    ERIC Educational Resources Information Center

    Talbot, Katherine J.; Legge, Eric L. G.; Bulitko, Vadim; Spetch, Marcia L.

    2009-01-01

    Adults searched for or cached three objects in nine hiding locations in a virtual room or a real-space room. In both rooms, the locations selected by participants differed systematically between searching and hiding. Specifically, participants moved farther from origin and dispersed their choices more when hiding objects than when searching for…

  9. Employing Virtual Humans for Education and Training in X3D/VRML Worlds

    ERIC Educational Resources Information Center

    Ieronutti, Lucio; Chittaro, Luca

    2007-01-01

    Web-based education and training provides a new paradigm for imparting knowledge; students can access the learning material anytime by operating remotely from any location. Web3D open standards, such as X3D and VRML, support Web-based delivery of Educational Virtual Environments (EVEs). EVEs have a great potential for learning and training…

  10. An epidermal stem cells niche microenvironment created by engineered human amniotic membrane.

    PubMed

    Ji, Shi-zhao; Xiao, Shi-chu; Luo, Peng-fei; Huang, Guo-feng; Wang, Guang-yi; Zhu, Shi-hui; Wu, Min-juan; Xia, Zhao-fan

    2011-11-01

    How to amplify epidermal stem cells (ESCs) rapidly is a challenging crux in skin tissue engineering research. The present study describes the preparation of 3D micronized (300-600 μm) amniotic membrane (mAM) by means of repeated freeze-thawing cycles to deplete cell components and homogenized with a macrohomogenizer in liquid nitrogen. This newly prepared mAM not only possessed the characteristics of a microcarrier but completely retained the basement membrane structure and abundant active substances such as NGF, HGF, KGF, bFGF, TGF-β1 and EGF in the AM matrix. The result showed that mAM combined with rotary cell culture system (RCCS) was able to amplify ESCs quickly. The relative cell viability at day 7 and 14 was significantly higher than that of the conventional 2D plate culture (326 ± 28% and 535 ± 47% versus 232 ± 21% and 307 ± 32%, P < 0.05). In addition, the new method was able to prevent cell differentiation effectively and retain the characteristics of stem cells. When mAM loaded with ESCs (ESC-mAM) was further transplanted to full-thickness skin defects in nude mice, ESCs survived well and formed a new epidermis. Four weeks after transplantation, papilla-like structures were observed, and collagen fibers were well and regularly arranged in the newly formed dermal layer. In conclusion, the mAM as a novel natural microcarrier possesses an intact basement membrane structure and bioactivities. It not only provides the microenvironment similar to the stem cell niche within the human body favorable for ex vivo culture and amplification of ESCs but can be used as the dermal scaffold in constructing a skin substitute containing ESCs for the repair of full-thickness skin defects. PMID:21803416