Science.gov

Sample records for creeks

  1. 1. EAGLE CREEK RECREATION AREA, VIEW OF EAGLE CREEK TRAIL ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    1. EAGLE CREEK RECREATION AREA, VIEW OF EAGLE CREEK TRAIL REGISTRY BOOTH. - Historic Columbia River Highway, Eagle Creek Recreation Area, Historic Columbia River Highway at Eagle Creek, Troutdale, Multnomah County, OR

  2. Restoring Fossil Creek

    ERIC Educational Resources Information Center

    Flaccus, Kathleen; Vlieg, Julie; Marks, Jane C.; LeRoy, Carri J.

    2004-01-01

    Fossil Creek had been dammed for the past 90 years, and plans were underway to restore the stream. The creek runs through Central Arizona and flows from the high plateaus to the desert, cutting through the same formations that form the Grand Canyon. This article discusses the Fossil Creek monitoring project. In this project, students and teachers…

  3. Shell Creek Summers

    ERIC Educational Resources Information Center

    Seier, Mark; Goedeken, Suzy

    2005-01-01

    In 2002 Shell Creek Watershed Improvement Group turned to the Newman Grove Public Schools' science department to help educate the public on water quality in the watershed and to establish a monitoring system that would be used to improve surface and groundwater quality in the creek's watershed. Nebraska Department of Environmental Quality provided…

  4. BEAVER CREEK WILDERNESS, KENTUCKY.

    USGS Publications Warehouse

    Englund, K.J.; Hammack, R.W.

    1984-01-01

    The Beaver Creek Wilderness, Kentucky, was studied. Coal is the most important mineral resource in the Beaver Creek Wilderness. The coal is tentatively ranked as high-volatile A bituminous, and like coal of this rank in nearby mining areas, it is primarily suitable for use as steam coal. The coal resources are estimated to total 8. 31 million short tons in beds greater than 14 in. thick. Nonmetallic minerals present in the Wilderness include limestone, shale, clay, and sandstone; these commodities are abundant outside the wilderness. The information available is not adequate for the assessment of the oil and gas resource potential of the Beaver Creek Wilderness. There is little likelihood for the occurrence of metallic mineral resources.

  5. Beaver Creek Wilderness, Kentucky

    SciTech Connect

    Englund, K.J.; Hammack, R.W.

    1984-01-01

    The Beaver Creek Wilderness, Kentucky, was studied in 1980 by the USGS and USBM. Coal is the most important mineral resource in the Beaver Creek Wilderness. The coal is tentatively ranked as high-volatile A bituminous, and like coal of this rank in nearby mining areas, it is primarily suitable for use as steam coal. The coal resources are estimated to total 8.31 million short tons in beds greater than 14 in. thick. Nonmetallic minerals present in the Wilderness include limestone, shale, clay, and sandstone; these commodities are abundant outside the wilderness. The information available is not adequate for the assessment of the oil and gas resource potential of the Beaver Creek Wilderness. There is little likelihood for the occurrence of metallic mineral resources.

  6. Boulder Creek Study

    ERIC Educational Resources Information Center

    Bingaman, Deirdre; Eitel, Karla Bradley

    2010-01-01

    Boulder Creek runs literally in the backyard of Donnelly Elementary School and happens to be on the EPA list of impaired water bodies. Therefore, a unique opportunity for problem solving opened the door to an exciting chance for students to become scientists, while also becoming active in their community. With the help of the Idaho Department of…

  7. WILLOW CREEK RECLAMATION PROJECT

    EPA Science Inventory

    Working in cooperation with the EPA, Colorado Division of Minerals and Geology, and others, the Willow Creek Reclamation Committee (WCRC) will investigate the sources and character of water entering the mine workings on the Amethyst vein near the town of Creede, Colorado. Activi...

  8. The Paint Creek Project.

    ERIC Educational Resources Information Center

    Northrop, David; Vonck, Beth

    1998-01-01

    Describes a summer program project designed and conducted by a mixed-age group of elementary children. Students collected data to determine whether a local stream was polluted, and interpretations of the data varied. An informational video about the project and the creek was produced. (PVD)

  9. CANEY CREEK WILDERNESS, ARKANSAS.

    USGS Publications Warehouse

    Ericksen, George E.; Dunn, Maynard L., Jr.

    1984-01-01

    Metallic and nonmetallic mineral resources identified in the Caney Creek Wilderness, Arkansas, include many small manganese deposits in areas of novaculite, tripoli, shale, and slate. Small amounts of hand-sorted manganese-oxide ore have been recovered from several of the manganese deposits during sporadic mining activity. Additional manganese resources remain in the known deposits, but the amount in any given deposit is small.

  10. 216. Construction of the Back Creek Bridge over Back Creek ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    216. Construction of the Back Creek Bridge over Back Creek and Virginia Route 613. This is a good example of a precast concrete girder bridge. Note the fallen beam at the far end. - Blue Ridge Parkway, Between Shenandoah National Park & Great Smoky Mountains, Asheville, Buncombe County, NC

  11. The Beaver Creek story

    USGS Publications Warehouse

    Doyle, W.H., Jr.; Whitworth, B.G.; Smith, G.F.; Byl, T.D.

    1996-01-01

    Beaver Creek watershed in West Tennessee includes about 95,000 acres of the Nation's most productive farmland and most highly erodible soils. In 1989 the U.S. Geological Survey, in cooperation with the Tennessee Department of Agriculture, began a study to evaluate the effect of agricultural activities on water quality in the watershed and for best management practices designed to reduce agricultural nonpoint-source pollution. Agrichemical monitoring included testing the soils, ground water, and streams at four farm sites ranging from 27 to 420 acres. Monitoring stations were operated downstream to gain a better understanding of the water chemistry as runoff moved from small ditches into larger streams to the outlet of the Beaver Creek watershed. Prior to the implementation of best management practices at one of the farm study sites, some storms produced an average suspended-sediment concentration of 70,000 milligrams per liter. After the implementation of BMP's, however, the average value never exceeded 7,000 milligrams per liter. No-till crop production was the most effective best management practice for conserving soil on the farm fields tested. A natural bottomland hardwood wetland and a constructed wetland were evaluated as instream resource-management systems. The wetlands improved water quality downstream by acting as a filter and removing a significant amount of nonpoint-source pollution from the agricultural runoff. The constructed wetland reduced the sediment, pesticide, and nutrient load by approximately 50 percent over a 4-month period. The results of the Beaver Creek watershed study have increased the understanding of the effects of agriculture on water resources. Study results also demonstrated that BMP's do protect and improve water quality.

  12. Kiowa Creek Switching Station

    SciTech Connect

    Not Available

    1990-03-01

    The Western Area Power Administration (Western) proposes to construct, operate, and maintain a new Kiowa Creek Switching Station near Orchard in Morgan County, Colorado. Kiowa Creek Switching Station would consist of a fenced area of approximately 300 by 300 feet and contain various electrical equipment typical for a switching station. As part of this new construction, approximately one mile of an existing 115-kilovolt (kV) transmission line will be removed and replaced with a double circuit overhead line. The project will also include a short (one-third mile) realignment of an existing line to permit connection with the new switching station. In accordance with the Council on Environmental Quality (CEQ) regulations for implementing the procedural provisions of the National Environmental Policy Act of 1969 (NEPA), 40 CFR Parts 1500--1508, the Department of Energy (DOE) has determined that an environmental impact statement (EIS) is not required for the proposed project. This determination is based on the information contained in this environmental assessment (EA) prepared by Western. The EA identifies and evaluates the environmental and socioeconomic effects of the proposed action, and concludes that the advance impacts on the human environment resulting from the proposed project would not be significant. 8 refs., 3 figs., 1 tab.

  13. Ship Creek bioassessment investigations

    SciTech Connect

    Cushing, C.E.; Mueller, R.P.; Murphy, M.T.

    1995-06-01

    Pacific Northwest Laboratory (PNL) was asked by Elmendorf Air Force Base (EAFB) personnel to conduct a series of collections of macroinvertebrates and sediments from Ship Creek to (1) establish baseline data on these populations for reference in evaluating possible impacts from Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) activities at two operable units, (2) compare current population indices with those found by previous investigations in Ship Creek, and (3) determine baseline levels of concentrations of any contaminants in the sediments associated with the macroinvertebrates. A specific suite of indices established by the US Environmental Protection Agency (EPA) was requested for the macroinvertebrate analyses; these follow the Rapid Bioassessment Protocol developed by Plafkin et al. (1989) and will be described. Sediment sample analyses included a Microtox bioassay and chemical analysis for contaminants of concern. These analyses included, volatile organic compounds, total gasoline and diesel hydrocarbons (EPA method 8015, CA modified), total organic carbon, and an inductive-coupled plasma/mass spectrometry (ICP/MS) metals scan. Appendix A reports on the sediment analyses. The Work Plan is attached as Appendix B.

  14. 5. VIEW OF MOSIER CREEK BRIDGE, NORTH ELEVATION. Historic ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    5. VIEW OF MOSIER CREEK BRIDGE, NORTH ELEVATION. - Historic Columbia River Highway, Mosier Creek Bridge, Spanning Mosier Creek carrying Historic Columbia River Highway, Troutdale, Multnomah County, OR

  15. EAGLE CREEK BRIDGE, WEST ELEVATION LOOKING 55 DEGREES NORTHEAST ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    EAGLE CREEK BRIDGE, WEST ELEVATION LOOKING 55 DEGREES NORTHEAST - Historic Columbia River Highway, Eagle Creek Bridge, Spanning Eagle Creek on Historic Columbia River Highway, Troutdale, Multnomah County, OR

  16. 2. MOSIER CREEK BRIDGE LOOKING NORTHWEST AT SOUTH ELEVATION. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    2. MOSIER CREEK BRIDGE LOOKING NORTHWEST AT SOUTH ELEVATION. - Historic Columbia River Highway, Mosier Creek Bridge, Spanning Mosier Creek carrying Historic Columbia River Highway, Troutdale, Multnomah County, OR

  17. 2. EAGLE CREEK RECREATION AREA, VIEW OF COMMUNITY KITCHEN. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    2. EAGLE CREEK RECREATION AREA, VIEW OF COMMUNITY KITCHEN. - Historic Columbia River Highway, Eagle Creek Recreation Area, Historic Columbia River Highway at Eagle Creek, Troutdale, Multnomah County, OR

  18. Perspective view of span over French Creek and east abutment, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Perspective view of span over French Creek and east abutment, looking NW. - Pennsylvania Railroad, French Creek Trestle, Spanning French Creek, north of Paradise Street, Phoenixville, Chester County, PA

  19. Underside of span over Pickering Creek, showing highly skewed piers, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Underside of span over Pickering Creek, showing highly skewed piers, looking south. - Pennsylvania Railroad, Pickering Creek Trestle, Spanning Pickering Creek, south of Buckwalter Road, Pickering, Chester County, PA

  20. Big Bayou Creek and Little Bayou Creek Watershed Monitoring Program

    SciTech Connect

    Kszos, L.A.; Peterson, M.J.; Ryon; Smith, J.G.

    1999-03-01

    Biological monitoring of Little Bayou and Big Bayou creeks, which border the Paducah Site, has been conducted since 1987. Biological monitoring was conducted by University of Kentucky from 1987 to 1991 and by staff of the Environmental Sciences Division (ESD) at Oak Ridge National Laboratory (ORNL) from 1991 through March 1999. In March 1998, renewed Kentucky Pollutant Discharge Elimination System (KPDES) permits were issued to the US Department of Energy (DOE) and US Enrichment Corporation. The renewed DOE permit requires that a watershed monitoring program be developed for the Paducah Site within 90 days of the effective date of the renewed permit. This plan outlines the sampling and analysis that will be conducted for the watershed monitoring program. The objectives of the watershed monitoring are to (1) determine whether discharges from the Paducah Site and the Solid Waste Management Units (SWMUs) associated with the Paducah Site are adversely affecting instream fauna, (2) assess the ecological health of Little Bayou and Big Bayou creeks, (3) assess the degree to which abatement actions ecologically benefit Big Bayou Creek and Little Bayou Creek, (4) provide guidance for remediation, (5) provide an evaluation of changes in potential human health concerns, and (6) provide data which could be used to assess the impact of inadvertent spills or fish kill. According to the cleanup will result in these watersheds [Big Bayou and Little Bayou creeks] achieving compliance with the applicable water quality criteria.

  1. 5. EAGLE CREEK RECREATION AREA, EXTERIOR VIEW OF PORTION OF ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    5. EAGLE CREEK RECREATION AREA, EXTERIOR VIEW OF PORTION OF EAGLE CREEK OVERLOOK. - Historic Columbia River Highway, Eagle Creek Recreation Area, Historic Columbia River Highway at Eagle Creek, Troutdale, Multnomah County, OR

  2. 6. EAGLE CREEK RECREATION AREA, INTERIOR VIEW OF PORTION OF ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    6. EAGLE CREEK RECREATION AREA, INTERIOR VIEW OF PORTION OF EAGLE CREEK OVERLOOK. - Historic Columbia River Highway, Eagle Creek Recreation Area, Historic Columbia River Highway at Eagle Creek, Troutdale, Multnomah County, OR

  3. Water quality study at the Congaree Swamp National monument of Myers Creek, Reeves Creek and Toms Creek. Technical report

    SciTech Connect

    Rikard, M.

    1991-11-01

    The Congaree Swamp National Monument is one of the last significant near virgin tracts of bottom land hardwood forests in the Southeast United States. The study documents a water quality monitoring program on Myers Creek, Reeves Creek and Toms Creek. Basic water quality parameters were analyzed. High levels of aluminum and iron were found, and recommendations were made for further monitoring.

  4. 77 FR 42714 - Eagle Creek Hydropower, LLC, Eagle Creek Land Resources, LLC, Eagle Creek Water Resources, LLC...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-07-20

    ... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF ENERGY Federal Energy Regulatory Commission Eagle Creek Hydropower, LLC, Eagle Creek Land Resources, LLC, Eagle Creek Water Resources, LLC; Notice of Application Accepted for Filing, Soliciting Motions To Intervene, Protests, and Comments Take notice that...

  5. PECONIC ESTUARY PROGRAM TIDAL CREEK STUDY

    EPA Science Inventory

    EEA evaluated ten tidal creeks throughout the Peconic Estuary representing a wide range of watershed variables. Primary focus was directed towards the collection and analysis of the macrobenthic invertebrate communities of these ten tidal creeks. Analysis of the macrobenthic comm...

  6. 78 FR 62616 - Salmon Creek Hydroelectric Company, Salmon Creek Hydroelectric Company, LLC; Notice of Transfer...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-10-22

    ... Energy Regulatory Commission Salmon Creek Hydroelectric Company, Salmon Creek Hydroelectric Company, LLC; Notice of Transfer of Exemption 1. By letter filed September 23, 2013, Salmon Creek Hydroelectric Company informed the Commission that they have changed its name to Salmon Creek Hydroelectric Company, LLC for...

  7. Asotin Creek Model Watershed Plan

    SciTech Connect

    Browne, D.; Holzmiller, J.; Koch, F.; Polumsky, S.; Schlee, D.; Thiessen, G.; Johnson, C.

    1995-04-01

    The Asotin Creek Model Watershed Plan is the first to be developed in Washington State which is specifically concerned with habitat protection and restoration for salmon and trout. The plan is consistent with the habitat element of the ``Strategy for Salmon``. Asotin Creek is similar in many ways to other salmon-bearing streams in the Snake River system. Its watershed has been significantly impacted by human activities and catastrophic natural events, such as floods and droughts. It supports only remnant salmon and trout populations compared to earlier years. It will require protection and restoration of its fish habitat and riparian corridor in order to increase its salmonid productivity. The watershed coordinator for the Asotin County Conservation District led a locally based process that combined local concerns and knowledge with technology from several agencies to produce the Asotin Creek Model Watershed Plan.

  8. OXYGEN AERATION AT NEWTOWN CREEK

    EPA Science Inventory

    A successful initial feasibility investigation of oxygen aeration at the 0.11-cu m/sec (2.5-mgd) municipal wastewater treatment plant in Batavia, New York, prompted a larger demonstration at New York City's 13.6-cu m/sec (310-mgd) Newtown Creek Plant. A 34-mo evaluation was perfo...

  9. Parachute Creek Shale Oil Program

    SciTech Connect

    Not Available

    1981-01-01

    This pamphlet describes Union Oil's shale oil project in the Parachute Creek area of Garfield County, Colorado. The oil shale is estimated to contain 1.6 billion barrels of recoverable oil in the high Mahogany zone alone. Primarily a public relations publication, the report presented contains general information on the history of the project and Union Oil's future plans. (JMT)

  10. GRAHAM CREEK ROADLESS AREA, TEXAS.

    USGS Publications Warehouse

    Houser, B.B.; Ryan, George S.

    1984-01-01

    A geologic and geochemical investigation of the Graham Creek Roadless Area, Texas was conducted. The area has a probable mineral-resource potential for oil and gas. The roadless area contains a deposit of kaolinite clay similar to deposits being mined west of the area; the southeast part of the roadless area has a substantiated kaolinite clay resource potential. Semectite clay and sand deposits also are present in the area but these resources are relatively abundant throughout the region. Detailed analyses of well logs from the vicinity of the Graham Creek Roadless Area in conjunction with study of seismic data are necessary to determine if subsurface stratigraphy and structure are favorable for the accumulation of oil and gas.

  11. PINE CREEK ROADLESS AREA, OREGON.

    USGS Publications Warehouse

    Walker, George W.; Denton, David K., Jr.

    1984-01-01

    Examination of the Pine Creek Roadless Area, Oregon indicates that there is little likelihood for the occurrence of energy or metallic mineral resources in the area. No mines or mineral prospects were identified during the investigation. Although nearby parts of Harney Basin are characterized by higher than normal heat flow, indicating that the region as a whole may have some as yet undefined potential for the occurrence of the geothermal energy resources, no potential for this resource was identified in the roadless area.

  12. Floods in Starkweather Creek basin, Madison, Wisconsin

    USGS Publications Warehouse

    Lawrence, Carl L.; Holmstrom, Barry K.

    1972-01-01

    The reaches evaluated are (1) Starkweather Creek and West Branch Starkweather Creek, for a distance of 6.0 river miles from the mouth at Lake Monona upstream to the U.S. Highway 51 crossing north of Truax Field; and (2) East Branch Starkweather Creek (2.8 river miles), from its confluence with the West Branch near Milwaukee Street upstream to a point near the Interstate Highway 90-94 crossing.

  13. Traveltime characteristics of Gore Creek and Black Gore Creek, upper Colorado River basin, Colorado

    USGS Publications Warehouse

    Gurdak, Jason J.; Spahr, Norman E.; Szmajter, Richard J.

    2002-01-01

    In the Rocky Mountains of Colorado, major highways are often constructed in stream valleys. In the event of a vehicular accident involving hazardous materials, the close proximity of highways to the streams increases the risk of contamination entering the streams. Recent population growth has contributed to increased traffic volume along Colorado highways and has resulted in increased movement of hazardous materials, particularly along Interstate 70. Gore Creek and its major tributary, Black Gore Creek, are vulnerable to such contamination from vehicular accidents along Interstate 70. Gore Creek, major tributary of the Eagle River, drains approximately 102 square miles, some of which has recently undergone significant urban development. The headwaters of Gore Creek originate in the Gore Range in the eastern part of the Gore Creek watershed. Gore Creek flows west to the Eagle River. Beginning at the watershed boundary on Vail Pass, southeast of Vail Ski Resort, Interstate 70 parallels Black Gore Creek and then closely follows Gore Creek the entire length of the watershed. Interstate 70 crosses Gore Creek and tributaries 20 times in the watershed. In the event of a vehicular accident involving a contaminant spill into Gore Creek or Black Gore Creek, a stepwise procedure has been developed for water-resource managers to estimate traveltimes of the leading edge and peak concentration of a conservative contaminant. An example calculating estimated traveltimes for a hypothetical contaminant release in Black Gore Creek is provided. Traveltime measurements were made during May and September along Black Gore Creek and Gore Creek from just downstream from the Black Lakes to the confluence with the Eagle River to account for seasonal variability in stream discharge. Fluorometric dye injection of rhodamine WT and downstream dye detection by fluorometry were used to measure traveltime characteristics of Gore Creek and Black Gore Creek. During the May traveltime measurements

  14. Sediment transport through a tidal creek

    NASA Astrophysics Data System (ADS)

    Green, Malcolm O.; Hancock, Nicole J.

    2012-08-01

    A 3-month field experiment was conducted at Henderson Creek, New Zealand. The data show how tidal creeks that are an extension of the freshwater drainage network (as opposed to tidal creeks that are part of an estuarine distributary network with no direct connection to the land) variously import, export and deposit fine sediment sourced from both landward and seaward of the creek, depending on the wind and freshwater runoff, and modulated by the tide. During freshwater spates, saltwater was largely displaced from the tidal creek at low tide, and sediment sourced from the land was deposited inside the tidal creek and exported to the wider estuary beyond the base of the creek. In one spate, during which 80 mm of rain fell in less than one day, 580 t of sediment was sourced from landward of the tidal creek, and a maximum of 33% of this was exported to the wider estuary. Between rainstorms when it was calm, sediment was returned from the wider estuary by tidal currents (but not necessarily the same sediment that was exported during spates), and sediment was also eroded from the middle reaches of the tidal creek and transported to the upper reaches, where it was deposited. The up-estuary deposition is explainable in Lagrangian terms as a type of settling lag, which results in an asymmetrical response of suspended-sediment concentration to current speed in the tidal creek. The return of sediment to the tidal creek between spates was greatly enhanced by wind waves that resuspended sediments from the intertidal flats of the wider estuary, with that sediment being transported by tidal currents into the tidal creek where it was deposited, largely in the middle reaches. There is a broad consensus that waves drive a net loss of sediment from intertidal flats to offshore, which reverses a net accumulation of sediment on intertidal flats during calm weather. In contrast, waves on the intertidal flats outside the mouth of Henderson Creek initiate net landward transport of

  15. DEEP CREEK AND MUD CREEK, TWIN FALLS, IDAHO. WATER QUALITY STATUS REPORT, 1986

    EPA Science Inventory

    Deep Creek and Mud Creek are located in Twin Falls County near Buhl, Idaho (17040212). From April through October, these creeks convey irrigation drainage water from the western part of the Twin Falls irrigation tract to the Snake River. During 1986, water quality surveys were ...

  16. LIGHTNING CREEK, PACK RIVER, AND SAND CREEK, BONNER COUNTY, IDAHO - WATER QUALITY SUMMARY, 1978

    EPA Science Inventory

    In Water Year 1978, water quality studies were conducted on Lightning Creek, Pack River, and Sand Creek in Bonner County, Idaho (17010214, 17010213) to determine the present status of the streams. Water quality in Lightning Creek was generally very high. No violations of standa...

  17. 33 CFR 110.79c - Fish Creek Harbor, Fish Creek, Wisconsin.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 33 Navigation and Navigable Waters 1 2011-07-01 2011-07-01 false Fish Creek Harbor, Fish Creek, Wisconsin. 110.79c Section 110.79c Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY ANCHORAGES ANCHORAGE REGULATIONS Special Anchorage Areas § 110.79c Fish Creek Harbor, Fish...

  18. 33 CFR 110.79c - Fish Creek Harbor, Fish Creek, Wisconsin.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 1 2010-07-01 2010-07-01 false Fish Creek Harbor, Fish Creek, Wisconsin. 110.79c Section 110.79c Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY ANCHORAGES ANCHORAGE REGULATIONS Special Anchorage Areas § 110.79c Fish Creek Harbor, Fish...

  19. 75 FR 40034 - Northeastern Tributary Reservoirs Land Management Plan, Beaver Creek, Clear Creek, Boone, Fort...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-07-13

    ... (Significant Threat), or Rank 3 (Lesser Threat) on the Tennessee Exotic Plant Pest Council list of Invasive... Northeastern Tributary Reservoirs Land Management Plan, Beaver Creek, Clear Creek, Boone, Fort Patrick Henry... Land Management Plan (NTRLMP) for the 4,933 acres of TVA-managed public land on Beaver Creek,...

  20. 1. Deep Creek Road, picnic pavilion Great Smoky Mountains ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    1. Deep Creek Road, picnic pavilion - Great Smoky Mountains National Park Roads & Bridges, Deep Creek Road, Between Park Boundary near Bryson City & Deep Creek Campground, Gatlinburg, Sevier County, TN

  1. 2. Deep Creek Road, old bridge at campground entrance. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    2. Deep Creek Road, old bridge at campground entrance. - Great Smoky Mountains National Park Roads & Bridges, Deep Creek Road, Between Park Boundary near Bryson City & Deep Creek Campground, Gatlinburg, Sevier County, TN

  2. 2. Big Creek Road, worm fence and road at trailhead. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    2. Big Creek Road, worm fence and road at trailhead. - Great Smoky Mountains National Park Roads & Bridges, Big Creek Road, Between State Route 284 & Big Creek Campground, Gatlinburg, Sevier County, TN

  3. 7. Cable Creek Bridge after completion. Zion National Park negative ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    7. Cable Creek Bridge after completion. Zion National Park negative number 1485, classification series 002, 12. - Floor of the Valley Road, Cable Creek Bridge, Spanning Cable Creek on Floor of Valley, Springdale, Washington County, UT

  4. 8. DETAIL VIEW OF DATEPLATE WHICH READS 'HARP CREEK, LUTEN ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    8. DETAIL VIEW OF DATEPLATE WHICH READS 'HARP CREEK, LUTEN BRIDGE CO., CONTRACTOR, ARKANSAS STATE HIGHWAY DEPARTMENT, 1928' - Harp Creek Bridge, Spans Harp Creek at State Highway 7, Harrison, Boone County, AR

  5. Detail view of the Ten Mile Creek Bridge, view looking ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Detail view of the Ten Mile Creek Bridge, view looking northeast at the modified "X" bracing and concrete hangers. - Ten Mile Creek Bridge, Spanning Ten Mile Creek on Oregon Coast Highway, Yachats, Lincoln County, OR

  6. Detail view of the Ten Mile Creek Bridge decorative concrete ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Detail view of the Ten Mile Creek Bridge decorative concrete arched balustrade at southeast corner of bridge, view looking east. - Ten Mile Creek Bridge, Spanning Ten Mile Creek on Oregon Coast Highway, Yachats, Lincoln County, OR

  7. Detail perspective view of the Ten Mile Creek Bridge arch, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Detail perspective view of the Ten Mile Creek Bridge arch, decorative cantilevered balustrade, and floor beams. - Ten Mile Creek Bridge, Spanning Ten Mile Creek on Oregon Coast Highway, Yachats, Lincoln County, OR

  8. Elevation view of the Spring Creek Bridge, view looking east. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Elevation view of the Spring Creek Bridge, view looking east. - Spring Creek Bridge, Spanning Spring Creek at Milepoint 253.98 on Oregon to California Highway (US Route 97), Chiloquin, Klamath County, OR

  9. Approach view of the Spring Creek Bridge, view looking south. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Approach view of the Spring Creek Bridge, view looking south. - Spring Creek Bridge, Spanning Spring Creek at Milepoint 253.98 on Oregon to California Highway (US Route 97), Chiloquin, Klamath County, OR

  10. General perspective view of the Spring Creek Bridge, view looking ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    General perspective view of the Spring Creek Bridge, view looking east. - Spring Creek Bridge, Spanning Spring Creek at Milepoint 253.98 on Oregon to California Highway (US Route 97), Chiloquin, Klamath County, OR

  11. General perspective view of the Spring Creek Bridge, view looking ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    General perspective view of the Spring Creek Bridge, view looking southeast. - Spring Creek Bridge, Spanning Spring Creek at Milepoint 253.98 on Oregon to California Highway (US Route 97), Chiloquin, Klamath County, OR

  12. Topographic view of the Spring Creek Bridge and Collier State ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Topographic view of the Spring Creek Bridge and Collier State Park, view looking east. - Spring Creek Bridge, Spanning Spring Creek at Milepoint 253.98 on Oregon to California Highway (US Route 97), Chiloquin, Klamath County, OR

  13. General perspective view of the Spring Creek Bridge, view looking ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    General perspective view of the Spring Creek Bridge, view looking northwest. - Spring Creek Bridge, Spanning Spring Creek at Milepoint 253.98 on Oregon to California Highway (US Route 97), Chiloquin, Klamath County, OR

  14. Approach view of the Spring Creek Bridge, view looking north. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Approach view of the Spring Creek Bridge, view looking north. - Spring Creek Bridge, Spanning Spring Creek at Milepoint 253.98 on Oregon to California Highway (US Route 97), Chiloquin, Klamath County, OR

  15. 3. MOSIER CREEK BRIDGE LOOKING 135 DEGREES SOUTHEAST AT NORTH ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    3. MOSIER CREEK BRIDGE LOOKING 135 DEGREES SOUTHEAST AT NORTH ELEVATION. - Historic Columbia River Highway, Mosier Creek Bridge, Spanning Mosier Creek carrying Historic Columbia River Highway, Troutdale, Multnomah County, OR

  16. EAGLE CREEK BRIDGE, EAST ELEVATION, SUBSTRUCTURE DETAIL LOOKING 333 DEGREES ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    EAGLE CREEK BRIDGE, EAST ELEVATION, SUBSTRUCTURE DETAIL LOOKING 333 DEGREES NORTH-NORTHWEST - Historic Columbia River Highway, Eagle Creek Bridge, Spanning Eagle Creek on Historic Columbia River Highway, Troutdale, Multnomah County, OR

  17. 4. MOSIER CREEK BRIDGE LOOKING 202 DEGREES SOUTHWEST AT NORTH ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    4. MOSIER CREEK BRIDGE LOOKING 202 DEGREES SOUTHWEST AT NORTH ELEVATION. - Historic Columbia River Highway, Mosier Creek Bridge, Spanning Mosier Creek carrying Historic Columbia River Highway, Troutdale, Multnomah County, OR

  18. NORTH ELEVATION OF MULTNOMAH CREEK BRIDGE, VIEW LOOKING 130 DEGREES ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    NORTH ELEVATION OF MULTNOMAH CREEK BRIDGE, VIEW LOOKING 130 DEGREES SOUTHEAST - Historic Columbia River Highway, Multnomah Creek Bridge, Historic Columbia River Highway spanning Multnomah Creek, Troutdale, Multnomah County, OR

  19. 1. MOSIER CREEK BRIDGE LOOKING NORTHEAST FROM SOUTHEAST CORNER AT ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    1. MOSIER CREEK BRIDGE LOOKING NORTHEAST FROM SOUTHEAST CORNER AT BRIDGE SURFACE. - Historic Columbia River Highway, Mosier Creek Bridge, Spanning Mosier Creek carrying Historic Columbia River Highway, Troutdale, Multnomah County, OR

  20. DETAIL OF MULTNOMAH CREEK BRIDGE, LOOKING 25 DEGREES NORTHNORTHEAST ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    DETAIL OF MULTNOMAH CREEK BRIDGE, LOOKING 25 DEGREES NORTH-NORTHEAST - Historic Columbia River Highway, Multnomah Creek Bridge, Historic Columbia River Highway spanning Multnomah Creek, Troutdale, Multnomah County, OR

  1. EAGLE CREEK BRIDGE, EAST ELEVATION, VIEW LOOKING 290 DEGREES WESTNORTHWEST ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    EAGLE CREEK BRIDGE, EAST ELEVATION, VIEW LOOKING 290 DEGREES WEST-NORTHWEST - Historic Columbia River Highway, Eagle Creek Bridge, Spanning Eagle Creek on Historic Columbia River Highway, Troutdale, Multnomah County, OR

  2. 3. EAGLE CREEK RECREATION AREA, VIEW OF PICNIC AREA WITH ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    3. EAGLE CREEK RECREATION AREA, VIEW OF PICNIC AREA WITH COMMUNITY KITCHEN IN BACKGROUND. - Historic Columbia River Highway, Eagle Creek Recreation Area, Historic Columbia River Highway at Eagle Creek, Troutdale, Multnomah County, OR

  3. 1. OVERALL VIEW OF LOBOS CREEK INLET STRUCTURE (#1786), LOOKING ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    1. OVERALL VIEW OF LOBOS CREEK INLET STRUCTURE (#1786), LOOKING SOUTHWEST - Presidio Water Treatment Plant, Lobos Creek Inlet Structure, East of Lobos Creek at Baker Beach, San Francisco, San Francisco County, CA

  4. 3. Threequarter view of Oak Creek Bridge behind visitor center ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    3. Three-quarter view of Oak Creek Bridge behind visitor center facing southwest - Oak Creek Administrative Center, One half mile east of Zion-Mount Carmel Highway at Oak Creek, Springdale, Washington County, UT

  5. 59. Credit FM. Flood waters on South Battle Creek next ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    59. Credit FM. Flood waters on South Battle Creek next to powerhouse. Note height of water in relation to tailraces. - Battle Creek Hydroelectric System, Battle Creek & Tributaries, Red Bluff, Tehama County, CA

  6. 1. Salmon Creek Diversion Dam, weir (to left), sand and ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    1. Salmon Creek Diversion Dam, weir (to left), sand and silt sluice gate (center), main canal headworks (to right), view to northwest - Salmon Creek Diversion Dam, Salmon Creek, Okanogan, Okanogan County, WA

  7. 2. Salmon Creek Diversion Dam, overview, diversion weir center foreground, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    2. Salmon Creek Diversion Dam, overview, diversion weir center foreground, headworks overflow weir to center left, view to east - Salmon Creek Diversion Dam, Salmon Creek, Okanogan, Okanogan County, WA

  8. 6. General perspective view of Neawanna Creek Bridge, showing bushhammered, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    6. General perspective view of Neawanna Creek Bridge, showing bush-hammered, recessed panels in fascia wall - Neawanna Creek Bridge, Spanning Neawanna Creek at Milepoint 19.72 on U.S. 101 (Oregon Coast Highway), Seaside, Clatsop County, OR

  9. Underside from northeast. Waterville Bridge, Spanning Swatara Creek at ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Underside from northeast. - Waterville Bridge, Spanning Swatara Creek at Appalachian Trail (moved from Little Pine Creek at State Route 44, Waterville, Lycoming County), Green Point, Lebanon County, PA

  10. KANAB CREEK ROADLESS AREA, ARIZONA.

    USGS Publications Warehouse

    Billingsley, George H.; Ellis, Clarence E.

    1984-01-01

    On the basis of a mineral survey, the Kanab Creek Roadless Area in north-central Arizona has a probable mineral-resource potential for uranium and copper in four small areas around five collapse structures. Gypsum is abundant in layers along the canyon rim of Snake Gulch, but it is a fairly common mineral in the region outside the roadless area. There is little promise for the occurence of fossil fuels in the area. Studies of collapse structures in surrounding adjacent areas might reveal significant mineralization at depth, such as the recent discovery of the uranium ore body at depth in the Pigeon Pipe.

  11. 33 CFR 117.331 - Snake Creek.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 33 Navigation and Navigable Waters 1 2013-07-01 2013-07-01 false Snake Creek. 117.331 Section 117.331 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY BRIDGES DRAWBRIDGE OPERATION REGULATIONS Specific Requirements Florida § 117.331 Snake Creek. The draw of the Snake...

  12. 33 CFR 117.331 - Snake Creek.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 33 Navigation and Navigable Waters 1 2011-07-01 2011-07-01 false Snake Creek. 117.331 Section 117.331 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY BRIDGES DRAWBRIDGE OPERATION REGULATIONS Specific Requirements Florida § 117.331 Snake Creek. The draw of the Snake...

  13. 33 CFR 117.331 - Snake Creek.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 1 2010-07-01 2010-07-01 false Snake Creek. 117.331 Section 117.331 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY BRIDGES DRAWBRIDGE OPERATION REGULATIONS Specific Requirements Florida § 117.331 Snake Creek. The draw of the Snake...

  14. 33 CFR 117.331 - Snake Creek.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 33 Navigation and Navigable Waters 1 2014-07-01 2014-07-01 false Snake Creek. 117.331 Section 117.331 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY BRIDGES DRAWBRIDGE OPERATION REGULATIONS Specific Requirements Florida § 117.331 Snake Creek. The draw of the Snake...

  15. 33 CFR 117.331 - Snake Creek.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 33 Navigation and Navigable Waters 1 2012-07-01 2012-07-01 false Snake Creek. 117.331 Section 117.331 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY BRIDGES DRAWBRIDGE OPERATION REGULATIONS Specific Requirements Florida § 117.331 Snake Creek. The draw of the Snake...

  16. TOXICITY PERSISTENCE IN PRICKLY PEAR CREEK, MONTANA

    EPA Science Inventory

    Instream toxicity tests using the larval fathead minnow Pimephales promelas and the cladoceran Ceriodaphnia reticulata were conducted on Prickly Pear Creek, Montana waters to study toxicity persistence in a stream. The toxicity source was Spring Creek, a tributary of Prickly Pear...

  17. 33 CFR 117.324 - Rice Creek.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 33 Navigation and Navigable Waters 1 2014-07-01 2014-07-01 false Rice Creek. 117.324 Section 117.324 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY BRIDGES DRAWBRIDGE OPERATION REGULATIONS Specific Requirements Florida § 117.324 Rice Creek. The CSX Railroad Swingbridge,...

  18. 33 CFR 117.324 - Rice Creek.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 33 Navigation and Navigable Waters 1 2013-07-01 2013-07-01 false Rice Creek. 117.324 Section 117.324 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY BRIDGES DRAWBRIDGE OPERATION REGULATIONS Specific Requirements Florida § 117.324 Rice Creek. The CSX Railroad Swingbridge,...

  19. 33 CFR 117.324 - Rice Creek.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 33 Navigation and Navigable Waters 1 2012-07-01 2012-07-01 false Rice Creek. 117.324 Section 117.324 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY BRIDGES DRAWBRIDGE OPERATION REGULATIONS Specific Requirements Florida § 117.324 Rice Creek. The CSX Railroad Swingbridge,...

  20. 33 CFR 117.324 - Rice Creek.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 33 Navigation and Navigable Waters 1 2011-07-01 2011-07-01 false Rice Creek. 117.324 Section 117.324 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY BRIDGES DRAWBRIDGE OPERATION REGULATIONS Specific Requirements Florida § 117.324 Rice Creek. The CSX Railroad Swingbridge,...

  1. 33 CFR 117.324 - Rice Creek.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 1 2010-07-01 2010-07-01 false Rice Creek. 117.324 Section 117.324 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY BRIDGES DRAWBRIDGE OPERATION REGULATIONS Specific Requirements Florida § 117.324 Rice Creek. The CSX Railroad Swingbridge,...

  2. 33 CFR 117.1013 - Kinsale Creek.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 33 Navigation and Navigable Waters 1 2014-07-01 2014-07-01 false Kinsale Creek. 117.1013 Section 117.1013 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY BRIDGES DRAWBRIDGE OPERATION REGULATIONS Specific Requirements Virginia § 117.1013 Kinsale Creek. The draw of...

  3. 33 CFR 117.1013 - Kinsale Creek.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 33 Navigation and Navigable Waters 1 2012-07-01 2012-07-01 false Kinsale Creek. 117.1013 Section 117.1013 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY BRIDGES DRAWBRIDGE OPERATION REGULATIONS Specific Requirements Virginia § 117.1013 Kinsale Creek. The draw of...

  4. 33 CFR 117.1013 - Kinsale Creek.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 33 Navigation and Navigable Waters 1 2011-07-01 2011-07-01 false Kinsale Creek. 117.1013 Section 117.1013 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY BRIDGES DRAWBRIDGE OPERATION REGULATIONS Specific Requirements Virginia § 117.1013 Kinsale Creek. The draw of...

  5. 33 CFR 117.1013 - Kinsale Creek.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 1 2010-07-01 2010-07-01 false Kinsale Creek. 117.1013 Section 117.1013 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY BRIDGES DRAWBRIDGE OPERATION REGULATIONS Specific Requirements Virginia § 117.1013 Kinsale Creek. The draw of...

  6. 33 CFR 117.543 - Bear Creek.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 1 2010-07-01 2010-07-01 false Bear Creek. 117.543 Section 117.543 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY BRIDGES DRAWBRIDGE OPERATION REGULATIONS Specific Requirements Maryland § 117.543 Bear Creek. (a) The draws of the...

  7. 33 CFR 117.543 - Bear Creek.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 33 Navigation and Navigable Waters 1 2013-07-01 2013-07-01 false Bear Creek. 117.543 Section 117.543 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY BRIDGES DRAWBRIDGE OPERATION REGULATIONS Specific Requirements Maryland § 117.543 Bear Creek. (a) The draw of the...

  8. 33 CFR 117.543 - Bear Creek.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 33 Navigation and Navigable Waters 1 2012-07-01 2012-07-01 false Bear Creek. 117.543 Section 117.543 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY BRIDGES DRAWBRIDGE OPERATION REGULATIONS Specific Requirements Maryland § 117.543 Bear Creek. (a) The draw of the...

  9. 33 CFR 117.543 - Bear Creek.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 33 Navigation and Navigable Waters 1 2011-07-01 2011-07-01 false Bear Creek. 117.543 Section 117.543 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY BRIDGES DRAWBRIDGE OPERATION REGULATIONS Specific Requirements Maryland § 117.543 Bear Creek. (a) The draws of the...

  10. 33 CFR 117.543 - Bear Creek.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 33 Navigation and Navigable Waters 1 2014-07-01 2014-07-01 false Bear Creek. 117.543 Section 117.543 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY BRIDGES DRAWBRIDGE OPERATION REGULATIONS Specific Requirements Maryland § 117.543 Bear Creek. (a) The draw of the...

  11. Pine Creek Ranch; Annual Report 2002.

    SciTech Connect

    Berry, Mark E.

    2003-02-01

    This report gives information about the following four objectives: OBJECTIVE 1--Gather scientific baseline information for monitoring purposes and to assist in the development of management plans for Pine Creek Ranch; OBJECTIVE 2--Complete and implement management plans; OBJECTIVE 3--Protect, manage and enhance the assets and resources of Pine Creek Ranch; and OBJECTIVE 4--Deliverables.

  12. 27 CFR 9.211 - Swan Creek.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2013-04-01 2013-04-01 false Swan Creek. 9.211 Section... THE TREASURY ALCOHOL AMERICAN VITICULTURAL AREAS Approved American Viticultural Areas § 9.211 Swan Creek. (a) Name. The name of the viticultural area described in this section is “Swan Creek”....

  13. 27 CFR 9.211 - Swan Creek.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2010-04-01 2010-04-01 false Swan Creek. 9.211 Section... THE TREASURY LIQUORS AMERICAN VITICULTURAL AREAS Approved American Viticultural Areas § 9.211 Swan Creek. (a) Name. The name of the viticultural area described in this section is “Swan Creek”....

  14. 27 CFR 9.211 - Swan Creek.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2014-04-01 2014-04-01 false Swan Creek. 9.211 Section... THE TREASURY ALCOHOL AMERICAN VITICULTURAL AREAS Approved American Viticultural Areas § 9.211 Swan Creek. (a) Name. The name of the viticultural area described in this section is “Swan Creek”....

  15. 27 CFR 9.211 - Swan Creek.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2011-04-01 2011-04-01 false Swan Creek. 9.211 Section... THE TREASURY LIQUORS AMERICAN VITICULTURAL AREAS Approved American Viticultural Areas § 9.211 Swan Creek. (a) Name. The name of the viticultural area described in this section is “Swan Creek”....

  16. 27 CFR 9.211 - Swan Creek.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2012-04-01 2012-04-01 false Swan Creek. 9.211 Section... THE TREASURY LIQUORS AMERICAN VITICULTURAL AREAS Approved American Viticultural Areas § 9.211 Swan Creek. (a) Name. The name of the viticultural area described in this section is “Swan Creek”....

  17. 33 CFR 117.335 - Taylor Creek.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 1 2010-07-01 2010-07-01 false Taylor Creek. 117.335 Section 117.335 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY BRIDGES DRAWBRIDGE OPERATION REGULATIONS Specific Requirements Florida § 117.335 Taylor Creek. The draw of US441 bridge, mile...

  18. 33 CFR 117.335 - Taylor Creek.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 33 Navigation and Navigable Waters 1 2011-07-01 2011-07-01 false Taylor Creek. 117.335 Section 117.335 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY BRIDGES DRAWBRIDGE OPERATION REGULATIONS Specific Requirements Florida § 117.335 Taylor Creek. The draw of US441 bridge, mile...

  19. 33 CFR 117.917 - Battery Creek.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 33 Navigation and Navigable Waters 1 2011-07-01 2011-07-01 false Battery Creek. 117.917 Section 117.917 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY BRIDGES DRAWBRIDGE OPERATION REGULATIONS Specific Requirements South Carolina § 117.917 Battery Creek. The draw...

  20. 33 CFR 117.917 - Battery Creek.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 1 2010-07-01 2010-07-01 false Battery Creek. 117.917 Section 117.917 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY BRIDGES DRAWBRIDGE OPERATION REGULATIONS Specific Requirements South Carolina § 117.917 Battery Creek. The draw...

  1. 33 CFR 117.917 - Battery Creek.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 33 Navigation and Navigable Waters 1 2012-07-01 2012-07-01 false Battery Creek. 117.917 Section 117.917 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY BRIDGES DRAWBRIDGE OPERATION REGULATIONS Specific Requirements South Carolina § 117.917 Battery Creek. The draw...

  2. 33 CFR 117.917 - Battery Creek.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 33 Navigation and Navigable Waters 1 2014-07-01 2014-07-01 false Battery Creek. 117.917 Section 117.917 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY BRIDGES DRAWBRIDGE OPERATION REGULATIONS Specific Requirements South Carolina § 117.917 Battery Creek. The draw...

  3. 33 CFR 117.917 - Battery Creek.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 33 Navigation and Navigable Waters 1 2013-07-01 2013-07-01 false Battery Creek. 117.917 Section 117.917 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY BRIDGES DRAWBRIDGE OPERATION REGULATIONS Specific Requirements South Carolina § 117.917 Battery Creek. The draw...

  4. 33 CFR 117.809 - Tonawanda Creek.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 1 2010-07-01 2010-07-01 false Tonawanda Creek. 117.809 Section 117.809 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY BRIDGES DRAWBRIDGE OPERATION REGULATIONS Specific Requirements New York § 117.809 Tonawanda Creek. The draw of...

  5. 33 CFR 117.813 - Wappinger Creek.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 1 2010-07-01 2010-07-01 false Wappinger Creek. 117.813 Section 117.813 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY BRIDGES DRAWBRIDGE OPERATION REGULATIONS Specific Requirements New York § 117.813 Wappinger Creek. The draw of...

  6. 33 CFR 117.813 - Wappinger Creek.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 33 Navigation and Navigable Waters 1 2011-07-01 2011-07-01 false Wappinger Creek. 117.813 Section 117.813 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY BRIDGES DRAWBRIDGE OPERATION REGULATIONS Specific Requirements New York § 117.813 Wappinger Creek. The draw of...

  7. 33 CFR 117.809 - Tonawanda Creek.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 33 Navigation and Navigable Waters 1 2011-07-01 2011-07-01 false Tonawanda Creek. 117.809 Section 117.809 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY BRIDGES DRAWBRIDGE OPERATION REGULATIONS Specific Requirements New York § 117.809 Tonawanda Creek. The draw of...

  8. 33 CFR 117.841 - Smith Creek.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 33 Navigation and Navigable Waters 1 2011-07-01 2011-07-01 false Smith Creek. 117.841 Section 117.841 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY BRIDGES DRAWBRIDGE OPERATION REGULATIONS Specific Requirements North Carolina § 117.841 Smith Creek. The draw of the...

  9. 33 CFR 117.841 - Smith Creek.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 33 Navigation and Navigable Waters 1 2012-07-01 2012-07-01 false Smith Creek. 117.841 Section 117.841 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY BRIDGES DRAWBRIDGE OPERATION REGULATIONS Specific Requirements North Carolina § 117.841 Smith Creek. The draw of the...

  10. 33 CFR 117.841 - Smith Creek.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 33 Navigation and Navigable Waters 1 2013-07-01 2013-07-01 false Smith Creek. 117.841 Section 117.841 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY BRIDGES DRAWBRIDGE OPERATION REGULATIONS Specific Requirements North Carolina § 117.841 Smith Creek. The draw of the...

  11. 33 CFR 117.841 - Smith Creek.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 33 Navigation and Navigable Waters 1 2014-07-01 2014-07-01 false Smith Creek. 117.841 Section 117.841 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY BRIDGES DRAWBRIDGE OPERATION REGULATIONS Specific Requirements North Carolina § 117.841 Smith Creek. The draw of the...

  12. 33 CFR 117.841 - Smith Creek.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 1 2010-07-01 2010-07-01 false Smith Creek. 117.841 Section 117.841 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY BRIDGES DRAWBRIDGE OPERATION REGULATIONS Specific Requirements North Carolina § 117.841 Smith Creek. The draw of the...

  13. Buck Creek River Flow Analysis

    NASA Astrophysics Data System (ADS)

    Dhanapala, Yasas; George, Elizabeth; Ritter, John

    2009-04-01

    Buck Creek flowing through Springfield Ohio has a number of low-head dams currently in place that cause safety issues and sometimes make it impossible for recreational boaters to pass through. The safety issues include the back eddies created by the dams that are known as drowning machines and the hydraulic jumps. In this study we are modeling the flow of Buck Creek using topographical and flow data provided by the Geology Department of Wittenberg University. The flow is analyzed using Hydraulic Engineering Center - River Analysis System software (HEC-RAS). As the first step a model of the river near Snyder Park has been created with the current structure in place for validation purposes. Afterwards the low-head dam is replaced with four drop structures with V-notch overflow gates. The river bed is altered to reflect plunge pools after each drop structure. This analysis will provide insight to how the flow is going to behave after the changes are made. In addition a sediment transport analysis is also being conducted to provide information about the stability of these structures.

  14. Flood discharges and hydraulics near the mouths of Wolf Creek, Craig Branch, Manns Creek, Dunloup Creek, and Mill Creek in the New River Gorge National River, West Virginia

    USGS Publications Warehouse

    Wiley, J.B.

    1994-01-01

    The U.S. Geological Survey, in cooperation with the National Park Service, studied the frequency and magnitude of flooding near the mouths of five tributaries to the New River in the New River Gorge National River. The 100-year peak discharge at each tributary was determined from regional frequency equations. The 100-year discharge at Wolf Creek, Craig Branch, Manns Creek, Dunloup Creek, and Mill Creek was 3,400 cubic feet per second, 640 cubic feet per second, 8,200 cubic feet per second, 7,100 cubic feet per second, and 9,400 cubic feet per second, respectively. Flood elevations for each tributary were determined by application of a steady-state, one-dimensional flow model. Manning's roughness coefficients for the stream channels ranged from 0.040 to 0.100. Bridges that would be unable to contain the 100-year flood within the bridge opening included: the State Highway 82 bridge on Wolf Creek, the second Fayette County Highway 25 bridge upstream from the confluence with New River on Dunloup Creek, and an abandoned log bridge on Mill Creek.

  15. 77 FR 10960 - Drawbridge Operation Regulation; Snake Creek, Islamorada, FL

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-02-24

    ... SECURITY Coast Guard 33 CFR Part 117 Drawbridge Operation Regulation; Snake Creek, Islamorada, FL AGENCY... of Snake Creek Bridge, mile 0.5, across Snake Creek, in Islamorada, Florida. The regulation is set... Sheriff's Office has requested a temporary modification to the operating schedule of Snake Creek Bridge...

  16. 1. EXTERIOR OVERVIEW OF NORTH END OF RUSH CREEK POWERHOUSE ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    1. EXTERIOR OVERVIEW OF NORTH END OF RUSH CREEK POWERHOUSE RESIDENTIAL COMPLEX SHOWING BUILDING 108 AT PHOTO RIGHT AND BUILDING 105 AT PHOTO CENTER BEHIND TREE. RUSH CREEK POWERHOUSE IS PARTIALLY VISIBLE AT EXTREME PHOTO LEFT). VIEW TO WEST. - Rush Creek Hydroelectric System, Clubhouse Cottage, Rush Creek, June Lake, Mono County, CA

  17. 1. EXTERIOR OVERVIEW OF SOUTH END OF RUSH CREEK POWERHOUSE ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    1. EXTERIOR OVERVIEW OF SOUTH END OF RUSH CREEK POWERHOUSE RESIDENTIAL COMPLEX SHOWING THE RUSH CREEK POWERHOUSE AT PHOTO RIGHT (TAILRACE IN FOREGROUND), BUILDING 106 NEXT TO THE POWERHOUSE AT PHOTO LEFT CENTER, AND BUILDING 103 AT UPPER PHOTO LEFT ABOVE AND BEHIND BUILDING 106. VIEW TO SOUTH. - Rush Creek Hydroelectric System, Worker Cottage, Rush Creek, June Lake, Mono County, CA

  18. 3. OVERVIEW CONTEXTUAL VIEW OF BIG CREEK NO. 3 COMPLEX ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    3. OVERVIEW CONTEXTUAL VIEW OF BIG CREEK NO. 3 COMPLEX SHOWING SWITCHRACKS AND SUPPORT BUILDINGS TO PHOTO RIGHT OF POWERHOUSE, SAN JOAQUIN RIVER FLOWING IN PHOTO CENTER TO LOWER RIGHT, AND PENSTOCKS AND STANDPIPES IN BACKGROUND ABOVE POWERHOUSE. VIEW TO EAST. - Big Creek Hydroelectric System, Powerhouse 3 Penstock Standpipes, Big Creek, Big Creek, Fresno County, CA

  19. 2. CONTEMPORARY PHOTOGRAPH OF BIG CREEK POWERHOUSE NO. 3 TAKEN ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    2. CONTEMPORARY PHOTOGRAPH OF BIG CREEK POWERHOUSE NO. 3 TAKEN FROM SAME ANGLE AS CA-167-X-1. THREE ORIGINAL PENSTOCKS PLUS FOURTH AND FIFTH PENSTOCKS (VISIBLE TO LEFT OF ORIGINAL THREE), AND THREE ORIGINAL STANDPIPES COUPLED TO FOURTH STANDPIPE SHOWN BEHIND AND ABOVE POWERHOUSE BUILDING. VIEW TO NORTHEAST. - Big Creek Hydroelectric System, Powerhouse 3 Penstock Standpipes, Big Creek, Big Creek, Fresno County, CA

  20. Panther Creek, Idaho, Habitat Rehabilitation, Final Report.

    SciTech Connect

    Reiser, Dudley W.

    1986-01-01

    The purpose of the project was to achieve full chinook salmon and steelhead trout production in the Panther Creek, Idaho, basin. Plans were developed to eliminate the sources of toxic effluent entering Panther Creek. Operation of a cobalt-copper mine since the 1930's has resulted in acid, metal-bearing drainage entering the watershed from underground workings and tailings piles. The report discusses plans for eliminating and/or treating the effluent to rehabilitate the water quality of Panther Creek and allow the reestablishment of salmon and trout spawning runs. (ACR)

  1. Jacobs Creek bioaccumulation report, 1979 and 1980

    SciTech Connect

    Koch, L.M.; Harned, R.D.

    1981-04-01

    In conjunction with TVA's monitoring of biota in Jacobs Creek (TVA 1981), which receives fly ash pond effluent from Paradise Steam-Electric Plant and is a tributary to the Green River, fish flesh samples were collected for metals analyses. Following pH adjustment of the Paradise fly ash pond, it was anticipated aquatic communities in the lower portion of Jacobs Creek would begin to recover. Development of a fishery in this area was expected as recovery progressed. A potential avenue for metals transfer to humans would be established through consumption of fish from Jacobs Creek. Therefore, concentrations of metals in fish flesh were analyzed.

  2. Flood of August 27-28, 1977, West Cache Creek and Blue Beaver Creek, southwestern Oklahoma

    USGS Publications Warehouse

    Corley, Robert K.; Huntzinger, Thomas L.

    1979-01-01

    This report documents a major storm which occurred August 27-28, 1977, in southwest Oklahoma near the communities of Cache and Faxon, OK. Blue Beaver Creek and West Cache Creek and their tributaries experienced extensive flooding that caused an estimated $1 million in damages. Reported rainfall amounts of 8 to 12 inches in 6 hours indicate the storm had a frequency in excess of the 100-year rainfall. Peak discharges on Blue Beaver Creek near Cache and West Cache Creek near Faxon were 13,500 cubic feet per second and 45,700 cubic feet per second respectively. The estimated flood frequency was in excess of 100 years on Blue Beaver Creek and in excess of 50 years on West Cache Creek. Unit runoff on small basins were in excess of 2000 cubic feet per second per square mile. Surveyed highwater marks were used to map the flooded area. (USGS)

  3. Steel Creek wildlife: L-Lake/Steel Creek Biological Monitoring Program, January 1986--December 1987

    SciTech Connect

    Giffin, M.A.; Patterson, K.K.

    1988-03-01

    Reptile and amphibian populations in Steel Creek below L-Lake were assessed in monthly or quarterly sampling programs. Thirty-eight species of reptiles or amphibians were collected during 1987 in the Steel Creek corridor below the L-Lake impoundment, and in the delta and channel. Juvenile turtles and alligators, and larval amphibians were observed or collected during the study, indicating continued reproduction in Steel Creek. The reptile and amphibian populations in Steel Creek show no indication of any effect due to the impoundment of the lake or the operation of L-Reactor. Waterfowl and associated birds in Steel Creek below L-Lake were observed, in conjunction with other sampling programs, during winter--spring and fall--winter migrations. Nine species of waterfowl and five species of associated birds were observed in 1987 in the Steel Creek corridor below the L-Lake impoundment and in the delta and channel.

  4. Toms Creek IGCC Demonstration Project

    SciTech Connect

    Virr, M.J.

    1992-01-01

    The Toms Creek Integrated Gasification Combined Cycle (IGCC) Demonstration Project was selected by DOE in September 1991 to participate in Round Four of the Clean Coal Technology Demonstration Program. The project will demonstrate a simplified IGCC process consisting of an air-blown, fluidized-bed gasifier (Tampella U-Gas), a gas cooler/steam generator, and a hot gas cleanup system in combination with a gas turbine modified for use with a low-Btu content fuel and a conventional steam bottoming cycle. The demonstration plant will be located at the Toms Creek coal mine near Coeburn, Wise County, Virginia. Participants in the project are Tampella Power Corporation and Coastal Power Production Company. The plant will use 430 tons per day of locally mined bituminous coal to produce 55 MW of power from the gasification section of the project. A modern pulverized coal fired unit will be located adjacent to the Demonstration Project producing an additional 150 MW. A total 190 MW of power will be delivered to the electric grid at the completion of the project. In addition, 50,000 pounds per hour of steam will be exported to be used in the nearby coal preparation plant. Dolomite is used for in-bed gasifier sulfur capture and downs cleanup is accomplished in a fluidized-bed of regenerative zinc titanate. Particulate clean-up, before the gas turbine, will be performed by high temperature candle filters (1020[degree]F). The demonstration plant heat rate is estimated to be 8,700 Btu/kWh. The design of the project goes through mid 1995, with site construction activities commencing late in 1995 and leading to commissioning and start-up by the end of 1997. This is followed by a three year demonstration period.

  5. Toms Creek IGCC Demonstration Project

    SciTech Connect

    Virr, M.J.

    1992-11-01

    The Toms Creek Integrated Gasification Combined Cycle (IGCC) Demonstration Project was selected by DOE in September 1991 to participate in Round Four of the Clean Coal Technology Demonstration Program. The project will demonstrate a simplified IGCC process consisting of an air-blown, fluidized-bed gasifier (Tampella U-Gas), a gas cooler/steam generator, and a hot gas cleanup system in combination with a gas turbine modified for use with a low-Btu content fuel and a conventional steam bottoming cycle. The demonstration plant will be located at the Toms Creek coal mine near Coeburn, Wise County, Virginia. Participants in the project are Tampella Power Corporation and Coastal Power Production Company. The plant will use 430 tons per day of locally mined bituminous coal to produce 55 MW of power from the gasification section of the project. A modern pulverized coal fired unit will be located adjacent to the Demonstration Project producing an additional 150 MW. A total 190 MW of power will be delivered to the electric grid at the completion of the project. In addition, 50,000 pounds per hour of steam will be exported to be used in the nearby coal preparation plant. Dolomite is used for in-bed gasifier sulfur capture and downs cleanup is accomplished in a fluidized-bed of regenerative zinc titanate. Particulate clean-up, before the gas turbine, will be performed by high temperature candle filters (1020{degree}F). The demonstration plant heat rate is estimated to be 8,700 Btu/kWh. The design of the project goes through mid 1995, with site construction activities commencing late in 1995 and leading to commissioning and start-up by the end of 1997. This is followed by a three year demonstration period.

  6. 78 FR 5798 - Grouse Creek Wind Park, LLC, Grouse Creek Wind Park II, LLC; Notice of Petition for Enforcement

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-01-28

    ... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF ENERGY Federal Energy Regulatory Commission Grouse Creek Wind Park, LLC, Grouse Creek Wind Park II, LLC; Notice of... Utility Regulatory Policies Act of 1978 (PURPA), Grouse Creek Wind Park, LLC and Grouse Creek Wind Park...

  7. Steel Creek fish, L-Lake/Steel Creek Biological Monitoring Program, January 1986--December 1991

    SciTech Connect

    Sayers, R.E. Jr.; Mealing, H.G. III

    1992-04-01

    The Savannah River Site (SRS) encompasses 300 sq mi of the Atlantic Coastal plain in west-central South Carolina. The Savannah River forms the western boundary of the site. Five major tributaries of the Savannah River -- Upper Three Runs Creek, Four Mile Creek, Pen Branch, Steel Creek, and Lower Three Runs Creek -- drain the site. All but Upper Three Runs Creek receive, or in the past received, thermal effluents from nuclear production reactors. In 1985, L Lake, a 400-hectare cooling reservoir, was built on the upper reaches of Steel Creek to receive effluent from the restart of L-Reactor, and protect the lower reaches from thermal impacts. The lake has an average width of approximately 600 m and extends along the Steel Creek valley approximately 7000 m from the dam to the headwaters. Water level is maintained at a normal pool elevation of 58 m above mean sea level by overflow into a vertical intake tower that has multilevel discharge gates. The intake tower is connected to a horizontal conduit that passes through the dam and releases water into Steel Creek. The Steel Creek Biological Monitoring Program was designed to meet environmental regulatory requirements associated with the restart of L-Reactor and complements the Biological Monitoring Program for L Lake. This extensive program was implemented to address portions of Section 316(a) of the Clean Water Act. The Department of Energy (DOE) must demonstrate that the operation of L-Reactor will not significantly alter the established aquatic ecosystems.

  8. 33 CFR 117.929 - Durham Creek.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... OPERATION REGULATIONS Specific Requirements South Carolina § 117.929 Durham Creek. The removable span of the... Charleston of an emergency in the Bushy Park Reservoir, the span shall be removed as soon as possible...

  9. 33 CFR 117.929 - Durham Creek.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... OPERATION REGULATIONS Specific Requirements South Carolina § 117.929 Durham Creek. The removable span of the... Charleston of an emergency in the Bushy Park Reservoir, the span shall be removed as soon as possible...

  10. 33 CFR 117.929 - Durham Creek.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... OPERATION REGULATIONS Specific Requirements South Carolina § 117.929 Durham Creek. The removable span of the... Charleston of an emergency in the Bushy Park Reservoir, the span shall be removed as soon as possible...

  11. 33 CFR 117.929 - Durham Creek.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... OPERATION REGULATIONS Specific Requirements South Carolina § 117.929 Durham Creek. The removable span of the... Charleston of an emergency in the Bushy Park Reservoir, the span shall be removed as soon as possible...

  12. Dry Creek Wilderness study area, Arkansas

    SciTech Connect

    Haley, B.R.; Stroud, R.B.

    1984-01-01

    A mineral evaluation study of the Dry Creek Wilderness Study Area indicated that the area has a probable resource potential for natural gas and little promise for the occurrence of other mineral commodities.

  13. Wolf Creek Generating Station containment model

    SciTech Connect

    Nguyen, D.H.; Neises, G.J.; Howard, M.L.

    1995-12-31

    This paper presents a CONTEMPT-LT/28 containment model that has been developed by Wolf Creek Nuclear Operating Corporation (WCNOC) to predict containment pressure and temperature behavior during the postulated events at Wolf Creek Generating Station (WCGS). The model has been validated using data provided in the WCGS Updated Safety Analysis Report (USAR). CONTEMPT-LT/28 model has been used extensively at WCGS to support plant operations, and recently, to support its 4.5% thermal power uprate project.

  14. 77 FR 13592 - AER NY-Gen, LLC; Eagle Creek Hydro Power, LLC, Eagle Creek Water Resources, LLC, Eagle Creek Land...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-03-07

    ... Energy Regulatory Commission AER NY-Gen, LLC; Eagle Creek Hydro Power, LLC, Eagle Creek Water Resources... Comments and Motions To Intervene On February 24, 2012, AER NY-Gen, LLC (transferor), Eagle Creek Hydro...' Contact: Transferor: Mr. Joseph Klimaszewski, AER NY- Gen, LLC, P.O. Box 876, East Aurora, NY 14052,...

  15. 75 FR 5631 - Wolf Creek Nuclear Operating Corporation, Wolf Creek Generating Station; Environmental Assessment...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-02-03

    ... Federal Register notice dated March 27, 2009 (74 FR 13967). There will be no change to radioactive... no significant impact [Part 73, Power Reactor Security Requirements, 74 FR 13926, 13967 (March 27... COMMISSION Wolf Creek Nuclear Operating Corporation, Wolf Creek Generating Station; Environmental...

  16. 4. O'BRIAN CANAL/SECOND CREEK INTERSECTION Second Creek is in the ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    4. O'BRIAN CANAL/SECOND CREEK INTERSECTION Second Creek is in the foreground; the O'Brian Canal is in the background; vicinity of East 112th Avenue and Potomac Road in Adams County - O'Brian Canal, South Platte River Drainage Area Northest of Denver, Brighton, Adams County, CO

  17. Hoe Creek groundwater restoration, 1989

    SciTech Connect

    Renk, R.R.; Crader, S.E.; Lindblom, S.R.; Covell, J.R.

    1990-01-01

    During the summer of 1989, approximately 6.5 million gallons of contaminated groundwater were pumped from 23 wells at the Hoe Creek underground coal gasification site, near Gillette, Wyoming. The organic contaminants were removed using activated carbon before the water was sprayed on 15.4 acres at the sites. Approximately 2647 g (5.8 lb) of phenols and 10,714 g (23.6 lb) of benzene were removed from the site aquifers. Phenols, benzene, toluene, ethylbenzene, and naphthalene concentrations were measured in 43 wells. Benzene is the only contaminant at the site exceeds the federal standard for drinking water (5 {mu}g/L). Benzene leaches into the groundwater and is slow to biologically degrade; therefore, the benzene concentration has remained high in the groundwater at the site. The pumping operation affected groundwater elevations across the entire 80-acre site. The water levels rebounded quickly when the pumping operation was stopped on October 1, 1989. Removing contaminated groundwater by pumping is not an effective way to clean up the site because the continuous release of benzene from coal tars is slow. Benzene will continue to leach of the tars for a long time unless its source is removed or the leaching rate retarded through mitigation techniques. The application of the treated groundwater to the surface stimulated plant growth. No adverse effects were noted or recorded from some 60 soil samples taken from twenty locations in the spray field area. 20 refs., 52 figs., 8 tabs.

  18. Blasting of the Twin Creek`s highwall failure

    SciTech Connect

    Gray, C.J.; Bachmann, J.A.

    1996-12-01

    On December 26, 1994, at 1:00 a.m., the Twin Creeks Mine experienced a major highwall failure involving over 2.5 million tons. The long chain of events that led up to this failure actually started in late August when a truck driver first noticed the cracks in the highwall. Soon after, an intense survey prism monitoring program was initiated. An electronic, continuous monitor linked to Dispatch was soon in place which monitored the crack that was most likely to fail into the active pit area first. It wasn`t until early December when the graphs started showing greater increases in movement. On December 22, the acceleration curves skied-out. The 600 ft. highwall finally collapsed about three days later and left material spread 800 ft. across the bottom of the pit. Not knowing if the large overhangs above the slide would soon give away sending more material into the pit or if the numerous tension cracks on the surface would result in yet another major failure, it was only after restoring the rigid monitoring program and observing no movement that the company decided to drill and blast the overhanging material. The purpose of the blast wasn`t to cast the material into the pit, but to kick-out the toe so that the weight of material above would fall upon itself. After two months of preparation and almost three weeks of drilling and loading, the shot occurred on March 21, 1995. Approximately one million tons were successfully blasted that day, and presently they have completed mining the slough material itself and reestablished benches from the top.

  19. Baseline Characteristics of Jordan Creek, Juneau, Alaska

    USGS Publications Warehouse

    Host, Randy H.; Neal, Edward G.

    2004-01-01

    Anadromous fish populations historically have found healthy habitat in Jordan Creek, Juneau, Alaska. Concern regarding potential degradation to the habitat by urban development within the Mendenhall Valley led to a cooperative study among the City and Borough of Juneau, Alaska Department of Environmental Conservation, and the U.S. Geological Survey, that assessed current hydrologic, water-quality, and physical-habitat conditions of the stream corridor. Periods of no streamflow were not uncommon at the Jordan Creek below Egan Drive near Auke Bay stream gaging station. Additional flow measurements indicate that periods of no flow are more frequent downstream of the gaging station. Although periods of no flow typically were in March and April, streamflow measurements collected prior to 1999 indicate similar periods in January, suggesting that no flow conditions may occur at any time during the winter months. This dewatering in the lower reaches likely limits fish rearing and spawning habitat as well as limiting the migration of juvenile salmon out to the ocean during some years. Dissolved-oxygen concentrations may not be suitable for fish survival during some winter periods in the Jordan Creek watershed. Dissolved-oxygen concentrations were measured as low as 2.8 mg/L at the gaging station and were measured as low as 0.85 mg/L in a tributary to Jordan Creek. Intermittent measurements of pH and dissolved-oxygen concentrations in the mid-reaches of Jordan Creek were all within acceptable limits for fish survival, however, few measurements of these parameters were made during winter-low-flow conditions. One set of water quality samples was collected at six different sites in the Jordan Creek watershed and analyzed for major ions and dissolved nutrients. Major-ion chemistry showed Jordan Creek is calcium bicarbonate type water with little variation between sampling sites.

  20. FIDDLER CREEK POLYMER AUGMENTATION PROJECT

    SciTech Connect

    Lyle A. Johnson, Jr.

    2001-10-31

    The Fiddler Creek field is in Weston County, Wyoming, and was discovered in 1948. Secondary waterflooding recovery was started in 1955 and terminated in the mid-1980s with a fieldwide recovery of approximately 40%. The West Fiddler Creek Unit, the focus of this project, had a lower recovery and therefore has the most remaining oil. Before the project this unit was producing approximately 85 bbl of oil per day from 20 pumping wells and 17 swab wells. The recovery process planned for this project involved adapting two independent processes, the injection of polymer as a channel blocker or as a deep-penetrating permeability modifier, and the stabilization of clays and reduction of the residual oil saturation in the near-wellbore area around the injection wells. Clay stabilization was not conducted because long-term fresh water injection had not severely reduced the injectivity. It was determined that future polymer injection would not be affected by the clay. For the project, two adjoining project patterns were selected on the basis of prior reservoir studies and current well availability and production. The primary injection well of Pattern 1 was treated with a small batch of MARCIT gel to create channel blocking. The long-term test was designed for three phases: (1) 77 days of injection of a 300-mg/l cationic polyacrylamide, (2) 15 days of injection of a 300-mg/l anionic polymer to ensure injectivity of the polymer, and (3) 369 days of injection of the 300-mg/l anionic polymer and a 30:1 mix of the crosslinker. Phases 1 and 2 were conducted as planned. Phase 3 was started in late March 1999 and terminated in May 2001. In this phase, a crosslinker was added with the anionic polymer. Total injection for Phase 3 was 709,064 bbl. To maintain the desired injection rate, the injection pressure was slowly increased from 1,400 psig to 2,100 psig. Early in the application of the polymer, it appeared that the sweep improvement program was having a positive effect on Pattern 1

  1. Environmental setting of Maple Creek watershed, Nebraska

    USGS Publications Warehouse

    Fredrick, Brian S.; Linard, Joshua I.; Carpenter, Jennifer L.

    2006-01-01

    The Maple Creek watershed covers a 955-square-kilometer area in eastern Nebraska, which is a region dominated by agricultural land use. The Maple Creek watershed is one of seven areas currently included in a nationwide study of the sources, transport, and fate of water and chemicals in agricultural watersheds. This study, known as the topical study of 'Agricultural Chemicals: Sources, Transport, and Fate' is part of the National Water-Quality Assessment Program being conducted by the U.S. Geological Survey. The Program is designed to describe water-quality conditions and trends based on representative surface- and ground-water resources across the Nation. The objective of the Agricultural Chemicals topical study is to investigate the sources, transport, and fate of selected agricultural chemicals in a variety of agriculturally diverse environmental settings. The Maple Creek watershed was selected for the Agricultural Chemicals topical study because its watershed represents the agricultural setting that characterizes eastern Nebraska. This report describes the environmental setting of the Maple Creek watershed in the context of how agricultural practices, including agricultural chemical applications and irrigation methods, interface with natural settings and hydrologic processes. A description of the environmental setting of a subwatershed within the drainage area of Maple Creek is included to improve the understanding of the variability of hydrologic and chemical cycles at two different scales.

  2. 78 FR 12714 - Intermountain Region, Payette National Forest, New Meadows Ranger District, Idaho; Lost Creek...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-02-25

    ... District, Idaho; Lost Creek-Boulder Creek Landscape Restoration Project AGENCY: Forest Service, USDA... Creek-Boulder Creek Landscape Restoration Project. The Lost Creek- Boulder Creek Landscape Restoration... converted to ATV trails; restoration of 90 miles of unauthorized roads; and relocation of 1\\ 1/2\\ half...

  3. Steel Creek fish: L-Lake/Steel Creek Biological Monitoring Program, January 1986--December 1987

    SciTech Connect

    Paller, M.H.; Heuer, J.H.; Kissick, L.A.

    1988-03-01

    Fish samples were collected from Steel Creek during 1986 and 1987 following the impoundment of the headwaters of the stream to form L-Lake, a cooling reservoir for L-Reactor which began operating late in 1985. Electrofishing and ichthyoplankton sample stations were located throughout the creek. Fykenetting sample stations were located in the creek mouth and just above the Steel Creek swamp. Larval fish and fish eggs were collected with 0.5 m plankton nets. Multivariate analysis of the electrofishing data suggested that the fish assemblages in Steel Creek exhibited structural differences associated with proximity to L-Lake, and habitat gradients of current velocity, depth, and canopy cover. The Steel Creek corridor, a lotic reach beginning at the base of the L-Lake embankment was dominated by stream species and bluegill. The delta/swamp, formed where Steel Creek enters the Savannah River floodplain, was dominated by fishes characteristic of slow flowing waters and heavily vegetated habitats. The large channel draining the swamp supported many of the species found in the swamp plus riverine and anadromous forms.

  4. Steel Creek water quality: L-Lake/Steel Creek Biological Monitoring Program, November 1985--December 1991

    SciTech Connect

    Bowers, J.A.; Kretchmer, D.W.; Chimney, M.J.

    1992-04-01

    The Savannah River Site (SRS) encompasses 300 sq mi of the Atlantic Coastal Plain in west-central South Carolina. The Savannah River forms the western boundary of the site. Five major tributaries of the Savannah River -- upper Three Runs Creek, Four Mile Creek, Pen Branch, Steel Creek, and Lower Three Runs Creek -- drain the site. All but Upper Three Runs Creek receive, or in the past received, thermal effluents from nuclear production reactors. In 1985, L Lake, a 400-hectare cooling reservoir, was built on the upper reaches of Steel Creek to receive effluent from the restart of L-Reactor, and protect the lower reaches from thermal impacts. The Steel Creek Biological Monitoring Program was designed to meet envirorunental regulatory requirements associated with the restart of L-Reactor and complements the Biological Monitoring Program for L Lake. This extensive program was implemented to address portions of Section 316(a) of the Clean Water Act. The Department of Energy (DOE) must demonstrate that the operation of L-Reactor will not significantly alter the established aquatic ecosystems.

  5. Big Creek Hydroelectric System, East & West Transmission Line, 241mile ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Big Creek Hydroelectric System, East & West Transmission Line, 241-mile transmission corridor extending between the Big Creek Hydroelectric System in the Sierra National Forest in Fresno County and the Eagle Rock Substation in Los Angeles, California, Visalia, Tulare County, CA

  6. 1. WATER ENTERING CONFLUENCE POOL FROM BEAR CREEK AT LEFT, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    1. WATER ENTERING CONFLUENCE POOL FROM BEAR CREEK AT LEFT, AND FROM SANTA ANA RIVER THROUGH TUNNEL #0 AT RIGHT. VIEW TO NORTHEAST. - Santa Ana River Hydroelectric System, Bear Creek Diversion Dam & Confluence Pool, Redlands, San Bernardino County, CA

  7. 13. Detail view of Sterling Creek lettuce shed showing second ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    13. Detail view of Sterling Creek lettuce shed showing second floor window sill - Richmond Hill Plantation, Sterling Creek Lettuce Shed, East of Richmond Hill on Ford Neck Road, Richmond Hill, Bryan County, GA

  8. 15. Detail view of Sterling Creek lettuce shed showing second ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    15. Detail view of Sterling Creek lettuce shed showing second floor support beams. - Richmond Hill Plantation, Sterling Creek Lettuce Shed, East of Richmond Hill on Ford Neck Road, Richmond Hill, Bryan County, GA

  9. 12. Detail view of Sterling Creek lettuce shed showing floor ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    12. Detail view of Sterling Creek lettuce shed showing floor joist and support beams - Richmond Hill Plantation, Sterling Creek Lettuce Shed, East of Richmond Hill on Ford Neck Road, Richmond Hill, Bryan County, GA

  10. 1. View of Sterling Creek lettuce shed looking south, with ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    1. View of Sterling Creek lettuce shed looking south, with road in foreground - Richmond Hill Plantation, Sterling Creek Lettuce Shed, East of Richmond Hill on Ford Neck Road, Richmond Hill, Bryan County, GA

  11. 5. View of Sterling Creek lettuce shed looking northwest showing ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    5. View of Sterling Creek lettuce shed looking northwest showing office - Richmond Hill Plantation, Sterling Creek Lettuce Shed, East of Richmond Hill on Ford Neck Road, Richmond Hill, Bryan County, GA

  12. Detail view of Fanno Creek trestle, showing trestle substructure, view ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Detail view of Fanno Creek trestle, showing trestle substructure, view looking north - Oregon Electric Railroad, Fanno Creek Trestle, Garden Home to Wilsonville Segment, Milepost 34.7, Garden Home, Washington County, OR

  13. Elevation of deck truss span over creek, looking NW along ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Elevation of deck truss span over creek, looking NW along U.S. route 322. - Pennsylvania Railroad, Brandywine Valley Viaduct, Spanning Brandywine Creek & U.S. Route 322, Downingtown, Chester County, PA

  14. Rock Creek and Potomac Parkway / Waterside Drive Sycamore and ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Rock Creek and Potomac Parkway / Waterside Drive Sycamore and White Ash Trees, Rock Creek and Potomac Parkway, median between northbound and southbound lanes near the Waterside Drive exit and entrance ramps., Washington, District of Columbia, DC

  15. Lower connections from south. Waterville Bridge, Spanning Swatara Creek ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Lower connections from south. - Waterville Bridge, Spanning Swatara Creek at Appalachian Trail (moved from Little Pine Creek at State Route 44, Waterville, Lycoming County), Green Point, Lebanon County, PA

  16. Barrel view from southwest. Waterville Bridge, Spanning Swatara Creek ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Barrel view from southwest. - Waterville Bridge, Spanning Swatara Creek at Appalachian Trail (moved from Little Pine Creek at State Route 44, Waterville, Lycoming County), Green Point, Lebanon County, PA

  17. The Boulder Creek Batholith, Front Range, Colorado

    USGS Publications Warehouse

    Gable, Dolores J.

    1980-01-01

    The Boulder Creek batholith is the best known of several large Precambrian batholiths of similar rock composition that crop out across central Colorado. The rocks in the batholith belong to the calc-alkaline series and range in composition from granodiorite through quartz diorite (tonalite) to gneissic aplite. Two rock types dominate': the Boulder Creek Granodiorite, the major rock unit, and a more leucocratic and slightly younger unit herein named Twin Spruce Quartz Monzonite. Besides mafic inclusions, which occur mainly in hornblende-bearing phases of the Boulder Creek Granodiorite, there are cogenetic older and younger lenses, dikes, and small plutons of hornblende diorite, hornblendite, gabbro, and pyroxenite. Pyroxenite is not found in the batholith. The Boulder Creek Granodiorite in the batholith represents essentially two contemporaneous magmas, a northern body occurring in the Gold Hill and Boulder quadrangles and a larger southern body exposed in the Blackhawk and the greater parts of the Tungsten and Eldorado Springs quadrangles. The two bodies are chemically and mineralogically distinct. The northern body is richer in CaO and poorer in K2O, is more mafic, and has a larger percentage of plagioclase than the southern body. A crude sequence of rock types occurs from west to east in the batholith accompanied by a change in plagioclase composition from calcic plagioclase on the west to sodic on the east. Ore minerals tend to decrease, and the ratio potassium feldspar:plagioclase increases inward from the western contact of the batholith, indicating that the Boulder Creek batholith is similar to granodiorite batholiths the world over. Emplacement of the Boulder Creek batholith was contemporaneous with plastic deformation and high-grade regional metamorphism that folded the country rock and the batholith contact along west-northwest and north-northwest axes. Also, smaller satellitic granodiorite bodies tend to conform to the trends of foliation and fold axes in

  18. Hydrology and Flood Profiles of Duck Creek and Jordan Creek Downstream from Egan Drive, Juneau, Alaska

    USGS Publications Warehouse

    Curran, Janet H.

    2007-01-01

    Hydrologic and hydraulic updates for Duck Creek and the lower part of Jordan Creek in Juneau, Alaska, included computation of new estimates of peak streamflow magnitudes and new water-surface profiles for the 10-, 50-, 100-, and 500-year floods. Computations for the 2-, 5-, 10-, 25-, 50-, 100-, 200-, and 500-year recurrence interval flood magnitudes for both streams used data from U.S. Geological Survey stream-gaging stations weighted with regional regression equations for southeast Alaska. The study area for the hydraulic model consisted of three channels: Duck Creek from Taku Boulevard near the stream's headwaters to Radcliffe Road near the end of the Juneau International Airport runway, an unnamed tributary to Duck Creek from Valley Boulevard to its confluence with Duck Creek, and Jordan Creek from a pedestrian bridge upstream from Egan Drive to Crest Street at Juneau International Airport. Field surveys throughout the study area provided channel geometry for 206 cross sections, and geometric and hydraulic characteristics for 29 culverts and 15 roadway, driveway, or pedestrian bridges. Hydraulic modeling consisted of application of the U.S. Army Corps of Engineers' Hydrologic Engineering Center River Analysis System (HEC-RAS) for steady-state flow at the selected recurrence intervals using an assumed high tide of 20 feet and roughness coefficients refined by calibration to measured water-surface elevations from a 2- to 5-year flood that occurred on November 21, 2005. Model simulation results identify inter-basin flow from Jordan Creek to the southeast at Egan Drive and from Duck Creek to Jordan Creek downstream from Egan Drive at selected recurrence intervals.

  19. Water-quality appraisal. Mammoth Creek and Hot Creek, Mono County, California

    SciTech Connect

    Setmire, J.G.

    1984-06-01

    A late summer reconnaissance in 1981 and a spring high-flow sampling in 1982 of Mammoth Creek and Hot Creek, located in the Mammoth crest area of the Sierra Nevada, indicated that three water-quality processes were occurring: (1) mineralization; (2) eutrophication; and (3) sedimentation. Limited areas of fecal contamination were also observed. Mineralization due primarily to geothermal springs increased dissolved-solids concentration downstream, which changed the chemical composition of the water. The percentage of calcium decreased gradually, the percentage of magnesium and sodium increased, and the percentage of fluoride, sulfate, and chloride fluctuated, but increased overall. These changes produced water quality in Mammoth Creek similar to that of the springs forming Hot Creek. Twin Lakes and the reach of Hot Creek below the fish hatchery showed evidence of eutrophication. Twin Lakes had floating mats of algae and a high dissolved-oxygen saturation of 147% at a pH of 9.2. Hot Creek had abundant growth of aquatic vascular plants and algae, dissolved-oxygen saturations ranging from 65% to 200%, algal growth potential of 30 milligrams per liter, nitrate concentration of 0.44 milligram per liter, and phosphate concentration of 0.157 milligram per liter. Sediment deposition was determined from detailed observations of bed-material composition, which showed that fine material was deposited at Sherwin Creek Road and downstream. Fecal contamination was indicated by fecal-coliform bacteria counts of 250 colonies per 100 milliliters and fecal-streptococcal bacteria counts greater than 1000 colonies per 100 milliliters. Although bacterial sampling was sporadic and incomplete, it did indicate adverse effects on water quality for the following beneficial uses that have been identified for Mammoth Creek and Hot Creek: (1) municipal supply; (2) cold-water habitat; and (3) contact and noncontact water recreation. 6 refs., 15 figs., 15 tabs.

  20. Quality of water and time-of-travel in Bakers Creek near Clinton, Mississippi. [Bakers Creek

    SciTech Connect

    Kalkhoff, S.J.

    1982-01-01

    A short-term intensive quality-of-water study was conducted during a period of generally low streamflow in Bakers Creek and its tributary, Lindsey Creek, near Clinton, Mississippi. During the September 15-18, 1980 study, dissolved oxygen concentrations in Bakers Creek were less than 5 milligrams per liter. The specific conductance, 5-day biochemical oxygen demand, nutrient concentrations, and bacteria densities in Bakers Creek decreased downstream through the study reach. The mean specific conductance decreased from 670 to 306 microhms per centimeter. The 5-day biochemical oxygen demand decreased from 19 to 2.8 milligrams per liter. The mean total nitrogen and phosphorous concentrations decreased from 10 and 7.1 to 1.0 and 0.87 milligram per litter, respectively. The maximum fecal bacteria decreased from 7200 to 400 colonies per 100 milliliter. The concentrations of mercury, iron, and manganese in a sample collected at the downstream site exceeded recommended limits. Diazinon and 2,4-D were also present in the water. A bottom material sample contained DDD (2.5 micrograms per kilogram), DDE (2.7 micrograms per kilogram), and DDT (.3 micrograms per kilogram). The tributary inflow from Lindsey Creek did not improve the water quality of Bakers Creek. The dissolved oxygen concentrations were generally less than 5.0 milligrams per liter at the sampling site on Lindsey Creek. The 5-day biochemical oxygen demand, the mean specific conductance, and fecal coliform densities were greater in the tributary than at the downstream site on Bakers Creek. The average rate of travel through a 1.8-mile reach of Bakers Creek was 0.06 foot per second or 0.04 miles per hour. 6 references, 9 figures, 2 tables.

  1. 1. EXTERIOR OVERVIEW OF SOUTH END OF RUSH CREEK POWERHOUSE ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    1. EXTERIOR OVERVIEW OF SOUTH END OF RUSH CREEK POWERHOUSE RESIDENTIAL COMPLEX SHOWING THE RUSH CREEK POWERHOUSE AT PHOTO RIGHT, BUILDING 106 NEXT TO THE POWERHOUSE AT PHOTO CENTER, BUILDING 103 AT UPPER PHOTO LEFT, AND BUILDING 104 ABOVE BUILDING 106 PARTIALLY OBSCURED BEHIND TREE AT UPPER PHOTO CENTER. VIEW TO SOUTH. - Rush Creek Hydroelectric System, Worker Cottage, Rush Creek, June Lake, Mono County, CA

  2. 1. OVERVIEW OF EXTREME EAST END OF BIG CREEK TOWN ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    1. OVERVIEW OF EXTREME EAST END OF BIG CREEK TOWN ACROSS POWERHOUSE NO. 2 FOREBAY (POWERHOUSE NO. 1 AFTERBAY). TOWER CARRYING TRANSMISSION LINES FROM POWERHOUSE NO. 1 IS AT PHOTO CENTER. BEHIND TOWER IS BUILDING 103. TO PHOTO LEFT OF BUILDING 103 IS BUILDING 105. VIEW TO NORTH. - Big Creek Hydroelectric System, Big Creek Town, Operator House, Orchard Avenue south of Huntington Lake Road, Big Creek, Fresno County, CA

  3. Flood-inundation maps for Indian Creek and Tomahawk Creek, Johnson County, Kansas, 2014

    USGS Publications Warehouse

    Peters, Arin J.; Studley, Seth E.

    2015-01-01

    Digital flood-inundation maps for a 6.4-mile upper reach of Indian Creek from College Boulevard to the confluence with Tomahawk Creek, a 3.9-mile reach of Tomahawk Creek from 127th Street to the confluence with Indian Creek, and a 1.9-mile lower reach of Indian Creek from the confluence with Tomahawk Creek to just beyond the Kansas/Missouri border at State Line Road in Johnson County, Kansas, were created by the U.S. Geological Survey in cooperation with the city of Overland Park, Kansas. The flood-inundation maps, which can be accessed through the U.S. Geological Survey Flood Inundation Mapping Science Web site at http://water.usgs.gov/osw/flood_inundation/, depict estimates of the areal extent and depth of flooding corresponding to selected water levels (stages) at the U.S. Geological Survey streamgages on Indian Creek at Overland Park, Kansas; Indian Creek at State Line Road, Leawood, Kansas; and Tomahawk Creek near Overland Park, Kansas. Near real time stages at these streamgages may be obtained on the Web from the U.S. Geological Survey National Water Information System at http://waterdata.usgs.gov/nwis or the National Weather Service Advanced Hydrologic Prediction Service at http://water.weather.gov/ahps/, which also forecasts flood hydrographs at these sites.Flood profiles were computed for the stream reaches by means of a one-dimensional step-backwater model. The model was calibrated for each reach by using the most current stage-discharge relations at the streamgages. The hydraulic models were then used to determine 15 water-surface profiles for Indian Creek at Overland Park, Kansas; 17 water-surface profiles for Indian Creek at State Line Road, Leawood, Kansas; and 14 water-surface profiles for Tomahawk Creek near Overland Park, Kansas, for flood stages at 1-foot intervals referenced to the streamgage datum and ranging from bankfull to the next interval above the 0.2-percent annual exceedance probability flood level (500-year recurrence interval). The

  4. Selected hydrologic data for Fountain Creek and Monument Creek basins, east-central Colorado

    USGS Publications Warehouse

    Kuhn, Gerhard; Ortiz, Roderick F.

    1989-01-01

    Selected hydrologic data were collected during 1986, 1987, and 1988 by the U.S. Geological Survey for the Fountain Creek and Monument Creek basins, east-central Colorado. The data were obtained as part of a study to determine the present and projected effects of wastewater discharges on the two creeks. The data, which are available for 129 surface-water sites, include: (1) About 1,100 water quality analyses; (2) about 420 measurements of discharge, (3) characteristics of about 50 dye clouds associated with measurements of traveltime and reaeration , and (4) about 360 measurements of channel geometry. (USGS)

  5. 78 FR 28897 - Lost Creek ISR, LLC, Lost Creek Uranium In-Situ Recovery Project; Sweetwater County, Wyoming

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-05-16

    ... From the Federal Register Online via the Government Publishing Office NUCLEAR REGULATORY COMMISSION Lost Creek ISR, LLC, Lost Creek Uranium In-Situ Recovery Project; Sweetwater County, Wyoming AGENCY: Nuclear Regulatory Commission. ACTION: Environmental assessment and finding of no...

  6. 78 FR 37474 - Radio Broadcasting Services; Dove Creek, Colorado

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-06-21

    ... COMMISSION 47 CFR Part 73 Radio Broadcasting Services; Dove Creek, Colorado AGENCY: Federal Communications..., allots FM Channel 229C3 as a first local transmission service at Dove Creek, Colorado. Channel 229C3 can be allotted at Dove Creek, consistent with the minimum distance separation requirements of...

  7. 77 FR 75946 - Radio Broadcasting Services; Dove Creek, CO

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-12-26

    ... COMMISSION 47 CFR Part 73 . Radio Broadcasting Services; Dove Creek, CO AGENCY: Federal Communications... 229C3 as a first local service at Dove Creek, Colorado. Channel 229C3 can be allotted at Dove Creek... Sec. 73.202 2. Section 73.202(b), the Table of FM Allotments under Colorado, is amended by adding...

  8. 75 FR 8036 - Monitor-Hot Creek Rangeland Project

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-02-23

    ... Forest Service Monitor-Hot Creek Rangeland Project AGENCY: Forest Service, USDA. ACTION: Notice of intent... continued livestock grazing ] within the Monitor-Hot Creek Rangeland Project area. The analysis will... conditions within the Monitor-Hot Creek Rangeland Project area towards desired conditions. The project...

  9. 1. EXTERIOR OVERVIEW SHOWING BISHOP CREEK PLANT 4 RESIDENTIAL COMPLEX. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    1. EXTERIOR OVERVIEW SHOWING BISHOP CREEK PLANT 4 RESIDENTIAL COMPLEX. BUILDING 113 IS VISIBLE AT RIGHT PHOTO CENTER. PLANT 5 INTAKE DAM AT PHOTO LEFT. VIEW TO WEST. - Bishop Creek Hydroelectric System, Plant 4, Worker Cottage, Bishop Creek, Bishop, Inyo County, CA

  10. 1. EXTERIOR OVERVIEW SHOWING BISHOP CREEK PLANT 4 RESIDENTIAL COMPLEX. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    1. EXTERIOR OVERVIEW SHOWING BISHOP CREEK PLANT 4 RESIDENTIAL COMPLEX. ROOF OF BUILDING 105 IS VISIBLE IN UPPER PHOTO CENTER. PLANT 5 INTAKE DAM AT PHOTO LEFT. VIEW TO WEST. - Bishop Creek Hydroelectric System, Plant 4, Worker Cottage, Bishop Creek, Bishop, Inyo County, CA

  11. 1. EXTERIOR OVERVIEW OF NORTH END OF RUSH CREEK POWERHOUSE ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    1. EXTERIOR OVERVIEW OF NORTH END OF RUSH CREEK POWERHOUSE RESIDENTIAL COMPLEX SHOWING BUILDING 108 AT PHOTO RIGHT AND BUILDING 105 AT PHOTO CENTER BEHIND SWITCHRACKS AND TREE. POWERHOUSE IS AT EXTREME PHOTO LEFT. VIEW TO WEST. - Rush Creek Hydroelectric System, Worker Cottage, Rush Creek, June Lake, Mono County, CA

  12. 1. EXTERIOR OVERVIEW SHOWING BISHOP CREEK PLANT 4 RESIDENTIAL COMPLEX. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    1. EXTERIOR OVERVIEW SHOWING BISHOP CREEK PLANT 4 RESIDENTIAL COMPLEX. BUILDING 122 IS VISIBLE AT PHOTO CENTER. PLANT 5 INTAKE DAM AT PHOTO LEFT. VIEW TO WEST. - Bishop Creek Hydroelectric System, Plant 4, Worker Cottage, Bishop Creek, Bishop, Inyo County, CA

  13. 33 CFR 110.72 - Blackhole Creek, Md.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... tip of an unnamed island located 0.16 mile upstream from the mouth of the creek approximately 660 feet to the west shore of the creek; northwest of a line ranging from the southwesterly tip of the island toward the point of land on the west shore of the creek immediately southwest thereof; and north of...

  14. 33 CFR 110.72 - Blackhole Creek, Md.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... tip of an unnamed island located 0.16 mile upstream from the mouth of the creek approximately 660 feet to the west shore of the creek; northwest of a line ranging from the southwesterly tip of the island toward the point of land on the west shore of the creek immediately southwest thereof; and north of...

  15. 33 CFR 110.72 - Blackhole Creek, Md.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... tip of an unnamed island located 0.16 mile upstream from the mouth of the creek approximately 660 feet to the west shore of the creek; northwest of a line ranging from the southwesterly tip of the island toward the point of land on the west shore of the creek immediately southwest thereof; and north of...

  16. 33 CFR 110.72 - Blackhole Creek, Md.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... tip of an unnamed island located 0.16 mile upstream from the mouth of the creek approximately 660 feet to the west shore of the creek; northwest of a line ranging from the southwesterly tip of the island toward the point of land on the west shore of the creek immediately southwest thereof; and north of...

  17. 33 CFR 110.72 - Blackhole Creek, Md.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... tip of an unnamed island located 0.16 mile upstream from the mouth of the creek approximately 660 feet to the west shore of the creek; northwest of a line ranging from the southwesterly tip of the island toward the point of land on the west shore of the creek immediately southwest thereof; and north of...

  18. Detail view of the Ten Mile Creek Bridge joint between ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Detail view of the Ten Mile Creek Bridge joint between the tied arch span and the approach span, view looking east at southwest corner of bridge. - Ten Mile Creek Bridge, Spanning Ten Mile Creek on Oregon Coast Highway, Yachats, Lincoln County, OR

  19. 33 CFR 117.745 - Rancocas River (Creek).

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 1 2010-07-01 2010-07-01 false Rancocas River (Creek). 117.745... DRAWBRIDGE OPERATION REGULATIONS Specific Requirements New Jersey § 117.745 Rancocas River (Creek). (a) The following requirements apply to all bridges across the Rancocas River (Creek): (1) Public vessels of...

  20. 33 CFR 117.745 - Rancocas River (Creek).

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 33 Navigation and Navigable Waters 1 2011-07-01 2011-07-01 false Rancocas River (Creek). 117.745... DRAWBRIDGE OPERATION REGULATIONS Specific Requirements New Jersey § 117.745 Rancocas River (Creek). (a) The following requirements apply to all bridges across the Rancocas River (Creek): (1) Public vessels of...

  1. View looking Eastnortheast at French Creek trestle, which appears at ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    View looking Eastnortheast at French Creek trestle, which appears at left center of frame. Bridge in foreground is west entrance to abandoned Phoenix iron works. - Pennsylvania Railroad, French Creek Trestle, Spanning French Creek, north of Paradise Street, Phoenixville, Chester County, PA

  2. 33 CFR 334.240 - Potomac River, Mattawoman Creek and Chicamuxen Creek; U.S. Naval Surface Weapons Center, Indian...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 33 Navigation and Navigable Waters 3 2014-07-01 2014-07-01 false Potomac River, Mattawoman Creek and Chicamuxen Creek; U.S. Naval Surface Weapons Center, Indian Head Division, Indian Head, Md. 334... and Chicamuxen Creek; U.S. Naval Surface Weapons Center, Indian Head Division, Indian Head, Md....

  3. 33 CFR 334.240 - Potomac River, Mattawoman Creek and Chicamuxen Creek; U.S. Naval Surface Weapons Center, Indian...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 33 Navigation and Navigable Waters 3 2011-07-01 2011-07-01 false Potomac River, Mattawoman Creek and Chicamuxen Creek; U.S. Naval Surface Weapons Center, Indian Head Division, Indian Head, Md. 334... and Chicamuxen Creek; U.S. Naval Surface Weapons Center, Indian Head Division, Indian Head, Md....

  4. 33 CFR 334.240 - Potomac River, Mattawoman Creek and Chicamuxen Creek; U.S. Naval Surface Weapons Center, Indian...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 33 Navigation and Navigable Waters 3 2013-07-01 2013-07-01 false Potomac River, Mattawoman Creek and Chicamuxen Creek; U.S. Naval Surface Weapons Center, Indian Head Division, Indian Head, Md. 334... and Chicamuxen Creek; U.S. Naval Surface Weapons Center, Indian Head Division, Indian Head, Md....

  5. 33 CFR 334.240 - Potomac River, Mattawoman Creek and Chicamuxen Creek; U.S. Naval Surface Weapons Center, Indian...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 3 2010-07-01 2010-07-01 false Potomac River, Mattawoman Creek and Chicamuxen Creek; U.S. Naval Surface Weapons Center, Indian Head Division, Indian Head, Md. 334... and Chicamuxen Creek; U.S. Naval Surface Weapons Center, Indian Head Division, Indian Head, Md....

  6. 33 CFR 334.240 - Potomac River, Mattawoman Creek and Chicamuxen Creek; U.S. Naval Surface Weapons Center, Indian...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 33 Navigation and Navigable Waters 3 2012-07-01 2012-07-01 false Potomac River, Mattawoman Creek and Chicamuxen Creek; U.S. Naval Surface Weapons Center, Indian Head Division, Indian Head, Md. 334... and Chicamuxen Creek; U.S. Naval Surface Weapons Center, Indian Head Division, Indian Head, Md....

  7. Grieving in the Muscogee Creek Tribe

    ERIC Educational Resources Information Center

    Walker, Andrea C.

    2008-01-01

    A qualitative, collective case study explores grieving in the Muscogee Creek tribe. Data from interviews with 27 participants, all adult members of the tribe, reveal tendencies in patterns of grieving. Commonalities include (a) individual strength and certainty of recovery; (b) focus on giving to others in the family and coping as a family unit;…

  8. Wolf Creek steam line break analysis

    SciTech Connect

    Garrett, T.J.; Neises, G.J. )

    1990-07-01

    The Steamline Break transient results are presented to the Electric Power Research Institute (EPRI) to demonstrate the RETRAN analysis of a PWR steamline break. RETRAN analysis results are compared to the Wolf Creek USAR results to demonstrate the adequacy of plant modeling techniques for the Design Basis Accident Methodology with Multidimensional Effects project coordinated by EPRI. 7 refs., 29 figs., 4 tabs.

  9. Drywell corrosion stopped at Oyster Creek

    SciTech Connect

    Lipford, B.L. ); Flynn, J.C.

    1993-11-01

    This article describes the detection of corrosion on the drywell containment vessel of Oyster Creek Nuclear Plant and the application of a protective coating to repair the drywell. The topics of the article include drywell design features, identification of the problem, initial action, drywell corrosion, failure of cathodic protection, long-term repair, and repair results.

  10. The Last Class at Daniel's Creek.

    ERIC Educational Resources Information Center

    Rice, Russ

    1987-01-01

    Time and modern education caught up with the nine pupils of Daniel's Creek Elementary School, one of the last remaining one-room schoolhouses in Kentucky. The school was closed at the end of the 1986-87 school year by the county school board, after much opposition from a citizen's group. (JMM)

  11. Bereavement Rituals in the Muscogee Creek Tribe

    ERIC Educational Resources Information Center

    Walker, Andrea C.; Balk, David E.

    2007-01-01

    A qualitative, collective case study explores bereavement rituals in the Muscogee Creek tribe. Data from interviews with 27 participants, all adult members of the tribe, revealed consensus on participation in certain bereavement rituals. Common rituals included (a) conducting a wake service the night before burial; (b) never leaving the body alone…

  12. Gold Creek: Preserving an Environmental Studies Center.

    ERIC Educational Resources Information Center

    Brooks, Suzanne

    In response to a Board of Trustees request for information and recommendations concerning the future use of the Gold Creek property owned by the Los Angeles Community College District, this report emphasizes that the use of this site for instructional field experiences enhances the quality of environmental education for the district's diverse…

  13. CAMAS CREEK STUDY, CAMAS COUNTY, IDAHO. 1979

    EPA Science Inventory

    The National Eutrophication Survey on Magic Reservoir determined that Camas Creek in Camas County, Idaho (17040220) contributed roughly 45% of the total phosphorus load and 34% of the total nitrogen load into Magic Reservoir. From this finding, a water quality study was conducte...

  14. Species status of Mill Creek Elliptio

    SciTech Connect

    Davis, G.M.; Mulvey, M.

    1993-12-31

    This report discusses environmental effects of the Savannah River Plant on aqautic populations in Mill Creek and surrounding tributaries. Of particular concern was the status of Elliptio. Genetics and phenotypic characteristics have shown that the current classification system is not adequate for these populations. The appendices characterize genetic variability at different loci, electrophoretic data, allele frequencies, sympatric species, and anatomical characters.

  15. Goodwin Creek Experimental Watershed: A Historical Perspective

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The Goodwin Creek Experimental Watershed was established in north central Mississippi by U.S. Congressional action and the U.S. Department of Agriculture National Sedimentation Laboratory has operated the watershed since October, 1981. Since then, the watershed has provided a platform for research ...

  16. OROFINO CREEK STUDY, CLEARWATER COUNTY IDAHO, 1979

    EPA Science Inventory

    In Water Year 1979, a water quality study was conducted on Orofino Creek in Clearwater County, Idaho (17060306) to determine the present condition of the stream and to assess the impact of point and nonpoint sources. The study involved approximately bi-monthly monitoring for the...

  17. 33 CFR 117.745 - Rancocas Creek.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... requirements apply to all bridges across the Rancocas River (Creek): (1) Public vessels of the United States... that any delay in opening the draw span shall not exceed ten minutes. However, if a train moving toward... bridge is given, that train may continue across the bridge and must clear the bridge interlocks...

  18. How Fern Creek Is Beating Goliath

    ERIC Educational Resources Information Center

    Donovan, Margaret; Galatowitsch, Patrick; Hefferin, Keri; Highland, Shanita

    2013-01-01

    The "David" is Fern Creek Elementary, a small urban school in Orlando, Florida, that serves an overwhelmingly disadvantaged student population. The "Goliaths" are the mountains of problems that many inner-city students face--poverty, homelessness, mobility, instability, limited parent involvement, and violent neighborhood…

  19. 33 CFR 117.815 - Westchester Creek.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... DRAWBRIDGE OPERATION REGULATIONS Specific Requirements New York § 117.815 Westchester Creek. The draw of the Bruckner Boulevard/Unionport Bridge, mile 1.7, at the Bronx, New York, shall open on signal if at least a two-hour advance notice is given to the New York City Department of Transportation (NYCDOT)...

  20. 33 CFR 117.815 - Westchester Creek.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... DRAWBRIDGE OPERATION REGULATIONS Specific Requirements New York § 117.815 Westchester Creek. The draw of the Bruckner Boulevard/Unionport Bridge, mile 1.7, at the Bronx, New York, shall open on signal if at least a two-hour advance notice is given to the New York City Department of Transportation (NYCDOT)...

  1. Intensive survey of the bay creek watershed, July 1992

    SciTech Connect

    Short, M.B.; Kelly, T.G.; Hefley, J.E.

    1995-05-01

    During July 1992, the Illinois Environmental Protection Agency conducted an intensive survey of the Bay Creek basin, a fifth order tributary in the Mississippi River North Central Basin. Bay Creek drains approximately 176.4 square miles primarily in Pike and a small portion of Calhoun counties. Four stations were sampled on the Bay Creek main stem and one on Honey Creek. The survey focused on macroinvertebrate communities, fish populations, instream habitat, fish tissue, sediment and water chemistry, and land use as well as a review of ambient water quality data from IEPA station KCA-01 near Nebo, Illinois, as tools to document the biological and chemical status of Bay Creek.

  2. Steel Creek zooplankton: L Lake/Steel Creek Biological Monitoring Program, January 1986--December 1987

    SciTech Connect

    Starkel, W.M.; Chimney, M.J.

    1988-03-01

    The objectives of this portion of the Steel Creek Biological Monitoring Program were to analyze data on macrozooplankton taxonomy and density in the Steel Creek corridor and swamp/delta, and compare the composition of the post-impoundment macrozooplankton community with pre-impoundment conditions and communities from other stream and swamp systems. The data presented in the report cover the period January 1986 through December 1987. Macrozooplankton samples were collected monthly using an 80 ..mu..m mesh net at Stations 275, 280, and 290 in the Steel Creek corridor and Stations 310, 330, 350, and 370 in the Steel Creek delta/swamp. Macrozooplankton taxa richness was highest at the two Steel Creek corridor stations nearest the L-Lake dam (Stations 275 and 280); mean values were 10.6 and 7.2 taxa collected/month in 1986 vs 12.1 and 12.3 taxa collected/month in 1987. The lowest taxa richness occurred at Steel Creek swamp/delta stations; means ranged from 1.9 to 4.2 taxa collected/month during both years.

  3. Pine Creek Ranch, FY 2001 Annual Report.

    SciTech Connect

    Berry, Mark E.

    2001-11-01

    Pine Creek Ranch was purchased in 1999 by the Confederated Tribes of Warm Springs using Bonneville Power Administration Fish and Wildlife Habitat Mitigation funds. The 25,000 acre property will be managed in perpetuity for the benefit of fish and wildlife habitat. Major issues include: (1) Restoring quality spawning and rearing habitat for stealhead. Streams are incised and fish passage barriers exist from culverts and possibly beaver dams. In addition to stealhead habitat, the Tribes are interested in overall riparian recovery in the John Day River system for wildlife habitat, watershed values and other values such as recreation. (2) Future grazing for specific management purposes. Past grazing practices undoubtedly contributed to current unacceptable conditions. The main stem of Pine Creek has already been enrolled in the CREP program administered by the USDA, Natural Resource Conservation Service in part because of the cost-share for vegetation restoration in a buffer portion of old fields and in part because of rental fees that will help the Tribes to pay the property taxes. Grazing is not allowed in the riparian buffer for the term of the contract. (3) Noxious weeds are a major concern. (4) Encroachment by western juniper throughout the watershed is a potential concern for the hydrology of the creek. Mark Berry, Habitat Manager, for the Pine Creek Ranch requested the Team to address the following objectives: (1) Introduce some of the field staff and others to Proper Functioning Condition (PFC) assessments and concepts. (2) Do a PFC assessment on approximately 10 miles of Pine Creek. (3) Offer management recommendations. (4) Provide guidelines for monitoring.

  4. Benthic macroinvertebrate richness along Sausal Creek, Oakland, California

    NASA Astrophysics Data System (ADS)

    Lara, D.; Ahumada, E.; Leon, Y.; Bracho, H.; Telles, C.

    2012-12-01

    Sausal Creek, 5.0 km long, is one of the principal watercourses in Oakland, California. The headwaters of Sausal Creek arise in the Oakland Hills and the creek flows southwestward through the city, discharging into the tidal canal that separates the island of Alameda from Oakland; the creek ultimately flows into San Francisco Bay. Due to the presence of rainbow trout, the stream health of Sausal Creek is a local conservation priority. In the present study, a survey of benthic macroinvertebrates in the creek was conducted and possible correlations between environmental variables and taxonomic richness were analyzed. Three stations along the creek were sampled using a 30.5cm 500 micron aquatic d-net, and temperature, pH and dissolved oxygen levels were measured in creek samples obtained at each station. Temperature, pH and dissolved oxygen levels remained constant along the creek. Taxonomic richness was highest at the upstream site of Palo Seco, located in an eastern section of the creek, and furthest downstream at Dimond Park, in the western portion of the creek. The Monterrey site, just west of Palo Seco was found to be significantly low in benthic macroinvertebrates. The Palo Seco and Monterrey sites are separated by Highway 13 and storm drain inputs may bring contaminants into the creek at this site. At the Monterrey site Sausal Creek follows the Hayward Fault, gas emissions or change in substrate may also affect the local population of benthic invertebrates. Further research will be conducted to determine what factors are contributing to this local anomaly.

  5. Surface-water quality in the Campbell Creek basin, Anchorage, Alaska

    USGS Publications Warehouse

    Brabets, T.P.; Wittenberg, L.A.

    1983-01-01

    Four streams in the Campbell Creek Basin were sampled during different flow conditions for an 18-month period. North Fork Campbell and South Fork Campbell Creeks drain areas virtually undisturbed by man 's activities. The other two streams, Little Campbell Creek and the main stem Campbell Creek, drain areas that have been urbanized. The water from South Fork Campbell and North Fork Campbell Creeks is of good quality and does not adversely affect the water quality of the main stem Campbell Creek. Little Campbell Creek, which has been affected by urbanization, impacts the water quality of Campbell Creek during lowland snowmelt periods when discharges from South Fork Campbell and North Fork Campbell Creeks are small. High concentrations of suspended sediment in Campbell Creek may be contributed by Little Campbell Creek. Fecal-coliform bacteria concentrations are highest at Little Campbell Creek and probably account for most of the high coliform concentrations at Campbell Creek. (USGS)

  6. Summer food habits and trophic overlap of roundtail chub and creek chub in Muddy Creek, Wyoming

    USGS Publications Warehouse

    Quist, M.C.; Bower, M.R.; Hubert, W.A.

    2006-01-01

    Native fishes of the Upper Colorado River Basin have experienced substantial declines in abundance and distribution, and are extirpated from most of Wyoming. Muddy Creek, in south-central Wyoming (Little Snake River watershed), contains sympatric populations of native roundtail chub (Gila robusta), bluehead sucker, (Catostomus discobolus), and flannelmouth sucker (C. tatipinnis), and represents an area of high conservation concern because it is the only area known to have sympatric populations of all 3 species in Wyoming. However, introduced creek chub (Semotilus atromaculatus) are abundant and might have a negative influence on native fishes. We assessed summer food habits of roundtail chub and creek chub to provide information on the ecology of each species and obtain insight on potential trophic overlap. Roundtail chub and creek chub seemed to be opportunistic generalists that consumed a diverse array of food items. Stomach contents of both species were dominated by plant material, aquatic and terrestrial insects, and Fishes, but also included gastropods and mussels. Stomach contents were similar between species, indicating high trophic, overlap. No length-related patterns in diet were observed for either species. These results suggest that creek chubs have the potential to adversely influence the roundtail chub population through competition for food and the native fish assemblage through predation.

  7. 77 FR 21722 - Gore Creek Restoration Project; Intent To Prepare an Environmental Impact Statement

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-04-11

    ... Forest Service Gore Creek Restoration Project; Intent To Prepare an Environmental Impact Statement AGENCY: Medicine Bow-Routt National Forests, Forest Service, USDA. Project: Gore Creek Restoration Project. ACTION... proposed Gore Creek Restoration Project (Gore Creek). The Gore Creek analysis area...

  8. Active channel for Fanno Creek, Oregon

    USGS Publications Warehouse

    Sobieszczyk, Steven

    2011-01-01

    Fanno Creek is a tributary to the Tualatin River and flows though parts of the southwest Portland metropolitan area. The stream is heavily influenced by urban runoff and shows characteristic flashy streamflow and poor water quality commonly associated with urban streams. This data set represents the active, wetted channel as derived from light detection and ranging (LiDAR) data and aerial photographic imagery. The wetted channel boundary is equivalent to the extent of water observed during a 2-yr high flow event.

  9. Channel stability of Turkey Creek, Nebraska

    USGS Publications Warehouse

    Rus, David L.; Soenksen, Philip J.

    1998-01-01

    Channelization on Turkey Creek and its receiving stream, the South Fork Big Nemaha River, has disturbed the equilibrium of Turkey Creek and has led to channel-stability problems, such as degradation and channel widening, which pose a threat to bridges and land adjacent to the stream. As part of a multiagency study, the U.S. Geological Survey assessed channel stability at two bridge sites on upper and middle portions of Turkey Creek by analyzing streambed-elevation data for gradation changes, comparing recent cross-section surveys and historic accounts, identifying bank-failure blocks, and analyzing tree-ring samples. These results were compared to gradation data and trend results for a U.S. Geological Survey streamflow-gaging station near the mouth of Turkey Creek from a previous study. Examination of data on streambed elevations reveals that degradation has occurred. The streambed elevation declined 0.5 m at the upper site from 1967-97. The streambed elevation declined by 3.2 m at the middle site from 1948-97 and exposed 2 m of the pilings of the Nebraska Highway 8 bridge. Channel widening could not be verified at the two sites from 1967-97, but a historic account indicates widening at the middle site to be two to three times that of the 1949 channel width. Small bank failures were evident at the upper site and a 4-m-wide bank failure occurred at the middle site in 1987 according to tree ring analyses. Examination of streambed-elevation data from a previous study at the lower site reveals a statistically significant aggrading trend from 1958-93. Further examination of these data suggests minor degradation occurred until 1975, followed by aggradation.

  10. 27 CFR 9.85 - Willow Creek.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... where the 1,000-foot contour line intersects Kirkham Creek (directly north of section 19, T.7 N./R.5E.), beginning in a southerly direction, the boundary line the 1,000-foot contour line to; (1) The point of intersection between the 1,000-foot contour line and the north section line of section 27, T.6N./R.5E.;...

  11. 27 CFR 9.85 - Willow Creek.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... where the 1,000-foot contour line intersects Kirkham Creek (directly north of section 19, T.7 N./R.5E.), beginning in a southerly direction, the boundary line the 1,000-foot contour line to; (1) The point of intersection between the 1,000-foot contour line and the north section line of section 27, T.6N./R.5E.;...

  12. 27 CFR 9.85 - Willow Creek.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... where the 1,000-foot contour line intersects Kirkham Creek (directly north of section 19, T.7 N./R.5E.), beginning in a southerly direction, the boundary line the 1,000-foot contour line to; (1) The point of intersection between the 1,000-foot contour line and the north section line of section 27, T.6N./R.5E.;...

  13. 27 CFR 9.85 - Willow Creek.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... where the 1,000-foot contour line intersects Kirkham Creek (directly north of section 19, T.7 N./R.5E.), beginning in a southerly direction, the boundary line the 1,000-foot contour line to; (1) The point of intersection between the 1,000-foot contour line and the north section line of section 27, T.6N./R.5E.;...

  14. 27 CFR 9.85 - Willow Creek.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... where the 1,000-foot contour line intersects Kirkham Creek (directly north of section 19, T.7 N./R.5E.), beginning in a southerly direction, the boundary line the 1,000-foot contour line to; (1) The point of intersection between the 1,000-foot contour line and the north section line of section 27, T.6N./R.5E.;...

  15. DRY CREEK WILDERNESS STUDY AREA, ARKANSAS.

    USGS Publications Warehouse

    Haley, Boyd R.; Stroud, Raymond B.

    1984-01-01

    The Dry Creek Wilderness Study Area covers an area of about 10 sq mi in parts of Logan, Scott, and Yell Counties, Arkansas. A mineral evaluation study of the area indicated that the area has a probable resource potential for natural gas and little promise for the occurrence of other mineral commodities. Less than 100,000 cu ft/day of natural gas is being produced from one well about 4 mi north of the area.

  16. Parachute Creek shale-oil program. [Brochure

    SciTech Connect

    Not Available

    1982-01-01

    Union Oil Company has a plan for commercial shale-oil production at the Parachute Creek area of Colorado. This brochure describes the property and the company's concept for room and pillar mining and upflow retorting. Environmental precautions will preserve and restore vegetation on disturbed land and will safeguard local streams and underground basinx. Union will assist local communities to provide housing and services. 17 figures. (DCK)

  17. 75 FR 27332 - AER NY-Gen, LLC; Eagle Creek Hydro Power, LLC; Eagle Creek Water Resources, LLC; Eagle Creek Land...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-05-14

    ... Energy Regulatory Commission AER NY-Gen, LLC; Eagle Creek Hydro Power, LLC; Eagle Creek Water Resources... Comments and Motions To Intervene May 7, 2010. On April 30, 2010, AER NY-Gen, LLC (transferor) and Eagle.... Joseph Klimaszewski, AER NY- Gen, LLC, 613 Plank Road, Forestburgh, New York, 12777; phone (845)...

  18. Steel Creek primary producers: Periphyton and seston, L-Lake/Steel Creek Biological Monitoring Program, January 1986--December 1991

    SciTech Connect

    Bowers, J.A.; Toole, M.A.; van Duyn, Y.

    1992-02-01

    The Savannah River Site (SRS) encompasses 300 sq mi of the Atlantic Coastal Plain in west-central South Carolina. Five major tributaries of the Savannah River -- Upper Three Runs Creek, Four Mile Creek, Pen Branch, Steel Creek, and Lower Three Runs Creek -- drain the site. In 1985, L Lake, a 400-hectare cooling reservoir, was built on the upper reaches of Steel Creek to receive effluent from the restart of L-Reactor and to protect the lower reaches from thermal impacts. The Steel Creek Biological Monitoring Program was designed to assess various components of the system and identify and changes due to the operation of L-Reactor or discharge from L Lake. An intensive ecological assessment program prior to the construction of the lake provided baseline data with which to compare data accumulated after the lake was filled and began discharging into the creek. The Department of Energy must demonstrate that the operation of L-Reactor will not significantly alter the established aquatic ecosystems. This report summarizes the results of six years` data from Steel Creek under the L-Lake/Steel Creek Monitoring Program. L Lake is discussed separately from Steel Creek in Volumes NAI-SR-138 through NAI-SR-143.

  19. Rock Creek Tower Painting Project : Environmental Assessment.

    SciTech Connect

    United States. Bonneville Power Administration.

    1988-10-01

    Bonneville Power Administration (BPA) built a 500-kV line across Rock Creek, a Class I trout stream about 20 miles east of Missoula, MT. Two 190-foot towers rise on either side of the Rock Creek valley, and the line between is suspended 600 feet over the valley floor. The crossing poses a hazard to passing airplanes and disrupts the natural landscape. The area where the line crosses Rock Creek is prized for its scenic beauty. In response to public demand that BPA protect the visual beauty of this area, BPA painted the towers gray to blend them best in with their natural surroundings. The issue now is to decide between either two gray towers or two orange-and-white towers. The underlying need is to resolve the conflict of pilot safety against scenic intrusion. The proposed action is to paint the gray tower aeronautical orange and white. Alternatives are to paint the orange-and-white tower back to its original gray; or leave the dilemma unresolved (the ''no-action'' alternative). 9 refs., 3 figs.

  20. Denverton Creek gas field, Solano County, California

    SciTech Connect

    Lindblom, R.G.; Jacobson, J.B.

    1988-02-01

    The Denverton Creek gas field is located in Solano County, California, 40 mi northeast of San Francisco on the west side of the Sacramento Valley. The field was discovered in 1966 by the Mobil Oil Corporation Trojan Powder 1 well from a sand of Paleocene age within the Martinez channel. During 1967 and 1968, new pool discoveries were made in other Paleocene sands. Commercial gas deliveries began in March 1967 and ceased in 1971, and the field was abandoned in 1973 with a cumulative production of 712 million ft/sup 3/ of gas from three wells. Increases in natural gas prices during the middle and late 1970s, coupled with sound geological concepts supported by improved seismic data, led to a number of discoveries in the valley. Included in this effort was reestablishment of production at Denverton Creek in 1977 by new drilling. Chevron USA, in joint ventures with Cities Service and Channel Exploration, has drilled nine wells in the field, which developed two new pool discoveries. In 1986, the field produced 5 bcf of gas from 11 wells. Gas entrapment in the Denverton Creek field is caused by a number of anomalies, including sand pinch-out, faulting, and truncations by unconformities and the Martinez channel. Although these types of entrapping mechanisms are found in other fields in the Sacramento Valley, the Denverton Creekfield is unique in that all are present in one producing area.

  1. Steel creek macroinvertebrates: L Lake/steel creek biological monitoring program January 1986--December 1987

    SciTech Connect

    O'Hop, J.R.; Lauritsen, D.; Magoulik, D.

    1988-04-01

    The macroinvertebrate community in Steel Creek was monitored at 13 sampling stations from January 1986 to December 1987 to assess the effects of L-Lake impoundment on the biological community downstream from the dam. The benthic macroinvertebrate communities were sampled monthly at 13 stations in Steel Creek using artificial substrates. Macroinvertebrates suspended in the water column were collected monthly at seven stations using drift nets. Emerging aquatic insects were sampled monthly at seven stations with floating emergence traps. Invertebrates on natural substrates (bottom sediments, snags, and macrophytes) were collected at seven stations in May and September in both 1986 and 1987. Macroinvertebrates were collected in February and August of 1986 and 1987 at 13 stations in Steel Creek using dip nets. 61 refs., 79 figs., 18 tabs.

  2. Bioassessment of Hollis Creek, Oktibbeha County, Mississippi

    USGS Publications Warehouse

    Winger, P.V.; Lasier, P.J.; Bogenrieder, K.J.

    2000-01-01

    Physical, chemical and biological components at five stations on Hollis Creek, Oktibbeha County, Mississippi were evaluated using Rapid Bioassessment Protocols (RBP) and the Sediment Quality Triad (SQT) on August 24-26, 1999, in order to assess potential biological impacts from the Starkville Waste Water Treatment Facility (WWTF) on downstream resources. Two stations were selected above the WWTF and three below. The WWTF discharges treated effluent into Hollis Creek, but during storm events raw sewage may be released. Hollis Creek is a tributary of the Noxubee River that traverses the northern portion of Noxubee National Wildlife Refuge, which is managed as bottomland hardwood forest land for the protection of fish and wildlife resources. Hollis Creek was channelized throughout most of its length, resulting in high, unstable banks, degraded stream channel and unstable substratum. The RBP scores for the habitat evaluations from each station indicated that Stations 1 and 2 had degraded habitat compared to the reference site, Station 5. Benthic macroinvertebrate and fish assemblages also indicated that the biological integrity at Stations 1 and 2 was less than that of the downstream stations. The SQT showed that Stations 1 and 2 were degraded and the most likely causes of the impairment were the elevated concentrations of polycylclic aromatic hydrocarbons and metals in the sediments; Hyalella azteca survival in pore water and growth in solid-phase sediment exposures were reduced at these upstream sites. The source of contaminants to the upper reaches appears to be storm-water runoff. The close concordance between the RBP and SQT in identifying site degradation provided a preponderance of evidence indicating that the upper reaches (Stations 1 and 2) of Hollis Creek were impacted. Biological conditions improved downstream of the WWTF, even though physical degradation steinming from channelization activities were still evident. The increased discharge and stabilized base

  3. Geologic map of the Skull Creek Quadrangle, Moffat County Colorado

    USGS Publications Warehouse

    Van Loenen, R. E.; Selner, Gary; Bryant, W.A.

    1999-01-01

    The Skull Creek quadrangle is in northwestern Colorado a few miles north of Rangely. The prominent structural feature of the Skull Creek quadrangle is the Skull Creek monocline. Pennsylvanian rocks are exposed along the axis of the monocline while hogbacks along its southern flank expose rocks that are from Permian to Upper Cretaceous in age. The Wolf Creek monocline and the Wolf Creek thrust fault, which dissects the monocline, are salient structural features in the northern part of the quadrangle. Little or no mineral potential exists within the quadrangle. A geologic map of the Lazy Y Point quadrangle, which is adjacent to the Skull Creek quadrangle on the west, is also available (Geologic Investigations Series I-2646). This companian map shows similar geologic features, including the western half of the Skull Creek monocline. The geology of this quadrangle was mapped because of its proximity to Dinosaur National Monument. It is adjacent to quadrangles previously mapped to display the geology of this very scenic and popular National Monument. The Skull Creek quadrangle includes parts of the Skull Creek Wilderness Study Area, which was assessed for its mineral resource potential.

  4. Northeast and northwest elevations. View to south Flint Creek ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Northeast and northwest elevations. View to south - Flint Creek Hydroelectric Project, Powerhouse, Approximately 3 miles southeast of Porters Corner on Powerhouse Road, Philipsburg, Granite County, MT

  5. Topographic view of McCord Creek Bridge and the Columbia River ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Topographic view of McCord Creek Bridge and the Columbia River Gorge - McCord Creek Bridge, Spanning McCord Creek at Milepost 38.62 on Old Columbia River Highway (Highway No. 30), Warrendale, Multnomah County, OR

  6. Northeastern Florida Bay estuarine creek data, water years 1996-2000

    USGS Publications Warehouse

    Hittle, Clinton D.; Zucker, Mark A.

    2004-01-01

    From October 1995 to September 2000 (water years 1996-2000), continuous 15-minute stage, water velocity, salinity, and water temperature data were collected at seven estuarine creeks that flow into northeastern Florida Bay. These creeks include West Highway Creek, Stillwater Creek, Trout Creek, Mud Creek, Taylor River, Upstream Taylor River, and McCormick Creek. Discharge was computed at 15-minute intervals using mean water velocity and the cross-sectional area of the channel. Fifteen-minute unit values are presented for comparison of the quantity, quality, timing, and distribution of flows through the creeks. Revised discharge estimation formulas are presented for three noninstrumented sites (East Highway Creek, Oregon Creek and Stillwater Creek) that utilize an improved West Highway discharge rating. Stillwater Creek and Upstream Taylor River were originally noninstrumented sites; both were fully instrumented in 1999. Discharge rating equations are presented for these sites and were developed using a simple linear regression.

  7. Hydrologic analysis of Steel Creek and L Lake and the effects of flow reduction on Steel Creek habitat

    SciTech Connect

    del Carmen, B.R.; Paller, M.H.

    1993-12-31

    This report was prepared to support a proposal to eliminate the EIS mandated spring flow requirements in Steel Creek below L Lake. The base flow in Steel Creek below L Lake was estimated using historical data. The water balance of L Lake was studied to evaluate the effects of flow reduction on the Steel Creek hydrologic system. The base flow in Steel Creek below L Lake is estimated as 0.28 cms (10 cfs). A reduction in L Lake discharge to 0.28 cms will result in a fish community similar to the one that existed before the impoundment of L Lake.

  8. A Creek to Bay Biological Assessment in Oakland, California

    NASA Astrophysics Data System (ADS)

    Ahumada, E.; Ramirez, N.; Lopez, A.; Avila, M.; Ramirez, J.; Arroyo, D.; Bracho, H.; Casanova, A.; Pierson, E.

    2011-12-01

    In 2007, the Surface Water Ambient Monitoring Program (SWAMP) assessed the impact of trash on water quality in the Peralta Creek which is located in the Fruitvale district of Oakland, CA. This 2011 follow-up study will take further steps in evaluating the physical and biological impacts of pollution and human development on Peralta Creek and in the San Leandro Bay, where the Creek empties into the larger San Francisco Bay estuary. This study will utilize two forms of biological assessment in order to determine the level of water quality and ecosystem health of Peralta Creek and San Leandro Bay in Oakland, California. A Rapid Bioassesment Protocal (RBP) will be used as the method of biological assessment for Peralta Creek. RBP uses a biotic index of benthic macroinvertebrates to provide a measure of a water body's health. Larval trematodes found in two mud snails (Ilynassa obsoleta and Cerithidea californica) will be used to evaluate the health of the San Leandro Bay. Due to the complex life cycle of trematodes, the measure of trematode diversity and richness in host species serves as an indicator of estuarine health (Huspeni 2005). We have completed the assessment of one section of Peralta Creek, located at 2465 34th Avenue, Oakland, CA 94601. Abundance results indicate a moderately healthy creek because there were high levels of pollution tolerant benthic macroinvertebrates. The tolerant group of benthic macroinvertebrates includes such organisms as flatworms, leeches, and scuds. This is possibly due to this section of the creek being pumped up to the surface from culverts impacting the macroinvertebrate's life cycle. Another contributing factor to creek health is the amount of organic debris found in the creek, which inhibits the flow and oxygenation of the water, allowing for more pollution tolerant aquatic insects to persist. Further investigation is being conducted to fully assess the Peralta Creek watershed; from the preliminary results one can surmise that

  9. Hydrologic data collection at Crowders Creek and Steele Creek, York County, South Carolina, 1991-92

    USGS Publications Warehouse

    Gissendanner, John W.

    1994-01-01

    Rapid industrial and urban growth is anticipated in the vicinity of Crowders Creek near Clover, S.C., and Steele Creek near Fort Mill, S.C. These subbasins are in the Catawba River Basin in York County, S.C. To obtain baseline information on these basins prior to urbanization, gaging stations 02145642 (Crowders Creek near Clover, S.C.) and 021467801 (Steele Creek near Fort Mill, S.C.) were established to collect streamflow and water-quality data. Continuous stream-stage and streamflow data were collected during the periods of March 23, 1991 to September 30, 1992, and May 29, 1991 to September 30, 1992, for stations 02145642 and 021467801, respectively. Average streamflows for stations 02145642 and 021467801 for the study period were 80.5 cubic feet per second and 28.6 cubic feet per second, respectively. Water-quality data were collected on four separate occasions at each gage site; two samplings during low-flow events and two samplings during high-flow events. Fecal coliform concentrations exceeded minimum standards for freshwater with other physical and chemical constituents meeting South Carolina Department of Health and Environmental Control standards.

  10. WEST CLEAR CREEK ROADLESS AREA, ARIZONA.

    USGS Publications Warehouse

    Ulrich, George E.; Bielski, Alan M.

    1984-01-01

    Results of geologic, geochemical, and aeromagnetic studies and review of mineral records and prospect examination for the West Clear Creek Roadless Area, Arizona, indicate that there is little likelihood of the occurrence of mineral or energy resources. No concentrations of minerals were identified within the boundary of the area. A small manganese deposit occurs 1-3 mi east of the area but does not extend into the area. Slightly anomalous values for certain trace metals were found in samples taken within the area, but do not indicate the presence of metallic resources. Gypsum, basaltic cinders, and sandstone occur in the area.

  11. ROCK CREEK, IDAHO WATER QUALITY STATUS REPORT, 1970-1984

    EPA Science Inventory

    The study was designed to determine the characteristics and amounts of industrial and municipal wastes discharged to Rock Creek, Idaho (17040212) and subsequently into the Snake River and to evaluate the effects of these wastes on the biota and water quality of Rock Creek. Indus...

  12. 33 CFR 117.153 - Corte Madera Creek.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 1 2010-07-01 2010-07-01 false Corte Madera Creek. 117.153 Section 117.153 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY BRIDGES DRAWBRIDGE OPERATION REGULATIONS Specific Requirements California § 117.153 Corte Madera Creek. The draw...

  13. 33 CFR 117.153 - Corte Madera Creek.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 33 Navigation and Navigable Waters 1 2011-07-01 2011-07-01 false Corte Madera Creek. 117.153 Section 117.153 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY BRIDGES DRAWBRIDGE OPERATION REGULATIONS Specific Requirements California § 117.153 Corte Madera Creek. The draw...

  14. 78 FR 76750 - Drawbridge Operation Regulation; Chambers Creek, Steilacoom, WA

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-12-19

    ...The Coast Guard has issued a temporary deviation from the operating schedule that governs the Burlington Northern Santa Fe (BNSF) Chambers Creek Railway Bridge across Chambers Creek, mile 0.0, at Steilacoom, WA. The deviation is necessary to allow BNSF to perform maintenance and upgrade items to this vertical lift bridge in support of Positive Train Control requirements per the Rail Safety......

  15. "Bridge #6 Rock Creek: Castiron 48" pipe lines to ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    "Bridge #6 - Rock Creek: Cast-iron 48" pipe lines to Gravity - 1859." Construction photo of Pennsylvania Avenue Bridge, 1859. Photograph courtesy Washington Aqueduct Division, U.S. Army Corps of Engineers - Pennsylvania Avenue Bridge, Spanning Rock Creek & Potomac Parkway, Washington, District of Columbia, DC

  16. DEEP CREEK, LATAH COUNTY, IDAHO - WATER QUALITY STATUS REPORT, 1988

    EPA Science Inventory

    Deep Creek, Idaho (17060108) had been identified as a first priority stream segment in the Nonpoint Source Pollution Abatement program. Current designated uses for Deep Creek are as a domestic and agricultural water supply, primary and secondary contact recreation, as well as co...

  17. Hydrologic data for Mountain Creek, Trinity River basin, Texas, 1976

    USGS Publications Warehouse

    Buckner, H.D.

    1978-01-01

    The total drainage area of Mountain Creek, Texas, is 304 sq mi. The stream-gaging stations on Mountain Creek near Cedar Hill and Walnut Creek near Mansfield provide hydrologic data to define runoff characteristics from small drainage basins. They also serve as index stations for inflow into the reservoir and provide operational data for the reservoir. In addition, the station Walnut Creek near Mansfield is equipped with a recording rain gage. The stage station near Duncanville provides data pertinent to operation of the gates in the Mountain Creek Lake Dam. The reservoir-content station at the dam provides records of reservoir state and contents. The stream-gaging station Mountain Creek at Grand Prairie provides records of outflow from Mountain Creek Lake and the basin. Basin outflow for the 1976 water year was 78,660 acre-feet which is only 1,140 acre-feet above the 16-year (1960-76) average of 77,520 acre-feet. Storage in Mountain Creek Lake showed a net gain of 760 acre-feet during the water year. Rainfall over the study area for the 1976 water year was about 32 inches, which is about 2 inches below the long-term mean rainfall (1960-75) for the area. (Woodard-USGS)

  18. RILEY CREEK, IDAHO WATER QUALITY STATUS REPORT, 1975-1976

    EPA Science Inventory

    The report presents a review of Riley Creek, Idaho (17040212) water quality data collected from September 1975 through September 1976. The creek meets all water quality standards except for total and fecal coliform bacteria. Sources of coliform bacteria include fish hatcheries,...

  19. Recovery of a PCB-Contaminated Creek Fish Community

    EPA Science Inventory

    Polychlorinated Biphenyls (PCBs) from the Sangamo-Weston Superfund Site near Clemson, South Carolina, USA, were released into the Twelvemile Creek until the early 1990s. PCB concentrations in fish in this creek have remained elevated: levels in six target fish species are still a...

  20. BILLINGSLEY CREEK, GOODING COUNTY, IDAHO. WATER QUALITY STATUS REPORT, 1984

    EPA Science Inventory

    Billingsley Creek in Gooding County, Idaho (17040212) has been identified as a stream where fish farm discharges and other land use practices are degrading water quality. The Idaho Department of Health and Welfare, Division of Environment sampled Billingsley Creek to assess in-s...

  1. 33 CFR 117.115 - Three Mile Creek.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 1 2010-07-01 2010-07-01 false Three Mile Creek. 117.115 Section 117.115 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY BRIDGES DRAWBRIDGE OPERATION REGULATIONS Specific Requirements Alabama § 117.115 Three Mile Creek. (a) The draw...

  2. 78 FR 938 - Burton Creek Hydro Inc., Sollos Energy, LLC'

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-01-07

    ... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF ENERGY Federal Energy Regulatory Commission Burton Creek Hydro Inc., Sollos Energy, LLC' Notice of Transfer of Exemption..., 1985,\\1\\ has been transferred to Sollos Energy, LLC. The project is located on Burton Creek in...

  3. 33 CFR 117.705 - Beaver Dam Creek.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 1 2010-07-01 2010-07-01 false Beaver Dam Creek. 117.705 Section 117.705 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY BRIDGES DRAWBRIDGE OPERATION REGULATIONS Specific Requirements New Jersey § 117.705 Beaver Dam Creek. The draw of...

  4. 33 CFR 117.705 - Beaver Dam Creek.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 33 Navigation and Navigable Waters 1 2014-07-01 2014-07-01 false Beaver Dam Creek. 117.705 Section 117.705 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY BRIDGES DRAWBRIDGE OPERATION REGULATIONS Specific Requirements New Jersey § 117.705 Beaver Dam Creek. The draw of...

  5. 33 CFR 117.705 - Beaver Dam Creek.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 33 Navigation and Navigable Waters 1 2012-07-01 2012-07-01 false Beaver Dam Creek. 117.705 Section 117.705 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY BRIDGES DRAWBRIDGE OPERATION REGULATIONS Specific Requirements New Jersey § 117.705 Beaver Dam Creek. The draw of...

  6. 33 CFR 117.705 - Beaver Dam Creek.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 33 Navigation and Navigable Waters 1 2013-07-01 2013-07-01 false Beaver Dam Creek. 117.705 Section 117.705 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY BRIDGES DRAWBRIDGE OPERATION REGULATIONS Specific Requirements New Jersey § 117.705 Beaver Dam Creek. The draw of...

  7. 33 CFR 117.705 - Beaver Dam Creek.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 33 Navigation and Navigable Waters 1 2011-07-01 2011-07-01 false Beaver Dam Creek. 117.705 Section 117.705 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY BRIDGES DRAWBRIDGE OPERATION REGULATIONS Specific Requirements New Jersey § 117.705 Beaver Dam Creek. The draw of...

  8. 76 FR 37267 - Safety Zone, Pantego Creek; Belhaven, NC

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-06-27

    ...The Coast Guard is establishing a temporary safety zone on the Pantego Creek, Belhaven, NC. This action is necessary to protect the life and property of the maritime public from the hazards posed by fireworks displays. This zone is intended to restrict vessels from a portion of the Pantego Creek during the Belhaven Fourth of July...

  9. 2. Rear view of upper dam with Millstone Creek flowing ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    2. Rear view of upper dam with Millstone Creek flowing over overspill. Photograph taken from west bank of Millstone Creek. VIEW SOUTHEAST - Loleta Recreation Area, Upper Dam, 6 miles Southeast of interesection of State Route 24041 & State Route 66, Loleta, Elk County, PA

  10. Pataha Creek Model Watershed : 1998 Habitat Conservation Projects.

    SciTech Connect

    Bartels, Duane G.

    1999-12-01

    The projects outlined in detail on the attached project reports are a few of the many projects implemented in the Pataha Creek Model Watershed since it was selected as a model in 1993. 1998 was a year where a focused effort was made to work on the upland conservation practices to reduce the sedimentation into Pataha Creek.

  11. 2. LOOKING SOUTHEAST FROM THE WEST BANK OF HAW CREEK. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    2. LOOKING SOUTHEAST FROM THE WEST BANK OF HAW CREEK. A CLOSE-UP PHOTO OF THE NORTH SIDE OF THE BRIDGE, ITS PARAPETS AND THE UTILITY PIPES SUSPENDED FROM ITS OVERHANG. - Seventh Street Bridge, Spanning Haw Creek at Seventh Street, Columbus, Bartholomew County, IN

  12. 8. CLOSEUP OF THE GATES ON THE TOBY CREEK OUTLET ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    8. CLOSEUP OF THE GATES ON THE TOBY CREEK OUTLET AND THE OUTLET OF THE PUMP DISCHARGE CHANNEL, LOOKING NORTHEAST. - Wyoming Valley Flood Control System, Woodward Pumping Station, East of Toby Creek crossing by Erie-Lackawanna Railroad, Edwardsville, Luzerne County, PA

  13. 2. 'SANTA ANA RIVER AT CHINO CREEK, RIVERSIDE COUNTY.' This ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    2. 'SANTA ANA RIVER AT CHINO CREEK, RIVERSIDE COUNTY.' This is an oblique aerial view to the north, looking over the flooded fields between Chino Creek and the Santa Ana River, just upstream of the Prado Dam site. File number written on negative: R & H 80 024. - Prado Dam, Santa Ana River near junction of State Highways 71 & 91, Corona, Riverside County, CA

  14. 33. Site Plan: Custer Air Force Station, Battle Creek, Michigan, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    33. Site Plan: Custer Air Force Station, Battle Creek, Michigan, FD Radar Facilities-FPS-27, Electrical Plot Plan and Duet Details, USACOE, not date. - Fort Custer Military Reservation, P-67 Radar Station, .25 mile north of Dickman Road, east of Clark Road, Battle Creek, Calhoun County, MI

  15. Bridge 223, view looking east up Rock Creek Canyon at ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Bridge 22-3, view looking east up Rock Creek Canyon at Milepost 22.82. The line passes through tunnel 4 onto Bridge 22-3 and heads eastward up Rock Creek Canyon out onto the Camas Prairie - Camas Prairie Railroad, Second Subdivision, From Spalding in Nez Perce County, through Lewis County, to Grangeville in Idaho County, Spalding, Nez Perce County, ID

  16. WATER QUALITY STATUS REPORT, VINYARD CREEK, JEROME COUNTY, IDAHO. 1986

    EPA Science Inventory

    During 1986, a survey was done on Vinyard Creek (17040212) to assess water quality conditions and beneficial use impairment due to agricultural pollutants. During the 1986 irrigation season, Vinyard Creek transported an estimated 780 tons of sediment to the Snake River. Most of...

  17. DRY CREEK, IDAHO WATER QUALITY STATUS REPORT, 1976-1977

    EPA Science Inventory

    Water quality samples were collected monthly at one station in Water Year 1977 to determine the water quality status of Dry Creek in Twin Falls and Cassia Counties, Idaho (17040212). The stream was sampled near the mouth upstream from Murtaugh Lake. The section of Dry Creek abo...

  18. MIDDLE POTLATCH CREEK, LATAH COUNTY, IDAHO - PRELIMINARY INVESTIGATION REPORT, 1993

    EPA Science Inventory

    The 1992 Idaho Water Quality Status Report listed the Middle Potlatch Creek (17060306) as an Idaho Impaired Stream Segment Requiring Further Assessment and listed the creek as a water body not fully supporting at least one beneficial use. This preliminary resource assessment foc...

  19. 33 CFR 117.1001 - Cat Point Creek.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 1 2010-07-01 2010-07-01 false Cat Point Creek. 117.1001 Section 117.1001 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY BRIDGES DRAWBRIDGE OPERATION REGULATIONS Specific Requirements Virginia § 117.1001 Cat Point Creek. The draw of...

  20. 33 CFR 117.1001 - Cat Point Creek.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 33 Navigation and Navigable Waters 1 2014-07-01 2014-07-01 false Cat Point Creek. 117.1001 Section 117.1001 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY BRIDGES DRAWBRIDGE OPERATION REGULATIONS Specific Requirements Virginia § 117.1001 Cat Point Creek. The draw of...

  1. 33 CFR 117.1001 - Cat Point Creek.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 33 Navigation and Navigable Waters 1 2011-07-01 2011-07-01 false Cat Point Creek. 117.1001 Section 117.1001 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY BRIDGES DRAWBRIDGE OPERATION REGULATIONS Specific Requirements Virginia § 117.1001 Cat Point Creek. The draw of...

  2. 33 CFR 117.1001 - Cat Point Creek.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 33 Navigation and Navigable Waters 1 2013-07-01 2013-07-01 false Cat Point Creek. 117.1001 Section 117.1001 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY BRIDGES DRAWBRIDGE OPERATION REGULATIONS Specific Requirements Virginia § 117.1001 Cat Point Creek. The draw of...

  3. 33 CFR 117.1001 - Cat Point Creek.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 33 Navigation and Navigable Waters 1 2012-07-01 2012-07-01 false Cat Point Creek. 117.1001 Section 117.1001 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY BRIDGES DRAWBRIDGE OPERATION REGULATIONS Specific Requirements Virginia § 117.1001 Cat Point Creek. The draw of...

  4. Major-ion, nutrient, and trace-element concentrations in the Steamboat Creek basin, Oregon, 1996

    USGS Publications Warehouse

    Rinella, Frank A.

    1998-01-01

    Bottom-sediment concentrations of antimony, arsenic, cadmium, copper, lead, mercury, zinc, and organic carbon were largest in City Creek. In City Creek and Horse Heaven Creek, concentrations for 11 constituents--antimony, arsenic, cadmium, copper, lead, manganese (Horse Heaven Creek only), mercury, selenium, silver, zinc, and organic carbon (City Creek only)--exceeded concentrations considered to be enriched in streams of the nearby Willamette River Basin, whereas in Steamboat Creek only two trace elements--antimony and nickel--exceeded Willamette River enriched concentrations. Bottom-sediment concentrations for six of these constituents in City Creek and Horse Heaven Creek--arsenic, cadmium, copper, lead, mercury, and zinc--also exceeded interim Canadian threshold effect level (TEL) concentrations established for the protection of aquatic life, whereas only four constituents between Singe Creek and Steamboat Creek--arsenic, chromium, copper (Singe Creek only), and nickel--exceeded the TEL concentrations.

  5. Unocal restarts Parachute Creek plant after turnaround

    SciTech Connect

    Not Available

    1986-12-01

    In late November, Unocal Corporation restarted its Parachute Creek shale oil project after a two-month turnaround, or overhaul operation. The plant is again operating at about 50% of its 10,000 barrel/day design capacity. This is the maximum rate which has been achieved for long periods of time. Unocal has been continuing to explore the possibility of adding a fluidized bed combustor to the retorting system. A decision on whether to proceed with building the FBC is expected to be made by July, 1987. The Colorado Mined Land Reclamation Board has allowed Unocal to make changes at Parachute Creek to better accommodate the handling of spent shale. These changes are described. Operating problems at the plant from start-up and modifications required are reviewed. Upgrading of the shale oil syncrude cannot be done at the Gary, Indiana refinery as planned. Current plans are to truck it to Utah, place it in a pipeline to Midland, Texas, then pipe it through Cushing, Oklahoma to the Unocal refinery in Lemont, Illinois.

  6. Sources of baseflow for the Minnehaha Creek Watershed, Minnesota, US

    NASA Astrophysics Data System (ADS)

    Nieber, J. L.; Moore, T. L.; Gulliver, J. S.; Magner, J. A.; Lahti, L. B.

    2013-12-01

    Minnehaha Creek is among the most valued surface water features in the Minneapolis, MN metro area, with a waterfall as it enters the Minnehaha Creek park. Flow in Minnehaha Creek is heavily dependent on discharge from the stream's origin, Lake Minnetonka, the outlet of which is closed during drought periods to maintain water elevations in the lake resulting in low- (or no-) flow conditions in the creek. Stormwater runoff entering directly to the creek from the creek's largely urbanized watershed exacerbates extremes in flow conditions. Given the cultural and ecological value of this stream system, there is great interest in enhancing the cultural and ecosystem services provided by Minnehaha Creek through improvements in streamflow regime by reducing flashiness and sustaining increased low-flows. Determining the potential for achieving improvements in flow requires first that the current sources of water contributing to low-flows in the creek be identified and quantified. Work on this source identification has involved a number of different approaches, including analyses of the streamflow record using a hydrologic system model framework, examination of the Quaternary and bedrock geology of the region, estimation of groundwater-surface water exchange rates within the channel using hyporheic zone temperature surveys and flux meter measurements, and analyses of the stable isotopes of oxygen and hydrogen in samples of stream water, groundwater, and rainfall. Analysis of baseflow recessions using the method of Brutsaert and Nieber (1977) indicates that only a small portion of the catchment, probably the riparian zone, contributes to baseflows. This result appears to be supported by the observation that the limestone/shale bedrock layer underlying the surficial aquifer has a non-zero permeability, and in a significant portion of the watershed the layer has been eroded away leaving the surficial aquifer ';bottomless' and highly susceptible to vertical (down) water loss

  7. Water Quality of Peralta and Courtland Creek Oakland, CA

    NASA Astrophysics Data System (ADS)

    Ahumada, A.; Zhen, K. L.; Ponce, X.; Johnson, A.; Varela, N.; Quintero, D.; Hernandez, G.; Oghogho, E.

    2014-12-01

    Authors: Allan Ahumada, Aminah Butler, Mellany Davis, Yarely Guzman, Micah Johnson, Xochitl Ponce, Kim Zhen Abstract: Beginning in the summer of 2012 and continuing to the present time our group has been assessing the water quality of Courtland Creek, which flows from Northeast to Southwest in East Oakland, California. During the summer of 2014 we began assessing the water quality at nearby Peralta Creek to compare the health of Courtland Creek with another one within the same watershed. In making our assessment we have analyzed samples collected from three different sites along both creeks for Nitrate, Phosphate, and Ammonia concentration levels. Additionally, we conducted benthic macroinvertebrate surveys at one site along each creek. Preliminary results indicate that nitrate levels in Courtland Creek waters are very high, which we believe is the result of human and animal waste entering into the creek. There were also unusually high levels of Phosphate and Ammonia detected in creek waters. Such high concentrations were noted in a past study and in an attempt to address this problem we initiated a native plant restoration project at one particular site located at the intersection of Courtland and Thompson avenues. This effort has resulted in a reduction in levels of Nitrate, Phosphate and Ammonia. The average levels of these compounds in waters collected near the restoration site were lower than those found in samples collected at other sites. However, they are still well above levels that are harmful to invertebrates and fish. Nitrate, Phosphate and Ammonia concentration levels in samples collected from Peralta Creek were significantly lower than those collected from Courtland Creek. For example, the maximum level of nitrate detected in Courtland Creek waters was 50 PPM while the maximum found in Peralta Creek waters was 15 PPM. We have concluded that the observed high levels of various compounds are the result of animal waste and human feces spilling directly

  8. Stratigraphy and depositional history of Coyote Creek-Miller Creek Trend, Lower Cretaceous Fall River formation, Powder River Basin, Wyoming

    SciTech Connect

    Ryer, T.A.; Gustason, E.R.

    1985-05-01

    The Coyote Creek-Miller Creek trend produces high-gravity, low-sulfur oil from a series of Fall River fields in an area generally characterized by west-southwestward monoclinal dip. The trend includes, from south to north, the Coyote Creek South, Coyote Creek, Donkey Creek, Kummerfeld, and Miller Creek fields. The Wood and West Moorcroft fields produce oil from very similar Fall River traps located several miles east and northeast, respectively, of Miller Creek. Only Donkey Creek includes structural closure; all of the other fields produce from purely stratigraphic traps. The reservoir sandstones are characterized by upward-fining sequences. These sequences locally replace and are generally easily distinguishable from two regionally correlative upward-coarsening sequences. Analyses of cores and nearby outcrops indicate that the upward-fining sequences accumulated on point bars of a meandering river; the upward-coarsening sequences were deposited on the fronts of northwestward-prograding deltas. Detailed mapping of the fluvial and delta-front facies demonstrates that the Coyote Creek-Miller Creek trend, together with the Wood and West Moorcroft fields, represents a meander-belt system that was contemporaneous with the younger of the two delta-front units. Each of the stratigraphic-type fields occurs at a convexity along the eastern edge of the irregularly shaped meander belt; each consists of numerous point bars. Clay plugs, which resulted from infilling of abandoned meander loops, were preferentially preserved along the margins of the meander belt, where they now serve as updip permeability barriers between the oil-bearing fluvial and water-wet delta-front sandstones.

  9. Hydrologic data from Roan Creek and Parachute Creek basins, northwestern Colorado

    USGS Publications Warehouse

    Adams, D.B.; Goddard, K.E.; Patt, R.O.; Galyean, K.C.

    1986-01-01

    Hydrologic data obtained from a comprehensive study of the Roan Creek and Parachute Creek basins are presented in this report. The purpose of this study was to inventory and appraise the predevelopment hydrologic conditions in these basins. The study was conducted from October 1975 through September 1981 and was one of several studies of oil-shale areas in the Western United States conducted by the U.S. Geological Survey. Data collected prior to October 1975 are presented, and references to other reports covering this area are given. Data collected include information from 58 wells, 286 springs, 14 streamflow-gaging stations and 24 miscellaneous surface water sites. Surface-water discharge, chemical-quality, and sediment data from streamflow-gaging stations in the basin are published in other reports listed in the references. (USGS)

  10. +2 Valence Metal Concentrations in Lion Creek, Oakland, California

    NASA Astrophysics Data System (ADS)

    Vazquez, P.; Zedd, T.; Chagolla, R.; Dutton-Starbuck, M.; Negrete, A.; Jinham, M.; Lapota, M.

    2012-12-01

    Seven major creeks exist within the City of Oakland, California. These creeks all flow in the southwest direction from forested hills down through densely populated streets where they become susceptible to urban runoff. Lion Creek has been diverted to engineered channels and underground culverts and runs directly under our school (Roots International) before flowing into the San Leandro Bay. One branch of the creek begins near an abandoned sulfur mine. Previous studies have shown that extremely high levels of lead, arsenic and iron exist in this portion of the creek due to acid mine drainage. In this study +2 valence heavy metals concentration data was obtained from samples collected from a segment of the creek located approximately 2.8 miles downstream from the mine. Concentrations in samples collected at three different sites along this segment ranged between 50 ppb and 100 ppb. We hypothesize that these levels are related to the high concentration of +2 valence heavy metals at the mining site. To test this hypothesis, we have obtained samples from various locations along the roughly 3.75 miles of Lion Creek that are used to assess changes in heavy metals concentration levels from the mining site to the San Leandro Bay.

  11. Analytical results and sample locality maps of stream-sediment, heavy-mineral-concentrate, and rock samples from the Little Jacks Creek (ID-111-006), Big Jacks Creek (ID-111-007C), Duncan Creek (ID-111-0007B), and Upper Deep Creek (ID-111-044) Wilderness Study Areas, Owyhee County, Idaho

    SciTech Connect

    Erickson, M.S.; Gent, C.A.; Bradley, L.A.; King, H.D.

    1989-01-01

    A U.S. Geological Survey report detailing the analytical results and sample locality maps of stream-sediment, heavy-mineral-concentrate, and rock samples from the Little Jacks Creek, Big Jacks Creek, Duncan Creek, and Upper Deep Creek Wilderness Study Areas, Owyhee County, Idaho

  12. VALIDITY OF EFFLUENT AND AMBIENT TOXICITY TESTS FOR PREDICTING BIOLOGICAL IMPACT, SKELETON CREEK, ENID, OKLAHOMA

    EPA Science Inventory

    Skeleton Creek was studied in August, 1983 and was the fourth site study. A small creek, Boggy Creek receives discharges from both an oil refinery and a publicly owned treatment works (POTW) prior to its confluence with Skeleton Creek. A fertilizer processing plant discharge is l...

  13. 33 CFR 334.475 - Brickyard Creek and tributaries and the Broad River at Beaufort, SC.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... the MCAS to the intersection of Salt Creek with U.S. Highway 21, latitude 32.45047°, longitude 80.73153°, thence back down the southern creek edge of Salt and Albergottie Creeks, thence back to the... latitude 32.452376°, longitude 80.708263°. (5) That area contiguous to Salt Creek, situated within...

  14. 33 CFR 334.475 - Brickyard Creek and tributaries and the Broad River at Beaufort, SC.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... the MCAS to the intersection of Salt Creek with U.S. Highway 21, latitude 32.45047°, longitude 80.73153°, thence back down the southern creek edge of Salt and Albergottie Creeks, thence back to the... latitude 32.452376°, longitude 80.708263°. (5) That area contiguous to Salt Creek, situated within...

  15. 33 CFR 334.475 - Brickyard Creek and tributaries and the Broad River at Beaufort, SC.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... the MCAS to the intersection of Salt Creek with U.S. Highway 21, latitude 32.45047°, longitude 80.73153°, thence back down the southern creek edge of Salt and Albergottie Creeks, thence back to the... latitude 32.452376°, longitude 80.708263°. (5) That area contiguous to Salt Creek, situated within...

  16. 33 CFR 334.475 - Brickyard Creek and tributaries and the Broad River at Beaufort, SC.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... the MCAS to the intersection of Salt Creek with U.S. Highway 21, latitude 32.45047°, longitude 80.73153°, thence back down the southern creek edge of Salt and Albergottie Creeks, thence back to the... latitude 32.452376°, longitude 80.708263°. (5) That area contiguous to Salt Creek, situated within...

  17. 33 CFR 334.475 - Brickyard Creek and tributaries and the Broad River at Beaufort, SC.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... the MCAS to the intersection of Salt Creek with U.S. Highway 21, latitude 32.45047°, longitude 80.73153°, thence back down the southern creek edge of Salt and Albergottie Creeks, thence back to the... latitude 32.452376°, longitude 80.708263°. (5) That area contiguous to Salt Creek, situated within...

  18. Hydrologic data for Soldier Creek Basin, Kansas

    USGS Publications Warehouse

    Carswell, William J., Jr.

    1978-01-01

    Selected hydrologic data collected in the Soldier Creek basin in northeastern Kansas are available on magnetic tape in card-image format. Data on the tape include water discharge in fifteen-minute and daily time intervals; rainfall in fifteen-minute and daily time intervals; concentrations and particle sizes of suspended sediment; particle sizes of bed material; ground-water levels; and chemical quality of water in concentrations of selected constituents. The data-collection system includes: (1) 7 recording streamflow stations; (2) 5 recording rainfall stations; (3) 51 nonrecording rainfall stations located within and adjacent to the basin; (4) 31 ground-water observation wells (two recording); and (5) intermittent chemical quality of water and sediment sampling sites. Examples of the information on magnetic tape for each type of data collected are presented in computer-printout format. (Woodard-USGS)

  19. FLINT CREEK RANGE WILDERNESS STUDY AREA, MONTANA.

    USGS Publications Warehouse

    Ericksen, George E.; Marks, Lawrence Y.

    1984-01-01

    A mineral survey of the Flint Creek Range Wilderness study area, Montana shows the presence of mineral deposits. By far the most important are low-grade, potentially large, contact-metamorphic tungsten deposits. A large stockwork molybdenum deposit is probably low in grade. The areas of these tungsten and molybdenum deposits have substantiated mineral-resource potential. A multimillion ton phosphate-rock deposit occurs in an area of substantiated resource potential in the Permian Phosphoria Formation in the south-central part of the study area. Deposits of massive quartz, perhaps suitable for smelter flux, a demonstrated resource. Small scattered silver- and gold-bearing veins are present, but no resource potential was identified.

  20. CITICO CREEK WILDERNESS STUDY AREA, TENNESSEE.

    USGS Publications Warehouse

    Slack, John F.; Behum, Paul T.

    1984-01-01

    A mineral-resource survey of the Citico Creek Wilderness Study Area, in easternmost Tennessee, indicated that the area offers little promise for the occurrence of metallic mineral resources. Geochemical sampling found traces of gold, copper, cobalt, barium, arsenic, lead, zinc, and thorium in rocks, stream sediments, and panned concentrates, but not in sufficient quantities to indicate the presence of metallic mineral deposits. The only apparent resources are nonmetallic commodities including rock suitable for construction materials, and small amounts of sand and gravel; however, these commodities are found in abundance outside the study area. The potential for oil and natural gas at great depths could not be evaluated by this study. Deep drilling would test the potential for hydrocarbon resources underlying the metamorphic rocks.

  1. 1. HEAD GATE OF THE SAND CREEK LATERAL AT THE ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    1. HEAD GATE OF THE SAND CREEK LATERAL AT THE HIGH LINE CANAL ON THE SOUTH END OF THE PEORIA STREET BRIDGE. - Highline Canal, Sand Creek Lateral, Beginning at intersection of Peoria Street & Highline Canal in Arapahoe County (City of Aurora), Sand Creek lateral Extends 15 miles Northerly through Araphoe County, City & County of Denver, & Adams County to its end point, approximately 1/4 mile Southest of intersectioin of D Street & Ninth Avenue in Adams County (Rocky Mountain Arsenal, Commerce City Vicinity), Commerce City, Adams County, CO

  2. Respirators, internal dose, and Oyster Creek

    SciTech Connect

    Michal, R.

    1996-06-01

    This article looks at the experience of Oyster Creek in relaxing the requirements for the use of respirators in all facets of plant maintenance, on the overall dose received by plant maintenance personnel. For Roger Shaw, director of radiological controls for three years at GPU Nuclear Corporation`s Oyster Creek nuclear plant the correct dose balance is determined on a job-by-job basis: Does the job require a respirator, which is an effective means of decreasing worker inhalation of airborne radioactive particles? Will wearing a respirator slow down a worker, consequently increasing whole body radiation exposure by prolonging the time spent in fields of high external radiation? How does respiratory protection affect worker safety and to what degree? While changes to the Nuclear Regulatory Commission`s 10CFR20 have updated the radiation protection requirements for the nuclear industry, certain of the revisions have been directed specifically at reducing worker dose, Shaw said. {open_quotes}It basically delineates that dose is dose,{close_quotes} Shaw said, {open_quotes}regardless of whether it is acquired externally or internally.{close_quotes} The revision of Part 20 changed the industry`s attitude toward internal dose, which had always been viewed negatively. {open_quotes}Internal dose was always seen as preventable by wearing respirators and by using engineering techniques such as ventilation control and decontamination,{close_quotes} Shaw said, {open_quotes}whereas external dose, although reduced where practical, was seen as a fact of the job.{close_quotes}

  3. Big Canyon Creek Ecological Restoration Strategy.

    SciTech Connect

    Rasmussen, Lynn; Richardson, Shannon

    2007-10-01

    He-yey, Nez Perce for steelhead or rainbow trout (Oncorhynchus mykiss), are a culturally and ecologically significant resource within the Big Canyon Creek watershed; they are also part of the federally listed Snake River Basin Steelhead DPS. The majority of the Big Canyon Creek drainage is considered critical habitat for that DPS as well as for the federally listed Snake River fall chinook (Oncorhynchus tshawytscha) ESU. The Nez Perce Soil and Water Conservation District (District) and the Nez Perce Tribe Department of Fisheries Resources Management-Watershed (Tribe), in an effort to support the continued existence of these and other aquatic species, have developed this document to direct funding toward priority restoration projects in priority areas for the Big Canyon Creek watershed. In order to achieve this, the District and the Tribe: (1) Developed a working group and technical team composed of managers from a variety of stakeholders within the basin; (2) Established geographically distinct sub-watershed areas called Assessment Units (AUs); (3) Created a prioritization framework for the AUs and prioritized them; and (4) Developed treatment strategies to utilize within the prioritized AUs. Assessment Units were delineated by significant shifts in sampled juvenile O. mykiss (steelhead/rainbow trout) densities, which were found to fall at fish passage barriers. The prioritization framework considered four aspects critical to determining the relative importance of performing restoration in a certain area: density of critical fish species, physical condition of the AU, water quantity, and water quality. It was established, through vigorous data analysis within these four areas, that the geographic priority areas for restoration within the Big Canyon Creek watershed are Big Canyon Creek from stream km 45.5 to the headwaters, Little Canyon from km 15 to 30, the mainstem corridors of Big Canyon (mouth to 7km) and Little Canyon (mouth to 7km). The District and the Tribe

  4. Analytical results and sample locality map of stream-sediment, heavy-mineral-concentrate, and rock samples from the Fifteen Mile Creek, Twelve Mile Creek, Oregon Canyon, and Willow Creek Wilderness Study Areas, harney and Malheur Counties, Oregon

    SciTech Connect

    Jones, L.J.; Erickson, M.S.; Fey, D.L.

    1989-01-01

    A U.S. Geological Survey report is presented giving the analytical results and sample locality map of stream-sediment, heavy-mineral-concentrate, and rock samples from the Fifteen Mile Creek, Twelve Mile Creek, Oregon Canyon, and Willow Creek Wilderness Study Areas, harney and Malheur Counties, Oregon.

  5. 54. ALDER CREEK DIVERSION, PROJECT 1933, EXHIBIT F, SANTA ANA ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    54. ALDER CREEK DIVERSION, PROJECT 1933, EXHIBIT F, SANTA ANA POWERHOUSE NO. 2 SCE drawing no. 5206858, no date (FERC no. 1933-48). - Santa Ana River Hydroelectric System, Redlands, San Bernardino County, CA

  6. 8. Inverted siphon structure carrying ditch flow under Willow Creek, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    8. Inverted siphon structure carrying ditch flow under Willow Creek, looking southwest - Natomas Ditch System, Blue Ravine Segment, Juncture of Blue Ravine & Green Valley Roads, Folsom, Sacramento County, CA

  7. 7. Inverted siphon structure carrying ditch flow under Willow Creek, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    7. Inverted siphon structure carrying ditch flow under Willow Creek, looking east - Natomas Ditch System, Blue Ravine Segment, Juncture of Blue Ravine & Green Valley Roads, Folsom, Sacramento County, CA

  8. 36. MYRTLE CREEK BRIDGE, OREGON STATE HIGHWAY 199, AT END ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    36. MYRTLE CREEK BRIDGE, OREGON STATE HIGHWAY 199, AT END OF STOUT GROVE ROAD. JOSEPHINE COUNTY, OREGON LOOKING WNW. - Redwood National & State Parks Roads, California coast from Crescent City to Trinidad, Crescent City, Del Norte County, CA

  9. 71. Meadow Creek Culvert. This is an example of a ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    71. Meadow Creek Culvert. This is an example of a triple arch concrete box culvert with stone facing mimicking rigid frame structures. - Blue Ridge Parkway, Between Shenandoah National Park & Great Smoky Mountains, Asheville, Buncombe County, NC

  10. 27 CFR 9.64 - Dry Creek Valley.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... of intersection with the Russian River on the “Healdsburg Quadrangle” map; (17) Then southerly along the meanders of the Russian River to the confluence of Dry Creek; (18) Then west-southwesterly...

  11. Looking southeast down the Turtle Creek Valley at the Edgar ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Looking southeast down the Turtle Creek Valley at the Edgar Thomson works from a bluff at North Braddock (Martin Stupich) - U.S. Steel Edgar Thomson Works, Along Monongahela River, Braddock, Allegheny County, PA

  12. 14. VIEW OF HIGHWAY 190 TO FURNACE CREEK, SOUTH OF ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    14. VIEW OF HIGHWAY 190 TO FURNACE CREEK, SOUTH OF BEATTY CUTOFF AT SEA LEVEL MARKER. SAME CAMERA LOCATION AS CA300-15. LOOKING SE. - Death Valley National Park Roads, Death Valley Junction, Inyo County, CA

  13. NOAA's GOES-14 Rapidscan of Washington's Cougar Creek Fire

    NASA Video Gallery

    1-minute interval GOES-14 SRSO-R visible (0.63 µm) images revealed the pulsing nature of the large Cougar Creek wildfire complex burning in southern Washington (not far southwest of Yakima) on 12 ...

  14. 46. LOOKING ACROSS PINTO CREEK WITH THE INTAKE GATES LOCATED ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    46. LOOKING ACROSS PINTO CREEK WITH THE INTAKE GATES LOCATED AT THE LOWER LEFT CORNER Photographer: Mark Durben, 1984 - Roosevelt Power Canal & Diversion Dam, Parallels Salt River, Roosevelt, Gila County, AZ

  15. Flood damaged foot bridge at Tamarack Creek on alignment of ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Flood damaged foot bridge at Tamarack Creek on alignment of Old Big Oak Flat Road. Looking northeast - Big Oak Flat Road, Between Big Oak Flat Entrance & Merced River, Yosemite Village, Mariposa County, CA

  16. 4. COBBS CREEK BRIDGE. COLWYN, DELAWARE CO., PA. Sec. 1101, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    4. COBBS CREEK BRIDGE. COLWYN, DELAWARE CO., PA. Sec. 1101, MP 5.73 - Northeast Railroad Corridor, Amtrak route between Delaware-Pennsylvania & Pennsylvania-New Jersey state lines, Philadelphia, Philadelphia County, PA

  17. HANDHELD DETAIL OF BRIDGE IN FORMER LOCATION SPANNING GANARGUA CREEK ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    HANDHELD DETAIL OF BRIDGE IN FORMER LOCATION SPANNING GANARGUA CREEK (MACEDON, NY), VIEW FROM SOUTHEAST. - Aldrich Towing-Path Change Bridge, Spanning New York State Heritage Trail, Aqueduct Park (moved from Macedon, NY), Palmyra, Wayne County, NY

  18. Floodplain and wetlands assessment of the White Oak Creek Embayment

    SciTech Connect

    Not Available

    1991-07-01

    This report describes the proposed methods for dealing with contaminants that have accumulated in White Oak Creek, White Oak Lake, and the White Oak Creek Embayment as a result of process releases and discharges from the Oak Ridge National Laboratory. Alternative methods of cleaning up the area which were considered in accordance with regulatory guidelines are listed, and information supporting the selected methods is provided. Also included are results of a site survey conducted at the White Oak Creek Embayment and the expected effects of the proposed control structures on the floodplain and wetlands. The appendix contains figures showing the nine cross-sections of the stream channel surveyed during studies of the White Oak Creek area.

  19. 77 FR 73967 - Drawbridge Operation Regulation; Bear Creek, Dundalk, MD

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-12-12

    ... Regulation; Bear Creek, Dundalk, MD'' in the Federal Register (77 FR 5201). The rulemaking concerned would... to http://www.regulations.gov , inserting USCG-2011-1062 in the ``Search'' box, and then...

  20. VIEW OF DOWNSTREAM SIDE OF BULL CREEK DAM AND BRIDGE, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    VIEW OF DOWNSTREAM SIDE OF BULL CREEK DAM AND BRIDGE, WITH LATER HEADGATE ADDITION THROUGH SPILLWAY. LOOKING WEST - Tumalo Irrigation District, Tumalo Project, West of Deschutes River, Tumalo, Deschutes County, OR

  1. 27. Otter Creek Bridge #5. Detail of the interior abutment ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    27. Otter Creek Bridge #5. Detail of the interior abutment wall. Wingwall, and facade thickness. - Blue Ridge Parkway, Between Shenandoah National Park & Great Smoky Mountains, Asheville, Buncombe County, NC

  2. 23. MADISON GRANT TABLET AT PRAIRIE CREEK STATE PARK. HUMBOLDT ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    23. MADISON GRANT TABLET AT PRAIRIE CREEK STATE PARK. HUMBOLDT COUNTY, CALIFORNIA. LOOKING W. - Redwood National & State Parks Roads, California coast from Crescent City to Trinidad, Crescent City, Del Norte County, CA

  3. FEASIBILITY OF ELK CREEK ACID MINE DRAINAGE ABATEMENT PROJECT

    EPA Science Inventory

    A study was conducted within the Elk Creek Watershed, West Virginia to determine the technical and economic feasibility of three acid mine drainage abatement techniques. Alkaline regarding and slurry trench construction were established as technically and economically viable abat...

  4. View of Irving Powerhouse. Looking across Fossil Creek (westsouthwest) ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    View of Irving Powerhouse. Looking across Fossil Creek (west-southwest) - Childs-Irving Hydroelectric Project, Irving System, Irving Powerhouse, Forest Service Road 708/502, Camp Verde, Yavapai County, AZ

  5. AERIAL VIEW LOOKING FURTHER SOUTH EAST, VILLAGE CREEK WATER TREATMENT ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    AERIAL VIEW LOOKING FURTHER SOUTH EAST, VILLAGE CREEK WATER TREATMENT PLANT ON RIGHT SIDE, ENSLEY IN BACKGROUND. - Birmingham Southern Railroad Yard, Thirty-fourth Street, Ensley, Jefferson County, AL

  6. 75 FR 43915 - Basin Electric Power Cooperative: Deer Creek Station

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-07-27

    ... Rural Utilities Service Basin Electric Power Cooperative: Deer Creek Station AGENCY: Rural Utilities... CFR Part 1794), and the Western Area Power Administration's (Western) NEPA implementing regulations... environmental impacts of and alternatives to Basin Electric Power Cooperative's (Basin Electric) application...

  7. 49. Downstream face of Humbug Creek Diversion Dam with sluice ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    49. Downstream face of Humbug Creek Diversion Dam with sluice opening at center. Photographer James Eastwood, 1986. Source: Salt River Project. - Waddell Dam, On Agua Fria River, 35 miles northwest of Phoenix, Phoenix, Maricopa County, AZ

  8. 50. Upstream face of Humbug Creek Diversion Dam showing sluice ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    50. Upstream face of Humbug Creek Diversion Dam showing sluice opening. Photographer James Eastwood, 1986. Source: Salt River Project. - Waddell Dam, On Agua Fria River, 35 miles northwest of Phoenix, Phoenix, Maricopa County, AZ

  9. 76 FR 13524 - Radio Broadcasting Services; Willow Creek, CA

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-03-14

    ...The Audio Division, at the request of Miriam Media, Inc., allots FM Channel 258A at Willow Creek, California. Channel 258A can be allotted at Willow Creek, consistent with the minimum distance separation requirements of the Commission's rules, at coordinates 40- 57-29 NL and 123-42-23 WL, with a site restriction of 6.7 km (4.2 miles) west of the community See SUPPLEMENTARY INFORMATION...

  10. 75 FR 63431 - Radio Broadcasting Services; Willow Creek, CA

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-10-15

    ...This document sets forth a proposal to amend the FM Table of Allotments. The Commission requests comment on a petition filed by Miriam Media, Inc., proposing the allotment of FM Channel 258A at Willow Creek, California. Petitioner, the auction winner and permittee of Channel 253A, Willow Creek, has submitted an application to specify operation of the station on Channel 254C1 at Loleta,......

  11. Highline Canal, Sand Creek Lateral, Beginning at intersection of Peoria ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Highline Canal, Sand Creek Lateral, Beginning at intersection of Peoria Street & Highline Canal in Arapahoe County (City of Aurora), Sand Creek lateral Extends 15 miles Northerly through Araphoe County, City & County of Denver, & Adams County to its end point, approximately 1/4 mile Southest of intersectioin of D Street & Ninth Avenue in Adams County (Rocky Mountain Arsenal, Commerce City Vicinity), Commerce City, Adams County, CO

  12. Paleoflood investigations for Cherry Creek Basin, Eastern Colorado

    USGS Publications Warehouse

    Jarrett, R.D.

    2004-01-01

    In 1950 when Cherry Creek dam, which is located in Denver. Colorado, was completed, the design flood was 5,126 m3/s. Two recent probable maximum flood (PMF) estimates for the dam range from 14,840 to 18,750 m 3/s demonstrate the uncertainty in estimating extreme flooding in eastern Colorado. PMF difference is due in part to a lack of extreme rainfall and flood data in eastern Colorado. A paleoflood study was conducted to assist dam-safety officials in assessing the risk of large floods in Cherry Creek basin. An envelope curve encompassing maximum contemporary floods (19 sites) and paleofloods (99 sites) was developed for Cherry Creek basin streams; paleoflood data reflect maximum flooding during the last few hundred to many thousands of years. Maximum paleofloods in Cherry Creek range from about 1,050 m 3/s near Franktown (in about 5,000 to at least 10,000 years), about 2,100 m3/s near Melvin (in about 1,500 to 5,000 years), and about 2,270 m3/s at Cherry Creek Reservoir (also in about 1,500 to 5,000 years). Flood-frequency relations for Cherry Creek, which incorporate paleoflood data, indicate the 10,000-year flood (10-4 annual exceedence probability) ranges from about 1,200 m3/s (near Franktown) to about 2,200 m3/s (near Melvin). PMF estimates are about six to eight times larger than paleofloods in Cherry Creek basin. Additional research in flood hydrometeorology is needed to help dam safety officials evaluate potential safety problems related to large floods in Cherry Creek basin. Copyright ASCE 2004.

  13. Results of the 2000 Creek Plantation Swamp Survey

    SciTech Connect

    Fledderman, P.D.

    2000-10-30

    This report is a survey of the Creek Plantation located along the Savannah River and borders the southeast portion of the Savannah River Site. The land is primarily undeveloped and agricultural; its purpose is to engage in equestrian-related operations. A portion of Creek Plantation along the Savannah River is a low-lying swamp, known as the Savannah River Swamp, which is uninhabited and not easily accessible.

  14. Conservation of Thane Creek and Ulhas River Estuary, India.

    PubMed

    Nikam, Vinay S; Kumar, Arun; Lalla, Kamal; Gupta, Kapil

    2009-07-01

    There has been a steady decrease in the area occupied by wetlands in creeks and estuaries adjacent urban areas due to unprecedented urban growth in coastal cities, for example, Thane Creek and Ulhas River Estuary near Mumbai, India. Urban cities serve as centres of employment and attract a large number of migrants from other places. In case of coastal cities, due to inadequate infrastructure, wastewater and solid waste are disposed of into wetlands and estuary. Discharge of sediments and solid waste into the creeks from drains and construction activities has resulted in decreased flow depth in the coastal waters of Thane Creek and Ulhas River Estuary. Various researchers have studied individual elements of Thane Creek and Ulhas River Estuary at micro level. However, a holistic approach for restoration and conservation of the creek and estuary is required. This paper presents the details of an integrated approach incorporating different conservation measures such as sewerage and sewage treatment, urban drainage management, solid waste management, mangrove plantation and dredging. PMID:21117428

  15. Simulation of streamflow and estimation of recharge to the Edwards aquifer in the Hondo Creek, Verde Creek, and San Geronimo Creek watersheds, south-central Texas, 1951-2003

    USGS Publications Warehouse

    Ockerman, Darwin J.

    2005-01-01

    The U.S. Geological Survey, in cooperation with the San Antonio Water System, constructed three watershed models using the Hydrological Simulation Program—FORTRAN (HSPF) to simulate streamflow and estimate recharge to the Edwards aquifer in the Hondo Creek, Verde Creek, and San Geronimo Creek watersheds in south-central Texas. The three models were calibrated and tested with available data collected during 1992–2003. Simulations of streamflow and recharge were done for 1951–2003. The approach to construct the models was to first calibrate the Hondo Creek model (with an hourly time step) using 1992–99 data and test the model using 2000–2003 data. The Hondo Creek model parameters then were applied to the Verde Creek and San Geronimo Creek watersheds to construct the Verde Creek and San Geronimo Creek models. The simulated streamflows for Hondo Creek are considered acceptable. Annual, monthly, and daily simulated streamflows adequately match measured values, but simulated hourly streamflows do not. The accuracy of streamflow simulations for Verde Creek is uncertain. For San Geronimo Creek, the match of measured and simulated annual and monthly streamflows is acceptable (or nearly so); but for daily and hourly streamflows, the calibration is relatively poor. Simulated average annual total streamflow for 1951–2003 to Hondo Creek, Verde Creek, and San Geronimo Creek is 45,400; 32,400; and 11,100 acre-feet, respectively. Simulated average annual streamflow at the respective watershed outlets is 13,000; 16,200; and 6,920 acre-feet. The difference between total streamflow and streamflow at the watershed outlet is streamflow lost to channel infiltration. Estimated average annual Edwards aquifer recharge for Hondo Creek, Verde Creek, and San Geronimo Creek watersheds for 1951–2003 is 37,900 acrefeet (5.04 inches), 26,000 acre-feet (3.36 inches), and 5,940 acre-feet (1.97 inches), respectively. Most of the recharge (about 77 percent for the three watersheds

  16. 33 CFR 207.170d - Taylor Creek, navigation lock (S-193) across the entrance to Taylor Creek at Lake Okeechobee...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 33 Navigation and Navigable Waters 3 2011-07-01 2011-07-01 false Taylor Creek, navigation lock (S-193) across the entrance to Taylor Creek at Lake Okeechobee, Okeechobee, Fla.; use, administration..., DEPARTMENT OF THE ARMY, DEPARTMENT OF DEFENSE NAVIGATION REGULATIONS § 207.170d Taylor Creek, navigation...

  17. 33 CFR 207.170d - Taylor Creek, navigation lock (S-193) across the entrance to Taylor Creek at Lake Okeechobee...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 3 2010-07-01 2010-07-01 false Taylor Creek, navigation lock (S-193) across the entrance to Taylor Creek at Lake Okeechobee, Okeechobee, Fla.; use, administration..., DEPARTMENT OF THE ARMY, DEPARTMENT OF DEFENSE NAVIGATION REGULATIONS § 207.170d Taylor Creek, navigation...

  18. 78 FR 20146 - Lost Creek ISR, LLC, Lost Creek Uranium In-Situ Recovery Project, Sweetwater County, Wyoming

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-04-03

    ...The U.S. Nuclear Regulatory Commission (NRC) is considering an amendment to Source Materials License SUA-1598 for continued uranium production operations and in-situ recovery (ISR) of uranium at the Lost Creek Project in Sweetwater County,...

  19. Freshwater flow from estuarine creeks into northeastern Florida Bay

    USGS Publications Warehouse

    Hittle, Clinton; Patino, Eduardo; Zucker, Mark A.

    2001-01-01

    Water-level, water-velocity, salinity, and temperature data were collected from selected estuarine creeks to compute freshwater flow into northeastern Florida Bay. Calibrated equations for determining mean velocity from acoustic velocity were obtained by developing velocity relations based on direct acoustic measurements, acoustic line velocity, and water level. Three formulas were necessary to describe flow patterns for all monitoring sites, with R2 (coefficient of determination) values ranging from 0.957 to 0.995. Cross-sectional area calculations were limited to the main channel of the creeks and did not include potential areas of overbank flow. Techniques also were used to estimate discharge at noninstrumented sites by establishing discharge relations to nearby instrumented sites. Results of the relation between flows at instrumented and noninstrumented sites varied with R2 values ranging from 0.865 to 0.99. West Highway Creek was used to estimate noninstrumented sites in Long Sound, and Mud Creek was used to estimate East Creek in Little Madeira Bay. Mean monthly flows were used to describe flow patterns and to calculate net flow along the northeastern coastline. Data used in the study were collected from October 1995 through September 1999, which includes the El Nino event of 1998. During this period, about 80 percent of the freshwater flowing into the bay occurred during the wet season (May-October). The mean freshwater discharge for all five instrumented sites during the wet season from 1996 to 1999 is 106 cubic feet per second. The El Nino event caused a substantial increase (654 percent) in mean flows during the dry season (November-April) at the instrumented sites, ranging from 8.5 cubic feet per second in 1996-97 to 55.6 cubic feet per second in 1997-98. Three main flow signatures were identified when comparing flows at all monitoring stations. The most significant was the magnitude of discharges at Trout Creek, which carries about 50 percent of the

  20. Sediment discharge in Rock Creek and the effect of sedimentation rate on the proposed Rock Creek Reservoir, northwestern Colorado

    USGS Publications Warehouse

    Butler, D.L.

    1987-01-01

    Sediment data collected from 1976 to 1985 and stream discharge data collected from 1952 to 1980 at gaging station 09060500, Rock Creek near Toponas, Colorado, were used to determine total sediment discharge into the proposed Rock Creek Reservoir. Suspended sediment discharge and bedload discharge were related to stream discharge by using logarithmic regression relations. Mean annual suspended sediment discharge was estimated to be 309 tons/yr, and mean annual bedload discharge was estimated to be 428 tons/yr in Rock Creek at the Toponas gaging station for the 1953 through 1980 water years. The mean annual total sediment discharge into the proposed reservoir was estimated to be 768 tons/yr, which includes 10% addition to the suspended sediment discharge calculated for the Toponas gaging station to account for suspended sediment discharge from Horse Creek. This rate of mean annual total sediment discharge would decrease the long-term water storage capacity of the proposed reservoir by < 1% after 100 years. Suspended sediment discharge/unit-drainage-basin area at gaging station 09060550, Rock Creek at Crater, located about 5 mi downstream for the proposed reservoir site, was equivalent to suspended-sediment discharge/unit-drainage-basin area at the Toponas gaging station during 1985. Long-term sediment data collection at the Crater gaging station could be used for detecting changes in suspended sediment discharge in Rock Creek at the proposed reservoir site. (Author 's abstract)

  1. Effects of wastewater effluent discharge on stream quality in Indian Creek, Johnson County, Kansas

    USGS Publications Warehouse

    Graham, Jennifer L.; Foster, Guy M.

    2014-01-01

    Contaminants from point and other urban sources affect stream quality in Indian Creek, which is one of the most urban drainage basins in Johnson County, Kansas. The Johnson County Douglas L. Smith Middle Basin and Tomahawk Creek Wastewater Treatment Facilities discharge to Indian Creek. Data collected by the U.S. Geological Survey, in cooperation with Johnson County Wastewater, during June 2004 through June 2013 were used to evaluate stream quality in Indian Creek. This fact sheet summarizes the effects of wastewater effluent discharge on physical, chemical, and biological conditions in Indian Creek downstream from the Douglas L. Smith Middle Basin and Tomahawk Creek Wastewater Treatment Facilities.

  2. Ecological effects of contaminants and remedial actions in Bear Creek

    SciTech Connect

    Southworth, G.R.; Loar, J.M.; Ryon, M.G.; Smith, J.G.; Stewart, A.J. ); Burris, J.A. )

    1992-01-01

    Ecological studies of the Bear Creek watershed, which drains the area surrounding several Oak Ridge Y-12 Plant waste disposal facilities, were initiated in May 1984 and are continuing at present. These studies consisted of an initial, detailed characterization of the benthic invertebrate and fish communities in Bear Creek, and they were followed by a presently ongoing monitoring phase that involves reduced sampling intensities. The characterization phase utilized two approaches: (1) instream sampling of benthic invertebrate and fish communities in Bear Creek to identify spatial and temporal patterns in distribution and abundance and (2) laboratory bioassays on water samples from Bear Creek and selected tributaries to identify potential sources of toxicity to biota. The monitoring phase of the ecological program relates to the long-term goals of identifying and prioritizing contaminant sources and assessing the effectiveness of remedial actions. It continues activities of the characterization phase at less frequent intervals. The Bear Greek Valley is a watershed that drains the area surrounding several closed Oak Ridge Y-12 Plant waste disposal facilities. Past waste disposal practices in Bear Creek Valley resulted in contamination of Bear Creek and consequent ecological damage. Extensive remedial actions have been proposed at waste sites, and some of the have been implemented or are now underway. The proposed study plan consists of an initial, detailed characterization of the benthic invertebrate and fish communities in Bear Creek in the first year followed by a reduction in sampling intensity during the monitoring phase of the plan. The results of sampling conducted from May 1984 through early 1989 are presented in this report.

  3. Water Quality in Courtland Creek, East Oakland, California

    NASA Astrophysics Data System (ADS)

    Bracho, H.; Ahumada, A.; Hernandez, G.; Quintero, D.; Ramirez, J.; Ramirez, L.; Pham, T.; Holt, J.; Johnson, A.; Rubio, E.; Ponce, X.; Medina, S.; Limon, S.

    2013-12-01

    Courtland Creek is a tributary of the larger East Creek system that runs southeast from the Oakland Hills down to the San Leandro Bay in Oakland, California. In an effort to assess the overall health of Courtland Creek our team conducted a water quality research study. Stream water samples were collected from 4 sites between MacArthur Avenue (describe geographically as not all readers are familiar with Oakland geography) and Thompson Avenue (describe geographically as not all readers are familiar with Oakland geography) at accessible sections of this largely culverted stream. Dissolved oxygen, ammonia, nitrite, nitrate, phosphate, and chlorine concentrations in were measured using wet chemistry procedures. Analysis of collected samples indicates that dissolved oxygen levels in the stream are sufficient for invertebrates, ranging from 5 and 9 parts per million (ppm). Nitrate levels were significantly high, with concentrations ranging from 15 and 40 ppm. Other chemical species associated with waste products--ammonia, nitrite, and phosphate--also were present, but at low concentrations. Small amounts of chlorine also were found in waters of the creek system. The presence of high concentrations of nitrate, together with chlorine, suggests that untreated sewage may be leaking into Courtland Creek at an unidentified location.

  4. Sediment-transport characteristics of Cane Creek, Lauderdale County, Tennessee

    USGS Publications Warehouse

    Carey, W.P.

    1993-01-01

    An investigation of the sediment-transport characteristics of Cane Creek in Lauderdale County, Tennessee, was conducted from 1985-88 to evaluate the potential for channel erosion induced by modifications (realignment and enlargement) and the potential ability of different flows to move bed and bank stabilizing material. Frequently occurring flows in Cane Creek are capable of moving sand-size material (0.0625 - 4.0 millimeters). During floods that equal or exceed the 2-year flood, Cane Creek is capable of moving very coarse gravel (32 - 64 millimeters). Boundary-shear values at bridges, where flow contractions occur, correspond to critical diameters in excess of 100 millimeters. Thus, the areas near bridges, where channel stability is most critical, are the areas where erosive power is greatest. Deepening and widening of Cane Creek has exposed large areas of channel boundary that are a significant source of raindrop-detached sediment during the early stages of a storm before stream flow increases signifi- cantly. This causes suspended-sediment concentration to peak while the flow hydrograph is just beginning to rise. For basins like Cane Creek, where runoff events commonly last less than a day and where variation in discharge and sediment concentrations are large, an estimate of sediment yield based on periodic observations of instantaneous values is subject to considerable uncertainty.

  5. Surficial geology of the Cane Creek basin, Lauderdale County, Tennessee

    USGS Publications Warehouse

    Miller, J.H.

    1991-01-01

    The surficial geology of the Cane Creek basin, in Lauderdale County, West Tennessee, was studied from 1985-88. Peoria Loess is the parent material from which soils in the Cane Creek drainage basin were derived. In general, a brown silt grades into a gray silt from 5 to I7 feet below ground surface. This color change probably represents depth to water table prior to the channelization of Cane Creek. Only at river mile 11.9 does rock outcrop near the main channel. Lower reaches of major tributaries have surficial geology similar to the main channel. In upper reaches of Hyde Creek and Fain Spring Creek, the sequence from the St&ace is sand and gravels, red-brown sandstone, sand and clay layers, and then, an orange sand layer. Coarse-grained deposits are found most often along the northern boundary of the basin and only occasionally in areas to the west and south of the main channel. Depth to sand or gravel ranges from about 0 to 158 feet in the uplands, and generally deeper than 40 feet near the main channel.

  6. Recurrent faulting and petroleum accumulation, Cat Creek Anticline, central Montana

    SciTech Connect

    Nelson, W.J. )

    1991-06-01

    The Cat Creek anticline, scene of central Montana's first significant oil discovery, is underlain by a south-dipping high-angle fault (Cat Creek fault) that has undergone several episodes of movement with opposite sense of displacement. Borehole data suggest that the Cat Creek fault originated as a normal fault during Proterozoic rifting concurrent with deposition of the Belt Supergroup. Reverse faulting took place in Late Cambrian time, and again near the end of the Devonian Period. The Devonian episode, coeval with the Antler orogeny, raised the southern block several hundred feet. The southern block remained high through Meramecian time, then began to subside. Post-Atokan, pre-Middle Jurassic normal faulting lowered the southern block as much as 1,500 ft. During the Laramide orogeny (latest Cretaceous-Eocene) the Cat Creek fault underwent as much as 4,000 ft of reverse displacement and a comparable amount of left-lateral displacement. The Cat Creek anticline is a fault-propagation fold; en echelon domes and listric normal faults developed along its crest in response to wrenching. Oil was generated mainly in organic-rich shales of the Heath Formation (upper Chesterian Series) and migrated upward along tectonic fractures into Pennsylvanian, Jurassic, and Cretaceous reservoir rocks in structural traps in en echelon domes. Production has been achieved only from those domes where structural closure was retained from Jurassic through Holocene time.

  7. Scotch Creek Wildlife Area 2007-2008 Annual Report.

    SciTech Connect

    Olson, Jim

    2008-11-03

    The Scotch Creek Wildlife Area is a complex of 6 separate management units located in Okanogan County in North-central Washington State. The project is located within the Columbia Cascade Province (Okanogan sub-basin) and partially addresses adverse impacts caused by the construction of Chief Joseph and Grand Coulee hydroelectric dams. With the acquisition of the Eder unit in 2007, the total size of the wildlife area is now 19,860 acres. The Scotch Creek Wildlife Area was approved as a wildlife mitigation project in 1996 and habitat enhancement efforts to meet mitigation objectives have been underway since the spring of 1997 on Scotch Creek. Continuing efforts to monitor the threatened Sharp-tailed grouse population on the Scotch Creek unit are encouraging. The past two spring seasons were unseasonably cold and wet, a dangerous time for the young of the year. This past spring, Scotch Creek had a cold snap with snow on June 10th, a critical period for young chicks just hatched. Still, adult numbers on the leks have remained stable the past two years. Maintenance of BPA funded enhancements is necessary to protect and enhance shrub-steppe and to recover and sustain populations of Sharp-tailed grouse and other obligate species.

  8. Tectonic reevaluation of the Walden Creek Group

    SciTech Connect

    Carter, M.W.; Hatcher, R.D. Jr. . Dept. of Geological Sciences)

    1992-01-01

    Detailed mapping has focused on the internal stratigraphy and contact relationships of the Walden Creek Group (WCG). In the western part of the study area near Reliance, TN, interbedded siltstone and sandstone of the Sandsuck Formation lies stratigraphically beneath Lower Cambrian Chilhowee Group quartzites and shales. Near Pond and Hankins Mountains, Sandsuck Formation limestones flank a major NE-plunging syncline cored by feldspathic sandstone and quartz-pebble conglomerate. The Miller Cove fault separates the Sandsuck Formation from banded grayish-green slate, carbonate, and blue quartz-pebble conglomerate of the Wilhite Formation. The gradational contact is similar to that observed farther south in the Ocoee Gorge where overturned slate and siltstone of the WCG grade into graywacke and dark slate of the Great Smoky Group (GSG), and places additional important limitations on the southern extent of the Greenbrier fault that separates the WCG and GSG to the NE in the Great Smoky Mountains National Park. Leucogranite boulders exposed along the contact are similar to leucogranite exposed farther east in basement massifs beneath Snowbird Group. The restricted occurrence of these boulders along part of the contact between the WCG and the GSG may indicate fault reactivation and exhumation of basement and SG-GSG cover during the latter stages of Late Proterozoic rifting of Larentia. The depositional history of the WCG in SE TN thus probably began with deep-water sedimentation in a reactivated rift basin. This was followed by a period of alternating submarine fan and off-shelf sedimentation that filled the basin, then formation of shallow-water carbonate bank conditions toward the end of the WCG depositional cycle.

  9. 4. BURLINGTON DITCH/SAND CREEK INTERSECTION The Burlington Ditch is being ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    4. BURLINGTON DITCH/SAND CREEK INTERSECTION The Burlington Ditch is being siphoned below Sand Creek - Burlington Ditch, South Platte River Drainage Area, Water District No. 2, Division No. 1, Brighton, Adams County, CO

  10. ROCK CREEK, IDAHO RURAL CLEAN WATER PROGRAM TEN YEAR REPORT. 1981-1991

    EPA Science Inventory

    Prior to this program, water quality of Rock Creek, Idaho (170040212) was severely impacted by irrigated agriculture. Impairments included phosphate, organic nitrogen, suspended solids, turbidity, bacteria, and toxic chemicals. The uses of Rock Creek for recreation, drinking wa...

  11. 1. General view of Hedges Creek trestle at m.p. 37.8, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    1. General view of Hedges Creek trestle at m.p. 37.8, view looking southeast. - Oregon Electric Railroad, Hedges Creek Trestle, Garden Home to Wilsonville Segment, Milepost 37.8, Garden Home, Washington County, OR

  12. 3. Detail view of Hedges Creek trestle at m.p. 37.8, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    3. Detail view of Hedges Creek trestle at m.p. 37.8, view looking west - Oregon Electric Railroad, Hedges Creek Trestle, Garden Home to Wilsonville Segment, Milepost 37.8, Garden Home, Washington County, OR

  13. 76 FR 15972 - Cascade Creek, LLC; Notice of Preliminary Permit Application Accepted for Filing and Soliciting...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-03-22

    ... Creek project) to be located on Cascade Creek, Swan Lake, and Falls Lake in the vicinity of Petersburg... weir on Swan Lake with a 3-foot-high, 50-foot-long crest gate and an intake siphon; (2) a...

  14. 76 FR 79227 - Exemption Request Submitted by Oyster Creek Nuclear Generating Station; Exelon Generation Company...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-12-21

    ... From the Federal Register Online via the Government Publishing Office NUCLEAR REGULATORY COMMISSION Exemption Request Submitted by Oyster Creek Nuclear Generating Station; Exelon Generation Company... Generation Company, LLC (the licensee), for operation of the Oyster Creek Nuclear Generating Station...

  15. Hydrologic data for North Creek, Trinity River basin, Texas, 1978

    USGS Publications Warehouse

    Carillo, E.R.

    1980-01-01

    This report is a compilation of runoff and storage data collected during the 1978 water year in the Mountain Creek basin. Mountain Creek drains the northeast corner of Johnson County, the northwest corner of Ellis County, the southeast corner of Tarrant County, and part of the southwest corner of Dallas County, Tex. The basin is 30 miles long and averages 10 miles in width. The total drainage area at the mouth is 304 square miles. Basin outflow for the 1978 water year was 3,520 acre-feet which is only 5% of the 18-year (1960-78) average of 76,070 acre-feet. Storage in Mountain Creek Lake showed a net loss of 890 acre-feet during the water year. Rainfall over the study area for the 1978 water year was about 24 inches, which is about 10 inches below the mean annual rainfall for the area. (USGS)

  16. Fast-growing willow shrub named `Fish Creek`

    DOEpatents

    Abrahamson, Lawrence P.; Kopp, Richard F.; Smart, Lawrence B.; Volk, Timothy A.

    2007-05-08

    A distinct male cultivar of Salix purpurea named `Fish Creek`, characterized by rapid stem growth producing greater than 30% more woody biomass than either of its parents (`94001` and `94006`) and 20% more biomass than a current production cultivar (`SV1`). `Fish Creek` can be planted from dormant stem cuttings, produces multiple stems after coppice, and the stem biomass can be harvested when the plant is dormant. In the spring following harvest, the plant will re-sprout very vigorously, producing new stems that can be harvested after two to four years of growth. This harvest cycle can be repeated several times. The stem biomass can be chipped and burned as a source of renewable energy, generating heat and/or electricity. `Fish Creek` displays a low incidence of rust disease or damage by beetles or sawflies.

  17. Protect and Restore Lolo Creek Watershed : Annual Report CY 2005.

    SciTech Connect

    McRoberts, Heidi

    2006-03-01

    The Nez Perce Tribe Department of Fisheries Resource Management, Watershed Division approaches watershed restoration with a ridge-top to ridge-top approach. Watershed restoration projects within the Lolo Creek watershed are coordinated with the Clearwater National Forest and Potlatch Corporation. The Nez Perce Tribe began watershed restoration projects within the Lolo Creek watershed of the Clearwater River in 1996. Fencing to exclude cattle for stream banks, stream bank stabilization, decommissioning roads, and upgrading culverts are the primary focuses of this effort. The successful completion of the replacement and removal of several passage blocking culverts represent a major improvement to the watershed. These projects, coupled with other recently completed projects and those anticipated in the future, are a significant step in improving habitat conditions in Lolo Creek.

  18. Geology of the lower Yellow Creek Area, Northwestern Colorado

    SciTech Connect

    Hail, W.J.

    1990-01-01

    The lower Yellow Creek area is located in Rio Blanco and Moffat Counties of northwestern Colorado, about midway between the towns of Rangely and Meeker. The study area is in the northwestern part of the Piceance Creek basin, a very deep structural and sedimentary basin that formed during the Laramide orogeny. Potentially important resources in the area are oil shale and related minerals, oil and gas, coal, and uranium. Topics discussed in the report include: Stratigraphy (Subsurface rocks, Cretaceous rocks, Tertiary rocks, and Quaternary deposits); Structure (Midland anticline, graben at Pinyon Ridge, and Crooked Wash syncline, Folds and faults in the vicinity of the White River, Red Wash syncline and central graben zone, Yellow Creek anticlinal nose); Economic geology (Oil shale and associated minerals, Coal, Oil and gas, Uranium, Gravel).

  19. AmeriFlux US-Goo Goodwin Creek

    DOE Data Explorer

    Meyers, Tilden [NOAA/ARL

    2016-01-01

    This is the AmeriFlux version of the carbon flux data for the site US-Goo Goodwin Creek. Site Description - The Goodwin Creek site is located in the Bluff Hills, just east of the Mississippi River valley. In addition to being a core AmeriFlux site, Goodwin Creek is also affiliated with a multitude of other projects including SURFRAD, BSRN, and one of the twelve watersheds in the USDA Conservation Reserve Program. Natural disturbances are of minimal influence to the site. The immediate region is primarily used for grazing while infrequent logging activities occur in nearby forests. The grass surrounding the base of the tower is mowed periodically to maintain a height consistent with the regional grasslands.

  20. Water quality of Bear Creek basin, Jackson County, Oregon

    USGS Publications Warehouse

    Wittenberg, Loren A.; McKenzie, Stuart W.

    1980-01-01

    Water-quality data identify surface-water-quality problems in Bear Creek basin, Jackson County, Oreg., where possible, their causes or sources. Irrigation and return-flow data show pastures are sources of fecal coliform and fecal streptococci bacteria and sinks for suspended sediment and nitrite-plus-nitrate nitrogen. Bear Creek and its tributaries have dissolved oxygen and pH values that do not meet State standards. Forty to 50% of the fecal coliform and fecal streptococci concentrations were higher than 1,000 bacteria colonies per 100 milliliters during the irrigation season in the lower two-thirds of the basin. During the irrigation season, suspended-sediment concentrations, average 35 milligrams per liter, were double those for the nonirrigation season. The Ashland sewage-treatment plant is a major source of nitrite plus nitrate, ammonia, and Kjeldahl nitrogen, and orthophosphate in Bear Creek. (USGS)

  1. Analysis of geothermal electric-power generation at Big Creek Hot Springs, Lemhi County, Idaho

    SciTech Connect

    Struhsacker, D.W.

    1981-01-01

    Big Creek Hot Springs was evaluated as a source of electrical power for the Blackbird Cobalt Mine, approximately 13 miles south of the hot spring. An evaluaton of the geothermal potential of Big Creek Hot Springs, a suggested exploration program and budget, an engineering feasibility study of power generation at Big Creek Hot Springs, an economic analysis of the modeled power generating system, and an appraisal of the institutional factors influencing development at Big Creek Hot Springs are included.

  2. Stormwater toxicity in Chollas Creek and San Diego Bay, California.

    PubMed

    Schiff, Kenneth; Bay, Steven; Diehl, Dario

    2003-01-01

    Stormwater discharges from Chollas Creek, a tributary of San Diego Bay, have been shown to be toxic to aquatic life. The primary objective of this study was to provide the linkage between in-channel measurements and potential impairments in the receiving waters of San Diego Bay. This study addressed this objective within the context of four questions: (1) How much area in San Diego Bay is affected by the discharge plume from Chollas Creek during wet-weather conditions?; (2) How much of the wet-weather discharge plume is toxic to marine aquatic life?; (3) How toxic is this area within the wet-weather discharge plume?; and (4) What are the constituent(s) responsible for the observed toxicity in the wet-weather plume? The stormwater plume emanating from Chollas Creek was dynamic, covering areas up to 2.25 km2. Approximately half of the plume was estimated to be toxic to marine life, based upon the results of purple sea urchin (Strongylocentroutus purpuratus) fertilization tests. The area nearest the creek mouth was the most toxic (NOEC = 3 to 12% plume sample), and the toxicity decreased with distance from the creek mouth. The toxicity of plume samples was directly proportional to the magnitude of plume mixing and dilution until, once outside the plume margin, no toxicity was observed. Trace metals, most likely zinc, were responsible for the observed plume toxicity based upon toxicity identification evaluations (TIEs). Zinc was also the constituent identified from in-channel samples of Chollas Creek stormwater using TIEs on the storms sampled in this study, and in storms sampled during the previous storm season. PMID:12620010

  3. Evaluation of Operations Scenarios for Managing the Big Creek Marsh

    NASA Astrophysics Data System (ADS)

    Wilson, Ian; Rahman, Masihur; Wychreschuk, Jeremy; Lebedyk, Dan; Bolisetti, Tirupati

    2013-04-01

    Wetland management in changing climate is important for maintaining sustainable ecosystem as well as for reducing the impact of climate change on the environment as wetlands act as natural carbon sinks. The Big Creek Marsh within the Essex County is a Provincially Significant Wetland (PSW) in Ontario, Canada. The marsh is approximately 900 hectares in area and is primarily fed by streamflow from the Big Creek Watershed. The water level of this wetland has been managed by the stakeholders using a system of pumps, dykes and a controlled outlet to the Lake Erie. In order to adequately manage the Big Creek Marsh and conserve diverse aquatic plant species, Essex Region Conservation Authority (ERCA), Ontario has embarked on developing an Operations Plan to maintain desire water depths during different marsh phases, viz., Open water, Hemi and Overgrown marsh phases. The objective of the study is to evaluate the alternatives for managing water level of the Big Creek Marsh in different marsh phases. The Soil and Water Assessment Tool (SWAT), a continuous simulation model was used to simulate streamflow entering into the marsh from the Big Creek watershed. A Water Budget (WB) model was developed for the Big Creek Marsh to facilitate in operational management of the marsh. The WB model was applied to simulate the marsh level based on operations schedules, and available weather and hydrologic data aiming to attain the target water depths for the marsh phases. This paper presents the results of simulated and target water levels, streamflow entering into the marsh, water releasing from the marsh, and water pumping into and out of the marsh under different hydrologic conditions.

  4. Cedar Creek - significant paleotectonic feature of Williston basin

    SciTech Connect

    Clement, J.H.

    1985-05-01

    More than 327 million bbl of oil have been produced from Paleozoic carbonate reservoirs in 15 fields along the Cedar Creek anticline. Four major periods of tectonism from early Paleozoic through mid-Tertiary are documentable in the Cedar Creek area. Post-Silurian to pre-Middle Devonian: uplift and fault movement accompanied north and east tilting of the main Cedar Creek block. Several hundreds of feet of Silurian strata were eroded and a karst plain developed on the Silurian surface. Middle and Upper Devonian sediments onlapped and infilled the uplifted, northwest-plunging element. Late Devonian to pre-Mississippian: during latest late devonian and possibly earliest Mississippian, the Cedar Creek block was uplifted and tilted north and east. Extensive erosion resulted in the near peneplanation of the structure and significant truncation of Upper Devonian strata. Late Mississippian (Chester) through Triassic: during the Late Mississippian (Chester) and Early Pennsylvanian, the central and northern portion of the Cedar Creek area underwent gentle downwarping and periods of subsidence occurred with relative down-to-the-east fault movement along most of the ancestral master and subsidiary faults. Similar fault movement(s) and subsidence continued during the Permian and Triassic Periods. Relative tectonic stability was attained by the Middle Jurassic and essentially maintained until post-Paleocene time. Post-Paleocene: the Cedar Creek block underwent its greatest magnitude of uplift during post-Paleocene tectonism resulting in an extensive, linear belt of symmetric drape-folding generally aligned with the ancestral fault zones, and deep fault adjustment. During epeirogenic phases of the mid-Tertiary in the northern Rocky Mountain region, 1500 ft (475 m) of Paleocene and Upper Cretaceous strata were eroded along the axis of the present structure.

  5. Simulation of effects of wastewater discharges on Sand Creek and lower Caddo Creek near Ardmore, Oklahoma

    USGS Publications Warehouse

    Wesolowski, Edwin A.

    1999-01-01

    A streamflow and water-quality model was developed for reaches of Sand and Caddo Creeks in south-central Oklahoma to simulate the effects of wastewater discharge from a refinery and a municipal treatment plant. The purpose of the model was to simulate condi tions during low streamflow when the conditions controlling dissolved-oxygen concentrations are most severe. Data collected to calibrate and verify the streamflow and water-quality model include continuously monitored streamflow and water-quality data at two gaging stations and three temporary monitoring stations; wastewater discharge from two wastewater plants; two sets each of five water-quality samples at nine sites during a 24-hour period; dye and propane samples; periphyton samples; and sediment oxygen demand measurements. The water-quality sampling, at a 6-hour frequency, was based on a Lagrangian reference frame in which the same volume of water was sampled at each site. To represent the unsteady streamflows and the dynamic water-quality conditions, a transport modeling system was used that included both a model to route streamflow and a model to transport dissolved conservative constituents with linkage to reaction kinetics similar to the U.S. Environmental Protection Agency QUAL2E model to simulate nonconservative constituents. These model codes are the Diffusion Analogy Streamflow Routing Model (DAFLOW) and the branched Lagrangian transport model (BLTM) and BLTM/QUAL2E that, collectively, as calibrated models, are referred to as the Ardmore Water-Quality Model. The Ardmore DAFLOW model was calibrated with three sets of streamflows that collectively ranged from 16 to 3,456 cubic feet per second. The model uses only one set of calibrated coefficients and exponents to simulate streamflow over this range. The Ardmore BLTM was calibrated for transport by simulating dye concentrations collected during a tracer study when streamflows ranged from 16 to 23 cubic feet per second. Therefore, the model is expected

  6. Stratigraphy, depositional history, and trapping mechanisms of Lone Tree Creek and Lodgepole Creek oil fields, Lower Cretaceous Fall River formation, Powder River Basin, Wyoming

    SciTech Connect

    Gustason, E.R.; Ryer, T.A.

    1985-05-01

    Stratigraphically trapped accumulations of oil in the Lone Tree Creek and Lodgepole Creek fields occur within and just updip from a fluvial meander belt within the Fall River Formation. The meander belt can be mapped north-to-south over a distance of at least 100 mi (161 km) in the eastern part of the Powder River basin. The northern part of the meander belt contains the oil fields of the Coyote Creek-Miller Creek trend; the southern part contains only the relatively small Lone Tree Creek and Lodgepole Creek fields. These small fields are of considerable interest, as they display a style of stratigraphic trapping of hydrocarbons not observed in the prolific Coyote Creek-Miller Creek trend. The stratigraphic traps of the Coyote Creek-Miller Creek trend occur at updip facing convexities along the eastern edge of the meander belt, with abandonment clay plugs serving as lateral permeability barriers to hydrocarbon migration. Oil has been produced in part of the Lone Tree Creek field from a similar trap. The remaining part of Lone Tree Creek field and Lodgepole creek field produce from stratigraphic traps formed by lateral pinch-outs of delta-front sandstone bodies. These traps are situated updip from and apparently in continuity with the meander-belt deposits, indicating that they may have been charged with hydrocarbons that found their way through the clay-plug barriers along the margin of the meander belt. Similar, undiscovered traps may exist updip from Fall River meander belts elsewhere in the basin.

  7. Identification and characterization of wetlands in the Bear Creek watershed

    SciTech Connect

    Rosensteel, B.A.; Trettin, C.C.

    1993-10-01

    The primary objective of this study was to identify, characterize, and map the wetlands in the Bear Creek watershed. A preliminary wetland categorization system based on the Cowardin classification system (Cowardin et al. 1979) with additional site-specific topographic, vegetation, and disturbance characteristic modifiers was developed to characterize the type of wetlands that exist in the Bear Creek watershed. An additional objective was to detect possible relationships among site soils, hydrology, and the occurrence of wetlands in the watershed through a comparison of existing data with the field survey. Research needs are discussed in the context of wetland functions and values and regulatory requirements for wetland impact assessment and compensatory mitigation.

  8. Assessment of aquatic macroinvertebrate communities in the Autauga Creek watershed, Autauga County, Alabama, 2009

    USGS Publications Warehouse

    Mooty, Will S.; Gill, Amy C.

    2011-01-01

    Only four families within the Ephemeroptera, Plecoptera, and Trichoptera orders were found during a 1999 survey of aquatic macroinvertebrates in Autauga Creek, Autauga County, Alabama, by the Alabama Department of Environmental Management. The low number of taxa of Ephemeroptera, Plecoptera, and Trichoptera families indicated that the aquatic macroinvertebrate community was in poor condition, and the creek was placed on the Alabama Department of Environmental Management 303(d) list. The U.S. Geological Survey conducted a study in 2009 to provide data for the Alabama Department of Environmental Management and other water management agencies to re-evaluate aquatic macroinvertebrate communities in Autauga Creek to see if they meet Alabama Department of Environmental Management water-quality criteria. Aquatic macroinvertebrate communities were evaluated at three sites in the Autauga Creek watershed. Macroinvertebrates were sampled at two sites on Autauga Creek and one on Bridge Creek, the largest tributary to Autauga Creek. Water-quality field parameters were assessed at 11 sites. During the 2009 sampling, 12 families within the orders of Ephemeroptera, Plecoptera, Trichoptera were found at the Alabama Department of Environmental Management's assessment site whereas only four were found in 1999. The upstream site on Autauga Creek had consistently higher numbers of taxa than the Bridge Creek site and the lower site on Autauga Creek which is the Alabama Department of Environmental Management's assessment site. Chironomid richness was noticeably higher on the two Autauga Creek sites than the Bridge Creek site.

  9. 61. Credit PG&E. South elevation from across South Battle Creek. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    61. Credit PG&E. South elevation from across South Battle Creek. Note two exciter water discharge pipes and also the transformer cooling water discharge pipes (6). Photo taken 10 November 1927. - Battle Creek Hydroelectric System, Battle Creek & Tributaries, Red Bluff, Tehama County, CA

  10. 78 FR 2685 - Central Utah Project Completion Act; East Hobble Creek Restoration Project Draft Environmental...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-01-14

    ... Office of the Secretary Central Utah Project Completion Act; East Hobble Creek Restoration Project Draft... impacts of the proposed East Hobble Creek Restoration project. The draft environmental assessment, being...: Notice of availability. SUMMARY: The draft environmental assessment for the East Hobble Creek...

  11. 75 FR 68780 - Cedar Creek Wind Energy, LLC; Notice of Filing

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-11-09

    ... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF ENERGY Federal Energy Regulatory Commission Cedar Creek Wind Energy, LLC; Notice of Filing November 2, 2010. Take notice that on October 27, 2010, Cedar Creek Wind Energy, LLC (Cedar Creek) filed an appeal with the...

  12. 75 FR 71106 - Deer Creek Hydro, LLC; Notice of Preliminary Permit Application Accepted for Filing and...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-11-22

    ... Energy Regulatory Commission Deer Creek Hydro, LLC; Notice of Preliminary Permit Application Accepted for... October 14, 2010, Deer Creek Hydro, LLC (Deer Creek Hydro) filed an application for a preliminary permit, pursuant to section 4(f) of the Federal Power Act (FPA), proposing to study the feasibility of the...

  13. Acculturation into the Creek Traditions: Growing in Depth and Breadth of Understanding within the Environment

    ERIC Educational Resources Information Center

    Bogan, Margaret B.

    2011-01-01

    This paper is in part, a reflective analysis of 15 years living with the state-recognized Florida Creek Indians of the Central Florida Muskogee Creek Tribe and the Pasco Band of Creek Indians, formally of Lacoochee, FL and currently in Brooksville, FL, respectively. It addresses the power structures within tribal organizations. Selected Creek…

  14. 76 FR 24015 - Ryckman Creek Resources, LLC; Notice of Availability of the Environmental Assessment for the...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-04-29

    ... Assessment for the Proposed Ryckman Creek Storage Field Project The staff of the Federal Energy Regulatory... Field Project proposed by Ryckman Creek Resources, LLC (Ryckman) in the above-referenced docket. Ryckman... partially depleted oil field, known as the Ryckman Creek (Nugget Unit), into a new interstate natural...

  15. 78 FR 26771 - Otter Creek Solar LLC; Notice of Petition for Enforcement

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-05-08

    ... Energy Regulatory Commission Otter Creek Solar LLC; Notice of Petition for Enforcement Take notice that on May 1, 2013, Otter Creek Solar LLC (Otter Creek) filed a Petition for Enforcement, pursuant to... regulations and in violation of the Federal Power Act. Any person desiring to intervene or to protest...

  16. 75 FR 3195 - Ochoco National Forest, Lookout Mountain Ranger District; Oregon; Mill Creek; Allotment...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-01-20

    ... Forest Service Ochoco National Forest, Lookout Mountain Ranger District; Oregon; Mill Creek; Allotment... Mountain Ranger District. These four allotments are: Cox, Craig, Mill Creek, and Old Dry Creek. The.... ADDRESSES: Send written comments to Bill Queen, District Ranger, Lookout Mountain District, Ochoco...

  17. 78 FR 62361 - Green Mountain Power Corporation; Vermont; Otter Creek Hydroelectric Project; Notice of Proposed...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-10-21

    ... Energy Regulatory Commission Green Mountain Power Corporation; Vermont; Otter Creek Hydroelectric Project... that could be affected by issuance of a new license for the Otter Creek Hydroelectric Project No. 2558..., as applicant for the Otter Creek Hydroelectric Project, has expressed an interest in this...

  18. 33 CFR 208.29 - Arbuckle Dam and Lake of the Arbuckles, Rock Creek, Okla.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... Arbuckles, Rock Creek, Okla. 208.29 Section 208.29 Navigation and Navigable Waters CORPS OF ENGINEERS... Arbuckles, Rock Creek, Okla. The Bureau of Reclamation, or its designated agent, shall operate the Arbuckle... in excess of bankfull on Rock Creek downstream of the lake and on the Washita River, from...

  19. 77 FR 39727 - Poarch Band of Creek Indians-Alcohol Beverage Control Ordinance

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-07-05

    ... Bureau of Indian Affairs Poarch Band of Creek Indians--Alcohol Beverage Control Ordinance AGENCY: Bureau... Poarch Band of Creek Indians--Alcohol Beverage Control Ordinance. This Ordinance regulates and controls... Poarch Band of Creek Indians, will increase the ability of the tribal government to control the...

  20. The Elk Creek Carbonatite Complex, Nebraska (USA)

    NASA Astrophysics Data System (ADS)

    Kettler, R. M.; Blessington, M.

    2015-12-01

    The Elk Creek carbonatite complex (ECCC) is a large Early Cambrian carbonatite-alkaline syenite complex located in SE Nebraska (USA). The carbonatite and related rocks are buried by more than 200 m of Pennsylvanian marine sedimentary rocks and Quaternary till. The pre-Pennsylvanian sub-crop is crudely circular in plan-view and exceeds 30 km2, making it one of the larger carbonatite complexes in North America. The rocks of the complex were intruded in Precambrian granite and gneiss on the eastern margin of the Mid-Continent rift where it has been offset by one of a series of southeasterly trending structures. The primary rock type in the ECCC is dolomite carbonatite. The dolomite carbonatite ranges from fine-grained flow-banded dolomite to a coarse-grained rock comprising large prismatic dolomite crystals. The central portion of the complex comprises a pipe-like intrusion of magnetite dolomite carbonatite and magnetite dolomite carbonatite breccia. Magnetite dolomite carbonatite is typically fine-grained and contains angular or rounded elongate fragments of dolomite carbonatite. Fragments of magnetite dolomite carbonatite are also included in dolomite carbonatite and other carbonatite rocks in the complex. Emplacement of a discreet pulse of reduced, iron-rich carbonatite magma was, therefore, a likely early event in the evolution of the ECCC. The magnetite is altered locally to hematite and other iron oxides. The oxidation ranges from a dusting of hematite to pervasive alteration to hematite and ferric oxyhydroxides and occurs to depths as much as 630 m below the modern land surface. Other volumetrically important rock types include apatite dolomite carbonatite and barite dolomite carbonatite. Both of these rock types are localized largely along fractures, occur later in the intrusive sequence, and may reflect exsolution of phosphates and sulfates with decreasing temperatures. The magnetite dolomite carbonatite hosts significant pyrochlore mineralization. Microprobe

  1. Flood-plain delineation for Occoquan River, Wolf Run, Sandy Run, Elk Horn Run, Giles Run, Kanes Creek, Racoon Creek, and Thompson Creek, Fairfax County, Virginia

    USGS Publications Warehouse

    Soule, Pat LeRoy

    1978-01-01

    Water-surface profiles of the 25-, 50-, and 100-year recurrence interval discharges have been computed for all streams and reaches of channels in Fairfax County, Virginia, having a drainage area greater than 1 square mile except for Dogue Creek, Little Hunting Creek, and that portion of Cameron Run above Lake Barcroft. Maps having a 2-foot contour interval and a horizontal scale of 1 inch equals 100 feet were used for base on which flood boundaries were delineated for 25-, 50-, and 100-year floods to be expected in each basin under ultimate development conditions. This report is one of a series and presents a discussion of techniques employed in computing discharges and profiles as well as the flood profiles and maps on which flood boundaries have been delineated for the Occoquan River and its tributaries within Fairfax County and those streams on Mason Neck within Fairfax County tributary to the Potomac River. (Woodard-USGS)

  2. Spatial distribution of pipe collapses in Goodwin Creek Watershed, Mississippi

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Internal erosion of soil pipes can induce pipe collapses that affect soil erosion process and landform evolution. The objective of this study was to determine the spatial distribution of pipe collapses in agricultural fields of Goodwin Creek watershed. Ground survey was carried out to detect pipe co...

  3. 33 CFR 117.719 - Glimmer Glass (Debbie's Creek).

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 33 Navigation and Navigable Waters 1 2014-07-01 2014-07-01 false Glimmer Glass (Debbie's Creek). 117.719 Section 117.719 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY BRIDGES DRAWBRIDGE OPERATION REGULATIONS Specific Requirements New Jersey § 117.719 Glimmer Glass...

  4. 33 CFR 117.719 - Glimmer Glass (Debbie's Creek).

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 33 Navigation and Navigable Waters 1 2012-07-01 2012-07-01 false Glimmer Glass (Debbie's Creek). 117.719 Section 117.719 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY BRIDGES DRAWBRIDGE OPERATION REGULATIONS Specific Requirements New Jersey § 117.719 Glimmer Glass...

  5. 33 CFR 117.719 - Glimmer Glass (Debbie's Creek).

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 33 Navigation and Navigable Waters 1 2013-07-01 2013-07-01 false Glimmer Glass (Debbie's Creek). 117.719 Section 117.719 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY BRIDGES DRAWBRIDGE OPERATION REGULATIONS Specific Requirements New Jersey § 117.719 Glimmer Glass...

  6. 49. BEAR CREEK AND SANTA ANA RIVER DIVERSION DAMS AND ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    49. BEAR CREEK AND SANTA ANA RIVER DIVERSION DAMS AND CONCRETE CONDUIT NO. 1, PROJECT 1933, EXHIBIT F, SANTA ANA POWERHOUSE NO. 1. SCE drawing no. 5206851, no date (FERC no. 1933-41). - Santa Ana River Hydroelectric System, Redlands, San Bernardino County, CA

  7. 33 CFR 117.149 - China Basin, Mission Creek.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 33 Navigation and Navigable Waters 1 2011-07-01 2011-07-01 false China Basin, Mission Creek. 117.149 Section 117.149 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY BRIDGES DRAWBRIDGE OPERATION REGULATIONS Specific Requirements California § 117.149 China Basin,...

  8. 33 CFR 117.149 - China Basin, Mission Creek.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 33 Navigation and Navigable Waters 1 2014-07-01 2014-07-01 false China Basin, Mission Creek. 117.149 Section 117.149 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY BRIDGES DRAWBRIDGE OPERATION REGULATIONS Specific Requirements California § 117.149 China Basin,...

  9. 33 CFR 117.149 - China Basin, Mission Creek.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 33 Navigation and Navigable Waters 1 2013-07-01 2013-07-01 false China Basin, Mission Creek. 117.149 Section 117.149 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY BRIDGES DRAWBRIDGE OPERATION REGULATIONS Specific Requirements California § 117.149 China Basin,...

  10. 33 CFR 117.149 - China Basin, Mission Creek.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 1 2010-07-01 2010-07-01 false China Basin, Mission Creek. 117.149 Section 117.149 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY BRIDGES DRAWBRIDGE OPERATION REGULATIONS Specific Requirements California § 117.149 China Basin,...

  11. 33 CFR 117.149 - China Basin, Mission Creek.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 33 Navigation and Navigable Waters 1 2012-07-01 2012-07-01 false China Basin, Mission Creek. 117.149 Section 117.149 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY BRIDGES DRAWBRIDGE OPERATION REGULATIONS Specific Requirements California § 117.149 China Basin,...

  12. Undoing the Past: Restoration in the Monday Creek Watershed.

    ERIC Educational Resources Information Center

    Reed, Mary

    2000-01-01

    Monday Creek Restoration Project is a collaborative effort of 20 organizations to clean up an Appalachian Ohio stream fouled for generations by acid mine drainage and industrial waste. The grassroots effort has involved state and federal agencies, VISTA volunteers, community volunteers, and college students who monitor the watershed and share…

  13. Ground water in Myrtle Creek - Glendale area, Douglas County, Oregon

    USGS Publications Warehouse

    Frank, F.J.

    1979-01-01

    The purpose of this report is to describe briefly the occurence of ground water and to present ground-water information that will help water users, public officials, and planners to determine the probability of obtaining adequate quanitities of good-quality ground water in the Myrtle Creek-Glendale area.

  14. Origin of Hot Creek Canyon, Long Valley caldera, California

    SciTech Connect

    Maloney, N.J. . Dept. of Geological Sciences)

    1993-04-01

    Hot Creek has eroded a canyon some thirty meters deep across the Hot Creek rhyolite flows located in the southeastern moat of Long Valley Caldera. Maloney (1987) showed that the canyon formed by headward erosion resulting from spring sapping along hydrothermally altered fractures in the rhyolite, and the capture of Mammoth Creek. This analysis ignored the continuing uplift of the central resurgent dome. Reid (1992) concluded that the downward erosion of the canyon must have kept pace with the uplift. Long Valley Lake occupied the caldera until 100,000 to 50,000 years before present. The elevation of the shoreline, determined by trigonometric leveling, is 2,166 m where the creek enters the canyon and 2,148 m on the downstream side of the rhyolite. The slope of the strand line is about equal to the stream gradient. The hill was lower and the stream gradient less at the time of stream capture. Rotational uplift increased the stream gradient which increased the rate of downward erosion and formed the V-shaped canyon

  15. 76 FR 9968 - Drawbridge Operation Regulation; Chickasaw Creek, AL

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-02-23

    ...The Commander, Eighth Coast Guard District, issued a temporary deviation from the regulation governing the operation of the CSX Railroad Swing Span Bridge across Chickasaw Creek, mile 0.0, in Mobile, Alabama. The deviation is necessary to replace railroad ties on the bridge. This deviation allows the bridge to remain closed for eight hours on March 8,...

  16. 76 FR 60732 - Drawbridge Operation Regulation; Chickasaw Creek, AL

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-09-30

    ...The Commander, Eighth Coast Guard District, issued a temporary deviation from the regulation governing the operation of the CSX Railroad Swing Span Bridge across Chickasaw Creek, mile 0.0, at Mobile, Alabama. The deviation is necessary to repair structural members of the bridge. This deviation allows the bridge to remain closed for ten consecutive hours for repairs to structural members of the......

  17. 76 FR 3837 - Drawbridge Operation Regulation; Chickasaw Creek, AL

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-01-21

    ... Railroad Swing Span Bridge across Chickasaw Creek, mile 0.0, in Mobile, Alabama. The deviation is necessary..., in Mobile, Alabama. The bridge has a vertical clearance of 6 feet above mean high water in the closed... 117.5, the bridge currently opens on signal for the passage of vessels. This deviation allows...

  18. WATER QUALITY STATUS REPORT, STOCKNEY CREEK, IDAHO COUNTY, IDAHO. 1986

    EPA Science Inventory

    A water quality monitoring study was conducted on Stockney Creek (17060305) for the following purposes: 1) to determine baseline water quality; 2) to document water quality effects of spring and storm agricultural runoff; and 3) to determine whether implementation of Best Manage...

  19. BUCKS LAKE AND CHIPS CREEK ROADLESS AREAS, CALIFORNIA.

    USGS Publications Warehouse

    Sorensen, Martin L.; Linne, J. Mitchell

    1984-01-01

    The results of a mineral-resource assessment of the Bucks Lake and Chips Creek Roadless Areas, California indicate several areas with mineral-resource potential. The presence or absence of these potentially auriferous deposits can best be determined by drilling through the relatively thin cover of volcanic rocks.

  20. When the Creeks Rise: Disaster Recovery in Cedar Rapids

    ERIC Educational Resources Information Center

    Brousard, Dave

    2011-01-01

    On June 12, 2008, the local creek had flooded one-fifth of the city in Cedar Rapids. When schools buildings are flooded and the systems are in jeopardy, one has to act fast and learn from his/her mistakes. In this article, the author recounts his experience after the disaster in Cedar Rapids and shares what he learned from the disaster.

  1. Development of thermal-hydraulic analysis capabilities for Oyster creek

    SciTech Connect

    Lee, R.B.

    1987-01-01

    GPU Nuclear (GPUN) has been involved in developing analytical methodologies for Oyster Creek plant thermal-hydraulic response simulation for approx. 15 yr. Plant-system-related transient analysis is being accomplished via RETRAN02 MOD4 and loss-of-coolant accident (LOCA) analysis by SAFER-CORECOOL. This paper reviews the developmental process and lessons learned through this process.

  2. EAARL topography-Potato Creek watershed, Georgia, 2010

    USGS Publications Warehouse

    Bonisteel-Cormier, J.M.; Nayegandhi, Amar; Fredericks, Xan; Jones, J.W.; Wright, C.W.; Brock, J.C.; Nagle, D.B.

    2011-01-01

    This DVD contains lidar-derived first-surface (FS) and bare-earth (BE) topography GIS datasets of a portion of the Potato Creek watershed in the Apalachicola-Chattahoochee-Flint River basin, Georgia. These datasets were acquired on February 27, 2010.

  3. 75 FR 54069 - Drawbridge Operation Regulations; Curtis Creek, Baltimore, MD

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-09-03

    ... (75 FR 30747-30750). The rulemaking concerned eliminating the need for a bridge tender by allowing the... SECURITY Coast Guard 33 CFR Part 117 RIN 1625--AA09 Drawbridge Operation Regulations; Curtis Creek... Coast Guard is withdrawing its notice of proposed rulemaking concerning the operation of the...

  4. THREE MILE CREEK TOTAL MAXIMUM DAILY LOAD STUDY

    EPA Science Inventory

    The pupose of this project is to establish the allowable loading of pollutants, or other quantifiable parameters for Threemile Creek. These funds will assist ADEM in the preparation of Total Maximum Daily Loads (TMDL) for the reduction and elimination of pollution in Threemile C...

  5. WILLOW CREEK IDAHO, WATER QUALITY STATUS REPORT, 1980

    EPA Science Inventory

    Willow Creek, Idaho (17040201) was identified in the Idaho Agricultural Abatement Plant (1979) as having severe pollution due to dryland farming erosion. A water quality survey began in April 1980 to provide some baseline information on the watershed. Nearly 45 tons of sediment...

  6. 77 FR 5201 - Drawbridge Operation Regulation; Bear Creek, Dundalk, MD

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-02-02

    ... Federal Register (73 FR 3316). Public Meeting We do not now plan to hold a public meeting. But you may... SECURITY Coast Guard 33 CFR Part 117 RIN 1625-AA09 Drawbridge Operation Regulation; Bear Creek, Dundalk, MD... change the regulation governing the operation of the Baltimore County highway bridge at Wise...

  7. 75 FR 30747 - Drawbridge Operation Regulation; Curtis Creek, Baltimore, MD

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-06-02

    ... Federal Register (73 FR 3316). Public Meeting We do not now plan to hold a public meeting. But you may... SECURITY Coast Guard 33 CFR Part 117 RIN 1625-AA09 Drawbridge Operation Regulation; Curtis Creek, Baltimore... to change the regulations that govern the operation of the Pennington Avenue Bridge across...

  8. LAPWAI CREEK STUDY, LEWIS AND NEZ PERCE COUNTIES, IDAHO. 1979

    EPA Science Inventory

    During Water Year 1979, a water quality study was conducted on the Lapwai Creek in Nez Perce and Lewis Counties, Idaho (17060306) to obtain background information on nonpoint source pollution impacts and for effluent limitation development. The study involved approximately bi-mo...

  9. 33 CFR 117.800 - Mill Neck Creek.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... DRAWBRIDGE OPERATION REGULATIONS Specific Requirements New York § 117.800 Mill Neck Creek. The draw of the Bayville Bridge, mile 0.1, at Oyster Bay, New York, shall open on signal between 7 a.m. and 11 p.m.,...

  10. 33 CFR 117.800 - Mill Neck Creek.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... DRAWBRIDGE OPERATION REGULATIONS Specific Requirements New York § 117.800 Mill Neck Creek. The draw of the Bayville Bridge, mile 0.1, at Oyster Bay, New York, shall open on signal between 7 a.m. and 11 p.m.,...

  11. Okanogan Focus Watershed Salmon Creek : Annual Report 1999.

    SciTech Connect

    Lyman, Hilary

    1999-11-01

    During FY 1999 the Colville Tribes and the Okanogan Irrigation District (OID) agreed to study the feasibility of restoring and enhancing anadromous fish populations in Salmon Creek while maintaining the ability of the district to continue full water service delivery to it members.

  12. 76 FR 7131 - Drawbridge Operation Regulation; Mantua Creek, Paulsboro, NJ

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-02-09

    ...) entitled ``Drawbridge Operation Regulations; Mantua Creek, Paulsboro, NJ'' in the Federal Register (74 FR... the Gloucester County Improvement Authority proposing the construction of an access road and bridge... attempting to arrive promptly on scene for the proposed bridge construction. As a result of this change...

  13. 80. Laurel Fork Creek Bridge #2. Example of a concrete ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    80. Laurel Fork Creek Bridge #2. Example of a concrete slab bridge with T beams. It was built in 1937 and the wing walls were faced with stone to blend with its surroundings. Looking northeast. - Blue Ridge Parkway, Between Shenandoah National Park & Great Smoky Mountains, Asheville, Buncombe County, NC

  14. 75 FR 33238 - Basin Electric Power Cooperative: Deer Creek Station

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-06-11

    ...The Rural Utilities Service (RUS) and the Western Area Power Administration (Western) have issued a Final Environmental Impact Statement (EIS) for the proposed Deer Creek Station project in Brookings and Duel Counties, South Dakota. The Final EIS was prepared pursuant to the National Environmental Policy Act of 1969 (NEPA) (U.S.C. 4231 et seq.) in accordance with the Council on Environmental......

  15. AmeriFlux US-Los Lost Creek

    SciTech Connect

    Desai, Ankur

    2016-01-01

    This is the AmeriFlux version of the carbon flux data for the site US-Los Lost Creek. Site Description - Shrub wetland site, chosen to be representative of the wetlands within the WLEF tall tower flux footprint. This is a deciduous shrub wetland. Coniferous and grassy stands also exist within the WLEF flux footprint. Solar power. The site has excellent micrometeorological characteristics.

  16. 27 CFR 9.64 - Dry Creek Valley.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ..., 1978; and (6) “Warm Springs Dam Quadrangle (formerly ‘Skaggs Springs Quadrangle’), California—Sonoma... southerly along the meanders of Lytton Creek to the point of intersection with Lytton Springs Road in T. 9 N., R. 9 W.; (13) Then easterly along Lytton Springs Road to the point of intersection with U.S....

  17. Feeding to zero: Island Creek's experience in Kentucky

    SciTech Connect

    Burch, E.; Stone, C.

    1985-01-01

    Island Creek Coal Co. has been using the feed-to-zero concept in coal cleaning since 1976. Heavy media cyclones treat the fines as well as the coarse coal, thus avoiding the capital cost of additional cyclones for fines. An account is given of the operation of such a plant at Providence, Kentucky, USA.

  18. 26. Otter Creek Bridge #5. View of elevation of stone ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    26. Otter Creek Bridge #5. View of elevation of stone facing on concrete box culvert. Stone facing appears on the headwall, tail wall, wingwalls, interior abutment wall and the pier. Looking northwest. - Blue Ridge Parkway, Between Shenandoah National Park & Great Smoky Mountains, Asheville, Buncombe County, NC

  19. 111. ROCK CREEK SIPHON LOW LINE CANAL, TWIN FALLS COUNTY, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    111. ROCK CREEK SIPHON LOW LINE CANAL, TWIN FALLS COUNTY, SOUTH OF KIMBERLY IDAHO; OVERALL VIEW OF SIPHON, EAST VIEW. - Milner Dam & Main Canal: Twin Falls Canal Company, On Snake River, 11 miles West of city of Burley, Idaho, Twin Falls, Twin Falls County, ID

  20. 76 FR 9225 - Drawbridge Operation Regulation; Curtis Creek, Baltimore, MD

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-02-17

    ... Regulations; Curtis Creek, Baltimore, MD'' in the Federal Register (74 FR 50707). The temporary deviation... complete structural repairs and replacement of the grid deck, floor beams and stringers. DATES: This... February 17, 2011 to November 30, 2011. During the replacement of the grid deck, floor beams and...

  1. 75 FR 52463 - Safety Zone; Raccoon Creek, Bridgeport, NJ

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-08-26

    ... life and property on navigable waters while contractors replace steel I-beams. This safety zone is... plans on replacing steel I-beams used to support the Route 130 Bridge spanning the Raccoon Creek in... identified the need to station a barge below the Route 130 Bridge to replace three 17-foot steel I- beams...

  2. PRIORITY POLLUTANTS IN THE CEDAR CREEK WASTEWATER RECLAMATION - RECHARGE FACILITIES

    EPA Science Inventory

    The Cedar Creek Wastewater Reclamation Plant (CCWRP) located in Nassau County, NY is a 0.24 cu m/s (5.5 mgd) advanced wastewater treatment (AWT) plant designed to produce a high quality effluent suitable for groundwater recharge. The CCWRP was constructed as a demonstration proje...

  3. 101. Pine Creek Bridge #7. It is the only parkway ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    101. Pine Creek Bridge #7. It is the only parkway bridge with steel arch piers and the only one whose piers are attached to its foundations with steel pins allowing it to flex without damaging the structure. Looking northeast. - Blue Ridge Parkway, Between Shenandoah National Park & Great Smoky Mountains, Asheville, Buncombe County, NC

  4. Nutrient Sources and Transport from the Goodwater Creek Experimental Watershed

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The Goodwater Creek watershed has been monitored for flow since 1971 and for dissolved nutrients since 1991 for 3 nested watersheds (12.1, 31.5 and 73.0 km2 drainage area). This watershed includes row crop land (76%), grassland (14%), woodland (6%) and a small town at the upper end (4%). The objecti...

  5. Pataha Creek Model Watershed : 1999 Habitat Conservation Projects.

    SciTech Connect

    Bartels, Duane G.

    2000-10-01

    The projects outlined in detail on the attached project reports are a summary of the many projects implemented in the Pataha Creek Model Watershed since it was selected as a model in 1993. Up until last year, demonstration sites using riparian fencing, off site watering facilities, tree and shrub plantings and upland conservation practices were used for information and education and was the main focus of the implementation phase of the watershed plan. These practices are the main focus of the watershed plan to reduce the majority of the sediment entering the stream. However, the watershed stream evaluation team used in the watershed analysis determined that there were problems along the Pataha Creek that needed to be addressed that would add further protection to the banks and therefore a further reduction of sedimentation into the stream. 1999 was a year where a focused effort was made to work on the upland conservation practices to reduce the sedimentation into Pataha Creek. Over 95% of the sediment entering the stream can be tied directly to the upland and riparian areas of the watershed. In stream work was not addressed this year because of the costs associated with these projects and the low impact of the sediment issue concerning Pataha Creeks impact on Chinook Salmon in the Tucannon River.

  6. 78 FR 14446 - Drawbridge Operation Regulations; Cheesequake Creek, Morgan, NJ

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-03-06

    ...The Coast Guard has issued a temporary deviation from the regulation governing the operation of the New Jersey Transit Rail Operation (NJTRO) Railroad Bridge across Cheesequake Creek, mile 0.2, at Morgan, New Jersey. Under this temporary deviation, the bridge may remain in the closed position for three weekends to facilitate scheduled bridge...

  7. Water table fluctuations near an incised stream, Walnut Creek, Iowa

    USGS Publications Warehouse

    Schilling, K.E.; Zhang, Y.-K.; Drobney, P.

    2004-01-01

    Incised channels are common features in many agricultural watersheds, but the effects of channel incision on riparian water table conditions have been poorly documented. In this study, we evaluate the water table fluctuations in the floodplain near an incised stream (Walnut Creek, Iowa) and investigate the roles that channel incision and variable recharge play in modifying the water table configuration in the floodplain. Groundwater flows from higher landscape positions towards Walnut Creek under hydraulic gradients that were steepest near the upland/floodplain contact and in the near-stream riparian zone. Annually, water table fluctuations on the floodplain were greatest in wells located 30 m from the creek, midway between the creek and upland. Water levels monitored continuously during a runoff event indicated that bank storage was confined to a narrow zone adjacent to the channel. A steady-state, one-dimensional analytical model was developed to describe the shape of the water table surface near an incised stream and evaluate how variable groundwater recharge and channel bed lowering has affected the shape of the water table surface. Results from this study have implications for managing the riparian buffers of incised streams with successful establishment dependent upon matching buffer vegetation to riparian water table conditions. ?? 2003 Elsevier B.V. All rights reserved.

  8. THE BENEFITS OF WETLANDS: THE UPPER HALFWAY CREEK PROJECT

    EPA Science Inventory

    Researchers from the U.S. EPA are working in collaboration with U.S. Geological Survey and the U.S. Fish and Wildlife Services on this project. Upper Halfway Creek marsh is a constructed wetland managed by the U.S. Fish and Wildlife Service. This project will assist the U.S. EP...

  9. ROCK CREEK RURAL CLEAN WATER PROGRAM, 1988 ANNUAL PROGRESS REPORT

    EPA Science Inventory

    Implementation of the Rock Creek (17040212) rural clean water program began in 1980, following a Section 208 planning study. Contracting phases concluded on September 30, 1986. Best Management Practices (BMP) implementation phase began in 1980. As of 1 Oct 88, 38% of the contr...

  10. LAKE CREEK, KOOTENAI COUNTY, IDAHO - WATER QUALITY STATUS REPORT, 1989

    EPA Science Inventory

    The Lake Creek watershed (17010303) drains 5,722 acres of primarily woodland in Washington with 19,134 acres in Idaho devoted to agriculture. Watershed efficiency combined with deep, highly erodible soils produce severe soil erosion potential. A trend in increasing sediment loa...

  11. Ventilation planning at Energy West's Deer Creek mine

    SciTech Connect

    Tonc, L.; Prosser, B.; Gamble, G.

    2009-08-15

    In 2004 ventilation planning was initiated to exploit a remote area of Deer Creek mine's reserve (near Huntington, Utah), the Mill Fork Area, located under a mountain. A push-pull ventilation system was selected. This article details the design process of the ventilation system upgrade, the procurement process for the new fans, and the new fan startup testing. 5 figs., 1 photo.

  12. 78 FR 65873 - Drawbridge Operation Regulations; Cheesequake Creek, Morgan, NJ

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-11-04

    ... bridge painting of the movable span. DATES: This deviation is effective from November 4, 2013 through... openings to facilitate the painting of the movable span of the bridge and allow sufficient time to safely... painting of the movable span. Cheesequake Creek is predominantly a recreational waterway. The bridge...

  13. 33 CFR 117.805 - Peekskill (Annsville) Creek.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 33 Navigation and Navigable Waters 1 2011-07-01 2011-07-01 false Peekskill (Annsville) Creek. 117.805 Section 117.805 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY BRIDGES DRAWBRIDGE OPERATION REGULATIONS Specific Requirements New York § 117.805 Peekskill...

  14. 33 CFR 117.805 - Peekskill (Annsville) Creek.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 1 2010-07-01 2010-07-01 false Peekskill (Annsville) Creek. 117.805 Section 117.805 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY BRIDGES DRAWBRIDGE OPERATION REGULATIONS Specific Requirements New York § 117.805 Peekskill...

  15. Tillman Creek Mitigation Site As-Build Report.

    SciTech Connect

    Gresham, Doug

    2009-05-29

    This as-built report describes site conditions at the Tillman Creek mitigation site in South Cle Elum, Washington. This mitigation site was constructed in 2006-2007 to compensate for wetland impacts from the Yakama Nation hatchery. This as-built report provides information on the construction sequence, as-built survey, and establishment of baseline monitoring stations.

  16. 28. At Willard, Little Salmon Creek. Site of former dam ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    28. At Willard, Little Salmon Creek. Site of former dam and water supply pond for Broughton flume. Bridge over intake trough, gate in background behind bridge. South 170 degrees. - Broughton Flume, Hood River Junction on Columbia River at Washington/Oregon border, Hood, Skamania County, WA

  17. 29. At Willard, Little Salmon Creek. Site of former dam ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    29. At Willard, Little Salmon Creek. Site of former dam and water supply pond for Broughton flume. View from downstream of intake, dam wind wall to right, lower wall of overflow chute in left foreground (contains pipes and small dam, possibly for water pumping). West 320 degrees. - Broughton Flume, Hood River Junction on Columbia River at Washington/Oregon border, Hood, Skamania County, WA

  18. 31. At Willard, Little Salmon Creek. Site of former dam ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    31. At Willard, Little Salmon Creek. Site of former dam and water supply pond for Broughton flume. Gate, wind walls, covered trough, bridge in background. North/northwest 330 degrees. - Broughton Flume, Hood River Junction on Columbia River at Washington/Oregon border, Hood, Skamania County, WA

  19. 26. At Willard, Little Salmon Creek. Site of former dam ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    26. At Willard, Little Salmon Creek. Site of former dam and water supply pond for Broughton flume. Remains of dam structures on right and left banks. North/northeast 80 degrees. - Broughton Flume, Hood River Junction on Columbia River at Washington/Oregon border, Hood, Skamania County, WA

  20. 27. At Willard, Little Salmon Creek. Site of former dam ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    27. At Willard, Little Salmon Creek. Site of former dam and water supply pond for Broughton flume. View of dam structures - wing walls, overflow shute to right, camera in middle of flume intake from pond. North/northeast 40 degrees. - Broughton Flume, Hood River Junction on Columbia River at Washington/Oregon border, Hood, Skamania County, WA

  1. 33. At Willard, Little Salmon Creek. Site of former dam ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    33. At Willard, Little Salmon Creek. Site of former dam and water supply pond for Broughton flume. View from flume (Photographer standing in flume). Note wide flume mouth, covered trough, gate, bridge in background. South/southwest 160 degrees. - Broughton Flume, Hood River Junction on Columbia River at Washington/Oregon border, Hood, Skamania County, WA

  2. 30. At Willard, Little Salmon Creek. Site of former dam ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    30. At Willard, Little Salmon Creek. Site of former dam and water supply pond for Broughton flume. View through gate, covered trough on other side of gate leading to flume in distance. South 200 degrees. - Broughton Flume, Hood River Junction on Columbia River at Washington/Oregon border, Hood, Skamania County, WA

  3. 32. At Willard, Little Salmon Creek. Site of former dam ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    32. At Willard, Little Salmon Creek. Site of former dam and water supply pond for Broughton flume. View looking down flume at transition from covered trough to flume (covered trough is approximately 75'). South 180 degrees. - Broughton Flume, Hood River Junction on Columbia River at Washington/Oregon border, Hood, Skamania County, WA

  4. 75 FR 1705 - Drawbridge Operation Regulations; Curtis Creek, Baltimore, MD

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-01-13

    ...The Commander, Fifth Coast Guard District, has issued a temporary deviation from the regulations governing the operation of the I695 Bridge across Curtis Creek, mile 0.9, at Baltimore, MD. The deviation is necessary to facilitate mechanical repairs to the bridge. This temporary deviation allows the drawbridge to remain in the closed position during the deviation...

  5. 53. Humbug Creek looking downstream from Humbug Diversion Dam. Retaining ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    53. Humbug Creek looking downstream from Humbug Diversion Dam. Retaining wall for canal is visible beginning at left center. Photographer James Eastwood, 1986. Source: Salt River Project. - Waddell Dam, On Agua Fria River, 35 miles northwest of Phoenix, Phoenix, Maricopa County, AZ

  6. 52. Humbug Creek Diversion Dam showing original masonry structure at ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    52. Humbug Creek Diversion Dam showing original masonry structure at right and concrete weir at left added later. Photographer James Eastwood, 1986. Source: Salt River Project. - Waddell Dam, On Agua Fria River, 35 miles northwest of Phoenix, Phoenix, Maricopa County, AZ

  7. Goodwin Creek Experimental Watershed: Bendway Model Data Report

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The Goodwin Creek Experimental Watershed is a 21.3 km2 watershed near Batesville, Mississippi. The watershed is organized and instrumented for conducting extensive research on upstream erosion, stream erosion and sedimentation, and watershed hydrology. Data collection is directed towards providing i...

  8. 27 CFR 9.64 - Dry Creek Valley.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... north central Sonoma County, California. From the beginning point, lying at the intersection of latitude... northeasterly line of “Olive Hill” cemetery lying on the easterly side of Canyon Road; (7) Then southeasterly... degrees, E. 3,100 feet in a straight line to the point in the westerly fork of Wood Creek lying at...

  9. JIM FORD CREEK STUDY, CLEARWATER COUNTY IDAHO. 1979

    EPA Science Inventory

    In Water Year 1979, a water quality study was conducted on Jim Ford Creek in Clearwater County, Idaho (17060306) to assess the impact of the City of Weippe and Timberline High School discharges, to assess nonpoint source impacts, and to determine the present water quality of the ...

  10. WARM SPRINGS CREEK GEOTHERMAL STUDY, BLAIN COUNTY IDAHO, 1987

    EPA Science Inventory

    In the Warm Springs Creek drainage near Ketchum, Idaho (17040219), a leaking pipeline coveys geothermal water through the valley to heat nearby homes as well as to supply a resorts swimming pool. Several domestic wells in close proximity to this line have exhibited increasing fl...

  11. Baseline profile of the Tipton Creek Watershed, Iowa

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The Tipton Creek watershed traverses Hamilton and Hardin counties in north central Iowa. Over the past 20 years, both counties have experienced substantial growth in livestock production, particularly confinement hog farms. However, overall nitrogen (N), phosphorus (P), and potassium (K) nutrient av...

  12. Concentrations of fecal coliform bacteria in creeks, Anchorage, Alaska, August and September 1998

    USGS Publications Warehouse

    Dorava, Joseph M.; Love, Andra

    1999-01-01

    Water samples were collected from five creeks in undeveloped, semi-developed, and developed areas of Anchorage, Alaska, during August and September 1998 to determine concentrations of fecal coliform bacteria. In undeveloped areas of Ship, Chester, and Campbell Creeks, and the semi-developed area of Rabbit Creek, concentrations of fecal coliform bacteria ranged from less than 1 to 16 colonies per 100 milliliters of water. In the semi-developed area of Little Rabbit Creek, concentrations ranged from 30 to 860 colonies per 100 milliliters of water. In developed areas of the creeks, concentrations of fecal coliform bacteria ranged from 6 to 80 colonies per 100 milliliters of water.

  13. Mineral resources of the Fifteen Mile Creek, Oregon Canyon, Twelve Mile Creek, and Willow Creek Wilderness Study Areas, Malheur and Harney counties, Oregon

    SciTech Connect

    Peterson, J.A.; Rytuba, J.J.; Plouff, D.; Vercountere, T.L.; Turner, R.L.; Sawatzky, D.L. ); Leszcykowski, A.M.; Peters, T.J.; Schmauch, S.W.; Winters, R.A. )

    1988-01-01

    The four contiguous study areas are located in a volcanic terrane dominated by tuffs that were erupted from calderas of the McDermitt Caldera complex and the Whitehorse Caldera. None of these areas have identified resources, despite the proximity of mercury, uranium, and lithium mineralization to the south. The southern parts of the Fifteen Mile Creek and the Oregon Canyon Wilderness Study Areas have a low potential for mercury and uranium. The southern parts of the Fifteen Mile Creek, Oregon Canyon, and Willow Creek and the northwestern part of the Oregon Wilderness Study Areas have low potential for antimony, bismuth, mercury, silver,molybdenum, and zinc. In the Oregon Canyon Wilderness Study Area, the tuff of Oregon Canyon and the rim of the caldera of the McDermitt Caldera complex have a low potential for gold and silver in epithermal veins. The study areas have a low potential for zeolite minerals, oil and gas, and geothermal energy throughout, and restricted parts of the study areas have a low potential for pumice, rare-earth elements, zirconium, and decorative building stone.

  14. 78 FR 2990 - Bear Creek Storage Company, L.L.C.; Notice of Request Under Blanket Authorization

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-01-15

    ... Energy Regulatory Commission Bear Creek Storage Company, L.L.C.; Notice of Request Under Blanket Authorization Take notice that on December 21, 2012, Bear Creek Storage Company, L.L.C. (Bear Creek), 569..., Regulatory Manager, Bear Creek Storage Company, L.L.C., 569 Brookwood Village, Suite 749, Birmingham,...

  15. 75 FR 9201 - Kilarc-Cow Creek Hydroelectric Project; Notice of Intention To Prepare an Environmental Impact...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-03-01

    ... Energy Regulatory Commission Kilarc-Cow Creek Hydroelectric Project; Notice of Intention To Prepare an... an application for surrender of license for the Kilarc-Cow Creek Hydroelectric Project, FERC No. 606. The project contains two developments and is located on Old Cow Creek and South Cow Creek in...

  16. Dynamic Sediment Modeling: A Case Study at Walnut Creek, Iowa

    NASA Astrophysics Data System (ADS)

    Li, Z.; Zhang, Y.

    2006-12-01

    Deep channel bed incision and severe channel bank erosion, which have strong effects on the evolution of channel and watershed morphology, are becoming serious problems in natural rivers and streams in Iowa as a result of wide distribution of loess soil material, agricultural activity, river training and human intervention. Consequent high sediment concentration can also cause low water quality and jeopardize aquatic habitat. Dynamic modeling of sediment transport in rivers and streams provides a useful tool for monitoring, controlling and forecasting the morphology change and water quality in channels and watersheds. In order to gain insight into sediment transport process, a dynamic sediment model is built for a 7-mile segment of Walnut Creek in Jasper County, Iowa. This creek was intensively surveyed by Iowa Geological Survey Bureau (IGSB) as part of the Walnut Creek Nonpoint Source Monitoring Project. Besides channel geometry data from the survey, hydraulic and sediment data were collected at two gauges upstream and downstream operated by USGS. A software GSTARS3 developed by USGS is adopted to model both channel bed incision and bank erosion which are typical phenomena in Iowa. The dynamic sediment model is calibrated using channel bathymetry data from recent survey conducted by IGSB. Finally, based on forecasting of flow and sediment discharge time series at the upstream and stage time series at the downstream, a sediment forecasting model is developed to see if the stream can go back to the clarity and morphology of original creek. The study on this small surveyed and controlled creek will benefit our research in other Iowa rivers and streams.

  17. Geology and ore deposits of the Chicago Creek area, Clear Creek County, Colorado

    USGS Publications Warehouse

    Harrison, J.E.; Wells, J.D.

    1956-01-01

    The Chicago Creek area, Clear Creek County, Colo., forms part of the Front Range mineral belt, which is a northeast-trending belt of coextensive porphyry intrusive rocks and hydrothermal veins of Tertiary age. More than $4.5 million worth of gold, silver, copper, lead, zinc, and uranium was produced from the mines in the area between 1859 and 1954. This investigation was made by the Geological survey on behalf of the Division of Raw Materials of the U.S. Atomic Energy Commission. The bedrock in the area is Precambrian and consists of igneous rocks, some of which have been metamorphosed , and metasedimentary rocks. The metasedimentary rocks include biotite-quartz-plagioclase gneiss that is locally garnetiferous, sillimanitic biotite-quartz gneiss, amphibolite, and lime-silicate gneiss. Rocks that may be metasedimentary or meta-igneous are quartz monzonite gneiss and granite gneiss and pegmatite. The granite gneiss and pegmatite locally form a migmatite with the biotitic metasedimentary rocks. These older rocks have been intruded by granodiorite, quartz, and granite pegmatite. During Tertiary time the Precambrian rocks were invaded by dikes and plugs of quartz monzonite porphyry, alaskite porphyry, granite porphyry, monzonite porphyry, bostonite and garnetiferous bostonite porphyry, quartz bostonite porphyry, trachytic granite porphyry, and biotite-quartz latite-porphyry. Solifluction debris of Wisconsin age forms sheets filling some of the high basins, covering some of the steep slopes, and filling parts of some of the valleys; talus and talus slides of Wisconsin age rest of or are mixed with solifluction debris in some of the high basins. Recent and/or Pleistocene alluvium is present along valley flats of the larger streams and gulches. Two periods of Precambrian folding can be recognized in the area. The older folding crumpled the metasedimentary rocks into a series of upright and overturned north-northeast plunging anticlines and synclines. Quartz monzonite

  18. Aquatic biology of the Redwood Creek and Mill Creek drainage basins, Redwood National Park, Humboldt and Del Norte counties, California

    USGS Publications Warehouse

    Iwatsubo, Rick T.; Averett, R.C.

    1981-01-01

    A 2-year study of the aquatic biota in the Redwood Creek and Mill Creek drainage basins of Redwood National Park indicated that the aquatic productivity is low. Densities of coliform bacteria were low except in Prairie Creek, a tributary to Redwood Creek, where a State park, county fish hatchery, grazing land, lumber mill, and scattered residential areas are potential sources of fecal coliform bacteria. Benthic invertebrate data indicated a diverse fauna which varied considerably between streams and among stream sections. Noteworthy findings include: (1) benthic invertebrates rapidly recolonized the streambed following a major storm, and (2) man-caused disruption or sedimentation of the streambed during low flow can result in drastic reductions of the benthic invertebrate community. Seven species of fish representing species typically found in northern California coastal streams were captured during the study. Nonparametric statistical tests indicate that condition factors of steelhead trout were significantly larger at sampling stations with more insolation, regardless of drainage basin land-use history. Periphyton and phytoplankton communities were diverse, variable in numbers, and dominated by diatoms. Seston concentrations were extremely variable between stations and at each station sampled. The seston is influenced seasonally by aquatic productivity at each station and amount of allochthonous material from the terrestrial ecosystem. Time-series analysis of some seston data indicated larger and sharper peak concentrations being flushed from the logged drainage basin than from the control drainage basin. (USGS)

  19. SF6 Tracer Release Study: A Contaminant Fate Study in Newtown Creek

    NASA Astrophysics Data System (ADS)

    Schmieder, P. J.; Ho, D. T.; Peter, S.; Simpson, H. J.; Flores, S.; Dugan, W. A.

    2004-12-01

    Newtown Creek is a 5.5km creek that discharges into the East River, a 25km strait connecting Long Island Sound to the north and the New York Harbor to the south. Surface runoff dominates the freshwater input into the creek, for natural tributaries no longer exist. The areas directly adjacent to the creek are highly industrialized, and New York City's largest Water Pollution Control Plant (WPCP) discharges directly into creek. In August 2004, we injected sulfur hexafluoride (SF6) into Newtown creek to study the fate of oil seeping into the creek from an underground oil spill and the fate of nutrient rich effluent from the WPCP. We monitored SF6 in Newtown Creek, the East River, and the Upper Bay of New York Harbor for 7 consecutive days following the injection in order to investigate the spreading patterns and transport mechanics of waters exiting the creek, and to determine the ultimate fate of the contaminants/solutes originating in Newtown Creek. Dissolved oxygen (DO) measurements were collected simultaneously with SF6 measurements. A strong DO gradient exists in the creek, where waters in the upper reaches are anoxic. We use SF6 data to calculate mean residence times for Newtown Creek waters. SF6 was detected above background concentrations approximately 15km to the south of the creek at the Verrazano Bridge only 1 day after the tracer injection. By combining the movements of the SF6 distribution, the position of the oxygen gradient, and the residence time of Newtown Creek water, we can determine a lower boundary for oxygen consumption rates.

  20. Hydrodynamic and geomorphological controls on suspended sediment transport in mangrove creek systems, a case study: Cocoa Creek, Townsville, Australia

    NASA Astrophysics Data System (ADS)

    Bryce, S.; Larcombe, P.; Ridd, P. V.

    2003-03-01

    In tide-dominated sedimentary systems, close relationships exist between tidal hydrodynamics, sediment transport and geomorphology. Tropical coastlines contain many tide-dominated mangrove creeks, yet few studies to date have examined the detail of such relationships for these environments. Time-series observations of tidal height, currents and suspended sediment concentrations were taken between 1992 and 1996 in Cocoa Creek, a mangrove creek system near Townsville, NE Australia. The creek and surrounding mangrove swamps and salt flats were surveyed with an echo-sounder and total survey station, respectively. For 'within-channel' tides, the flood tide is always the fastest, at up to 0.5 m s -1. In contrast, for overbank tides (i.e. tidal height > + 1.5 m Australian Height Datum, AHD) ebb currents are fastest in July, December and January, but flood currents are fastest in August and September, at up to 1 m s -1 in both cases. The tidal asymmetry of overbank tides in Cocoa Creek is controlled by the interaction between offshore tidal forcing and the intertidal storage effect of the mangrove swamps and salt flats, with the result being that during certain periods of the year there tends to be a predominance of either faster flood or ebb velocities on overbank tides. Significant tidal suspended sediment transport in the channel is only initiated at overbank height. On overbank tides, measured net suspended sediment fluxes in the channel are mostly seaward-directed (up to 180 t per tidal cycle). However, the net flux measured over a neap-spring period may be either landwards or seawards (up to 465 and 60 t, respectively). Furthermore, on the larger overbank tides (where the maximum tidal height >+1.85 m AHD) net sediment fluxes may be reduced because of a limited supply of available material. Thus hydrodynamic and sediment sampling durations of up to a month may not be representative of long-term trends. Given that our large dataset has not identified a clear long

  1. Assessment of hydrology, water quality, and trace elements in selected placer-mined creeks in the birch creek watershed near central, Alaska, 2001-05

    USGS Publications Warehouse

    Kennedy, Ben W.; Langley, Dustin E.

    2007-01-01

    Executive Summary The U.S. Geological Survey, in cooperation with the Bureau of Land Management, completed an assessment of hydrology, water quality, and trace-element concentrations in streambed sediment of the upper Birch Creek watershed near Central, Alaska. The assessment covered one site on upper Birch Creek and paired sites, upstream and downstream from mined areas, on Frying Pan Creek and Harrison Creek. Stream-discharge and suspended-sediment concentration data collected at other selected mined and unmined sites helped characterize conditions in the upper Birch Creek watershed. The purpose of the project was to provide the Bureau of Land Management with baseline information to evaluate watershed water quality and plan reclamation efforts. Data collection began in September 2001 and ended in September 2005. There were substantial geomorphic disturbances in the stream channel and flood plain along several miles of Harrison Creek. Placer mining has physically altered the natural stream channel morphology and removed streamside vegetation. There has been little or no effort to re-contour waste rock piles. During high-flow events, the abandoned placer-mine areas on Harrison Creek will likely contribute large quantities of sediment downstream unless the mined areas are reclaimed. During 2004 and 2005, no substantial changes in nutrient or major-ion concentrations were detected in water samples collected upstream from mined areas compared with water samples collected downstream from mined areas on Frying Pan Creek and Harrison Creek that could not be attributed to natural variation. This also was true for dissolved oxygen, pH, and specific conductance-a measure of total dissolved solids. Sample sites downstream from mined areas on Harrison Creek and Frying Pan Creek had higher median suspended-sediment concentrations, by a few milligrams per liter, than respective upstream sites. However, it is difficult to attach much importance to the small downstream increase

  2. Valuing water quality in urban watersheds: A comparative analysis of Johnson Creek, Oregon, and Burnt Bridge Creek, Washington

    NASA Astrophysics Data System (ADS)

    Netusil, Noelwah R.; Kincaid, Michael; Chang, Heejun

    2014-05-01

    This study uses the hedonic price method to investigate the effect of five water quality parameters on the sale price of single-family residential properties in two urbanized watersheds in the Portland, Oregon-Vancouver, Washington metropolitan area. Water quality parameters include E. coli or fecal coliform, which can affect human health, decrease water clarity and generate foul odors; pH, dissolved oxygen, and stream temperature, which can impact fish and wildlife populations; and total suspended solids, which can affect water clarity, aquatic life, and aesthetics. Properties within ¼ mile, ½, mile, one mile, or more than one mile from Johnson Creek are estimated to experience an increase in sale price of 13.71%, 7.05%, 8.18%, and 3.12%, respectively, from a one mg/L increase in dissolved oxygen levels during the dry season (May-October). Estimates for a 100 count per 100 mL increase in E. coli during the dry season are -2.81% for properties within ¼ mile of Johnson Creek, -0.86% (½ mile), -1.19% (one mile), and -0.71% (greater than one mile). Results for properties in Burnt Bridge Creek include a significantly positive effect for a one mg/L increase in dissolved oxygen levels during the dry season for properties within ½ mile (4.49%), one mile (2.95%), or greater than one mile from the creek (3.17%). Results for other water quality parameters in Burnt Bridge Creek are generally consistent with a priori expectations. Restoration efforts underway in both study areas might be cost justified based on their estimated effect on property sale prices.

  3. Hydrodynamics of a small trained tidal inlet (Currumbin Creek, Australia)

    NASA Astrophysics Data System (ADS)

    Shaeri, S.; Tomlinson, R. B.; Etemad-Shahidi, A.; Strauss, D.; Hughes, L. P.

    2014-04-01

    Small tidal inlets are important features of coastal areas, in terms of provision of access from a back barrier water-body to the ocean as well as periodic circulation of fresh nutrients for the local ecology. Usually, dimensional and geometrical characteristics contribute significantly to morphological stability or instability of a particular inlet and necessitate an individual investigation of any desired location. In other words, generalized usage of previous empirical and experimental research of a different position can hardly be used for other places. In this regard, one of the powerful tools to understand the physical processes of a particular region is to collect as much field data as possible. Such a dataset is used to further analyse and explore the governing processes and can also be used for building a numerical computer model for supplementary studies. In this research, the results of a comprehensive field measurement at Currumbin Creek, Queensland, Australia are presented. This study is part of broader research to investigate the long term evolution of the Currumbin entrance and its adjacent beaches. Currently, an annual dredging campaign is needed to reduce the risk of flooding due to excess rainfall inundations and to maintain water quality. The majority of data were collected over a three month period consistent with the time of the 2012 dredging operation. However, due to the loss of some instrumentation, data collection for some of the parameters was repeated till the middle of May 2013. All collected data included: (1) nearshore waves and tide; (2) creek tidal variation; (3) creek flow discharge and velocity; (4) bathymetric survey of the creek; (5) beach profile evolution survey; and (6) sediment sampling. The measurement showed that the creek entrance is tidally dominated, with flood events having a major role in sediment transport into the creek. The nearshore stations' wave data illustrated the marginal effect of the beach curvature between

  4. Variability of Polychaete Secondary Production in Intertidal Creek Networks along a Stream-Order Gradient

    PubMed Central

    Chu, Tianjiang; Sheng, Qiang; Wang, Sikai; Wu, Jihua

    2014-01-01

    Dendritic tidal creek networks are important habitats for sustaining biodiversity and ecosystem functioning in salt marsh wetlands. To evaluate the importance of creek heterogeneity in supporting benthic secondary production, we assess the spatial distribution and secondary production of a representative polychaete species (Dentinephtys glabra) in creek networks along a stream-order gradient in a Yangtze River estuarine marsh. Density, biomass, and secondary production of polychaetes were found to be highest in intermediate order creeks. In high order (3rd and 4th) creeks, the density and biomass of D. glabra were higher in creek edge sites than in creek bottom sites, whereas the reverse was true for low order (1st and 2nd) creeks. Secondary production was highest in 2nd order creeks (559.7 mg AFDM m−2 year−1) and was ca. 2 folds higher than in 1st and 4th order creeks. Top fitting AIC models indicated that the secondary production of D. glabra was mainly associated with geomorphological characters including cross-sectional area and bank slope. This suggests that hydrodynamic forces are essential factors influencing secondary production of macrobenthos in salt marshes. This study emphasizes the importance of microhabitat variability when evaluating secondary production and ecosystem functions. PMID:24817092

  5. MICA CREEK, FISH CREEK, AND FREEMAN LAKE, IDAHO. STREAM AND LAKE NUTRIENT LOADING FROM BURNED LOGGING SLASH, BONNER AND KOOTENAI COUNTIES. 1989-1990

    EPA Science Inventory

    Three monitoring sites in Bonner and Kootenai Counties, Idaho (17010304) were chosen to give some insight into the question of nutrient contribution from logging slash. The sites were a Class II tributary to Mica Creek, a Class I tributary to Fish Creek, and a wet draw that flow...

  6. Hydrology and water quality of Reedy Creek in the Reedy Creek Improvement District, central Florida, 1986-89

    USGS Publications Warehouse

    Hampson, P.S.

    1993-01-01

    The Reedy Creek Improvement District encompasses an area of about 43 sq mi in southwestern Orange and northwestern Osceola Counties in central Florida. The District operates a wastewater-treatment plant that discharges through two forested wetland areas and a percolation-pond system into Reedy Creek. Discharges from these wetland systems provide a relatively steady base flow which maintains streamflow in Reedy Creek during periods of low rainfall. Streamflows during the study were characterized by relatively long periods of below-average discharge interspersed with periods of high discharges. The highest mean discharges were recorded in 1988 and the lowest mean discharges were recorded in 1989. Water-quality data collection included the operation of four continuous water-quality monitors recording hourly water temperature, specific conductance, and dissolved oxygen concentration, and the collection of water-quality samples. Dissolved oxygen concentrations were similar for all stations on Reedy Creek and frequently were less than the minimum Florida standard of 5.0 mg/L. These low dissolved oxygen concentrations probably are the result of natural conditions. Nutrient analyses of water-quality samples were used to compute loadings into and out of a wetland conservation area in the southern part of the District and in the reach of Reedy Creek downstream from the wastewater discharges. Overall retention percentages for 1986-89, not including atmospheric and precipitation inputs, were 59.1 percent for total ammonia nitrogen: 3.4 percent for total organic nitrogen, which was the predominant nitrogen species: 33.2 percent for total nitrate nitrogen; 27.0 percent for total phosphorus; and 26.0 percent for total organic carbon. Highest loading inputs to the wetland conservation area were from the reach of Reedy Creek receiving wastewater discharge. Discharges from the wetlands receiving wastewater and entering the wetland conservation area during 1988 carried 16.3 percent

  7. Hydrologic data for Mountain Creek, Trinity River Basin, Texas, 1975

    USGS Publications Warehouse

    Buckner, H.D.

    1977-01-01

    Mountain Creek drains the northeast corner of Johnson County, the northwest corner of Ellis County, the southeast corner of Tarrant County, and part of the southwest corner of Dallas County, Tex. The basin is 30 miles long and averages 10 miles in width. The total drainage area at the mouth is 304 sq mi. Basin outflow for the 1975 water year was 146,400 acre-feet which is 68,880 acre-feet above the 15-year (1960-75) average of 77,520 acre-feet. Storage in Mountain Creek Lake showed a net loss of 150 acre-feet during the water year. Rainfall over the study area for the 1975 water year was about 39 inches, which is about 5 inches above the 15-year mean for the area. (Woodard-USGS)

  8. Hydrologic data for North Creek Trinity River Basin, Texas, 1976

    USGS Publications Warehouse

    Kidwell, C.C.

    1978-01-01

    This report contains rainfall and runoff data collected during the 1976 water year for a 21.6-square mile area above the stream-gaging station on North Creek near Jacksboro, Texas. A continuous water-stage recording gage was installed at one representative floodwater-retarding structure (site 28-A) on Oct. 5, 1972. The data are used to compute the contents, surface area, inflow, and outflow at this site. The stream-gaging station on North Creek near Jacksboro continuously records the water level which, with measurements of streamflow, is used to compute the runoff from the study area. Streamflow records at this gage began on Aug. 8, 1956. Detailed rainfall-runoff computations, including hydrographs and mass curves, are included for two storm periods during the 1976 water year at the stream-gaging station. (Woodard-USGS)

  9. Hydrologic data for North Creek, Trinity River basin, Texas, 1979

    USGS Publications Warehouse

    Kidwell, C.C.

    1981-01-01

    This report contains rainfall and runoff data collected during the 1979 water year for the 21.6-square mile area above the stream-gaging station North Creek near Jacksboro, Texas. A continuous water-stage recording gage was installed at one representative floodwater-retarding structure (site 28-A) on Oct. 5, 1972. The data are collected to compute the contents, surface area, inflow, and outflow at this site. The stream-gaging station on North Creek near Jacksboro continuously records the water level which, with measurements of streamflow, is used to compute the runoff from the study area. Streamflow records at this gage began on Aug. 8, 1956. Detailed rainfall-runoff computations are included for one storm during the 1979 water year at the stream-gaging station. (USGS)

  10. Hydrologic data for North Creek, Trinity River basin, Texas, 1978

    USGS Publications Warehouse

    Kidwell, C.C.

    1980-01-01

    This report contains rainfall and runoff data collected during the 1978 water year for the 21.6-square mile area above the stream-gaging station North Creek near Jacksboro, Texas. A continuous water-stage recording gage was installed at one representative floodwater-retarding structure (site 28-A) on Oct. 5, 1972. The data are collected to compute the contents, surface area, inflow, and outflow at this site. The stream-gaging station on North Creek near Jacksboro continuously records the water level which, with measurements of streamflow, is used to compute the runoff from the study area. Streamflow records at this gage began on Aug. 8, 1956. Detailed rainfall-runoff computations are included for two storm periods during the 1978 water year at the stream-gaging station. (USGS)

  11. Mercury accumulation in biota of Thunder Creek, Saskatchewan

    SciTech Connect

    Munro, D.J.; Gummer, W.D.

    1980-12-01

    Collection of biological organisms was undertaken to investigate the bioaccumulation of mercury in the food chain, the results of which are reported. Two sites were selected on Thunder Creek; the control or background site, site number 2, is located approximately 2.5 km upstream, from site number 1. The selection of organisms for analysis was based on the presence and abundance of each at both locations. Only crayfish (Orconcetes virilis) pearl dace (Semotilus margarita) and brook stickleback (Culaea inconstans) were found to be sufficiently abundant. The importance of the data obtained is the significant difference in concentration between the upstream and downstream sites on Thunder Creek. This difference shows that more mercury is available to the biological community at site number 1 than at site number 2 confirming that mercury in the contaminated sediments is being methylated and taken up into the food chain.

  12. Boulder Creek: A stream ecosystem in an urban landscape

    USGS Publications Warehouse

    Verplanck, Philip L.; Murphy, Sheila F.; Birkeland, Peter W.; Pitlick, John; Barber, Larry B.; Schmidt, Travis S.

    2008-01-01

    The Boulder Creek Watershed, within the Front Range region of Colorado, is typical of many western watersheds because it is composed of a high-gradient upper reach mostly fed by snowmelt, a substantial change in gradient at the range front, and an urban corridor within the lower gradient section. A stream ecosystem within an urban landscape not only can provide water for municipal, industrial, and agricultural needs, but also can be utilized for recreation, esthetic enjoyment, and wastewater disposal. The purpose of this 26 km bicycle field trip is to explore the hydrology and geochemistry of Boulder and South Boulder Creeks and to discuss topics including flood frequency and hazards, aqueous geochemistry of the watershed, and potential impacts of invasive species and emerging contaminants on stream ecology.

  13. Water quality monitoring report for the White Oak Creek Embayment

    SciTech Connect

    Ford, C.J. ); Wefer, M.T. )

    1993-01-01

    Water quality monitoring activities that focused on the detection of resuspended sediments in the Clinch River were conducted in conjunction with the White Oak Creek Embayment (WOCE) time-critical Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) removal action to construct a sediment-retention structure at the mouth of White Oak Creek (WOC). Samples were collected by use of a 24-h composite sampler and through real-time water grab sampling of sediment plumes generated by the construction activities. Sampling stations were established both at the WOC mouth, immediately adjacent to the construction site, and at K-1513, the Oak Ridge K-25 Site drinking water intake approximately 9.6 km downstream in the Clinch River. Results are described.

  14. Geology and gold deposits of the Cripple Creek district, Colorado

    USGS Publications Warehouse

    Lindgren, Waldemar; Ransome, F.L.

    1906-01-01

    The Cripple Creek gold deposits, discovered in 1891, were investigated by Messrs. Cross and Penrose, of the United States Geological Survey, in 1894. The present reexamination was requested by citizens of Colorado, and . has been carried out under the financial cooperation of the State with the Federal Survey. It has involved complete revision of the topographic map of the district used as a base by Cross and Penrose, the running of a line of accurate levels from Colorado Springs to Cripple Creek, remapping of the geology, and a thorough study of the extensive mine workings opened during the past ten years. Due acknowledgment is made, of the cordial assistance rendered by mining men, and a list is given of the important publications concerning the geology or mines of the district.

  15. Judy Creek: Successful use of offset VSP to find porosity

    SciTech Connect

    Campbell, A.; Pearcy, R.; Lee, H.; Hemingson, P.

    1994-12-31

    In March of 1993, Imperial Oil Resources Ltd. drilled the Judy Creek 14-7-64-10w5 well. The target was porosity on the front of the Judy Creek ``A`` reef. The well encountered poor porosity development. Available surface seismic was of low resolution, so an alternative method was sought to locate better porosity. An offset VSP was acquired, and an anomaly was observed on the P-wave data at a distance of 125 meters form the well. A short radius horizontal radial was drilled from the existing wellbore and encountered porosity development at 125 meters from the well bore. Subsequently, S-wave processing was carried out. Once again, an anomaly was observed at 125 meters form the well bore. The S-waves had the additional advantage of providing better resolution of the porous zone than the P-wave image.

  16. Salt transport in a tidal canal, West Neck Creek, Virginia

    USGS Publications Warehouse

    Bales, Jerad D.; Skrobialowski, Stanley C.

    1993-01-01

    Flow and stability were monitored during 1989-92 in West Neck Creek, Virginia, which provides a direct hydraulic connection between the saline waters of Chesapeake Bay and the relatively fresh waters of Currituck Sound, North Carolina. Flow in the tidal creek was to the south 64 percent of the time, but 80 percent of the southward flows were less than 40 cubic feet per second. The highest flows were associated with rain storms. Salinity ranged from 0.1 parts per thousand to 24.5 per thousand, and the highest salinities were observed during periods of sustained, strong northerly winds. Salt loads ranged from 302 tons per day to the north to 4,500 tons per day to the south.

  17. Flood profiles for Cypress Creek, west-central Florida

    USGS Publications Warehouse

    Murphy, W.R., Jr.

    1978-01-01

    Flood profiles are included for selected recurrence-interval floods in west-central Florida for a 27-mile reach of Cypress Creek, for a 4-mile tributary reach, and for a 1.2-mile distributary reach. The procedure for constructing flood profiles is based on flood heights computed in a step-backwater analysis using the following data: 2-, 2.33-, 5-, 10-, 25-, 50-, 100-, 200-, and 500-year flood-peak discharges; data for 53 Cypress Creek channel cross sections, 11 tributary cross sections, and 7 distributary cross sections (including roughness coefficients); and stage-discharge relations. Computed flood heights are judged to be generally accurate to plus-or-minus 0.5 foot. Flood data presented can be used to delineate areal extent of flooding on topographic maps. This information can be used by local governmental agencies to control flood-plain development. (Woodard-USGS)

  18. Asotin Creek Instream Habitat Alteration Projects: 1998 Habitat Evaluation Surveys.

    SciTech Connect

    Bumgarner, Joseph D.

    1999-03-01

    The Asotin Creek Model Watershed Master Plan was completed 1994. The plan was developed by a landowner steering committee for the Asotin County Conservation District (ACCD), with technical support from the various Federal, State and local entities. Actions identified within the plan to improve the Asotin Creek ecosystem fall into four main categories, (1) Stream and Riparian, (2) Forestland, (3) Rangeland, and (4) Cropland. Specific actions to be carried out within the stream and in the riparian area to improve fish habitat were, (a) create more pools, (b) increase the amount of large organic debris (LOD), (c) increase the riparian buffer zone through tree planting, and (d) increase fencing to limit livestock access; additionally, the actions are intended to stabilize the river channel, reduce sediment input, and protect private property. Fish species of main concern in Asotin Creek are summer steelhead (Oncorhynchus mykiss), spring chinook (Oncorhynchus tshawytscha), and bull trout (Salvelinus confluentus). Spring chinook in Asotin Creek are considered extinct (Bumgarner et al. 1998); bull trout and summer steelhead are below historical levels and are currently as ''threatened'' under the ESA. In 1998, 16 instream habitat projects were planned by ACCD along with local landowners. The ACCD identified the need for a more detailed analysis of these instream projects to fully evaluate their effectiveness at improving fish habitat. The Washington Department of Fish and Wildlife's (WDFW) Snake River Lab (SRL) was contracted by the ACCD to take pre-construction measurements of the existing habitat (pools, LOD, width, depth, etc.) within each identified site, and to eventually evaluate fish use within these sites. All pre-construction habitat measurements were completed between 6 and 14 July, 1998. 1998 was the first year that this sort of evaluation has occurred. Post construction measurements of habitat structures installed in 1998, and fish usage evaluation, will be

  19. Numerical simulation of flow in Brush Creek Valley, Colorado

    SciTech Connect

    Leone, J.M. Jr.; Lee, R.L.

    1987-06-01

    In this paper, we present some results from our three-dimensional, non-hydrostatic, finite element model applied to simulations of flow in Brush Creek Valley. These simulations are not intended to reproduce any particular experiment, but rather are to evaluate the qualitative performance of the model, to explore the major difficulties involved, and to begin sensitivity studies of the flows of interest. 2 refs., 11 figs.

  20. Canyon Creek: A late Pleistocene vertebrate locality in interior Alaska

    NASA Astrophysics Data System (ADS)

    Weber, Florence R.; Hamilton, Thomas D.; Hopkins, David M.; Repenning, Charles A.; Haas, Herbert

    1981-09-01

    The Canyon Creek vertebrate-fossil locality is an extensive road cut near Fairbanks that exposes sediments that range in age from early Wisconsin to late Holocene. Tanana River gravel at the base of the section evidently formed during the Delta Glaciation of the north-central Alaska Range. Younger layers and lenses of fluvial sand are interbedded with arkosic gravel from Canyon Creek that contains tephra as well as fossil bones of an interstadial fauna about 40,000 years old. Solifluction deposits containing ventifacts, wedge casts, and rodent burrows formed during a subsequent period of periglacial activity that took place during the maximum phase of Donnelly Glaciation about 25,000-17,000 years ago. Overlying sheets of eolian sand are separated by a 9500-year-old paleosol that may correlate with a phase of early Holocene spruce expansion through central Alaska. The Pleistocene fauna from Canyon Creek consists of rodents (indicated by burrows), Mammuthus primigenius (woolly mammoth), Equus lambei (Yukon wild ass), Camelops hesternus (western camel), Bison sp. cf. B. crassicornis (large-horned bison), Ovis sp. cf. O. dalli (mountain sheep), Canis sp. cf. C. lupus (wolf), Lepus sp. cf. L. othus or L. arcticus (tundra hare), and Rangifer sp. (caribou). This assemblage suggests an open landscape in which trees and tall shrubs were either absent or confined to sheltered and moist sites. Camelops evidently was present in eastern Beringia during the middle Wisconsin interstadial interval but may have disappeared during the following glacial episode. The stratigraphic section at Canyon Creek appears to demonstrate that the Delta Glaciation of the north-central Alaska Range is at least in part of early Wisconsin age and was separated from the succeeding Donnelly Glaciation by an interstadial rather than interglacial episode.

  1. 25. Otter Creek Bridge #2. View of the stone facing ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    25. Otter Creek Bridge #2. View of the stone facing common on nearly all concrete box culverts. The stone faced arch mimics rigid frame structures. Culverts were used for a variety of purposes from small stream crossings to grade separation structures for farmers whose land was split by the parkway. Looking northeast. - Blue Ridge Parkway, Between Shenandoah National Park & Great Smoky Mountains, Asheville, Buncombe County, NC

  2. A survey of the Oyster Creek reload licensing model

    SciTech Connect

    Alammar, M.A. )

    1991-01-01

    The Oyster Creek RETRAN licensing model was submitted for approval by the U.S. Nuclear Regulatory Commission in September 1987. This paper discusses the technical issues and concerns that were raised during the review process and how they were resolved. The technical issues are grouped into three major categories: the adequacy of the model benchmark against plant data; uncertainty analysis and model convergence with respect to various critical parameters (code correlations, nodalization, time step, etc.); and model application and usage.

  3. Glacial Lake Outburst Flood on Lemon Creek, Southeastern Alaska

    NASA Astrophysics Data System (ADS)

    Seifert, S. L.; Schwarz, T. C.; Walter, M. T.

    2001-12-01

    A system of small glacial lakes on Lemon Glacier near Juneau, AK was studied to better understand its annual jokulhlaup cycle. Although jokulhlaup behaviors of many supraglacial and glacially-dammed lakes around the world have been studied, some observed relationships among the governing parameters remain mysterious. An associated two-lake system, Lakes Linda and Lynn, which are uniquely small among similar research, provide an opportunity to investigate the applicability of previously developed relationships between discharge magnitude and lake volume to a different spatial scale. The system proved to be interesting in that its behavior does not fit well with established jokulhlaup taxonomy. Additionally, this glacier discharges into Lemon Creek, an important development corridor for Juneau, AK and a productive salmon stream. Understanding how the yearly Lemon Glacier jokulhlaup event impacts this stream is essential to monitoring and meaningfully interpreting water quality data. Historical USGS Lemon Creek streamflow data and icefield observations from the Juneau Icefield Research Program (JIRP) were used to characterize the Lemon Glacier Jokulhlaup and identify changes in system since its discovery in 1962. A detailed field study was carried out from 6/15/01 to 8/2/01 to improve our understanding of the mechanics and thermodynamics of this system. Monitored during this period were lake-levels, lake-temperature profiles, air temperature, surface temperature, relative humidity, precipitation, wind speed/direction, solar radiation, and Lemon Creek streamflow and water-quality. This system has undergone substantial historical changes including the relatively recent development of Lake Lynn, which is now the larger of the two lakes. Continued enlargement of this system is increasing its contribution to peak streamflows in Lemon Creek and thus its impact on stream water quality, especially with respect to sediment loading.

  4. Canyon Creek: A late Pleistocene vertebrate locality in interior Alaska

    USGS Publications Warehouse

    Weber, F.R.; Hamilton, T.D.; Hopkins, D.M.; Repenning, C.A.; Haas, H.

    1981-01-01

    The Canyon Creek vertebrate-fossil locality is an extensive road cut near Fairbanks that exposes sediments that range in age from early Wisconsin to late Holocene. Tanana River gravel at the base of the section evidently formed during the Delta Glaciation of the north-central Alaska Range. Younger layers and lenses of fluvial sand are interbedded with arkosic gravel from Canyon Creek that contains tephra as well as fossil bones of an interstadial fauna about 40,000 years old. Solifluction deposits containing ventifacts, wedge casts, and rodent burrows formed during a subsequent period of periglacial activity that took place during the maximum phase of Donnelly Glaciation about 25,000-17,000 years ago. Overlying sheets of eolian sand are separated by a 9500-year-old paleosol that may correlate with a phase of early Holocene spruce expansion through central Alaska. The Pleistocene fauna from Canyon Creek consists of rodents (indicated by burrows), Mammuthus primigenius (woolly mammoth), Equus lambei (Yukon wild ass), Camelops hesternus (western camel), Bison sp. cf. B. crassicornis (large-horned bison), Ovis sp. cf. O. dalli (mountain sheep), Canis sp. cf. C. lupus (wolf), Lepus sp. cf. L. othus or L. arcticus (tundra hare), and Rangifer sp. (caribou). This assemblage suggests an open landscape in which trees and tall shrubs were either absent or confined to sheltered and moist sites. Camelops evidently was present in eastern Beringia during the middle Wisconsin interstadial interval but may have disappeared during the following glacial episode. The stratigraphic section at Canyon Creek appears to demonstrate that the Delta Glaciation of the north-central Alaska Range is at least in part of early Wisconsin age and was separated from the succeeding Donnelly Glaciation by an interstadial rather than interglacial episode. ?? 1981.

  5. Assessment of bacterial contamination in the Bear Creek Floatway, 1988

    SciTech Connect

    Springston, G.L.; Milligan, J.D.

    1988-11-01

    To evaluate the closure status of the floatway, TVA began further monitoring of Bear Creek Floatway to assess the health implications of new criteria relative to fecal coliform and fecal streptococcal contamination. Data were collected for fecal coliform, fecal streptococci, enterococci, and Escherichia coli. Data collection began in April 1984. Results and evaluation of data from May 1985 to July 1986 are reported herein. 6 refs., 3 figs., 3 tabs.

  6. LOST COVE AND HARPER CREEK ROADLESS AREAS, NORTH CAROLINA.

    USGS Publications Warehouse

    Griffitts, W.R.; Crandall, T.M.

    1984-01-01

    An investigation indicated that a part of the Lost Cove and Harper Creek Roadless Areas, North Carolina has a probable mineral-resource potential for uranium, niobium, and beryllium. The study areas lie within the Blue Ridge physiographic province and are predominantly underlain by Precambrian plutonic and metasedimentary rocks of low metamorphic grade. The uranium occurs in vein-type deposits and in supergene-enriched foliated rocks. The geologic setting precludes the presence of fossil fuel resources.

  7. ADAMS GAP AND SHINBONE CREEK ROADLESS AREAS, ALABAMA.

    USGS Publications Warehouse

    Klein, T.L.; Harrison, Donald K.

    1984-01-01

    The Adams Gap and Shinbone Creek Roadless Areas in Alabama were evaluated for their mineral potential. The only resource within the established boundary of the roadless area is quartzite suitable for crushed rock or refractory-grade aggregate. The quartzite contains deleterious impurities and is found in abundance outside the areas. Natural gas or petroleum may exist at depth. Detailed seismic studies and deep drilling tests are needed before a reasonable estimate of hydrocarbon potential can be made.

  8. BLACK BUTTE AND ELK CREEK ROADLESS AREAS, CALIFORNIA.

    USGS Publications Warehouse

    Ohlin, Henry N.; Spear, R.J.

    1984-01-01

    A mineral investigation in the nearly contiguous Black Butte and Elk Creek Roadless Areas of northern California, indicates that small parts of both roadless areas have a probable mineral-resource potential for small manganese-copper- or chromite-type deposits. There is little promise for the occurrence of energy resources in the areas. Investigation of geothermal resource potential and of the potential for other hydrothermal base- and precious-metal mineralization should be initiated.

  9. Interpretation of Redondo Creek Field pressure buildup tests

    SciTech Connect

    Fallon, J.B.

    1982-01-01

    Recent pressure buildup analyses of Redondo Creek Field wells have been facilitated by identification of wellbore storage. The wellbore storage coefficient observed immediately after shut-in is controlled by the compressibility of the two-phase wellbore fluid, but the coefficient decreases when the wellbore storage is controlled by a rising liquid level. Identification of such phenomena aids in defining the correct radial flow regime of the pressure buildup response.

  10. HOMESTEAD, LAKE FORK, AND LICK CREEK ROADLESS AREAS, OREGON.

    USGS Publications Warehouse

    Evans, James G.; Conyac, Martin D.

    1984-01-01

    A mineral survey concluded that the Homestead, Lake Fork and Lick Creek Roadless Area, Oregon offer little promise for the occurrence of mineral or energy resources in the bedrock. Probable mineral-resource potential is assigned to the west and north parts of the Lake Fork Roadless Area, where gold resources may occur in glacial deposits and alluvium transported into this area from sources outside the roadless area to the west.

  11. Mercury cycling in the Allequash Creek watershed, northern Wisconsin

    USGS Publications Warehouse

    Krabbenhoft, D.P.; Benoit, J.M.; Babiarz, C.L.; Hurley, J.P.; Andren, A.W.

    1995-01-01

    Although there have been recent significant gains in our understanding of mercury (Hg) cycling in aquatic environments, few studies have addressed Hg cycling on a watershed scale in particular, attention to Hg species transfer between watershed components (upland soils, groundwater, wetlands, streams, and lakes) has been lacking. This study describes spatial and temporal distributions of total Hg and MeHg among watershed components of the Allequash Creek watershed (northern Wisconsin, USA). Substantial increases in total Hg and MeHg were observed as groundwater discharged through peat to form springs that flow into the stream, or rivulets that drain across the surface of the wetland. This increase was concomitant with increases in DOC. During fall, when the Allequash Creek wetland released a substantial amount of DOC to the stream, a 23 fold increase in total Hg concentrations was observed along the entire length of the stream. Methylmercury, however, did not show a similar response. Substantial variability was observed in total Hg (0.9 to 6.3) and MeHg (<0.02 to 0.33) concentrations during synoptic surveys of the entire creek. For the Allequash Creek watershed, the contributing groundwater basin is about 50% larger than the topographic drainage basin. Total Hg concentrations in groundwater, the area of the groundwater basin, and annual stream flow data give a watershed-yield rate of 12 mg/km2/d, which equates to a retention rate of 96%. The calculated MeHg yield rate for the wetland area is 0.6 to 1.5 mg/km2/d, a value that is 3-6 fold greater than the atmospheric deposition rate.

  12. 78 FR 67084 - Drawbridge Operation Regulation; Broad Creek, Laurel, DE

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-11-08

    ...The Coast Guard is proposing to change the regulation that governs the operation of the Poplar Street Bridge, mile 8.2, and the U.S. 13A Bridge over Broad Creek, mile 8.25, both at Laurel, DE. The proposed new rule would change the current regulation by requiring a forty-eight hour advance notice and by allowing the bridges to remain in the closed position for the passage of...

  13. Tectonic significance of Currant Creek formation, north-central Utah

    SciTech Connect

    Isby, J.S.; Picard, M.D.

    1984-07-01

    The Currant Creek Formation is composed of conglomerate, sandstone, and fine-grained clastic rocks that crop out along the northwestern margin of the Uinta basin in north-central Utah. Lateral gradations in grain size define proximal, medial, and distal parts of coalescing alluvial-fan deposits that prograded eastward from the active Sevier-Laramide orogenic belt during Maestrichtian through Paleocene (.) time. Paleocurrent directions indicate a dominant southerly transport direction and a minor easterly component. Strong east and southeasterly directions, measured in imbricated clasts and in sand lenses in conglomerate, indicate multiple source areas for the detritus. Source of the coarse-grained detritus in the Currant Creek Formation was the Charleston thrust sheet. Conglomeratic clasts are composed of Precambrian and Cambrian quartzite, chert derived from Cambrian and Mississippian carbonate beds, and Pennsylvanian sandstone. These rocks are exposed in the upper plate of the Charleston thrust near Deer Creek Reservoir, Mount Timpanogos, and Strawberry Reservoir. At Big and Little Cottonwood Canyons, the same rocks are exposed in the lower plate.

  14. Rehabilitate Newsome Creek Watershed, 2007-2008 Annual Report.

    SciTech Connect

    Bransford, Stephanie

    2009-05-01

    The Nez Perce Tribe Department of Fisheries Resource Management, Watershed Division approaches watershed restoration with a ridge-top to ridgetop approach. The Nez Perce Tribe (NPT) and the Nez Perce National Forest (NPNF) have formed a partnership in completing watershed restoration activities, and through this partnership more work is accomplished by sharing funding and resources in our effort. The Nez Perce Tribe began watershed restoration projects within the Newsome Creek watershed of the South Fork Clearwater River in 1997. Progress has been made in restoring the watershed through road decommissioning and culvert replacement. Starting in FY 2001 and continuing into the present, a major stream restoration effort on the mainstem of Newsome Creek has been pursued. From completing a watershed assessment to a feasibility study of 4 miles of mainstem rehabilitation to carrying that forward into NEPA and a final design, we will begin the effort of restoring the mainstem channel of Newsome Creek to provide spawning and rearing habitat for anadromous and resident fish species. Roads have been surveyed and prioritized for removal or improvement as well as culverts being prioritized for replacement to accommodate fish passage throughout the watershed.

  15. Remediation of abandoned mine discharges in the Loyalhanna Creek watershed

    SciTech Connect

    Fish, C.L.; Fish, D.H.

    1999-07-01

    Abandoned deep mine discharges were responsible for high iron loadings into several streams in the Loyalhanna Creek watershed. A total of seven discharges with flow rates from 20 to 1240 gal/min were flowing into Four Mile Run near Latrobe, PA. The iron concentrations in these discharges averaged near 80 ppm. The pH, however, was near neutral due to contact with underground limestone deposits. The high iron concentrations had severely degraded the habitat of the streams including 22 miles of Loyalhanna Creek. Benthic macroinvertebrates are especially vulnerable to the deposition of iron in these streams. In 1993, the Loyalhanna Mine Drainage Coalition was formed to oversee the remediation of the AMD discharges affecting Loyalhanna Creek. During this time monthly monitoring of the discharges began. Then using the chemistry and flow data, passive wetland treatment systems were designed to remediate the mine drainage. The remediation process precipitates and collects the iron oxide in the wetlands, thus eliminating the iron precipitation from the stream. In 1997 and 1998 three wetland treatment systems were constructed. The three wetlands capture the flow from the seven discharges and during low flow periods remove 95--100% of the iron from these discharges. The affected streams have shown a significant decrease in the iron concentrations and a subsequent improvement in the habitat quality of the streams. Fish and macroinvertebrates have been found in the most polluted stream which was void of life before the treatment systems were in operation.

  16. Dry Creek salt dome, Mississippi Interior Salt basin

    SciTech Connect

    Montgomery, S.L.; Ericksen, R.L.

    1997-03-01

    Recent drilling of salt dome flanks in the Mississippi Salt basin has resulted in important new discoveries and the opening of a frontier play. This play is focused on gas/condensate reserves in several Cretaceous formations, most notably the Upper Cretaceous Eutaw and lower Tuscaloosa intervals and Lower Cretaceous Paluxy and Hosston formations. As many as eight domes have been drilled thus far; sandstones in the upper Hosston Formation comprise the primary target. Production has been as high as 3-5 Mcf and 500-1200 bbl of condensate per day, with estimated ultimate reserves in the range of 0.2 to 1.5 MBOE (million barrels oil equivalent) per well. As typified by discovery at Dry Creek salt dome, traps are related to faulting, unconformities, and updip loss of permeability. Previous drilling at Dry Creek, and in the basin generally, avoided the flank areas of most domes, due to geologic models that predicted latestage (Tertiary) piercement and breached accumulations. Recent data from Dry Creek and other productive domes suggest that growth was episodic and that piercement of Tertiary strata did not affect deeper reservoirs charged with hydrocarbons in the Late Cretaceous.

  17. Reconstructing the Shock Wave From the Wolfe Creek Meteorite Impact.

    NASA Astrophysics Data System (ADS)

    Heine, C.; O'Neill, C. J.

    2003-12-01

    The Wolfe Creek meteorite crater is an 800m diameter impact structure located in the Tanami Desert near Hall's Creek, Western Australia. The crater formed <300000 years ago, and is the 2nd largest crater from which fragments of the impacting meteorite (a medium octahedrite) have been recovered. We present the results of new ground based geophysical (magnetics and gravity) surveys conducted over the structure in July-August, 2003. The results highlight the simple structure of the crater under the infilling sediments, and track the extent of deformation and the ejecta blanket under the encroaching sanddunes. The variations in the dip of the foliations around the crater rim confirm that the crater approached from East-Northeast, as deduced from the ejecta distribution, and provide constraints on the kinetic energy and angle of the impactor. We also use the distribution of shocked quartz in the target rock (Devonian sandstones) to reconstruct the shock loading conditions of the impact using the Grieve and Robertson (1976) criterion. We also use a Simplified Arbitrary Langrangian-Eulerian hydrocode (SALE 2) to simulate the propagation of shock waves through a material described by a Tillotson equation of state. Using the deformational and PT constraints of the Wolfe-Creek crater, we can estimate the partitioning of kinetic energy as a result of this medium-size impact.

  18. Regional significance of recurrent faulting and intracanyon volcanism at Oak Creek Canyon, southern Colorado Palteau, Arizona

    SciTech Connect

    Holm, R.F. ); Cloud, R.A. )

    1990-10-01

    Measured sections of late Miocene basalt lava flows, Tertiary gravel, and Paleozoic strata are the basis for stratigraphic reconstructions that provide evidence for pre- and post-volcanic movements on the Oak Creek fault, and for the existence of a prevolcanic ancestral Oak Creek Canyon, Arizona. Recurrent faulting, recording Laramide compression and Basin and Range extension, suggests probable control by an ancestral Oak Creek fault that would belong to a regional system of basement faults hat have controlled Colorado Plateau structures in Phanerozoic rocks. Locally derived Tertiary gravel and overlying lavas filled a canyon eroded in Paleozoic strata along the Oak Creek fault. Southward flow of ancestral Oak Creek, indicated y the lithology and geomorphic position of the gravel, valley reconstruction, and lava vents to the north, northeast, or east, requires that the regional drainage reversal on the southern Colorado Plateau occurred before late Miocene time in the Oak Creek area.

  19. Utilization survey of a rural creek fishery in central Alabama.

    PubMed

    Ebert, Ellen S; Wilson, Natalie; Wacksman, Mitch; Loper, John R; Schell, John D; Fowler, Alan

    2012-03-01

    A one-year angler intercept survey was conducted on Choccolocco Creek, a rural, limited access tributary to the Coosa River in northeastern Alabama. The purpose of the survey was to collect data and information about the behaviors and fish consumption habits of the recreational anglers who fish there. Nine survey locations were included in the stratified sampling plan, and sampling occurred throughout daylight hours, on weekdays and weekends/holidays, during all four seasons of the year. Surveys were completed on a total of 101 survey days between June 28, 2008 and June 27, 2009.(6) Seventy-two anglers were observed fishing during the survey period, and 52 (72%) of those individuals agreed to participate in the survey. Based on the information collected by the survey clerks, the angler population fishes the Creek between 1 and 54 times per year, with an average frequency of seven trips per year. The average number of months fished was three months per year, with a range of one to nine months. Only 15% of the anglers who participated in the survey (eight individuals) had succeeded in catching fish by the end of their trips, and only four of those individuals (8%) had retained any of the fish they had caught for consumption. Reasons provided for not retaining fish were that they either only fished for sport, did not catch enough fish to eat, or the fish they caught were too small to keep. Because so few anglers used and harvested fish from the resource, fish consumption rates could not be determined with a high degree of confidence. However, from these limited data it was estimated that the three anglers for whom consumption rates could be estimated had annualized average daily fish consumption rates of 0.14, 0.44, and 7.9 grams per day (g/day). The majority of anglers traveled less than 10 miles to fish the Creek. It was estimated that a total population of 173 anglers use the Creek each year. The results of this survey indicated that Choccolocco Creek is a local

  20. Assessment of surface-water quality and water-quality control alternatives, Johnson Creek Basin, Oregon

    USGS Publications Warehouse

    Edwards, T.K.

    1994-01-01

    Johnson Creek flows through a basin of approximately 51 square miles with mixed land uses over a reach of approximately 24 river miles from southeast of Gresham, Oregon, to its confluence with the Willamette River in Milwaukie, Oregon. Land uses within the basin include forested and agricultural lands, suburban residential, urban, and light industrial. Surface runoff and ground-water flow from the basin's areas of various land-use contain concentrations of some nutrients, trace elements, and organic compounds at levels exceeding U.S. Environmental Protection Agency (USEPA) criteria. Concentrations of dissolved cadmium, copper, lead, mercury, and silver, total recoverable chlordane, dieldrin, and dichlorodiphenyltrichloroethane (DDT) plus metabolites indicate that sources of at least one or more of these constituents exist in virtually every reach of Johnson Creek. Crystal Springs Creek is a major source of nutrients in lower Johnson Creek. Concentrations of dissolved nitrate and orthophosphorus in Johnson Creek are elevated at low flow, and are reduced by dilution when urban runoff flows into the creek during storms. Total-phosphorus concentrations exceed USEPA criteria at several sites in Johnson Creek during low flow, and at all sites during periods of storm runoff. The low-flow concentration of dissolved silver exceeded the USEPA Fresh Water Chronic Toxicity (FWCT) criterion only in Crystal Springs Creek. Concentrations of dissolved cadmium, copper, lead, and mercury exceeded FWCT criteria at selected sites in Johnson creek basin during storm runoff.

  1. Hydrology and model study of the proposed Prosperity Reservoir, Center Creek Basin, southwestern Missouri

    USGS Publications Warehouse

    Harvey, Edward Joseph; Emmett, Leo F.

    1980-01-01

    A reservoir has been proposed on Center Creek, Jasper County, southwestern Missouri. Ground-water levels in the limestone uplands adjacent to the reservoir will rise when the impoundment is completed. The site is a few miles upstream from the Oronogo-Duenweg belt in the Tri-State zinc district. Grove Creek joins Center Creek downstream from the reservoir separating it from the mining belt. A model study indicates water-level rises varying from about 20 feet near the reservoir to 0.5 to 1.0 foot in the southern part of the Grove Creek drainage basin. A significant rise in the water table adjacent to the reservoir could increase mine-water discharge if Grove Creek is not an effective drain. However, it is probable that Grove Creek is an effective drain, and the higher ground-water levels in the reservoir area will increase ground-water discharge to Grove Creek, and in turn, Center Creek. The increase in ground-water discharge to Grove Creek will have the beneficial effect of diluting mine-water discharge from the Oronogo-Duenweg belt during periods of low flow. (USGS)

  2. Persistence of the longnose darter (P. nasuta) in Lee Creek, Oklahoma

    USGS Publications Warehouse

    Gatlin, Michael R.; Long, James M.

    2011-01-01

    Lee Creek is one of Oklahoma’s six rivers designated as "scenic" by the Oklahoma Legislature. Lee Creek is located on the Oklahoma-Arkansas border in far eastern Oklahoma. The headwaters originate in northwestern Arkansas and flow south towards the Arkansas River. While the majority of the stream is in Arkansas, a portion flows into Oklahoma northwest of Uniontown, AR and continues for 28.2 river-km before crossing back into Arkansas near Van Buren, AR. The hydrology of lower Lee Creek has been altered by Lee Creek Reservoir near Van Buren, AR. It was believed that pre-impounded Lee Creek had the largest existing population of longnose darters (8). However, the most recent fish surveys in Lee Creek were conducted approximately twenty years ago. Robinson (8) surveyed Lee Creek in Arkansas, upstream of the Oklahoma border, and found longnose darters upstream of Natural Dam, AR. Wagner et al. (10) were the last to document longnose darter presence in the Oklahoma segment of Lee Creek. No efforts to collect this species in Oklahoma have occurred since the completion of Lee Creek Reservoir. Our objective was to determine whether the species persist in this segment of its historic range since impoundment.

  3. Surface-water quality of coal-mine lands in Raccoon Creek Basin, Ohio

    USGS Publications Warehouse

    Wilson, K.S.

    1985-01-01

    The Ohio Department of Natural Resources, Division of Reclamation, plans to reclaim abandoned surface mines in the Raccoon Creek watershed in southern Ohio. Historic water-quality data collected between 1975 and 1983 were complied and analyzed in terms of eight selected mine-drainage characteristics to develop a data base for individual subbasin reclamation projects. Areas of mine drainage affecting Raccoon Creek basin, the study Sandy Run basin, the Hewett Fork basin, and the Little raccoon Creek basin. Surface-water-quality samples were collected from a 41-site network from November 1 through November 3, 1983, Results of the sampling reaffirmed that the major sources of mine drainage to Raccoon Creek are in the Little Raccoon Creek basin, and the Hewett Fork basin. However, water quality at the mouth of Sandy Run indicated that it is not a source of mine drainage to Raccoon Creek. Buffer Run, Goose Run, an unnamed tributary to Little Raccoon Creek, Mulga Run, and Sugar Run were the main sources of mine drainage sampled in the Little Raccoon Creek basin. All sites sampled in the East Branch Raccoon Creek basin were affected by mine drainage. This information was used to prepare a work plan for additional data collection before, during, and after reclamation. The data will be used to define the effectiveness of reclamation effects in the basin.

  4. Riparian Planting Projects Completed within Asotin Creek Watershed : 2000-2002 Asotin Creek Riparian Final Report of Accomplishments.

    SciTech Connect

    Johnson, B. J.

    2002-01-01

    The Asotin County Conservation District (ACCD) is the primary entity coordinating habitat projects on both private and public lands within the Asotin Creek watershed. The watershed covers approximately 325 square miles in the Blue Mountains of southeastern Washington in Water Resource Inventory Area (WRIA) 35. According to Washington Department of Fish and Wildlife's (WDFW) Priority WRIA's by ''At-Risk Stock Significance Map'', it is the highest priority WRIA in southeastern Washington. Summer steelhead, bull trout, and Snake River spring chinook salmon which are listed under the Endangered Species Act (ESA), are present in the watershed. WDFW manages it as a Wild Steelhead Reserve; no hatchery fish have been released here since 1997. The ACCD has been working with landowners, Bonneville Power Administration (BPA), Washington State Conservation Commission (WCC), Natural Resource Conservation Service (NRCS), Washington Department of Fish and Wildlife (WDFW), U.S. Forest Service, Pomeroy Ranger District (USFS), Nez Perce Tribe, Washington Department of Ecology (DOE), National Marine Fisheries Service (NMFS), and U.S. Fish and Wildlife Service (USFWS) to address habitat projects in Asotin County. Local students, volunteers and Salmon Corps members from the Nez Perce Tribe have been instrumental in the success of the Model Watershed Program on Asotin Creek. ACCD began coordinating habitat projects in 1995 with the help of BPA funding. Approximately two hundred and seventy-six projects have been implemented as of 1999. The Washington State Legislature was successful in securing funding for threatened and endangered salmon and steelhead recovery throughout the State in 1998. While these issues were new to most of the State, the ACCD has been securing and administering funding for threatened salmonids since 1994. The Asotin Creek Riparian Planting 2000-053-00 and Asotin Creek Riparian Fencing 2000-054-00 teamed BPA and the Governor's Salmon Recovery Funding to plant

  5. Biological and Physical Inventory of Clear Creek, Orofino Creek, and the Potlatch River, Tributary Streams of the Clearwater River, Idaho, 1984 Technical Report.

    SciTech Connect

    Johnson, David B.

    1985-05-01

    Clear Creek, Orofino Creek, and Potlatch Creek, three of the largest tributaries of the lower Clearwater River Basin, were inventoried during 1984. The purpose of the inventory was to identify where anadromous salmonid production occurs and to recommend enhancement alternatives to increase anadromous salmonid habitat in these streams. Anadromous and fluvial salmonids were found in all three drainages. The lower reach of Clear Creek supported a low population of rainbow-steelhead, while the middle reach supported a much greater population of rainbow-steelhead. Substantial populations of cutthroat trout were also found in the headwaters of Clear Creek. Rainbow-steelhead and brook trout were found throughout Orofino Creek. A predominant population of brook trout was found in the headwaters while a predominant population of rainbow-steelhead was found in the mainstem and lower tributaries of Orofino Creek. Rainbow-steelhead and brook trout were also found in the Potlatch River. Generally, the greatest anadromous salmonid populations in the Potlatch River were found within the middle reach of this system. Several problems were identified which would limit anadromous salmonid production within each drainage. Problems affecting Clear Creek were extreme flows, high summer water temperature, lack of riparian habitat, and high sediment load. Gradient barriers prevented anadromous salmonid passage into Orofino Creek and they are the main deterrent to salmonid production in this system. Potlatch River has extreme flows, high summer water temperature, a lack of riparian habitat and high sediment loads. Providing passage over Orofino Falls is recommended and should be considered a priority for improving salmonid production in the lower Clearwater River Basin. Augmenting flows in the Potlatch River is also recommended as an enhancement measure for increasing salmonid production in the lower Clearwater River Basin. 18 refs., 5 figs., 85 tabs.

  6. Additional mineral resources assessment of the Battle Creek, Bruneau River, Deep Creek-Owyhee River, Jarbidge River, Juniper Creek, Little Owyhee River, North Fork Owyhee River, Owyhee River Canyon, South Fork Owyhee River, Upper Deep Creek, and Yatahoney Creek Wilderness Study Areas, Owyhee County, Idaho

    USGS Publications Warehouse

    Diggles, Michael F.; Berger, Byron R.; Vander Meulen, Dean B.; Minor, Scott A.; Ach, Jay A.; Sawlan, Michael G.

    1989-01-01

    From 1984 to 1986, studies were conducted to assess the potential for undiscovered mineral resources in wilderness study areas on the Owyhee Plateau. The results of these studies have been published in a series of U.S. Geological Survey Bulletins. Since that time, low-grade, high-tonnage epithermal hot-spring gold-silver deposits have been recognized in the region north of the wilderness study areas. The recognition that this mineral-deposit model is applicable in the region, coupled with new data that has become available to the U.S. Geological Survey, reinterpretation of existing geochemical data, and known-deposit data suggest that similar deposits may be present elsewhere on the Owyhee Plateau. This report is an additional assessment of the Battle Creek, Bruneau River, Deep Creek-Owyhee River, Jarbidge River, Juniper Creek, Little Owyhee River, North Fork Owyhee River, Owyhee River Canyon, South Fork Owyhee River (ID-016-053), Upper Deep Creek, and Yatahoney Creek Wilderness Study Areas in Idaho Wilderness Study Areas in Idaho in light of those new data.

  7. Flow regime shifts in the Little Piney creek (US)

    NASA Astrophysics Data System (ADS)

    Botter, G.

    2014-09-01

    Non-stationarity of climate drivers and soil-use strongly affects the hydrologic cycle, producing significant inter-annual and multi-decadal fluctuations of river flow regimes. Understanding the temporal trajectories of hydrologic regimes is a key issue for the management of freshwater ecosystems and the security of human water uses. Here, long-term changes in the seasonal flow regime of the Little Piney creek (US) are analyzed with the aid of a stochastic mechanistic approach that expresses analytically the streamflow distribution in terms of a few measurable hydroclimatic parameters, providing a basis for assessing the impact of climate and landscape modifications on water resources. Mean rainfall and streamflow rates exhibit a pronounced inter-annual variability across the last century, though in the absence of clear sustained drifts. Long-term modifications of streamflow regimes across different periods of 2 and 8 years are likewise significant. The stochastic model is able to reasonably reproduce the observed 2-years and 8-years regimes in the Little Piney creek, as well as the corresponding inter-annual variations of streamflow probability density. The study evidences that a flow regime shift occurred in the Little Piney creek during the last century, with erratic regimes typical of the 30s/40s that had been progressively replaced by persistent flow regimes featured by more dumped streamflow fluctuations. Causal drivers of regime shift are identified as the increase of the frequency of events (a byproduct of climate variability) and the decrease of recession rates (induced by a decrease of cultivated lands). The approach developed offers an objective basis for the analysis and prediction of the impact of climate/landscape change on water resources.

  8. Indian Creek-AML: Coal slurry reclamation (Kansas case history)

    SciTech Connect

    Witthar, S.R.

    1998-12-31

    Black and Veatch, assisted by Jack Nawrot, developed conceptual and final designs and provided construction assistance to create grasslands and wetlands in order to reclaim an abandoned coal mine for the state of Kansas. The mine included spoils, a coal refuse dump, and slurry pond in the Indian Creek drainage basin in east central Kansas. The Indian Creek flowed from an off-site abandoned mine and through the coal slurry pond where its waters became more polluted. The intent of the reclamation project was to improve water quality and create a wildlife refuge. The coal refuse was covered and seeded with a diversity of vegetation including several grasses and legume. The slurry pond was developed into a series of large wetland cells to improve water quality. Prior to reclamation, the water leaving the site had a typical pH of 3.3, ranging from 2.4 to 5.6, an iron content which typically over 22 mg/L and ranging over 100 mg/L, and contained large amounts of coal slurry. The acid sediment in the slurry killed fish and caused visible damage to a new large concrete box culvert several miles downstream of the site. Post-reclamation water quality leaving the Indian Creek site showed immediate improvement even before vegetation was reestablished. The existing wetland treatment systems have been successfully treating water for over seven years with the pH of the water leaving the wetlands above 7 and soluble iron content less than 1 mg/L. Fish in the constructed wetlands support waterfowl which now nest onsite.

  9. Habitat Evaluation Procedures (HEP) Report; Carey Creek, Technical Report 2005.

    SciTech Connect

    Entz, Ray

    2005-05-01

    In August 2002, the Habitat Evaluation Procedure (HEP) was used to determine baseline habitat suitability on the Carey Creek property, an acquisition completed by the Kalispel Tribe of Indians in December 2001. Evaluation species and appropriate models include bald eagle, black-capped chickadee, Canada goose, mallard, yellow warbler, and white-tailed deer. Habitat Suitability Index (HSI) values were visually estimated and agreed upon by all HEP team members. The Carey Creek Project provides a total of 172.95 Habitat Units (HUs) for the species evaluated. Conifer forest habitat provides 4.91 HUs for bald eagle, black-capped chickadee, and white-tailed deer. Forested wetlands provide 52.68 HUs for bald eagle, black-capped chickadee, mallard, and white-tailed deer. Scrub-shrub wetlands provide 2.82 HUs for mallard, yellow warbler and white-tailed deer. Wet meadow and grassland meadow provide 98.13 HUs for mallard and Canada goose. Emergent wetlands provide 11.53 HUs for mallard, muskrat, and Canada goose. Open water provides 2.88 HUs for Canada goose, mallard, and muskrat. The objective of using HEP at the Carey Creek Project and other protected properties is to document the quality and quantity of available habitat for selected wildlife species. In this way, HEP provides information on the relative value of the same area at future points in time so that the effect of management activities on wildlife habitat can be quantified. When combined with other tools, the baseline HEP will be used to determine the most effective on-site management, restoration, and enhancement actions to increase habitat suitability for targeted species. The same process will be replicated every five years to quantitatively evaluate the effectiveness of management strategies in improving and maintaining habitat conditions while providing additional crediting to BPA for enhanced habitat values.

  10. Characterization of an Active Thermal Erosion Site, Caribou Creek, Alaska

    NASA Astrophysics Data System (ADS)

    Busey, R.; Bolton, W. R.; Cherry, J. E.; Hinzman, L. D.

    2013-12-01

    The goal of this project is to estimate volume loss of soil over time from this site, provide parameterizations on erodibility of ice rich permafrost and serve as a baseline for future landscape evolution simulations. Located in the zone of discontinuous permafrost, the interior region of Alaska (USA) is home to a large quantity of warm, unstable permafrost that is both high in ice content and has soil temperatures near the freezing point. Much of this permafrost maintains a frozen state despite the general warming air temperature trend in the region due to the presence of a thick insulating organic mat and a dense root network in the upper sub-surface of the soil column. At a rapidly evolving thermo-erosion site, located within the Caribou-Poker Creeks Research Watershed (part of the Bonanza Creek LTER) near Chatanika, Alaska (N65.140, W147.570), the protective organic layer and associated plants were disturbed by an adjacent traditional use trail and the shifting of a groundwater spring. These triggers have led to rapid geomorphological change on the landscape as the soil thaws and sediment is transported into the creek at the valley bottom. Since 2006 (approximately the time of initiation), the thermal erosion has grown to 170 meters length, 3 meters max depth, and 15 meters maximum width. This research combines several data sets: DGPS survey, imagery from an extremely low altitude pole-based remote sensing (3 to 5 meters above ground level), and imagery from an Unmanned Aerial System (UAS) at about 60m altitude.

  11. Effects of the proposed Prosperity Reservoir on ground water and water quality in lower Center Creek basin, Missouri

    USGS Publications Warehouse

    Berkas, Wayne R.; Barks, James H.

    1980-01-01

    Effects of the proposed Prosperity Reservoir on groundwater and water quality in lower Center Creek basin, Mo., depend partly on the effectiveness of Grove Creek as a hydrologic boundary between the reservoir site and the Oronogo-Duenweg mining belt. Results of two dye traces indicate that Grove Creek probably is not an effective boundary. Therefore, higher water levels near the reservoir could cause more groundwater to move into the mining belt and cause a greater discharge of zinc-laden mine water into Center Creek. Fertilizer industry wastes discharged into Grove Creek resulted in significant increases of nitrogen and phosphorus in lower Center Creek. Results of seepage runs confirm that mine-water discharge and seepage account for the increased zinc concentrations in Center Creek during base flow. The nutrient and zinc concentrations in Center Creek, after the completion of the proposed reservoir, would depend upon the release schedule. (USGS)

  12. The Clear Creek Envirohydrologic Observatory: From Vision Toward Reality

    NASA Astrophysics Data System (ADS)

    Just, C.; Muste, M.; Kruger, A.

    2007-12-01

    As the vision of a fully-functional Clear Creek Envirohydrologic Observatory comes closer to reality, the opportunities for significant watershed science advances in the near future become more apparent. As a starting point to approaching this vision, we focused on creating a working example of cyberinfrastructure in the hydrologic and environmental sciences. The system will integrate a broad range of technologies and ideas: wired and wireless sensors, low power wireless communication, embedded microcontrollers, commodity cellular networks, the internet, unattended quality assurance, metadata, relational databases, machine-to-machine communication, interfaces to hydrologic and environmental models, feedback, and external inputs. Hardware: An accomplishment to date is "in-house" developed sensor networking electronics to compliment commercially available communications. The first of these networkable sensors are dielectric soil moisture probes that are arrayed and equipped with wireless connectivity for communications. Commercially available data logging and telemetry-enabled systems deployed at the Clear Creek testbed include a Campbell Scientific CR1000 datalogger, a Redwing 100 cellular modem, a YA Series yagi antenna, a NP12 rechargeable battery, and a BP SX20U solar panel. This networking equipment has been coupled with Hach DS5X water quality sondes, DTS-12 turbidity probes and MicroLAB nutrient analyzers. Software: Our existing data model is an Arc Hydro-based geodatabase customized with applications for extraction and population of the database with third party data. The following third party data are acquired automatically and in real time into the Arc Hydro customized database: 1) geophysical data: 10m DEM and soil grids, soils; 2) land use/land cover data; and 3) eco-hydrological: radar-based rainfall estimates, stream gage, streamlines, and water quality data. A new processing software for data analysis of Acoustic Doppler Current Profilers (ADCP

  13. AmeriFlux US-WCr Willow Creek

    SciTech Connect

    Desai, Ankur

    2016-01-01

    This is the AmeriFlux version of the carbon flux data for the site US-WCr Willow Creek. Site Description - Upland decduous broadleaf forest. Mainly sugar maple, also basswood. Uniform stand atop a very modest hill. Clearcut approximately 80 years ago. Chosen to be representative of the upland deciduous broadleaf forests within the WLEF tall tower flux footprint. It appears to be more heavily forested and more productive than most of the upland deciduous broadleaf forests in the WLEF flux footprint (see publications for more details). It is also important that SE winds are screened from the flux data (see Cook et al, 2004 for details). Propane generator power.

  14. ALLEGHENY FRONT AND HICKORY CREEK ROADLESS AREAS, PENNSYLVANIA.

    USGS Publications Warehouse

    Schweinfurth, Stanley P.; Girol, Vaughn P.

    1984-01-01

    On the basis of a mineral-resource survey the Allegheny Front and Hickory Creek Roadless Areas, Pennsylvania, have a substantiated potential for oil resources, a probable potential for gas resources, and little likelihood for the occurrence of coal and metallic mineral resources. The oil and gas in the Upper Devonian rocks are found in stratigraphic traps, that commonly are not evident from surface indications. The only sure method to determine if the Upper Devonian sandstones contain oil or gas at a specific site is to drill through the sequence and test the more favorable zones.

  15. Monitoring and research at Walnut Creek National Wildlife Refuge

    USGS Publications Warehouse

    Roelle, James E.; Hamilton, David B.

    1993-01-01

    Walnut Creek National Wildlife Refuge-Prairie Learning Center (Walnut Creek or the Refuge) is one of the newest additions to the National Wildlife Refuge System, which consists of over 480 units throughout the United States operated by the U.S. Department of the Interior, Fish and Wildlife Service (the Service). Located about 20 miles east of Des Moines, Iowa, the Refuge has an approved acquisition boundary containing 8,654 acres (Figure 1). Acquisition is from willing sellers only, and to date the Service has purchased approximately 5,000 acres. The acquisition boundary encompasses about 43% of the watershed of Walnut Creek, which bisects the Refuge and drains into the Des Moines River to the southeast. Approximately 25%-30% of the Walnut Creek watershed is downstream of the Refuge. As authorized by Congress in 1990, the purposes of the Refuge are to (U.S. Fish and Wildlife Service 1992): • restore native tallgrass pairie, wetland, and woodland habitats for breeding and migratory waterfowl and resident wildlife; • serve as a major environmental education center providing opportunities for study; • provide outdoor recreation benefits to the public; and • provide assistance to local landowners to improve their lands for wildlife habitat. To implement these purposes authorized by Congress, the Refuge has established the goal of recreating as nearly as possible the natural communities that existed at the time of settlement by Euro-Americans (circa 1840). Current land use is largely agricultural, including 69% cropland, 17% grazed pasture, and 7.5% grassland (dominantly brome) enrolled in the Conservation Reserve Program). About 1,395 acres of relict native communities also exist on the Refuge, including prairie (725 acres), oak savanna and woodland (450 acres), and riparian or wetland areas (220 acres). Some of these relicts are highly restorable; others contain only a few prairie plants in a matrix of brome and will be more difficult to restore. When the

  16. Hydraulic analysis, Paint Creek at State Route 772, Chillicothe, Ohio

    USGS Publications Warehouse

    Mayo, R.I.; Bartlett, W.P., Jr.

    1981-01-01

    The Ohio Department of Transportation, Division of Highways, proposes to replace a three-span arch, bridge across Paint Creek on South Paint Street in Chillicothe, Ohio with a new deck-type structure resting on four sets of piles and four piers. Profiles of the 10-, 25-, 50- and 100-year floods under present conditions and under conditions modified by constructions of the new bridge are presented in this report. The results indicate that the construction of the new bridge will not cause significant changes in the flood profiles or the areas inundated.

  17. Flood-Inundation Maps for Sugar Creek at Crawfordsville, Indiana

    USGS Publications Warehouse

    Martin, Zachary W.

    2016-01-01

    Digital flood-inundation maps for a 6.5-mile reach of Sugar Creek at Crawfordsville, Indiana, were created by the U.S. Geological Survey (USGS) in cooperation with the Indiana Office of Community and Rural Affairs. The flood-inundation maps, which can be accessed through the USGS Flood Inundation Mapping Science Web site at http://water.usgs.gov/osw/flood_inundation/, depict estimates of the areal extent and depth of flooding corresponding to selected water levels (stages) at the USGS streamgage 03339500, Sugar Creek at Crawfordsville, Ind. Near-real-time stages at this streamgage may be obtained on the Internet from the USGS National Water Information System at http://waterdata.usgs.gov/ or the National Weather Service (NWS) Advanced Hydrologic Prediction Service at http://water.weather.gov/ahps/, which also forecasts flood hydrographs at this site (NWS site CRWI3).Flood profiles were computed for the USGS streamgage 03339500, Sugar Creek at Crawfordsville, Ind., reach by means of a one-dimensional step-backwater hydraulic modeling software developed by the U.S. Army Corps of Engineers. The hydraulic model was calibrated using the current stage-discharge rating at the USGS streamgage 03339500, Sugar Creek at Crawfordsville, Ind., and high-water marks from the flood of April 19, 2013, which reached a stage of 15.3 feet. The hydraulic model was then used to compute 13 water-surface profiles for flood stages at 1-foot (ft) intervals referenced to the streamgage datum ranging from 4.0 ft (the NWS “action stage”) to 16.0 ft, which is the highest stage interval of the current USGS stage-discharge rating curve and 2 ft higher than the NWS “major flood stage.” The simulated water-surface profiles were then combined with a Geographic Information System digital elevation model (derived from light detection and ranging [lidar]) data having a 0.49-ft root mean squared error and 4.9-ft horizontal resolution) to delineate the area flooded at each stage.The availability

  18. Pataha [Creek] Model Watershed : 1997 Habitat Projects : Annual Progress Report.

    SciTech Connect

    Bartels, Duane

    1998-10-28

    The projects outlined in detail on the attached project reports are a few of the many projects implemented in the Pataha Creek Model Watershed since it was selected as a model in 1993. Up until this year, demonstration sites using riparian fencing, off site watering facilities, tree and shrub plantings and upland conservation practices were used for information and education and was the main focus of the implementation phase of the watershed plan. These practices are the main focus of the watershed plan to reduce the majority of the sediment entering the stream.

  19. Native American Calendric Orientation at Town Creek Indian Mound

    NASA Astrophysics Data System (ADS)

    Tiede, V. R.

    2005-12-01

    Evidence is presented for a newly discovered set of interior solar alignments - the equinox and summer solstice meridian transits - at a prehistoric Native American structure in the Southeast United States. Because North Carolina's Town Creek Indian Mound is the only Mississippian temple-mound accurately reconstructed from overhead photo-mosaics, the site is uniquely suited for applying the techniques of astro-archaeology (G. S. Hawkins 1983). Implications of the new findings for interpreting Muskogean ethnographic literature as well as future archaeoastronomical research at other Southeastern sites (e.g., Ocmulgee National Monument Earth Lodge, Georgia) are discussed.

  20. Fracture history of the Divide Creek and Wolf Creek anticlines and its relation to Laramide basin-margin tectonism, southern Piceance basin, northwestern Colorado

    SciTech Connect

    Grout, M.A.; Verbeek, E.R.

    1992-01-01

    The Divide Creek and Wolf Creek anticlines are two north-northwest-trending, gas-producing intrabasin folds near the eastern margin of the Piceance basin of northwestern Colorado. Natural gas is produced principally from fractured sandstone reservoirs and coals of the Upper Cretaceous Mesaverde Group, the uppermost part of which is exposed sparingly on both folds. The southern part of the Piceance basin was selected for study because it contains obvious intrabasin folds, the Divide Creek and Wolf Creek anticlines, of previously unknown origin adjacent to the tectonically thrusted and folded eastern basin margin. The origin and tectonics of the anticlines are explored in this paper. New seismic and gravity data show that the anticlines are products of late Laramide thrusting. The distribution of several fracture sets discussed in this report are related to this deformation.