Science.gov

Sample records for creep behavior analysis

  1. Analysis of the creep strain-time behavior of alloy 800

    SciTech Connect

    Booker, M.K.

    1983-05-01

    The high-nickel austenitic alloy 800 (in both the mill-annealed and the solution-treated grades) has several attractive properties that make it a good candidate for service attractive properties that make it a good candidate for service at elevated temperatures in corrosive environments. One such property is creep resistance. This report analyzes the elevated-temperature creep behavior of the mill-annealed grade, generally referred to simply as alloy 800. (The solution-treated grade is known as alloy 800H). Available data over the temperature range from 538 to 760/sup 0/C were collected and evaluated to yield mathematically approximations for creep-rupture and strain-time behavior for use in design calculations. However, the creep behavior of this material is extremely complex, and the analysis presented here contains substantial uncertainties. All results in this report should be considered preliminary because of limited data currently available. 20 figures.

  2. Creep and creep-rupture behavior of Alloy 718

    SciTech Connect

    Brinkman, C.R.; Booker, M.K.; Ding, J.L.

    1991-01-01

    Data obtained from creep and creep-rupture tests conducted on 18 heats of Alloy 718 were used to formulate models for predicting high temperature time dependent behavior of this alloy. Creep tests were conducted on specimens taken from a number of commercial product forms including plate, bar, and forgoing material that had been procured and heat treated in accordance with ASTM specifications B-670 or B-637. Data were obtained over the temperature range of 427 to 760{degree}C ad at test times to about 87,000 h. Comparisons are given between experimental data and the analytical models. The analytical models for creep-rupture included one based on lot-centering regression analysis and two based on the Minimum Commitment Method. A master'' curve approach was used to develop and equation for estimating creep deformation up to the onset of tertiary creep. 11 refs., 13 figs.

  3. Creep crack growth behavior of aluminum alloy 2519. Part 1: Experimental analysis

    SciTech Connect

    Hamilton, B.C.; Saxena, A.; McDowell, D.L.; Hall, D.E.

    1997-12-31

    The discipline of time-dependent fracture mechanics has traditionally focused on the creep crack growth behavior of high-temperature materials that display creep-ductile behavior, such as stainless steels and chromium-molybdenum steels. Elevated temperature aluminum alloys, however, have been developed that exhibit creep-brittle behavior; in this case, the creep crack growth rate correlates with the stress intensity factor, K. The fracture characteristics of aluminum alloy 2519-T87 were studied at 135 C, and the creep and creep crack growth behavior were characterized utilizing experimental and numerical methods. The strain to failure for creep deformation specimens was limited to only 1.2 to 2.0%. Creep crack growth tests revealed a unique correlation between the creep crack growth rate and K, a result consistent with creep-brittle behavior. No experimental correlation was found between the creep crack growth rate and the C{sub t} parameter. Microscopy of fracture surfaces revealed distinct regions of intergranular and transgranular fracture, and the transition between the fracture regions was found to occur at a critical K-level. Experimental results also appeared to show that initiation of crack growth (incubation) is controlled by the accumulation of a critical amount of damage ahead of the crack tip and that a correlation exists between the incubation time and K. Total time to failure is viewed as a summation of the incubation period and the crack growth period, and the design importance of incubation time is discussed.

  4. Creep rupture behavior of unidirectional advanced composites

    NASA Technical Reports Server (NTRS)

    Yeow, Y. T.

    1980-01-01

    A 'material modeling' methodology for predicting the creep rupture behavior of unidirectional advanced composites is proposed. In this approach the parameters (obtained from short-term tests) required to make the predictions are the three principal creep compliance master curves and their corresponding quasi-static strengths tested at room temperature (22 C). Using these parameters in conjunction with a failure criterion, creep rupture envelopes can be generated for any combination of in-plane loading conditions and ambient temperature. The analysis was validated experimentally for one composite system, the T300/934 graphite-epoxy system. This was done by performing short-term creep tests (to generate the principal creep compliance master curves with the time-temperature superposition principle) and relatively long-term creep rupture tensile tests of off-axis specimens at 180 C. Good to reasonable agreement between experimental and analytical results is observed.

  5. Analysis of Creep Rupture Behavior of Cr-Mo Ferritic Steels in the Presence of Notch

    NASA Astrophysics Data System (ADS)

    Goyal, Sunil; Laha, K.; Das, C. R.; Mathew, M. D.

    2015-01-01

    Effect of notch on creep rupture behavior of 2.25Cr-1Mo, 9Cr-1Mo, and modified 9Cr-1Mo ferritic steels has been assessed. Creep tests were carried out on smooth and notched specimens of the steels in the stress ranging 90 to 300 MPa at 873 K (600 °C). Creep rupture lives of the steels increased in the presence of notch over those of smooth specimens, thus exhibiting notch strengthening. The strengthening was comparable for the 9Cr-1Mo and 2.25Cr-1Mo steels and appreciably more in modified 9Cr-1Mo steel. The strengthening effect was found to decrease with the decrease in applied stress and increase in rupture life for all the steels. The presence of notch decreased the creep rupture ductility of the steels significantly and the 2.25Cr-1Mo steel suffered more reduction than in the other two 9Cr-steels. Finite element analysis of stress distribution across the notch was carried out to understand the notch strengthening and its variation in the steels. The variation in fracture appearance has also been corroborated based on finite element analysis. Reduction in von-Mises stress across the notch throat plane resulted in strengthening in the steels. Higher reduction in von-Mises stress in modified 9Cr-1Mo steel than that in 2.25Cr-1Mo and 9Cr-1Mo steels induced more strengthening in modified 9Cr-1Mo steel under multiaxial state of stress.

  6. Correlation of Creep Behavior of Domal Salts

    SciTech Connect

    Munson, D.E.

    1999-02-16

    assumptions permit the set to be completed. From the analysis, two distinct response groups were evident, with the salts of one group measurably more creep resistant than the other group. Interestingly, these groups correspond well with the indirectly determined creep closure of the SPR storage caverns, a correlation that probably should be expected. Certainly, the results suggest a simple laboratory determination of the creep characteristics of a salt material from a dome site can indicate the relative behavior of any potential cavern placed within that dome.

  7. Influence of composition gradients on weld metal creep behavior: An analysis based on laminate composites

    SciTech Connect

    Choi, I.

    1989-01-01

    The effects of weld metal microsegregation, as altered by post-weld heat treatments, on both low and high temperatures tensile properties were investigated on Monel alloy 400. Flat, all weld metal, tensile specimens were machined from single pass GTA welds and were heat treated in vacuum in the range of 600 C to 1000 C to produce samples with different composition gradients. Short-time tensile tests were run at room temperature and elevated temperature. Long-time constant load creep tests were performed at 500 C. The room temperature mechanical properties of the as-welded specimen and heat treated specimens were similar and thus unaffected by variations in composition gradients. In contrast, at high temperatures the steady state creep rates decreased, rupture strains increased, and rupture lives decreases with increases in heat treatment temperature, that is, with decreases in the amplitudes of composition gradients. The deformation behavior of solidified dendritic structure was modeled based on results obtained on laminate composites of nickel and copper. The laminates, prepared by roll bonding, were annealed to produce controlled composition gradients with dimensions equivalent to those observed in the weld metal. The steady state creep rates of laminate composites decreased with increases in heat treatment time, that is, with decreases in the amplitudes of composition gradients. To rationalize the creep properties of each component in laminate composites, nickel-copper solid solutions having systematic compositional variations were prepared and tested under the same conditions as the laminate composites. The creep rates of nickel-copper solid solutions showed a minimum with nickel composition.

  8. Creep crack growth behavior of aluminum alloy 2519. Part 2: Numerical analysis

    SciTech Connect

    Hall, D.E.; Hamilton, B.C.; McDowell, D.L.; Saxena, A.

    1997-12-31

    The experimental analysis of high temperature fracture in Aluminum Alloy 2519-T87 presented in Part 1 of this paper highlighted the creep-brittle fracture characteristics of the material and showed reasonable correlation of crack growth rates with the stress intensity factor K. Part 2 continues this investigation numerically using growing crack finite element analyses. Experimentally observed crack growth histories of four aluminum 2519-T87 compact specimens are enforced by controlling the rate of release of finite element nodes along the crack growth path to gain insight into the relation of the crack tip fields to far field fracture parameters and to crack growth rates. A variable time-step, nodal-release algorithm is presented to model the high strain rates that occur during the initial stages of crack growth. The numerical results indicate an initial transient period of crack growth followed by a quasi-steady-state crack growth regime in which the crack tip fields change slowly with increasing crack length. Transition of crack growth to the quasi-steady-state regime, where similitude and small-scale creep conditions roughly exist, is given by a transition time t{sub g} that depends on the crack growth history and material properties. Excellent correlation of the stress intensity factor K with the crack growth rates is observed after time t{sub g}. Experimental difficulties in measuring the creep component of the load-line deflection rate are also discussed.

  9. Use of laboratory triaxial-creep data and finite-element analysis to predict observed creep behavior of leached salt caverns

    SciTech Connect

    Preece, D.S.; Stone, C.M.

    1982-08-01

    An increasing interest is being shown worldwide in using leached salt caverns to store oil and natural gas. A critical factor in the use of existing caverns and the design of new ones is the creep behavior of the salt surrounding the caverns. An understanding of this behavior is being gained by using laboratory triaxial creep data as material property input to finite element computer programs designed to calculate displacements and stresses due to creep. An important step in verifying these predictive methods is the comparison of field data from existing caverns with finite element analyses which incorporate the material properties and geometry of each site. This comparison has been made for caverns in the Eminence Dome (Mississippi), West Hackberry Dome (Louisiana), and Bayou Chocktaw Dome (Louisiana) with reasonably good correlation being obtained between measured and predicted volumetric response of the caverns. These comparisons are discussed in this paper.

  10. Fractal and probability analysis of creep crack growth behavior in 2.25Cr-1.6W steel incorporating residual stresses

    NASA Astrophysics Data System (ADS)

    Xu, Mengjia; Xu, Jijin; Lu, Hao; Chen, Jieshi; Chen, Junmei; Wei, Xiao

    2015-12-01

    In order to clarify creep crack growth behavior in 2.25Cr-1.6W steel incorporating residual stresses, creep crack tests were carried out on the tension creep specimens, in which the residual stresses were generated by local remelting and cooling. Residual stresses in the specimens were measured using Synchrotron X-ray diffraction techniques. The fracture surface of the creep specimen was analyzed using statistical methods and fractal analysis. The relation between fractal dimension of the fracture surface and fracture mode of the creep specimen was discussed. Due to different fracture mechanisms, the probability density functions of the height coordinates vary with the intergranular crack percentage. Good fitting was found between Gaussian distribution and the probability function of height coordinates of the high percentage intergranular crack surface.

  11. Creep behavior of submarine sediments

    USGS Publications Warehouse

    Silva, Armand J.; Booth, J.S.

    1984-01-01

    A series of experiments on drained creep of marine sediment indicates that strength degradation results from the creep process, which implies an associated reduction in slope stability. Furthermore, the highest creep potential of a sediment may be at its preconsolidation stress. Results from the experiments on samples from Georges Bank continental slope were also used in conjunction with a preliminary theoretical model to predict creep displacements. For the case illustrated in this report, steep slopes (>20??) and thick sections (>30 m) give rise to substantial creep and probable creep rupture; as angles or thicknesses decrease, displacements rapidly become negligible. Creep may be a significant geologic process on many marine slopes. Not only can it cause major displacements of surface sediment, but it may also be the precursor to numerous slope failures. ?? 1985 Springer-Verlag New York Inc.

  12. Analysis of the Creep Behavior of P92 Steel Welded Joint

    NASA Astrophysics Data System (ADS)

    An, Junchao; Jing, Hongyang; Xiao, Guangchun; Zhao, Lei; Xu, Lianyong

    2011-11-01

    Different regions of heat-affected zone (HAZ) were simulated by heat treatment to investigate the mechanisms of the Type IV fracture of P92 (9Cr-2W) steel weldments. Creep deformation of simulated HAZ specimens with uniform microstructures was investigated and compared with those of the base metal (BM) and the weld metal (WM) specimens. The results show that the creep strain rate of the fine-grained HAZ (FGHAZ) is much higher than that of the BM, WM, the coarse-grained HAZ (CGHAZ), and the inter-critical HAZ (ICHAZ). According to the metallurgical investigation of stress-rupture, the FGHAZ and the ICHAZ have the most severely cavitated zones. During creep process, carbides become coarser, and form on grain boundaries again, leading to the deterioration of creep property and the decline of creep strength. In addition, the crack grows along the FGHAZ adjacent to the BM in the creep crack growth test (CCG) of HAZ.

  13. Creep-rupture reliability analysis

    NASA Technical Reports Server (NTRS)

    Peralta-Duran, A.; Wirsching, P. H.

    1984-01-01

    A probabilistic approach to the correlation and extrapolation of creep-rupture data is presented. Time temperature parameters (TTP) are used to correlate the data, and an analytical expression for the master curve is developed. The expression provides a simple model for the statistical distribution of strength and fits neatly into a probabilistic design format. The analysis focuses on the Larson-Miller and on the Manson-Haferd parameters, but it can be applied to any of the TTP's. A method is developed for evaluating material dependent constants for TTP's. It is shown that optimized constants can provide a significant improvement in the correlation of the data, thereby reducing modelling error. Attempts were made to quantify the performance of the proposed method in predicting long term behavior. Uncertainty in predicting long term behavior from short term tests was derived for several sets of data. Examples are presented which illustrate the theory and demonstrate the application of state of the art reliability methods to the design of components under creep.

  14. Creep-rupture reliability analysis

    NASA Technical Reports Server (NTRS)

    Peralta-Duran, A.; Wirsching, P. H.

    1985-01-01

    A probabilistic approach to the correlation and extrapolation of creep-rupture data is presented. Time temperature parameters (TTP) are used to correlate the data, and an analytical expression for the master curve is developed. The expression provides a simple model for the statistical distribution of strength and fits neatly into a probabilistic design format. The analysis focuses on the Larson-Miller and on the Manson-Haferd parameters, but it can be applied to any of the TTP's. A method is developed for evaluating material dependent constants for TTP's. It is shown that optimized constants can provide a significant improvement in the correlation of the data, thereby reducing modelling error. Attempts were made to quantify the performance of the proposed method in predicting long term behavior. Uncertainty in predicting long term behavior from short term tests was derived for several sets of data. Examples are presented which illustrate the theory and demonstrate the application of state of the art reliability methods to the design of components under creep.

  15. Creep behavior of niobium alloy PWC-11

    NASA Technical Reports Server (NTRS)

    Titran, R. H.; Moore, T. J.; Grobstein, T. L.

    1987-01-01

    The high vacuum creep and creep-rupture behavior of a Nb-1Zr-.1C alloy (PWC 11) was investigated at 1350 and 1400 K with an applied stress of 40 MPa. The material was tested in the following four conditions: annealed (1 hr 1755 K/2 hr 1475 K); annealed plus EB welded; annealed plus aged for 1000 hr at 1350 or 1400 K; and annealed, welded, and aged. It was found that the material in the annealed state was the most creep-resistant condition tested, and that aging the alloy for 1000 hr without an applied stress greatly reduced that strength; however, it was still approximately three times as creep resistant as Nb-1Zr. Additionally, the EB weld region was stronger than the base metal in each condition tested, and phase extraction of the dispersed precipitate revealed the presence of a 70%ZrC-30%NbC cubic monocarbide phase.

  16. Threshold Stress Creep Behavior of Alloy 617 at Intermediate Temperatures

    SciTech Connect

    J.K. Benz; L.J. Carroll; J.K. Wright; R.N. Wright; T. Lillo

    2014-06-01

    Creep of Alloy 617, a solid solution Ni-Cr-Mo alloy, was studied in the temperature range of 1023 K to 1273 K (750 °C to 1000 °C). Typical power-law creep behavior with a stress exponent of approximately 5 is observed at temperatures from 1073 K to 1273 K (800 °C to 1000 °C). Creep at 1023 K (750 °C), however, exhibits threshold stress behavior coinciding with the temperature at which a low volume fraction of ordered coherent y' precipitates forms. The threshold stress is determined experimentally to be around 70 MPa at 1023 K (750 °C) and is verified to be near zero at 1173 K (900 °C)—temperatures directly correlating to the formation and dissolution of y' precipitates, respectively. The y' precipitates provide an obstacle to continued dislocation motion and result in the presence of a threshold stress. TEM analysis of specimens crept at 1023 K (750 °C) to various strains, and modeling of stresses necessary for y' precipitate dislocation bypass, suggests that the climb of dislocations around the y' precipitates is the controlling factor for continued deformation at the end of primary creep and into the tertiary creep regime. As creep deformation proceeds at an applied stress of 121 MPa and the precipitates coarsen, the stress required for Orowan bowing is reached and this mechanism becomes active. At the minimum creep rate at an applied stress of 145 MPa, the finer precipitate size results in higher Orowan bowing stresses and the creep deformation is dominated by the climb of dislocations around the y' precipitates.

  17. Homogenized Creep Behavior of CFRP Laminates at High Temperature

    NASA Astrophysics Data System (ADS)

    Fukuta, Y.; Matsuda, T.; Kawai, M.

    In this study, creep behavior of a CFRP laminate subjected to a constant stress is analyzed based on the time-dependent homogenization theory developed by the present authors. The laminate is a unidirectional carbon fiber/epoxy laminate T800H/#3631 manufactured by Toray Industries, Inc. Two kinds of creep analyses are performed. First, 45° off-axis creep deformation of the laminate at high temperature (100°C) is analyzed with three kinds of creep stress levels, respectively. It is shown that the present theory accurately predicts macroscopic creep behavior of the unidirectional CFRP laminate observed in experiments. Then, high temperature creep deformations at a constant creep stress are simulated with seven kinds of off-axis angles, i.e., θ = 0°, 10°, 30°, 45°, 60°, 75°, 90°. It is shown that the laminate has marked in-plane anisotropy with respect to the creep behavior.

  18. Creep behavior of uranium carbide-based alloys

    NASA Technical Reports Server (NTRS)

    Seltzer, M. S.; Wright, T. R.; Moak, D. P.

    1975-01-01

    The present work gives the results of experiments on the influence of zirconium carbide and tungsten on the creep properties of uranium carbide. The creep behavior of high-density UC samples follows the classical time-dependence pattern of (1) an instantaneous deformation, (2) a primary creep region, and (3) a period of steady-state creep. Creep rates for unalloyed UC-1.01 and UC-1.05 are several orders of magnitude greater than those measured for carbide alloys containing a Zr-C and/or W dispersoid. The difference in creep strength between alloyed and unalloyed materials varies with temperature and applied stress.

  19. Creep Behavior of Organic-Rich Shales - Evidences of Microscale Strain Partitioning

    NASA Astrophysics Data System (ADS)

    Sone, H.; Morales, L. F. G.; Dresen, G. H.

    2015-12-01

    Laboratory creep experiments conducted using organic-rich shales show that these rocks exhibit some ductility under sustained loading conditions although they may appear to be elastic and brittle (Young's modulus 15-80 GPa) at shorter time scales. At room-temperature and in-situ pressure conditions, creep strain observed after 3 hours of sustained loading reach strains on the order of 10-5per megapascal of applied differential stress. The creep behavior is highly anisotropic such that creep occurs more in the direction perpendicular to the bedding plane than in the direction parallel to the bedding plane. In general, we find that the creep behavior is largely controlled by the amount of clay mineral and organic content. This is also supported by evidences of elastic stiffening and sample volume reduction during creep which imply that the creep is accommodated by localized compaction occurring within clay-aggregates and/or organic materials, the relatively porous members in the rock. We also find that the tendency to creep has a unique relation with the Young's modulus regardless of the loading direction or the mineral composition. Sone and Zoback (2013) explained this correlation by appealing to the stress partitioning behavior that occurs between the relatively stiff and soft components of the rock, and also by assuming that creep only occurs within the soft components, namely the clay and organic contents, with a specific local 3-hour creep compliance value of 10-4 MPa-1. In order to confirm that such strain-partitioning occurs during creep deformation, we also performed creep experiments under a scanning electron microscope using a deformation stage setup. Such experiments allow us to directly observe the deformation and quantify the strain-partitioning occurring between the different mineral constituents with the aid of digital image correlation analysis. Results suggest that strain-partitioning do occur during creep deformation and inferred creep properties of

  20. Long-Term Creep and Creep Rupture Behavior of Woven Ceramic Matrix Composites

    NASA Technical Reports Server (NTRS)

    Haque, A.; Rahman, M.; Mach, A.; Jeelani, S.; Verrilli, Michael J. (Technical Monitor)

    2001-01-01

    Tensile creep behavior of SiC/SiNC ceramic matrix composites at elevated temperatures and at various stress levels have been investigated for turbine engine applications. The objective of this research is to present creep behavior of SiC/SiCN composites at stress levels above and below the monotonic proportional limit strength and predict the life at creep rupture conditions. Tensile creep-rupture tests were performed on an Instron 8502 servohydraulic testing machine at constant load conditions up to a temperature limit of 1000 C. Individual creep curves indicate three stages such as primary, secondary, and tertiary. The creep rate increased linearly at an early stage and then gradually became exponential at higher strains. The stress exponent and activation energy were also obtained at 700 and 1000 C. The specimen lifetime was observed to be 55 hrs at 121 MPa and at 700 C. The life span reduced to 35 hrs at 143 MPa and at 1000 C. Scanning electron microscopy observations revealed significant changes in the crystalline phases and creep damage development. Creep failures were accompanied by extensive fiber pullout, matrix cracking, and debonding along with fiber fracture. The creep data was applied to Time-Temperature-Stress superposition model and the Manson-Haferd parametric model for long-time life prediction.

  1. Numerical analysis of the creeping behavior of the S. Andrea di Perarolo secondary landslide (Italian Eastern Alps)

    NASA Astrophysics Data System (ADS)

    Cioli, C.; Genevois, R.; Iafelice, M.; Zorzi, L.

    2012-04-01

    The S. Andrea landslide is a complex secondary phenomenon characterized by continuous movements causing a very high hazard condition for the near Perarolo di Cadore village (Italian Eastern Alps). A significant amount of geological and geotechnical investigations has been carried out in the past allowing the detection of the basal sliding surface. In specific, the sliding surface coincides with the contact between the bedrock and the overlying mass of an old landslides, involving a volume of about 180.000 cubic meters. A numerical approach has been adopted to analyze the stability of slope. This method is able to simulate the formation and development of shear zones as areas of strain localization in the model. Indeed, the S. Andrea landslide has been, then, investigated using FLAC, a two-dimensional explicit finite difference program, particularly useful in case of slopes with complex geometry. In order to build up a suitable model, variation of geological, hydrogeological and geotechnical parameters have been identified from the interpretation of all available data. In a preliminary stage, a Mohr-Coulomb plasticity model has been adopted except for the bedrock, which was characterized by an isotropic elastic model. Groundwater flow condition has been performed evaluating the change in pore pressure coupled to the mechanical deformation calculation. Numerical results show that this model cannot simulate real displacement behavior of the slope mainly due to both the complex material behavior and lithological heterogeneity, and due to geotechnical spatial complexity of different soils and mechanical parameters. It has been assumed that it was necessary to improve the model in the light of a time dependent behavior of existing soils. An elastic-viscoplastic model has been then used to reproduce the observed creeping behavior, and only in viscoplastic region time effects have been considered. Discussion of results points out on: i) the evolution of the ``mechanical

  2. Finite Element Analysis of Plastic Deformation During Impression Creep

    NASA Astrophysics Data System (ADS)

    Naveena; Ganesh Kumar, J.; Mathew, M. D.

    2015-04-01

    Finite element (FE) analysis of plastic deformation associated with impression creep deformation of 316LN stainless steel was carried out. An axisymmetric FE model of 10 × 10 × 10 mm specimen with 1-mm-diameter rigid cylindrical flat punch was developed. FE simulation of impression creep deformation was performed by assuming elastic-plastic-power-law creep deformation behavior. Evolution of the stress with time under the punch during elastic, plastic, and creep processes was analyzed. The onset of plastic deformation was found to occur at a nominal stress about 1.12 times the yield stress of the material. The size of the developed plastic zone was predicted to be about three times the radius of the punch. The material flow behavior and the pile-up on specimen surface have been modeled.

  3. Tensile creep behavior of polycrystalline alumina fibers

    NASA Technical Reports Server (NTRS)

    Yun, H. M.; Goldsby, J. C.

    1993-01-01

    Tensile creep studies were conducted on polycrystalline Nextel 610 and Fiber FP alumina fibers with grain sizes of 100 and 300 nm, respectively. Test conditions were temperatures from 800 to 1050 C and stresses from 60 to 1000 MPa. For both fibers, only a small primary creep portion occurred followed by steady-state creep. The stress exponents for steady-state creep of Nextel 610 and Fiber FP were found to be about 3 and 1, respectively. At lower temperatures, below 1000 C, the finer grained Nextel 610 had a much higher 0.2 percent creep strength for 100 hr than the Fiber FP; while at higher temperatures, Nextel 610 had a comparable creep strength to the Fiber FP. The stress and grain size dependencies suggest Nextel 610 and Fiber FP creep rates are due to grain boundary sliding controlled by interface reaction and Nabarro-Herring mechanisms, respectively.

  4. Analysis of Indentation-Derived Power-Law Creep Response

    NASA Astrophysics Data System (ADS)

    Martinez, Nicholas J.; Shen, Yu-Lin

    2016-03-01

    The use of instrumented indentation to characterize power-law creep is studied by computational modeling. Systematic finite element analyses were conducted to examine how indentation creep tests can be employed to retrieve the steady-state creep parameters pertaining to regular uniaxial loading. The constant indentation load hold and constant indentation-strain-rate methods were considered, first using tin (Sn)-based materials as a model system. The simulated indentation-strain rate-creep stress relations were compared against the uniaxial counterparts serving as model input. It was found that the constant indentation-strain-rate method can help establish steady-state creep, and leads to a more uniform behavior than the constant-load hold method. An expanded parametric analysis was then performed using the constant indentation-strain-rate method, taking into account a wide range of possible power-law creep parameters. The indentation technique was found to give rise to accurate stress exponents, and a certain trend for the ratio between indentation strain rate and uniaxial strain rate was identified. A contour-map representation of the findings serves as practical guidance for determining the uniaxial power-law creep response based on the indentation technique.

  5. Tensile and compressive creep behavior of extruded Mg–10Gd–3Y–0.5Zr (wt.%) alloy

    SciTech Connect

    Wang, H.; Wang, Q.D.; Boehlert, C.J.; Yin, D.D.; Yuan, J.

    2015-01-15

    The tensile and compressive creep behavior of an extruded Mg–10Gd–3Y–0.5Zr (wt.%) alloy was investigated at temperatures ranging from 200 °C to 300 °C and under stresses ranging from 30 MPa to 120 MPa. There existed an asymmetry in the tensile and compressive creep properties. The minimum creep rate of the alloy was slightly greater in tension than in compression. The measured values of the transient strain and initial creep rate in compression were greater than those in tension. The creep stress exponent was approximately 2.5 at low temperatures (T < 250 °C) and 3.4 at higher temperatures both in tension and in compression. The compression creep activation energy at low temperatures and high temperatures was 83.4 and 184.3 kJ/mol respectively, while one activation energy (184 kJ/mol) represented the tensile–creep behavior over the temperature range examined. Dislocation creep was suggested to be the main mechanism in tensile creep and in the high-temperature regime in compressive creep, while grain boundary sliding was suggested to dominate in the low-temperature regime in compressive creep. Precipitate free zones were observed near grain boundaries perpendicular to the loading direction in tension and parallel to the loading direction in compression. Electron backscattered diffraction analysis revealed that the texture changed slightly during creep. Non-basal slip was suggested to contribute to the deformation after basal slip was introduced. In the tensile–creep ruptured specimens, intergranular cracks were mainly observed at general high-angle boundaries. - Highlights: • Creep behavior of an extruded Mg–RE alloy was characterized by EBSD. • T5 aging treatment enhanced the tension–compression creep asymmetry. • The grains grew slightly during tensile creep, but not for compressive creep. • Precipitate free zones (PFZs) were observed at specific grain boundaries. • Intergranular fracture was dominant and cracks mainly originated at

  6. Computer program for predicting creep behavior of bodies of revolution

    NASA Technical Reports Server (NTRS)

    Adams, R.; Greenbaum, G.

    1971-01-01

    Computer program, CRAB, uses finite-element method to calculate creep behavior and predict steady-state stresses in an arbitrary body of revolution subjected to a time-dependent axisymmetric load. Creep strains follow a time hardening law and a Prandtl-Reuss stress-strain relationship.

  7. Circular Functions Based Comprehensive Analysis of Plastic Creep Deformations in the Fiber Reinforced Composites

    NASA Astrophysics Data System (ADS)

    Monfared, Vahid

    2016-06-01

    Analytically based model is presented for behavioral analysis of the plastic deformations in the reinforced materials using the circular (trigonometric) functions. The analytical method is proposed to predict creep behavior of the fibrous composites based on basic and constitutive equations under a tensile axial stress. New insight of the work is to predict some important behaviors of the creeping matrix. In the present model, the prediction of the behaviors is simpler than the available methods. Principal creep strain rate behaviors are very noteworthy for designing the fibrous composites in the creeping composites. Analysis of the mentioned parameter behavior in the reinforced materials is necessary to analyze failure, fracture, and fatigue studies in the creep of the short fiber composites. Shuttles, spaceships, turbine blades and discs, and nozzle guide vanes are commonly subjected to the creep effects. Also, predicting the creep behavior is significant to design the optoelectronic and photonic advanced composites with optical fibers. As a result, the uniform behavior with constant gradient is seen in the principal creep strain rate behavior, and also creep rupture may happen at the fiber end. Finally, good agreements are found through comparing the obtained analytical and FEM results.

  8. Creep Behavior, Deformation Mechanisms, and Creep Life of Mod.9Cr-1Mo Steel

    NASA Astrophysics Data System (ADS)

    ABE, Fujio

    2015-12-01

    The creep behavior, deformation mechanisms, and the correlation between creep deformation parameters and creep life have been investigated for Mod.9Cr-1Mo steel (Gr.91, 9Cr-1Mo-VNb) by analyzing creep strain data at 723 K to 998 K (450 °C to 725 °C), 40 to 450 MPa, and t r = 11.4 to 68,755 hours in NIMS Creep Data Sheet. The time to rupture t r is reasonably correlated with the minimum creep rate {dot{\\varepsilon }}_{ min } and the acceleration of creep rate by strain in the acceleration region dln {dot{\\varepsilon }} /d ɛ, as t r = 1.5/[ {dot{\\varepsilon }}_{ min } ( dln {dot{\\varepsilon }} /d ɛ)], where {dot{\\varepsilon }}_{ min } and dln {dot{\\varepsilon }} /d ɛ reflect the creep behavior in the transient and acceleration regions, respectively. The {dot{\\varepsilon }}_{ min } is inversely proportional to the time to minimum creep rate t m, while it is proportional to the strain to minimum creep rate ɛ m, as {dot{\\varepsilon }}_{ min } = 0.54 ( ɛ m/ t m). The ɛ m decreases with decreasing stress, suggesting that the creep deformation in the transient region becomes localized in the vicinity of prior austenite grain boundaries with decreasing stress. The duration of acceleration region is proportional to the duration of transient region, while the dln {dot{\\varepsilon }} /d ɛ is inversely proportional to the ɛ m. The t r is also correlated with the t m, as t r = g t m, where g is a constant. The present creep life equations reasonably predict the degradation in creep rupture strength at long times. The downward deviation takes place in the t r vs {dot{\\varepsilon }}_{ min } curves (Monkman-Grant plot). At the same {dot{\\varepsilon }}_{ min } , both the ɛ m and t m change upon the condition of t m ∝ ɛ m. The decrease in ɛ m with decreasing stress, corresponding to decreasing {dot{\\varepsilon }}_{ min } , causes a decrease in t m, indicating the downward deviation of the t r vs {dot{\\varepsilon }}_{ min } curves.

  9. Modeling creep behavior in a directionally solidified nickel base superalloy

    NASA Astrophysics Data System (ADS)

    Ibanez, Alejandro R.

    Directionally solidified (DS) nickel-base superalloys provide significant improvements relative to the limitations inherent to equiaxed materials in the areas of creep resistance, oxidation, and low and high cycle fatigue resistance. Since these materials are being pushed to the limits of their capability in gas turbine applications, accurate mathematical models are needed to predict the service lives of the hot-section components to prevent unscheduled outages due to sudden mechanical failures. The objectives of this study are to perform critical experiments and investigate the high temperature tensile, fracture toughness, creep deformation, creep rupture and creep crack growth behavior of DS GTD111 as well as to apply creep deformation, rupture and crack growth models that will enable the accurate representation of the life times of the DS GTD111 superalloy gas turbine components that are exposed to high temperatures under sustained tensile stresses. The applied models will be capable of accurately representing the creep deformation, rupture and crack growth behavior as a function of stress, time and temperature. The yield strength and fracture toughness behavior with temperature is governed by the gamma particles. The longitudinal direction showed higher ductility and strength than the transverse direction. The TL direction exhibited higher fracture toughness than the LT orientation because the crack follows a more tortuous path. The longitudinal direction showed higher creep ductility, lower minimum strain rates and longer creep rupture times than the transverse direction. The results in the transverse direction were similar to the ones for the equiaxed version of this superalloy. Two models for creep deformation have been evaluated. The power-law model includes a secondary and a tertiary creep term with the primary creep represented by a constant. A theta-projection model has also been evaluated and it appears to provide a more accurate representation of creep

  10. Mechanical behavior of low porosity carbonate rock: from brittle creep to ductile creep

    NASA Astrophysics Data System (ADS)

    Nicolas, A.; Fortin, J.; Gueguen, Y.

    2013-12-01

    Mechanical compaction and associated porosity reduction play an important role in the diagenesis of porous rocks. They may also affect reservoir rocks during hydrocarbon production, as the pore pressure field is modified. This inelastic compaction can lead to subsidence, cause casing failure, trigger earthquake, or change the fluid transport properties. In addition, inelastic deformation can be time - dependent. In particular, brittle creep phenomena have been deeply investigated since the 90s, especially in sandstones. However knowledge of carbonates behavior is still insufficient. In this experimental study, we focus on the mechanical behavior of a low porosity (9%) white Tavel (France) carbonate rock (>98% calcite) at P-Q conditions beyond the elastic domain. It has been shown that in sandstones composed of quartz, cracks are developing under these conditions. However, in carbonates, calcite minerals can meanwhile also exhibit microplasticity. The samples were deformed in the triaxial cell of the Ecole Normale Superieure de Paris at effective confining pressures ranging from 35 MPa to 85 MPa and room temperature. Experiments were carried on dry and water saturated samples to explore the role played by the pore fluids. Time dependency was investigated by a creep steps methodology: at each step, differential stress was increased rapidly and kept constant for at least 24h. During these steps elastic wave velocities (P and S) and permeability were measured continuously. Our results show two different creep behaviors: (1) brittle creep is observed at low confining pressures, whereas (2) ductile creep is observed at higher confining pressures. These two creep behaviors have a different signature in term of elastic wave velocities and permeability changes. Indeed, in the brittle domain, the primary creep is associated with a decrease of elastic wave velocities and an increase of permeability, and no secondary creep is observed. In the ductile domain, the primary creep

  11. The development of methods for the prediction of primary creep behavior in metals

    NASA Technical Reports Server (NTRS)

    Zerwekh, R. P.

    1978-01-01

    The applicability of a thermodynamic constitutive theory of deformation to the prediction of primary creep and creep strain relaxation behavior in metals is examined. Constitutive equations derived from the theory are subjected to a parametric analysis in order to determine the influence of several parameters on the curve forms generated by the equations. A computer program is developed which enables the solution of a generalized constitutive equation using experimental data as input. Several metals were tested to form a data base of primary creep and relaxation behavior. The extent to which these materials conformed to the constitutive equation showed wide variability, with the alloy Ti-6Al-4V exhibiting the most consistent results. Accordingly, most of the analysis is concentrated upon data from that alloy, although creep and relaxation data from all the materials tested are presented. Experimental methods are outlined as well as some variations in methods of analysis. Various theoretical and practical implications of the work are discussed.

  12. Creep behavior of abaca fibre reinforced composite material

    SciTech Connect

    Tobias, B.C.; Lieng, V.T.

    1996-12-31

    This study investigates the creep behavior of abaca fibre reinforced composite lamina. The optimum proportions of constituents and loading conditions, temperature and stresses, are investigated in terms of creep properties. Lamina with abaca fibre volume fractions of 60, 70 and 80 percent, embedded in polyester resin were fabricated. Creep tests in tension at three temperature levels 20{degrees}C, 100{degrees}C and 120{degrees}C and three constant stress levels of 0. 1 MPa, 0. 13 Mpa and 0. 198 MPa using a Dynamic Mechanical Analyzer (DMA) were performed. The creep curves show standard regions of an ideal creep curve such as primary and secondary creep stage. The results also show that the minimum creep rate of abaca fibre reinforced composite increases with the increase of temperature and applied stress. Plotting the minimum creep rate against stress, depicts the variations of stress exponents which vary from 1.6194 at 20{degrees}C to 0.4576 at 120{degrees}C.

  13. Creep and inverse stress relaxation behaviors of carbon nanotube yarns.

    PubMed

    Misak, H E; Sabelkin, V; Miller, L; Asmatulu, R; Mall, S

    2013-12-01

    Creep, creep recovery and inverse stress relaxation behaviors of carbon nanotube yarns that consisted of 1-, 30-, and 100-yarn(s) were characterized. Primary and secondary creep stages were observed over the duration of 336 h. The primary creep stage lasted for about 4 h at an applied load equal to 75% of the ultimate tensile strength. The total strain in the primary stage was significantly larger in the carbon nanotube multi-yarn than in the carbon nanotube 1-yarn. In the secondary stage, 1-yarn also had a smaller steady state strain rate than the multi-yarn, and it was independent of number of yarns in multi-yarn. Strain response under cyclic creep loading condition was comparable to its counterpart in non-cyclic (i.e., standard) creep test except that strain response during the first cycle was slightly different from the subsequent cycles. Inverse creep (i.e., strain recovery) was observed in the 100-yarn during the cyclic creep tests after the first unloading cycle. Furthermore, inverse stress relaxation of the multi-yarns was characterized. Inverse stress relaxation was larger and for longer duration with the larger number of yarns. PMID:24266232

  14. Accelerated characterization for long-term creep behavior of polymer

    NASA Astrophysics Data System (ADS)

    Zhao, Rongguo; Chen, Chaozhong; Li, Qifu; Luo, Xiyan

    2008-11-01

    Based on the observation that high stress results in increasing creep rate of polymeric material, which is analogous to the time-temperature equivalence, where high temperature accelerates the process of creep or relaxation of polymer, the time-stress equivalence is investigated. The changes of intrinsic time in polymer induced by temperature and stress are studied using the free volume theory, and a clock model based on the time-temperature and time-stress equivalence is constructed to predict the long-term creep behavior of polymer. Polypropylene is used for this work. The specimens with shape of dumbbell are formed via injection molding. The short-term creep tests under various stress levels are carried out at ambient temperature. The creep strains of specimens are modeled according to the concept of time-stress equivalence, and the corresponding stress shift factors are calculated. A master creep curve is built by the clock model. The result indicates that the time-stress superposition principle provides an accelerated characterization method in the laboratory. Finally, the time-dependent axial elongations at sustained stress levels, whose values are close to the tensile strength of polypropylene, are measured. The three phases of creep, i.e., the transient, steady state and accelerated creep phases, are studied, and the application and limitation of the time-stress superposition principle are discussed.

  15. Creep and Environmental Effects on High Temperature Creep-Fatigue Behavior of Alloy 617

    SciTech Connect

    L. J. Carroll; C. Cabet; R. Madland; R. Wright

    2011-06-01

    Alloy 617 is the leading candidate material for Intermediate Heat Exchanger (IHX) of a Very High Temperature Reactor (VHTR), expected to have an outlet temperature as high as 950 C. System start-ups and shut-downs as well as power transients will produce low cycle fatigue (LCF) loadings of components. Acceptance of Alloy 617 in Section III of the ASME Code for nuclear construction requires a detailed understanding of the creep-fatigue behavior in both air and impure helium, representative of the VHTR primary coolant. Strain controlled LCF tests including hold times at maximum tensile strain were conducted at total strain range of 0.3% in air at 950 C. Creep-fatigue testing was also performed in a simulated VHTR impure helium coolant for selected experimental conditions. The fatigue resistance decreased when a hold time was added at peak tensile stress, consistent with the observed change in fracture mode from transgranular to intergranular with introduction of a tensile hold. Increases in the tensile hold time, beyond 180 sec, was not detrimental to the creep-fatigue resistance. Grain boundary damage in the form of grain boundary cracking was present in the bulk of the creep-fatigue specimens. This bulk cracking was quantified and found to be similar for hold times of up to 1800 sec consistent with the saturation in failure lives and rapid stress relaxation observed during the creep portion of the creep-fatigue cycle.

  16. Creep crack growth behavior of several structural alloys

    NASA Astrophysics Data System (ADS)

    Sadananda, K.; Shahinian, P.

    1983-07-01

    Creep crack growth behavior of several high temperature alloys, Inconel 600, Inconel 625, Inconel X-750, Hastelloy X, Nimonic PE-16, Incoloy 800, and Haynes 25 (HS-25) was examined at 540, 650, 760, and 870 °C. Crack growth rates were analyzed in terms of both linear elastic stress intensity factor and J*-integral parameter. Among the alloys Inconel 600 and Hastelloy X did not show any observable crack growth. Instead, they deformed at a rapid rate resulting in severe blunting of the crack tip. The other alloys, Inconel 625, Inconel X-750, Incoloy 800, HS-25, and PE-16 showed crack growth at one or two temperatures and deformed continuously at other temperatures. Crack growth rates of the above alloys in terms ofJ* parameter were compared with the growth rates of other alloys published in the literature. Alloys such as Inconel X-750, Alloy 718, and IN-100 show very high growth rates as a result of their sensitivity to an air environment. Based on detailed fracture surface analysis, it is proposed that creep crack growth occurs by the nucleation and growth of wedge-type cracks at triple point junctions due to grain boundary sliding or by the formation and growth of cavities at the boundaries. Crack growth in the above alloys occurs only in some critical range of strain rates or temperatures. Since the service conditions for these alloys usually fall within this critical range, knowledge and understanding of creep crack growth behavior of the structural alloys are important.

  17. Creep deformation behavior in eutectic Sn-Ag solder joints using a novel mapping technique

    SciTech Connect

    Lucas, J.P.; Guo, F.; McDougall, J.; Bieler, T.R.; Subramanian, K.N.; Park, J.K.

    1999-11-01

    Creep deformation behavior was measured for 60--100 {micro}m thick solder joints. The solder joints investigated consisted of: (1) non-composite solder joints made with eutectic Sn-Ag solder, and (2) composite solder joints with eutectic Sn-Ag solder containing 20 vol.%, 5 {micro}m diameter in-situ Cu{sub 6}Sn{sub 5} intermetallic reinforcements. All creep testing in this study was carried out at room temperature. Qualitative and quantitative assessment of creep deformation was characterized on the solder joints. Creep deformation was analyzed using a novel mapping technique where a geometrical-regular line pattern was etched over the entire solder joint using excimer laser ablation. During creep, the laser-ablation (LA) pattern becomes distorted due to deformation in the solder joint. By imaging the distortion of laser-ablation patterns using the SEM, actual deformation mapping for the entire solder joint is revealed. The technique involves sequential optical/digital imaging of the deformation versus time history during creep. By tracing and recording the deformation of the LA patterns on the solder over intervals of time, local creep data are obtained in many locations in the joint. This analysis enables global and localized creep shear strains and strain rate to be determined.

  18. Creep-constitutive behavior of Sn-3.8Ag-0.7Cu solder using an internal stress approach

    NASA Astrophysics Data System (ADS)

    Rist, Martin A.; Plumbridge, W. J.; Cooper, S.

    2006-05-01

    The experimental tensile creep deformation of bulk Sn-3.8Ag-0.7Cu solder at temperatures between 263 K and 398 K, covering lifetimes up to 3,500 h, has been rationalized using constitutive equations that incorporate structure-related internal state variables. Primary creep is accounted for using an evolving internal back stress, due to the interaction between the soft matrix phase and a more creep-resistant particle phase. Steady-state creep is incorporated using a conventional power law, modified to include the steady-state value of internal stress. It is demonstrated that the observed behavior is well-fitted using creep constants for pure tin in the modified creep power law. A preliminary analysis of damage-induced tertiary creep is also presented.

  19. Creep-rupture behavior of 6 candidate stirling engine iron-base superalloys in high pressure hydrogen. Volume 1: Air creep-rupture behavior

    NASA Technical Reports Server (NTRS)

    Bhattacharyya, S.

    1982-01-01

    Four wrought alloys (A-286, IN 800H, N-155, and 19-9DL) and two cast alloys (CRM-6D and XF-818) were tested to determine their creep-rupture behavior. The wrought alloys were used in the form of sheets of 0.89 mm (0.035 in.) average thickness. The cast alloy specimens were investment cast and machined to 6.35 mm (0.250 in.) gage diameter. All specimens were tested to rupture in air at different times up to 3000 h over the temperature range of 650 C to 925 C (1200 F to 1700 F). Rupture life, minimum creep rate, and time to 1% creep strain were statistically analyzed as a function of stress at different temperatures. Temperature-compensated analysis was also performed to obtain the activation energies for rupture life, time to 1% creep strain, and the minimum creep rate. Microstructural and fracture analyses were also performed. Based on statistical analyses, estimates were made for stress levels at different temperatures to obtain 3500 h rupture life and time to 1% creep strain. Test results are to be compared with similar data being obtained for these alloys under 15 MPa (2175 psi) hydrogen.

  20. Impression Creep Behavior of a Cast AZ91 Magnesium Alloy

    NASA Astrophysics Data System (ADS)

    Kabirian, F.; Mahmudi, R.

    2009-01-01

    The creep behavior of the cast AZ91 magnesium alloy was investigated by impression testing. The tests were carried out under constant punching stress in the range 100 to 650 MPa, corresponding to 0.007 ≤ σ imp/ G ≤ 0.044, at temperatures in the range 425 to 570 K. Assuming a power-law relationship between the impression velocity and stress, depending on the testing temperature, stress exponents of 4.2 to 6.0 were obtained. When the experimental creep rates were normalized to the grain size and effective diffusion coefficient, a stress exponent of approximately 5 was obtained, which is in complete agreement with stress exponents determined by the conventional creep testing of the same material reported in the literature. Calculation of the activation energy showed a slight decrease in the activation energy with increasing stress such that the creep-activation energy of 122.9 kJ/mol at σ imp/ G = 0.020 decreases to 94.0 kJ/mol at σ imp/ G = 0.040. Based on the obtained stress exponents and activation energy data, it is proposed that dislocation climb is the controlling creep mechanism. However, due to the decreasing trend of creep-activation energy with stress, it is suggested that two parallel mechanisms of lattice and pipe-diffusion-controlled dislocation climb are competing. To elucidate the contribution of each mechanism to the overall creep deformation, the creep rates were calculated based on the effective activation energy. This yielded a criterion that showed that, in the high-stress regimes, the experimental activation energies fall in the range in which the operative creep mechanism is dislocation climb controlled by dislocation pipe diffusion. In the low-stress regime, however, the lattice-diffusion dislocation climb is dominant.

  1. Matrix cracking and creep behavior of monolithic zircon and zircon silicon carbide fiber composites

    NASA Astrophysics Data System (ADS)

    Anandakumar, Umashankar

    In this study, the first matrix cracking behavior and creep behavior of zircon matrix silicon carbide fiber composites were studied, together with the fracture and creep behavior of the monolithic zircon. These behaviors are of engineering and scientific importance, and the study was aimed at understanding the deformation mechanisms at elevated temperatures. The first matrix cracking behavior of zircon matrix uniaxially reinforced with silicon carbide fiber (SCS-6) composites and failure behavior of monolithic zircon were studied as a function of temperature (25°C, 500°C, and 1200°C) and crack length in three point bending mode. A modified vicker's indentation technique was used to vary the initial crack length in monolithic and composite samples. The interfacial shear strength was measured at these temperatures from matrix crack saturation spacing. The composites exhibited steady state and non steady state behaviors at the three different temperatures as predicted by theoretical models, while the failure stress of zircon decreased with increasing stress. The intrinsic properties of the composites were used to numerically determine the results predicted by three different matrix cracking models based on a fracture mechanics approach. The analysis showed that the model based on crack bridging analysis was valid at 25°C and 500°C, while a model based on statistical fiber failure was valid at 1200°C. Microstructural studies showed that fiber failure in the crack wake occurred at or below the matrix cracking stress at 1200°C, and no fiber failure occurred at the other two temperatures, which validated the results predicted by the theoretical models. Also, it was shown that the interfacial shear stress corresponding to debonding determined the matrix cracking stress, and not the frictional shear stress. This study showed for the first time, the steady state and non-steady state matrix cracking behavior at elevated temperatures, the difference in behavior between

  2. Creep behavior of tungsten fiber reinforced niobium metal matrix composites

    NASA Technical Reports Server (NTRS)

    Grobstein, T. L.

    1989-01-01

    Tungsten fiber reinforced niobium metal matrix composites were evaluated for use in space nuclear power conversion systems. The composite panels were fabricated using the arc-spray monotape technique at the NASA Lewis Research Center. The creep behavior of W/Nb composite material was determined at 1400 and 1500 K in vacuum over a wide range of applied loads. The time to reach 1 percent strain, the time to rupture, and the minimum creep rate were measured. The W/Nb composites exceeded the properties of monolithic niobium alloys significantly even when compared on a strength to density basis. The effect of fiber orientation on the creep strength also was evaluated. Kirkendall void formation was observed at the fiber/matrix interface; the void distribution differed depending on the fiber orientation relative to the stress axis. A relationship was found between the fiber orientation and the creep strength.

  3. Creep behavior of tungsten fiber reinforced niobium metal matrix composites

    NASA Technical Reports Server (NTRS)

    Grobstein, Toni L.

    1992-01-01

    Tungsten fiber reinforced niobium metal matrix composites were evaluated for use in space nuclear power conversion systems. The composite panels were fabricated using the arc-spray monotape technique at the NASA Lewis Research Center. The creep behavior of W/Nb composite material was determined at 1400 and 1500 K in vacuum over a wide range of applied loads. The time to reach 1 percent strain, the time to rupture, and the minimum creep rate were measured. The W/Nb composites exceeded the properties of monolithic niobium alloys significantly even when compared creep strength also was evaluated. Kirkendall void formation was observed at the fiber/matrix interface; the void distribution differed depending the fiber orientation relative to the stress axis. A relationship was found between the fiber orientation and the creep strength.

  4. Tensile creep and creep rupture behavior of monolithic and SiC-whisker-reinforced silicon nitride ceramics

    SciTech Connect

    Ohji, Tatsuki; Yamauchi, Yukihiko )

    1993-12-01

    The tensile creep and creep rupture behavior of silicon nitride was investigated at 1,200 to 1,350 C using hot-pressed materials with and without SiC whiskers. Stable steady-state creep was observed under low applied stresses at 1,200 C. Accelerated creep regimes, which were absent below 1,300 C, were identified above that temperature. The appearance of accelerated creep at the higher temperatures attributable to formation of microcracks throughout a specimen. The whisker-reinforced material exhibited better creep resistance than the monolith at 1,200 C. Considerably high values 3 to 5, were obtained for the creep exponent in the overall temperature range. The exponent tended to decrease with decreasing applied stress at 1,200 C. The primary creep mechanism was considered cavitation-enhanced creep. Specimen lifetimes followed the Monkman-Grant relationship except for fractures with large accelerated creep regimes. The creep rupture behavior is discussed in association with cavity formation and crack adolescence.

  5. Effect of Constraint on Creep Behavior of 9Cr-1Mo Steel

    NASA Astrophysics Data System (ADS)

    Goyal, Sunil; Laha, K.; Das, C. R.; Panneerselvi, S.; Mathew, M. D.

    2014-02-01

    The effect of constraint on creep rupture behavior of 9Cr-1Mo steel has been investigated. The constraint was introduced by incorporating a circumferential U-notch in a plain cylindrical creep specimen of 5 mm diameter. The degree of constraint was increased by decreasing the notch root radius from 5 to 0.25 mm. Creep tests were conducted on plain and notched specimens at stresses in the range of 110 to 210 MPa at 873 K (600 °C). The creep rupture life of the steel was found to increase under constrained conditions, which increased with the increase in degree of constraint and applied stress, and tended to saturate at a higher degree of constraint. The creep rupture ductility (pct reduction in area) of the steel was found to be lower under constrained conditions. The decrease in creep ductility was more pronounced at a higher degree of constraint and lower applied stresses. Scanning electron microscopic studies revealed a change in fracture behavior with stress and degree of constraint. The fracture surface appearance for relatively lower constrained specimens at higher stresses was predominantly transgranular dimple. Creep cavitation-induced intergranular brittle fracture near the notch root was observed for specimens having a higher degree of constraint at relatively lower stresses. The creep rupture life of the steel under constrained conditions has been predicted based on the estimation of damage evolution by continuum damage mechanics coupled with finite element analysis of the triaxial state of stress across the notch. It was found that the creep rupture life of the steel under constrained conditions was predominantly governed by the von-Mises stress and the principal stress became progressively important with increase in the degree of constraint and decrease in applied stress.

  6. Creep rupture behavior of Stirling engine materials

    NASA Technical Reports Server (NTRS)

    Titran, R. H.; Scheuerman, C. M.; Stephens, J. R.

    1985-01-01

    The automotive Stirling engine, being investigated jointly by the Department of Energy and NASA Lewis as an alternate to the internal combustion engine, uses high-pressure hydrogen as the working fluid. The long-term effects of hydrogen on the high temperature strength properties of materials is relatively unknown. This is especially true for the newly developed low-cost iron base alloy NASAUT 4G-A1. This iron-base alloy when tested in air has creep-rupture strengths in the directionally solidified condition comparable to the cobalt base alloy HS-31. The equiaxed (investment cast) NASAUT 4G-A1 has superior creep-rupture to the equiaxed iron-base alloy XF-818 both in air and 15 MPa hydrogen.

  7. Effect of misalignment on mechanical behavior of metals in creep. [computer programs

    NASA Technical Reports Server (NTRS)

    Wu, H. C.

    1979-01-01

    Application of the endochronic theory of viscoplasticity to creep, creep recovery, and stress relaxation at the small strain and short time range produced the following results: (1) The governing constitutive equations for constant-strain-rate stress-strain behavior, creep, creep recovery, and stress relaxation were derived by imposing appropriate constraints on the general constitutive equation of the endochronic theory. (2) A set of material constants was found which correlate strain-hardening, creep, creep recovery, and stress relaxation. (3) The theory predicts with reasonable accuracy the creep and creep recovery behaviors at short time. (4) The initial strain history prior to the creep stage affects the subsequent creep significantly. (5) A critical stress was established for creep recovery. A computer program, written for the misalignment problem is reported.

  8. Transient creep and semibrittle behavior of crystalline rocks

    USGS Publications Warehouse

    Carter, N.L.; Kirby, S.H.

    1978-01-01

    We review transient creep and semibrittle behavior of crystalline solids. The results are expected to be pertinent to crystalline rocks undergoing deformation in the depth range 5 to 20 km, corresponding to depths of focus of many major earthquakes. Transient creep data for crystalline rocks at elevated temperatures are analyzed but are poorly understood because of lack of information on the deformation processes which, at low to moderate pressure, are likely to be semibrittle in nature. Activation energies for transient creep at high effective confining pressure are much higher than those found for atmospheric pressure tests in which thermally-activated microfracturing probably dominates the creep rate. Empirical transient creep equations are extrapolated at 200?? to 600??C, stresses from 0.1 to 1.0 kbar, to times ranging from 3.17??102 to 3.17??108 years. At the higher temperatures, appreciable transient creep strains may take place but the physical significance of the results is in question because the flow mechanisms have not been determined. The purpose of this paper is to stimulate careful research on this important topic. ?? 1978 Birkha??user Verlag.

  9. The high temperature creep behavior of oxides and oxide fibers

    NASA Technical Reports Server (NTRS)

    Jones, Linda E.; Tressler, Richard E.

    1991-01-01

    A thorough review of the literature was conducted on the high-temperature creep behavior of single and polycrystalline oxides which potentially could serve as fiber reinforcements in ceramics or metal matrix applications. Sapphire when oriented with the basal plane perpendicular to the fiber axis (c-axis oriented) is highly creep resistant at temperatures in excess of 1600 C and applied loads of 100 MPa and higher. Pyramidal slip is preferentially activated in sapphire under these conditions and steady-state creep rates in the range of 10(exp -7) to 10 (exp -8)/s were reported. Data on the creep resistance of polycrystalline beryllia suggest that C-axiz oriented single crystal beryllia may be a viable candidate as a fiber reinforcement material; however, the issure of fabricability and moisture sensitivity must be addressed for this material. Yttrium aluminum garnet (YAG) also appears to be a fiber candidate material having a high resistance to creep which is due to it's complex crystal structure and high Peierl resistance. The high creep resistance of garnet suggests that there may be other complex ternary oxides such as single crystal mullite which may also be candidate materials for fiber reinforcements. Finally, CVD and single crystal SiC, although not oxides, do possess a high resistance to creep in the temperature range between 1550 and 1850 C and under stresses of 110 to 220 MPa. From a review of the literature, it appears that for high creep resistant applications sapphire, silicon carbide, yttrium aluminum garnet, mullite, and beryllia are desirable candidate materials which require further investigation.

  10. Creep Behavior of High Temperature Alloys for Generation IV Nuclear Energy Systems

    NASA Astrophysics Data System (ADS)

    Wen, Xingshuo

    are believed to be responsible for the monotonically increasing creep rates. Apart from dislocation creep, diffusional creep in existence at low stress level in fine-grained (ASTM 8) material also contributed partly to the creep rates. A reasonable prediction on the long term performance of alloy 617 was also made by extrapolation method using optimized parameters based on creep test data. Furthermore, microstructure characterization was performed utilizing Optical Microscopy (OM), Scanning Electron Microscopy (SEM), Electron Backscattered Diffraction (EBSD), Transmission Electron Microscopy (TEM) and related analytical techniques on samples from both before and after creep, with special attention given to grain size effects, grain boundary type, and dislocation substructures. Evidences for dislocation climb and dislocation glide were found through detailed dislocation analysis by TEM, proving the dislocation climb-glide mechanism. The formation of subgrain boundary, the changes in boundary characters and grain sizes was confirmed by EBSD analysis for dynamic recrystallization. The effects of initial grain size and grain boundary character distribution on the creep behavior and mechanism were also evaluated. Through the results obtained from this experimental study, new insights were provided into how changes in microstructure take place during high temperature creep of alloy 617, creep mechanism at different conditions was identified, and the creep deformation model was discussed. The results will also serve to technological and code case development and design of materials for NGNP.

  11. Creep Behavior and Durability of Cracked CMC

    NASA Technical Reports Server (NTRS)

    Bhatt, R. T.; Fox, Dennis; Smith, Craig

    2015-01-01

    To understand failure mechanisms and durability of cracked Ceramic matrix composites (CMCs), Melt Infiltration (MI) SiCSiC composites with Sylramic-iBN fibers and full Chemical vapour infiltration SiCSiC composites with Sylramic-ion bombarded BN (iBN) and Hi-Nicalon -S fibers were pre-cracked between 150 to 200 megapascal and then creep and Sustained Peak Low Cycle Fatigue (SPLCF) tested at 13150 C at stress levels from 35 to 103 megapascal for up to 200 hours under furnace and burner rig conditions. In addition creep testing was also conducted on pre-cracked full Chemical vapour infiltration SiCSiC composites at 14500 C between 35 and 103 megapascal for up to 200 hours under furnace conditions. If the specimens survived the 200 hour durability tests, then they were tensile tested at room temperature to determine their residual tensile properties. The failed specimens were examined by Scanning electron microscope (SEM) to determine the failure modes and mechanisms. The influence of crack healing matrix, fiber types, crack density, testing modes and interface oxidation on durability of cracked Ceramic matrix composites (CMCs) will be discussed.

  12. Creep behavior of Fe-bearing olivine under hydrous conditions

    NASA Astrophysics Data System (ADS)

    Tasaka, Miki; Zimmerman, Mark E.; Kohlstedt, David L.

    2015-09-01

    To understand the effect of iron content on the creep behavior of olivine, (MgxFe(1 - x))2SiO4, under hydrous conditions, we have conducted tri-axial compressive creep experiments on samples of polycrystalline olivine with Mg contents of x = 0.53, 0.77, 0.90, and 1. Samples were deformed at stresses of 25 to 320 MPa, temperatures of 1050° to 1200°C, a confining pressure of 300 MPa, and a water fugacity of 300 MPa using a gas-medium high-pressure apparatus. Under hydrous conditions, our results yield the following expression for strain rate as a function of iron content for 0.53 ≤ x ≤ 0.90 in the dislocation creep regime: ɛ˙=ɛ˙0.90((1-x/0.1))1/2exp[226×1030.9-x/RT]. In this equation, the strain rate of San Carlos olivine, ɛ˙0.90, is a function of T, σ, and fH2O. As previously shown for anhydrous conditions, an increase in iron content directly increases creep rate. In addition, an increase in iron content increases hydrogen solubility and therefore indirectly increases creep rate. This flow law allows us to extrapolate our results to a wide range of mantle conditions, not only for Earth's mantle but also for the mantle of Mars.

  13. Creep and creep-rupture behavior of a continuous strand, swirl mat reinforced polymer composite in automotive environments

    SciTech Connect

    Ren, W.; Brinkman, C.R.

    1998-12-31

    Creep and creep-rupture behavior of an isocyanurate based polyurethane matrix with a continuous strand, swirl mat E-glass reinforcement was investigated for automotive applications. The material under stress was exposed to various automobile service environments. Results show that environment has substantial effects on its creep and creep-rupture properties. Proposed design guide lines and stress reduction factors were developed for various automotive environments. These composites are considered candidate structural materials for light weight and fuel efficient automobiles of the future.

  14. Creep behavior of refractory concretes. First annual report, October 1, 1981-September 30, 1982

    SciTech Connect

    McGee, T.D.

    1982-12-01

    Objectives are to evaluate the creep of alumina refractory concretes, determine differential transient creep strain of pristine specimens, develop a mathematical model for the creep behavior of refractory concretes, investigate the creep of commercial refractory concretes, and determine the effect of fiber reinforcements on the creep of concretes. After a summary of the first four years' progress, the technical progress during the fourth year is described in detail. 97 figures. (DLC)

  15. Tensile creep behavior and cyclic fatigue/creep interaction of hot- isostatically pressed Si sub 3 N sub 4

    SciTech Connect

    Liu, K.C.; Pih, H.; Stevens, C.O.; Brinkman, C.R.

    1991-01-01

    Tensile creep data are reported for a high-performance grade of hot isostatically pressed Si{sub 3}N{sub 4} that is currently being investigated as a candidate material for advanced heat engine applications. Specimens were tested in pure uniaxial tension at temperatures ranging from 1200 to 1370{degree}C. Creep strain was measured with an optical strain extensometer until creep rupture occurred, in some cases for periods in excess of 2000 h. To study the effects of various preloading material histories on creep behavior, specimens were prepared and tested in several conditions, i.e., unannealed, annealed, or precycled. Test results show that either treatment by thermal annealing or by precycling at 1370{degree}C can dramatically modify the initial transient creep behavior and enhance the resistance to creep deformation and hence the creep-rupture lifetime. However, the influence of the preloading histories on creep rate was diminished by high temperature exposure after about 500 h of testing. The rupture lifetime of the precycled specimen at 1370{degree}C was significantly higher than those of the unannealed and annealed specimens. In contrast, no significant extension of the creep-rupture lifetime was observed for a precycled specimen tested at 1300{degree}C. Steady-state creep was absent in some cases under certain conditions of temperature, stress, and heat treatment. Little or no tertiary creep was usually detected before specimen fracture occurred. The steady-state creep rate of this material was found to be a function of applied stress, temperature, and possibly the level of crystallinity in the intergranular phase. 9 refs., 15 figs.

  16. Creep and stress relaxation behavior of two soft denture liners.

    PubMed

    Salloum, Alaa'a M

    2014-03-01

    Numerous investigators stated the indications of soft denture lining materials; but no one determined the indications of these materials according to their chemical structure. The purpose of this investigation was to evaluate the viscoelastic properties of acrylic and silicon lining materials. This study investigated and compared viscoelastic properties of two resilient denture lining materials. Tested materials were laboratory processed; one of them was silicone-based liner product (Molloplast-B), and the other was plasticized acrylic resin (Vertex™ Soft). Twenty cylindrical specimens (10-20 mm in length, 11.55 mm in diameter) were fabricated in an aluminum mold from each material for creep and stress relaxation testing (the study of viscoelastic properties). Tests were performed by using the universal testing machine DY-34. Collected data were analyzed with t test statistics for statistically significant differences at the 95 % confidence level. There was a clear difference in creep and stress relaxation behavior between acrylic and silicone liners. Statistical study of Young's moduli illustrated that Vertex™ Soft was softer than Molloplast-B. On the other hand, the results explained that the recovery of silicone material was better than of acrylic one. The creep test revealed that the plasticized acrylic resin lining material exhibited considerable creep, whereas silicone-based liner exhibited elastic behavior. Besides, the stress relaxation test showed that relaxation of the plasticized acrylic resin material was bigger than of the silicone-based liner. PMID:24605004

  17. Creep-Rupture Data Analysis - Engineering Application of Regression Techniques. Ph.D. Thesis - North Carolina State Univ.

    NASA Technical Reports Server (NTRS)

    Rummler, D. R.

    1976-01-01

    The results are presented of investigations to apply regression techniques to the development of methodology for creep-rupture data analysis. Regression analysis techniques are applied to the explicit description of the creep behavior of materials for space shuttle thermal protection systems. A regression analysis technique is compared with five parametric methods for analyzing three simulated and twenty real data sets, and a computer program for the evaluation of creep-rupture data is presented.

  18. The Transient Behavior of Aseismic Slip Along the Creeping Section of the North Anatolian Fault, Turkey

    NASA Astrophysics Data System (ADS)

    Jolivet, R.; Rousset, B.; Simons, M.; Lasserre, C.; Riel, B. V.; Milillo, P.; Cakir, Z.

    2014-12-01

    The ongoing development of constellations of Synthetic Aperture Radar (SAR) satellites with short repeat time acquisitions allows to explore the behavior of active faults with an unprecedented temporal and spatial resolution. The improvement from monthly to daily repeat times sheds a new light on the dynamics of near-surface fault creep along continental faults, which has been shown to exhibit various temporal behaviors, from persistent slow silent slip to discrete episodes of aseismic slip. Along the North Anatolian Fault (NAF), an 80 km-long section is creeping at least since the 1944, M7.3 earthquake near Ismetpasa, Turkey. Recent geodetic measurements suggest an average creep rate of about half the total slip rate accommodated by the NAF (8±3 mm/yr vs. 22±3 mm/yr). In addition, an effective bi-modal distribution of frictional properties along fault dip (rate-strengthening from the surface to 5-7 km-depth and rate-weakening down to the locking depth) can explain the persistent creep rate and the extent of past ruptures. We take advantage of the dense set of SAR images acquired by the Cosmo-SkyMed™ (ASI) constellation over the creeping section of the NAF to quantify, with a high spatial and temporal resolution, the distribution of aseismic slip along strike and its evolution between August 2013 and June 2014. We compute 1000+ interferograms from 350+ radar acquisitions over 7 tracks using the ISCE software (JPL). We use the Generic InSAR Analysis Toolbox (GIAnT) and the PyAPS library to correct interferograms from the propagation delays due to the stratification of the troposphere, predicted using the ERA-Interim (ECMWF) re-analysis. We use the New Small Baseline (NSBAS) method to derive the spatial and temporal evolution of the near-fault displacements independently for each track. Our results suggest the fault does not creep steadily over the 2013-2014 period but rather releases strain through discrete aseismic events we refer to as bursts of creep. In

  19. Mechanical Behavior of Low Porosity Carbonate Rock: From Brittle Creep to Ductile Creep.

    NASA Astrophysics Data System (ADS)

    Nicolas, A.; Fortin, J.; Gueguen, Y.

    2014-12-01

    Mechanical compaction and associated porosity reduction play an important role in the diagenesis of porous rocks. They may also affect reservoir rocks during hydrocarbon production, as the pore pressure field is modified. This inelastic compaction can lead to subsidence, cause casing failure, trigger earthquake, or change the fluid transport properties. In addition, inelastic deformation can be time - dependent. In particular, brittle creep phenomena have been deeply investigated since the 90s, especially in sandstones. However knowledge of carbonates behavior is still insufficient. In this study, we focus on the mechanical behavior of a 14.7% porosity white Tavel (France) carbonate rock (>98% calcite). The samples were deformed in a triaxial cell at effective confining pressures ranging from 0 MPa to 85 MPa at room temperature and 70°C. Experiments were carried under dry and water saturated conditions in order to explore the role played by the pore fluids. Two types of experiments have been carried out: (1) a first series in order to investigate the rupture envelopes, and (2) a second series with creep experiments. During the experiments, elastic wave velocities (P and S) were measured to infer crack density evolution. Permeability was also measured during creep experiments. Our results show two different mechanical behaviors: (1) brittle behavior is observed at low confining pressures, whereas (2) ductile behavior is observed at higher confining pressures. During creep experiments, these two behaviors have a different signature in term of elastic wave velocities and permeability changes, due to two different mechanisms: development of micro-cracks at low confining pressures and competition between cracks and microplasticity at high confining pressure. The attached figure is a summary of 20 triaxial experiments performed on Tavel limestone under different conditions. Stress states C',C* and C*' and brittle strength are shown in the P-Q space: (a) 20°C and dry

  20. Assessment of Tungsten Content on Tertiary Creep Deformation Behavior of Reduced Activation Ferritic-Martensitic Steel

    NASA Astrophysics Data System (ADS)

    Vanaja, J.; Laha, Kinkar

    2015-10-01

    Tertiary creep deformation behavior of reduced activation ferritic-martensitic (RAFM) steels having different tungsten contents has been assessed. Creep tests were carried out at 823 K (550 °C) over a stress range of 180 to 260 MPa on three heats of the RAFM steel (9Cr-W-0.06Ta-0.22V) with tungsten content of 1, 1.4, and 2.0 wt pct. With creep exposure, the steels exhibited minimum in creep rate followed by progressive increase in creep rate until fracture. The minimum creep rate decreased, rupture life increased, and the onset of tertiary stage of creep deformation delayed with the increase in tungsten content. The tertiary creep behavior has been assessed based on the relationship, , considering minimum creep rate () instead of steady-state creep rate. The increase in tungsten content was found to decrease the rate of acceleration of tertiary parameter ` p.' The relationships between (1) tertiary parameter `p' with minimum creep rate and time spent in tertiary creep deformation and (2) the final creep rate with minimum creep rate revealed that the same first-order reaction rate theory prevailed in the minimum creep rate as well as throughout the tertiary creep deformation behavior of the steel. A master tertiary creep curve of the steels has been developed. Scanning electron microscopic investigation revealed enhanced coarsening resistance of carbides in the steel on creep exposure with increase in tungsten content. The decrease in tertiary parameter ` p' with tungsten content with the consequent decrease in minimum creep rate and increase in rupture life has been attributed to the enhanced microstructural stability of the steel.

  1. Elevated temperature creep behavior of Inconel alloy 625

    SciTech Connect

    Purohit, A.; Burke, W.F.

    1984-07-01

    Inconel 625 in the solution-annealed condition has been selected as the clad material for the fuel and control rod housing assemblies of the Upgraded Transient Reactor Test Facility (TREAT Upgrade or TU). The clad is expected to be subjected to temperatures up to about 1100/sup 0/C. Creep behavior for the temperature range of 800/sup 0/C to 1100/sup 0/C of Inconel alloy 625, in four distinct heat treated conditions, was experimentally evaluated.

  2. Cyclic creep analysis from elastic finite-element solutions

    NASA Technical Reports Server (NTRS)

    Kaufman, A.; Hwang, S. Y.

    1986-01-01

    A uniaxial approach was developed for calculating cyclic creep and stress relaxation at the critical location of a structure subjected to cyclic thermomechanical loading. This approach was incorporated into a simplified analytical procedure for predicting the stress-strain history at a crack initiation site for life prediction purposes. An elastic finite-element solution for the problem was used as input for the simplified procedure. The creep analysis includes a self-adaptive time incrementing scheme. Cumulative creep is the sum of the initial creep, the recovery from the stress relaxation and the incremental creep. The simplified analysis was exercised for four cases involving a benchmark notched plate problem. Comparisons were made with elastic-plastic-creep solutions for these cases using the MARC nonlinear finite-element computer code.

  3. Creep behavior of starch-based nanocomposite films with cellulose nanofibrils.

    PubMed

    Li, Meng; Li, Dong; Wang, Li-jun; Adhikari, Benu

    2015-03-01

    Nanocomposite films were successfully prepared by incorporating cellulose nanofibrils (CNFs) from sugar beet pulp into plasticized starch (PS) at CNFs concentration of 5-20%. The storage (G') and loss (G″) moduli, creep and creep-recovery behavior of these films were studied. The creep behavior of these films at long time frame was studied using time-temperature superposition (TTS). The CNFs were uniformly distributed within these films up to 15% of CNFs. The PS-only and the PS/CNFs nanocomposite films exhibited dominant elastic behavior. The incorporation of CNFs increased both the G' and G″. The CNFs improved the creep resistance and reduced the creep recovery rate of the PS/CNFs nanocomposite films. TTS method was successfully used to predict the creep behavior of these films at longer time frame. Power law and Burgers model were capable (R(2)>0.98) of fitting experimental G' versus angular frequency and creep strain versus time data, respectively. PMID:25498722

  4. Creep deformation behavior of Sn-3.5Ag solder/Cu couple at small length scales

    SciTech Connect

    Kerr, M.; Chawla, N

    2004-09-06

    In order to adequately characterize the behavior of solder balls in electronic devices, the mechanical behavior of solder joints needs to be studied at small length scales. The creep behavior of single solder ball Sn-Ag/Cu solder joints was studied in shear, at 25, 60, 95, and 130 deg. C, using a microforce testing system. A change in the creep stress exponent with increasing stress was observed and explained in terms of a threshold stress for bypass of Ag{sub 3}Sn particles by dislocations. The stress exponent was also temperature dependent, exhibiting an increase in exponent of two from lower to higher temperature. The activation energy for creep was found to be temperature dependant, correlating with self-diffusion of pure Sn at high temperatures, and dislocation core diffusion of pure Sn at lower temperatures. Normalizing the creep rate for activation energy and the temperature-dependence of shear modulus allowed for unification of the creep data. Microstructure characterization, including preliminary TEM analysis, and fractographic analysis were conducted in order to fully describe the creep behavior of the material.

  5. Creep behavior of tungsten/niobium and tungsten/niobium-1 percent zirconium composites

    NASA Technical Reports Server (NTRS)

    Petrasek, Donald W.; Titran, Robert H.

    1988-01-01

    The creep behavior and microstructural stability of tungsten fiber reinforced niobium and niobium 1 percent zirconium was determined at 1400 and 1500 K in order to assess the potential of this material for use in advanced space power systems. The creep behavior of the composite materials could be described by a power law creep equation. A linear relationship was found to exist between the minimum creep rate of the composite and the inverse of the composite creep rupture life. The composite materials had an order of magnitude increase in stress to achieve 1 percent creep strain and in rupture strength at test temperatures of 1400 and 1500 K compared to unreinforced material. The composite materials were also stronger than the unreinforced materials by an order of magnitude when density was taken into consideration. Results obtained on the creep behavior and microstructural stability of the composites show significant potential improvement in high temperature properties and mass reduction for space power system components.

  6. Application Of Shakedown Analysis To Cyclic Creep Damage Limits

    SciTech Connect

    Carter, Peter; Jetter, Robert I; Sham, Sam

    2012-01-01

    Shakedown analysis may be used to provide a conservative estimate of local rupture and hence cyclic creep damage for use in a creep-fatigue assessment. The shakedown analysis is based on an elastic-perfectly plastic material with a temperature-dependent pseudo yield stress defined to guarantee that a shakedown solution exists which does not exceed rupture stress and temperature for a defined life. The ratio of design life to the estimated maximum cyclic life is the shakedown creep damage. The methodology does not require stress classification and is also applicable to cycles over the full range of temperature above and below the creep regime. Full cyclic creep and damage analysis is the alternative when shakedown analysis appears to be excessively conservative.

  7. Microstructural development and creep behavior in A286 superalloy

    SciTech Connect

    De Cicco, H.; Luppo, M.I.; Gribaudo, L.M.; Ovejero-Garcia, J

    2004-05-15

    The precipitation-hardened alloy A286 has been characterized as a function of ageing treatment, and the creep behavior has been studied in the temperature range of 600-700 deg. C and at 230-740 MPa. Microhardness tests of samples aged at different temperatures have been performed, and it was observed that the fastest precipitation kinetics of the metastable {gamma}' occurred during ageing at 730 deg. C. Further exposure at this temperature degraded the good mechanical properties of the material because the {gamma}' dissolved, and the stable {eta} phase formed. Optical and scanning and transmission electron microscopy (SEM and TEM, respectively) characterization of samples in as-received state and after ageing were performed to study the microstructural development. In all creep tests, the damage observed was intergranular. The correlation between secondary strain rate and time to failure was shown to be a modified Monkman-Grant, including the elongation to rupture and an exponent different of 1 for the strain rate to obtain a better correlation. The Larson-Miller parameter has been used to correlate creep stress, temperature and rupture time for the aged material.

  8. Effect of Phosphorous Inoculation on Creep Behavior of a Hypereutectic Al-Si Alloy

    NASA Astrophysics Data System (ADS)

    Faraji, Masoumeh; Khalilpour, Hamid

    2014-10-01

    Creep behavior of Al-Si hypereutectic alloys inoculated with phosphorus was investigated using the impression creep testing. The results showed that at stress regimes of up to 400-450 MPa and temperatures up to 300 °C, no significant creep deformation occurred in both uninoculated and inoculated specimens; however, at temperatures above 300 °C, the inoculated alloys presented better creep properties. Creep data were used to calculate the stress exponent of steady-state creep rate, n, and creep activation energy, Q, for different additive conditions where n was found varied between 5 and 8. Owing to the fact that most alloys have lower values for n (4, 5), threshold stress was estimated for studied conditions. The creep governing mechanisms for different conditions are discussed here, with a particular attention to the effect of phosphorous addition on the microstructural features, including number of primary silicon particles, mean primary silicon spacing, and morphology and distribution of eutectic silicon.

  9. Creep-rupture behavior of candidate Stirling engine iron supperalloys in high-pressure hydrogen. Volume 2: Hydrogen creep-rupture behavior

    NASA Technical Reports Server (NTRS)

    Bhattacharyya, S.; Peterman, W.; Hales, C.

    1984-01-01

    The creep rupture behavior of nine iron base and one cobalt base candidate Stirling engine alloys is evaluated. Rupture life, minimum creep rate, and time to 1% strain data are analyzed. The 3500 h rupture life stress and stress to obtain 1% strain in 3500 h are also estimated.

  10. Effect of prior oxidation on the creep behavior of NiAl-hardened austenitic steel

    NASA Astrophysics Data System (ADS)

    Satyanarayana, D. V. V.; Malakondaiah, G.; Sarma, D. S.

    2003-11-01

    The effect of prior oxidation at 1473 K on the creep behavior of an Fe-Ni-Cr-Al alloy, hardened by ordered NiAl precipitates, has been investigated at 873 K over a stress range of 275 to 450 MPa. The alloy in the as-electroslag remelted (ESR) as well as the ESR-plus-hot-worked conditions was considered. Prior oxidation causes creep strengthening in the Fe-Ni-Cr-Al alloy, resulting in a decrease in minimum creep rate and increase in time to rupture, in contrast to the observations reported on nickel-based superalloys. Creep strengthening is, however, accompanied by a significant reduction in creep ductility. Oxidation-induced creep strengthening in the current alloy can be attributed to the improved adherence of surface oxide caused by the presence of yttrium. An effective stress that incorporates the contributions of load transfer as well as substructural strengthening is used to account for the observed oxidation-induced creep strengthening. While creep strengthening is more pronounced in the ESR cast alloy, the loss in creep ductility is more intense in the ESR wrought alloy. Increasing the oxidation time beyond 1 hour has a minimal effect on creep strengthening of both the alloys, though it lowers significantly the creep ductility of the wrought alloy. The observed differences in creep behavior of the alloy in the two different conditions could be attributed to the differences in grain size as well as morphology and related oxidation-induced damage.

  11. Analysis of compressive creep behavior of the vertebral unit subjected to a uniform axial loading using exact parametric solution equations of Kelvin-solid models--Part II. Rhesus monkey intervertebral joints.

    PubMed

    Kaleps, I; Kazarian, L E; Burns, M L

    1984-01-01

    The simulation of long-term creep response behavior, observed on 54 Rhesus monkey intervertebral joints subjected to a constant axial compressive stress, is attempted by two- and three-parameter-solid models utilizing the Burns- Kaleps 'exact analysis scheme'. Model parameters identified by the analysis of each specimen's experimental strain data were optimized via a computer program and the mechanical properties (Young's moduli and the viscosity coefficient) appropriate to each model were calculated for individual spinal segments. Simulation results for the two-parameter-solid (one- Kelvin -unit) model demonstrate its general ineptness in predicting the observed strain-time behavior of normal spinal sements . The three-parameter-solid model yielded excellent results in the simulation of observed spinal segment compressive creep phenomena. It produced an average error between the model predicted and experimental strain values that ranged from a low of 0.4000% to a high of 3.290% for the 54 Rhesus monkey intervertebral joints, with a collective average error for all specimens of only 1.363%. PMID:6725292

  12. Creep and Stress-strain Behavior After Creep from Sic Fiber Reinforced, Melt-infiltrated Sic Matrix Composites

    NASA Technical Reports Server (NTRS)

    Morscher, Gregory N.; Pujar, Vijay

    2004-01-01

    Silicon carbide fiber (Hi-Nicalon Type S, Nippon Carbon) reinforced silicon carbide matrix composites containing melt-infiltrated Si were subjected to creep at 1315 C for a number of different stress conditions, This study is aimed at understanding the time-dependent creep behavior of CMCs for desired use-conditions, and also more importantly, how the stress-strain response changes as a result of the time-temperature-stress history of the crept material. For the specimens that did not rupture, fast fracture experiments were performed at 1315 C or at room temperature immediately following tensile creep. In many cases, the stress-strain response and the resulting matrix cracking stress of the composite change due to stress-redistribution between composite constituents during tensile creep. The paper will discuss these results and its implications on applications of these materials for turbine engine components.

  13. Multimechanism-Deformation Parameters of Domal Salts Using Transient Creep Analysis

    SciTech Connect

    MUNSON, DARRELL E

    1999-09-01

    Use of Gulf Coast salt domes for construction of very large storage caverns by solution mining has grown significantly in the last several decades. In fact, among the largest developers of storage caverns along the Gulf Coast is the Strategic Petroleum Reserve (SPR) which has purchased or constructed 62 crude oil storage caverns in four storage sites (domes). Although SPR and commercial caverns have been operated economically for many years, the caverns still exhibit some relatively poorly understood behaviors, especially involving creep closure volume loss and hanging string damage from salt falls. Since it is possible to postulate that some of these behaviors stem from geomechanical or reformational aspects of the salt, a method of correlating the cavern response to mechanical creep behavior as determined in the laboratory could be of considerable value. Recently, detailed study of the creep response of domal salts has cast some insight into the influence of different salt origins on cavern behavior. The study used a simple graphical analysis of limited non-steady state data to establish an approach or bound to steady state, as an estimate of the steady state behavior of a given salt. This permitted analysis of sparse creep databases for domal salts. It appears that a shortcoming of this steady state analysis method is that it obscures some critical differences of the salt material behavior. In an attempt to overcome the steady state analysis shortcomings, a method was developed based on integration of the Multimechanism-Deformation (M-D) creep constitutive model to obtain fits to the transient response. This integration process permits definition of all the material sensitive parameters of the model, while those parameters that are constants or material insensitive parameters are fixed independently. The transient analysis method has proven more sensitive to differences in the creep characteristics and has provided a way of defining different behaviors within a

  14. Impression Creep Behavior of 316LN Stainless Steel

    NASA Astrophysics Data System (ADS)

    Mathew, M. D.; Naveena; Vijayanand, D.

    2013-02-01

    Impression creep tests have been carried out at 923 K on 316LN SS containing 0.07, 0.14, and 0.22 wt.% nitrogen, under different applied stress levels. It was observed that the impression creep depth versus time curves were similar to the creep curves obtained from conventional uniaxial creep tests. The impression creep curves were characterized by a loading strain and primary and secondary creep stages similar to uniaxial creep curves. The tertiary stage observed in uniaxial creep curves was absent. The steady-state impression velocity was found to increase with increasing applied stress. The equivalent steady-state creep rates calculated from impression velocities were found to be in good agreement with the steady-state creep rates obtained from conventional uniaxial creep tests. Equivalence between applied stress and steady-state impression velocity with uniaxial creep stress and steady-state creep rate, respectively, has been established based on the laws of mechanics for time-dependent plasticity. It was found that impression velocity was sensitive to the variation in nitrogen content in the steel; impression velocity decreased with increasing nitrogen content, and the results obtained in this study were in agreement with those obtained from uniaxial creep tests.

  15. Analysis of Multistage and Other Creep Data for Domal Salts

    SciTech Connect

    Munson, D.E.

    1998-10-01

    There have existed for some time relatively sparse creep databases for a number of domal salts. Although all of these data were analyzed at the time they were reported, to date there has not been a comprehensive, overall evaluation within the same analysis framework. Such an evaluation may prove of value. The analysis methodology is based on the Multimechanism Deformation (M-D) description of salt creep and the corresponding model parameters determined from conventional creep tests. The constitutive model of creep wss formulated through application of principles involved in micromechanical modeling. It was possible, at minimum, to obtain the steady state parameters of the creep model from the data on the domal salts. When this was done, the creep of the domal salts, as compared to the well-defined Waste Isolation Pilot Plant (WIPP) bedded clean salt, was either essentially identical to, or significantly harder (more creep resistant) than WIPP salt. Interestingly, the domal salts form two distinct groups, either sofl or hard, where the difference is roughly a factor often in creep rate between the twcl groups. As might be expected, this classification corresponds quite well to the differences in magnitude of effective creep volume losses of the Strategic Petroleum Reserve (SPR) caverns as determined by the CAVEMAN cavern pressure history analysis, depending upon the specific dome or region within the dome. Creep response shoulcl also correlate to interior cavern conditions that produce salt falls. WMle, in general, the caverns in hard sah have a noticeably greater propensity for salt falls, a smaller number of similar events are exhibited even in the caverns in soft salt.

  16. Creep of Refractory Fibers and Modeling of Metal and Ceramic Matrix Composite Creep Behavior

    NASA Technical Reports Server (NTRS)

    Tewari, S.N.

    1995-01-01

    Our concentration during this research was on the following subprograms. (1) Ultra high vacuum creep tests on 218, ST300 and WHfC tungsten and MoHfC molybdenum alloy wires, temperature range from 1100 K to 1500 K, creep time of 1 to 500 hours. (2) High temperature vacuum tensile tests on 218, ST300 and WHfC tungsten and MoHfC molybdenum alloy wires. (3) Air and vacuum tensile creep tests on polycrystalline and single crystal alumina fibers, such as alumina-mullite Nextel fiber, yttrium aluminum ganet (YAG) and Saphikon, temperature range from 1150 K to 1470 K, creep time of 2 to 200 hours. (4) Microstructural evaluation of crept fibers, TEM study on the crept metal wires, SEM study on the fracture surface of ceramic fibers. (5) Metal Matrix Composite creep models, based on the fiber creep properties and fiber-matrix interface zone formation.

  17. Creep and recovery behaviors of magnetorheological elastomer based on polyurethane/epoxy resin IPNs matrix

    NASA Astrophysics Data System (ADS)

    Qi, S.; Yu, M.; Fu, J.; Li, P. D.; Zhu, M.

    2016-01-01

    This paper mainly investigated the creep and recovery behaviors of magnetorheological elastomers (MRE) based on polyurethane/epoxy resin (EP) graft interpenetrating polymer networks (IPNs). The influences of constant stress level, content of EP, particle distribution, magnetic field and temperature on the creep and recovery behaviors were systematically investigated. As expected, results suggested that the presence of IPNs leads to a significant improvement of creep resistance of MRE, and creep and recovery behaviors of MRE were highly dependent on magnetic field and temperature. To further understand its deformation mechanism, several models (i.e., Findley’s power law model, Burgers model, and Weibull distribution equation) were used to fit the measured creep and recovery data. Results showed that the modeling of creep and recovery of samples was satisfactorily conducted by using these models. The influences of content of EP and magnetic field on fitting parameters were discussed, and relevant physical mechanism was proposed to explain it qualitatively.

  18. Semi-analytical solution of time-dependent thermomechanical creep behavior of FGM hollow spheres

    NASA Astrophysics Data System (ADS)

    Jafari Fesharaki, J.; Loghman, A.; Yazdipoor, M.; Golabi, S.

    2014-02-01

    By using a method of successive elastic solution, the time-dependent creep behavior of a functionally graded hollow sphere under thermomechanical loads has been investigated. Based on volume percentage, the mechanical and thermal properties of material, except for the Poisson's ratio, are assumed to be radially dependent. Total strains are assumed to be the sum of elastic, thermal and creep strains. Creep strains are temperature-, stress- and time-dependent. Using the Prandtl-Reuss relations and Sherby's law, histories of stresses and strains are presented from their initial elastic values at zero time up to 30 years after loading. The results show that the creep stresses and strains change with time and material inhomogeneity has influence on thermomechanical creep behavior. The aim of this work was to understand the effect of creep behavior on a functionally graded hollow sphere subjected to thermomechanical load.

  19. High temperature creep behavior of single crystal gamma prime and gamma alloys

    NASA Technical Reports Server (NTRS)

    Nathal, M. V.; Diaz, J. O.; Miner, R. V.

    1989-01-01

    The creep behavior of single crystals of gamma-prime and gamma alloys were investigated and compared to the response of two-phase superalloys tested previously. High temperature deformation in the gamma alloys was characteristic of a climb-controlled mechanism, whereas the gamma-prime based materials exhibited glide-controlled creep behavior. The superalloys were much more creep resistant than their constituent phases, which indicates the importance of the gamma/gamma-prime interface as a barrier for dislocation motion during creep.

  20. Elevated temperature creep-rupture behavior of the single crystal nickel-base superalloy NASAIR 100

    NASA Technical Reports Server (NTRS)

    Nathal, M. V.; Ebert, L. J.

    1985-01-01

    The creep and rupture behavior of 001-line-oriented single crystals of the nickel-base superalloy NASAIR 100 was investigated at temperatures of 925 and 1000 C. In the stress and temperature ranges studied, the steady state creep rate, time to failure, time to the onset of secondary creep, and the time to the onset of tertiary creep all exhibited power law dependencies on the applied stress. The creep rate exponents for this alloy were between seven and eight, and the modulus-corrected activation energy for creep was approximately 350 kjoule/mole, which was comparable to the measured activation energy for Ostwald ripening of the gamma-prime precipitates. Oriented gamma-prime coarsening to form lamellae perpendicular to the applied stress was very prominent during creep. At 1000 C, the formation of a continuous gamma-gamma-prime lamellar structure was completed during the primary creep stage. Shear through the gamma-gamma-prime interface is considerd to be the rate limiting step in the deformation process. Gradual thickening of the lamellae appeared to be the cause of the onset of tertiary creep. At 925 C, the fully developed lamellar structure was not achieved until the secondary or tertiary creep stages. At this temperature, the gamma-gamma-prime lamellar structure did not appear to be as beneficial for creep resistance as at the higher temperature.

  1. Creep-fatigue analysis by strain-range partitioning.

    NASA Technical Reports Server (NTRS)

    Manson, S. S.; Halford, G. R.; Hirschberg, M. H.

    1971-01-01

    The framework of a new method is outlined for treating creep-fatigue behavior of metals. Inelastic strain-ranges are partitioned into the components of (1) completely reversed plasticity, (2) tensile plasticity reversed by compressive creep, or tensile creep reversed by compressive plasticity, and (3) completely reversed creep. Each of these components is shown to be related to cyclic life by a Manson-Coffin type power-law equation. A linear life fraction rule is used to combine the damaging effects of the individual components enabling the prediction of life. Test results are presented for a 2.25 Cr-1 Mo steel as well as limited information for a Type 316 stainless steel.

  2. Analysis of compressive creep behavior of the vertebral unit subjected to a uniform axial loading using exact parametric solution equations of Kelvin-solid models--Part I. Human intervertebral joints.

    PubMed

    Burns, M L; Kaleps, I; Kazarian, L E

    1984-01-01

    The creep response phenomena observed on 47 human intervertebral discs subjected to a constant axial compressive stress was analytically studied by two-, three- and four-parameter-solid models employing the Burns- Kaleps 'exact analysis scheme'. The mechanical properties (Young's moduli and viscosity coefficients) associated with each model were calculated for each of the 47 disks, with superior results obtained for the latter two models. Results for the two-parameter-solid model suggest its possible usefulness in simulating creep response that is characteristic of disk degeneration. Results for the three- and four-parameter-solid models were excellent, with an average error for the model predicted strain, epsilon(ti)cal, values from the experimentally measured, epsilon(ti)exp, values of 2.314% for the former model and 4.446% for the latter model on the 47 human spinal segments analyzed. The three-parameter-solid model was most sensitive in its predictability of strain behavior for ti greater than 1 min; whereas the four-parameter-solid model demonstrated greater simulation sensitivity in the 0 less than ti less than or equal to 1 min range. PMID:6725291

  3. Nanoindentation Creep Behavior of an Al0.3CoCrFeNi High-Entropy Alloy

    NASA Astrophysics Data System (ADS)

    Zhang, Lijun; Yu, Pengfei; Cheng, Hu; Zhang, Huan; Diao, Haoyan; Shi, Yunzhu; Chen, Bilin; Chen, Peiyong; Feng, Rui; Bai, Jie; Jing, Qin; Ma, Mingzhen; Liaw, P. K.; Li, Gong; Liu, Riping

    2016-03-01

    Nanoindentation creep behavior was studied on a coarse-grained Al0.3CoCrFeNi high-entropy alloy with a single face-centered cubic structure. The effects of the indentation size and loading rate on creep behavior were investigated. The experimental results show that the hardness, creep depth, creep strain rate, and stress exponent are all dependent on the holding load and loading rate. The creep behavior shows a remarkable indentation size effect at different maximum indentation loads. The dominant creep mechanism is dislocation creep at high indentation loads and self-diffusion at low indentation loads. An obvious loading rate sensitivity of creep behavior is found under different loading rates for the alloy. A high loading rate can lead to a high strain gradient, and numerous dislocations emerge and entangle together. Then during the holding time, a large creep deformation characteristic with a high stress exponent will happen.

  4. Creep-Fatigue Interaction and Cyclic Strain Analysis in P92 Steel Based on Test

    NASA Astrophysics Data System (ADS)

    Ji, Dongmei; Zhang, Lai-Chang; Ren, Jianxing; Wang, Dexian

    2015-04-01

    This work focused on the interaction of creep and fatigue and cyclic strain analysis in high-chromium ferritic P92 steel based on load-controlled creep-fatigue (CF) tests and conventional creep test at 873 K. Mechanical testing shows that the cyclic load inhibits the propagation of creep damage in the P92 steel and CF interaction becomes more severe with the decrease in the holding period duration and stress ratio. These results are also verified by the analysis of cyclic strain. The fatigue lifetime reduces with the increasing of the holding period duration and it does not reduce much with the increasing stress ratio especially under the conditions of long holding period duration. The cyclic strains (i.e., the strain range and creep strain) of CF tests consist of three stages, which is the same as those for the conventional creep behavior. The microscopic fracture surface observations illustrated that two different kinds of voids are observed at the fracture surfaces and Laves phase precipitates at the bottom of the voids.

  5. Creep-rupture behavior of iron superalloys in high pressure hydrogen

    NASA Technical Reports Server (NTRS)

    Bhattacharyya, S.

    1981-01-01

    Two cast alloys (CRM-6D and XF-818) and four sheet alloys (A-26, Incoloy 800H, N-155, and 19-9DL) in the thickness range of 0.79 to 0.99 mm were evaluated for use in the Stirling engine. The creep rupture behavior of these iron base high temperature alloys is being determined in air for 10 hr to 3,00 hr, and in 20.7 MPa (3,000 psi) H2 for 10 to 300 hr at temperatures of 650 deg to 925 deg. Material procurement, preparation and air creep rupture testing are described and existing data is analyzed. Systems for the high pressure hydrogen testing are discussed. Statistical analysis of temperature-compensated rupture data for each alloy is included.

  6. Determination of Creep Behavior of Thermal Barrier Coatings Under Laser Imposed High Thermal and Stress Gradient Conditions

    NASA Technical Reports Server (NTRS)

    Zhu, Dongming; Miller, Robert A.

    1999-01-01

    A laser sintering/creep technique has been established to determine the creep behavior of thermal barrier coatings under steady-state high heat flux conditions. For a plasma sprayed zirconia-8 wt. % yttria coating, a significant primary creep strain and a low apparent creep activation energy were observed. Possible creep mechanisms involved include stress induced mechanical sliding and temperature and stress enhanced cation diffusion through the splat and grain boundaries. The elastic modulus evolution, stress response, and total accumulated creep strain variation across the ceramic coating are simulated using a finite difference approach. The modeled creep response is consistent with experimental observations.

  7. Mechanisms Governing the Creep Behavior of High Temperature Alloys for Generation IV Nuclear Energy Systems

    SciTech Connect

    Vasudevan, Vijay; Carroll, Laura; Sham, Sam

    2015-04-06

    This research project, which includes collaborators from INL and ORNL, focuses on the study of alloy 617 and alloy 800H that are candidates for applications as intermediate heat exchangers in GEN IV nuclear reactors, with an emphasis on the effects of grain size, grain boundaries and second phases on the creep properties; the mechanisms of dislocation creep, diffusional creep and cavitation; the onset of tertiary creep; and theoretical modeling for long-term predictions of materials behavior and for high temperature alloy design.

  8. Detection of fault creep around NAF by InSAR time series analysis using PALSAR data

    NASA Astrophysics Data System (ADS)

    Deguchi, Tomonori

    2011-11-01

    North Anatolian Fault (NAF) has several records of a huge earthquake occurrence in the last one century, which is well-known as a risky active fault. Some signs indicating a creep displacement could be observed on the Ismetpasa segment. It is reported so far that the San Andreas Fault in California, the Longitudinal Valley fault in Taiwan and the Valley Fault System in Metro Manila also exhibit fault creep. The fault with creep deformation is aseismic and never generates the large-scale earthquakes. But the scale and rate of fault creep are important factors to watch the fault behavior and to understand the cycle of earthquake. The purpose of this study is to investigate the distribution of spatial and temporal change on the ground motion due to fault creep in the surrounding of the Ismetpasa, NAF. DInSAR is capable to catch a subtle land displacement less than a centimeter and observe a wide area at a high spatial resolution. We applied InSAR time series analysis using PALSAR data in order to measure long-term ground deformation from 2007 until 2011. As a result, the land deformation that the northern and southern parts of the fault have slipped to east and west at a rate of 7.5 and 6.5 mm/year in line of sight respectively were obviously detected. In addition, it became clear that the fault creep along the NAF extended 61 km in east to west direction.

  9. Influence of Prior Fatigue Cycling on Creep Behavior of Reduced Activation Ferritic-Martensitic Steel

    NASA Astrophysics Data System (ADS)

    Sarkar, Aritra; Vijayanand, V. D.; Parameswaran, P.; Shankar, Vani; Sandhya, R.; Laha, K.; Mathew, M. D.; Jayakumar, T.; Rajendra Kumar, E.

    2014-06-01

    Creep tests were carried out at 823 K (550 °C) and 210 MPa on Reduced Activation Ferritic-Martensitic (RAFM) steel which was subjected to different extents of prior fatigue exposure at 823 K at a strain amplitude of ±0.6 pct to assess the effect of prior fatigue exposure on creep behavior. Extensive cyclic softening that characterized the fatigue damage was found to be immensely deleterious for creep strength of the tempered martensitic steel. Creep rupture life was reduced to 60 pct of that of the virgin steel when the steel was exposed to as low as 1 pct of fatigue life. However, creep life saturated after fatigue exposure of 40 pct. Increase in minimum creep rate and decrease in creep rupture ductility with a saturating trend were observed with prior fatigue exposures. To substantiate these findings, detailed transmission electron microscopy studies were carried out on the steel. With fatigue exposures, extensive recovery of martensitic-lath structure was distinctly observed which supported the cyclic softening behavior that was introduced due to prior fatigue. Consequently, prior fatigue exposures were considered responsible for decrease in creep ductility and associated reduction in the creep rupture strength.

  10. Creep-fatigue analysis by Strainrange Partitioning

    NASA Technical Reports Server (NTRS)

    Manson, S. S.; Halford, G. R.; Hirschbere, M. H.

    1973-01-01

    Strainrange Partitioning provides unifying framework for characterizing high-temperature, low-cycle, creep-fatigue properties of metals and alloys. Method offers distinct advantage to designers of immediately providing reliable upper and lower bounds on cyclic life for any type of inelastic strain cycle that may be encountered in service.

  11. In Situ Observation of High Temperature Creep Behavior During Annealing of Steel

    NASA Astrophysics Data System (ADS)

    Zhang, X. F.; Terasaki, H.; Komizo, Y.; Murakami, Y.; Yasuda, K.

    2012-12-01

    Previous studies on creep suggested a close relationship between polycrystal grain size, substructure, and creep rate. At present, however, our understanding of the influence of polycrystal grain size, substructure, and thermal stress on creep deformation behavior seems rather insufficient, especially as there is a general lack of in situ data on structural changes during creep. In this study, the effects of thermal stress, austenite grain size, and cooling rate on slip deformations in C-Mn-Al steel during annealing were investigated systematically on the basis of in situ observations using high temperature laser scanning confocal microscopy. Finally, a kinetics model based on thermal expansion anisotropy and temperature difference was developed to explain these interesting experimental results. The in situ investigation of slip deformation during annealing greatly contributes to the understanding of high temperature creep behavior.

  12. Out-of-pile creep behavior of uranium carbide

    NASA Technical Reports Server (NTRS)

    Wright, T. R.; Seltzer, M. S.

    1974-01-01

    Compression creep tests were investigated on various UC-based fuel materials having a variation in both density and composition. Specimens were prepared by casting and by hot pressing. Steady-state creep rates were measured under vacuum at 1400 to 1800 C in the stress range 500-4000 psi.

  13. High-Temperature Creep Behavior Of Fiber-Reinforced Niobium

    NASA Technical Reports Server (NTRS)

    Petrasek, Donald W.; Titran, Robert H.

    1990-01-01

    Study conducted to determine feasibility of using composite materials in advanced space power systems, described in 22-page report. Tungsten fibers reduce creep and mass in advanced power systems. Reinforcing niobium alloys with tungsten fibers increases their resistances to creep by factors of as much as 10.

  14. Long-time creep behavior of the niobium alloy C-103

    NASA Technical Reports Server (NTRS)

    Titran, R. H.; Klopp, W. D.

    1980-01-01

    The creep behavior of C-103 was studied as a function of stress, temperature, and grain size for test times to 19000 hr. Over the temperature range 827 to 1204 C and the stress range 6.89 to 138 MPa, only tertiary (accelerating) creep was observed. The creep strain epsilon can be related to time t by an exponential relation epsilon = epsilon(0) + K e raised to power (st) - 1), where epsilon (0) is initial creep strain, K is the tertiary creep strain parameter, and s is the tertiary creep rate parameter. The observed stress exponent 2.87 is similar to the three power law generally observed for secondary (linear) creep of Class I solid solutions. The apparent activation energy 374 kj/g mol is close to that observed for self diffusion of pure niobium. The initial tertiary creep rate was slightly faster for fine grained than for coarse-grained material. The strain parameter K can be expressed as a combination of power functions of stress and grain size and an exponential function of temperature. Strain time curves generated by using calculated values for K and s showed reasonable agreement with observed curves to strains of at least 4 percent. The time to 1 percent strain was related to stress, temperature, and grain size in a similar manner as the initial tertiary creep rate.

  15. Creep Analysis for a Wide Stress Range Based on Stress Relaxation Experiments

    NASA Astrophysics Data System (ADS)

    Altenbach, Holm; Naumenko, Konstantin; Gorash, Yevgen

    Many materials exhibit a stress range dependent creep behavior. The power-law creep observed for a certain stress range changes to the viscous type creep if the stress value decreases. Recently published experimental data for advanced heat resistant steels indicates that the high creep exponent (in the range 5-12 for the power-law behavior) may decrease to the low value of approximately 1 within the stress range relevant for engineering structures. The aim of this paper is to confirm the stress range dependence of creep behavior based on the experimental data of stress relaxation. An extended constitutive model for the minimum creep rate is introduced to consider both the linear and the power law creep ranges. To take into account the primary creep behavior a strain hardening function is introduced. The material constants are identified for published experimental data of creep and relaxation tests for a 12%Cr steel bolting material at 500°C. The data for the minimum creep rate are well-defined only for moderate and high stress levels. To reconstruct creep rates for the low stress range the data of the stress relaxation test are applied. The results show a gradual decrease of the creep exponent with the decreasing stress level. Furthermore, they illustrate that the proposed constitutive model well describes the creep rates for a wide stress range.

  16. Estimation of creep and recovery behavior of a shape memory polymer

    NASA Astrophysics Data System (ADS)

    Sakai, Takenobu; Tao, Takayuki; Somiya, Satoshi

    2015-11-01

    The shape recovery and shape fixity properties of shape memory polymers (SMPs), advanced functional materials, were investigated in this study. Although the shape recovery behavior of these polymers has been examined from a viscoelastic point of view, questions remain with regard to quantifying the recovery behavior of SMPs. SMPs can recover their shape after the molding process; this recovery occurs via creep recovery and/or shape recovery; an estimation of SMP recovery requires a good understanding of both processes. In this study, the time-temperature superposition principle was applied to the creep and shape recovery behavior of SMPs. The creep behavior was estimated using an experimentally obtained master curve and time-temperature shift factors. Our estimated results were in good agreement with the experimental data. However, the estimation of the creep recovery with changing temperature below or above the glass transition temperature was not successful due to the lack of consideration of the shape recovery behavior. The time and temperature dependency of the shape recovery were confirmed for creep behavior, using the master curve for the recovery ratio and the corresponding shift factors for shape recovery. The values of the shape recovery shift factors differed from those for the time-temperature shift factors obtained for creep behavior. Therefore, these shape recovery shift factors were used in the estimation of creep and shape recovery behavior using the master curve for the creep tests. The estimated results were closer to the results obtained experimentally. Moreover, our results indicated that the recovery behavior above Tg was dominated by shape recovery as a result of polymer viscoelasticity.

  17. A simplified method for elastic-plastic-creep structural analysis

    NASA Technical Reports Server (NTRS)

    Kaufman, A.

    1985-01-01

    A simplified inelastic analysis computer program (ANSYPM) was developed for predicting the stress-strain history at the critical location of a thermomechanically cycled structure from an elastic solution. The program uses an iterative and incremental procedure to estimate the plastic strains from the material stress-strain properties and a plasticity hardening model. Creep effects are calculated on the basis of stress relaxation at constant strain, creep at constant stress or a combination of stress relaxation and creep accumulation. The simplified method was exercised on a number of problems involving uniaxial and multiaxial loading, isothermal and nonisothermal conditions, dwell times at various points in the cycles, different materials and kinematic hardening. Good agreement was found between these analytical results and nonlinear finite element solutions for these problems. The simplified analysis program used less than 1 percent of the CPU time required for a nonlinear finite element analysis.

  18. A simplified method for elastic-plastic-creep structural analysis

    NASA Technical Reports Server (NTRS)

    Kaufman, A.

    1984-01-01

    A simplified inelastic analysis computer program (ANSYPM) was developed for predicting the stress-strain history at the critical location of a thermomechanically cycled structure from an elastic solution. The program uses an iterative and incremental procedure to estimate the plastic strains from the material stress-strain properties and a plasticity hardening model. Creep effects are calculated on the basis of stress relaxation at constant strain, creep at constant stress or a combination of stress relaxation and creep accumulation. The simplified method was exercised on a number of problems involving uniaxial and multiaxial loading, isothermal and nonisothermal conditions, dwell times at various points in the cycles, different materials and kinematic hardening. Good agreement was found between these analytical results and nonlinear finite element solutions for these problems. The simplified analysis program used less than 1 percent of the CPU time required for a nonlinear finite element analysis.

  19. Propagating episodic creep and the aseismic slip behavior of the Calaveras fault north of Hollister, California

    SciTech Connect

    Evans, K.F.; Burford, R.O.; King, G.C.P.

    1981-05-10

    A detailed kinematic study of fault slip occurring from the surface to a depth of about 7 km on the Calaveras fault north of Hollister was conducted during the summer of 1977. The observations coincided with a period of propagating episodic fault creep activity sensed along the fault trace. Data used in the investigation consist of creepmeter records, near-field strainmeter observations, and high-resolution geodetic measurements, all collected contemporaneously over a period of 4 months. Detailed descriptions and analyses of the creepmeter and geodetic data have been presented elsewhere. The near-field strain measurements are here reported in detail, and their analysis draws upon the previous two data sets for support. The strainmeter observations are most sensitive to slip occurring in the upper 2 km; hence the emphasis of the paper is placed upon the role of propagating episode creep in the broad-scale behavior of the fault. The results suggest that propagating episodic fault creep as sensed along the fault trace is confined to the upper kilometer or so of the crust and represents the response of the surface layers to a longer-term form of episode aseismic slip occurring below. The mean form of the advancing rupture front within the upper kilometer is ostensibly the same as that indicated by records from the surface creepmeters. Evidence is presented, however, which suggests that propagating creep events may not always break the surface and may propagate at velocities much slower and at amplitudes significantly larger than those generally observed at the surface.

  20. Model for transient creep of southeastern New Mexico rock salt

    SciTech Connect

    Herrmann, W; Wawersik, W R; Lauson, H S

    1980-11-01

    In a previous analysis, existing experimental data pertaining to creep tests on rock salt from the Salado formation of S.E. New Mexico were fitted to an exponential transient creep law. While very early time portions of creep strain histories were not fitted very well for tests at low temperatures and stresses, initial creep rates in particular generally being underestimated, the exponential creep law has the property that the transient creep strain approaches a finite limit with time, and is therefore desirable from a creep modelling point of view. In this report, an analysis of transient creep is made. It is found that exponential transient creep can be related to steady-state creep through a universal creep curve. The resultant description is convenient for creep analyses where very early time behavior is not important.

  1. Deterministic Multiaxial Creep and Creep Rupture Enhancements for CARES/Creep Integrated Design Code

    NASA Technical Reports Server (NTRS)

    Jadaan, Osama M.

    1998-01-01

    High temperature and long duration applications of monolithic ceramics can place their failure mode in the creep rupture regime. A previous model advanced by the authors described a methodology by which the creep rupture life of a loaded component can be predicted. That model was based on the life fraction damage accumulation rule in association with the modified Monkman-Grant creep rupture criterion. However, that model did not take into account the deteriorating state of the material due to creep damage (e.g., cavitation) as time elapsed. In addition, the material creep parameters used in that life prediction methodology, were based on uniaxial creep curves displaying primary and secondary creep behavior, with no tertiary regime. The objective of this paper is to present a creep life prediction methodology based on a modified form of the Kachanov-Rabotnov continuum damage mechanics (CDM) theory. In this theory, the uniaxial creep rate is described in terms of sum, temperature, time, and the current state of material damage. This scalar damage state parameter is basically an abstract measure of the current state of material damage due to creep deformation. The damage rate is assumed to vary with stress, temperature, time, and the current state of damage itself. Multiaxial creep and creep rupture formulations of the CDM approach are presented in this paper. Parameter estimation methodologies based on nonlinear regression analysis are also described for both, isothermal constant stress states and anisothermal variable stress conditions This creep life prediction methodology was preliminarily added to the integrated design code CARES/Creep (Ceramics Analysis and Reliability Evaluation of Structures/Creep), which is a postprocessor program to commercially available finite element analysis (FEA) packages. Two examples, showing comparisons between experimental and predicted creep lives of ceramic specimens, are used to demonstrate the viability of Ns methodology and the

  2. Type IV Creep Damage Behavior in Gr.91 Steel Welded Joints

    NASA Astrophysics Data System (ADS)

    Hongo, Hiromichi; Tabuchi, Masaaki; Watanabe, Takashi

    2012-04-01

    Modified 9Cr-1Mo steel (ASME Grade 91 steel) is used as a key structural material for boiler components in ultra-supercritical (USC) thermal power plants at approximately 873 K (600 °C). The creep strength of welded joints of this steel decreases as a result of Type IV creep cracking that forms in the heat-affected zone (HAZ) under long-term use at high temperatures. The current article aims to elucidate the damage processes and microstructural degradations that take place in the HAZ of these welded joints. Long-term creep tests for base metal, simulated HAZ, and welded joints were conducted at 823 K, 873 K, and 923 K (550 °C, 600 °C, and 650 °C). Furthermore, creep tests of thick welded joint specimens were interrupted at several time steps at 873 K (600 °C) and 90 MPa, after which the distribution and evolution of creep damage inside the plates were measured quantitatively. It was found that creep voids are initiated in the early stages (0.2 of life) of creep rupture life, which coalesce to form a crack at a later stage (0.8 of life). In a fine-grained HAZ, creep damage is concentrated chiefly in an area approximately 20 pct below the surface of the plate. The experimental creep damage distributions coincide closely with the computed results obtained by damage mechanics analysis using the creep properties of a simulated fine-grained HAZ. Both the concentration of creep strain and the high multiaxial stress conditions in the fine-grained HAZ influence the distribution of Type IV creep damage.

  3. Creep behavior of pack cementation aluminide coatings on Grade 91 ferritic martensitic alloy

    SciTech Connect

    Bates, Brian; Zhang, Ying; Dryepondt, Sebastien N; Pint, Bruce A

    2014-01-01

    The creep behavior of various pack cementation aluminide coatings on Grade 91 ferritic-martensitic steel was investigated at 650 C in laboratory air. The coatings were fabricated in two temperature regimes, i.e., 650 or 700 C (low temperature) and 1050 C(high temperature), and consisted of a range of Al levels and thicknesses. For comparison, uncoated specimens heat-treated at 1050 C to simulate the high temperature coating cycle also were included in the creep test. All coated specimens showed a reduction in creep resistance, with 16 51% decrease in rupture life compared to the as-received bare substrate alloy. However, the specimens heat-treated at 1050 C exhibited the lowest creep resistance among all tested samples, with a surprisingly short rupture time of < 25 h, much shorter than the specimen coated at 1050 C. Factors responsible for the reduction in creep resistance of both coated and heat-treated specimens were discussed.

  4. Impression creep behavior of SiC particle-MoSi{sub 2} composites

    SciTech Connect

    Butt, D.P.; Korzekwa, D.A.; Maloy, S.A.; Kung, H.; Petrovic, J.J.

    1996-06-01

    Using a cylindrical indenter (or punch), the impression creep behavior of MoSi{sub 2}-SiC composites containing 0{endash}40{percent} SiC by volume, was characterized at 1000{endash}1200{degree}C, 258{endash}362 MPa punch pressure. Through finite element modeling, an equation that depends on the material stress exponent was derived that converts the stress distribution beneath the punch to an effective compressive stress. Using this relationship, direct comparisons were made between impression and compressive creep studies. Under certain conditions, compressive creep and impression creep measurements yield comparable results after correcting for effective stresses and strain rates beneath the punch. However, rate-controlling mechanisms may be quite different under the two stressing conditions, in which case impression creep data should not be used to predict compressive creep behavior. The addition of SiC affects the impression creep behavior of MoSi{sub 2} in a complex manner by pinning grain boundaries during pressing, thus leading to smaller MoSi{sub 2} grains and by obstructing or altering both dislocation motion and grain boundary sliding. {copyright} {ital 1996 Materials Research Society.}

  5. Three-Dimensional Visualization of the Crack-Growth Behavior of Nano-Silver Joints During Shear Creep

    NASA Astrophysics Data System (ADS)

    Tan, Yansong; Li, Xin; Chen, Gang; Mei, Yunhui; Chen, Xu

    2015-02-01

    Evolution of creep damage in nano-silver sintered lap shear joints was investigated at 325°C. Non-destructive x-ray three-dimensional (3D) visualization clearly revealed the crack-growth behavior of the joint; this could be divided into three stages. In the initial stage, little development of cracks occurred. In the second stage, cracks propagated at a consistent rate. In the final stage, rapid extension of the cracks led directly to fracture of the joint. Three-dimensional volume-rendered images and fractographic analysis showed that the growth of macroscopic initial cracks at the interfaces dominated the creep fracture process. Initial failure of nano-silver sintered lap shear joints often occurred at interfacial nano-silver paste layers. Both the size and position of the initial interfacial cracks had significant effects on the final creep failure of the joints, and higher stresses led to greater porosity and earlier failure.

  6. Creep behavior of 6 micrometer linear low density polyethylene film

    NASA Technical Reports Server (NTRS)

    Simpson, J. M.; Schur, W. W.

    1993-01-01

    Creep tests were performed to provide material characteristics for a 6.4-micron polyethylene film used to construct high altitude balloons. Results suggest simple power law relationships are adequate for stresses below about 4.83 MPa.

  7. Creep-fatigue behavior of NiCoCrAlY coated PWA 1480

    NASA Technical Reports Server (NTRS)

    Miner, R. V.; Gayda, J.; Hebsur, M. G.

    1985-01-01

    This study of high-temperature fatigue and creep-fatigue behavior is part of a program to identify the basic features of the effects of temperature, creep, fatigue, and environment on the behavior of a single crystal superalloy, a bulk coating alloy, and a coated alloy system. A system was selected which has had considerable production experience: the Ni-base superalloy, PWA 1480, and the NiCoCrAlY coating, PWA 276. Isothermal behavior was studied first. A series of fatigue and creep fatigue tests of the types commonly designated as pp, cp, pc and cc were conducted. These tests were conducted at various constant total strain ranges. The creep-fatigue cycles employed constant stress dwells at the maximum and/or minimum load. Test results are given.

  8. Creep behavior for advanced polycrystalline SiC fibers

    SciTech Connect

    Youngblood, G.E.; Jones, R.H.; Kohyama, Akira

    1997-08-01

    A bend stress relaxation (BSR) test is planned to examine irradiation enhanced creep in polycrystalline SiC fibers which are under development for use as fiber reinforcement in SiC/SiC composite. Baseline 1 hr and 100 hr BSR thermal creep {open_quotes}m{close_quotes} curves have been obtained for five selected advanced SiC fiber types and for standard Nicalon CG fiber. The transition temperature, that temperature where the S-shaped m-curve has a value 0.5, is a measure of fiber creep resistance. In order of decreasing thermal creep resistance, with the 100 hr BSR transition temperature given in parenthesis, the fibers ranked: Sylramic (1261{degrees}C), Nicalon S (1256{degrees}C), annealed Hi Nicalon (1215{degrees}C), Hi Nicalon (1078{degrees}C), Nicalon CG (1003{degrees}C) and Tyranno E (932{degrees}C). The thermal creep for Sylramic, Nicalon S, Hi Nicalon and Nicalon CG fibers in a 5000 hr irradiation creep BSR test is projected from the temperature dependence of the m-curves determined during 1 and 100 hr BSR control tests.

  9. Creep and precipitation behaviors of AL6XN austenitic steel at elevated temperatures

    NASA Astrophysics Data System (ADS)

    Meng, L. J.; Sun, J.; Xing, H.

    2012-08-01

    Creep behaviors of the solution-treated AL6XN austenitic stainless steel have been investigated at 873-1023 K and 120-260 MPa. The results showed that the creep stress exponent and activation energy of the AL6XN steel are 5 and 395.4 kJ/mol, respectively in the power-law breakdown regime. TEM observations revealed that dislocations distributed homogenously in grains. The creep deformation mechanism is mainly attributed to viscous dislocation glide. Precipitates in the steel after creep deformation were additionally analyzed by TEM, and the results showed that there are four different types of precipitates, such as M23C6, M6C, σ phase and Laves phase. The M23C6 carbides were observed at grain boundaries in the steel after creep at 873 K. The M6C, σ phase and Laves phase precipitates were found when the creep temperature increases to 923-1023 K. Although the AL6XN steel exhibited low steady state creep rates, a high volume fraction of brittle precipitates of σ and Laves phases reduced the creep lifetime of the steel at elevated temperatures.

  10. Development of a steady state creep behavior model of polycrystalline tungsten for bimodal space reactor application

    SciTech Connect

    Purohit, A.; Hanan, N.A.; Bhattacharyya, S.K.; Gruber, E.E.

    1995-02-01

    The fuel element for one of the many reactor concepts being currently evaluated for bimodal applications in space consists of spherical fuel particles clad with tungsten or alloys of tungsten. The fuel itself consists of stabilized UO{sub 2}. One of the life limiting phenomena for the fuel element is failure of the cladding because of creep deformation. This report summarizes the information available in literature regarding the creep deformation of tungsten and its alloys and proposes a relation to be used for calculating the creep strains for elevated temperatures in the low stress region ({sigma} {le} 20 MPa). Also, results of the application of this creep relation to one of the reactor design concepts (NEBA-3) are discussed. Based on the traditional definition of creep deformation, the temperatures of 1500 K to 2900 K for tungsten and its alloys are considered to be in the {open_quotes}high{close_quotes} temperature range. In this temperature range, the rate controlling mechanisms for creep deformation are believed to be non-conservative motion of screw dislocations and short circuit diffusional paths. Extensive theoretical work on creep and in particular for creep of tungsten and its alloys have been reported in the literature. These theoretical efforts have produced complex mathematical models that require detailed materials properties. These relations, however, are not presently suitable for the creep analysis because of lack of consistent material properties required for their use. Variations in material chemistry and thermomechanical pre-treatment of tungsten have significant effects on creep and the mechanical properties. Analysis of the theoretical models and limited data indicates that the following empirical relation originally proposed by M. Jacox of INEL and the Air Force Phillips Laboratory, for calculating creep deformation of tungsten cladding, can be used for the downselection of preliminary bimodal reactor design concepts.

  11. Creep analysis of fuel plates for the Advanced Neutron Source

    SciTech Connect

    Swinson, W.F.; Yahr, G.T.

    1994-11-01

    The reactor for the planned Advanced Neutron Source will use closely spaced arrays of fuel plates. The plates are thin and will have a core containing enriched uranium silicide fuel clad in aluminum. The heat load caused by the nuclear reactions within the fuel plates will be removed by flowing high-velocity heavy water through narrow channels between the plates. However, the plates will still be at elevated temperatures while in service, and the potential for excessive plate deformation because of creep must be considered. An analysis to include creep for deformation and stresses because of temperature over a given time span has been performed and is reported herein.

  12. Prediction and verification of creep behavior in metallic materials and components, for the space shuttle thermal protection system. Volume 1, phase 1: Cyclic materials creep predictions

    NASA Technical Reports Server (NTRS)

    Davis, J. W.; Cramer, B. A.

    1974-01-01

    Cyclic creep response was investigated and design methods applicable to thermal protection system structures were developed. The steady-state (constant temperature and load) and cyclic creep response characteristics of four alloys were studied. Steady-state creep data were gathered through a literature survey to establish reference data bases. These data bases were used to develop empirical equations describing creep as a function of time, temperature, and stress and as a basis of comparison for test data. Steady-state creep tests and tensile cyclic tests were conducted. The following factors were investigated: material thickness and rolling direction; material cyclic creep response under varying loads and temperatures; constant stress and temperature cycles representing flight conditions; changing stresses present in a creeping beam as a result of stress redistribution; and complex stress and temperature profiles representative of space shuttle orbiter trajectories. A computer program was written, applying creep hardening theories and empirical equations for creep, to aid in analysis of test data. Results are considered applicable to a variety of structures which are cyclicly exposed to creep producing thermal environments.

  13. Compressive creep behavior of an electric brush-plated nanocrystalline Cu at room temperature

    NASA Astrophysics Data System (ADS)

    Wang, Guoyong; Lian, Jianshe; Jiang, Zhonghao; Qin, Liyuan; Jiang, Qing

    2009-10-01

    Creep tests were conducted on a nanocrystalline Cu at room temperature. The results at very low strain rates (<4×10-8 s-1) are consistent with Coble creep. An overall view of stress-strain rate behavior of this nanocrystalline Cu indicates that as the strain rate decreases, the deformation mechanism transition from predominantly dislocation activity to diffusion Coble creep, as evidenced by the strain rate sensitivity on stress trending to m =1 and activation volume trending to υ =1.5b3. The typical strain rate sensitivity of m =0.5 for surperplasticity can hardly be obtained at such low homogenous temperature.

  14. Creep behavior of tungsten/niobium and tungsten/niobium-1 percent zirconium composites

    NASA Technical Reports Server (NTRS)

    Petrasek, D. W.; Titran, R. H.

    1988-01-01

    A study was conducted to determine the feasibility of using tungsten fiber reinforced niobium or niobium-1 percent zirconium matrix composites to meet the anticipated increased temperature and creep resistance requirements imposed by advanced space power systems. The results obtained on the short time tensile properties indicated that W/Nb composites showed significant improvements in high temperature strength and offer significant mass reductions for high temperature space power systems. The prime material requirement for space power systems applications is long time creep resistance. A study was conducted to determine the effect of high temperature exposure on the properties of these composites, with emphasis upon their creep behavior at elevated temperatures.

  15. Microstructure and creep behavior of magnesium-aluminum alloys containing alkaline and rare earth additions

    NASA Astrophysics Data System (ADS)

    Saddock, Nicholas David

    In the past few decades governmental regulation and consumer demands have lead the automotive companies towards vehicle lightweighting. Powertrain components offer significant potential for vehicle weight reductions. Recently, magnesium alloys have shown promise for use in powertrain applications where creep has been a limiting factor. These systems are Mg-Al based, with alkaline earth or rare earth additions. The solidification, microstructure, and creep behavior of a series of Mg-4 Al- 4 X:(Ca, Ce, La, and Sr) alloys and a commercially developed AXJ530 (Mg--5 Al--3 Ca--0.15 Sr) alloy (by wt%) have been investigated. The order of decreasing freezing range of the five alloys was: AX44, AXJ530, AJ44, ALa44 and ACe44. All alloys exhibited a solid solution primary alpha-Mg phase surrounded by an interdendritic region of Mg and intermetallic(s). The primary phase was composed of grains approximately an order of magnitude larger than the cellular structure. All alloys were permanent mold cast directly to creep specimens and AXJ530 specimens were provided in die-cast form. The tensile creep behavior was investigated at 175 °C for stresses ranging from 40 to 100 MPa. The order of decreasing creep resistance was: die-cast AXJ530 and permanent mold cast AXJ530, AX44, AJ44, ALa44 and ACe44. Grain size, solute concentration, and matrix precipitates were the most significant microstructural features that influenced the creep resistance. Decreases in grain size or increases in solute concentration, both Al and the ternary addition, lowered the minimum creep rate. In the Mg-Al-Ca alloys, finely distributed Al2Ca precipitates in the matrix also improved the creep resistance by a factor of ten over the same alloy with coarse precipitates. The morphology of the eutectic region was distinct between alloys but did not contribute to difference in creep behavior. Creep strain distribution for the Mg-Al-Ca alloys developed heterogeneously on the scale of the alpha-Mg grains. As

  16. Creep behavior for advanced polycrystalline SiC fibers

    SciTech Connect

    Youngblood, G.E.; Jones, R.H.; Kohyama, Akira

    1997-04-01

    A bend stress relaxation (BSR) test has been utilized to examine irradiation enhanced creep in polycrystalline SiC fibers which are under development for use as fiber reinforcement in SiC/SiC composite. Qualitative, S-shaped 1hr BSR curves were compared for three selected advanced SiC fiber types and standard Nicalon CG fiber. The temperature corresponding to the middle of the S-curve (where the BSR parameter m = 0.5) is a measure of a fiber`s thermal stability as well as it creep resistance. In order of decreasing thermal creep resistance, the measured transition temperatures were Nicalon S (1450{degrees}C), Sylramic (1420{degrees}C), Hi-Nicalon (1230{degrees}C) and Nicalon CG (1110{degrees}C).

  17. The influence of matrix microstructure and particle reinforcement on the creep behavior of 2219 aluminum

    NASA Astrophysics Data System (ADS)

    Krajewski, P. E.; Allison, J. E.; Jones, J. W.

    1993-12-01

    The influence of matrix microstructure and reinforcement with 15 vol pct of TiC particles on the creep behavior of 2219 aluminum has been examined in the temperature range of 150 ‡C to 250 ‡C. At 150 ‡C, reinforcement led to an improvement in creep resistance, while at 250 ‡C, both materials exhibited essentially identical creep behavior. Precipitate spacing in the matrix exerted the predominant influence on minimum creep rate in both the unreinforced and the reinforced materials over the temperature range studied. This behavior and the high-stress dependence of minimum creep rate are explained using existing constant structure models where, in the present study, precipitate spacing is identified as the pertinent substructure dimension. A modest microstructure-independent strengthening from particle reinforcement was observed at 150 ‡C and was accurately modeled by existing continuum mechanical models. The absence of reinforcement creep strengthening at 250 ‡C can be attributed to diffusional relaxation processes at the higher temperature.

  18. Microstructure and Creep Behavior of a Directional Solidification Nickel-based Superalloy

    NASA Astrophysics Data System (ADS)

    Tian, Ning; Tian, Sugui; Yu, Huichen; Li, Ying; Meng, Xianlin

    2015-07-01

    By means of creep property measurement and microstructure observation, an investigation has been made into microstructure and creep behavior of a directional solidification Ni-based superalloy at high temperatures. Results show that after full heat treatment, small cuboidal γ' precipitates distribute in the dendrite regions, while coarser ones distribute in the inter-dendrite regions. In the primary stage of creep, the γ' phase in alloy is transformed into the rafted structure along the direction vertical to stress axis, and then the creep of alloy enters the steady state stage. And dislocations slipping in the g matrix and climbing over the rafted γ' phase are thought to be the deformation mechanism of the alloy during steady creep stage. At the latter stage of creep, the alternate slipping of dislocations may shear and twist the rafted γ'/γ phases, which promotes the initiation and propagation of the micro-cracks along the boundaries near the coarser rafted γ' phase. And the bigger probability of the creep damage occurs in the grain boundaries along 45° angles relative to the stress axis due to them bearing relatively bigger shearing stress.

  19. A Modified Theta Projection Model for Creep Behavior of Metals and Alloys

    NASA Astrophysics Data System (ADS)

    Kumar, Manish; Singh, I. V.; Mishra, B. K.; Ahmad, S.; Venugopal Rao, A.; Kumar, Vikas

    2016-06-01

    In this work, a modified theta projection model is proposed for the constitutive modeling of creep behavior of metals and alloys. In the conventional theta projection model, strain hardening exponent is a function of time and theta, whereas in the modified theta projection model, the exponent is taken as a function of time, theta, and applied stress. The results obtained by the modified theta projection model for Al 2124 T851 alloy at constant uniaxial tensile stress are compared with the experimental results and with the predictions of the conventional theta projection method. The creep behavior of Al 7075 T651 alloy is also predicted using modified and conventional theta projection model and compared with the available experimental data. It is observed that the modified theta projection model captures the creep behavior more accurately as compared to the conventional theta projection model. The modified theta projection model can be used to predict the creep strain of pure metals and class M alloys (similar creep behavior to pure metals) for intermediate range of stress and temperature.

  20. Counter-intuitive Behavior of Subduction Zones: Weak Faults Rupture, Strong Faults Creep

    NASA Astrophysics Data System (ADS)

    Wang, K.; Gao, X.; Bilek, S. L.; Brown, L. N.

    2014-12-01

    Subduction interfaces that produce great earthquakes are often said to be "strongly coupled", and those that creep are said to be "weakly coupled". However, the relation between the strength and seismogenic behavior of subduction faults is far from clear. Seismological and geodetic observations of earthquake rupture usually provide information only on stress change, not fault strength. In this study, we infer fault strength by calculating frictional heating along megathrusts and comparing results with heat flow measurements. We find that stick-slip megathrusts that have produced great earthquakes such as at Japan Trench and northern Sumatra have very low apparent friction coefficients (~ 0.02 - 0.03), but megathrusts that creep such as at Northern Hikurangi and Manila Trench have higher values (up to ~0.13). The differnce cannot be explained by coseismic dynamic weakening of the stick-slip megathrusts, because the average stress drop in great earthquakes is usually less than 5 MPa, equivalent to a coseismic reduction of apparent friction coefficient by less than ~0.01. Therefore our results indicate differences in the static strength of different subduction faults. Why are the creeping faults stronger? We think it is related to their creeping mechanism. Very rugged subducting seafloor tends to cause creep and hinder great earthquake rupture (Wang and Bilek, 2014). In contrast, all giant earthquakes have occurred at subduction zones with relatively smooth subducting seafloor. Large geometrical irregularities such as seamounts generate heterogeneous structure and stresses that promote numerous small and medium size earthquakes and aseismic creep. The creeping is a process of breaking and wearing of geometrical irregularities in a deformation zone and is expected to be against relatively large resistance (strong creep). This is different from the creeping of smooth faults due to the presence of weak fault gouge (weak creep) such as along the creeping segment of the

  1. Transient creep behavior of {gamma}-TiAl polycrystals

    SciTech Connect

    Viguier, B.; Bonneville, J.; Spaetig, P.; Martin, J.L.

    1997-12-31

    Two types of transient creep experiments performed along stress-strain curves are described and successfully applied to {gamma}TiAl polycrystals at room temperature. They allow to determine activation volumes in good agreement with those measured through successive load relaxation tests. In addition, the combination of the latter method and the present ones provides relevant values of the plastic strain hardening coefficient. This latter parameter is found to exhibit similar values in transient as well as during constant strain rate tests.

  2. Time-Dependent Behaviors of Granite: Loading-Rate Dependence, Creep, and Relaxation

    NASA Astrophysics Data System (ADS)

    Hashiba, K.; Fukui, K.

    2016-07-01

    To assess the long-term stability of underground structures, it is important to understand the time-dependent behaviors of rocks, such as their loading-rate dependence, creep, and relaxation. However, there have been fewer studies on crystalline rocks than on tuff, mudstone, and rock salt, because the high strength of crystalline rocks makes the detection of their time-dependent behaviors much more difficult. Moreover, studies on the relaxation, temporal change of stress and strain (TCSS) conditions, and relations between various time-dependent behaviors are scarce for not only granites, but also other rocks. In this study, previous reports on the time-dependent behaviors of granites were reviewed and various laboratory tests were conducted using Toki granite. These tests included an alternating-loading-rate test, creep test, relaxation test, and TCSS test. The results showed that the degree of time dependence of Toki granite is similar to other granites, and that the TCSS resembles the stress-relaxation curve and creep-strain curve. A viscoelastic constitutive model, proposed in a previous study, was modified to investigate the relations between the time-dependent behaviors in the pre- and post-peak regions. The modified model reproduced the stress-strain curve, creep, relaxation, and the results of the TCSS test. Based on a comparison of the results of the laboratory tests and numerical simulations, close relations between the time-dependent behaviors were revealed quantitatively.

  3. Stress rupture and creep behavior of a low pressure plasma-sprayed NiCoCrAlY coating alloy in air and vacuum

    NASA Technical Reports Server (NTRS)

    Hebsur, M. G.; Miner, R. V.

    1987-01-01

    The creep behavior of a NiCoCrAlY coating alloy in air and vacuum at 660 and 850 C is studied. The microstructure of the coating alloy is described. Analysis of the creep curves reveal that the secondary creep rates, the transition from secondary to tertiary creep, and the strain-to-failure are affected by the environment, preexposure, stress, and temperature. It is observed that the rupture lives of the NiCoCrAlY alloy at 660 and 850 C are greater in air than in vacuum. Several mechanisms that may explain the lack of crack growth from surface-connected pores during tests in air are proposed.

  4. Post failure localization instabilities in chemically active creeping faults: Steady-state bifurcation and transient analysis

    NASA Astrophysics Data System (ADS)

    Alevizos, S.; Poulet, T.; Veveakis, M.

    2014-12-01

    In this study we emphasize in the post failure evolution of a creeping fault, and provide temporal and spatial modes of evolution. In particular we study the behavior of a fluid-saturated fault under shear, based on the assumption that the fabric presents rate- and temperature dependent response to shear loading. A creeping fault of this type can, under certain conditions, produce excess heat due to shear heating, reaching temperatures which are high enough for triggering endothermic chemical reactions. We focus on the decomposition reactions and incorporate excess pore pressure generation and variations of the porosity due to the chemical effects (a process called chemical pressurization). After deriving the corresponding system of equations in the region of the ultra-cataclastic core, we study the influence of the model parameters, namely the frictional, hydraulic and chemical properties of the material, along with the boundary conditions of the problem, on the behavior of the fault and through a non-linear bifurcation analysis we provide regimes of stable-frictional sliding and pressurization. Furthermore, the system is integrated in time to extract its temporal behavior, providing regimes of stable creep, non-periodic and periodic seismic slip events due to chemical pressurization, depending on their frictional properties. It is shown that this chemically induced seismic slip is an ultra-localized event in the post failure regime. It takes place in an extremely narrow band, 2 orders of magnitude narrower than the initial one, verifying the field observations.

  5. Creep behavior of interfaces in fiber reinforced metal-matrix composites

    SciTech Connect

    Funn, J.V.; Dutta, I.

    1998-12-11

    The elevated temperature deformation behavior of interfaces in model single fiber composites was isolated and studied using a fiber push-down approach, whereby the interface is loaded in shear. Two fiber-matrix systems, one with no mutual solubility (quartz-lead) and the other with limited mutual solubility (nickel-lead), were investigated. In both systems, the matrix and fiber underwent sliding relative to each other, with the interface acting as a high diffusivity path. The mechanism of sliding was inferred to be interface-diffusion-controlled diffusional creep with a threshold stress (Bingham flow). The behavior was modeled analytically using a continuum approach, and an expression for the constitutive creep behavior of the interface was derived. The model provided a physical basis for the observed threshold behavior, which was found to be directly related to the normal (radial) residual stress acting on the fiber-matrix interface. The results are deemed to be significant because (1) in some instances, interfacial sliding may be instrumental in determining the overall creep/thermal cycling response of a composite; and (2) they offer an alternative rationalization of threshold behavior during diffusional flow (besides interface reaction control) and may be useful in understanding creep in multi-phase systems with internal stresses.

  6. Phase Transformation and Creep Behavior in Ti50Pd30Ni20 High Temperature Shape Memory Alloy in Compression

    NASA Technical Reports Server (NTRS)

    Kumar, Parikshith K.; Desai, Uri; Monroe, James; Lagoudas, Dimitris C.; Karaman, Ibrahim; Noebe, Ron; Bigelow, Glenn

    2010-01-01

    The creep behavior and the phase transformation of Ti50Pd30Ni20 High Temperature Shape Memory Alloy (HTSMA) is investigated by standard creep tests and thermomechanical tests. Ingots of the alloy are induction melted, extruded at high temperature, from which cylindrical specimens are cut and surface polished. A custom high temperature test setup is assembled to conduct the thermomechanical tests. Following preliminary monotonic tests, standard creep tests and thermally induced phase transformation tests are conducted on the specimen. The creep test results suggest that over the operating temperatures and stresses of this alloy, the microstructural mechanisms responsible for creep change. At lower stresses and temperatures, the primary creep mechanism is a mixture of dislocation glide and dislocation creep. As the stress and temperature increase, the mechanism shifts to predominantly dislocation creep. If the operational stress or temperature is raised even further, the mechanism shifts to diffusion creep. The thermally induced phase transformation tests show that actuator performance can be affected by rate independent irrecoverable strain (transformation induced plasticity + retained martensite) as well as creep. The rate of heating and cooling can adversely impact the actuators performance. While the rate independent irrecoverable strain is readily apparent early in the actuators life, viscoplastic strain continues to accumulate over the lifespan of the HTSMA. Thus, in order to get full actuation out of the HTSMA, the heating and cooling rates must be sufficiently high enough to avoid creep.

  7. Effect of anisotropy on creep behavior in a functionally graded material disc of variable thickness

    NASA Astrophysics Data System (ADS)

    Gupta, Vandana; Singh, S. B.

    2014-09-01

    In this paper, an effort has been made to study the effect of anisotropy on the steady state creep behavior in the functionally graded material disc with hyperbolic thickness made of Al-SiC (particle). The content of silicon carbide particles in the disc is assumed to decrease linearly from the inner to the outer radius of the disc. The creep behavior of the disc under stresses developing due to rotation at 15,000 rpm has been determined by Sherby's law. The creep parameters of the FGM disc vary along the radial distance due to varying composition and this variation has been estimated by regression fit of the available experimental data. The creep response of rotating disc is expressed by a threshold stress with value of stress exponent as 8. The study reveals that the anisotropy has a significant effect on the steady state creep response of rotating FGM disc. Thus, the care to introduce anisotropy should be taken for the safe design of the rotating FGM disc with hyperbolic thickness.

  8. Creep and intergranular cracking behavior of nickel-chromium-iron-carbon alloys in 360 C water

    SciTech Connect

    Angeliu, T.M.; Paraventi, D.J.; Was, G.S.

    1995-11-01

    Mechanical testing of controlled-purity Ni-x% Cr-9% Fe-y% C alloys at 360 C revealed an environmental enhancement in intergranular (IG) cracking and time-dependent deformation in high-purity (HP) and primary water (PW) over that exhibited in argon. Dimples on the IG facets indicated a creep void nucleation and growth failure mode. IG cracking was located primarily in the interior of the specimen and was not necessarily linked to the environment. Controlled-potential constant extension rate tensile (CERT) experiments showed increases in IG cracking as the applied potential decreased, suggesting that hydrogen was detrimental to the mechanical properties. It was proposed that the environment, through the presence of hydrogen, enhanced IG cracking by enhancing the matrix dislocation mobility. This conclusion was based on observations that dislocation creep controlled IG cracking of controlled-purity Ni-x% Cr-9% Fe-y% C in argon at 360 C. Grain-boundary cavitation (GBC) and sliding (GBS) results showed environmental enhancement of the creep rate primarily resulted from an increase in matrix plastic deformation. However, controlled-potential constant load tensile (CLT) experiments did not indicate a change in the creep rate as the applied potential decreased. While this result did not support hydrogen-assisted creep, the material already may have been saturated with hydrogen at these applied potentials, and thus, no effect was realized. Chromium and carbon decreased IG cracking in HP and PW by increasing the creep resistance. The surface film did not play a significant role in the creep or IG cracking behavior under the conditions investigated.

  9. Behavior of Repeating Earthquake Sequences in Central California and the Implications for Subsurface Fault Creep

    SciTech Connect

    Templeton, D C; Nadeau, R; Burgmann, R

    2007-07-09

    Repeating earthquakes (REs) are sequences of events that have nearly identical waveforms and are interpreted to represent fault asperities driven to failure by loading from aseismic creep on the surrounding fault surface at depth. We investigate the occurrence of these REs along faults in central California to determine which faults exhibit creep and the spatio-temporal distribution of this creep. At the juncture of the San Andreas and southern Calaveras-Paicines faults, both faults as well as a smaller secondary fault, the Quien Sabe fault, are observed to produce REs over the observation period of March 1984-May 2005. REs in this area reflect a heterogeneous creep distribution along the fault plane with significant variations in time. Cumulative slip over the observation period at individual sequence locations is determined to range from 5.5-58.2 cm on the San Andreas fault, 4.8-14.1 cm on the southern Calaveras-Paicines fault, and 4.9-24.8 cm on the Quien Sabe fault. Creep at depth appears to mimic the behaviors seen of creep on the surface in that evidence of steady slip, triggered slip, and episodic slip phenomena are also observed in the RE sequences. For comparison, we investigate the occurrence of REs west of the San Andreas fault within the southern Coast Range. Events within these RE sequences only occurred minutes to weeks apart from each other and then did not repeat again over the observation period, suggesting that REs in this area are not produced by steady aseismic creep of the surrounding fault surface.

  10. Deterministic and Probabilistic Creep and Creep Rupture Enhancement to CARES/Creep: Multiaxial Creep Life Prediction of Ceramic Structures Using Continuum Damage Mechanics and the Finite Element Method

    NASA Technical Reports Server (NTRS)

    Jadaan, Osama M.; Powers, Lynn M.; Gyekenyesi, John P.

    1998-01-01

    High temperature and long duration applications of monolithic ceramics can place their failure mode in the creep rupture regime. A previous model advanced by the authors described a methodology by which the creep rupture life of a loaded component can be predicted. That model was based on the life fraction damage accumulation rule in association with the modified Monkman-Grant creep ripture criterion However, that model did not take into account the deteriorating state of the material due to creep damage (e.g., cavitation) as time elapsed. In addition, the material creep parameters used in that life prediction methodology, were based on uniaxial creep curves displaying primary and secondary creep behavior, with no tertiary regime. The objective of this paper is to present a creep life prediction methodology based on a modified form of the Kachanov-Rabotnov continuum damage mechanics (CDM) theory. In this theory, the uniaxial creep rate is described in terms of stress, temperature, time, and the current state of material damage. This scalar damage state parameter is basically an abstract measure of the current state of material damage due to creep deformation. The damage rate is assumed to vary with stress, temperature, time, and the current state of damage itself. Multiaxial creep and creep rupture formulations of the CDM approach are presented in this paper. Parameter estimation methodologies based on nonlinear regression analysis are also described for both, isothermal constant stress states and anisothermal variable stress conditions This creep life prediction methodology was preliminarily added to the integrated design code CARES/Creep (Ceramics Analysis and Reliability Evaluation of Structures/Creep), which is a postprocessor program to commercially available finite element analysis (FEA) packages. Two examples, showing comparisons between experimental and predicted creep lives of ceramic specimens, are used to demonstrate the viability of this methodology and

  11. Prediction and verification of creep behavior in metallic materials and components for the space shuttle thermal protection system

    NASA Technical Reports Server (NTRS)

    Davis, J. W.; Cramer, B. A.

    1976-01-01

    A method of analysis was developed for predicting permanent cyclic creep deflections in stiffened panel structures. This method uses creep equations based on cyclic tensile creep tests and a computer program to predict panel deflections as a function of mission cycle. Four materials were investigated - a titanium alloy (Ti-6Al-4V), a cobalt alloy (L605), and two nickel alloys (Rene'41 and TDNiCr). Steady-state and cyclic creep response data were obtained by testing tensile specimens fabricated from thin gage sheet (0.025 and 0.63 cm nominal). Steady-state and cyclic creep equations were developed which describe creep as a function of time, temperature and load. Tests were also performed on subsize (6.35 x 30.5 cm) rib and corrugation stiffened panels. These tests were used to correlate creep responses between elemental specimens and panels. The panel response was analyzed by use of a specially written computer program.

  12. Characterization of strain rate sensitivity in pharmaceutical materials using indentation creep analysis.

    PubMed

    Katz, Jeffrey M; Buckner, Ira S

    2013-02-14

    Understanding how a material's response to stress changes as the stress is applied at different rates is important in predicting performance of pharmaceutical powders during tablet compression. Widely used methods for determining strain rate sensitivity (SRS) are empirically based and can often provide inconsistent or misleading results. Indentation creep data, collected during hardness tests on compacts formed from several common tableting excipients, were used to predict each material's relative sensitivity to changes in strain rate. Linear relationships between Ln(indentation hardness) and Ln(strain rate) were observed for all materials tested. The slope values taken from these relationships were compared to traditional strain rate sensitivity estimates based on in-die Heckel analysis. Overall, the results from the two methods were quite similar, but several advantages were evident in the creep data. The most notable advantage was the ability to characterize strain rate sensitivity derived from plastic behavior with little influence of elastic deformation. For example, two grades of corn starch had very similar creep behavior, but their yield pressures were affected very differently when the compaction rate was increased. This inconsistency was related to the difference in the viscoelastic recovery exhibited by these two materials. This new method promises to allow a better understanding of strain rate effects observed during tablet manufacturing. PMID:22985770

  13. Effect of Co on Creep Behavior of a P911 Steel

    NASA Astrophysics Data System (ADS)

    Kipelova, Alla; Odnobokova, Marina; Belyakov, Andrey; Kaibyshev, Rustam

    2013-01-01

    The microstructure and creep behavior of a 3 pct Co modified P911 steel and standard P911 steel were examined. It was shown that the nanoscale M23C6 carbides and MX carbonitrides in the 3 pct Co modified P911 steel are not susceptible to significant coarsening under creep conditions. Also, coarsening simulations of M23C6 particles were performed for both steels. The rates of lath and particle coarsening in the P911 + 3 pct Co steel are remarkably lower than those in the P911. Increased stability of a tempered martensite lath structure in the 3 pct Co modified P911 steel provides enhanced creep resistance at an exceptionally high temperature of 923 K (650 °C).

  14. 1300 K Creep Behavior of [001] Oriented Ni-49Al-1Hf (at.%) Single Crystals

    NASA Technical Reports Server (NTRS)

    Whittenberger, J. Daniel; Locci, I. E.; Darolia, Ram; Bowman, R.

    1999-01-01

    A study of the 1300 K compressive and tensile creep properties of [001]-oriented NiAl-1Hf (D209) single crystals has been undertaken. Neither post homogenization cooling treatment, minor chemical variations within an ingot or from ingot-to-ingot, nor testing procedure had a significant effect on mechanical behavior; however a heat treatment which dissolved the initial G-phase precipitates and promoted formation of Heusler particles led to a strength reduction. Little primary creep was found utilizing direct measurement of strain, and a misorientation of 18 deg from the [001] did not reduce the creep strength. The effects of heat treatments on properties and a comparison of the flow stress-strain rate data to those predicted by the Jaswon-Cottrell solid solution hardening model indicate that the 1300 K strength in NiAl-1Hf single crystals is mainly due to precipitation hardening mechanisms.

  15. Bridging the PE lifetime under fatigue and creep conditions with its crystallization behavior

    SciTech Connect

    Kadota, K.; Chudnovsky, A. . Dept. of Civil Engineering, Mechanics and Metallurgy); Chum, S. . Polyethylene Div.)

    1993-08-01

    The service lifetime for several linear polyethylene copolymers was studied by fatigue-type accelerated tests. The material morphology and crystallization behavior were correlated with the lifetime and the failure modes. The correlation is based on the rate constant of material degradation (RCMD) recently introduced by the authors within a mathematical model for crack layer growth kinetics. RCMD is found to depend on the loading conditions (e.g., creep or fatigue) and on material morphology reflected in crystallization kinetics. The ratio of RCMDs for fatigue and creep is a scaling factor that allows one to correlate fatigue and creep lifetimes. The dependence of the RCMD's ratio on the morphological features associated with the primary and secondary crystallization kinetics is also reported in this paper.

  16. Microstructure and Creep Behavior of Fe-27Al-1Nb Alloys with Added Carbon

    NASA Astrophysics Data System (ADS)

    Dobeš, Ferdinand; Kratochvíl, Petr; Pešička, Josef; Vodičková, Věra

    2015-04-01

    The effect of Nb and C additions on the phase composition, microstructure, and creep resistance of Fe3Al-type alloys is investigated. Two alloys, which contained (at. pct) (i) 27.6 Al, 1.15 Nb and 0.19 C (Fe balance) and (ii) 27.1 Al, 1.11 Nb, and 0.76 C (Fe balance), were studied in a temperature range from 873 K to 1073 K (600 °C to 800 °C). The carbide in both alloys was identified as Nb6C5. The creep data can be rationalized by introducing a threshold stress, below which, the creep rate is negligible. The threshold stress and an effective stress exponent were found simultaneously by a numerical method. Using the obtained values of the threshold stress, the activation energy of creep was determined to be 328 kJ/mol. The effective stress exponent varied from 2.0 to 3.1. A breakdown of power-law behavior was observed at higher stresses. The transition occurred at the normalized creep rate of , which agrees with the rule suggested by Sherby and Burke and the diffusion coefficient D corresponding to the diffusion of Al in Fe-Al.

  17. Microstructural behavior of 8Cr-ODS martensitic steels during creep deformation

    NASA Astrophysics Data System (ADS)

    Shinozuka, K.; Esaka, H.; Tamura, M.; Tanigawa, H.

    2011-10-01

    Oxide dispersion strengthened (ODS) steels show a high anisotropy in their creep behavior because of the δ-ferrite grain elongated in the hot-rolled direction and the characteristic formation of creep cavities. In this work, the relationship between the δ-ferrite grain and the growth of creep cavities in 8Cr-ODS steels was investigated. The samples of two ODS steels with different δ-ferrite volume fractions were machined parallel and perpendicular to the hot-rolled direction. Creep rupture tests and interrupted tests were performed at 700 °C and about 197 MPa. Cavities formed in the martensite along δ-ferrite grains during creep deformation. The area fraction of the cavities of all specimens increased in proportion to the cube root of test time. When the volume fraction of δ-ferrite was high and δ-ferrite grains elongated parallel to the load direction, δ-ferrite then obstructed the propagation of cracks. However, when the volume fraction of δ-ferrite was low and δ-ferrite grains elongated perpendicular to the load direction, δ-ferrite grains had little effect on crack propagation.

  18. Low Cycle Fatigue and Creep-Fatigue Behavior of Alloy 617 at High Temperature

    SciTech Connect

    Cabet, Celine; Carroll, Laura; Wright, Richard

    2013-10-01

    Alloy 617 is the leading candidate material for an intermediate heat exchanger (IHX) application of the Very High Temperature Nuclear Reactor (VHTR), expected to have an outlet temperature as high as 950 degrees C. Acceptance of Alloy 617 in Section III of the ASME Code for nuclear construction requires a detailed understanding of the creep-fatigue behavior. Initial creep-fatigue work on Alloy 617 suggests a more dominant role of environment with increasing temperature and/or hold times evidenced through changes in creep-fatigue crack growth mechanism/s and failure life. Continuous cycle fatigue and creep-fatigue testing of Alloy 617 was conducted at 950 degrees C and 0.3% and 0.6% total strain in air to simulate damage modes expected in a VHTR application. Continuous cycle specimens exhibited transgranular cracking. Intergranular cracking was observed in the creep-fatigue specimens, although evidence of grain boundary cavitation was not observed. Despite the absence of grain boundary cavitation to accelerate crack propagation, the addition of a hold time at peak tensile strain was detrimental to cycle life. This suggests that creepfatigue interaction may occur by a different mechanism or that the environment may be partially responsible for accelerating failure.

  19. Tensile and Creep Behavior of Extruded AA6063/SiCp Al MMCs

    NASA Astrophysics Data System (ADS)

    Khalifa, Tarek A.; Mahmoud, Tamer S.

    2010-03-01

    Composites of AA6063 Al alloy reinforced with SiC particles (SiCp) were prepared by the vortex method. Hot extrusion was carried out for the as cast composites with a reduction in area of 25%. Tensile and creep behavior of as-cast and extruded composites were studied at elevated temperatures. Tensile tests carried out at room temperature showed that for the as-cast composites, the addition of SiCp up to 10% by weight improves the strength but reduces ductility. Further addition of SiCp reduces the strength and ductility of the composites. At 150 and 300° C the matrix alloy exhibits higher strength than the composites. Extrusion generally raised the strength of the composites at both room and elevated temperatures. Time rupture creep tests carried out at 300° C showed that the composites exhibit higher creep resistance as compared to the matrix alloy except at relatively low stresses where the matrix has a better creep resistance. Extrusion improved the resistance of composites to creep rupture.

  20. Creep behavior of an A286 type stainless steel

    SciTech Connect

    DeCicco, H. . E-mail: decicco@cnea.gov.ar; Luppo, M.I.; Raffaeli, H.; Di Gaetano, J.; Gribaudo, L.M.; Ovejero-Garcia, J.

    2005-08-15

    A model for steady state deformation of the commercial {gamma}' precipitation hardened alloy A286 at moderately high temperature is presented. This model is mainly based on the theory of thermally activated glide. The activation parameters such as the maximum free energy necessary to overcome obstacles to glide, the threshold stress for jerky glide and the activation volume of the rate controlling process are derived from experimental results and allowed rationalization of all the measurements in the range of stresses and temperatures investigated. Creep tests were carried out at constant stress in the range of 180-750 MPa at 600, 640, 670 and 700 deg. C in air. Transmission electron microscopy has permitted determination of the size of the {gamma}' particles and the average distance between them.

  1. Analysis of available creep and creep-rupture data for commercially heat-treated alloy 718

    SciTech Connect

    Booker, M.K.; Booker, B.L.P.

    1980-03-01

    The Ni-Cr-Fe-Nb alloy 718 is a widely used material in elevated- temperature applications. Currently, it is approved by the American Society of Mechanical Engineers ASME Boiler and Pressure Vessel Code only as a bolting material for elevated-temperature nuclear service. This report presents analyses of available creep and creep-rupture data for commercially heat-treated alloy 718 toward the development of allowable stress levels for this material in general elevated-temperature nuclear service. Available data came from 14 heats of bar, plate, and forging material over the temperature range from 538 to 704{degrees}C. The longest rupture time encompassed by the data was almost 87,000 h. Generalized regression analyses were performed to yield an analytical expression for rupture life as a function of stress and temperature. Heat-to-heat variations were accounted for by lot-centering'' the data. Effects of different solution heat treatment temperatures (T{sub s}) were accounted for by normalizing the creep stresses to the data for T{sub s} = 954{degrees}C. Thus, the results are strictly applicable only for material with this solution treatment. Time and strain to tertiary creep were predicted as functions of rupture life. Creep strain-time data were represented by normalization to the time and strain to tertiary creep and development of master creep curves.'' The results allow estimation of time-dependent allowable stress per American Society of Mechanical Engineers Code Class N-47, and the creep strain-time relationships can be used to develop isochronous stress-strain curves. 29 refs., 44 figs., 14 tabs.

  2. Creep rupture analysis of a beam resting on high temperature foundation

    NASA Technical Reports Server (NTRS)

    Gu, Randy J.; Cozzarelli, Francis A.

    1988-01-01

    A simplified uniaxial strain controlled creep damage law is deduced with the use of experimental observation from a more complex strain dependent law. This creep damage law correlates the creep damage, which is interpreted as the density variation in the material, directly with the accumulated creep strain. Based on the deduced uniaxial strain controlled creep damage law, a continuum mechanical creep rupture analysis is carried out for a beam resting on a high temperature elastic (Winkler) foundation. The analysis includes the determination of the nondimensional time for initial rupture, the propagation of the rupture front with the associated thinning of the beam, and the influence of creep damage on the deflection of the beam. Creep damage starts accumulating in the beam as soon as the load is applied, and a creep rupture front develops at and propagates from the point at which the creep damage first reaches its critical value. By introducing a series of fundamental assumptions within the framework of technical Euler-Bernoulli type beam theory, a governing set of integro-differential equations is derived in terms of the nondimensional bending moment and the deflection. These governing equations are subjected to a set of interface conditions at the propagating rupture front. A numerical technique is developed to solve the governing equations together with the interface equations, and the computed results are presented and discussed in detail.

  3. The microstructure and creep behavior of cold rolled udimet 188 sheet.

    PubMed

    Boehlert, C J; Longanbach, S C

    2011-06-01

    Udimet 188 was subjected to thermomechanical processing (TMP) in an attempt to understand the effects of cold-rolling deformation on the microstructure and tensile-creep behavior. Commercially available sheet was cold rolled to varying amounts of deformation (between 5-35% reduction in sheet thickness) followed by a solution treatment at 1,464 K (1,191 °C) for 1 h and subsequent air cooling. This sequence was repeated four times to induce a high-volume fraction of low-energy grain boundaries. The resultant microstructure was characterized using electron backscattered diffraction. The effect of the TMP treatment on the high-temperature [1,033-1,088 K (760-815 °C)] creep behavior was evaluated. The measured creep stress exponents (6.0-6.8) suggested that dislocation creep was dominant at 1,033 K (760 °C) for stresses ranging between 100-220 MPa. For stresses ranging between 25-100 MPa at 1,033 K (760 °C), the stress exponents (2.3-2.8) suggested grain boundary sliding was dominant. A significant amount of grain boundary cracking was observed both on the surface and subsurface of deformed samples. To assess the mechanisms of crack nucleation, in situ scanning electron microscopy was performed during the elevated-temperature tensile-creep deformation. Cracking occurred preferentially along general high-angle grain boundaries (GHAB) and less than 25% of the cracks were found on low-angle grain boundaries (LAB) and coincident site lattice boundaries (CSLB). Creep rupture experiments were performed at T = 1,088 K (815 °C) and σ = 165 MPa and the greatest average time-to-rupture was exhibited by the TMP sheet with the greatest fraction of LAB+CSLB. However, a clear correlation was not exhibited between the grain boundary character distribution and the minimum creep rates. The findings of this work suggest that although grain boundary engineering may be possible for this alloy, simply relating the fraction of grain boundary types to the creep resistance is not

  4. Tensile and creep rupture behavior of P/M processed Nb-base alloy, WC-3009

    NASA Technical Reports Server (NTRS)

    Hebsur, Mohan G.; Titran, Robert H.

    1988-01-01

    Due to its high strength at temperatures up to 1600 K, fabrication of niobium base alloy WC-3009 (Nb30Hf9W) by traditional methods is difficult. Powder metallurgy (P/M) processing offers an attractive fabrication alternative for this high strength alloy. Spherical powders of WC-3009 produced by electron beam atomizing (EBA) process were successfully consolidated into a one inch diameter rod by vacuum hot pressing and swaging techniques. Tensile strength of the fully dense P/M material at 300-1590 K were similar to the arc-melted material. Creep rupture tests in vacuum indicated that WC-3009 exhibits a class 1 solid solution (glide controlled) creep behavior in the 1480 to 1590 K temperature range and stress range of 14 to 70 MPa. The creep behavior was correlated with temperature and stress using a power law relationship. The calculated stress exponent n, was about 3.2 and the apparent activation energy, Q, was about 270 kJ/mol. The large creep ductility exhibited by WC-3009 was attributed to its high strain rate sensitivity.

  5. Application Of Elastic Perfectly Plastic Cyclic Analysis To Assessment Of Creep Strain

    SciTech Connect

    Carter, Peter; Jetter, Robert I; Sham, Sam

    2012-01-01

    A cyclic elastic-perfectly plastic analysis method is proposed which provides a conservative estimate to cyclic creep strain accumulation within the ratchet boundary. The method is to check for ratcheting based on an elastic-perfectly material with a temperature-dependent pseudo yield stress defined by temperature, time and stress to give 1% creep strain. It does not require stress classification and is also applicable to a full range of temperature above and below the creep regime. This simplified method could be used as a rapid screening calculation, with full time-dependent creep analysis used if necessary.

  6. Intervertebral disc creep behavior assessment through an open source finite element solver.

    PubMed

    Castro, A P G; Wilson, W; Huyghe, J M; Ito, K; Alves, J L

    2014-01-01

    Degenerative Disc Disease (DDD) is one of the largest health problems faced worldwide, based on lost working time and associated costs. By means of this motivation, this work aims to evaluate a biomimetic Finite Element (FE) model of the Intervertebral Disc (IVD). Recent studies have emphasized the importance of an accurate biomechanical modeling of the IVD, as it is a highly complex multiphasic medium. Poroelastic models of the disc are mostly implemented in commercial finite element packages with limited access to the algorithms. Therefore, a novel poroelastic formulation implemented on a home-developed open source FE solver is briefly addressed throughout this paper. The combination of this formulation with biphasic osmotic swelling behavior is also taken into account. Numerical simulations were devoted to the analysis of the non-degenerated human lumbar IVD time-dependent behavior. The results of the tests performed for creep assessment were inside the scope of the experimental data, with a remarkable improvement of the numerical accuracy when compared with previously published results obtained with ABAQUS(®). In brief, this in-development open-source FE solver was validated with literature experimental data and aims to be a valuable tool to study the IVD biomechanics and DDD mechanisms. PMID:24210477

  7. The effect of sheet processing on the microstructure, tensile, and creep behavior of INCONEL alloy 718

    NASA Astrophysics Data System (ADS)

    Boehlert, C. J.; Dickmann, D. S.; Eisinger, Ny. N. C.

    2006-01-01

    The grain size, grain boundary character distribution (GBCD), creep, and tensile behavior of INCONEL alloy 718 (IN 718) were characterized to identify processing-microstructure-property relationships. The alloy was sequentially cold rolled (CR) to 0, 10, 20, 30, 40, 60, and 80 pct followed by annealing at temperatures between 954 °C and 1050 °C and the traditional aging schedule used for this alloy. In addition, this alloy can be superplastically formed (IN 718SPF) to a significantly finer grain size and the corresponding microstructure and mechanical behavior were evaluated. The creep behavior was evaluated in the applied stress (σ a ) range of 300 to 758 MPa and the temperature range of 638 °C to 670 °C. Constant-load tensile creep experiments were used to measure the values of the steady-state creep rate and the consecutive load reduction method was used to determine the values of backstress (σ0). The values for the effective stress exponent and activation energy suggested that the transition between the rate-controlling creep mechanisms was dependent on effective stresses (σ e =σ a σ0) and the transition occurred at σ e ≅ 135 MPa. The 10 to 40 pct CR samples exhibited the greatest 650 °C strength, while IN 718SPF exhibited the greatest room-temperature (RT) tensile strength (>1550 MPa) and ductility (ɛ f >16 pct). After the 954 °C annealing treatment, the 20 pct CR and 30 pct CR microstructures exhibited the most attractive combination of elevated-temperature tensile and creep strength, while the most severely cold-rolled materials exhibited the poorest elevated-temperature properties. After the 1050 °C annealing treatment, the IN 718SPF material exhibited the greatest backstress and best creep resistance. Electron backscattered diffraction was performed to identify the GBCD as a function of CR and annealing. The data indicated that annealing above 1010 °C increased the grain size and resulted in a greater fraction of twin boundaries, which in

  8. Creep-Rupture Behavior and Recrystallization in Cold-Bent Boiler Tubing for USC Applications

    SciTech Connect

    Shingledecker, John P

    2008-01-01

    Creep-rupture experiments were conducted on candidate Ultrasupercritical (USC) alloy tubes to evaluate the effects of cold-work and recrystallization during high-temperature service. These creep tests were performed by internally pressurizing cold-bent boiler tubes at 775 C for times up to 8000 hours. The bends were fabricated with cold-work levels beyond the current ASME Boiler and Pressure Vessel (ASME B&PV) Code Section I limits for austenitic stainless steels. Destructive metallographic evaluation of the crept tube bends was used to determine the effects of cold-work and the degree of recrystallization. The metallographic analysis combined with an evaluation of the creep and rupture data suggest that solid-solution strengthened nickel-based alloys can be fabricated for high-temperature service at USC conditions utilizing levels of cold-work higher than the current allowed levels for austenitic stainless steels.

  9. Effects of cold rolling deformation on microstructure, hardness, and creep behavior of high nitrogen austenitic stainless steel

    NASA Astrophysics Data System (ADS)

    Sun, Shi-Cheng; Sun, Gui-Xun; Jiang, Zhong-Hao; Ji, Chang-Tao; Liu, Jia-An; Lian, Jian-She

    2014-02-01

    Effects of cold rolling deformation on the microstructure, hardness, and creep behavior of high nitrogen austenitic stainless steel (HNASS) are investigated. Microstructure characterization shows that 70% cold rolling deformation results in significant refinement of the microstructure of this steel, with its average twin thickness reducing from 6.4 μm to 14 nm. Nanoindentation tests at different strain rates demonstrate that the hardness of the steel with nano-scale twins (nt-HNASS) is about 2 times as high as that of steel with micro-scale twins (mt-HNASS). The hardness of nt-HNASS exhibits a pronounced strain rate dependence with a strain rate sensitivity (m value) of 0.0319, which is far higher than that of mt-HNASS (m = 0.0029). nt-HNASS shows more significant load plateaus and a higher creep rate than mt-HNASS. Analysis reveals that higher hardness and larger m value of nt-HNASS arise from stronger strain hardening role, which is caused by the higher storage rate of dislocations and the interactions between dislocations and high density twins. The more significant load plateaus and higher creep rates of nt-HNASS are due to the rapid relaxation of the dislocation structures generated during loading.

  10. Creep Deformation and Rupture Behavior of Single- and Dual-Pass 316LN Stainless-Steel-Activated TIG Weld Joints

    NASA Astrophysics Data System (ADS)

    Vijayanand, V. D.; Vasudevan, M.; Ganesan, V.; Parameswaran, P.; Laha, K.; Bhaduri, A. K.

    2016-03-01

    Creep deformation and rupture behavior of single-pass and dual-pass 316LN stainless steel (SS) weld joints fabricated by an autogenous activated tungsten inert gas welding process have been assessed by performing metallography, hardness, and conventional and impression creep tests. The fusion zone of the single-pass joint consisted of columnar zones adjacent to base metals with a central equiaxed zone, which have been modified extensively by the thermal cycle of the second pass in the dual-pass joint. The equiaxed zone in the single-pass joint, as well as in the second pass of the dual-pass joint, displayed the lowest hardness in the joints. In the dual-pass joint, the equiaxed zone of the first pass had hardness comparable to the columnar zone. The hardness variations in the joints influenced the creep deformation. The equiaxed and columnar zone in the first pass of the dual-pass joint was more creep resistant than that of the second pass. Both joints possessed lower creep rupture life than the base metal. However, the creep rupture life of the dual-pass joint was about twofolds more than that of the single-pass joint. Creep failure in the single-pass joint occurred in the central equiaxed fusion zone, whereas creep cavitation that originated in the second pass was blocked at the weld pass interface. The additional interface and strength variation between two passes in the dual-pass joint provides more restraint to creep deformation and crack propagation in the fusion zone, resulting in an increase in the creep rupture life of the dual-pass joint over the single-pass joint. Furthermore, the differences in content, morphology, and distribution of delta ferrite in the fusion zone of the joints favors more creep cavitation resistance in the dual-pass joint over the single-pass joint with the enhancement of creep rupture life.

  11. Creep Deformation and Rupture Behavior of Single- and Dual-Pass 316LN Stainless-Steel-Activated TIG Weld Joints

    NASA Astrophysics Data System (ADS)

    Vijayanand, V. D.; Vasudevan, M.; Ganesan, V.; Parameswaran, P.; Laha, K.; Bhaduri, A. K.

    2016-06-01

    Creep deformation and rupture behavior of single-pass and dual-pass 316LN stainless steel (SS) weld joints fabricated by an autogenous activated tungsten inert gas welding process have been assessed by performing metallography, hardness, and conventional and impression creep tests. The fusion zone of the single-pass joint consisted of columnar zones adjacent to base metals with a central equiaxed zone, which have been modified extensively by the thermal cycle of the second pass in the dual-pass joint. The equiaxed zone in the single-pass joint, as well as in the second pass of the dual-pass joint, displayed the lowest hardness in the joints. In the dual-pass joint, the equiaxed zone of the first pass had hardness comparable to the columnar zone. The hardness variations in the joints influenced the creep deformation. The equiaxed and columnar zone in the first pass of the dual-pass joint was more creep resistant than that of the second pass. Both joints possessed lower creep rupture life than the base metal. However, the creep rupture life of the dual-pass joint was about twofolds more than that of the single-pass joint. Creep failure in the single-pass joint occurred in the central equiaxed fusion zone, whereas creep cavitation that originated in the second pass was blocked at the weld pass interface. The additional interface and strength variation between two passes in the dual-pass joint provides more restraint to creep deformation and crack propagation in the fusion zone, resulting in an increase in the creep rupture life of the dual-pass joint over the single-pass joint. Furthermore, the differences in content, morphology, and distribution of delta ferrite in the fusion zone of the joints favors more creep cavitation resistance in the dual-pass joint over the single-pass joint with the enhancement of creep rupture life.

  12. A New Local Debonding Model with Application to the Transverse Tensile and Creep Behavior of Continuously Reinforced Titanium Composites

    NASA Technical Reports Server (NTRS)

    Bednarcyk, Brett A.; Arnold, Steven M.

    2000-01-01

    A new, widely applicable model for local interfacial debonding in composite materials is presented. Unlike its direct predecessors, the new model allows debonding to progress via unloading of interfacial stresses even as global loading of the composite continues. Previous debonding models employed for analysis of titanium matrix composites are surpassed by the accuracy, simplicity, and efficiency demonstrated by the new model. The new model was designed to operate seamlessly within NASA Glenn's Micromechanics Analysis Code with Generalized Method of Cells (MAC/GMC), which was employed to simulate the time- and rate-dependent (viscoplastic) transverse tensile and creep behavior of SiC/Ti composites. MAC/GMC's ability to simulate the transverse behavior of titanium matrix composites has been significantly improved by the new debonding model. Further, results indicate the need for a more accurate constitutive representation of the titanium matrix behavior in order to enable predictions of the composite transverse response, without resorting to recalibration of the debonding model parameters.

  13. Prediction and Monitoring Systems of Creep-Fracture Behavior of 9Cr-1Mo Steels for Teactor Pressure Vessels

    SciTech Connect

    Potirniche, Gabriel; Barlow, Fred D.; Charit, Indrajit; Rink, Karl

    2013-11-26

    A recent workshop on next-generation nuclear plant (NGNP) topics underscored the need for research studies on the creep fracture behavior of two materials under consideration for reactor pressure vessel (RPV) applications: 9Cr-1Mo and SA-5XX steels. This research project will provide a fundamental understanding of creep fracture behavior of modified 9Cr-1Mo steel welds for through modeling and experimentation and will recommend a design for an RPV structural health monitoring system. Following are the specific objectives of this research project: Characterize metallurgical degradation in welded modified 9Cr-1Mo steel resulting from aging processes and creep service conditions; Perform creep tests and characterize the mechanisms of creep fracture process; Quantify how the microstructure degradation controls the creep strength of welded steel specimens; Perform finite element (FE) simulations using polycrystal plasticity to understand how grain texture affects the creep fracture properties of welds; Develop a microstructure-based creep fracture model to estimate RPVs service life; Manufacture small, prototypic, cylindrical pressure vessels, subject them to degradation by aging, and measure their leak rates; Simulate damage evolution in creep specimens by FE analyses; Develop a model that correlates gas leak rates from welded pressure vessels with the amount of microstructural damage; Perform large-scale FE simulations with a realistic microstructure to evaluate RPV performance at elevated temperatures and creep strength; Develop a fracture model for the structural integrity of RPVs subjected to creep loads; and Develop a plan for a non-destructive structural health monitoring technique and damage detection device for RPVs.

  14. Effect of carbide precipitation on the creep behavior of alloy 800HT in the temperature range 700 C to 900 C

    SciTech Connect

    El-Magd, E.; Nicolini, G.; Farag, M.

    1996-03-01

    The creep behavior of alloy 800HT was studied at 700 C, 800 C, and 900 C under stresses ranging from 30 to 170 MPa. Samples that were tested in the as-quenched condition after solution treatment exhibited longer creep life than those that were over aged before testing. This difference in creep life was found to increase at lower creep stresses at a given temperature. This phenomenon is attributed to the precipitation of M{sub 23}C{sub 6} carbides during the early stages of creep, which strengthen the material by exerting threshold stresses on moving dislocations and thereby reducing the creep rate. A model is developed to describe the influence of carbide precipitation during creep on the behavior of the material under different creep temperatures and stresses. Comparison with the experimental results shows that the model gives accurate predictions of the creep behavior of the material in the range of stresses and temperatures used in the present study. In addition to its predictive value, the model is useful in understanding the factors that affect the creep behavior of materials when precipitation of hard phases is taking place during creep. The strengthening effect of particle precipitation during creep, as represented by the value of the threshold stress, is shown to be a complex function of the supersaturation of the matrix, the applied creep stress, and the test temperature.

  15. Effect of carbide precipitation on the creep behavior of Alloy 800HT in the Temperature Range 700 ° to 900 °

    NASA Astrophysics Data System (ADS)

    El-Magd, E.; Nicolini, G.; Farag, M.

    1996-03-01

    The creep behavior of alloy 800HT was studied at 700 °, 800 °, and 900 ° under stresses ranging from 30 to 170 MPa. Samples that were tested in the as-quenched condition after solution treatment exhibited longer creep life than those that were overaged before testing. This difference in creep life was found to increase at lower creep stresses at a given temperature. This phenomenon is attributed to the precipitation of M23C6carbides during the early stages of creep, which strengthen the material by exerting threshold stresses on moving dislocations and thereby reducing the creep rate. A model is developed to describe the influence of carbide precipitation during creep on the behavior of the material under different creep temperatures and stresses. Comparison with the experimental results shows that the model gives accurate predictions of the creep behavior of the material in the range of stresses and temperatures used in the present study. In addition to its predictive value, the model is useful in understanding the factors that affect the creep behavior of materials when precipitation of hard phases is taking place during creep. The strengthening effect of particle precipitation during creep, as represented by the value of the threshold stress, is shown to be a complex function of the supersaturation of the matrix, the applied creep stress, and the test temperature.

  16. Effects of NaCl, pH, and Potential on the Static Creep Behavior of AA1100

    NASA Astrophysics Data System (ADS)

    Wan, Quanhe; Quesnel, David J.

    2013-03-01

    The creep rates of AA1100 are measured during exposure to a variety of aggressive environments. NaCl solutions of various concentrations have no influence on the steady-state creep behavior, producing creep rates comparable to those measured in lab air at room temperature. However, after an initial incubation period of steady strain rate, a dramatic increase of strain rate is observed on exposure to HCl solutions and NaOH solutions, as well as during cathodic polarization of specimens in NaCl solutions. Creep strain produces a continuous deformation and elongation of the sample surface that is comparable to slow strain rates at crack tips thought to control the kinetics of crack growth during stress corrosion cracking (SCC). In this experiment, we separate the strain and surface deformation from the complex geometry of the crack tip to better understand the processes at work. Based on this concept, two possible explanations for the environmental influences on creep strain rates are discussed relating to the anodic dissolution of the free surface and hydrogen influences on deformation mechanisms. Consistencies of pH dependence between corrosion creep and SCC at low pH prove a creep-involved SCC mechanism, while the discrepancies between corrosion creep behavior and previous SCC results at high pH indicate a rate-limit step change in the crack propagation of the SCC process.

  17. Tensile Creep and Stress-rupture Behavior of Polymer Derived Sic Fibers

    NASA Technical Reports Server (NTRS)

    Yun, H. M.; Goldsby, J. C.; Dicarlo, J. A.

    1994-01-01

    Tensile creep and stress-rupture studies were conducted on polymer derived Nicalon, Hi-Nicalon, and SiC/BN-coated Nicalon SiC fibers. Test conditions were temperatures from 1200 to 1400 C, stresses from 100 to 1600 MPa, stress application times up to 200 hours, and air, argon, and vacuum test environments. For all fibers, creep occurred predominantly in the primary stage. Hi-Nicalon had much higher 0.2 and 1 percent creep strengths than as-produced as well as-coated Nicalon fibers. The stress-rupture strength of Hi-Nicalon up to 100 hours was also higher than that of the coated and as-produced Nicalon fibers. SiC/BN coating on Nicalon increased only the short-term low-temperature rupture strength. Limited testing in argon and vacuum suggests that for all fiber types, creep and rupture resistances are reduced in comparison to the results in air. Possible mechanisms for the observed behavior are discussed.

  18. Creep behavior of a rabbit model of ligament laxity after electrothermal shrinkage in vivo.

    PubMed

    Wallace, Andrew L; Hollinshead, Robert M; Frank, Cyril B

    2002-01-01

    Deformation of capsular tissue under constant load (creep) may lead to recurrent laxity after thermal shrinkage for shoulder instability. We investigated the effects of thermal shrinkage in a rabbit model in which the tibial insertion of the medial collateral ligament was elevated and shifted toward the joint line to create abnormal laxity. On the right side, radiofrequency electrothermal energy was applied to the shifted ligament, while the left side served as a control. Length, laxity, mass, cross-sectional area, water content, and creep behavior of the ligament were assessed at 0 (N = 8), 3 (N = 7), and 12 (N = 6) weeks postoperatively. Laxity was reduced with thermal treatment (0.65 +/- 0.31 compared with 3.33 +/- 0.25 mm). After 3 weeks, ligament mass, area, and water content were significantly increased in the thermally treated group compared with the untreated controls. At 12 weeks, cyclic creep strain remained greater than that in controls (1.25% +/- 0.65% compared with 0.93% +/- 0.22%). Although thermal shrinkage reduced laxity, there was increased potential to creep and failure at low physiologic stresses. These findings suggest that loading of thermally treated tissues should be carefully controlled during the early phase of rehabilitation after surgery. PMID:11799003

  19. A Comparison of Tension and Compression Creep in a Polymeric Composite and the Effects of Physical Aging on Creep Behavior

    NASA Technical Reports Server (NTRS)

    Gates, Thomas S.; Veazie, David R.; Brinson, L. Catherine

    1996-01-01

    Experimental and analytical methods were used to investigate the similarities and differences of the effects of physical aging on creep compliance of IM7/K3B composite loaded in tension and compression. Two matrix dominated loading modes, shear and transverse, were investigated for two load cases, tension and compression. The tests, run over a range of sub-glass transition temperatures, provided material constants, material master curves and aging related parameters. Comparing results from the short-term data indicated that although trends in the data with respect to aging time and aging temperature are similar, differences exist due to load direction and mode. The analytical model used for predicting long-term behavior using short-term data as input worked equally as well for the tension or compression loaded cases. Comparison of the loading modes indicated that the predictive model provided more accurate long term predictions for the shear mode as compared to the transverse mode. Parametric studies showed the usefulness of the predictive model as a tool for investigating long-term performance and compliance acceleration due to temperature.

  20. Progress toward analytical description of the creep strain-time behavior of engineering alloys

    SciTech Connect

    Booker, M.K.

    1980-01-01

    Elevated-temperature design methods in the United States often require a comprehensive description of the properties of the construction materials. These descriptions include representations for creep strain-time behavior as a function of stress, temperature, and material variability. Work conducted at this laboratory in the past five years toward the development of analytical techniques to derive such representations is summarized. Results for several common elevated-temperature structural materials are presented to illustrate the techniques.

  1. Creep Behavior of Glass/Ceramic Sealant and its Effect on Long-term Performance of Solid Oxide Fuel Cells

    SciTech Connect

    Liu, Wenning N.; Sun, Xin; Koeppel, Brian J.; Stephens, Elizabeth V.; Khaleel, Mohammad A.

    2009-10-14

    The creep behavior of glass or glass-ceramic sealant materials used in solid oxide fuel cells (SOFCs) becomes relevant under SOFC operating temperatures. In this paper, the creep of glass-ceramic sealants was experimentally examined, and a standard linear solid model was applied to capture the creep behavior of glass ceramic sealant materials developed for planar SOFCs at high temperatures. The parameters of this model were determined based on the creep test results. Furthermore, the creep model was incorporated into finite-element software programs SOFC-MP and Mentat-FC developed at Pacific Northwest National Laboratory for multi-physics simulation of SOFCs. The effect of creep of glass ceramic sealant materials on the long-term performance of SOFC stacks was investigated by studying the stability of the flow channels and the stress redistribution in the glass seal and on the various interfaces of the glass seal with other layers. Finite element analyses were performed to quantify the stresses in various parts. The stresses in glass seals were released because of creep behavior during operations.

  2. Endochronic theory of transient creep and creep recovery

    NASA Technical Reports Server (NTRS)

    Wu, H. C.; Chen, L.

    1979-01-01

    Short time creep and creep recovery were investigated by means of the endochronic theory of viscoplasticity. It is shown that the constitutive equations for constant-strain-rate stress-strain behavior, creep, creep recovery, and stress relaxation can all ber derived from the general constitutive equation by imposing appropriate constraints. In this unified approach, the effect of strain-hardening is naturally accounted for when describing creep and creep recovery. The theory predicts with reasonable accuracy the creep and creep recovery behaviors for Aluminum 1100-0 at 150 C. It was found that the strain-rate history at prestraining stage affects the subsequent creep. A critical stress was also established for creep recovery. The theory predicts a forward creep for creep recovery stress greater than the critical stress. For creep recovery stress less than the critical stress, the theory then predicts a normal strain recovery.

  3. Creep-Fatigue Behavior of Alloy 617 at 850 and 950°C, Revision 2

    SciTech Connect

    Carroll, L.; Carroll, M.

    2015-05-01

    Alloy 617 is the leading candidate material for an Intermediate Heat Exchanger (IHX) of the Very High Temperature Reactor (VHTR). To evaluate the behavior of this material in the expected service conditions, strain-controlled cyclic tests including hold times up to 9000 s at maximum tensile strain were conducted at 850 and 950 degrees C. At both temperatures, the fatigue resistance decreased when a hold time was added at peak tensile strain. The magnitude of this effect depended on the specific mechanisms and whether they resulted in a change in fracture mode from transgranular in pure fatigue to intergranular in creep-fatigue for a particular temperature and strain range combination. Increases in the tensile hold duration beyond an initial value were not detrimental to the creep-fatigue resistance at 950 degrees C but did continue to degrade the lifetimes at 850 degrees C.

  4. Compressive creep behavior of Nb{sub 5}Si{sub 3}

    SciTech Connect

    Subramanian, P.R.; Parthasarathy, T.A.; Mendiratta, M.G.; Dimiduk, D.M.

    1995-04-15

    Advanced intermetallic materials, such as refractory silicides, exhibit high melting points, high stiffness, low densities, and good strength retention at elevated temperatures. Further, some of these silicides are in equilibrium with terminal refractory solid solution (beta) phases, and therefore, offer the potential for ductile phase toughening. Studies were conducted to elucidate the compressive creep behavior of monolithic Nb{sub 5}Si{sub 3} and to generate the constitutive creep law. This, in turn, is required for modeling the creep behavior of the Nb/Nb{sub 5}Si{sub 3} two-phase system. Nb{sub 5}Si{sub 3} has the ordered tetragonal structure with 32 atoms/cell in both its allotropic forms: {alpha}Nb{sub 5}Si{sub 3} (D8{sub l} Cr{sub 5}Si{sub 3}-type; a {approximately} 0.656 nm; c = 1.187 nm) and {beta}Nb{sub 5}Si{sub 3} (D8{sub m} W{sub 5}Si{sub 3}-type; a = 1.000 nm; c = 0.507 nm). {alpha}Nb{sub 5}Si{sub 3} is stable below 1,935 C, while {beta}Nb{sub 5}Si{sub 3} is stable above 1,645 C. The large lattice parameters as well as the large number of atoms in the unit cell suggest that dislocation creep is unlikely to occur in Nb{sub 5}Si{sub 3}, because large Burgers vectors and complex dislocation core structures are expected in this material.

  5. Reliability and Creep/Fatigue Analysis of a CMC Component

    NASA Technical Reports Server (NTRS)

    Murthy, Pappu L. N.; Mital, Subodh K.; Gyekenyesi, John Z.; Gyekenyesi, John P.

    2007-01-01

    High temperature ceramic matrix composites (CMC) are being explored as viable candidate materials for hot section gas turbine components. These advanced composites can potentially lead to reduced weight and enable higher operating temperatures requiring less cooling; thus leading to increased engine efficiencies. There is a need for convenient design tools that can accommodate various loading conditions and material data with their associated uncertainties to estimate the minimum predicted life as well as the failure probabilities of a structural component. This paper presents a review of the life prediction and probabilistic analyses performed for a CMC turbine stator vane. A computer code, NASALife, is used to predict the life of a 2-D woven silicon carbide fiber reinforced silicon carbide matrix (SiC/SiC) turbine stator vane due to a mission cycle which induces low cycle fatigue and creep. The output from this program includes damage from creep loading, damage due to cyclic loading and the combined damage due to the given loading cycle. Results indicate that the trends predicted by NASALife are as expected for the loading conditions used for this study. In addition, a combination of woven composite micromechanics, finite element structural analysis and Fast Probability Integration (FPI) techniques has been used to evaluate the maximum stress and its probabilistic distribution in a CMC turbine stator vane. Input variables causing scatter are identified and ranked based upon their sensitivity magnitude. Results indicate that reducing the scatter in proportional limit strength of the vane material has the greatest effect in improving the overall reliability of the CMC vane.

  6. Elevated temperature tension, compression and creep-rupture behavior of (001)-oriented single crystal superalloy PWA 1480

    NASA Technical Reports Server (NTRS)

    Hebsur, Mohan G.; Miner, Robert V.

    1987-01-01

    Tensile and compressive flow behavior at various temperatures and strain rates, and tensile creep rupture behavior at 850 and 1050 C and various stresses were studied for (001)-oriented single crystals of the Ni-base superalloy PWA 1480. At temperatures up to 760 C, the flow stress is insensitive to strain rate and of greater magnitude in tension than in compression. At temperatures of 800 C and above, the flow stress decreases continuously with decreasing strain rate and the tension/compression anisotropy diminishes. The second stage creep rate and rupture time exhibited power law relationships with the applied stress for both 850 and 1050 C, however with different stress dependencies. The stress exponent for the steady state creep rate was about 7 at 1050 C, but much higher at 850 C, about 12. Directional coarsening of the gamma' phase occurred during creep at 1050 C, but not at 850 C.

  7. Finite Element Creep-Fatigue Analysis of a Welded Furnace Roll for Identifying Failure Root Cause

    NASA Astrophysics Data System (ADS)

    Yang, Y. P.; Mohr, W. C.

    2015-11-01

    Creep-fatigue induced failures are often observed in engineering components operating under high temperature and cyclic loading. Understanding the creep-fatigue damage process and identifying failure root cause are very important for preventing such failures and improving the lifetime of engineering components. Finite element analyses including a heat transfer analysis and a creep-fatigue analysis were conducted to model the cyclic thermal and mechanical process of a furnace roll in a continuous hot-dip coating line. Typically, the roll has a short life, <1 year, which has been a problem for a long time. The failure occurred in the weld joining an end bell to a roll shell and resulted in the complete 360° separation of the end bell from the roll shell. The heat transfer analysis was conducted to predict the temperature history of the roll by modeling heat convection from hot air inside the furnace. The creep-fatigue analysis was performed by inputting the predicted temperature history and applying mechanical loads. The analysis results showed that the failure was resulted from a creep-fatigue mechanism rather than a creep mechanism. The difference of material properties between the filler metal and the base metal is the root cause for the roll failure, which induces higher creep strain and stress in the interface between the weld and the HAZ.

  8. Creep deformation and rupture behavior of CLAM steel at 823 K and 873 K

    NASA Astrophysics Data System (ADS)

    Zhong, Boyu; Huang, Bo; Li, Chunjing; Liu, Shaojun; Xu, Gang; Zhao, Yanyun; Huang, Qunying

    2014-12-01

    China Low Activation Martensitic (CLAM) steel is selected as the candidate structural material in Fusion Design Study (FDS) series fusion reactor conceptual designs. The creep property of CLAM steel has been studied in this paper. Creep tests have been carried out at 823 K and 873 K over a stress range of 150-230 MPa. The creep curves showed three creep regimes, primary creep, steady-state creep and tertiary creep. The relationship between minimum creep rate (ε˙min) and the applied stress (σ) could be described by Norton power law, and the stress exponent n was decreased with the increase of the creep temperature. The creep mechanism was analyzed with the fractographes of the rupture specimens which were examined by scanning electron microscopy (SEM). The coarsening of precipitates observed with transmission electron microscope (TEM) indicated the microstructural degradation after creep test.

  9. Limit case analysis of the "stable indenter velocity" method for obtaining creep stress exponents from constant load indentation creep tests

    NASA Astrophysics Data System (ADS)

    Campbell, J.; Dean, J.; Clyne, T. W.

    2016-06-01

    This study concerns a commonly-used procedure for evaluating the steady state creep stress exponent, n, from indentation data. The procedure involves monitoring the indenter displacement history under constant load and making the assumption that, once its velocity has stabilised, the system is in a quasi-steady state, with stage II creep dominating the behaviour. The stress and strain fields under the indenter are represented by "equivalent stress" and "equivalent strain rate" values. The estimate of n is then obtained as the gradient of a plot of the logarithm of the equivalent strain rate against the logarithm of the equivalent stress. Concerns have, however, been expressed about the reliability of this procedure, and indeed it has already been shown to be fundamentally flawed. In the present paper, it is demonstrated, using a very simple analysis, that, for a genuinely stable velocity, the procedure always leads to the same, constant value for n (either 1.0 or 0.5, depending on whether the tip shape is spherical or self-similar). This occurs irrespective of the value of the measured velocity, or indeed of any creep characteristic of the material. It is now clear that previously-measured values of n, obtained using this procedure, have varied in a more or less random fashion, depending on the functional form chosen to represent the displacement-time history and the experimental variables (tip shape and size, penetration depth, etc.), with little or no sensitivity to the true value of n.

  10. Effect of minor carbon additions on the high-temperature creep behavior of a single-crystal nickel-based superalloy

    SciTech Connect

    Wang, L. Wang, D.; Liu, T.; Li, X.W.; Jiang, W.G.; Zhang, G.; Lou, L.H.

    2015-06-15

    Different amounts of carbon were added to a single-crystal nickel-based superalloy. The microstructural evolution of these alloys before and after high-temperature creep tests was investigated by employing scanning electron microscopy and transmission electron microscopy. Upon increasing the carbon contents, the volume fraction and diameter of the carbides increased gradually: however, the creep lives of the alloys increased slightly at first and subsequently decreased. The formation of second-phase particles, such as the nano-sized M{sub 23}C{sub 6}, blocky and needle-shaped μ phase, was observed in the creep samples, which was closely related to the high-temperature creep behaviors. - Highlights: • Creep behaviors of alloys with different amounts of carbon were investigated. • The creep rupture lives increased and later decreased with more carbon. • Second-phase particles were responsible for the different creep behaviors.

  11. Influence of Hold Time on Creep-Fatigue Behavior of an Advanced Austenitic Alloy

    SciTech Connect

    Mark Carroll; Laura Carroll

    2011-09-01

    An advanced austenitic alloy, HT-UPS (high temperature-ultrafine precipitate strengthened), is a candidate material for the structural components of fast reactors and energy-conversion systems. HT-UPS provides improved creep resistance through a composition based on 316 stainless steel (SS) with additions of Ti and Nb to form nano-scale MC precipitates in the austenitic matrix. The low cycle fatigue and creep-fatigue behavior of a HT-UPS alloy has been investigated at 650 C, 1.0% total strain, and an R ratio of -1 with hold times as long as 9000 sec at peak tensile strain. The cyclic deformation response of HT-UPS is compared to that of 316 SS. The cycles to failure are similar, despite differences in peak stress profiles and the deformed microstructures. Cracking in both alloys is transgranular (initiation and propagation) in the case of continuous cycle fatigue, while the primary cracks also propagate transgranularly during creep-fatigue cycling. Internal grain boundary damage as a result of the tensile hold is present in the form of fine cracks for hold times of 3600 sec and longer and substantially more internal cracks are visible in 316 SS than HT-UPS. The dislocation substructures observed in the deformed material are different. An equiaxed cellular structure is observed in 316 SS, whereas tangles of dislocations are present at the nanoscale MC precipitates in HT-UPS and no cellular substructure is observed.

  12. Study on the Indentation Creep Behavior of Mg-4Al-RE-0.8Ca Magnesium Alloy

    NASA Astrophysics Data System (ADS)

    Zhang, Yaocheng; Yang, Li; Huang, Zedong; Dai, Jun

    2015-11-01

    The indentation creep behavior of Mg-4Al-RE-0.8Ca (AEC4108) alloy was investigated with a homemade apparatus. The microstructure of the AEC4108 alloy and the chemical composition of the precipitation phases in the alloy before and after creep test were investigated by scanning electron microscope and energy-dispersive spectroscopy. The results reveal that the steady-state indentation creep rate of the AEC4108 alloy is increased with increasing temperature and applied stress. The logarithm of the steady-state creep rates is linearly related to the logarithm of the stress and the reciprocal of the absolute temperature. The indentation creep parameters of AEC4108 alloy are correlated using an empirical equation dot{\\varepsilon }_{s} = 1.253 × 10^{ - 8} × \\upsigma^{3.2} { exp }[ { - 33.89/( {RT} )} ]. The thin acicular Al11La3 and the bone-shaped Al2Ca are precipitated along the grain boundaries, and the granular Al2La is formed within the grain. The indentation creep rate of AEC4108 alloy is controlled by the grain boundary slipping led by viscous dislocation movement. The indentation creep resistance of the AEC4108 alloy under temperature 398-448 K and stress 55-95 MPa is guaranteed by the precipitated phases with high thermal stability pinning at the grain boundary and within the grain.

  13. Simultaneous Tomography and Diffraction Analysis of Creep Damage

    NASA Astrophysics Data System (ADS)

    Pyzalla, A.; Camin, B.; Buslaps, T.; Di Michiel, M.; Kaminski, H.; Kottar, A.; Pernack, A.; Reimers, W.

    2005-04-01

    Creep damage by void nucleation and growth limits the lifetime of components subjected to loading at high temperatures. We report a combined tomography and diffraction experiment using high-energy synchrotron radiation that permitted us to follow in situ void growth and microstructure development in bulk samples. The results reveal that void growth versus time follows an exponential growth law. The formation of large void volumes coincides with texture evolution and dislocation density, reaching a steady state. Creep damage during a large proportion of sample creep life is homogeneous before damage localization occurs, which leads to rapid failure. The in situ determination of void evolution in bulk samples should allow for the assessment of creep damage in metallic materials and subsequently for lifetime predictions about samples and components that are subject to high-temperature loading.

  14. PROCESSING, MICROSTRUCTURE AND CREEP BEHAVIOR OF Mo-Si-B-BASED INTERMETALLIC ALLOYS FOR VERY HIGH TEMPERATURE STRUCTURAL APPLICATIONS

    SciTech Connect

    Vijay K. Vasudevan

    2005-12-21

    This research project is concerned with developing a fundamental understanding of the effects of processing and microstructure on the creep behavior of refractory intermetallic alloys based on the Mo-Si-B system. During this year, the compressive creep behavior of a Mo-3Si-1B (in wt.%) alloy at 1100 and 1200 C were studied and related to the deformation mechanisms through electron microscopy observations of microstructural changes and deformation structures. The microstructure of this alloy was three-phase, being composed of {alpha}-Mo, Mo{sub 3}Si and T2-Mo{sub 5}SiB{sub 2} phases. Results of compressive creep tests at 1200 and 1100 C showed that the creep rates were quite high at stress levels between 250 and 500 MPa, Two minima in the creep strain rate versus strain data were noted, one at small strain values and the second at much larger strains. A stress exponent of 4.26 was obtained upon plotting the strain rate corresponding to the first minima versus stress, which suggests that dislocation climb and glide dominate the creep process in the early stages. On the other hand, the large strain, minimum creep rate versus stress data gave a stress exponent of {approx}1.18, which indicates diffusional mechanisms and recrystallization dominate the later stages of the creep process. At 1100 C, a stress exponent of 2.26 was obtained, which suggests that both diffusional and dislocation mechanisms contribute to the creep strain. Based on the minimum creep rate data at 1100 C and 1200 C, the activation energy for creep was determined to be 525 kJ/mole, which is somewhat higher than that reported for self diffusion in {alpha}-Mo. Microstructural observations of post-crept samples indicated the presence of many voids in the {alpha}-Mo grains and few cracks in the intermetallic particles and along their interfaces with the {alpha}-Mo matrix. In addition, TEM observations revealed the presence of recrystallized grains and sub-grain boundaries composed of dislocation arrays

  15. Numerical modeling on tertiary creep behavior of extreme rainfall-induced landslides with TRMM application for landslide early warning

    NASA Astrophysics Data System (ADS)

    Dok, A.; Fukuoka, H.; Katsumi, T.; Inui, T.

    2012-12-01

    In help issue warning of extreme rainfall-induced landslide in tropical soils of Southeast Asian countries, it requires the study of landslide mechanism induced by generated excess pore water pressure at the sliding surface due to groundwater table rise under rainfall storm, and examination of empirical relationship between rainfall characteristics and past landslide occurrence (precipitation analysis). To investigate the tertiary creep behavior in soils found by Fukuzono, 1985 (d2x/dt2=A(dx/dt)α, where x is surface displacement, t is time, and A and α are constant), a series of pore-pressure-controlled tests on saturated sands were undertaken in the ring shear apparatus. The tests were conducted under combined condition of predefined normal stress and shear stress with pore water pressure changes to simulate the potential sliding surface condition in heavy rainfall. Sand, its mixture with clay material, and soil samples taken at actual landslide sliding surface were used for specimen. Repeated shear test for a specimen was also additionally conducted to produce reactivated motion landslides. Numerical model simulating the Tertiary creep behavior (or progressive failure) is constructed to develop a most appropriate method for landslide early warning combined with TRMM satellite rainfall data. TRMM data were selected to apply to the Japanese Soil Water Index (SWI) in distributing threshold of highly nonlinear rainfall patterns for estimating the landslide occurrence in developing regions: Southeast Asian countries, where very limited number of rain gauges is available, and there is no implemented methodology for issuing effective warming of landslides yet. It is through the plot of total water of 3 serial tank models and daily precipitation with case example of landslide disasters took place in Beichuan city, (located on the 2008 Chinese Wenchuan earthquake fault) and Hofu city, Japan which were hit by heavy rainfall attacked in 2009. Consequently, it is

  16. On the behavior of dissipative systems in contact with a heat bath: Application to Andrade creep

    NASA Astrophysics Data System (ADS)

    Sullivan, T.; Koslowski, M.; Theil, F.; Ortiz, M.

    2009-07-01

    We develop a theory of statistical mechanics for dissipative systems governed by equations of evolution that assigns probabilities to individual trajectories of the system. The theory is made mathematically rigorous and leads to precise predictions regarding the behavior of dissipative systems at finite temperature. Such predictions include the effect of temperature on yield phenomena and rheological time exponents. The particular case of an ensemble of dislocations moving in a slip plane through a random array of obstacles is studied numerically in detail. The numerical results bear out the analytical predictions regarding the mean response of the system, which exhibits Andrade creep.

  17. Compressive creep behavior of alloys based on B2 FeAl

    NASA Technical Reports Server (NTRS)

    Mantravadi, N.; Vedula, K.; Gaydosh, D.; Titran, R. H.

    1986-01-01

    Alloys based on FeAl are attractive alternate materials for environmental resistance at intermediate temperatures. Addition of small amounts of Nb, Hf, Ta, Mo, Zr, and B were shown to improve the compressive creep of this alloy at 1100 K. Boron, in particular, was found to have a synergistic effect along with Zr in providing properties substantially better than the binary alloy. This improvement seems to be related to the higher activation energy found for this alloy, suggesting a modification in the diffusion behavior due to the alloying additions.

  18. Compressive creep behavior of alloys based on B2 FeAl

    NASA Technical Reports Server (NTRS)

    Mantravadi, N.; Vedula, K.; Gaydosh, D.; Titran, R. H.

    1987-01-01

    Alloys based on FeAl are attractive alternative materials for environmental resistance at intermediate temperatures. Addition of small amounts of Nb, Hf, Ta, Mo, Zr, and B were shown to improve the compressive creep of this alloy at 1100 K. Boron, in particular, was found to have a synergistic effect along with Zr in providing properties substantially better than the binary alloy. This improvement seems to be related to the higher activation energy found for this alloy, suggesting a modification in the diffusion behavior due to the alloying additions.

  19. An analysis of creep crack growth of interface cracks in layered/graded materials

    SciTech Connect

    Biner, S.B.

    1997-07-01

    In this study, the growth behavior of interface cracks in bimaterials and in layered materials resulting from the creep cavitation was studied. The growth model includes the effects of material deposition resulting from the growth of creep cavities on the crack tip stress fields. The results indicate that in layered materials under identical applied loading, the location of the interface crack strongly influence the amplitude of the stress field at steady-state. Due to large variation in the distribution of the stresses ahead of the interface cracks at creep regime, depending upon the crack location, the creep crack growth rates will be significantly different from each other under identical loading for a given layered material.

  20. Creep Resistance and Oxidation Behavior of Novel Mo-Si-B-Ti Alloys

    NASA Astrophysics Data System (ADS)

    Azim, M. A.; Schliephake, D.; Hochmuth, C.; Gorr, B.; Christ, H.-J.; Glatzel, U.; Heilmaier, M.

    2015-11-01

    Mo-Si-B-alloys are promising materials for high-temperature applications because of their high melting point, excellent phase stability, large alloying capabilities, and reasonable mechanical as well as oxidative properties. A continuing alloy development is, however, required because of the catastrophic oxidation taking place at intermediate temperatures and the rather high density. The addition of Ti stabilizes a new ternary phase field including the Mo5Si3 (T1) phase instead of the Mo3Si (A15) phase. Alloys comprising the phases Moss, T1 and Mo5SiB2 (T2) show very high creep resistance, improved oxidation behavior and significantly reduced density. The new T1 phase seems to play a crucial role in the improved oxidation resistance of these new materials, since this phase exhibits excellent oxidation behavior at intermediate and high temperatures. The 4-component alloys possess superior creep behavior compared to Mo-Si-B alloys with the same microstructural phase arrangement and size or to the single crystal Ni-base superalloy CMSX-4. The main reason was found to be the formation of Ti-rich silicide precipitates during processing.

  1. Creep and oxidation behavior of modified CF8C-plus with W, Cu, Ni, and Cr

    DOE PAGESBeta

    Unocic, Kinga A.; Dryepondt, Sebastien N.; Yamamoto, Yukinori; Maziasz, Philip J.

    2016-02-01

    Here, the microstructures of modified CF8C-Plus (Fe-19Cr-12Ni-0.4W-3.8Mn-0.2Mo-0.6Nb-0.5Si-0.9C) with W and Cu (CF8CPWCu) and CF8CPWCu enhanced with 21Cr + 15Ni or 22Cr + 17.5Ni were characterized in the as-cast condition and after creep testing. When imaged at lower magnifications, the as-cast microstructure was similar among all three alloys as they all contained a Nb-rich interdendritic phase and Mn-based inclusions. Transmission electron microscopy (TEM) analysis showed the presence of nanoscale Cu-rich nanoprecipitates distributed uniformly throughout the matrix of CF8CPWCu, whereas in CF8CPWCu22/17, Cu precipitates were found primarily at the grain boundaries. The presence of these nanoscale Cu-rich particles, in addition to W-richmore » Cr23C6, nanoscale Nb carbides, and Z-phase (Nb2Cr2N2), improved the creep strength of the CF8CPWCu steel. Modification of CF8CPWCu with Cr and Ni contents slightly decreased the creep strength but significantly improved the oxidation behavior at 1073 K (800 °C). In particular, the addition of 22Cr and 17.5Ni strongly enhanced the oxidation resistance of the stainless steel resulting in a 100 degrees or greater temperature improvement, and this composition provided the best balance between improving both mechanical properties and oxidation resistance.« less

  2. Creep and Oxidation Behavior of Modified CF8C-Plus with W, Cu, Ni, and Cr

    NASA Astrophysics Data System (ADS)

    Unocic, Kinga A.; Dryepondt, Sebastien; Yamamoto, Yukinori; Maziasz, Philip J.

    2016-04-01

    The microstructures of modified CF8C-Plus (Fe-19Cr-12Ni-0.4W-3.8Mn-0.2Mo-0.6Nb-0.5Si-0.9C) with W and Cu (CF8CPWCu) and CF8CPWCu enhanced with 21Cr + 15Ni or 22Cr + 17.5Ni were characterized in the as-cast condition and after creep testing. When imaged at lower magnifications, the as-cast microstructure was similar among all three alloys as they all contained a Nb-rich interdendritic phase and Mn-based inclusions. Transmission electron microscopy (TEM) analysis showed the presence of nanoscale Cu-rich nanoprecipitates distributed uniformly throughout the matrix of CF8CPWCu, whereas in CF8CPWCu22/17, Cu precipitates were found primarily at the grain boundaries. The presence of these nanoscale Cu-rich particles, in addition to W-rich Cr23C6, nanoscale Nb carbides, and Z-phase (Nb2Cr2N2), improved the creep strength of the CF8CPWCu steel. Modification of CF8CPWCu with Cr and Ni contents slightly decreased the creep strength but significantly improved the oxidation behavior at 1073 K (800 °C). In particular, the addition of 22Cr and 17.5Ni strongly enhanced the oxidation resistance of the stainless steel resulting in a 100 degrees or greater temperature improvement, and this composition provided the best balance between improving both mechanical properties and oxidation resistance.

  3. Tensile behavior and cyclic creep of continuous fiber-reinforced glass matrix composites at room and elevated temperatures

    NASA Astrophysics Data System (ADS)

    Boccaccini, A. R.; West, G.; Janczak, J.; Lewis, M. H.; Kern, H.

    1997-06-01

    In this study we investigated the stress-strain behavior at room and elevated temperatures and the tensile creep and cyclic creep response of a unidirectional SiC fiber-reinforced aluminosilicate glass matrix composite. The interfacial condition of the as-received material was measured by a push-out indentation technique. The stress-strain behavior was that expected for this kind of composite, i.e. “pseudoductile” behavior with extensive fiber “pull-out” at room temperature and brittle failure at intermediate temperatures (750 °C) due to oxidation embrittlement. The stiffness of the composite at 750°C was analyzed for different loading rates, highlighing the influence of the loading rate on apparent composite stiffness, due to matrix softening. The creep studies were conducted at temperatures above and below the softening temperature of the glass (T g, 745 °C) in air. The cyclic creep experiments showed the existence of extensive viscous strain recovery during the unloading period. The creep strain recovery was quantified using strain recovery ratios. These ratios showed a slight dependence on the temperatures investigated (700 and 750 °C). The crept composites retained their “graceful” fracture behavior only partially after testing, indicating that oxidation of the fiber/matrix interface due to oxygen diffusion through the matrix occurred in the peripheral area of the samples.

  4. Creep behavior of tantalum alloy T-222 at 1365 to 1700 K

    NASA Technical Reports Server (NTRS)

    Titran, R. H.

    1974-01-01

    High vacuum creep tests on the tantalum T-222 alloy at 0.42 to 0.52 T sub m show that the major portion of the creep curves, up to at least 1 percent strain, can be best described by an increasing creep rate, with strain varying linearly with time. Correlation and extrapolation of the creep curves on the basis of increasing creep rates results in more accurate engineering design data than would use of approximated linear rates. Based on increasing creep rates, the stress for 1 percent strain in 10,000 hours for T-222 is about four times greater than for the Ta-10W alloy. Increasing the grain size results in increased creep strength. Thermal aging prior to testing caused precipitation of the hexagonal close packed (Hf,Ta) sub 2 C, which initially increased creep strength. However, this dimetal carbide was converted during creep testing to face-centered cubic (Hf,Ta)C.

  5. Analysis of steady state creep of southeastern New Mexico bedded salt

    SciTech Connect

    Herrmann, W.; Wawersik, W.R.; Lauson, H.S.

    1980-03-01

    Steady state creep rates have been obtained from a large suite of existing experimental creep data relating to bedded rock salt from the Salado formation of S.E. New Mexico. Experimental conditions covered an intermediate temperature range from 22/sup 0/C to 200/sup 0/C, and shear stresses from 1000 psi (7 MPa) to 6000 psi (31 MPa). An expression, based on a single diffusion controlled dislocation climb mechanism, has been found to fit the observed dependence of steady state creep rate on shear stress and temperature, yielding an activation energy of 12 kcal/mole (50 kJ/mole) and a stress exponent of 4.9. Multiple regression analysis revealed a dependence on stratigraphy, but no statistically significant dependence on pressure of specimen size. No consistent dilatancy or compaction associated with steady state creep was found, although some individual specimens dilated or compacted during creep. The steady state creep data were found to agree very well with creep data for both bedded and dome salt from a variety of other locations.

  6. A mechanism-based framework for the numerical analysis of creep in zircaloy-4

    NASA Astrophysics Data System (ADS)

    Wang, H.; Hu, Z.; Lu, W.; Thouless, M. D.

    2013-02-01

    A deformation-mechanism map has been developed for unirradiated zircaloy-4 based on the creep data available from the literature of the last 35 years. These data have been analyzed to identify different creep mechanisms, based on the forms of the relationships between stress, temperature and strain rate. This identification allowed the activation energies and other associated creep parameters to be derived for each mechanism. The creep parameters were used to construct a deformation-mechanism map for zircaloy-4 that shows the conditions under which different mechanisms are dominant. This information provides an important tool for assessing the effects of stress and temperature in design, especially when extrapolating to different regimes. As an example of how this information might be used in a numerical analysis for design purposes, a novel mechanism-based creep framework was implemented within a finite-element code. Although the framework was developed specifically for zircaloy-4, it provides a general example of how mechanism-based creep laws can be implemented into finite-element analyses. This approach allows the creep of complex geometries to be analyzed rigorously, with the dominant deformation mechanisms being identified and evolving automatically in response to the local temperatures and stresses.

  7. Creep modeling of welded joints using the theta projection concept and finite element analysis

    SciTech Connect

    Law, M.; Payten, W.; Snowden, K.

    2000-02-01

    Modeling of welded joints under creep conditions with element analysis was undertaken using the theta projection method. The results were compared to modeling based on a simple Norton law. Theta projection data extends the accuracy and predictive capability of finite element modeling of critical structures operating at high temperature and pressure. In some cases analyzed, it was found that the results diverged from those gained using a Norton law creep model.

  8. Phenomenological and microstructural analysis of room temperature creep in titanium alloys

    SciTech Connect

    Neeraj, T.; Hou, D.H.; Daehn, G.S.; Mills, M.J.

    2000-04-03

    Primary creep is the dominant mode of deformation during creep of titanium alloys at room temperature. Based on a study of both Ti-6Al and Ti-6Al-2Sn-4Zr-2Mo, it is shown that the transient creep behavior can be described by a power law of the form {var_epsilon} = At{sup a}, while the strain-rate-sensitive Hollomon law, {sigma} = K{var_epsilon}{sup n}{dot {var_epsilon}}{sup m}, represents the constant strain rate behavior of titanium alloys reasonably well. A simple analytical result is derived to relate these two expressions. Using this solution, the long time creep response has been predicted reasonably well from the constant strain rate results for the two alloys studied. Relative to other metals, it is shown that titanium alloys exhibit exceptionally low values of strain hardening. Optical microscope observations of slip line evolution have been used to relate the deformation mechanisms to the macroscopic behavior. Operative slip systems, as well as dislocation distributions and morphologies, are also presented for the first time following creep of a single-phase {alpha} microstructure in Ti-6Al.

  9. Effects of Thermal Treatment on Tensile Creep and Stress-Rupture Behavior of Hi-Nicalon SiC Fibers

    NASA Technical Reports Server (NTRS)

    Yun, H. M.; Goldsby, J. C.; Dicarlo, J. A.

    1995-01-01

    Tensile creep and stress-rupture studies were conducted on Hi-Nicalon SiC fibers at 1200 and 1400 C in argon and air. Examined were as-received fibers as well as fibers annealed from 1400 to 1800 C for 1 hour in argon before testing. The creep and rupture results for these annealed fibers were compared to those of the as-received fibers to determine the effects of annealing temperature, test temperature, and test environment. Argon anneals up to 1500 C degrade room temperature strength of Hi-Nicalon fibers, but improve fiber creep resistance in argon or air by as much as 100% with no significant degradation in rupture strength. Argon anneals above 1500 C continue to improve fiber creep resistance when tested in argon, but significantly degrade creep resistance and rupture strength when tested in air. Decrease in creep resistance in air is greater at 1200 C than at 1400 C. Mechanisms are suggested for the observed behavior.

  10. Creep behavior of thin laminates of iron-cobalt alloys for use in switched reluctance motors and generators

    NASA Astrophysics Data System (ADS)

    Fingers, Richard Todd

    The United States Air Force is in the process of developing magnetic bearings as well as an aircraft Integrated Power Unit and an Internal Starter/Generator for main propulsion engines. These developments are the driving force behind a new emphasis on high temperature, high strength magnetic materials for power applications. Analytical work, utilizing elasticity theory, in conjunction with design requirements, indicates a need for magnetic materials to have strengths in excess of 80 ksi up to about 1000sp°F. It is this combination of desired material characteristics that is the motivation for this effort to measure, model, and predict the creep behavior of such advanced magnetic materials. Hipercosp°ler Alloy 50HS, manufactured by Carpenter Technology Corporation, is one of the leading candidates for application and is studied in this effort by subjecting mechanical test specimens to a battery of tensile and creep tests. The tensile tests provide stress versus strain behaviors that clearly indicate: a yield point, a heterogeneous deformation described as Luders elongation, the Portevin-LeChatelier effect at elevated temperatures, and, most often, a section of homogeneous deformation that concluded with necking and fracture. Creep testing indicated two distinct types of behavior. The first was a traditional response with primary, secondary and tertiary stages, while the second type could be characterized by an abrupt increase in strain rate that acted as a transition from one steady state behavior to another. This second linear region was then followed by the tertiary stage. The relationship between the tensile response and the creep responses is discussed. Analyses of the mechanical behavior includes double linear regression of empirically modeled data, scanning electron microscopy for microstructural investigations, isochronous stress-strain relations, and constant strain rate testing to relate the tensile and creep test parameters. Also, elastic and creep

  11. In Situ Observation of Creep and Fatigue Failure Behavior for Plasma-Sprayed Thermal Barrier Coating Systems

    NASA Astrophysics Data System (ADS)

    Takahashi, Satoru; Harada, Yoshio

    In order to investigate crack initiation sites and the crack propagation behavior in connection with the microstructure of thermal barrier coating (TBC) systems under creep and fatigue loadings, the failure behavior was observed in situ for plasma-sprayed TBC systems by optical microscopy, as a first step for elucidating the thermo-mechanical failure mechanism. Two types of TBC systems with differing top-coat (TC) microstructures were prepared by changing the processing conditions. The mechanical failure behavior of TBC system was found to depend strongly on the loading conditions. Under static creep loading, many segmentation cracks in the TC widened with increasing creep strain in the substrate. However, the propagation of these cracks into the bond-coat (BC) and alloy substrate was prevented due to the stress relief induced by plastic flow in the BC layer at elevated temperatures. As a result, the TBC system exhibited typical creep rupture behavior with nucleation and coalescence of microcracks in the alloy substrate interior regardless of the TC microstructure. Under dynamic fatigue loading, on the other hand, many fatigue cracks initiated not only from the tips of segmentation cracks in the TC layer but also from the TC/BC interface. Furthermore, it was found that the fatigue cracks propagated into the BC and alloy substrate even at elevated temperatures above the ductile-brittle transition temperature of the BC; the fatigue failure behavior under dynamic fatigue loading was dependent on the TC microstructure and the properties of the TC/BC interface.

  12. Analysis of the Deformation Behavior in Tension and Tension-Creep of Ti-3Al-2.5V (wt pct) at 296 K and 728 K (23 °C and 455 °C) Using In Situ SEM Experiments

    NASA Astrophysics Data System (ADS)

    Li, Hongmei; Boehlert, Carl J.; Bieler, Thomas R.; Crimp, Martin A.

    2014-12-01

    The deformation behavior of a Ti-3Al-2.5V (wt pct) near-α alloy was investigated during in situ deformation inside a scanning electron microscopy (SEM). Two plates with distinct textures were examined. Tensile experiments were performed at 296 K and 728 K (455 °C) (~0.4 T m), while a tensile-creep experiment was performed at 728 K (455 °C) and 180 MPa ( σ/ σ ys = 0.72). The active deformation systems were identified in the α phase using electron backscattered diffraction based slip-trace analysis and SEM images of the surface. Prismatic slip deformation was the dominant slip mode observed for all the experiments in both plates, which was supported by a critical resolved shear stress (CRSS) ratio analysis. However, due to the texture of plate 1, which strongly favored the activation of prismatic slip, the percentages of prismatic slip activity for specimens from plate 1 tested at 296 K and 728 K (23 °C and 455 °C) were higher than the specimens from plate 2 under the same testing conditions. T1 twinning was an active deformation mode at both 296 K and 728 K (23 °C and 455 °C), but the extent of twinning activity decreased with increased temperature. T1 twinning was more frequently observed in specimens from plate 2, which exhibited a higher fraction of twinning systems favoring activation at both 296 K and 728 K (23 °C and 455 °C). The tension-creep experiment revealed less slip and more grain boundary sliding than in the higher strain rate tensile experiments. Using a previously demonstrated bootstrapping statistical analysis methodology, the relative CRSS ratios of prismatic, pyramidal < a>, pyramidal < c+ a>, and T1 twinning deformation systems compared with basal slip were calculated and discussed in light of similar measurements made on CP Ti and Ti-5Al-2.5Sn (wt pct).

  13. High-Temperature Creep and Oxidation Behavior of Mo-Si-B Alloys with High Ti Contents

    NASA Astrophysics Data System (ADS)

    Schliephake, Daniel; Azim, Maria; von Klinski-Wetzel, Katharina; Gorr, Bronislava; Christ, Hans-Jürgen; Bei, Hongbin; George, Easo P.; Heilmaier, Martin

    2013-08-01

    Multiphase alloys in the Mo-Si-B system are potential high-temperature structural materials due to their good oxidation and creep resistance. Since they suffer from relatively high densities, the current study focuses on the influence of density-reducing Ti additions on creep and oxidation behavior at temperatures above 1273 K (1000 °C). Two alloys with compositions of Mo-12.5Si-8.5B-27.5Ti and Mo-9Si-8B-29Ti (in at. pct) were synthesized by arc melting and then homogenized by annealing in vacuum for 150 hours at 1873 K (1600 °C). Both alloys show similar creep behavior at stresses of 100 to 300 MPa and temperatures of 1473 K and 1573 K (1200 °C and 1300 °C), although they possess different intermetallic volume fractions. They exhibit superior creep resistance and lower density than a state-of-the-art Ni-base superalloy (single-crystalline CMSX-4) as well as other Mo-Si-B alloys. Solid solution strengthening due to Ti was confirmed by Vickers hardness measurements and is believed to be the reason for the significant increase in creep resistance compared to Mo-Si-B alloys without Ti, but with comparable microstructural length scales. The addition of Ti degrades oxidation resistance relative to a Mo-9Si-8B reference alloy due to the formation of a relatively porous duplex layer with titania matrix enabling easy inward diffusion of oxygen.

  14. PROCESSING, MICROSTRUCTURE AND CREEP BEHAVIOR OF MO-SI-B-BASED INTERMETALLIC ALLOYS FOR VERY HIGH TEMPERATURE STRUCTURAL APPLICATIONS

    SciTech Connect

    Vijay K. Vasudevan

    2005-02-08

    This research project is concerned with developing a fundamental understanding of the effects of processing and microstructure on the creep behavior of refractory intermetallic alloys based on the Mo-Si-B system. During this year, the microstructure, bend strength and compressive creep behavior of a Mo-3Si-1B (in wt.%) alloy were studied. The microstructure of this alloy was three-phase, being composed of {alpha}-Mo, Mo{sub 3}Si and T2-Mo{sub 5}SiB{sub 2} phases. The elastic limit strength of the alloy remained quite high until 1200 C with a value of 800MPa, but dropped rapidly thereafter to a value of 220 MPa at 1400 C. Results of compressive creep tests at 1200 C showed that the creep rates were quite high and varied nearly linearly with stress between 250 and 500 MPa, which suggests that diffusional mechanisms dominate the creep process. Microstructural observations of post-crept samples indicated the presence of many voids in the {alpha}-Mo grains and few cracks in the intermetallic particles and along their interfaces with the {alpha}-Mo matrix. These results and presented and discussed.

  15. Creep-Fatigue Behavior of Alloy 617 at 850°C

    SciTech Connect

    Carroll, Laura

    2015-05-01

    Creep-fatigue deformation is expected to be a significant contributor to the potential factors that limit the useful life of the Intermediate Heat Exchanger (IHX) in the Very High Temperature Reactor (VHTR) nuclear system.[1] The IHX of a high temperature gas reactor will be subjected to a limited number of transient cycles due to start-up and shut-down operations imparting high local stresses on the component. This cycling introduces a creep-fatigue type of interaction as dwell times occur intermittently. The leading candidate alloy for the IHX is a nickel-base solid solution strengthened alloy, Alloy 617, which must safely operate near the expected reactor outlet temperature of up to 950 °C.[1] This solid solution strengthened nickel-base alloy provides an interesting creep-fatigue deformation case study because it has characteristics of two different alloy systems for which the cyclic behavior has been extensively investigated. Compositionally, it resembles nickel-base superalloys, such as Waspalloy, IN100, and IN718, with the exception of its lower levels of Al. At temperatures above 800 °C, the microstructure of Alloy 617, however, does not contain the ordered ?’ or ?’’ phases. Thus microstructurally, it is more similar to an austenitic stainless steel, such as 316 or 304, or Alloy 800H comprised of a predominantly solid solution strengthened matrix phase with a dispersion of inter- and intragranular carbides. Previous studies of the creep-fatigue behavior of Alloy 617 at 950 °C indicate that the fatigue life is reduced when a constant strain dwell is added at peak tensile strain.[2-5] This results from the combination of faster crack initiation occurring at surface-connected grain boundaries due to oxidation from the air environment along with faster, and intergranular, crack propagation resulting from the linking of extensive interior grain boundary cracking.[3] Saturation, defined as the point at which further increases in the strain

  16. Biaxial creep-fatigue behavior of materials for solar thermal systems

    SciTech Connect

    Majumdar, S.

    1980-05-01

    Biaxial creep-fatigue data for Incoloy 800 and Type 316H stainless steel at elevated temperatures are presented. Tubular specimens were subjected to constant internal pressure and strain-controlled axial cycling with and without hold times in tension as well as in compression. The results show that the internal pressure affects diametral ratchetting and axial stress range significantly. However, the effect of a relatively small and steady hoop stress on the cyclic life of the materials is minimal. A 1-min compressive hold per cycle does not seriously reduce the fatigue life of either material; a tensile hold of equal duration causes a significant reduction in life for Type 316H stainless steel, but none for Incoloy 800. Fracture surfaces of specimens made of both materials were studied by scanning electron microscopy to determine the reason for the difference in behavior.

  17. The creep and intergranular cracking behavior of Ni-Cr-Fe-C alloys in 360{degree}C water

    SciTech Connect

    Angeliu, T.M.; Paraventi, D.J.; Was, G.S.

    1995-09-01

    Mechanical testing of controlled-purity Ni-xCr-9Fe-yC alloys at 360 C revealed an environmental enhancement in IG cracking and time-dependent deformation in high purity and primary water over that exhibited in argon. Dimples on the IG facets indicate a creep void nucleation and growth failure mode. IG cracking was primarily located at the interior of the specimen and not necessarily linked to direct contact with the environment. Controlled potential CERT experiments showed increases in IG cracking as the applied potential decreased, suggesting that hydrogen is detrimental to the mechanical properties. It is proposed that the environment, through the presence of hydrogen, enhances IG cracking by enhancing the matrix dislocation mobility. This is based on observations that dislocation-controlled creep controls the IG cracking of controlled-purity Ni-xCr-9Fe-yC in argon at 360 C and grain boundary cavitation and sliding results that show the environmental enhancement of the creep rate is primarily due to an increase in matrix plastic deformation. However, controlled potential CLT experiments did not exhibit a change in the creep rate as the applied potential decreased. While this does not clearly support hydrogen assisted creep, the material may already be saturated with hydrogen at these applied potentials and thus no effect was realized. Chromium and carbon decrease the IG cracking in high purity and primary water by increasing the creep resistance. The surface film does not play a significant role in the creep or IG cracking behavior under the conditions investigated.

  18. Creep/Rupture Behavior of Melt-Infiltrated SiC/SiC Composites Being Investigated

    NASA Technical Reports Server (NTRS)

    Hurst, Janet B.

    2001-01-01

    The failure behavior of melt-infiltrated SiC/SiC ceramic matrix composites is under investigation at the NASA Glenn Research Center as part of NASA's Ultra-Efficient Engine Technology Program. This material was originally developed under the High Speed Research Office's Enabling Propulsion Materials Program. Creep and rupture data provide accelerated testing information to predict material behavior under engine use situations (1500 to 2400 F). This information gives insights into various material development paths to improve composites as well as improve understanding of failure mechanisms. The left figure shows the fracture surface of a CMC material following over 200 hr of testing at 2400 F. This surface demonstrates the kind of fibrous pullout desirable for maximum crack deflection, hence non-brittle failure. Microscopy suggests that creep and rupture of these materials can best be considered as a probabilistic property, rather than a material property. Fiber failure occurs first in isolated regions, while stronger adjacent fibers remain intact. The right figure shows a region where oxide deposits blur and round the fiber images. Because the oxidation kinetics of SiC are well understood, this oxide scale can be used as a measure of the length of time various regions of the composites have been exposed to the environment, hence providing vital information regarding the sequence of failure. The oxide scale in the right figure indicates an early failure of this tow of fibers, whereas adjacent tows remain oxide free, suggesting failure much later in time. The path of various cracks can be followed throughout the composite in this manner, suggesting failure mechanisms.

  19. Creep analysis of solid oxide fuel cell with bonded compliant seal design

    NASA Astrophysics Data System (ADS)

    Jiang, Wenchun; Zhang, Yucai; Luo, Yun; Gong, J. M.; Tu, S. T.

    2013-12-01

    Solid oxide fuel cell (SOFC) requires good sealant because it works in harsh conditions (high temperature, thermal cycle, oxidative and reducing gas environments). Bonded compliant seal (BCS) is a new sealing method for planar SOFC. It uses a thin foil metal to bond the window frame and cell, achieving the seal between window frame and cell. At high temperature, a comprehensive evaluation of its creep strength is essential for the adoption of BCS design. In order to characterize the creep behavior, the creep induced by thermal stresses in SOFC with BCS design is simulated by finite element method. The results show that the foil is compressed and large thermal stresses are generated. The initial peak thermal stress is located in the thin foil because the foil acts as a spring stores the thermal stresses by elastic and plastic deformation in itself. Serving at high temperature, initial thermal displacement is partially recovered because of the creep relaxation, which becomes a new discovered advantage for BCS design. It predicts that the failures are likely to happen in the middle of the cell edge and BNi-2 filler metal, because the maximum residual displacement and creep strain are located.

  20. Wear and creep behavior of total knee implants undergoing wear testing.

    PubMed

    Teeter, Matthew G; Parikh, Amit; Taylor, Marc; Sprague, Jeff; Naudie, Douglas D

    2015-01-01

    We sought to determine what dimensional changes occurred from wear testing of a total knee implant, as well as any changes within the polyethylene subsurface. Three fixed bearing implants underwent wear simulator testing to 6.1 million cycles. Gravimetric analysis and micro-CT scans were performed pre-test, mid-test, and post-test. Wear volume and surface deviations were greater during 0-3.2 million cycles (91 ± 12mm(3)) than from 3.2 to 6.1 million cycles (52 ± 18mm(3)). Deviations (wear and creep) occurred across all surfaces of the tibial inserts, including the articular surface, backside surface, sides, and locking mechanism. No subsurface changes were found. The micro-CT results were a useful adjunct to gravimetric analysis, defining the dimensional changes that occurred with testing and ruling out subsurface fatigue. PMID:25175057

  1. Irradiation creep of nano-powder sintered silicon carbide at low neutron fluences

    SciTech Connect

    Koyanagi, Takaaki; Shimoda, Kazuya; Kondo, Sosuke; Hinoki, Tatsuya; Ozawa, Kazumi; Katoh, Yutai

    2014-12-01

    The irradiation creep behavior of nano-powder sintered silicon carbide was investigated using the bend stress relaxation method under neutron irradiation up to 1.9 dpa. The creep deformation was observed at all temperatures ranging from 380 to 1180 °C mainly from the irradiation creep but with the increasing contributions from the thermal creep at higher temperatures. Microstructural observation and data analysis were performed.

  2. The effects of molecular weight on the single lap shear creep and constant strain rate behavior of thermoplastic polyimidesulfone adhesive

    NASA Technical Reports Server (NTRS)

    Dembosky, Stanley K.; Sancaktar, Erol

    1985-01-01

    The bonded shear creep and constant strain rate behaviors of zero, one, and three percent endcapped thermoplastic polyimidesulfone adhesive were examined at room and elevated temperatures. Endcapping was accomplished by the addition of phthalic anhydrides. The primary objective was to determine the effects of molecular weight on the mechanical properties of the adhesive. Viscoelastic and nonlinear elastic constitutive equations were utilized to model the adhesive. Ludwik's and Crochet's relations were used to describe the experimental failure data. The effects of molecular weight changes on the above mentioned mechanical behavior were assessed. The viscoelastic Chase-Goldsmith and elastic nonlinear relations gave a good fit to the experimental stress strain behavior. Crochet's relations based on Maxwell and Chase-Goldsmith models were fit to delayed failure data. Ludwik's equations revealed negligible rate dependence. Ultimate stress levels and the safe levels for creep stresses were found to decrease as molecular weight was reduced.

  3. Creep deformation and fracture behavior of types 316 and 316L(N) stainless steels and their weld metals

    SciTech Connect

    Sasikala, G.; Mathew, M.D.; Bhanu Sankara Rao, K.; Mannan, S.L.

    2000-04-01

    The creep properties of a nuclear-grade type 316(L) stainless steel (SS) alloyed with nitrogen (316L(N)SS) and its weld metal were studied at 873 and 923 K in the range of applied stresses from 100 to 335 MPa. The results were compared with those obtained on a nuclear-grade type 316 SS, which is lean in nitrogen. The creep rupture lives of the weld metals were found to be lower than those of the respective base metals by a factor of 5 to 10. Both the base and weld metals of 314L(N)SS exhibited better resistance to creep deformation compared to their 316SS counterparts at identical test conditions. A power-law relationship between the minimum creep rate and applied stress was found to be obeyed for both the base and weld metals. Both the weld metals generally exhibited lower rupture elongation than the respective base metals; however, at 873 K, the 316 SS base and weld metals had similar rupture elongation at identical applied stresses. Comparison of the rupture lives of the two steels to the ASME curves for the expected minimum stress to rupture for 316 Ss base and weld metals showed that, for 316L(N) SS, the specifications for maximum allowable stresses based on data for 316 SS could prove overconservative. The influence of nitrogen on the creep deformation and fracture behavior, especially in terms of its modifying the precipitation kinetics, is discussed in light of the microstructural observations. In welds containing {delta} ferrite, the kinetics of its transformation and the nature of the transformation products control the deformation and fracture behavior. The influence of nitrogen on the {delta} ferrite transformation behavior and coarsening kinetics is also discussed, on the basis of extensive characterization by metallographic techniques.

  4. Creep deformation and fracture behavior of types 316 and 316L(N) stainless steels and their weld metals

    NASA Astrophysics Data System (ADS)

    Sasikala, G.; Mannan, S. L.; Mathew, M. D.; Rao, K. Bhanu

    2000-04-01

    The creep properties of a nuclear-grade type 316(L) stainless steel (SS) alloyed with nitrogen (316L(N) SS) and its weld metal were studied at 873 and 923 K in the range of applied stresses from 100 to 335 MPa. The results were compared with those obtained on a nuclear-grade type 316 SS, which is lean in nitrogen. The creep rupture lives of the weld metals were found to be lower than those of the respective base metals by a factor of 5 to 10. Both the base and weld metals of 316L(N) SS exhibited better resistance to creep deformation compared to their 316 SS counterparts at identical test conditions. A power-law relationship between the minimum creep rate and applied stress was found to be obeyed for both the base and weld metals. Both the weld metals generally exhibited lower rupture elongation than the respective base metals; however, at 873 K, the 316 SS base and weld metals had similar rupture elongation at identical applied stresses. Comparison of the rupture lives of the two steels to the ASME curves for the expected minimum stress to rupture for 316 SS base and weld metals showed that, for 316L(N) SS, the specifications for maximum allowable stresses based on data for 316 SS could prove overconservative. The influence of nitrogen on the creep deformation and fracture behavior, especially in terms of its modifying the precipitation kinetics, is discussed in light of the microstructural observations. In welds containing δ ferrite, the kinetics of its transformation and the nature of the transformation products control the deformation and fracture behavior. The influence of nitrogen on the δ ferrite transformation behavior and coarsening kinetics is also discussed, on the basis of extensive characterization by metallographic techniques.

  5. Analysis of slip activity and heterogeneous deformation in tension and tension-creep of Ti-5Al-2.5Sn (wt %) using in-situ SEM experiments

    NASA Astrophysics Data System (ADS)

    Li, H.; Boehlert, C. J.; Bieler, T. R.; Crimp, M. A.

    2012-08-01

    The deformation behavior of a Ti-5Al-2.5Sn (wt %) near-α alloy was investigated during in-situ deformation inside a scanning electron microscope. Tensile experiments were performed at 296 K and 728 K (≈0.4 T m), while tensile-creep experiments were performed at 728 K and 763 K. Active deformation systems were identified using electron backscattered diffraction-based slip trace analysis. Both basal and prismatic slip systems were active during the tensile experiments. Basal slip was observed for grains clustered around high Schmid factor orientations, while prismatic slip exhibited less dependence on the crystallographic orientation. The tension-creep experiments revealed less slip but more development of grain boundary ledges than in the higher strain rate tensile experiments. Some of the grain boundary ledges evolved into grain boundary cracks, and grain boundaries oriented nearly perpendicular to the tensile axis formed ledges earlier in the deformation process. Grain boundaries with high misorientations also tended to form ledges earlier than those with lower misorientations. Most of the grain boundary cracks formed in association with grains displaying hard orientations, where the c-axis was nearly perpendicular to the tensile direction. For the tension-creep experiments, pronounced basal slip was observed in the lower-stress creep regime and the activity of prismatic slip increased with increasing creep stress and temperature.

  6. Oscillatory, creep and steady flow behavior of xanthan-thickened oil-in-water emulsions

    SciTech Connect

    Pal, R.

    1995-04-01

    In the handling, mixing, storage, and pipeline transportation of emulsions, knowledge of rheological properties is required for the design, selection, and operation of the equipment involved. The rheological behavior of xanthan gum-thickened oil-in-water emulsions is studied with a cone-and-plate system using a constant-stress rheometer. Xanthan gum solutions and xanthan-thickened oil-in-water emulsions are strongly shear-thinning and viscoelastic in nature. The effects of polymer and oil concentrations on the rheological behavior of emulsions are investigated. The relative viscosity for the thickened emulsions, at any given oil concentration, increases with an increase in the shear rate, whereas the unthickened emulsions show the opposite trend. The theoretical models give reasonable predictions for the relative viscosity, storage modulus, and loss modulus of xanthan-thickened emulsions. The ratio of storage to loss moduli increases considerably with the increase in polymer and oil concentrations. The creep/recovery experiments confirm that the xanthan-thickened emulsions are highly viscoelastic in nature and that the degree of elasticity increases with the increase in polymer and oil concentrations.

  7. Development of constitutive models for cyclic plasticity and creep behavior of super alloys at high temperature

    NASA Technical Reports Server (NTRS)

    Haisler, W. E.

    1983-01-01

    An uncoupled constitutive model for predicting the transient response of thermal and rate dependent, inelastic material behavior was developed. The uncoupled model assumes that there is a temperature below which the total strain consists essentially of elastic and rate insensitive inelastic strains only. Above this temperature, the rate dependent inelastic strain (creep) dominates. The rate insensitive inelastic strain component is modelled in an incremental form with a yield function, blow rule and hardening law. Revisions to the hardening rule permit the model to predict temperature-dependent kinematic-isotropic hardening behavior, cyclic saturation, asymmetric stress-strain response upon stress reversal, and variable Bauschinger effect. The rate dependent inelastic strain component is modelled using a rate equation in terms of back stress, drag stress and exponent n as functions of temperature and strain. A sequence of hysteresis loops and relaxation tests are utilized to define the rate dependent inelastic strain rate. Evaluation of the model has been performed by comparison with experiments involving various thermal and mechanical load histories on 5086 aluminum alloy, 304 stainless steel and Hastelloy X.

  8. Creep behavior in SiC whisker-reinforced alumina composite

    SciTech Connect

    Lin, H.T.; Becher, P.F.

    1994-10-01

    Grain boundary sliding (often accompanied by cavitation) is a major contributor to compressive and tensile creep deformation in fine-grained aluminas, both with and without whisker-reinforcement. Studies indicate that the creep response of alumina composites reinforced with SiC whiskers can be tailored by controlling the composite microstructure and composition. The addition of SiC whiskers (< 30 vol%) significantly increases the creep resistance of fine-grained (1--2 {mu}m) alumina in air at temperatures of 1,200 and 1,300 C. However, at higher whisker contents (30 and 50 vol%), the creep resistance is degraded due to enhanced surface oxidation reactions accompanied by extensive creep cavitation. Densification aids (i.e., Y{sub 2}O{sub 3}), which facilitate silica glass formation and thus liquid phase densification of the composites, can also result in degradation of creep resistance. On the other hand, increasing the matrix grain size or decreasing the whisker aspect ratio (increased whisker number density) results in raising the creep resistance of the composites. These observations not only explain the variability in the creep response of various SiC whisker-reinforced alumina composites but also indicate factors that can be used to enhance the elevated temperature performance.

  9. Creep Behavior of Near-Stoichiometric Polycrystalline Binary NiAl

    NASA Technical Reports Server (NTRS)

    Raj, S. V.

    2002-01-01

    New and published constant load creep and constant engineering strain rate data on near-stoichiometric binary NiAl in the intermediate temperature range 700 to 1300 K are reviewed. Both normal and inverse primary creep curves are observed depending on stress and temperature. Other characteristics relating to creep of NiAl involving grain size, stress and temperature dependence are critically examined and discussed. At stresses below 25 MPa and temperatures above 1000 K, a new grain boundary sliding mechanism was observed with n approx. 2, Qc approx. 100 kJ/ mol and a grain size exponent of about 2. It is demonstrated that Coble creep and accommodated grain boundary sliding models fail to predict the experimental creep rates by several orders of magnitude.

  10. Effects of Microstructure and Processing Methods on Creep Behavior of AZ91 Magnesium Alloy

    NASA Astrophysics Data System (ADS)

    Shahbeigi Roodposhti, Peiman; Sarkar, Apu; Murty, Korukonda L.; Scattergood, Ronald O.

    2016-07-01

    This review sheds light on the creep properties of AZ91 magnesium alloys with a major emphasis on the influence of microstructure on the creep resistance and underlying creep deformation mechanism based on stress exponent and activation energy. Effects of processing routes such as steel mold casting, die casting, and thixoforming are considered. Roles of a wide range of additional alloying elements such as Si, Sb, Bi, Ca, Sn, REs, and combined addition of them on the microstructure modification were investigated. The reaction between these elements and the Mg or Al in the matrix develops some thermally stable intermetallic phases which improves the creep resistance at elevated temperatures, however does not influence the creep mechanism.

  11. Creep Behavior and Degradation of Subgrain Structures Pinned by Nanoscale Precipitates in Strength-Enhanced 5 to 12 Pct Cr Ferritic Steels

    NASA Astrophysics Data System (ADS)

    Ghassemi Armaki, Hassan; Chen, Ruiping; Maruyama, Kouichi; Igarashi, Masaaki

    2011-10-01

    Creep behavior and degradation of subgrain structures and precipitates of Gr. 122 type xCr-2W-0.4Mo-1Cu-VNb ( x = 5, 7, 9, 10.5, and 12 pct) steels were evaluated during short-term and long-term static aging and creep with regard to the Cr content of steel. Creep rupture life increased from 5 to 12 pct Cr in the short-term creep region, whereas in the long-term creep region, it increased up to 9 pct Cr and then decreased with the addition of Cr from 9 to 12 pct. Behavior of creep rupture life was attributed to the size of elongated subgrains. In the short-term creep region, subgrain size decreased from 5 to 12 pct Cr, corresponding to the longer creep strength. However, in the long-term creep region after 104 hours, subgrain size increased up to 9 pct Cr and then decreased from 9 to 12 pct, corresponding to the behavior of creep rupture life. M23C6 and MX precipitates had the highest number fraction among all of the precipitates present in the studied steels. Cr concentration dependence of spacing of M23C6 and MX precipitates exhibited a V-like shape during short-term as well as long-term aging at 923 K (650 °C), and the minimum spacing of precipitates belonged to 9 pct Cr steel, corresponding to the lowest recovery speed of subgrain structures. In the short-term creep region, subgrain coarsening during creep was controlled by strain and proceeded slower with the addition of Cr, whereas in long-term creep region, subgrain coarsening was controlled by the stability of precipitates rather than due to the creep plastic deformation and took place faster from 9 to 12 pct and 9 to 5 pct Cr. However, M23C6 precipitates played a more important role than MX precipitates in the control of subgrain coarsening, and there was a closer correlation between spacing of M23C6 precipitates and subgrain size during static aging and long-term creep region.

  12. Shear Correction Factors in Creep-Damage Analysis of Beams, Plates and Shells

    NASA Astrophysics Data System (ADS)

    Altenbach, Holm; Naumenko, Konstantin

    Modern design rules for thin-walled structures which operate at elevated temperatures are based on the demand that the creep and may be the damage behaviour should be taken into account. In the last four decades various models including the scalar or tensor valued hardening and damage variables are established. These models reflect the influence of the deformation or the damage induced anisotropy on the creep response. One problem in creep analysis of thin-walled structures is the selection of the structural mechanics model which has to be adequate to the choice of the constitutive equations. Considering complex loading conditions the structural mechanics model has to reflect for instance the different constitutive behaviour in tension and compression. Below the applicability of classical engineering models for beams, plates and shells to the creep-damage analysis is discussed. It will be shown that a first improvement of the classical approach can be given within the assumptions of the first order shear deformation theory. Based on the beam equations we demonstrate that the shear correction factors have to be modified within the time-step analysis.

  13. Effect of fiber-matrix adhesion on the creep behavior of CF/PPS composites: temperature and physical aging characterization

    NASA Astrophysics Data System (ADS)

    Motta Dias, M. H.; Jansen, K. M. B.; Luinge, J. W.; Bersee, H. E. N.; Benedictus, R.

    2016-06-01

    The influence of fiber-matrix adhesion on the linear viscoelastic creep behavior of `as received' and `surface modified' carbon fibers (AR-CF and SM-CF, respectively) reinforced polyphenylene sulfide (PPS) composite materials was investigated. Short-term tensile creep tests were performed on ±45° specimens under six different isothermal conditions, 40, 50, 60, 65, 70 and 75 °C. Physical aging effects were evaluated on both systems using the short-term test method established by Struik. The results showed that the shapes of the curves were affected neither by physical aging nor by the test temperature, allowing then superposition to be made. A unified model was proposed with a single physical aging and temperature-dependent shift factor, a_{T,te}. It was suggested that the surface treatment carried out in SM-CF/PPS had two major effects on the creep response of CF/PPS composites at a reference temperature of 40 °C: a lowering of the initial compliance of about 25 % and a slowing down of the creep response of about 1.1 decade.

  14. Effect of fiber-matrix adhesion on the creep behavior of CF/PPS composites: temperature and physical aging characterization

    NASA Astrophysics Data System (ADS)

    Motta Dias, M. H.; Jansen, K. M. B.; Luinge, J. W.; Bersee, H. E. N.; Benedictus, R.

    2016-02-01

    The influence of fiber-matrix adhesion on the linear viscoelastic creep behavior of `as received' and `surface modified' carbon fibers (AR-CF and SM-CF, respectively) reinforced polyphenylene sulfide (PPS) composite materials was investigated. Short-term tensile creep tests were performed on ±45° specimens under six different isothermal conditions, 40, 50, 60, 65, 70 and 75 °C. Physical aging effects were evaluated on both systems using the short-term test method established by Struik. The results showed that the shapes of the curves were affected neither by physical aging nor by the test temperature, allowing then superposition to be made. A unified model was proposed with a single physical aging and temperature-dependent shift factor, a_{T,te}. It was suggested that the surface treatment carried out in SM-CF/PPS had two major effects on the creep response of CF/PPS composites at a reference temperature of 40 °C: a lowering of the initial compliance of about 25 % and a slowing down of the creep response of about 1.1 decade.

  15. Creep Behavior of Hafnia and Ytterbium Silicate Environmental Barrier Coating Systems on SiC/SiC Ceramic Matrix Composites

    NASA Technical Reports Server (NTRS)

    Zhu, Dongming; Fox, Dennis S.; Ghosn, Louis J.; Harder, Bryan

    2011-01-01

    Environmental barrier coatings will play a crucial role in future advanced gas turbine engines because of their ability to significantly extend the temperature capability and stability of SiC/SiC ceramic matrix composite (CMC) engine components, thus improving the engine performance. In order to develop high performance, robust coating systems for engine components, appropriate test approaches simulating operating temperature gradient and stress environments for evaluating the critical coating properties must be established. In this paper, thermal gradient mechanical testing approaches for evaluating creep and fatigue behavior of environmental barrier coated SiC/SiC CMC systems will be described. The creep and fatigue behavior of Hafnia and ytterbium silicate environmental barrier coatings on SiC/SiC CMC systems will be reported in simulated environmental exposure conditions. The coating failure mechanisms will also be discussed under the heat flux and stress conditions.

  16. Microstructural Evolution and Creep-Rupture Behavior of Fusion Welds Involving Alloys for Advanced Ultrasupercritical Power Generation

    NASA Astrophysics Data System (ADS)

    Bechetti, Daniel H., Jr.

    Projections for large increases in the global demand for electric power produced by the burning of fossil fuels, in combination with growing environmental concerns surrounding these fuel sources, have sparked initiatives in the United States, Europe, and Asia aimed at developing a new generation of coal fired power plant, termed Advanced Ultrasupercritical (A-USC). These plants are slated to operate at higher steam temperatures and pressures than current generation plants, and in so doing will offer increased process cycle efficiency and reduced greenhouse gas emissions. Several gamma' precipitation strengthened Ni-based superalloys have been identified as candidates for the hottest sections of these plants, but the microstructural instability and poor creep behavior (compared to wrought products) of fusion welds involving these alloys present significant hurdles to their implementation and a gap in knowledge that must be addressed. In this work, creep testing and in-depth microstructural characterization have been used to provide insight into the long-term performance of these alloys. First, an investigation of the weld metal microstructural evolution as it relates to creep strength reductions in A-USC alloys INCONELRTM 740, NIMONICRTM 263 (INCONEL and NIMONIC are registered trademarks of Special Metals Corporation), and HaynesRTM 282RTM (Haynes and 282 are registered trademarks of Haynes International) was performed. gamma'-precipitate free zones were identified in two of these three alloys, and their development was linked to the evolution of phases that precipitate at the expense of gamma'. Alloy 282 was shown to avoid precipitate free zone formation because the precipitates that form during long term aging in this alloy are poor in the gamma'-forming elements. Next, the microstructural evolution of INCONELRTM 740H (a compositional variant of alloy 740) during creep was investigated. Gleeble-based interrupted creep and creep-rupture testing was used to

  17. Long-time creep behavior of Nb-1Zr alloy containing carbon

    NASA Technical Reports Server (NTRS)

    Titran, R. H.

    1986-01-01

    Creep tests were conducted on the Nb-1Zr base alloy with and without carbon. Testing was performed at 10 to the -6 MPa in the 1350 to 1400 K range. Creep times, to 1 percent strain, ranged from 60 to 6000 hr. All 1 percent creep data were filled by linear regression to a temperature compensating rate equation. The Nb-1Zr-0.06C alloy, tested in a weakened aged condition, appears to be four times as strong as the Nb-1Zr alloy.

  18. Creep-rupture behavior of iron superalloys in high-pressure hydrogen

    NASA Technical Reports Server (NTRS)

    Bhattacharyya, S.; Peterman, W.

    1984-01-01

    The creep-rupture properties of five iron-base and one cobalt-base high temperature alloys were investigated to assess the feasibility of using the alloys as construction materials in a Stirling engine. The alloys were heat treated and hardness measurements were taken. Typical microstructures of the alloys are shown. The creep-rupture properties of the alloys were determined at 760 and 815 C in 15.0 MPa H2 for 200 to 1000 hours. Plots of rupture life versus stress for the six superalloys are presented along with creep strain-time plots.

  19. Effect of Double Aging Heat Treatment on the Short-Term Creep Behavior of the Inconel 718

    NASA Astrophysics Data System (ADS)

    Caliari, Felipe Rocha; Candioto, Kátia Cristiane Gandolpho; Couto, Antônio Augusto; Nunes, Carlos Ângelo; Reis, Danieli Aparecida Pereira

    2016-06-01

    This research studies the effect of double aging heat treatment on the short-term creep behavior of the superalloy Inconel 718. The superalloy, received in the solution treated state, was subjected to an aging treatment which comprises a solid solution at 1095 °C for 1 h, a first aging step of 955 °C for 1 h, then aged at 720 and 620 °C, 8 h each step. Creep tests at constant load mode, under temperatures of 650, 675, 700 °C and stress of 510, 625 and 700 MPa, were performed before and after heat treatment. The results indicate that after the double aging heat treatment creep resistance is increased, influenced by the presence of precipitates γ' and γ″ and its interaction with the dislocations, by grain size growth (from 8.20 to 7.23 ASTM) and the increase of hardness by approximately 98%. Creep parameters of primary and secondary stages have been determined. There is a breakdown relationship between dot{\\upvarepsilon }_{{s}} and stress at 650 °C of Inconel 718 as received, around 600 MPa. By considering the internal stress values, effective stress exponent, effective activation energy, and TEM images of Inconel 718 double aged, it is suggested that the creep mechanism is controlled by the interaction of dislocations with precipitates. The fracture mechanism of Inconel 718 as received is transgranular (coalescence of dimples) and mixed (transgranular-intergranular), whereas the Inconel 718 double aged condition crept surfaces evidenced the intergranular fracture mechanism.

  20. Effect of Double Aging Heat Treatment on the Short-Term Creep Behavior of the Inconel 718

    NASA Astrophysics Data System (ADS)

    Caliari, Felipe Rocha; Candioto, Kátia Cristiane Gandolpho; Couto, Antônio Augusto; Nunes, Carlos Ângelo; Reis, Danieli Aparecida Pereira

    2016-04-01

    This research studies the effect of double aging heat treatment on the short-term creep behavior of the superalloy Inconel 718. The superalloy, received in the solution treated state, was subjected to an aging treatment which comprises a solid solution at 1095 °C for 1 h, a first aging step of 955 °C for 1 h, then aged at 720 and 620 °C, 8 h each step. Creep tests at constant load mode, under temperatures of 650, 675, 700 °C and stress of 510, 625 and 700 MPa, were performed before and after heat treatment. The results indicate that after the double aging heat treatment creep resistance is increased, influenced by the presence of precipitates γ' and γ″ and its interaction with the dislocations, by grain size growth (from 8.20 to 7.23 ASTM) and the increase of hardness by approximately 98%. Creep parameters of primary and secondary stages have been determined. There is a breakdown relationship between dot{\\upvarepsilon }_{s} and stress at 650 °C of Inconel 718 as received, around 600 MPa. By considering the internal stress values, effective stress exponent, effective activation energy, and TEM images of Inconel 718 double aged, it is suggested that the creep mechanism is controlled by the interaction of dislocations with precipitates. The fracture mechanism of Inconel 718 as received is transgranular (coalescence of dimples) and mixed (transgranular-intergranular), whereas the Inconel 718 double aged condition crept surfaces evidenced the intergranular fracture mechanism.

  1. Computational analysis of nonlinear creep of polyphase aggregates: Influence of phase morphology

    NASA Astrophysics Data System (ADS)

    Cook, A. C.; Vel, S. S.; Gerbi, C.; Johnson, S. E.

    2014-09-01

    The constitutive laws of polyphase aggregates dominantly depend on the operative deformation mechanisms, phase morphology and modes, and environmental conditions. Each of these factors has the potential to dramatically affect bulk mechanical properties as well as the local stress and strain rate distributions. To focus on the effects of phase morphology, we have developed a rigorous multiscale approach based on asymptotic expansion homogenization. The proposed methodology has two fundamental goals: (1) accurately predict bulk behavior in aggregates by explicitly taking into account phase morphology and (2) calculate detailed distributions of strain rates, stresses, and viscosities in heterogeneous materials. The methodology is able to consider general nonlinear phase constitutive laws that relate strain rates to stresses, temperature, and other factors such as water fugacity and grain size. We demonstrate the approach by analyzing power law creep of computer-generated and natural polyphase systems and benchmarking the results against analytical solutions. As an outcome of this analysis, we find that the approximation of an aggregate as a power law material is reasonable for isotropic, homogeneous phase distributions but breaks down significantly with high degrees of phase organization. We also present distributions in strain rate, stress, and viscosity for different applied loading conditions. Results exhibit areas of high internal stresses and substantial localization. We describe and provide a freely available software package supporting these calculations.

  2. The Microstructure, Creep, and Tensile Behavior for Ti-5Al-45Nb (Atomic Percent) Fully- β Alloy

    NASA Astrophysics Data System (ADS)

    Cowen, C. J.; Boehlert, C. J.

    2007-11-01

    The microstructure, tensile, and creep behavior of a Ti-5Al-45Nb (at. pct) alloy was evaluated. The main objective of processing and characterizing this alloy was to obtain the constituent properties of a fully- β Ti-Al-Nb alloy to aid in modeling the tensile and creep properties of two-phase orthorhombic + body-centered-cubic (O + bcc) alloys. A second objective was to compare the tensile and creep behavior of this fully- β alloy to that for two-phase O + bcc alloys. This alloy exhibited a single-phase microstructure, containing the disordered bcc phase ( β), after all the processing and heat treatments performed. This alloy was easily fabricated and workable; however, its creep resistance was significantly worse than that for fully-O and two-phase O + bcc alloys. The alloy exhibited little strain hardening along with a room-temperature yield strength (YS) of 545 MPa, an ultimate tensile stress (UTS) of 559 MPa, a Young’s modulus (E) of 86 GPa, and a tensile elongation to failure of 25 pct. Extensive surface slip was evident on the deformed material. Its room-temperature tensile properties were quite similar to those for a fully- β Ti-12Al-38Nb microstructure (YS = 553 MPa, UTS = 566 MPa, E = 84, and ɛ f > 27 pct). Thus, the room-temperature tensile properties and behavior of fully- β Ti-Al-Nb microstructures containing 50 at. pct Ti are not sensitive to compositional variations between 5 to 12 at. pct Al and 38 to 45 at. pct Nb.

  3. Mechanisms of high-temperature, solid-state flow in minerals and ceramics and their bearing on the creep behavior of the mantle

    USGS Publications Warehouse

    Kirby, S.H.; Raleigh, C.B.

    1973-01-01

    The problem of applying laboratory silicate-flow data to the mantle, where conditions can be vastly different, is approached through a critical review of high-temperature flow mechanisms in ceramics and their relation to empirical flow laws. The intimate association of solid-state diffusion and high-temperature creep in pure metals is found to apply to ceramics as well. It is shown that in ceramics of moderate grain size, compared on the basis of self-diffusivity and elastic modulus, normalized creep rates compare remarkably well. This comparison is paralleled by the near universal occurrence of similar creep-induced structures, and it is thought that the derived empirical flow laws can be associated with dislocation creep. Creep data in fine-grained ceramics, on the other hand, are found to compare poorly with theories involving the stress-directed diffusion of point defects and have not been successfully correlated by self-diffusion rates. We conclude that these fine-grained materials creep primarily by a quasi-viscous grain-boundary sliding mechanism which is unlikely to predominate in the earth's deep interior. Creep predictions for the mantle reveal that under most conditions the empirical dislocation creep behavior predominates over the mechanisms involving the stress-directed diffusion of point defects. The probable role of polymorphic transformations in the transition zone is also discussed. ?? 1973.

  4. Memory characteristics of hysteresis and creep in multi-layer piezoelectric actuators: An experimental analysis

    NASA Astrophysics Data System (ADS)

    Biggio, Matteo; Butcher, Mark; Giustiniani, Alessandro; Masi, Alessandro; Storace, Marco

    2014-02-01

    In this paper we provide an experimental characterization of creep and hysteresis in a multi-layer piezoelectric actuator (PEA), taking into account their relationships in terms of memory structure. We fit the well-known log-t model to the response of the PEA when driven by piecewise-constant signals, and find that both the instantaneous and the delayed response of the PEA display hysteretic dependence on the voltage level. We investigate experimentally the dependence of the creep coefficient on the input history, by driving the PEA along first-order reversal curves and congruent minor loops, and find that it displays peculiar features like strict congruence of the minor loops and discontinuities. We finally explain the observed experimental behaviors in terms of a slow relaxation of the staircase interface line in the Preisach plane.

  5. A novel on chip test method to characterize the creep behavior of metallic layers under heavy ion irradiation

    NASA Astrophysics Data System (ADS)

    Lapouge, P.; Onimus, F.; Vayrette, R.; Raskin, J.-P.; Pardoen, T.; Bréchet, Y.

    2016-08-01

    An on chip test method has been developed to characterize the irradiation creep behavior of thin freestanding films under uniaxial tension. The method is based on the use of a long beam involving large internal stress protected from the irradiation flux that imposes a spring like deformation to a specimen beam. These elementary freestanding structures fabricated using a combination of deposition, lithography and release steps are multiplied with different dimensions in order to test different levels of stress and of initial plastic deformation. The method has been validated on 200 and 500 nm thick copper films under heavy copper ions irradiation. The irradiation creep rate is shown to be at least one order of magnitude larger than in the absence of irradiation.

  6. The Effect of Thermomechanical Processing on the Tensile, Fatigue, and Creep Behavior of Magnesium Alloy AM60

    SciTech Connect

    Chen, Zhe; Huang, J; Decker, R; Lebeau, S; Walker, Larry R; Cavin, Odis Burl; Watkins, Thomas R; Boehlert, C. J.

    2011-01-01

    Tensile, fatigue, fracture toughness, and creep experiments were performed on a commercially available magnesium-aluminum alloy (AM60) after three processing treatments: (1) as-THIXOMOLDED (as-molded), (2) THIXOMOLDED then thermomechanically processed (TTMP), and (3) THIXOMOLDED then TTMP then annealed (annealed). The TTMP procedure resulted in a significantly reduced grain size and a tensile yield strength greater than twice that of the as-molded material without a debit in elongation to failure ({epsilon}{sub f}). The as-molded material exhibited the lowest strength, while the annealed material exhibited an intermediate strength but the highest {epsilon}{sub f} (>1 pct). The TTMP and annealed materials exhibited fracture toughness values almost twice that of the as-molded material. The as-molded material exhibited the lowest fatigue threshold values and the lowest fatigue resistance. The annealed material exhibited the greatest fatigue resistance, and this was suggested to be related to its balance of tensile strength and ductility. The fatigue lives of each material were similar at both room temperature (RT) and 423 K (150 C). The tensile-creep behavior was evaluated for applied stresses ranging between 20 and 75 MPa and temperatures between 373 and 473 K (100 and 200 C). During both the fatigue and creep experiments, cracking preferentially occurred at grain boundaries. Overall, the results indicate that thermomechanical processing of AM60 dramatically improves the tensile, fracture toughness, and fatigue behavior, making this alloy attractive for structural applications. The reduced creep resistance after thermomechanical processing offers an opportunity for further research and development.

  7. Prediction and verification of creep behavior in metallic materials and components for the space shuttle thermal protection system. Volume 2: Phase 2 subsize panel cyclic creep predictions

    NASA Technical Reports Server (NTRS)

    Cramer, B. A.; Davis, J. W.

    1975-01-01

    A method for predicting permanent cyclic creep deflections in stiffened panel structures was developed. The resulting computer program may be applied to either the time-hardening or strain-hardening theories of creep accumulation. Iterative techniques were used to determine structural rotations, creep strains, and stresses as a function of time. Deflections were determined by numerical integration of structural rotations along the panel length. The analytical approach was developed for analyzing thin-gage entry vehicle metallic-thermal-protection system panels subjected to cyclic bending loads at high temperatures, but may be applied to any panel subjected to bending loads. Predicted panel creep deflections were compared with results from cyclic tests of subsize corrugation and rib-stiffened panels. Empirical equations were developed for each material based on correlation with tensile cyclic creep data and both the subsize panels and tensile specimens were fabricated from the same sheet material. For Vol. 1, see N75-21431.

  8. Creep Behavior and Damage of Ni-Base Superalloys PM 1000 and PM 3030

    NASA Astrophysics Data System (ADS)

    Nganbe, M.; Heilmaier, M.

    2009-12-01

    Two oxide dispersion strengthening (ODS) nickel-base superalloys, a solely dispersion-strengthened alloy (PM 1000) and an additionally γ'-strengthened alloy (PM 3030) are investigated regarding creep resistance at temperatures between 600 °C and 1000 °C. The creep strength advantage of PM 3030 over PM 1000 decreases as the temperature increases due to the thermal instability of the γ' phase. The particle strengthening contribution in both alloys increases linearly with load. However, solid solution softening leads to an apparent drop in particle strengthening in PM 1000. Deformation concentration in slip bands is more accentuated in PM 3030-R34 due to additional γ' strengthening combined with strongly textured coarse and elongated grain structure. Finer, equiaxed grains reduce creep strength at higher temperatures due to grain boundary deformation processes and premature pore formation, but have only minor impact at low and intermediate temperatures.

  9. Investigation of Three Analytical Hypothesis for Determining Material Creep Behavior under Varied Loads, with an Application to 2024-T3 Aluminum-Alloy Sheet in Tension at 400 F

    NASA Technical Reports Server (NTRS)

    Berkovits, Avraham

    1961-01-01

    Three existing hypotheses are formulated mathematically to estimate tensile creep strain under varied loads and constant temperature from creep data obtained under constant load and constant temperature. hypotheses investigated include the time-hardening, strain-hardening, and life-fraction rules. Predicted creep behavior is compared with data obtained from tensile creep tests of 2024-T3 aluminum-alloy sheet at 400 F under cyclic-load conditions. creep strain under varied loads is presented on the basis of an equivalent stress, derived from the life-fraction rule, which reduces the varied-load case to a constant-load problem. Creep strain in the region of interest for structural design and rupture times, determined from the hypotheses investigated, are in fair agreement with data in most cases, although calculated values of creep strain are generally greater than the experimental values because creep recovery is neglected in the calculations.

  10. Countercontrol in behavior analysis

    PubMed Central

    Delprato, Dennis J.

    2002-01-01

    Countercontrol is a functional class of behavior that is part of Skinner's analysis of social behavior. Countercontrol refers to behavioral episodes comprised of socially mediated aversive controlling conditions and escape or avoidance responses that do not reinforce, and perhaps even punish, controllers' responses. This paper suggests that neglect of countercontrol in modern behavior analysis is unfortunate because the concept applies to interpersonal and social relations the fundamental operant principle that human behavior is both controlled and controlling—humans are not passive and inflexible. Countercontrol is addressed here in terms of conceptual status, contemporary developments in behavior analysis, its importance in a behavior-analytic approach to freedom and cultural design, applications, and research. The main conclusion is that Skinner's formulation of counter-control is scientifically supported and worthy of increased prominence in behavior analysis. PMID:22478386

  11. Creep behavior and in-depth microstructural characterization of dissimilar joints

    NASA Astrophysics Data System (ADS)

    Kauffmann, F.; Klein, T.; Klenk, A.; Maile, K.

    2013-02-01

    The 700 °C power plants currently under development will utilize Ni-base alloys such as alloy 617 for components to be operated at temperatures >650 °C. Due to economic reasons for components or parts of components which are subjected to temperatures <650 °C, 2% Cr or 9-12% Cr steels is used, depending on the required mechanical properties. This makes the dissimilar joining of Ni-base alloys and Cr steels a necessity in these plants. Experimental investigations show that these joints have to be identified as weak points with regard to damage development under creep and creep-fatigue loading. The present investigation focuses on welds between the alloy 617 and 2% Cr steel. Under creep load the fracture occurs near the fusion line between the 2% Cr steel base metal and alloy 617 weld metal. To explain the reasons for this fracture location, the microstructure of this fusion line was investigated using TEM and FIB techniques after welding and after creep loading. The TEM investigations have shown a small zone in the weld metal near the fusion line exhibiting chromium depletion and clearly reduced amounts of chromium carbides, leading to a weakening of this zone.

  12. Microstructural Evolution and Creep-Rupture Behavior of A-USC Alloy Fusion Welds

    NASA Astrophysics Data System (ADS)

    Bechetti, Daniel H.; DuPont, John N.; Siefert, John A.; Shingledecker, John P.

    2016-06-01

    Characterization of the microstructural evolution of fusion welds in alloys slated for use in advanced ultrasupercritical (A-USC) boilers during creep has been performed. Creep-rupture specimens involving INCONEL® 740, NIMONIC® 263 (INCONEL and NIMONIC are registered trademarks of Special Metals Corporation), and Haynes® 282® (Haynes and 282 are registered trademarks of Haynes International) have been analyzed via light optical microscopy, scanning electron microscopy, X-ray diffraction, and thermodynamic and kinetic modeling. Focus has been given to the microstructures that develop along the grain boundaries in these alloys during creep at temperatures relevant to the A-USC process cycle, and particular attention has been paid to any evidence of the formation of local γ'-denuded or γ'-free zones. This work has been performed in an effort to understand the microstructural changes that lead to a weld strength reduction factor (WSRF) in these alloys as compared to solution annealed and aged alloy 740 base metal. γ' precipitate-free zones have been identified in alloy 740 base metal, solution annealed alloy 740 weld metal, and alloy 263 weld metal after creep. Their development during long-term thermal exposure is correlated with the stabilization of phases that are rich in γ'-forming elements (e.g., η and G) and is suppressed by precipitation of phases that do not contain the γ' formers (e.g., M23C6 and μ). The location of failure and creep performance in terms of rupture life and WSRF for each welded joint is presented and discussed.

  13. Microstructural Evolution and Creep-Rupture Behavior of A-USC Alloy Fusion Welds

    NASA Astrophysics Data System (ADS)

    Bechetti, Daniel H.; DuPont, John N.; Siefert, John A.; Shingledecker, John P.

    2016-09-01

    Characterization of the microstructural evolution of fusion welds in alloys slated for use in advanced ultrasupercritical (A-USC) boilers during creep has been performed. Creep-rupture specimens involving INCONEL® 740, NIMONIC® 263 (INCONEL and NIMONIC are registered trademarks of Special Metals Corporation), and Haynes® 282® (Haynes and 282 are registered trademarks of Haynes International) have been analyzed via light optical microscopy, scanning electron microscopy, X-ray diffraction, and thermodynamic and kinetic modeling. Focus has been given to the microstructures that develop along the grain boundaries in these alloys during creep at temperatures relevant to the A-USC process cycle, and particular attention has been paid to any evidence of the formation of local γ'-denuded or γ'-free zones. This work has been performed in an effort to understand the microstructural changes that lead to a weld strength reduction factor (WSRF) in these alloys as compared to solution annealed and aged alloy 740 base metal. γ' precipitate-free zones have been identified in alloy 740 base metal, solution annealed alloy 740 weld metal, and alloy 263 weld metal after creep. Their development during long-term thermal exposure is correlated with the stabilization of phases that are rich in γ'-forming elements ( e.g., η and G) and is suppressed by precipitation of phases that do not contain the γ' formers ( e.g., M23C6 and μ). The location of failure and creep performance in terms of rupture life and WSRF for each welded joint is presented and discussed.

  14. Creep Behavior at 1273 K (1000 °C) in Nb-Bearing Austenitic Heat-Resistant Cast Steels Developed for Exhaust Component Applications

    NASA Astrophysics Data System (ADS)

    Zhang, Yinhui; Li, Mei; Godlewski, Larry A.; Zindel, Jacob W.; Feng, Qiang

    2016-05-01

    ABSTRACT A series of Nb-bearing austenitic heat-resistant cast steels with variations of N/C ratios were investigated, and the morphological change of Nb(C,N) from faceted blocks, mixed flake-blocks to "Chinese-script" was observed as N/C ratios decreased. The creep behavior of these alloys was studied at 1273 K (1000 °C), and the longest creep life and lowest creep rate occurred in model alloys with script Nb(C,N). Residual δ-ferrites and (Cr,Fe)23C6 were adverse to creep properties. This work indicates that the control of N/C ratio is required for the as-cast microstructural strengthening.

  15. Creep Behavior at 1273 K (1000 °C) in Nb-Bearing Austenitic Heat-Resistant Cast Steels Developed for Exhaust Component Applications

    NASA Astrophysics Data System (ADS)

    Zhang, Yinhui; Li, Mei; Godlewski, Larry A.; Zindel, Jacob W.; Feng, Qiang

    2016-07-01

    A series of Nb-bearing austenitic heat-resistant cast steels with variations of N/C ratios were investigated, and the morphological change of Nb(C,N) from faceted blocks, mixed flake-blocks to "Chinese-script" was observed as N/C ratios decreased. The creep behavior of these alloys was studied at 1273 K (1000 °C), and the longest creep life and lowest creep rate occurred in model alloys with script Nb(C,N). Residual δ-ferrites and (Cr,Fe)23C6 were adverse to creep properties. This work indicates that the control of N/C ratio is required for the as-cast microstructural strengthening.

  16. Processing, Microstructure and Creep Behavior of Mo-Si-B-Based Intermetallic Alloys for Very High Temperature Structural Applications

    SciTech Connect

    Vijay Vasudevan

    2008-03-31

    This research project is concerned with developing a fundamental understanding of the effects of processing and microstructure on the creep behavior of refractory intermetallic alloys based on the Mo-Si-B system. In the first part of this project, the compression creep behavior of a Mo-8.9Si-7.71B (in at.%) alloy, at 1100 and 1200 C was studied, whereas in the second part of the project, the constant strain rate compression behavior at 1200, 1300 and 1400 C of a nominally Mo-20Si-10B (in at.%) alloy, processed such as to yield five different {alpha}-Mo volume fractions ranging from 5 to 46%, was studied. In order to determine the deformation and damage mechanisms and rationalize the creep/high temperature deformation data and parameters, the microstructure of both undeformed and deformed samples was characterized in detail using x-ray diffraction, scanning electron microscopy (SEM) with back scattered electron imaging (BSE) and energy dispersive x-ray spectroscopy (EDS), electron back scattered diffraction (EBSD)/orientation electron microscopy in the SEM and transmission electron microscopy (TEM). The microstructure of both alloys was three-phase, being composed of {alpha}-Mo, Mo{sub 3}Si and T2-Mo{sub 5}SiB{sub 2} phases. The values of stress exponents and activation energies, and their dependence on microstructure were determined. The data suggested the operation of both dislocation as well as diffusional mechanisms, depending on alloy, test temperature, stress level and microstructure. Microstructural observations of post-crept/deformed samples indicated the presence of many voids in the {alpha}-Mo grains and few cracks in the intermetallic particles and along their interfaces with the {alpha}-Mo matrix. TEM observations revealed the presence of recrystallized {alpha}-Mo grains and sub-grain boundaries composed of dislocation arrays within the grains (in Mo-8.9Si-7.71B) or fine sub-grains with a high density of b = 1/2<111> dislocations (in Mo-20Si-10B), which

  17. Probabilistic models for creep-fatigue in a steel alloy

    NASA Astrophysics Data System (ADS)

    Ibisoglu, Fatmagul

    In high temperature components subjected to long term cyclic operation, simultaneous creep and fatigue damage occur. A new methodology for creep-fatigue life assessment has been adopted without the need to separate creep and fatigue damage or expended life. Probabilistic models, described by hold times in tension and total strain range at temperature, have been derived based on the creep rupture behavior of a steel alloy. These models have been validated with the observed creep-fatigue life of the material with a scatter band close to a factor of 2. Uncertainties of the creep-fatigue model parameters have been estimated with WinBUGS which is an open source Bayesian analysis software tool that uses Markov Chain Monte Carlo method to fit statistical models. Secondly, creep deformation in stress relaxation data has been analyzed. Well performing creep equations have been validated with the observed data. The creep model with the highest goodness of fit among the validated models has been used to estimate probability of exceedance at 0.6% strain level for the steel alloy.

  18. Non-linear Creep Analysis of Ceramic Specimen Using Finite Element Method

    NASA Astrophysics Data System (ADS)

    Saini, Jaswinder Singh; Khera, Saurabh

    2016-07-01

    In the present work the stress analysis of a ceramic tensile specimen is obtained. The effects of specimen geometry along with the pin loading are considered in the stress distribution calculations. Thereafter, the optimization based on a set of constraints is performed on the specimen with pinhole location, pinhole diameter, head width, neck radius and gauge length as its design variables. The work is then extended for the non-linear analysis for creep. A mathematical model is developed which is implemented using C++ code.

  19. Non-linear Creep Analysis of Ceramic Specimen Using Finite Element Method

    NASA Astrophysics Data System (ADS)

    Saini, Jaswinder Singh; Khera, Saurabh

    2016-03-01

    In the present work the stress analysis of a ceramic tensile specimen is obtained. The effects of specimen geometry along with the pin loading are considered in the stress distribution calculations. Thereafter, the optimization based on a set of constraints is performed on the specimen with pinhole location, pinhole diameter, head width, neck radius and gauge length as its design variables. The work is then extended for the non-linear analysis for creep. A mathematical model is developed which is implemented using C++ code.

  20. Persistent Scatterer InSAR time series analysis of the creeping section of the North Anatolian Fault at Ismetpasa

    NASA Astrophysics Data System (ADS)

    Cetin, E.; Cakir, Z.; Akoglu, A. M.; Ergintav, S.; Dogan, U.; Ozener, H.; Meghraoui, M.

    2012-04-01

    Although the creep along the Ismetpasa section of the North Anatolian Fault was noticed over half a century ago, its spatiotemporal nature is still poorly known due to lack of geodetic and seismological studies along the fault. Analysis of ERS (C-band) data acquired between 1992 and 2001 suggested an average creep rate of 9±3 mm along a fault segment of ~70 km long despite the difficulties arising from limited number of images available, atmospheric artefacts and low coherency that are common in classical long-term InSAR studies (Cakir et al., 2005). These inferences have been supported by a recent study of stacked PALSAR (L-band) interferograms spanning the period between 2007 and 2010 (Fialko et al., 2011). In this study, we use the Persistent Scatterer InSAR technique to better constrain the spatiotemporal characteristics of the surface creep. InSAR time series have been calculated using 27 Envisat ASAR images that were acquired between 2003 and 2010 in descending track 479. The results clearly reveal the gradual transition between the creeping and locked segments of the NAF west of Ismetpasa. Its eastern termination cannot be determined since the surface creep appears to continue further east (east of 33.4E) along the fault outside the Envisat image frame. The length of the creeping section therefore appears to be longer than 70 km. The creep rate is also tightly constrained and found to be in the range of 10-11 mm/yr along most of its length, consistent with the GPS measurements from a small-aperture geodetic network near Ismetpasa and recently reported PALSAR measurements (Fialko et al., 2011). Preliminary analysis confirms shallow locking depths for creeping as inferred by the previous studies.

  1. Unified creep-plasticity model for halite

    SciTech Connect

    Krieg, R. D.

    1980-11-01

    There are two national energy programs which are considering caverns in geological salt (NaCl) as a storage repository. One is the disposal of nuclear wastes and the other is the storage of oil. Both short-time and long-time structural deformations and stresses must be predictable for these applications. At 300K, the nominal initial temperature for both applications, the salt is at 0.28 of the melting temperature and exhibits a significant time dependent behavior. A constitutive model has been developed which describes the behavior observed in an extensive set of triaxial creep tests. Analysis of these tests showed that a single deformation mechanism seems to be operative over the stress and temperature range of interest so that the secondary creep data can be represented by a power of the stress over the entire test range. This simple behavior allowed a new unified creep-plasticity model to be applied with some confidence. The resulting model recognizes no inherent difference between plastic and creep strains yet models the total inelastic strain reasonably well including primary and secondary creep and reverse loadings. A multiaxial formulation is applied with a back stress. A Bauschinger effect is exhibited as a consequence and is present regardless of the time scale over which the loading is applied. The model would be interpreted as kinematic hardening in the sense of classical plasticity. Comparisons are made between test data and model behavior.

  2. Computational Analysis of Behavior.

    PubMed

    Egnor, S E Roian; Branson, Kristin

    2016-07-01

    In this review, we discuss the emerging field of computational behavioral analysis-the use of modern methods from computer science and engineering to quantitatively measure animal behavior. We discuss aspects of experiment design important to both obtaining biologically relevant behavioral data and enabling the use of machine vision and learning techniques for automation. These two goals are often in conflict. Restraining or restricting the environment of the animal can simplify automatic behavior quantification, but it can also degrade the quality or alter important aspects of behavior. To enable biologists to design experiments to obtain better behavioral measurements, and computer scientists to pinpoint fruitful directions for algorithm improvement, we review known effects of artificial manipulation of the animal on behavior. We also review machine vision and learning techniques for tracking, feature extraction, automated behavior classification, and automated behavior discovery, the assumptions they make, and the types of data they work best with. PMID:27090952

  3. Zen and Behavior Analysis

    ERIC Educational Resources Information Center

    Bass, Roger

    2010-01-01

    Zen's challenge for behavior analysis is to explain a repertoire that renders analysis itself meaningless--a result following not from scientific or philosophical arguments but rather from a unique verbal history generated by Zen's methods. Untying Zen's verbal knots suggests how meditation's and koans' effects on verbal behavior contribute to…

  4. Moving singularity creep crack growth analysis with the /Delta T/c and C/asterisk/ integrals. [path-independent vector and energy rate line integrals

    NASA Technical Reports Server (NTRS)

    Stonesifer, R. B.; Atluri, S. N.

    1982-01-01

    The physical meaning of (Delta T)c and its applicability to creep crack growth are reviewed. Numerical evaluation of (Delta T)c and C(asterisk) is discussed with results being given for compact specimen and strip geometries. A moving crack-tip singularity, creep crack growth simulation procedure is described and demonstrated. The results of several crack growth simulation analyses indicate that creep crack growth in 304 stainless steel occurs under essentially steady-state conditions. Based on this result, a simple methodology for predicting creep crack growth behavior is summarized.

  5. Modified creep and shrinkage prediction model B3 for serviceability limit state analysis of composite slabs

    NASA Astrophysics Data System (ADS)

    Gholamhoseini, Alireza

    2016-03-01

    Relatively little research has been reported on the time-dependent in-service behavior of composite concrete slabs with profiled steel decking as permanent formwork and little guidance is available for calculating long-term deflections. The drying shrinkage profile through the thickness of a composite slab is greatly affected by the impermeable steel deck at the slab soffit, and this has only recently been quantified. This paper presents the results of long-term laboratory tests on composite slabs subjected to both drying shrinkage and sustained loads. Based on laboratory measurements, a design model for the shrinkage strain profile through the thickness of a slab is proposed. The design model is based on some modifications to an existing creep and shrinkage prediction model B3. In addition, an analytical model is developed to calculate the time-dependent deflection of composite slabs taking into account the time-dependent effects of creep and shrinkage. The calculated deflections are shown to be in good agreement with the experimental measurements.

  6. Crack growth behavior under creep-fatigue conditions using compact and double edge notch tension-compression specimens

    NASA Astrophysics Data System (ADS)

    Narasimha Chary, Santosh Balaji

    inspection of fatigue surfaces, it has been found that that better alignment control procedures are needed to ensure symmetric crack fronts for the DEN(T-C) specimen. Creep-fatigue crack growth tests were conducted on 9Cr-1Mo (P91) steels at 625°C with various hold times. These tests were conducted using C(T) specimens under constant load amplitude conditions (tension-tension) and DEN(T-C) specimens under displacement like conditions (tension-compression). Crack growth data generated under creep-fatigue conditions using standard C(T) specimens correlated well with crack growth data generated using DEN(T-C) specimens. The crack growth rates per cycle increased significantly with increase in hold time when crack growth data were plotted with the cyclic stress intensity parameter, Delta-K. A transient behavior in the initial portion of da/dN versus Delta-K plots were observed for the hold time tests, as reported previously by several other researchers. It is shown for the C(T) specimens that the creep-fatigue interactions during crack growth for various hold times are represented better by the (Ct)avg parameter implying that the P91 steel behaves in a creep-ductile manner. Significant differences (factors of 2 to 5) were observed between the calculated values of (Ct)avg and those based on measured values of force-line deflection. It is also shown that there is a high risk of obtaining invalid data in longer hold time tests under force-control conditions. The usefulness of DEN(T-C) specimens for crack growth studies under displacement controlled conditions to combat ratcheting problems in tests conducted under load conditions is established. The tests conditions for the round-robin program on creep-fatigue crack growth testing in support of ASTM E-2760 are finalized. Further developments needed in creep-fatigue crack growth testing are also presented.

  7. Irradiation Creep in Graphite

    SciTech Connect

    Ubic, Rick; Butt, Darryl; Windes, William

    2014-03-13

    An understanding of the underlying mechanisms of irradiation creep in graphite material is required to correctly interpret experimental data, explain micromechanical modeling results, and predict whole-core behavior. This project will focus on experimental microscopic data to demonstrate the mechanism of irradiation creep. High-resolution transmission electron microscopy should be able to image both the dislocations in graphite and the irradiation-induced interstitial clusters that pin those dislocations. The team will first prepare and characterize nanoscale samples of virgin nuclear graphite in a transmission electron microscope. Additional samples will be irradiated to varying degrees at the Advanced Test Reactor (ATR) facility and similarly characterized. Researchers will record microstructures and crystal defects and suggest a mechanism for irradiation creep based on the results. In addition, the purchase of a tensile holder for a transmission electron microscope will allow, for the first time, in situ observation of creep behavior on the microstructure and crystallographic defects.

  8. Poro-viscoelastic constitutive modeling of unconfined creep of hydrogels using finite element analysis with integrated optimization method.

    PubMed

    Liu, Kaifeng; Ovaert, Timothy C

    2011-04-01

    Hydrogels are cross-linked polymer networks swollen with water and are being considered as potential replacements for deceased load bearing tissues such as cartilage. Hydrogels show nonlinear time dependent behavior, and are a challenge to model. A three-element poro-viscoelastic constitutive model was developed based on the structure and nature of the hydrogel. To identify the material parameters, an inverse finite element (FE) technique was used that combines experimental results with FE modeling and an optimization method. Unconfined compression creep tests were conducted on poly(vinyl alcohol) (PVA) and poly(ethylene-co-vinyl alcohol)-poly(vinyl pyrrolidone) (EVAL-PVP) hydrogels manufactured by injection molding. Results from the creep experiments showed that for PVA hydrogels, an increase in polymer concentration correlates with a decrease in the equilibrium water content (EWC) and the creep strain. In EVAL-PVP hydrogels, an increase in the hydrophobic segments (EVAL) correlates with a decrease in the EWC as well as the creep strain. An inverse FE method was used to identify the viscoelastic material parameters of the hydrogels in combination with creep testing using the poro-viscoelastic three-element constitutive model. The elastic modulus estimated from the inverse FE technique showed good agreement with the modulus estimated directly from the test data. PMID:21316632

  9. Effect of Notches on Creep-Fatigue Behavior of a P/M Nickel-Based Superalloy

    NASA Technical Reports Server (NTRS)

    Telesman, Jack; Gabb, Timothy P.; Ghosn, Louis J.; Gayda, John, Jr.

    2015-01-01

    A study was performed to determine and model the effect of high temperature dwells on notched low cycle fatigue (NLCF) and notch stress rupture behavior of a fine grain LSHR powder metallurgy (PM) nickel-based superalloy. It was shown that a 90 second dwell applied at the minimum stress (min dwell) was considerably more detrimental to the NLCF lives than similar dwell applied at the maximum stress (max dwell). The short min dwell NLCF lives were shown to be caused by growth of small oxide blisters which caused preferential cracking when coupled with high concentrated notch root stresses. The cyclic max dwell notch tests failed mostly by a creep accumulation, not by fatigue, with the crack origin shifting internally to a substantial distance away from the notch root. The classical von Mises plastic flow model was unable to match the experimental results while the hydrostatic stress profile generated using the Drucker-Prager plasticity flow model was consistent with the experimental findings. The max dwell NLCF and notch stress rupture tests exhibited substantial creep notch strengthening. The triaxial Bridgman effective stress parameter was able to account for the notch strengthening by collapsing the notched and uniform gage geometry test data into a singular grouping.

  10. Creep behavior of MoSi{sub 2} with Si{sub 3}N{sub 4} reinforcements

    SciTech Connect

    Feng, C.R.; Sadananda, K.

    1997-12-31

    Because of its high melting point, excellent oxidation resistance and ductility at high temperatures, MoSi{sub 2} and its composites are attractive for elevated temperature applications. In this study, the compression creep behavior of hot pressed MoSi{sub 2} with various volume fraction of Si{sub 3}N{sub 4} at 1200 C, 1300 C and 1400 C were investigated. Within the stress range of 115--425MPa, the stress exponent, n, was either 1 or 5 depended on the volume fraction of Si{sub 3}N{sub 4}. The activation energy of creep for MoSi{sub 2}-50%Si{sub 3}N{sub 4} composite was 750kJ/mol. At still higher volume fraction of Si{sub 3}N{sub 4}, the activation energy decreases to 693kJ/mol, which is the same as that for monolithic Si{sub 3}N{sub 4}.