Science.gov

Sample records for creep radiation creep

  1. Calculation of radiation-induced creep and stress relaxation

    NASA Astrophysics Data System (ADS)

    Nagakawa, Johsei

    1995-08-01

    Numerical calculation based on a computer simulation of point defect kinetics under stress was performed to predict radiation-induced deformation in an Inconel X-750 bolt in a LWR core and for a 316 stainless steel blanket in experimental fusion reactors with the water-coolant scenario. Although the displacement rate is rather low, modest irradiation creep with nearly linear stress dependence was predicted below 200 MPa at 300°C in the LWR core. This low stress dependence causes significant stress relaxation, which coincides with the experimental data to 2 dpa. An almost equal amount of enhanced irradiation creep strain was predicted at 60°C in both solution annealed and cold worker 316 stainless steel in the water-cooled blanket. The stress relaxation is practically not expected without irradiation in both the cases, but the calculation predicts that it is definitely expected under irradiation.

  2. Study on effects of solar radiation and rain on shrinkage, shrinkage cracking and creep of concrete

    SciTech Connect

    Asamoto, Shingo; Ohtsuka, Ayumu; Kuwahara, Yuta; Miura, Chikako

    2011-06-15

    In this paper, the effects of actual environmental actions on shrinkage, creep and shrinkage cracking of concrete are studied comprehensively. Prismatic specimens of plain concrete were exposed to three sets of artificial outdoor conditions with or without solar radiation and rain to examine the shrinkage. For the purpose of studying shrinkage cracking behavior, prismatic concrete specimens with reinforcing steel were also subjected to the above conditions at the same time. The shrinkage behavior is described focusing on the effects of solar radiation and rain based on the moisture loss. The significant environment actions to induce shrinkage cracks are investigated from viewpoints of the amount of the shrinkage and the tensile strength. Finally, specific compressive creep behavior according to solar radiation and rainfall is discussed. It is found that rain can greatly inhibit the progresses of concrete shrinkage and creep while solar radiation is likely to promote shrinkage cracking and creep.

  3. Endochronic theory of transient creep and creep recovery

    NASA Technical Reports Server (NTRS)

    Wu, H. C.; Chen, L.

    1979-01-01

    Short time creep and creep recovery were investigated by means of the endochronic theory of viscoplasticity. It is shown that the constitutive equations for constant-strain-rate stress-strain behavior, creep, creep recovery, and stress relaxation can all ber derived from the general constitutive equation by imposing appropriate constraints. In this unified approach, the effect of strain-hardening is naturally accounted for when describing creep and creep recovery. The theory predicts with reasonable accuracy the creep and creep recovery behaviors for Aluminum 1100-0 at 150 C. It was found that the strain-rate history at prestraining stage affects the subsequent creep. A critical stress was also established for creep recovery. The theory predicts a forward creep for creep recovery stress greater than the critical stress. For creep recovery stress less than the critical stress, the theory then predicts a normal strain recovery.

  4. Irradiation Induced Creep of Graphite

    SciTech Connect

    Burchell, Timothy D; Murty, Prof K.L.; Eapen, Dr. Jacob

    2010-01-01

    The current status of graphite irradiation induced creep strain prediction is reviewed and the major creep models are described. The ability of the models to quantitatively predict the irradiation induced creep strain of graphite is reported. Potential mechanisms of in-crystal creep are reviewed as are mechanisms of pore generation under stress. The case for further experimental work is made and the need for improved creep models across multi-scales is highlighted.

  5. Biaxial Creep Specimen Fabrication

    SciTech Connect

    JL Bump; RF Luther

    2006-02-09

    This report documents the results of the weld development and abbreviated weld qualification efforts performed by Pacific Northwest National Laboratory (PNNL) for refractory metal and superalloy biaxial creep specimens. Biaxial creep specimens were to be assembled, electron beam welded, laser-seal welded, and pressurized at PNNL for both in-pile (JOYO reactor, O-arai, Japan) and out-of-pile creep testing. The objective of this test campaign was to evaluate the creep behavior of primary cladding and structural alloys under consideration for the Prometheus space reactor. PNNL successfully developed electron beam weld parameters for six of these materials prior to the termination of the Naval Reactors program effort to deliver a space reactor for Project Prometheus. These materials were FS-85, ASTAR-811C, T-111, Alloy 617, Haynes 230, and Nirnonic PE16. Early termination of the NR space program precluded the development of laser welding parameters for post-pressurization seal weldments.

  6. Irradiation Creep in Graphite

    SciTech Connect

    Ubic, Rick; Butt, Darryl; Windes, William

    2014-03-13

    An understanding of the underlying mechanisms of irradiation creep in graphite material is required to correctly interpret experimental data, explain micromechanical modeling results, and predict whole-core behavior. This project will focus on experimental microscopic data to demonstrate the mechanism of irradiation creep. High-resolution transmission electron microscopy should be able to image both the dislocations in graphite and the irradiation-induced interstitial clusters that pin those dislocations. The team will first prepare and characterize nanoscale samples of virgin nuclear graphite in a transmission electron microscope. Additional samples will be irradiated to varying degrees at the Advanced Test Reactor (ATR) facility and similarly characterized. Researchers will record microstructures and crystal defects and suggest a mechanism for irradiation creep based on the results. In addition, the purchase of a tensile holder for a transmission electron microscope will allow, for the first time, in situ observation of creep behavior on the microstructure and crystallographic defects.

  7. Creep Resistant Zinc Alloy

    SciTech Connect

    Frank E. Goodwin

    2002-12-31

    This report covers the development of Hot Chamber Die Castable Zinc Alloys with High Creep Strengths. This project commenced in 2000, with the primary objective of developing a hot chamber zinc die-casting alloy, capable of satisfactory service at 140 C. The core objectives of the development program were to: (1) fill in missing alloy data areas and develop a more complete empirical model of the influence of alloy composition on creep strength and other selected properties, and (2) based on the results from this model, examine promising alloy composition areas, for further development and for meeting the property combination targets, with the view to designing an optimized alloy composition. The target properties identified by ILZRO for an improved creep resistant zinc die-casting alloy were identified as follows: (1) temperature capability of 1470 C; (2) creep stress of 31 MPa (4500 psi); (3) exposure time of 1000 hours; and (4) maximum creep elongation under these conditions of 1%. The project was broadly divided into three tasks: (1) Task 1--General and Modeling, covering Experimental design of a first batch of alloys, alloy preparation and characterization. (2) Task 2--Refinement and Optimization, covering Experimental design of a second batch of alloys. (3) Task 3--Creep Testing and Technology transfer, covering the finalization of testing and the transfer of technology to the Zinc industry should have at least one improved alloy result from this work.

  8. Neutron irradiation creep in stainless steel alloys

    NASA Astrophysics Data System (ADS)

    Schüle, Wolfgang; Hausen, Hermann

    1994-09-01

    Irradiation creep elongations were measured in the HFR at Petten on AMCR steels, on 316 CE-reference steels, and on US-316 and US-PCA steels varying the irradiation temperature between 300°C and 500°C and the stress between 25 and 300 MPa. At the beginning of an irradiation a type of "primary" creep stage is observed for doses up to 3-5 dpa after which dose the "secondary" creep stage begins. The "primary" creep strain decreases in cold-worked steel materials with decreasing stress and decreasing irradiation temperature achieving also negative creep strains depending also on the pre-treatment of the materials. These "primary" creep strains are mainly attributed to volume changes due to the formation of radiation-induced phases, e.g. to the formation of α-ferrite below about 400°C and of carbides below about 700°C, and not to irradiation creep. The "secondary" creep stage is found for doses larger than 3 to 5 dpa and is attributed mainly to irradiation creep. The irradiation creep rate is almost independent of the irradiation temperature ( Qirr = 0.132 eV) and linearly dependent on the stress. The total creep elongations normalized to about 8 dpa are equal for almost every type of steel irradiated in the HFR at Petten or in ORR or in EBR II. The negative creep elongations are more pronounced in PCA- and in AMCR-steels and for this reason the total creep elongation is slightly smaller at 8 dpa for these two steels than for the other steels.

  9. Deterministic Multiaxial Creep and Creep Rupture Enhancements for CARES/Creep Integrated Design Code

    NASA Technical Reports Server (NTRS)

    Jadaan, Osama M.

    1998-01-01

    High temperature and long duration applications of monolithic ceramics can place their failure mode in the creep rupture regime. A previous model advanced by the authors described a methodology by which the creep rupture life of a loaded component can be predicted. That model was based on the life fraction damage accumulation rule in association with the modified Monkman-Grant creep rupture criterion. However, that model did not take into account the deteriorating state of the material due to creep damage (e.g., cavitation) as time elapsed. In addition, the material creep parameters used in that life prediction methodology, were based on uniaxial creep curves displaying primary and secondary creep behavior, with no tertiary regime. The objective of this paper is to present a creep life prediction methodology based on a modified form of the Kachanov-Rabotnov continuum damage mechanics (CDM) theory. In this theory, the uniaxial creep rate is described in terms of sum, temperature, time, and the current state of material damage. This scalar damage state parameter is basically an abstract measure of the current state of material damage due to creep deformation. The damage rate is assumed to vary with stress, temperature, time, and the current state of damage itself. Multiaxial creep and creep rupture formulations of the CDM approach are presented in this paper. Parameter estimation methodologies based on nonlinear regression analysis are also described for both, isothermal constant stress states and anisothermal variable stress conditions This creep life prediction methodology was preliminarily added to the integrated design code CARES/Creep (Ceramics Analysis and Reliability Evaluation of Structures/Creep), which is a postprocessor program to commercially available finite element analysis (FEA) packages. Two examples, showing comparisons between experimental and predicted creep lives of ceramic specimens, are used to demonstrate the viability of Ns methodology and the

  10. Loss tangent and complex modulus estimated by acoustic radiation force creep and shear wave dispersion.

    PubMed

    Amador, Carolina; Urban, Matthew W; Chen, Shigao; Greenleaf, James F

    2012-03-01

    Elasticity imaging methods have been used to study tissue mechanical properties and have demonstrated that tissue elasticity changes with disease state. In current shear wave elasticity imaging methods typically only shear wave speed is measured and rheological models, e.g. Kelvin-Voigt, Maxwell and Standard Linear Solid, are used to solve for tissue mechanical properties such as the shear viscoelastic complex modulus. This paper presents a method to quantify viscoelastic material properties in a model-independent way by estimating the complex shear elastic modulus over a wide frequency range using time-dependent creep response induced by acoustic radiation force. This radiation force induced creep method uses a conversion formula that is the analytic solution of a constitutive equation. The proposed method in combination with shearwave dispersion ultrasound vibrometry is used to measure the complex modulus so that knowledge of the applied radiation force magnitude is not necessary. The conversion formula is shown to be sensitive to sampling frequency and the first reliable measure in time according to numerical simulations using the Kelvin-Voigt model creep strain and compliance. Representative model-free shear complex moduli from homogeneous tissue mimicking phantoms and one excised swine kidney were obtained. This work proposes a novel model-free ultrasound-based elasticity method that does not require a rheological model with associated fitting requirements. PMID:22345425

  11. Loss tangent and complex modulus estimated by acoustic radiation force creep and shear wave dispersion

    PubMed Central

    Amador, Carolina; Urban, Matthew W; Chen, Shigao; Greenleaf, James F

    2012-01-01

    Elasticity imaging methods have been used to study tissue mechanical properties and have demonstrated that tissue elasticity changes with disease state. In current shear wave elasticity imaging methods typically only shear wave speed is measured and rheological models, e.g., Kelvin-Voigt, Maxwell and Standard Linear Solid, are used to solve for tissue mechanical properties such as the shear viscoelastic complex modulus. This paper presents a method to quantify viscoelastic material properties in a model-independent way by estimating the complex shear elastic modulus over a wide frequency range using time-dependent creep response induced by acoustic radiation force. This radiation force induced creep (RFIC) method uses a conversion formula that is the analytic solution of a constitutive equation. The proposed method in combination with Shearwave Dispersion Ultrasound Vibrometry (SDUV) is used to measure the complex modulus so that knowledge of the applied radiation force magnitude is not necessary. The conversion formula is shown to be sensitive to sampling frequency and the first reliable measure in time according to numerical simulations using the Kelvin-Voigt model creep strain and compliance. Representative model-free shear complex moduli from homogeneous tissue mimicking phantoms and one excised swine kidney were obtained. This work proposes a novel model-free ultrasound-based elasticity method that does not require a rheological model with associated fitting requirements. PMID:22345425

  12. Loss tangent and complex modulus estimated by acoustic radiation force creep and shear wave dispersion

    NASA Astrophysics Data System (ADS)

    Amador, Carolina; Urban, Matthew W.; Chen, Shigao; Greenleaf, James F.

    2012-03-01

    Elasticity imaging methods have been used to study tissue mechanical properties and have demonstrated that tissue elasticity changes with disease state. In current shear wave elasticity imaging methods typically only shear wave speed is measured and rheological models, e.g. Kelvin-Voigt, Maxwell and Standard Linear Solid, are used to solve for tissue mechanical properties such as the shear viscoelastic complex modulus. This paper presents a method to quantify viscoelastic material properties in a model-independent way by estimating the complex shear elastic modulus over a wide frequency range using time-dependent creep response induced by acoustic radiation force. This radiation force induced creep method uses a conversion formula that is the analytic solution of a constitutive equation. The proposed method in combination with shearwave dispersion ultrasound vibrometry is used to measure the complex modulus so that knowledge of the applied radiation force magnitude is not necessary. The conversion formula is shown to be sensitive to sampling frequency and the first reliable measure in time according to numerical simulations using the Kelvin-Voigt model creep strain and compliance. Representative model-free shear complex moduli from homogeneous tissue mimicking phantoms and one excised swine kidney were obtained. This work proposes a novel model-free ultrasound-based elasticity method that does not require a rheological model with associated fitting requirements.

  13. Avoiding Project Creep.

    ERIC Educational Resources Information Center

    Kennerknecht, Norbert J.; Scarnati, James T.

    1998-01-01

    Discusses how to keep school district capital-improvement projects within budget. Examines areas where runaway costs creep into a project and ways of cutting or lessening these costs, such as using standard agreements, controlling architect's expense reimbursements, developing a quality-control process, and reducing document duplication. (GR)

  14. Creep behavior of submarine sediments

    USGS Publications Warehouse

    Silva, Armand J.; Booth, J.S.

    1984-01-01

    A series of experiments on drained creep of marine sediment indicates that strength degradation results from the creep process, which implies an associated reduction in slope stability. Furthermore, the highest creep potential of a sediment may be at its preconsolidation stress. Results from the experiments on samples from Georges Bank continental slope were also used in conjunction with a preliminary theoretical model to predict creep displacements. For the case illustrated in this report, steep slopes (>20??) and thick sections (>30 m) give rise to substantial creep and probable creep rupture; as angles or thicknesses decrease, displacements rapidly become negligible. Creep may be a significant geologic process on many marine slopes. Not only can it cause major displacements of surface sediment, but it may also be the precursor to numerous slope failures. ?? 1985 Springer-Verlag New York Inc.

  15. Creep behaviour and creep mechanisms of normal and healing ligaments

    NASA Astrophysics Data System (ADS)

    Thornton, Gail Marilyn

    Patients with knee ligament injuries often undergo ligament reconstructions to restore joint stability and, potentially, abate osteoarthritis. Careful literature review suggests that in 10% to 40% of these patients the graft tissue "stretches out". Some graft elongation is likely due to creep (increased elongation of tissue under repeated or sustained load). Quantifying creep behaviour and identifying creep mechanisms in both normal and healing ligaments is important for finding clinically relevant means to prevent creep. Ligament creep was accurately predicted using a novel yet simple structural model that incorporated both collagen fibre recruitment and fibre creep. Using the inverse stress relaxation function to model fibre creep in conjunction with fibre recruitment produced a superior prediction of ligament creep than that obtained from the inverse stress relaxation function alone. This implied mechanistic role of fibre recruitment during creep was supported using a new approach to quantify crimp patterns at stresses in the toe region (increasing stiffness) and linear region (constant stiffness) of the stress-strain curve. Ligament creep was relatively insensitive to increases in stress in the toe region; however, creep strain increased significantly when tested at the linear region stress. Concomitantly, fibre recruitment was evident at the toe region stresses; however, recruitment was limited at the linear region stress. Elevating the water content of normal ligament using phosphate buffered saline increased the creep response. Therefore, both water content and fibre recruitment are important mechanistic factors involved in creep of normal ligaments. Ligament scars had inferior creep behaviour compared to normal ligaments even after 14 weeks. In addition to inferior collagen properties affecting fibre recruitment and increased water content, increased glycosaminoglycan content and flaws in scar tissue were implicated as potential mechanisms of scar creep

  16. Creep and creep-rupture behavior of Alloy 718

    SciTech Connect

    Brinkman, C.R.; Booker, M.K.; Ding, J.L.

    1991-01-01

    Data obtained from creep and creep-rupture tests conducted on 18 heats of Alloy 718 were used to formulate models for predicting high temperature time dependent behavior of this alloy. Creep tests were conducted on specimens taken from a number of commercial product forms including plate, bar, and forgoing material that had been procured and heat treated in accordance with ASTM specifications B-670 or B-637. Data were obtained over the temperature range of 427 to 760{degree}C ad at test times to about 87,000 h. Comparisons are given between experimental data and the analytical models. The analytical models for creep-rupture included one based on lot-centering regression analysis and two based on the Minimum Commitment Method. A master'' curve approach was used to develop and equation for estimating creep deformation up to the onset of tertiary creep. 11 refs., 13 figs.

  17. Creep Measurement Video Extensometer

    NASA Technical Reports Server (NTRS)

    Jaster, Mark; Vickerman, Mary; Padula, Santo, II; Juhas, John

    2011-01-01

    Understanding material behavior under load is critical to the efficient and accurate design of advanced aircraft and spacecraft. Technologies such as the one disclosed here allow accurate creep measurements to be taken automatically, reducing error. The goal was to develop a non-contact, automated system capable of capturing images that could subsequently be processed to obtain the strain characteristics of these materials during deformation, while maintaining adequate resolution to capture the true deformation response of the material. The measurement system comprises a high-resolution digital camera, computer, and software that work collectively to interpret the image.

  18. Nanogranular origin of concrete creep.

    PubMed

    Vandamme, Matthieu; Ulm, Franz-Josef

    2009-06-30

    Concrete, the solid that forms at room temperature from mixing Portland cement with water, sand, and aggregates, suffers from time-dependent deformation under load. This creep occurs at a rate that deteriorates the durability and truncates the lifespan of concrete structures. However, despite decades of research, the origin of concrete creep remains unknown. Here, we measure the in situ creep behavior of calcium-silicate-hydrates (C-S-H), the nano-meter sized particles that form the fundamental building block of Portland cement concrete. We show that C-S-H exhibits a logarithmic creep that depends only on the packing of 3 structurally distinct but compositionally similar C-S-H forms: low density, high density, ultra-high density. We demonstrate that the creep rate ( approximately 1/t) is likely due to the rearrangement of nanoscale particles around limit packing densities following the free-volume dynamics theory of granular physics. These findings could lead to a new basis for nanoengineering concrete materials and structures with minimal creep rates monitored by packing density distributions of nanoscale particles, and predicted by nanoscale creep measurements in some minute time, which are as exact as macroscopic creep tests carried out over years. PMID:19541652

  19. Nanogranular origin of concrete creep

    PubMed Central

    Vandamme, Matthieu; Ulm, Franz-Josef

    2009-01-01

    Concrete, the solid that forms at room temperature from mixing Portland cement with water, sand, and aggregates, suffers from time-dependent deformation under load. This creep occurs at a rate that deteriorates the durability and truncates the lifespan of concrete structures. However, despite decades of research, the origin of concrete creep remains unknown. Here, we measure the in situ creep behavior of calcium–silicate–hydrates (C–S–H), the nano-meter sized particles that form the fundamental building block of Portland cement concrete. We show that C–S–H exhibits a logarithmic creep that depends only on the packing of 3 structurally distinct but compositionally similar C–S–H forms: low density, high density, ultra-high density. We demonstrate that the creep rate (≈1/t) is likely due to the rearrangement of nanoscale particles around limit packing densities following the free-volume dynamics theory of granular physics. These findings could lead to a new basis for nanoengineering concrete materials and structures with minimal creep rates monitored by packing density distributions of nanoscale particles, and predicted by nanoscale creep measurements in some minute time, which are as exact as macroscopic creep tests carried out over years. PMID:19541652

  20. Creep-Fatigue Interaction Testing

    NASA Technical Reports Server (NTRS)

    Halford, Gary R.

    2001-01-01

    Fatigue fives in metals are nominally time independent below 0.5 T(sub Melt). At higher temperatures, fatigue lives are altered due to time-dependent, thermally activated creep. Conversely, creep rates are altered by super. imposed fatigue loading. Creep and fatigue generally interact synergistically to reduce material lifetime. Their interaction, therefore, is of importance to structural durability of high-temperature structures such as nuclear reactors, reusable rocket engines, gas turbine engines, terrestrial steam turbines, pressure vessel and piping components, casting dies, molds for plastics, and pollution control devices. Safety and lifecycle costs force designers to quantify these interactions. Analytical and experimental approaches to creep-fatigue began in the era following World War II. In this article experimental and life prediction approaches are reviewed for assessing creep-fatigue interactions of metallic materials. Mechanistic models are also discussed briefly.

  1. Rationalization of Creep Data of Creep-Resistant Steels on the Basis of the New Power Law Creep Equation

    NASA Astrophysics Data System (ADS)

    Wang, Q.; Yang, M.; Song, X. L.; Jia, J.; Xiang, Z. D.

    2016-05-01

    The conventional power law creep equation (Norton equation) relating the minimum creep rate to creep stress and temperature cannot be used to predict the long-term creep strengths of creep-resistant steels if its parameters are determined only from short-term measurements. This is because the stress exponent and activation energy of creep determined on the basis of this equation depend on creep temperature and stress and these dependences cannot be predicted using this equation. In this work, it is shown that these problems associated with the conventional power law creep equation can be resolved if the new power law equation is used to rationalize the creep data. The new power law creep equation takes a form similar to the conventional power law creep equation but has a radically different capability not only in rationalizing creep data but also in predicting the long-term creep strengths from short-term test data. These capabilities of the new power law creep equation are demonstrated using the tensile strength and creep test data measured for both pipe and tube grades of the creep-resistant steel 9Cr-1.8W-0.5Mo-V-Nb-B (P92 and T92).

  2. Rationalization of Creep Data of Creep-Resistant Steels on the Basis of the New Power Law Creep Equation

    NASA Astrophysics Data System (ADS)

    Wang, Q.; Yang, M.; Song, X. L.; Jia, J.; Xiang, Z. D.

    2016-07-01

    The conventional power law creep equation (Norton equation) relating the minimum creep rate to creep stress and temperature cannot be used to predict the long-term creep strengths of creep-resistant steels if its parameters are determined only from short-term measurements. This is because the stress exponent and activation energy of creep determined on the basis of this equation depend on creep temperature and stress and these dependences cannot be predicted using this equation. In this work, it is shown that these problems associated with the conventional power law creep equation can be resolved if the new power law equation is used to rationalize the creep data. The new power law creep equation takes a form similar to the conventional power law creep equation but has a radically different capability not only in rationalizing creep data but also in predicting the long-term creep strengths from short-term test data. These capabilities of the new power law creep equation are demonstrated using the tensile strength and creep test data measured for both pipe and tube grades of the creep-resistant steel 9Cr-1.8W-0.5Mo-V-Nb-B (P92 and T92).

  3. Creep in electronic ceramics

    SciTech Connect

    Routbort, J. L.; Goretta, K. C.; Arellano-Lopez, A. R.

    2000-04-27

    High-temperature creep measurements combined with microstructural investigations can be used to elucidate deformation mechanisms that can be related to the diffusion kinetics and defect chemistry of the minority species. This paper will review the theoretical basis for this correlation and illustrate it with examples from some important electronic ceramics having a perovskite structure. Recent results on BaTiO{sub 3}, (La{sub 1{minus}x}Sr){sub 1{minus}y}MnO{sub 3+{delta}}, YBa{sub 2}Cu{sub 3}O{sub x}, Bi{sub 2}Sr{sub 2}CaCu{sub 2}O{sub x}, (Bi,Pb){sub 2}Sr{sub 2}Ca{sub 2}Cu{sub 3}O{sub x} and Sr(Fe,Co){sub 1.5}O{sub x} will be presented.

  4. Creep of dry clinopyroxene aggregates

    NASA Astrophysics Data System (ADS)

    Bystricky, Misha; Mackwell, Stephen

    2001-01-01

    We have determined diffusional and dislocation creep rheologies for clinopyroxenite Ca1.0Mg0.8Fe0.2Si2O6 under dry conditions by deforming natural and hot-pressed samples at confining pressures of 300-430 MPa and temperatures of 1100°-1250°C with the oxygen fugacity buffered by either nickel-nickel oxide or iron-wüstite powders. The coarse-grained natural Sleaford Bay clinopyroxenite yielded a stress exponent of n = 4.7 ± 0.2 and an activation energy for creep of Q = 760 ± 40 kJ mol-1, consistent with deformation in the dislocation creep regime. The strength of the natural clinopyroxenite is consistent with previous high-temperature measurements of dislocation creep behavior of Sleaford Bay clinopyroxenite by Kirby and Kronenberg [1984] and Boland and Tullis [1986]. Fine-grained clinopyroxenite was prepared from ground powders of the natural clinopyroxenite. Hot-pressed samples were deformed under similar conditions to the natural samples. Mixed-mode deformation behavior was observed, with diffusional creep (n = 1) at lower differential stresses and dislocation creep (with n and Q similar to those of the natural samples) at higher differential stresses. Within the dislocation creep field the predried hot-pressed samples generally yielded creep rates that were about an order of magnitude faster than the natural samples. Thus, even at the highest differential stresses, a component of strain accommodation by grain boundary diffusion was present in the hot-pressed samples. Optical and electron microscope investigations of the deformation microstructures of the natural and hot-pressed samples show evidence for mechanical twinning and activation of dislocation slip systems. When extrapolated to geological conditions expected in the deep crust and upper mantle on Earth and other terrestrial planets, the strength of dry single-phase clinopyroxene aggregates is very high, exceeding that of dry olivine-rich rocks.

  5. Improving the creep resistance and tensile property of UHMWPE sheet by radiation cross-linking and annealing

    NASA Astrophysics Data System (ADS)

    Wang, Honglong; Xu, Lu; Li, Rong; Hu, Jiangtao; Wang, Mouhua; Wu, Guozhong

    2016-08-01

    Ultra-high molecular weight polyethylene (UHMWPE) sheet was cross-linked by γ irradiation in air with a dose of up to 300 kGy at a dose rate of 5 kGy/h and further treated by post-annealing at 120 °C for 4 h in vacuum. Variations in chemical structure, thermostability, crystallinity, creep resistance, and tensile properties were investigated and compared mainly by gel content, TGA, DSC, and creep and tensile measurements. Gel content measurements indicated that cross-linking was predominant over chain scission during irradiation and post-annealing. Radiation cross-linking resulted in an obvious improvement in the creep resistance and tensile properties of UHMWPE. Through cross-linking, the operational temperature and yield strength of the irradiated and subsequently annealed UHMWPE sheet were improved by more than 100 °C and 14%, respectively, at a dose of 300 kGy. Simultaneously, Young's modulus was increased to 1413 MPa, compared with 398 MPa of pristine UHMWPE. Annealing after irradiation further improved the creep resistance and Young's modulus. Highly cross-linked UHMWPE can even be maintained at 250 °C for a long time without any obvious deformation.

  6. Significance of primary irradiation creep in graphite

    NASA Astrophysics Data System (ADS)

    Erasmus, Christiaan; Kok, Schalk; Hindley, Michael P.

    2013-05-01

    Traditionally primary irradiation creep is introduced into graphite analysis by applying the appropriate amount of creep strain to the model at the initial time-step. This is valid for graphite components that are subjected to high fast neutron flux fields and constant stress fields, but it does not allow for the effect of movement of stress locations around a graphite component during life, nor does it allow primary creep to be applied rate-dependently to graphite components subject to lower fast neutron flux. This paper shows that a differential form of primary irradiation creep in graphite combined with the secondary creep formulation proposed by Kennedy et al. performs well when predicting creep behaviour in experimental samples. The significance of primary irradiation creep in particular in regions with lower flux is investigated. It is shown that in low flux regions with a realistic operating lifetime primary irradiation creep is significant and is larger than secondary irradiation creep.

  7. Joint modeling of thermal creep and radiation damage interaction with gas permeability and release dynamics: The role of percolation

    NASA Astrophysics Data System (ADS)

    Ovaska, M.; Alava, M. J.

    2015-10-01

    Nuclear fuel material is an example of a sintered, porous ceramic material. We formulate a two-dimensional model which couples three physical mechanisms in the material: (scalar) damage accumulation by thermal creep and radiation effects, porosity changes due to the damage, and the time-dependent diffusion of (radiation-induced) gases in the pore system thus created. The most important effect in the dynamics arises from the process where the pore system is swept through the percolation transition. The main conclusions that can be drawn concern the fractional gas release and its dependence on the three effects present in the damage dynamics: creep, radiation-induced bubble formation, and recovery due to bubble closure. In the main, the model reproduces the experimentally observed quick gas release phenomenon qualitatively.

  8. (Irradiation creep of graphite)

    SciTech Connect

    Kennedy, C.R.

    1990-12-21

    The traveler attended the Conference, International Symposium on Carbon, to present an invited paper, Irradiation Creep of Graphite,'' and chair one of the technical sessions. There were many papers of particular interest to ORNL and HTGR technology presented by the Japanese since they do not have a particular technology embargo and are quite open in describing their work and results. In particular, a paper describing the failure of Minor's law to predict the fatigue life of graphite was presented. Although the conference had an international flavor, it was dominated by the Japanese. This was primarily a result of geography; however, the work presented by the Japanese illustrated an internal program that is very comprehensive. This conference, a result of this program, was better than all other carbon conferences attended by the traveler. This conference emphasizes the need for US participation in international conferences in order to stay abreast of the rapidly expanding HTGR and graphite technology throughout the world. The United States is no longer a leader in some emerging technologies. The traveler was surprised by the Japanese position in their HTGR development. Their reactor is licensed and the major problem in their graphite program is how to eliminate it with the least perturbation now that most of the work has been done.

  9. Deterministic and Probabilistic Creep and Creep Rupture Enhancement to CARES/Creep: Multiaxial Creep Life Prediction of Ceramic Structures Using Continuum Damage Mechanics and the Finite Element Method

    NASA Technical Reports Server (NTRS)

    Jadaan, Osama M.; Powers, Lynn M.; Gyekenyesi, John P.

    1998-01-01

    High temperature and long duration applications of monolithic ceramics can place their failure mode in the creep rupture regime. A previous model advanced by the authors described a methodology by which the creep rupture life of a loaded component can be predicted. That model was based on the life fraction damage accumulation rule in association with the modified Monkman-Grant creep ripture criterion However, that model did not take into account the deteriorating state of the material due to creep damage (e.g., cavitation) as time elapsed. In addition, the material creep parameters used in that life prediction methodology, were based on uniaxial creep curves displaying primary and secondary creep behavior, with no tertiary regime. The objective of this paper is to present a creep life prediction methodology based on a modified form of the Kachanov-Rabotnov continuum damage mechanics (CDM) theory. In this theory, the uniaxial creep rate is described in terms of stress, temperature, time, and the current state of material damage. This scalar damage state parameter is basically an abstract measure of the current state of material damage due to creep deformation. The damage rate is assumed to vary with stress, temperature, time, and the current state of damage itself. Multiaxial creep and creep rupture formulations of the CDM approach are presented in this paper. Parameter estimation methodologies based on nonlinear regression analysis are also described for both, isothermal constant stress states and anisothermal variable stress conditions This creep life prediction methodology was preliminarily added to the integrated design code CARES/Creep (Ceramics Analysis and Reliability Evaluation of Structures/Creep), which is a postprocessor program to commercially available finite element analysis (FEA) packages. Two examples, showing comparisons between experimental and predicted creep lives of ceramic specimens, are used to demonstrate the viability of this methodology and

  10. Creep of plasma sprayed zirconia

    NASA Technical Reports Server (NTRS)

    Firestone, R. F.; Logan, W. R.; Adams, J. W.

    1982-01-01

    Specimens of plasma-sprayed zirconia thermal barrier coatings with three different porosities and different initial particle sizes were deformed in compression at initial loads of 1000, 2000, and 3500 psi and temperatures of 1100 C, 1250 C, and 1400 C. The coatings were stabilized with lime, magnesia, and two different concentrations of yttria. Creep began as soon as the load was applied and continued at a constantly decreasing rate until the load was removed. Temperature and stabilization had a pronounced effect on creep rate. The creep rate for 20% Y2O3-80% ZrO2 was 1/3 to 1/2 that of 8% Y2O3-92% ZrO2. Both magnesia and calcia stabilized ZrO2 crept at a rate 5 to 10 times that of the 20% Y2O3 material. A near proportionality between creep rate and applied stress was observed. The rate controlling process appeared to be thermally activated, with an activation energy of approximately 100 cal/gm mole K. Creep deformation was due to cracking and particle sliding.

  11. Deuteron irradiation creep of chemically vapor deposited silicon carbide fibers

    NASA Astrophysics Data System (ADS)

    Scholz, R.

    1998-03-01

    Irradiation creep tests were conducted on Textron SCS-6 silicon carbide (SiC) fibers during irradiation with 14 MeV deuterons at 450 and 600°C. The fibers are produced by a CVD procedure; their microstructure may therefore be representative for the matrix of a SiC composite. There is a significant radiation induced increase in creep deformation. Both quantities, irradiation creep strain and creep rate, are higher at 450°C than at 600°C for doses <0.07 dpa.

  12. Fluid Creep and Over-resuscitation.

    PubMed

    Saffle, Jeffrey R

    2016-10-01

    Fluid creep is the term applied to a burn resuscitation, which requires more fluid than predicted by standard formulas. Fluid creep is common today and is linked to several serious edema-related complications. Increased fluid requirements may accompany the appropriate resuscitation of massive injuries but dangerous fluid creep is also caused by overly permissive fluid infusion and the lack of colloid supplementation. Several strategies for recognizing and treating fluid creep are presented. PMID:27600130

  13. COMPARISON OF CLADDING CREEP RUPTURE MODELS

    SciTech Connect

    P. Macheret

    2000-06-12

    The objective of this calculation is to compare several creep rupture correlations for use in calculating creep strain accrued by the Zircaloy cladding of spent nuclear fuel when it has been emplaced in the repository. These correlations are used to calculate creep strain values that are then compared to a large set of experimentally measured creep strain data, taken from four different research articles, making it possible to determine the best fitting correlation. The scope of the calculation extends to six different creep rupture correlations.

  14. Life at Mission Creep U

    ERIC Educational Resources Information Center

    Dubrow, Greg; Moseley, Bryan; Dustin, Daniel

    2006-01-01

    The term "mission creep" was originally coined nearly a hundred years ago to describe the gradual process by which a military mission's stated methods and goals change, and recently the term has been applied to incremental organizational changes. In this article, the term is used to describe what happens when a teaching-oriented college or…

  15. Creep Deformation of Allvac 718Plus

    NASA Astrophysics Data System (ADS)

    Hayes, Robert W.; Unocic, Raymond R.; Nasrollahzadeh, Maryam

    2015-01-01

    The creep deformation behavior of Allvac 718Plus was studied over the temperature range of 923 K to 1005 K (650 °C to 732 °C) at initial applied stress levels ranging from 517 to 655 MPa. Over the entire experimental temperature-stress regime this alloy exhibits Class M-type creep behavior with all creep curves exhibiting a decelerating strain rate with strain or time throughout primary creep. However, unlike pure metals or simple solid solution alloys, this gamma prime strengthened superalloy does not exhibit steady-state creep. Rather, primary creep is instantly followed by a long duration of accelerating strain rate with strain or time. These creep characteristics are common among the gamma prime strengthened superalloys. Allvac 718Plus also exhibits a very high temperature dependence of creep rate. Detailed TEM examination of the deformation structures of selected creep samples reveals dislocation mechanisms similar to those found in high volume fraction gamma prime strengthened superalloys. Strong evidence of microtwinning is found in several of the deformation structures. The presence of microtwinning may account for the strong temperature dependence of creep rate observed in this alloy. In addition, due to the presence of Nb and thus, grain boundary delta phase, matrix dislocation activity which is not present in non-Nb-bearing superalloys occurs in this alloy. The creep characteristics and dislocation mechanisms are presented and discussed in detail.

  16. Creep Deformation of Allvac 718Plus

    DOE PAGESBeta

    Hayes, Robert W.; Unocic, Raymond R.; Nasrollahzadeh, Maryam

    2014-11-11

    The creep deformation behavior of Allvac 718Plus was studied over the temperature range 650° to 732°C at initial applied stress levels ranging from 517 to 655 MPa. Over the entire experimental temperature stress regime this alloy exhibits Class M type creep behavior with all creep curves exhibiting a decelerating strain rate with strain or time throughout primary creep. However, unlike pure metals or simple solid solution alloys this gamma prime strengthened superalloy does not exhibit steady state creep. Rather, primary creep is instantly followed by a long duration of accelerating strain rate with strain or time. These creep characteristics aremore » common amongst the gamma prime strengthened superalloys. Allvac 718Plus also exhibits a very high temperature dependence of creep rate. Detailed TEM examination of the deformation structures of selected creep samples reveals dislocation mechanisms similar to those found in high volume fraction gamma prime strengthened superalloys. Strong evidence of microtwinning is found in several of the deformation structures. The presence of microtwinning may account for the strong temperature dependence of creep rate observed in this alloy. In addition, due to the presence of Nb and thus, grain boundary delta phase, matrix dislocation activity which is not present in non Nb bearing superalloys occurs in this alloy. The creep characteristics and dislocation mechanisms are presented and discussed in detail.« less

  17. Creep Deformation of Allvac 718Plus

    SciTech Connect

    Hayes, Robert W.; Unocic, Raymond R.; Nasrollahzadeh, Maryam

    2014-11-11

    The creep deformation behavior of Allvac 718Plus was studied over the temperature range 650° to 732°C at initial applied stress levels ranging from 517 to 655 MPa. Over the entire experimental temperature stress regime this alloy exhibits Class M type creep behavior with all creep curves exhibiting a decelerating strain rate with strain or time throughout primary creep. However, unlike pure metals or simple solid solution alloys this gamma prime strengthened superalloy does not exhibit steady state creep. Rather, primary creep is instantly followed by a long duration of accelerating strain rate with strain or time. These creep characteristics are common amongst the gamma prime strengthened superalloys. Allvac 718Plus also exhibits a very high temperature dependence of creep rate. Detailed TEM examination of the deformation structures of selected creep samples reveals dislocation mechanisms similar to those found in high volume fraction gamma prime strengthened superalloys. Strong evidence of microtwinning is found in several of the deformation structures. The presence of microtwinning may account for the strong temperature dependence of creep rate observed in this alloy. In addition, due to the presence of Nb and thus, grain boundary delta phase, matrix dislocation activity which is not present in non Nb bearing superalloys occurs in this alloy. The creep characteristics and dislocation mechanisms are presented and discussed in detail.

  18. Structural-phase state and creep of mixed nitride fuel

    NASA Astrophysics Data System (ADS)

    Konovalov, I. I.; Tarasov, B. A.; Glagovsky, E. M.

    2016-04-01

    By the analysis of thermal creep data in conjunction with structural-phase state the most likely mechanisms of UN creep are considered. An equation relating the thermal and radiation creep of nitride fuel with such important parameters as plutonium content, porosity, grain size, the content of impurities of transition metals and oxygen, the carbon content has been suggested. At stationary operating parameters in reactor the creep of nitride fuel with technical purity is defined by the thermal component at mechanism of intergranular slip and by the radiation component, which plays a significant role at temperatures below 1100°C. Both types of creep in a first approximation have a linear dependence on the stress.

  19. High-temperature creep of polycrystalline chromium

    NASA Technical Reports Server (NTRS)

    Stephens, J. R.; Klopp, W. D.

    1972-01-01

    The creep properties of high-purity, polycrystalline chromium were determined over the temperature range 0.51 to 0.78 T sub m, where T sub m is the melting temperature. Creep rates determined from step-load creep tests can be represented by the general creep equation; epsilon/D = k((sigma/E) to the nth power) where epsilon is the minimum creep rate, D is the diffusivity, k is the creep rate constant, sigma is the applied stress, E is the modulus, and n is the stress exponent, equal to 4.3 for chromium. This correlation and metallographic observations suggest a dislocation climb mechanism is operative in the creep of chromium over the temperature range investigated.

  20. Tensile creep behavior of polycrystalline alumina fibers

    NASA Technical Reports Server (NTRS)

    Yun, H. M.; Goldsby, J. C.

    1993-01-01

    Tensile creep studies were conducted on polycrystalline Nextel 610 and Fiber FP alumina fibers with grain sizes of 100 and 300 nm, respectively. Test conditions were temperatures from 800 to 1050 C and stresses from 60 to 1000 MPa. For both fibers, only a small primary creep portion occurred followed by steady-state creep. The stress exponents for steady-state creep of Nextel 610 and Fiber FP were found to be about 3 and 1, respectively. At lower temperatures, below 1000 C, the finer grained Nextel 610 had a much higher 0.2 percent creep strength for 100 hr than the Fiber FP; while at higher temperatures, Nextel 610 had a comparable creep strength to the Fiber FP. The stress and grain size dependencies suggest Nextel 610 and Fiber FP creep rates are due to grain boundary sliding controlled by interface reaction and Nabarro-Herring mechanisms, respectively.

  1. Dislocation Creep in Magnesium Calcite

    NASA Astrophysics Data System (ADS)

    Xu, L.; Xiao, X.; Evans, B. J.

    2003-12-01

    To investigate the effect of dissolved Mg on plastic deformation of calcite, we performed triaxial deformation experiments on synthetic calcite with varying amount of Mg content. Mixtures of powders of calcite and dolomite were isostatically hot pressed (HIP) at 850° C and 300 MPa confining pressure for different intervals (2 to 20hrs) resulting in homogeneous aggregates of high-magnesium calcite; Mg content varied from 0.07 to 0.17 mol%. Creep tests were performed at differential stresses from 20 to 160 MPa at 700 to 800° C. Grain sizes before and after deformation were determined from the images obtained from scanning electron microscope (SEM) and optical microscope. Grain sizes are in the range of 5 to 20 microns depending on the HIP time, and decrease with increasing magnesium content. Both BSE images and chemical analysis suggest that all dolomite are dissolved and the Mg distribution is homogeneous through the sample, after 2 hrs HIP. At stresses below 40 MPa, the samples deformed in diffusion region (Coble creep), as described previously by Herwegh. The strength decreases with increasing magnesium content, owing to the difference of grain size. At stresses above 80 MPa, the stress exponent is greater than 3, indicating an increased contribution of dislocation creep. The transition between diffusion to dislocation creep occurs at higher stresses for the samples with higher magnesium content and smaller grain size. Preliminary data suggests a slight increase in strength with increasing magnesium content, but more tests are needed to verify this effect. In a few samples, some strain weakening may have been evident. The activation energy in the transition region (at 80 MPa) is ˜200 KJ/mol with no dependence on magnesium content, agreeing with previous measurements of diffusion creep in natural and synthetic marbles.

  2. Proton Irradiation Creep in Pyrocarbon

    SciTech Connect

    Was, Gary S.; Campbell, Anne

    2011-10-01

    This project aims to understand irradiation creep in pyrocarbon using proton irradiation under controlled stresses and temperatures. Experiments will be conducted over a range of temperatures and stresses per the proposal submitted. The work scope will include the preparation of samples, measurement of deposition thickness, thickness uniformity, and anisotropy. The samples produced will be made in strips, which will be used for the creep experiments. Materials used will include pyrolytic carbon (PyC), Highly Oriented Pyrolytic Graphite (HOPG), or graphite strip samples in that order depending upon success. Temperatures tested under will range from 800°C to 1200°C, and stresses from 6MPa to 20.7MPa. Optional testing may occur at 900°C and 1100°C and stresses from 6MPa to 20.7MPa if funding is available.

  3. Creep of Structural Nuclear Composites

    SciTech Connect

    Will Windes; R.W. Lloyd

    2005-09-01

    A research program has been established to investigate fiber reinforced ceramic composites to be used as control rod components within a Very High Temperature Reactor (VHTR) design. Two candidate systems have been identified, carbon fiber reinforced carbon (Cf/C) and silicon carbide fiber reinforced silicon carbide (SiCf/SiC) composites. One of the primary degradation mechanisms anticipated for these core components is high temperature thermal and irradiation enhanced creep. As a consequence, high temperature test equipment, testing methodologies, and test samples for very high temperature (up to 1600º C) tensile strength and long duration creep studies have been established. Actual testing of both tubular and flat, "dog-bone"-shaped tensile composite specimens will begin next year. Since there is no precedence for using ceramic composites within a nuclear reactor, ASTM standard test procedures are currently being established from these high temperature mechanical tests.

  4. High-pressure creep tests

    NASA Technical Reports Server (NTRS)

    Bhattacharyya, S.; Lamoureux, J.; Hales, C.

    1986-01-01

    The automotive Stirling engine, presently being developed by the U.S. Department of Energy and NASA, uses high-pressure hydrogen as a working fluid; its long-term effects on the properties of alloys are relatively unknown. Hence, creep-rupture testing of wrought and cast high-temperature alloys in high-pressure hydrogen is an essential part of the research supporting the development of the Stirling cycle engine. Attention is given to the design, development, and operation of a 20 MPa hydrogen high-temperature multispecimen creep-rupture possessing high sensitivity. This pressure vessel allows for the simultaneous yet independent testing of six specimens. The results from one alloy, XF-818, are presented to illustrate how reported results are derived from the raw test data.

  5. Creep dynamics in soft matter

    NASA Astrophysics Data System (ADS)

    Cabriolu, Raffaela

    Detecting any precursors of failure in Soft Matter Systems (SMS) is an inter-disciplinary topic with important applications (e.g. prediction of failure in engineering processes). Further, it provides an ideal benchmark to understand how mechanical stress and failure impacts the flow properties of amorphous condensed matter. Furthermore, some SMS are viscoelastic, flowing like viscous liquids or deforming like a solid according to applied forces. Often SMS are fragile and local rearrangements trigger catastrophic macroscopic failure. Despite the importance of the topic little is known on the local creep dynamics before the occurrence of such catastrophic events. To study creep and failure at an atomic/molecular level and at time scales that are not easily accessible by experiments we chose to carry out microscopic simulations. In this work we present the response of a colloidal system to uniaxial tensile stress applied and we compare our results to experimental works [8].

  6. Dislocation creep of dry quartz

    NASA Astrophysics Data System (ADS)

    Kilian, Rüdiger; Heilbronner, Renée.; Holyoke, Caleb W.; Kronenberg, Andreas K.; Stünitz, Holger

    2016-05-01

    Small-scale shear zones within the Permian Truzzo meta-granite developed during the Alpine orogeny at amphibolite facies conditions. In these shear zones magmatic quartz deformed by dislocation creep and recrystallized dynamically by grain boundary migration with minor subgrain rotation recrystallization to a grain size of around 250-750 µm, consistent with flow at low differential stresses. Fourier transform infrared (FTIR) spectroscopy reveals very low water contents in the interior of recrystallized grains (in the form of discrete OH peaks, ~20 H/106Si and very little broad band absorption, <100 H/106Si). The spectral characteristics are comparable to those of dry Brazil quartz. In FTIR spectra, magmatic quartz grains show a broad absorption band related with high water concentrations only in those areas where fluid inclusions are present while other areas are dry. Drainage of fluid inclusions and synkinematic growth of hydrous minerals indicates that a hydrous fluid has been available during deformation. Loss of intragranular water during grain boundary migration recrystallization did not result in a microstructure indicative of hardening. These FTIR measurements provide the first evidence that quartz with extremely low intragranular water contents can deform in nature by dislocation creep at low differential stresses. Low intragranular water contents in naturally deformed quartz may not be necessarily indicative of a high strength, and the results are contrary to implications taken from deformation experiments where very high water contents are required to allow dislocation creep in quartz. It is suggested that dislocation creep of quartz in the Truzzo meta-granite is possible to occur at low differential stresses because sufficient amounts of intergranular water ensure a high recovery rate by grain boundary migration while the absence of significant amounts of intragranular water is not crucial at natural conditions.

  7. Central Cascadia subduction zone creep

    NASA Astrophysics Data System (ADS)

    Schmalzle, Gina M.; McCaffrey, Robert; Creager, Kenneth C.

    2014-04-01

    Cascadia between 43°N and 46°N has reduced interseismic uplift observed in geodetic data and coseismic subsidence seen in multiple thrust earthquakes, suggesting elevated persistent fault creep in this section of the subduction zone. We estimate subduction thrust "decade-scale" locking and crustal block rotations from three-component continuous Global Positioning System (GPS) time series from 1997 to 2013, as well as 80 year tide gauge and leveling-derived uplift rates. Geodetic observations indicate coastal central Oregon is rising at a slower rate than coastal Washington, southern Oregon and northern California. Modeled locking distributions suggest a wide locking transition zone that extends inland under central Oregon. Paleoseismic records of multiple great earthquakes along Cascadia indicate less subsidence in central Oregon. The Cascade thrust under central Oregon may be partially creeping for at least 6500 years (the length of the paleoseismic record) reducing interseismic uplift and resulting in reduced coseismic subsidence. Large accretions of Eocene age basalt (Siletzia terrane) between 43°N and 46°N may be less permeable compared to surrounding terranes, potentially increasing pore fluid pressures along the fault interface resulting in a wide zone of persistent fault creep. In a separate inversion, three-component GPS time series from 1 July 2005 to 1 January 2011 are used to estimate upper plate deformation, locking between slow-slip events (SSEs), slip from 16 SSEs and an earthquake mechanism. Cumulative SSEs and tectonic tremor are weakest between 43°N and 46°N where partial fault creep is increased and Siletzia terrane is thick, suggesting that surrounding rock properties may influence the mode of slip.

  8. Postseismic relaxation and transient creep

    USGS Publications Warehouse

    Savage, J.C.; Svarc, J.L.; Yu, S.-B.

    2005-01-01

    Postseismic deformation has been observed in the epicentral area following the 1992 Landers (M = 7.3), 1999 Chi-Chi (M = 7.6), 1999 Hector Mine (M = 7.1), 2002 Denali (M = 7.9), 2003 San Simeon (M = 6.5), and 2004 Parkfield (M = 6.0) earthquakes. The observations consist of repeated GPS measurements of the position of one monument relative to another (separation ???100 km). The early observations (t < 0.1 year) are well fit by the function a' + c'log(t), where t is the time after the earthquake and a' and c' are constants chosen to fit the data. Because a log(t) time dependence is characteristic of transient (primary) creep, the early postseismic response may be governed by transient creep as Benioff proposed in 1951. That inference is provisional as the stress conditions prevailing in postseismic relaxation are not identical to the constant stress condition in creep experiments. The observed logarithmic time dependence includes no characteristic time that might aid in identifying the micromechanical cause.

  9. Compression creep of filamentary composites

    NASA Technical Reports Server (NTRS)

    Graesser, D. L.; Tuttle, M. E.

    1988-01-01

    Axial and transverse strain fields induced in composite laminates subjected to compressive creep loading were compared for several types of laminate layups. Unidirectional graphite/epoxy as well as multi-directional graphite/epoxy and graphite/PEEK layups were studied. Specimens with and without holes were tested. The specimens were subjected to compressive creep loading for a 10-hour period. In-plane displacements were measured using moire interferometry. A computer based data reduction scheme was developed which reduces the whole-field displacement fields obtained using moire to whole-field strain contour maps. Only slight viscoelastic response was observed in matrix-dominated laminates, except for one test in which catastrophic specimen failure occurred after a 16-hour period. In this case the specimen response was a complex combination of both viscoelastic and fracture mechanisms. No viscoelastic effects were observed for fiber-dominated laminates over the 10-hour creep time used. The experimental results for specimens with holes were compared with results obtained using a finite-element analysis. The comparison between experiment and theory was generally good. Overall strain distributions were very well predicted. The finite element analysis typically predicted slightly higher strain values at the edge of the hole, and slightly lower strain values at positions removed from the hole, than were observed experimentally. It is hypothesized that these discrepancies are due to nonlinear material behavior at the hole edge, which were not accounted for during the finite-element analysis.

  10. Room temperature creep in metals and alloys

    SciTech Connect

    Deibler, Lisa Anne

    2014-09-01

    Time dependent deformation in the form of creep and stress relaxation is not often considered a factor when designing structural alloy parts for use at room temperature. However, creep and stress relaxation do occur at room temperature (0.09-0.21 Tm for alloys in this report) in structural alloys. This report will summarize the available literature on room temperature creep, present creep data collected on various structural alloys, and finally compare the acquired data to equations used in the literature to model creep behavior. Based on evidence from the literature and fitting of various equations, the mechanism which causes room temperature creep is found to include dislocation generation as well as exhaustion.

  11. Creep rupture behavior of unidirectional advanced composites

    NASA Technical Reports Server (NTRS)

    Yeow, Y. T.

    1980-01-01

    A 'material modeling' methodology for predicting the creep rupture behavior of unidirectional advanced composites is proposed. In this approach the parameters (obtained from short-term tests) required to make the predictions are the three principal creep compliance master curves and their corresponding quasi-static strengths tested at room temperature (22 C). Using these parameters in conjunction with a failure criterion, creep rupture envelopes can be generated for any combination of in-plane loading conditions and ambient temperature. The analysis was validated experimentally for one composite system, the T300/934 graphite-epoxy system. This was done by performing short-term creep tests (to generate the principal creep compliance master curves with the time-temperature superposition principle) and relatively long-term creep rupture tensile tests of off-axis specimens at 180 C. Good to reasonable agreement between experimental and analytical results is observed.

  12. Empirical law for fault-creep events

    USGS Publications Warehouse

    Crough, S.T.; Burford, R.O.

    1977-01-01

    Fault-creep events measured on the San Andreas and related faults near Hollister, California, can be described by a rheological model consisting of a spring, power-law dashpotand sliding block connected in series. An empirical creep-event law, derived from many creep-event records analyzed within the constraints of the model, provides a remarkably simple and accurate representation of creep-event behavior. The empirical creep law is expressed by the equation: D(t)= Df [1-1/{ct(n-1)Dfn-1+1}/(n-1)] where D is the value of displacement at time t following the onset of an event, Df is the final equilibrium value of the event displacementand C is a proportionality constant. This discovery should help determine whether the time-displacement character of creep events is controlled by the material properties of fault gouge, or by other parameters. ?? 1977.

  13. Cumulative creep damage for polycarbonate and polysulfone

    NASA Technical Reports Server (NTRS)

    Zhang, M.; Brinson, H. F.

    1985-01-01

    The literature for creep to failure cumulative damage laws are reviewed. Creep to failure tests performed on polycarbonate and polysulfone under single and two step loadings are discussed. A cumulative damage law or modified time fraction rule is developed using a power law for transient creep response as the starting point. Experimental results are approximated well by the new rule. Damage and failure mechanisms associated with the two materials are suggested.

  14. Fiber Creep Evaluation by Stress Relaxation Measurements

    NASA Technical Reports Server (NTRS)

    Morscher, Gregory N.; Dicarlo, James A.; Wagner, Timothy

    1991-01-01

    A simple bend stress relaxation (BSR) test has been used to measure the creep related properties of a chemically vapor-deposited SiC fiber. Time, temperature, and strain dependent BSR data were analyzed to ascertain the ability of the stress relaxation results to predict tensile creep as a function of the same parameters. The predictions compared very well to actual creep data obtained by axial measurements, indicating that the BSR test could be used for determining both creep and stress relaxation of polycrystalline ceramic fibers under tensile loading.

  15. Electrochemical control of creep in nanoporous gold

    SciTech Connect

    Ye, Xing-Long; Jin, Hai-Jun

    2013-11-11

    We have investigated the mechanical stability of nanoporous gold (npg) in an electrochemical environment, using in situ dilatometry and compression experiments. It is demonstrated that the gold nano-ligaments creep under the action of surface stress which leads to spontaneous volume contractions in macroscopic npg samples. The creep of npg, under or without external forces, can be controlled electrochemically. The creep rate increases with increasing potential in double-layer potential region, and deceases to almost zero when the gold surface is adsorbed with oxygen. Surprisingly, we also noticed a correlation between creep and surface diffusivity, which links the deformation of nanocrystals to mobility of surface atoms.

  16. Creep Deformation of B2 Alumindes

    NASA Technical Reports Server (NTRS)

    Nathal, M. V.

    1991-01-01

    The creep resistance and elevated temperature deformation mechanisms in CoAl, FeAl, and NiAl are reviewed. The stress and temperature dependencies of the steady state creep rate, the primary creep behavior, the dislocation substructure, and the response during transient tests are used as the main indicators of the deformation processes. In single phase intermetallics, the influence of grain size, stoichiometry, and solid solution hardening have been examined. In addition, the effect of adding dispersoids, precipitates, and other types of reinforcements to improve creep strength are compared.

  17. Model for transient creep of southeastern New Mexico rock salt

    SciTech Connect

    Herrmann, W; Wawersik, W R; Lauson, H S

    1980-11-01

    In a previous analysis, existing experimental data pertaining to creep tests on rock salt from the Salado formation of S.E. New Mexico were fitted to an exponential transient creep law. While very early time portions of creep strain histories were not fitted very well for tests at low temperatures and stresses, initial creep rates in particular generally being underestimated, the exponential creep law has the property that the transient creep strain approaches a finite limit with time, and is therefore desirable from a creep modelling point of view. In this report, an analysis of transient creep is made. It is found that exponential transient creep can be related to steady-state creep through a universal creep curve. The resultant description is convenient for creep analyses where very early time behavior is not important.

  18. Effect of Tungsten on Primary Creep Deformation and Minimum Creep Rate of Reduced Activation Ferritic-Martensitic Steel

    NASA Astrophysics Data System (ADS)

    Vanaja, J.; Laha, Kinkar; Mathew, M. D.

    2014-10-01

    Effect of tungsten on transient creep deformation and minimum creep rate of reduced activation ferritic-martensitic (RAFM) steel has been assessed. Tungsten content in the 9Cr-RAFM steel has been varied between 1 and 2 wt pct, and creep tests were carried out over the stress range of 180 and 260 MPa at 823 K (550 °C). The tempered martensitic steel exhibited primary creep followed by tertiary stage of creep deformation with a minimum in creep deformation rate. The primary creep behavior has been assessed based on the Garofalo relationship, , considering minimum creep rate instead of steady-state creep rate . The relationships between (i) rate of exhaustion of transient creep r' with minimum creep rate, (ii) rate of exhaustion of transient creep r' with time to reach minimum creep rate, and (iii) initial creep rate with minimum creep rate revealed that the first-order reaction-rate theory has prevailed throughout the transient region of the RAFM steel having different tungsten contents. The rate of exhaustion of transient creep r' and minimum creep rate decreased, whereas the transient strain ɛ T increased with increase in tungsten content. A master transient creep curve of the steels has been developed considering the variation of with . The effect of tungsten on the variation of minimum creep rate with applied stress has been rationalized by invoking the back-stress concept.

  19. CREEP AND CREEP-FATIGUE OF ALLOY 617 WELDMENTS

    SciTech Connect

    Wright, Jill; Carroll, Laura; Wright, Richard

    2014-08-01

    The Very High Temperature Reactor (VHTR) Intermediate Heat Exchanger (IHX) may be joined to piping or other components by welding. Creep-fatigue deformation is expected to be a predominant failure mechanism of the IHX1 and thus weldments used in its fabrication will experience varying cyclic stresses interrupted by periods of elevated temperature deformation. These periods of elevated temperature deformation are greatly influenced by a materials’ creep behavior. The nickel-base solid solution strengthened alloy, Alloy 617, is the primary material candidate for a VHTR-type IHX, and it is expected that Alloy 617 filler metal will be used for welds. Alloy 617 is not yet been integrated into Section III of the Boiler and Pressure Vessel Code, however, nuclear component design with Alloy 617 requires ASME (American Society of Mechanical Engineers) Code qualification. The Code will dictate design for welded construction through significant performance reductions. Despite the similar compositions of the weldment and base material, significantly different microstructures and mechanical properties are inevitable. Experience of nickel alloy welds in structural applications suggests that most high temperature failures occur at the weldments or in the heat-affected zone. Reliably guarding against this type of failure is particularly challenging at high temperatures due to the variations in the inelastic response of the constituent parts of the weldment (i.e., weld metal, heat-affected zone, and base metal) [ref]. This work focuses on the creep-fatigue behavior of nickel-based weldments, a need noted during the development of the draft Alloy 617 ASME Code Case. An understanding of Alloy 617 weldments when subjected to this important deformation mode will enable determination of the appropriate design parameters associated with their use. Specifically, the three main areas emphasized are the performance reduction due to a weld discontinuity in terms of the reduced number of

  20. 1/2 CREEP FRACTURE IN CERAMIC POLYCRYSTALS I. CREEP CAVITATION EFFECTS IN POLYCRYSTALLINE ALUMINA

    SciTech Connect

    Porter, J. R.; Blumenthal, W.; Evans, A. G.

    1980-09-01

    Fine grained polycrystalline alumina has been deformed in creep at high temperatures, to examine the evolution of cavities at grain boundaries. Cavities with equilibrium and crack-like morphologies have been observed, distributed non-uniformly throughout the material. The role of cavities during creep has been described. A transition from equilibrium to crack-like morphology has been observed and correlated with a model based on the influence of the surface to boundary diffusivity ratio and the local tensile stress. The contribution of cavitation to the creep rate and total creep strain has been analyzed and excluded as the principal cause of the observed non-linear creep rate,

  1. Ground Motions Due to Earthquakes on Creeping Faults

    NASA Astrophysics Data System (ADS)

    Harris, R.; Abrahamson, N. A.

    2014-12-01

    We investigate the peak ground motions from the largest well-recorded earthquakes on creeping strike-slip faults in active-tectonic continental regions. Our goal is to evaluate if the strong ground motions from earthquakes on creeping faults are smaller than the strong ground motions from earthquakes on locked faults. Smaller ground motions might be expected from earthquakes on creeping faults if the fault sections that strongly radiate energy are surrounded by patches of fault that predominantly absorb energy. For our study we used the ground motion data available in the PEER NGA-West2 database, and the ground motion prediction equations that were developed from the PEER NGA-West2 dataset. We analyzed data for the eleven largest well-recorded creeping-fault earthquakes, that ranged in magnitude from M5.0-6.5. Our findings are that these earthquakes produced peak ground motions that are statistically indistinguishable from the peak ground motions produced by similar-magnitude earthquakes on locked faults. These findings may be implemented in earthquake hazard estimates for moderate-size earthquakes in creeping-fault regions. Further investigation is necessary to determine if this result will also apply to larger earthquakes on creeping faults. Please also see: Harris, R.A., and N.A. Abrahamson (2014), Strong ground motions generated by earthquakes on creeping faults, Geophysical Research Letters, vol. 41, doi:10.1002/2014GL060228.

  2. Cumulative creep damage for polycarbonate and polysulfone

    NASA Technical Reports Server (NTRS)

    Zhang, M. J.; Straight, M. R.; Brinson, H. F.

    1985-01-01

    Creep to failure tests performed on polycarbonate and polysulfone under single and two step loadings are discussed. A cumulative damage law or modified time fraction rule is developed using a power law for transient creep response as the starting point. Experimental results are approximated well by the new rule. Damage and failure mechanisms associated with the two materials are suggested.

  3. Creep resistant high temperature martensitic steel

    SciTech Connect

    Hawk, Jeffrey A.; Jablonski, Paul D.; Cowen, Christopher J.

    2015-11-13

    The disclosure provides a creep resistant alloy having an overall composition comprised of iron, chromium, molybdenum, carbon, manganese, silicon, nickel, vanadium, niobium, nitrogen, tungsten, cobalt, tantalum, boron, and potentially additional elements. In an embodiment, the creep resistant alloy has a molybdenum equivalent Mo(eq) from 1.475 to 1.700 wt. % and a quantity (C+N) from 0.145 to 0.205. The overall composition ameliorates sources of microstructural instability such as coarsening of M.sub.23C.sub.6 carbides and MX precipitates, and mitigates or eliminates Laves and Z-phase formation. A creep resistant martensitic steel may be fabricated by preparing a melt comprised of the overall composition followed by at least austenizing and tempering. The creep resistant alloy exhibits improved high-temperature creep strength in the temperature environment of around 650.degree. C.

  4. Irradiation creep of vanadium-base alloys

    SciTech Connect

    Tsai, H.; Billone, M.C.; Strain, R.V.; Smith, D.L.; Matsui, H.

    1998-03-01

    A study of irradiation creep in vanadium-base alloys is underway with experiments in the Advanced Test Reactor (ATR) and the High Flux Isotope Reactor (HFIR) in the United States. Test specimens are thin-wall sealed tubes with internal pressure loading. The results from the initial ATR irradiation at low temperature (200--300 C) to a neutron damage level of 4.7 dpa show creep rates ranging from {approx}0 to 1.2 {times} 10{sup {minus}5}/dpa/MPa for a 500-kg heat of V-4Cr-4Ti alloy. These rates were generally lower than reported from a previous experiment in BR-10. Because both the attained neutron damage levels and the creep strains were low in the present study, however, these creep rates should be regarded as only preliminary. Substantially more testing is required before a data base on irradiation creep of vanadium alloys can be developed and used with confidence.

  5. Creep and aging in jammed granular materials

    NASA Astrophysics Data System (ADS)

    Srivastava, Ishan; Fisher, Timothy

    Granular materials flow (or unjam) when stressed above the Coulomb yield stress, but a slow creep is observed when the applied stresses are low. In this work, using a recently introduced enthalpy-based variable-cell simulation method, we will present results on the creep and slow aging dynamics in granular systems comprised of soft particles of varying shape that are hydrostatically jammed and subjected to an external stress. We observe a two-stage creep with an initial fast exponential evolution followed by a slow logarithmic evolution over long time scales. We correlate the slow creeping dynamics with micromechanical evolution at the grain scale, such as increasing dynamical heterogeneity and force-chain rearrangements. Results will also be presented on the effect of grain shape (faceted vs. spherical) on the creep and aging dynamics. Finally, a continuum granular fluidity model is developed to rationalize these observations.

  6. Creep-rupture reliability analysis

    NASA Technical Reports Server (NTRS)

    Peralta-Duran, A.; Wirsching, P. H.

    1984-01-01

    A probabilistic approach to the correlation and extrapolation of creep-rupture data is presented. Time temperature parameters (TTP) are used to correlate the data, and an analytical expression for the master curve is developed. The expression provides a simple model for the statistical distribution of strength and fits neatly into a probabilistic design format. The analysis focuses on the Larson-Miller and on the Manson-Haferd parameters, but it can be applied to any of the TTP's. A method is developed for evaluating material dependent constants for TTP's. It is shown that optimized constants can provide a significant improvement in the correlation of the data, thereby reducing modelling error. Attempts were made to quantify the performance of the proposed method in predicting long term behavior. Uncertainty in predicting long term behavior from short term tests was derived for several sets of data. Examples are presented which illustrate the theory and demonstrate the application of state of the art reliability methods to the design of components under creep.

  7. Creep-rupture reliability analysis

    NASA Technical Reports Server (NTRS)

    Peralta-Duran, A.; Wirsching, P. H.

    1985-01-01

    A probabilistic approach to the correlation and extrapolation of creep-rupture data is presented. Time temperature parameters (TTP) are used to correlate the data, and an analytical expression for the master curve is developed. The expression provides a simple model for the statistical distribution of strength and fits neatly into a probabilistic design format. The analysis focuses on the Larson-Miller and on the Manson-Haferd parameters, but it can be applied to any of the TTP's. A method is developed for evaluating material dependent constants for TTP's. It is shown that optimized constants can provide a significant improvement in the correlation of the data, thereby reducing modelling error. Attempts were made to quantify the performance of the proposed method in predicting long term behavior. Uncertainty in predicting long term behavior from short term tests was derived for several sets of data. Examples are presented which illustrate the theory and demonstrate the application of state of the art reliability methods to the design of components under creep.

  8. Simultaneous Tomography and Diffraction Analysis of Creep Damage

    NASA Astrophysics Data System (ADS)

    Pyzalla, A.; Camin, B.; Buslaps, T.; Di Michiel, M.; Kaminski, H.; Kottar, A.; Pernack, A.; Reimers, W.

    2005-04-01

    Creep damage by void nucleation and growth limits the lifetime of components subjected to loading at high temperatures. We report a combined tomography and diffraction experiment using high-energy synchrotron radiation that permitted us to follow in situ void growth and microstructure development in bulk samples. The results reveal that void growth versus time follows an exponential growth law. The formation of large void volumes coincides with texture evolution and dislocation density, reaching a steady state. Creep damage during a large proportion of sample creep life is homogeneous before damage localization occurs, which leads to rapid failure. The in situ determination of void evolution in bulk samples should allow for the assessment of creep damage in metallic materials and subsequently for lifetime predictions about samples and components that are subject to high-temperature loading.

  9. Irradiation creep of dispersion strengthened copper alloy

    SciTech Connect

    Pokrovsky, A.S.; Barabash, V.R.; Fabritsiev, S.A.

    1997-04-01

    Dispersion strengthened copper alloys are under consideration as reference materials for the ITER plasma facing components. Irradiation creep is one of the parameters which must be assessed because of its importance for the lifetime prediction of these components. In this study the irradiation creep of a dispersion strengthened copper (DS) alloy has been investigated. The alloy selected for evaluation, MAGT-0.2, which contains 0.2 wt.% Al{sub 2}O{sub 3}, is very similar to the GlidCop{trademark} alloy referred to as Al20. Irradiation creep was investigated using HE pressurized tubes. The tubes were machined from rod stock, then stainless steel caps were brazed onto the end of each tube. The creep specimens were pressurized by use of ultra-pure He and the stainless steel caps subsequently sealed by laser welding. These specimens were irradiated in reactor water in the core position of the SM-2 reactors to a fluence level of 4.5-7.1 x 10{sup 21} n/cm{sup 2} (E>0.1 MeV), which corresponds to {approx}3-5 dpa. The irradiation temperature ranged from 60-90{degrees}C, which yielded calculated hoop stresses from 39-117 MPa. A mechanical micrometer system was used to measure the outer diameter of the specimens before and after irradiation, with an accuracy of {+-}0.001 mm. The irradiation creep was calculated based on the change in the diameter. Comparison of pre- and post-irradiation diameter measurements indicates that irradiation induced creep is indeed observed in this alloy at low temperatures, with a creep rate as high as {approx}2 x 10{sup {minus}9}s{sup {minus}1}. These results are compared with available data for irradiation creep for stainless steels, pure copper, and for thermal creep of copper alloys.

  10. Creep substructure formation in sodium chloride single crystals in the power law and exponential creep regimes

    NASA Technical Reports Server (NTRS)

    Raj, S. V.; Pharr, G. M.

    1989-01-01

    Creep tests conducted on NaCl single crystals in the temperature range from 373 to 1023 K show that true steady state creep is obtained only above 873 K when the ratio of the applied stress to the shear modulus is less than or equal to 0.0001. Under other stress and temperature conditions, corresponding to both power law and exponential creep, the creep rate decreases monotonically with increasing strain. The transition from power law to exponential creep is shown to be associated with increases in the dislocation density, the cell boundary width, and the aspect ratio of the subgrains along the primary slip planes. The relation between dislocation structure and creep behavior is also assessed.

  11. Creep of Refractory Fibers and Modeling of Metal and Ceramic Matrix Composite Creep Behavior

    NASA Technical Reports Server (NTRS)

    Tewari, S.N.

    1995-01-01

    Our concentration during this research was on the following subprograms. (1) Ultra high vacuum creep tests on 218, ST300 and WHfC tungsten and MoHfC molybdenum alloy wires, temperature range from 1100 K to 1500 K, creep time of 1 to 500 hours. (2) High temperature vacuum tensile tests on 218, ST300 and WHfC tungsten and MoHfC molybdenum alloy wires. (3) Air and vacuum tensile creep tests on polycrystalline and single crystal alumina fibers, such as alumina-mullite Nextel fiber, yttrium aluminum ganet (YAG) and Saphikon, temperature range from 1150 K to 1470 K, creep time of 2 to 200 hours. (4) Microstructural evaluation of crept fibers, TEM study on the crept metal wires, SEM study on the fracture surface of ceramic fibers. (5) Metal Matrix Composite creep models, based on the fiber creep properties and fiber-matrix interface zone formation.

  12. Prediction of creep of polymer concrete

    SciTech Connect

    Khristova, Yu.; Aniskevich, K.

    1995-11-01

    We studied the applicability of the phenomenological approach to the prediction of long-time creep of polymer concrete consisting of polyester binder with diabase filler and diabase aggregate. We discovered that the principles of temperature-time analogy, of moisture-time analogy, and of temperature-moisture-time analogy are applicable to the description of the diagrams of short-time creep and to the prediction of long-time creep of polymer concrete at different temperatures and constant moisture content of the material.

  13. Correlation of Creep Behavior of Domal Salts

    SciTech Connect

    Munson, D.E.

    1999-02-16

    The experimentally determined creep responses of a number of domal salts have been reported in, the literature. Some of these creep results were obtained using standard (conventional) creep tests. However, more typically, the creep data have come from multistage creep tests, where the number of specimens available for testing was small. An incremental test uses abrupt changes in stress and temperature to produce several time increments (stages) of different creep conditions. Clearly, the ability to analyze these limited data and to correlate them with each other could be of considerable potential value in establishing the mechanical characteristics of salt domes, both generally and specifically. In any analysis, it is necessary to have a framework of rules to provide consistency. The basis for the framework is the Multimechanism-Deformation (M-D) constitutive model. This model utilizes considerable general knowledge of material creep deformation to supplement specific knowledge of the material response of salt. Because the creep of salt is controlled by just a few micromechanical mechanisms, regardless of the origin of the salt, certain of the material parameters are values that can be considered universal to salt. Actual data analysis utilizes the methodology developed for the Waste Isolation Pilot Plant (WIPP) program, and the response of a bedded pure WIPP salt as the baseline for comparison of the domal salts. Creep data from Weeks Island, Bryan Mound, West Hackberry, Bayou Choctaw, and Big Hill salt domes, which are all sites of Strategic Petroleum Reserve (SPR) storage caverns, were analyzed, as were data from the Avery Island, Moss Bluff, and Jennings salt domes. The analysis permits the parameter value sets for the domal salts to be determined in terms of the M-D model with various degrees of completeness. In turn this permits detailed numerical calculations simulating cavern response. Where the set is incomplete because of the sparse database, reasonable

  14. Creep of plain weave polymer matrix composites

    NASA Astrophysics Data System (ADS)

    Gupta, Abhishek

    Polymer matrix composites are increasingly used in various industrial sectors to reduce structural weight and improve performance. Woven (also known as textile) composites are one class of polymer matrix composites with increasing market share mostly due to their lightweight, their flexibility to form into desired shape, their mechanical properties and toughness. Due to the viscoelasticity of the polymer matrix, time-dependent degradation in modulus (creep) and strength (creep rupture) are two of the major mechanical properties required by engineers to design a structure reliably when using these materials. Unfortunately, creep and creep rupture of woven composites have received little attention by the research community and thus, there is a dire need to generate additional knowledge and prediction models, given the increasing market share of woven composites in load bearing structural applications. Currently, available creep models are limited in scope and have not been validated for any loading orientation and time period beyond the experimental time window. In this thesis, an analytical creep model, namely the Modified Equivalent Laminate Model (MELM), was developed to predict tensile creep of plain weave composites for any orientation of the load with respect to the orientation of the fill and warp fibers, using creep of unidirectional composites. The ability of the model to predict creep for any orientation of the load is a "first" in this area. The model was validated using an extensive experimental involving the tensile creep of plain weave composites under varying loading orientation and service conditions. Plain weave epoxy (F263)/ carbon fiber (T300) composite, currently used in aerospace applications, was procured as fabrics from Hexcel Corporation. Creep tests were conducted under two loading conditions: on-axis loading (0°) and off-axis loading (45°). Constant load creep, in the temperature range of 80-240°C and stress range of 1-70% UTS of the

  15. Long-Term Creep and Creep Rupture Behavior of Woven Ceramic Matrix Composites

    NASA Technical Reports Server (NTRS)

    Haque, A.; Rahman, M.; Mach, A.; Jeelani, S.; Verrilli, Michael J. (Technical Monitor)

    2001-01-01

    Tensile creep behavior of SiC/SiNC ceramic matrix composites at elevated temperatures and at various stress levels have been investigated for turbine engine applications. The objective of this research is to present creep behavior of SiC/SiCN composites at stress levels above and below the monotonic proportional limit strength and predict the life at creep rupture conditions. Tensile creep-rupture tests were performed on an Instron 8502 servohydraulic testing machine at constant load conditions up to a temperature limit of 1000 C. Individual creep curves indicate three stages such as primary, secondary, and tertiary. The creep rate increased linearly at an early stage and then gradually became exponential at higher strains. The stress exponent and activation energy were also obtained at 700 and 1000 C. The specimen lifetime was observed to be 55 hrs at 121 MPa and at 700 C. The life span reduced to 35 hrs at 143 MPa and at 1000 C. Scanning electron microscopy observations revealed significant changes in the crystalline phases and creep damage development. Creep failures were accompanied by extensive fiber pullout, matrix cracking, and debonding along with fiber fracture. The creep data was applied to Time-Temperature-Stress superposition model and the Manson-Haferd parametric model for long-time life prediction.

  16. Creep relaxation and fully reversible creep of foam core sandwich composites in seawater

    NASA Astrophysics Data System (ADS)

    de la Paz, Ismael; Shafiq, Basir

    2015-12-01

    Foam core sandwich composites were subjected to (i) creep to failure, (ii) cyclic creep-relaxation and (iii) fully reversible cyclic creep loading in seawater in order to mimic an actual ship hull's service lifetime scenario. The results indicate a strong dependence of lifetime on the mode of loading. A significant reduction in the overall life was observed under cyclic creep as compared with the conventional creep to failure. Creep relaxation (R=1) tests were performed at loading-relaxation periods of 24/24, 24/12, 24/6, 12/12 and 6/6 h, while the fully reversible (R=-1) creep tests were conducted at loading-reversed loading times of 36/36, 24/24, 12/12, 6/6, and 3/3 h. The results suggest that creep-relaxation lifetime characteristics depend predominantly on the relaxation time as opposed to loading times, i.e. longer relaxation periods lead to shorter life. Whereas, fully reversible creep appears to be dependent upon the number of reversals whereby, life is observed to reduce as the number of reversals increase. These significant observations are explained in terms of various possible paths to interface cell wall collapse. Modes of failure were predominantly indentation and core compression in the vicinity of the loading site.

  17. Creep-fatigue of low cobalt superalloys

    NASA Technical Reports Server (NTRS)

    Halford, G. R.

    1982-01-01

    Testing for the low cycle fatigue and creep fatigue resistance of superalloys containing reduced amounts of cobalt is described. The test matrix employed involves a single high temperature appropriate for each alloy. A single total strain range, again appropriate to each alloy, is used in conducting strain controlled, low cycle, creep fatigue tests. The total strain range is based upon the level of straining that results in about 10,000 cycles to failure in a high frequency (0.5 Hz) continuous strain-cycling fatigue test. No creep is expected to occur in such a test. To bracket the influence of creep on the cyclic strain resistance, strain hold time tests with ore minute hold periods are introduced. One test per composition is conducted with the hold period in tension only, one in compression only, and one in both tension and compression. The test temperatures, alloys, and their cobalt compositions that are under study are given.

  18. Creep behavior of niobium alloy PWC-11

    NASA Technical Reports Server (NTRS)

    Titran, R. H.; Moore, T. J.; Grobstein, T. L.

    1987-01-01

    The high vacuum creep and creep-rupture behavior of a Nb-1Zr-.1C alloy (PWC 11) was investigated at 1350 and 1400 K with an applied stress of 40 MPa. The material was tested in the following four conditions: annealed (1 hr 1755 K/2 hr 1475 K); annealed plus EB welded; annealed plus aged for 1000 hr at 1350 or 1400 K; and annealed, welded, and aged. It was found that the material in the annealed state was the most creep-resistant condition tested, and that aging the alloy for 1000 hr without an applied stress greatly reduced that strength; however, it was still approximately three times as creep resistant as Nb-1Zr. Additionally, the EB weld region was stronger than the base metal in each condition tested, and phase extraction of the dispersed precipitate revealed the presence of a 70%ZrC-30%NbC cubic monocarbide phase.

  19. The Creep of Single Crystals of Aluminum

    NASA Technical Reports Server (NTRS)

    Johnson, R D; Shober, F R; Schwope, A D

    1953-01-01

    The creep of single crystals of high-purity aluminum was investigated in the range of temperatures from room temperature to 400 F and at resolved-shear-stress levels of 200, 300, and 400 psi. The tests were designed in an attempt to produce data regarding the relation between the rate of strain and the mechanism of deformation. The creep data are analyzed in terms of shear strain rate and the results are discussed with regard to existing creep theories. Stress-strain curves were determined for the crystals in tinsel and constant-load-rate tests in the same temperature range to supplement the study of plastic deformation by creep with information regarding the part played by crystal orientation, differences in strain markings, and other variables in plastic deformation.

  20. Spatial fluctuations in transient creep deformation

    NASA Astrophysics Data System (ADS)

    Laurson, Lasse; Rosti, Jari; Koivisto, Juha; Miksic, Amandine; Alava, Mikko J.

    2011-07-01

    We study the spatial fluctuations of transient creep deformation of materials as a function of time, both by digital image correlation (DIC) measurements of paper samples and by numerical simulations of a crystal plasticity or discrete dislocation dynamics model. This model has a jamming or yielding phase transition, around which power law or Andrade creep is found. During primary creep, the relative strength of the strain rate fluctuations increases with time in both cases—the spatially averaged creep rate obeys the Andrade law epsilont ~ t - 0.7, while the time dependence of the spatial fluctuations of the local creep rates is given by Δepsilont ~ t - 0.5. A similar scaling for the fluctuations is found in the logarithmic creep regime that is typically observed for lower applied stresses. We review briefly some classical theories of Andrade creep from the point of view of such spatial fluctuations. We consider these phenomenological, time-dependent creep laws in terms of a description based on a non-equilibrium phase transition separating evolving and frozen states of the system when the externally applied load is varied. Such an interpretation is discussed further by the data collapse of the local deformations in the spirit of absorbing state/depinning phase transitions, as well as deformation-deformation correlations and the width of the cumulative strain distributions. The results are also compared with the order parameter fluctuations observed close to the depinning transition of the 2d linear interface model or the quenched Edwards-Wilkinson equation.

  1. Impression Creep Behavior of 316LN Stainless Steel

    NASA Astrophysics Data System (ADS)

    Mathew, M. D.; Naveena; Vijayanand, D.

    2013-02-01

    Impression creep tests have been carried out at 923 K on 316LN SS containing 0.07, 0.14, and 0.22 wt.% nitrogen, under different applied stress levels. It was observed that the impression creep depth versus time curves were similar to the creep curves obtained from conventional uniaxial creep tests. The impression creep curves were characterized by a loading strain and primary and secondary creep stages similar to uniaxial creep curves. The tertiary stage observed in uniaxial creep curves was absent. The steady-state impression velocity was found to increase with increasing applied stress. The equivalent steady-state creep rates calculated from impression velocities were found to be in good agreement with the steady-state creep rates obtained from conventional uniaxial creep tests. Equivalence between applied stress and steady-state impression velocity with uniaxial creep stress and steady-state creep rate, respectively, has been established based on the laws of mechanics for time-dependent plasticity. It was found that impression velocity was sensitive to the variation in nitrogen content in the steel; impression velocity decreased with increasing nitrogen content, and the results obtained in this study were in agreement with those obtained from uniaxial creep tests.

  2. Hayward fault: Large earthquakes versus surface creep

    USGS Publications Warehouse

    Lienkaemper, James J.; Borchardt, Glenn

    1992-01-01

    The Hayward fault, thought a likely source of large earthquakes in the next few decades, has generated two large historic earthquakes (about magnitude 7), one in 1836 and another in 1868. We know little about the 1836 event, but the 1868 event had a surface rupture extending 41 km along the southern Hayward fault. Right-lateral surface slip occurred in 1868, but was not well measured. Witness accounts suggest coseismic right slip and afterslip of under a meter. We measured the spatial variation of the historic creep rate along the Hayward fault, deriving rates mainly from surveys of offset cultural features, (curbs, fences, and buildings). Creep occurs along at least 69 km of the fault's 82-km length (13 km is underwater). Creep rate seems nearly constant over many decades with short-term variations. The creep rate mostly ranges from 3.5 to 6.5 mm/yr, varying systemically along strike. The fastest creep is along a 4-km section near the south end. Here creep has been about 9mm/yr since 1921, and possibly since the 1868 event as indicated by offset railroad track rebuilt in 1869. This 9mm/yr slip rate may approach the long-term or deep slip rate related to the strain buildup that produces large earthquakes, a hypothesis supported by geoloic studies (Lienkaemper and Borchardt, 1992). If so, the potential for slip in large earthquakes which originate below the surficial creeping zone, may now be 1/1m along the southern (1868) segment and ≥1.4m along the northern (1836?) segment. Substracting surface creep rates from a long-term slip rate of 9mm/yr gives present potential for surface slip in large earthquakes of up to 0.8m. Our earthquake potential model which accounts for historic creep rate, microseismicity distribution, and geodetic data, suggests that enough strain may now be available for large magnitude earthquakes (magnitude 6.8 in the northern (1836?) segment, 6.7 in the southern (1868) segment, and 7.0 for both). Thus despite surficial creep, the fault may be

  3. Brittle and compaction creep in porous sandstone

    NASA Astrophysics Data System (ADS)

    Heap, Michael; Brantut, Nicolas; Baud, Patrick; Meredith, Philip

    2015-04-01

    Strain localisation in the Earth's crust occurs at all scales, from the fracture of grains at the microscale to crustal-scale faulting. Over the last fifty years, laboratory rock deformation studies have exposed the variety of deformation mechanisms and failure modes of rock. Broadly speaking, rock failure can be described as either dilatant (brittle) or compactive. While dilatant failure in porous sandstones is manifest as shear fracturing, their failure in the compactant regime can be characterised by either distributed cataclastic flow or the formation of localised compaction bands. To better understand the time-dependency of strain localisation (shear fracturing and compaction band growth), we performed triaxial deformation experiments on water-saturated Bleurswiller sandstone (porosity = 24%) under a constant stress (creep) in the dilatant and compactive regimes, with particular focus on time-dependent compaction band formation in the compactive regime. Our experiments show that inelastic strain accumulates at a constant stress in the brittle and compactive regimes leading to the development of shear fractures and compaction bands, respectively. While creep in the dilatant regime is characterised by an increase in porosity and, ultimately, an acceleration in axial strain to shear failure (as observed in previous studies), compaction creep is characterised by a reduction in porosity and a gradual deceleration in axial strain. The overall deceleration in axial strain, AE activity, and porosity change during creep compaction is punctuated by excursions interpreted as the formation of compaction bands. The growth rate of compaction bands formed during creep is lower as the applied differential stress, and hence background creep strain rate, is decreased, although the inelastic strain required for a compaction band remains constant over strain rates spanning several orders of magnitude. We find that, despite the large differences in strain rate and growth rate

  4. Creep induced substructures in titanium aluminide

    NASA Astrophysics Data System (ADS)

    Cerreta, Ellen Kathleen

    Many investigations have examined the creep properties of titanium aluminides. Attempts to classify observed behaviors with existing models for high temperature deformation have been met with limited success. Several researchers have shown that an understanding of substructural evolution in the early stages of the creep curve may offer insight into the mechanisms, which control the rate of deformation. Creep deformation has been shown to include twinning, recrystallization, grain boundary sliding, ordinary and super dislocation activity, and faulting depending on the microstructure of the alloy and testing conditions. However, the environments that these alloys are likely to be exposed to are not similar to the test conditions in the literature. Furthermore the emphasis of much of the research into this group of alloys has been on the effects of microstructure particularly, the volume fraction of lamellar phase and ternary elemental additions. With all of these studies little information is available on the deformation behavior of the gamma phase. The alloys in these studies are mostly composed of the gamma phase and yet its creep behavior is not well understood. For this reason single phase binary gamma titanium aluminides were investigated in this study. To understand the effects of aluminum, interstitial oxygen content, and stress on creep, five alloys of varying Al concentrations and interstitial oxygen contents were deformed at temperatures ranging from 700--800°C and at stresses of 150, 200, and 250MPa. Full creep curves were developed under these conditions and phenomenological parameters for creep were calculated from these data. Additional tests were interrupted during primary and secondary creep at 760°C. Specimens from the interrupted tests as well as from the as-processed materials were examined optically and by TEM. Creep data and the microscopy were analyzed in concert to determine rate-controlling mechanisms for creep. Evolution of the substructure

  5. Creep events and creep noise in gravitational-wave interferometers: Basic formalism and stationary limit

    NASA Astrophysics Data System (ADS)

    Levin, Yuri

    2012-12-01

    In gravitational-wave interferometers, test masses are suspended on thin fibers which experience considerable tension stress. Sudden microscopic stress release in a suspension fiber, which I call a “creep event,” would excite motion of the test mass that would be coupled to the interferometer’s readout. The random test-mass motion due to a time sequence of creep events is referred to as “creep noise.” In this paper I present an elastodynamic calculation for the test-mass motion due to a creep event. I show that within a simple suspension model, the main coupling to the optical readout occurs via a combination of a “dc” horizontal displacement of the test mass and excitation of the violin and pendulum modes, and not, as was thought previously, via lengthening of the fiber. When the creep events occur sufficiently frequently and their statistics is time independent, the creep noise can be well approximated by a stationary Gaussian random process. I derive the functional form of the creep noise spectral density in this limit, with the restrictive assumption that the creep events are statistically independent from each other.

  6. Small Punch Creep Studies for Optimization of Nitrogen Content in 316LN SS for Enhanced Creep Resistance

    NASA Astrophysics Data System (ADS)

    Mathew, M. D.; Ganesh Kumar, J.; Ganesan, V.; Laha, K.

    2014-02-01

    Small punch creep (SPC) studies have been carried out to evaluate the creep properties of 316LN stainless steel (SS) at 923 K (650 °C) at various stress levels. The results have been compared with uniaxial creep rupture data obtained from conventional creep tests. The minimum deflection rate was found to obey Norton power law. SPC rupture life was correlated with uniaxial creep rupture life. The influence of nitrogen content on the creep rupture properties of 316LN SS was investigated in the range of 0.07 to 0.14 wt pct. SPC rupture life increased and the minimum deflection rate decreased with the increase in nitrogen content. The trends were found to be in agreement with the results obtained from uniaxial creep rupture tests. These studies have established that SPC is a fast and reliable technique to screen creep properties of different experimental heats of materials for optimizing the chemical composition for developing creep-resistant materials.

  7. Correlation of creep rate with microstructural changes during high temperature creep

    NASA Technical Reports Server (NTRS)

    Young, C. T.; Hochella, W. A.; Lytton, J. L.

    1973-01-01

    The techniques of electron microscopy were used to examine the microstructural changes which occur during primary creep for two important types of engineering alloys: (1) alloys strengthened by solid-solution additions, and (2) dispersion-strengthened alloys. The metals chosen for study are unalloyed titanium, Ti-6Al-4V, and the cobalt-base alloy, Haynes 188. Results to date on NGR 47-004-108 show that development of prior dislocation substructure in Haynes 188 by 10% prestrain and annealing for one hour at 1800 F increases the time to reach 0.5% creep strain at 1600 F by more than an order of magnitude for creep stresses from 3 to 20 ksi. For creep at 1800 F, similar results were obtaind for stresses above 7 ksi, but the prior substructure decreases creep resistance below 7 ksi. This effect appears to be related to instability of grain structure at 1800 F in prestrained material.

  8. Diffusional creep and creep-degradation in dispersion-strengthened Ni-Cr base alloys.

    NASA Technical Reports Server (NTRS)

    Whittenberger, J. D.

    1973-01-01

    Dispersoid-free regions were observed in the dispersion-strengthened alloy TD-NiCr (Ni-20 Cr-2 ThO2) after slow strain rate testing (stress rupture, creep, and fatigue) in air from 1145 to 1590 K. Formation of the dispersoid-free regions appears to be the result of diffusional creep. The net effect of creep in TD-NiCr is the degradation of the alloy to a duplex microstructure. Creep degradation of TD-NiCr is further enhanced by the formation of voids and intergranular oxidation in the dispersoid-free bands. Void formation was observed after as little as 0.13% creep deformation at 1255 K. The dispersoid-free regions apparently provide sites for void formation and oxide growth since the strength and oxidation resistance of Ni-20 Cr-2 ThO2.

  9. Tensile creep and creep fracture of a fiber-reinforced SiC/SiC composite

    SciTech Connect

    Wilshire, B.; Carreno, F.; Percival, M.J.L.

    1998-08-11

    Several studies have been completed on silicon carbide fiber-reinforced silicon carbide (SiC{sub f}/SiC) composites produced with carbon-coated fibres having a 0/90{degree} architecture. Yet, while mechanical property measurements have been made at temperatures up to 1,473K in air and argon high-temperature creep tests have been carried out only under protective atmospheres. To clarify the creep behavior patterns displayed by continuous-fiber-reinforced CMCs, while simultaneously providing information relevant to aeroengine turbine design, the tensile creep and creep fracture properties of a 0/90{degree} SiC{sub f}/SiC composite have been determined over a stress range giving creep rupture lives up to approximately 2,000 hours in air at 1,573K.

  10. Creep behavior of uranium carbide-based alloys

    NASA Technical Reports Server (NTRS)

    Seltzer, M. S.; Wright, T. R.; Moak, D. P.

    1975-01-01

    The present work gives the results of experiments on the influence of zirconium carbide and tungsten on the creep properties of uranium carbide. The creep behavior of high-density UC samples follows the classical time-dependence pattern of (1) an instantaneous deformation, (2) a primary creep region, and (3) a period of steady-state creep. Creep rates for unalloyed UC-1.01 and UC-1.05 are several orders of magnitude greater than those measured for carbide alloys containing a Zr-C and/or W dispersoid. The difference in creep strength between alloyed and unalloyed materials varies with temperature and applied stress.

  11. Nanoindentation creep study on an ion beam irradiated oxide dispersion strengthened alloy

    NASA Astrophysics Data System (ADS)

    Huang, Zijing; Harris, Adrian; Maloy, Stuart A.; Hosemann, Peter

    2014-08-01

    Oxide dispersion strengthened (ODS) alloys are considered advanced structural materials for nuclear application due to their radiation tolerance and creep resistance. Ion beam irradiation is used to study the property changes due to displacement damage. In this work 1 dpa displacement damage in an ODS was produced followed by a nanoindentation creep study at temperatures up to 600 °C to evaluate the changes in mechanical properties due to irradiation. Converted yield strength (YS) and creep related parameters are reported.

  12. Creep Behavior, Deformation Mechanisms, and Creep Life of Mod.9Cr-1Mo Steel

    NASA Astrophysics Data System (ADS)

    ABE, Fujio

    2015-12-01

    The creep behavior, deformation mechanisms, and the correlation between creep deformation parameters and creep life have been investigated for Mod.9Cr-1Mo steel (Gr.91, 9Cr-1Mo-VNb) by analyzing creep strain data at 723 K to 998 K (450 °C to 725 °C), 40 to 450 MPa, and t r = 11.4 to 68,755 hours in NIMS Creep Data Sheet. The time to rupture t r is reasonably correlated with the minimum creep rate {dot{\\varepsilon }}_{ min } and the acceleration of creep rate by strain in the acceleration region dln {dot{\\varepsilon }} /d ɛ, as t r = 1.5/[ {dot{\\varepsilon }}_{ min } ( dln {dot{\\varepsilon }} /d ɛ)], where {dot{\\varepsilon }}_{ min } and dln {dot{\\varepsilon }} /d ɛ reflect the creep behavior in the transient and acceleration regions, respectively. The {dot{\\varepsilon }}_{ min } is inversely proportional to the time to minimum creep rate t m, while it is proportional to the strain to minimum creep rate ɛ m, as {dot{\\varepsilon }}_{ min } = 0.54 ( ɛ m/ t m). The ɛ m decreases with decreasing stress, suggesting that the creep deformation in the transient region becomes localized in the vicinity of prior austenite grain boundaries with decreasing stress. The duration of acceleration region is proportional to the duration of transient region, while the dln {dot{\\varepsilon }} /d ɛ is inversely proportional to the ɛ m. The t r is also correlated with the t m, as t r = g t m, where g is a constant. The present creep life equations reasonably predict the degradation in creep rupture strength at long times. The downward deviation takes place in the t r vs {dot{\\varepsilon }}_{ min } curves (Monkman-Grant plot). At the same {dot{\\varepsilon }}_{ min } , both the ɛ m and t m change upon the condition of t m ∝ ɛ m. The decrease in ɛ m with decreasing stress, corresponding to decreasing {dot{\\varepsilon }}_{ min } , causes a decrease in t m, indicating the downward deviation of the t r vs {dot{\\varepsilon }}_{ min } curves.

  13. Dislocation creep of fine-grained olivine

    NASA Astrophysics Data System (ADS)

    Faul, U. H.; Fitz Gerald, J. D.; Farla, R. J. M.; Ahlefeldt, R.; Jackson, I.

    2011-01-01

    Deformation experiments conducted in a gas medium apparatus at temperatures from 1200 to 1350°C with a fine-grained, solution-gelation derived Fe-bearing olivine show a stress dependence of the strain rate at stresses above ˜150 MPa, which is much stronger than previously reported for polycrystalline samples. The data can be fit by a power law with ??σn with n ˜ 7-8, or equally well by a Peierls creep law with exponential stress dependence. Due to the observed strong stress dependence the samples deform at significantly higher strain rates at a given stress than single crystals or coarse-grained polycrystals with n ˜ 3.5. TEM observations indicate the presence of dislocations with at least two different Burgers vectors, with free dislocations predominantly of screw character. Subgrain walls are present but are only weakly developed and have small misorientation angles. Both the rheology and dislocation structures are consistent with creep rate-limited by dislocation glide or cross slip for aggregates with grain sizes smaller than or approaching the recrystallized grain size. Deformation mechanism maps extrapolated to lithospheric temperatures using the melt-free diffusion creep rheology of Faul and Jackson (2007), the dislocation creep rheology of Hirth and Kohlstedt (2003), and the results described here indicate that deformation conditions of ultramylonitic shear zones fall near the triple point of Peierls, dislocation, and diffusion creep.

  14. Sources of Variation in Creep Testing

    NASA Technical Reports Server (NTRS)

    Loewenthal, William S.; Ellis, David L.

    2011-01-01

    Creep rupture is an important material characteristic for the design of rocket engines. It was observed during the characterization of GRCop-84 that the complete data set had nearly 4 orders of magnitude of scatter. This scatter likely confounded attempts to determine how creep performance was influenced by manufacturing. It was unclear if this variation was from the testing, the material, or both. Sources of variation were examined by conducting tests on identically processed specimens at the same specified stresses and temperatures. Significant differences existed between the five constant-load creep frames. The specimen temperature was higher than the desired temperature by as much as 43 C. It was also observed that the temperature gradient was up to 44 C. Improved specimen temperature control minimized temperature variations. The data from additional tests demonstrated that the results from all five frames were comparable. The variation decreased to 1/2 order of magnitude from 2 orders of magnitude for the baseline data set. Independent determination of creep rates in a reference load frame closely matched the creep rates determined after the modifications. Testing in helium tended to decrease the sample temperature gradient, but helium was not a significant improvement over vacuum.

  15. Unified creep-plasticity model for halite

    SciTech Connect

    Krieg, R. D.

    1980-11-01

    There are two national energy programs which are considering caverns in geological salt (NaCl) as a storage repository. One is the disposal of nuclear wastes and the other is the storage of oil. Both short-time and long-time structural deformations and stresses must be predictable for these applications. At 300K, the nominal initial temperature for both applications, the salt is at 0.28 of the melting temperature and exhibits a significant time dependent behavior. A constitutive model has been developed which describes the behavior observed in an extensive set of triaxial creep tests. Analysis of these tests showed that a single deformation mechanism seems to be operative over the stress and temperature range of interest so that the secondary creep data can be represented by a power of the stress over the entire test range. This simple behavior allowed a new unified creep-plasticity model to be applied with some confidence. The resulting model recognizes no inherent difference between plastic and creep strains yet models the total inelastic strain reasonably well including primary and secondary creep and reverse loadings. A multiaxial formulation is applied with a back stress. A Bauschinger effect is exhibited as a consequence and is present regardless of the time scale over which the loading is applied. The model would be interpreted as kinematic hardening in the sense of classical plasticity. Comparisons are made between test data and model behavior.

  16. A Unified View of Engineering Creep Parameters

    SciTech Connect

    Eno, Daniel R.; Young, George A.; Sham, Sam

    2008-01-01

    Creep data are often analyzed using derived engineering parameters to correlate creep life (either time to rupture, or time to a specified strain) to applied stress and temperature. Commonly used formulations include Larson-Miller, Orr-Sherby-Dorn, Manson-Haferd, and Manson-Succop parameterizations. In this paper, it is shown that these parameterizations are all special cases of a common general framework based on a linear statistical model. Recognition of this fact allows for statistically efficient estimation of material model parameters and quantitative statistical comparisons among the various parameterizations in terms of their ability to fit a material database, including assessment of a stress-temperature interaction in creep behavior. This provides a rational basis for choosing the best parameterization to describe a particular material. Furthermore, using the technique of maximum likelihood estimation to estimate model parameters allows for a statistically proper treatment of runouts in a test database via censored data analysis methods, and for construction of probabilistically interpretable upper and lower bounds on creep rate. A generalized Larson-Miller formulation is developed, which is comparable in complexity to the Manson-Haferd parameter, but utilizes a reciprocal temperature dependence. The general framework for analysis of creep data is illustrated with analysis of Alloy 617 and Alloy 230 test data.

  17. A Phenomenological Description of Primary Creep in Class M Materials

    NASA Technical Reports Server (NTRS)

    Raj, S. V.; Freed, A. D.

    1999-01-01

    Observations of creep microstructures in the primary creep region in class M materials show a remarkable similarity with those formed in the exponential creep regime. As a result, it is proposed that the constitutive creep law for normal primary creep is similar to that for the exponential creep regime. A phenomenological description is discussed to rationalize these microstructural observations in terms of a normalized strain rate vs. stress plot. The implications of this plot in describing different testing procedures, steady-state flow, and on the observed deviations from the universal creep law are discussed. The plot is also extended to explain the observed similarities in the transient creep behavior in pre-strained materials and in stress change experiments.

  18. Homogenized Creep Behavior of CFRP Laminates at High Temperature

    NASA Astrophysics Data System (ADS)

    Fukuta, Y.; Matsuda, T.; Kawai, M.

    In this study, creep behavior of a CFRP laminate subjected to a constant stress is analyzed based on the time-dependent homogenization theory developed by the present authors. The laminate is a unidirectional carbon fiber/epoxy laminate T800H/#3631 manufactured by Toray Industries, Inc. Two kinds of creep analyses are performed. First, 45° off-axis creep deformation of the laminate at high temperature (100°C) is analyzed with three kinds of creep stress levels, respectively. It is shown that the present theory accurately predicts macroscopic creep behavior of the unidirectional CFRP laminate observed in experiments. Then, high temperature creep deformations at a constant creep stress are simulated with seven kinds of off-axis angles, i.e., θ = 0°, 10°, 30°, 45°, 60°, 75°, 90°. It is shown that the laminate has marked in-plane anisotropy with respect to the creep behavior.

  19. Experimental investigation of creep crack tip deformation using moire interferometry

    NASA Astrophysics Data System (ADS)

    Kang, B. S.-J.; Zhuang, Y.-N.

    High temperature moire interferometry was applied to obtain full-field creep crack tip displacements of a three-point bend Al 2024-T4 specimen under constant temperature of 200 C up to 720 hr. C* was evaluated by the moire data obtained at discrete time intervals. Test results indicated that under steady-state creep condition, the creep crack tip v-displacement rate agreed with the asymptotic solution based on C*-integral, however, no creeping behavior was observed for the crack tip u-displacement field after t = 276 hr. This discrepancy may be due to the initial large creep crack tip blunting and cavitation damage which alter the creep crack tip singular field such that the C*-integral is no longer applicable to characterize steady-state creep crack tip field. It is suggested that the size and shape of material grain boundaries may play an important role on the creeping behavior of the material.

  20. Fluctuations and Scaling in Creep Deformation

    NASA Astrophysics Data System (ADS)

    Rosti, Jari; Koivisto, Juha; Laurson, Lasse; Alava, Mikko J.

    2010-09-01

    The spatial fluctuations of deformation are studied in the creep in Andrade’s power law and the logarithmic phases, using paper samples. Measurements by the digital image correlation technique show that the relative strength of the strain rate fluctuations increases with time, in both creep regimes. In the Andrade creep phase characterized by a power-law decay of the strain rate γt˜t-θ, with θ≈0.7, the fluctuations obey Δγt˜t-γ, with γ≈0.5. The local deformation follows a data collapse appropriate for a phase transition. Similar behavior is found in a crystal plasticity model, with a jamming or yielding transition.

  1. Creep turns linear in narrow ferromagnetic nanostrips.

    PubMed

    Leliaert, Jonathan; Van de Wiele, Ben; Vansteenkiste, Arne; Laurson, Lasse; Durin, Gianfranco; Dupré, Luc; Van Waeyenberge, Bartel

    2016-01-01

    The motion of domain walls in magnetic materials is a typical example of a creep process, usually characterised by a stretched exponential velocity-force relation. By performing large-scale micromagnetic simulations, and analyzing an extended 1D model which takes the effects of finite temperatures and material defects into account, we show that this creep scaling law breaks down in sufficiently narrow ferromagnetic strips. Our analysis of current-driven transverse domain wall motion in disordered Permalloy nanostrips reveals instead a creep regime with a linear dependence of the domain wall velocity on the applied field or current density. This originates from the essentially point-like nature of domain walls moving in narrow, line- like disordered nanostrips. An analogous linear relation is found also by analyzing existing experimental data on field-driven domain wall motion in perpendicularly magnetised media. PMID:26843125

  2. Creep on a composite resin in water.

    PubMed

    Hirano, S; Hirasawa, T

    1989-06-01

    The compressive creep test of a composite resin (0-3.5 kg/mm2 stress levels) was conducted in water for 500 h. Linear regressions were obtained between the creep strains and the compressive stress levels at various hours. It is possible to predict the creep strain of the composite from the regression when it reaches water absorbed equilibrium after 500 h. The stress of the hygroscopic expansion was calculated from the linear regressions. The maximum stress due to the hygroscopic examination of the composite was 0.74 kg/mm2 at equilibrium of the water absorbed of the composite. The linear regressions at several compressive stress levels were obtained within 30-50 hr in the strain-log time diagrams. PMID:2638964

  3. Creep turns linear in narrow ferromagnetic nanostrips

    PubMed Central

    Leliaert, Jonathan; Van de Wiele, Ben; Vansteenkiste, Arne; Laurson, Lasse; Durin, Gianfranco; Dupré, Luc; Van Waeyenberge, Bartel

    2016-01-01

    The motion of domain walls in magnetic materials is a typical example of a creep process, usually characterised by a stretched exponential velocity-force relation. By performing large-scale micromagnetic simulations, and analyzing an extended 1D model which takes the effects of finite temperatures and material defects into account, we show that this creep scaling law breaks down in sufficiently narrow ferromagnetic strips. Our analysis of current-driven transverse domain wall motion in disordered Permalloy nanostrips reveals instead a creep regime with a linear dependence of the domain wall velocity on the applied field or current density. This originates from the essentially point-like nature of domain walls moving in narrow, line- like disordered nanostrips. An analogous linear relation is found also by analyzing existing experimental data on field-driven domain wall motion in perpendicularly magnetised media. PMID:26843125

  4. Creep turns linear in narrow ferromagnetic nanostrips

    NASA Astrophysics Data System (ADS)

    Leliaert, Jonathan; van de Wiele, Ben; Vansteenkiste, Arne; Laurson, Lasse; Durin, Gianfranco; Dupré, Luc; van Waeyenberge, Bartel

    2016-02-01

    The motion of domain walls in magnetic materials is a typical example of a creep process, usually characterised by a stretched exponential velocity-force relation. By performing large-scale micromagnetic simulations, and analyzing an extended 1D model which takes the effects of finite temperatures and material defects into account, we show that this creep scaling law breaks down in sufficiently narrow ferromagnetic strips. Our analysis of current-driven transverse domain wall motion in disordered Permalloy nanostrips reveals instead a creep regime with a linear dependence of the domain wall velocity on the applied field or current density. This originates from the essentially point-like nature of domain walls moving in narrow, line- like disordered nanostrips. An analogous linear relation is found also by analyzing existing experimental data on field-driven domain wall motion in perpendicularly magnetised media.

  5. Quantum Creep and Quantum-Creep Transitions in 1D Sine-Gordon Chains.

    PubMed

    Krajewski, Florian R; Müser, Martin H

    2004-01-23

    Discrete sine-Gordon (SG) chains are studied with path-integral molecular dynamics. Chains commensurate with the substrate show the transition from pinning to quantum creep at bead masses slightly larger than in the continuous SG model. Within the creep regime, a field-driven transition from creep to complete depinning is identified. The effects of disorder on the chain's dynamics depend on the potential's roughness exponent H. For example, quantum fluctuations are generally too small to depin the chain if H=1/2, while an H=0 chain can be pinned or unpinned depending on the bead masses. Thermal fluctuations always depin the chain. PMID:14753858

  6. Breaks of dose dependence of transient creep as result of competing influence of defects’ fluxes on climb of dislocations

    NASA Astrophysics Data System (ADS)

    Selyshchev, P.

    2015-04-01

    In the framework of climb-glide model a theoretical approach is developed to describe transient creep under irradiation. It is obtained the explicit expression for creep rate which describes experimentally observed breaks of dose dependence of creep. It is shown that the breaks arise as result of competition of radiation and thermal fluxes of defects to dislocation. When interstitial and vacancy fluxes become equal, the dislocation cannot overcome the obstacle via climbing and cannot continue glide. Climb-glide mechanism does not contribute to the creep. The creep rate drops. Numbers of breaks depend on initial state of material and conditions of irradiation. Dose (time) of break appearance are obtained.

  7. Low Temperature Creep of Hot-Extruded Near-Stoichiometric NiTi Shape Memory Alloy. Part I; Isothermal Creep

    NASA Technical Reports Server (NTRS)

    Raj, S. V.; Noebe, R. D.

    2013-01-01

    This two-part paper is the first published report on the long term, low temperature creep of hot-extruded near-stoichiometric NiTi. Constant load tensile creep tests were conducted on hot-extruded near-stoichiometric NiTi at 300, 373 and 473 K under initial applied stresses varying between 200 and 350 MPa as long as 15 months. These temperatures corresponded to the martensitic, two-phase and austenitic phase regions, respectively. Normal primary creep lasting several months was observed under all conditions indicating dislocation activity. Although steady-state creep was not observed under these conditions, the estimated creep rates varied between 10(exp -10) and 10(exp -9)/s. The creep behavior of the two phases showed significant differences. The martensitic phase exhibited a large strain on loading followed by a primary creep region accumulating a small amount of strain over a period of several months. The loading strain was attributed to the detwinning of the martensitic phase whereas the subsequent strain accumulation was attributed to dislocation glide-controlled creep. An "incubation period" was observed before the occurrence of detwinning. In contrast, the austenitic phase exhibited a relatively smaller loading strain followed by a primary creep region, where the creep strain continued to increase over several months. It is concluded that the creep of the austenitic phase occurs by a dislocation glide-controlled creep mechanism as well as by the nucleation and growth of deformation twins.

  8. Analysis of available creep and creep-rupture data for commercially heat-treated alloy 718

    SciTech Connect

    Booker, M.K.; Booker, B.L.P.

    1980-03-01

    The Ni-Cr-Fe-Nb alloy 718 is a widely used material in elevated- temperature applications. Currently, it is approved by the American Society of Mechanical Engineers ASME Boiler and Pressure Vessel Code only as a bolting material for elevated-temperature nuclear service. This report presents analyses of available creep and creep-rupture data for commercially heat-treated alloy 718 toward the development of allowable stress levels for this material in general elevated-temperature nuclear service. Available data came from 14 heats of bar, plate, and forging material over the temperature range from 538 to 704{degrees}C. The longest rupture time encompassed by the data was almost 87,000 h. Generalized regression analyses were performed to yield an analytical expression for rupture life as a function of stress and temperature. Heat-to-heat variations were accounted for by lot-centering'' the data. Effects of different solution heat treatment temperatures (T{sub s}) were accounted for by normalizing the creep stresses to the data for T{sub s} = 954{degrees}C. Thus, the results are strictly applicable only for material with this solution treatment. Time and strain to tertiary creep were predicted as functions of rupture life. Creep strain-time data were represented by normalization to the time and strain to tertiary creep and development of master creep curves.'' The results allow estimation of time-dependent allowable stress per American Society of Mechanical Engineers Code Class N-47, and the creep strain-time relationships can be used to develop isochronous stress-strain curves. 29 refs., 44 figs., 14 tabs.

  9. Creep and creep-recovery of a thermoplastic resin and composite

    NASA Technical Reports Server (NTRS)

    Hiel, Clem

    1988-01-01

    The database on advanced thermoplastic composites, which is currently available to industry, contains little data on the creep and viscoelastic behavior. This behavior is nevertheless considered important, particularly for extended-service reliability in structural applications. The creep deformation of a specific thermoplastic resin and composite is reviewed. The problem to relate the data obtained on the resin to the data obtained on the composite is discussed.

  10. Features controlling the early stages of creep deformation of Waspaloy

    NASA Technical Reports Server (NTRS)

    Ferrari, A.; Wilson, D. J.

    1974-01-01

    A model has been presented for describing primary and second stage creep. General equations were derived for the amount and time of primary creep. It was shown how the model can be used to extrapolate creep data. Applicability of the model was demonstrated for Waspaloy with gamma prime particle sizes from 75 - 1000 A creep tested in the temperature range 1000 - 1400 F (538 - 760 C). Equations were developed showing the dependence of creep parameters on dislocation mechanism, gamma prime volume fraction and size.

  11. A model of compaction creep in carbonates

    NASA Astrophysics Data System (ADS)

    Keszthelyi, Daniel; Jamtveit, Bjørn; Dysthe, Dag Kristian

    2015-04-01

    Rocks in compressional stress conditions are subject to long-term creep deformations. We created a simple conceptual micomechanical model of creep in rocks combining microscopic fracturing and pressure solution. This was then scaled up to macroscopic scale by a statistical mechanical approach to predict strain rate at core scale. The model uses no fitting parameter and have a few input parameters: effective stress, porosity, pore size distribution, temperature and water saturation. Internal parameters are Young's modulus, interfacial energy of wet calcite and dissolution rates of calcite, all of which are measurable independently. Existing long-term creep experiments were used to verify the model which was able to predict the magnitude of the resulting strain in largely different effective stress, temperature and water saturation conditions. The model was also able to predict the compaction of a producing chalk reservoir with a good agreement. Further generalization of the model might function as a general theory of long-term creep of rocks in compressional settings.

  12. Diffusion creep of enstatite at high pressures

    NASA Astrophysics Data System (ADS)

    Zhang, G.; Mei, S.; Kohlstedt, D. L.

    2014-12-01

    Deformation behavior of fine-grained enstatite (g.s. ~ 8 μm) was investigated with triaxial compressive creep experiments at high pressures (4.2 - 6.9 GPa) and high temperatures (1373 - 1573 K) using a deformation-DIA apparatus. Experiments were carried out under anhydrous conditions. In each experiment, a sample column composed of a sample and alumina pistons was assembled with a boron nitride sleeve and graphite resistance heater into a 6.2-mm edge length cubic pressure medium. Experiments were carried out at the National Synchrotron Light Source at Brookhaven National Laboratory. In a run, differential stress and sample displacement were monitored in-situ using synchrotron x-ray diffraction and radiography, respectively. Based on results from this study, the deformation behavior of enstatite under anhydrous conditions has been quantitatively presented in the form of a flow law that describes the dependence of deformation rate on stress, temperature, and pressure. Specifically, data fitting yields the dependence of creep rate on stress with an exponent of n ≈ 1; indicating samples were deformed in the regime of diffusion creep. Experimental results also yield the dependences of creep rate on temperature and pressure with an activation energy of ~250 kJ/mol and activation volume of ~3.5×10-6 m3/mol, respectively. The flow laws for enstatite, one important constituent component for the upper mantle, quantified from this study provides a necessary constraint for modeling the dynamic activities occurring within Earth's interior.

  13. First principles model of carbonate compaction creep

    NASA Astrophysics Data System (ADS)

    Keszthelyi, Daniel; Dysthe, Dag Kristian; Jamtveit, Bjørn

    2016-05-01

    Rocks under compressional stress conditions are subject to long-term creep deformation. From first principles we develop a simple micromechanical model of creep in rocks under compressional stress that combines microscopic fracturing and pressure solution. This model was then upscaled by a statistical mechanical approach to predict strain rate at core and reservoir scale. The model uses no fitting parameter and has few input parameters: effective stress, temperature, water saturation porosity, and material parameters. Material parameters are porosity, pore size distribution, Young's modulus, interfacial energy of wet calcite, the dissolution, and precipitation rates of calcite, and the diffusion rate of calcium carbonate, all of which are independently measurable without performing any type of deformation or creep test. Existing long-term creep experiments were used to test the model which successfully predicts the magnitude of the resulting strain rate under very different effective stress, temperature, and water saturation conditions. The model was used to predict the observed compaction of a producing chalk reservoir.

  14. Creep-fatigue analysis by Strainrange Partitioning

    NASA Technical Reports Server (NTRS)

    Manson, S. S.; Halford, G. R.; Hirschbere, M. H.

    1973-01-01

    Strainrange Partitioning provides unifying framework for characterizing high-temperature, low-cycle, creep-fatigue properties of metals and alloys. Method offers distinct advantage to designers of immediately providing reliable upper and lower bounds on cyclic life for any type of inelastic strain cycle that may be encountered in service.

  15. Creep and Environmental Effects on High Temperature Creep-Fatigue Behavior of Alloy 617

    SciTech Connect

    L. J. Carroll; C. Cabet; R. Madland; R. Wright

    2011-06-01

    Alloy 617 is the leading candidate material for Intermediate Heat Exchanger (IHX) of a Very High Temperature Reactor (VHTR), expected to have an outlet temperature as high as 950 C. System start-ups and shut-downs as well as power transients will produce low cycle fatigue (LCF) loadings of components. Acceptance of Alloy 617 in Section III of the ASME Code for nuclear construction requires a detailed understanding of the creep-fatigue behavior in both air and impure helium, representative of the VHTR primary coolant. Strain controlled LCF tests including hold times at maximum tensile strain were conducted at total strain range of 0.3% in air at 950 C. Creep-fatigue testing was also performed in a simulated VHTR impure helium coolant for selected experimental conditions. The fatigue resistance decreased when a hold time was added at peak tensile stress, consistent with the observed change in fracture mode from transgranular to intergranular with introduction of a tensile hold. Increases in the tensile hold time, beyond 180 sec, was not detrimental to the creep-fatigue resistance. Grain boundary damage in the form of grain boundary cracking was present in the bulk of the creep-fatigue specimens. This bulk cracking was quantified and found to be similar for hold times of up to 1800 sec consistent with the saturation in failure lives and rapid stress relaxation observed during the creep portion of the creep-fatigue cycle.

  16. Tensile Creep of Polycrystalline Near-Stoichiometric NiAl

    NASA Technical Reports Server (NTRS)

    Raj, Sai V.

    2002-01-01

    Long term tensile creep studies were conducted on binary NiAl in the temperature range 700-1200 K with the objectives of characterizing and understanding the creep mechanisms. Inverse and normal primary creep curves were observed depending on stress and temperature. It was concluded that the creep of NiAl is limited by dislocation mobility. The stress exponent for creep, n, increased from 5.5 at 1200 K to 13.9 at 700 K. The true activation energy for creep, Qc, was constant and equal to about 400 kJ per mole between 20 and 50 MPa but decreased to a constant value of 250 kJ per mole between 50 and 110 MPa. The activation energy was observed to be stress dependent above 110 MPa. The tensile creep results reported in this investigation were compared with compression creep data reported in the literature. A detailed discussion of the probable dislocation creep mechanisms governing compressive and tensile creep of NiAl is presented. It is concluded that the non-conservative motion of jogs on screw dislocations influenced the nature of the primary creep curves, where the climb of these jogs involves either the next nearest neighbor or the six-jump cycle vacancy diffusion mechanism. The probable nature of the atom vacancy exchange that occur within the core of an edge dislocation undergoing climb in NiAl are schematically examined.

  17. Nonlinear creep damage constitutive model for soft rocks

    NASA Astrophysics Data System (ADS)

    Liu, H. Z.; Xie, H. Q.; He, J. D.; Xiao, M. L.; Zhuo, L.

    2016-06-01

    In some existing nonlinear creep damage models, it may be less rigorous to directly introduce a damage variable into the creep equation when the damage variable of the viscous component is a function of time or strain. In this paper, we adopt the Kachanov creep damage rate and introduce a damage variable into a rheological differential constitutive equation to derive an analytical integral solution for the creep damage equation of the Bingham model. We also propose a new nonlinear viscous component which reflects nonlinear properties related to the axial stress of soft rock in the steady-state creep stage. Furthermore, we build an improved Nishihara model by using this new component in series with the correctional Nishihara damage model that describes the accelerating creep, and deduce the rheological constitutive relation of the improved model. Based on superposition principle, we obtain the damage creep equation for conditions of both uniaxial and triaxial compression stress, and study the method for determining the model parameters. Finally, this paper presents the laboratory test results performed on mica-quartz schist in parallel with, or vertical to the schistosity direction, and applies the improved Nishihara model to the parameter identification of mica-quartz schist. Using a comparative analysis with test data, results show that the improved model has a superior ability to reflect the creep properties of soft rock in the decelerating creep stage, the steady-state creep stage, and particularly within the accelerating creep stage, in comparison with the traditional Nishihara model.

  18. H-451 graphite irradiation creep design model; Revision 1

    SciTech Connect

    1988-07-01

    Available irradiation creep data on H-451 graphite area analyzed and fitted to the proposed creep model in a standard linear solid (a linear viscoelastic model). A creep equation is obtained and recommended for preliminary design use. It is found that the regression is significant and the creep equation is a good predictor. The standard error (SE) of the estimate is smaller than that used in the core graphite criteria development. This smaller SE shall be used in all future work related to criteria development. The creep coefficient and/or model can be further improved if additional creep data can be obtained. For this purpose several creep experiments are recommended. The immediate one is to capsule 87M-2A currently under design.

  19. Soil creep as factor of landscape change

    NASA Astrophysics Data System (ADS)

    Lucke, Bernhard

    2016-04-01

    Many erosion models assume that soils are transported grain-by-grain, and thus calculate loss and deposition according to parameters such as bulk density and average grain size. However, there are indications that clay-rich soils, such as the widespread Red Mediterranean Soils or Terrae Rossae, behave differently. This is illustrated by a case study of historic landscape changes in Jordan, where evidence for soil creep as main process of soil movement was found in the context of ancient cemeteries. Due to a dominance of smectites, the Red Mediterranean Soils in this area shrink and form cracks during the dry period. Because of the cracks and underlying limestone karst, they can swallow strong rains without high erosion risk. However, when water-saturated, these soils expand and can start creeping. Buried geoarchaeological features like small water channels on formerly cleared rocks suggest that soils can move a few cm uplslope when wet, and buried graves illustrate that soil creep can create new level surfaces, sealing cavities but not completely filling them. Such processes seem associated with slumping and earth flows as instable rocks might collapse under the weight of a creeping soil. While it is very difficult to measure such processes, landscape archaeology offers at least an indirect approach that could be suited to estimate the scale and impact of soil creep. Analogies with modern rainfalls, including record levels of precipitation during the winter 1991/1992, indicate that similar levels of soil moisture have not been reached during times of modern instrumental rainfall monitoring. This suggests that very strong deluges must have occurred during historical periods, that could potentially cause tremendous damage to modern infrastructure if happening again.

  20. Mechanical behavior of low porosity carbonate rock: from brittle creep to ductile creep

    NASA Astrophysics Data System (ADS)

    Nicolas, A.; Fortin, J.; Gueguen, Y.

    2013-12-01

    Mechanical compaction and associated porosity reduction play an important role in the diagenesis of porous rocks. They may also affect reservoir rocks during hydrocarbon production, as the pore pressure field is modified. This inelastic compaction can lead to subsidence, cause casing failure, trigger earthquake, or change the fluid transport properties. In addition, inelastic deformation can be time - dependent. In particular, brittle creep phenomena have been deeply investigated since the 90s, especially in sandstones. However knowledge of carbonates behavior is still insufficient. In this experimental study, we focus on the mechanical behavior of a low porosity (9%) white Tavel (France) carbonate rock (>98% calcite) at P-Q conditions beyond the elastic domain. It has been shown that in sandstones composed of quartz, cracks are developing under these conditions. However, in carbonates, calcite minerals can meanwhile also exhibit microplasticity. The samples were deformed in the triaxial cell of the Ecole Normale Superieure de Paris at effective confining pressures ranging from 35 MPa to 85 MPa and room temperature. Experiments were carried on dry and water saturated samples to explore the role played by the pore fluids. Time dependency was investigated by a creep steps methodology: at each step, differential stress was increased rapidly and kept constant for at least 24h. During these steps elastic wave velocities (P and S) and permeability were measured continuously. Our results show two different creep behaviors: (1) brittle creep is observed at low confining pressures, whereas (2) ductile creep is observed at higher confining pressures. These two creep behaviors have a different signature in term of elastic wave velocities and permeability changes. Indeed, in the brittle domain, the primary creep is associated with a decrease of elastic wave velocities and an increase of permeability, and no secondary creep is observed. In the ductile domain, the primary creep

  1. Tensile creep and creep rupture behavior of monolithic and SiC-whisker-reinforced silicon nitride ceramics

    SciTech Connect

    Ohji, Tatsuki; Yamauchi, Yukihiko )

    1993-12-01

    The tensile creep and creep rupture behavior of silicon nitride was investigated at 1,200 to 1,350 C using hot-pressed materials with and without SiC whiskers. Stable steady-state creep was observed under low applied stresses at 1,200 C. Accelerated creep regimes, which were absent below 1,300 C, were identified above that temperature. The appearance of accelerated creep at the higher temperatures attributable to formation of microcracks throughout a specimen. The whisker-reinforced material exhibited better creep resistance than the monolith at 1,200 C. Considerably high values 3 to 5, were obtained for the creep exponent in the overall temperature range. The exponent tended to decrease with decreasing applied stress at 1,200 C. The primary creep mechanism was considered cavitation-enhanced creep. Specimen lifetimes followed the Monkman-Grant relationship except for fractures with large accelerated creep regimes. The creep rupture behavior is discussed in association with cavity formation and crack adolescence.

  2. Investigation of Uncertainty from Creep and Creep Recovery of Force Calibration Result in Accordance with ISO 376:2011

    NASA Astrophysics Data System (ADS)

    Chaemthet, Kittipong; Amornsakun, Chanchai; Sumyong, Noppadon; Changpan, Tawat; Heamawatanachai, Sumet

    This paper presents an investigation of the uncertainties from creep and creep recovery of force proving instruments calibrated at NIMT in year 2012 and 2013. In this study, the NIMT's 100kN deadweight force standard machine was used as a standard to calibrate force proving instruments (from various manufacturers and models) in accordance with ISO 376:2011. The comparison of creep uncertainties calculated from creep measured at maximum load (Cmax), creep recovery measured at zero load (Czero) and reversibility errors were also investigated. The results of this study show that, for most of the calibration results (>60%), the maximum value between WCmax/WCzero and WCzero/WCmax were larger than 2. Indicating that, WCmax and WCzero could not assume to be equal. For the comparison between creep uncertainties calculated from creep error and reversibility error, more than 80% of the calibration results, the creep uncertainties calculated from reversibility were larger than 3 time of the calculated values form creep measurement. These gave conclusion that, for the unknown history of creep and reversibility characteristic of instruments, it is more appropriate to estimate the uncertainty of creep from reversibility error.

  3. Active fault creep variations at Chihshang, Taiwan, revealed by creep meter monitoring, 1998-2001

    NASA Astrophysics Data System (ADS)

    Lee, Jian-Cheng; Angelier, Jacques; Chu, Hao-Tsu; Hu, Jyr-Ching; Jeng, Fu-Shu; Rau, Ruey-Juin

    2003-11-01

    The daily creep meter data recorded at Chihshang in 1998-2001 are presented. The Chihshang creep meter experiment was set up across the Chihshang thrust fault, the most active segment of the Longitudinal Valley Fault, which is the present-day plate suture between the Eurasian and the Philippine Sea plates in eastern Taiwan. Near-continuous data recording at two sites revealed different surface fault motions yet similar annual shortening rates: 16.2 mm at the Tapo site (comprising two connected creep meters) and 15.0 mm at the Chinyuan site (three creep meters straddling parallel fault branches). Four of the five creep meters showed a seasonal variation, with the fault moving steadily during the rainy season from April to October, and remaining quiescent during the rest of the year. The only exception was recorded by the creep meter located on a mélange-composed hillslope, where local gravitational landsliding played an additional role other than tectonic faulting. Through comparison with daily precipitation data, we inferred that moderate rainfall suffices to trigger or facilitate slippage on the surface fault, during the transition period of the dry/wet season. During the observation period from 1998 to 2001, the subsurface seismicity exhibited clusters of microearthquakes on the Chihshang Fault at depths of 10-25 km. Recurrent earthquakes occurred regardless of whether the season was wet or dry, indicating that the stress relaxation associated with seismicity in the seismogenic zone did not transfer immediately up to the surface. The accumulated strain on the Chihshang Fault at shallow surface levels was released through creep during the wet season. In addition to these short-term seasonal variations, an apparent decrease in the annual slipping rate on the Chihshang Fault during the last few years deserves further investigation in order to mitigate against seismic hazard.

  4. Irradiation creep in structural materials at ITER operating conditions

    SciTech Connect

    Grossbeck, M.L.

    1994-09-01

    Irradiation creep is plastic deformation of a material under the influence of irradiation and stress. Below the regime of thermal creep, there remains a deformation mechanism under irradiation that is weakly temperature dependent and clearly different from thermal creep. This is irradiation creep. Both stress and irradiation are required for irradiation creep. Irradiation creep studies for applications in the past focused mostly on liquid metal fast breeder reactors where temperatures are usually above 400{degrees}C. Fusion reactors, especially nearterm devices such as the ITER will have components operating at temperatures as low as 100{degrees}C exposed to high neutron fluxes. Theories of irradiation creep based on steady-state point defect concentrations do not predict significant irradiation creep deformation at these temperatures; however, data from research reactors show that irradiation creep strains at 60{degrees}C are as high or higher than at temperatures above 300{degrees}C for austenitic stainless steels. Irradiation creep of nickel has also been observed at cryogenic temperatures.

  5. Axial creep-rupture time of boron-aluminum composites

    SciTech Connect

    Goda, Koichi; Hamada, Jun`ichi

    1995-11-01

    Axial creep tests of a 10vol% boron-aluminum hotpressed monolayer composite were carried out under several constant loads at 300 C in air. The composite behaved with slight primary creep, but did not show appreciable secondary creep. Several specimens encountered a momentary increase of strain during the creep test which separated the creep curve into two regions, because of the individual fiber breaks in the composite. And then, almost all the specimens suddenly fractured without tertiary creep. From the viewpoint of reliability engineering the statistical properties of the creep-rupture time were investigated. The average creep-rupture time decreased with an increase in the applied stress, and the relatively large coefficient of variation was estimated in every case, being around 1,000%. However, these scatters were estimated to be smaller than the scatter of creep-rupture time in the boron fiber itself. That means, the reliability of the fiber`s creep-rupture time is improved by compositing with matrix material.

  6. Self-healing of creep damage in heat resisting steels

    NASA Astrophysics Data System (ADS)

    Shinya, Norio; Kyono, Junro

    2002-07-01

    In heat resisting steels, micro holes, called creep cavities, are formed at grain boundaries by long term use at high temperatures. These creep cavities grow along grain boundaries, form grain boundary cracks by linking up each other anc cause low ductility and premature fracture as shown in Fig. 1. Therefore long term creep rupture strength and ductilities chiefly depend upon the behavior of nucleation and growth of creep cavities. If the growth of creep cavities could be suppressed, creep rupture strength and ductilities should be improved remarkably. Present work is intended to propose a self-healing process for the cavitation, and improve the creep rupture properties by the self-healing. It is thought that chemical compound of BN precipitates at inside surface of creep cavity by addition of B and N to heat resisting steels. As the BN is very stable at high temperatures, the precipitation of BN at creep cavity surface is expected to suppress the creep cavity growth and bring about the healing effect on the cavitation.

  7. Compression and Tensile Creep of Binary NiAl

    NASA Technical Reports Server (NTRS)

    Raj, Sai V.

    2005-01-01

    Compression creep and long term tensile creep studies were conducted on cast and extruded binary NiAl in the temperature range 700-1200 K with the objectives of characterizing and understanding the creep mechanisms. Inverse and normal primary creep curves were observed in both compression and tension creep depending on stress and temperature although an asymmetrical response was observed under these two stress states. It was concluded that the primary creep of NiAl is limited by dislocation mobility. The stress exponents, n, for compression and tensile creep were similar varying between about 5 and 14. However, there were significant differences in the stress dependence of the activation energies for compression and tensile creep. The true activation energy for tensile creep, Q(sub c), was constant and equal to about 400 kJ/mol between 20 and 50 MPa but decreased to a constant value of 250 kJ/mol between 50 and 110 MPa. The activation energy was observed to be inversely stress dependent above 110 MPa. In contrast, Q(sub c) = 300 kJ/mol for compression creep was constant between 25 and 70 MPa and inversely dependent on the true stress above 70 MPa. A detailed discussion of the probable dislocation creep mechanisms governing compressive and tensile creep of NiAl is presented. It is concluded that the non-conservative motion of jogs on screw dislocations influenced the nature of the primary creep curves, where the climb of these jogs involves either the next nearest neighbor or the six-jump cycle vacancy diffusion mechanism. The probable natures of the atom-vacancy exchange that occur within the core of an edge dislocation undergoing climb in NiAl are schematically examined.

  8. Micromechanics effects in creep of metal-matrix composites

    NASA Astrophysics Data System (ADS)

    Davis, L. C.; Allison, J. E.

    1995-12-01

    The creep of metal-matrix composites is analyzed by finite element techniques. An axisymmetric unit-cell model with spherical reinforcing particles is used. Parameters appropriate to TiC particles in a precipitation-hardened (2219) Al matrix are chosen. The effects of matrix plasticity and residual stresses on the creep of the composite are calculated. We confirm (1) that the steady-state rate is independent of the particle elastic moduli and the matrix elastic and plastic properties, (2) that the ratio of composite to matrix steady-state rates depends only on the volume fraction and geometry of the reinforcing phase, and (3) that this ratio can be determined from a calculation of the stress-strain relation for the geometrically identical composite (same phase volume and geometry) with rigid particles in the appropriate power-law hardening matrix. The values of steady-state creep are compared to experimental ones (Krajewski et al.). Continuum mechanics predictions give a larger reduction of the composite creep relative to the unreinforced material than measured, suggesting that the effective creep rate of the matrix is larger than in unreinforced precipitation-hardened Al due to changes in microstructure, dislocation density, or creep mechanism. Changes in matrix creep properties are also suggested by the comparison of calculated and measured creep strain rates in the primary creep regime, where significantly different time dependencies are found. It is found that creep calculations performed for a timeindependent matrix creep law can be transformed to obtain the creep for a time-dependent creep law.

  9. Creep consolidation of nuclear depository backfill materials

    SciTech Connect

    Butcher, B.M.

    1980-10-01

    Evaluation of the effects of backfilling nuclear waste repository rooms is an important aspect of waste repository design. Consolidation of the porous backfill takes place as the room closes with time, causing the supporting stress exerted by the backfill against the intact rock to increase. Estimation of the rate of backfill consolidation is required for closure rate predictions and should be possible if the creep law for the solid constituent is known. A simple theory describing consolidation with a spherical void model is derived to illustrate this relationship. Although the present form of the theory assumes a homogeneous isotropic incompressible material atypical of most rocks, it may be applicable to rock salt, which exhibits considerable plasticity under confined pressure. Application of the theory is illustrated assuming a simple steady-state creep law, to show that the consolidation rate depends on the externally applied stress, temperature, and porosity.

  10. A universal function of creep rate

    NASA Astrophysics Data System (ADS)

    Li, Jing-Tian; Rong, Xi-Ming; Wang, Jian-Lu; Zhang, Bang-Qiang; Ning, Xi-Jing

    2015-09-01

    In this paper, we derive a universal function from a model based on statistical mechanics developed recently, and show that the function is well fitted to all the available experimental data which cannot be described by any function previously established. With the function predicting creep rate, it is unnecessary to consider which creep mechanism dominates the process, but only perform several experiments to determine the three constants in the function. It is expected that the new function would be widely used in industry in the future. Project supported by the National Natural Science Foundation of China (Grant Nos. 11274073 and 51071048), the Shanghai Leading Academic Discipline Project, China (Grant No. B107), and the Key Discipline Innovative Training Program of Fudan University, China.

  11. Creep, compressibility differences emerging in geothermal studies

    SciTech Connect

    Not Available

    1983-11-01

    This article discusses geopressured formations situated at depths of 12,000 to 15,000 feet and below. The trapped formations, in which enormous pressure and heat have built up, consist mainly of sandstones containing salty water and dissolved methane gas. Studies of geopressured rocks have revealed nonlinear variations in compressibility, creep, permeability, resistivity, and other factors related to flow rates and reservoir characterization. Compressibility and creep are tested by placing salt water and a sample of sandstone in a pressure vessel that simulates geopressured conditions. Rock compaction studies are being conducted at elevated temperatures (385/sup 0/F) in order to determine how compressibility and other rock behavior are affected by geopressured temperature. It is suggested that the geopressuredgeothermal formations that lie along the curve of the US Gulf Coast could provide a new source of energy.

  12. Creep rupture behavior of Stirling engine materials

    NASA Technical Reports Server (NTRS)

    Titran, R. H.; Scheuerman, C. M.; Stephens, J. R.

    1985-01-01

    The automotive Stirling engine, being investigated jointly by the Department of Energy and NASA Lewis as an alternate to the internal combustion engine, uses high-pressure hydrogen as the working fluid. The long-term effects of hydrogen on the high temperature strength properties of materials is relatively unknown. This is especially true for the newly developed low-cost iron base alloy NASAUT 4G-A1. This iron-base alloy when tested in air has creep-rupture strengths in the directionally solidified condition comparable to the cobalt base alloy HS-31. The equiaxed (investment cast) NASAUT 4G-A1 has superior creep-rupture to the equiaxed iron-base alloy XF-818 both in air and 15 MPa hydrogen.

  13. The effect of dissolved magnesium on creep of calcite II: transition from diffusion creep to dislocation creep

    NASA Astrophysics Data System (ADS)

    Xu, Lili; Renner, Jörg; Herwegh, Marco; Evans, Brian

    2009-03-01

    We extended a previous study on the influence of Mg solute impurity on diffusion creep in calcite to include deformation under a broader range of stress conditions and over a wider range of Mg contents. Synthetic marbles were produced by hot isostatic pressing (HIP) mixtures of calcite and dolomite powders for different intervals (2-30 h) at 850°C and 300 MPa confining pressure. The HIP treatment resulted in high-magnesian calcite aggregates with Mg content ranging from 0.5 to 17 mol%. Both back-scattered electron images and chemical analysis suggested that the dolomite phase was completely dissolved, and that Mg distribution was homogeneous throughout the samples at the scale of about two micrometers. The grain size after HIP varied from 8 to 31 μm, increased with time at temperature, and decreased with increasing Mg content (>3.0 mol%). Grain size and time were consistent with a normal grain growth equation, with exponents from 2.4 to 4.7, for samples containing 0.5-17.0 mol% Mg, respectively. We deformed samples after HIP at the same confining pressure with differential stresses between 20 and 200 MPa using either constant strain rate or stepping intervals of loading at constant stresses in a Paterson gas-medium deformation apparatus. The deformation tests took place at between 700 and 800°C and at strain rates between 10-6 and 10-3 s-1. After deformation to strains of about 25%, a bimodal distribution of large protoblasts and small recrystallized neoblasts coexisted in some samples loaded at higher stresses. The deformation data indicated a transition in mechanism from diffusion creep to dislocation creep. At stresses below 40 MPa, the strength was directly proportional to grain size and decreased with increasing Mg content due to the reductions in grain size. At about 40 MPa, the sensitivity of log strain rate to log stress, ( n), became greater than 1 and eventually exceeded 3 for stresses above 80 MPa. At a given strain rate and temperature, the stress at

  14. Changes in rate of fault creep

    USGS Publications Warehouse

    Harsh, P.

    1979-01-01

    Aseismic slip or fault creep is occurring on many faults in California. Although the creep rates are generally less than 10 mm/yr in most regions, the maximum observed rate along the San Andreas fault between San Juan Bautista and Gold Hill in central California exceeds 30 mm/yr. Changes in slip rates along a 162 km segment of the San Andreas fault in this region have occurred at approximately the same time at up to nine alinement array sites. Rates of creep on the fault near the epicenters of moderate earthquakes (ML 4-6) vary for periods of several years, decreasing before the main shocks and increasing thereafter, in agreement with prior observations based on creepmeter results. The change of surface slip rate is most pronounced within the epicentral region defined by aftershocks, but records from sites at distances up to 100 km show similar variations. Additionally, some variations in rate, also apparently consistent among many sites, have a less obvious relation with seismic activity and have usually taken place over shorter periods. Not all sites exhibit a significant variation in rate at the time of a regional change, and the amplitudes of the change at nearby sites are not consistently related. The time intervals between measurements at the nine array sites during a given period have not always been short with respect to the intervals between surveys at one site; hence, uneven sampling intervals may bias the results slightly. Anomalies in creep rates thus far observed, therefore, have not been demonstrably consistent precursors to moderate earthquakes; and in the cases when an earthquake has followed a long period change of rate, the anomaly has not specified time, place, or magnitude with a high degree of certainty. The consistency of rate changes may represent a large scale phenomenon that occurs along much of the San Andreas transform plate boundary. ?? 1979.

  15. Indentation of a Power Law Creeping Solid

    NASA Astrophysics Data System (ADS)

    Bower, A. F.; Fleck, N. A.; Needleman, A.; Ogbonna, N.

    1993-04-01

    The aim of this paper is to establish a rigorous theoretical basis for interpreting the results of hardness tests on creeping specimens. We investigate the deformation of a creeping half-space with uniaxial stress-strain behaviour dot{ɛ}=dot{ɛ}0(σ /σ 0)m, which is indented by a rigid punch. Both axisymmetric and plane indenters are considered. The shape of the punch is described by a general expression which includes most indenter profiles of practical importance. Two methods are used to solve the problem. The main results are found using a transformation method suggested by R. Hill. It is shown that the creep indentation problem may be reduced to a form which is independent of the geometry of the punch, and depends only on the material properties through m. The reduced problem consists of a nonlinear elastic half-space, which is indented to a unit depth by a rigid flat punch of unit radius (in the axisymmetric case), or unit semi-width (in the plane case). Exact solutions are given for m = 1 and m = ∞ . For m between these two limits, the reduced problem has been solved using the finite element method. The results enable the load on the indenter and the contact radius to be calculated in terms of the indentation depth and rate of penetration. The stress, strain and displacement fields in the half-space may also be deduced. The accuracy of the solution is demonstrated by comparing the results with full-field finite element calculations. The predictions of the theory are shown to be consistent with experimental observations of hardness tests on creeping materials reported in the literature.

  16. Zinc alloy enhances strength and creep resistance

    SciTech Connect

    Machler, M.

    1996-10-01

    A family of high-performance ternary zinc-copper-aluminum alloys has been developed that provides higher strength, hardness, and creep resistance than the traditional zinc-aluminum alloys Zamak 3, Zamak 5, and ZA-8. Designated ACuZinc, mechanical properties comparable to those of more expensive materials make it suitable for high-load applications and those at elevated temperatures. This article describes the alloy`s composition, properties, and historical development.

  17. An automated system for creep testing

    NASA Technical Reports Server (NTRS)

    Spiegel, F. Xavier; Weigman, Bernard J.

    1992-01-01

    A completely automated data collection system was devised to measure, analyze, and graph creep versus time using a PC, a 16 channel multiplexed analog to digital converter, and low friction potentiometers to measure length. The sampling rate for each experiment can be adjusted in the software to meet the needs of the material tested. Data is collected and stored on a diskette for permanent record and also for later data analysis on a different machine.

  18. Dissipation and Synchronization due to Creeping Tides.

    NASA Astrophysics Data System (ADS)

    Ferraz-Mello, Sylvio

    2012-05-01

    We present a new reophysical theory of the dynamical tides of celestial bodies. It is founded on a Newtonian creep instead of the classical delayed elastic approach of the standard viscoelastic theories. All results of the theory derive from the solution of a non-homogeneous ordinary differential equation and lags appear as a natural outcome from the solution of the equation and are not external ad hoc quantities plugged in an elastic model. The lag due to the Newtonian creep is proportional to the tide frequency (as in Darwin’s original theory), and is necessarily small. The amplitudes depend on the viscosity of the body and on the frequency of the tide. As a consequence, the so-called pseudo-synchronous rotation has an excess velocity roughly proportional to 6ne2/(χ2+1/χ2) (χ is the tide frequency in units of a relaxation factor inversely proportional to the viscosity) instead of the exact 6ne2 of standard theories. The dissipation is inversely proportional to (χ + 1/χ) thus, in the inviscid limit it is roughly proportional to the frequency (as in standard theories), but that behavior is inverted when the viscosity is high and the response factor much smaller than the tide frequency. When the viscosity is high, however, the creeping tide fails to reproduce the actual geometric tide and, to reconcile theory and observation, we need to assume the coexistence of a small elastic tide superposed to the creeping tide. The theory is applied to several Solar System and extrasolar bodies and the values of the relaxation factor μ (and its current correspondent Q) are derived for these bodies on the basis of currently available data.

  19. Creep as a mechanism for sealing amalgams.

    PubMed

    Osborne, John W

    2006-01-01

    Dental amalgam seals itself over time. The reduction of microleakage in amalgam restorations has been explained by corrosion products filling in the interface gap between amalgam and tooth structure in order to seal the restoration interface. This concept has been widely accepted; yet, curiously, there is little research supporting this theory. The creep mechanism may be a plausible alternative to explaining why microleakage is reduced over time in amalgam restorations. Amalgam restorations are confined to the fixed space of the cavity preparation; expansion of the amalgam through internal phase changes in this confined area must be relieved. The resultant creep-expansion of the amalgam restoration fills in the tooth/amalgam interface gap. Once the interfacial gap is filled and amalgam has made intimate contact with the cavity wall, the dental amalgam slides along the tooth preparation plane as predicted by classic metallurgical studies. The results of the creep of amalgam have been observed clinically as the extrusion of amalgam from the cavity preparation. This explanation for amalgam sealing the tooth/amalgam gap fits many clinical observations and certain research data. PMID:16827016

  20. Irradiation creep of advanced silicon carbide fibers

    NASA Astrophysics Data System (ADS)

    Scholz, R.; Youngblood, G. E.

    2000-12-01

    The bend stress relaxation (BSR) method was applied to study irradiation enhanced creep (IEC) of small diameter silicon carbide (SiC) fibers after 10 MeV proton irradiation. A first series of tests was conducted on Sylramic™ fibers irradiated at 600°C with average bending stresses of 400 and 667 MPa and for irradiation doses smaller than 0.04 dpa. The BSR results are compared to previously obtained torsional creep test results for the Textron SCS-6™ type SiC fibers by calculating the tensile equivalents for both testing methods. For the Sylramic fibers, the creep constant κ=4.7×10-6 Mpa-1 dpa-1, was a factor of 6 smaller than the κ-value determined for SCS-6 fibers at 600°C. In contrast, for T<900°C the κ-value determined by R.J. Price [Nucl. Technol. 35 (1977) 320] for high purity monolithic β-Si after 7.7 dpa neutron irradiation was only 0.4×10-6 MPa-1 dpa-1.

  1. Magnetic field annealing for improved creep resistance

    SciTech Connect

    Brady, Michael P.; Ludtka, Gail M.; Ludtka, Gerard M.; Muralidharan, Govindarajan; Nicholson, Don M.; Rios, Orlando; Yamamoto, Yukinori

    2015-12-22

    The method provides heat-resistant chromia- or alumina-forming Fe-, Fe(Ni), Ni(Fe), or Ni-based alloys having improved creep resistance. A precursor is provided containing preselected constituents of a chromia- or alumina-forming Fe-, Fe(Ni), Ni(Fe), or Ni-based alloy, at least one of the constituents for forming a nanoscale precipitate MaXb where M is Cr, Nb, Ti, V, Zr, or Hf, individually and in combination, and X is C, N, O, B, individually and in combination, a=1 to 23 and b=1 to 6. The precursor is annealed at a temperature of 1000-1500.degree. C. for 1-48 h in the presence of a magnetic field of at least 5 Tesla to enhance supersaturation of the M.sub.aX.sub.b constituents in the annealed precursor. This forms nanoscale M.sub.aX.sub.b precipitates for improved creep resistance when the alloy is used at service temperatures of 500-1000.degree. C. Alloys having improved creep resistance are also disclosed.

  2. Dislocation modeling of creep-related tilt changes

    USGS Publications Warehouse

    McHugh, S.; Johnston, M.J.S.

    1979-01-01

    Tilt changes associated with 1-5 mm of fault creep have been detected at several different locations on the San Andreas fault on tiltmeters within 500 m of the creep observation point. The creep-related tilts have amplitudes of 0??.5 ??rad and durations comparable to the creep events. No changes $ ??10-2 ??rad have been observed on tiltmeters at distances $ ??1 km from the fault at the time of the creep events. Dislocation models capable of replicating the creep-related tilt events have been constructed to examine the relationship of the model parameters to details of the tilt waveforms. The tilt time histories and bounded assumptions of the source-station configurations, and the displacement time history, can be used to infer the type and amount of displacement, the propagation direction and depth of the slip zone. The shallow depth and finite size of the slip zone indicated by these models constrasts with the horizontal extent. ?? 1979.

  3. Creep of chemically vapor deposited SiC fibers

    NASA Technical Reports Server (NTRS)

    Dicarlo, J. A.

    1984-01-01

    The creep, thermal expansion, and elastic modulus properties for chemically vapor deposited SiC fibers were measured between 1000 and 1500 C. Creep strain was observed to increase logarithmically with time, monotonically with temperature, and linearly with tensile stress up to 600 MPa. The controlling activation energy was 480 + or - 20 kJ/mole. Thermal pretreatments near 1200 and 1450 C were found to significantly reduce fiber creep. These results coupled with creep recovery observations indicate that below 1400 C fiber creep is anelastic with neglible plastic component. This allowed a simple predictive method to be developed for describing fiber total deformation as a function of time, temperature, and stress. Mechanistic analysis of the property data suggests that fiber creep is the result of beta-SiC grain boundary sliding controlled by a small percent of free silicon in the grain boundaries.

  4. Modeling the minimum creep rate of discontinuous lamellar- reinforced composites

    NASA Astrophysics Data System (ADS)

    Bartholomeusz, Michael F.; Wert, John A.

    1995-12-01

    An analytical model has been developed to predict the creep rate of discontinuous lamellar-reinforced composites in which both phases plastically deform. The model incorporates effects associated with lamellar orientation relative to the uniaxial stress axis. For modest to large differences between matrix and reinforcement creep rates, lamellar aspect ratio has a significant impact on composite creep rate. For a prescribed reinforcing phase volume fraction, microstructural inhomogeneity can have a pronounced effect on composite creep properties. In the case of uniaxially aligned rigid lamellar-reinforced composites, an inhomogeneous distribution of reinforcing lamellae in the microstructure substantially increases the composite creep rate. Model results demonstrate that there is no significant improvement in creep resistance for aligned fiber-reinforced composites compared to aligned lamellar-reinforced composites, unless the reinforcing phase is essentially nondeforming relative to the matrix phase.

  5. Cyclic creep analysis from elastic finite-element solutions

    NASA Technical Reports Server (NTRS)

    Kaufman, A.; Hwang, S. Y.

    1986-01-01

    A uniaxial approach was developed for calculating cyclic creep and stress relaxation at the critical location of a structure subjected to cyclic thermomechanical loading. This approach was incorporated into a simplified analytical procedure for predicting the stress-strain history at a crack initiation site for life prediction purposes. An elastic finite-element solution for the problem was used as input for the simplified procedure. The creep analysis includes a self-adaptive time incrementing scheme. Cumulative creep is the sum of the initial creep, the recovery from the stress relaxation and the incremental creep. The simplified analysis was exercised for four cases involving a benchmark notched plate problem. Comparisons were made with elastic-plastic-creep solutions for these cases using the MARC nonlinear finite-element computer code.

  6. Characterization of creep and creep damage by in-situ microtomography

    NASA Astrophysics Data System (ADS)

    Borbély, András; Dzieciol, Krzysztof; Sket, Federico; Isaac, Augusta; di Michiel, Marco; Buslaps, Thomas; Kaysser-Pyzalla, Anke R.

    2011-07-01

    Application of in-situ microtomography to characterization of power law creep and creep damage in structural materials is presented. It is shown first that the successively reconstructed volumes are adequately monitoring the macroscopic sample shape and that microtomography is an optimal tool to characterize inhomogeneous specimen deformation. Based on a two-step image correlation technique the evolution of single voids is revealed and the basis of a pioneering approach to creep damage studies is presented. The method allows the unequivocal separation of three concurrent damage mechanisms: nucleation, growth, and coalescence of voids. The results indicate that growth rate of voids with equivalent diameters in the range of 2-5 mm is of about one order of magnitude higher than the prediction of continuum solid mechanics. Analysis of void coalescence points out the presence of two stable growth regimes related to coalescence between primary and secondary voids, respectively.

  7. Flux Creep and Giant Flux Creep in High Tc Hg,Pb-based Superconductors

    NASA Astrophysics Data System (ADS)

    Kirven, Douglas; Owens, Frank; Iqbal, Z.; Bleiweiss, M.; Lungu, A.; Datta, T.

    1996-03-01

    Dynamic behavior of the trapped flux in fields of up to 17.5 T was studied in a set of Hg-Pb based superconductors with a Tc in excess of 130 K. Depending on the experimental conditions, both creep and giant flux creep dynamics were observed. Results were analyzed using to standard models such as Anderson-Kim and giant-flux creep models (GFC). The plots of relaxation rate of remnant magnetization versus temperature show a peak below Tc. These results were compared with other Cu-O compounds. A distribution of activation energies was found from the magnetization rate. The activation energy distribution shows a peak around 50 K. The peak determines the temperature where the flux flow rate is a maximum. A universal relation of the resistive behavior was also found as a function of temperature and field. The zero-field/field-cooled results gave a reversibility curve that also obeyed a universal power relation.

  8. Creep in single crystal Ni{sub 3}Al

    SciTech Connect

    Zhu, W.; Jones, I.P.; Fort, D.; Smallman, R.E.

    1997-12-31

    Single crystals of Ni{sub 3}Al (1 at.%Ta) with a compression axis of [{bar 1}23] were subject to creep at a stress of 550 MPa and a temperature of 520 C. Slip trace and TEM microstructural observations reveal that primary octahedral slip is responsible for the primary creep. In the secondary stage, cube cross slip (010) is operative. There is no obvious sign of inverse creep.

  9. Transition between dislocation creep and diffusion creep in upper greenschist- to lower amphibolite-facies metacherts

    NASA Astrophysics Data System (ADS)

    Okudaira, T.; Ogawa, D.; Miyazaki, T.; Michibayashi, K.

    2009-12-01

    To clarify the dominant deformation mechanism in continental middle crust at an arc-trench system, we used an SEM-EBSD system to measure the lattice-preferred orientations of quartz grains in fine-grained (~10 μm) metachert from the low-grade (chlorite and chlorite-biotite zones) part of the Ryoke metamorphic belt, SW Japan. The metacherts are composed mainly by quartz (> 94 vol.%), with small amounts of chlorite, muscovite and biotite. Quartz grain-sizes vary from 9 to 20 μm in diameter; grain sizes of quartz are weakly related to quartz modal abundances. Quartz c-axis fabrics do not exhibit distinct patterns that could be formed by dislocation creep. Fabric intensities are calculated: values of fabric intensity index proposed by Lisle (1985) and those of by Skemer et al. (2005), that is 'M-index', are 0.060-0.074 and 0.027-0.073, respectively. These values are very small, indicating that the quartz c-axis fabric patterns are comparable with a random distribution. In these samples, there are deformed radiolarian fossils and they are used as strain marker to analyze strain geometry and magnitude of the metacherts. According to the results of strain analysis using Rφ-f method, k-value and strain magnitude are 0.4-1.0 and 0.6-0.7, respectively. The strain magnitude is enough to form distinct fabric patterns, when dislocation creep is a dominant deformation mechanism. Therefore, in the metachert samples studied here, it suggests that dominant deformation mechanism is not dislocation creep, but diffusion creep. Although, when the grain size of quartz is ~10 mm, shear stress is ~several tens megapascal and upper greenschist- to lower amphibolite-facies condition (~500°C at 200-300 MPa), it has been considered that high-strained natural quartzose rocks, e.g., quartz-rich layers in banded ultramylonites, deformed by dislocation creep, the very-fine grained metacherts from the Ryoke metamorphic belt formed under the upper greenschist- to lower amphibolite

  10. Creep behaviour of Cu-30 percent Zn at intermediate temperatures

    NASA Technical Reports Server (NTRS)

    Raj, S. V.

    1991-01-01

    The present, intermediate-temperature (573-823 K) range investigation of creep properties for single-phase Cu-30 percent Zn alpha-brass observed inverse, linear, and sigmoidal primary-creep transients above 573 K under stresses that yield minimum creep rates in the 10 to the -7th to 2 x 10 to the -4th range; normal primary creep occurred in all other conditions. In conjunction with a review of the pertinent literature, a detailed analysis of these data suggests that no clearly defined, classes M-to-A-to-M transition exists in this alloy notwithstanding the presence of both classes' characteristics under nominally similar stresses and temperatures.

  11. Probabilistic models for creep-fatigue in a steel alloy

    NASA Astrophysics Data System (ADS)

    Ibisoglu, Fatmagul

    In high temperature components subjected to long term cyclic operation, simultaneous creep and fatigue damage occur. A new methodology for creep-fatigue life assessment has been adopted without the need to separate creep and fatigue damage or expended life. Probabilistic models, described by hold times in tension and total strain range at temperature, have been derived based on the creep rupture behavior of a steel alloy. These models have been validated with the observed creep-fatigue life of the material with a scatter band close to a factor of 2. Uncertainties of the creep-fatigue model parameters have been estimated with WinBUGS which is an open source Bayesian analysis software tool that uses Markov Chain Monte Carlo method to fit statistical models. Secondly, creep deformation in stress relaxation data has been analyzed. Well performing creep equations have been validated with the observed data. The creep model with the highest goodness of fit among the validated models has been used to estimate probability of exceedance at 0.6% strain level for the steel alloy.

  12. Creep of trabecular bone from the human proximal tibia

    PubMed Central

    Novitskaya, Ekaterina; Zin, Carolyn; Chang, Neil; Cory, Esther; Chen, Peter; D'Lima, Darryl; Sah, Robert L.; McKittrick, Joanna

    2014-01-01

    Creep is the deformation that occurs under a prolonged, sustained load and can lead to permanent damage in bone. Creep in bone is a complex phenomenon and varies with type of loading and local mechanical properties. Human trabecular bone samples from proximal tibia were harvested from a 71-year old female cadaver with osteoporosis. The samples were initially subjected to one cycle load up to 1% strain to determine the creep load. Samples were then loaded in compression under a constant stress for two hours and immediately unloaded. All tests were conducted with the specimens soaked in phosphate buffered saline with proteinase inhibitors at 37°C. Steady state creep rate and final creep strain were estimated from mechanical testing and compared with published data. The steady state creep rate correlated well with values obtained from bovine tibial and human vertebral trabecular bone, and was higher for lower density samples. Tissue architecture was analyzed by micro-computed tomography (μCT) both before and after creep testing to assess creep deformation and damage accumulated. Quantitative morphometric analysis indicated that creep induced changes in trabecular separation and the structural model index. A main mode of deformation was bending of trabeculae. PMID:24857486

  13. Power-law creep from discrete dislocation dynamics.

    PubMed

    Keralavarma, Shyam M; Cagin, T; Arsenlis, A; Benzerga, A Amine

    2012-12-28

    We report two-dimensional discrete dislocation dynamics simulations of combined dislocation glide and climb leading to "power-law" creep in a model aluminum crystal. The approach fully accounts for matter transport due to vacancy diffusion and its coupling with dislocation motion. The existence of quasiequilibrium or jammed states under the applied creep stresses enables observations of diffusion and climb over time scales relevant to power-law creep. The predictions for the creep rates and stress exponents fall within experimental ranges, indicating that the underlying physics is well captured. PMID:23368581

  14. Contribution to irradiation creep arising from gas-driven bubbles

    SciTech Connect

    Woo, C.H.; Garner, F.A.

    1998-03-01

    In a previous paper the relationship was defined between void swelling and irradiation creep arising from the interaction of the SIPA and SIG creep-driven deformation and swelling-driven deformation was highly interactive in nature, and that the two contributions could not be independently calculated and then considered as directly additive. This model could be used to explain the recent experimental observation that the creep-swelling coupling coefficient was not a constant as previously assumed, but declined continuously as the swelling rate increased. Such a model thereby explained the creep-disappearance and creep-damping anomalies observed in conditions where significant void swelling occurred before substantial creep deformation developed. At lower irradiation temperatures and high helium/hydrogen generation rates, such as found in light water cooled reactors and some fusion concepts, gas-filled cavities that have not yet exceeded the critical radius for bubble-void conversion should also exert an influence on irradiation creep. In this paper the original concept is adapted to include such conditions, and its predictions then compared with available data. It is shown that a measurable increase in the creep rate is expected compared to the rate found in low gas-generating environments. The creep rate is directly related to the gas generation rate and thereby to the neutron flux and spectrum.

  15. Creep behaviour of modified 9Cr-1Mo ferritic steel

    NASA Astrophysics Data System (ADS)

    Choudhary, B. K.; Isaac Samuel, E.

    2011-05-01

    Creep deformation and fracture behaviour of indigenously developed modified 9Cr-1Mo steel for steam generator (SG) tube application has been examined at 823, 848 and 873 K. Creep tests were performed on flat creep specimens machined from normalised and tempered SG tubes at stresses ranging from 125 to 275 MPa. The stress dependence of minimum creep rate obeyed Norton's power law. Similarly, the rupture life dependence on stress obeyed a power law. The fracture mode remained transgranular at all test conditions examined. The analysis of creep data indicated that the steel obey Monkman-Grant and modified Monkman-Grant relationships and display high creep damage tolerance factor. The tertiary creep was examined in terms of the variations of time to onset of tertiary creep with rupture life, and a recently proposed concept of time to reach Monkman-Grant ductility, and its relationship with rupture life that depends only on damage tolerance factor. SG tube steel exhibited creep-rupture strength comparable to those reported in literature and specified in the nuclear design code RCC-MR.

  16. Collect Available Creep-Fatigue Data and Study Existing Creep-Fatigue Evaluation Procedures for Grade 91 and Hastelloy XR

    SciTech Connect

    Tai Asayama; Yukio Tachibana

    2007-09-30

    This report describes the results of investigation on Task 5 of DOE/ASME Materials Project based on a contract between ASME Standards Technology, LLC (ASME ST-LLC) and Japan Atomic Energy Agency (JAEA). Task 5 is to collect available creep-fatigue data and study existing creep-fatigue evaluation procedures for Grade 91 steel and Hastelloy XR. Part I of this report is devoted to Grade 91 steel. Existing creep-fatigue data were collected (Appendix A) and analyzed from the viewpoints of establishing a creep-fatigue procedure for VHTR design. A fair amount of creep-fatigue data has been obtained and creep-fatigue phenomena have been clarified to develop design standards mainly for fast breeder reactors. Following this, existing creep-fatigue procedures were studied and it was clarified that the creep-fatigue evaluation procedure of the ASME-NH has a lot of conservatisms and they were analyzed in detail from the viewpoints of the evaluation of creep damage of material. Based on the above studies, suggestions to improve the ASME-NH procedure along with necessary research and development items were presented. Part II of this report is devoted to Hastelloy XR. Existing creep-fatigue data used for development of the high temperature structural design guideline for High Temperature Gas-cooled Reactor (HTGR) were collected. Creep-fatigue evaluation procedure in the design guideline and its application to design of the intermediate heat exchanger (IHX) for High Temperature Engineering Test Reactor (HTTR) was described. Finally, some necessary research and development items in relation to creep-fatigue evaluation for Gen IV and VHTR reactors were presented.

  17. Tensile creep behavior and cyclic fatigue/creep interaction of hot- isostatically pressed Si sub 3 N sub 4

    SciTech Connect

    Liu, K.C.; Pih, H.; Stevens, C.O.; Brinkman, C.R.

    1991-01-01

    Tensile creep data are reported for a high-performance grade of hot isostatically pressed Si{sub 3}N{sub 4} that is currently being investigated as a candidate material for advanced heat engine applications. Specimens were tested in pure uniaxial tension at temperatures ranging from 1200 to 1370{degree}C. Creep strain was measured with an optical strain extensometer until creep rupture occurred, in some cases for periods in excess of 2000 h. To study the effects of various preloading material histories on creep behavior, specimens were prepared and tested in several conditions, i.e., unannealed, annealed, or precycled. Test results show that either treatment by thermal annealing or by precycling at 1370{degree}C can dramatically modify the initial transient creep behavior and enhance the resistance to creep deformation and hence the creep-rupture lifetime. However, the influence of the preloading histories on creep rate was diminished by high temperature exposure after about 500 h of testing. The rupture lifetime of the precycled specimen at 1370{degree}C was significantly higher than those of the unannealed and annealed specimens. In contrast, no significant extension of the creep-rupture lifetime was observed for a precycled specimen tested at 1300{degree}C. Steady-state creep was absent in some cases under certain conditions of temperature, stress, and heat treatment. Little or no tertiary creep was usually detected before specimen fracture occurred. The steady-state creep rate of this material was found to be a function of applied stress, temperature, and possibly the level of crystallinity in the intergranular phase. 9 refs., 15 figs.

  18. Creep and creep-rupture behavior of a continuous strand, swirl mat reinforced polymer composite in automotive environments

    SciTech Connect

    Ren, W.; Brinkman, C.R.

    1998-12-31

    Creep and creep-rupture behavior of an isocyanurate based polyurethane matrix with a continuous strand, swirl mat E-glass reinforcement was investigated for automotive applications. The material under stress was exposed to various automobile service environments. Results show that environment has substantial effects on its creep and creep-rupture properties. Proposed design guide lines and stress reduction factors were developed for various automotive environments. These composites are considered candidate structural materials for light weight and fuel efficient automobiles of the future.

  19. Creep Life of Ceramic Components Using a Finite-Element-Based Integrated Design Program (CARES/CREEP)

    NASA Technical Reports Server (NTRS)

    Gyekenyesi, J. P.; Powers, L. M.; Jadaan, O. M.

    1998-01-01

    The desirable properties of ceramics at high temperatures have generated interest in their use for structural applications such as in advanced turbine systems. Design lives for such systems can exceed 10,000 hours. The long life requirement necessitates subjecting the components to relatively low stresses. The combination of high temperatures and low stresses typically places failure for monolithic ceramics in the creep regime. The objective of this paper is to present a design methodology for predicting the lifetimes of structural components subjected to creep rupture conditions. This methodology utilized commercially available finite element packages and takes into account the time-varying creep strain distributions (stress relaxation). The creep life of a component is discretized into short time steps, during which the stress and strain distributions are assumed constant. The damage is calculated for each time step based on a modified Monkman-Grant creep rupture criterion. Failure is assumed to occur when the normalized accumulated damage at any point in the component is greater than or equal to unity. The corresponding time will be the creep rupture life for that component. Examples are chosen to demonstrate the CARES/CREEP (Ceramics Analysis and Reliability Evaluation of Structures/CREEP) integrated design programs, which is written for the ANSYS finite element package. Depending on the component size and loading conditions, it was found that in real structures one of two competing failure modes (creep or slow crack growth) will dominate. Applications to benechmark problems and engine components are included.

  20. Creep Life of Ceramic Components Using a Finite-Element-Based Integrated Design Program (CARES/CREEP)

    NASA Technical Reports Server (NTRS)

    Powers, L. M.; Jadaan, O. M.; Gyekenyesi, J. P.

    1998-01-01

    The desirable properties of ceramics at high temperatures have generated interest in their use for structural application such as in advanced turbine engine systems. Design lives for such systems can exceed 10,000 hours. The long life requirement necessitates subjecting the components to relatively low stresses. The combination of high temperatures and low stresses typically places failure for monolithic ceramics in the creep regime. The objective of this paper is to present a design methodology for predicting the lifetimes of structural components subjected to creep rupture conditions. This methodology utilizes commercially available finite element packages and takes into account the time-varying creep strain distributions (stress relaxation). The creep life, of a component is discretized into short time steps, during which the stress and strain distributions are assumed constant. The damage is calculated for each time step based on a modified Monkman-Grant creep rupture criterion. Failure is assumed to occur when the normalized accumulated damage at any point in the component is greater than or equal to unity. The corresponding time will be the creep rupture life for that component. Examples are chosen to demonstrate the Ceramics Analysis and Reliability Evaluation of Structures/CREEP (CARES/CREEP) integrated design program, which is written for the ANSYS finite element package. Depending on the component size and loading conditions, it was found that in real structures one of two competing failure modes (creep or slow crack growth) will dominate. Applications to benchmark problems and engine components are included.

  1. Creep rupture of an oxide/oxide composite fiber

    NASA Astrophysics Data System (ADS)

    Hammond, Vincent Harold

    Due to their low-cost and thermal stability, alumina-based tow-fibers are currently being considered for use in elevated temperature composites. Unfortunately, the fine grain size of the filaments results in extremely poor creep resistance when subjected to high temperature loading. The recent development of a tow-based composite fiber offers a possible solution for improving the creep performance of these materials. To explore the viability of this approach, the creep response of an oxide/oxide composite fiber has been determined through a series of uniaxial creep tests. Despite the high porosity content of the alumina matrix, significant improvements in both steady-state creep rate and creep lifetimes were observed for the composite fibers relative to the as-received tows. The creep strength was found to be strongly sensitive to sintering temperature but only mildly dependent on matrix volume fraction within the range studied. A transition from tough to brittle fracture was also observed in the composite fiber with increasing sintering temperature. An analytical model was developed for predicting the creep response of the as-received Nextel 610 tow. The strain-time history of the tow is generated using the power-law creep rate equation for a Nextel 610 single filament. The failure strain of the tow is predicted using a damage mechanics approach based on a Monkman-Grant type parameter. Predicted values of creep lifetime and failure strain are within 20% of those measured experimentally. The model is then extended to address the creep response of the composite fiber by incorporating the influence of composite fiber architecture, interfacial roughness, and clamping stresses on the reloading of failed filaments.

  2. Variations in creep rate along the Hayward Fault, California, interpreted as changes in depth of creep

    USGS Publications Warehouse

    Simpson, R.W.; Lienkaemper, J.J.; Galehouse, J.S.

    2001-01-01

    Variations ill surface creep rate along the Hayward fault are modeled as changes in locking depth using 3D boundary elements. Model creep is driven by screw dislocations at 12 km depth under the Hayward and other regional faults. Inferred depth to locking varies along strike from 4-12 km. (12 km implies no locking.) Our models require locked patches under the central Hayward fault, consistent with a M6.8 earthquake in 1868, but the geometry and extent of locking under the north and south ends depend critically on assumptions regarding continuity and creep behavior of the fault at its ends. For the northern onshore part of the fault, our models contain 1.4-1.7 times more stored moment than the model of Bu??rgmann et al. [2000]; 45-57% of this stored moment resides in creeping areas. It is important for seismic hazard estimation to know how much of this moment is released coseismically or as aseismic afterslip.

  3. Diffusional creep and creep degradation in the dispersion-strengthened alloy TD-NiCr

    NASA Technical Reports Server (NTRS)

    Whittenberger, J. D.

    1972-01-01

    Dispersoid-free regions were observed in TD-NiCr (Ni-20Cr-2ThO2) after slow strain rate testing in air from 1145 to 1590 K. Formation of the dispersoid-free regions appears to be the result of diffusional creep. The net effect of this creep is the degradation of TD-NiCr to a duplex microstructure. Degradation is further enhanced by the formation of voids and integranular oxidation in the thoria-free regions. These regions apparently provided sites for void formation and oxide growth since the strength and oxidation resistance of Ni-20Cr is much less than Ni-20Cr-2ThO2. This localized oxidation does not appear to reduce the static load bearing capacity of TD-NiCr since long stress rupture lives were observed even with heavily oxidized microstructures. But this oxidation does significantly reduce the ductility and impact resistance of the material. Dispersoid-free bands and voids were also observed for two other dispersion strengthened alloys, TD-NiCrAl and IN-853. Thus, it appears that diffusional creep is charactertistic of dispersion-strengthened alloys and can play a major role in the creep degradation of these materials.

  4. Correlation of creep rate with microstructural changes during high temperature creep

    NASA Technical Reports Server (NTRS)

    Young, C. T.; Sommers, B. R.; Lytton, J. L.

    1977-01-01

    Creep tests were conducted on Haynes 188 cobalt-base alloy and alpha titanium. The tests on Haynes 188 were conducted at 1600 F and 1800 F for stresses from 3 to 20 ksi, and the as-received, mill-annealed results were compared to specimens given 5%, 10%, and 15% room temperature prestrains and then annealed one hour at 1800 F. The tests on alpha titanium were performed at 7,250 and 10,000 psi at 500 C. One creep test was done at 527 C and 10,000 psi to provide information on kinetics. Results for annealed titanium were compared to specimens given 10% and 20% room temperature prestrains followed by 100 hours recovery at 550 C. Electron microscopy was used to relate dislocation and precipitate structure to the creep behavior of the two materials. The results on Haynes 188 alloy reveal that the time to reach 0.5% creep strain at 1600 F increases with increasing prestrain for exposure times less than 1,000 hours, the increase at 15% prestrain being more than a factor of ten.

  5. High temperature tensile creep, creep damage and failure under superimposed compressional stress

    NASA Astrophysics Data System (ADS)

    Boček, M.

    1985-04-01

    The paper presents a theoretical examination of the influence of compressional stresses upon the characteristics of high temperature tensile creep. The calculations are based on a phenomenological creep cavitation model, which is adapted for superimposed pressure loading. Therefrom a power law strain rate/stress equation is obtained in which the hydrostatic pressure P enters in the stress function σ1n = ( σ - P) n. However, impeding cavity growth, P has an additional influence upon the strain rate through a variable structure parameter described by the damage function A< σ1>. From A< σ1> the stress rupture lines tf< σ1> for superimposed creep are obtained. The calculations are compared to experimental results from literature. By means of the life fraction rule the lifetime is calculated for load cycling in which tensional and compressional loading phases alternate. The lifetime depends sensitively upon the ratio of the minimum to maximum stress amplitude ( r) and upon a stress factor η characterizing the influence of the stress state upon cavitation damage. The lifetime computations are compared with experimental results obtained on the stainless steel AISI 304. The calculations show that the Monkman-Grant relationship should also be obeyed for superimposed creep.

  6. Creep, fatigue and creep-fatigue interactions in modified 9% Chromium - 1% Molybdenum (P91) steels

    NASA Astrophysics Data System (ADS)

    Kalyanasundaram, Valliappa

    Grade P91 steel, from the class of advanced high-chrome ferritic steels, is one of the preferred materials for many elevated temperature structural components. Creep-fatigue (C-F) interactions, along with oxidation, can accelerate the kinetics of damage accumulation and consequently reduce such components' life. Hence, reliable C-F test data is required for meticulous consideration of C-F interactions and oxidation, which in turn is vital for sound design practices. It is also imperative to develop analytical constitutive models that can simulate and predict material response under various long-term in-service conditions using experimental data from short-term laboratory experiments. Consequently, the major objectives of the proposed research are to characterize the creep, fatigue and C-F behavior of grade P91 steels at 625 C and develop robust constitutive models for simulating/predicting their microstructural response under different loading conditions. This work will utilize experimental data from 16 laboratories worldwide that conducted tests (creep, fatigue and C-F) on grade P91 steel at 625°C in a round-robin (RR) program. Along with 7 creep deformation and rupture tests, 32 pure fatigue and 46 C-F tests from the RR are considered in this work. A phenomenological constitutive model formulated in this work needs just five fitting parameters to simulate/predict the monotonic, pure fatigue and C-F behavior of grade P91 at 625 C. A modified version of an existing constitutive model is also presented for particularly simulating its isothermal creep deformation and rupture behavior. Experimental results indicate that specimen C-F lives, as measured by the 2% load drop criterion, seem to decrease with increasing strain ranges and increasing hold times at 625°C. Metallographic assessment of the tested specimens shows that the damage mode in both pure fatigue and 600 seconds hold time cyclic tests is predominantly transgranular fatigue with some presence of

  7. Mechanical response of ceramics to creep loading

    SciTech Connect

    Blumenthal, W.R.

    1983-08-01

    The mechanical response of small, semi-elliptical, identification-induced surface cracks in fine-grain alumina was studied. The deformation behavior of the crack tip region was monitored using crack opening and surface displacements. Results indicate values of the secondary creep exponent, n, between 1.5 and 2 with a temperature dependence consistent with secondary creep data from the same material. Crack growth was measured at 1300 and 1400/sup 0/C and a narrow power-law growth regime was revealed. Again the power-law exponent and activation energy were very close to creep values. Asymptotic behavior was exhibited near both K/sub Ic/ and K/sub th/, the crack growth threshold. The threshold occurred near 0.4 K/sub Ic/, independent of temperature. Crack tip damage in the form of grain boundary cavities growing by diffusion was responsible for crack extension. The damage also exerts a strong influence on the displacement field as predicted by recent theories. The crack growth threshold is preceded by a transition in the size and distribution of damage. At K/sub I/ near K/sub Ic/ the damage is restricted to a few facets directly ahead of the crack tip. Near K/sub th/ damage concentrates in side-lobes far ahead of the crack tip and at angles between 20/sup 0/ to 60/sup 0/ from the plane of the crack. The transition between frontal and side-lobe damage is anticipated to be moderately dependent on grain size. 34 figures.

  8. Study of irradiation creep of vanadium alloys

    SciTech Connect

    Tsai, H.; Strain, R.V.; Smith, D.L.

    1997-08-01

    Thin-wall tubing was produced from the 832665 (500 kg) heat of V-4 wt.% Cr-4 wt.% Ti to study its irradiation creep behavior. The specimens, in the form of pressurized capsules, were irradiated in Advanced Test Reactor and High Flux Isotope Reactor experiments (ATR-A1 and HFIR RB-12J, respectively). The ATR-A1 irradiation has been completed and specimens from it will soon be available for postirradiation examination. The RB-12J irradiation is not yet complete.

  9. Potential for Time Compression in Creep-Fatigue Property Evaluation

    NASA Technical Reports Server (NTRS)

    Halford, Gary R.

    2001-01-01

    This paper presents several engineering techniques for shorter time to characterize creep fatigue resistance. The topics include: 1) Classification of 100 Existing Creep-Fatigue Models; 2) Strainrange Partitioning (SRP) Approach; 3) Inelastic Strainrange SRP-Life Extrapolation Approaches; and 4) Total Strain Version of SRP. This paper is presented in viewgraph form.

  10. Accelerated Creep Testing of High Strength Aramid Webbing

    NASA Technical Reports Server (NTRS)

    Jones, Thomas C.; Doggett, William R.; Stnfield, Clarence E.; Valverde, Omar

    2012-01-01

    A series of preliminary accelerated creep tests were performed on four variants of 12K and 24K lbf rated Vectran webbing to help develop an accelerated creep test methodology and analysis capability for high strength aramid webbings. The variants included pristine, aged, folded and stitched samples. This class of webbings is used in the restraint layer of habitable, inflatable space structures, for which the lifetime properties are currently not well characterized. The Stepped Isothermal Method was used to accelerate the creep life of the webbings and a novel stereo photogrammetry system was used to measure the full-field strains. A custom MATLAB code is described, and used to reduce the strain data to produce master creep curves for the test samples. Initial results show good correlation between replicates; however, it is clear that a larger number of samples are needed to build confidence in the consistency of the results. It is noted that local fiber breaks affect the creep response in a similar manner to increasing the load, thus raising the creep rate and reducing the time to creep failure. The stitched webbings produced the highest variance between replicates, due to the combination of higher local stresses and thread-on-fiber damage. Large variability in the strength of the webbings is also shown to have an impact on the range of predicted creep life.

  11. Out-of-pile creep behavior of uranium carbide

    NASA Technical Reports Server (NTRS)

    Wright, T. R.; Seltzer, M. S.

    1974-01-01

    Compression creep tests were investigated on various UC-based fuel materials having a variation in both density and composition. Specimens were prepared by casting and by hot pressing. Steady-state creep rates were measured under vacuum at 1400 to 1800 C in the stress range 500-4000 psi.

  12. Creep behavior of abaca fibre reinforced composite material

    SciTech Connect

    Tobias, B.C.; Lieng, V.T.

    1996-12-31

    This study investigates the creep behavior of abaca fibre reinforced composite lamina. The optimum proportions of constituents and loading conditions, temperature and stresses, are investigated in terms of creep properties. Lamina with abaca fibre volume fractions of 60, 70 and 80 percent, embedded in polyester resin were fabricated. Creep tests in tension at three temperature levels 20{degrees}C, 100{degrees}C and 120{degrees}C and three constant stress levels of 0. 1 MPa, 0. 13 Mpa and 0. 198 MPa using a Dynamic Mechanical Analyzer (DMA) were performed. The creep curves show standard regions of an ideal creep curve such as primary and secondary creep stage. The results also show that the minimum creep rate of abaca fibre reinforced composite increases with the increase of temperature and applied stress. Plotting the minimum creep rate against stress, depicts the variations of stress exponents which vary from 1.6194 at 20{degrees}C to 0.4576 at 120{degrees}C.

  13. Effect of unloading time on interrupted creep in copper

    SciTech Connect

    Chandler, H.D. . School of Mechanical Engineering)

    1994-06-01

    The effect of unloading time on the interrupted creep behavior of polycrystalline copper specimens was investigated over the temperature range 298--773 K. Up to 553 K, cyclic creep acceleration could be explained in terms of deformation and hardening using a dislocation glide model with recovery during unloading being due to dislocation climb. At higher temperatures, recrystallization effects probably influence behavior.

  14. Material Parameters for Creep Rupture of Austenitic Stainless Steel Foils

    NASA Astrophysics Data System (ADS)

    Osman, H.; Borhana, A.; Tamin, M. N.

    2014-08-01

    Creep rupture properties of austenitic stainless steel foil, 347SS, used in compact recuperators have been evaluated at 700 °C in the stress range of 54-221 MPa to establish the baseline behavior for its extended use. Creep curves of the foil show that the primary creep stage is brief and creep life is dominated by tertiary creep deformation with rupture lives in the range of 10-2000 h. Results are compared with properties of bulk specimens tested at 98 and 162 MPa. Thin foil 347SS specimens were found to have higher creep rates and higher rupture ductility than their bulk specimen counterparts. Power law relationship was obtained between the minimum creep rate and the applied stress with stress exponent value, n = 5.7. The value of the stress exponent is indicative of the rate-controlling deformation mechanism associated with dislocation creep. Nucleation of voids mainly occurred at second-phase particles (chromium-rich M23C6 carbides) that are present in the metal matrix by decohesion of the particle-matrix interface. The improvement in strength is attributed to the precipitation of fine niobium carbides in the matrix that act as obstacles to the movement of dislocations.

  15. Computer program for predicting creep behavior of bodies of revolution

    NASA Technical Reports Server (NTRS)

    Adams, R.; Greenbaum, G.

    1971-01-01

    Computer program, CRAB, uses finite-element method to calculate creep behavior and predict steady-state stresses in an arbitrary body of revolution subjected to a time-dependent axisymmetric load. Creep strains follow a time hardening law and a Prandtl-Reuss stress-strain relationship.

  16. The role of cobalt on the creep of Waspaloy

    NASA Technical Reports Server (NTRS)

    Jarrett, R. N.; Chin, L.; Tien, J. K.

    1984-01-01

    Cobalt was systematically replaced with nickel in Waspaloy (which normally contains 13% Co) to determine the effects of cobalt on the creep behavior of this alloy. Effects of cobalt were found to be minimal on tensile strengths and microstructure. The creep resistance and the stress rupture resistance determined in the range from 704 to 760 C (1300 to 1400 C) were found to decrease as cobalt was removed from the standard alloy at all stresses and temperatures. Roughly a ten-fold drop in rupture life and a corresponding increase in minimum creep rate were found under all test conditions. Both the apparent creep activation energy and the matrix contribution to creep resistance were found to increase with cobalt. These creep effects are attributed to cobalt lowering the stacking fault energy of the alloy matrix. The creep resistance loss due to the removal of cobalt is shown to be restored by slightly increasing the gamma' volume fraction. Results are compared to a previous study on Udimet 700, a higher strength, higher gamma' volume fraction alloy with similar phase chemistry, in which cobalt did not affect creep resistance. An explanation for this difference in behavior based on interparticle spacing and cross-slip is presented.

  17. Creep degradation in oxide-dispersion-strengthened alloys

    NASA Technical Reports Server (NTRS)

    Whittenberger, J. D.

    1977-01-01

    Oxide dispersion strengthened Ni-base alloys in wrought bar form are studied for creep degradation effects similar to those found in thin gage sheet. The bar products evaluated included ODS-Ni, ODS-NiCr, and three types of advanced ODS-NiCrAl alloys. Tensile test specimens were exposed to creep at various stress levels at 1365 K and then tensile tested at room temperature. Low residual tensile properties, change in fracture mode, the appearance of dispersoid-free bands, grain boundary cavitation, and internal oxidation in the microstructure were interpreted as creep degradation effects. This work showed that many ODS alloys are subject to creep damage. Degradation of tensile properties occurred after very small amounts of creep strain, ductility being the most sensitive property. All the ODS alloys which were creep damaged possessed a large grain size. Creep damage appears to have been due to diffusional creep which produced dispersoid-free bands around boundaries acting as vacancy sources. Low angle and possibly twin boundaries acted as vacancy sources.

  18. Creep and inverse stress relaxation behaviors of carbon nanotube yarns.

    PubMed

    Misak, H E; Sabelkin, V; Miller, L; Asmatulu, R; Mall, S

    2013-12-01

    Creep, creep recovery and inverse stress relaxation behaviors of carbon nanotube yarns that consisted of 1-, 30-, and 100-yarn(s) were characterized. Primary and secondary creep stages were observed over the duration of 336 h. The primary creep stage lasted for about 4 h at an applied load equal to 75% of the ultimate tensile strength. The total strain in the primary stage was significantly larger in the carbon nanotube multi-yarn than in the carbon nanotube 1-yarn. In the secondary stage, 1-yarn also had a smaller steady state strain rate than the multi-yarn, and it was independent of number of yarns in multi-yarn. Strain response under cyclic creep loading condition was comparable to its counterpart in non-cyclic (i.e., standard) creep test except that strain response during the first cycle was slightly different from the subsequent cycles. Inverse creep (i.e., strain recovery) was observed in the 100-yarn during the cyclic creep tests after the first unloading cycle. Furthermore, inverse stress relaxation of the multi-yarns was characterized. Inverse stress relaxation was larger and for longer duration with the larger number of yarns. PMID:24266232

  19. Accelerated characterization for long-term creep behavior of polymer

    NASA Astrophysics Data System (ADS)

    Zhao, Rongguo; Chen, Chaozhong; Li, Qifu; Luo, Xiyan

    2008-11-01

    Based on the observation that high stress results in increasing creep rate of polymeric material, which is analogous to the time-temperature equivalence, where high temperature accelerates the process of creep or relaxation of polymer, the time-stress equivalence is investigated. The changes of intrinsic time in polymer induced by temperature and stress are studied using the free volume theory, and a clock model based on the time-temperature and time-stress equivalence is constructed to predict the long-term creep behavior of polymer. Polypropylene is used for this work. The specimens with shape of dumbbell are formed via injection molding. The short-term creep tests under various stress levels are carried out at ambient temperature. The creep strains of specimens are modeled according to the concept of time-stress equivalence, and the corresponding stress shift factors are calculated. A master creep curve is built by the clock model. The result indicates that the time-stress superposition principle provides an accelerated characterization method in the laboratory. Finally, the time-dependent axial elongations at sustained stress levels, whose values are close to the tensile strength of polypropylene, are measured. The three phases of creep, i.e., the transient, steady state and accelerated creep phases, are studied, and the application and limitation of the time-stress superposition principle are discussed.

  20. Temperature, Thermal Stress, And Creep In A Structure

    NASA Technical Reports Server (NTRS)

    Jenkins, Jerald M.

    1991-01-01

    Report presents comparison of predicted and measured temperatures, thermal stresses, and residual creep stresses in heated and loaded titanium structure. Study part of continuing effort to develop design capability to predict and reduce deleterious effects of creep, which include excessive deformations, residual stresses, and failure.

  1. High-Temperature Creep Behavior Of Fiber-Reinforced Niobium

    NASA Technical Reports Server (NTRS)

    Petrasek, Donald W.; Titran, Robert H.

    1990-01-01

    Study conducted to determine feasibility of using composite materials in advanced space power systems, described in 22-page report. Tungsten fibers reduce creep and mass in advanced power systems. Reinforcing niobium alloys with tungsten fibers increases their resistances to creep by factors of as much as 10.

  2. Modeling creep behavior in a directionally solidified nickel base superalloy

    NASA Astrophysics Data System (ADS)

    Ibanez, Alejandro R.

    Directionally solidified (DS) nickel-base superalloys provide significant improvements relative to the limitations inherent to equiaxed materials in the areas of creep resistance, oxidation, and low and high cycle fatigue resistance. Since these materials are being pushed to the limits of their capability in gas turbine applications, accurate mathematical models are needed to predict the service lives of the hot-section components to prevent unscheduled outages due to sudden mechanical failures. The objectives of this study are to perform critical experiments and investigate the high temperature tensile, fracture toughness, creep deformation, creep rupture and creep crack growth behavior of DS GTD111 as well as to apply creep deformation, rupture and crack growth models that will enable the accurate representation of the life times of the DS GTD111 superalloy gas turbine components that are exposed to high temperatures under sustained tensile stresses. The applied models will be capable of accurately representing the creep deformation, rupture and crack growth behavior as a function of stress, time and temperature. The yield strength and fracture toughness behavior with temperature is governed by the gamma particles. The longitudinal direction showed higher ductility and strength than the transverse direction. The TL direction exhibited higher fracture toughness than the LT orientation because the crack follows a more tortuous path. The longitudinal direction showed higher creep ductility, lower minimum strain rates and longer creep rupture times than the transverse direction. The results in the transverse direction were similar to the ones for the equiaxed version of this superalloy. Two models for creep deformation have been evaluated. The power-law model includes a secondary and a tertiary creep term with the primary creep represented by a constant. A theta-projection model has also been evaluated and it appears to provide a more accurate representation of creep

  3. Continuous creep measurements on the North Anatolian Fault at Ismetpasa

    NASA Astrophysics Data System (ADS)

    Ozener, Haluk; Aytun, Alkut; Aktug, Bahadir; Dogru, Asli; Mencin, David; Ergintav, Semih; Bilham, Roger

    2016-04-01

    A graphite creep-meter was installed across the North Anatolian fault near a wall at Ismetpasa, Turkey, that has been offset by fault creep processes more than 51 cm since its construction in 1957. The creep-meter is 40-cm-deep, 16.5-m-long and crosses the fault at 30 degrees within a 2 cm diameter telescopic PVC conduit. The SW end of the 6-mm-diameter graphite rod is fastened to a buried stainless steel tripod, and motion of its free end relative to a similar tripod at its NE end is monitored by two sensors: an LVDT with 6 μm resolution and 13 mm range, and a Hall-effect rotary transducer with 30 μm resolution and 1.5 m range. The two sensors track each other to better than 1%. Data are sampled every 30 minutes and are publically available via the Iridium satellite with a delay of less than 1 hour. Since May 2014, for periods of months the surface fault has been inactive, followed by several weeks or months of slow slip at rates of ≈3 mm/yr and with cumulative slip amplitude less than 1 mm, terminated by a pair of distinct creep events with durations of up to 8 days and amplitudes of up to 2.3 mm, after which slip ceases until the next episode. Maximum slip rates on the surface fault are 0.54 mm/hour at the onset of a creep event. The decay time constant of the two pairs of creep events we have observed varies from 3 to 5 hours, similar to those observed by Altay and Sav, (1982) who operated a creepmeter here from 1980-1989. The decadal creep rate observed by these authors was 7.35±0.9 mm/yr, whereas our currently observed least-squares creep-rate is 5.4±1 mm/yr based on 19 months of data. Since most of the annual of the creep occurs in large creep events (80%), we anticipate that our rate will change with elapsed time, and our uncertainty will decrease accordingly. As expected, the 2014-2016 observed creep rate is somewhat lower than the regional creep on the fault deduced from Insar analysis and GPS observations (≈7-8 mm/yr), but both the amplitude of

  4. Creep deformation and rupture behavior of CLAM steel at 823 K and 873 K

    NASA Astrophysics Data System (ADS)

    Zhong, Boyu; Huang, Bo; Li, Chunjing; Liu, Shaojun; Xu, Gang; Zhao, Yanyun; Huang, Qunying

    2014-12-01

    China Low Activation Martensitic (CLAM) steel is selected as the candidate structural material in Fusion Design Study (FDS) series fusion reactor conceptual designs. The creep property of CLAM steel has been studied in this paper. Creep tests have been carried out at 823 K and 873 K over a stress range of 150-230 MPa. The creep curves showed three creep regimes, primary creep, steady-state creep and tertiary creep. The relationship between minimum creep rate (ε˙min) and the applied stress (σ) could be described by Norton power law, and the stress exponent n was decreased with the increase of the creep temperature. The creep mechanism was analyzed with the fractographes of the rupture specimens which were examined by scanning electron microscopy (SEM). The coarsening of precipitates observed with transmission electron microscope (TEM) indicated the microstructural degradation after creep test.

  5. Effect of misalignment on mechanical behavior of metals in creep. [computer programs

    NASA Technical Reports Server (NTRS)

    Wu, H. C.

    1979-01-01

    Application of the endochronic theory of viscoplasticity to creep, creep recovery, and stress relaxation at the small strain and short time range produced the following results: (1) The governing constitutive equations for constant-strain-rate stress-strain behavior, creep, creep recovery, and stress relaxation were derived by imposing appropriate constraints on the general constitutive equation of the endochronic theory. (2) A set of material constants was found which correlate strain-hardening, creep, creep recovery, and stress relaxation. (3) The theory predicts with reasonable accuracy the creep and creep recovery behaviors at short time. (4) The initial strain history prior to the creep stage affects the subsequent creep significantly. (5) A critical stress was established for creep recovery. A computer program, written for the misalignment problem is reported.

  6. Inferred depth of creep on the Hayward Fault, central California

    USGS Publications Warehouse

    Savage, J.C.; Lisowski, M.

    1993-01-01

    A relation between creep rate at the surface trace of a fault, the depth to the bottom of the creeping zone, and the rate of stress accumulation on the fault is derived from Weertman's 1964 friction model of slip on a fault. A 5??1 km depth for the creeping zone on the Hayward fault is estimated from the measured creep rate (5mm/yr) at the fault trace and the rate of stress increase on the upper segment of the fault trace inferred from geodetic measurements across the San Francisco Bay area. Although fault creep partially accommodates the secular slip rate on the Hayward fault, a slip deficit is accumulating equivalent to a magnitude 6.6 earthquake on each 40 km segment of the fault each century. Thus, the current behavior of the fault is consistent with its seismic history, which includes two moderate earthquakes in the mid-1800s. -Authors

  7. Predicting sample lifetimes in creep fracture of heterogeneous materials

    NASA Astrophysics Data System (ADS)

    Koivisto, Juha; Ovaska, Markus; Miksic, Amandine; Laurson, Lasse; Alava, Mikko J.

    2016-08-01

    Materials flow—under creep or constant loads—and, finally, fail. The prediction of sample lifetimes is an important and highly challenging problem because of the inherently heterogeneous nature of most materials that results in large sample-to-sample lifetime fluctuations, even under the same conditions. We study creep deformation of paper sheets as one heterogeneous material and thus show how to predict lifetimes of individual samples by exploiting the "universal" features in the sample-inherent creep curves, particularly the passage to an accelerating creep rate. Using simulations of a viscoelastic fiber bundle model, we illustrate how deformation localization controls the shape of the creep curve and thus the degree of lifetime predictability.

  8. Dislocation-mediated creep process in nanocrystalline Cu

    NASA Astrophysics Data System (ADS)

    Mu, Jun-Wei; Sun, Shi-Cheng; Jiang, Zhong-Hao; Lian, Jian-She; Jiang, Qing

    2013-03-01

    Nanocrystalline Cu with average grain sizes ranging from ~ 24.4 to 131.3 nm were prepared by the electric brush-plating technique. Nanoindentation tests were performed within a wide strain rate range, and the creep process of nanocrystalline Cu during the holding period and its relationship to dislocation and twin structures were examined. It was demonstrated that creep strain and creep strain rate are considerably significant for smaller grain sizes and higher loading strain rates, and are far higher than those predicted by the models of Cobble creep and grain boundary sliding. The analysis based on the calculations and experiments reveals that the significant creep deformation arises from the rapid absorption of high density dislocations stored in the loading regime. Our experiments imply that stored dislocations during loading are highly unstable and dislocation activity can proceed and lead to significant post-loading plasticity.

  9. On the creep constrained diffusive cavitation of grain boundary facets

    NASA Astrophysics Data System (ADS)

    Tvergaard, Viggo

    CREEP rupture in a polycrystalline metal at a high temperature, by cavity growth on a number of grain boundary facets, is studied numerically. An axisymmetric model problem is analysed, in which a cavitating facet is represented as disk-shaped, and the model dimensions are taken to represent spacings between neighbouring cavitating facets. For the grains both power law creep and elastic deformations are taken into account, and the description of cavity growth is based on an approximate expression that incorporates the coupled influence of grain boundary diffusion and power law creep. The cases considered include creep-constrained cavity growth at low stresses, where the voids link up to form grain boundary cracks at relatively small overall strains, as well as the power law creep dominated behaviour at higher stress levels, where rupture occurs at large overall strains. The numerical results are compared with results based on various simplified analyses.

  10. Application Of Shakedown Analysis To Cyclic Creep Damage Limits

    SciTech Connect

    Carter, Peter; Jetter, Robert I; Sham, Sam

    2012-01-01

    Shakedown analysis may be used to provide a conservative estimate of local rupture and hence cyclic creep damage for use in a creep-fatigue assessment. The shakedown analysis is based on an elastic-perfectly plastic material with a temperature-dependent pseudo yield stress defined to guarantee that a shakedown solution exists which does not exceed rupture stress and temperature for a defined life. The ratio of design life to the estimated maximum cyclic life is the shakedown creep damage. The methodology does not require stress classification and is also applicable to cycles over the full range of temperature above and below the creep regime. Full cyclic creep and damage analysis is the alternative when shakedown analysis appears to be excessively conservative.

  11. Observation and possible mechanism of irradiation induced creep in ceramics

    NASA Astrophysics Data System (ADS)

    Katoh, Yutai; Snead, Lance L.; Parish, Chad M.; Hinoki, Tatsuya

    2013-03-01

    Stress relaxation of elastically strained silicon carbide samples during high flux neutron irradiation to ˜2 displacements per atom at intermediate (390-540 °C) to high (790-1180 °C) temperatures is presented. The magnitude of stress relaxation normalized to the initial stress magnitude is independent of the initial stress magnitude, indicating a stress exponent of unity for irradiation creep in SiC. The creep strain increases with the increasing fluence while the strain rate significantly decreases. A linear relationship was found between the creep strain and the transient swelling that occurs due to irradiation defect accumulation. The apparent irradiation creep compliances for silicon carbide are substantially smaller than those associated with pure metals and alloys. Microstructural examination suggests that incoherent grain boundaries likely play a major role in determining the primary transient irradiation creep of these materials at high temperatures with a potential additional contribution from basal slip at very high temperatures.

  12. Potential drop monitoring of creep damage at a weld

    NASA Astrophysics Data System (ADS)

    Corcoran, Joseph; Nagy, Peter B.; Cawley, Peter

    2016-02-01

    Creep failure at welds will often be the life limiting factor for pressurised power station components, offering a site for local damage accumulation. Monitoring the creep state of welds will be of great value to power station management and potential drop monitoring may provide a useful tool. This paper provides a preliminary study of potential drop monitoring of creep damage at a weldment, suggesting a measurement arrangement for a previously documented quasi-DC technique that is well suited to the application. The industrial context of the problem of creep damage at a weldment is explored, together with a numerical simulation of the effect of cracking, finally, a cross-weld accelerated creep test demonstrating the promise of the technique is presented.

  13. Strong ground motions generated by earthquakes on creeping faults

    USGS Publications Warehouse

    Harris, Ruth A.; Abrahamson, Norman A.

    2014-01-01

    A tenet of earthquake science is that faults are locked in position until they abruptly slip during the sudden strain-relieving events that are earthquakes. Whereas it is expected that locked faults when they finally do slip will produce noticeable ground shaking, what is uncertain is how the ground shakes during earthquakes on creeping faults. Creeping faults are rare throughout much of the Earth's continental crust, but there is a group of them in the San Andreas fault system. Here we evaluate the strongest ground motions from the largest well-recorded earthquakes on creeping faults. We find that the peak ground motions generated by the creeping fault earthquakes are similar to the peak ground motions generated by earthquakes on locked faults. Our findings imply that buildings near creeping faults need to be designed to withstand the same level of shaking as those constructed near locked faults.

  14. Experimental Research on Creep Characteristics of Nansha Soft Soil

    PubMed Central

    Luo, Qingzi; Chen, Xiaoping

    2014-01-01

    A series of tests were performed to investigate the creep characteristics of soil in interactive marine and terrestrial deposit of Pearl River Delta. The secondary consolidation test results show that the influence of consolidation pressure on coefficient of secondary consolidation is conditional, which is decided by the consolidation state. The ratio of coefficient of secondary consolidation and coefficient of compressibility Ca/Cc is almost a constant, and the value is 0.03. In the shear-box test, the direct sheer creep failure of soil is mainly controlled by shear stress rather than the accumulation of shear strain. The triaxial creep features are closely associated with the drainage conditions, and consolidation can weaken the effect of creep. When the soft soil has triaxial creep damage, the strain rate will increase sharply. PMID:24526925

  15. A New Creep Constitutive Model for 7075 Aluminum Alloy Under Elevated Temperatures

    NASA Astrophysics Data System (ADS)

    Lin, Y. C.; Jiang, Yu-Qiang; Zhou, Hua-Min; Liu, Guan

    2014-12-01

    Exposure of aluminum alloy to an elastic loading, during "creep-aging forming" or other manufacturing processes at relatively high temperature, may lead to the lasting creep deformation. The creep behaviors of 7075 aluminum alloy are investigated by uniaxial tensile creep experiments over wide ranges of temperature and external stress. The results show that the creep behaviors of the studied aluminum alloy strongly depend on the creep temperature, external stress, and creep time. With the increase of creep temperature and external stress, the creep strain increases quickly. In order to overcome the shortcomings of the Bailey-Norton law and θ projection method, a new constitutive model is proposed to describe the variations of creep strain with time for the studied aluminum alloy. In the proposed model, the dependences of creep strain on the creep temperature, external stress, and creep time are well taken into account. A good agreement between the predicted and measured creep strains shows that the established creep constitutive model can give an accurate description of the creep behaviors of 7075 aluminum alloy. Meanwhile, the obtained stress exponent indicates that the creep process is controlled by the dislocation glide, which is verified by the microstructural observations.

  16. AN UPDATE ON BIAXIAL THERMAL CREEP OF VANADIUM ALLOYS

    SciTech Connect

    Kurtz, Richard J.; Ermi, August M.

    2002-09-01

    A study of the thermal creep properties of two vanadium alloys was performed using pressurized tube specimens. Creep tubes nominally 4.57 mm OD by 0.25 mm wall thickness were pressurized with high-purity helium gas to mid-wall effective stresses below the effective (Von Mises) yield strength. Specimens were fabricated from V-4Cr-4Ti (Heat No. 832665) and a V-3Fe-4Ti alloy. The samples were heated to 650, 700, 725, and 800 degrees C in an ultra-high vacuum furnace and periodically removed to measure the change in tube outer diameter with a high-precision laser profilometer. The normalized minimum creep rate was found to be power-law dependent on the modulus compensated applied stress. The value of the stress exponent varied with the applied stress. At normalized stresses ranging from 0.002 to 0.008 the stress exponent was about 4 and the activation energy was about 300 kJ/mole, which is quite close to the activation energy for self-diffusion in pure vanadium. These results suggest that the predominant mechanism of creep in this regime is climb-assisted dislocation motion. At lower stresses the value of the stress exponent is near unity suggesting that viscous creep mechanisms such as Coble creep or grain boundary sliding may be operative, but the data are too sparse to be conclusive. The reported creep rates from uniaxial tests [1] in vacuum are several times higher than the creep rates measured here. This is probably due to the larger interstitial oxygen concentration of the creep tubing (699 wppm) compared to the sheet stock (310 wppm) used for tensile specimen fabrication. Finally, the creep strength of V-4Cr-4Ti at 700 and 800 degrees C was superior to the V-3Fe-4Ti alloy.

  17. Analysis of Multistage and Other Creep Data for Domal Salts

    SciTech Connect

    Munson, D.E.

    1998-10-01

    There have existed for some time relatively sparse creep databases for a number of domal salts. Although all of these data were analyzed at the time they were reported, to date there has not been a comprehensive, overall evaluation within the same analysis framework. Such an evaluation may prove of value. The analysis methodology is based on the Multimechanism Deformation (M-D) description of salt creep and the corresponding model parameters determined from conventional creep tests. The constitutive model of creep wss formulated through application of principles involved in micromechanical modeling. It was possible, at minimum, to obtain the steady state parameters of the creep model from the data on the domal salts. When this was done, the creep of the domal salts, as compared to the well-defined Waste Isolation Pilot Plant (WIPP) bedded clean salt, was either essentially identical to, or significantly harder (more creep resistant) than WIPP salt. Interestingly, the domal salts form two distinct groups, either sofl or hard, where the difference is roughly a factor often in creep rate between the twcl groups. As might be expected, this classification corresponds quite well to the differences in magnitude of effective creep volume losses of the Strategic Petroleum Reserve (SPR) caverns as determined by the CAVEMAN cavern pressure history analysis, depending upon the specific dome or region within the dome. Creep response shoulcl also correlate to interior cavern conditions that produce salt falls. WMle, in general, the caverns in hard sah have a noticeably greater propensity for salt falls, a smaller number of similar events are exhibited even in the caverns in soft salt.

  18. Numerical modeling of shallow fault creep triggered by nearby earthquakes

    NASA Astrophysics Data System (ADS)

    Wei, M.; Liu, Y.; McGuire, J. J.

    2011-12-01

    The 2010 El Mayor-Cucapha Mw 7.2 earthquake is the largest earthquake that strikes southern California in the last 18 years. It has triggered shallow fault creep on many faults in Salton Trough, Southern California, making it at least the 8th time in the last 42 years that a local or regional earthquake has done so. However, the triggering mechanism of fault creep and its implications to seismic hazard and fault mechanics is still poorly understood. For example, what determines the relative importance of static triggering and dynamic triggering of fault creep? What can we learn about the local frictional properties and normal stress from the triggering of fault creep? To understand the triggering mechanism and constrain fault frictional properties, we simulate the triggered fault creep on the Superstition Hills Fault (SHF), Salton Trough, Southern California. We use realistic static and dynamic shaking due to nearby earthquakes as stress perturbations to a 2D (in a 3D medium) planar fault model with rate-and-state frictional property variations both in depth and along strike. Unlike many previous studies, we focus on the simulation of triggered shallow fault creep instead of earthquakes. Our fault model can reproduce the triggering process, by static, dynamic , and combined stress perturbation. Preliminary results show that the magnitude of perturbation relative to the original stress level is an important parameter. In the static case, perturbation of 1% of normal stress trigger delayed fault creep whereas 10% of normal stress generate instantaneous creep. In the dynamic case, a change of two times in magnitude of perturbation can result in difference of triggered creep in several orders of magnitude. We explore combined triggering with different ratio of static and dynamic perturbation. The timing of triggering in a earthquake cycle is also important. With measurements on triggered creep on the SHF, we constrain local stress level and frictional parameters, which

  19. Effect of creep strain on microstructural stability and creep resistance of a TiAi/Ti3ai lamellar alloy

    NASA Astrophysics Data System (ADS)

    Wert, J. A.; Bartholomeusz, M. F.

    1996-01-01

    Creep of a TiAl/Ti3Al alloy with a lamellar microstructure causes progressive spheroidization of the lamellar microstructure. Microstructural observations reveal that deformation-induced spheroidization (DIS) occurs by deformation and fragmentation of lamellae in localized shear zones at interpacket boundaries and within lamellar packets. Deformation-induced spheroidization substantially increases the interphase interfacial area per unit volume, demonstrating that DIS is not a coarsening process driven by reduction of interfacial energy per unit volume. Creep experiments reveal that DIS increases the minimum creep rate (ɛmin) during creep at constant stress and temperature; the activation energy ( Q c ) and stress exponent ( n) for creep are both reduced as a result of DIS. Values of n and Q c for the lamellar microstructure are typical of a dislocation creep mechanism, while estimated values of n and Q c for the completely spheroidized microstructure are characteristic of a diffusional creep mechanism. The increase in (ɛmin) associated with DIS is thus attributed primarily to a change of creep mechanism resulting from microstructural refinement.

  20. Precipitate Redistribution during Creep of Alloy 617

    SciTech Connect

    S. Schlegel; S. Hopkins; E. Young; M. Frary; J. Cole; T.Lillo

    2009-12-01

    Nickel-based superalloys are being considered for applications within advanced nuclear power generation systems due to their high temperature strength and corrosion resistance. Alloy 617, a candidate for use in heat exchangers, derives its strength from both solid solution strengthening and the precipitation of carbide particles. However, during creep, carbides that are supposed to retard grain boundary motion are found to dissolve and re-precipitate on boundaries in tension. To quantify the redistribution, we have used electron backscatter diffraction and energy dispersive spectroscopy to analyze the microstructure of 617 after creep testing at 900 and 1000°C. The data were analyzed with respect to location of the carbides (e.g., intergranular vs. intragranular), grain boundary character, and precipitate type (i.e., Cr-rich or Mo-rich). We find that grain boundary character is the most important factor in carbide distribution; some evidence of preferential distribution to boundaries in tension is also observed at higher applied stresses. Finally, the results suggest that the observed redistribution is due to the migration of carbides to the boundaries and not the migration of boundaries to the precipitates.

  1. Creep Behavior and Durability of Cracked CMC

    NASA Technical Reports Server (NTRS)

    Bhatt, R. T.; Fox, Dennis; Smith, Craig

    2015-01-01

    To understand failure mechanisms and durability of cracked Ceramic matrix composites (CMCs), Melt Infiltration (MI) SiCSiC composites with Sylramic-iBN fibers and full Chemical vapour infiltration SiCSiC composites with Sylramic-ion bombarded BN (iBN) and Hi-Nicalon -S fibers were pre-cracked between 150 to 200 megapascal and then creep and Sustained Peak Low Cycle Fatigue (SPLCF) tested at 13150 C at stress levels from 35 to 103 megapascal for up to 200 hours under furnace and burner rig conditions. In addition creep testing was also conducted on pre-cracked full Chemical vapour infiltration SiCSiC composites at 14500 C between 35 and 103 megapascal for up to 200 hours under furnace conditions. If the specimens survived the 200 hour durability tests, then they were tensile tested at room temperature to determine their residual tensile properties. The failed specimens were examined by Scanning electron microscope (SEM) to determine the failure modes and mechanisms. The influence of crack healing matrix, fiber types, crack density, testing modes and interface oxidation on durability of cracked Ceramic matrix composites (CMCs) will be discussed.

  2. Testing Protocol for Module Encapsulant Creep (Presentation)

    SciTech Connect

    Kempe, M. D.; Miller, D. C.; Wohlgemuth, J. H.; Kurtz, S. R.; Moseley, J. M.; Shah, Q.; Tamizhmani, G.; Sakurai, K.; Inoue, M.; Doi, T.; Masuda, A.

    2012-02-01

    Recently there has been an interest in the use of thermoplastic encapsulant materials in photovoltaic modules to replace chemically crosslinked materials, e.g., ethylene-vinyl acetate. The related motivations include the desire to: reduce lamination time or temperature; use less moisture-permeable materials; or use materials with better corrosion characteristics. However, the use of any thermoplastic material in a high-temperature environment raises safety and performance concerns, as the standardized tests currently do not expose the modules to temperatures in excess of 85C, yet modules may experience temperatures above 100C in operation. Here we constructed eight pairs of crystalline-silicon modules and eight pairs of glass/encapsulation/glass mock modules using different encapsulation materials of which only two were designed to chemically crosslink. One module set was exposed outdoors with insulation on the back side in Arizona in the summer, and an identical set was exposed in environmental chambers. High precision creep measurements and performance measurements indicate that despite many of these polymeric materials being in the melt state at some of the highest outdoor temperatures achievable, very little creep was seen because of their high viscosity, temperature heterogeneity across the modules, and in the case of the crystalline-silicon modules, the physical restraint of the backsheet. These findings have very important implications for the development of IEC and UL qualification and safety standards, and in regards to the necessary level of cure during the processing of crosslinking encapsulants.

  3. Tension-Compression Asymmetry of Creep and Unilateral Creep Damage in Aluminum for Isothermal and Nonisothermal Processes

    NASA Astrophysics Data System (ADS)

    Zolochevsky, Alexander; Obataya, Yoichi

    A constitutive model is proposed to describe the damage development in aluminum alloys under creep conditions for both isothermal and nonisothermal processes. Special emphasis is laid on four specific phenomena: tension-compression asymmetry of creep, damage induced anisotropy, unilateral creep damage and damage deactivation. Within the framework of the phenomenological approach in the Continuum Damage Mechanics, the nonlinear tensor constitutive equation for creep deformation and damage evolution equation are proposed to account for different orientation of microcracks in aluminum alloys under tensile and compressive loading types. After a determination of the material parameters in the obtained constitutive equation and damage growth equation, the proposed model is applied to the describing creep behavior of the aluminum alloy under uniaxial nonproportional and multiaxial nonproportional loading for both isothermal and nonisothermal processes.

  4. Diffusion creep in the mantle may create and maintain anisotropy

    NASA Astrophysics Data System (ADS)

    Wheeler, John

    2014-05-01

    Diffusion creep is thought to play an important role in lower mantle deformation and hence must be understood in detail if Earth behaviour is to be explained. It is commonly claimed that diffusion creep gives rise to equant grain shapes and destroys any crystallographic preferred orientation (CPO), so all physical properties would be isotropic. Some experiments on olivine support the first assertion but other minerals, and polyphase rocks, commonly show inequant grain shapes in nature and experiment even when diffusion creep is thought to be a major contribution to strain. Numerical models allow rigorous exploration of the effects of deformation under conditions not easily reached in experiments. A numerical model named 'DiffForm' (Wheeler & Ford 2007) gives insight into how grain shapes and microstructures evolve during diffusion creep. Modelling shows that whilst grains may initially rotate in apparently chaotic fashion during diffusion creep, such rotations slow down as grains become inequant. Consequently, an initial CPO (formed, for example, by dislocation creep at higher strain rates) will be decreased in intensity but not destroyed. Seismic anisotropy will decrease but not disappear (Wheeler 2009). Diffusion creep is also predicted to have intense mechanical anisotropy. In simple models diffusion creep is controlled entirely by diffusion and sliding along grain boundaries; there is no crystallographic influence. An aggregate of equant grains must then be mechanically isotropic, but a model microstructure with inequant grains has marked mechanical anisotropy (Wheeler 2010) - an effect related to the fact that grain boundary sliding is an intrinsic part of diffusion creep. That work was based on a very simple microstructure with a single inequant grain shape but I present here new results showing that for more complicated microstructures, mechanical anisotropy is intense even for quite modest grain elongations. There will be feedback between strain and

  5. Characterization and impression creep testing of silicon aluminum oxynitride ceramics

    NASA Astrophysics Data System (ADS)

    Fox, Kevin M.

    2005-11-01

    Three Yb-containing SiAlON materials were studied for potential use as hot section components in advanced microturbine engines. Two of the materials consisted of equiaxed alpha-SiAlON grains, elongated beta-SiAlON grains, and an amorphous intergranular phase containing a relatively large amount of Yb. The third material consisted of alpha- and beta-SiAlON grains with equiaxed morphologies and virtually no intergranular phase. An instrument was designed and constructed for impression creep testing of the YbSiAlON materials. Uniaxial compression creep experiments were also performed for comparison. In compression creep, the SiAlON materials exhibited activation energies that were similar to those of other SiAlONs reports in the literature, and stress exponents that were approximately 1. In impression creep, the SiAlONs tested exhibited activation energies similar to those reported in the literature for SiAlONs tested in uniaxial compression and tension. However, the SiAlON composition with equiaxed beta-SiAlON grains showed an exaggerated activation energy due to a change in creep mechanism above 1340°C. The measured stress exponents in impression creep were approximately 2. The stress state present below the punch in impression creep caused dilation to occur in the grain structure. The dilation results in an increase in the volume of the multi-grain junctions, and an increased dependence of strain rate on stress. The enlarged multi-grain junctions can become filled with the intergranular glassy phase. These large pockets of the glassy phase can enable an additional creep mechanism whereby the equiaxed grains slide past each other viscously. All of the SiAlONs developed an additional volume of the intergranular glassy phase during creep testing. A microstructure containing elongated beta-SiAlON grains is most effective in enhancing creep performance of the Yb-SiAlON materials tested. The impression creep data for the Yb-SiAlON materials can be related to the

  6. The effect of annealing on the creep of plasma sprayed ceramics

    NASA Technical Reports Server (NTRS)

    Hendricks, R. C.; Mcdonald, G.; Mullen, R. L.

    1983-01-01

    The creep of plasma sprayed ZrO2-8Y2O3 was measured at temperatues from 98 to 1250 C (180 to 220 F), and compared to creep of identical samples after annealing at temperatures from 98 to 1316 C (1800 to 2400 F). Loads and temperatures which produced significant creep of as sprayed ceramics produced no creep after annealing.

  7. Long-term monitoring of creep rate along the Hayward fault and evidence for a lasting creep response to 1989 Loma Prieta earthquake

    USGS Publications Warehouse

    Lienkaemper, J.J.; Galehouse, J.S.; Simpson, R.W.

    2001-01-01

    We present results from over 30 yr of precise surveys of creep along the Hayward fault. Along most of the fault, spatial variability in long-term creep rates is well determined by these data and can help constrain 3D-models of the depth of the creeping zone. However, creep at the south end of the fault stopped completely for more than 6 years after the M7 1989 Loma Prieta Earthquake (LPEQ), perhaps delayed by stress drop imposed by this event. With a decade of detailed data before LPEQ and a decade after it, we report that creep response to that event does indeed indicate the expected deficit in creep.

  8. Analysis of Indentation-Derived Power-Law Creep Response

    NASA Astrophysics Data System (ADS)

    Martinez, Nicholas J.; Shen, Yu-Lin

    2016-03-01

    The use of instrumented indentation to characterize power-law creep is studied by computational modeling. Systematic finite element analyses were conducted to examine how indentation creep tests can be employed to retrieve the steady-state creep parameters pertaining to regular uniaxial loading. The constant indentation load hold and constant indentation-strain-rate methods were considered, first using tin (Sn)-based materials as a model system. The simulated indentation-strain rate-creep stress relations were compared against the uniaxial counterparts serving as model input. It was found that the constant indentation-strain-rate method can help establish steady-state creep, and leads to a more uniform behavior than the constant-load hold method. An expanded parametric analysis was then performed using the constant indentation-strain-rate method, taking into account a wide range of possible power-law creep parameters. The indentation technique was found to give rise to accurate stress exponents, and a certain trend for the ratio between indentation strain rate and uniaxial strain rate was identified. A contour-map representation of the findings serves as practical guidance for determining the uniaxial power-law creep response based on the indentation technique.

  9. Solder creep-fatigue interactions with flexible leaded parts

    NASA Technical Reports Server (NTRS)

    Ross, R. G., Jr.; Wen, L. C.; Mon, G. R.; Jetter, E.

    1992-01-01

    With flexible leaded parts, the solder-joint failure process involves a complex interplay of creep and fatigue mechanisms. To better understand the role of creep in typical multi-hour cyclic loading conditions, a specialized non-linear finite-element creep simulation computer program has been formulated. The numerical algorithm includes the complete part-lead-solder-PWB system, accounting for strain-rate dependence of creep on applied stress and temperature, and the role of the part-lead dimensions and flexibility that determine the total creep deflection (solder strain range) during stress relaxation. The computer program has been used to explore the effects of various solder creep-fatigue parameters such as lead height and stiffness, thermal-cycle test profile, and part/board differential thermal expansion properties. One of the most interesting findings is the strong presence of unidirectional creep-ratcheting that occurs during thermal cycling due to temperature dominated strain-rate effects. To corroborate the solder fatigue model predictions, a number of carefully controlled thermal-cycle tests have been conducted using special bimetallic test boards.

  10. Creep deformation mechanisms in modified 9Cr-1Mo steel

    NASA Astrophysics Data System (ADS)

    Shrestha, Triratna; Basirat, Mehdi; Charit, Indrajit; Potirniche, Gabriel P.; Rink, Karl K.; Sahaym, Uttara

    2012-04-01

    Modified 9Cr-1Mo (Grade 91) steel is currently considered as a candidate material for reactor pressure vessels (RPVs) and reactor internals for the Very High Temperature Reactor (VHTR). The tensile creep behavior of modified 9Cr-1Mo steel (Grade 91) was studied in the temperature range of 873-1023 K and stresses between 35 MPa and 350 MPa. Analysis of creep results yielded stress exponents of ∼9-11 in the higher stress regime and ∼1 in the lower stress regime. The high stress exponent in the power-law creep regime was rationalized by invoking the concept of threshold stress, which represents the lattice diffusion controlled dislocation climb process. Without threshold stress compensation, the activation energy was 510 ± 51 kJ/mol, while after correcting for the threshold stress, the activation energy decreased to 225 ± 24 kJ/mol. This value is close to the activation energy for lattice self-diffusion in α-Fe. Threshold stress calculations were performed for the high stress regime at all test temperatures. The calculated threshold stress showed a strong dependence on temperature. The creep behavior of Grade 91 steel was described by the modified Bird-Mukherjee-Dorn relation. The rate controlling creep deformation mechanism in the high stress regime was identified as the edge dislocation climb with a stress exponent of n = 5. On the other hand, the deformation mechanism in the Newtonian viscous creep regime (n = 1) was identified as the Nabarro-Herring creep.

  11. Creep in solid 4He at temperatures below 1 K

    NASA Astrophysics Data System (ADS)

    Zhuchkov, V. A.; Lisunov, A. A.; Maidanov, V. A.; Neoneta, A. S.; Rubanskyi, V. Yu.; Rubets, S. P.; Rudavskii, E. Ya.; Smirnov, S. N.

    2015-03-01

    Creep in solid 4He at temperatures of ˜100-1000 mK is studied experimentally by detecting the flow of helium through a frozen porous membrane under a constant external force. Creep curves are measured for different temperatures and mechanical stresses. This method has made it possible to detect low creep rates in helium down to the lowest temperatures in these experiments. It is found that throughout this temperature range, creep is thermally activated and the activation energy decreases with falling temperature and increasing mechanical stress. An analysis shows that for temperatures above ≈500 mK, Nabarro-Herring diffusive creep takes place in solid helium with mass transfer by self diffusion of atoms and a counterflow of vacancies. The experimental data have been used to obtain the self-diffusion coefficient as a function of temperature for different stresses. At temperatures below ≈500 mK creep takes place at a very low flow rate (˜10-13 cm/s) and a very low activation energy (˜0.5-0.7 K), while the creep mechanism remains unclear.

  12. Proton irradiation creep of FM steel T91

    NASA Astrophysics Data System (ADS)

    Xu, Cheng; Was, Gary S.

    2015-04-01

    Ferritic-martensitic (FM) steel T91 was subjected to irradiation with 3 MeV protons while under load at stresses of 100-200 MPa, temperatures between 400 °C and 500 °C, and dose rates between 1.4 × 10-6 dpa/s and 5 × 10-6 dpa/s to a total dose of less than 1 dpa. Creep behavior was analyzed for parametric dependencies. The temperature dependence was found to be negligible between 400 °C and 500 °C, and the dose rate dependence was observed to be linear. Creep rate was proportional to stress at low stress values and varied with stress to the power 14 above 160 MPa. The large stress exponent of the proton irradiation creep experiments under high stress suggested that dislocation glide was driving both thermal and irradiation creep. Microstructure observations of anisotropic dislocation loops also contributed to the total creep strain. After subtracting the power law creep and anisotropic dislocation loop contributions, the remaining creep strain was accounted for by dislocation climb enabled by stress induced preferential absorption (SIPA) and preferential dislocation glide (PAG).

  13. Silicon Nitride Creep Under Various Specimen-Loading Configurations

    NASA Technical Reports Server (NTRS)

    Choi, Sung R.; Holland, Frederic A.

    2000-01-01

    Extensive creep testing of a hot-pressed silicon nitride (NC 132) was performed at 1300 C in air using five different specimen-loading configurations: (1) pure tension, (2) pure compression, (3) four-point uniaxial flexure, (4) ball-on-ring biaxial flexure, and (5) ring-on-ring biaxial flexure. This paper reports experimental results as well as test techniques developed in this work. Nominal creep strain and its rate for a given nominal applied stress were greatest in tension, least in compression, and intermediate in uniaxial and biaxial flexure. Except for the case of compression loading, nominal creep strain generally decreased with time, resulting in a less-defined steady-state condition. Of the four creep formulations-power-law, hyperbolic sine, step, and redistribution--the conventional power-law formulation still provides the most convenient and reasonable estimation of the creep parameters of the NC 132 material. The data base to be obtained will be used to validate the NASA Glenn-developed design code CARES/Creep (ceramics analysis and reliability evaluation of structures and creep).

  14. Interface Evolution During Transient Pressure Solution Creep

    NASA Astrophysics Data System (ADS)

    Dysthe, D. K.; Podladchikov, Y. Y.; Renard, F.; Jamtveit, B.; Feder, J.

    When aggregates of small grains are pressed together in the presence of small amounts of solvent the aggregate compacts and the grains tend to stick together. This hap- pens to salt and sugar in humid air, and to sediments when buried in the Earths crust. Stress concentration at the grain contacts cause local dissolution, diffusion of the dissolved material out of the interface and deposition on the less stressed faces of the grains{1}. This process, in geology known as pressure solution, plays a cen- tral role during compaction of sedimentary basins{1,2}, during tectonic deformation of the Earth's crust{3}, and in strengthening of active fault gouges following earth- quakes{4,5}. Experimental data on pressure solution has so far not been sufficiently accurate to understand the transient processes at the grain scale. Here we present ex- perimental evidence that pressure solution creep does not establish a steady state inter- face microstructure as previously thought. Conversely, cumulative creep strain and the characteristic size of interface microstructures grow as the cubic root of time. A sim- ilar transient phenomenon is known in metallurgy (Andrade creep) and is explained here using an analogy with spinodal dewetting. 1 Weyl, P. K., Pressure solution and the force of crystallization - a phenomenological theory. J. Geophys. Res., 64, 2001-2025 (1959). 2 Heald, M. T., Cementation of Simpson and St. Peter Sandstones in parts of Okla- homa, Arkansas and Missouri, J. Geol. Chicago, 14, 16-30 (1956). 3 Schwartz, S., Stöckert, B., Pressure solution in siliciclastic HP-LT metamorphic rocks constraints on the state of stress in deep levels of accretionary complexes. Tectonophysics, 255, 203-209 (1996). 4 Renard, F., Gratier, J.P., Jamtveit, B., Kinetics of crack-sealing, intergranular pres- sure solution, and compaction around active faults. J. Struct. Geol., 22, 1395-1407, (2000). 5 Miller, S. A., BenZion, Y., Burg, J. P.,A three-dimensional fluid-controlled earth

  15. Creep-fatigue modelling in structural steels using empirical and constitutive creep methods implemented in a strip-yield model

    NASA Astrophysics Data System (ADS)

    Andrews, Benjamin J.

    The phenomena of creep and fatigue have each been thoroughly studied. More recently, attempts have been made to predict the damage evolution in engineering materials due to combined creep and fatigue loading, but these formulations have been strictly empirical and have not been used successfully outside of a narrow set of conditions. This work proposes a new creep-fatigue crack growth model based on constitutive creep equations (adjusted to experimental data) and Paris law fatigue crack growth. Predictions from this model are compared to experimental data in two steels: modified 9Cr-1Mo steel and AISI 316L stainless steel. Modified 9Cr-1Mo steel is a high-strength steel used in the construction of pressure vessels and piping for nuclear and conventional power plants, especially for high temperature applications. Creep-fatigue and pure creep experimental data from the literature are compared to model predictions, and they show good agreement. Material constants for the constitutive creep model are obtained for AISI 316L stainless steel, an alloy steel widely used for temperature and corrosion resistance for such components as exhaust manifolds, furnace parts, heat exchangers and jet engine parts. Model predictions are compared to pure creep experimental data, with satisfactory results. Assumptions and constraints inherent in the implementation of the present model are examined. They include: spatial discretization, similitude, plane stress constraint and linear elasticity. It is shown that the implementation of the present model had a non-trivial impact on the model solutions in 316L stainless steel, especially the spatial discretization. Based on these studies, the following conclusions are drawn: 1. The constitutive creep model consistently performs better than the Nikbin, Smith and Webster (NSW) model for predicting creep and creep-fatigue crack extension. 2. Given a database of uniaxial creep test data, a constitutive material model such as the one developed for

  16. Kinetics and mechanisms of creep crack growth in a creep-resisting steel

    SciTech Connect

    Vainshtok, V.A.; Baumshtein, M.V.; Makovetskaya, I.A.; Man'ko, V.D.

    1986-02-01

    This paper discusses the nature of kinetic diagrams of growth of fatigue cracks in the temperature range typical of operation of important components of power equipment and examines the proportion of the incubation period of crack growth in the total life. The relationship of the kinetic diagrams of crack growth with the fracture mechanisms are examined and the effect of running life on creep crack propagation is reviewed.

  17. Impression Creep Behavior of a Cast AZ91 Magnesium Alloy

    NASA Astrophysics Data System (ADS)

    Kabirian, F.; Mahmudi, R.

    2009-01-01

    The creep behavior of the cast AZ91 magnesium alloy was investigated by impression testing. The tests were carried out under constant punching stress in the range 100 to 650 MPa, corresponding to 0.007 ≤ σ imp/ G ≤ 0.044, at temperatures in the range 425 to 570 K. Assuming a power-law relationship between the impression velocity and stress, depending on the testing temperature, stress exponents of 4.2 to 6.0 were obtained. When the experimental creep rates were normalized to the grain size and effective diffusion coefficient, a stress exponent of approximately 5 was obtained, which is in complete agreement with stress exponents determined by the conventional creep testing of the same material reported in the literature. Calculation of the activation energy showed a slight decrease in the activation energy with increasing stress such that the creep-activation energy of 122.9 kJ/mol at σ imp/ G = 0.020 decreases to 94.0 kJ/mol at σ imp/ G = 0.040. Based on the obtained stress exponents and activation energy data, it is proposed that dislocation climb is the controlling creep mechanism. However, due to the decreasing trend of creep-activation energy with stress, it is suggested that two parallel mechanisms of lattice and pipe-diffusion-controlled dislocation climb are competing. To elucidate the contribution of each mechanism to the overall creep deformation, the creep rates were calculated based on the effective activation energy. This yielded a criterion that showed that, in the high-stress regimes, the experimental activation energies fall in the range in which the operative creep mechanism is dislocation climb controlled by dislocation pipe diffusion. In the low-stress regime, however, the lattice-diffusion dislocation climb is dominant.

  18. Creep and Creep-Fatigue Crack Growth at Structural Discontinuities and Welds

    SciTech Connect

    Dr. F. W. Brust; Dr. G. M. Wilkowski; Dr. P. Krishnaswamy; Mr. Keith Wichman

    2010-01-27

    The subsection ASME NH high temperature design procedure does not admit crack-like defects into the structural components. The US NRC identified the lack of treatment of crack growth within NH as a limitation of the code and thus this effort was undertaken. This effort is broken into two parts. Part 1, summarized here, involved examining all high temperature creep-fatigue crack growth codes being used today and from these, the task objective was to choose a methodology that is appropriate for possible implementation within NH. The second part of this task, which has just started, is to develop design rules for possible implementation within NH. This second part is a challenge since all codes require step-by-step analysis procedures to be undertaken in order to assess the crack growth and life of the component. Simple rules for design do not exist in any code at present. The codes examined in this effort included R5, RCC-MR (A16), BS 7910, API 579, and ATK (and some lesser known codes). There are several reasons that the capability for assessing cracks in high temperature nuclear components is desirable. These include: (1) Some components that are part of GEN IV reactors may have geometries that have sharp corners - which are essentially cracks. Design of these components within the traditional ASME NH procedure is quite challenging. It is natural to ensure adequate life design by modeling these features as cracks within a creep-fatigue crack growth procedure. (2) Workmanship flaws in welds sometimes occur and are accepted in some ASME code sections. It can be convenient to consider these as flaws when making a design life assessment. (3) Non-destructive Evaluation (NDE) and inspection methods after fabrication are limited in the size of the crack or flaw that can be detected. It is often convenient to perform a life assessment using a flaw of a size that represents the maximum size that can elude detection. (4) Flaws that are observed using in-service detection

  19. Compensation effect in creep of conventional polycrystalline alloy 718

    SciTech Connect

    Song, H.W.; Guo, S.R.; Lu, D.Z.; Xu, Y.; Wang, Y.L.; Lin, D.L.; Hu, Z.Q.

    2000-04-01

    As is known to all, thermally activated grain boundary processes, including diffusion, sliding, and migration of grain boundaries, play an important part in creep of polycrystals. Up to now, however, there have been no publications about the compensation effect in creep of conventional polycrystals. it is the main object of the present work to determine whether there is a compensation effect in creep of the rolled Alloy 718, a nickel-iron base alloy that is most widely used and almost accounting for more than one third of all today's superalloy production.

  20. Creep deformation characteristics of ductile discontinuous fiber reinforced composites

    SciTech Connect

    Biner, S.B.

    1993-10-01

    Role of material parameters and geometric parameters of ductile reinforcing phase on the creep deformation behavior of 20% discontinuously reinforced composite was numerically investigated including debonding and pull-out mechanisms. Results indicate that for rigidly bonded interfaces, the creep rate of the composite is not significantly influenced by the material properties and geometric parameters of the ductile reinforcing phase due to development of large hydrostatic stress and constrained deformation in the reinforcement. For debonding interfaces, the geometric parameters of the reinforcing phase are important; however, event with very weak interfacial behavior low composite creep rates can be achieved by suitable selection of the geometric parameters of the ductile reinforcing phase.

  1. Irradiation creep due to SIPA under cascade damage conditions

    SciTech Connect

    Woo, C.H.; Garner, F.A.; Holt, R.A.

    1992-12-31

    This paper derives the relationships between void swelling and irradiation creep due to Stress-Induced Preferred Absorption (SIPA) and SIPA-Induced Growth (SIG) under cascade damage conditions in an irradiated pressurized tube. It is found that at low swelling rates irradiation creep is a major contribution to the total diametral strain rate of the tube, whereas at high swelling rates the creep becomes a minor contribution. The anisotropy of the corresponding dislocation structure is also predicted to decline as the swelling rate increases. The theoretical predictions are found to agree very well with experimental results.

  2. The constitutive representation of high-temperature creep damage

    NASA Technical Reports Server (NTRS)

    Chan, K. S.

    1988-01-01

    The elastic-viscoplastic constitutive equations of Bodner-Partom were applied to modeling creep damage in a high temperature Ni-alloy, B1900 + Hf. Both tertiary creep in bulk materials and creep crack growth in flawed materials were considered. In the latter case, the energy rate line integral was used for characterizing the crack driving force, and the rate of crack extension was computed using a local damage formulation that assumed fracture was controlled by cavitation occurring within the crack-tip process zone. The results of this investigation were used to assess the evolution equation for isotropic damage utilized in the Bodner-Partom constitutive equations.

  3. High temperature creep resistant austenitic alloy

    DOEpatents

    Maziasz, Philip J.; Swindeman, Robert W.; Goodwin, Gene M.

    1989-01-01

    An improved austenitic alloy having in wt % 19-21 Cr, 30-35 Ni, 1.5-2.5 Mn, 2-3 Mo, 0.1-0.4 Si, 0.3-0.5 Ti, 0.1-0.3 Nb, 0.1-0.5 V, 0.001-0.005 P, 0.08-0.12 C, 0.01-0.03 N, 0.005-0.01 B and the balance iron that is further improved by annealing for up to 1 hour at 1150.degree.-1200.degree. C. and then cold deforming 5-15 %. The alloy exhibits dramatically improved creep rupture resistance and ductility at 700.degree. C.

  4. Improved high temperature creep resistant austenitic alloy

    DOEpatents

    Maziasz, P.J.; Swindeman, R.W.; Goodwin, G.M.

    1988-05-13

    An improved austenitic alloy having in wt% 19-21 Cr, 30-35 Ni, 1.5-2.5 Mn, 2-3 Mo, 0.1-0.4 Si, 0.3-0.5 Ti, 0.1-0.3 Nb, 0.1-0.5 V, 0.001-0.005 P, 0.08-0.12 C, 0.01-0.03 N, 0.005-0.01 B and the balance iron that is further improved by annealing for up to 1 hour at 1150-1200/degree/C and then cold deforming 5-15%. The alloy exhibits dramatically improved creep rupture resistance and ductility at 700/degree/C. 2 figs.

  5. An experimental study of uniaxial creep, cyclic creep and relaxation of aisi type 304 stainless steel at room temperature

    NASA Astrophysics Data System (ADS)

    Kujawski, D.; Kallianpur, V.; Krempl, E.

    1980-04-01

    FOLLOWING previous work ( KREMPL, 1979), a servocontrolled testing machine and strain measurement at the gage length were used to study the uniaxial rate(time)-dependent behavior of AISI Type 304 stainless steel at room temperature. The test results show that the creep strain accumulated in a given period of time depends strongly on the stress-rate preceding the creep test. In constant stress-rate zero-to-tension loading the creep strain accumulated in a fixed time-period at a given stress level is always higher during loading than during unloading. Continued cycling causes an exhaustion of creep ratchetting which depends on the stress-rate. Periods of creep and relaxation introduced during completely reversed plastic cycling show that the curved portions of the hysteresis loop exhibit most of the inelasticity. In the straight portions, creep and relaxation are small and there exists a region commencing after unloading where the behavior is similar to that at the origin for virgin materials. This region does not extend to zero stress. The results are at variance with creep theory and with viscoplasticity theories which assume that the yield surface expands with the stress. They support the theory of viscoplasticity based on total strain and overstress.

  6. Creep behavior of refractory concretes. First annual report, October 1, 1981-September 30, 1982

    SciTech Connect

    McGee, T.D.

    1982-12-01

    Objectives are to evaluate the creep of alumina refractory concretes, determine differential transient creep strain of pristine specimens, develop a mathematical model for the creep behavior of refractory concretes, investigate the creep of commercial refractory concretes, and determine the effect of fiber reinforcements on the creep of concretes. After a summary of the first four years' progress, the technical progress during the fourth year is described in detail. 97 figures. (DLC)

  7. In-situ Creep Testing Capability Development for Advanced Test Reactor

    SciTech Connect

    B. G. Kim; J. L. Rempe; D. L. Knudson; K. G. Condie; B. H. Sencer

    2010-08-01

    Creep is the slow, time-dependent strain that occurs in a material under a constant strees (or load) at high temperature. High temperature is a relative term, dependent on the materials being evaluated. A typical creep curve is shown in Figure 1-1. In a creep test, a constant load is applied to a tensile specimen maintained at a constant temperature. Strain is then measured over a period of time. The slope of the curve, identified in the figure below, is the strain rate of the test during Stage II or the creep rate of the material. Primary creep, Stage I, is a period of decreasing creep rate due to work hardening of the material. Primary creep is a period of primarily transient creep. During this period, deformation takes place and the resistance to creep increases until Stage II, Secondary creep. Stage II creep is a period with a roughly constant creep rate. Stage II is referred to as steady-state creep because a balance is achieved between the work hardening and annealing (thermal softening) processes. Tertiary creep, Stage III, occurs when there is a reduction in cross sectional area due to necking or effective reduction in area due to internal void formation; that is, the creep rate increases due to necking of the specimen and the associated increase in local stress.

  8. Creep behavior of tungsten fiber reinforced niobium metal matrix composites

    NASA Technical Reports Server (NTRS)

    Grobstein, T. L.

    1989-01-01

    Tungsten fiber reinforced niobium metal matrix composites were evaluated for use in space nuclear power conversion systems. The composite panels were fabricated using the arc-spray monotape technique at the NASA Lewis Research Center. The creep behavior of W/Nb composite material was determined at 1400 and 1500 K in vacuum over a wide range of applied loads. The time to reach 1 percent strain, the time to rupture, and the minimum creep rate were measured. The W/Nb composites exceeded the properties of monolithic niobium alloys significantly even when compared on a strength to density basis. The effect of fiber orientation on the creep strength also was evaluated. Kirkendall void formation was observed at the fiber/matrix interface; the void distribution differed depending on the fiber orientation relative to the stress axis. A relationship was found between the fiber orientation and the creep strength.

  9. Creep behavior of tungsten fiber reinforced niobium metal matrix composites

    NASA Technical Reports Server (NTRS)

    Grobstein, Toni L.

    1992-01-01

    Tungsten fiber reinforced niobium metal matrix composites were evaluated for use in space nuclear power conversion systems. The composite panels were fabricated using the arc-spray monotape technique at the NASA Lewis Research Center. The creep behavior of W/Nb composite material was determined at 1400 and 1500 K in vacuum over a wide range of applied loads. The time to reach 1 percent strain, the time to rupture, and the minimum creep rate were measured. The W/Nb composites exceeded the properties of monolithic niobium alloys significantly even when compared creep strength also was evaluated. Kirkendall void formation was observed at the fiber/matrix interface; the void distribution differed depending the fiber orientation relative to the stress axis. A relationship was found between the fiber orientation and the creep strength.

  10. Tantalum alloys resist creep deformation at elevated temperatures

    NASA Technical Reports Server (NTRS)

    Buckman, R. W., Jr.

    1966-01-01

    Dispersion-strengthened tantalum-base alloys possess high strength and good resistance to creep deformation at elevated temperatures in high vacuum environments. They also have ease of fabrication, good weldability, and corrosion resistance to molten alkali metals.

  11. Creep behavior of 6 micrometer linear low density polyethylene film

    NASA Technical Reports Server (NTRS)

    Simpson, J. M.; Schur, W. W.

    1993-01-01

    Creep tests were performed to provide material characteristics for a 6.4-micron polyethylene film used to construct high altitude balloons. Results suggest simple power law relationships are adequate for stresses below about 4.83 MPa.

  12. Microstructural characterisation and microanalysis of creep resistant steels

    NASA Astrophysics Data System (ADS)

    Wang, M.; Chiu, Y.; Jones, I.; Rowlands, N.; Holland, J.; Zhang, Z.; Flahaut, D.

    2014-06-01

    Steels for high temperature applications require good creep resistance which is controlled by the chemistry and microstructure of the materials. This paper focuses on the microstructural characterisation of a creep resistant steel using electron microscopy. The existence of various primary carbides, e.g. NbC, M7C3 and M23C6 was confirmed by electron diffraction. The primary chromium carbides transformed from M7C3 to M23C6 during creep while the niobium carbides were nearly unaltered. In addition, secondary precipitates (M23C6) were observed within the matrix after creep. The size and distribution of the secondary carbides were analysed by a 80 mm2 windowless X-MaxN SDD at 3 kV on an SEM. Scanning transmission electron microscopy (STEM) observations showed the appearance of fine NbC, G phase (Ni16Nb6Si7) and (Nb, Ti)(C, N) particles.

  13. Creep characterization of gels and nonlinear viscoelastic material model

    NASA Astrophysics Data System (ADS)

    Ishikawa, Kiyotaka; Fujikawa, Masaki; Makabe, Chobin; Tanaka, Kou

    2016-07-01

    In this paper, we examine gel creep behavior and develop a material model for useful and simple numerical simulation of this behavior. This study has three stages and aims: (1) gel creep behavior is examined; (2) the material model is determined and the material constants are identified; and (3) the versatility of the material model and the constants are evaluated. The creep behavior is found to be independent of the initial stress level in the present experiment. Thus, the viscoelastic model proposed by Simo is selected, and its material constants are identified using the results of creep tests. Moreover, from the results of numerical calculations and experiments, it is found that the chosen material model has good reproducibility, predictive performance and high versatility.

  14. NASALIFE - Component Fatigue and Creep Life Prediction Program

    NASA Technical Reports Server (NTRS)

    Gyekenyesi, John Z.; Murthy, Pappu L. N.; Mital, Subodh K.

    2014-01-01

    NASALIFE is a life prediction program for propulsion system components made of ceramic matrix composites (CMC) under cyclic thermo-mechanical loading and creep rupture conditions. Although the primary focus was for CMC components, the underlying methodologies are equally applicable to other material systems as well. The program references empirical data for low cycle fatigue (LCF), creep rupture, and static material properties as part of the life prediction process. Multiaxial stresses are accommodated by Von Mises based methods and a Walker model is used to address mean stress effects. Varying loads are reduced by the Rainflow counting method or a peak counting type method. Lastly, damage due to cyclic loading and creep is combined with Minor's Rule to determine damage due to cyclic loading, damage due to creep, and the total damage per mission and the number of potential missions the component can provide before failure.

  15. Finite Element Analysis of Plastic Deformation During Impression Creep

    NASA Astrophysics Data System (ADS)

    Naveena; Ganesh Kumar, J.; Mathew, M. D.

    2015-04-01

    Finite element (FE) analysis of plastic deformation associated with impression creep deformation of 316LN stainless steel was carried out. An axisymmetric FE model of 10 × 10 × 10 mm specimen with 1-mm-diameter rigid cylindrical flat punch was developed. FE simulation of impression creep deformation was performed by assuming elastic-plastic-power-law creep deformation behavior. Evolution of the stress with time under the punch during elastic, plastic, and creep processes was analyzed. The onset of plastic deformation was found to occur at a nominal stress about 1.12 times the yield stress of the material. The size of the developed plastic zone was predicted to be about three times the radius of the punch. The material flow behavior and the pile-up on specimen surface have been modeled.

  16. Mechanisms for tertiary creep of single crystal superalloy

    NASA Astrophysics Data System (ADS)

    Staroselsky, Alexander; Cassenti, Brice

    2008-12-01

    During the thermal-mechanical loading of high temperature single crystal turbine components, all three creep—stages: primary, secondary and tertiary, manifest themselves and, hence, none of them can be neglected. The development of a creep law that includes all three stages is especially important in the case of non-homogeneous thermal loading of the component where significant stress redistribution and relaxation will result. Thus, local creep analysis is crucial for proper design of damage tolerant airfoils. We have developed a crystallographic-based constitutive model and fully coupled it with damage kinetics. The model extends existing approaches for cyclic and thermal-cyclic loading of anisotropic elasto-viscoplastic deformation behavior and damage kinetics of single-crystal materials, allowing prediction of tertiary creep and failure initiation of high temperature components. Our damage model bridges the gap between dislocation dynamics and the continuum mechanics scales and can be used to represent tertiary as well as primary and secondary creep.

  17. Irradiation creep of candidate materials for advanced nuclear plants

    NASA Astrophysics Data System (ADS)

    Chen, J.; Jung, P.; Hoffelner, W.

    2013-10-01

    In the present paper, irradiation creep results of an intermetallic TiAl alloy and two ferritic oxide dispersion strengthened (ODS) steels are summarized. In situ irradiation creep measurements were performed using homogeneous implantation with α- and p-particles to maximum doses of 0.8 dpa at displacement damage rates of 2-8 × 10-6 dpa/s. The strains of miniaturized flat dog-bone specimens were monitored under uniaxial tensile stresses ranging from 20 to 400 MPa at temperatures of 573, 673 and 773 K, respectively. The effects of material composition, ODS particle size, and bombarding particle on the irradiation creep compliance was studied and results are compared to literature data. Evolution of microstructure during helium implantation was investigated in detail by TEM and is discussed with respect to irradiation creep models.

  18. Creep-fatigue analysis by strain-range partitioning.

    NASA Technical Reports Server (NTRS)

    Manson, S. S.; Halford, G. R.; Hirschberg, M. H.

    1971-01-01

    The framework of a new method is outlined for treating creep-fatigue behavior of metals. Inelastic strain-ranges are partitioned into the components of (1) completely reversed plasticity, (2) tensile plasticity reversed by compressive creep, or tensile creep reversed by compressive plasticity, and (3) completely reversed creep. Each of these components is shown to be related to cyclic life by a Manson-Coffin type power-law equation. A linear life fraction rule is used to combine the damaging effects of the individual components enabling the prediction of life. Test results are presented for a 2.25 Cr-1 Mo steel as well as limited information for a Type 316 stainless steel.

  19. Irradiation creep properties of a near-isotropic graphite

    NASA Astrophysics Data System (ADS)

    Oku, T.; Fujisaki, K.; Eto, M.

    1988-05-01

    Two irradiation creep tests on near-isotropic graphite (SM1-24) for HTGRs were performed at around 900 °C in the JMTR. Neutron fluences ranged from 5.50 × 10 24 n/m 2 (E> 29 fJ) to 12.4 × 10 24 n/m 2 (E> 29 fJ) , depending on the position of the specimen. Irradiation creep strain (ɛ 0) was obtained from the equation ɛ c = (σ/E 0)[1-exp(-bΦ)] + KσΦ , by measuring dimensional changes in unloaded and loaded tensile specimens before and after irradiation, where E 0 is the Young's modulus before irradiation, K the creep coefficient, and b a constant. The value of K was estimated assuming that 1-exp(-bΦ) ˜-1 over the range of neutron fluence tested here. Mercury porosimetry was employed to add consideration to the mechanism of irradiation creep using unloaded and loaded specimens. The irradiation creep strain is proportional to stress and to neutron fluence for larger fluences. The irradiation creep coefficient is in inverse proportion to Young's modulus before irradiation, KE 0 = 0.247 . From the values of the average Young's moduli before irradiation for two irradiation creep tests, the creep coefficient was estimated to be 3.03 × 10 -29 (MPa/m 2) -1 and 3.18 × 10 -29(MPa/m 2) -1, respectively. The mercury pore diameter distribution changes upon irradiation, that is pores smaller than 10 μm disappear partly, the total porosity decreases, and the stress tends to facilitate disappearance of the pores. The Young's modulus increases as a result of irradiation. The increase in Young's modulus after a creep tests is smaller than that after irradiation only. The experimental result obtained here is consistent with the explanation for the mechanism of irradiation creep in which two to six interstitial clusters as a pinning point to basal slip disappear during the irradiation creep test.

  20. The high temperature creep behavior of oxides and oxide fibers

    NASA Technical Reports Server (NTRS)

    Jones, Linda E.; Tressler, Richard E.

    1991-01-01

    A thorough review of the literature was conducted on the high-temperature creep behavior of single and polycrystalline oxides which potentially could serve as fiber reinforcements in ceramics or metal matrix applications. Sapphire when oriented with the basal plane perpendicular to the fiber axis (c-axis oriented) is highly creep resistant at temperatures in excess of 1600 C and applied loads of 100 MPa and higher. Pyramidal slip is preferentially activated in sapphire under these conditions and steady-state creep rates in the range of 10(exp -7) to 10 (exp -8)/s were reported. Data on the creep resistance of polycrystalline beryllia suggest that C-axiz oriented single crystal beryllia may be a viable candidate as a fiber reinforcement material; however, the issure of fabricability and moisture sensitivity must be addressed for this material. Yttrium aluminum garnet (YAG) also appears to be a fiber candidate material having a high resistance to creep which is due to it's complex crystal structure and high Peierl resistance. The high creep resistance of garnet suggests that there may be other complex ternary oxides such as single crystal mullite which may also be candidate materials for fiber reinforcements. Finally, CVD and single crystal SiC, although not oxides, do possess a high resistance to creep in the temperature range between 1550 and 1850 C and under stresses of 110 to 220 MPa. From a review of the literature, it appears that for high creep resistant applications sapphire, silicon carbide, yttrium aluminum garnet, mullite, and beryllia are desirable candidate materials which require further investigation.

  1. Theory of collective flux creep. [in high temperature superconductors

    NASA Technical Reports Server (NTRS)

    Feigel'man, M. V.; Geshkenbein, V. B.; Larkin, A. I.; Vinokur, V. M.

    1989-01-01

    The nature of flux-creep phenomena in the case of collective pinning by weak disorder is discussed. The Anderson concept of flux bundle is explored and developed. The dependence of the bundle activation barrier U on current j is studied and is shown to be of power-law type: U(j) is proportional to j exp -alpha. The values of exponent alpha for the different regimes of collective creep are found.

  2. Creep and fracture of dispersion-strengthened materials

    NASA Technical Reports Server (NTRS)

    Raj, Sai V.

    1991-01-01

    The creep and fracture of dispersion strengthened materials is reviewed. A compilation of creep data on several alloys showed that the reported values of the stress exponent for creep varied between 3.5 and 100. The activation energy for creep exceeded that for lattice self diffusion in the matrix in the case of some materials and a threshold stress behavior was generally reported in these instances. The threshold stress is shown to be dependent on the interparticle spacing and it is significantly affected by the initial microstructure. The effect of particle size and the nature of the dispersoid on the threshold stress is not well understood at the present time. In general, most studies indicate that the microstructure after creep is similar to that before testing and very few dislocations are usually observed. It is shown that the stress acting on a dispersoid due to a rapidly moving dislocation can exceed the particle yield strength of the G sub p/1000, where G sub p is the shear modulus of the dispersoid. The case when the particle deforms is examined and it is suggested that the dislocation creep threshold stress of the alloy is equal to the yield strength of the dispersoid under these conditions. These results indicate that the possibility that the dispersoid creep threshold stress is determined by either the particle yield strength or the stress required to detach a dislocation from the dispersoid matrix interface. The conditions under which the threshold stress is influenced by one or the other mechanism are discussed and it is shown that the particle yield strength is important until the extent of dislocation core relaxation at the dispersoid matrix interface exceeds about 25 pct. depending on the nature of the particle matrix combination. Finally, the effect of grain boundaries and grain morphology on the creep and fracture behavior of dispersoid strengthened alloys is examined.

  3. An Evaluation for Creep of 3013 Inner Can Lids

    SciTech Connect

    DAUGHERTY, W. L.; GIBBS, K. M.; LOUTHAN JR., M. R.; DUNN, K. A.

    2005-09-01

    The deflection of Type 304L austenitic stainless steel can lids on inner 3013 containers is monitored to identify any buildup of pressure within the container. This paper provides the technical basis to conclude that creep-induced deformation of these lids will be insignificant unless the temperature of storage exceeds 400 C. This conclusion is based on experimental literature data for Types 304 and 316 stainless steel and on a phenomenological evaluation of potential creep processes.

  4. Magnetic measurement of creep damage: modeling and measurement

    NASA Astrophysics Data System (ADS)

    Sablik, Martin J.; Jiles, David C.

    1996-11-01

    Results of inspection of creep damage by magnetic hysteresis measurements on Cr-Mo steel are presented. It is shown that structure-sensitive parameters such as coercivity, remanence and hysteresis loss are sensitive to creep damage. Previous metallurgical studies have shown that creep changes the microstructure of he material by introducing voids, dislocations, and grain boundary cavities. As cavities develop, dislocations and voids move out to grain boundaries; therefore, the total pinning sources for domain wall motion are reduced.This, together with the introduction of a demagnetizing field due to the cavities, results in the decrease of both coercivity, remanence and hence, concomitantly, hysteresis loss. Incorporating these structural effects into a magnetomechanical hysteresis model developed previously by us produces numerical variations of coercivity, remanence and hysteresis loss consistent with what is measured. The magnetic model has therefore been used to obtain appropriately modified magnetization curves for each element of creep-damaged material in a finite element (FE) calculation. The FE calculation has been used to simulate magnetic detection of non-uniform creep damage around a seam weld in a 2.25 Cr 1Mo steam pipe. In particular, in the simulation, a magnetic C-core with primary and secondary coils was placed with its pole pieces flush against the specimen in the vicinity of the weld. The secondary emf was shown to be reduced when creep damage was present inside the pipe wall at the cusp of the weld and in the vicinity of the cusp. The calculation showed that the C- core detected creep damage best if it spanned the weld seam width and if the current in the primary was such that the C- core was not magnetically saturated. Experimental measurements also exhibited the dip predicted in emf, but the measurements are not yet conclusive because the effects of magnetic property changes of weld materials, heat- affected material, and base material have

  5. Threshold Stress Creep Behavior of Alloy 617 at Intermediate Temperatures

    SciTech Connect

    J.K. Benz; L.J. Carroll; J.K. Wright; R.N. Wright; T. Lillo

    2014-06-01

    Creep of Alloy 617, a solid solution Ni-Cr-Mo alloy, was studied in the temperature range of 1023 K to 1273 K (750 °C to 1000 °C). Typical power-law creep behavior with a stress exponent of approximately 5 is observed at temperatures from 1073 K to 1273 K (800 °C to 1000 °C). Creep at 1023 K (750 °C), however, exhibits threshold stress behavior coinciding with the temperature at which a low volume fraction of ordered coherent y' precipitates forms. The threshold stress is determined experimentally to be around 70 MPa at 1023 K (750 °C) and is verified to be near zero at 1173 K (900 °C)—temperatures directly correlating to the formation and dissolution of y' precipitates, respectively. The y' precipitates provide an obstacle to continued dislocation motion and result in the presence of a threshold stress. TEM analysis of specimens crept at 1023 K (750 °C) to various strains, and modeling of stresses necessary for y' precipitate dislocation bypass, suggests that the climb of dislocations around the y' precipitates is the controlling factor for continued deformation at the end of primary creep and into the tertiary creep regime. As creep deformation proceeds at an applied stress of 121 MPa and the precipitates coarsen, the stress required for Orowan bowing is reached and this mechanism becomes active. At the minimum creep rate at an applied stress of 145 MPa, the finer precipitate size results in higher Orowan bowing stresses and the creep deformation is dominated by the climb of dislocations around the y' precipitates.

  6. Assessment of Tungsten Content on Tertiary Creep Deformation Behavior of Reduced Activation Ferritic-Martensitic Steel

    NASA Astrophysics Data System (ADS)

    Vanaja, J.; Laha, Kinkar

    2015-10-01

    Tertiary creep deformation behavior of reduced activation ferritic-martensitic (RAFM) steels having different tungsten contents has been assessed. Creep tests were carried out at 823 K (550 °C) over a stress range of 180 to 260 MPa on three heats of the RAFM steel (9Cr-W-0.06Ta-0.22V) with tungsten content of 1, 1.4, and 2.0 wt pct. With creep exposure, the steels exhibited minimum in creep rate followed by progressive increase in creep rate until fracture. The minimum creep rate decreased, rupture life increased, and the onset of tertiary stage of creep deformation delayed with the increase in tungsten content. The tertiary creep behavior has been assessed based on the relationship, , considering minimum creep rate () instead of steady-state creep rate. The increase in tungsten content was found to decrease the rate of acceleration of tertiary parameter ` p.' The relationships between (1) tertiary parameter `p' with minimum creep rate and time spent in tertiary creep deformation and (2) the final creep rate with minimum creep rate revealed that the same first-order reaction rate theory prevailed in the minimum creep rate as well as throughout the tertiary creep deformation behavior of the steel. A master tertiary creep curve of the steels has been developed. Scanning electron microscopic investigation revealed enhanced coarsening resistance of carbides in the steel on creep exposure with increase in tungsten content. The decrease in tertiary parameter ` p' with tungsten content with the consequent decrease in minimum creep rate and increase in rupture life has been attributed to the enhanced microstructural stability of the steel.

  7. Triggered dynamics in a model of different fault creep regimes

    PubMed Central

    Kostić, Srđan; Franović, Igor; Perc, Matjaž; Vasović, Nebojša; Todorović, Kristina

    2014-01-01

    The study is focused on the effect of transient external force induced by a passing seismic wave on fault motion in different creep regimes. Displacement along the fault is represented by the movement of a spring-block model, whereby the uniform and oscillatory motion correspond to the fault dynamics in post-seismic and inter-seismic creep regime, respectively. The effect of the external force is introduced as a change of block acceleration in the form of a sine wave scaled by an exponential pulse. Model dynamics is examined for variable parameters of the induced acceleration changes in reference to periodic oscillations of the unperturbed system above the supercritical Hopf bifurcation curve. The analysis indicates the occurrence of weak irregular oscillations if external force acts in the post-seismic creep regime. When fault motion is exposed to external force in the inter-seismic creep regime, one finds the transition to quasiperiodic- or chaos-like motion, which we attribute to the precursory creep regime and seismic motion, respectively. If the triggered acceleration changes are of longer duration, a reverse transition from inter-seismic to post-seismic creep regime is detected on a larger time scale. PMID:24954397

  8. Denuded Zones, Diffusional Creep, and Grain Boundary Sliding

    SciTech Connect

    Wadsworth, J; Ruano, O A; Sherby, O D

    2001-06-27

    The appearance of denuded zones following low stress creep in particle-containing crystalline materials is both a microstructural prediction and observation often cited as irrefutable evidence for the Nabarro-Herring mechanism of diffusional creep. The denuded zones are predicted to be at grain boundaries that are orthogonal to the direction of the applied stress. Furthermore, their dimensions should account for the accumulated plastic flow. In the present paper, the evidence for such denuded zones is critically examined. These zones have been observed during creep of magnesium, aluminum, and nickel-base alloys. The investigation casts serious doubts on the apparently compelling evidence for the link between denuded zones and diffusional creep. Specifically, denuded zones are clearly observed under conditions that are explicitly not diffusional creep. Additionally, the denuded zones are often found in directions that are not orthogonal to the applied stress. Other mechanisms that can account for the observations of denuded zones are discussed. It is proposed that grain boundary sliding accommodated by slip is the rate-controlling process in the stress range where denuded zones have been observed. It is likely that the denuded zones are created by dissolution of precipitates at grain boundaries that are simultaneously sliding and migrating during creep.

  9. Transient creep and semibrittle behavior of crystalline rocks

    USGS Publications Warehouse

    Carter, N.L.; Kirby, S.H.

    1978-01-01

    We review transient creep and semibrittle behavior of crystalline solids. The results are expected to be pertinent to crystalline rocks undergoing deformation in the depth range 5 to 20 km, corresponding to depths of focus of many major earthquakes. Transient creep data for crystalline rocks at elevated temperatures are analyzed but are poorly understood because of lack of information on the deformation processes which, at low to moderate pressure, are likely to be semibrittle in nature. Activation energies for transient creep at high effective confining pressure are much higher than those found for atmospheric pressure tests in which thermally-activated microfracturing probably dominates the creep rate. Empirical transient creep equations are extrapolated at 200?? to 600??C, stresses from 0.1 to 1.0 kbar, to times ranging from 3.17??102 to 3.17??108 years. At the higher temperatures, appreciable transient creep strains may take place but the physical significance of the results is in question because the flow mechanisms have not been determined. The purpose of this paper is to stimulate careful research on this important topic. ?? 1978 Birkha??user Verlag.

  10. Evaluation of cast creep occurring during simulated clubfoot correction.

    PubMed

    Cohen, Tamara L; Altiok, Haluk; Wang, Mei; McGrady, Linda M; Krzak, Joseph; Graf, Adam; Tarima, Sergey; Smith, Peter A; Harris, Gerald F

    2013-08-01

    The Ponseti method is a widely accepted and highly successful conservative treatment of pediatric clubfoot involving weekly manipulations and cast applications. Qualitative assessments have indicated the potential success of the technique with cast materials other than standard plaster of Paris. However, guidelines for clubfoot correction based on the mechanical response of these materials have yet to be investigated. The current study sought to characterize and compare the ability of three standard cast materials to maintain the Ponseti-corrected foot position by evaluating cast creep response. A dynamic cast testing device, built to model clubfoot correction, was wrapped in plaster of Paris, semi-rigid fiberglass, and rigid fiberglass. Three-dimensional motion responses to two joint stiffnesses were recorded. Rotational creep displacement and linearity of the limb-cast composite were analyzed. Minimal change in position over time was found for all materials. Among cast materials, the rotational creep displacement was significantly different (p < 0.0001). The most creep displacement occurred in the plaster of Paris (2.0°), then the semi-rigid fiberglass (1.0°), and then the rigid fiberglass (0.4°). Torque magnitude did not affect creep displacement response. Analysis of normalized rotation showed quasi-linear viscoelastic behavior. This study provided a mechanical evaluation of cast material performance as used for clubfoot correction. Creep displacement dependence on cast material and insensitivity to torque were discovered. This information may provide a quantitative and mechanical basis for future innovations for clubfoot care. PMID:23636764