Science.gov

Sample records for cretaceous source rocks

  1. Cretaceous source rocks in Pakistan

    SciTech Connect

    Kari, I.B. )

    1993-02-01

    Pakistan is located at the converging boundaries of the Indian, Arabian, and Eurasian plates. Evolution of this tectonic setting has provided an array of environmental habitats for deposition of petroleum source rocks and development of structural forms. The potential Cretaceous source rocks in Central and South Indus Basin are spread over an area of about 300,000 km[sup 2]. With 2% cutoff on Total Organic Carbon, the average source rock thickness is 30-50 m, which is estimated to have generated more than 200 billion bbl of oil equivalent. To date, production of more than 30,000 bbl of oil and about 1200 million ft[sup 3] of gas per day can be directly attributed to Cretaceous source. This basin was an area of extensional tectonics during the Lower to Middle Cretaceous associated with slightly restricted circulation of the sea waters at the north-western margin of Indian Plate. Lower Cretaceous source rocks (Sembar Formation) were deposited while the basin was opening up and anoxia was prevailing. Similarly Middle to Upper Cretaceous clastics were deposited in setting favorable for preservation of organic matter. The time and depth of burial of the Cretaceous source material and optimum thermal regime have provided the requisite maturation level for generation of hydrocarbons in the basin. Central Indus basin is characterized by Cretaceous source rocks mature for gas generation. However, in South Indus Basin Cretaceous source rocks lie within the oil window in some parts and have gone past it in others.

  2. Source rock potential of middle Cretaceous rocks in southwestern Montana

    SciTech Connect

    Dyman, T.S.; Palacas, J.G.; Tysdal, R.G.; Perry, W.J. Jr.; Pawlewicz, M.J.

    1996-08-01

    The middle Cretaceous in southwestern Montana is composed of a marine and nonmarine succession of predominantly clastic rocks that were deposited along the western margin of the Western Interior Seaway. In places, middle Cretaceous rocks contain appreciable total organic carbon (TOC), such as 5.59% for the Mowry Shale and 8.11% for the Frontier Formation in the Madison Range. Most samples, however, exhibit less than 1.0% TOC. The genetic or hydrocarbon potential (S{sub 1}+S{sub 2}) of all the samples analyzed, except one, yield less than 1 mg HC/g rock, strongly indicating poor potential for generating commercial amounts of hydrocarbons. Out of 51 samples analyzed, only one (a Thermopolis Shale sample from the Snowcrest Range) showed a moderate petroleum potential of 3.1 mg HC/g rock. Most of the middle Cretaceous samples are thermally immature to marginally mature, with vitrinite reflectance ranging from about 0.4 to 0.6% R{sub o}. Maturity is high in the Pioneer Mountains, where vitrinite reflectance averages 3.4% R{sub o}, and at Big Sky, Montana, where vitrinite reflectance averages 2.5% R{sub o}. At both localities, high R{sub o} values are due to local heat sources, such as the Pioneer batholith in the Pioneer Mountains.

  3. Source rock evaluation of Cretaceous and Tertiary series in Tunisia

    SciTech Connect

    Oudin, J. )

    1988-08-01

    Tunisia represents a mature hydrocarbon province with a long exploration history. In the Sfax-Kerkennah and Gabes Gulf areas, the hydrocarbon accumulations are located in series of Cretaceous and Tertiary age. To estimate the petroleum potential of this region, an evaluation of the source rock quality of the Cretaceous and Tertiary series was undertaken. In the Sfax-Kerkennak area, most of the wells studied indicate that, in the Tertiary, Ypresian and lower Lutetian show good organic content but, taking into account the potential productivity, only the Ypresian can be considered as a potential source rock. In the Cretaceous, mainly studies in the offshore area of the Gabes Gulf, the amount of organic matter is fair and it is chiefly located in Albian and Cenomanian. The Vraconian with its quite good potential is a valuable source rock. Due to the difference in the environment of deposition for these two possible source rocks - the Ypresian with its lagoon facies being carbonate and the Vraconian shaly - variations in the type of organic matter can be noted, although both are of marine origin. The hydrocarbons generated from these source rocks reflect these variations and permit them to correlate the different crude oils found in this area with their original source beds.

  4. Controls on the distribution of Cretaceous source rocks in South America

    SciTech Connect

    Vear, A. )

    1993-02-01

    More than thirty South American basins, exhibiting a variety of structural styles, contain petroleum source rocks of Cretaceous age. However, the presence of truly [open quote]world-class[close quote] source rocks, capable of supplying multi-billion barrel oil provinces, is restricted to relatively few basins and appears to be primarily a function of large scale Cretaceous tectonic setting. In Early Cretaceous times the best source rocks were preserved in both a southern ocean and in the rift between South America and Africa. By the Late Cretaceous, these southern and eastern continental limits had become narrow passive margins. In contrast, on the northern continental margin a wide shelf to a restricted tropical sea was developing at this time. Periodic upwelling enhanced surface productivity on this shelf, which led to development of some of the world's richest source rocks. On the tectonically active western margin moderate quality source rocks were forming in a series of back-arc basins, whilst further west, in the Pacific fore-arc, organic-rich intervals were rarely deposited. This article documents what is known about each of the explored basins (including the volume and character of discovered petroleums), it investigates the geologic factors which governed the richness and quality of petroleum source rocks and it assesses how continued tectonic activity has modified or even destroyed primary source quality. Finally it predicts which of the as yet underexplored basins should contain good quality source rocks and could become prolific petroleum provinces of the future.

  5. Source rock in the lower Tertiary and Cretaceous, deep-water Gulf of Mexico

    SciTech Connect

    Wagner, B.E.; Sofer, Z.; Claxton, B.L.

    1994-12-31

    The MC-84 (King) well was drilled in the deep-water Gulf of Mexico in 1993, in Mississippi Canyon Block 84 in a water depth of 5,149 ft. This well drilled an anticlinal feature. The well penetrated an Upper Cretaceous section and crossed Middle Cretaceous Unconformity with final total depth in the Lower Cenomanian. Numerous sidewall cores were taken throughout the Lower Tertiary and Cretaceous. Six of the sidewall cores (from 14,230 to 15,170 ft subsea) are organic rich and contain Type II oil-prone kerogen (TOC values from 2.6 to 5.2% and hydrogen indices from 360 to 543 ppm). The Lower Tertiary through Lower Cenomianian section is thermally immature for oil generation, on the basis of biomarker ratios and vitrinite reflectance measurements. Organic extracts from cores in the Cretaceous section had biomarker characteristics similar to oil recovered from the Miocene in the MC-84 well. The oil was generated from a similar but more mature source rock, probably of Early Cretaceous age. Results of thermal modeling indicate that the only section thermally mature for oil generation is in the lower portion of the Lower Cretaceous, below the total depth of the well. The model also indicates that the organic-rich section equivalent to that penetrated by the MC-84 well could be mature farther to the north, where water depths are shallower, overburden thickness is greater, and heat flow is higher. Late Tertiary sediment loading in this area, primarily during the Miocene, is probably the driving mechanism for hydrocarbon generation from the Cretaceous (and possibly the Lower Tertiary) potential source rocks. This offers a favorable geological setting for capturing hydrocarbons because reservoirs and traps associated with Miocene deposition and subsequent loading-induced salt movement had formed prior to the onset of oil generation and migration.

  6. Source terrains and diagenetic imprints of Cretaceous marine rocks of the Cordillera Oriental, Colombia

    SciTech Connect

    Segall, M.P.; Allen, R.B. ); Rubiano, J.; Sarmiento, L. )

    1993-02-01

    Cretaceous marine rocks of the western Cordillera Oriental of Colombia are exposed in stratigraphic sections which reveal multiple source terrains and variable diagenetic histories that were imposed by later thrusting XRD and petrographic analyses indicate that earliest Cretaceous rocks were derived from a nearly plutonic source (Triassic-Jurassic Ibague Batholith of the Cordillera Central) which provided feldspathic lithic fragments and clay-sized illite. High smectite concentrations in the overlying Hauterivian-Barremian strata reflect contemporaneous volcanism, possibly in the Cordillera Central. This signal decreased upsection to the upper Aptian, where detrital clays (kaolinite, chlorite, feldspar, amphibole) indicate a shift to a cratonic source, probably the Guayana Shield. Cratonic detrital input continues into the Turonian-Coniacian and is accompanies by high concentrations of smectite representing another period of volcanic activity. Later tectonic activity divided the area into two regions, each with unique diagenetic signatures. Three primary clastic sources are inferred for the section east of the thrust belt, however, the mineral assemblage is masked by later diagenesis. Sediments within the thrust belt show greater variability in the relative abundance of mineral assemblages and more poorly crystallized illite than occurs to the east of the thrust section. The preservation of much of the original mineralogic components within the thrust section indicates that these sediments have experienced only limited diagenetic overprinting as a result of a relatively short burial history. These contrasting signatures have important implications for hydrocarbon maturation within Cretaceous source rocks in a structurally complex region.

  7. A plate tectonic-paleoceanographic hypothesis for Cretaceous source rocks and cherts of northern South America

    SciTech Connect

    Villamil, T.; Arango, C. )

    1996-01-01

    New paleocontinental reconstructions show a northern migration of the South American Plate with respect to the paleoequator from the Jurassic to the Late Cretaceous. This movement caused the northern margin of South America to migrate from a position south to a position north of the paleoequator. Ekman transport generated net surface water movement towards the south during times when northern South America was south of the paleoequator. This situation favored downwelling and prevented Jurassic and earliest Cretaceous marine source rocks from being deposited. When northern South America was north of the paleoequator Ekman transport forced net water movement to the north favoring upwelling, paleoproductivity, and the deposition of one of the best marine source rocks known (the La Luna, Villeta, and equivalents). This plate tectonic paleoceanographic hypothesis explains the origin of hydrocarbons in northern South America. The stratigraphic record reflects this increase in paleoproductivity through time. This can be observed in facies (non-calcareous shales to calcareous shales to siliceous shales and finally to bedded cherts) and in changing planktic communities which were initially dominated by healthy calcareous foraminifer assemblages, followed by stressed foraminifer populations and finally by radiolarians. Total organic carbon and source rock quality were affected by this long term increase in paleoproductivity but also, and more markedly, by a punctuated sequence stratigraphic record dominated by low- frequency changes in relative sea level. The magnitude of transgressive episodes caused by rise in sea level determined the extent of source rock intervals and indirectly the content of organic carbon.

  8. A plate tectonic-paleoceanographic hypothesis for Cretaceous source rocks and cherts of northern South America

    SciTech Connect

    Villamil, T.; Arango, C.

    1996-12-31

    New paleocontinental reconstructions show a northern migration of the South American Plate with respect to the paleoequator from the Jurassic to the Late Cretaceous. This movement caused the northern margin of South America to migrate from a position south to a position north of the paleoequator. Ekman transport generated net surface water movement towards the south during times when northern South America was south of the paleoequator. This situation favored downwelling and prevented Jurassic and earliest Cretaceous marine source rocks from being deposited. When northern South America was north of the paleoequator Ekman transport forced net water movement to the north favoring upwelling, paleoproductivity, and the deposition of one of the best marine source rocks known (the La Luna, Villeta, and equivalents). This plate tectonic paleoceanographic hypothesis explains the origin of hydrocarbons in northern South America. The stratigraphic record reflects this increase in paleoproductivity through time. This can be observed in facies (non-calcareous shales to calcareous shales to siliceous shales and finally to bedded cherts) and in changing planktic communities which were initially dominated by healthy calcareous foraminifer assemblages, followed by stressed foraminifer populations and finally by radiolarians. Total organic carbon and source rock quality were affected by this long term increase in paleoproductivity but also, and more markedly, by a punctuated sequence stratigraphic record dominated by low- frequency changes in relative sea level. The magnitude of transgressive episodes caused by rise in sea level determined the extent of source rock intervals and indirectly the content of organic carbon.

  9. Thermochronology of lower Cretaceous source rocks in the Idaho-Wyoming thrust belt

    SciTech Connect

    Burtner, R.L.; Nigrini, A.; Donelick, R.A.

    1994-10-01

    Lower Cretaceous organic-rich source rocks that are thermally mature to postmature crop out on the Absaroka, Darby, and Prospect plates in linear belts that run parallel to the trace of the thrusts in the Idaho-Wyoming portion of the Idaho-Wyoming-Utah thrust belt. Although the common assumption is that burial by thrust plates and the synorogenic sediments derived from them have been responsible for thermal maturation of the organic-rich strata, commercial amounts of hydrocarbons have not been found in structural traps in this portion of the thrust belt. In a companion paper, Burtner and Nigrini demonstrated that gravity-driven fluid flow in the Idaho-Wyoming portion of the thrust belt was responsible for moving large amounts of heat from the depths of the Early Cretaceous foreland basin eastward toward the stable platform. In this paper we demonstrate, through the application of organic maturation indicators and a new refinement of the apatite fission track technique, that this process heated Lower Cretaceous organic-rich source rocks to temperatures sufficient to generate hydrocarbons. Hydrocarbon generation and migration occurred prior to the development of the thrusts that are often assumed to have played a major role in the generation and entrapment of hydrocarbons in this portion of the thrust belt.

  10. Source rock in the Lower Tertiary and Cretaceous, deep-water Gulf of Mexico

    SciTech Connect

    Wagner, B.E.; Sofer, Z.; Claxton, B.L.

    1994-09-01

    Amoco drilled three wells in the deep-water Gulf of Mexico in 1993. One well, in Mississippi Canyon Block 84 (W.D. 5200 ft), drilled a structural feature. The well penetrated Cretaceous section and crossed the middle Cenomanian unconformity. Six sidewall cores from 14,230-15,200 ft (subsea) contained TOC values from 2.6 to 5.2% with hydrogen indices front 360 to 543 ppm in lower Tertiary and Cretaceous shales. All six cores were thermally immature, for oil generation, based on biomarker ratios and vitrinite reflectance measurements. Organic extracts from cores in the Cretaceous had biomarker characteristics similar to oil reservoired in the Miocene. The oil was probably generated from a similar, but more mature, source rock. The high structural position of the well prevented the lower Tertiary and Upper Cretaceous section from entering the oil window at this location. There are over 2000 ft of structural relief and an additional 6000-8000 ft of Lower Cretaceous section below the level penetrated by the well. It is probable that an equivalent section off structure is in the oil window. Prior to drilling, estimates of expected thermal maturities and temperatures were made using {sub BASINMOD}, a hydrocarbon generation/expulsion modeling package. The model predicted higher well temperatures (e,g., 225{degrees}F vs. 192{degrees}F) and lower vitrinite maturity (0.44% vs. 0.64%) than encountered in the well. Vitrinite reflectance equivalents of 0.41% and 0.43% were calculated from biomarker ratios of the Cretaceous core extracts, matching the {sub BASINMOD} predicted value of 0.44%.

  11. Cretaceous source rock characterization of the Atlantic Continental margin of Morocco

    SciTech Connect

    Jabour, H. )

    1993-02-01

    Characterization of the petroleum potential for the Atlantic margin of Morocco has been based primarily on limited, antiently acquired organic geochemical data. These indicate the area of drilling behind the paleoshelf edge to be only fair in organic carbon and C15+ extract values with predominantly terrestrial kerogen types. Recently acquired geochemical data obtained from relatively recent drilling both behind and beyond the paleoshelf edge indicate 4 depositional facies containing hydrogen rich amorphous kerogen assemblages. These are: (1) Lower to Mid Jurassic inner shelf facies probably deposited in algal rich lagoon-like, (2) Lower Cretaceous non marine coaly facies probably deposited in algal rich swamplike environments, (3) Middle Cretaceous facies characterized by restrited anoxic environment with sediments rich in marine kerogen types deposited under sluggish wather circulation, (4) Upper Cretaceous to Tertiary outer-shelf to Upper slope facies probably deposited under algal-rich upwelling systems. Of these, the Cretaceous facies is the most widespread and represents the best source rock potential characteristics. Correlation of these facies to recently acquired good quality seismic packages allows for extrapolation of probable organic facies distribution throughout the continental margin. This should enhance the hydrocarbon potential of the Mesozoic and Cenozoic sediments both landward and seaward of the paleoshelf edge and thus permits refinement of strategies for hydrocarbon exploration in the area.

  12. Source rock contributions to the Lower Cretaceous heavy oil accumulations in Alberta: a basin modeling study

    USGS Publications Warehouse

    Berbesi, Luiyin Alejandro; di Primio, Rolando; Anka, Zahie; Horsfield, Brian; Higley, Debra K.

    2012-01-01

    The origin of the immense oil sand deposits in Lower Cretaceous reservoirs of the Western Canada sedimentary basin is still a matter of debate, specifically with respect to the original in-place volumes and contributing source rocks. In this study, the contributions from the main source rocks were addressed using a three-dimensional petroleum system model calibrated to well data. A sensitivity analysis of source rock definition was performed in the case of the two main contributors, which are the Lower Jurassic Gordondale Member of the Fernie Group and the Upper Devonian–Lower Mississippian Exshaw Formation. This sensitivity analysis included variations of assigned total organic carbon and hydrogen index for both source intervals, and in the case of the Exshaw Formation, variations of thickness in areas beneath the Rocky Mountains were also considered. All of the modeled source rocks reached the early or main oil generation stages by 60 Ma, before the onset of the Laramide orogeny. Reconstructed oil accumulations were initially modest because of limited trapping efficiency. This was improved by defining lateral stratigraphic seals within the carrier system. An additional sealing effect by biodegraded oil may have hindered the migration of petroleum in the northern areas, but not to the east of Athabasca. In the latter case, the main trapping controls are dominantly stratigraphic and structural. Our model, based on available data, identifies the Gordondale source rock as the contributor of more than 54% of the oil in the Athabasca and Peace River accumulations, followed by minor amounts from Exshaw (15%) and other Devonian to Lower Jurassic source rocks. The proposed strong contribution of petroleum from the Exshaw Formation source rock to the Athabasca oil sands is only reproduced by assuming 25 m (82 ft) of mature Exshaw in the kitchen areas, with original total organic carbon of 9% or more.

  13. Origin of crude oil in eastern Gulf Coast: Upper Jurassic, Upper Cretaceous, and lower Tertiary source rocks

    SciTech Connect

    Sassen, R.

    1988-02-01

    Analysis of rock and crude oil samples suggests that three source rocks have given rise to most crude oil in reservoirs of the eastern Gulf Coast. Carbonate source rocks of the Jurassic Smackover Formation are characterized by algal-derived kerogen preserved in an anoxic and hypersaline environment, resulting in crude oils with distinct compositions. Migration commenced during the Cretaceous, explaining the emplacement of Smackover-derived crude oil in Jurassic and in some Cretaceous reservoirs. Upper Cretaceous clastic and carbonate source rocks are also present. Much crude oil in Upper Cretaceous reservoirs has been derived from organic-rich marine shales of the Tuscaloosa Formation. These shales are characterized by algal and higher plant kerogen, resulting in distinct crude oil compositions. Migration commenced during the Tertiary, but was mostly focused to Upper Cretaceous reservoirs. Lower Tertiary shales, including those of the Wilcox Formation, are quite organic-rich and include downdip marine facies characterized by both algal and higher plant kerogen. Crude oils in lower Tertiary reservoirs are dissimilar to crude oils from deeper and older source rocks. Migration from lower Tertiary shales commenced during the late Tertiary and charged Tertiary reservoirs. Although most crude oil in the eastern Gulf Coast has been emplaced by short-range migration, often with a strong vertical component, some long-range lateral migration (> 100 km) has occurred along lower Tertiary sands. The framework of crude oil generation and migration onshore has important implications with respect to origin of crude oil in the Gulf of Mexico.

  14. Lower Tertiary and Upper Cretaceous source rocks in Louisiana and Mississippi: Implications to Gulf of Mexico crude oil

    SciTech Connect

    Sassen, R. )

    1990-06-01

    The Lower Tertiary Sparta Formation, Wilcox Group, and the Midway Group in southern Louisiana include organic-rich source facies that generate crude oil at relatively high thermal maturities. The Wilcox Group is an important source of Wilcox crude oil, and regional kerogen variations explain two crude oil subfamilies. Wilcox crude oils in downdip areas of southern Louisiana migrated short distances, but long-range lateral migration (about 150 km) best explains Wilcox crude oils far updip from mature source rocks. Crude oils in Oligocene and younger reservoirs in southern Louisiana migrated vertically from deep lower Tertiary source rocks. Some crude oils in Upper Cretaceous Tuscaloosa reservoirs were emplaced by long-range lateral migration from Tuscaloosa source rocks. Given little evidence of upper Tertiary source rocks and the overmaturity problems of Mesozoic source rocks, most crude oils in upper Tertiary and Pleistocene reservoirs of the Gulf continental shelf are best explained by vertical migration from deep lower Tertiary source rocks. Even so, it is simplistic to assume an exclusive lower Tertiary origin. Many Tertiary and Pleistocene crude oils of this study probably include an overprint of high-maturity hydrocarbons from Mesozoic sources. 12 figs., 7 tabs.

  15. The cretaceous source rocks in the Zagros Foothills of Iran: An example of a large size intracratonic basin

    SciTech Connect

    Bordenave, M.L. ); Huc, A.Y. )

    1993-02-01

    The Zagros orogenic belt of Iran is one of the world most prolific petroleum producing area. However, most of the oil production is originated from a relatively small area, the 60,000 km[sup 2] wide Dezful Embayment which contains approximately 12% of the proven oil global reserves. The distribution of the oil and gas fields results from the area extent of six identified source rock layers, their thermal history and reservoir, cap rock and trap availability. In this paper, the emphasis is three of the layers of Cretaceous sources rocks. The Garau facies was deposited during the Neocomian to Albian interval over Lurestan, Northeast Khuzestan and extends over the extreme northeast part of Fars, the Kazhdumi source rock which deposited over the Dezful Embayment, and eventually the Senonian Gurpi Formation which has marginal source rock characteristics in limited areas of Khuzestan and Northern Fars. The deposition environment of these source rock layers corresponds to semipermanent depressions, included in an overall shallow water intracratonic basin communicating with the South Tethys Ocean. These depressions became anoxic when climatic oceanographical and geological conditions were adequate, i.e., humid climate, high stand water, influxes of fine grained clastics and the existence of sills separating the depression from the open sea. Distribution maps of these source rock layers resulting from extensive field work and well control are also given. The maturation history of source rocks is reconstructed from a set of isopachs. It was found that the main contributor to the oil reserves is the Kazhdumi source rock which is associated with excellent calcareous reservoirs.

  16. High resolution study of petroleum source rock variation, Lower Cretaceous (Hauterivian and Barremian) of Mikkelsen Bay, North Slope, Alaska

    USGS Publications Warehouse

    Keller, Margaret A.; Macquaker, Joe H.S.; Lillis, Paul G.

    2001-01-01

    Open File Report 01-480 was designed as a large format poster for the Annual Meeting of the American Association of Petroleum Geologists and the Society for Sedimentary Geology in Denver Colorado in June 2001. It is reproduced here in digital format to make widely available some unique images of mudstones. The images include description, interpretation, and Rock-Eval data that resulted from a high-resolution study of petroleum source rock variation of the Lower Cretaceous succession of the Mobil-Phillips Mikkelsen Bay State #1 well on the North Slope of Alaska. Our mudstone samples with Rock-Eval data plus color images are significant because they come from one of the few continuously cored and complete intervals of the Lower Cretaceous succession on the North Slope. This succession, which is rarely preserved in outcrop and very rarely cored in the subsurface, is considered to include important petroleum source rocks that have not previously been described nor explained Another reason these images are unique is that the lithofacies variability within mudstone dominated successions is relatively poorly known in comparison with that observed in coarser clastic and carbonate successions. They are also among the first published scans of thin sections of mudstone, and are of excellent quality because the sections are well made, cut perpendicular to bedding, and unusually thin, 20 microns. For each of 15 samples, we show a thin section scan (cm scale) and an optical photomicrograph (mm scale) that illustrates the variability present. Several backscattered SEM images are also shown. Rock-Eval data for the samples can be compared with the textures and mineralogy present by correlating sample numbers and core depth.

  17. Cretaceous source rock sedimentation and its relation to transgressive peaks and geodynamic events for the Central Tethys

    SciTech Connect

    Flexer, A. ); Honigstein, A.; Rosenfeld, A. ); Lipson, S. ); Tarnenbaum, E. )

    1993-02-01

    The reconstruction of the Mesozoic continents shows a wide triangle-shaped Tethys (or Neotethys) between Africa and Eurasia. The Arabian Craton comprised the central part of its southern margins. The Cretaceous period started with extension, volcanism, continued by accelerated divergence during Aptian-Turonian and terminated by convergence and folding. The sea level stand, after a major fall at the commencement, is characterized by a steady stepwise rise with some minor retreats. The global oceanic anoxic events correspond to large-extent transgressions and associated with organic rich sedimentation. The accelerated building up of mid-oceanic ridges is possibly connected to a mantle plume, active around 120-80 Ma. Sea level rise and sea floor spreading is felt mainly at these times in the passive southern margins of the central Tethys. The Senonian compressive tectonic regime transforms them into active margins (destruction of oceanic crust, obduction and thrusting); sea level highstands control dysoxic sedimentation. Dysoxic sediments were observed in the Gevaram shales (Tithonian-Hauterivian). Talme Yafe marls (Late Aptian-Albian), Daliyya Formation (latest Cenomanian-Turonian) and the Mount Scopus Group (Santonian-Maastrichtian). The organic matter in the Gevaram shales is mixed marine and terrestrial (2.6% TOC) and in the Daliyya marls mostly marine (2.5% TOC). Both units have source rock possibilities and yield petroleum upon appropriate burial. The Senonian bituminous rocks (oil shales) are rich in marine organic matter (20% TOC) and are excellent source rocks in the Dead Sea area.

  18. Nonmarine upper cretaceous rocks, Cook Inlet, Alaska

    SciTech Connect

    Magoon, L.B.; Griesbach, F.B.; Egbert, R.M.

    1980-08-01

    A section of Upper Cretaceous (Maestrichtian) nonmarine sandstone, conglomerate, and siltstone with associated coal is exposed near Saddle mountain on the northwest flank of Cook Inlet basin, the only known surface exposure of nonmarine Upper Cretaceous rocks in the Cook Inlet area. The section, at least 83.3 m thick, unconformably overlies the Upper Jurassic Naknek Formation and is unconformably overlain by the lower Tertiary West Foreland Formation. These upper Cretaceous rocks correlate lithologically with the second or deeper interval of nonmarine Upper Cretaceous rocks penetrated in the lower Cook Inlet COST 1 well.

  19. Lead isotope compositions of Late Cretaceous and early Tertiary igneous rocks and sulfide minerals in Arizona: Implications for the sources of plutons and metals in porphyry copper deposits

    USGS Publications Warehouse

    Bouse, R.M.; Ruiz, J.; Titley, S.R.; Tosdal, R.M.; Wooden, J.L.

    1999-01-01

    Porphyry copper deposits in Arizona are genetically associated with Late Cretaceous and early Tertiary igneous complexes that consist of older intermediate volcanic rocks and younger intermediate to felsic intrusions. The igneous complexes and their associated porphyry copper deposits were emplaced into an Early Proterozoic basement characterized by different rocks, geologic histories, and isotopic compositions. Lead isotope compositions of the Proterozoic basement rocks define, from northwest to southeast, the Mojave, central Arizona, and southeastern Arizona provinces. Porphyry copper deposits are present in each Pb isotope province. Lead isotope compositions of Late Cretaceous and early Tertiary plutons, together with those of sulfide minerals in porphyry copper deposits and of Proterozoic country rocks, place important constraints on genesis of the magmatic suites and the porphyry copper deposits themselves. The range of age-corrected Pb isotope compositions of plutons in 12 Late Cretaceous and early Tertiary igneous complexes is 206Pb/204Pb = 17.34 to 22.66, 207Pb/204Pb = 15.43 to 15.96, and 208Pb/204Pb = 37.19 to 40.33. These Pb isotope compositions and calculated model Th/U are similar to those of the Proterozoic rocks in which the plutons were emplaced, thereby indicating that Pb in the younger rocks and ore deposits was inherited from the basement rocks and their sources. No Pb isotope differences distinguish Late Cretaceous and early Tertiary igneous complexes that contain large economic porphyry copper deposits from less rich or smaller deposits that have not been considered economic for mining. Lead isotope compositions of Late Cretaceous and early Tertiary plutons and sulfide minerals from 30 metallic mineral districts, furthermore, require that the southeastern Arizona Pb province be divided into two subprovinces. The northern subprovince has generally lower 206Pb/204Pb and higher model Th/U, and the southern subprovince has higher 206Pb/204Pb and

  20. Depositional environment and distribution of Late Cretaceous [open quotes]source rocks[close quotes] from Costa Rica to West Africa

    SciTech Connect

    Erlich, R.N.; Sofer, Z. ); Pratt, L.M. ); Palmer, S.E. )

    1993-02-01

    Late Cretaceous [open quotes]source rocks[close quotes] from Costa Rica, western and eastern Venezuela, and Trinidad were studied using organic and inorganic geochemistry, biostratigraphy, and sedimentology in order to determine their depositional environments. Bulk mineralogy and major element geochemistry for 304 samples were combined with Rock Eval data and extract biomaker analysis to infer the types and distributions of the various Late Cretaceous productivity systems represented in the dataset. When data from this study are combined with published and proprietary data from offshore West Africa, Guyana/Suriname, and the central Caribbean, they show that these Late Cretaceous units can be correlated by their biogeochemical characteristics to establish their temporal and spatial relationships. Paleogeographic maps constructed for the early to late Cenomanian, Turonian, Coniacian to middle Santonian, and late Santonian to latest Campanian show that upwelling and excessive fluvial runoff were probably the dominant sources of nutrient supply to the coastal productivity systems. The late Santonian to Maastrichtian rocks examined in this study indicate that organic material was poorly preserved after deposition, even though biologic productivity remained constant or changed only slightly. A rapid influx of oxygenated bottom water may have occurred following the opening of a deep water connection between the North and South Atlantic oceans, and/or separation of India from Africa and the establishment of an Antarctic oceanic connection. This study suggests that the most important factors that controlled source rock quality in northern South America were productivity, preservation, degree of clastic dilution, and subsurface diagenesis.

  1. Isotopic evidence for the sources of Cretaceous and tertiary granitic rocks, east-central Alaska: Implications for the tectonic evolution of the Yukon-Tanana terrane

    USGS Publications Warehouse

    Aleinikoff, J.N.; Farmer, G.L.; Rye, R.O.; Nokleberg, W.J.

    2000-01-01

    Magnetotelluric traverses across the southern Yukon-Tanana terrane (YTT) reveal the presence of a thick conductive layer (or layers) beneath Paleozoic crystalline rocks. These rocks have been interpreted to be flysch of probable Mesozoic age, on the basis of the occurrence of Jurassic-Cretaceous flysch in the Kahiltna assemblage and Gravina-Nutzotin belt flanking the YTT to the southwest and southeast, respectively. The Pb, Nd, Sr, and O isotopes in Cretaceous and Tertiary granitic rocks that crop out throughout the YTT were measured to determine if these rocks do in fact contain a component of flysch. Previous limited analyses indicated that the Pb isotopes of the granitic rocks could be a mixture of radiogenic Pb derived from Paleozoic crystalline rocks of the YTT with an increasing component of relatively nonradiogenic Pb with decreasing age. Our Nd, Sr, and O data, along with additional Pb isotope data, eliminate flysch as a likely source and strongly suggest that the nonradiogenic end-member was derived from mafic rocks, either directly from mantle magma or by melting of mafic crust. The lack of a sedimentary component in the granitic plutons suggests either that the plutons did not incorporate significant amounts of flysch during intrusion or that the conductive layer beneath the YTT crystalline rocks is not flysch.

  2. Source rock potential in Pakistan

    SciTech Connect

    Raza, H.A. )

    1991-03-01

    Pakistan contains two sedimentary basins: Indus in the east and Balochistan in the west. The Indus basin has received sediments from precambrian until Recent, albeit with breaks. It has been producing hydrocarbons since 1914 from three main producing regions, namely, the Potwar, Sulaisman, and Kirthar. In the Potwar, oil has been discovered in Cambrian, Permian, Jurassic, and Tertiary rocks. Potential source rocks are identified in Infra-Cambrian, Permian, Paleocene, and Eocene successions, but Paleocene/Eocene Patala Formation seems to be the main source of most of the oil. In the Sulaiman, gas has been found in Cretaceous and Tertiary; condensate in Cretaceous rocks. Potential source rocks are indicated in Cretaceous, Paleocene, and Eocene successions. The Sembar Formation of Early Cretaceous age appears to be the source of gas. In the Kirthar, oil and gas have been discovered in Cretaceous and gas has been discovered in paleocene and Eocene rocks. Potential source rocks are identified in Kirthar and Ghazij formations of Eocene age in the western part. However, in the easter oil- and gas-producing Badin platform area, Union Texas has recognized the Sembar Formation of Early Cretaceous age as the only source of Cretaceous oil and gas. The Balochistan basin is part of an Early Tertiary arc-trench system. The basin is inadequately explored, and there is no oil or gas discovery so far. However, potential source rocks have been identified in Eocene, Oligocene, Miocene, and Pliocene successions based on geochemical analysis of surface samples. Mud volcanoes are present.

  3. Marine and nonmarine gas-bearing rocks in Upper Cretaceous Blackhawk and Neslen Formations, eastern Uinta Basin, Utah: sedimentology, diagenesis, and source rock potential

    USGS Publications Warehouse

    Pitman, J.K.; Franczyk, K.J.; Anders, D.E.

    1987-01-01

    Thermogenic gas was generated from interbedded humic-rich source rocks. The geometry and distribution of hydrocarbon source and reservoir rocks are controlled by depositional environment. The rate of hydrocarbon generation decreased from the late Miocene to the present, owing to widespread cooling that occurred in response to regional uplift and erosion associated with the development of the Colorado Plateau. -from Authors

  4. Assessment of hydrocarbon potential of Jurassic and Cretaceous source rocks in the Tarnogród-Stryi area (SE Poland and W Ukraine)

    NASA Astrophysics Data System (ADS)

    Kosakowski, Paweł; Więcław, Dariusz; Kowalski, Adam; Koltun, Yuriy

    2012-08-01

    The Jurassic/Cretaceous stratigraphic complex forming a part of the sedimentary cover of both the eastern Małopolska Block and the adjacent Łysogóry-Radom Block in the Polish part as well as the Rava Rus'ka and the Kokhanivka Zones in the Ukrainian part of the basement of the Carpathian Foredeep were studied with geochemical methods in order to evaluate the possibility of hydrocarbon generation. In the Polish part of the study area, the Mesozoic strata were characterized on the basis of the analytical results of 121 core samples derived from 11 wells. The samples originated mostly from the Middle Jurassic and partly from the Lower/Upper Cretaceous strata. In the Ukrainian part of the study area the Mesozoic sequence was characterized by 348 core samples collected from 26 wells. The obtained geochemical results indicate that in both the south-eastern part of Poland and the western part of Ukraine the studied Jurassic/Cretaceous sedimentary complex reveals generally low hydrocarbon source-rock potential. The most favourable geochemical parameters: TOC up to 26 wt. % and genetic potential up to 39 mg/g of rock, were found in the Middle Jurassic strata. However, these high values are contradicted by the low hydrocarbon index (HI), usually below 100 mg HC/g TOC. Organic matter from the Middle Jurassic strata is of mixed type, dominated by gas-prone, Type III kerogen. In the Polish part of the study area, organic matter dispersed in these strata is generally immature (Tmax below 435 °C) whereas in the Ukrainian part maturity is sufficient for hydrocarbon generation.

  5. Distribution of organic carbon and petroleum source rock potential of Cretaceous and lower Tertiary carbonates, South Florida Basin: preliminary results

    USGS Publications Warehouse

    Palacas, James George

    1978-01-01

    Analyses of 134 core samples from the South Florida Basin show that the carbonates of Comanchean age are relatively richer in average organic carbon (0.41 percent) than those of Coahuilan age (0.28 percent), Gulfian age (0.18 percent) and Paleocene age (0.20 percent). They are also nearly twice as rich as the average world, wide carbonate (average 0.24 percent). The majority of carbonates have organic carbons less than 0.30 percent but the presence of many relatively organic rich beds composed of highly bituminous, argillaceous, highly stylolitic, and algal-bearing limestones and dolomites accounts for the higher percentage of organic carbon in some of the stratigraphic units. Carbonate rocks that contain greater than 0.4 percent organic carbon and that might be considered as possible petroleum sources were noted in almost each subdivision of the Coahuilan and Comanchean Series but particularly the units of Fredericksburg 'B', Trinity 'A', Trinity 'F', and Upper Sunniland. Possible source rocks have been ascribed by others to the Lower Sunniland, but lack of sufficient samples precluded any firm assessment in this initial report. In the shallower section of the basin, organic-rich carbonates containing as much as 3.2 percent organic carbon were observed in the lowermost part of the Gulfian Series and carbonate rocks with oil staining or 'dead' and 'live oil' were noted by others in the uppermost Gulfian and upper Cedar Keys Formation. It is questionable whether these shallower rocks are of sufficient thermal maturity to have generated commercial oil. The South Florida basin is still sparsely drilled and produces only from the Sunniland Limestone at an average depth of 11,500 feet (3500 m). Because the Sunniland contains good reservoir rocks and apparently adequate source rocks, and because the success rate of new oil field discoveries has increased in recent years, the chances of finding additional oil reserves in the Sunniland are promising. Furthermore, the

  6. Organic facies variations, source rock potential, and sea level changes in Cretaceous black shales of the Quebrada Ocal, upper Magdalena Valley, Colombia

    SciTech Connect

    Mann, U.; Stein, R.

    1997-04-01

    A 290-m-thick middle Cretaceous black shale sequence in the upper Magdalena Valley, a present-day intramontane basin located between the Central and Eastern cordilleras of Colombia, was investigated with organic-geochemical and microscopic analyses. As a result of the investigation, we were able to (1) differentiate four organic facies types, (2) estimate their source rock potential, and (3) integrated these facies into a sequence stratigraphic framework. The four organic facies types were type C, BC, B, and D. Type C contains a district terrigenous organic matter component in lowstand or highstand deposits. Organic facies type BC is characterized by an increase and a better preservation of marine organic matter. BC belongs to the lower part of the transgressive systems tract. Sediments of organic facies type B have the highest amount of marine organic matter due to excellent preservation under anoxic conditions. The absence of bioturbation and the enrichment of trace metals are further implications for deposition under anoxic conditions. Facies type B is found in the upper part of the transgressive systems tract and contains the best petroleum source rock potential. Facies B occurrence coincides with sea level highstand and correlates especially with a maximum flooding in northern South America during the Turonian. Organic facies type D is also related to highstand deposits, but shows a high rate of reworking and degradation of organic matter.

  7. Late Cretaceous multicolored shales and phosphatic sedimentary rocks in Egypt

    SciTech Connect

    Glenn, C.R.; Garrison, R.E.; Arthur, M.A.

    1983-03-01

    Upper Cretaceous transitional fluvial to marine variegated shale (upper Nubia Formation) and the fully marine Duwi (phosphate) Formation occur as thin, widespread, shallow-marine deposits in an east-west-trending belt spanning the lower-middle latitudes of Egypt. On a larger scale, the phosphoritic rocks in Egypt represent but a small portion of a laterally extensive Middle Eastern-North African phosphogenic province of Upper Cretaceous-Lower Tertiary age that accounts for accumulation of minable marine phosphate in excess of 70 billion tons. Phosphorites, porcelanites/cherts, organic carbon-rich shales, glauconitic sandstones, and bioclastic and fine-grained carbonate rocks variously reflect major hemipelagic and shallow-water carbonate sedimentation. Biosiliceous hemipelagic deposits, now diagenetically altered to procelanite and chert, reflect low energy depositional conditions that were periodically interrupted by high energy, possibly storm-induced currents and/or down-slope redeposition. Both dark shales and porcelanites locally contain abundant organic matter and are commonly finely laminated. Porcelanites and black shales are phosphatic, containing phosphatic grains identical, morphologically and chemically, to those found in associated phosphorites, and are probably the source from which the phosphorites were derived. The organic carbon-rich shales of the Duwi Formation appear to be quite laterally extensive and may, depending on thermal maturity, represent potential hydrocarbon source rocks in other portions of the region (e.g., Western Desert, Gulf of Suez), where they are more deeply buried.

  8. Well-log signatures of alluvial-lacustrine reservoirs and source rocks, Lagoa-Feia Formations, Lower Cretaceous, Campos Basin, offshore Brazil

    SciTech Connect

    Abrahao, D.; Warme, J.E.

    1988-01-01

    The Campos basin is situated in offshore southeastern Brazil. The Lagoa Feia is the basal formation in the stratigraphic sequence of the basin, and was deposited during rifting in an evolving complex of lakes of different sizes and chemical characteristics, overlying and closely associated with rift volcanism. The stratigraphic sequence is dominated by lacustrine limestones and shales (some of them organic-rich), and volcaniclastic conglomerates deposited on alluvial fans. The sequence is capped by marine evaporites. In the Lagoa Feia Formation, complex lithologies make reservoirs and source rocks unsuitable for conventional well-log interpretation. To solve this problem, cores were studied and the observed characteristics related to log responses. The results have been extended through the entire basin for other wells where those facies were not cored. The reservoir facies in the Lagoa Feia Formation are restricted to levels of pure pelecypod shells (''coquinas''). Resistivity, sonic, neutron, density, and gamma-ray logs were used in this work to show how petrophysical properties are derived for the unconventional reservoirs existing in this formation. The same suite of logs was used to develop methods to define geochemical characteristics where source rock data are sparse in the organic-rich lacustrine shales of the Lagoa Feia Formation. These shales are the main source rocks for all the oil discovered to date in the Campos basin.

  9. The overthrusted Zaza Terrane of middle Cretaceous over the North American continental carbonate rocks of upper Jurassic-Lower Cretaceous age - relationships to oil generation

    SciTech Connect

    Echevarria Rodriguez, G.; Castro, J.A.; Amaro, S.V.

    1996-08-01

    The Zaza Terrane is part of the Caribbean plate thrust over the southern edge of the North American basinal and platform carbonate rocks of upper Jurassic-Lower Cretaceous age. Zaza Terrane are volcanic and ophiolitic rocks of Cretaceous age. The ophiolites are mostly serpentines which behave as reservoirs and seals. All Cuban oil fields are either within Zaza Terrane or basinal carbonates underneath, or not far away to the north of the thrust contacts. It appears that the overthrusting of the Zaza Terrane caused the generation of oil in the basinal carbonate source rocks underneath, due to the increase of rock thickness which lowered the oil window to a deeper position and increased the geothermal gradient. Oil generation was after thrusting, during post-orogenic. API gravity of oil is light toward the south and heavy to very heavy to the north. Source rocks to the south are probably of terrigenous origin.

  10. Two Distinct Sets of Magma Sources in Cretaceous Rocks From Magnet Cove, Prairie Creek, and Other Igneous Centers of the Arkansas Alkaline Province, USA

    NASA Astrophysics Data System (ADS)

    Duke, G. I.; Carlson, R. W.; Eby, G. N.

    2008-12-01

    Two distinct sets of magma sources from the Arkansas alkaline province (~106-89 Ma) are revealed by Sr-Nd-Pb isotopic compositions of olivine lamproites vs. other alkalic rock types, including carbonatite, ijolite, lamprophyres, tephrite, malignite, jacupirangite, phonolite, trachyte, and latite. Isotopic compositions of diamond-bearing olivine lamproites from Prairie Creek and Dare Mine Knob point to Proterozoic lithosphere as an important source, and previous Re-Os isotopic data indicate derivation from subcontinental mantle lithosphere. Both sources were probably involved in lamproite generation. Magnet Cove carbonatites and other alkalic magmas were likely derived from an asthenospheric source. Lamproite samples are isotopically quite different from other rock types in Sr-Nd-Pb isotopic space. Although three lamproite samples from Prairie Creek have a large range of SiO2 contents (40-60 wt %), initial values of ɛNd (-10 to -13), 206Pb/204Pb (16.61-16.81), 207Pb/204Pb (15.34-15.36), and 208Pb/204Pb (36.57-36.76) are low and similar. Only 87Sr/86Sr(i) displays a wide range in the Prairie Creek lamproites (0.70627-0.70829). A fourth lamproite from Dare Mine Knob has the most negative ɛNd(i) of -19. Lamproite isotope values show a significant crustal component and isotopically overlap subalkalic rhyolites from the Black Hills (SD), which assimilated Proterozoic crust. Six samples of carbonatite, ijolite, and jacupirangite from Magnet Cove and Potash Sulphur Springs exhibit the most depleted Sr-Nd isotopic signatures of all samples. For these rock types, 87Sr/86Sr(i) is 0.70352 - 0.70396, and ɛNd(i) is +3.8 - +4.3. Eight other rock types have a narrow range of ɛNd(i) (+1.9 - +3.7), but a wide range of 87Sr/86Sr(i) (0.70424 - 0.70629). These 14 samples comprise a fairly tight cluster of Pb isotopic values: 206Pb/204Pb (18.22-19.23), 207Pb/204Pb (15.54-15.62), and 208Pb/204Pb (38.38-38.94), suggesting very little crustal assimilation. They are most similar to EM-2

  11. Marine source rocks of New Zeland

    SciTech Connect

    Murray, A.P.; Norgate, C.; Summons, R.E.

    1996-12-31

    Exploration in New Zealand is moving beyond the Taranaki Basin with its mainly terrestrial source rocks. Good to excellent quality marine source rocks exist and have generated oil in the Northland, East Coast W North Taranaki Basins. These high quality source rocks are Wespread throughout the late Cretaceous - Paleocene passive margin sequence in these basins as well in offshore Canterbury and the Great South Basin. This paper details the character, distribution, generative capacity and maturation behavior of the two main source units and shows how they can be correlated to the numerous seeps and oil impregnations found in the East Coast and Northland Basins. As well as being useful in basin modelling, kinetic maturation parameters for these two source rock facies help to explain differences in the biomarker and isotopic composition of seep oils and also explain trends in Rock Eval Tmax which are unrelated to maturity. In the East Coast Basin alone, the raw oil potential of the Waipawa Black Shale approaches 80 billion barrels. An understanding of the marine source rocks described here is crucial to evaluating the hydrocarbon prospectivity of New Zealand away from the Taranaki Basin.

  12. Marine source rocks of New Zeland

    SciTech Connect

    Murray, A.P.; Norgate, C.; Summons, R.E. )

    1996-01-01

    Exploration in New Zealand is moving beyond the Taranaki Basin with its mainly terrestrial source rocks. Good to excellent quality marine source rocks exist and have generated oil in the Northland, East Coast W North Taranaki Basins. These high quality source rocks are Wespread throughout the late Cretaceous - Paleocene passive margin sequence in these basins as well in offshore Canterbury and the Great South Basin. This paper details the character, distribution, generative capacity and maturation behavior of the two main source units and shows how they can be correlated to the numerous seeps and oil impregnations found in the East Coast and Northland Basins. As well as being useful in basin modelling, kinetic maturation parameters for these two source rock facies help to explain differences in the biomarker and isotopic composition of seep oils and also explain trends in Rock Eval Tmax which are unrelated to maturity. In the East Coast Basin alone, the raw oil potential of the Waipawa Black Shale approaches 80 billion barrels. An understanding of the marine source rocks described here is crucial to evaluating the hydrocarbon prospectivity of New Zealand away from the Taranaki Basin.

  13. Volcanological, petrographical and geochemical characteristics of Late Cretaceous volcanic rocks around Borçka-Artvin region (NE Turkey)

    NASA Astrophysics Data System (ADS)

    Baser, Rasim; Aydin, Faruk; Oguz, Simge

    2015-04-01

    This study presents volcanological, petrographical and geochemical data for late Cretaceous volcanic rocks from the Borçka-Artvin region (NE Turkey) in order to investigate their origin and magmatic evolution. Based on the previous ages and recent field studies, the late Cretaceous time in the study area is characterized by two different bimodal volcanic periods. The first bimodal period of the late Cretaceous volcanism is mainly represented by mafic rock series (basaltic-basaltic andesitic pillow lavas and hyaloclastites) in the lower part, and felsic rock series (dacitic lavas, hyaloclastites, and pyrite-bearing tuffs) in the upper part. The second bimodal period of the late Cretaceous volcanism begins with mafic rock suites (basaltic-andesitic lavas and dikes-sills) and grades upward into felsic rock suites (biotite-bearing rhyolitic lavas and hyaloclastites), which are intercalated with hyaloclastites and red pelagic limestones. All volcano-sedimentary units are covered by Late Campanian-Paleocene clayey limestones and biomicrites with lesser calciturbidites. The mafic volcanic series of the study area, which comprise basaltic and andesitic rocks, generally show amygdaloidal and aphyric to porphyritic texture with phenocrysts of calcic to sodic plagioclase and augite in a hyalopilitic matrix of plag+cpx+mag. Zircon and magnetite are sometimes observed as accessory minerals, whereas chlorite, epidote and calcite are typical alteration products. On the other hand, the felsic volcanic series consisting of dacitic and rhyolitic rocks mostly display porphyritic and glomeroporphyritic textures with predominant feldspar, quartz and some biotite phenocrysts. The microgranular to felsophyric groundmass is mainly composed of aphanitic plagioclase, K-feldspar and quartz. Accessory minerals such as zircon, apatite and magnetite are common. Typical alteration products are sericite and clay minerals. Late Cretaceous Artvin-Borçka bimodal rock series generally display a

  14. Cretaceous pollen in Pliocene rocks: implications for Pliocene climate in the southwestern United States

    USGS Publications Warehouse

    Fleming, R.F.

    1994-01-01

    Pliocene rocks of the Imperial and Palm Spring Formations in southern California contain reworked Cretaceous pollen that helps determine the timing of erosion of Cretaceous rocks on the Colorado Plateau. The stratigraphic distribution of the pollen suggests that erosion of Cretaceous rocks in the southern part of the Colorado Plateau began by 4.5 Ma, and in the northern part of the plateau at 3.9 Ma. This erosional history indicates that rapid and extensive erosion of the Colorado Plateau occurred during the Pliocene and supports the hypothesis that much of the Grand Canyon was cut during the Pliocene, rather than earlier in the Tertiary. Rapid erosion and transport from the Colorado Plateau require the climate in that region during the Pliocene to have been significantly wetter than it is today. -from Author

  15. Volcanostratigraphy, petrography and petrochemistry of Late Cretaceous volcanic rocks from the Görele area (Giresun, NE Turkey)

    NASA Astrophysics Data System (ADS)

    Oguz, Simge; Aydin, Faruk; Baser, Rasim

    2015-04-01

    dacite but those of the second period have biotite-bearing rhyolite. The basalts and basaltic andesites exhibit subaphyric to porphyritic texture with phenocrysts of calcic plagioclase and augite in a fine-grained to microcrystalline groundmass, consisting of plag+cpx+mag. Andesite samples display a porphyritic texture with phenocrysts of calcic to sodic plagioclase and augite in a hyalopilitic matrix of plag+cpx±amph+mag. Zircon and magnetite are common accessory minerals, whereas chlorite, epidote and calcite are typical alteration products. On the other hand, the dacitic and rhyolitic rocks commonly show a porphyritic texture with predominant feldspar, quartz and some biotite phenocrysts. The microgranular to felsophyric groundmass is mainly composed of aphanitic plagioclase, K-feldspar and quartz. Accessory minerals include zircon, apatite and magnetite. Typical alteration minerals include late-formed sericite, albite and clay minerals. Late Cretaceous mafic and felsic volcanic rocks have a largely sub-alkaline character with typical arc geochemical signatures. N-MORB-normalised multi-element patterns show that all rock samples are enriched in LILEs (e.g. Rb, Ba, Th) but depleted in Nb and Ti. The chondrite-normalized REE patterns are concave shapes with low to medium enrichment, suggesting a common mantle source for the studied bimodal rock series. All geochemical data reflecting typical characteristics of subduction-related magmas are commonly attributed to a depleted mantle source, which has been previously enriched by fluids or sediments. Acknowledgments This work was supported by the Scientific and Technological Research Council of Turkey (TUBITAK, grant 112Y365)

  16. Relative contribution of Precambrian metamorphic rocks and Cretaceous-Tertiary igneous rocks to Oligocene and Holocene fluvial sands and the unroofing of a magmatic arc

    SciTech Connect

    Molinaroli, E.; Basu, A. )

    1991-03-01

    Oligocene and Holocene fluvial sands were deposited in small extensional basins in a magmatic arc in southwestern Montana under relatively humid and semi-arid conditions, respectively. The source rocks are roof-pendants and thrust-slices of Precambrian metamorphic rocks (PCM) and Cretaceous-Tertiary igneous rocks (KTI) that make up the arc. The authors have surveyed 143,607 heavy mineral grains (HMGs) in polished thin sections of 55 samples collected from adjacent but discrete geomorphologic units. In the Holocene sands, of 5440 HMGs 519 are garnets and of 97,667 HMGs 395 are zircons. In the Oligocene sandstones, of 6397 HMGs 998 are garnets, and of 45,940 HMGs 331 are zircons. Garnets are absent in the igneous rocks and zircons are extremely rare in the metamorphic rocks. Garnets ar estimated to be about 100 times as abundant in the metamorphic rocks as the zircons are in the igneous rocks. Mass balance calculations show that the proportion of PCM/(PCM+KTI) ranges from 0 to 21% in Oligocene sandstones, and from 3 to 76% in Holocene sands in different local units. However, the overall PCM/(PCM+KTI) proportions in the Holocene and the Oligocene sands in southwestern Montana are 19% and 18%, respectively. This suggests that the roof pendants, thrust slices, and magmatic arc rocks have been unroofed in constant proportions since the Oligocene although locally the proportions have been different.

  17. Characterization of the source horizons within the Late Cretaceous transgressive sequence of northeast Africa

    SciTech Connect

    Robinson, V. ); Engel, M. )

    1991-03-01

    Source rocks were deposited in northeastern Africa during a major Late Cretaceous transgression. The preserved stratigraphic sequence begins with a series of fluvio-deltaic sands and progresses up into a thick marine carbonate section. These deposits represent ever increasing water depths and isolation from the continental landmass. Across northeast Africa and portions of Arabia, oil-prone source facies were deposited along the mid to outer shelf during the initial phases of this Late Cretaceous transgression. Within the source sequence itself, variations in the organic matter record the changing influences of coastal upwelling, development of anoxia, and terrigenous input. In Egypt, the transgression deposited sediments found today in the upper portion of the Nubian through Thebes formations. The source facies found within this sequence include portions of the Duwi and Dakhla formations. Both the Duwi and Dakhla record changes in salinity, depth of the water column, and oxygen concentration, which are depicted in the organic matter content, quality, and type. The variability observed in the source sequence in Egypt can be related to the Late Cretaceous source facies preserved across northeast Africa.

  18. Source rocks of the Sub-Andean basins

    SciTech Connect

    Raedeke, L.D. )

    1993-02-01

    Seven source rock systems were mapped using a consistent methodology to allow basin comparison from Trinidad to southern Chile. Silurian and Devonian systems, deposited in passive margin and intracratonic settings, have fair-good original oil/gas potential from central and northern Bolivia to southern Peru. Kerogens range from mature in the foreland to overmature in the thrust belt. Permian to Carboniferous deposition in local restricted basins formed organic-rich shales and carbonates with very good original oil/gas potential, principally in northern Bolivia and southern Peru. Late Triassic to early Jurassic marine shales and limestones, deposited in deep, narrow, basins from Ecuador to north-central maturity. Locally, in the Cuyo rift basin of northern Argentina, a Triassic lacustrine unit is a very good, mature oil source. Early Cretaceous to Jurassic marine incursions into the back-arc basins of Chile-Argentina deposited shales and limestones. Although time transgressive (younging to the south), this system is the principal source in southern back-arc basins, with best potential in Neuquen, where three intervals are stacked A late Cretaceous marine transgressive shale is the most important source in northern South America. The unit includes the La Luna and equivalents extending from Trinidad through Venezuela, Colombia, Ecuador, and into northern Peru. Elsewhere in South America upper Cretaceous marine-lacustrine rocks are a possible source in the Altiplano and Northwest basins of Bolivia and Argentina. Middle Miocene to Oligocene source system includes shallow marine, deltaic, and lacustrine sediments from Trinidad to northern Peru.

  19. Structural controls on source rock distribution and maturation in southeast Turkey

    SciTech Connect

    Reed, J.D.; Ottensman, V.V.; Cushing, G.W. ); Aytuna, S. )

    1990-05-01

    Production from the western part of the Zagros fold and thrust belt southeastern Turkey is characterized by high-sulfur (2-3%) oils from middle Cretaceous Mardin Formation. The oils are generated from two carbonate sources, one from the middle Cretaceous passive margin sequence and one deposited as a part of the Upper Cretaceous foreland basin sequence. Both sources are associated with transgressive events coincident with two recognized Cretaceous oceanic anoxic events in Cenomanian-Turonian and Coniacian-Santonian. Geochemical markers in the oils substantiate the restricted, anoxic conditions characteristic of their source rock deposition. During the Upper Cretaceous compressional event, horsts formed buttresses to advancing oceanic thrust sheets. The oceanic thrust sheets consisted of the Karadut and Kocali formations, oceanic equivalents of the Mesozoic shelf. The middle and Upper Cretaceous source facies were rapidly and deeply buried by the tectonically thickened thrust sheets adjacent to the buttresses. Thick burial by the oceanic rocks was critical for thermal maturation of the sources. Geohistory modeling shows generation occurred during the Tertiary coincidental with tectonic activity that probably allowed oil migration to occur along new or reactivated Cretaceous faults.

  20. Composition and provenance of placer deposits in McCourt Tongue of Rock Springs Formation (Upper Cretaceous), Rock Springs uplift area, Wyoming

    SciTech Connect

    Schneider, G.B.

    1986-08-01

    Heavy minerals from placer sandstones were studied from samples collected at five widely spaced outcrops of the McCourt Tongue on the southeastern flank of the Rock Springs uplift and on the northern flank of the Uinta Mountains. The placers were deposited along a northeast-trending, strand-plain shoreline of the Cretaceous Interior seaway. Heavy minerals from the five localities occur in very fine-grained sandstone and are composed of about 85% opaque iron and titanium minerals, including magnetite, hematite, and ilmenite. About 15% consist of nonopaque minerals, which are mostly zircon, garnet, tourmaline, and rutile with minor amounts of sphene, hornblende, and apatite. The cementing material is mostly hematite. The nonopaque suite is as much as 96% zircon grains, with 3/sup 0/ of roundness and five color varieties. The heavy minerals are from both plutonic and volcanic source areas. The plutonic minerals suggest a westerly source in Precambrian rocks of Utah and Idaho. The volcanic minerals were probably derived from areas of volcanic activity in Alberta and Montana. The composition, distribution, and provenance of the deposits help establish a framework for regressive Upper Cretaceous shorelines in the central Rocky Mountain area.

  1. Upper Jurassic to Lower Cretaceous(?) synorogenic sedimentary rocks in the southern Spring Mountains, Nevada

    NASA Astrophysics Data System (ADS)

    Carr, Michael D.

    1980-08-01

    A newly recognized sequence of Upper Jurassic to Lower Cretaceous(?) terrigenous rocks in the Good-springs district, Nevada, was deposited during the emplacement of the Contact thrust plate. Two facies are recognized: (1) interbedded conglomerate and sandstone derived from Mesozoic igneous and terrigenous platform rocks and (2) interbedded carbonate and sandstone-clast conglomerate, quartz sandstone, and red shale. No igneous detritus occurs in the facies with carbonate-clast conglomerate. Carbonate clasts could only have been derived from the Paleozoic carbonate sequence, which was exposed in the area by latest Jurassic to earliest Cretaceous thrusting. The age of rocks from a volcanic unit within the synorogenic sequence was determined radiometrically to be 150 ± 10 m.y. (K-Ar on biotite). The sequence was deposited disconformably on deeply eroded rocks of the early Mesozoic platform and ultimately overridden from the west by the Contact thrust plate. Information from the sequence corroborates previously reported regional data regarding the timing and nature of the Contact-Red Springs thrust event. *Present address: U.S. Geological Survey, 345 Middlefield Road, Menlo Park, California 94025

  2. Petrography and geochemistry of Cretaceous to quaternary siliciclastic rocks in the Tarfaya basin, SW Morocco: implications for tectonic setting, weathering, and provenance

    NASA Astrophysics Data System (ADS)

    Ali, Sajid; Stattegger, Karl; Garbe-Schönberg, Dieter; Kuhnt, Wolfgang; Kluth, Oliver; Jabour, Haddou

    2014-01-01

    The petrography, heavy mineral analysis, major element geochemical compositions and mineral chemistry of Early Cretaceous to Miocene-Pliocene rocks, and recent sediments of the Tarfaya basin, SW Morocco, have been studied to reveal their depositional tectonic setting, weathering history, and provenance. Bulk sediment compositional and mineral chemical data suggest that these rocks were derived from heterogeneous sources in the Reguibat Shield (West African Craton) including the Mauritanides and the western Anti-Atlas, which likely form the basement in this area. The Early Cretaceous sandstones are subarkosic in composition, while the Miocene-Pliocene sandstones and the recent sediments from Wadis are generally carbonate-rich feldspathic or lithic arenites, which is also reflected in their major element geochemical compositions. The studied samples are characterized by moderate SiO2 contents and variable abundances of Al2O3, K2O, Na2O, and ferromagnesian elements. Binary tectonic discrimination diagrams demonstrate that most samples can be characterized as passive continental marginal deposits. Al2O3/Na2O ratios indicate more intense chemical weathering during the Early Cretaceous and a variable intensity of weathering during the Late Cretaceous, Early Eocene, Oligocene-Early Miocene, Miocene-Pliocene and recent times. Moreover, weathered marls of the Late Cretaceous and Miocene-Pliocene horizons also exhibit relatively low but variable intensity of chemical weathering. Our results indicate that siliciclastics of the Early Cretaceous were primarily derived from the Reguibat Shield and the Mauritanides, in the SW of the basin, whereas those of the Miocene-Pliocene had varying sources that probably included western Anti-Atlas (NE part of the basin) in addition to the Reguibat Shield and the Mauritanides.

  3. Depth and thickness of selected units in Upper Permian, Upper Jurassic, and Lower Cretaceous rocks in southwestern Kansas

    USGS Publications Warehouse

    Kume, Jack; Spinazola, Joseph M.

    1984-01-01

    As ground-water reserves decline in the Ogallala aquifer in an area of about 17,400 square miles in 26 counties of southwestern Kansas, sandstone aquifers in underlying Upper Jurassic and Lower and Upper Cretaceous rocks may be developed to supplement or replace the Ogallala as a source of water for some uses. Maps show that depths from land surface to Upper Permian rocks range from 0 at the outcrop to over 2,100 feet, depths to Upper Jurassic rocks ran from 0 at the outcrop to about 2,000 feet, depths to the Cheyenne Sandstone range from about 150 to about 1 ,950 feet, and depths to the Dakota Formation range from 0 at the outcrop to about 1,650 feet. Additional maps show that the thickness of Upper Jurassic rocks, where present, ranges from less than 50 feet to about 250 feet, the thickness of the Cheyenne Sandstone, where present, ranges from about 20 feet to about 250 feet, and the thickness of the Dakota Formation, where present, ranges from about 60 feet to about 460 feet. (USGS)

  4. Hydrocarbon transfer pathways from Smackover source rocks to younger reservoir traps in the Monroe gas field, NE Louisiana

    SciTech Connect

    Zimmerman, R.K. )

    1993-09-01

    The Monroe gas field contained more than 7 tcf of gas in its virgin state. Much of the original gas reserves have been produced through wells penetrating the Upper Cretaceous Monroe Gas Rock Formation reservoir. Other secondary reservoirs in the field area are Eocene Wilcox, the Upper Cretaceous Arkadelphia, Nacatoch, Ozan, Lower Cretaceous, Hosston, Jurassic Schuler, and Smackover. As producing zones, these secondary producing zones reservoirs have contributed an insignificant amount gas to the field. The source of much of this gas appears to have been in the lower part of the Jurassic Smackover Formation. Maturation and migration of the hydrocarbons from a Smackover source into Upper Cretaceous traps was enhanced and helped by igneous activity, and wrench faults/unconformity conduits, respectively. are present in the pre-Paleocene section. Hydrocarbon transfer pathways appear to be more vertically direct in the Jurassic and Lower Cretaceous section than the complex pattern present in the Upper Cretaceous section.

  5. Paleomagnetism of Permo-Triassic and Cretaceous rocks from the Antofagasta region, northern Chile

    NASA Astrophysics Data System (ADS)

    Narea, K.; Peña, M.; Bascuñán, S.; Becerra, J.; Gómez, I.; Deckart, K.; Munizaga, F.; Maksaev, V.; Arriagada, C.; Roperch, P.

    2015-12-01

    New paleomagnetic data from Permo-Triassic and Late Cretaceous rocks yield a consistent trend of vertical-axis-tectonic-rotations which are consistent with the Central Andean Rotation Pattern (CARP). However, three sites in the Tuina Formation and one site in the Purilactis Group record large rotations (80°). These mayor rotations are probably due to dextral-transpressive deformation occurring in close relation with the Incaic tectonic phase. Consequently, it is possible to infer that previous tectonic phases Peruvian and K-T would not have produced significant tectonic rotations in the area.

  6. Cretaceous plutonic rocks in the Donner Lake-Cisco Grove area, northern Sierra Nevada, California

    USGS Publications Warehouse

    Kulow, Matthew J.; Hanson, Richard E.; Girty, Gary H.; Girty, Melissa S.; Harwood, David S.

    1998-01-01

    The northernmost occurrences of extensive, glaciated exposures of the Sierra Nevada batholith occur in the Donner Lake-Cisco Grove area of the northern Sierra Nevada. The plutonic rocks in this area, which are termed here the Castle Valley plutonic assemblage, crop out over an area of 225 km2 and for the most part are shown as a single undifferentiated mass on previously published geological maps. In the present work, the plutonic assemblage is divided into eight separate intrusive units or lithodemes, two of which each consist of two separate plutons. Compositions are dominantly granodiorite and tonalite, but diorite and granite form small plutons in places. Spectacular examples of comb layering and orbicular texture occur in the diorites. U-Pb zircon ages have been obtained for all but one of the main units and range from ~120 to 114 Ma, indicating that the entire assemblage was emplaced in a narrow time frame in the Early Cretaceous. This is consistent with abundant field evidence that many of the individual phases were intruded penecontemporaneously. The timing of emplacement correlates with onset of major Cretaceous plutonism in the main part of the Sierra Nevada batholith farther south. The emplacement ages also are similar to isotopic ages for gold-quartz mineralization in the Sierran foothills west of the study area, suggesting a direct genetic relationship between the voluminous Early Cretaceous plutonism and hydrothermal gold mineralization.

  7. Paleomagnetic study of Jurassic and Cretaceous rocks from the Mixteca terrane (Mexico)

    NASA Astrophysics Data System (ADS)

    Böhnel, Harald

    1999-11-01

    Three sites from Cretaceous limestone and Jurassic sandstone in northern Oaxaca, Mexico, were studied paleomagnetically. Thermal demagnetization isolated site-mean remanence directions which differ significantly from the recent geomagnetic field. The paleopole for the Albian-Cenomanian Morelos formation is indistinguishable from the corresponding reference pole for stable North America, indicating tectonic stability of the Mixteca terrane since the Cretaceous. Rock magnetic properties and a positive reversal test for the Bajocian Tecomazuchil sandstone suggest that the remanence could be of primary origin, although no fold test could be applied. The Tecomazuchil paleopole is rotated 10°±5° clockwise and displaced 24°±5° towards the study area, with respect to the reference pole for stable North America. Similar values were found for the Toarcien-Aalenian Rosario Formation, with 35°±6° clockwise rotation and 33°±6° latitudinal translation. These data support a post-Bajocian southward translation of the Mixteca terrane by around 25°, which was completed in mid-Cretaceous time.

  8. West-east lithostratigraphic cross section of Cretaceous rocks from central Utah to western Kansas

    USGS Publications Warehouse

    Anna, Lawrence O.

    2012-01-01

    A west-east lithostratigraphic cross section of the Cretaceous rocks from central Utah to western Kansas was prepared as part of the former Western Interior Cretaceous (WIK) project, which was part of the Global Sedimentary Geology Program started in 1989. This transect is similar to that published by Dyman and others (1994) as a summary paper of the WIK project but extends further east and is more detailed. Stratigraphic control was provided by 32 geophysical logs and measured sections tied to ammonite and Inoceramus faunal zones. A variable datum was used, including the base of the Castlegate Sandstone for the western part of the section, and the fossil ammonite zone Baculites obtusus for the middle and eastern section. Lower Cretaceous units and the Frontier Formation and Mowry Shale are shown as undifferentiated units. Cretaceous strata along the transect range in thickness from more than 7,000 ft in the structural foredeep of the western overthrust belt in central Utah, to about 11,000 ft near the Colorado-Utah border as a result of considerable thickening of the Mesaverde Group, to less than 3,500 ft in the eastern Denver Basin, Kansas resulting in a condensed section. The basal Mancos Shale rises stepwise across the transect becoming progressively younger to the west as the Western Interior Seaway transgressed westward. The section illustrates large scale stratigraphic relations for most of the area covered by the seaway, from central Utah, Colorado, to west-central Kansas. These strata are predominantly continental and shoreline deposits near the Sevier thrust belt in Utah, prograding and regressive shorelines to the east with associated flooding surfaces, downlapping mudstones, and transgressive parasequences (shoreface) that correlate to condensed zones across the seaway in central Colorado and eastern Denver Basin.

  9. The Cretaceous-Tertiary extinction: A lethal mechanism involving anhydrite target rocks

    USGS Publications Warehouse

    Brett, R.

    1992-01-01

    The Chicxulub Crater, Yucatan, Mexico, is a leading contender as the site for the impact event that caused the Cretaceous-Tertiary (K-T) extinctions. A considerable thickness of anhydrite (CaSO4) forms part of the target rock. High temperatures resulting from impact would drive SO2 off from the anhydrite. Hundreds of billions of tonnes of sulfuric acid aerosol would thus enter the stratosphere and cause considerable cooling of the Earth's surface, decrease photosynthesis by orders of magnitude, deplete the ozone layer, and permit increased UV radiation to reach the Earth's surface. Finally, the aerosol would fall back to Earth as acid rain and devastate land and some lacustrine biota and near-surface marine creatures. The presence of anhydrite in the Chicxulub target rock may thus help explain the many extinctions observed at the K-T boundary. ?? 1992.

  10. Selected plant microfossil records of the terminal Cretaceous event in terrestrial rocks, western North America

    USGS Publications Warehouse

    Nichols, D.J.

    2007-01-01

    Terrestrial or nonmarine rocks of western North America preserve a record of major disruption and permanent alteration of plant communities precisely at the K-T boundary - in the same rocks that preserve geochemical and mineralogical evidence of the terminal Cretaceous impact event. Plant microfossil records from many localities show abrupt disappearance of pollen species (= plant extinctions) closely associated with impact ejecta deposits containing iridium and shocked quartz. Localities discussed in detail in this review are Starkville South, Clear Creek North, Old Raton Pass, and Sugarite in the Raton Basin of Colorado and New Mexico; West Bijou in the Denver Basin, Colorado; Sussex in the Powder River Basin, Wyoming; and Pyramid Butte and Mud Buttes in the Williston Basin, North Dakota. ?? 2007 Elsevier B.V. All rights reserved.

  11. The Cretaceous-Tertiary extinction - A lethal mechanism involving anhydrite target rocks

    NASA Astrophysics Data System (ADS)

    Brett, Robin

    1992-09-01

    The Chicxulub Crater, Yucatan, Mexico, is a leading contender as the site for the impact event that caused the Cretaceous-Tertiary (K-T) extinctions. A considerable thickness of anhydrite (CaSO4) forms part of the target rock. High temperatures resulting from impact would drive SO2 off from the anhydrite. Hundreds of billions of tonnes of sulfuric acid aerosol would thus enter the stratosphere and cause considerable cooling of the earth's surface, decrease photosynthesis by orders of magnitude, deplete the ozone layer, and permit increased UV radiation to reach the earth's surface. Finally, the aerosol would fall back to earth as acid rain and devastate land and some lacustrine biota and near-surface marine creatures. The presence of anhydrite in the Chicxulub target rock may thus help explain the many extinctions observed at the K-T boundary.

  12. Source-rock distribution model of the periadriatic region

    SciTech Connect

    Zappaterra, E. )

    1994-03-01

    The Periadriatic area is a mosaic of geological provinces comprised of spatially and temporally similar tectonic-sedimentary cycles. Tectonic evolution progressed from a Triassic-Early Jurassic (Liassic) continental rifting stage on the northern edge of the African craton, through an Early Jurassic (Middle Liassic)-Late Cretaceous/Eocene oceanic rifting stage and passive margin formation, to a final continental collision and active margin deformation stage in the Late Cretaceous/Eocene to Holocene. Extensive shallow-water carbonate platform deposits covered large parts of the Periadriatic region in the Late Triassic. Platform breakup and development of a platform-to-basin carbonate shelf morphology began in the Late Triassic and extended through the Cretaceous. On the basis of this paleogeographic evolution, the regional geology of the Periadriatic region can be expressed in terms of three main Upper Triassic-Paleogene sedimentary sequences: (A), the platform sequence; (B), the platform to basin sequence; and (C), the basin sequence. These sequences developed during the initial rifting and subsequent passive-margin formation tectonic stages. The principal Triassic source basins and most of the surface hydrocarbon indications and economically important oil fields of the Periadriatic region are associated with sequence B areas. No major hydrocarbon accumulations can be directly attributed to the Jurassic-Cretaceous epioceanic and intraplatform source rock sequences. The third episode of source bed deposition characterizes the final active margin deformation stage and is represented by Upper Tertiary organic-rich terrigenous units, mostly gas-prone. These are essentially associated with turbiditic and flysch sequences of foredeep basins and have generated the greater part of the commercial biogenic gases of the Periadriatic region. 82 refs., 11 figs., 2 tabs.

  13. Paleomagnetism of Cretaceous and Paleocene sedimentary rocks across the Castle Mountain Fault, south central Alaska

    NASA Astrophysics Data System (ADS)

    Stamatakos, John A.; Kodama, K. P.; Vittorio, L. F.; Pavlis, T. L.

    Paleomagnetic and rock magnetic analyses on 217 samples from 13 sites in the Paleocene Chickaloon Formation south of the Castle Mountain Fault and 111 samples from 9 sites in the coeval, but lithologically distinct, Arkose Ridge Formation north of this fault indicate that these rocks contain a pre-folding magnetization carried by fine grained (<1.0μm) single domain magnetite. Secondary magnetizations are common, possibly as the result of the presence of authigenic or hydrothermal pyrrhotite. Although characteristic magnetizations were isolated for the Chickaloon and Arkose Ridge rocks, the best results were obtained from demagnetization plane analysis which estimates the location of the paleomagnetic pole for the Chickaloon Formation at 50.5°N, 277.2°E, δm = 12.2°, δP = 7.77deg;, and a paleomagnetic pole for the Arkose Ridge Formation at 60.4°N, 138.6°E, δm = 11.6°, δp = 6.4°. These results suggest that there is no paleomagnetically discernible latitudinal offset across the Castle Mountain Fault since Paleocene time, but that both the Chickaloon and Arkose Ridge rocks, as part of the Peninsular terrane, originated approximately 1600±1200 km south of their present position with respect to North America. One possible explanation of these data is that the Peninsular terrane was accreted to North America at mid-latitudes in the Cretaceous and was subsequently translated northward by right-lateral strike-slip faulting parallel to the North American margin. Hence, the Arkose Ridge and Chickaloon results may be indicative of the cumulative right-hand displacement occurring on these faults since Paleocene time. However, a calculation using the pole to the small circle fit of the present-day curvature of the Tintina-Northern Rocky Mountain Trench and Denali fault systems, and the maximum amount of structurally estimated offset across these fault systems, indicates that motion on these faults can account for no more than half of the paleomagnetically observed

  14. Petrogenesis of the early Cretaceous volcanic rocks in the North Huaiyang tectono-magmatic unit of the Dabie Orogen, eastern China: Implications for crust-mantle interaction

    NASA Astrophysics Data System (ADS)

    Gao, Xin-Yu; Zhao, Tai-Ping; Zhao, Jun-Hong

    2016-03-01

    New elemental and isotopic data are presented for the early Cretaceous felsic to mafic volcanic rocks in the North Huaiyang tectono-magmatic unit (NHY) of the Dabie Orogen, in order to investigate their petrogenesis and provide insights into the nature of the late Mesozoic lithosphere mantle beneath the region and its tectonic relationship with neighboring blocks. LA-ICP-MS zircon U-Pb dating reveals that volcanic rocks of the Jingangtai Formation erupted in a quite short interval about 5 Mys during the Early Cretaceous (128-123 Ma). The rocks have wide ranges of SiO2 (48-68 wt.%) and MgO (0.6-5.6 wt.%) contents. They are enriched in large-ion-lithophile-elements (LILE) (e.g. Rb, Ba) and light rare-earth-elements (LREE), and depleted in high field strength elements (e.g. Nb, Ta and Ti) with weak negative Eu anomalies (Eu/Eu∗ = 0.71-0.94). Meanwhile, the rocks show relatively high whole-rock initial 87Sr/86Sr ratios (0.7074-0.7094), strong negative εNd(t) (-19.1 to -15.8) and zircon εHf values (-20.7 to -14.1). Such typical "continental" geochemical characteristics did not result from crustal contamination during magma ascent, but from an enriched mantle source modified by materials from the subducted Yangtze Craton during the Triassic continental collision. We propose that the petrogenesis of the large-scale contemporaneous magmatism of Dabie Orogen including felsic to mafic volcanic rocks in the NHY reflects an intensive lithospheric thinning and extension during the early Cretaceous as a tectonic response to the change of plate motion of westward subducted Pacific Plate beneath the Eurasian continent.

  15. Late Cretaceous lithospheric extension in SE China: Constraints from volcanic rocks in Hainan Island

    NASA Astrophysics Data System (ADS)

    Zhou, Yun; Liang, Xinquan; Kröner, Alfred; Cai, Yongfeng; Shao, Tongbin; Wen, Shunv; Jiang, Ying; Fu, Jiangang; Wang, Ce; Dong, Chaoge

    2015-09-01

    Petrological, geochemical and in-situ zircon U-Pb dating and Hf-isotope analyses have been carried out on a suite of basalt-andesite-rhyolite volcanic rocks exposed in the Liuluocun area, Hainan Island, SE China. Zircon analyses show that these volcanic rocks crystallized in the Early Cretaceous (ca. 102 Ma). The basalts are characterized by low MgO contents and mg-numbers but high rare earth element, high field strength element and large ion lithophile element contents and Nb-Ta negative anomalies. They have relatively uniform Sr-Nd isotope compositions with εNd(t) values of - 4.09 to - 3.63. The andesites show enrichment of high field strength element and rare earth element with negligible Eu anomalies. They have εNd(t) values of - 2.35 to - 3.88 and εHf(t) values of - 9.73 to - 1.13. The rhyolites have high K2O and SiO2 contents. They are characterized by prominent Eu, P and Ti negative anomalies and enrichment in large ion lithophile element, and show εHf(t) values of - 7.51 to + 0.47 and εNd(t) values of - 2.49 to - 2.69. Petrogenetic analysis indicates that the Liuluocun volcanic rocks were produced by incomplete reaction of the mantle wedge peridotite with felsic melts derived from partial melting of subducted sediment. All these characteristics, combined with geological observations, suggest that their formation was related to regional lithospheric extension in the South China Craton during the Early Cretaceous, which may have been caused by subduction of the Paleo-Pacific plate beneath the continental plate of China.

  16. Geochemistry and petrogenesis of the late Cretaceous potassic-alkaline volcanic rocks from the Amasya Region (northern Turkey)

    NASA Astrophysics Data System (ADS)

    Gülmez, Fatma; Genç, Can; Tüysüz, Okan; Karacık, Zekiye; Roden, Mike; Billor, Zeki; Hames, Willis

    2013-04-01

    elements. Mg# (44.78 - 62.24), FeO (4.74-7.80 wt.%), Nb (6.3-14.4 ppm) and Ni (20-81 ppm) contents of these rocks imply that these rocks were not originated directly from the primitive melts. The geochemical findings suggest a source that is similar with subduction-related magmas. The evaluation of the geological data and combined with the geochemical findings suggest that the high- to ultrahigh-K alkaline volcanic rocks of the Lokman formation were generated by the partial melting processes of a heterogeneous magma source that was modified by the subduction of the Neo-Tethys ocean during the late Cretaceous period.

  17. Reverse Polarity Magnetized Melt Rocks from the Cretaceous/Tertiary Chicxulub Structure, Yucatan Peninsula, Mexico

    NASA Technical Reports Server (NTRS)

    Urrutia-Fucugauchi, J.; Marin, Luis; Sharpton, Virgil L.

    1994-01-01

    We report paleomagnetic results for core samples of the breccia and andesitic rocks recovered from the Yucatan-6 Petrolcos Mexicanos exploratory well within the Chicxulub structure (about 60 km SSW from its center), northern Yucatan, Mexico. A previous study has shown that the rocks studied contain high iridium levels and shocked breccia clasts and an Ar/Ar date of 65.2 +/- 0.4 Ma. Andesitic rocks are characterized by stable single-component magnetizations with a mean inclination of -42.6 deg +/- 2.4 deg. Breccias present a complex paleomagnetic record characterized by multivectorial magnetizations with widely different initial NRM inclinations. However, after alternating field demagnetization, well defined characteristic components with upward inclinations are defined. IRM acquisition experiments, comparison of IRM and NRM coercivity spectra and the single component magnetization of the andesitic rocks indicate the occurrence of iron-rich titanomagnetites of single or pseudo-single domain states as the dominant magnetic carriers. Mean inclinations from the andesitic rocks and most of the breccia samples give a mean inclination of about -40 deg to -45 deg, indicating a reverse polarity for the characteristic magnetization that is consistent with geomagnetic chron 29R, which spans the Cretaceous/Tertiary (K/T) boundary. The inclination is also consistent with the expected value (and corresponding paleolatitude) for the site estimated from the reference polar wander curve for North America. We suggest that the characteristic magnetizations for the andesitic and breccia rocks are the result of shock heating at the time of formation of the impact structure and that the age, polarity and pateolatitude are consistent with a time at the K/T boundary.

  18. Reservoir, seal, and source rock distribution in Essaouira Rift Basin

    SciTech Connect

    Ait Salem, A. )

    1994-07-01

    The Essaouira onshore basin is an important hydrocarbon generating basin, which is situated in western Morocco. There are seven oil and gas-with-condensate fields; six are from Jurassic reservoirs and one from a Triassic reservoir. As a segment of the Atlantic passive continental margin, the Essaouira basin was subjected to several post-Hercynian basin deformation phases, which resulted in distribution, in space and time, of reservoir, seal, and source rock. These basin deformations are synsedimentary infilling of major half grabens with continental red buds and evaporite associated with the rifting phase, emplacement of a thick postrifting Jurassic and Cretaceous sedimentary wedge during thermal subsidence, salt movements, and structural deformations in relation to the Atlas mergence. The widely extending lower Oxfordian shales are the only Jurassic shale beds penetrated and recognized as potential and mature source rocks. However, facies analysis and mapping suggested the presence of untested source rocks in Dogger marine shales and Triassic to Liassic lacustrine shales. Rocks with adequate reservoir characteristics were encountered in Triassic/Liassic fluvial sands, upper Liassic dolomites, and upper Oxfordian sandy dolomites. The seals are provided by Liassic salt for the lower reservoirs and Middle to Upper Jurassic anhydrite for the upper reservoirs. Recent exploration studies demonstrate that many prospective structure reserves remain untested.

  19. Seismic stratigraphy and geologic history of middle Cretaceous through Cenozoic rocks, southern straits of Florida

    SciTech Connect

    Denny, W.M. III; Austin, J.A. Jr.; Buffler, R.T. )

    1994-03-01

    Multifold and singlefold seismic data and indirect ties to industry wells and Deep Sea Drilling Program and Ocean Drilling Program sites are used to study the middle Cretaceous to Cenozoic history of the southern Straits of Florida. Since the late Albian( ), the southern Straits of florida has evolved from a shallow-water platform to deep-water trough. This evolution is related in part to late Albian( )-middle Cenomanian drowning and segmentation of a shallow-water carbonate [open quotes]mega-bank[close quotes] which extended across the region. Since the Late Cretaceous, shallow-water deposition has continued around Cay Sal Bank and along the southern margin of the South Florida Basin, while deeper water deposition has persisted elsewhere. Evolution of the Straits of Florida is also related to Late Cretaceous-middle Eocene convergence between the North American and Caribbean plates. Regional dip towards the Cuban fold-and-thrust belt suggests that the southern Straits of Florida is an extension of the north Cuban foreland basin. A paleo-Florida Current became active during the early Paleocene along the northern limb of this foreland basin. During this time, the southern Straits of Florida were still relatively shallow and bottom currents persisted over most of the region. Rapid subsidence during the late Eocene caused a change in depositional regimes from current-dominated to predominantly pelagic/hemipelagic sedimentation. Since the late Eocene, the Florida Current has influenced deposition only in the shallower parts of the southern Straits of Florida. There may be potential for stratigraphic traps in this area. Winnowing associated with paleo-Florida Current flow may increase the potential for reservoir quality rocks within these deep-water sediments. 62 refs., 17 figs., 2 tabs.

  20. Chemical Remagnetization of Jurassic Carbonates and a Primary Paleolatitude of Lower Cretaceous Volcaniclastic Rocks of the Tibetan Himalaya

    NASA Astrophysics Data System (ADS)

    Huang, W.; Van Hinsbergen, D. J. J.; Dekkers, M. J.; Garzanti, E.; Dupont Nivet, G.; Lippert, P. C.; Li, X.; Maffione, M.; Langereis, C. G.; Hu, X.; Guo, Z.; Kapp, P. A.

    2014-12-01

    Paleolatitudes for the Tibetan Himalaya Zone based on paleomagnetic inclinations provide kinematic constraints of the passive northern Indian margin and the extent of 'Greater India' before the India-Asia collision. Here, we present a paleomagnetic investigation of the Jurassic (carbonates) to Lower Cretaceous (volcaniclastic rocks) Wölong section of the Tibetan Himalaya in the Everest region. The carbonates yield positive fold tests, suggesting that the remanent magnetizations have a pre-folding origin. However, detailed paleomagnetic analyses, rock magnetic tests, end-member modeling of acquisition curves of isothermal remanent magnetization, and petrographic studies reveal that the magnetic carrier of the Jurassic carbonates is authigenic magnetite, whereas the dominant magnetic carrier of the Lower Cretaceous volcaniclastic rocks is detrital magnetite. We conclude that the Jurassic carbonates were remagnetized, whereas the Lower Cretaceous volcaniclastics retain a primary remanence. We hypothesize that remagnetization of the Jurassic carbonates was probably caused by the oxidation of early diagenetic pyrite to magnetite within the time interval at ~86-84 Ma during the latest Cretaceous Normal Superchron and earliest deposition of Cretaceous oceanic red beds in the Tibetan Himalaya. The remagnetization of the limestones prevents determining the size of 'Greater India' during Jurassic time. Instead, a paleolatitude of the Tibetan Himalaya of 23.8±2.1° S at ~86-84 Ma is suggested. This value is lower than the expected paleolatitude of India from apparent polar wander path (APWP). The volcaniclastic rocks with the primary remanence, however, yielded a Lower Cretaceous paleolatitude of Tibetan Himalaya of 55.5±3° S, fitting well with the APWP of India.

  1. Index to selected machine-readable geohydrologic data for Precambrian through Cretaceous rocks in Kansas

    USGS Publications Warehouse

    Spinazola, J.M.; Hansen, C.V.; Underwood, E.J.; Kenny, J.F.; Wolf, R.J.

    1987-01-01

    Machine-readable geohydrologic data for Precambrian through Cretaceous rocks in Kansas were compiled as part of the USGS Central Midwest Regional Aquifer System Analysis. The geohydrologic data include log, water quality, water level, hydraulics, and water use information. The log data consist of depths to the top of selected geologic formations determined from about 275 sites with geophysical logs and formation lithologies from about 190 sites with lithologic logs. The water quality data consist of about 10,800 analyses, of which about 1 ,200 are proprietary. The water level data consist of about 4 ,480 measured water levels and about 4,175 equivalent freshwater hydraulic heads, of which about 3,745 are proprietary. The hydraulics data consist of results from about 30 specific capacity tests and about 20 aquifer tests, and interpretations of about 285 drill stem tests (of which about 60 are proprietary) and about 75 core-sample analyses. The water use data consist of estimates of freshwater withdrawals from Precambrian through Cretaceous geohydrologic units for each of the 105 counties in Kansas. Average yearly withdrawals were estimated for each decade from 1940 to 1980. All the log and water use data and the nonproprietary parts of the water quality , water level, and hydraulics data are available on magnetic tape from the USGS office in Lawrence, Kansas. (Author 's abstract)

  2. Middle Jurassic to early Cretaceous igneous rocks along eastern North American continental margin

    SciTech Connect

    Jansa, L.F.; Pe-Piper, G.

    1988-03-01

    Late Middle Jurassic and Early Cretaceous mafic dikes, sills, flows, and local volcaniclastic sediments are intercalated within continental shelf sediments from the Baltimore Canyon Trough northward to the Grand Banks of Newfoundland. The igneous rocks on the eastern North American margin are mainly alkali basalts of intraplate affinity. The late Middle Jurassic igneous activity was of short duration, at about 140 Ma, and was restricted to Georges Bank where it led to construction of several volcanic cones. The main period of igneous activity was concentrated at about 120 Ma in the Aptian/Berremian. The activity consists of dike swarms in Baltimore Canyon, occasional dikes on the Scotian Shelf, and the growth of stratovolcanoes on the Scotian Shelf and Grand Banks. Younger dikes (approx. 95 Ma) also are present on the Grand Banks. With regard to oil exploration on the continental margin, care must be taken to properly identify igneous and volcaniclastic rocks on mechanical logs, drill cuttings, and cores. Reflection seismic profiles can be used to map the areal extent of sills, flows, and low-angle dikes, which commonly show distinctive seismic responses. However, steeply dipping dikes generally produce little, if any, seismic response. Isotopic-age determinations of igneous rocks, combined with biostratigraphic-age determinations of adjacent strata, are invaluable for stratigraphic correlation, establishing chronology of seismic sequences, and analysis of basin sedimentation and tectonic history. 9 figures, 2 tables.

  3. Petrophysical properties of carbonate rocks: example from the cretaceous Jandaira Formation, Potiguar basin - Brazil

    NASA Astrophysics Data System (ADS)

    Nogueira, Francisco; Soares, José; Bezerra, Francisco; Cavalcanti, Bruno; Cazarin, Caroline

    2015-04-01

    Carbonate sediments are prone to rapid and pervasive diagenetic alterations that change the mineralogy and pore structure within carbonate units. In particular, cementation and dissolution processes continuously modify the pore structure to create or destroy porosity. In extreme cases these modifications can completely change the mineralogy from calcite to dolomite, in the properties of rock for soil (Caliche), or reverse the pore distribution whereby original grains are dissolved to produce pores as the original pore space is filled with cement to form the rock. These processes are common in fractured carbonate units. All these modifications alter the elastic properties of the rock and, therefore, the sonic velocity. This study presents the result of relationship among diagenesis, porosity, grain density, and sonic velocity, in limestones, dolomites and caliche samples from the Jandaíra Formation, Potiguar basin, Brasil. This stratigraphic unit have been subjected to fracturing since the late Cretaceous. The rock and soil samples were collected in outcrops, prepared as plugs, and analyzed at ambient temperature. The porosity and grain density analysis were performed under ambient pressure, while elastic properties analyses were conducted with samples under confining pressure between 5 and 40 MPa. The result is a wide range of sonic velocity in carbonates, in which compressional-wave velocity (VP) ranges from 3507 to 6119 m/s and shear-wave velocity (VS) range from 2114 to 3451 m/s. The ratio VS1/VS2 indicate a level of anisotropy equal to 2%, without any clear relationship with porosity. The elastics properties are affected by rock alteration process or by modification of mineral composition, due to the presence of clay minerals and organic matter, The porosity and grain density values range from 3.2 to 21.5%, and 2.7 to 2.8 (g/cm3), respectively. The grain density analysis in the carbonate rocks indicate the existence of two groups: the first group of calcareous

  4. A detailed paleomagnetic investigation of Cretaceous igneous rocks: New contributions from Colombia and Paraguay

    NASA Astrophysics Data System (ADS)

    Kapper, Lisa; Calvo-Rathert, Manuel; Cejudo Ruiz, Ruben; Sanchez Bettucci, Leda; Irurzun, Alicia; Carrancho, Ángel; Gogichaishvili, Avto; Morales, Juan; Sinito, Ana; Mejia, Victoria; Nivia Guevara, Alvaro

    2016-04-01

    We present rock magnetic results, paleodirections and -intensities from Cretaceous samples from two locations from South America. On the one hand we report paleomagnetic results from the Western Cordillera of Colombia from 15 sites north of Cali. These volcanic rock samples were related to age determinations from close localities of 92.5 ± 1.1 Ma on average, occuring during the Cretaceous Normal Superchron (CNS). On the other hand we show results from an alkaline dike swarm in the Asunción Rift, Eastern Paraguay. Previous investigations suggest that these dikes extruded in a rather short period of 126-127 Ma, during normal and reversed polarity field configuration, right before the onset of the CNS. Rock magnetic measurements of both sites show that the main magnetic component is a low-coercivity mineral, e.g., (titanium)magnetite, with a large range of grain sizes from multi- to single domain, or mixtures of several grain sizes in a sample. For the Colombian site we obtained an average Virtual Geomagnetic Pole (VGP), whose latitude compares well with those for South and North America of Besse and Courtillot (2002) with a similar age. For the determination of the Virtual Dipole Moments (VDMs) the Thellier-Coe method did not give successful results, probably due to minerals in the range of multidomain grain size. Therefore, we applied the multispecimen protocol on ten specimens. Six successful determinations produced an average VDM of 2.3 x 10‑22 Am2. This value is rather low, but in good agreement with other data from the same time period. Directional investigation of the Eastern Paraguayan dike swarm show highly clustered promising results with six out of 22 sites having an α95 ≤ 10.0° . Most of these sites show a reversed polarity; however, one intermediate polarity site has a very reliable direction as well. This and the occurrence of normal polarity sites suggest that the dikes may have not appeared at the same time but rather during the transition from

  5. World petroleum systems with Jurassic source rocks

    SciTech Connect

    Klemme, H.D. )

    1993-11-08

    Fourteen petroleum systems with Upper Jurassic source rocks contain one quarter of the world's discovered oil and gas. Eleven other systems with Lower and Middle Jurassic source rocks presently have a minor but significant amount of discovered oil and gas. The purpose of this article is to review the systems geologically, describe their location in space and time on a continental scale, estimate their relative petroleum system recovery efficiencies, and outline the effect their essential elements and processes have on their petroleum plumbing.

  6. Biostratigraphic correlation chart of some Upper Cretaceous rocks from the Lost Soldier area, Wyoming to west of Craig, Colorado

    USGS Publications Warehouse

    Bader, J.W.; Gill, J.R.; Cobban, W.A.; Law, B.E.

    1983-01-01

    This chart depicts the time-stratigraphic relations of some Upper Cretaceous rocks along the eastern and southeastern margins of the Greater Green River Basin, south-central Wyoming and northwestern Colorado. The purpose of this report is to release a preferred set of correlations based upon marine mollusk biostratigraphy. The senior author, with the help of B. E. Law, has acquired, synthesized, compiled, and interpreted data from various sources. These include selected published documents (see "References Cited") and unpublished reports of fossil identifications by W. A. Cobban who examined collections made by the late J. R. Gill. Numerous measured sections of Gill's were also utilized. It must be emphasized that all interpretations on this chart are based on information obtained from these sources and the senior author has yet to substantiate these correlations in the field. Not all data from the area of this study is included herein because it is either repetitive in nature or its reliability is uncertain. This uncertainty is due to the ambiguity inherent in both fossil identification and stratigraphic interpretation. Questionable unpublished material has been omitted while published data which is inconsistent with the senior author's correlations may be found in the footnotes portion of this report. The rock units are assigned to a range of ammonites that have been related to an absolute time scale. The ammonite zonation and age boundaries are adapted from Obradovich and Cobban (1975). "D" numbers are provided for each geographic locality where fossils were collected and described by personnel of the U.S. Geological Survey. These fossils may be accessed at the offices of the Survey in Lakewood, Colorado.

  7. Natural gas accumulations in low-permeability Tertiary, and Cretaceous (Campanian and Maastrichtian) rock, Uinta Basin, Utah. Final report

    SciTech Connect

    Fouch, T.D.; Wandrey, C.J.; Pitman, J.K.; Nuccio, V.F.; Schmoker, J.W.; Rice, D.D.; Johnson, R.C.; Dolton, G.L.

    1992-02-01

    This report characterizes Upper Cretaceous Campanian and Maastrichtian, and lower Tertiary gas-bearing rocks in the Uinta Basin with special emphasis on those units that contain gas in reservoirs that have been described as being tight. The report was prepared for the USDOE whose Western Tight Gas Sandstone Program cofunded much of this research in conjunction with the US Geological Survey`s Evolution of Sedimentary Basins, and Onshore Oil and Gas Programs. (VC)

  8. Natural gas accumulations in low-permeability Tertiary, and Cretaceous (Campanian and Maastrichtian) rock, Uinta Basin, Utah

    SciTech Connect

    Fouch, T.D.; Wandrey, C.J.; Pitman, J.K.; Nuccio, V.F.; Schmoker, J.W.; Rice, D.D.; Johnson, R.C.; Dolton, G.L.

    1992-02-01

    This report characterizes Upper Cretaceous Campanian and Maastrichtian, and lower Tertiary gas-bearing rocks in the Uinta Basin with special emphasis on those units that contain gas in reservoirs that have been described as being tight. The report was prepared for the USDOE whose Western Tight Gas Sandstone Program cofunded much of this research in conjunction with the US Geological Survey's Evolution of Sedimentary Basins, and Onshore Oil and Gas Programs. (VC)

  9. The Late Cretaceous igneous rocks of Romania (Apuseni Mountains and Banat): the possible role of amphibole versus plagioclase deep fractionation in two different crustal terranes

    NASA Astrophysics Data System (ADS)

    Vander Auwera, Jacqueline; Berza, Tudor; Gesels, Julie; Dupont, Alain

    2016-04-01

    We provide new whole-rock major and trace elements as well as 87Sr/86Sr and 143Nd/144Nd isotopic data of a suite of samples collected in the Late Cretaceous volcanic and plutonic bodies of the Apuseni Mts. (Romania) that belong to the Banatitic Magmatic and Metallogenic Belt, also called the Apuseni-Banat-Timok-Srednogorie belt. The samples define a medium- to high-K calc-alkaline differentiation trend that can be predicted by a three-step fractional crystallization process which probably took place in upper crustal magma chambers. Published experimental data indicate that the parent magma (Mg# = 0.47) of the Apuseni Mts. trend could have been produced by the lower crustal differentiation of a primary (in equilibrium with a mantle source) magma. The Late Cretaceous magmatic rocks of the Apuseni Mts. and Banat display overlapping major and trace element trends except that Sr is slightly lower and Ga is higher in the Apuseni Mts. parent magma. This difference can be accounted for by fractionating plagioclase-bearing (Apuseni Mts.) or amphibole-bearing (Banat) cumulates during the lower crustal differentiation of the primary magma to the composition of the parent magma of both trends. This, together with results obtained on the Late Cretaceous igneous rocks from the Timok area in Eastern Serbia, further suggests variation of the water content of the primary magma along and across the belt. The Apuseni Mts. versus the Banat samples display different isotopic compositions that likely resulted from the assimilation of two distinct crustal contaminants, in agreement with their emplacement in two separate mega-units of Alpine Europe.

  10. Paleontologic and stratigraphic relations of phosphate beds in Upper Cretaceous rocks of the Cordillera Oriental, Colombia

    USGS Publications Warehouse

    Maughan, Edwin K.; Zambrano O., Francisco; Mojica G., Pedro; Abozaglo M., Jacob; Pachon P., Fernando; Duran R., Raul

    1979-01-01

    Phosphorite crops out in the Cordillera Oriental of the Colombian Andes in rocks of Late Cretaceous age as strata composed mostly of pelletal carbonate fluorapatite. One stratum of Santonian age near the base of the Galembo Member of the La Luna Formation crops out at many places in the Departments of Santander and Norte de Santander and may be of commercial grade. This stratum is more than one meter thick at several places near Lebrija and near Sardinata, farther south it is locally one meter thick or more near the base of the Guadalupe Formation in the Department of Boyaca. Other phosphorite beds are found at higher stratigraphic levels in the Galembo Member and the Guadalupe Formation, and at some places these may be commercial also. A stratigraphically lower phosphorite occurs below the Galembo Member in the Capacho Formation (Cenomanian age) in at least one area near the town of San Andres, Santander. A phosphorite or pebbly phosphate conglomerate derived from erosion of the Galembo Member forms the base of the Umir Shale and the equivalent Colon Shale at many places. Deposition of the apatite took place upon the continental shelf in marine water of presumed moderate depth between the Andean geosyncline and near-shore detrital deposits adjacent to the Guayana shield. Preliminary calculations indicate phosphorite reserves of approximately 315 million metric tons in 9 areas, determined from measurements of thickness, length of the outcrop, and by projecting the reserves to a maximum of 1,000 meters down the dip of the strata into the subsurface. Two mines were producing phosphate rock in 1969; one near Turmeque, Boyaca, and the other near Tesalia, Huila.

  11. Electric fabric of Cretaceous clastic rocks in Abu Gharadig basin, Western Desert, Egypt

    NASA Astrophysics Data System (ADS)

    Nabawy, Bassem S.; ElHariri, Tarek Y. M.

    2008-09-01

    Measuring the petrophysical properties of sedimentary rocks in three-dimensions (3-D) has a high priority for interpretation of their physical behaviour. The present work attempts to study the 3-D electric behaviour of the Upper Cretaceous sandstones and clayey sandstones in the Abu Gharadig basin, Egypt. These rocks belong to the Betty, Bahariya, and Abu Roash Formations. The apparent electrical resistivity ( Ro) was measured in three perpendicular directions, one normal to the bedding plane along Z-axis, and the other two directions parallel to the bedding plane and normal to each other, along X-axis and Y-axis. The electrical resistivity ( Ro) was also studied at three NaCl-saline concentrations of Rw = 0.53, 0.13, and 0.07 Ω m in ambient conditions, using A-C bridge at 1 kHz. It is proposed that, processing and matching the electric data in 3-D as ellipsoids instead of in 2-D, has led to the electric fabric concept. It is a combination of electric foliation ( F) and electric lineation ( L). Statistical analyses of measured electrical resistivity reveal that the electric fabric at the second brine concentration should be taken into consideration to avoid the effect of clay content. The electric lineation and foliation of the studied sandstones and clayey sandstones at the second concentration are mostly small (1.1-1.5) to moderate (1.5-2.5), with few sandstone samples having high (2.5-5.0) to very high foliation (5.0-7.5), whereas the electric anisotropy values for these samples are small to moderate (1.1-2.5). This fabric is contributed mainly from their electric foliation, indicating some load pressure compaction that led to small to moderate anisotropic grains and flow paths/network pore spaces.

  12. Plesiosaur-bearing rocks from the Late Cretaceous Tahora Fm, Mangahouanga, New Zealand - a palaeoenvironmental study

    NASA Astrophysics Data System (ADS)

    Vajda, Vivi; Raine, J. Ian

    2010-05-01

    Mangahouanga Stream, Hawkes Bay, New Zealand is world-famous for its high southern latitude vertebrate fossils including plesiosaurs, mosasaurs and more rarely, dinosaurs. The fossils are preserved in the conglomeratic facies of the Maungataniwha Sandstone Member of the Tahora Formation. A palynological investigation of sediments from the boulders hosting vertebrate fossils reveals well-preserved palynological assemblages dominated by pollen and spores from land plants but also including marine dinoflagellate cysts in one sample. The palynofacies is strongly dominated by wood fragments including charcoal, and the sample taken from a boulder hosting plesiosaur vertebrae is entirely terrestrially derived, suggesting a fresh-water habitat for at least some of these plesiosaurs. The key-pollen taxa Nothofagidites senectus and Tricolpites lilliei, together with the dinocyst Isabelidinium pellucidum and the megaspore Grapnelispora evansii, strongly indicate an early Maastrichtian age for the host rock. The terrestrial palynoflora reflects a mixed vegetation dominated by podocarp conifers and angiosperms with a significant tree-fern subcanopy component. The presence of taxa with modern temperate distributions such as Nothofagus (southern beech), Proteaceae and Cyatheaceae (tree-ferns), indicates a mild-temperate climate and lack of severe winter freezing during the latest Cretaceous, providing an ecosystem which most probably made it possible for polar dinosaurs to overwinter. The paper is dedicated to Mrs Joan Wiffen who with her great persistence, enthusiasm and courage put Mangahouanga on the world map, becoming a role model for many young scientists.

  13. Depletion of 13C in Cretaceous marine organic matter: Source, diagenetic, or environmental sigal?

    USGS Publications Warehouse

    Dean, W.E.; Arthur, M.A.; Claypool, G.E.

    1986-01-01

    Geochemical studies of Cretaceous strata rich in organic carbon (OC) from Deep Sea Drilling Project (DSDP) sites and several land sections reveal several consistent relationships among amount of OC, hydrocarbon generating potential of kerogen (measured by pyrolysis as the hydrogen index, HI), and the isotopic composition of the OC. First, there is a positive correlation between HI and OC in strata that contain more than about 1% OC. Second, percent OC and HI often are negatively correlated with carbon isotopic composition (?? 13C) of kerogen. The relationship between HI and OC indicates that as the amount of organic matter increases, this organic matter tends to be more lipid rich reflecting the marine source of the organic matter. Cretaceous samples that contain predominantly marine organic matter tend to be isotopically lighter than those that contain predominantly terrestrial organic matter. Average ?? 13C values for organic matter from most Cretaceous sites are between -26 and -28???, and values heavier than about -25??? occur at very few sites. Most of the ?? 13C values of Miocene to Holocene OC-rich strata and modern marine plankton are between -16 to -23???. Values of ??13C of modern terrestrial organic matter are mostly between -23 and -33???. The depletion of terrestial OC in 13C relative to marine planktonic OC is the basis for numerous statements in the literature that isotopically light Cretaceous organic matter is of terrestrial origin, even though other organic geochemical and(or) optical indicators show that the organic matter is mainly of marine origin. A difference of about 5??? in ?? 13C between modern and Cretaceous OC-rich marine strata suggests either that Cretaceous marine planktonic organic matter had the same isotopic signature as modern marine plankton and that signature has been changed by diagenesis, or that OC derived from Cretaceous marine plankton was isotopically lighter by about 5??? relative to modern plankton OC. Diagenesis does

  14. Geochronology and geochemistry of Cretaceous Nanshanping alkaline rocks from the Zijinshan district in Fujian Province, South China: Implications for crust-mantle interaction and lithospheric extension

    NASA Astrophysics Data System (ADS)

    Li, Bin; Jiang, Shao-Yong

    2014-10-01

    In situ zircon U-Pb ages and Hf isotopic data, major and trace elements, and Sr-Nd-Pb isotopic compositions are reported for Nanshanping alkaline rocks from the Zijingshan district in southwestern Fujian Province (the Interior or Western Cathaysia Block) of South China. The Nanshanping alkaline rocks, which consist of porphyritic quartz monzonite, porphyritic syenite, and syenite, revealed a Late Cretaceous age of 100-93 Ma. All of the rocks show high SiO2, K2O + Na2O, and LREE but low CaO, Fe2O3T, MgO, and HFSE (Nb, Ta, P, and Ti) concentrations. These rocks also exhibit uniform initial 87Sr/86Sr ratios of 0.7078 to 0.7087 and εNd(t) values of -4.1 to -7.2, thus falling within the compositional field of Cretaceous basalts and mafic dikes occurring in the Cathaysia Block. Additionally, these rocks display initial Pb isotopic compositions with a 206Pb/204Pbi ratio of 18.25 to 18.45, a 207Pb/204Pbi ratio of 15.63 to 15.67, and a 208Pb/204Pbi ratio of 38.45 to 38.88. Combined with the zircon Hf isotopic compositions (εHf(t) = -11.7 to -3.2), which are different from those of the basement rocks, we suggest that Nanshanping alkaline rocks were primarily derived from a subduction-related enriched mantle source. High Rb/Sr (0.29-0.65) and Zr/Hf (37.5-49.2) but relatively low Ba/Rb (4.4-8.1) ratios suggest that the parental magmas of these rocks were most likely formed via partial melting of a phlogopite-bearing mantle source with carbonate metasomatism. The relatively high SiO2 (62.35-70.79 wt.%) and low Nb/Ta (10.0-15.3) ratios, positive correlation between SiO2 and (87Sr/86Sr)I, and negative correlation between SiO2 and εNd(t) of these rocks suggest that the crustal materials were also involved in formation of the Nanshanping alkaline rocks. Combined with geochemical and isotopic features, we infer magmatic processes similar to AFC (assimilation and fractional crystallization) involving early fractionation of clinopyroxene and olivine and subsequent fractionation of

  15. Intrusive rocks in the ophiolitic mélange of Crete - Witnesses to a Late Cretaceous thermal event of enigmatic geological position

    NASA Astrophysics Data System (ADS)

    Langosch, Alexander; Seidel, Eberhard; Stosch, Heinz-Günter; Okrusch, Martin

    The ophiolitic mélange in the uppermost tectonic unit of the Cretan nappe pile contains crystalline slices which consist of a low-pressure/high-temperature metamorphic sequence and synmetamorphic intrusions, ranging in composition from diorite to granite. The plutonic rocks conform to two different igneous suites, dominated by diorites in eastern, and granites in central Crete, displaying I-type and A-type characters, respectively. Some of the granites from central Crete are classified as transitional I/S-type. They are closely associated with migmatitic paragneisses. Based on major and trace element, REE, Sr- and Nd-isotope geochemistry, the mafic members of both suites are derived from a depleted mantle source. The higher concentrations of P and Ti in the mafic members of the igneous suite in central Crete and the deviant trend of the whole suite may be explained by a different mantle source or a lower degree of partial melting. In both suites, magmatic evolution was governed by fractional crystallization of amphibole/clinopyroxene, plagioclase and minor phases. In addition, mixing or mingling of compositionally different magmas is indicated for the intrusive suite of eastern Crete whereas in central Crete the magma composition was at least partially modified through assimilation of (meta)pelites. The geochemical results suggest that the plutonic rocks formed in a supra-subduction zone setting. However, a formation during continental lithospheric extension cannot be ruled out. Published and new Rb-Sr and K-Ar dates on amphiboles and biotites from intrusive rocks and their metamorphic country rocks show that the peak of the low-P/high-T metamorphism and the intrusion of the two igneous suites testify to the same thermal event of Late Cretaceous age. A similar Late Cretaceous association of metamorphic and plutonic rocks has been described from the uppermost tectonic unit in the Attic-Cycladic Crystalline Complex. Together with the Cretan occurrences, they form a

  16. Geologic Assessment of Undiscovered, Technically Recoverable Coalbed-Gas Resources in Cretaceous and Tertiary Rocks, North Slope and Adjacent State Waters, Alaska

    USGS Publications Warehouse

    Roberts, Stephen B., (compiler)

    2008-01-01

    The purpose of the U.S. Geological Survey's (USGS) National Oil and Gas Assessment is to develop geology-based hypotheses regarding the potential for additions to oil and gas reserves in priority areas of the United States, focusing on the distribution, quantity, and availability of oil and natural gas resources. The USGS has completed an assessment of the undiscovered, technically recoverable coalbed-gas resources in Cretaceous and Tertiary rocks underlying the North Slope and adjacent State waters of Alaska (USGS Northern Alaska Province 5001). The province is a priority Energy Policy and Conservation Act (EPCA) province for the National Assessment because of its potential for oil and gas resources. The assessment of this province is based on geologic principles and uses the total petroleum system concept. The geologic elements of a total petroleum system include hydrocarbon source rocks (source rock maturation, hydrocarbon generation and migration), reservoir rocks (stratigraphy, sedimentology, petrophysical properties), and hydrocarbon traps (trap formation and timing). In the Northern Alaska Province, the USGS used this geologic framework to define one composite coalbed gas total petroleum system and three coalbed gas assessment units within the petroleum system, and quantitatively estimated the undiscovered coalbed-gas resources within each assessment unit.

  17. Effective petroleum source rocks of the world: Stratigraphic distribution and controlling depositional factors

    SciTech Connect

    Klemme, H.D. ); Ulmishek, G.F. )

    1991-12-01

    Six stratigraphic intervals, representing one-third of Phanerozoic time, contain petroleum source rocks that have provided more than 90% of the world's discovered original reserves of oil and gas (in barrels of oil equivalent). The six intervals are (1) Silurian (generated 9% of the world's reserves), (2) Upper Devonian-Tournaisian (8% of reserves), (3) Pennsylvanian-Lower Permian (8% of reserves), (4) Upper Jurassic (25% of reserves), (5) middle Cretaceous (29% of reserves), and (6) Oligocene-Miocene (12.5% of reserves). This uneven distribution of source rocks vary from interval to interval. Maps that show facies, structural forms, and petroleum source rocks were prepared for this study. Analysis of the maps indicates that several primary factors controlled the areal distribution of source rocks, their geochemical type, and their effectiveness (i.e., the amounts of discovered original conventionally recoverable reserves of oil and gas generated by these rocks). These factors are geologic age, paleolatitude of the depositional areas, structural forms in which the deposition of source rocks occurred, and the evolution of biota. The maturation time of these source rocks demonstrates that majority of discovered oil and gas is very young; almost 70% of the world's original reserves of oil and gas has been generated since the Coniacian, and nearly 50% of the world's petroleum{sup 4} has been generated and trapped since the Oligocene.

  18. Hydrogeochemical Characterization of Formation Waters in Cretaceous Rocks from Southeast Mexico

    NASA Astrophysics Data System (ADS)

    Mendez-Ortiz, B. A.; Carrillo-Chavez, A.; Tritlla, J.; Levresse, G.; Varela, M.; Clara, L.; Caballero, E.

    2007-05-01

    Formation waters were sampled from ten different producing wells in several Cretaceous oil fields in central and north Tabasco, southeast of Mexico. All of them were analyzed for mayor and trace ions, as well as for 18O and D isotopes. The salinity in the central oil fields (TSD in ppm) ranges from 221,972 ppm to 243,372 ppm. The salinities are very similar in different oil wells. These salinities are 1 to 14 times higher than the salinity found in another fields (15,299 to 16,557 ppm), and 1 to 5 times higher than other field. A northern oil field salinity is characterized also by an important heterogeneity of it salinity due to salt intrusion and interaction with non uniform structures. The major ions analysis (Na+, Ca2+, K+, Mg+, Cl+, SO42-, HCO3-) suggests water-rock interactions in all the oil fields. This is the case, particularly marked in the central fields, where the brines are enriched in Mg in a range from 10 to 274 ppm. This is due to brines/dolomites interaction, while in other oil field, the higher concentration of Mg was only of 1.17 ppm. The central oil fields present depletion on sulfate concentrations (<5.9 ppm). This could be due to precipitation of metal sulfide (thermal reduction) in the form of pyrite and marcasite. Halogens (Br, Cl) concentration indicates three different origins for the formation waters. Water from the central wells is plotted on the evaporated marine water evolution line. Water from the southern wells is located close to marine water in the halite dissolution zone, whereas water form the northern wells is plotted in the diluted waters zone. Cl and Br evolution in the central field samples shows two different groups, and clearly reveal mixing processes between marine water and highly evolved evaporated seawater. Whereas water from the northern wells is plotted in the mixing zone between seawater with low salinity water trapped in Tertiary sediments which can migrate until mixed with older formation waters. The D-O stable

  19. Source rock maturation, San Juan sag

    SciTech Connect

    Gries, R.R.; Clayton, J.L.

    1989-09-01

    Kinetic modeling for thermal histories was simulated for seven wells in the San Juan sag honoring measured geochemical data. Wells in the area of Del Norte field (Sec. 9, T40N, R5E), where minor production has been established from an igneous sill reservoir, show that the Mancos Shale source rocks are in the mature oil generation window as a combined result of high regional heat flow and burial by approximately 2,700 m of Oligocene volcanic rocks. Maturation was relatively recent for this area and insignificant during Laramide subsidence. In the vicinity of Gramps field (Sec. 24, T33N, R2E) on the southwest flank of the San Juan sag, these same source rocks are exposed due to erosion of the volcanic cover but appear to have undergone a similar maturation history. At the north and south margins of the sag, two wells (Champlin 34A-13, Sec. 13, T35N, R4.5E; and Champlin 24A-1, Sec. 1, T44N, R5E) were analyzed and revealed that although the regional heat flow was probably similar to other wells, the depth of burial was insufficient to cause maturation (except where intruded by thick igneous sills that caused localized maturation). The Meridian Oil 23-17 South Fork well (Sec. 17, T39N, R4E) was drilled in a deeper part of the San Juan sag, and source rocks were intruded by numerous igneous sills creating a complex maturation history that includes overmature rocks in the lowermost Mancos Shale, possible CO{sub 2} generation from the calcareous Niobrara Member of the Mancos Shale, and mature source rocks in the upper Mancos Shale.

  20. Configuration of the base of the Edwards-Trinity aquifer system and hydrogeology of the underlying pre-Cretaceous rocks, west-central Texas

    USGS Publications Warehouse

    Barker, Rene A.; Ardis, Ann F.

    1992-01-01

    The Edwards-Trinity aquifer system is underlain by an extensive complex of rocks, ranging from Late Cambrian through Late Triassic in age, that are typically about 10 to perhaps 1,000 times less permeable than those composing the aquifer system. The Cretaceous rocks of the aquifer system are separated from the pre-Cretaceous rocks by an unconformity that spans about 60 million years of erosion during the Jurassic Period. The upper surface of the pre-Cretaceous rock complex forms the base of the Edwards-Trinity aquifer system. The configuration of the base reflects the original topography of the eroded pre-Cretaceous land surface plus the effects of subsequent deformation. The most permeable pre-Cretaceous rocks are in the eastern half of the study area where they compose the Hickory aquifer (in Upper Cambrian rocks), Ellenburger-San Saba aquifer (Upper Cambrian- Lower Ordovician), and Marble Falls aquifer (Lower Pennsylvanian). These aquifers are hydraulically connected to the northeastern fringe of the Edwards-Trinity aquifer system, as their up-turned margins crop out around the flanks of the breached Llano uplift. The Rustler aquifer in rocks of Late Permian age underlies parts of the Trans-Pecos region, where it yields small amounts of greatly mineralized water for industrial and agricultural purposes. The Dockum aquifer in rocks of Late Triassic age directly underlies the Edwards-Trinity aquifer system in western parts of the study area, and locally increases the saturated thickness of the ground-water-flow system by an average of about 200 feet. Despite these notable exceptions, the collective effect of the pre-Cretaceous rocks is that 01 a barrier to ground-water flow, which limits the exchange of water across the base of the Edwards-Trinity aquifer system.

  1. Petroleum source rock potential on Jamaica

    SciTech Connect

    Rodrigues, K.

    1983-01-10

    By means of standard geochemical techniques, geologists evaluated the hydrocarbon source rock potential of Jamaican shales and mudstones in terms of the amount, type, and maturity of the organic matter preserved in these sediments. Samples taken from outcrops and well cores revealed that shales from the Chapelton and Windsor formations may have the best potential for hydrocarbon generation.

  2. Middle Triassic source rocks in north Lombardy

    SciTech Connect

    Gnaccolini, M.; Gaetani, M.; Mattavelli, L.; Leoni, C.; Poliani, G.; Riva, A.

    1988-08-01

    Using molecular geochemistry techniques, we established that the Perledo-Verenna and Meride Formations (Middle Triassic, southern Alps) represent the source rocks of the Gaggiano and Villafortuna deep oil fields discovered 40 km northwest of Milan. To find the geological factors which control the areal extent thickness and organic matter distribution relative to these sequences, a sedimentological and geochemical study was undertaken.

  3. Magma sources during Gondwana breakup: chemistry and chronology of Cretaceous magmatism in Westland, New Zealand

    NASA Astrophysics Data System (ADS)

    van der Meer, Quinten H. A.; Waight, Tod E.; Scott, James M.

    2013-04-01

    Cretaceous-Paleogene rifting of the Eastern Gondwana margin thinned the continental crust of Zealandia and culminated in the opening of the Tasman Sea between Australia and New Zealand and the Southern Ocean, separating both from Antarctica. The Western Province of New Zealand consists of a succession of metasedimentary rocks intruded by Palaeozoic and Mesozoic granitoids that formed in an active margin setting through the Phanerozoic. Upon cessation of subduction, the earliest stages of extension (~110-100 Ma) were expressed in the formation of metamorphic core complexes, followed by emplacement of granitoid plutons, the deposition of terrestrial Pororari Group sediments in extensional half-grabens across on- and offshore Westland, and the intrusion of mafic dikes from ~90 Ma. These dikes are concentrated in the swarms of the Paparoa and Hohonu Ranges and were intruded prior to and simultaneous with volumetrically minor A-type plutonism at 82 Ma. The emplacement of mafic dikes and A-type plutonism at ~82 Ma is significant as it coincides with the age of the oldest seafloor in the Tasman Sea, therefore it represents magmatism coincident with the initiation of seafloor spreading which continued until ~53 Ma. New 40Ar-39Ar ages indicate that the intrusion of mafic dikes in basement lithologies both preceded and continued after the initial opening of the Tasman Sea, including an additional population of ages at ~70 Ma. This indicates either a prolonged period of extension-related magmatism that continued >10 Ma after initial breakup, or two discrete episodes of magmatism during Tasman Sea spreading. Volumetrically minor Cenozoic within-plate magmatism continued sporadically throughout the South Island and bears a characteristic HIMU (high time integrated U/Pb) signature. A detailed geochemistry and chronological study of Cretaceous mafic and felsic magmatism is currently in progress and aims to better understand the transition of magma sources from a long lived active

  4. Depositional history and seismic stratigraphy of Lower Cretaceous rocks in the National Petroleum Reserve in Alaska and adjacent areas

    SciTech Connect

    Molenaar, C.M.

    1989-01-01

    Lower Cretaceous rocks, which are widespread throughout the National Petroleum Reserve in Alaska (NPRA) and adjacent areas north of the Brooks Range, make up the major part of the thick sedimentary fill of the Colville basin. Much seismic and well information obtained since 1974 has aided considerably in understanding these rocks. These data include about 20,000 km of seismic lines, covering much of the NPRA with a grid spacing of 10-20 km, and 28 exploratory wells that bring the total to more than 50 wells in and adjacent to the NPRA. The purpose of this chapter is to interpret the depositional history of Lower Cretaceous rocks in the NPRA and adjacent areas on the basis of the latest seismic and well data and well data and on information from outcrops in the southern part of the Colville basin. The basin geometry and depositional history described in earlier reports are repeated here in the context of the overall Lower Cretaceous depositional history. Well data (including paleontology) and seismic data are used almost exclusively to interpret relations in the northern foothills and coastal plain areas. Surface data and some well data are used in the southern parts of the northern foothills, and surface data are used exclusively to interpret the depositional history in the southern foothills and Brooks Range. The quality of seismic data is fair to good in most of the coastal plain, where the structure is simple. In the northern foothills, tracing seismic reflections is more difficult, especially in the shallower part of the section because of structural complications in the thrust-faulted anticlines. The quality of seismic data across the structurally complex southern foothills area is inadequate to correlate stratigraphic units of the outcrop area of the southern foothills with subsurface units to the north.

  5. Detailed seal analysis, Lower Cretaceous rocks of the North Sinai basin, Egypt: Effects on hydrocarbon migration and accumulation in overpressured regimes

    SciTech Connect

    Nashaat, M. )

    1991-03-01

    The filling mechanism of petroleum traps in the North Sinai basin has been studied, taking into account the area's maturation history, the hydrodynamic parameters, and the seal efficiencies. The purpose of this study was to ascertain whether or not sizeable accumulations of hydrocarbons could be expected and to investigate the origin of the oil discovered to date. Formation pressure regimes in the North Sinai basin include highly overpressured reservoirs with undercompacted shale, starting at relatively shallow depths. In particular, the deeper closed hydraulic systems usually exhibit abnormally pressured regimes in individual fluid compartments. The pressure regimes are separated from each other by seals that are of particular interest to explorationists, as they frequently support oil and gas pools. The fracture pressures as well as the formation pore pressures were used together in some wells to evaluate seal quality. This detailed seal analysis has identified many regional seals and pressure compartments and their lateral and areal extent. These seals seem to control the hydrodynamic regime in the underlying permeable Lower Cretaceous reservoirs, and along with source maturation strongly affect the migration of hydrocarbons from source rocks and their accumulation in reservoirs. The water chemistry of the undercompacted sediments and overpressured reservoirs agrees with the different hydrodynamic systems mapped. Water chemistry zones clearly define different hydraulic systems. Originally, they are the freshwater aquifer of Lower Cretaceous overlain by higher salinity formations.

  6. PTt path in metamorphic rocks of the Khoy region (northwest Iran) and their tectonic significance for Cretaceous Tertiary continental collision

    NASA Astrophysics Data System (ADS)

    Azizi, H.; Moinevaziri, H.; Mohajjel, M.; Yagobpoor, A.

    2006-06-01

    Metamorphic rocks in the Khoy region are exposed between obducted ophiolites to the southwest and sedimentary rocks of Precambrian-Paleozoic age to the northeast. The Qom formation (Oligocene-Miocene) with a basal conglomerate transgressively overlies all of these rocks. The metamorphic rocks consist of both metasediments and metabasites. The metasediments are micaschist, garnet-staurolite schist and garnet-staurolite sillimanite schist with some meta-arkose, marble and quartzite. The metabasites are metamorphosed to greenschist and amphibolite facies from a basaltic and gabbroic protolith of tholeiitic and calc-alkaline rocks. Geothermobarometry based on the equivalence of minerals stability and their paragenesis in these rocks and microprobe analyses by several different methods indicate that metamorphism occurred in a temperature range between 450 and 680 °C at 5.5 and 7.5 kb pressure. Rims of minerals reveal a considerable decrease of pressure (<2 kb) and insignificant decrease of temperature. The PTt path of this metamorphism is normal. The MFG line passes above the triple junction of Al 2SiO 5 polymorphs, and the average geothermal gradient during metamorphism was from 27 to 37 °C/km, which is more concordant with the temperature regime of collision zones. We infer that crustal thickening during post-Cretaceous (possibly Eocene) collision of the Arabian plate and the Azerbaijan-Albourz block was the main factor that caused the metamorphism in the studied area.

  7. Effects of sources and diagenesis on the isotopic and chemical composition of carbon and sulfur in cretaceous shales

    SciTech Connect

    Whittaker, S.G.; Kyser, T.K. )

    1990-10-01

    The Cretaceous Lea Park Formation of south-central Saskatchewan contains organic matter from marine and terrestrial sources in proportions that vary as a result of deposition during the Campanian Claggett transgressive-regressive cycle in the Western Interior seaway of North America. The relative proportions of organic matter from these sources were determined using a terrestrial index (TI) that compares n-alkanes considered to be of terrestrial origin, n-C{sub 25} to n-C{sub 29}, to those considered to be of marine origin, n-C{sub 15} to n-C{sub 22}. The C isotopic composition of Cretaceous marine organic matter is found to be near {minus}32{per thousand} while terrestrial organic matter is near {minus}24{per thousand}. The lower {delta}{sup 13}C values of marine organic matter from the Lea Park Formation, as compared with those of Recent marine organic matter, are similar to the relation observed in other Cretaceous rocks; {delta}{sup 13}C values of terrestrial organic matter, however, are similar to those of the present. Pyrite formation in the Lea Park mudstones was limited by the availability of metabolizable organic matter, with the great amount of pyrite typically associated with organic matter having the lowest TI values. {delta}{sup 34}Spy values range nearly 30{per thousand} and vary directly with the composition of associated organic matter. Variations in the supply of metabolizable organic matter were more important than differences in sedimentation rate in producing the range of {delta}{sup 34}Spy values. {Delta}{sup 34}S values vary with the composition of organic matter and become larger when associated with more metabolizable organic matter.

  8. Petroleum source rock potential and crude oil correlation in Great Basin

    SciTech Connect

    Poole, F.G.; Claypool, G.E.

    1985-05-01

    Petroleum source beds in the Great Basin region include marine Paleozoic rocks and nonmarine upper Mesozoic and lower Cenozoic rocks. Potential source beds have been identified in continental-rise deposits of the Ordovician Vinini and Devonian Woodruff formations if the eastern part of the Roberts Mountains allochthon (Antler orogene), in central and north-central Nevada; in flysch-trough and prodelta-basin deposits of the Mississippian Chainman Shale and equivalent rocks of the Antler foreland basin, in Nevada and western Utah; and in lake-basin deposits of the Cretaceous Neward Canyon Formation and the Paleogene Sheep Pass and Elko formations and equivalent rocks, in central and eastern Nevada. Oil fields in the Great Basin are located with Neogene-Quaternary basins that formed during neogene basin-range block faulting. Most of the oil shows and crude oils analyzed can be correlated with Mississippian or paleogene source rocks. The Mississippian Chainman Shale is confirmed as the major petroleum source rock, having generated the oil in the Trap Spring, Bacon Flat, and Grant Canyon fields in Railroad Valley and the Blackburn field in Pine Valley. The Paleogene Sheep Pass Formation is the source of the oil in the Eagle Springs field and probably the Current field in Railroad Valley. Oil occurrences in the northern Great Basin are believed to be derived from two or more other Tertiary lacustrine sequences.

  9. Hydrocarbon migration and accumulation in the Upper Cretaceous Qingshankou Formation, Changling Sag, southern Songliao Basin: Insights from integrated analyses of fluid inclusion, oil source correlation and basin modelling

    NASA Astrophysics Data System (ADS)

    Dong, Tian; He, Sheng; Wang, Dexi; Hou, Yuguang

    2014-08-01

    The Upper Cretaceous Qingshankou Formation acts as both the source and reservoir sequence in the Changling Sag, situated in the southern end of the Songliao Basin, northeast China. An integrated approach involving determination of hydrocarbon charging history, oil source correlation and hydrocarbon generation dynamic modeling was used to investigate hydrocarbon migration processes and further predict the favorable targets of hydrocarbon accumulations in the Qingshankou Formation. The hydrocarbon generation and charge history was investigated using fluid inclusion analysis, in combination with stratigraphic burial and thermal modeling. The source rocks began to generate hydrocarbons at around 82 Ma and the hydrocarbon charge event occurred from approximately 78 Ma to the end of Cretaceous (65.5 Ma) when a large tectonic uplift took place. Correlation of stable carbon isotopes of oils and extracts of source rocks indicates that oil was generated mainly from the first member of Qingshankou Formation (K2qn1), suggesting that hydrocarbon may have migrated vertically. Three dimensional (3D) petroleum system modeling was used to evaluate the processes of secondary hydrocarbon migration in the Qingshankou Formation since the latest Cretaceous. During the Late Cretaceous, hydrocarbon, mainly originated from the Qianan depression, migrated laterally to adjacent structural highs. Subsequent tectonic inversion, defined as the late Yanshan Orogeny, significantly changed hydrocarbon migration patterns, probably causing redistribution of primary hydrocarbon reservoirs. In the Tertiary, the Heidimiao depression was buried much deeper than the Qianan depression and became the main source kitchen. Hydrocarbon migration was primarily controlled by fluid potential and generally migrated from relatively high potential areas to low potential areas. Structural highs and lithologic transitions are potential traps for current oil and gas exploration. Finally, several preferred hydrocarbon

  10. Source rock, maturity data indicate potential off Namibia

    SciTech Connect

    Bray, R.; Lawrence, S.; Swart, R.

    1998-08-10

    Namibia`s territorial waters occupy a large portion of West Africa`s continental shelf. The area to the 1,000 m isobath is comparable in size to the combined offshore areas of Gabon, Congo, Zaire, and Angola. Around half as much again lies in 1,000--2,500 m of water. The whole unlicensed part of this area will be open for bidding when the Third Licensing Round starts Oct. 1, 1998. Offshore Namibia is underexplored by drilling with only seven exploration wells drilled. Shell`s Kudu field represents a considerable gas resource with reserves of around 3 tcf and is presently the only commercial discovery.Namibia`s offshore area holds enormous exploration potential. Good quality sandstone reservoirs are likely to be distributed widely, and a number of prospective structural and stratigraphic traps have been identified. The recognition of Cretaceous marine oil-prone source rocks combined with the results of new thermal history reconstruction and maturity modeling studies are particularly significant in assessment of the oil potential. The paper discusses resource development and structures, oil source potential, maturity, and hydrocarbon generation.

  11. A regional appraisal of source rocks north and west of Britain and Ireland

    SciTech Connect

    Scotchman, I.C.; Dore, A.G.

    1995-08-01

    Potential source rocks in the string of basins on the Atlantic Margin north and west of Britain and Ireland range in age from Devonian to Tertiary, although the Jurassic appears to have been effective. In the Palaeozoic, thick developments of lacustrine Type I kerogen rich shales occur in the Lower and Middle Devonian of the Orcadian Basin in northeast Scotland while Carboniferous coals and coaly shales are known from well and outcrop in basins flanking the Rockall Trough. The Jurassic contains major source rock developments, the Lias Portree and Pabba and the Upper Jurassic Kimmeridge Clay Formation shales which have been correlated to oil shows in the Slyne Trough, and oil discoveries in the West of Shetlands respectively. Anoxic black shales are also tentatively developed in the early Cretaceous. In the younger section, developments of gas-prone, organic poor basinal shales are known in the Upper Cretaceous and Paleocene while coals provide a minor gas source in the topmost Palaeocene and Eocene. Regionally, effective source rocks appear to be concentrated in the Jurassic rift basins extending known trends from the Jeanne D`Arc basin through East Greenland to the North Sea/Mid-Norway through the largely unexplored Atlantic Margin area NW of Britain and Ireland.

  12. Updated paleomagnetic pole from Cretaceous plutonic rocks of the Sierra Nevada, California: Tectonic displacement of the Sierra Nevada block

    USGS Publications Warehouse

    Hillhouse, J.W.; Gromme, S.

    2011-01-01

    We report remanent magnetization measurements from 13 sites in Cretaceous plutonic rocks in the northern Sierra Nevada (38??N-39.5??N). By increasing the number of available paleomagnetic sites, the new data tighten constraints on the displacement history of the Sierra Nevada block and its pre-extensional position relative to interior North America. We collected samples in freshly exposed outcrops along four highway transects. The rocks include diorite, granodiorite, and tonalite with potassium-argon ages (hornblende) ranging from 100 Ma to 83 Ma. By combining our results with previous paleomagnetic determinations from the central and southern Sierra Nevada (excluding sites from the rotated southern tip east of the White Wolf-Kern Canyon fault system), we find a mean paleomagnetic pole of 70.5??N, 188.2??E, A95 = 2.6?? (N = 26, Fisher concentration parameter, K = 118). Thermal demagnetization indicates that the characteristic remanence is generally unblocked in a narrow range within 35 ??C of the Curie temperature of pure magnetite. Small apparent polar wander during the Cretaceous normal-polarity superchron, plus prolonged acquisition of remanence at the site level, may account for the low dispersion of virtual geomagnetic poles and relatively large K value. Tilt estimates based on overlapping sediments, stream gradients, and thermochronology of the Sierra Nevada plutons vary from 0?? to 3?? down to the southwest. Without tilt correction, the mean paleomagnetic pole for the Sierra Nevada is essentially coincident with the North American reference pole during the Cretaceous stillstand (125 Ma to 80 Ma). At 95% confidence, the apparent latitude shift is 1.1?? ?? 3.0?? (positive northward), and the apparent rotation is negligible, 0.0?? ?? 4.7??. Correcting for each degree of tilt, which is limited to 3?? on geologic evidence, increases the rotation anomaly 2.2?? counterclockwise, while the apparent latitude shift remains unchanged. ?? 2011 Geological Society of

  13. Coeval Ar-40/Ar-39 ages of 65.0 million years ago from Chicxulub crater melt rock and Cretaceous-Tertiary boundary tektites

    NASA Technical Reports Server (NTRS)

    Swisher, Carl C., III; Grajales-Nishimura, Jose M.; Montanari, Alessandro; Margolis, Stanley V.; Claeys, Philippe; Alvarez, Walter; Renne, Paul; Cedillo-Pardo, Esteban; Maurrasse, Florentin J.-M. R.; Curtis, Garniss H.

    1992-01-01

    Ar-40/Ar-39 dating of drill-core samples of a glassy melt rock recovered from beneath a massive impact breccia contained with the 180-kilometer subsurface Chicxulub crater yields well-behaved incremental heating spectra with a mean plateau age of 64.98 +/- 0.05 million years ago (Ma). The glassy melt rock of andesitic composition was obtained from core 9 (1390 to 1393 meters) in the Chicxulub 1 well. The age of the melt rock is virtually indistinguishable from Ar-40/Ar-39 ages obtained on tektite glass from Beloc, Haiti, and Arroyo el Mimbral, northeastern Mexico, of 65.01 +/- 0.08 Ma (mean plateau age for Beloc) and 65.07 +/- 0.10 Ma (mean total fusion age for both sites). The Ar-40/Ar-39 ages, in conjunction with geochemical and petrological similarities, strengthen the suggestion that the Chicxulub structure is the source for the Haitian and Mexican tektites and is a viable candidate for the Cretaceous-Tertiary boundary impact site.

  14. Coeval 40Ar/39Ar Ages of 65.0 Million Years Ago from Chicxulub Crater Melt Rock and Cretaceous-Tertiary Boundary Tektites.

    PubMed

    Swisher, C C; Grajales-Nishimura, J M; Montanari, A; Margolis, S V; Claeys, P; Alvarez, W; Renne, P; Cedillo-Pardoa, E; Maurrasse, F J; Curtis, G H; Smit, J; McWilliams, M O

    1992-08-14

    (40)Ar/(39)Ar dating of drill core samples of a glassy melt rock recovered from beneath a massive impact breccia contained within the 180-kilometer subsurface Chicxulub crater in Yucatán, Mexico, has yielded well-behaved incremental heating spectra with a mean plateau age of 64.98 +/- 0.05 million years ago (Ma). The glassy melt rock of andesitic composition was obtained from core 9 (1390 to 1393 meters) in the Chicxulub 1 well. The age of the melt rock is virtually indistinguishable from (40)Ar/(39)Ar ages obtained on tektite glass from Beloc, Haiti, and Arroyo el Mimbral, northeastern Mexico, of 65.01 +/- 0.08 Ma (mean plateau age for Beloc) and 65.07 +/- 0.10 Ma (mean total fusion age for both sites). The (40)Ar/(39)Ar ages, in conjunction with geochemical and petrological similarities, strengthen the recent suggestion that the Chicxulub structure is the source for the Haitian and Mexican tektites and is a viable candidate for the Cretaceous-Tertiary boundary impact site. PMID:17789640

  15. Oil source rocks in the Adiyaman area, southeast Turkey

    NASA Astrophysics Data System (ADS)

    Soylu, Cengiz

    In the Adiyaman area, southeast Turkey, two carbonate source rock units, the Karababa-A Member and the Karabogaz Formation, are identified. The maturity levels of the source rock units increase towards the north and the west. Both the Karababa-A Member and the Karabogaz Formation are good to excellent oil-source rocks with widespread "kitchen areas".

  16. Central graben (Norway) - Hydrocarbon distribution related to source rock maturation and pressure regimes

    SciTech Connect

    Chiarelli, A.; Issard, F. )

    1990-05-01

    This study of the Central graben was limited to the north by 57{degree}25'N, to the west by 4{degree}30', and to the east and south by the borders of the United Kingdom and Denmark, respectively. Several fields have been discovered within the Upper Cretaceous, Paleocene, and Jurassic strata for which the source rocks are Jurassic age. The amount and types of hydrocarbons generated from the source rocks have been estimated by accounting for their thickness, their initial potential, and their degree of maturation. The possibilities for hydrocarbon migration have been interpreted through an integration of the structural history and the hydrodynamic framework within the Central graben region. The hydrodynamic framework which appears to be a very important parameter in the study area, has been reconstructed from pressure measurements in the reservoirs, compaction profiles, and numerical modeling. It appears that vertical migration from the Jurassic source rocks toward the Upper Cretaceous and Paleocene reservoirs was mainly dependent on tectonics, salt diapirism and geopressuring. In the Central graben region the understanding of areal distribution and nature of hydrocarbons formed has been greatly improved by the integration of geochemistry and hydrodynamics. This conclusion could be extended to many other sedimentary basins in the world.

  17. Stratigraphy of the Cretaceous-Tertiary and Paleocene-Eocene transition rocks of Big Bend National Park, Texas

    SciTech Connect

    Schiebout, J.A.; Rigsby, C.A.; Rapp, S.D.; Hartnell, J.A.; Standhardt, B.R.

    1987-05-01

    The marine to terrestrial transition in the Big Bend area falls within the Late Cretaceous Aguja Formation, and, in light of new biostratigraphic data resulting from screening for small vertebrates and magneto-stratigraphic data, the Cretaceous-Tertiary boundary falls within the Javelina Formation, which includes the first red banding produced by oxidation of overbank fluvial mudstones. No record of a catastrophic event is apparent in the Javelina Formation. The Javelina, Black Peaks, and Hannold Hill Formations and the Big Yellow Sandstone Member of the Canoe Formation record increasing uplift in the region, culminating in uplift and volcanism in the Chisos mountains, the source for upper Canoe Formation sediments. The sequence of changes produced by this trend and by unroofing in source highlands to the west is sufficiently gradual that the Javelina through Black Peaks units are not lithostratigraphically distinct at the formation level and therefore are reduced to member status, and placed, along with the Big Yellow Sandstone Member, within the redefined Tornillo Formation. The Aguja Formation and the Tornillo Formation are united in the Chilicotal Group (new), which spans the deposits from the first significant influxes of terrestrial sediments, formed as the Cretaceous sea retreated, up to the beginning of local volcanism in the Chisos. The volcanic strata of the upper Canoe Formation are reassigned to the Chisos Formation. 46 references.

  18. Geochemical modelling of the principal source rocks of the Barinas and Maracaibo basins, western Venezuela

    SciTech Connect

    Tocco, R.; Gallango, O.; Parnaud, F.

    1996-08-01

    This study presents a geochemical modelling of the principal source rocks in the western Venezuelan Basins. The area covers more than 100,000 km{sup 2}, and includes Lake Maracaibo and Barinas Basins. The geochemical modelling recognizes three source rocks: (1) A principal, K3-K4-K5 Cretaceous sequences, represented by La Luna, Capacho and Navay formations, (2) a secondary, corresponding to the T4 Oligocene sequence, represent by the Carbonera Formation, and (3) an accessory source rock, K7-K8 Paleocene sequences, represented by the carbonaceous shales and coals of the Orocue Group and Marcelina Formation. Three periods of hydrocarbon expulsion were defined for La Luna Formation (Early Eocene-Late Eocene, Middle Miocene-Early Miocene and Early Miocene-Holocene) and a principal period of hydrocarbon expulsion for Orocue Group and Carbonera Formation (Plio-Pleistocene and Middle Miocene Plio-Pleistocene). The 90% of hydrocarbons generated correspond to the principal source rock La Luna Formation, and the 10% to Tertiary source rocks (Carbonera Formation and Orocue Group). Five petroleum systems were identified: Lake Maracaibo, southwest of the Lake Maracaibo Basin, the Lara nappes, the extensive basins of eastern Zulia and the Barinas subbasin.

  19. Paleomagnetism of Upper Jurassic to Lower Cretaceous Volcanic and Sedimentary Rocks From the Western Tarim Basin: Implications for Inclination Shallowing and the ISEA? chron

    NASA Astrophysics Data System (ADS)

    Cogne, J.; Gilder, S.; Chen, Y.; Tan, X.; Courtillot, V.; Sun, D.; Li, Y.

    2002-12-01

    Stepwise demagnetization isolates a stable magnetic component in 13 sites of basalt flows and baked sediments dated at 113+-1.6 Ma from the Tuoyun section, western Xinjiang Province, China. Except for one flow from the base of the 300 m-thick section, the rest have exclusively reversed polarity. Five of 11 sites of Early Cretaceous red beds that underlie the basalts possess coherent directions that pass both fold and reversals tests. Six sites of Upper Jurassic red beds have a magnetic component that was likely acquired after folding in the Tertiary. The mean paleolatitude of the Lower Cretaceous red beds is 11° lower than that of the Lower Cretaceous basalts suggesting the red beds underestimate the true field inclination. We further test this result by calculating the paleolatitudes to a common point of the available Early Cretaceous to Present paleomagnetic poles from red beds and volcanic rocks from central Asian localities north of the Tibetan plateau. We find that paleolatitudes of volcanic rocks roughly equal the paleolatitudes calculated from the reference Eurasian apparent polar wander path (APWP) and that paleolatitudes of red beds are generally 10° to 20° lower than the paleolatitudes of volcanic rocks and those predicted from the reference curve. Our study suggests that central Asian red beds poorly record the Earth's field inclination, which leads to lower than expected paleolatitudes. Good agreement in paleolatitudes from volcanic rocks and the Eurasian APWP argues against proposed canted and non-dipole field models.

  20. Mineral chemical compositions of late Cretaceous volcanic rocks in the Giresun area, NE Turkey: Implications for the crystallization conditions

    NASA Astrophysics Data System (ADS)

    Oǧuz, Simge; Aydin, Faruk; Uysal, İbrahim; Şen, Cüneyt

    2016-04-01

    This contribution contains phenocryst assemblages and mineral chemical data of late Cretaceous volcanic (LCV) rocks from the south of Görele and Tirebolu areas (Giresun, NE Turkey) in order to investigate their crystallization conditions. The LCV rocks in the study area occur in two different periods (Coniasiyen-Early Santonian and Early-Middle Campanian), which generally consist of alternation of mafic-intermediate (basaltic to andesitic) and felsic rock series (dacitic and rhyolitic) within each period. The basaltic and andesitic rocks in both periods generally exhibit porphyritic to hyalo-microlitic porphyritic texture, and contain phenocrysts of plagioclase and pyroxene, whereas the dacitic and rhyolitic rocks of the volcanic sequence usually show a vitrophyric texture with predominant plagioclase, K-feldspar, quartz and lesser amphibole-biotite phenocrysts. Zoned plagioclase crystals of the mafic and felsic rocks in different volcanic periods are basically different in composition. The compositions of plagioclase in the first-stage mafic rocks range from An52 to An78 whereas those of plagioclase from the first-stage felsic rocks have lower An content varying from An38 to An50. Rim to core profile for the zoned plagioclase of the first-stage mafic rocks show quite abrupt and notable compositional variations whereas that of the first-stage felsic rocks show slight compositional variation, although some of the grains may display reverse zoning. On the other hand, although no zoned plagioclase phenocryst observed in the second-stage mafic rocks, the compositions of microlitic plagioclase show wide range of compositional variation (An45‑80). The compositions of zoned plagioclase in the second-stage felsic rocks are more calcic (An65‑81) than those of the first-stage felsic rocks, and their rim to core profile display considerable oscillatory zoning. The compositions of pyroxenes in the first- and second-stage mafic-intermediate rocks vary over a wide range

  1. Implications of Late Cretaceous U-Pb zircon ages of granitic intrusions cutting ophiolitic and volcanogenic rocks for the assembly of the Tauride allochthon in SE Anatolia (Helete area, Kahramanmaraş Region, SE Turkey)

    NASA Astrophysics Data System (ADS)

    Nurlu, Nusret; Parlak, Osman; Robertson, Alastair; von Quadt, Albrecht

    2016-01-01

    An assemblage of NE-SW-trending, imbricate thrust slices (c. 26 km E-W long × 6.3 km N-S) of granitic rocks, basic-felsic volcanogenic rocks (Helete volcanics), ophiolitic rocks (Meydan ophiolite) and melange (Meydan melange) is exposed near the Tauride thrust front in SE Anatolia. The volcanogenic rocks were previously assumed to be Eocene because of associated Nummulitic limestones. However, ion probe U-Pb dating of zircons extracted from the intrusive granitic rocks yielded ages of 92.9 ± 2.2-83.1 ± 1.5 Ma (Cenomanian-Campanian). The Helete volcanic unit and the overlying Meydan ophiolitic rocks both are intruded by granitic rocks of similar age and composition. Structurally underlying ophiolite-related melange includes similar-aged, but fragmented granitic intrusions. Major, trace element and rare earth element analyses coupled with electron microprobe analysis of the granitic rocks show that they are metaluminus to peraluminus and calc-alkaline in composition. A magmatic arc setting is inferred from a combination of tectonomagmatic discrimination, ocean ridge granite-normalized multi-element patterns and biotite geochemistry. Sr-Nd-Pb isotope data further suggest that the granitoid rocks were derived from variably mixed mantle and crustal sources. Granitic rocks cutting the intrusive rocks are inferred to have crystallized at ~5-16 km depth. The volcanogenic rocks and granitic rocks originated in a supra-subduction zone setting that was widely developed throughout SE Anatolia. Initial tectonic assembly took place during the Late Cretaceous probably related to northward subduction and accretion beneath the Tauride continent (Keban and Malatya platforms). Initial tectonic assembly was followed by exhumation and then transgression by shelf-depth Nummulitic limestones during Mid-Eocene, as documented in several key outcrops. Final emplacement onto the Arabian continental margin took place during the Early Miocene.

  2. 70 million years of coastal upwelling in California; source rocks and paleoceanography

    SciTech Connect

    Fonseca, C.

    1996-12-31

    The Late Mesozoic-Cenozoic marine sequence of California displays a unique record of coastal upwelling and productivity in the form of distinctive diatomaceous and organic-rich deposits including the upper Cretaceous-lower Paleocene Moreno Formation, the Eocene Kreyenhagen Formation and the Miocene Monterey Formation. Unique sedimentological characteristics of these ancient upwelling systems include (a) Finely laminated biosiliceous-rich shales (>30% biogenic silica content), (b) Distinctive laminae composed by monospecific diatom resting spores, (c) Good source rock quality (>300 mg HC/mg org C), and (d) High accumulation rates in mid water anoxic conditions. Detailed study of individual laminae in sediments of these formations revealed concentration of monospecific diatom resting spores and an abundance of Stephanopyxis sp. and Coscinodiscus sp. Like Recent upwelling systems, preserved laminations of monospecific resting spores reflect strong seasonal upwelling that lead to high organic matter production and enhancement of anoxia. The presence of spores in the ancient and modern upwelling systems is evidence that diatoms have adapted and successfully competed in the highly productive California Margin since the Late Cretaceous. The Moreno, the Kreyenhagen and the Monterey Formation account for a significant portion of major petroleum source beds in California and contain an important record of coastal upwelling and paleoceanographic change in the northeastern Pacific Ocean over the past 70 million years. It is suggested that potential Late Maestrichtian source rocks could have been deposited along other favorable upwelling areas of the Eastern Pacific Rim.

  3. Provenance and paleogeography of the Late Cretaceous Mengyejing Formation, Simao Basin, southeastern Tibetan Plateau: Whole-rock geochemistry, U-Pb geochronology, and Hf isotopic constraints

    NASA Astrophysics Data System (ADS)

    Wang, Licheng; Liu, Chenglin; Gao, Xiang; Zhang, Hua

    2014-05-01

    The Late Cretaceous Mengyejing Formation, which contains the only pre-Quaternary potash salt deposit in the Simao Basin, southeastern Tibet, is thought to be genetically related to the Maha Sarakham Formation in the Khorat Basin. The provenance and paleogeography of these two basins have been under debate, although little diagnostic evidence has been previously published. A combined analysis of whole rock geochemistry, zircon U-Pb chronology, and Hf isotopic compositions was performed to characterize the provenance of the Mengyejing Formation. These formation's sandstones are characterized by moderate chemical index of alteration (CIA) values. These values, together with plots of the Th/U-Th ratios, suggest that certain samples have undergone moderate weathering and sedimentary recycling. The major and trace elements (La/Th-Hf, Th/Sc-Zr/Sc, Eu/Eu*-Th/Sc, TiO2-Fe2O3T + MgO, Al2O3/SiO2-Fe2O3T + MgO, K2O/Na2O-SiO2) indicate that the sedimentary sources were felsic rocks from an active continental margin or continental arc with a minor amount of recycled sediment from a passive continental margin. The Mengyejing Formation contains detrital zircons primarily with U-Pb ages of 2.45-2.57 Ga, 1.8-1.9 Ga, 740-880 Ma, 410-470 Ma, and 215-300 Ma. The results reveal that the pre-Devonian zircons are derived from the recycled sediments of the Yangtze block originating in the Qinling Orogenic Belt, and they share this provenance with the coeval sediments in the Khorat Basin. The magmatic rocks of the Ailaoshan and Lincang areas are responsible for supplying the Devonian to Triassic detrital zircons. These provenance data combined with published paleocurrent results suggest that the Simao Basin was situated on the western margin of the Khorat Basin during the Late Cretaceous. The basins were connected when marine incursion occurred. We propose that pre-Devonian materials from the southwestern Sichuan Basin first supplied detritus to the Simao Basin and subsequently to the Khorat

  4. Preliminary hydrocarbon source rock assessment of the Paleozoic and Mesozoic formations of the western Black Sea region of Turkey

    SciTech Connect

    Harput, B.O.; Demirel, I.H.; Karayigit, A.I.; Aydin, M.; Sahintuerk, O.; Bustin, R.M.

    1999-12-01

    Source rock maturity and potential of Paleozoic and Mesozoic formations in the Eregli, Zonguldak, Bartin, Ulus, and Eflani subregions of the western Black Sea region (WBSR), have been investigated by rock-eval pyrolysis, reflected-light microscopy, and palynofacies analyses. The % Ro values of dispersed organic matter of the Paleozoic formations primarily range from 0.72 to 1.8%, but values as high as 2.6% occur locally in the Silurian Findikli Formation in the Eregli subregion. The % Ro values of Namurian-Westphalian coal seams in the K20/H well drilled in the Zonguldak subregion range from 0.87 to 1.52%, with increasing depth consistent with sedimentary depth of burial. Most Cretaceous age samples have reflectance values ranging from 0.44 to 1.6% Ro that indicates they are marginally mature to mature with respect to the oil window. Rock-eval pyrolysis demonstrates that the Paleozoic formations have limited oil-generation potential (HI values {le} 200 mg HC/g C{sub org}), but good gas potential (TOC values up to 3%). Cretaceous formations have better petroleum source rock characteristics, but they too are primarily gas prone. Variations in the source rock maturity probably reflect variable burial histories in different localities of the WBSR.

  5. Hydrocarbon potential of hydrocarbon source rocks of the New Siberian Islands, Russian Arctic

    NASA Astrophysics Data System (ADS)

    Gaedicke, Christoph; Sobolev, Peter; Franke, Dieter; Piepjohn, Karsten; Brandes, Christian; Kus, Jolanta; Scheeder, Georg

    2016-04-01

    The New Siberian Islands are bridging the Laptev Sea with the East Siberian Sea. The Laptev and East Siberian Seas cover large areas of the continental margin of northeastern Arctic Russia. The East Siberian Shelf encompassing an area of 935.000 km2 is still virtually unexplored and most of the geological models for this shelf are extrapolations of the geology of the New Siberian Islands, the Wrangel Island and the northeast Siberian landmass. Apart from few seismic reflection lines, airborne magnetic data were the primary means of deciphering the structural pattern of the East Siberian Shelf. The Laptev Shelf covers an area of about 66.000 km2 and occupies a shelf region, where the active mid-oceanic spreading ridge of the Eurasian Basin hits the slope of the continental margin. During the joint VSEGEI/BGR field expedition CASE 13 (Circum Arctic Structural Events) in summer 2011 we sampled outcrops from the New Siberian Archipelago including the De Long Islands. 102 samples were collected and the Upper Palaeozoic to Lower Cenozoic units are found to be punctuated by several organic-rich intervals. Lithology varies from continental dominated clastic sedimentary rocks with coal seams to shallow marine carbonates and deep marine black shales. Rock-Eval pyrolysis, gas chromatography/mass spectrometry and organic petrography studies were performed to estimate organic matter contents, composition, source, and thermal maturity. According to the results of our analyses, samples from several intervals may be regarded as potential petroleum source rocks. The Lower Devonian shales have the highest source rock potential of all Paleozoic units. Triassic samples have a good natural gas potential. Cretaceous and Cenozoic low-rank coals, lignites, and coal-bearing sandstones display some gas potential. The kerogen of type III (humic, gas-prone) dominates. Most of the samples (except some of Cretaceous and Paleogene age) reached the oil generation window.

  6. Lithofacies and palynostratigraphy of some Cretaceous and Paleocene rocks, Surghar and Salt Range coal fields, northern Pakistan

    USGS Publications Warehouse

    Warwick, Peter D.; Javed, Shahid; Mashhadi, S. Tahir A.; Shakoor, Tariq; Khan, Asrar M.; Khan, A. Latif

    1995-01-01

    The stratigraphic relation between the Cretaceous generally non-coal-bearing Lumshiwal Formation (64 to 150 m thick) and the Paleocene coal-bearing Hangu Formation (5 to 50 m thick) in the Surghar Range of north-central Pakistan is complex. Both formations contain remarkably similar lithofacies: one or two types of sandstone lithofacies; a combined lithofacies of mudstone, claystone, carbonaceous shale, and coal beds; and a rare carbonate lithofacies. An analysis of pollen data from rock samples collected from various stratigraphic positions indicates that the formations are separated by a disconformity and that the age of the Lumshiwal Formation is Early Cretaceous and the age of the Hangu is Paleocene. Previous workers had suggested that the age of the Lumshiwal is Late Cretaceous. An analysis of sedimentologic, stratigraphic, and paleontologic data indicates that both the Lumshiwal and Hangu Formations probably were deposited in shallow-marine and deltaic environments. The rocks of the Lumshiwal become more terrestrial in origin upward, whereas the rocks of the Hangu become more marine in origin upward. The contact between the two formations is associated with a laterally discontinuous lateritic paleosol (assigned to the Hangu Formation) that is commonly overlain by the economically important Makarwal coal bed. This coal bed averages 1.2 m in thickness. No other coal beds in the Surghar Range are as thick or as laterally continuous as the Makarwal coal bed. Analytical data from the Makarwal and one other Hangu coal bed indicate that Surghar Range coal beds range from high-volatile B to high-volatile C bituminous in apparent rank. Averaged, as-received results of proximate and ultimate analyses of coal samples are (1) moisture content, 5.4 percent; (2) ash yield, 12.5 percent; (3) total sulfur content, 5 percent; and (4) calorific value, 11034 Btu/lb (British thermal units per pound). Minor- and trace-element analyses indicate that these coals contain relatively

  7. Petrogenesis of the Early Cretaceous Laguila bimodal intrusive rocks from the Tethyan Himalaya: Implications for the break-up of Eastern Gondwana

    NASA Astrophysics Data System (ADS)

    Liu, Zheng; Zhou, Qing; Lai, Yang; Qing, Chengshi; Li, Yingxu; Wu, Jianyang; Xia, Xiangbiao

    2015-11-01

    The Kerguelen mantle plume triggered the rift of Eastern Gondwana to open the eastern Indian Ocean, with the formation of ~ 132 Ma Comei-Bunbury large igneous province (LIP). The Comei area is located in the eastern Tethyan Himalaya, paleogeographically belonging to Greater India. The Laguila bimodal intrusive rocks from the Comei area consist of mafic (gabbro-diabase) and felsic rocks (quartz monzonite-granodiorite). This paper presents detailed LA-ICP-MS zircon U-Pb chronology, major and trace elements, and Sr-Nd-Pb isotope geochemistry of the Laguila bimodal intrusive rocks, in order to constrain the early activity of the Kerguelen mantle plume. LA-ICP-MS zircon U-Pb dating shows that the Laguila intrusive rocks were emplaced in the Early Cretaceous (~ 134-130 Ma). The Laguila mafic rocks are enriched in LREE, LILE and HFSE, similar to those of oceanic island basalts (OIB). Their 87Sr/86Sri (0.7054 to 0.7066), 143Νd/144Nd (T) (0.512548 to 0.512619) and (206Pb/204Pb)t ratios (18.492 to 18.859) are comparable with those basalts derived by the Kerguelen hot spot. Elemental and isotopic data suggest that they were likely derived by partial melting of the Kerguelen plume source in the spinel-garnet transition zone (~ 60-80 km). The Laguila felsic rocks share most of the geochemical features of A-type granite and show different 87Sr/86Sri (0.7171 to 0.7204), 143Νd/144Nd (T) (0.511874 to 0.511956) and (206Pb/204Pb)t ratios (19.087 to 19.274) from those of the mafic rocks. They were likely derived by partial melting of crustal rocks at a shallow depth (< 30 km) triggered by underplating of the coeval basaltic magmas. The Laguila intrusive rocks were emplaced in a rift setting during the breakup of eastern Gondwana, associated with the Kerguelen plume activity. We calculated the magmatic volume of Comei-Bunbury basalts and the result is ~ 1.1 × 104 km3. The small volume is not reconciled with those typical models for the initial magmatic eruption of mantle plume. It

  8. Stratigraphic framework and regional subsurface geology of upper Cretaceous through lower Eocene rocks in Wind River basin, Wyoming

    SciTech Connect

    Hogle, D.G.; Jones, R.W.

    1989-03-01

    A detailed stratigraphic study of over 6000 m of Upper Cretaceous through lower Eocene sedimentary rocks in the Wind River basin. Wyoming, has refined and expanded previous work and conclusions. A much larger data base than previously available was assembled to include a correlation net of 325 geophysical well logs, 36 drill holes with palynological age dates, lithology logs of drill hoes, and limited surface exposures. The most significant results and conclusions from this study are summarized below. (1) The lower part of the Mesaverde Formation intertongues with marine sandstones and shales of the upper Cody Shale to the east and with marine sandstones of the lower Mesaverde Formation in the Big Horn basin to the north. (2) An unconformity between the Mesaverde and Fort Union Formations in the southwestern part of the basin can be traced into the subsurface. (3) During the latest Cretaceous and Paleocene, over 2100 m of Lance Formation and over 2700 m of Fort Union Formation were deposited in the northeastern part of the basin. Ponding during the Paleocene is demonstrated by correlation and subsurface mapping of over 900 m of shale and siltstone in the Waltman Shale Member of the Fort Union Formation. (4) The Lance and Fort Union Formations can be mapped in the subsurface throughout much of the basin. The Lance Formation pinches out in the western part of the basin. (5) Coal beds can be traced for short distances in the subsurface; coal bed occurrence is documented for the Mesaverde, lower Fort Union, and Meeteetse Formations in the southwestern, northern and central, and northwestern parts of the basin, respectively.

  9. Stratigraphic controls on the source rock distribution, Llanos Orientales Basin, Colombia

    SciTech Connect

    Ramon, J.C.; Fajardo, A.; Rubiano, J.; Reyes, A.

    1996-12-31

    All available rock and oil geochemistry analyses were tied to a high-resolution stratigraphic framework for more than 50 wells in the Central Llanos Orientates Basin. New Tertiary generation input is proposed. The best source rock intervals are at the base and top of the Gacheta Formation (Upper Cretaceous) and in the middle of the Barco-Cuervos (Paleocene) and Mirador (Eocene) formations. These organic-rich zones contain type II and III kerogen. TOC contents range from about 1% up to 15%. The four source rock intervals occur within marine shales near condensed sections, at the position maximum accommodation/sediment-supply (A/S) ratios. The development of conditions that allow accumulation and preservation of anomalously high fractions of organic matter might be explained by two mechanisms. Increased A/S ratio results in retention of more sediment in the coastal plain, thus reducing the tendency for siliciclastic sediment to dilute the organic matter accumulating on the shelf. Also, deeper water might restrict circulation, enhancing bottom anoxic conditions. In the more transitional and continental sequences, increased A/S ratio is associated with higher phreatic water level. A high ground water table enhances preservation of coaly intervals. The sea-level rise brings marine water into valleys and low-gradient coastal plains. The resulting embayments, marsh and swampy areas are organic-prone, contributing to the source rock potential of strata associated with high conditions and base-level rise-to-fall turnaround positions.

  10. Stratigraphic controls on the source rock distribution, Llanos Orientales Basin, Colombia

    SciTech Connect

    Ramon, J.C.; Fajardo, A.; Rubiano, J.; Reyes, A. )

    1996-01-01

    All available rock and oil geochemistry analyses were tied to a high-resolution stratigraphic framework for more than 50 wells in the Central Llanos Orientates Basin. New Tertiary generation input is proposed. The best source rock intervals are at the base and top of the Gacheta Formation (Upper Cretaceous) and in the middle of the Barco-Cuervos (Paleocene) and Mirador (Eocene) formations. These organic-rich zones contain type II and III kerogen. TOC contents range from about 1% up to 15%. The four source rock intervals occur within marine shales near condensed sections, at the position maximum accommodation/sediment-supply (A/S) ratios. The development of conditions that allow accumulation and preservation of anomalously high fractions of organic matter might be explained by two mechanisms. Increased A/S ratio results in retention of more sediment in the coastal plain, thus reducing the tendency for siliciclastic sediment to dilute the organic matter accumulating on the shelf. Also, deeper water might restrict circulation, enhancing bottom anoxic conditions. In the more transitional and continental sequences, increased A/S ratio is associated with higher phreatic water level. A high ground water table enhances preservation of coaly intervals. The sea-level rise brings marine water into valleys and low-gradient coastal plains. The resulting embayments, marsh and swampy areas are organic-prone, contributing to the source rock potential of strata associated with high conditions and base-level rise-to-fall turnaround positions.

  11. An overview on source rocks and the petroleum system of the central Upper Rhine Graben

    NASA Astrophysics Data System (ADS)

    Böcker, Johannes; Littke, Ralf; Forster, Astrid

    2016-05-01

    activation energies. These sediments are considered as most important source rocks of numerous high wax oils (oil family B) in addition to the coaly source rocks from the (Lower) Pechelbronn-Schichten (Late Eocene). Migration pathways are significantly influenced by the early graben evolution. A major erosion period occurred during the latest Cretaceous. The uplift center was located in the northern URG area, resulting in SSE dipping Mesozoic strata in the central URG. During Middle Eocene times a second uplift center in the Eifel area resulted in SW-NE-directed shore lines in the central URG and contemporaneous south-southeastern depocenters during marine transgression from the south. This structural setting resulted in a major NNW-NW-directed and topography-driven migration pattern for expelled Liassic oil in the fractured Mesozoic subcrop below sealing Dogger α clays and basal Tertiary marls.

  12. Zircon U-Pb dating, geochemical and Sr-Nd-Hf isotopic characteristics of the Jintonghu monzonitic rocks in western Fujian Province, South China: Implication for Cretaceous crust-mantle interactions and lithospheric extension

    NASA Astrophysics Data System (ADS)

    Li, Bin; Jiang, Shao-Yong; Lu, An-Huai; Zhao, Hai-Xiang; Yang, Tang-Li; Hou, Ming-Lan

    2016-09-01

    Comprehensive petrological, in situ zircon U-Pb dating, Ti-in-zircon temperature and Hf isotopic compositions, whole rock geochemical and Sr-Nd isotopic data are reported for the Jintonghu monzonitic intrusions in the western Fujian Province (Interior Cathaysia Block), South China. The Jintonghu monzonitic intrusions were intruded at 95-96 Ma. Their Sr-Nd-Hf isotopic compositions are similar to the coeval and nearby enriched lithospheric mantle-derived mafic and syenitic rocks, indicating that the Jintonghu monzonitic rocks were likely derived from partial melting of the enriched mantle sources. Their high Nb/Ta ratios (average 21.6) suggest that the metasomatically enriched mantle components were involved, which was attributed to the modification of slab-derived fluid and melt by the subduction of the paleo-Pacific Plate. The presence of mafic xenoliths, together with geochemical and isotopic features indicates a mafic-felsic magma mixing. Furthermore, the Jintonghu intrusions may have experienced orthopyroxene-, biotite- and plagioclase-dominated crystallization. Crust-mantle interaction can be identified as two stages, including that the Early Cretaceous mantle metasomatism and lithospheric extension resulted from the paleo-Pacific slab subduction coupled with slab rollback, and the Late Cretaceous crustal activation and enhanced extension induced by dip-angle subduction and the underplating of mantle-derived mafic magma.

  13. Paleotemperatures and paleodepths of the Upper Cretaceous rocks in El Qusaima, Northeastern Sinai, Egypt

    NASA Astrophysics Data System (ADS)

    Orabi, O. H.; Zahran, E.

    2014-03-01

    The planktonic foraminiferal morphogroups and planktonic quantitative analysis as well as the lithological variations across the Coniacian to Maastrichtian sediments of El Qusaima section (Northeastern Sinai, Egypt) are studied in detail in order to detect the prevailing paleoecological conditions along these sediments. At the studied area of El Qusaima section there is a gradual cooling started at the base of Globotruncana elevata Zone (early-middle Campanian) of the lower part of the Markha Member and continued till Globotruncana aegyptiaca Zone (Late Campanian) of the upper part of the Markha Member. This trend corresponds to the onset of a global cooling that began at about 73 Ma (Late Campanian) and ended the Cretaceous greenhouse climate mode. At El Qusaima section, a gradual warming started at the base of Pseudogumbelina palpebra Zone (Late Maastrichtian) and continued till Plummerita hantkeninoides Zone (latest Maastrichtian) due to the high abundance of Plummerita hantkeninoides and Plummeritareicheli, which have been flourishing in warm waters. So this warming near the end of the Maastrichtian is a global event as shown by many authors.

  14. Subsurface structure and hydrocarbon occurrence, cretaceous rocks of Maxie and Pistol Ridge Fields, Southeastern Mississippi

    SciTech Connect

    Luo, S.; Meylan, M.A. )

    1993-09-01

    Maxie and Pistol Ridge fields are located along the southern boundary of the Mississippi Salt basin and northern edge of the Wiggins arch in Forrest and Pearl River counties, Mississippi. Together, the fields have produced about 12 million bbl of oil and 600 mcf of gas to date, primarily from the lower Tuscaloosa Formation. Production ranges from the Hosston to the Wilcox. A field study using 281 electric logs was done to determine controls on hydrocarbon distribution, emphasizing the Dantzler and Upper Cretaceous section. Almost all hydrocarbon traps at the fields are related to the Maxie-Pistol Ridge fault, a northward-dipping normal fault extending about 18 mi in an east-west direction. Maximum throw along the fault is about 300 ft (at the Dantzler and Lower Tuscaloosa Formation horizons), and it dies out upward into the lower part of the Tertiary. Several smaller antithetic and synthetic faults occur parallel to subparallel to the main fault. On the downthrown side of the fault, hydrocarbons occur in two rollover structures designated here as the Maxie anticline and the Pistol Ridge faulted anticline. The former, slightly higher, has trapped mostly lower Tuscaloosa gas, while the latter, structurally lower, contain dominantly oil, spread stratigraphically from the Paluxy to the Eutaw/upper Tuscaloosa. Upthrown structural traps are low-relief simple closures of fault-closed noses on what are designated as the East and West Wiggins anticlines. Hosston and Rodessa pay in the latter is referred to as West Pistol Ridge field.

  15. Early Cretaceous low-Mg# adakitic rocks in the southern margin of the central North China Craton: Partial melting of thickened lower continental crust and tectonic implications

    NASA Astrophysics Data System (ADS)

    Yang, D.

    2015-12-01

    This paper reports new whole-rock geochemical, Sr-Nd-Pb isotopic, and zircon U-Pb and Hf isotopic data for Early Cretaceous intrusive rocks in the Sanmenxia-Houma area of central China, and uses these data to constrain the petrogenesis of low-Mg adakitic rocks (LMAR) and the spatial extent of the influence of the deeply subducted Yangtze slab during the Triassic evolution of this region. New zircon LA-ICP-MS U-Pb data indicate that the early- and late-stage southern Quli, Qiligou, and Gaomiao porphyritic quartz diorites, the Canfang granodiorite, and the northern Wangmao porphyritic quartz monzodiorite were emplaced during the Early Cretaceous (~130 Ma) and the late Early Cretaceous (116 Ma). These rocks are characterized by high Na2O/K2O, Sr/Y, and (La/Yb)n ratios as well as high Sr concentrations, low Mg# values, and low heavy rare earth element and Y concentrations, all of which indicate an LMAR affinity. The samples have relatively high initial 87Sr/86Sr ratios (0.7054-0.7095), and low eNd(t) (-11.90 to -22.20) and eHf(t) (-16.7 to -32.7) values, indicative of a lower continental crust origin. The presence of Neoproterozoic (754-542 Ma) and inherited Late Triassic (220 Ma) metamorphic zircons within the late Early Cretaceous LMAR and the relatively high 206Pb/204Pb ratios of these rocks suggest that they formed from primary magmas derived from partial melting of Yangtze Craton (YC) basement material that had undergone ultrahigh-pressure metamorphism. In contrast, the presence of Paleoproterozoic and Archean inherited zircons within early Early Cretaceous LMAR in this area and the relatively low 206Pb/204Pb ratios of these rocks are indicative of derivation from primary magmas generated by partial melting of the thickened lower continental crust of the North China Craton (NCC). These rocks may have formed in an extensional environment associated with the upwelling of asthenospheric mantle material. The presence of YC basement material within the NCC in the

  16. Rock avalanches caused by earthquakes: Source characteristics

    USGS Publications Warehouse

    Keefer, D.K.

    1984-01-01

    Study of a worldwide sample of historical earthquakes showed that slopes most susceptible to catastrophic rock avalanches were higher than 150 meters and steeper than 25 degrees. The slopes were undercut by fluvial or glacial erosion, were composed ofintensely fractured rock, and exhibited at least one other indicator of low strength or potential instability.

  17. Rock avalanches caused by earthquakes: source characteristics.

    PubMed

    Keefer, D K

    1984-03-23

    Study of a worldwide sample of historical earthquakes showed that slopes most susceptible to catastrophic rock avalanches were higher than 150 meters and steeper than 25 degrees. The slopes were undercut by fluvial or glacial erosion, were composed of intensely fractured rock, and exhibited at least one other indicator of low strength or potential instability. PMID:17759365

  18. Extraction of whole versus ground source rocks: Fundamental petroleum geochemical implications including oil-source rock correlation

    USGS Publications Warehouse

    Price, L.C.; Clayton, J.L.

    1992-01-01

    In petroleum geochemistry, extractable hydrocarbons (HCs) in source rocks have typically been studied by grinding the rock to a fine powder (???100 mesh) and then extracting the HCs from the rock with a solvent. This procedure carries the implicit assumption that the HCs are homogeneously distributed throughout the rock. However, sequential Soxhlet extractions of whole (unpowdered) source rocks have shown that progressive extracts from the same rock can be quite different and may not even correlate with each other. A crude oil-like material clearly has been fractionated from indigenous bitumen in these rocks, has moved to cracks and parting laminae in the rocks, is ready for expulsion from the rocks, and is thus most accessible to the first extracting solvents. This process, which we believe is largely due to HC gases and carbon dioxide generated over all maturation ranks in source rocks, carries petroleum geochemical implications of a fundamental nature for oil-source rock correlations and gives insight into primary migration mechanisms, origin of oil deposits, and use of maturity and organic-facies indices. ?? 1992.

  19. Basin richness and source rock disruption - a fundamental relationship

    USGS Publications Warehouse

    Price, L.C.

    1994-01-01

    Primary petroleum migration (expulsion from source rocks) remains the least understood parameter controlling the genesis of oil deposits. It is hypothesised that source rocks must be physically disrupted before meaningful expulsion can occur. Faulting, with accompanying significant fracturing, would appear to be the optimum naturally-occurring process for physical disruption of source rocks. If these hypotheses are valid, intensity of faulting in deeply-buried HC "kitchens' containing mature source rocks should strongly correlate with increasing basin richness. This possible relationship is examined in this paper; it is found that there is a strong correlation of increasing basin richness with increasing structural intensity over and adjacent to basin depocentres. This correlation thus supports the hypothesis that physical disruption of mature source rocks is a necessary, and previously unappreciated, controlling parameter for oil expulsion. -from Author

  20. Preliminary results on the characterization of Cretaceous and lower Tertiary low-permeability (tight) gas-bearing rocks in the Wind River Basin, Wyoming

    SciTech Connect

    Fouch, T.D.; Keefer, W.R.; Finn, T.M.

    1993-12-31

    The Wind River Basin is a structural and sedimentary basin in central Wyoming (Figure 1) that was created during the Laramide orogeny from Late Cretaceous through Eocene time. The objectives of the Wind River Basin tight gas sandstone project are to define the limits of the tight gas accumulation in the basin and to estimate in-place and recoverable gas resources. The approximate limits of the tight gas accumulation are defined from available drillhole information. Geologic parameters, which controlled the development of the accumulation, are studied in order to better understand the origins of tight gas accumulations, and to predict the limits of the accumulation in areas where little drillhole information is available. The architecture of sandstone reservoirs are studied in outcrop to predict production characteristics of similar reservoirs within the tight gas accumulation. Core and cuttings are used to determine thermal maturities, quality of source rocks, and diagenetic histories. Our work thus far has concentrated in the Wind River Indian Reservation in the western part of the basin.

  1. Petroleum source rock potential of Mesozoic condensed section deposits in southwestern Alabama

    SciTech Connect

    Mancini, E.A; Tew, B.H.; Mink, R.M. )

    1991-03-01

    Because condensed section deposits in carbonates and siliclastics are generally fine-grained lithologies often containing relatively high concentrations of organic matter, these sediments have the potential to be petroleum source rocks if buried under conditions favorable for hydrocarbon generation. In the Mesozoic deposits of southwestern Alabama, only the Upper Jurassic Smackover carbonate mudstones of the condensed section of the LZAGC-4.1 cycle have realized their potential as hydrocarbon source rocks. These carbonate mudstones contain organic carbon concentrations of algal and amorphous kerogen of up to 1.7% and have thermal alteration indices of 2- to 3+. The Upper Cretaceous Tuscaloosa marine claystones of the condensed section of the UZAGC-2.5 cycle are rich (up to 2.9%) in herbaceous and amorphous organic matter but have not been subjected to burial conditions favorable for hydrocarbon generation. The Jurassic Pine Hill/Norphlet black shales of the condensed section of the LZAGC-3.1 cycle and the Upper Jurassic Haynesville carbonate mudstones of the condensed section of the LZAGC-4.2 cycle are low (0.1%) in organic carbon. Although condensed sections within depositional sequences should have the highest source rock potential, specific environmental, preservational, and/or burial history conditions within a particular basin will dictate whether or not the potential is realized as evidenced by the condensed sections of the Mesozoic depositional sequences in southwestern Alabama. Therefore, petroleum geologists can use sequence stratigraphy to identify potential source rocks; however, only through geochemical analyses can the quality of these potential source rocks be determined.

  2. Geohydrology and chemical quality of water in Middle and Upper Jurassic and Lower Cretaceous rocks, western Kansas

    USGS Publications Warehouse

    Kume, Jack

    1984-01-01

    Fresh and saline water occur in Upper Jurassic and Lower Cretaceous rocks in western Kansas. The maximum thickness of the Jurassic aquifer is about 50 feet. During 1981, water levels ranged from 255 to 1,160 feet below land surface; the static heads ranged from about 2,400 to 3,100 feet above sea level and the hydraulic gradient ranged from 16 feet per mile toward the northeast to 40 feet per mile toward the north. The water is moderately saline, very hard, a sodium sulfate or sodium chloride type, and unsuitable for drinking and irrigation. The maximum thickness of the Cheyenne aquifer is about 190 feet. During 1981, water levels ranged from 267 to 375 feet below land surface; the static heads varied from less than 2,300 to more than 3,200 feet above sea level; and the hydraulic gradient was 8 feet per mile toward the east. The water is fresh to moderately saline, soft to very hard, a sodium sulfate or sodium , bicarbonate type, and suitable to unsuitable for drinking and irrigation. The maximum thickness of the Dakota aquifer is about 150 feet. During 1982, water levels ranged from 24 to 604 feet below land surface; the static heads ranged from about 2,100 to 3,200 feet above sea level; and the hydraulic gradient was 11 feet per mile toward the east and northeast. The water is fresh to slightly saline, soft to very hard, and suitable to unsuitable for drinking and irrigation. (USGS)

  3. Using high-resolution aeromagnetic data to recognise and map intra-sedimentary volcanic rocks and geological structures across the Cretaceous middle Benue Trough, Nigeria

    NASA Astrophysics Data System (ADS)

    Anudu, Goodluck K.; Stephenson, Randell A.; Macdonald, David I. M.

    2014-11-01

    Recently acquired high-resolution aeromagnetic data over the Cretaceous middle Benue Trough of Nigeria have been analysed employing various edge-enhancement (magnetic derivative) methods: vertical derivatives, total horizontal derivative, analytic signal, and total horizontal derivative of tilt derivative. The study was aimed at mapping intra-sedimentary volcanic rocks and their areal extents/distribution as well as delineating geological structures, their structural trends and tectonic implications. The magnetic derivative anomaly maps produced in this project greatly enhanced the high amplitude, short-wavelength (high wavenumber) anomalies associated with the surface/near-surface intra-sedimentary volcanic rocks and associated geological structures. The maps show that volcanic rocks of Late Cretaceous to Palaeocene age are much more widespread than implied by surface geological mapping, with an areal extent of greater than 12,000 km2 in the relatively shallow subsurface. The results also highlight some known and several previously unknown geological lineaments. Rose (azimuth-frequency) plots of orientations of geological structures show trends being predominantly NE-SW, NW-SE and ESE-WNW with minor ENE-WSW and N-S trends. These main groups of structural trends are associated with the Brasiliano/Pan-African orogeny (600 ± 200 Ma) and likely predate rifting of the Gondwana supercontinent. They may have been enhanced during continental break-up in Late Jurassic to Early Cretaceous.

  4. Early Cretaceous gabbroic rocks from the Taihang Mountains: Implications for a paleosubduction-related lithospheric mantle beneath the central North China Craton

    NASA Astrophysics Data System (ADS)

    Wang, Yuejun; Fan, Weiming; Zhang, Hongfu; Peng, Touping

    2006-02-01

    SHRIMP zircon U-Pb ages and geochemical and Sr-Nd-Pb isotopic data are presented for the gabbroic intrusive from the southern Taihang Mountains to characterize the nature of the Mesozoic lithospheric mantle beneath the central North China Craton (NCC). The gabbroic rocks emplaced at 125 Ma and are composed of plagioclase (40-50%), amphibole (20-30%), clinopyroxene (10-15%), olivine (5-10%) and biotite (5-7%). Olivines have high MgO (Fo = 78-85) and NiO content. Clinopyroxenes are high in MgO and CaO with the dominant ones having the formula of En 42-46Wo 41-50Fs 8-13. Plagioclases are dominantly andesine-labradorite (An = 46-78%) and have normal zonation from bytownite in the core to andesine in the rim. Amphiboles are mainly magnesio and actinolitic hornblende, distinct from those in the Precambrian high-pressure granulites of the NCC. These gabbroic rocks are characterized by high MgO (9.0-11.04%) and SiO 2 (52.66-55.52%), and low Al 2O 3, FeOt and TiO 2, and could be classified as high-mg basaltic andesites. They are enriched in LILEs and LREEs, depleted in HFSEs and HREEs, and exhibit ( 87Sr/ 86Sr) i = 0.70492-0.70539, ɛNd( t) = - 12.47-15.07, ( 206Pb/ 204Pb) i = 16.63-17.10, Δ8/4 = 70.1-107.2 and Δ7/4 = - 2.1 to - 9.4, i.e., an EMI-like isotopic signatures. Such geochemical features indicate that these early Cretaceous gabbroic rocks were originated from a refractory pyroxenitic veined-plus-peridotite source previously modified by an SiO 2-rich melt that may have been derived from Paleoproterozoic subducted crustal materials. Late Mesozoic lithospheric extension might have induced the melting of the metasomatised lithospheric mantle in response to the upwelling of the asthenosphere to generate these gabbroic rocks in the southern Taihang Mountains.

  5. Oil source rocks in the Romanian area of the Moesian platform

    SciTech Connect

    Baltes, N.; Matracaru, C.; Petrom, R.A.

    1995-08-01

    The Romanian area of the Moesian Platform (north of the Danube-Black Sea and east and South Carpathians Foredeep to north) represents a very important intra-plate with some new real oil prospects. With a thick sedimentary cover, especially in its northern, deepest area, the Moesian Platform offers favorable geological conditions of oil systems in the whole stratigraphic column, from Paleozoic to Upper Cenozoic (Pliocene). Having a few rich oil source rocks both in carbonatic facies (Devonian-Carboniferous, Middle Triassic, Neocomian) and argillitic ones (Silurian, early Carboniferous, Lias-Dogger, Mid-Upper Miocene), the Moesian Platform also contains very good oil reservoirs: Mid-Upper Paleozoic, Triassic, Lower Cretaceous, Upper Miocene and Pliocene. Geochemical studies on kerogen and bitumen have pointed out the most important oil source rocks, as well as the quality and quantity of expelled hydrocarbons and their relationships with oil reservoirs. Geochemical correlations between oils and source rocks have led to a better understanding of the oil pool formation with some interesting goals in the Romanian exploration strategy.

  6. Andesitic crustal growth via mélange partial melting: Evidence from Early Cretaceous arc dioritic/andesitic rocks in southern Qiangtang, central Tibet

    NASA Astrophysics Data System (ADS)

    Hao, Lu-Lu; Wang, Qiang; Wyman, Derek A.; Ou, Quan; Dan, Wei; Jiang, Zi-Qi; Yang, Jin-Hui; Li, Jie; Long, Xiao-Ping

    2016-05-01

    Deciphering the petrogenesis of andesitic/dioritic rocks is fundamental to understanding the formation of the continental crust. Here we present detailed petrology, geochronology, major and trace element, Sr-Nd-Hf-O isotope data for the Early Cretaceous (˜122 Ma) dioritic rocks in the Bizha area in southern Qiangtang, Tibet. The dioritic rocks are characterized by large ion lithophile elements, Pb, and light rare earth elements but depletion of high field strength elements with slightly enriched and variable ɛNd(t) values of -0.01 to -3.31 and initial 87Sr/86Sr isotopic ratios of 0.7053-0.7062. They also have variable magmatic zircon Hf-O isotope compositions (ɛHf(t) = -5.3 to +3.6 and δ18O = +7.3 to +9.5 ‰). Combined with contemporary andesitic lavas in southern Qiangtang, we suggest that the intermediate magmatic rocks in this area were most probably derived by partial melting of a subduction mélange, which is a mixture of mid-oceanic ridge basalts (MORBs), sediments, and mantle wedge peridotites, formed along the interface between the subducted slab and the overlying mantle wedge in a subduction channel before ˜124 Ma. The mélange diapir melting was triggered by the asthenospheric upwelling and hot corner flow caused by roll-back of the northward subducted Bangong-Nujiang oceanic slab during the Early Cretaceous. The Early Cretaceous intermediate magmatic rocks in southern Qiangtang have an overall continental crust-like andesitic composition. Therefore, partial melting of mélange provides an important support for the generation of andesitic magmas in continental arcs and the "andesite model" for crustal growth.

  7. Burial History, Thermal Maturity, and Oil and Gas Generation History of Source Rocks in the Bighorn Basin, Wyoming and Montana

    USGS Publications Warehouse

    Roberts, Laura N.R.; Finn, Thomas M.; Lewan, Michael D.; Kirschbaum, Mark A.

    2008-01-01

    Burial history, thermal maturity, and timing of oil and gas generation were modeled for seven key source-rock units at eight well locations throughout the Bighorn Basin in Wyoming and Montana. Also modeled was the timing of cracking to gas of Phosphoria Formation-sourced oil in the Permian Park City Formation reservoirs at two well locations. Within the basin boundary, the Phosphoria is thin and only locally rich in organic carbon; it is thought that the Phosphoria oil produced from Park City and other reservoirs migrated from the Idaho-Wyoming thrust belt. Other petroleum source rocks include the Cretaceous Thermopolis Shale, Mowry Shale, Frontier Formation, Cody Shale, Mesaverde and Meeteetse Formations, and the Tertiary (Paleocene) Fort Union Formation. Locations (wells) selected for burial history reconstructions include three in the deepest parts of the Bighorn Basin (Emblem Bench, Red Point/Husky, and Sellers Draw), three at intermediate depths (Amoco BN 1, Santa Fe Tatman, and McCulloch Peak), and two at relatively shallow locations (Dobie Creek and Doctor Ditch). The thermal maturity of source rocks is greatest in the deep central part of the basin and decreases to the south, east, and north toward the basin margins. The Thermopolis and Mowry Shales are predominantly gas-prone source rocks, containing a mix of Type-III and Type-II kerogens. The Frontier, Cody, Mesaverde, Meeteetse, and Fort Union Formations are gas-prone source rocks containing Type-III kerogen. Modeling results indicate that in the deepest areas, (1) the onset of petroleum generation from Cretaceous rocks occurred from early Paleocene through early Eocene time, (2) peak petroleum generation from Cretaceous rocks occurred during Eocene time, and (3) onset of gas generation from the Fort Union Formation occurred during early Eocene time and peak generation occurred from late Eocene to early Miocene time. Only in the deepest part of the basin did the oil generated from the Thermopolis and

  8. Depositional sequences (''cycles'') in Fredericksburg Rocks (Middle Albain, Cretaceous) of North-Central Texas

    SciTech Connect

    Amsbury, D.L.

    1988-01-01

    Fredericksburg division is an allostratigraphic (physically defined time-stratigraphic) unit of sub-series rank. It is regionally coincident with the 100-m thick Fredericksburg Group. The division contains shallowing-upward depositional sequences at all scales; detailed stratigraphy demonstrates that each has limited lateral extent. A much better understanding of depositional history may be gained by study of the sequences than by study of lithologic units alone. From the base upward, the Fredericksburg includes the Paluxy Sand, Keys Valley Marl Member of the Walnut Formation, and the Comanche Peak Limestone, Deposition of Paluxy Sand, spread southward across hardgrounds partly by marine currents, was interrupted by periods of caliche soil formation, deposition of oolite and other carbonate sediment over sand mounds, and widespread episodes of clay influx. The Keys Valley Marl Member of the Walnut Formation comprises shale with rippled gryphaeid beds, passing upward into marl containing a diverse marine molluscan fauna, and capped by a gryphaeid biostrome that grades westward into quartz-sand oolitic grainstone. Except for the oolite, water depth may have been similar for all facies. Lenses of Comanche Peak Limestone, capped locally by hardgrounds, pinch out northward into upper Walnut shale. An oncolite shoal trending west-northwest from Lake Belton formed below one prominent surface; this surface became the substrate for a 35-m buildup of Edwards grainstone and rudist rock.

  9. The Bolivian source rocks: Sub Andean Zone-Madre de Dios-Chaco

    SciTech Connect

    Moretti, I.; Montemurro, G.; Aguilera, E.; Perez, M.; Martinez, E.Diaz

    1996-08-01

    A complete study of source rocks has been carried out in the Bolivian foothills and foreland (Sub Andean Zone, Chaco and Madre de Dios) in order to quantify the petroleum potential of the area. Besides the classical mid-Devonian source rocks (Tequeje Formation in the north, Limoncito Formation in the center and Los Monos Formation in the south), others are important: the Tomachi Formation (late Devonian) in the north and the Copacabana Formation (Upper Carboniferous-lower Permian) in the northern Sub Andean Zone. Both show an excellent potential with S{sub 2} over 50 mg HC/g and average values higher than 10 mg HC/g over few hundred meters. The Latest Cretaceous Flora Formation present locally a high potential but is very thin. Almost all the source rocks matured during the Neogene due to the subsidence in the Andean foreland and in the piggyback basins, and are thus involved on the current petroleum system. Silurian and Lower Paleozoic units also contain thick shale beds, but these source rocks were mature before the Jurassic in the south of the country. In the center, the Silurian is not nowadays overmature and may play an important role. The different zones are compared based on their Source Potential Index which indicates that the richest areas are the northern Sub Andean Zone and the Madre de Dios basin with SPI greater than 10 t/m{sup 2}. Since these two areas remain almost unexplored, these results allow us to be optimistic about the possibilities for future exploration.

  10. Importance of Neogene siliceous rocks as the source of petroleum in Japan

    SciTech Connect

    Aoyagi, K. ); Omokawa, M. )

    1989-01-01

    Major oil and gas fields in Japan are located in the area from the central Hokkaido through northeast Honshu. Most productive horizons are generally found in formations of the late Middle Miocene (approximately 12-10 Ma) Onnagawa provincial stage of Japan. These formations are composed mainly of hard mudstone, siliceous shale, diatomaceous mudstone, marlite, and acidic pyroclastic rocks. Source rock potentials in argillaceous rocks of the Miocene Ohdoji Formation in Aomori, the Onnagawa Formation in Akita, and the Lower Teradomari Formation in Niigata show the highest values as compared with other formations in these areas. Average contents of organic carbon and hydrocarbons of siliceous sediments such as diatomite, siliceous shale, and chert in the Aomori basin indicate the higher values as compared with other argillaceous sediments. Diatoms, which appeared in the later Cretaceous, are the principal primary producers of organic matter in the marine environment during the Cenozoic. Organic components and biological productivity show that diatoms have been the most important source of petroleum during the Neogene in Japan.

  11. Tectonic control in source rock maturation and oil migration in Trinidad

    SciTech Connect

    Persad, K.M.; Talukdar, S.C.; Dow, W.G. )

    1993-02-01

    Oil accumulation in Trinidad were sourced by the Upper Cretaceous calcareous shales deposited along the Cretaceous passive margin of northern South America. Maturation of these source rocks, oil generation, migration and re-migration occurred in a foreland basin setting that resulted from interaction between Caribbean and South American plates during Late Oligocene to recent times. During Middle Miocene-Recent times, the foreland basin experienced strong compressional events, which controlled generation, migration, and accumulation of oil in Trinidad. A series of mature source rock kitchens formed in Late Miocene-Recent times in the Southern and Colombus Basins to the east-southeast of the Central Range Thrust. This thrust and associated fratured developed around 12 m.y.b.p. and served as vertical migration paths for the oil generated in Late Miocene time. This oil migrated into submarine fans deposited in the foreland basin axis and older reservoirs deformed into structural traps. Further generation and migration of oil, and re-migration of earlier oil took place during Pliocene-Holocene times, when later thrusting and wrench faulting served as vertical migration paths. Extremely high sedimentation rates in Pliocene-Pleistocene time, concurrent with active faulting, was responsible for very rapid generation of oil and gas. Vertically migrating gas often mixed with earlier migrated oil in overlying reservoirs. This caused depletion of oil in light hydrocarbons with accompanied fractionation among hydrocarbon types resulting in heavier oil in lower reservoirs, enrichment of light hydrocarbons and accumulation of gas-condensates in upper reservoirs. This process led to an oil-gravity stratification within about 10,000 ft of section.

  12. Mesozoic non-marine petroleum source rocks determined by palynomorphs in the Tarim Basin, Xinjiang, northwestern China

    USGS Publications Warehouse

    Jiang, D.-X.; Wang, Y.-D.; Robbins, E.I.; Wei, J.; Tian, N.

    2008-01-01

    The Tarim Basin in Northwest China hosts petroleum reservoirs of Cambrian, Ordovician, Carboniferous, Triassic, Jurassic, Cretaceous and Tertiary ages. The sedimentary thickness in the basin reaches about 15 km and with an area of 560000 km2, the basin is expected to contain giant oil and gas fields. It is therefore important to determine the ages and depositional environments of the petroleum source rocks. For prospective evaluation and exploration of petroleum, palynological investigations were carried out on 38 crude oil samples collected from 22 petroleum reservoirs in the Tarim Basin and on additionally 56 potential source rock samples from the same basin. In total, 173 species of spores and pollen referred to 80 genera, and 27 species of algae and fungi referred to 16 genera were identified from the non-marine Mesozoic sources. By correlating the palynormorph assemblages in the crude oil samples with those in the potential source rocks, the Triassic and Jurassic petroleum source rocks were identified. Furthermore, the palynofloras in the petroleum provide evidence for interpretation of the depositional environments of the petroleum source rocks. The affinity of the miospores indicates that the petroleum source rocks were formed in swamps in brackish to lacustrine depositional environments under warm and humid climatic conditions. The palynomorphs in the crude oils provide further information about passage and route of petroleum migration, which is significant for interpreting petroleum migration mechanisms. Additionally, the thermal alternation index (TAI) based on miospores indicates that the Triassic and Jurassic deposits in the Tarim Basin are mature petroleum source rocks. ?? Cambridge University Press 2008.

  13. The Cretaceous-Tertiary (K/T) impact: One or more source craters?

    NASA Technical Reports Server (NTRS)

    Koeberl, Christian

    1992-01-01

    The Cretaceous-Tertiary (K/T) boundary is marked by signs of a worldwide catastrophe, marking the demise of more than 50 percent of all living species. Ever since Alvarez et al. found an enrichment of IR and other siderophile elements in rocks marking the K/T boundary and interpreted it as the mark of a giant asteroid (or comet) impact, scientists have tried to understand the complexities of the K/T boundary event. The impact theory received a critical boost by the discovery of shocked minerals that have so far been found only in association with impact craters. One of the problems of the K/T impact theory was, and still is, the lack of an adequate large crater that is close to the maximum abundance of shocked grains in K/T boundary sections, which was found to occur in sections in Northern America. The recent discovery of impact glasses from a K/T section in Haiti has been crucial in establishing a connection with documented impact processes. The location of the impact-glass findings and the continental nature of detritus found in all K/T sections supports at least one impact site near the North American continent. The Manson Impact Structure is the largest recognized in the United States, 35 km in diameter, and has a radiometric age indistinguishable from that of the Cretaceous-Tertiary (K/T) boundary. Although the Manson structure may be too small, it may be considered at least one element of the events that led to the catastrophic loss of life and extinction of many species at that time. A second candidate for the K/T boundary crater is the Chicxulub structure, which was first suggested to be an impact crater more than a decade ago. Only recently, geophysical studies and petrological (as well as limited chemical) analyses have indicated that this buried structure may in fact be of impact origin. At present we can conclude that the Manson crater is the only confirmed crater of K/T age, but Chicxulub is becoming a strong contender; however, detailed geochemical

  14. The Cretaceous-Tertiary (K/T) impact: One or more source craters?

    NASA Astrophysics Data System (ADS)

    Koeberl, Christian

    The Cretaceous-Tertiary (K/T) boundary is marked by signs of a worldwide catastrophe, marking the demise of more than 50 percent of all living species. Ever since Alvarez et al. found an enrichment of IR and other siderophile elements in rocks marking the K/T boundary and interpreted it as the mark of a giant asteroid (or comet) impact, scientists have tried to understand the complexities of the K/T boundary event. The impact theory received a critical boost by the discovery of shocked minerals that have so far been found only in association with impact craters. One of the problems of the K/T impact theory was, and still is, the lack of an adequate large crater that is close to the maximum abundance of shocked grains in K/T boundary sections, which was found to occur in sections in Northern America. The recent discovery of impact glasses from a K/T section in Haiti has been crucial in establishing a connection with documented impact processes. The location of the impact-glass findings and the continental nature of detritus found in all K/T sections supports at least one impact site near the North American continent. The Manson Impact Structure is the largest recognized in the United States, 35 km in diameter, and has a radiometric age indistinguishable from that of the Cretaceous-Tertiary (K/T) boundary. Although the Manson structure may be too small, it may be considered at least one element of the events that led to the catastrophic loss of life and extinction of many species at that time. A second candidate for the K/T boundary crater is the Chicxulub structure, which was first suggested to be an impact crater more than a decade ago. Only recently, geophysical studies and petrological (as well as limited chemical) analyses have indicated that this buried structure may in fact be of impact origin. At present we can conclude that the Manson crater is the only confirmed crater of K/T age, but Chicxulub is becoming a strong contender; however, detailed geochemical

  15. Geochronology, geochemistry, and deformation history of Late Jurassic-Early Cretaceous intrusive rocks in the Erguna Massif, NE China: Constraints on the late Mesozoic tectonic evolution of the Mongol-Okhotsk orogenic belt

    NASA Astrophysics Data System (ADS)

    Tang, Jie; Xu, Wen-Liang; Wang, Feng; Zhao, Shuo; Li, Yu

    2015-09-01

    This paper presents new zircon and sphene U-Pb ages, biotite and hornblende 40Ar/39Ar ages, Hf isotopic data, and geochemical data for five Mesozoic plutons in the Erguna Massif of NE China. These data are used to constrain the late Mesozoic tectonic evolution of the Mongol-Okhotsk orogenic belt. This new dating, when combined with previously published ages, indicates that the Late Jurassic-Early Cretaceous (J3-K1) intrusive rocks can be subdivided into three stages that represent periods of magmatism during the Late Jurassic (~ 155 Ma), early Early Cretaceous (~ 137 Ma), and late Early Cretaceous (~ 123 Ma). In addition, the rocks have undergone later deformation recorded by peak ages of ~ 137 and ~ 123 Ma. The Late Jurassic and early Early Cretaceous intrusive rocks in the study area are dominantly syenogranites and are either A-type granites or are classified as alkaline series, suggesting that they formed in an extensional environment. The late Early Cretaceous intrusive rocks in this area are generally monzogranitic and were emplaced as dikes in an extensional environment, along with coeval bimodal volcanics. These data, combined with the presence of regional unconformities in the northern part of Hebei Province and western part of Liaoning Province, and the spatial distribution of coeval volcanic rocks in NE China, suggest the Late Jurassic and early Early Cretaceous magmatisms and the early Early Cretaceous deformation in this area occurred in an extensional environment related to the delamination of a thickened part of the crust after closure of the Mongol-Okhotsk Ocean. In comparison, the late Early Cretaceous deformation and magmatism occurred in an extensional environment related to either delamination of the previously thickened crust related to the Mongol-Okhotsk tectonic regime or the subduction of the Paleo-Pacific Plate, or the combined influence of these two tectonic regimes.

  16. Age and petrogenesis of Na-rich felsic rocks in western Iran: Evidence for closure of the southern branch of the Neo-Tethys in the Late Cretaceous

    NASA Astrophysics Data System (ADS)

    Nouri, Fatemeh; Azizi, Hossein; Golonka, Jan; Asahara, Yoshihiro; Orihashi, Yuji; Yamamoto, Koshi; Tsuboi, Motohiro; Anma, Ryo

    2016-03-01

    Intermediate to felsic volcanic and granitic rocks with high Na2O concentrations (5.2-9.1 wt.%) are widely distributed in the Harsin area along the Zagros thrust zone in western Iran. Most of these rocks are classified as low-potassium tholeiite, display affinity with oceanic plagiogranite and contain somewhat high Na content and low concentrations of K2O, Al2O3, Rb, Sr and Ca. Thus, we prefer to apply the term Na-rich felsic rocks to this complex. U-Pb dating yielded ages of 94.6 ± 2.7 Ma (2σ) from baddeleyite and 95.0 ± 2.4 Ma (2σ) from zircon grains, indicating that the complex crystallized in the Late Cretaceous. Based on the mineral compositions, the crystallization occurred at low pressures (mostly < 2 kbar) and low temperatures (< 750 °C). High initial ratios of 143Nd/144Nd (0.51288-0.51304) and positive values of ɛNd(t) (+ 7.0 to + 11.5) are consistent with those of mid-oceanic ridge basalt (MORB). During collision of the Arabian plate and Biston-Avoraman block in the Late Cretaceous, an increasing geothermal gradient was responsible for partial melting of altered mafic rocks and for producing the Na-rich felsic rocks in the Harsin area. The presence of these types of rocks along the main Zagros fault indicates local collisions. These collisions were caused by southwestward subduction under the Arabian plate in the southern branch of the Neo-Tethys. This event was the first stage of the Zagros collision, which was followed by collision of the Arabian and Iranian plates during the Eocene through Neogene.

  17. Geochemical features of metabasic rocks from an Early to Middle Jurassic Accretionary Complex (Refahiye metamorphics, Eastern Pontides, NE Turkey): Implications for Late Jurassic-Early Cretaceous magmatic lull

    NASA Astrophysics Data System (ADS)

    Göçmengil, G.; Topuz, G.; Çelik, Ö. F.; Altıntaş, Ä.°. E.; Özkan, M.

    2012-04-01

    The Refahiye metamorphics (Eastern Pontides, NE Turkey) represent a metamorphosed accretionary complex of Early to Middle Jurassic age and occur as an interleave between coeval ophiolite. This Early to Middle Jurassic metamorphics and ophiolites are bound by a Permo-Triassic accretionary complex in the north and a Late Cretaceous accretionary complex in the south. The Refahiye metamorphics are made up of greenschist, marble, serpentine, phyllite and subordinately amphibolite, micaschist, eclogite and metachert knockers. The Jurassic and Late Cretaceous accretionary complexes in Eastern Mediterranean are related to the consumption of a Mesozoic ocean, the so-called Neo-Tethys. Regional geology in the Eastern Pontides indicate that the Early to Middle Jurassic and Late Cretaceous times correspond to volumious igneous activity, while Late Jurassic and Early Cretaceous time to an igneous lull. Here we present whole-rock geochemical data on metabasic rocks from the Refahiye accretionary complex, and discuss these data in terms of accreted material and its implications for the Jurassic evolution of the Eastern Pontides. All the metabasic rocks are well recrystallized, free of any relict texture and are variably hydrated (LOI ~ 1.3-5.1 wt%). Some samples are characterized by the unusually high-Al2O3 contents (up to 20.8 wt%) suggestive of derivation from high-Al basalts. Geochemically three distinct metabasic group are distinguished, on the basis of fluid immobile HFSEs and REEs. Group I is characterized by moderately to strongly fractionated REE patterns [(La/Yb)cn ~8-18], absence of any Nb-Ta anomaly in multi element variation diagrams and high Ti and low Zr/Nb ratios (3.68-5.72), corresponding to unorogenic alkaline basalts (ocean island basalt). Group II characterized by moderately fractionated REE ratios [(La/Yb)cn ~0.6-2.6], absence of any Nb-Ta anomaly, resembling unorogenic tholeiitic basalts (E and N-MORB). Group III on the other hand, displays unfractionated

  18. Oils and hydrocarbon source rocks of the Baltic syneclise

    SciTech Connect

    Kanev, S.; Margulis, L. ); Bojesen-Koefoed, J.A. ); Weil, W.A.; Merta, H. ); Zdanaviciute, O. )

    1994-07-11

    Prolific source rock horizons of varying thickness, having considerable areal extent, occur over the Baltic syneclise. These source sediments are rich and have excellent petroleum generation potential. Their state of thermal maturity varies form immature in the northeastern part of the syneclise to peak generation maturity in the southwestern part of the region-the main kitchen area. These maturity variations are manifest in petroleum composition in the region. Hence, mature oils occur in the Polish and Kaliningrad areas, immature oils in small accumulations in Latvian and central Lithuanian onshore areas, and intermediate oils in areas between these extremes. The oil accumulations probably result from pooling of petroleum generated from a number of different source rocks at varying levels of thermal maturity. Hence, no single source for petroleum occurrences in the Baltic syneclise may be identified. The paper describes the baltic syneclise, source rocks, thermal maturity and oils and extracts.

  19. Oil-source rock correlation using carbon isotope data and biological marker compounds, Cook Inlet-Alaska Peninsula, Alaska

    SciTech Connect

    Magoon, L.B. ); Anders, D.E. )

    1990-05-01

    Rock and oil samples from the Cook Inlet-Alaska Peninsula area were analyzed to determine the source of the commercial hydrocarbons produced in the Cook Inlet basin from lower Tertiary nonmarine sandstone reservoirs. Rock-Eval (hydrogen index) analysis and organic carbon content were used to identify the most favorable rock samples for solvent extraction and carbon isotope, gas-chromatographic (GC), and gas-chromatrographic/mass-spectrometric (GCMS) analyses. On the basis of organic-matter richness, five nonmarine Tertiary coal and shale samples and 12 marine Mesozoic (Upper Triassic and Middle Jurassic) shale samples were selected. A total of 28 oil and condensate samples from producing wells, oil-stem tests, field separators, and seeps were used for oil-oil and oil-source rock correlation. On the basis of biomarker and carbon isotope data, four of the shallower oils and condensates are from nonmarine source rocks, and 24 of the deeper oils are sourced from marine shales. Geochemical and regional geologic considerations indicate the following conclusions. The upper Tertiary nonmarine oils and condensates associated with commercial microbial gas accumulations are geochemically similar to the immature organic matter in the Tertiary nonmarine rocks. In the upper Cook Inlet, marine oils in lower Tertiary nonmarine reservoirs originated from Middle Jurassic rocks that matured during the Pliocene to Holocene; in the lower Cook Inlet-Alaska Peninsula area, oils migrated from both Upper Triassic and Middle Jurassic source rocks during the Late Cretaceous to early Tertiary. Although three petroleum systems are identified, this study on the petroleum potential in a convergent-margin setting indicates that only one of these three systems was responsible for the 1.2 billion bbl of recoverable oil in the lower Tertiary nonmarine reservoirs.

  20. Geochemical evidence for Paleozoic oil in Lower Cretaceous O Sandstone, northern Denver basin

    USGS Publications Warehouse

    Clayton, J.L.

    1989-01-01

    Organic geochemical properties of the oil produced from the Lower Cretaceous O sandstone on the eastern flank of the Denver basin indicate that this oil has been derived from a different source rock than other Cretaceous oils in the basin. O sandstone oil is characterized by low pristane/phytane ratio, high isoprenoid/n-alkane ratios, high asphaltene content, high sulfur content, and slight predominance of even-carbon numbered n-alkanes in the C25+ fraction. These features are evidence of a Paleozoic source and indicate a carbonate rock is the likely source. Preliminary source rock evaluation and correlation data suggest that calcareous black shales and marls of Middle Pennsylvanian (Desmoinesian) age are the source of the O sandstone oil. This is the first reported occurrence of oil from Paleozoic source rocks in a Cretaceous reservoir in the Denver basin. -from Author

  1. Compositions of biotite from granitoids of the Sierra Nevada batholith: constraints on magmatic source rocks

    SciTech Connect

    Ague, J.J.; Brimhall, G.H.

    1985-01-01

    Two compositional types of biotite from the Cretaceous Sierra Nevada batholith occur in a systematic regional pattern which reflects magmatic source material and correlates with tungsten mineralization. Biotite from each group may be characterized in terms of F/OH and Mg/Fe as follows. Type I biotites generally coexist with hornblende and magnetite + sphene. Type II biotites coexist with ilmenite +/- magnetite, but hornblende only occurs at contacts with Type I intrusives. Intrusives with Type IA biotite occur as a continuous belt along the entire western margin of the exposed batholith. Type IB biotite is found to the east of this belt, and Type IC biotite is confined to the eastern side of the Sierra. Type II biotite is present in the eastern and south-western portions of the Sierra, and sporadically in the metamorphic foothills belt. The two intrusive groups, here characterized by biotite compositions, correspond to two of the source rock and porphyry mineralization models of Burnham (1981). Type I rocks (Cu deposits) are derived from mafic amphiobolites whereas Type II (Sn-W deposits) form from relatively reduced muscovite-rich metasediments. The biotite compositions indicate that the majority of the batholith formed from amphibolite sources. Type II intrusives and W deposits occur in areas underlain by Precambrian crust as defined by radiogenic isotope studies.

  2. Geochronology and geochemistry of Cretaceous magmatic rocks of Arctic Chukotka: An update of GEOCHRON2.0

    NASA Astrophysics Data System (ADS)

    Akinin, V. V.; Miller, E. L.; Gottlieb, E.; Polzunenkov, G.

    2012-04-01

    Field work near and along the Arctic cost of Chukotka (Pevek to Cape Schmidt) contributes new data on the geology of this remote area which belongs to Arctic Alaska-Chukotka terrane or microcontinent which lies to the south of the vast and unexplored East Siberian Shelf, providing better constraints on basement ages and the magmatic and tectonic evolution of this part of the circum Arctic. U-Pb SHRIMP RG zircon ages from eight largest granitoid plutonic complexes intruded across this region are: Velitkinay (105-100 Ma), Kuvet (104±1 Ma), Pegtymel (108±2 Ma), Lootaypin (107±1 Ma), Inroginay (109-104 Ma), Pevek (108-105 Ma), Severny (88±1 Ma), Pyrkanay (92±1 Ma). Two last plutonic complexes are coeval with calc-alkaline volcanic rocks of the suprasubduction Okhotsk-Chukotka volcanic belt (Arctic Chukotka segment). Earlier plutons have extension-related geochemical signatures (monzonite trend and medium negative Nb-Ta anomalies) and Nd model ages of 1.0-1.8 Ga. The Velitkinay migmatite-granite complex, south of Cape Billings extends 150 km in a NW-SE direction. Along the southwest flank of the Velitkinay complex, poorly fossiliferous, metamorphosed Devonian (?), Carboniferous, Permian and Triassic strata are involved in regional W-NW-E-SE trending folds with steep axial planes. Country rocks to the plutonic complex dip steeply to gently SW and are intruded by variably deformed K-spar megacrystic biotite granites (102-106 Ma) in turn intruded by variably deformed medium- grained sphene and biotite bearing granites (~100 Ma, with zircon-core inheritance of 600-630 Ma) related to the migmatitic core of the complex. Precise U-Pb and Ar-Ar dates such as those above have been collected across North East Russia in the last decade and allow more modern regional synthesis of the age of main magmatic events in order to correlate them with the evolution of the Arctic Ocean basins. Our updated GEOCHRON data base documents important Jura-Cretaceous magmatic provinces and

  3. Petrogenesis of Cretaceous mafic intrusive rocks in the Fosdick Mountains, Marie Byrd Land, West Antarctica: melting of metasomatized sub-continental arc mantle along the active plate margin of Gondwana

    NASA Astrophysics Data System (ADS)

    Saito, S.; Brown, M.; Korhonen, F. J.; Mcfadden, R. R.; Siddoway, C. S.

    2013-12-01

    A diorite pluton and widely distributed mafic dykes occur in the Fosdick migmatite-granite complex, which is interpreted to represent middle-to-lower crustal rocks of the paleo-Pacific active continental margin of Gondwana. The mafic dykes exhibit a variety of relationships with host rocks in the field ranging from undeformed dykes with sharp contacts with host gneisses to dismembered dykes with comingled textures and numerous back-veins of leucosome intruded from host migmatitic gneisses suggestive of significant interaction with crustal rocks. U-Pb ages for magmatic zircon in these rocks yields Cretaceous crystallization ages ranging from ca. 113 Ma to ca. 98 Ma for the mafic dykes and ca. 100 Ma for the diorite pluton. These mafic intrusive rocks, which contain abundant hydrous minerals, are medium- to high-K-series calc-alkaline rocks with basic-intermediate compositions (47-59 wt % SiO2 for mafic dykes and 52-56 wt % SiO2 for the diorite pluton). They have trace element patterns characterized by LILE enrichments and negative Nb anomalies indicating an origin from a hydrous mantle source metasomatized by slab-derived components. The samples without evidence of interaction with crustal rocks, which are likely to better reflect the mantle source composition, have positive ɛSr(100Ma) values (+8.1 to +14.5) and negative to slightly positive ɛNd(100Ma) values (-1.6 to +2.5) consistent with derivation from an enriched mantle source. These samples may be divided into two groups either characterized by higher LILE/HFSE ratios, less radiogenic ɛSr(100Ma) values and more radiogenic ɛNd(100Ma) values, or characterized by relatively lower LILE/ HFSE ratios, more radiogenic ɛSr(100Ma) values and less radiogenic ɛNd(100Ma) values suggesting differences in the mantle source. The results of this study are consistent with melting of a variably metasomatized sub-arc mantle source during a transition from a wrench to a transtensional tectonic setting, but are inconsistent

  4. Late Cretaceous (85--80 Ma), syn-arc cleavage development in metamorphic rocks of the Ritter Range, central Sierra Nevada California

    SciTech Connect

    Sharp, W.D.; Renne, P.R. . Geochronology Center); Tobisch, O. . Earth Sciences Dept.)

    1993-04-01

    Extensive, high quality exposures make the Ritter Range an appropriate place to investigate the deformation field in wallrocks of the Late Cretaceous Sierran magmatic arc. Faulting, tilting, cleavage development and shearing above affected pre-batholithic strata of upper Paleozoic to mid-Cretaceous age. The authors present Ar/Ar data for metamorphic amphibole, white mica and biotite from upper Paleozoic and Early to Middle Jurassic rocks of the section. These data re interpreted in light of temperatures of metamorphism and microstructural analysis of each sample. Syn- to post-kinematic amphibole from a foliated and lineated mafic amphibolite yields an age of 85 Ma for amphibole-derived gas. Peak metamorphic temperature was under 500 C. at this locality, so negligible Ar loss in the amphibole is expected. The authors interpret 85 Ma as the age of amphibole growth and cleavage development in this sample. Syn- to post-kinematic white mica and four biotites from five samples yield ages clustering at about 80 Ma. Since the micas probably grew above their Ar closure temperatures, the ages of the post-kinematic micas are minima for their fabrics. These data indicate that the dominant cleavage in the upper Paleozoic to Middle Jurassic rocks of the Ritter Range formed penecontemporaneously with emplacement of the adjacent Mono Pass and Tuolumne intrusive series, and suggests that the heat of these granitoids was instrumental in catalyzing widespread deformation in their wallrocks.

  5. Bulk densities and porosities of Cenozoic and Cretaceous basin-filling strata and Cretaceous and older basement rocks, Los Angeles Basin, California, determined from measurements of core samples

    USGS Publications Warehouse

    Beyer, L.A.; McCulloh, T.H.

    1998-01-01

    This report describes and provides a digital data file of selected bulk properties of subsurface rocks sampled in and around Los Angeles basin, California. Selected properties include measured dry bulk density (range 0.78 to 3.01 g/cm3), measured or estimated grain (matrix) density, calculated water saturated bulk density (range 1.47 to 3.01 g/cm3), calculated total porosity (range 0 to 69 porosity percent), geologic age, and lithology. Most of the rocks are conventional core samples taken from wells drilled by the petroleum industry. A small percentage of the core samples are from shallow borings. Rocks studied range in age from pre-Cambrian (?) to Recent and include sedimentary (98.8%), and volcanic, metamorphic and intrusive (1.2%) samples. Core samples studied were taken from measured drillhole depths that range from 35 to 20,234 ft (11 to 6,167 m). Version 1.0 of the data base (dated June 1998) contains information for 7378 samples from 234 wells, including two redrilled wells. This report/data base can be accessed on U. S. Geological Survey servers at http://geopubs.wr.usgs.gov/open-file/of98-788. Periodic additions to the on-line data base will be provided as new data is gathered.

  6. Composition, age, and petrogenesis of Late Cretaceous intrusive rocks in the central Big Belt Mountains, Broadwater and Meagher counties, Montana

    USGS Publications Warehouse

    Du Bray, E.A.; Snee, L.W.

    2002-01-01

    Cretaceous intrusions hosted by the Proterozoic Newland Formation. The northern intrusion, centered on Boulder Baldy, consists of outer, intermediate, and core zones composed of aegirine-augite quartz monzonite, hornblende quartz monzodiorite, and biotite granodiorite, respectively. The southern intrusion, north of Mount Edith, is compositionally indistinguishable from the intermediate zone of the northern intrusion.

  7. Multiple sources for the origin of the early Cretaceous Xinxian granitic batholith and its tectonic implications for the western Dabie orogen, eastern China

    NASA Astrophysics Data System (ADS)

    Chen, Wei; Xu, Zhaowen; Chen, Maohong; Yu, Yang

    2016-02-01

    This paper investigates the petrogenesis of the Xinxian granitic batholith and its tectonic implications for the Dabie orogen. Two Xinxian granites yield Early Cretaceous 238U/206Pb ages of 122.7 ± 1.3 Ma and 123.6 ± 2.2 Ma. The granites are metaluminous differentiated I-type granites, with A/NKC ranging from 0.90 to 0.96. The chondrite-normalised REE patterns display significant LREE/HREE enrichments with moderate negative Eu anomalies (Eu/Euδ = 0.30 ~ 0.85). The granites show enrichments in large-ion lithophile elements (LILEs, e.g. Rb, K, Th and U) and depletions in Sr, Ba and high field strength elements (HFSEs, e.g. Nb, Ta and Ti). Inherited zircons of different age (Neoproterozoic, one Early Proterozoic, one Archean and two Triassic inherited metamorphic zircons) are identified. The Early Cretaceous magmatic zircons contain enriched Hf isotopes with ɛ Hf ( t) values ranging from -26.9 to -18.7 (average = -22.5), more enriched than their probable alleged source, i.e. the Dabie Complex, represented by the Neoproterozoic and Triassic inherited zircons. Thus, the Archean and Early Proterozoic crustal materials may represent an enriched end member source for the parental magma of the Xinxian granites. Provenance analysis of the magmatic zircons in the North China and Yangtze blocks demonstrates that the Early Proterozoic inherited zircon in Xinxian has North China affinity. Thus, we proposed a multiple-sourced petrogenetic model for the Xinxian granitic batholith, which suggests that the batholith was formed by the remelting of a mixed crustal assemblage, including the Archean and Early Proterozoic crust of the North China Block, the Neoproterozoic crust of the Yangtze Block, as well as some Triassic collision-related ultra-high pressure (UHP) metamorphic rocks.

  8. New oil source rocks cut in Greek Ionian basin

    SciTech Connect

    Karakitsios, V.; Rigakis, N.

    1996-02-12

    The Ionian zone of Northwest Greece (Epirus region) constitutes part of the most external zones of the Hellenides (Paxos zone, Ionian zone, Gavrovo Tripolitza zone). The rocks of the Ionian zone range from Triassic evaporites and associated breccias through a varied series of Jurassic through Upper Eocene carbonates and lesser cherts and shales followed by Oligocene flysch. The surface occurrences of petroleum in the Ionian zone are mainly attributed to Toarcian Lower Posidonia beds source rocks and lesser to late Callovian-Tithonian Upper Posidonia beds and to the Albian-Cenomanian Upper Siliceous zone or Vigla shales of the Vigla limestones. Oil that could not be attributed to the above source rocks is believed to have an origin from Triassic formations that contain potential source rocks in Albania and Italy. However, several samples of the shales of Triassic breccias from outcrops and drillholes were analyzed in the past, but the analytical results were not so promising since their hydrocarbon potential was low. In this article, the authors will present their analytical results of the Ioannina-1 well, where for the first time they identified some very rich source beds in the Triassic breccias formation of Northwest Greece.

  9. Hydrogen in rocks: an energy source for deep microbial communities

    NASA Technical Reports Server (NTRS)

    Freund, Friedemann; Dickinson, J. Thomas; Cash, Michele

    2002-01-01

    To survive in deep subsurface environments, lithotrophic microbial communities require a sustainable energy source such as hydrogen. Though H2 can be produced when water reacts with fresh mineral surfaces and oxidizes ferrous iron, this reaction is unreliable since it depends upon the exposure of fresh rock surfaces via the episodic opening of cracks and fissures. A more reliable and potentially more voluminous H2 source exists in nominally anhydrous minerals of igneous and metamorphic rocks. Our experimental results indicate that H2 molecules can be derived from small amounts of H2O dissolved in minerals in the form of hydroxyl, OH- or O3Si-OH, whenever such minerals crystallized in an H2O-laden environment. Two types of experiments were conducted. Single crystal fracture experiments indicated that hydroxyl pairs undergo an in situ redox conversion to H2 molecules plus peroxy links, O3Si/OO\\SiO3. While the peroxy links become part of the mineral structure, the H2 molecules diffused out of the freshly fractured mineral surfaces. If such a mechanism occurred in natural settings, the entire rock column would become a volume source of H2. Crushing experiments to facilitate the outdiffusion of H2 were conducted with common crustal igneous rocks such as granite, andesite, and labradorite. At least 70 nmol of H2/g diffused out of coarsely crushed andesite, equivalent at standard pressure and temperature to 5,000 cm3 of H2/m3 of rock. In the water-saturated, biologically relevant upper portion of the rock column, the diffusion of H2 out of the minerals will be buffered by H2 saturation of the intergranular water film.

  10. Hydrogen in rocks: an energy source for deep microbial communities.

    PubMed

    Freund, Friedemann; Dickinson, J Thomas; Cash, Michele

    2002-01-01

    To survive in deep subsurface environments, lithotrophic microbial communities require a sustainable energy source such as hydrogen. Though H2 can be produced when water reacts with fresh mineral surfaces and oxidizes ferrous iron, this reaction is unreliable since it depends upon the exposure of fresh rock surfaces via the episodic opening of cracks and fissures. A more reliable and potentially more voluminous H2 source exists in nominally anhydrous minerals of igneous and metamorphic rocks. Our experimental results indicate that H2 molecules can be derived from small amounts of H2O dissolved in minerals in the form of hydroxyl, OH- or O3Si-OH, whenever such minerals crystallized in an H2O-laden environment. Two types of experiments were conducted. Single crystal fracture experiments indicated that hydroxyl pairs undergo an in situ redox conversion to H2 molecules plus peroxy links, O3Si/OO\\SiO3. While the peroxy links become part of the mineral structure, the H2 molecules diffused out of the freshly fractured mineral surfaces. If such a mechanism occurred in natural settings, the entire rock column would become a volume source of H2. Crushing experiments to facilitate the outdiffusion of H2 were conducted with common crustal igneous rocks such as granite, andesite, and labradorite. At least 70 nmol of H2/g diffused out of coarsely crushed andesite, equivalent at standard pressure and temperature to 5,000 cm3 of H2/m3 of rock. In the water-saturated, biologically relevant upper portion of the rock column, the diffusion of H2 out of the minerals will be buffered by H2 saturation of the intergranular water film. PMID:12449857

  11. Source-to-sink Dynamics in the Early Cretaceous Boreal Basin; Progradational Lobes from a Missing Source

    NASA Astrophysics Data System (ADS)

    Midtkandal, I.; Faleide, J. I.; Planke, S.; Myrsini, D.; Dahlberg, M.; Myklebust, R.; Nystuen, J. P.; Torsvik, T. H.

    2015-12-01

    A coalescing array of fan lobes has been resolved in the central and western present-day Barents Sea from detailed seismic mapping of several progradational lobes above the Base Cretaceous Unconformity (BCU). The lobes developed over at least 200 000 km2, and form thicknesses constrained to be between 200 and 500 metres. Multiple influx points into the basin are suggested by the variable lobe orientation and position on the Barents platform. The sediment volumes were in part affected by bathymetric variation on the palaeo-seafloor, but this is considered a secondary variable in comparison to the push from sediment transport mechanisms. Sediments were routed into and along troughs, or around highs in places such as the Hoop Graben, Fingerdjupet Sub-basin, and the Fedynsky High, respectively, showing a natural response to local variation in basin floor topography. Highs that existed during this development represent source areas for small sediment lobes that interfinger with the larger-scale lobes, but are considered orders of magnitude smaller than the strata sourced from extrabasinal terrains. The source areas for the mappable strata in the central and western Barents Sea area must have been landmasses with considerable vertical thickness and/or areal extent. Acknowledged sediment sources, such as the Lomonosov Ridge is insufficient as a single source for these sediment volumes, and warrants the inference of a land mass which is hitherto unknown, but has been termed "Crocker Land" by other workers. The sediment influx rate from the northeast can be estimated by age comparison between the most proximal and the most distal sediment lobe, which in turn has bearings on the hinterland erosion rate. The increasingly understood High Arctic Large Igneous Province (HALIP) is linked to the uplifting of a source area to the northwest of present day sink areas in Svalbard and the Barents Sea. Expressed as a number of subsurface sill intrusions and scattered extrusives, the

  12. Cretaceous crust-mantle interaction and tectonic evolution of Cathaysia Block in South China: Evidence from pulsed mafic rocks and related magmatism

    NASA Astrophysics Data System (ADS)

    Li, Bin; Jiang, Shao-Yong; Zhang, Qian; Zhao, Hai-Xiang; Zhao, Kui-Dong

    2015-10-01

    Cretaceous tectono-magmatic evolution of the Cathaysia Block in South China is important but their mechanism and geodynamics remain highly disputed. In this study we carried out a detailed geochemical study on the recently found Kuokeng mafic dikes in the western Fujian Province (the Interior Cathaysia Block) to reveal the petrogenesis and geodynamics of the Cretaceous magmatism. Kuokeng mafic dikes were emplaced in three principal episodes: ~ 129 Ma (monzogabbro), ~ 107 Ma (monzodiorite), and ~ 97 Ma (gabbro). Geochemical characteristics indicate that the monzogabbros were derived from the unmodified mantle source, while gabbros were likely derived from metasomatized mantle by subducted slab (fluids and sediments). Sr-Nd isotope compositions indicate that the parental magmas of the monzodiorites were generated by mixing of enriched, mantle-derived, mafic magmas and felsic melts produced by partial melting of crustal materials. Until the Early Cretaceous (~ 123 Ma), the dominant ancient Interior Cathaysia lithospheric mantle exhibited insignificant subduction signature, indicating the melting of asthenospheric mantle and the consequent back-arc extension, producing large-scale partial melting of the crustal materials under the forward subduction regime of the paleo-Pacific plate. The monzodiorites and gabbros appear to be associated with northwestward subduction of Pacific plate under an enhanced lithospheric extensional setting, accompanying with mantle modification, which triggered shallower subduction-related metasomatically enriched lithospheric mantle to melt partially. After ca. 110 Ma, the coastal magmatic belts formed due to a retreat and rollback of the subducting Pacific Plate underneath SE China in the continental margin arc system.

  13. Geohydrology and simulation of steady-state flow conditions in regional aquifer systems in Cretaceous and older rocks underlying Kansas, Nebraska, and parts of Arkansas, Colorado, Missouri, New Mexico, Oklahoma, South Dakota, Texas, and Wyoming

    USGS Publications Warehouse

    Signor, D.C.; Helgesen, J.O.; Jorgensen, D.G.; Leonard, R.B.

    1997-01-01

    Three regional aquifers systems are the basis for describing the geohydrology of bedrock aquifers in the central United States. The Great Plains aquifer system, composed of Lower Cretaceous sandstone, generally contains brackish water (1,000 to 10,000 milligrams per liter dissolved solids); the Western Interior Plains aquifer system of lower Paleozoic rocks contains saline water and is laterally adjacent to the freshwater-bearing Ozark Plateaus aquifer system composed of rocks of the same age.

  14. Geochronological and geochemical constraints on the petrogenesis of late Cretaceous volcanic rock series from the eastern Sakarya zone, NE Anatolia-Turkey

    NASA Astrophysics Data System (ADS)

    Aydin, Faruk; Oǧuz, Simge; Şen, Cüneyt; Uysal, İbrahim; Başer, Rasim

    2016-04-01

    New SHRIMP zircon U-Pb ages and whole-rock geochemical data as well as Sr-Nd-Pb and δ18O isotopes of late Cretaceous volcanic rock series from the Giresun and Artvin areas (NE Anatolia, Turkey) in the northern part of the eastern Sakarya zone (ESZ) provide important evidence for northward subduction of the Neo-Tethyan oceanic lithosphere along the southern border of the ESZ. In particular, tectonic setting and petrogenesis of these subduction-related volcanites play a critical role in determining the nature of the lower continental crust and mantle dynamics during late Mesozoic orogenic processes in this region. The late Cretaceous time in the ESZ is represented by intensive volcanic activities that occurred in two different periods, which generally consist of alternation of mafic-intermediate (basaltic to andesitic) and felsic rock series (dacitic to rhyolitic) within each period. Although there is no geochronological data for the lower mafic-intermediate rock series of the first volcanic period, U-Pb zircon dating from the first cycle of felsic rocks yielded ages ranging from 88.6±1.8 to 85.0±1.3 Ma (i.e. Coniacian-Early Santonian). The first volcanic period in the region is generally overlain by reddish biomicrite-rich sedimentary rocks of Santonian-Early Campanian. U-Pb zircon dating for the second cycle of mafic-intermediate and felsic rocks yielded ages varying from 84.9±1.7 to 80.8±1.5Ma (i.e. Early to Middle Campanian). The studied volcanic rocks have mostly transitional geochemical character changing from tholeiitic to calc-alkaline with typical arc signatures. N-MORB-normalised multi-element and chondrite-normalised rare earth element (REE) patterns show that all rocks are enriched in LILEs (e.g. Rb, Ba, Th) and LREEs (e.g. La, Ce) but depleted in Nb and Ti. In particular, the felsic samples are characterised by distinct negative Eu anomalies. The samples are characterized by a wide range of Sr-Nd-Pb isotopic compositions (initial ɛNd values from -7

  15. Loma Chumico Shale: A super-rich source rock with unusual geochemical characteristics

    SciTech Connect

    Walters, C.C.; Rooney, M.A. ); Pierce, S.E.; Gormly, J.R.

    1993-02-01

    The Loma Chumico Shales occur in the Late Cretaceous ophiolitic Nicoya Complex in western Costa Rica. The shales are included in the sedimentary part of the complex that overlies igneous pillow basalts, volcanic agglomerates with interbedded sedimentary rocks, and intrusives. Samples of Loma Chumico Shale (approx. 480 m) were analyzed. The shales are exceptionally rich in organic matter (24 to 29% TOC) and contain kerogen that is rich in hydrogen (Hydrogen Indices = approximately 800 mg hydrocarbons/g of rock, HIC = 1.397) and sulfur (9.7% S, S/C=0.048). The Loma Chumico Shales in the Morote-1 well are immature. This is supported by petrographic, Rock-Eval (Tmax approximately 415[degrees]C), and biomarker analyses. Nevertheless, the shales have a high concentration of extractable organic matter (EOM approximately 30,000 ppm) and suggest that early oil generation has occurred. Saturated hydrocarbons account for less than 8% of the EOM and are predominantly composed of a C[sub 25] tail-to-tail isoprenoid and novel C[sub 27] and C[sub 28] isoprenoid hydrocarbons with pentacyclic rings. These compounds are believed to be derived from thermophilic archaebacteria. The saturated biomarkers form an incomplete picture of the depositional setting as many compounds are sulfur-sequestered; however, the presence of thermophilic archaebacteria suggests that deposition occurred in a hydrothermal environment. Pyrolysis and chemical degradation studies of kerogen and polar compounds liberate a more typical distribution of n-alkanes, isoprenoids, and biomarker compounds. The Loma Chumico Shales could be a major source unit for petroleum in Costa Rica if the super-rich facies has a wide areal extent and the shales obtain sufficient thermal maturity. The Loma Chumico Shales in the Morote-1 well could generate more than three barrels of oil/m[sup 3](approximately 4000 bbl/ac-ft-ft). The oil would be heavy and sulfur-rich.

  16. Potential cretaceous play in the Rharb basin of northern Morocco

    SciTech Connect

    Jobidon, G.P. )

    1993-09-01

    The autochthonous Cretaceous in the Rharb basin of northern Morocco is located underneath a cover of neogene sediments and of the Prerif nappe olistostrome, which was emplaced during the Tortonian 7 m.y. The presence of infranappe Cretaceous sediments is documented in a few onshore wells in the Rharb basin and in the adjacent Prerif Rides area, as well as in the Rif Mountains. Their presence in the deeper portion of the Rharb basin is difficult to detail because of poor seismic resolution data beneath dispersive prerif nappe. A recent study of offshore seismic data acquired by PCIAC in 1987 indicates that the infranappe interval can be more than 1500 m thick in some of the offshore Kenitra area. These sediments have seismic signatures that would correspond to Middle Cretaceous transgressions, culminating with a Turonian highstand. Their deposition systems were located on the northern and western flanks of the Meseta and were followed by a hiatus lasting until the Miocene. Regional studies of gravity and magnetic data provide and additional understanding of the Rif province, its evolution, and the possible presence of autochthonous Cretaceous sediments below the prerif nappe cover. The infranappe of Rharb basin has a good potential to develop into a major hydrocarbon play with the presence of middle Cretaceous reservoir rocks, Turonian-Cenomanian black shale source rocks, as well as the timely combination of trap formation, source rock maturation, and hydrocarbon migration.

  17. Oxygen isotope geochemistry of the silicic volcanic rocks of the Etendeka-Parana province: Source constraints

    SciTech Connect

    Harris, C.; Milner, S.C.; Armstrong, R.A. ); Whittingham, A.M. )

    1990-11-01

    Oxygen isotope ratios of pyroxene phenocrysts in the silicic volcanic rocks from the Cretaceous Etendeka-Parana flood basalt province (Namibia, South America) are believed to reflect the {delta}{sup 18}O values of the original magmas. The authors recognize a high {delta}{sup 18}O value type ({delta}{sup 18}O pyroxene {approximately} +10{per thousand}) found in the south of both regions, and a low {delta}{sup 18}O value type ({delta}{sup 18}O pyroxene {approximately} +6.5{per thousand}) found in the north. Other differences between thee two rhyolite types include higher concentrations of incompatible elements and lower initial {sup 87}Sr/{sup 86}Sr ratios in the low {delta}{sup 18}O value type. The authors suggest that the regional distribution of rhyolite types reflects differences in source composition, which can best be explained if the sources are lower crustal, Late Proterozoic mobile belt material (high {delta}{sup 18}O) and Archean lower crust (low {delta}{sup 18}O).

  18. Late Cretaceous (ca. 90 Ma) adakitic intrusive rocks in the Kelu area, Gangdese Belt (southern Tibet): Slab melting and implications for Cu-Au mineralization

    NASA Astrophysics Data System (ADS)

    Jiang, Zi-Qi; Wang, Qiang; Li, Zheng-Xiang; Wyman, Derek A.; Tang, Gong-Jian; Jia, Xiao-Hui; Yang, Yue-Heng

    2012-07-01

    The Gangdese Belt in southern Tibet (GBST) is a major Cu-Au-Mo mineralization zone that mostly formed after the India-Asia collision in association with the small-volume, though widespread, Miocene (18-10 Ma) adakitic porphyries. Cu-Au mineralization has scarcely been found in the regional Jurassic-Early Tertiary batholiths related to subduction of the Neo-Tethyan oceanic plate. Here, we report petrological, zircon geochronological and geochemical data for Late Cretaceous (˜90 Ma) intrusive rocks that contain Cu-Au mineralization from the Kelu area in the GBST. These rocks consist of quartz monzonites and diorites. The quartz monzonites, with SiO2 of 58-59 wt.% and Na2O/K2O of 1.1-1.2, are geochemically similar to slab-derived adakites characterized by apparent depletions in heavy rare earth elements (e.g., Yb = 1.4-1.5 ppm) and Y (16-18 ppm) contents, positive Sr but negative Nb and Ti anomalies on multi-element variation diagrams. They have relatively low (87Sr/86Sr)i (0.7038-0.7039) ratios and high ɛNd(t) (+3.4 to +3.9) and in situ zircon ɛHf(t) (+9.3 to +15.8) values. The diorites exhibit high Mg-numbers (0.57-0.61) similar to those of magnesian andesites, and have (87Sr/86Sr)i (0.7040-0.7041) and ɛNd(t) (+3.0 to +4.4) values similar to those of the quartz monzonites. We suggest that the quartz monzonitic magmas were most likely generated by partial melting of the subducted Neo-Tethyan basaltic oceanic crust and minor associated oceanic sediments, with subsequent melt-mantle interaction, and the dioritic magmas were mainly derived by the interaction between slab melts and mantle wedge peridotites, with fractionation of apatite and hornblende. These slab-derived adakitic magmas have high oxygen fugacity that may have facilitated Cu-Au mineralization. The close association of the Late Cretaceous adakitic intrusive rocks and Cu-Au mineralization in the Kelu area suggests that the arc magmatic rocks in the GBST may have higher potential than previously thought

  19. Rock comminution as a source of hydrogen for subglacial ecosystems

    NASA Astrophysics Data System (ADS)

    Telling, J.; Boyd, E. S.; Bone, N.; Jones, E. L.; Tranter, M.; Macfarlane, J. W.; Martin, P. G.; Wadham, J. L.; Lamarche-Gagnon, G.; Skidmore, M. L.; Hamilton, T. L.; Hill, E.; Jackson, M.; Hodgson, D. A.

    2015-11-01

    Substantial parts of the beds of glaciers, ice sheets and ice caps are at the pressure melting point. The resulting water harbours diverse subglacial microbial ecosystems capable of affecting global biogeochemical cycles. Such subglacial habitats may have acted as refugia during Neoproterozoic glaciations. However, it is unclear how life in subglacial environments could be supported during glaciations lasting millions of years because energy from overridden organic carbon would become increasingly depleted. Here we investigate the potential for abiogenic H2 produced during rock comminution to provide a continual source of energy to support subglacial life. We collected a range of silicate rocks representative of subglacial environments in Greenland, Canada, Norway and Antarctica and crushed them with a sledgehammer and ball mill to varying surface areas. Under an inert atmosphere in the laboratory, we added water, and measured H2 production with time. H2 was produced at 0 °C in all silicate-water experiments, probably through the reaction of water with mineral surface silica radicals formed during rock comminution. H2 production increased with increasing temperature or decreasing silicate rock grain size. Sufficient H2 was produced to support previously measured rates of methanogenesis under a Greenland glacier. We conclude that abiogenic H2 generation from glacial bedrock comminution could have supported life and biodiversity in subglacial refugia during past extended global glaciations.

  20. Hydrocarbon generation and expulsion in shale Vs. carbonate source rocks

    SciTech Connect

    Leythaeuser, D. ); Krooss, B.; Hillebrand, T.; Primio, R. di )

    1993-09-01

    For a number of commercially important source rocks of shale and of carbonate lithologies, which were studied by geochemical, microscopical, and petrophysical techniques, a systematic comparison was made of the processes on how hydrocarbon generation and migration proceed with maturity progress. In this way, several fundamental differences between both types of source rocks were recognized, which are related to differences of sedimentary facies and, more importantly, of diagenetic processes responsible for lithification. Whereas siliciclastic sediments lithify mainly by mechanical compaction, carbonate muds get converted into lithified rocks predominantly by chemical diagenesis. With respect to their role as hydrocarbon source rocks, pressure solution processes appear to be key elements. During modest burial stages and prior to the onset of hydrocarbon generation reactions by thermal decomposition of kerogen, pressure solution seams and stylolites. These offer favorable conditions for hydrocarbon generation and expulsion-a three-dimensional kerogen network and high organic-matter concentrations that lead to effective saturation of the internal pore fluid system once hydrocarbon generation has started. As a consequence, within such zones pore fluids get overpressured, leading ultimately to fracturing. Petroleum expulsion can then occur at high efficiencies and in an explosive fashion, whereby clay minerals and residual kerogen particles are squeezed in a toothpaste-like fashion into newly created fractures. In order to elucidate several of the above outlined steps of hydrocarbon generation and migration processes, open-system hydrous pyrolysis experiments were performed. This approach permits one to monitor changes in yield and composition of hydrocarbon products generated and expelled at 10[degrees]C temperature increments over temperature range, which mimics in the laboratory the conditions prevailing in nature over the entire liquid window interval.

  1. Source-rock evaluation of the Dakhla Formation black shale in Gebel Duwi, Quseir area, Egypt

    NASA Astrophysics Data System (ADS)

    El Kammar, M. M.

    2015-04-01

    A relatively thick Upper Cretaceous-Lower Tertiary sedimentary succession is exposed in Gebel Duwi, Red Sea area, through an almost horizontal tunnel cutting the NE dipping strata from Quseir to Thebes formations. The black shale belonging to Dakhla Formation represents a real potential for future energy resource for Egypt. Dakhla Formation consists mainly of organic-rich calcareous shale to argillaceous limestone that can be considered as a good to excellent source rock potential. The total organic carbon (TOC) content ranges from 2.04% to 12.08%, and the Hydrogen Index (HI) values range from 382 to 1024 mg HC/g TOC. Samples of the Dakhla Formation contain mostly kerogen of types I and II that prone oil and oil-gas, indicating marine organic matter derived mainly from algae and phytoplankton organisms and proposing typical oil source kerogen. The average of the potential index (PI) value is 0.02 mg HC/g rock, which indicates the beginning of a considerable amount of oil generation from the Dakhla Formation. The Tmax values range from 427 to 435 °C. Based on the Tmax data and PI values, the studied black shale samples are immature to early mature for hydrocarbon generation in the Duwi area. The data reduction suggests four main factors covering about 91% of the total variances. The average of the calorific value (459 kcal/kg) indicates unworkable efficiency of such black shale for direct combustion use in power stations. However, selective operation of specific horizons having the highest calorific values may provide viable resources.

  2. Early Cretaceous shelf-edge deltas of the Baltimore Canyon Trough: Principal sources for sediment gravity deposits of the northern Hatteras Basin

    NASA Astrophysics Data System (ADS)

    Poag, C. Wylie; Swift, B. Ann; Schlee, John S.; Ball, Mahlon M.; Sheetz, Linda L.

    1990-02-01

    We present evidence that the principal sources for Early Cretaceous (Berriasian-Valanginian) gravity-flow deposits of the northern Hatteras Basin were three large shelf-edge deltas located along the outer margin of the Baltimore Canyon Trough, ˜ 100 km southeast of Cape Charles, Virginia, Ocean City, Maryland, and Long Branch, New Jersey. Sedimentary detritus from the central Appalachian highlands and the Maryland-Virginia coastal plain was transported across the Early Cretaceous continental shelf to form the Cape Charles and Ocean City deltas, whereas deposits of the Long Branch delta came chiefly from the Adirondack and New England highlands. Each delta supplied sediment gravity flows to large slope aprons and submarine-fan complexes on the Early Cretaceous continental slope and rise. The most conspicuous distributary of sediment on the Early Cretaceous continental rise extends 500 km basinward from the Ocean City delta, where its distal deposits were cored at Deep Sea Drilling Project Site 603.

  3. Early Cretaceous shelf-edge deltas of the Baltimore Canyon Trough: principal sources for sediment gravity deposits of the northern Hatteras Basin

    USGS Publications Warehouse

    Poag, C. Wylie; Swift, B. Ann; Schlee, John S.; Ball, Mahlon M.; Sheetz, Linda L.

    1990-01-01

    We present evidence that the principal sources for Early Cretaceous (Berriasian-Valanginian) gravity-flow deposits of the northern Hatteras Basin were three large shelf-edge deltas located along the outer margin of the Baltimore Canyon Trough, ∼ 100 km southeast of Cape Charles, Virginia, Ocean City, Maryland, and Long Branch, New Jersey. Sedimentary detritus from the central Appalachian highlands and the Maryland-Virginia coastal plain was transported across the Early Cretaceous continental shelf to form the Cape Charles and Ocean City deltas, whereas deposits of the Long Branch delta came chiefly from the Adirondack and New England highlands. Each delta supplied sediment gravity flows to large slope aprons and submarine-fan complexes on the Early Cretaceous continental slope and rise. The most conspicuous distributary of sediment on the Early Cretaceous continental rise extends 500 km basinward from the Ocean City delta, where its distal deposits were cored at Deep Sea Drilling Project Site 603.

  4. Diagenesis in halite-cemented source rocks, Middle Devonian, Saskatchewan

    SciTech Connect

    Kendall, A.C. ); Abbott, G.D.; D'Elia, V.A.A. )

    1990-05-01

    Porosity in Dawson Bay carbonates is halite plugged and the formation is sandwiched between thick units of bedded halite. The presence of displacive halite crystals within fine-grained carbonates (implying sediment plasticity during halite emplacement) and uncompacted organic-rich, carbonate-poor stromatolites indicate halite cementation occurred at an early stage. Also, halite cementation must have been completed prior to porosity loss in overlying bedded halites. By comparison with Holocene/Pleistocene bedded halites, this cementation occurred with only tens of meters of overburden. Early complete halite cementation should have converted Dawson Bay carbonates into virtually a closed system and greatly curtailed or inhibited organic-matter maturation within them Organic-rich carbonates occur immediately below Dawson Bay evaporites as rocks containing an anomalously abundant benthos (stromatoporoids, brachiopods) or as a more restricted facies, lacking megafossils or containing gastropods. Some restricted carbonates contain more than 2% extractable organic carbon. The n-alkane, pentacyclic triterpane, nonrearranged sterane and disterane distributions suggest two distinct populations of samples are present. Biomarker distributions are difficult to interpret in terms of estimating organic maturity because of source rock environmental factors (hypersalinity), but appear to be inconsistent with the geological prognosis that these source rocks would have been isolated early in their diagenesis. The problem of how kerogens can be altered in an apparently closed system has yet to be resolved.

  5. Methane and carbon at equilibrium in source rocks

    PubMed Central

    2013-01-01

    Methane in source rocks may not exist exclusively as free gas. It could exist in equilibrium with carbon and higher hydrocarbons: CH4 + C < = > Hydrocarbon. Three lines of evidence support this possibility. 1) Shales ingest gas in amounts and selectivities consistent with gas-carbon equilibrium. There is a 50% increase in solid hydrocarbon mass when Fayetteville Shale is exposed to methane (450 psi) under moderate conditions (100°C): Rock-Eval S2 (mg g-1) 8.5 = > 12.5. All light hydrocarbons are ingested, but with high selectivity, consistent with competitive addition to receptor sites in a growing polymer. Mowry Shale ingests butane vigorously from argon, for example, but not from methane under the same conditions. 2) Production data for a well producing from Fayetteville Shale declines along the theoretical curve for withdrawing gas from higher hydrocarbons in equilibrium with carbon. 3) A new general gas-solid equilibrium model accounts for natural gas at thermodynamic equilibrium, and C6-C7 hydrocarbons constrained to invariant compositions. The results make a strong case for methane in equilibrium with carbon and higher hydrocarbons. If correct, the higher hydrocarbons in source rocks are gas reservoirs, raising the possibility of substantially more gas in shales than analytically apparent, and far more gas in shale deposits than currently recognized. PMID:24330266

  6. Paleomagnetism of Upper Jurassic to Lower Cretaceous volcanic and sedimentary rocks from the western Tarim Basin and implications for inclination shallowing and absolute dating of the M-0 (ISEA?) chron

    NASA Astrophysics Data System (ADS)

    Gilder, Stuart; Chen, Yan; Cogné, Jean-Pascal; Tan, Xiaodong; Courtillot, Vincent; Sun, Dongjiang; Li, Yongan

    2003-02-01

    Stepwise demagnetization isolates a stable magnetic component in 13 sites of basalt flows and baked sediments dated at 113.3±1.6 Ma from the Tuoyun section, western Xinjiang Province, China. Except for one flow from the base of the ˜300 m thick section, the rest have exclusively reversed polarity. The sequence correlates with chron M-0 in some geomagnetic polarity time scales, which potentially places the section just before the start of the Cretaceous Long Normal polarity superchron. Five of 11 sites of Early Cretaceous red beds that underlie the basalts possess coherent directions that pass both fold and reversals tests. Six sites of Upper Jurassic red beds have a magnetic component that was likely acquired after folding in the Tertiary. The mean paleolatitude of the Lower Cretaceous red beds is 11° lower than that of the Lower Cretaceous basalts suggesting the red beds underestimate the true field inclination. We further test this result by calculating the paleolatitudes to a common point of the available Early Cretaceous to Present paleomagnetic poles from red beds and volcanic rocks from central Asian localities north of the Tibetan Plateau. We find that paleolatitudes of volcanic rocks roughly equal the paleolatitudes calculated from the reference Eurasian apparent polar wander path (APWP) and that paleolatitudes of red beds are generally 10-20° lower than the paleolatitudes of volcanic rocks and those predicted from the reference curve. Our study suggests that central Asian red beds poorly record the Earth's field inclination, which leads to lower than expected paleolatitudes. Good agreement in paleolatitudes from volcanic rocks and the Eurasian APWP argues against proposed canted and non-dipole field models.

  7. Whole-Rock Geochemistry and Zircon U-Pb Isotopes of the Late Cretaceous Granitoids of the Eastern Taurus (turkey): Implications for Petrogenesis and Geodynamic Setting

    NASA Astrophysics Data System (ADS)

    Beyarslan, Melahat; Lin, Yu-Chin; Chung, Sun-Lin; Feyzi Bingol, Ahmet; Yildirim, Esra

    2015-04-01

    The granitoid plutons out crop largely in the Eastern Taurus, in Turkey. New data, including a combination of field relation, U-Pb zircon geochronology and rock geochemistry on the granitoids in the Eastern Taurus of the Tethyan orogen in Turkey, come from four plutons ( Pertek, Baskil, Göksun and Şifrin). Pertek, Baskil and Göksun plutons consist mainly of diorite, quartz-diorites, tonalite, granodiorites and granites of I-type, with minor monzonite, the Şifrin pluton consists of syenogranite, syenite, monzogranite, monzonite. U-Pb zircon geochronology of four samples of diorite and granite from Pertek and Baskil plutons indicate ages of 86±2 - 79 ± 1Ma. U-Pb zircon geochronology of four samples from the Şifrin granitoid yield ages 77±1-72±1 Ma. Considering these ages, emplacement of the plutons took place during Late Cretaceous (Santonian-Campanian), from 86 to 72 Ma. Although the SiO2 of rocks forming granitoids varies in wide range ( 46.792- 74.092 wt%), they show arc and syn-collision geochemical affinity, with enrichment of LILE (K, Rb, Sr and Ba) and depletion of HFSE (Nb, Ta and Ti) and P. Geochemical data indice that the diorite, tonalite and granodiorite are low-K tholeiite, monzodiorite, monzogranite, granite and K-granite are calc-alkaline and high-K calc-alkaline and monzonite, syenomonzonite and syenite of Şifrin pluton and some samples of the Pertek pluton are shoshonitic. The Eastern Taurus granitoids would be formed by partial melting of possible juvenile arc-derived rocks during subduction of the South Branch of the Neo-Tethyan oceanic crust and subsequent arc-continent collision.

  8. Study of extrabasinal-sourced rock clasts in Mesozoic and Cenozoic conglomerates and stream terrace gravels from the Colorado River Basin upstream from the Grand Canyon

    NASA Astrophysics Data System (ADS)

    Stoffer, P. W.; Dearaujo, J.; Li, A.; Adam, H.; White, L.

    2008-12-01

    Far-travelled durable, extrabasinal pebbles occur in Mesozoic and Tertiary conglomerate-bearing rock formations and in unconsolidated stream terrace gravels and mesa-capping gravel deposits of Late Tertiary and Quaternary age throughout the Colorado Plateau. Pebble collections were made from each of the major modern tributaries of the Colorado River for possible correlation of remnant gravel deposits remaining from the ancestral regional drainage system that existed prior to the formation of the Grand Canyon. Pebble collecting and sorting techniques were used to make representative collections with both representative and eye-catching lithologies that can be most useful for correlation. Pebbles found in the conglomerate and younger gravel deposits were evaluated to determine general sediment source areas based on unique lithologies, pebble-shape characteristics, and fossils. Chert pebbles derived from source areas in the Great Basin region during the Mesozoic are perhaps the most common, and many of these display evidence of tectonic fracturing during deep burial sometime during their geologic journey. Unique chert pebble lithologies correlate to specific rock units including chert-bearing horizons within the Triassic Shinarump Formation, the Jurassic Morrison and Navajo Formations, and the Cretaceous Mancos Shale. Quartzite, metaconglomerate, and granitic rocks derived from Precambrian rocks of the Rocky Mountain region are also common. Reworked rounded and flattened quartzite cobbles probably derived from shingled beaches along the western shoreline of the Late Cretaceous Western Interior Seaway are also common along the Green River drainage. Xenolith-bearing volcanic rocks, fossil wood, and shell fossils preserved in concretion matrix can be linked to other unique source areas and stratigraphic units across the region. By correlating the pebbles with their sources we gain insight into the erosional history of the Colorado Plateau and the evolution of the

  9. Coals as source rocks for hydrocarbon generation in the Taranaki Basin, New Zealand: a geochemical biomarker study

    NASA Astrophysics Data System (ADS)

    Johnston, J. H.; Collier, R. J.; Maidment, A. I.

    The Taranaki Basin area provides the only source of commercial hydrocarbons in New Zealand. These are contained in the offshore Maui (gas-condensate) and onshore Kapuni (gas-condensate), Kaimiro (gas-condensate), and McKee (oil) fields. In addition a number of other smaller onshore fields have been discovered recently. The terrestrial coal measures of the Kapuni Group (Eocene) are now considered to be the source rocks for the onshore fields. The generated hydrocarbons are generally reservoired in the upper Kapuni Group sands. A summary of the results of the biomarker study of the triterpane hopanes and steranes extracted from coals in the deeper region of a selection of wells from the onshore Stratford, Kaimiro, Mangahewa and McKee fields and also from the produced condensates and oils, are presentedhere. These results show that the produced hydrocarbons have thermal maturities comparable to or approaching those of the deepest coals encountered on drilling within the Kapuni Group. Thus although the hydrocarbons may be generated within the Kapuni Group coals they are expelled only from the deepest coals within this Group or possibly the older (Paleocene-Upper Cretaceous) coals of the underlying Pakawau Formation, thereby exhibiting higher maturity levels. The presence of specific biomarkers in the produced hydrocarbons suggests the possibility of multiple source rocks and that the hydrocarbons have migrated to their present shallower reservoirs.

  10. Lacustrine anoxic event 1 (LAE1) recorded by rock magnetism of Unit 1 of Qingshankou Formation, Late Cretaceous Songliao Basin in Northeast China

    NASA Astrophysics Data System (ADS)

    Li, H.; Zhang, S.; Zhao, K.; Wu, H.; Yang, T.

    2011-12-01

    Songliao Basin, located in northeastern China, is one of the biggest cretaceous lakes in Asia, with most completely developed cretaceous stratigraphy. Therefore, it is a key area to study cretaceous palaeontology evolution and paleoenvironmental changes. Especially, anoxic events and marine transgressional events have been the research focuses for a long time. The lacustrine anoxic event 1 (LAE1) has been reported to happen in Songliao Basin during the deposition of unit 1 of Qingshankou Formation (K2qn1). In this study, K2qn1 was sampled from China Cretaceous Continental Scientific Drilling-Songke Ι (CCSD-SK-Ι) south borehole. The K2qn1, from 1700 m to 1782.8 m in the well log, mainly consists black shale and mudstone. LAE1 is the section from 1750 m to 1775 m. Detailed rock magnetic measurements were conducted, including magnetic susceptibility (χ) and susceptibility of anhysteretic remanence (χARM), saturation isothermal remanence (SIRM), S-ratio (IRM-100mT/SIRM), medial destroyed field of ARM (MDFARM), and temperature-dependence of magnetic susceptibilities (χ/T curves), acquiring curves and reverse demagnetic curves of IRM and thermal demagnetization of ARM and SIRM and Lowrie experiment for selected samples. X-ray diffraction (XRD) was also carried out for selected samples. The acquiring curves and reverse demagnetic curves of typical specimens and the thermal demagnetization of ARM and SIRM and the Lowrie experiment confirm that the major remanence-carrier is soft magnetite. Results of χ/T curves indicate that: for some specimens, pyrite exists (Li and Zhang, 2005); for most specimens, their χ decreases slowly during heating, suggesting a dominant contribution from paramagnetic minerals. Results of XRD suggest that these paramagnetic minerals may be feldspar, kaolinite and pyrite. So paramagnetic clay minerals control χ of K2qn1; and more clay minerals may induce higher natural gamma ray (GR). Therefore, χ and GR should be positive. On the contrary

  11. Tektites in Cretaceous-Tertiary boundary rocks on Haiti and their bearing on the Alvarez impact extinction hypothesis

    USGS Publications Warehouse

    Izett, G.A.

    1991-01-01

    Relic tektites are associated with a Pt-group metal abundance anomaly and shocked minerals in a thin marl bed that marks the K-T boundary on Haiti. The presence of these three impact-produced materials at the precise K-T boundary enormously strengthens the Alvarez impact extinction hypothesis. The Haitian tektites are the first datable impact products in K-T boundary rocks, and 40Ar-39Ar ages of the glass show that the K-T boundary and impact event are coeval at 64.5 ?? 0.1 Ma. -from Author

  12. The deep Cretaceous aquifer in the Aleppo and Steppe basins of Syria: assessment of the meteoric origin and geographic source of the groundwater

    NASA Astrophysics Data System (ADS)

    Stadler, S.; Geyh, M. A.; Ploethner, D.; Koeniger, P.

    2012-09-01

    A drilling project was carried out in Syria to assess the potential of the deep groundwater resources of the Cretaceous aquifer, composed of Cenomanian-Turonian limestones and dolomites. In this context, isotope (14C, 3H, δ13C, δ18O, δ2H) and hydrochemical analyses were performed on wells in and around the Aleppo and Steppe basins. The interpretation includes complementary results from published and unpublished literature. The results provide evidence that many new wells pump mixed groundwater from the Cretaceous aquifer and the overlying Paleogene aquifer. Radiocarbon measurements confirmed dominating Pleistocene groundwater in the Cretaceous aquifer and mainly Holocene groundwater in the Paleogene aquifer. Most groundwater in the Cretaceous aquifer seems to be recharged in the western limestone ridges, stretching from Jebel az Zawiyah (south of Idlep) via Jebel Samane (south of Afrin and A'zaz) to the region north of Aleppo, and in the Northern Palmyrides mountain belt. Some recharge also occurs around the basalt plateau of the Jebel al Hass, south east of Aleppo. It is concluded that the Taurus Mountains and the Euphrates River do not recharge the Cretaceous aquifer. The sources of recharge seem to be occasionally occurring intensive winter storms that approach from Siberia.

  13. Red Sea/Gulf of Aden source rock geochemical evaluation

    SciTech Connect

    Ducreux, C.; Mathurin, G.; Latreille, M. )

    1991-08-01

    The potential of hydrogen generation in the Red Sea and Gulf of Aden was studied by geochemical analyses of 2,271 samples from 23 wells drilled in 6 countries within the area. Selection of candidate source beds was primarily a function of the sedimentary column penetrated by drilling (i.e., whereas sub-Tertiary sediments are accessible in Somalia and Yemen in the Gulf of Aden, sampling below the thick Neogene evaporitic sequence in the Red Sea could not be achieved due to a general lack of penetration to such levels). Organic matter content and type, maturity levels, petroleum potential of the rock analyzed, and its capacity to have generated liquid or gaseous hydrocarbons are the basic results provided by the analyses. Geochemical well correlations within and between subbasins are presented using the two most representative parameters: total organic carbon (TOC) and Petroleum Potential (PP = S{sub 1} + S{sub 2}), expressed in kilograms of hydrocarbons per ton of rock. In general, results obtained in the two rift basins, with sampling mostly in Neogene sediments in the Red Sea and in sub-Tertiary and Tertiary sediments in the Gulf of Aden, indicate the presence of favorable sources preferentially in this sub-Tertiary succession. It is stressed that geochemical analysis results are from wells whose locations are generally on structural highs and, therefore, are not representative (especially in terms of maturation) of conditions in adjacent depressions, particularly where the difference in structural level is great. Sound simulation modeling makes possible the reconstruction regional thermal and burial history and, thus, identification of maturation kitchens.

  14. Rock Magnetic Cyclostratigraphy of the Mid-Cretaceous Greenhorn Limestone, South-Central Colorado---Influence of Orbitally Induced Climate Variability for Chornostratigraphy

    NASA Astrophysics Data System (ADS)

    Sellers, T.; Geissman, J. W.; Jackson, J.

    2015-12-01

    We are testing the hypothesis that depositional processes of the mid-Cretaceous Greenhorn Limestone were influenced by orbitally-driven climate variations using rock magnetic data. Correlation of the data, including anhysteretic remanent magnetization (ARM), magnetic susceptibility, isothermal remanent magnetization in different DC fields to saturation, and hysteresis properties, from three continuously exposed sections of the full Greenhorn Limestone provides detailed spatial distribution for the depositional processes and magnetic mineral climate encoding. The Greenhorn Limestone includes the Lincoln Limestone, Hartland Shale, and the Bridge Creek Limestone members and consists of calcareous shales and limestones representing near maximum depths in the Cretaceous interior seaway. The sections, each about 30 m thick, extend from the upper Graneros Shale, through the Greenhorn Formation, to the lower Carlisle Shale, with samples collected at a two to five cm interval and are located at Badito, CO; north of Redwing, CO; and at the Global boundary Stratotype Section and Point (GSSP) at Lake Pueblo, CO. Our over 1000 samples were hand crushed to granule size pieces and packed into 7cc IODP boxes. Bulk magnetic susceptibility, anhysteretic remanent magnetization (ARM) intensity at different peak AF levels, and isothermal remanent magnetization (IRM) intensity record variations in magnetic mineral concentration and are proxies to determine orbital scale cycles and precise stratigraphic correlation between sections. ARM intensities in a peak field of 100 mT at both sites range between 1.2 x 10-3 and 1.3 x 10-4 A/m and better define periodic variation within the Greenhorn Limestone displaying differences in ferromagnetic mineral content of detrital origin. Magnetic susceptibility, which ranges from 3.5 x 10-2 to 2.86 x 10-3, also shows periodic variation with a strong correlation among the three sections. Saturation IRM at 100 mT ranges from 3.2 x 10-1 to 1.1x 10-2 A

  15. Geological and geochemical evidence for vertical migration of Upper Cretaceous sourced oils into tertiary reservoirs: Winn and Grant Parishes, Louisiana

    SciTech Connect

    Echols, J.B.; Zimmerman, R.K.; Goddard, D.G.

    1995-10-01

    Analyses of three Wilcox oils taken from the Colgrade Field (Carrizo sand reservoir), Bulger Creek Field (middle Wilcox sand reservoir), both in Winn Parish, and the Blue Lick Field (middle Wilcox sand reservoir) Grant Parish, Louisiana, correlate with other Gulf Coast oils sourced from the Upper Cretaceous (probably Eagle Ford or Tuscaloosa). All three samples are mature and highly biodegraded. The oils from Blue Lick and Bulger Fields contain bisnorhopane (BNH), a Wilcox and younger biomarker in central Louisiana and southwest Mississippi. BNH was identified previously by the authors in chalk oil from Clark Creek Field, Wilkinson Co., Mississippi. Previous studies project northeast-southwest wrench faulting (Boeuf River Fault) into the oil sample area. This faulting, and associated extensional fracture/fault and salt tectonism cause the conduits for vertical migration which emplaced the sampled oils into Wilcox reservoirs. The oils probably migrated from both the Eagle Ford/Tuscaloosa source beds and from fractured Austin chalk reservoirs breached by faulting. The oils provide additional evidence that Wilcox and younger oil reservoirs of central Louisiana and southwest Mississippi were filled by vertical migration from Mesozoic source beds in contrast to long range lateral migration proposed by earlier workers. The Central Louisiana Fracture Zone is described as an extensional fracture zone generated by wrench faulting. The trend of the zone coincides closely with that of the LaSalle Arch and is important in concentrating hydrocarbons along the arch. Exploration targets arise in all traps above Eagle Ford/Tuscaloosa source beds in the area.

  16. Partial melting of the mélange for the growth of andesitic crust indicated by the Early Cretaceous arc dioritic/andesitic rocks in southern Qiangtang, central Tibet

    NASA Astrophysics Data System (ADS)

    Hao, LuLu; Wang, Qiang; Wyman, Derek; Ou, Quan; Dan, Wei; Jiang, ZiQi; Yang, JinHui; Long, XiaoPing; Li, Jie

    2016-04-01

    Deciphering the petrogenesis of andesitic/dioritic rocks is fundamental to understanding the formation of the continental crust. Here we present the detailed petrology, geochronology, major and trace element, Sr-Nd-Hf-O isotope data for the Early Cretaceous (ca. 122 Ma) dioritic rocks in the Bizha area in southern Qiangtang, Tibet. The dioritic rocks are characterized by large ion lithophile elements, Pb and light rare earth elements but depletion of high field strength elements with slightly enriched and variable ɛNd(t) values of -0.01 to -3.31 and initial 87Sr/86Sr isotopic ratios of 0.7053 to 0.7062. They also have variable magmatic zircon Hf-O isotope compositions (ɛHf(t) = -5.3 to +3.6 and δ18O = 7.3 to 9.5 ‰). Combined with contemporary andesitic lavas in southern Qiangtang, we suggest that the intermediate magmatic rocks in this area were most probably derived by partial melting of the mélange, which is a mixture of the middle oceanic ridge basalts (MORBs), sediments and mantle wedge peridotites, formed along the interface between the subducted slab and the overlying mantle wedge in a subduction channel before ~ 124 Ma. The mélange diapir melting was triggered by the asthenospheric upwelling and hot corner flow caused by roll-back of the northward subducted Bangong-Nujiang oceanic slab during the Early Cretaceous. The Early Cretaceous intermediate magmatic rocks in southern Qiangtang have an overall continental crust-like andesitic composition. Therefore, partial melting of the mélange provides an important support for the generation of andesitic magmas in continental arcs and the "andesite model" for crustal growth.

  17. Source-rock geochemistry of the San Joaquin Basin Province, California: Chapter 11 in Petroleum systems and geologic assessment of oil and gas in the San Joaquin Basin Province, California

    USGS Publications Warehouse

    Peters, Kenneth E.; Magoon, Leslie B.; Valin, Zenon C.; Lillis, Paul G.

    2007-01-01

    Source-rock thickness and organic richness are important input parameters required for numerical modeling of the geohistory of petroleum systems. Present-day depth and thickness maps for the upper Miocene Monterey Formation, Eocene Tumey formation of Atwill (1935), Eocene Kreyenhagen Formation, and Cretaceous-Paleocene Moreno Formation source rocks in the San Joaquin Basin were determined using formation tops data from 266 wells. Rock-Eval pyrolysis and total organic carbon data (Rock-Eval/TOC) were collected for 1,505 rock samples from these source rocks in 70 wells. Averages of these data for each well penetration were used to construct contour plots of original total organic carbon (TOCo) and original hydrogen index (HIo) in the source rock prior to thermal maturation resulting from burial. Sufficient data were available to construct plots of TOCo and HIo for all source-rock units except the Tumey formation of Atwill (1935). Thick, organic-rich, oil-prone shales of the upper Miocene Monterey Formation occur in the Tejon depocenter in the southern part of the basin with somewhat less favorable occurrence in the Southern Buttonwillow depocenter to the north. Shales of the upper Miocene Monterey Formation generated most of the petroleum in the San Joaquin Basin. Thick, organic-rich, oil-prone Kreyenhagen Formation source rock occurs in the Buttonwillow depocenters, but it is thin or absent in the Tejon depocenter. Moreno Formation source rock is absent from the Tejon and Southern Buttonwillow depocenters, but thick, organic-rich, oil-prone Moreno Formation source rock occurs northwest of the Northern Buttonwillow depocenter adjacent to the southern edge of Coalinga field.

  18. Basin center - fractured source rock plays within tectonically segmented foreland (back-arc) basins: Targets for future exploration

    SciTech Connect

    Weimer, R.J.

    1994-09-01

    Production from fractured reservoirs has long been an industry target, but interest in this type play has increased recently because of new concepts and technology, especially horizontal drilling. Early petroleum exploration programs searched for fractured reservoirs from shale, tight sandstones, carbonates, or basement in anticlinal or fault traps, without particular attention to source rocks. Foreland basins are some of the best oil-generating basins in the world because of their rich source rocks. Examples are the Persian Gulf basin, the Alberta basin and Athabasca tar sands, and the eastern Venezuela basin and Orinoco tar sands. Examples of Cretaceous producers are the wrench-faulted La Paz-Mara anticlinal fields, Maracaibo basin, Venezuela; the active Austin Chalk play in an extensional area on the north flank of the Gulf of Mexico continental margin basin; and the Niobrara Chalk and Pierre Shale plays of the central Rocky Mountains, United States. These latter plays are characteristic of a foreland basin fragmented into intermontane basins by the Laramide orogeny. The Florence field, Colorado, discovered in 1862, and the Silo field, Wyoming, discovered in 1980, are used as models for current prospecting and will be described in detail. The technologies applied to fracture-source rock plays are refined surface and subsurface mapping from new log suites, including resistivity mapping; 3D-3C seismic, gravity, and aeromagnetic mapping; borehole path seismic mapping associated with horizontal drilling; fracture mapping with the Formation MicroScanner and other logging tools; measurements while drilling and other drilling and completion techniques; surface geochemistry to locate microseeps; and local and regional lineament discrimination.

  19. Subduction-related High- to Ultrahigh-Potassic Rocks of the Ankara-Erzincan Suture Belt of Turkey: a geochemical and isotopic approach to source and petrogenesis

    NASA Astrophysics Data System (ADS)

    Genc, S. Can; Gulmez, Fatma; Karacik, Zekiye; Tuysuz, Okan; Prelevic, Dejan; Roden, Michael F.; Hames, Willis E.; Zeki Billor, M.

    2014-05-01

    that the magmatic rock suites of LCVS had different crystallization history. REE melting modelings suggest a common mantle source, which contains variable amount of spinel lerzolite and garnet lerzolitic proportions. Considering the presence of some phlogopite-bearing clinopyroxenite xenolits in the lamprophyre and the leucite-bearing rocks, we propose that the LCVS ultrapotassic rocks were possibly derived from the low degree partial melting of veined SCLM. Keywords: High- to Ultrahigh-K, Isotope, Ar-Ar, Cretaceous, Turkey, Veined SCLM Lustrino, M., Wilson, M., 2007. ESR 81, 1-65. Peccerillo, A., 1995. Springer-Verlag. 365pp.

  20. Geochemistry of Lower Cretaceous limestones of the Alisitos Formation, Baja California, México: Implications for REE source and paleo-redox conditions

    NASA Astrophysics Data System (ADS)

    Madhavaraju, J.; Löser, Hannes; Lee, Yong Il; Santacruz, R. Lozano; Pi-Puig, T.

    2016-03-01

    Measurement of the major and trace elements were carried out on the Lower Cretaceous limestones interbedded in the volcano-sedimentary Alisitos Formation, northwestern México to understand the source of rare earth elements (REEs) and paleo-redox conditions. The five limestone beds (from the base up, Unit 5 to Unit 9) of the Alisitos Formation show large variations in SiO2 content (0.9-27.9%). A low concentration of CaO is observed in Unit 6 and Unit 8, and high content of CaO is observed in Unit 5, Unit 7 and Unit 9. The limestones are depleted in many trace elements with respect to Post-Archaean Australian Shale (PAAS), whereas Sr shows slight enrichment when compared to PAAS. The concentrations of ΣREE are higher in Unit 6 and Unit 8 (37.4 ± 7.5; 46.6 ± 19.4; respectively) than Unit5, Unit7, and Unit 9 (9.1 ± 3.2; 11.3 ± 9.4; 4.2 ± 2.5; respectively). The limestones of the Alisitos Formation show a non-seawater-like REE + Y pattern with positive Eu anomalies relative to PAAS (0.95-2.47). Variations in ΣREE, Al2O3, Zr, Sc, REE + Y patterns, and Y/Ho ratios are influenced mainly by the amount of terrigenous materials. The variations in the Eu/Eu*, La/Sc and La/Co suggest that the terrigenous materials included in the lower four limestone beds (from Unit 5, Unit 6, Unit 7 and Unit 8) were likely contributed by intermediate to felsic rocks whereas terrigenous materials from Unit 9 were derived from mafic to intermediate source rocks. The slightly negative to slightly positive Ce anomalies in the studied limestones resulted from variations in the bottom water oxygenation. This was also corroborated by V/Cr and Ni/Co ratios suggesting that the depositional environments experienced large fluctuations in oxygenation conditions ranging from oxic to anoxic conditions during the deposition of limestones of the Alisitos Formation.

  1. Reconnaissance studies of potential petroleum source rocks in the Middle Jurassic Tuxedni Group near Red Glacier, eastern slope of Iliamna Volcano

    USGS Publications Warehouse

    Stanley, Richard G.; Herriott, Trystan M.; LePain, David L.; Helmold, Kenneth P.; Peterson, C. Shaun

    2013-01-01

    Previous geological and organic geochemical studies have concluded that organic-rich marine shale in the Middle Jurassic Tuxedni Group is the principal source rock of oil and associated gas in Cook Inlet (Magoon and Anders, 1992; Magoon, 1994; Lillis and Stanley, 2011; LePain and others, 2012; LePain and others, submitted). During May 2009 helicopter-assisted field studies, 19 samples of dark-colored, fine-grained rocks were collected from exposures of the Red Glacier Formation of the Tuxedni Group near Red Glacier, about 70 km west of Ninilchik on the eastern flank of Iliamna Volcano (figs. 1 and 3). The rock samples were submitted to a commercial laboratory for analysis by Rock-Eval pyrolysis and to the U.S. Geological Survey organic geochemical laboratory in Denver, Colorado, for analysis of vitrinite reflectance. The results show that values of vitrinite reflectance (percent Ro) in our samples average about 2 percent, much higher than the oil window range of 0.6–1.3 percent (Johnsson and others, 1993). The high vitrinite reflectance values indicate that the rock samples experienced significant heating and furthermore suggest that these rocks may have generated oil and gas in the past but no longer have any hydrocarbon source potential. The high thermal maturity of the rock samples may have resulted from (1) the thermaleffects of igneous activity (including intrusion by igneous rocks), (2) deep burial beneath Jurassic, Cretaceous, and Tertiary strata that were subsequently removed by uplift and erosion, or (3) the combined effects of igneous activity and burial.

  2. Thermal maturation and petroleum source rocks in Forest City and Salina basins, mid-continent, U. S. A

    SciTech Connect

    Newell, K.D.; Watney, W.L.; Hatch, J.R.; Xiaozhong, G.

    1986-05-01

    Shales in the Middle Ordovician Simpson Group are probably the source rocks for a geochemically distinct group of lower pristane and low phytane oils produced along the axis of the Forest City basin, a shallow cratonic Paleozoic basin. These oils, termed Ordovician-type oils, occur in some fields in the southern portion of the adjacent Salina basin. Maturation modeling by time-temperature index (TTI) calculations indicate that maturation of both basins was minimal during the early Paleozoic. The rate of maturation significantly increased during the Pennsylvanian because of rapid regional subsidence in response to the downwarping of the nearby Anadarko basin. When estimated thicknesses of eroded Pennsylvanian, Permian, and Cretaceous strata are considered, both basins remain relatively shallow, with maximum basement burial probably not exceeding 2 km. According to maturation modeling and regional structure mapping, the axes of both basins should contain Simpson rocks in the early stages of oil generation. The probability of finding commercial accumulations of Ordovician-type oil along the northwest-southeast trending axis of the Salina basin will decrease in a northwestward direction because of (1) westward thinning of the Simpson Group, and (2) lesser maturation due to lower geothermal gradients and shallower paleoburial depths. The optimum localities for finding fields of Ordovician-type oil in the southern Salina basin will be in down-plunge closures on anticlines that have drainage areas near the basin axis.

  3. Characteristics of the Middle Jurassic marine source rocks and prediction of favorable source rock kitchens in the Qiangtang Basin of Tibet

    NASA Astrophysics Data System (ADS)

    Ding, Wenlong; Wan, Huan; Zhang, Yeqian; Han, Guangzhi

    2013-04-01

    We have evaluated the hydrocarbon-bearing potential of Middle Jurassic marine source rocks in the Qiangtang Basin, Tibet, through a comprehensive study of samples from a large number of surface outcrops in different structural units, and from the Qiang-D2 Well in the southern Qiangtang Depression. Data that were acquired, including the depositional environment, thickness of sedimentary units, and organic geochemistry, are used to identify the principal controlling factors and predict the location of favorable hydrocarbon kitchens. The source rocks are mainly platform limestone of the Middle Jurassic Buqu Formation. This formation comprises a suite of intra-platform sag marls, micrites, and black shales that were deposited in a deep-water and restricted depositional environment. The marls form hydrocarbon-rich source rocks with organic matter that is mainly type II and in the mature to highly mature stage. In the Dongco-Hulu Lake and Tupoco-Baitan Lake deep sags, limestone also forms a medium-level source rock. In the Qiangtang Basin, limestone is the favorable source rock kitchen and is more significant in this regard than mudstone. The results provide important constraints on evaluating the hydrocarbon potential of Jurassic marine source rocks and for locating petroleum resources in the Qiangtang Basin.

  4. Rocks.

    ERIC Educational Resources Information Center

    Lee, Alice

    This science unit is designed for limited- and non-English speaking students in a Chinese bilingual education program. The unit covers rock material, classification, characteristics of types of rocks, and rock cycles. It is written in Chinese and simple English. At the end of the unit there is a list of main terms in both English and Chinese, and…

  5. Subsalt source rock maturity in the Sudanese Red Sea

    SciTech Connect

    Geiger, C. |; Pigott, J.; Forgotson, J.M. Jr.

    1995-08-01

    Thermal modeling can demonstrate that stratal salt deposits may provide a significant heat conduit and conceptually provide a basis for hypothermal fairways of hydrocarbon aspiration in regions of dominant thermal overmaturity. However, accurate evaluation of thermal maturity suppression by modeling must be geologically constrained. With respect to the Tertiary Tokar Delta of offshore Sudan, ID tectonic subsidence analysis of boreholes in the region reveals at least two major pu1ses of crustal extension and associated heating (24-20 m.a. and 5.4-2.7 m.a.). Integrating the borehole geochemical information with a Tokar Delta seismic stratigraphic interpretation allows the construction of constrained 2D thermal basin models through time using Procom BMT. The best match between the observed and modelled vitrinite reflectance values is achieved by using a two phase tectonic stretching model with pulses at 22{+-}2 m.a. and 4{+-}1.5 m.a. and incremental subcrustal stretching factors which vary between 2.65-2.75. Utilizing these parameters suggests the top of the oil window to occur within the Zeit Formation and bottom of the oil window to exist at the base of the Dungunab Salt. As only subsalt source rocks are observed, this model would tend to negate the possibility of the occurrence of liquid hydrocarbons. For the Tokar Delta the presently observed general high heat flow is so high that it leads in all cases to overcooked organics for a subsalt source. However, that hydrocarbons in the post-salt Zeit Formation of the Tokar Delta have been discovered suggests significant secondary hydrocarbon migration to have occurred within the late Miocene (15.4 - 5.4 m.a.). Potential migration pathways would be a1ong basement-induced fault conduits. If true, similar secondary migration play concepts may be applicable elsewhere in the Red Sea.

  6. Modified method for estimating petroleum source-rock potential using wireline logs, with application to the Kingak Shale, Alaska North Slope

    USGS Publications Warehouse

    Rouse, William A.; Houseknecht, David W.

    2016-01-01

    In 2012, the U.S. Geological Survey completed an assessment of undiscovered, technically recoverable oil and gas resources in three source rocks of the Alaska North Slope, including the lower part of the Jurassic to Lower Cretaceous Kingak Shale. In order to identify organic shale potential in the absence of a robust geochemical dataset from the lower Kingak Shale, we introduce two quantitative parameters, $\\Delta DT_\\bar{x}$ and $\\Delta DT_z$, estimated from wireline logs from exploration wells and based in part on the commonly used delta-log resistivity ($\\Delta \\text{ }log\\text{ }R$) technique. Calculation of $\\Delta DT_\\bar{x}$ and $\\Delta DT_z$ is intended to produce objective parameters that may be proportional to the quality and volume, respectively, of potential source rocks penetrated by a well and can be used as mapping parameters to convey the spatial distribution of source-rock potential. Both the $\\Delta DT_\\bar{x}$ and $\\Delta DT_z$ mapping parameters show increased source-rock potential from north to south across the North Slope, with the largest values at the toe of clinoforms in the lower Kingak Shale. Because thermal maturity is not considered in the calculation of $\\Delta DT_\\bar{x}$ or $\\Delta DT_z$, total organic carbon values for individual wells cannot be calculated on the basis of $\\Delta DT_\\bar{x}$ or $\\Delta DT_z$ alone. Therefore, the $\\Delta DT_\\bar{x}$ and $\\Delta DT_z$ mapping parameters should be viewed as first-step reconnaissance tools for identifying source-rock potential.

  7. Maps showing thermal maturity of Upper Cretaceous marine shales in the Wind River Basin, Wyoming

    USGS Publications Warehouse

    Finn, Thomas M.; Pawlewicz, Mark J.

    2013-01-01

    The Wind River Basin is a large Laramide (Late Cretaceous through Eocene) structural and sedimentary basin that encompasses about 7,400 square miles in central Wyoming. The basin is bounded by the Washakie Range, Owl Creek, and southern Bighorn Mountains on the north, the Casper arch on the east and northeast, the Granite Mountains on the south, and the Wind River Range on the west. Important conventional and unconventional oil and gas resources have been discovered and produced from reservoirs ranging in age from Mississippian through Tertiary. It has been suggested that various Upper Cretaceous marine shales are the principal hydrocarbon source rocks for many of these accumulations. Numerous source rock studies of various Upper Cretaceous marine shales throughout the Rocky Mountain region have led to the conclusion that these rocks have generated, or are capable of generating, oil and (or) gas. With recent advances and success in horizontal drilling and multistage fracture stimulation there has been an increase in exploration and completion of wells in these marine shales in other Rocky Mountain Laramide basins that were traditionally thought of only as hydrocarbon source rocks. Important parameters that control hydrocarbon production from shales include: reservoir thickness, amount and type of organic matter, and thermal maturity. The purpose of this report is to present maps and a structural cross section showing levels of thermal maturity, based on vitrinite reflectance (Ro), for Upper Cretaceous marine shales in the Wind River Basin.

  8. Geochemistry of the Jurassic and Upper Cretaceous shales from the Molango Region, Hidalgo, eastern Mexico: Implications for source-area weathering, provenance, and tectonic setting

    NASA Astrophysics Data System (ADS)

    Armstrong-Altrin, John S.; Nagarajan, Ramasamy; Madhavaraju, Jayagopal; Rosalez-Hoz, Leticia; Lee, Yong Il; Balaram, Vysetti; Cruz-Martínez, Adriana; Avila-Ramírez, Gladis

    2013-04-01

    This study focuses on the Jurassic (Huayacocotla and Pimienta Formations) and Upper Cretaceous (Méndez Formation) shales from the Molango Region, Hidalgo, Mexico. In this article, we discuss the mineralogy, major, and trace element geochemistry of the Mesozoic shales of Mexico. The goal of this study is to constrain the provenance of the shales, which belong to two different periods of the Mesozoic Era and to understand the weathering conditions and tectonic environments of the source region.

  9. Extensional tectonic influence on lower and upper cretaceous stratigraphy and reservoirs, southern Powder River basin, Wyoming

    SciTech Connect

    Mitchell, G.C.; Rogers, M.H.

    1993-04-01

    The southern Powder River basin has been influenced significantly by an extensional system affecting Lower Cretaceous, Upper Cretaceous and Tertiary units. The system is composed of small throw, nearly vertical normal faults which are identified in the Cretaceous marine shales and that we believe are basement derived. Resultant fractures were present at erosional/depositional surfaces, both marine and nonmarine, that, in part, controlled erosion and subsequent deposition of Lower and Upper Cretaceous rocks. The normal faults also affected coal deposition in the Tertiary, now exposed at the surface. The erosion and resultant deposition formed extensive stratigraphic traps in Cretaceous units in both conventional and unconventional reservoirs. These reservoirs are interbedded with mature source rocks that have generated and expelled large amounts of hydrocarbons. Resulting overpressuring in the Fall River through the Niobrara formations has kept fractures open and has preserved primary porosity in the reservoirs. The normal faults offset thin sandstone reservoirs forming permeability barriers. Associated fractures may have provided vertical pathways for organic acids that assisted development of secondary porosity in Upper Cretaceous sandstones. These normal...faults and fractures provide significant potential for the use of horizontal drilling techniques to evaluate fractured, overpressured conventional and unconventional reservoirs.

  10. Acid rock drainage and rock weathering in Antarctica: important sources for iron cycling in the Southern Ocean.

    PubMed

    Dold, B; Gonzalez-Toril, E; Aguilera, A; Lopez-Pamo, E; Cisternas, M E; Bucchi, F; Amils, R

    2013-06-18

    Here we describe biogeochemical processes that lead to the generation of acid rock drainage (ARD) and rock weathering on the Antarctic landmass and describe why they are important sources of iron into the Antarctic Ocean. During three expeditions, 2009-2011, we examined three sites on the South Shetland Islands in Antarctica. Two of them displayed intensive sulfide mineralization and generated acidic (pH 3.2-4.5), iron-rich drainage waters (up to 1.78 mM Fe), which infiltrated as groundwater (as Fe(2+)) and as superficial runoff (as Fe(3+)) into the sea, the latter with the formation of schwertmannite in the sea-ice. The formation of ARD in the Antarctic was catalyzed by acid mine drainage microorganisms found in cold climates, including Acidithiobacillus ferrivorans and Thiobacillus plumbophilus. The dissolved iron (DFe) flux from rock weathering (nonmineralized control site) was calculated to be 0.45 × 10(9) g DFe yr(-1) for the nowadays 5468 km of ice-free Antarctic rock coastline which is of the same order of magnitude as glacial or aeolian input to the Southern Ocean. Additionally, the two ARD sites alone liberate 0.026 and 0.057 × 10(9) g DFe yr(-1) as point sources to the sea. The increased iron input correlates with increased phytoplankton production close to the source. This might even be enhanced in the future by a global warming scenario, and could be a process counterbalancing global warming. PMID:23682976

  11. Petroleum source rocks of the Junggar, Tarim, and Turpan basins, northwest China

    SciTech Connect

    Graham, S.A.; Brassell, S.; Carroll, A.R.; McKnight, C.L.; Chu, J.; Hendrix, M.S. ); Xiao, X. ); Demaison, G. ); Liang, Y. )

    1990-05-01

    The sedimentary basins of Xinjiang Uygur Autonomous Region, China, are poorly explored for petroleum. Volumetric adequacy of petroleum source rocks is a critical exploration risk in these basins, particularly because source rock data are limited. However, recent studies provide new source rock data and permit speculative assessment of source rock potential of Xinjiang basins. The Junggar basin, best explored of Xinjiang basins and containing a giant oil field, is underlain over much of its extent by an Upper Permian lacustrine oil-shale sequence that is known for its organic richness and oil source quality. Depending on position in the basin, the Permian section ranges from immature to overmature and is inferred to be the principal source of oil in the basin. Upper Triassic-Middle Jurassic coal measures, including lacustrine rocks, constitute a secondary source rock sequence in the Junggar basin. The smaller intermontane Turpan basin contains a very similar Upper Triassic-Middle Jurassic sequence, which, where sufficiently deeply buried, probably comprises the only significant oil source sequence in the basin. The vast Tarim basin offers the greatest potential variety of petroleum source rocks of all Xinjiang basins, but remains the least well documented. From limited, but geologically planned and focused sampling, Cambrian, Carboniferous, and Permian strata are considered unlikely to be major oil source contributors in the dominantly shallow-marine Paleozoic section of the northern Tarim basin. Only Ordovician black shales appear to have significant oil source potential, and a lower Paleozoic source is confirmed for some Tarim oils by gas chromatography-mass spectrometry analysis. The Upper Triassic-Middle Jurassic sequence of northern Tarim basin, similar to that of the Junggar and Turpan basins in comprising a section rich in coal and lacustrine shale, constitutes another, potentially significant oil source.

  12. Cretaceous paleogeography of Peninsular California

    SciTech Connect

    Gastil, R.G.

    1986-04-01

    For the past 15 years, paleomagnetic studies on various rock types have consistently shown southern and Baja California to have been located at 10/sup 0/-17/sup 0/ lower latitude, relative to cratonal North America, than it is today. Similar studies on the Salinian block and in southwestern Oregon also indicate substantially lower latitudes for the deposition of Upper Cretaceous rocks. In seeming contradiction, apparent correlations across the Gulf of California plate boundary relate Cambrian(.) to Triassic stratal rocks of Sonora and the Great Basin to their contemporaries in Baja California, and Jurassic and Cretaceous arc rocks in the peninsula to those in mainland Mexico. Therefore, relative movement along the San Andreas system seems limited to approximately 300 km in a right-lateral direction since the Miocene. A possible accommodation to both sets of evidence places the Baja Peninsula near its present position relative to cratonal North America until about the Middle Jurassic, when it began moving relatively southeastward. This left-lateral motion placed it about 11/sup 0/ southeast by the Aptian-Albian and 17/sup 0/ southeast by the Campanian-Maestrichtian. The Late Jurassic to Late Cretaceous arcs trended southeast through Sonora, Sinaloa, and Jalisco, and then down the length of peninsular California. The right-lateral return of the peninsula began during the Late Cretaceous. The fault systems for the return motion cannot lie west of the Gulf of California, and thus, neither can the earlier left-lateral fault.

  13. Prediction of source rock characteristics based on terpane biomarkers in crude oils: a multivariate statistical approach

    SciTech Connect

    Zumberge, J.E.

    1987-06-01

    The distributions of eight tricyclic and eight pentacyclic terpanes were determined for 216 crude oils located worldwide with subsequent simultaneous RQ-mode factor analysis and stepwise discriminate analysis for the purpose of predicting source rock features or depositional environments. Five categories of source rock beds are evident: nearshore marine; deeper-water marine; lacustrine; phosphatic-rich source beds; and Ordovician age source rocks. The first two factors of the RQ-mode factor analysis describe 45 percent of the variation in the data set; the tricyclic terpanes appear to be twice as significant as pentacyclic terpanes in determining the variation among samples. Lacustrine oils are characterized by greater relative abundances of C/sub 21/ diterpane and gammacerane; nearshore marine sources by C/sub 19/ and C/sub 20/ diterpanes and oleanane; deeper-water marine facies by C/sub 24/ and C/sub 25/ tricyclic and C/sub 31/ plus C/sub 32/ extended hopanes; and Ordovician age oils by C/sub 27/ and C/sub 29/ pentacyclic terpanes. Although thermal maturity trends can be observed in factor space, the trends to do necessarily obscure the source rock interpretations. Also, since bacterial degradation of crude oils rarely affects tricyclic terpanes, biodegraded oils can be used in predicting source rock features. The precision to which source rock depositional environments are determined might be increased with the addition of other biomarker and stable isotope data using multivariate statistical techniques.

  14. Sr-Nd-Hf isotopes of the intrusive rocks in the Cretaceous Xigaze ophiolite, southern Tibet: Constraints on its formation setting

    NASA Astrophysics Data System (ADS)

    Zhang, Liang-Liang; Liu, Chuan-Zhou; Wu, Fu-Yuan; Zhang, Chang; Ji, Wei-Qiang; Wang, Jian-Gang

    2016-08-01

    The Cretaceous Xigaze ophiolite is best exposed at the central part of the Yarlung-Zangbo Suture Zone, Tibet Plateau. It consists of a thick section of mantle peridotites, but a relatively thin mafic sequence. This study presents geochronological and geochemical data for intrusive dykes (both mafic and felsic) and basalts to revisit the formation setting of the Xigaze ophiolite. The rodingites are characterized by high CaO and low Na2O contents relative to mafic dykes and show big variations in trace element compositions. Both gabbros and diabases have similar geochemical compositions, with MgO contents of 6.42-11.48 wt% and Mg# of 0.56-0.71. They display REE patterns similar to N-MORB and are variably enriched in large ion lithophile elements. Basalts have fractionated compositions and display LREE-depleted patterns very similar to N-MORB. They do not show obvious enrichment in LILE and depletion in high-field-strength elements, but a negative Nb anomaly is present. The studied plagiogranites have compositions of trondhjemite to tonalite, with high Na2O and low K2O contents. They have low TiO2 contents less than 1 wt%, consistent with melts formed by anatexis of gabbros rather than by differentiation of basalts. Zircons from seven samples, including three rodingites, three plagiogranites, and one gabbro, have been dated and yielded U-Pb ages of 124.6 ~ 130.5 Ma, indicating the Xigaze ophiolite was formed during the Early Cretaceous. They have mantle-like δ18O values of + 4.92 ~ + 5.26‰ and very positive εHf(t) values of + 16 ~ + 13.3. Ages of the rodingites and less altered gabbros indicate that serpentinization was occurred at ~ 125 Ma. Occurrence of both gabbroic and diabase dykes within the serpentinites suggests that the mantle lithosphere of the Xigaze ophiolite was rapidly exhumed. Both mafic and felsic dykes have slightly more radiogenic 87Sr/86Sr ratios relative to MORB, but depleted Hf-Nd isotpe compositions. They have a limited range of ε

  15. Melt source and evolution of I-type granitoids in the SE Tibetan Plateau: Late Cretaceous magmatism and mineralization driven by collision-induced transtensional tectonics

    NASA Astrophysics Data System (ADS)

    Yang, Li-Qiang; Deng, Jun; Dilek, Yildirim; Meng, Jian-Yin; Gao, Xue; Santosh, M.; Wang, Da; Yan, Han

    2016-02-01

    We report new whole-rock geochemical and Sr-Nd-Pb isotope and zircon U-Pb age and Hf isotope data of the Hongshan intrusive suite in the Triassic Yidun Terrane, eastern Tibet. These data allow us to explore the possible causative links between the magmatism and the coeval Cu-Mo mineralization in the region. The Hongshan intrusive rocks have SiO2 of 65.06-73.60 wt.%, K2O of 3.17-6.41 wt.%, and P2O5 of 0.11-0.39 wt.%, enriched in Rb, Th, and U, and depleted in Ba, Sr, P, Ti, Nb, and Eu. These rocks are of high-K calc-alkaline to shoshonite series, showing geochemical signatures of metaluminous to slightly peraluminous I-type granite. Magmatic zircons separated from four samples yielded weighted mean 206Pb/238U ages of 79 ± 0.7 Ma, 78 ± 0.5 Ma, 77 ± 0.8 Ma, and 76 ± 0.8 Ma. Low MgO (0.42-1.47 wt%), low HREE and Y, varying εHf(t) (- 9.5 to - 2.2), and negative εNd(t) (- 7.7 to - 5.8) suggest that magmas of the late Cretaceous Hongshan plutons were most likely generated by partial melting and mixing of ~ 20% juvenile lower crust-derived melts, represented by the ca. 215 Ma basaltic andesite from the southern Yidun Terrane, with ancient basement-derived melts represented by the Baoshan S-type granitic melts from the Zhongza Block. We consider that partial melting processes are capable of removing chalcophile elements (such as Cu) and leaving siderophile metals (such as Mo) as residue in the lower crust of the Yidun Terrane, consequently inducing porphyry Cu-Mo mineralization. This consideration enables us to propose that the Triassic subduction-modified, copper-rich lithosphere was crucial for the giant copper mineralization that occurred in the Yidun Terrane during the late Cretaceous. Lithospheric-scale, transtensional faulting, developed as a result of collision-induced escape tectonics in SE Tibet, triggered asthenospheric upwelling, which in turn caused intra-plate extension and magmatism during the late Cretaceous, forming the Hongshan and coeval I

  16. Paleocurrent analysis of Cretaceous Mitchell Formation, north-central Oregon

    SciTech Connect

    Sandefur, C.A.; Fisk, L.H.

    1989-03-01

    Cretaceous sedimentary rocks in north-central Oregon contain both potential petroleum source rocks and reservoir rocks. Thus, determining their extent under the cover of Tertiary volcanics is of great importance to future petroleum exploration in the southern portion of the Columbia basin. Limited studies of sediment transport direction have been previously reported by several workers; however, no conclusive evidence was obtained. This study was undertaken to resolve the differences in the previously presented interpretations. The outcropping sedimentary sequence represents part of a subsea fan complex consisting of fan-apron facies turbidites and mudstones (Hudspeth mudstone facies) and channel-facies conglomerates and sandstones (Gable Creek conglomerate facies). Paleocurrent data derived from sole marks, flute casts, clast imbrication, and alignment of elongate plant fragments document that sediment transport was primarily from the south-southeast toward the north-northwest. Thus, the greatest potential for petroleum production from Cretaceous sediments in north-central Oregon lies to the west and northwest of the Mitchell area in northeast-southwest elongated rift basins. These basins, presumably containing thick accumulations of Cretaceous marine sediment fill, are now evidenced by large gravity and magnetic lows.

  17. Masirah Graben, Oman: A hidden Cretaceous rift basin

    SciTech Connect

    Beauchamp, W.H.; Ries, A.C.; Coward, M.P.

    1995-06-01

    Reflection seismic data, well data, geochemical data, and surface geology suggest that a Cretaceous rift basin exists beneath the thrusted allochthonous sedimentary sequence of the Masirah graben, Oman. The Masirah graben is located east of the Huqf uplift, parallel to the southern coast of Oman. The eastern side of the northeast-trending Huqf anticlinorium is bounded by an extensional fault system that is downthrown to the southeast, forming the western edge of the Masirah graben. This graben is limited to the east by a large wedge of sea floor sediments and oceanic crust, that is stacked as imbricate thrusts. These sediments/ophiolites were obducted onto the southern margin of the Arabian plate during the collision of the Indian/Afghan plates at the end of the Cretaceous. Most of the Masirah graben is covered by an allochthonous sedimentary sequence, which is complexly folded and deformed above a detachment. This complexly deformed sequence contrasts sharply with what is believed to be a rift sequence below the ophiolites. The sedimentary sequence in the Masirah graben was stable until further rifting of the Arabian Sea/Gulf of Aden in the late Tertiary, resulting in reactivation of earlier rift-associated faults. Wells drilled in the Masirah graben in the south penetrated reservoir quality rocks in the Lower Cretaceous Natih and Shuaiba carbonates. Analyses of oil extracted from Infracambrian sedimentary rocks penetrated by these wells suggest an origin from a Mesozoic source rock.

  18. Soils, slopes and source rocks: Application of a soil chemistry model to nutrient delivery to rift lakes

    NASA Astrophysics Data System (ADS)

    Harris, Nicholas B.; Tucker, Gregory E.

    2015-06-01

    The topographic evolution of rift basins may be critical to the deposition of lacustrine source rocks such as the organic-rich Lower Cretaceous shales of the South Atlantic margin. Soils have been proposed as a key link between topography and source rock deposition by providing nutrients for the algae growth in rift lakes. Decreasing topographic relief from active rift to late rift has several effects on soils: soils become thicker and finer, erosion of dead surface and soil organic matter decreases, and the fractionation of precipitation between runoff and infiltration may favor increased infiltration. This hypothesis is tested by application of CENTURY, a complex box model that simulates transfer of nutrients within soil pools. The model is first applied to a rainforest soil, with several parameters individually varied. Infiltration experiments show that the concentrations of C, N and P in groundwater decrease rapidly as infiltration decreases, whether due to increased slope or to decreased precipitation. Increased erosion of surface plant litter and topsoil results in substantially decreased nutrient concentrations in groundwater. Increased sand content in soil causes an increase in nutrient concentration. We integrate these variables in analyzing topographic swathes from the Rio Grande Rift, comparing the southern part of the rift, where topography is relatively old and reduced, to the northern rift. C and P concentrations in groundwater increase as slope gradient decreases, resulting in substantially larger C and P concentrations in groundwater in the southern rift than the northern rift. Nitrogen concentrations in groundwater depends on whether infiltration varies as a function of slope gradient; in experiments where the fraction of infiltrated precipitation decreased with increasing slope, N concentrations was also substantially higher in the southern rift; but in experiments where that fraction was held constant, N concentrations was lower in the southern

  19. Application of a new preparative pyrolysis technique for the determination of source-rock types and oil/source-rock correlations

    NASA Astrophysics Data System (ADS)

    Lafargue, E.; Behar, F.

    1989-11-01

    A new preparative pyrolysis technique enabling the recovery and fractionation (into saturated hydrocarbons, unsaturated hydrocarbons, and aromatic hydrocarbons) of the total C 6+ hydrocarbon fraction (instead of the C 13+ fraction usually recovered) has been applied to different types of source-rocks. The composition of the C 7-C 13 hydrocarbon fraction in the pyrolysate, particularly the amount of aromatic hydrocarbons as compared to alkanes, was found to be characteristic of each type of kerogen, with the alkane/aromatic ratio consistently decreasing in the progression from Type I to Type III kerogens. While the C 13+ fraction is useful in kerogen typing, it was found that the C 7-C 13 hydrocarbon fraction, which represents 40 to 50% of the total recovered pyrolysate, was the most signficant in emphasizing differences between kerogen types, allowing a rapid and precise estimation of the source-rock type. This new technique was applied to potential source-rocks of the Viking Graben, North Sea (Draupne formation, Heather formation, Brent coals, and Dunlin group). In each case, the pyrolysates allowed us to determine whether the organic matter was Type II, Type III, or a mixture of both. Pyrolysis of asphaltenes from crude oils from the various regions was conducted and potential applications of our technique to studies of oil/source-rock correlations were examined.

  20. Geochemistry of Eagle Ford group source rocks and oils from the first shot field area, Texas

    USGS Publications Warehouse

    Edman, Janell D.; Pitman, Janet K.

    2010-01-01

    Total organic carbon, Rock-Eval pyrolysis, and vitrinite reflectance analyses performed on Eagle Ford Group core and cuttings samples from the First Shot field area, Texas demonstrate these samples have sufficient quantity, quality, and maturity of organic matter to have generated oil. Furthermore, gas chromatography and biomarker analyses performed on Eagle Ford Group oils and source rock extracts as well as weight percent sulfur analyses on the oils indicate the source rock facies for most of the oils are fairly similar. Specifically, these source rock facies vary in lithology from shales to marls, contain elevated levels of sulfur, and were deposited in a marine environment under anoxic conditions. It is these First Shot Eagle Ford source facies that have generated the oils in the First Shot Field. However, in contrast to the generally similar source rock facies and organic matter, maturity varies from early oil window to late oil window in the study area, and these maturity variations have a pronounced effect on both the source rock and oil characteristics. Finally, most of the oils appear to have been generated locally and have not experienced long distance migration. 

  1. Strontium isotopic evidence for an enriched source for post-subduction volcanic rocks, Dominican Republic

    SciTech Connect

    Wertz, W.K.; Perfit, M.R.; Shuster, R.D.

    1985-01-01

    Later Cenozoic volcanic rocks from the eastern Las Cuevas region (ELCR), Dominican Republic are dominantly shoshonitic and are associated with a series of east-west trending faults. The ELCR rocks are highly enriched in Sr, Ba, and light REE, but contain relatively low amounts of Rb and HFS ions. Several basalts appear to be unfractionated and have Mg-numbers of >75. These transitional to alkalic volcanic rocks are atypical of Caribbean igneous rocks and are more similar to alkaline centers associated with late-stage, island arc volcanism in other regions. Elevated /sup 87/Sr//sup 86/Sr ratios (0.7041-0.7048) are high in comparison to most other igneous rocks from the Caribbean region and indicate that they were derived from a source relatively enriched in LIL and REE in comparison to the sources which gave rise to the majority of Caribbean igneous rocks. /sup 87/Sr//sup 86/Sr values increase linearly with increasing Sr contents, suggesting mixing of sources with relatively low Sr contents and depleted /sup 87/Sr//sup 86/Sr with material that is highly enriched in Sr and with /sup 87/Sr//sup 86/Sr values around 0.706. This enriched component may be a fluid derived from melting/dehydrating subducted oceanic crust and sediment which metasomatically veined the sub-arc mantle. Small degrees of partial melting (<7%) of this source may be responsible for the unusual and enriched chemical composition of the ELCR volcanic rocks.

  2. New petrofacies in upper Cretaceous section of southern California

    SciTech Connect

    Colburn, I.P.; Oliver, D.

    1986-04-01

    A distinctive sandstone-conglomerate petrofacies is recognized throughout the Late Cretaceous (Maestrichtian-late Campanian) Chatsworth Formation in the Simi Hills. It is named the Woolsey Canyon petrofacies after the district where it was first recognized. The petrofacies is also recognized in the Late Cretaceous (late Campanian and possibly early Maestrichtian) Tuna Canyon Formation of the central Santa Monica Mountains. The conglomerates in the petrofacies are composed predominantly of angular pebble-size clasts of argillite, quartz-rich rocks (orthoquartzarenite, metaorthoquartzarenite, mice quartz schist) and leucocratic plutoniate (granite-granodiorite). The conglomerate texture and composition are mirrored in the sandstone. The uniformly angular character of the conglomerate clasts and the survival of argillite clasts indicate that the detritus underwent no more than 5 mi of subaerial transport before it entered the deep marine realm. Foraminifers collected from mudstones interbedded with the conglomerates indicate upper bathyal water depth at the site of deposition. A source terrane of low to moderate relief is indicated by the absence of cobbles and boulders. Bed forms, sedimentary structures, and textural features indicate the detritus moved north from its source terrane to be deposited by turbidity currents, debris flows, and grain flows on the Chatsworth Submarine Fan. The detritus of the Woolsey Canyon petrofacies was derived from basement rocks, now largely buried beneath the Los Angeles basin, that were being eroded during the formation of the Cretaceous Los Angeles erosion surface. The detritus came from the Los Angeles arch of that surface.

  3. Cyclic deposits and hummocky cross-stratification of probable storm origins in Upper Cretaceous rocks of the Cape Sebastian area, southwestern Oregon.

    USGS Publications Warehouse

    Hunter, R.E.; Clifton, H.

    1982-01-01

    Cyclic deposits containing hummocky cross-stratification occur in the upper part of the Cape Sebastian Sandstone, a shallow marine transgressive sandstone of Late Cretaceous age on the southern Oregon coast. The cycles consist, where complete, of a lower hummocky cross-stratified sandstone, a middle planar- and ripple-bedded sandstone with a shale bed in its middle part, and an upper bioturbated sandstone. Depositional conditions are interpreted from the characteristics of these cycles. -from Authors

  4. Mineralogy and petrology of the Cretaceous- Tertiary boundary clay bed and adjacent clay-rich rocks, Raton Basin, New Mexico and Colorado.

    USGS Publications Warehouse

    Pollastro, R.M.; Pillmore, C.L.

    1987-01-01

    The K-T boundary occurs at the top of a kaolinitic claystone layer, commonly referred to as the 'boundary clay layer', in an interval of coal and carbonaceous shale. The boundary is defined by the disappearance of certain fossil-pollen taxa. The boundary clay layer also contains shocked quartz grains and abundance anomalies of iridium, chromium, and other elements. Each of these characteristics support the hypothesis of an asteroid impact at the end of the Cretaceous. -from Authors

  5. Preliminary petroleum source rock assessment of upper Proterozoic Chuar group, Grand Canyon, Arizona

    SciTech Connect

    Palacas, J.G.; Reynolds, M.W.

    1989-03-01

    Strata in the Chuar Group, Grand Canyon, Arizona, are potential petroleum source rocks. This group, divided into the Galeros Formation below and the Kwagunt Formaton above, consists predominantly of very fine-grained siliciclastic rocks and thin sequences of sandstones and stromatolites and cryptalgal carbonate rocks. Over half the succession consists of organic-rich, gray to black mudstone and siltstone. Geochemical analyses indicate that the 281-m thick Walcott Member, the uppermost unit of the Kwagunt, has good to excellent petroleum source rock potential. The lower half of the Walcott is characterized by total organic carbon (TOC) contents as much as 7.0% (average /approximately/ 3.0%), hydrogen indices as much as 204 mg HC/g TOC (average 135 mg HC/g TOC), genetic potentials (S/sub 1/ + S/sub 2/) of nearly 16,000 ppm (average /approximately/ 6000 ppm), and extractable organic matter (EOM) as much as 4000 ppm. Data for the upper Walcott are incomplete but suggest that these rocks are as rich or richer than the lower Walcott. Maturity assessment indicates that source rocks of the Walcott are within the oil generation window. Strata of the thermally mature underlying Awatubi Member of the Kwagunt and the thermally mature to overmature Galeros Formation are, in general, rated as poor oil sources with genetic potentials generally less than 1000 ppm, but they are possible gas sources. Several thin sequences in these units, however, display good oil source characteristics, with EOM nearly 2000 ppm and genetic potentials nearly 7000 ppm. Chuar Group strata may be potential sources for economical accumulations of petroleum in upper Proterozoic or lower Paleozoic reservoir rocks in northwest Arizona and southwest Utah.

  6. Major element variation and possible source materials of apollo 12 crystalline rocks.

    PubMed

    Kushiro, I; Haramura, H

    1971-03-26

    Nine different crystalline rocks of the Apollo 12 samples have been analyzed with conventional chemical rock analysis methods. Five of the rocks have normative quartz, whereas the others have normative olivine and hypersthene. The rocks show a wide range in the ratio of iron to magnesium, and their compositions fall on relatively smooth curves in the oxide variation diagram. It is suggested that these rocks, with one exception, represent different parts of a differentiated magmatic body, in which magmatic differentiation by crystallization and settling of olivine was most effective. The source material of the original magma may be peridotite with or without minor amounts of plagioclase or spinel or garnet, with the presence or absence of these minerals dependent on the depth of magma generation. PMID:17742570

  7. Paleozoic source and reservoir rocks in unbreached thrust ramp anticlines, Millard County, Utah

    SciTech Connect

    Garrison, P.B.; Larsen, B.R. )

    1991-03-01

    Surface geology, source rock geochemistry, and seismic data indicate that substantial hydrocarbon reserves may occur beneath a regional detachment fault underlying Tule Valley and the Confusion Range in northern Millard County, west-central Utah. Paleozoic hydrocarbon source and reservoir rocks in Millard County are laterally equivalent to highly productive rocks in Railroad Valley, Nevada, oil fields. However, the volume of hydrocarbons trapped in thrust ramp duplex anticlines beneath a regional detachment fault is potentially much greater than that in established Nevada fields. The Devonian Guilmette Formation, which consists of interstratified brown, sucrosic dolomite and gray limestone, and the Mississippian Chainman Shale are exposed in the folded and thrusted Confusion Range. Regional geochemical analysis confirms that the Chainman Shale contains enough total organic carbon (TOC) to serve as an effective hydrocarbon source rock. Some surface samples exceed 3% TOC; average TOC is in excess of 1.5%. Thermal maturity of these source rock surface samples indicates that these rocks were subjected to deep burial during their geologic history and that they have generated the maximum amount of hydrocarbons. In addition, thermal maturity of these samples is consistent with hydrocarbon preservation at the 'floor' of the oil window and within the area of peak wet gas generation. Petrographic examination of potential reservoir facies in the Guilmette Formation confirms that liquid hydrocarbons were contained in porous, permeable dolomite. Petrographic examination of kerogen from these same facies also confirms the presence of solid bitumen (dead oil) in the surface samples.

  8. Geochemical characteristics of Cretaceous carbonatites from Angola

    NASA Astrophysics Data System (ADS)

    Alberti, A.; Castorina, F.; Censi, P.; Comin-Chiaramonti, P.; Gomes, C. B.

    1999-12-01

    The Early Cretaceous (138-130 Ma) carbonatites and associated alkaline rocks of Angola belong to the Paraná-Angola-Etendeka Province and occur as ring complexes and other central-type intrusions along northeast trending tectonic lineaments, parallel to the trend of coeval Namibian alkaline complexes. Most of the Angolan carbonatite-alkaline bodies are located along the apical part of the Moçamedes Arch, a structure representing the African counterpart of the Ponta Grossa Arch in southern Brazil, where several alkaline-carbonatite complexes were also emplaced in the Early Cretaceous. Geochemical and isotopic (C, 0, Sr and Nd) characteristics determined for five carbonatitic occurrences indicate that: (1) the overall geochemical composition, including the OC isotopes, is within the range of the Early and Late Cretaceous Brazilian occurrences from the Paraná Basin; (2) the La versus {La}/{Yb} relationships are consistent with the exsolution of CO i2-rich melts from trachyphonolitic magmas; and (3) the {143Nd}/{144Nd} and {87Sr}/{86Sr} initial ratios are similar to the initial isotopic ratios (129 Ma) of alkaline complexes in northwest Namibia. In contrast, the Lupongola carbonatites have a distinctly different {143Nd}/{144Nd} initial ratio, suggesting a different source. The Angolan carbonatites have SrNd isotopic compositions ranging from bulk earth to time-integrated depleted sources. Since those from eastern Paraguay (at the western fringe of the Paraná-Angola-Etendeka Province) and Brazil appear to be related to mantle-derived melts with time-integrated enriched or B.E. isotopic characteristics, it is concluded that the carbonatites of the Paraná-Angola-Etendeka Province have compositionally distinct mantle sources. Such mantle heterogeneity is attributed to 'metasomatic processes', which would have occurred at ca 0.6-0.7 Ga (Angola, northwest Namibia and Brazil) and ca 1.8 Ga (eastern Paraguay), as suggested by Nd-model ages.

  9. The origin of oil in the Cretaceous succession from the South Pars Oil Layer of the Persian Gulf

    NASA Astrophysics Data System (ADS)

    Rahmani, Omeid; Aali, Jafar; Junin, Radzuan; Mohseni, Hassan; Padmanabhan, Eswaran; Azdarpour, Amin; Zarza, Sahar; Moayyed, Mohsen; Ghazanfari, Parviz

    2013-07-01

    The origin of the oil in Barremian-Hauterivian and Albian age source rock samples from two oil wells (SPO-2 and SPO-3) in the South Pars oil field has been investigated by analyzing the quantity of total organic carbon (TOC) and thermal maturity of organic matter (OM). The source rocks were found in the interval 1,000-1,044 m for the Kazhdumi Formation (Albian) and 1,157-1,230 m for the Gadvan Formation (Barremian-Hauterivian). Elemental analysis was carried out on 36 samples from the source rock candidates (Gadvan and Kazhdumi formations) of the Cretaceous succession of the South Pars Oil Layer (SPOL). This analysis indicated that the OM of the Barremian-Hauterivian and Albian samples in the SPOL was composed of kerogen Types II and II-III, respectively. The average TOC of analyzed samples is less than 1 wt%, suggesting that the Cretaceous source rocks are poor hydrocarbon (HC) producers. Thermal maturity and Ro values revealed that more than 90 % of oil samples are immature. The source of the analyzed samples taken from Gadvan and Kazhdumi formations most likely contained a content high in mixed plant and marine algal OM deposited under oxic to suboxic bottom water conditions. The Pristane/nC17 versus Phytane/nC18 diagram showed Type II-III kerogen of mixture environments for source rock samples from the SPOL. Burial history modeling indicates that at the end of the Cretaceous time, pre-Permian sediments remained immature in the Qatar Arch. Therefore, lateral migration of HC from the nearby Cretaceous source rock kitchens toward the north and south of the Qatar Arch is the most probable origin for the significant oils in the SPOL.

  10. Cretaceous to Eocene passive margin sedimentation in Northeastern Venezuela

    SciTech Connect

    Erikson, J.P. )

    1993-02-01

    Twenty two palinspastic paleogeographic maps are presented for the Cretaceous to Eocene strata of the Serrania del Interior of northeastern Venezuela. The mapped lithologies, environmental conditions, and evolving depositional systems record [approximately]90 m.y. of dominantly marine sedimentation on the only observable Mesozoic passive margin in the Western Hemisphere. The depositional systems of the passive margin are heterogeneous at lateral (i.e., along-margin) length scales greater than [approximately]40 km. The primary lateral heterogeneity is caused by a major Lower Cretaceous deltaic system that emanated southwest of the Serrania del Interior. All important intervals, such as the laterally variable Aptian-Albian El Cantil platform limestone and the hydrocarbon source rocks of the Upper Cretaceous Querecual and San Antonio formations, are related to probable causal mechanisms and environmental conditions. Stratigraphic events have been interpreted as of either local or regional extent; based on a combination of outcrop sedimentologic analyses and regional depositional systems interpretation. The 3-dimensional distribution of depositional systems and systems tracts reveals 4-6 regional sequence boundaries separated by 4-20 m.y. Subsidence analyses support the facies interpretation of a passive margin by showing continuous, thermally dominated subsidence during the Cretaceous to Eocene interval. Subsidence and accumulation rates increased and facies changed significantly in the Oligocene, indicating the end of passive margin sedimentation and the initiation of foredeep subsidence and accumulation associated with overthrusting the eastward-advancing Caribbean Plate.

  11. The oil and gas potential of southern Bolivia: Contributions from a dual source rock system

    SciTech Connect

    Hartshorn, K.G.

    1996-08-01

    The southern Sub-Andean and Chaco basins of Bolivia produce oil, gas and condensate from reservoirs ranging from Devonian to Tertiary in age. Geochemical evidence points to contributions from two Paleozoic source rocks: the Devonian Los Monos Formation and the Silurian Kirusillas Formation. Rock-Eval pyrolysis, biomarker data, microscopic kerogen analysis, and burial history modeling are used to assess the quality, distribution, and maturity of both source rock systems. The geochemical results are then integrated with the structural model for the area in order to determine the most likely pathways for migration of oil and gas in the thrust belt and its foreland. Geochemical analysis and modeling show that the primary source rock, shales of the Devonian Los Monos Formation, entered the oil window during the initial phase of thrusting in the sub-Andean belt. This provides ideal timing for oil accumulation in younger reservoirs of the thrust belt. The secondary source rock, although richer, consumed most of its oil generating capacity prior to the development of the thrust related structures. Depending on burial depth and location, however, the Silurian source still contributes gas, and some oil, to traps in the region.

  12. Palaeoenvironment and Its Control on the Formation of Miocene Marine Source Rocks in the Qiongdongnan Basin, Northern South China Sea

    PubMed Central

    Li, Wenhao; Zhang, Zhihuan; Wang, Weiming; Lu, Shuangfang; Li, Youchuan; Fu, Ning

    2014-01-01

    The main factors of the developmental environment of marine source rocks in continental margin basins have their specificality. This realization, in return, has led to the recognition that the developmental environment and pattern of marine source rocks, especially for the source rocks in continental margin basins, are still controversial or poorly understood. Through the analysis of the trace elements and maceral data, the developmental environment of Miocene marine source rocks in the Qiongdongnan Basin is reconstructed, and the developmental patterns of the Miocene marine source rocks are established. This paper attempts to reveal the hydrocarbon potential of the Miocene marine source rocks in different environment and speculate the quality of source rocks in bathyal region of the continental slope without exploratory well. Our results highlight the palaeoenvironment and its control on the formation of Miocene marine source rocks in the Qiongdongnan Basin of the northern South China Sea and speculate the hydrocarbon potential of the source rocks in the bathyal region. This study provides a window for better understanding the main factors influencing the marine source rocks in the continental margin basins, including productivity, preservation conditions, and the input of terrestrial organic matter. PMID:25401132

  13. Palaeoenvironment and its control on the formation of Miocene marine source rocks in the Qiongdongnan Basin, northern South China Sea.

    PubMed

    Li, Wenhao; Zhang, Zhihuan; Wang, Weiming; Lu, Shuangfang; Li, Youchuan; Fu, Ning

    2014-01-01

    The main factors of the developmental environment of marine source rocks in continental margin basins have their specificality. This realization, in return, has led to the recognition that the developmental environment and pattern of marine source rocks, especially for the source rocks in continental margin basins, are still controversial or poorly understood. Through the analysis of the trace elements and maceral data, the developmental environment of Miocene marine source rocks in the Qiongdongnan Basin is reconstructed, and the developmental patterns of the Miocene marine source rocks are established. This paper attempts to reveal the hydrocarbon potential of the Miocene marine source rocks in different environment and speculate the quality of source rocks in bathyal region of the continental slope without exploratory well. Our results highlight the palaeoenvironment and its control on the formation of Miocene marine source rocks in the Qiongdongnan Basin of the northern South China Sea and speculate the hydrocarbon potential of the source rocks in the bathyal region. This study provides a window for better understanding the main factors influencing the marine source rocks in the continental margin basins, including productivity, preservation conditions, and the input of terrestrial organic matter. PMID:25401132

  14. Development of Paleogene depressions and deposition of Lacustrine source rocks in the Pearl River Mouth basin, northern margin of the South China Sea

    SciTech Connect

    Wang, Chunxiu; Sun, Yuxiao

    1994-11-01

    A more accurate, integrated chronostratigraphic framework is applied to the analysis of the development of Paleogene depressions in the Pearl River Mouth basin. The results of our study show that the development of these depressions was characterized by at least three rifting or basin-forming phases occurring during these periods: late Paleocene (Late Cretaceous?)-middle Eocene, late Eocene-early Oligocene, and middle-Oligocene-late Oligocene. The transition from rifting stage to postrifting stage in the basin is about 10 m.y. later than the initial spreading of the South China Sea. The prologue of the spreading of the South China Sea began as early as the end of the middle Eocene. Lacustrine source rocks deposited during the basin`s first rifting phase are thick and of good quality; source rocks deposited during the last two phases, which had a sharp increase in sedimentation rate, are of lesser quality, with the exception being those areas where deposits were out of reach of sediment from the northern mainland.

  15. Cretaceous shallow drilling, US Western Interior: Core research

    SciTech Connect

    Arthur, M.A.

    1993-02-17

    This project is a continuing multidisciplinary study of middle to Upper Cretaceous marine carbonate and clastic rocks in the Utah-Colorado-Kansas corridor of the old Cretaceous seaway that extended from the Gulf Coast to the Arctic during maximum Cretaceous transgressions. It is collaborative between in the US Geological Survey (W.E. Dean, P.I.) and University researchers led by The Pennsylvania State University(M.A. Arthur, P.I.) and funded by DOE and the USGS, in part. Research focusses on the Greenhom, Niobrara and lower Pierre Shale units and their equivalents, combining biostratigraphic/paleoecologic studies, inorganic, organic and stable isotopic geochemical studies, mineralogical investigations and high-resolution geophysical logging. This research requires unweathered samples and continuous smooth exposures'' in the form of cores from at least 4 relatively shallow reference holes (i.e. < 1000m) in transect from east to west across the basin. The major initial effort was recovery in Year 1 of the project of continuous cores from each site in the transect. This drilling provided samples and logs of strata ranging from pelagic sequences that contain organic-carbon-rich marine source rocks to nearshore coal-bearing units. This transect also will provide information on the extent of thermal maturation and migration of hydrocarbons in organic-carbon-rich strata along a burial gradient.

  16. Factors affecting the pore space transformation during hydrocarbon generation in source rock (shales): laboratory experiment

    NASA Astrophysics Data System (ADS)

    Giliazetdinova, D. R.; Korost, D. V.

    2014-12-01

    Oil and gas generation is a set of processes which taking place in the interior, the processes can't be observable in nature. In the process of dumping the source rock, organic matter is transformed into a complex of high-molecular compounds - precursors of oil and gas (kerogen). Entering of a source column for specific thermobaric conditions, triggers the formation of low molecular weight hydrocarbon compounds. Generation of sufficient quantities of hydrocarbons leads to the primary fluid migration within the source rock. For the experiment were selected mainly siliceous-carbonate composition rocks from Domanic horizon South-Tatar arch. The main aim of experiment was heating the rocks in the pyrolyzer to temperatures which correspond katagenes stages. For monitoring changes in the morphology of the pore space X-ray microtomography method was used. As a result, when was made a study of the composition of mineral and organic content of the rocks, as well as textural and structural features, have been identified that the majority of the rock samples within the selected collection are identical. However, characteristics such as organic content and texture of rocks are different. Thus, the experiment was divided into two parts: 1) the study of the influence of organic matter content on the morphology of the rock in the process of thermal effects; 2) study the effect of texture on the primary migration processes for the same values of organic matter. Also, an additional experiment was conducted to study the dynamics of changes in the structure of the pore space. At each stage of the experiment morphology of altered rocks characterized by the formation of new pores and channels connecting the primary voids. However, it was noted that the samples with a relatively low content of the organic matter had less changes in pore space morphology, in contrast to rocks with a high organic content. At the second stage of the research also revealed that the conversion of the pore

  17. Neocomian source and reservoir rocks in the western Brooks Range and Arctic Slope, Alaska

    SciTech Connect

    Mull, C.G.; Reifenstuhl, R.R.; Harris, E.E.; Crowder, R.K.

    1995-04-01

    Detailed (1:63,360) mapping of the Tingmerkpuk sandstone and associated rocks in the Misheguk Mountain and DeLong Mountains guadrangles of the western Brooks Range thrust belt documents potential hydrocarbon source and reservoir rocks in the northern foothills of the western Delong Mountains and adjacent Colville basin of northwest Alaska. Neocomian (?) to Albian micaceous shale, litharenite, and graywacke that overlies the Tingmerkpuk represents the onset of deposition of orogenic sediments derived from the Brooks Range to the south, and the merging of northern and southern sediment sources in the Colville basin. Both the proximal and distal Tingmerkpuk facies contain clay shale interbeds and overlie the Upper Jurassic to Neocomian Kingak Shale. Preliminary geochemical data show that in the thrust belt, these shales are thermally overmature (Ro 1.4-1.6), but are good source rocks with total organic content (TOC) that ranges from 1.2 to 1.8 percent. Shale in the overlying Brookian rocks is also thermally overmature (Ro 1.2-1.5 percent), but contains up to 1.8 percent TOC from a dominantly terrigenous source, and has generated gas. In outcrops at Surprise Creek, in the foothills north of the thrust belt, the Kingak (1.9 percent TOC) and underlying Triassic Shublik Formation (4.6 percent TOC) are excellent oil source rocks with thermal maturity close to peak oil generation stage (Ro0.75-0.9 percent). These rocks have lower thermal maturity values than expected for their stratigraphic position within the deeper parts of the Colville basin and indicate anomalous burial and uplift history in parts of the basin. Preliminary apatite fission-track (AFTA) data from the thrust belt indicate a stage of rapid uplift and cooling at about 53.61 Ma.

  18. Ordovician petroleum source rocks and aspects of hydrocarbon generation in Canadian portion of Williston basin

    SciTech Connect

    Osadetz, K.G.; Snowdon, L.R.

    1988-07-01

    Accumulation of rich petroleum source rocks - starved bituminous mudrocks in both the Winnipeg Formation (Middle Ordovician) and Bighorn Group (Upper Ordovician) - is controlled by cyclical deepening events with a frequency of approximately 2 m.y. Tectonics control both this frequency and the location of starved subbasins of source rock accumulation. Deepening cycles initiated starvation of offshore portions of the inner detrital and medial carbonate facies belts. Persistence of starved offshore settings was aided by marginal onlap and strandline migration in the inner detrital facies belt, and by low carbonate productivity in the medial carbonate facies belt. Low carbonate productivity was accompanied by high rates of planktonic productivity. Periodic anoxia, as a consequence of high rates of planktonic organic productivity accompanying wind-driven equatorial upwellings, is the preferred mechanism for suppressing carbonate productivity within the epeiric sea. The planktonic, although problematic, form Gloecapsamorpha prisca Zalesskey 1917 is the main contributing organism to source rock alginites. A long-ranging alga (Cambrian to Silurian), it forms kukersites in Middle and Upper Ordovician rocks of the Williston basin as a consequence of environmental controls - starvation and periodic anoxia. Source rocks composed of this organic matter type generate oils of distinctive composition at relatively high levels of thermal maturity (transformation ratio = 10% at 0.78% R/sub o/). In the Canadian portion of the Williston basin, such levels of thermal maturity occur at present depths greater than 2950 m within a region of geothermal gradient anomalies associated with the Nesson anticline. Approximately 193 million bbl (30.7 x 10/sup 6/ m/sup 3/) of oil has been expelled into secondary migration pathways from thermally mature source rocks in the Canadian portion of the basin.

  19. Assessment of hydrocarbon source rock potential of Polish bituminous coals and carbonaceous shales

    USGS Publications Warehouse

    Kotarba, M.J.; Clayton, J.L.; Rice, D.D.; Wagner, M.

    2002-01-01

    We analyzed 40 coal samples and 45 carbonaceous shale samples of varying thermal maturity (vitrinite reflectance 0.59% to 4.28%) from the Upper Carboniferous coal-bearing strata of the Upper Silesian, Lower Silesian, and Lublin basins, Poland, to evaluate their potential for generation and expulsion of gaseous and liquid hydrocarbons. We evaluated source rock potential based on Rock-Eval pyrolysis yield, elemental composition (atomic H/C and O/C), and solvent extraction yields of bitumen. An attempt was made to relate maceral composition to these source rock parameters and to composition of the organic matter and likely biological precursors. A few carbonaceous shale samples contain sufficient generation potential (pyrolysis assay and elemental composition) to be considered potential source rocks, although the extractable hydrocarbon and bitumen yields are lower than those reported in previous studies for effective Type III source rocks. Most samples analysed contain insufficient capacity for generation of hydrocarbons to reach thresholds required for expulsion (primary migration) to occur. In view of these findings, it is improbable that any of the coals or carbonaceous shales at the sites sampled in our study would be capable of expelling commercial amounts of oil. Inasmuch as a few samples contained sufficient generation capacity to be considered potential source rocks, it is possible that some locations or stratigraphic zones within the coals and shales could have favourable potential, but could not be clearly delimited with the number of samples analysed in our study. Because of their high heteroatomic content and high amount of asphaltenes, the bitumens contained in the coals are less capable of generating hydrocarbons even under optimal thermal conditions than their counterpart bitumens in the shales which have a lower heteroatomic content. Published by Elsevier Science B.V.

  20. Geochemistry and tectonic evolution of the Late Cretaceous Gogher-Baft ophiolite, central Iran

    NASA Astrophysics Data System (ADS)

    Moghadam, Hadi Shafaii; Stern, Robert J.; Chiaradia, Massimo; Rahgoshay, Mohamad

    2013-05-01

    The Late Cretaceous Gogher-Baft ophiolite is one of the best preserved remnants of Neo-Tethyan oceanic lithospheric within the inner Zagros ophiolite belt. The ophiolite comprises from bottom to top, harzburgites, pegmatite and isotropic gabbroic lenses within the mantle sequence, pillowed to massive basalts to dacites and pyroclastic rocks associated with blocks of pelagic limestone and radiolarite. Basaltic to dacitic sills crosscut the pyroclastic rocks. The ophiolite sequence is overlain by Turonian-Maastrichtian pelagic limestones (93.5-65.5 Ma). Mineral compositions of harzburgites are similar to those of fore-arc peridotites and overlap with abyssal peridotites. Most Gogher-Baft ophiolite magmatic rocks show supra-subduction zone affinities, except for some E-MORB type lavas. The geochemical characteristics suggest that Gogher-Baft ophiolite magmatic rocks were generated during subduction initiation. These show progressive source depletion leading to the formation of MORB to boninitic magmas. Early E-MORB-type pillow lavas may have originated by melting mantle that was not affected by subduction components as the Tethyan oceanic plate began to sink beneath Eurasia as subduction began in the Late Cretaceous. Initial ɛNd (t) values range from + 2.6 to + 9 for Gogher-Baft magmatic rocks. Samples with radiogenic Nd overlap with least radiogenic MORBs and with Oman and other Late Cretaceous Tethyan ophiolitic rocks. The initial 87Sr/86Sr ratios range from 0.7048 to 0.7057, indicating modification due to seafloor alteration. Radiogenic 207Pb/204Pb isotopic compositions (systematically above the NHRL) and less radiogenic Nd isotopic compositions suggest the involvement of sediments in the mantle source in some magmatic rocks. Our results for Gogher-Baft ophiolite and the similarity of these to other Iranian Zagros ophiolites suggest a subduction initiation setting for the generation of these magmatic rocks.

  1. Distribution, richness, quality, and thermal maturity of source rock units on the North Slope of Alaska

    USGS Publications Warehouse

    Peters, K.E.; Bird, K.J.; Keller, M.A.; Lillis, P.G.; Magoon, L.B.

    2003-01-01

    Four source rock units on the North Slope were identified, characterized, and mapped to better understand the origin of petroleum in the area: Hue-gamma ray zone (Hue-GRZ), pebble shale unit, Kingak Shale, and Shublik Formation. Rock-Eval pyrolysis, total organic carbon analysis, and well logs were used to map the present-day thickness, organic quantity (TOC), quality (hydrogen index, HI), and thermal maturity (Tmax) of each unit. To map these units, we screened all available geochemical data for wells in the study area and assumed that the top and bottom of the oil window occur at Tmax of ~440° and 470°C, respectively. Based on several assumptions related to carbon mass balance and regional distributions of TOC, the present-day source rock quantity and quality maps were used to determine the extent of fractional conversion of the kerogen to petroleum and to map the original organic richness prior to thermal maturation.

  2. Adakite-like geochemical signature produced by amphibole-dominated fractionation of arc magmas: An example from the Late Cretaceous magmatism in Gangdese belt, south Tibet

    NASA Astrophysics Data System (ADS)

    Xu, Wang-Chun; Zhang, Hong-Fei; Luo, Bi-ji; Guo, Liang; Yang, He

    2015-09-01

    Late Cretaceous (~ 106-76 Ma) adakite-like intrusive rocks in the middle-eastern Gangdese belt occur in an E-W trending belt paralleling the Indus-Yarlung suture, south Tibet. Their petrogenesis and geodynamic processes have been a subject of debate. We report here U-Pb zircon ages, geochemical and Sr-Nd-Hf isotopic data for adakite-like intrusive rocks as well as the normal arc rocks (gabbros and gabbroic diorites) in the middle Gangdese belt. LA-ICPMS U-Pb zircon analyses yielded an identical age of ~ 88 Ma for two adakite-like rocks, which are slightly younger than the gabbro and gabbroic diorite (ca. 94-90 Ma). Both the adakite-like rocks and the normal arc rocks have similar whole-rock Sr-Nd and zircon Hf isotope compositions, indicating that they have been derived from a common source. Similarly, the adakite-like and normal arc intrusive rocks in the eastern Gangdese belt also show similar Sr-Nd-Hf isotope compositions. In the middle-eastern Gangdese belt, the > 85 Ma Late Cretaceous intrusive rocks consist of a magma series from gabbro to granodiorite, including both normal arc rocks and adakite-like rocks. These rocks overlap in space and time that conform to a normal arc differentiation trend. In terms of major and trace elements, they also show a clear evolution from the normal arc magmatic into adakitic field. Thus, we suggest that these > 85 Ma Late Cretaceous intrusive rocks were ultimately derived from melting of the hydrated mantle wedge and the adakite-like rocks can be generated in normal arc magmas by amphibole-dominated fractionation. Taking into accounting for the spatial and temporal distribution of the Cretaceous magmatic rocks in the Lhasa terrane, we prefer a model of early Late Cretaceous rollback following Early Cretaceous low-angle oceanic slab subduction. At intermediate pressure and H2O-rich conditions, fractionation of amphibole changes the major and trace element compositions of arc magmas, and will efficiently drives basaltic

  3. Cretaceous polar climates

    SciTech Connect

    Ziegler, A.M.; Horrell, M.A.; Lottes, A.L.; Gierlowski, T.C.

    1988-01-01

    The Cretaceous, like most Phanerozooic periods, was characterized by ice-free poles. Some still argue that the glacier and sea ice were there, and that the tillites, etc, have been eroded or remain undiscovered. However, diverse floras, dense forests, coal-forming cypress swamps, and dinosaurs, crocodilians, and lungfish are known from areas that were certainly at 75/sup 0/-80/sup 0/ north and south paleolatitude in the Cretaceous, implying that the coastal basins did not experience hard freezes. No deep marine connections to the North Pole existed in the Cretaceous, so oceanic polar heat transport can be discounted. However, the five north-south trending epeiric or rift-related seaways that connected or nearly connected the Tethys to the Arctic would have dampened the seasonal temperature cycle, bringing maritime climates deep into the North American and Eurasian continents and, more importantly, would have served as an energy source and channel for winter storms, much as the Gulf Stream does today. Cyclones have a natural tendency to move poleward, because of the increase in the Coriolis Paramteter, and they transport both sensible and latent heat. The coastal regions of the relatively warm polar ocean in the Cretaceous would have received continuous precipitation during the winter because cyclones would be entering from as many as five directions. Coastal rainfall would also have been abundant in the summer but for a different reason; the land-sea temperature profile would reverse, with the warm land surface drawing in moisture, while clear ice-free conditions over the ocean would allow for solar warming.

  4. Cretaceous polar climates

    SciTech Connect

    Ziegler, A.M.; Horrell, M.A.; Lottes, A.L.; Gierlowski, T.C.

    1988-02-01

    The Cretaceous, like most Phanerozoic periods, was characterized by ice-free poles. Some still argue that the glaciers and sea ice were there, and that the tillites, etc, have been eroded or remain undiscovered. However, diverse floras, dense forests, and coal-forming cypress swamps, and dinosaurs, crocodilians, and lungfish are known from areas that were certainly at 75/degree/-80/degree/ north and south paleolatitude in the Cretaceous, implying that the coastal basins did not experience hard freezes. No deep marine connections to the North Pole existed in the Cretaceous, so oceanic polar heat transport can be discounted. However, the five north-south trending epeiric or rift-related seaways that connected or nearly connected the Tethys to the Arctic would have dampened the seasonal temperature cycle, bring maritime climates deep into the North American and Eurasian continents and, more importantly, would have served as an energy source and channel for winter storms, much as the Gulf Stream does today. Cyclones have a natural tendency to move poleward, because of the increase in the Coriolis Parameter, and they transport both sensible and latent heat. The coastal regions of the relatively warm polar ocean in the Cretaceous would have received continuous precipitation during the winter because cyclones would be entering from as many as five directions. Coastal rainfall would also have been abundant in the summer but for a different reason; the land-sea temperature profile would reverse, with the warm land surface drawing in moisture, while clear ice-free conditions over the ocean would allow for solar warming.

  5. Source of Mesozoic intermediate-felsic igneous rocks in the North China craton: Granulite xenolith evidence

    NASA Astrophysics Data System (ADS)

    Jiang, Neng; Carlson, Richard W.; Guo, Jinhui

    2011-07-01

    Four intermediate to felsic igneous rocks from the Zhangjiakou region, along the northern margin of the North China craton, have magmatic zircon U-Pb ages from 122 to 144 Ma. Two of these samples have inherited zircon U-Pb ages of ~ 2.5 Ga, similar to the zircon ages of rocks from the surrounding granulite terrain. Zircons from two intermediate composition granulite xenoliths (JN0811 and JN0919) in the nearby Cenozoic Hannuoba basalts yield two groups of ages. The rims have concordant Mesozoic ages mostly between 120 and 145 Ma, coeval with the Mesozoic intermediate-felsic magmatism in the region, while the cores have discordant U-Pb ages with upper-intercepts of ~ 2.5 Ga, overlapping the zircon ages of granulite terrain rocks, and lower-intercept ages of ~ 130 Ma, approximating the ages of the Mesozoic intermediate-felsic magmatism. The Sr-Nd isotopic compositions of the Mesozoic intermediate-felsic igneous rocks are completely different from those expected for basaltic melts from either the lithospheric mantle or the asthenospheric mantle, precluding a derivation by extensive fractional crystallization of mantle-derived magmas. The lack of correlation between (86Sr/87Sr)i, εNd(t) and SiO2 for the Mesozoic igneous rocks, the very narrow range of zircon εHf(t) for individual intermediate-felsic igneous rocks, and simple binary mixing calculations argue against them being formed by mixing between mantle-derived magma and preexisting crust that has extremely evolved Sr-Nd isotopic compositions like granulite xenoliths JN0811 and JN0919. Hf isotopic compositions of the Mesozoic zircons and whole-rock geochemistry show that the granulite xenoliths with extremely evolved Sr-Nd isotopic compositions have not undergone partial melting during the Mesozoic and thus do not contribute to the Mesozoic intermediate-felsic magmas. Further comparisons show that the source rocks for the Mesozoic intermediate-felsic magmas likely were late Archean lower crustal rocks similar in

  6. Rock glaciers as a source of nitrate to alpine streams, Green Lakes Valley, Colorado, USA.

    NASA Astrophysics Data System (ADS)

    Knauf, M.; Williams, M. W.; Caine, N.

    2003-12-01

    An ongoing concern in alpine areas of the western United States is the high concentrations of nitrate in surface waters. A number of research scientists have shown that talus areas are one source of this elevated nitrate (Williams et al., 1997; Campbell et al., 2002). Here we evaluate the potential contribution of nitrate to surface waters from a previously overlooked source: rock glaciers. Water draining from the Green Lake 5 rock glacier in the Colorado Front Range has been sampled for nitrate and ammonium since 1998 as part of the Niwot Ridge LTER program. The mean concentration of nitrate in stream waters in the Green Lakes Valley is 16.12 ueq/L, and for talus streams is 20 ueq/L. In comparison, the stream draining the rock glacier has an average nitrate concentration of 54 ueq/L. Moreover, nitrate values from the stream draining the rock glacier peak in the late summer at over 100 ueq/L. The sources of these high nitrate values from the rock glacier are unknown at this time; we evaluate several hypotheses. Increased nitrate could be a result of dry deposition on the rock glacier that is flushed during snowmelt and rain events. Another hypothesis is that microbial processes within the rock glacier have contribute to higher nitrate concentrations. Here we evaluate the sources and fate of nitrate in waters draining the Green Lake 5 rock glacier in 2003 using a combination of stable (delta O18) and radiogenic (tritium) water isotopes, fractionation of dissolved organic matter, fluorescence index of dissolved organic matter, and mineralization experiments. These site-specific results are then placed in a regional context through a synoptic sampling of streams draining rock glaciers throughout the Rocky Mountain region. Works Cited Williams, M. W., T. Davinroy, and P. D. Brooks. 1997. Organic and inorganic nitrogen pools in talus soils and water, Green Lakes Valley, Colorado Front Range, Hydrologic Processes, 11(13): 1747-1760. Campbell, Donald H., Carol Kendall

  7. Geochemical evidence for a Cretaceous oil sand (Bima oil sand) in the Chad Basin, Nigeria

    NASA Astrophysics Data System (ADS)

    Bata, Timothy; Parnell, John; Samaila, Nuhu K.; Abubakar, M. B.; Maigari, A. S.

    2015-11-01

    Paleogeographic studies have shown that Earth was covered with more water during the Cretaceous than it is today, as the global sea level was significantly higher. The Cretaceous witnessed one of the greatest marine transgressions in Earth's history, represented by widespread deposition of sands directly on underlying basement. These sand bodies hold much of the world's heavy oil. Here, we present for the first time, geochemical evidence of a Cretaceous oil sand (Bima oil sand) in the Chad Basin, Nigeria. Bima oil sand is similar to other Cretaceous oil sands, predominantly occurring at shallow depths on basin flanks and generally lacking a seal cover, making the oil susceptible to biodegradation. The bulk properties and distribution of molecular features in oils from the Bima oil sand suggest that they are biodegraded. Sterane maturity parameters and the trisnorhopane thermal indicator for the oils suggest thermal maturities consistent with oils generated as conventional light oils, which later degraded into heavy oils. These oils also show no evidence of 25-norhopane, strongly suggesting that biodegradation occurred at shallow depths, consistent with the shallow depth of occurrence of the Bima Formation at the study locality. Low diasterane/sterane ratios and C29H/C30H ratios greater than 1 suggest a carbonate source rock for the studied oil. The Sterane distribution further suggests that the oils were sourced from marine carbonate rocks. The C32 homohopane isomerization ratios for the Bima oil sand are 0.59-0.60, implying that the source rock has surpassed the main oil generation phase, consistent with burial depths of the Fika and Gongila Formations, which are both possible petroleum source rocks in the basin.

  8. The Lower Cretaceous Chinkeh Formation: A frontier-type play in the Liard basin of western Canada

    SciTech Connect

    Leckie, D.A. ); Potocki, D.J. ); Visser, K. )

    1991-08-01

    The Lower Cretaceous Liard basin in western Canada covers an area of 9,500 km{sup 2} (3,668 mi{sup 2}) but is relatively unexplored despite its size. The present-day expression of the basin, which formed during the latest Cretaceous to early Tertiary, trends north-south and is delineated by the outcrop of the coarse-clastic Upper Cretaceous Dunvegan Formation. The lowermost Cretaceous unit, herein named the Chinkeh Formation, is up to 32 m (105 ft) thick and unconformably overlies older Paleozoic strata. The Chinkeh Formation contains four major lithotypes: (1) conglomeratic breccia interpreted as debris-flow or talus deposits, (2) interbedded coal, carbonaceous as nonmarine valley fill or channel deposits, (3) conglomeratic lag related to marine deposits, (3) conglomeratic lag related to marine transgression, and (4) upward-coarsening sandstone interpreted as abandoned shoreline deposits. Cretaceous strata in the Liard basin have gave petroleum source-rock and reservoir potential, and hydrocarbons may be present in sandstone of the Chinkeh Formation. Potential play types include stratigraphic traps formed by incised-valley deposits and shallow-marine sandstone pinching out laterally into marine shales of the Garbutt Formation. A potential structural play may occur along the Bovie fault zone where reservoirs may abut against a shale seal on the eastern side of the fault. Potential source rocks include the lowermost Garbutt Formation and underlying Triassic Toad Garbutt formations. The Chinkeh Formation sandstone has porosity values of 8-18%.

  9. Assessment of potential oil and gas resources in source rocks of the Alaska North Slope, 2012

    USGS Publications Warehouse

    Houseknecht, David W.; Rouse, William A.; Garrity, Christopher P.; Whidden, Katherine J.; Dumoulin, Julie A.; Schenk, Christopher J.; Charpentier, Ronald R.; Cook, Troy A.; Gaswirth, Stephanie B.; Kirschbaum, Mark A.; Pollastro, Richard M.

    2012-01-01

    The U.S. Geological Survey estimated potential, technically recoverable oil and gas resources for source rocks of the Alaska North Slope. Estimates (95-percent to 5-percent probability) range from zero to 2 billion barrels of oil and from zero to nearly 80 trillion cubic feet of gas.

  10. Source-rock evaluation of outcrop samples from Vanuatu (Malakula, Espiritu Santo, Maewo, and Pentecost)

    USGS Publications Warehouse

    Buchbinder, Binyamin; Halley, Robert B.

    1988-01-01

    The samples collected for the present study represent only a portion of the sedimentary column in the various sedimentary basins of Vanuatu.  The characterize only the outer margins of the sedimentary basins and do not necessarily reflect the source-rock potential of the deeper (offshore) parts of the basins.

  11. Source rock geochemistry and liquid and solid petroleum occurrences of the Ouachita Mountains, Oklahoma

    NASA Astrophysics Data System (ADS)

    Curiale, J. A.

    Crude oils, solid bitumens and potential oil source rocks of the frontal and central Ouachita Mountains of southeastern Oklahoma are examined. The organic matter in each of these materials is characterized, and oils are correlated to potential source rocks in the Ouachita Mountains. Four Ouachita Mountain oils and seven solid bitumens (grahamite and impsonite) are analyzed. The oils are paraffinic and range from 31.8 to 43.1 API gravity. The oils are thermally mature and generally unaltered. All four oils are commonly sourced, by n-alkane, sterane and hopane distributions, stable isotope ratios, infrared spectra and vanadium/nickel ratios. A common source for the solid bitumens is also suggested by isotope ratios and pyrolyzate characteristics. An origin due to crude oil biodegradation is suggested for these solids, based on carbon isotope ratios, elemental analyses, and sterane distributions of the solid bitumen pyrolyzates.

  12. A quasi-linear structure of the southern margin of Eurasia prior to the India-Asia collision: First paleomagnetic constraints from Upper Cretaceous volcanic rocks near the western syntaxis of Tibet

    NASA Astrophysics Data System (ADS)

    Yi, Zhiyu; Huang, Baochun; Yang, Liekun; Tang, Xiangde; Yan, Yonggang; Qiao, Qingqing; Zhao, Jie; Chen, Liwei

    2015-07-01

    We report the first combined geochronologic and paleomagnetic study of volcanic rocks from the Shiquanhe and Yare Basins at the westernmost Lhasa Terrane, which aims to provide an accurate constraint on the shape and paleoposition of the southern margin of Asia prior to the India-Asia collision. Three new 40Ar/39Ar ages of 92.5 ± 2.9 Ma, 92.4 ± 0.9 Ma, and 79.6 ± 0.7 Ma determined by fresh matrix or feldspar from lava flows suggest a Late Cretaceous age for the investigated units. Characteristic remanent magnetizations have been successfully isolated from 38 sites which pass positive fold and/or reversal, conglomerate tests and are hence interpreted as primary in origin. The two paleopoles obtained from Yare and Shiquanhe yield consistent paleolatitudes of 13.6°N ± 9.6°N and 14.2°N ± 2.7°N, respectively (for a reference site of 31.5°N, 80°E), indicating that the southern margin of Asia near the western syntaxis was located far south during the Late Cretaceous time. A reconstruction of the Lhasa Terrane in the frame of Eurasia with paleomagnetic data obtained from its western and eastern parts indicates that the southern margin of Eurasia probably had a quasi-linear orientation prior to the collision formerly trending approximately 315°E. This is compatible with the shape of the Neo-Tethys slab observed from seismic tomographic studies. Our findings provide a solid basis for evaluating Cenozoic crustal shortening in the Asian interior and the size of Greater India near the western syntaxis.

  13. A rich Middle Triassic source rock in the Barents Sea Area

    SciTech Connect

    Bjoroy, M.; Hall, P.B.

    1983-05-01

    The scope of the work presented in this paper is an evaluation of the petroleum potential of the source rock which shows most promise for the Barents Sea Area. The evaluation is based on analysis of a large number of samples from a Middle Triassic black shale deposit on the various islands of the Svalbard Archipelago. This investigation has shown that the shale is an oil-prone source rock. Analysis of samples taken from areas in the Barents Sea, indicates that this shale sequence has similar potential as a source rock throughout the area south of Svalbard. Integration of this data with the available geophysical and geological data allows the authors to propose that the rich, oilprone Middle Triassic shale sequence also has a widespread distribution throughout the Norwegian Arctic. The results of the geochemical analysis undertaken on Mesozoic deposits of Svalbard and from subsea outcrops in the Barents Sea area is presented. In addition the significant geological data for the region are included. The geochemical data includes; total organic carbon content, Rock-Eval pyrolysis values, vitrinite reflectance and kerogen analysis in transmitted light. In addition some data on the amount and composition of extractable organic matter in the Triassic shales are mentioned.

  14. Volga-Ural basin, U. S. S. R. : Rich petroleum systems with a single source rock

    SciTech Connect

    Ulmishek, G.F. )

    1991-03-01

    The Volga-Ural basin has produced about 40 billion barrels of oil and still produces a billion barrels annually. The productive Middle Devonian-Lower Permian sequence is composed of various carbonate rocks (including reefs) with clastic intervals in the Middle Devonian-lower Frasnian, middle-upper Visean, and Middle Carboniferous. A single source-rock unit, the Frasnian Domanik Formation, 30-60 m thick, is responsible for productivity of the entire sedimentary section. The three clastic intervals and underlying carbonate strata contain the bulk of the hydrocarbon reserves. Widespread upward and downward vertical migration in this structurally simple basin is explained by imperfect regional seals. Imperfection of the seals has also resulted in a predominance of oil over gas. The best seal is the overpressured Domanik Formation itself; it separates the sedimentary section into two petroleum systems: one in underlying Middle Devonian-lower Frasnian clastics and the other in overlying clastic and carbonate rocks.

  15. Potential petroleum source rocks in a tertiary sequence of the Eastern Venezuelan Basin

    NASA Astrophysics Data System (ADS)

    Quintero, K.; Lo Mónaco, G.; López, L.; Lo Mónaco, S.; Escobar, G.; Peralba, M. C. R.; Franco, N.; Kalkreuth, W.

    2012-08-01

    A core of a Tertiary age sequence from the Eastern Venezuelan Basin was analyzed in order to determine its potential for petroleum generation. Conventional geochemical methods, like Rock-Eval pyrolysis, biomarkers from saturated fractions and aromatic hydrocarbon ratios were used for assessing source-rock quality. The application of such methods indicated predominantly the presence of terrigenous organic matter with marine influence, deposited under suboxic to oxic conditions typical of continental environments. Thermal maturation in the range from beginning to mid oil window and organic matter type indicate that the sequence could have generated mainly gaseous hydrocarbons. Analysis by electron probe microanalyses (EPMA) indicates that sulfur is associated to both organic (bitumen and kerogen) and inorganic (mineral) phases and organic matter is observed filling fractures in the rocks.

  16. Cathodoluminescence of shocked quartz at the Cretaceous-Tertiary boundary

    NASA Technical Reports Server (NTRS)

    Owen, Michael R.; Anders, Mark H.

    1988-01-01

    Empirical studies have documented an association between rock type and the cathodoluminescence color of constituent quartz grains. Quartz from extrusive igneous sources luminesces uniform pale blue. Quartz from intrusive igneous and high-grade metamorphic rocks generally luminesces darker purple-blue, whereas quartz recrystallized under low-grade metamorphic conditions luminesces reddish-brown. Quartz grains in most sandstones luminesce a heterogeneous mixture of these colors because the grains were derived from a variety of ultimate source rocks. If shocked quartz found at the Cretaceous-Tertiary (K-T) boundary is volcanic in origin, its cathodoluminescence should be predominantly pale blue. Alternatively, quartz grains derived from bolide impact upon, and ejection of, mixed igneous, metamorphic, and sedimentary rocks should luminesce a variety of colors. Grain mounts of sand collected at the K-T boundary horizon from the Clear Creek North site in the Raton Basin, Colorado were examined. Shocked quartz luminesced a variety of colors and very few grains luminesced the pale blue color that is typical of volcanic quartz. It was concluded that the shocked quartz was derived from a petrologically diverse source region without substantial volcanic contribution. Most shocked grains apparently were derived from low-grade metamorphic rocks, with a slightly smaller contribution from high-grade metamorphic and intrusive igneous rocks. Rare quartz grains with brown-luminescing rims reflect a minor addition from detrital sedimentary sources. The apparent relative abundances of intrusive (and rare extrusive) igneous, metamorphic, and sedimentary ultimate source rocks suggested by CL colors of shock-deformed quartz at the K-T boundary is consistent with a crustal/supracrustal origin for the grains.

  17. Occurrences of Chert in Jurassic-Cretaceous Calciturbidites (SW Turkey)

    NASA Astrophysics Data System (ADS)

    Gül, Murat

    2015-10-01

    The Lycian Nappes, containing ophiolite and sedimentary rocks sequences, crop out in the southwest Turkey. The Tavas Nappe is a part of the Lycian Nappes. It includes the Lower Jurassic-Upper Cretaceous calciturbidites. Chert occurrences were observed in the lower part of this calciturbidite. These cherts can be classified on the basis of length, internal structure and host rock. Chert bands are 3.20-35.0min length and 7.0-35.0 cm thick. Chert lenses are 5.0-175.0 cm in length and 1.0-33.0 cm thick. According to its internal structure, granular chert (bladedlarge equitant quartz minerals replaced the big calcite mineral of fossil shell) and porcelanious chert (microcrystalline silica replaced micrite) have been separated. Cherts are generally associated with calcarenite-calcirudite, the others with calcilutite. Micritic calcite patches of cherts point out an uncompleted silicification. The source of silica was dominantly quartz-rich, older, basal rocks and to a lesser extent radiolarians. The coarse-grained calciturbidites act as a way for silica transportation. Some calcite veins (formed during transportation and emplacement of nappes) cut both calciturbidites and cherts. Thus, chert occurrences evolved before emplacement of nappes (the latest Cretaceous-Late Miocene period) during the epigenetic phase.

  18. Late Cretaceous intraplate silicic volcanism in the Lake Chad region: incipient continental rift volcanism vs. Cameroon Line volcanism

    NASA Astrophysics Data System (ADS)

    Shellnutt, G.; Lee, T. Y.; Torng, P. K.; Yang, C. C.

    2015-12-01

    The crustal evolution of west-central Africa during the Cretaceous was directly related to plate motion associated with the opening of the central Atlantic Ocean. Late Cretaceous (~66 Ma) to recent magmatism related to the Cameroon Line stretches from Northern Cameroon (i.e. Golda Zuelva) to the Gulf of Guinea (i.e. Pagalu) and is considered to be due to mantle-crust interaction. The volcanic rocks at Hadjer el Khamis, west-central Chad, are considered to be amongst the oldest volcanic rocks of the Cameroon Line but their relationship is uncertain because they erupted during a period of a regional extension associated with the opening of the Late Cretaceous (~75 Ma) Termit basin. The silicic volcanic rocks can be divided into a peraluminous group and a peralkaline group with both rock types having similar chemical characteristics as within-plate granitoids. In situ U/Pb zircon dating yielded a mean 206Pb/238U age of 74.4 ± 1.3 Ma and indicates the rocks erupted ~10 million years before the next oldest eruption attributed to the Cameroon Line. The Sr isotopes (i.e. ISr = 0.7050 to 0.7143) show a wide range but the Nd isotopes (i.e. 143Nd/144Ndi = 0.51268 to 0.51271) are more uniform and indicate that the rocks were derived from a moderately depleted mantle source. Major and trace elemental modeling show that the silicic rocks likely formed by shallow fractionation of a mafic parental magma where the peraluminous rocks experienced crustal contamination and the peralkaline rocks did not. The silicic rocks are more isotopically similar to Late Cretaceous basalts in the Doba and Bongor basins (i.e. ISr = 0.7040 to 0.7060; 143Nd/144Ndi = 0.51267 to 0.51277) of southern Chad than to rocks of the Cameroon Line (i.e. ISr = 0.7026 to 0.7038; 143Nd/144Ndi = 0.51270 to 0.51300). Given the age and isotopic compositions, it is likely that the silicic volcanic rocks of the Lake Chad area are related to Late Cretaceous extensional tectonics rather than to Cameroon Line magmatism.

  19. Deformation in the hanging wall of Cretaceous HP rocks (Austroalpine Ötztal-Stubai Complex, European Eastern Alps): constraints on timing, conditions and kinematics

    NASA Astrophysics Data System (ADS)

    Habler, Gerlinde; Thöni, Martin; Grasemann, Bernhard; Sölva, Helmuth; Cotza, Gianluca

    2010-05-01

    The position and nature of the tectonic boundary between the Cretaceous eclogite facies metamorphic Texel Complex (Sölva et al. 2005, TC) and the Ötztal-Stubai Complex sensu stricto (OSC) with predominantly pre-Cretaceous tectonometamorphic imprint remained a matter of discussion (Fügenschuh et al. 2009). Sölva et al (2005) described the Cretaceous Schneeberg Normal Fault Zone (SNFZ) as the major tectonic boundary between the exhuming TC and the OSC, where the major portion of ductile deformation was partitioned into the rheologically weak Schneeberg/Monteneve Unit (SMU). In contrast, other authors proposed a model of a coherent vertical crustal section in the southern OSC (Schmid and Haas 1989), which was rotated and exhumed by erosion due to Oligocene large scale refolding (Fügenschuh et al. 2009). Here, new Rb-Sr data of muscovite and biotite from para- and orthogneisses from the Ferwalltal and Timmelsjoch areas (Austria/Italy) were correlated with mineral chemical and structural data in order to constrain the age and kinematics of the predominant deformational imprint in the OSC representing the hanging wall of the SNFZ. In the Ferwalltal the undisturbed OSC/SMU boundary is exposed. Above that boundary an amphibolite facies mylonitic foliation (Sc1) represented by the compositional layering of coarse grained Qtz, Bt and dynamically recrystallized Pl interferes with an overprinting mylonitic foliation (Sc2) with spatially heterogeneous intensity. Sc1-planes were syn-tectonically overgrown by euhedral Grt with single phase continuous prograde chemical zoning and Bt-porphyroblasts. Dc2 postdated garnet growth and caused the formation of SCC' fabrics in Bt-Pl gneisses. Still Qtz recrystallized dynamically, whereas Ms and Bt newly crystallized during Dc2. In the study area, the lithological boundaries in the OSC mainly are subparallel to the predominant foliation Sc1. These planes dip with 45-50° to the NW-NNW and show a WNW-plunging stretching lineation (LSc1

  20. Geochemistry and source waters of rock glacier outflow, Colorado Front Range

    USGS Publications Warehouse

    Williams, M.W.; Knauf, M.; Caine, N.; Liu, F.; Verplanck, P.L.

    2006-01-01

    We characterize the seasonal variation in the geochemical and isotopic content of the outflow of the Green Lake 5 rock glacier (RG5), located in the Green Lakes Valley of the Colorado Front Range, USA. Between June and August, the geochemical content of rock glacier outflow does not appear to differ substantially from that of other surface waters in the Green Lakes Valley. Thus, for this alpine ecosystem at this time of year there does not appear to be large differences in water quality among rock glacier outflow, glacier and blockslope discharge, and discharge from small alpine catchments. However, in September concentrations of Mg2+ in the outflow of the rock glacier increased to more than 900 ??eq L-1 compared to values of less than 40 ??eq L-1 at all the other sites, concentrations of Ca2+ were greater than 4,000 ??eq L-1 compared to maximum values of less than 200 ??eq L-1 at all other sites, and concentrations of SO42- reached 7,000 ??eq L-1, compared to maximum concentrations below 120 ??eq L-1 at the other sites. Inverse geochemical modelling suggests that dissolution of pyrite, epidote, chlorite and minor calcite as well as the precipitation of silica and goethite best explain these elevated concentrations of solutes in the outflow of the rock glacier. Three component hydrograph separation using end-member mixing analysis shows that melted snow comprised an average of 30% of RG5 outflow, soil water 32%, and base flow 38%. Snow was the dominant source water in June, soil water was the dominant water source in July, and base flow was the dominant source in September. Enrichment of ?? 18O from - 10??? in the outflow of the rock glacier compared to -20??? in snow and enrichment of deuterium excess from +17.5??? in rock glacier outflow compared to +11??? in snow, suggests that melt of internal ice that had undergone multiple melt/freeze episodes was the dominant source of base flow. Copyright ?? 2005 John Wiley & Sons, Ltd.

  1. Pore-space alteration in source rock (shales) during hydrocarbons generation: laboratory experiment

    NASA Astrophysics Data System (ADS)

    Giliazetdinova, D. R.; Korost, D. V.; Nadezhkin, D. V.

    2013-12-01

    Hydrocarbons (HC) are generated from solid organic matter (kerogen) due to thermocatalytic reactions. The rate of such reactions shows direct correlation with temperature and depends on the depth of source rock burial. Burial of sedimentary rock is also inevitably accompanied by its structural alteration owing to compaction, dehydration and re-crystallization. Processes of HC generation, primary migration and structural changes are inaccessible for direct observation in nature, but they can be studied in laboratory experiments. Experiment was carried out with a clayey-carbonate rock sample of the Domanik Horizon taken from boreholes drilled in the northeastern part of the south Tatar arch. The rock chosen fits the very essential requirements - high organic matter content and its low metamorphic grade. Our work aimed at laboratory modeling of HC generation in an undisturbed rock sample by its heating in nitrogen atmosphere based on a specified temperature regime and monitoring alterations in the pore space structure. Observations were carried out with a SkyScan-1172 X-ray microtomography scanner (resulting scan resolution of 1 μm). A cylinder, 44 mm in diameter, was prepared from the rock sample for the pyrolitic and microtomographic analyses. Scanning procedures were carried out in 5 runs. Temperature interval for each run had to match the most important stage of HC generation in the source rock, namely: (1) original structure; (2) 100-300°C - discharge of free and adsorbed HC and water; (3) 300-400°C - initial stage of HC formation owing to high-temperature pyrolysis of the solid organic matter and discharge of the chemically bound water; (4) 400-470°C - temperature interval fitting the most intense stage of HC formation; (5) 470-510°C - final stage of HC formation. Maximum sample heating in the experiment was determined as temperature of the onset of active decomposition of carbonates, i.e., in essence, irreversible metamorphism of the rock. Additional

  2. Recognition of an infracambrian source rock based on biomarkers in the Baghewala-1 oil, India

    SciTech Connect

    Peters, K.E.; Clark, M.E.; Lee, C.Y.

    1995-10-01

    Heavy, sulfur-rich oil produced from the Infra-cambrian (540-640 Ma) Jodhpur Formation in the Baghewala-1 well represents a new exploration play in the Bikaner-Nagaur basin in India and the punjab basin in Pakistan. The Baghewala-1 oil is nonbiodegraded, and thermal-maturation-dependent biomarker ratios indicate generation from the source rock within the early oil window. Age-diagnostic and source-dependent biomarkers indicate that the oil originated from algal and bacterial organic matter with no higher plant input in an Infracambrian, carbonate-rich source rock deposited under anoxic marine conditions. These characteristics support a local origin of the Baghewala-1 oil from organic-rich laminated dolomites in the Infracambrian Bilara Formation. Significant amounts of petroleum could originate from equivalents of the proposed Bilara source rock in the Punjab basin, Pakistan, where the Precambrian to lower Paleozoic section is thicker and more deeply buried than in India. Deeper burial of the source rock in the Punjab basin than in the Bikaner-Nagaur basin could generate more mature equivalents of the Baghewala-1 oil. The Baghewala-1 oil is geochemically similar to another heavy oil from the Infracambrian Salt Range Series in the nearby Karampur-1 well in Pakistan and to oils derived from carbonate-evaporite facies of the Infracambrian Huqf Group about 2000 km (1243 mi) to the southwest in the Eastern Flank province of southern Oman. These findings are consistent with published evidence that subsiding rift basins in northwest India, Pakistan, and southern Oman were in close proximity during the Infracambrian along the Middle Eastern edge of Gondwanaland.

  3. A chemical and thermodynamic model of oil generation in hydrocarbon source rocks

    NASA Astrophysics Data System (ADS)

    Helgeson, Harold C.; Richard, Laurent; McKenzie, William F.; Norton, Denis L.; Schmitt, Alexandra

    2009-02-01

    Thermodynamic calculations and Gibbs free energy minimization computer experiments strongly support the hypothesis that kerogen maturation and oil generation are inevitable consequences of oxidation/reduction disproportionation reactions caused by prograde metamorphism of hydrocarbon source rocks with increasing depth of burial.These experiments indicate that oxygen and hydrogen are conserved in the process.Accordingly, if water is stable and present in the source rock at temperatures ≳25 but ≲100 °C along a typical US Gulf Coast geotherm, immature (reduced) kerogen with a given atomic hydrogen to carbon ratio (H/C) melts incongruently with increasing temperature and depth of burial to produce a metastable equilibrium phase assemblage consisting of naphthenic/biomarker-rich crude oil, a type-II/III kerogen with an atomic hydrogen/carbon ratio (H/C) of ˜1, and water. Hence, this incongruent melting process promotes diagenetic reaction of detritus in the source rock to form authigenic mineral assemblages.However, in the water-absent region of the system CHO (which is extensive), any water initially present or subsequently entering the source rock is consumed by reaction with the most mature kerogen with the lowest H/C it encounters to form CO 2 gas and a new kerogen with higher H/C and O/C, both of which are in metastable equilibrium with one another.This hydrolytic disproportionation process progressively increases both the concentration of the solute in the aqueous phase, and the oil generation potential of the source rock; i.e., the new kerogen can then produce more crude oil.Petroleum is generated with increasing temperature and depth of burial of hydrocarbon source rocks in which water is not stable in the system CHO by a series of irreversible disproportionation reactions in which kerogens with higher (H/C)s melt incongruently to produce metastable equilibrium assemblages consisting of crude oil, CO 2 gas, and a more mature (oxidized) kerogen with a lower

  4. Uranium-Lead Zircon Ages and Sr, Nd, and Pb Isotope Geochemistry of Selected Plutonic Rocks from Western Idaho

    USGS Publications Warehouse

    Unruh, Daniel M.; Lund, Karen; Kuntz, Mel A.; Snee, Lawrence W.

    2008-01-01

    Across the Salmon River suture in western Idaho, where allochthonous Permian to Cretaceous oceanic rocks are juxtaposed against Proterozoic North American rocks, a wide variety of plutonic rocks are exposed. Available data indicate much variation in composition, source, and structural state of these plutons. The plutonic rocks were long described as the western border zone of the Cretaceous Idaho batholith but limited pre-existing age data indicate more complicated origins. Because the affinity and age of the plutonic rocks cannot be reliably determined from field relations, TIMS U-Pb dating in conjunction with Sr, Nd, and Pb isotopic studies of selected plutons across the suture in western Idaho were undertaken. The data indicate three general groups of plutons including (1) those that intruded the island arc terranes during the Triassic and Jurassic, those that intruded near the western edge of oceanic rocks along the suture in the Early Cretaceous, and the plutons of the Idaho batholith that intruded Proterozoic North American rocks in the Late Cretaceous. Plutons that intruded Proterozoic North American rocks commonly include xenocrystic zircons and in several cases, ages could not be determined. The least radiogenic Sr and most radiogenic Nd are found among the Blue Mountains superterrane island arc samples. Suture-zone plutons have isotopic characteristics that span the range between Idaho batholith and island arc samples but mostly follow island arc signatures. Plutons of the Idaho batholith have the most radiogenic initial Pb and Sr ratios and the least radiogenic Nd of the samples analyzed.

  5. Organic facies and systems tracts: Implications for source rock preservation and prediction

    SciTech Connect

    Kosters, E.C.; Vanderzwaan, F.J.; Gijsbert, J. )

    1993-09-01

    Sequence stratigraphy is concerned with making predictions about reservoirs ahead of the drill, however, little attention has been paid to the configuration of organic-rich facies of source rock quality. We suggest that preservation of source rock type facies in clastic systems is mutually exclusive and time successive. The main database is a collection of cores and other samples through the Holocene Rhone delta. The early Holocene Transgressive Systems Tract (TST) contains five levels of channelization. The most significant peat bed is located immediately landward of the shoreline of maximum transgression (SMT). The Highstand Systems Tract (HST) consists of two parasequences, containing mostly laterally continuous strandplain complexes without peat. In addition to sufficient accommodation space, an important control on formation of fresh-water peats and organic-rich shelf muds is availability of river-induced nutrients. Peat quality, however, is best without riverine clastics. In a delta plain, a balance between these two controls may be reached when river-fed nutrients are trapped there indirectly. The potential for such a condition arises in a TST setting. On the shelf, eutrophication of marine habitats is also controlled by river-fed nutrients, but excess river clastics are detrimental to marine source rock quality. A balance between these two controls may be reached in HST settings where fine-grained riverine clastics are forced onto the shelf rather than in the delta plain. In this case, nutrient supply to the shelf results in large quantities of marine biomass. This biomass becomes sufficiently concentrated due to moderate fine-grained riverine sedimentation which guarantees burial and preservation. Thus, varying river-water and nutrient supply in TST and HST settings seems to control large-scale preservation patterns of both continental and marine organics. This hypothesis suggests further potential for using sequence stratigraphy for source rock occurrence.

  6. Effects of Host-rock Fracturing on Deflation-related Volcano Deformation Sources

    NASA Astrophysics Data System (ADS)

    Holohan, Eoghan; Sudhaus, Henriette; Schöpfer, Martin; Walter, Thomas; Walsh, John

    2015-04-01

    Insights into the plumbing systems of active volcanoes are commonly gained by using continuum-based elastic modeling to resolve sources of volcano deformation. The geometries and depths of such deformation sources are commonly equated with those of volcano plumbing system elements, such as sills, dykes or magma chambers. We here examine how fracturing of the host rock - i.e. discontinuous inelastic deformation - may affect deformation source geometry and depth. We use two-dimensional Distinct Element Method (DEM) models to explicitly simulate fracture nucleation and development around a deflating magma body, and we then 'blindly' run the DEM model surface displacements through a typical elastic modelling scheme. The results show that host-rock fracturing may induce an asymmetric surface displacement profile that gives rise to an inclined deformation source geometry, even if the original magma body itself was not inclined. In addition, upward propagation of deformation toward the surface can, under certain conditions, cause a related upward movement of the deformation source. Consequently, the true magma body depth may be increasingly underestimated. These results may help explain upward migration and shape change in volcano deformation sources, as for example inferred for the March-April 2007 activity at Piton de la Fournaise volcano, La Reunion.

  7. Marine source rock prediction using a GCM - A look at the Paleozoic

    SciTech Connect

    Robinson, V.D.; Katz, B.J.; Kilgore, L.S. )

    1990-05-01

    Numerous investigators have examined the potential use of numeric climate models and paleogeographic reconstructions to predict the deposition and preservation of organic-rich sediments, which may ultimately develop into hydrocarbon source rocks. These studies have concentrated on the Mesozoic and Cenozoic eras. Although geologic conditions during these periods were different than that of today, they do have many similarities. In contrast, the boundary conditions associated with the Paleozoic are dramatically different. For example, no significant land plant cover is assumed in pre-Devonian simulations. In addition, for many of the simulations the bulk of the land mass was situated in the southern hemisphere at high latitudes. This compares with the Mesozoic and Cenozoic distributions that exhibit nearly coequal land-sea distributions in the two hemispheres. An examination of the results of paleoclimate simulations for time slices in the Paleozoic reveal significant changes in spatial distribution of marine conditions that would favor high levels of organic productivity and organic preservation through time. The authors study of the stratigraphic record, though incomplete, has revealed a favorable correlation between organic-rich black shales, capable of acting as hydrocarbon source rocks, and those regions that had both high preservation efficiencies and elevated levels of organic productivity. These results suggest that numeric climate models can be effectively used to predict source rock distribution throughout the Phanerozoic.

  8. Characterization and evolution of Paleozoic source rock organic matter in Algerian Central Sahara

    SciTech Connect

    Takherist, D.; Arezki, A.; Mouaici, R.

    1995-08-01

    The objective of the proposed poster is to provide a knowledge of the evolution history of organic matter in an intracratonic basin. The Paleozoic source rocks (Ordovician - Silurian - Upper Devonian and Carboniferous) of the Algerian Central Sahara (Ahnet and Timimoun basins) experienced severe conditions of maturation during the geological history, therefore, the source rocks intervals are presently mature to overmature and only dry gas has been descovered throughout this zone. The several geochemical models (Genex, Basimod, Matoil) in addition to Afta and Zafta Data show that regionaly significant heating event occured with maximum palaeo-temperature and maximum gas generation at 300 +/- 30 My. However, high palaeotemperatures can not be explained only by the significant burial. An important anomalous heat flow is needed to explain the geothermal history. In this case, there has been no significant petroleum from the Paleozoic source rocks in this zone since this age; but following some assumptions, a certain hypothesis about a recent generation (-60 to -30 My) is now in discussion.

  9. Petrography of volcaniclastic rocks in intra-arc volcano-bounded to fault-bounded basins of the Rosario segment of the Lower Cretaceous Alisitos oceanic arc, Baja California, Mexico

    NASA Astrophysics Data System (ADS)

    Marsaglia, K. M.; Barone, M.; Critelli, S.; Busby, C.; Fackler-Adams, B.

    2016-05-01

    The Rosario segment of the Early Cretaceous Alisitos oceanic magmatic arc in Baja California displays a record of arc-axis sedimentation and volcanism that is well preserved in outcrops within a southern volcano-bounded and a northern fault-bounded basin that flanked an intervening subaerial edifice. This record includes volcanic and volcaniclastic rocks that range from felsic to mafic in composition. Volcaniclastic/tuffaceous sandstone samples from two previously published measured sections are mainly composed of volcanic clasts with moderate plagioclase content. Locally quartz and/or potassium feldspar are present in trace to moderate amounts. The proportions of volcanic lithic types exhibiting vitric, microlitic, lathwork, and felsitic textures are highly variable with no distinct stratigraphic trends, likely as a function of the mixed styles of eruption and magma compositions that produced pyroclasts, as well as erosion-produced epiclastic debris. The volcaniclastic fill of the basins is consistent with an oceanic arc setting, except for the relatively high felsitic volcanic lithic content, likely associated with subaerial, as opposed to the more common submarine felsic magmatism associated with arc extension in oceanic settings. There are no major differences in compositional modes of tuff and sandstone between the fault-bounded and volcano-bounded basin strata, even though they exhibit distinctly different volcaniclastic facies. This suggests that proximal arc-axis basins of varying types around a single major subaerial edifice provide a faithful record of volcanic trends in the arc segment, regardless of variation in transport and depositional processes.

  10. Total petroleum systems of the Pelagian Province, Tunisia, Libya, Italy, and Malta; the Bou Dabbous, Tertiary and Jurassic-Cretaceous composite

    USGS Publications Warehouse

    Klett, T.R.

    2001-01-01

    Undiscovered conventional oil and gas resources were assessed within total petroleum systems of the Pelagian Province (2048) as part of the U.S. Geological Survey World Petroleum Assessment 2000. The Pelagian Province is located mainly in eastern Tunisia and northwestern Libya. Small portions of the province extend into Malta and offshore Italy. Although several petroleum systems may exist, only two ?composite? total petroleum systems were identified. Each total petroleum system comprises a single assessment unit. These total petroleum systems are called the Bou Dabbous?Tertiary and Jurassic-Cretaceous Composite, named after the source-rock intervals and reservoir-rock ages. The main source rocks include mudstone of the Eocene Bou Dabbous Formation; Cretaceous Bahloul, Lower Fahdene, and M?Cherga Formations; and Jurassic Nara Formation. Known reservoirs are in carbonate rocks and sandstone intervals throughout the Upper Jurassic, Cretaceous, and Tertiary sections. Traps for known accumulations include fault blocks, low-amplitude anticlines, high-amplitude anticlines associated with reverse faults, wrench fault structures, and stratigraphic traps. The estimated means of the undiscovered conventional petroleum volumes in total petroleum systems of the Pelagian Province are as follows: [MMBO, million barrels of oil; BCFG, billion cubic feet of gas; MMBNGL, million barrels of natural gas liquids] Total Petroleum System MMBO BCFG MMBNGL Bou Dabbous?Tertiary 667 2,746 64 Jurassic-Cretaceous Composite 403 2,280 27