Science.gov

Sample records for cretaceous terrestrial ecosystem

  1. Disruption of the terrestrial plant ecosystem at the Cretaceous-Tertiary boundary, western interior

    SciTech Connect

    Tschudy, R.H.; Pillmore, C.L.; Orth, C.J.; Gilmore, J.S.; Knight, J.D.

    1984-09-07

    The palynologically defined Cretaceous-Tertiary boundary in the western interior of North America occurs at the top of an iridium-rich clay layer. The boundary is characterized by the abrupt disappearance of certain pollen species, immediately followed by a pronounced, geologically brief change in the ratio of fern spores to angiosperm pollen. The occurrence of these changes at two widely separated sites implies continent-wide disruption of the terrestrial ecosystem, probably caused by a major catastrophic event at the end of the period. 15 references, 2 figures.

  2. Disruption of the terrestrial plant ecosystem at the Cretaceous-Tertiary boundary, western interior

    USGS Publications Warehouse

    Tschudy, R.H.; Pillmore, C.L.; Orth, C.J.; Gilmore, J.S.; Knight, J.D.

    1984-01-01

    The palynologically defined Cretaceous-Tertiary boundary in the western interior of North America occurs at the top of an iridium-rich clay layer. The boundary is characterized by the abrupt disappearance of certain pollen species, immediately followed by a pronounced, geologically brief change in the ratio of fern spores to angiosperm pollen. The occurrence of these changes at two widely separated sites implies continentwide disruption of the terrestrial ecosystem, probably caused by a major catastrophic event at the end of the period.

  3. Possible Cretaceous Arctic terrestrial ecosystem dynamics based on a rich dinosaur record from Alaska

    NASA Astrophysics Data System (ADS)

    Fiorillo, A. R.; McCarthy, P. J.; Flaig, P. P.

    2010-12-01

    The widespread occurrence of large-bodied herbivores, specifically hadrosaurian and ceratopsian dinosaurs, in the Cretaceous of Alaska presents a proxy for understanding polar terrestrial ecosystem biological productivity in a warm Arctic world. These dinosaurs lived in Alaska at time when this region was at or near current latitudes. Thus these dinosaurs present a paradox. The warmer Cretaceous high-latitude climate, likely related to higher levels of CO2, may have increased plant productivity but the polar light regime fluctuations must have limited the available food during the winter months. The most detailed sedimentological data available regarding the paleoenvironments supporting these dinosaurs are from the Prince Creek Formation of northern Alaska and to a lesser extent the Cantwell Formation of the Alaska Range. The sediments of the Late Cretaceous Prince Creek Formation represent a continental succession deposited on a high-latitude, low-gradient, alluvial/coastal plain. The Prince Creek Formation records numerous paleosols that are consistent with seasonality and successional vegetative cover. Drab colors in fine-grained sediments, abundant carbonaceous plant material, and common siderite nodules and jarosite suggest widespread reducing conditions on poorly-drained floodplains influenced in more distal areas by marine waters. In addition, these rocks contain high levels of organic carbon and charcoal. Carbonaceous root-traces found ubiquitously within all distributary channels and most floodplain facies, along with common Fe-oxide mottles, indicate that the alluvial system likely experienced flashy, seasonal, or ephemeral flow and a fluctuating water table. The flashy nature of the alluvial system may have been driven by recurring episodes of vigorous seasonal snowmelt in the Brooks Range orogenic belt as a consequence of the high paleolatitude of northern Alaska in the Late Cretaceous. The presence of dinosaurian megaherbivores suggests that water was

  4. Early Cretaceous terrestrial ecosystems in East Asia based on food-web and energy-flow models

    USGS Publications Warehouse

    Matsukawa, M.; Saiki, K.; Ito, M.; Obata, I.; Nichols, D.J.; Lockley, M.G.; Kukihara, R.; Shibata, K.

    2006-01-01

    In recent years, there has been global interest in the environments and ecosystems around the world. It is helpful to reconstruct past environments and ecosystems to help understand them in the present and the future. The present environments and ecosystems are an evolving continuum with those of the past and the future. This paper demonstrates the contribution of geology and paleontology to such continua. Using fossils, we can make an estimation of past population density as an ecosystem index based on food-web and energy-flow models. Late Mesozoic nonmarine deposits are distributed widely on the eastern Asian continent and contain various kinds of fossils such as fishes, amphibians, reptiles, dinosaurs, mammals, bivalves, gastropods, insects, ostracodes, conchostracans, terrestrial plants, and others. These fossil organisms are useful for late Mesozoic terrestrial ecosystem reconstruction using food-web and energy-flow models. We chose Early Cretaceous fluvio-lacustrine basins in the Choyr area, southeastern Mongolia, and the Tetori area, Japan, for these analyses and as a potential model for reconstruction of other similar basins in East Asia. The food-web models are restored based on taxa that occurred in these basins. They form four or five trophic levels in an energy pyramid consisting of rich primary producers at its base and smaller biotas higher in the food web. This is the general energy pyramid of a typical ecosystem. Concerning the population densities of vertebrate taxa in 1 km2 in these basins, some differences are recognized between Early Cretaceous and the present. For example, Cretaceous estimates suggest 2.3 to 4.8 times as many herbivores and 26.0 to 105.5 times the carnivore population. These differences are useful for the evaluation of past population densities of vertebrate taxa. Such differences may also be caused by the different metabolism of different taxa. Preservation may also be a factor, and we recognize that various problems occur in

  5. The age and diversification of terrestrial New World ecosystems through Cretaceous and Cenozoic time.

    PubMed

    Graham, Alan

    2011-03-01

    Eight ecosystems that were present in the Cretaceous about 100 Ma (million years ago) in the New World eventually developed into the 12 recognized for the modern Earth. Among the forcing mechanisms that drove biotic change during this interval was a decline in global temperatures toward the end of the Cretaceous, augmented by the asteroid impact at 65 Ma and drainage of seas from continental margins and interiors; separation of South America from Africa beginning in the south at ca. 120 Ma and progressing northward until completed 90-100 Ma; the possible emission of 1500 gigatons of methane and CO(2) attributed to explosive vents in the Norwegian Sea at ca. 55 Ma, resulting in a temperature rise of 5°-6°C in an already warm world; disruption of the North Atlantic land bridge at ca. 45 Ma at a time when temperatures were falling; rise of the Andes Mountains beginning at ca. 40 Ma; opening of the Drake Passage between South America and Antarctica at ca. 32 Ma with formation of the cold Humboldt at ca. 30 Ma; union of North and South America at ca. 3.5 Ma; and all within the overlay of evolutionary processes. These processes generated a sequence of elements (e.g., species growing in moist habitats within an overall dry environment; gallery forests), early versions (e.g., mangrove communities without Rhizophora until the middle Eocene), and essentially modern versions of present-day New World ecosystems. As a first approximation, the fossil record suggests that early versions of aquatic communities (in the sense of including a prominent angiosperm component) appeared early in the Middle to Late Cretaceous, the lowland neotropical rainforest at 64 Ma (well developed by 58-55 Ma), shrubland/chaparral-woodland-savanna and grasslands around the middle Miocene climatic optimum at ca. 15-13 Ma, deserts in the middle Miocene/early Pliocene at ca. 10 Ma, significant tundra at ca. 7-5 Ma, and alpine tundra (páramo) shortly thereafter when cooling temperatures were augmented

  6. TERRESTRIAL ECOSYSTEM SIMULATOR

    EPA Science Inventory

    The Terrestrial Habitats Project at the Western Ecology Division (Corvallis, OR) is developing tools and databases to meet the needs of Program Office clients for assessing risks to wildlife and terrestrial ecosystems. Because habitat is a dynamic condition in real-world environm...

  7. Evidence for the recovery of terrestrial ecosystems ahead of marine primary production following a biotic crisis at the Cretaceous-Tertiary boundary

    USGS Publications Warehouse

    Beerling, D.J.; Lomax, B.H.; Upchurch, G.R., Jr.; Nichols, D.J.; Pillmore, C.L.; Handley, L.L.; Scrimgeour, C.M.

    2001-01-01

    The fossil record demonstrates that mass extinction across the Cretaceous–Tertiary (K–T) boundary is more severe in the marine than the terrestrial realm. We hypothesize that terrestrial ecosystems were able to recover faster than their marine counterparts. To test this hypothesis, we measured sedimentary δ13C as a tracer for global carbon cycle changes and compared it with palaeovegetational changes reconstructed from palynomorphs and cuticles across the K–T boundary at Sugarite, New Mexico, USA. Different patterns of perturbation and timescales of recovery of isotopic and palaeobotanical records indicate that the δ13C excursion reflects the longer recovery time of marine versus terrestrial ecosystems.

  8. Antarctic terrestrial ecosystems

    SciTech Connect

    Walton, D.W.H.

    1987-01-01

    The Maritime and Continental Antarctic terrestrial ecosystems are considered in the context of environmental impacts - habitat destruction, alien introductions, and pollution. Four types of pollution are considered: nutrients, radionuclides, inert materials, and noxious chemicals. Their ability to recover from perturbation is discussed in the light of present scientific knowledge, and the methods used to control impacts are reviewed. It is concluded that techniques of waste disposal are still inadequate, adequate training in environmental and conservation principles for Antarctic personnel in many countries is lacking, and scientific investigations may be a much more serious threat than tourism to the integrity of these ecosystems. Some priorities crucial to future management are suggested.

  9. Dinosaurs and the Cretaceous Terrestrial Revolution

    PubMed Central

    Lloyd, Graeme T; Davis, Katie E; Pisani, Davide; Tarver, James E; Ruta, Marcello; Sakamoto, Manabu; Hone, David W.E; Jennings, Rachel; Benton, Michael J

    2008-01-01

    The observed diversity of dinosaurs reached its highest peak during the mid- and Late Cretaceous, the 50 Myr that preceded their extinction, and yet this explosion of dinosaur diversity may be explained largely by sampling bias. It has long been debated whether dinosaurs were part of the Cretaceous Terrestrial Revolution (KTR), from 125–80 Myr ago, when flowering plants, herbivorous and social insects, squamates, birds and mammals all underwent a rapid expansion. Although an apparent explosion of dinosaur diversity occurred in the mid-Cretaceous, coinciding with the emergence of new groups (e.g. neoceratopsians, ankylosaurid ankylosaurs, hadrosaurids and pachycephalosaurs), results from the first quantitative study of diversification applied to a new supertree of dinosaurs show that this apparent burst in dinosaurian diversity in the last 18 Myr of the Cretaceous is a sampling artefact. Indeed, major diversification shifts occurred largely in the first one-third of the group's history. Despite the appearance of new clades of medium to large herbivores and carnivores later in dinosaur history, these new originations do not correspond to significant diversification shifts. Instead, the overall geometry of the Cretaceous part of the dinosaur tree does not depart from the null hypothesis of an equal rates model of lineage branching. Furthermore, we conclude that dinosaurs did not experience a progressive decline at the end of the Cretaceous, nor was their evolution driven directly by the KTR. PMID:18647715

  10. Late Cretaceous restructuring of terrestrial communities facilitated the end-Cretaceous mass extinction in North America

    NASA Astrophysics Data System (ADS)

    Mitchell, Jonathan S.; Roopnarine, Peter D.; Angielczyk, Kenneth D.

    2012-11-01

    The sudden environmental catastrophe in the wake of the end-Cretaceous asteroid impact had drastic effects that rippled through animal communities. To explore how these effects may have been exacerbated by prior ecological changes, we used a food-web model to simulate the effects of primary productivity disruptions, such as those predicted to result from an asteroid impact, on ten Campanian and seven Maastrichtian terrestrial localities in North America. Our analysis documents that a shift in trophic structure between Campanian and Maastrichtian communities in North America led Maastrichtian communities to experience more secondary extinction at lower levels of primary production shutdown and possess a lower collapse threshold than Campanian communities. Of particular note is the fact that changes in dinosaur richness had a negative impact on the robustness of Maastrichtian ecosystems against environmental perturbations. Therefore, earlier ecological restructuring may have exacerbated the impact and severity of the end-Cretaceous extinction, at least in North America.

  11. Late Cretaceous restructuring of terrestrial communities facilitated the end-Cretaceous mass extinction in North America

    PubMed Central

    Roopnarine, Peter D.; Angielczyk, Kenneth D.

    2012-01-01

    The sudden environmental catastrophe in the wake of the end-Cretaceous asteroid impact had drastic effects that rippled through animal communities. To explore how these effects may have been exacerbated by prior ecological changes, we used a food-web model to simulate the effects of primary productivity disruptions, such as those predicted to result from an asteroid impact, on ten Campanian and seven Maastrichtian terrestrial localities in North America. Our analysis documents that a shift in trophic structure between Campanian and Maastrichtian communities in North America led Maastrichtian communities to experience more secondary extinction at lower levels of primary production shutdown and possess a lower collapse threshold than Campanian communities. Of particular note is the fact that changes in dinosaur richness had a negative impact on the robustness of Maastrichtian ecosystems against environmental perturbations. Therefore, earlier ecological restructuring may have exacerbated the impact and severity of the end-Cretaceous extinction, at least in North America. PMID:23112149

  12. Sedimentology and depositional environments of the Red Sandstone Group, Rukwa Rift Basin, southwestern Tanzania: New insight into Cretaceous and Paleogene terrestrial ecosystems and tectonics in sub-equatorial Africa

    NASA Astrophysics Data System (ADS)

    Roberts, Eric M.; O'Connor, Patrick M.; Stevens, Nancy J.; Gottfried, Michael D.; Jinnah, Zubair A.; Ngasala, Sifael; Choh, Adeline M.; Armstrong, Richard A.

    2010-05-01

    The Red Sandstone Group (RSG) in the Rukwa Rift Basin of southwestern Tanzania represents one of the only well-exposed, fossiliferous Cretaceous-Paleogene continental sedimentary sequences in sub-equatorial Africa. The significance of the RSG for reconstructing the paleoenvironmental and paleoclimatic history of African ecosystems during these critical time periods has been obfuscated by long-standing confusion and debate over the age of the deposits. Detailed stratigraphic, sedimentologic, and paleontologic investigations of the RSG conducted between 2002 and 2008 have produced a wealth of new fossil discoveries and data on lithofacies, alluvial architecture, sedimentary provenance, clay mineralogy and geochronology that resolve the long-standing debate over the age of these deposits. This study confirms the existence of an extensive middle Cretaceous sequence, herein named the Galula Formation, and subdivided into the Mtuka and Namba members. Moreover, we document the existence of a previously unrecognized late Paleogene continental sequence termed the Nsungwe Formation, which is divided into the Utengule and Songwe members. The Galula Formation represents a 600-3000 m thick sequence of amalgamated, braided fluvial deposits that were deposited across a large braidplain system via multiple parallel channels that had their source in the highlands of Malawi and Zambia. The middle Cretaceous Dinosaur Beds of Malawi are hypothesized to be at least partially correlative with the Galula Formation, and represent proximal deposits of this large, northwest flowing, trunk stream system. A moderately diverse terrestrial vertebrate fauna, including multiple species of dinosaurs, crocodyliforms, turtles, fishes and mammals have been recovered, along with a sparse aquatic molluscan fauna. Lithofacies and clay mineralogy indicate that Cretaceous paleoclimate ameliorated during deposition of the Galula Formation, transitioning from tropical semi-arid to tropical humid conditions

  13. Terrestrial ecosystems and climatic change

    SciTech Connect

    Emanuel, W.R. ); Schimel, D.S. . Natural Resources Ecology Lab.)

    1990-01-01

    The structure and function of terrestrial ecosystems depend on climate, and in turn, ecosystems influence atmospheric composition and climate. A comprehensive, global model of terrestrial ecosystem dynamics is needed. A hierarchical approach appears advisable given currently available concepts, data, and formalisms. The organization of models can be based on the temporal scales involved. A rapidly responding model describes the processes associated with photosynthesis, including carbon, moisture, and heat exchange with the atmosphere. An intermediate model handles subannual variations that are closely associated with allocation and seasonal changes in productivity and decomposition. A slow response model describes plant growth and succession with associated element cycling over decades and centuries. These three levels of terrestrial models are linked through common specifications of environmental conditions and constrain each other. 58 refs.

  14. Cadaver decomposition in terrestrial ecosystems

    NASA Astrophysics Data System (ADS)

    Carter, David O.; Yellowlees, David; Tibbett, Mark

    2007-01-01

    A dead mammal (i.e. cadaver) is a high quality resource (narrow carbon:nitrogen ratio, high water content) that releases an intense, localised pulse of carbon and nutrients into the soil upon decomposition. Despite the fact that as much as 5,000 kg of cadaver can be introduced to a square kilometre of terrestrial ecosystem each year, cadaver decomposition remains a neglected microsere. Here we review the processes associated with the introduction of cadaver-derived carbon and nutrients into soil from forensic and ecological settings to show that cadaver decomposition can have a greater, albeit localised, effect on belowground ecology than plant and faecal resources. Cadaveric materials are rapidly introduced to belowground floral and faunal communities, which results in the formation of a highly concentrated island of fertility, or cadaver decomposition island (CDI). CDIs are associated with increased soil microbial biomass, microbial activity (C mineralisation) and nematode abundance. Each CDI is an ephemeral natural disturbance that, in addition to releasing energy and nutrients to the wider ecosystem, acts as a hub by receiving these materials in the form of dead insects, exuvia and puparia, faecal matter (from scavengers, grazers and predators) and feathers (from avian scavengers and predators). As such, CDIs contribute to landscape heterogeneity. Furthermore, CDIs are a specialised habitat for a number of flies, beetles and pioneer vegetation, which enhances biodiversity in terrestrial ecosystems.

  15. Late Cretaceous terrestrial vertebrate fauna, North Slope, Alaska

    SciTech Connect

    Clemens, W.A.; Allison, C.W.

    1985-01-01

    Closely related terrestrial vertebrates in Cretaceous mid-latitude (30/sup 0/ to 50/sup 0/) faunas of North America and Asia as well as scattered occurrences of footprints and skin impressions suggested that in the Late Mesozoic the Alaskan North Slope supported a diverse fauna. In 1961 abundant skeletal elements of Cretaceous, Alaskan dinosaurs (hadrosaurids) were discovered by the late R.L. Liscomb. This material is being described by K.L. Davies. Additional fossils collected by E.M. Brouwers and her associates include skeletal elements of hadrosaurid and carnosaurian (.tyrannosaurid) dinosaurs and other vertebrates. The fossil locality on the North Slope is not at about 70/sup 0/N. In the Late Cretaceous the members of this fauna were subject to the daylight regime and environment at a paleolatitude closer to 80/sup 0/N. Current hypotheses attributing extinctions of dinosaurs and some other terrestrial vertebrates to impact of an extraterrestrial object cite periods of darkness, decreased temperature (possibly followed by extreme warming) and acid rain as the direct causes of their demise. Unless members of this North Slope fauna undertook long-distance migrations, their high latitude occurrence indicates groups of dinosaurs and other terrestrial vertebrates regularly tolerated months of darkness.

  16. Carbon dioxide sequestration in terrestrial ecosystems

    SciTech Connect

    Wisniewski, J.; Dixon, R.K.; Kinsman, J.D.; Sampson, R.N.; Lugo, A.E.

    1993-01-01

    The terrestrial biosphere plays a prominent role in the global carbon (C) cycle. Terrestrial ecosystems are currently accumulating C and it appears feasible to manage existing terrestrial (forest, agronomic, desert) ecosystems to maintain or increase C storage. Forest ecosystems can be managed to sequester and store globally significant amounts of C. Agroecosystems and arid lands could be managed to conserve existing terrestrial C but CO2 sequestration rates by vegetation in these systems is relatively low. Biomass from forest agroecosystems has the potential to be used as an energy source and trees could be used to conserve energy in urban environments. Some ecosystem management practices that result in C sequestration and conservation provide ancillary benefits.

  17. Press/Pulse: Explaining selective terrestrial extinctions at the Cretaceous/Palaeogene boundary

    NASA Astrophysics Data System (ADS)

    Arens, Nan Crystal

    2010-05-01

    Single-cause mass extinction scenarios require extreme conditions to generate sufficiently strong kill mechanisms. Such dire effects are commonly at odds with the taxonomic selectivity that characterizes most extinction events. In response, some researchers have proposed that the interaction of a variety of factors typify episodes of elevated extinction. Previous work (Arens & West 2008 Paleobiology 34:456-471) has shown that a combination of press and pulse disturbances increases the probability of elevated extinction. The press/pulse contrast is borrowed from community ecology, where researchers have long recognized that the ecological response to long-term stress differs from that of an instantaneous catastrophe. Scaled to the macroevolutionary level, press disturbances alter community composition by placing multigenerational stress on populations. Press disturbances do not necessarily cause mortality, but reduce population size by a variety of mechanisms such as curtailed reproduction. Pulse disturbances are sudden catastrophic events that cause extensive mortality. Either press or pulse disturbances of sufficient magnitude can cause extinction, however elevated extinction occurs more commonly during the coincidence of lower-magnitude press and pulse events. The Cretaceous/Palaeogene (K/P) extinction is one of the best examples of a press/pulse extinction. Deccan Trap volcanism, which straddled the K/P boundary, altered atmospheric composition and climate. This episodic volcanism likely contributed to the climate instability observed in terrestrial ecosystems and exerted press stress. Pulse disturbance was produced by bolide impact, which punctuated the end of the Cretaceous. The press/pulse mechanism also more effectively explains selectivity in terrestrial vertebrate and plant extinctions at the K/P boundary than do single-mechanisms scenarios. For example, why do environmentally sensitive vertebrates such as amphibians experience no extinction? And why do

  18. Microbial diversity drives multifunctionality in terrestrial ecosystems

    PubMed Central

    Delgado-Baquerizo, Manuel; Maestre, Fernando T.; Reich, Peter B.; Jeffries, Thomas C.; Gaitan, Juan J.; Encinar, Daniel; Berdugo, Miguel; Campbell, Colin D.; Singh, Brajesh K.

    2016-01-01

    Despite the importance of microbial communities for ecosystem services and human welfare, the relationship between microbial diversity and multiple ecosystem functions and services (that is, multifunctionality) at the global scale has yet to be evaluated. Here we use two independent, large-scale databases with contrasting geographic coverage (from 78 global drylands and from 179 locations across Scotland, respectively), and report that soil microbial diversity positively relates to multifunctionality in terrestrial ecosystems. The direct positive effects of microbial diversity were maintained even when accounting simultaneously for multiple multifunctionality drivers (climate, soil abiotic factors and spatial predictors). Our findings provide empirical evidence that any loss in microbial diversity will likely reduce multifunctionality, negatively impacting the provision of services such as climate regulation, soil fertility and food and fibre production by terrestrial ecosystems. PMID:26817514

  19. Microbial diversity drives multifunctionality in terrestrial ecosystems.

    PubMed

    Delgado-Baquerizo, Manuel; Maestre, Fernando T; Reich, Peter B; Jeffries, Thomas C; Gaitan, Juan J; Encinar, Daniel; Berdugo, Miguel; Campbell, Colin D; Singh, Brajesh K

    2016-01-01

    Despite the importance of microbial communities for ecosystem services and human welfare, the relationship between microbial diversity and multiple ecosystem functions and services (that is, multifunctionality) at the global scale has yet to be evaluated. Here we use two independent, large-scale databases with contrasting geographic coverage (from 78 global drylands and from 179 locations across Scotland, respectively), and report that soil microbial diversity positively relates to multifunctionality in terrestrial ecosystems. The direct positive effects of microbial diversity were maintained even when accounting simultaneously for multiple multifunctionality drivers (climate, soil abiotic factors and spatial predictors). Our findings provide empirical evidence that any loss in microbial diversity will likely reduce multifunctionality, negatively impacting the provision of services such as climate regulation, soil fertility and food and fibre production by terrestrial ecosystems. PMID:26817514

  20. Natural organobromine in terrestrial ecosystems

    NASA Astrophysics Data System (ADS)

    Leri, Alessandra C.; Myneni, Satish C. B.

    2012-01-01

    Recent studies have shown that bromine undergoes biogeochemical cycling involving natural formation and degradation of organobromine compounds in marine systems. In the terrestrial environment, where background bromine levels tend to be low, the biogeochemistry of this element remains largely unexamined. We traced the path of bromine through plant growth, senescence, and decay of leaf litter on the forest floor. Using sensitive X-ray spectroscopic techniques, we show that all bromine in humified plant material, organic-rich surface soils, and isolated humic substances is bonded to carbon. Analysis of bromide-enriched plants suggests that bromide absorbed by the growing plants ultimately converts to organobromine when the plant litter decays. Application of isolated chloroperoxidase, a halogenating enzyme, to healthy plant material results in extensive bromination, with organobromine formed preferentially over organochlorine. The relative ease of bromide oxidation appears to promote biogeochemical transformations of Br from inorganic to organic forms, leading to its incorporation into soil organic matter through enzymatic processes related to plant litter decomposition. In combination with low concentration and susceptibility to leaching and plant uptake, natural bromination processes lead to the exhaustion of inorganic bromide in surface soils, making organic matter a reservoir of bromine in the terrestrial environment. This study provides the first detailed look into the terrestrial bromine cycle and lays the foundation for future studies of natural organobromine degradation, which may shed light on the fate of anthropogenic organobromine pollutants in the soil environment.

  1. Late Cretaceous terrestrial vegetation: A near-polar temperature curve

    NASA Astrophysics Data System (ADS)

    Totman Parrish, Judith; Spicer, Robert A.

    1988-01-01

    Quantitative estimates of terrestrial paleotemperatures near the North Pole were derived from the physiognomy of the vegetation, including leaf-margin analysis, from rocks of latest Albian and Late Cretaceous age of the North Slope of Alaska. During the latest Albian and Cenomanian, mean annual temperature was approximately 10 ±3 °C. During the Coniacian, mean annual temperature may have been 2-3 °C warmer than during the Albian-Cenomanian but no higher than 13 °C. During the Campanian and Maastrichtian, mean annual temperature would have been about 2-8 °C. Although the ranges for the individual estimates overlap, differences among the floras indicate that the relative changes in mean annual temperature did occur.

  2. Guiding future research on terrestrial ecosystem disturbance

    NASA Astrophysics Data System (ADS)

    Schultz, Colin

    2013-04-01

    With North American ecosystems responsible for drawing hundreds of teragrams of carbon from the atmosphere each year, the tenuous balance of the terrestrial carbon budget can be upset for decades by disturbances such as fires, storms, disease outbreaks, insect infestations, and logging. Research cataloging the effects of such disturbances on regional carbon cycling tends to be sporadic or of limited scope. Most research has focused on forests but is less extensive for other important ecosystems such as grasslands or permafrost peatlands.

  3. Warmer paleotemperatures for terrestrial ecosystems.

    PubMed

    Kowalski, Elizabeth A; Dilcher, David L

    2003-01-01

    Floras of predominantly wet-soil environments show a greater than expected proportion of toothed leaves, affecting the outcome of leaf physiognomically based temperature estimates. New analyses of foliar physiognomy of plants growing in predominantly wet soils in modern forests suggest that current methods of inferring paleotemperatures from fossil floras yield underestimates of 2.5-10 degrees C. The changes we propose bring terrestrial paleotemperature estimates into agreement with temperatures inferred from other biological and geological proxies and strengthen the use of leaf physiognomy as a method for climate reconstruction. PMID:12493844

  4. Consumer Control of Terrestrial Ecosystems

    NASA Astrophysics Data System (ADS)

    Frank, D.

    2012-12-01

    More than half of the earth's terrestrial surface is grazed by large herbivores and their effects on plant and soil carbon and nitrogen processes are large and widespread. Yet the large effects of these animals on terrestrial processes have largely been ignored in global change models. This presentation will explore the many pathways that consumers affect short and long time-scale terrestrial nitrogen and carbon processes. Large herbivores influence the quality of soil organic matter and the size of the active (i.e., labile) pool of soil carbon and nitrogen in several ways. Herbivory leads to greater abundance of species producing low quality material in forest and dry grassland, via feeding preferentially on high quality forage, and high quality material in mesic grassland habitat, via the high quality of material that regrows after a plant is grazed. Defoliation stimulates the rate of root exudation that enhances rhizospheric processes and the availability of nitrogen in the plant rhizosphere. Herbivores also change the species composition of mycorrhizae fungal associates that influence plant growth and affect soil structure and the turnover rate of soil carbon. Recent radiocarbon measurements have revealed that herbivores also markedly affect the turnover dynamics of the large pool of old soil carbon. In Yellowstone Park, ungulates slow the mean turnover of the relatively old (i.e., slow and passive) 0 - 20 cm deep soil organic carbon by 350 years in upland, dry grassland and speed up that rate in slope-bottom, mesic grassland by 300 years. This represents a 650 year swing in the turnover period of old soil carbon across the Yellowstone landscape. By comparison, mean turnover time for the old pool of 0 - 10 cm deep soil organic carbon shifts by about 300 years across the steep climatic gradient that includes tropical, temperate, and northern hardwood forest, and tallgrass, shortgrass and desert grassland. This large body of evidence suggests consumers play a

  5. Linkages between terrestrial ecosystems and the atmosphere

    NASA Technical Reports Server (NTRS)

    Bretherton, Francis; Dickinson, Robert E.; Fung, Inez; Moore, Berrien, III; Prather, Michael; Running, Steven W.; Tiessen, Holm

    1992-01-01

    The primary research issue in understanding the role of terrestrial ecosystems in global change is analyzing the coupling between processes with vastly differing rates of change, from photosynthesis to community change. Representing this coupling in models is the central challenge to modeling the terrestrial biosphere as part of the earth system. Terrestrial ecosystems participate in climate and in the biogeochemical cycles on several temporal scales. Some of the carbon fixed by photosynthesis is incorporated into plant tissue and is delayed from returning to the atmosphere until it is oxidized by decomposition or fire. This slower (i.e., days to months) carbon loop through the terrestrial component of the carbon cycle, which is matched by cycles of nutrients required by plants and decomposers, affects the increasing trend in atmospheric CO2 concentration and imposes a seasonal cycle on that trend. Moreover, this cycle includes key controls over biogenic trace gas production. The structure of terrestrial ecosystems, which responds on even longer time scales (annual to century), is the integrated response to the biogeochemical and environmental constraints that develop over the intermediate time scale. The loop is closed back to the climate system since it is the structure of ecosystems, including species composition, that sets the terrestrial boundary condition in the climate system through modification of surface roughness, albedo, and, to a great extent, latent heat exchange. These separate temporal scales contain explicit feedback loops which may modify ecosystem dynamics and linkages between ecosystems and the atmosphere. The long-term change in climate, resulting from increased atmospheric concentrations of greenhouse gases (e.g., CO2, CH4, and nitrous oxide (N2O)) will further modify the global environment and potentially induce further ecosystem change. Modeling these interactions requires coupling successional models to biogeochemical models to

  6. The microbiology of terrestrial ecosystems

    SciTech Connect

    Richards, B.N.

    1987-01-01

    Emphasizing the role of soil organisms, especially fungi and bacteria, in maintaining productive and stable ecosystems, this book addresses the imbalance found in most ecological texts, which often neglect microorganisms. It stresses the inter-relationship between soil microbes and plants in functional activities such as the capture and transfer of energy and the circulation of chemical elements in ecological systems. It begins with a review of basic concepts followed by a description of the soil as a living entity, including its physical and chemical characteristics, and the life forms found within it. Organic matter mineralization is treated in the context if energy flow and carbon turnover in the biosphere. Also covered are mineral cycling, the microbiology of the rhizosphere, mycorrhiza, root nodule symbiosis, and the cycling of nutrients in the soil-plant-atmosphere system.

  7. Terrestrial Ecosystems of the Conterminous United States

    USGS Publications Warehouse

    Sayre, Roger G.; Comer, Patrick; Cress, Jill; Warner, Harumi

    2010-01-01

    The U.S. Geological Survey (USGS), with support from NatureServe, has modeled the potential distribution of 419 terrestrial ecosystems for the conterminous United States using a comprehensive biophysical stratification approach that identifies distinct biophysical environments and associates them with known vegetation distributions (Sayre and others, 2009). This standardized ecosystem mapping effort used an ecosystems classification developed by NatureServe (Comer and others, 2003). The ecosystem mapping methodology was developed for South America (Sayre and others, 2008) and is now being implemented globally (Sayre and others, 2007). The biophysical stratification approach is based on mapping the major structural components of ecosystems (land surface forms, topographic moisture potential, surficial lithology, isobioclimates and biogeographic regions) and then spatially combining them to produce a set of unique biophysical environments. These physically distinct areas are considered as the fundamental structural units ('building blocks') of ecosystems, and are subsequently aggregated and labeled using the NatureServe classification. The structural footprints were developed from the geospatial union of several base layers including biogeographic regions, isobioclimates (Cress and others, 2009a), land surface forms (Cress and others, 2009b), topographic moisture potential (Cress and others, 2009c), and surficial lithology (Cress and others, in press). Among the 49,168 unique structural footprint classes that resulted from the union, 13,482 classes met a minimum pixel count threshold (20,000 pixels) and were aggregated into 419 NatureServe ecosystems using a semiautomated labeling process based on rule-set formulations for attribution of each ecosystem. The resulting ecosystems are those that are expected to occur based on the combination of the bioclimate, biogeography, and geomorphology. Where land use by humans has not altered land cover, natural vegetation

  8. Soil inoculation steers restoration of terrestrial ecosystems.

    PubMed

    Wubs, E R Jasper; van der Putten, Wim H; Bosch, Machiel; Bezemer, T Martijn

    2016-01-01

    Many natural ecosystems have been degraded because of human activities(1,2) and need to be restored so that biodiversity is protected. However, restoration can take decades and restoration activities are often unsuccessful(3) because of abiotic constraints (for example, eutrophication, acidification) and unfavourable biotic conditions (for example, competition or adverse soil community composition). A key question is what manageable factors prevent transition from degraded to restored ecosystems and what interventions are required for successful restoration(2,4). Experiments have shown that the soil community is an important driver of plant community development(5-8), suggesting that manipulation of the soil community is key to successful restoration of terrestrial ecosystems(3,9). Here we examine a large-scale, six-year-old field experiment on ex-arable land and show that application of soil inocula not only promotes ecosystem restoration, but that different origins of soil inocula can steer the plant community development towards different target communities, varying from grassland to heathland vegetation. The impact of soil inoculation on plant and soil community composition was most pronounced when the topsoil layer was removed, whereas effects were less strong, but still significant, when the soil inocula were introduced into intact topsoil. Therefore, soil inoculation is a powerful tool to both restore disturbed terrestrial ecosystems and steer plant community development. PMID:27398907

  9. Hydrolytic microbial communities in terrestrial ecosystems

    NASA Astrophysics Data System (ADS)

    Manucharova, Natalia; Chernov, Timofey; Kolcova, Ekaterina; Zelezova, Alena; Lukacheva, Euhenia; Zenova, Galina

    2014-05-01

    Hydrolytic microbial communities in terrestrial ecosystems Manucharova N.A., Chernov T.I., Kolcova E.M., Zelezova A.D., Lukacheva E.G. Lomonosov Moscow State University, Russia Vertical differentiation of terrestrial biogeocenoses is conditioned by the formation of vertical tiers that differ considerably in the composition and structure of microbial communities. All the three tiers, phylloplane, litter and soil, are united by a single flow of organic matter, and are spatially separated successional stages of decomposition of organic substances. Decomposition of organic matter is mainly due to the activity of microorganisms producing enzymes - hydrolase and lyase - which destroy complex organic compounds. Application of molecular biological techniques (FISH) in environmental studies provides a more complete information concerning the taxonomic diversity and potential hydrolytic activity of microbial complexes of terrestrial ecosystems that exist in a wide range of environmental factors (moisture, temperature, redox potential, organic matter). The combination of two molecular biological techniques (FISH and DGGE-analysis of fragments of gene 16S rRNA total amplificate) enables an informative assessment of the differences in the structure of dominant and minor components of hydrolytic complexes formed in different tiers of terrestrial ecosystems. The functional activity of hydrolytic microbial complexes of terrestrial ecosystems is determined by the activity of dominant and minor components, which also have a high gross enzymatic activity. Degradation of biopolymers in the phylloplane is mainly due to the representatives of the Proteobacteria phylogenetic group (classes alpha and beta). In mineral soil horizons, the role of hydrolytic representatives of Firmicutes and Actinobacteria increases. Among the key environmental parameters that determine the functional activity of the hydrolytic (chitinolytic) complex of soil layer (moisture, nutrient supply, successional

  10. Chronostratigraphy of the terrestrial Cretaceous-Paleogene boundary interval in Northeastern Montana

    NASA Astrophysics Data System (ADS)

    Sprain, C. J.; Renne, P. R.; Banaszak, J.; Wilson, G.; Clemens, W.

    2013-12-01

    The Hell Creek (Cretaceous) and Tullock (Paleogene) formations of NE Montana are among the most thoroughly sampled sources of geological, paleontological, and paleoecological data used to study changes within the terrestrial realm across the Cretaceous-Paleogene boundary (KPB). Although decades of study have been conducted in this area, complete regional syntheses of data have been greatly inhibited due to ambiguities in regional time-stratigraphic correlation. To aid in the problem of cross correlation this study is analyzing tuff (volcanic ash) layers found mainly within coal beds in the Hell Creek and Tullock formations. At least 40 distinct tuffs have been identified. High precision 40Ar/39Ar geochronology conducted on sanidine crystals from over 10 of these ashes has already been completed with resolution as good as × 11 ka and absolute accuracy in the range of × 40 ka. Among our results, Torrejonian NALMA faunas in localities separated by 42 km can be confidently correlated and may represent the oldest yet known Torrejonian faunas at 65.2 Ma. The basal Paleogene Puercan faunas are constrained by multiple correlated sections to be ~800 ka in duration. Application of our 40Ar/39Ar data to previous and new paleomagnetic data from this region enables improved calibration of the geomagnetic polarity timescale for chrons 30n through C28n. Our results thus far indicate that the boundaries of these chrons can be dated with a resolution sufficient to resolve orbital precession cycles, thus facilitating correlation of marine and terrestrial records of circum-KPB events. Additional preliminary results indicate that the duration of chron 29r, which brackets the main phase of volcanism within the Deccan Traps, is ~500 ka , significantly less than the GTS2012 estimate of 700 ka. Such a short time interval for the main phase of volcanism favors hypotheses that volcanism may have played a major role in applying stress to ecosystems prior to the Chicxulub impact. These

  11. Palynological evidence of effects of the terminal Cretaceous event on terrestrial floras in western North America

    NASA Astrophysics Data System (ADS)

    Nichols, Douglas J.; Farley Fleming, R.; Frederiksen, Norman O.

    New and previously published palynomorph distribution data on 225 taxa from uppermost Cretaceous (K) and lowermost Tertiary (T) nonmarine strata from New Mexico to Arctic Canada and Alaska were used to evaluate the effects of the terminal Cretaceous event (TCE) on terrestrial plant life. Analyses considered presence/absence, relative abundance, species diversity, and endemism, and employed Q-mode cluster analysis. The latest Cretaceous palynoflora showed gradual, continuous variation in composition from paleolatitudes (pl) 45° to 85° N. Palynofloristic subprovinces are not easily distinguished empirically, but three are recognizable quantitatively. Abrupt disappearance of many distinctive species marked the K-T boundary, and the earliest Tertiary palynoflora was considerably reduced in diversity. However, most regionally distributed taxa, and many endemic taxa of the polar and midlatitude subprovinces, survived the TCE and three subprovinces are recognizable in the same geographic positions as in the latest Cretaceous. Relative abundances of pteridophytes and gymnosperms were slightly greater in the early Tertiary than in the latest Cretaceous, probably due in part to change in sedimentary regime, but thermophilic angiosperm taxa persisted at least as far north as pl 60° N. These data support the hypothesis that a short-lived but profound ecological crisis at the end of the Cretaceous resulted in major reorganization of the flora. The data are inconsistent with gradual climatic deterioration. Extinction was greater among angiosperms than among gymnosperms or pteridophytes, but whether or not the entire flora suffered a mass extinction remains debatable.

  12. Review on environmental alterations propagating from aquatic to terrestrial ecosystems.

    PubMed

    Schulz, Ralf; Bundschuh, Mirco; Gergs, René; Brühl, Carsten A; Diehl, Dörte; Entling, Martin H; Fahse, Lorenz; Frör, Oliver; Jungkunst, Hermann F; Lorke, Andreas; Schäfer, Ralf B; Schaumann, Gabriele E; Schwenk, Klaus

    2015-12-15

    Terrestrial inputs into freshwater ecosystems are a classical field of environmental science. Resource fluxes (subsidy) from aquatic to terrestrial systems have been less studied, although they are of high ecological relevance particularly for the receiving ecosystem. These fluxes may, however, be impacted by anthropogenically driven alterations modifying structure and functioning of aquatic ecosystems. In this context, we reviewed the peer-reviewed literature for studies addressing the subsidy of terrestrial by aquatic ecosystems with special emphasis on the role that anthropogenic alterations play in this water-land coupling. Our analysis revealed a continuously increasing interest in the coupling of aquatic to terrestrial ecosystems between 1990 and 2014 (total: 661 studies), while the research domains focusing on abiotic (502 studies) and biotic (159 studies) processes are strongly separated. Approximately 35% (abiotic) and 25% (biotic) of the studies focused on the propagation of anthropogenic alterations from the aquatic to the terrestrial system. Among these studies, hydromorphological and hydrological alterations were predominantly assessed, whereas water pollution and invasive species were less frequently investigated. Less than 5% of these studies considered indirect effects in the terrestrial system e.g. via food web responses, as a result of anthropogenic alterations in aquatic ecosystems. Nonetheless, these very few publications indicate far-reaching consequences in the receiving terrestrial ecosystem. For example, bottom-up mediated responses via soil quality can cascade over plant communities up to the level of herbivorous arthropods, while top-down mediated responses via predatory spiders can cascade down to herbivorous arthropods and even plants. Overall, the current state of knowledge calls for an integrated assessment on how these interactions within terrestrial ecosystems are affected by propagation of aquatic ecosystem alterations. To fill

  13. Draft Genomes of Gammaproteobacterial Methanotrophs Isolated from Terrestrial Ecosystems

    PubMed Central

    Hamilton, Richard; Kits, K. Dimitri; Ramonovskaya, Victoria A.; Rozova, Olga N.; Yurimoto, Hiroya; Iguchi, Hiroyuki; Khmelenina, Valentina N.; Sakai, Yasuyoshi; Dunfield, Peter F.; Klotz, Martin G.; Knief, Claudia; Op den Camp, Huub J. M.; Jetten, Mike S. M.; Bringel, Françoise; Vuilleumier, Stéphane; Svenning, Mette M.; Shapiro, Nicole; Woyke, Tanja; Trotsenko, Yuri A.; Stein, Lisa Y.

    2015-01-01

    Genome sequences of Methylobacter luteus, Methylobacter whittenburyi, Methylosarcina fibrata, Methylomicrobium agile, and Methylovulum miyakonense were generated. The strains represent aerobic methanotrophs typically isolated from various terrestrial ecosystems. PMID:26044417

  14. Latitudinal Variation in δ13C derived from Terrestrial Plants during the Cretaceous

    NASA Astrophysics Data System (ADS)

    Strganac, C.; Jacobs, L. L.; Ferguson, K.; Macphee, R. D.; Fiorillo, A. R.; Hooker, J.; Nishida, Y.; Flemming, C.

    2010-12-01

    Modern plankton and terrestrial plants exhibit a gradient in δ13C with latitude. Although there are several reasons for δ13C variation in plants, modern latitudinal variation is correlated with environmental and climatic factors such as temperature. We present δ13C values derived from mid-Cretaceous terrestrial plant fossils in Texas at paleolatitude ~30 N and Australia at paleolatitude ~70 S that show an offset in δ13C values, suggesting a latitudinal gradient in δ13C in plants during the Cretaceous. This hypothesis was tested by new data from Antarctica at paleolatitude ~60 S and Alaska at paleolatitude ~70 N, and we compared these data to published carbon isotope records. The latitudinal variation in plant δ13C was on the order of 2‰ more negative at high latitudes, suggesting a shallower Cretaceous latitudinal gradient in plant δ13C than at present. The shallow gradient in plant δ13C during the Cretaceous correlates with a latitudinal temperature gradient that is also less than today.

  15. Terrestrial ecosystems in a changing environment

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Transpiration—the movement of water from the soil, through plants, and into the atmosphere—is the dominant water flux from the earth’s terrestrial surface. The evolution of vascular plants, while increasing terrestrial primary productivity, led to higher transpiration rates and widespread alteration...

  16. Terrestrial catastrophe caused by cometary impact at the end of Cretaceous

    NASA Astrophysics Data System (ADS)

    Hsü, Kenneth J.

    1980-05-01

    Evidence is presented indicating that the extinction, at the end of the Cretaceous, of large terrestrial animals was caused by atmospheric heating during a cometary impact and that the extinction of calcareous marine plankton was a consequence of poisoning by cyanide released by the fallen comet and of a catastrophic rise in calcite-compensation depth in the oceans after the detoxification of the cyanide.

  17. Terrestrial Ecosystems-Surficial Lithology of the Conterminous United States

    USGS Publications Warehouse

    Cress, Jill; Soller, David; Sayre, Roger G.; Comer, Patrick; Warner, Harumi

    2010-01-01

    As part of an effort to map terrestrial ecosystems, the U.S. Geological Survey (USGS) has generated a new classification of the lithology of surficial materials to be used in creating maps depicting standardized, terrestrial ecosystem models for the conterminous United States. The ecosystems classification used in this effort was developed by NatureServe. A biophysical stratification approach, developed for South America and now being implemented globally, was used to model the ecosystem distributions. This ecosystem mapping methodology is transparent, replicable, and rigorous. Surficial lithology strongly influences the differentiation and distribution of terrestrial ecosystems, and is one of the key input layers in this biophysical stratification. These surficial lithology classes were derived from the USGS map 'Surficial Materials in the Conterminous United States,' which was based on texture, internal structure, thickness, and environment of deposition or formation of materials. This original map was produced from a compilation of regional surficial and bedrock geology source maps using broadly defined common map units for the purpose of providing an overview of the existing data and knowledge. For the terrestrial ecosystem effort, the 28 lithology classes of Soller and Reheis (2004) were generalized and then reclassified into a set of 17 lithologies that typically control or influence the distribution of vegetation types.

  18. Fossil worm burrows reveal very early terrestrial animal activity and shed light on trophic resources after the end-cretaceous mass extinction.

    PubMed

    Chin, Karen; Pearson, Dean; Ekdale, A A

    2013-01-01

    The widespread mass extinctions at the end of the Cretaceous caused world-wide disruption of ecosystems, and faunal responses to the one-two punch of severe environmental perturbation and ecosystem collapse are still unclear. Here we report the discovery of in situ terrestrial fossil burrows from just above the impact-defined Cretaceous-Paleogene (K/Pg) boundary in southwestern North Dakota. The crisscrossing networks of horizontal burrows occur at the interface of a lignitic coal and silty sandstone, and reveal intense faunal activity within centimeters of the boundary clay. Estimated rates of sedimentation and coal formation suggest that the burrows were made less than ten thousand years after the end-Cretaceous impact. The burrow characteristics are most consistent with burrows of extant earthworms. Moreover, the burrowing and detritivorous habits of these annelids fit models that predict the trophic and sheltering lifestyles of terrestrial animals that survived the K/Pg extinction event. In turn, such detritus-eaters would have played a critical role in supporting secondary consumers. Thus, some of the carnivorous vertebrates that radiated after the K/Pg extinction may owe their evolutionary success to thriving populations of earthworms. PMID:23951041

  19. Fossil Worm Burrows Reveal Very Early Terrestrial Animal Activity and Shed Light on Trophic Resources after the End-Cretaceous Mass Extinction

    PubMed Central

    Chin, Karen; Pearson, Dean; Ekdale, A. A.

    2013-01-01

    The widespread mass extinctions at the end of the Cretaceous caused world-wide disruption of ecosystems, and faunal responses to the one-two punch of severe environmental perturbation and ecosystem collapse are still unclear. Here we report the discovery of in situ terrestrial fossil burrows from just above the impact-defined Cretaceous-Paleogene (K/Pg) boundary in southwestern North Dakota. The crisscrossing networks of horizontal burrows occur at the interface of a lignitic coal and silty sandstone, and reveal intense faunal activity within centimeters of the boundary clay. Estimated rates of sedimentation and coal formation suggest that the burrows were made less than ten thousand years after the end-Cretaceous impact. The burrow characteristics are most consistent with burrows of extant earthworms. Moreover, the burrowing and detritivorous habits of these annelids fit models that predict the trophic and sheltering lifestyles of terrestrial animals that survived the K/Pg extinction event. In turn, such detritus-eaters would have played a critical role in supporting secondary consumers. Thus, some of the carnivorous vertebrates that radiated after the K/Pg extinction may owe their evolutionary success to thriving populations of earthworms. PMID:23951041

  20. UV-B EFFECTS ON TERRESTRIAL ECOSYSTEMS

    EPA Science Inventory

    Dpeletion of stratospheric O3 layer should result in enhanced levels of ultraviolet-B (UV-B) radiation at the earth's surface compared to present, with potentially damaging effects on biological systems. his paper briefly summarizes some key findings for UV-B effects on terrestri...

  1. Observing terrestrial ecosystems and the carbon cycle from space

    SciTech Connect

    Schimel, David; Pavlick, Ryan; Fisher, Joshua B.; Asner, Gregory P.; Saatchi, Sassan; Townsend, Philip; Miller, Charles E.; Frankenberg, Christian; Hibbard, Kathleen A.; Cox, Peter

    2015-02-06

    Modeled terrestrial ecosystem and carbon cycle feedbacks contribute substantial uncertainty to projections of future climate. The limitations of current observing networks contribute to this uncertainty. Here we present a current climatology of global model predictions and observations for photosynthesis, biomass, plant diversity and plant functional diversity. Carbon cycle tipping points occur in terrestrial regions where fluxes or stocks are largest, and where biological variability is highest, the tropics and Arctic/Boreal zones. Global observations are predominately in the mid-latitudes and are sparse in high and low latitude ecosystems. Observing and forecasting ecosystem change requires sustained observations of sufficient density in time and space in critical regions. Using data and theory available now, we can develop a strategy to detect and forecast terrestrial carbon cycle-climate interactions, by combining in situ and remote techniques.

  2. Impacts of the Cretaceous Terrestrial Revolution and KPg extinction on mammal diversification.

    PubMed

    Meredith, Robert W; Janečka, Jan E; Gatesy, John; Ryder, Oliver A; Fisher, Colleen A; Teeling, Emma C; Goodbla, Alisha; Eizirik, Eduardo; Simão, Taiz L L; Stadler, Tanja; Rabosky, Daniel L; Honeycutt, Rodney L; Flynn, John J; Ingram, Colleen M; Steiner, Cynthia; Williams, Tiffani L; Robinson, Terence J; Burk-Herrick, Angela; Westerman, Michael; Ayoub, Nadia A; Springer, Mark S; Murphy, William J

    2011-10-28

    Previous analyses of relations, divergence times, and diversification patterns among extant mammalian families have relied on supertree methods and local molecular clocks. We constructed a molecular supermatrix for mammalian families and analyzed these data with likelihood-based methods and relaxed molecular clocks. Phylogenetic analyses resulted in a robust phylogeny with better resolution than phylogenies from supertree methods. Relaxed clock analyses support the long-fuse model of diversification and highlight the importance of including multiple fossil calibrations that are spread across the tree. Molecular time trees and diversification analyses suggest important roles for the Cretaceous Terrestrial Revolution and Cretaceous-Paleogene (KPg) mass extinction in opening up ecospace that promoted interordinal and intraordinal diversification, respectively. By contrast, diversification analyses provide no support for the hypothesis concerning the delayed rise of present-day mammals during the Eocene Period. PMID:21940861

  3. IMPACT OF GLOBAL CHANGE OF TERRESTRIAL ECOSYSTEMS: FRAMEWORKS FOR EVALUATING AGROECOSYSTEM AND FOREST ECOSYSTEM EFFECTS

    EPA Science Inventory

    The United States Environmental Protection Agency's (EPA) Global Climate Research Program (GCRP) is determining the effects of climate change on terrestrial ecosystems. his paper describes a general ecological risk assessment model as well as specific conceptual models for urrent...

  4. Driving terrestrial ecosystem models from space

    NASA Technical Reports Server (NTRS)

    Waring, R. H.

    1993-01-01

    Regional air pollution, land-use conversion, and projected climate change all affect ecosystem processes at large scales. Changes in vegetation cover and growth dynamics can impact the functioning of ecosystems, carbon fluxes, and climate. As a result, there is a need to assess and monitor vegetation structure and function comprehensively at regional to global scales. To provide a test of our present understanding of how ecosystems operate at large scales we can compare model predictions of CO2, O2, and methane exchange with the atmosphere against regional measurements of interannual variation in the atmospheric concentration of these gases. Recent advances in remote sensing of the Earth's surface are beginning to provide methods for estimating important ecosystem variables at large scales. Ecologists attempting to generalize across landscapes have made extensive use of models and remote sensing technology. The success of such ventures is dependent on merging insights and expertise from two distinct fields. Ecologists must provide the understanding of how well models emulate important biological variables and their interactions; experts in remote sensing must provide the biophysical interpretation of complex optical reflectance and radar backscatter data.

  5. Terrestrial ecosystem responses to global change: A research strategy

    SciTech Connect

    1998-09-01

    Uncertainty about the magnitude of global change effects on terrestrial ecosystems and consequent feedbacks to the atmosphere impedes sound policy planning at regional, national, and global scales. A strategy to reduce these uncertainties must include a substantial increase in funding for large-scale ecosystem experiments and a careful prioritization of research efforts. Prioritization criteria should be based on the magnitude of potential changes in environmental properties of concern to society, including productivity; biodiversity; the storage and cycling of carbon, water, and nutrients; and sensitivity of specific ecosystems to environmental change. A research strategy is proposed that builds on existing knowledge of ecosystem responses to global change by (1) expanding the spatial and temporal scale of experimental ecosystem manipulations to include processes known to occur at large scales and over long time periods; (2) quantifying poorly understood linkages among processes through the use of experiments that manipulate multiple interacting environmental factors over a broader range of relevant conditions than did past experiments; and (3) prioritizing ecosystems for major experimental manipulations on the basis of potential positive and negative impacts on ecosystem properties and processes of intrinsic and/or utilitarian value to humans and on feedbacks of terrestrial ecosystems to the atmosphere.

  6. Endogenous circadian regulation of carbon dioxide exchange in terrestrial ecosystems

    Technology Transfer Automated Retrieval System (TEKTRAN)

    We tested the hypothesis that diurnal changes in terrestrial CO2 exchange are driven exclusively by the direct effect of the physical environment on plant physiology. We failed to corroborate this assumption, finding instead large diurnal fluctuations in whole ecosystem carbon assimilation across a ...

  7. Terrestrial ecosystem biomonitoring at Rocky Mountain Arsenal

    SciTech Connect

    Roy, R.; Matiatos, D.; Seery, D.; Hetrick, M.; Griess, J.; Henry, C.; Vaughn, S.; Miesner, J.

    1994-12-31

    In 1987 the Fish and Wildlife Service became actively involved in wildlife population monitoring at the Arsenal because of the discovery of a bald eagle roost on the site. Since that time the Service has conducted or funded a variety of investigations to inventory the wildlife species present at the Arsenal and determine their population status. As time progressed and as a result of the passage of the Rocky Mountain Arsenal Refuge legislation in 1992, the Service developed a biomonitoring strategy to determine the current effects of contaminants on terrestrial wildlife resources at the Arsenal and evaluate the efficacy of remediation to ensure the protection and restoration of wildlife resources at the future refuge. This poster will present an overview of the species being studied, measurement and assessment endpoints, strategies, and methods being used by the Service to assess wildlife health as it relates to contaminant exposure.

  8. Shallow groundwater subsidies to terrestrial ecosystems (Invited)

    NASA Astrophysics Data System (ADS)

    Jackson, R. B.; Jayawickreme, D.; Nosetto, M.; Jobbagy, E. G.

    2010-12-01

    Throughout the world, shallow groundwater systems subsidize much higher net primary productivity (NPP) than would be expected based solely on local rainfall. Such subsidies are far more prevalent and less recognized in upland systems than in more commonly studied riparian ones. We present a quantitative framework for examining and quantifying groundwater subsidies globally, illustrating subsidies to NPP across rainfall gradients in Argentina and the southern United States, including Texas and California. In the Argentine Pampas, we determined that the presence of relatively shallow ground water increased the transpiration of forest plantations by 300 to 400 mm. Farther west, the presence of well developed Prosopis flexuosa woodlands in the Monte desert region east of the Andes has puzzled scientists for decades. We explored the vulnerability and importance of phreatic ground water for the productivity of the region, comparing the contributions of local rainfall to that of remote mountain recharge that is increasingly being diverted for irrigated agriculture before it reaches the desert. The isotopic composition of phreatic ground waters (δ2H; -137±5 ‰) closely matched the signature of water brought to the region by the Mendoza River (-137±6 ‰), suggesting that mountain river infiltration rather than in-situ rainfall deep drainage (-39±19 ‰) was the dominant mechanism of recharge. Vegetation in woodland ecosystems there relied on regionally derived ground water from Andean snowmelt located from 6.5 to 9.5 m underground. Understanding the ecohydrological coupling of surface and ground waters is vital for estimating net primary productivity and for balancing the demands of managed ecosystems with the conservation of unique natural systems.

  9. PRELIMINARY TESTING, EVALUATION, AND SENSITIVITY ANALYSIS FOR THE TERRESTRIAL ECOSYSTEM EXPOSURE ASSESSMENT MODEL

    EPA Science Inventory

    This report documents an initial testing and sensitivity analysis of the Terrestrial Ecosystem Exposure Assessment Model (TEEAM). TEEAM calculates the exposure concentrations of contaminants in plants and animals in terrestrial ecosystems. he project was performed in two phases. ...

  10. A new map of standardized terrestrial ecosystems of Africa

    USGS Publications Warehouse

    Sayre, Roger G.; Comer, Patrick; Hak, Jon; Josse, Carmen; Bow, Jacquie; and others

    2013-01-01

    Terrestrial ecosystems and vegetation of Africa were classified and mapped as part of a larger effort and global protocol (GEOSS – the Global Earth Observation System of Systems), which includes an activity to map terrestrial ecosystems of the earth in a standardized, robust, and practical manner, and at the finest possible spatial resolution. To model the potential distribution of ecosystems, new continental datasets for several key physical environment datalayers (including coastline, landforms, surficial lithology, and bioclimates) were developed at spatial and classification resolutions finer than existing similar datalayers. A hierarchical vegetation classification was developed by African ecosystem scientists and vegetation geographers, who also provided sample locations of the newly classified vegetation units. The vegetation types and ecosystems were then mapped across the continent using a classification and regression tree (CART) inductive model, which predicted the potential distribution of vegetation types from a suite of biophysical environmental attributes including bioclimate region, biogeographic region, surficial lithology, landform, elevation and land cover. Multi-scale ecosystems were classified and mapped in an increasingly detailed hierarchical framework using vegetation-based concepts of class, subclass, formation, division, and macrogroup levels. The finest vegetation units (macrogroups) classified and mapped in this effort are defined using diagnostic plant species and diagnostic growth forms that reflect biogeographic differences in composition and sub-continental to regional differences in mesoclimate, geology, substrates, hydrology, and disturbance regimes (FGDC, 2008). The macrogroups are regarded as meso-scale (100s to 10,000s of hectares) ecosystems. A total of 126 macrogroup types were mapped, each with multiple, repeating occurrences on the landscape. The modeling effort was implemented at a base spatial resolution of 90 m. In

  11. Early terrestrial ecosystems: the animal evidence

    SciTech Connect

    Gray, J.

    1985-01-01

    Work on fossil spores indicates that plants at a level of vegetative organization comparable to bryophytes and vascular plants existed on land in the Early Silurian. Vascular plants, limnetic fishes, and probable Ascomycetes have Late Silurian records. Charophytes are known in the Late Silurian but may have been marine. The presence of microarthropods in the Ludlovian has been hypothesized from fungal masses in the Burgsvik Sandstone that closely resemble microarthropod frass. A number of microarthropods such as collembolans and mites are microphagous; these animals are among the earliest known from the Early Devonian. These fungal masses as animal traces have been given added credibility by the recovery of animal body fossils from basal Llandovery age fluvial deposits of the Central Appalachians that yield abundant plant spores but that lack marine invertebrates, phytoplankton or chitinozoans. The remains are abundant and sufficiently varied to suggest that they may represent a variety of organisms. Some are eurypterid-like, others grossly arthropod-like, although they may represent an unknown phylum or phyla. Many small invertebrates are associated with extant bryophytes, which have been viewed as stepping stones or halfway houses for them as they emerged from water onto land. The occurrence of these Early Silurian invertebrate remains with abundant spore tetrads, which Gray has hypothesized represent land plants at a bryophyte or hepatic grade of organization, is of great interest in trying to understand the early development of nonmarine ecosystems.

  12. Resource subsidies between stream and terrestrial ecosystems under global change.

    PubMed

    Larsen, Stefano; Muehlbauer, Jeffrey D; Marti, Eugenia

    2016-07-01

    Streams and adjacent terrestrial ecosystems are characterized by permeable boundaries that are crossed by resource subsidies. Although the importance of these subsidies for riverine ecosystems is increasingly recognized, little is known about how they may be influenced by global environmental change. Drawing from available evidence, in this review we propose a conceptual framework to evaluate the effects of global change on the quality and spatiotemporal dynamics of stream-terrestrial subsidies. We illustrate how changes to hydrological and temperature regimes, atmospheric CO2 concentration, land use and the distribution of nonindigenous species can influence subsidy fluxes by affecting the biology and ecology of donor and recipient systems and the physical characteristics of stream-riparian boundaries. Climate-driven changes in the physiology and phenology of organisms with complex life cycles will influence their development time, body size and emergence patterns, with consequences for adjacent terrestrial consumers. Also, novel species interactions can modify subsidy dynamics via complex bottom-up and top-down effects. Given the seasonality and pulsed nature of subsidies, alterations of the temporal and spatial synchrony of resource availability to consumers across ecosystems are likely to result in ecological mismatches that can scale up from individual responses, to communities, to ecosystems. Similarly, altered hydrology, temperature, CO2 concentration and land use will modify the recruitment and quality of riparian vegetation, the timing of leaf abscission and the establishment of invasive riparian species. Along with morphological changes to stream-terrestrial boundaries, these will alter the use and fluxes of allochthonous subsidies associated with stream ecosystems. Future research should aim to understand how subsidy dynamics will be affected by key drivers of global change, including agricultural intensification, increasing water use and biotic

  13. Terrestrial Ecosystem Responses to Global Change: A Research Strategy

    SciTech Connect

    Ecosystems Working Group,

    1998-09-23

    Uncertainty about the magnitude of global change effects on terrestrial ecosystems and consequent feedbacks to the atmosphere impedes sound policy planning at regional, national, and global scales. A strategy to reduce these uncertainties must include a substantial increase in funding for large-scale ecosystem experiments and a careful prioritization of research efforts. Prioritization criteria should be based on the magnitude of potential changes in environmental properties of concern to society, including productivity; biodiversity; the storage and cycling of carbon, water, and nutrients; and sensitivity of specific ecosystems to environmental change. A research strategy is proposed that builds on existing knowledge of ecosystem responses to global change by (1) expanding the spatial and temporal scale of experimental ecosystem manipulations to include processes known to occur at large scales and over long time periods; (2) quantifying poorly understood linkages among processes through the use of experiments that manipulate multiple interacting environmental factors over a broader range of relevant conditions than did past experiments; and (3) prioritizing ecosystems for major experimental manipulations on the basis of potential positive and negative impacts on ecosystem properties and processes of intrinsic and/or utilitarian value to humans and on feedbacks of terrestrial ecosystems to the atmosphere. Models and experiments are equally important for developing process-level understanding into a predictive capability. To support both the development and testing of mechanistic ecosystem models, a two-tiered design of ecosystem experiments should be used. This design should include both (1) large-scale manipulative experiments for comprehensive testing of integrated ecosystem models and (2) multifactor, multilevel experiments for parameterization of process models across the critical range of interacting environmental factors (CO{sub 2}, temperature, water

  14. Selected plant microfossil records of the terminal Cretaceous event in terrestrial rocks, western North America

    USGS Publications Warehouse

    Nichols, D.J.

    2007-01-01

    Terrestrial or nonmarine rocks of western North America preserve a record of major disruption and permanent alteration of plant communities precisely at the K-T boundary - in the same rocks that preserve geochemical and mineralogical evidence of the terminal Cretaceous impact event. Plant microfossil records from many localities show abrupt disappearance of pollen species (= plant extinctions) closely associated with impact ejecta deposits containing iridium and shocked quartz. Localities discussed in detail in this review are Starkville South, Clear Creek North, Old Raton Pass, and Sugarite in the Raton Basin of Colorado and New Mexico; West Bijou in the Denver Basin, Colorado; Sussex in the Powder River Basin, Wyoming; and Pyramid Butte and Mud Buttes in the Williston Basin, North Dakota. ?? 2007 Elsevier B.V. All rights reserved.

  15. Pulses, linkages, and boundaries of coupled aquatic-terrestrial ecosystems

    NASA Astrophysics Data System (ADS)

    Tockner, K.

    2009-04-01

    Riverine floodplains are linked ecosystems where terrestrial and aquatic habitats overlap, creating a zone where they interact, the aquatic-terrestrial interface. The interface or boundary between aquatic and terrestrial habitats is an area of transition, contact or separation; and connectivity between these habitats may be defined as the ease with which organisms, matter or energy traverse these boundaries. Coupling of aquatic and terrestrial systems generates intertwining food webs, and we may predict that coupled systems are more productive than separated ones. For example, riparian consumers (aquatic and terrestrial) have alternative prey items external to their respective habitats. Such subsidized assemblages occupy a significant higher trophic position than assemblages in unsubsidized areas. Further, cross-habitat linkages are often pulsed; and even small pulses of a driver (e.g. short-term increases in flow) can cause major resource pulses (i.e. emerging aquatic insects) that control the recipient community. For example, short-term additions of resources, simulating pulsed inputs of aquatic food to terrestrial systems, suggest that due to resource partitioning and temporal separation among riparian arthropod taxa the resource flux from the river to the riparian zone increases with increasing riparian consumer diversity. I will discuss the multiple transfer and transformation processes of matter and organisms across aquatic-terrestrial habitats. Key landscape elements along river corridors are vegetated islands that function as instream riparian areas. Results from Central European rivers demonstrate that islands are in general more natural than fringing riparian areas, contribute substantially to total ecotone length, and create diverse habitats in the aquatic and terrestrial realm. In braided rivers, vegetated islands are highly productive landscape elements compared to the adjacent aquatic area. However, aquatic habitats exhibit a much higher decomposition

  16. Terrestrial Ecosystems - Land Surface Forms of the Conterminous United States

    USGS Publications Warehouse

    Cress, Jill J.; Sayre, Roger G.; Comer, Patrick; Warner, Harumi

    2009-01-01

    As part of an effort to map terrestrial ecosystems, the U.S. Geological Survey has generated land surface form classes to be used in creating maps depicting standardized, terrestrial ecosystem models for the conterminous United States, using an ecosystems classification developed by NatureServe . A biophysical stratification approach, developed for South America and now being implemented globally, was used to model the ecosystem distributions. Since land surface forms strongly influence the differentiation and distribution of terrestrial ecosystems, they are one of the key input layers in this biophysical stratification. After extensive investigation into various land surface form mapping methodologies, the decision was made to use the methodology developed by the Missouri Resource Assessment Partnership (MoRAP). MoRAP made modifications to Hammond's land surface form classification, which allowed the use of 30-meter source data and a 1-km2 window for analyzing the data cell and its surrounding cells (neighborhood analysis). While Hammond's methodology was based on three topographic variables, slope, local relief, and profile type, MoRAP's methodology uses only slope and local relief. Using the MoRAP method, slope is classified as gently sloping when more than 50 percent of the area in a 1-km2 neighborhood has slope less than 8 percent, otherwise the area is considered moderately sloping. Local relief, which is the difference between the maximum and minimum elevation in a neighborhood, is classified into five groups: 0-15 m, 16-30 m, 31-90 m, 91-150 m, and >150 m. The land surface form classes are derived by combining slope and local relief to create eight landform classes: flat plains (gently sloping and local relief = 90 m), low hills (not gently sloping and local relief = 150 m). However, in the USGS application of the MoRAP methodology, an additional local relief group was used (> 400 m) to capture additional local topographic variation. As a result, low

  17. Terrestrial ecosystem collapse associated to the K-Pg boundary and dinosaur extinction: palynological evidences

    NASA Astrophysics Data System (ADS)

    Bercovici, A.; Vajda, V.; Lyson, T. R.; Chester, S. G. B.; Sargis, E. J.; Pearson, D. A.; Joyce, W. G.

    2012-04-01

    We report here the discovery of the stratigraphically youngest in situ dinosaur specimen. This ceratopsian brow horn was found in southeastern Montana, in the Western Interior of the United States in a poorly rooted, silty mudstone floodplain deposit and only 13 centimeters below the palynologically defined K-Pg boundary. The boundary is identified using three criteria: 1) substantial decrease in diversity and abundance of Cretaceous pollen and spore taxa that completely disappear from the palynological record a few meters above the boundary, 2) the presence of a "fern spike", and 3) palynostratigraphical correlation to a nearby section where primary extraterrestrial impact markers are present (e.g., iridium anomaly, spherules and shocked quartz). The palynological record in the rock sequence immediately following the K-Pg boundary consistently indicates a sudden and major loss of the Cretaceous components across the North American record. During this rapid decline, the palynological assemblages are dominated by freshwater ferns (Azolla) and algae (usually Pediastrum sp. and Penetetrapites sp.) indicating generalized flooding in the area. The onset of the Paleocene sedimentation is subsequently announced by the presence of variegated beds, multiple lignite seams and small scale meandering river systems, starting with palynological associations that attest for reworking and erosion. The destabilization of terrestrial ecosystems is coincident with the markers of the K-Pg boundary, supporting a catastrophic event taking place over a very short duration. The in situ ceratopsian brow horn demonstrates that a gap devoid of non-avian dinosaur fossils in the last meters of the Cretaceous is artificial and thus inconsistent with the hypothesis that non-avian dinosaurs were extinct prior to the K-Pg boundary asteroid impact event.

  18. High-resolution terrestrial GDGT data from the mid-Cretaceous: significant shifts in continental paleotemperatures (Invited)

    NASA Astrophysics Data System (ADS)

    Grocke, D. R.; Sinninghe Damsté, J. S.; Spicer, R. A.; Heimhofer, U.

    2010-12-01

    Understanding the terrestrial response to carbon cycle perturbations (i.e., oceanic anoxic events, OAEs) are critical for generating accurate, coupled ocean-atmosphere models. Oceanic geochemical data for the Cretaceous is becoming more prevalent and detailed, especially with organic geochemical proxies such as TEX86 (based on membrane lipids from marine Crenarchaeota). Previous research has identified OAE1d (Albian/Cenomanian boundary, ACB, Cretaceous) using carbon isotopes in terrestrial organic matter from Rose Creek Pit, Dakota Fm., Nebraska, USA [Gröcke et al. 2006]. A subsequent terrestrial carbon-isotope record has been produced from Moose River Basin, Ontario (Canada), which shows the complete OAE1d isotopic excursion in striking detail from an expanded lignite-mudstone facies (˜40m). A preliminary organic geochemical study of glycerol dialkyl glycerol tetraethers (GDGTs) from the Moose River Basin lignites has been conducted to test the validity of obtaining mean annual air temperature (MAAT), and suggests that it could prove to be a valuable method for extracting Cretaceous terrestrial temperatures. A detailed MAAT from Moose River Basin shows an increase of over 15°C over the ACB. Comparison with North Atlantic oceanic TEX86 and foraminifer oxygen-isotope records reveal a contradictory change in temperature over the ACB and a decrease in temperature of ˜2°C and ˜4°C respectively. However, these data all provide excellent correspondence to latitudinal GCM output for the Albian [Poulsen et al. 2007] for a simulated atmosphere with 8x pre-industrial pCO2 levels. Paleobotanical data suggest that these reconstructed continental paleotemperatures are supported. This preliminary data highlights the potential use of terrestrial GDGTs to generate palaeoclimatic data from the Cretaceous terrestrial system.

  19. [Measurement of terrestrial ecosystem service value in China].

    PubMed

    He, Hao; Pan, Yaozhong; Zhu, Wenquan; Liu, Xulong; Zhang, Qing; Zhu, Xiufang

    2005-06-01

    With the measurement of net primary productivity and vegetation coverage fraction based on remote sensing data,the terrestrial ecosystem service value of China in 2000 was quantitatively estimated as 9.17 x 10(12) yuan (RMB). The spatial distribution of the ecological service value showed a decreasing trend from southeast China to northwest China, which was consistent with the regional distribution of vegetation types. The service value varied with different vegetations, e. g., forests had the highest service value of 18 789 yuan x hm(-2), accounting for 40.80% of the total terrestrial ecosystem service value, and bushes and farmlands had a higher service value of 13 789 yuan x hm(-2) and 13054 yuan x hm(-2), which was 10.79% and 24.23% of total value, respectively. The service value was also varied with different ecosystem functions, i.e., gas regulation contributed the highest value of 45.16% to the total service value, and the contribution of soil conservation and water conservation was 28.83% and 14.44%, respectively. The integrated approach coupling ecology and remote sensing data provided a new method to measure the ecological service value, which could estimate the value objectively and spatial-explicitly. However, some uncertainties still existed in this approach, which should be improved in the future studies. PMID:16180767

  20. Biogeochemical significance of pelagic ecosystem function: an end-Cretaceous case study.

    PubMed

    Henehan, Michael J; Hull, Pincelli M; Penman, Donald E; Rae, James W B; Schmidt, Daniela N

    2016-05-19

    Pelagic ecosystem function is integral to global biogeochemical cycling, and plays a major role in modulating atmospheric CO2 concentrations (pCO2). Uncertainty as to the effects of human activities on marine ecosystem function hinders projection of future atmospheric pCO2 To this end, events in the geological past can provide informative case studies in the response of ecosystem function to environmental and ecological changes. Around the Cretaceous-Palaeogene (K-Pg) boundary, two such events occurred: Deccan large igneous province (LIP) eruptions and massive bolide impact at the Yucatan Peninsula. Both perturbed the environment, but only the impact coincided with marine mass extinction. As such, we use these events to directly contrast the response of marine biogeochemical cycling to environmental perturbation with and without changes in global species richness. We measure this biogeochemical response using records of deep-sea carbonate preservation. We find that Late Cretaceous Deccan volcanism prompted transient deep-sea carbonate dissolution of a larger magnitude and timescale than predicted by geochemical models. Even so, the effect of volcanism on carbonate preservation was slight compared with bolide impact. Empirical records and geochemical models support a pronounced increase in carbonate saturation state for more than 500 000 years following the mass extinction of pelagic carbonate producers at the K-Pg boundary. These examples highlight the importance of pelagic ecosystems in moderating climate and ocean chemistry. PMID:27114586

  1. The role of local scale heterogeneities in terrestrial ecosystem functioning

    NASA Astrophysics Data System (ADS)

    Pappas, C.; Fatichi, S.; Rimkus, S.; Burlando, P.; Bugmann, H.; Huber, M.

    2013-12-01

    The coarse-grained spatial representation of many terrestrial ecosystem models hampers the importance of local scale heterogeneities. To discuss this issue, we combine a range of observations (forest inventories, eddy flux tower data, remote sensing products) and modeling approaches which allow us to investigate the role of local climate, topography and initial conditions (land cover and soil properties) when simulating vegetation dynamics. Three approaches for modeling terrestrial ecosystems, with contrasting degrees of abstraction, were selected: (i) LPJ, a well-established, area-based, Dynamic Global Vegetation Model (DGVM) that incorporates plant physiological and biogeochemical processes; (ii) LPJ-GUESS, a hybrid, individual-based approach that additionally considers more detailed processes of plant population dynamics; and (iii) D-LPJ, a spatially distributed version of LPJ, operating at a fine resolution (100m x 100m), which uses an enhanced hydrological representation accounting for lateral connectivity of surface and subsurface water fluxes. By confronting model simulations with a multivariate data-set available at the catchment scale, we argue that: (i) local environmental and topographic attributes that are often ignored or at best crudely represented within DGVM applications exert a strong control on terrestrial ecosystem functioning; (ii) the assumption of steady-state vegetation and soil carbon pools at the beginning of simulation studies (e.g., under 'current conditions'), as embedded in many DGVM applications, is in contradiction with the current state of many forests that, due to natural or anthropogenic disturbances, are often out of equilibrium; (iii) model evaluation against vegetation carbon fluxes (i.e., photosynthetic activity and respiration rates) does not imply an accurate simulation of vegetation carbon stocks (i.e., biomass). In addition, having gained insights about model performance at the catchment scale, where a wealth of information

  2. Using Ant Communities For Rapid Assessment Of Terrestrial Ecosystem Health

    SciTech Connect

    Wike, L

    2005-06-01

    health of the ecosystem. The IBI, though originally for Midwestern streams, has been successfully adapted to other ecoregions and taxa (macroinvertebrates, Lombard and Goldstein, 2004) and has become an important tool for scientists and regulatory agencies alike in determining health of stream ecosystems. The IBI is a specific type of a larger group of methods and procedures referred to as Rapid Bioassessment (RBA). These protocols have the advantage of directly measuring the organisms affected by system perturbations, thus providing an integrated evaluation of system health because the organisms themselves integrate all aspects of their environment and its condition. In addition to the IBI, the RBA concept has also been applied to seep wetlands (Paller et al. 2005) and terrestrial systems (O'Connell et al. 1998, Kremen et al. 1993, Rodriguez et al. 1998, Rosenberg et al. 1986). Terrestrial RBA methods have lagged somewhat behind those for aquatic systems because terrestrial systems are less distinctly defined and seem to have a less universal distribution of an all-inclusive taxon, such as fish in the IBI, upon which to base an RBA. In the last decade, primarily in Australia, extensive development of an RBA using ant communities has shown great promise. Ants have the same advantage for terrestrial RBAs that fish do for aquatic systems in that they are an essential and ubiquitous component of virtually all terrestrial ecosystems. They occupy a broad range of niches, functional groups, and trophic levels and they possess one very important characteristic that makes them ideal for RBA because, similar to the fishes, there is a wide range of tolerance to conditions within the larger taxa. Within ant communities there are certain groups, genera, or species that may be very robust and abundant under even the harshest impacts. There are also taxa that are very sensitive to disturbance and change and their presence or absence is also indicative of the local conditions. Also, as

  3. Factors influencing DOC leaching from terrestrial ecosystems: a database analysis

    NASA Astrophysics Data System (ADS)

    Camino Serrano, M.; Janssens, I.; Luyssaert, S.; Ciais, P.; Gielen, B.

    2012-04-01

    The lateral transport of dissolved organic carbon (DOC) is an important process linking terrestrial and aquatic ecosystems. Neglecting these fluxes can lead to biased of eddy covariance-based estimates of terrestrial ecosystem carbon sequestration. The necessity for integrating DOC leaching in carbon cycle models is thus clear, especially in view of future model development aiming at directly linking terrestrial, freshwater and ocean carbon cycles. However, to achieve this goal, more accurate information is needed in order to better understand and predict dissolved organic carbon dynamics. DOC concentrations mainly vary by geographical location, soil and vegetation types, topography, season and climate. Within this framework, we developed a database on DOC concentrations and fluxes with the aim of better understanding how those parameters determine DOC variations. This database compiles DOC concentrations and fluxes in soil solution and creeks at site or catchment level for different ecosystems around the world, but with special focus on the Northern Hemisphere and on peatland ecosystems. The database currently includes information from around 120 sites, gathered from published literature and datasets accessible on the internet. The database contains annual, seasonal and monthly data on DOC, dissolved inorganic carbon (DIC), dissolved organic nitrogen (DON) and dissolved inorganic nitrogen (DIN) and also includes other meta-data related to the site, such as land cover, soil properties, climate, annual water balance and other soil solution parameters. This compiled dataset allows to study the influence of several physical factors that determine DOC production in soils. We will present the observed relationships between drivers, such as precipitation, drainage flows, soil pH, soil texture, and DOC concentration/ DOC fluxes at different levels, ecosystem types, temporal scales (monthly versus annual or seasonal), and soil depths. The same relations will be analysed

  4. Global simulation of the carbon isotope exchange of terrestrial ecosystems

    NASA Astrophysics Data System (ADS)

    Ito, A.; Terao, Y.; Mukai, H.

    2009-12-01

    There remain large uncertainties in our quantification of global carbon cycle, which has close interactions with the climate system and is subject to human-induced global environmental change. Information on carbon isotopes is expected to reduce the uncertainty by providing additional constraints on net atmosphere-ecosystem exchange. This study attempted to simulate the dynamics of carbon isotopes at the global scale, using a process-based terrestrial ecosystem model: Vegetation Integrative SImulator for Trace gases (VISIT). The base-model of carbon cycle (Sim-CYCLE, Ito 2003) has already considered stable carbon isotope composition (13C/12C), and here radioactive carbon isotope (14C) was included. The isotope ratios characterize various aspects of terrestrial carbon cycle, which is difficult to be constrained by sole mass balance. For example, isotopic discrimination by photosynthetic assimilation is closely related with leaf stomatal conductance and composition of C3 and C4 plant in grasslands. Isotopic disequilibrium represents mean residence time of terrestrial carbon pools. In this study, global simulations (spatial resolution 0.5-deg, time-step 1-month) were conducted during the period 1901 to 2100 on the basis of observed and projected atmospheric CO2, climate, and land-use conditions. As anthropogenic CO2 accumulates in the atmosphere, heavier stable carbon isotope (13C) was diluted, while radioactive carbon isotope (14C) is strongly affected by atomic bomb experiments mainly in the 1950s and 1960s. The model simulated the decadal change in carbon isotope compositions. Leaf carbon with shorter mean residence time responded rapidly to the atmospheric change, while plant stems and soil humus showed substantial time-lag, leading to large isotopic disequilibrium. In the future, the isotopic disequilibrium was estimated to augment, due to accelerated rate of anthropogenic CO2 accumulation. Spatial distribution of stable isotope composition (12C/13C, or d13C) was

  5. Committed terrestrial ecosystem changes due to climate change

    NASA Astrophysics Data System (ADS)

    Jones, Chris; Lowe, Jason; Liddicoat, Spencer; Betts, Richard

    2009-07-01

    Targets for stabilizing climate change are often based on considerations of the impacts of different levels of global warming, usually assessing the time of reaching a particular level of warming. However, some aspects of the Earth system, such as global mean temperatures and sea level rise due to thermal expansion or the melting of large ice sheets, continue to respond long after the stabilization of radiative forcing. Here we use a coupled climate-vegetation model to show that in turn the terrestrial biosphere shows significant inertia in its response to climate change. We demonstrate that the global terrestrial biosphere can continue to change for decades after climate stabilization. We suggest that ecosystems can be committed to long-term change long before any response is observable: for example, we find that the risk of significant loss of forest cover in Amazonia rises rapidly for a global mean temperature rise above 2∘C. We conclude that such committed ecosystem changes must be considered in the definition of dangerous climate change, and subsequent policy development to avoid it.

  6. The impact of large terrestrial carnivores on Pleistocene ecosystems

    PubMed Central

    Van Valkenburgh, Blaire; Ripple, William J.; Meloro, Carlo; Roth, V. Louise

    2016-01-01

    Large mammalian terrestrial herbivores, such as elephants, have dramatic effects on the ecosystems they inhabit and at high population densities their environmental impacts can be devastating. Pleistocene terrestrial ecosystems included a much greater diversity of megaherbivores (e.g., mammoths, mastodons, giant ground sloths) and thus a greater potential for widespread habitat degradation if population sizes were not limited. Nevertheless, based on modern observations, it is generally believed that populations of megaherbivores (>800 kg) are largely immune to the effects of predation and this perception has been extended into the Pleistocene. However, as shown here, the species richness of big carnivores was greater in the Pleistocene and many of them were significantly larger than their modern counterparts. Fossil evidence suggests that interspecific competition among carnivores was relatively intense and reveals that some individuals specialized in consuming megaherbivores. To estimate the potential impact of Pleistocene large carnivores, we use both historic and modern data on predator–prey body mass relationships to predict size ranges of their typical and maximum prey when hunting as individuals and in groups. These prey size ranges are then compared with estimates of juvenile and subadult proboscidean body sizes derived from extant elephant growth data. Young proboscideans at their most vulnerable age fall within the predicted prey size ranges of many of the Pleistocene carnivores. Predation on juveniles can have a greater impact on megaherbivores because of their long interbirth intervals, and consequently, we argue that Pleistocene carnivores had the capacity to, and likely did, limit megaherbivore population sizes. PMID:26504224

  7. The impact of large terrestrial carnivores on Pleistocene ecosystems.

    PubMed

    Van Valkenburgh, Blaire; Hayward, Matthew W; Ripple, William J; Meloro, Carlo; Roth, V Louise

    2016-01-26

    Large mammalian terrestrial herbivores, such as elephants, have dramatic effects on the ecosystems they inhabit and at high population densities their environmental impacts can be devastating. Pleistocene terrestrial ecosystems included a much greater diversity of megaherbivores (e.g., mammoths, mastodons, giant ground sloths) and thus a greater potential for widespread habitat degradation if population sizes were not limited. Nevertheless, based on modern observations, it is generally believed that populations of megaherbivores (>800 kg) are largely immune to the effects of predation and this perception has been extended into the Pleistocene. However, as shown here, the species richness of big carnivores was greater in the Pleistocene and many of them were significantly larger than their modern counterparts. Fossil evidence suggests that interspecific competition among carnivores was relatively intense and reveals that some individuals specialized in consuming megaherbivores. To estimate the potential impact of Pleistocene large carnivores, we use both historic and modern data on predator-prey body mass relationships to predict size ranges of their typical and maximum prey when hunting as individuals and in groups. These prey size ranges are then compared with estimates of juvenile and subadult proboscidean body sizes derived from extant elephant growth data. Young proboscideans at their most vulnerable age fall within the predicted prey size ranges of many of the Pleistocene carnivores. Predation on juveniles can have a greater impact on megaherbivores because of their long interbirth intervals, and consequently, we argue that Pleistocene carnivores had the capacity to, and likely did, limit megaherbivore population sizes. PMID:26504224

  8. Terrestrial Ecosystems - Topographic Moisture Potential of the Conterminous United States

    USGS Publications Warehouse

    Cress, Jill J.; Sayre, Roger G.; Comer, Patrick; Warner, Harumi

    2009-01-01

    As part of an effort to map terrestrial ecosystems, the U.S. Geological Survey has generated topographic moisture potential classes to be used in creating maps depicting standardized, terrestrial ecosystem models for the conterminous United States, using an ecosystems classification developed by NatureServe. A biophysical stratification approach, developed for South America and now being implemented globally, was used to model the ecosystem distributions. Substrate moisture regimes strongly influence the differentiation and distribution of terrestrial ecosystems, and therefore topographic moisture potential is one of the key input layers in this biophysical stratification. The method used to produce these topographic moisture potential classes was based on the derivation of ground moisture potential using a combination of computed topographic characteristics (CTI, slope, and aspect) and mapped National Wetland Inventory (NWI) boundaries. This method does not use climate or soil attributes to calculate relative topographic moisture potential since these characteristics are incorporated into the ecosystem model though other input layers. All of the topographic data used for this assessment were derived from the USGS 30-meter National Elevation Dataset (NED ) including the National Compound Topographic Index (CTI). The CTI index is a topographically derived measure of slope for a raster cell and the contributing area from upstream raster cells, and thus expresses potential for water flow to a point. In other words CTI data are 'a quantification of the position of a site in the local landscape', where the lowest values indicate ridges and the highest values indicate stream channels, lakes and ponds. These CTI values were compared to independent estimates of water accumulation by obtaining geospatial data from a number of sample locations representing two types of NWI boundaries: freshwater emergent wetlands and freshwater forested/shrub wetlands. Where these shorelines

  9. Variational methods to estimate terrestrial ecosystem model parameters

    NASA Astrophysics Data System (ADS)

    Delahaies, Sylvain; Roulstone, Ian

    2016-04-01

    Carbon is at the basis of the chemistry of life. Its ubiquity in the Earth system is the result of complex recycling processes. Present in the atmosphere in the form of carbon dioxide it is adsorbed by marine and terrestrial ecosystems and stored within living biomass and decaying organic matter. Then soil chemistry and a non negligible amount of time transform the dead matter into fossil fuels. Throughout this cycle, carbon dioxide is released in the atmosphere through respiration and combustion of fossils fuels. Model-data fusion techniques allow us to combine our understanding of these complex processes with an ever-growing amount of observational data to help improving models and predictions. The data assimilation linked ecosystem carbon (DALEC) model is a simple box model simulating the carbon budget allocation for terrestrial ecosystems. Over the last decade several studies have demonstrated the relative merit of various inverse modelling strategies (MCMC, ENKF, 4DVAR) to estimate model parameters and initial carbon stocks for DALEC and to quantify the uncertainty in the predictions. Despite its simplicity, DALEC represents the basic processes at the heart of more sophisticated models of the carbon cycle. Using adjoint based methods we study inverse problems for DALEC with various data streams (8 days MODIS LAI, monthly MODIS LAI, NEE). The framework of constraint optimization allows us to incorporate ecological common sense into the variational framework. We use resolution matrices to study the nature of the inverse problems and to obtain data importance and information content for the different type of data. We study how varying the time step affect the solutions, and we show how "spin up" naturally improves the conditioning of the inverse problems.

  10. Evidence from paleosols for ecosystem changes across the Cretaceous/Tertiary boundary in eastern Montana

    NASA Astrophysics Data System (ADS)

    Retallack, Gregory J.; Leahy, Guy D.; Spoon, Michael D.

    1987-12-01

    Ancient soils (paleosols) of the latest Cretaceous Hell Creek Formation are mildly calcareous, have clayey subsurface (Bt) horizons, and exhibit abundant large root traces, as is typical of forested soils in subhumid climates. The fact that some of the paleosols are capped by thin, impure coals is evidence for seasonally dry swamps. The paleosol evidence thus supports published reconstructions, based on fossil leaves, pollen, and vertebrates, that this area was subtropical, seasonally dry, subhumid, and forested mainly by angiosperms. Paleosols within the earliest Tertiary (Paleocene) Tullock Formation have thicker, coaly, surface (O and A) horizons and are more drab colored and less calcareous than paleosols of the Hell Creek Formation. These features are indications of waterlogging and of a humid climate. Large root traces and clayey subsurface (Bt) horizons are evidence of swamp woodland and forest. Inferred base level and paleoclimate are compatible with evidence from fossil leaves and pollen that indicates more abundant deciduous, early successional angiosperms and swamp conifers compared to those of Late Cretaceous time. Most of the paleosols have drab Munsell hues and can be expected to preserve a reliable fossil record of pollen and other plant remains. The carbonate content of the paleosols declines toward the top of the Hell Creek Formation, and the uppermost 3 m of the formation is noncalcareous. Because of this, the decline in diversity and abundance of bone over this interval is interpreted as a taphonomic artifact. Evidence from paleosols supports paleobotani-cal evidence for catastrophic change in ecosystems at the Cretaceous/Tertiary boundary.

  11. Cascading effects of induced terrestrial plant defences on aquatic and terrestrial ecosystem function.

    PubMed

    Jackrel, Sara L; Wootton, J Timothy

    2015-04-22

    Herbivores induce plants to undergo diverse processes that minimize costs to the plant, such as producing defences to deter herbivory or reallocating limited resources to inaccessible portions of the plant. Yet most plant tissue is consumed by decomposers, not herbivores, and these defensive processes aimed to deter herbivores may alter plant tissue even after detachment from the plant. All consumers value nutrients, but plants also require these nutrients for primary functions and defensive processes. We experimentally simulated herbivory with and without nutrient additions on red alder (Alnus rubra), which supplies the majority of leaf litter for many rivers in western North America. Simulated herbivory induced a defence response with cascading effects: terrestrial herbivores and aquatic decomposers fed less on leaves from stressed trees. This effect was context dependent: leaves from fertilized-only trees decomposed most rapidly while leaves from fertilized trees receiving the herbivory treatment decomposed least, suggesting plants funnelled a nutritionally valuable resource into enhanced defence. One component of the defence response was a decrease in leaf nitrogen leading to elevated carbon : nitrogen. Aquatic decomposers prefer leaves naturally low in C : N and this altered nutrient profile largely explains the lower rate of aquatic decomposition. Furthermore, terrestrial soil decomposers were unaffected by either treatment but did show a preference for local and nitrogen-rich leaves. Our study illustrates the ecological implications of terrestrial herbivory and these findings demonstrate that the effects of selection caused by terrestrial herbivory in one ecosystem can indirectly shape the structure of other ecosystems through ecological fluxes across boundaries. PMID:25788602

  12. Cascading effects of induced terrestrial plant defences on aquatic and terrestrial ecosystem function

    PubMed Central

    Jackrel, Sara L.; Wootton, J. Timothy

    2015-01-01

    Herbivores induce plants to undergo diverse processes that minimize costs to the plant, such as producing defences to deter herbivory or reallocating limited resources to inaccessible portions of the plant. Yet most plant tissue is consumed by decomposers, not herbivores, and these defensive processes aimed to deter herbivores may alter plant tissue even after detachment from the plant. All consumers value nutrients, but plants also require these nutrients for primary functions and defensive processes. We experimentally simulated herbivory with and without nutrient additions on red alder (Alnus rubra), which supplies the majority of leaf litter for many rivers in western North America. Simulated herbivory induced a defence response with cascading effects: terrestrial herbivores and aquatic decomposers fed less on leaves from stressed trees. This effect was context dependent: leaves from fertilized-only trees decomposed most rapidly while leaves from fertilized trees receiving the herbivory treatment decomposed least, suggesting plants funnelled a nutritionally valuable resource into enhanced defence. One component of the defence response was a decrease in leaf nitrogen leading to elevated carbon : nitrogen. Aquatic decomposers prefer leaves naturally low in C : N and this altered nutrient profile largely explains the lower rate of aquatic decomposition. Furthermore, terrestrial soil decomposers were unaffected by either treatment but did show a preference for local and nitrogen-rich leaves. Our study illustrates the ecological implications of terrestrial herbivory and these findings demonstrate that the effects of selection caused by terrestrial herbivory in one ecosystem can indirectly shape the structure of other ecosystems through ecological fluxes across boundaries. PMID:25788602

  13. The terrestrial ecosystem program for the Yucca Mountain Project

    SciTech Connect

    Ostler, W.K.; O`Farrell, T.P.

    1994-06-01

    DOE has implemented a program to monitor and mitigate impacts associated with site Characterization Activities at Yucca Mountain on the environment. This program has a sound experimental and statistical base. Monitoring data has been collected for parts of the program since 1989. There have been numerous changes in the Terrestrial Ecosystems Program since 1989 that reflect changes in the design and locations of Site Characterization Activities. There have also been changes made in the mitigation techniques implemented to protect important environmental resources based on results from the research efforts at Yucca Mountain. These changes have strengthened DOE efforts to ensure protection of the environmental during Site Characterization. DOE,has developed and implemented an integrated environmental program that protects the biotic environment and will restore environmental quality at Yucca Mountain.

  14. Microplastics in the Terrestrial Ecosystem: Implications for Lumbricus terrestris (Oligochaeta, Lumbricidae).

    PubMed

    Huerta Lwanga, Esperanza; Gertsen, Hennie; Gooren, Harm; Peters, Piet; Salánki, Tamás; van der Ploeg, Martine; Besseling, Ellen; Koelmans, Albert A; Geissen, Violette

    2016-03-01

    Plastic debris is widespread in the environment, but information on the effects of microplastics on terrestrial fauna is completely lacking. Here, we studied the survival and fitness of the earthworm Lumbricus terrestris (Oligochaeta, Lumbricidae) exposed to microplastics (Polyethylene, <150 μm) in litter at concentrations of 7, 28, 45, and 60% dry weight, percentages that, after bioturbation, translate to 0.2 to 1.2% in bulk soil. Mortality after 60 days was higher at 28, 45, and 60% of microplastics in the litter than at 7% w/w and in the control (0%). Growth rate was significantly reduced at 28, 45, and 60% w/w microplastics, compared to the 7% and control treatments. Due to the digestion of ingested organic matter, microplastic was concentrated in cast, especially at the lowest dose (i.e., 7% in litter) because that dose had the highest proportion of digestible organic matter. Whereas 50 percent of the microplastics had a size of <50 μm in the original litter, 90 percent of the microplastics in the casts was <50 μm in all treatments, which suggests size-selective egestion by the earthworms. These concentration-transport and size-selection mechanisms may have important implications for fate and risk of microplastic in terrestrial ecosystems. PMID:26852875

  15. Global distribution of carbon turnover times in terrestrial ecosystems

    NASA Astrophysics Data System (ADS)

    Carvalhais, Nuno; Forkel, Matthias; Khomik, Myroslava; Bellarby, Jessica; Jung, Martin; Migliavacca, Mirco; Mu, Mingquan; Saatchi, Sassan; Santoro, Maurizio; Thurner, Martin; Weber, Ulrich; Ahrens, Bernhard; Beer, Christian; Cescatti, Alessandro; Randerson, James T.; Reichstein, Markus

    2015-04-01

    The response of the carbon cycle in terrestrial ecosystems to climate variability remains one of the largest uncertainties affecting future projections of climate change. This feedback between the terrestrial carbon cycle and climate is partly determined by the response of carbon uptake and by changes in the residence time of carbon in land ecosystems, which depend on climate, soil, and vegetation type. Thus, it is of foremost importance to quantify the turnover times of carbon in terrestrial ecosystems and its spatial co-variability with climate. Here, we develop a global, spatially explicit and observation-based assessment of whole-ecosystem carbon turnover times (τ) to investigate its co-variation with climate at global scale. Assuming a balance between uptake (gross primary production, GPP) and emission fluxes, τ can be defined as the ratio between the total stock (C_total) and the output or input fluxes (GPP). The estimation of vegetation (C_veg) stocks relies on new remote sensing-based estimates from Saatchi et al (2011) and Thurner et al (2014), while soil carbon stocks (C_soil) are estimated based on state of the art global (Harmonized World Soil Database) and regional (Northern Circumpolar Soil Carbon Database) datasets. The uptake flux estimates are based on global observation-based fields of GPP (Jung et al., 2011). Globally, we find an overall mean global carbon turnover time of 23-4+7 years (95% confidence interval). A strong spatial variability globally is also observed, from shorter residence times in equatorial regions to longer periods at latitudes north of 75°N (mean τ of 15 and 255 years, respectively). The observed latitudinal pattern reflect the clear dependencies on temperature, showing increases from the equator to the poles, which is consistent with our current understanding of temperature controls on ecosystem dynamics. However, long turnover times are also observed in semi-arid and forest-herbaceous transition regions. Furthermore

  16. MODELING MINERAL NITROGEN EXPORT FROM A FOREST TERRESTRIAL ECOSYSTEM TO STREAMS

    EPA Science Inventory

    Terrestrial ecosystems are major sources of N pollution to aquatic ecosystems. Predicting N export to streams is a critical goal of non-point source modeling. This study was conducted to assess the effect of terrestrial N cycling on stream N export using long-term monitoring da...

  17. USING ANT COMMUNITIES FOR RAPID ASSESSMENT OF TERRESTRIAL ECOSYSTEM HEALTH

    SciTech Connect

    Wike, L; Doug Martin, D; Michael Paller, M; Eric Nelson, E

    2007-01-12

    Ecosystem health with its near infinite number of variables is difficult to measure, and there are many opinions as to which variables are most important, most easily measured, and most robust, Bioassessment avoids the controversy of choosing which physical and chemical parameters to measure because it uses responses of a community of organisms that integrate all aspects of the system in question. A variety of bioassessment methods have been successfully applied to aquatic ecosystems using fish and macroinvertebrate communities. Terrestrial biotic index methods are less developed than those for aquatic systems and we are seeking to address this problem here. This study had as its objective to examine the baseline differences in ant communities at different seral stages from clear cut back to mature pine plantation as a precursor to developing a bioassessment protocol. Comparative sampling was conducted at four seral stages; clearcut, 5 year, 15 year and mature pine plantation stands. Soil and vegetation data were collected at each site. All ants collected were preserved in 70% ethyl alcohol and identified to genus. Analysis of the ant data indicates that ants respond strongly to the habitat changes that accompany ecological succession in managed pine forests and that individual genera as well as ant community structure can be used as an indicator of successional change. Ants exhibited relatively high diversity in both early and mature seral stages. High ant diversity in the mature seral stages was likely related to conditions on the forest floor which favored litter dwelling and cool climate specialists.

  18. Application of a terrestrial ecosystem model to assess ecosystem services in Asia

    NASA Astrophysics Data System (ADS)

    Shoyama, K.; Yamagata, Y.; Ito, A.; Kohyama, T.

    2011-12-01

    Net primary production (NPP) is a measure of the production rate of organic matter and the gross rate of carbon fixation. NPP is considered as appropriate concept for analyzing variations of the ecosystems induced by land use. Human appropriation of net primary production (HANPP) is a major indicator of human pressures on ecosystems. Land use induced changes in the productivity affect the processes and functions of ecosystems and they are associated with the provision of ecosystem services, such as the provision of biomass through agriculture and forestry, and the regulation services such as the absorption capacity for GHG emissions. A number of studies have been assessed the amount of human induced changes of NPP in the global level and calculated in spatially explicit way. However, the analysis of socio-economic drivers of the changes is still remaining as the main topic in the field. The interrelations between HANPP and social structures and processes are priority of global change research. The methodologies for credible HANPP assessment have been established in the previous studies. The proposed three parameters are (1)NPPptn: NPP of the vegetation that would be assumed to prevail in the absence of human use (potential vegetation), (2)NPPact: NPP of the currently prevailing vegetation (actual vegetation), (3)NPPh: human harvest of NPP (e.g., through agriculture and forestry). We estimated these parameters in Asia using a process-based ecosystem model that describes carbon and nitrogen dynamics of plants and soils for terrestrial ecosystems of the globe. The socio-economic data on crop and timber harvest was applied to estimate the amount of human harvest of NPP. The parameters were calculated for each political unit to discuss social structures responding to various ecosystems. Based on the estimated parameters, we suggest the effective methodology combining spatially explicit gridded data and socio-economic statistical data.

  19. Adaptation policies to increase terrestrial ecosystem resilience. Potential utility of a multicriteria approach

    SciTech Connect

    de Bremond, Ariane; Engle, Nathan L.

    2014-01-30

    Climate change is rapidly undermining terrestrial ecosystem resilience and capacity to continue providing their services to the benefit of humanity and nature. Because of the importance of terrestrial ecosystems to human well-being and supporting services, decision makers throughout the world are busy creating policy responses that secure multiple development and conservation objectives- including that of supporting terrestrial ecosystem resilience in the context of climate change. This article aims to advance analyses on climate policy evaluation and planning in the area of terrestrial ecosystem resilience by discussing adaptation policy options within the ecology-economy-social nexus. The paper evaluates these decisions in the realm of terrestrial ecosystem resilience and evaluates the utility of a set of criteria, indicators, and assessment methods, proposed by a new conceptual multi-criteria framework for pro-development climate policy and planning developed by the United Nations Environment Programme. Potential applications of a multicriteria approach to climate policy vis-A -vis terrestrial ecosystems are then explored through two hypothetical case study examples. The paper closes with a brief discussion of the utility of the multi-criteria approach in the context of other climate policy evaluation approaches, considers lessons learned as a result efforts to evaluate climate policy in the realm of terrestrial ecosystems, and reiterates the role of ecosystem resilience in creating sound policies and actions that support the integration of climate change and development goals.

  20. Terrestrial ecosystem destabilization at the K/T boundary in southwestern North Dakota, USA.

    NASA Astrophysics Data System (ADS)

    Bercovici, Antoine; Pearson, Dean; Villanueva-Amadoz, Uxue

    2010-05-01

    stratigraphical interval, when preserved. 3) Within or just above the formation contact coal, the relative abundance of palynological taxa indicative of the Cretaceous (K-taxa) drop significantly without significant subsequent recovery. 4) Above the formation contact lignite, lithology systematically the lithology consistently appears as a 1-2 m thick dark mudstone sequence. The palynological record of this interval is dominated by freshwater taxa (Pediastrum sp. and Penetetrapites sp.) indicating general flooding in the study area. 5) Change in the sedimentation style in comparison of the Hell Creek is reflected by the preservation of variegated beds, multiple lignite seams and small scale meandering river systems. The palynological content attest for reworking and erosion. Conclusions shows that both palaeoenviroments and biodiversity patterns stay consistent throughout the Hell Creek Formation, with the exception of its uppermost part. The vertebrate and plant communities underwent a significant change at this time coincident with the evidence for a impact scenario or catastrophic event of massive scale. Beginning at the very end of the Cretaceous and continuing up into the overlying Fort Union Formation, the area was experiencing the onset of a transgression cycle which contributed to widespread ponding. Following the impact, modifications in the environment caused by land denudation, changes in sea level and drainage patterns promoted run-off and reworking. The destabilization of terrestrial ecosystems in southwestern North Dakota is coincident with markers of the K/T boundary that supports a catastrophic event taking place over a very short duration.

  1. Assessing net ecosystem carbon exchange of U.S. terrestrial ecosystems by integrating eddy covariance flux measurements and satellite observations

    Technology Transfer Automated Retrieval System (TEKTRAN)

    More accurate projections of future carbon dioxide concentrations in the atmosphere and associated climate change as well as carbon accounting and climate policy-making depend on improved scientific understanding of the terrestrial carbon cycle. Despite the consensus that U.S. terrestrial ecosystems...

  2. Terrestrial ecosystems in a changing environment: a dominant role for water.

    PubMed

    Bernacchi, Carl J; VanLoocke, Andy

    2015-01-01

    Transpiration--the movement of water from the soil, through plants, and into the atmosphere--is the dominant water flux from the earth's terrestrial surface. The evolution of vascular plants, while increasing terrestrial primary productivity, led to higher transpiration rates and widespread alterations in the global climate system. Similarly, anthropogenic influences on transpiration rates are already influencing terrestrial hydrologic cycles, with an even greater potential for changes lying ahead. Intricate linkages among anthropogenic activities, terrestrial productivity, the hydrologic cycle, and global demand for ecosystem services will lead to increased pressures on ecosystem water demands. Here, we focus on identifying the key drivers of ecosystem water use as they relate to plant physiological function, the role of predicted global changes in ecosystem water uses, trade-offs between ecosystem water use and carbon uptake, and knowledge gaps. PMID:25621516

  3. Correlated terrestrial and marine evidence for global climate changes before mass extinction at the Cretaceous-Paleogene boundary.

    PubMed

    Wilf, Peter; Johnson, Kirk R; Huber, Brian T

    2003-01-21

    Terrestrial climates near the time of the end-Cretaceous mass extinction are poorly known, limiting understanding of environmentally driven changes in biodiversity that occurred before bolide impact. We estimate paleotemperatures for the last approximately 1.1 million years of the Cretaceous ( approximately 66.6-65.5 million years ago, Ma) by using fossil plants from North Dakota and employ paleomagnetic stratigraphy to correlate the results to foraminiferal paleoclimatic data from four middle- and high-latitude sites. Both plants and foraminifera indicate warming near 66.0 Ma, a warming peak from approximately 65.8 to 65.6 Ma, and cooling near 65.6 Ma, suggesting that these were global climate shifts. The warming peak coincides with the immigration of a thermophilic flora, maximum plant diversity, and the poleward range expansion of thermophilic foraminifera. Plant data indicate the continuation of relatively cool temperatures across the Cretaceous-Paleogene boundary; there is no indication of a major warming immediately after the boundary as previously reported. Our temperature proxies correspond well with recent pCO(2) data from paleosol carbonate, suggesting a coupling of pCO(2) and temperature. To the extent that biodiversity is correlated with temperature, estimates of the severity of end-Cretaceous extinctions that are based on occurrence data from the warming peak are probably inflated, as we illustrate for North Dakota plants. However, our analysis of climate and facies considerations shows that the effects of bolide impact should be regarded as the most significant contributor to these plant extinctions. PMID:12524455

  4. Climate Feedback on Methane Emissions From Terrestrial Ecosystems

    NASA Astrophysics Data System (ADS)

    Butenhoff, C. L.; Sithole, A.; Khalil, A. K.; Rice, A. L.; Shearer, M. J.

    2012-12-01

    Terrestrial ecosystems are one of the important components of the climate system that are bound to change and cause feedbacks with global warming. One major mechanism of this feedback is the response of biological processes, mostly bacteria, that produce or consume greenhouse gases such as carbon dioxide (CO2) and methane (CH4). Here we are concerned with the emissions of CH4 which is considered the most important non-CO2 greenhouse gas because it has more than doubled during the last century and is about 20 times more potent per kilogram once emitted to the atmosphere. Methane is produced by anaerobic methanogens in wetland soils and rice paddies, and is consumed by methanotrophic bacteria in aerobic and upland soils. Together these sources account for about 40-60% of global methane emissions. Properly accounting for the feedback of CH4 emissions with temperature in Earth Systems Models (ESMs) remains an open challenge in part due to the lack of experimental data. Reported Q10 values (factor by which reaction rate increases for a 10°C rise in temperature) of CH4 flux from wetlands and rice agriculture vary over an order of magnitude for reasons that are not well known contributing to this uncertainty. We report here a suite of experimental measurements to determine the Q10 of CH4 flux from rice agriculture and to understand how it depends on the temperature responses of its underlying processes. Since processes may have different Q10 values it is essential that these are properly represented in ESMs. We grew rice plants in temperature-controlled mesocosms at 20, 24, 28 and 32°C over two seasons (years 2009 - 2010) and measured flux, production and oxidation rates, at regular intervals using static chambers, soil core incubations, and carbon isotopes (δ13C-CH4), respectively. In addition we used qPCR techniques to measure methyl coenzyme M reductase (mcrA) and particulate methane monooxygenase (pmoA) genes from mesocosm soil cores to establish the temperature

  5. No post-Cretaceous ecosystem depression in European forests? Rich insect-feeding damage on diverse middle Palaeocene plants, Menat, France

    PubMed Central

    Wappler, Torsten; Currano, Ellen D.; Wilf, Peter; Rust, Jes; Labandeira, Conrad C.

    2009-01-01

    Insect herbivores are considered vulnerable to extinctions of their plant hosts. Previous studies of insect-damaged fossil leaves in the US Western Interior showed major plant and insect herbivore extinction at the Cretaceous–Palaeogene (K–T) boundary. Further, the regional plant–insect system remained depressed or ecologically unbalanced throughout the Palaeocene. Whereas Cretaceous floras had high plant and insect-feeding diversity, all Palaeocene assemblages to date had low richness of plants, insect feeding or both. Here, we use leaf fossils from the middle Palaeocene Menat site, France, which has the oldest well-preserved leaf assemblage from the Palaeocene of Europe, to test the generality of the observed Palaeocene US pattern. Surprisingly, Menat combines high floral diversity with high insect activity, making it the first observation of a ‘healthy’ Palaeocene plant–insect system. Furthermore, rich and abundant leaf mines across plant species indicate well-developed host specialization. The diversity and complexity of plant–insect interactions at Menat suggest that the net effects of the K–T extinction were less at this greater distance from the Chicxulub, Mexico, impact site. Along with the available data from other regions, our results show that the end-Cretaceous event did not cause a uniform, long-lasting depression of global terrestrial ecosystems. Rather, it gave rise to varying regional patterns of ecological collapse and recovery that appear to have been strongly influenced by distance from the Chicxulub structure. PMID:19776074

  6. Trace element and isotope geochemistry of Cretaceous-Tertiary boundary sediments: identification of extra-terrestrial and volcanic components

    NASA Technical Reports Server (NTRS)

    Margolis, S. V.; Doehne, E. F.

    1988-01-01

    Trace element and stable isotope analyses were performed on a series of sediment samples crossing the Cretaceous-Tertiary (K-T) boundary from critical sections at Aumaya and Sopelano, Spain. The aim is to possibly distinguish extraterrestrial vs. volcanic or authigenic concentration of platinum group and other elements in K-T boundary transitional sediments. These sediments also have been shown to contain evidence for step-wise extinction of several groups of marine invertebrates, associated with negative oxygen and carbon isotope excursions occurring during the last million years of the Cretaceous. These isotope excursions have been interpreted to indicate major changes in ocean thermal regime, circulation, and ecosystems that may be related to multiple events during latest Cretaceous time. Results to date on the petrographic and geochemical analyses of the Late Cretaceous and Early Paleocene sediments indicate that diagenesis has obviously affected the trace element geochemistry and stable isotope compositions at Zumaya. Mineralogical and geochemical analysis of K-T boundary sediments at Zumaya suggest that a substantial fraction of anomalous trace elements in the boundary marl are present in specific mineral phases. Platinum and nickel grains perhaps represent the first direct evidence of siderophile-rich minerals at the boundary. The presence of spinels and Ni-rich particles as inclusions in aluminosilicate spherules from Zumaya suggests an original, non-diagenetic origin for the spherules. Similar spherules from southern Spain (Caravaca), show a strong marine authigenic overprint. This research represents a new approach in trying to directly identify the sedimentary mineral components that are responsible for the trace element concentrations associated with the K-T boundary.

  7. The Importance of Uncertainty and Sensitivity Analyses in Process-Based Models of Carbon and Nitrogen Cycling in Terrestrial Ecosystems with Particular Emphasis on Forest Ecosystems

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Many process-based models of carbon (C) and nitrogen (N) cycles have been developed for terrestrial ecosystems, including forest ecosystems. Existing models are sufficiently well advanced to help decision makers develop sustainable management policies and planning of terrestrial ecosystems, as they ...

  8. Assessing net ecosystem carbon exchange of U S terrestrial ecosystems by integrating eddy covariance flux measurements and satellite observations

    SciTech Connect

    Zhuang, Qianlai; Law, Beverly E.; Baldocchi, Dennis; Ma, Siyan; Chen, Jiquan; Richardson, Andrew; Melillo, Jerry; Davis, Ken J.; Hollinger, D.; Wharton, Sonia; Falk, Matthias; Paw, U. Kyaw Tha; Oren, Ram; Katulk, Gabriel G.; Noormets, Asko; Fischer, Marc; Verma, Shashi; Suyker, A. E.; Cook, David R.; Sun, G.; McNulty, Steven G.; Wofsy, Steve; Bolstad, Paul V; Burns, Sean; Monson, Russell K.; Curtis, Peter; Drake, Bert G.; Foster, David R.; Gu, Lianhong; Hadley, Julian L.; Litvak, Marcy; Martin, Timothy A.; Matamala, Roser; Meyers, Tilden; Oechel, Walter C.; Schmid, H. P.; Scott, Russell L.; Torn, Margaret S.

    2011-01-01

    More accurate projections of future carbon dioxide concentrations in the atmosphere and associated climate change depend on improved scientific understanding of the terrestrial carbon cycle. Despite the consensus that U.S. terrestrial ecosystems provide a carbon sink, the size, distribution, and interannual variability of this sink remain uncertain. Here we report a terrestrial carbon sink in the conterminous U.S. at 0.63 pg C yr 1 with the majority of the sink in regions dominated by evergreen and deciduous forests and savannas. This estimate is based on our continuous estimates of net ecosystem carbon exchange (NEE) with high spatial (1 km) and temporal (8-day) resolutions derived from NEE measurements from eddy covariance flux towers and wall-to-wall satellite observations from Moderate Resolution Imaging Spectroradiometer (MODIS). We find that the U.S. terrestrial ecosystems could offset a maximum of 40% of the fossil-fuel carbon emissions. Our results show that the U.S. terrestrial carbon sink varied between 0.51 and 0.70 pg C yr 1 over the period 2001 2006. The dominant sources of interannual variation of the carbon sink included extreme climate events and disturbances. Droughts in 2002 and 2006 reduced the U.S. carbon sink by 20% relative to a normal year. Disturbances including wildfires and hurricanes reduced carbon uptake or resulted in carbon release at regional scales. Our results provide an alternative, independent, and novel constraint to the U.S. terrestrial carbon sink.

  9. Mid Miocene Terrestrial Ecosystems: Information from Mammalian Herbivore Communities.

    NASA Astrophysics Data System (ADS)

    Janis, C. M.; Damuth, J.; Theodor, J. M.

    2001-05-01

    In present day ecosystems the numbers and proportions of different kinds of ecologically distinct ungulates (hoofed mammals) provide an indicator of the nature of the vegetation in the habitat. Different vegetation types (such as forest, savanna, or grassland) are characteristically associated with different arrays of ungulates, with species exhibiting differences in diet, body size, and type of digestive fermentation system. These biological attributes can also be inferred for fossil ungulate species, the first two from quantitative assessment of skull and dental anatomy, and the last from phylogenetic affinity. Thus fossil ungulate communities may be used as indicators of the vegetation types of the habitats in which they lived. Vegetation types, in turn, are determined largely by a number of physical environmental factors. Typical ungulate communities of the late early to early middle Miocene (17 - 15 Ma) from the Great Plains of North America contained a diversity of browsing (leaf-eating) and grazing (grass-eating) species, with proportions of dietary types and a diversity of body sizes indicative of a woodland savanna habitat. Paleobotanical evidence also indicates a woodland savanna type of vegetation. However, these communities included a much larger number of ungulate species than can be found in any present-day community. The "excess" ungulate species were primarily browsers. Throughout the rest of the middle Miocene both species numbers and the proportion of browsers in ungulate communities appear to have declined steadily. During this decline in browser species the numbers of grazer species remained relatively constant. Within-community species numbers comparable to the present day were attained by the late Miocene. We suggest that the early Miocene browser-rich communities, and their subsequent decline, carry an important paleoenvironmental signal. In particular, communities "over rich" in browsers may reflect higher levels of primary productivity in

  10. Turbulence and Fluid Flow: Perspectives. Physical Processes in Terrestrial and Aquatic Ecosystems, Transport Processes.

    ERIC Educational Resources Information Center

    Simpson, James R.

    This module is part of a series on Physical Processes in Terrestrial and Aquatic Ecosystems. The materials were designed to be used by life science students for instruction in the application of physical theory to ecosystem operation. Most modules contain computer programs which are built around a particular application of a physical process.…

  11. The origin of Cretaceous black shales: a change in the surface ocean ecosystem and its triggers

    PubMed Central

    OHKOUCHI, Naohiko; KURODA, Junichiro; TAIRA, Asahiko

    2015-01-01

    Black shale is dark-colored, organic-rich sediment, and there have been many episodes of black shale deposition over the history of the Earth. Black shales are source rocks for petroleum and natural gas, and thus are both geologically and economically important. Here, we review our recent progress in understanding of the surface ocean ecosystem during periods of carbonaceous sediment deposition, and the factors triggering black shale deposition. The stable nitrogen isotopic composition of geoporphyrins (geological derivatives of chlorophylls) strongly suggests that N2-fixation was a major process for nourishing the photoautotrophs. A symbiotic association between diatoms and cyanobacteria may have been a major primary producer during episodes of black shale deposition. The timing of black shale formation in the Cretaceous is strongly correlated with the emplacement of large igneous provinces such as the Ontong Java Plateau, suggesting that black shale deposition was ultimately induced by massive volcanic events. However, the process that connects these events remains to be solved. PMID:26194853

  12. The origin of Cretaceous black shales: a change in the surface ocean ecosystem and its triggers.

    PubMed

    Ohkouchi, Naohiko; Kuroda, Junichiro; Taira, Asahiko

    2015-01-01

    Black shale is dark-colored, organic-rich sediment, and there have been many episodes of black shale deposition over the history of the Earth. Black shales are source rocks for petroleum and natural gas, and thus are both geologically and economically important. Here, we review our recent progress in understanding of the surface ocean ecosystem during periods of carbonaceous sediment deposition, and the factors triggering black shale deposition. The stable nitrogen isotopic composition of geoporphyrins (geological derivatives of chlorophylls) strongly suggests that N2-fixation was a major process for nourishing the photoautotrophs. A symbiotic association between diatoms and cyanobacteria may have been a major primary producer during episodes of black shale deposition. The timing of black shale formation in the Cretaceous is strongly correlated with the emplacement of large igneous provinces such as the Ontong Java Plateau, suggesting that black shale deposition was ultimately induced by massive volcanic events. However, the process that connects these events remains to be solved. PMID:26194853

  13. Effects of nitrogen deposition on carbon cycle in terrestrial ecosystems of China: A meta-analysis.

    PubMed

    Chen, Hao; Li, Dejun; Gurmesa, Geshere A; Yu, Guirui; Li, Linghao; Zhang, Wei; Fang, Huajun; Mo, Jiangming

    2015-11-01

    Nitrogen (N) deposition in China has increased greatly, but the general impact of elevated N deposition on carbon (C) dynamics in Chinese terrestrial ecosystems is not well documented. In this study we used a meta-analysis method to compile 88 studies on the effects of N deposition C cycling on Chinese terrestrial ecosystems. Our results showed that N addition did not change soil C pools but increased above-ground plant C pool. A large decrease in below-ground plant C pool was observed. Our result also showed that the impacts of N addition on ecosystem C dynamics depend on ecosystem type and rate of N addition. Overall, our findings suggest that 1) decreased below-ground plant C pool may limit long-term soil C sequestration; and 2) it is better to treat N-rich and N-limited ecosystems differently in modeling effects of N deposition on ecosystem C cycle. PMID:26232918

  14. Modeling the role of terrestrial ecosystems in the global carbon cycle

    SciTech Connect

    Emanuel, W.R.; Post, W.M.; Shugart, H.H. Jr.

    1980-01-01

    A model for the global biogeochemical cycle of carbon which includes a five-compartment submodel for circulation in terrestrial ecosystems of the world is presented. Although this terrestrial submodel divides carbon into compartments with more functional detail than previous models, the variability in carbon dynamics among ecosystem types and in different climatic zones is not adequately treated. A new model construct which specifically treats this variability by modeling the distribution of ecosystem types as a function of climate on a 0.5/sup 0/ latitude by 0.5/sup 0/ longitude scale of resolution is proposed.

  15. FATE OF SELECTED FUNGICIDES IN A TERRESTRIAL LABORATORY ECOSYSTEM

    EPA Science Inventory

    The disposition of (14)C-labeled pentachloronitrobenzene (PCNB), two of its analogues pentachlorophenol (PCP) and hexachlorobenzene (HCB), and captan was examined as seed-protectant coatings in a terrestrial microcosm chamber (TMC) in comparison to a reference compound, dieldrin ...

  16. Importance of terrestrial arthropods as subsidies in lowland Neotropical rain forest stream ecosystems

    USGS Publications Warehouse

    Small, Gaston E.; Torres, Pedro J.; Schwizer, Lauren M.; Duff, John H.; Pringle, Catherine M.

    2013-01-01

    The importance of terrestrial arthropods has been documented in temperate stream ecosystems, but little is known about the magnitude of these inputs in tropical streams. Terrestrial arthropods falling from the canopy of tropical forests may be an important subsidy to tropical stream food webs and could also represent an important flux of nitrogen (N) and phosphorus (P) in nutrient-poor headwater streams. We quantified input rates of terrestrial insects in eight streams draining lowland tropical wet forest in Costa Rica. In two focal headwater streams, we also measured capture efficiency by the fish assemblage and quantified terrestrially derived N- and P-excretion relative to stream nutrient uptake rates. Average input rates of terrestrial insects ranged from 5 to 41 mg dry mass/m2/d, exceeding previous measurements of aquatic invertebrate secondary production in these study streams, and were relatively consistent year-round, in contrast to values reported in temperate streams. Terrestrial insects accounted for half of the diet of the dominant fish species, Priapicthys annectens. Although terrestrially derived fish excretion was found to be a small flux relative to measured nutrient uptake rates in the focal streams, the efficient capture and processing of terrestrial arthropods by fish made these nutrients available to the local stream ecosystem. This aquatic-terrestrial linkage is likely being decoupled by deforestation in many tropical regions, with largely unknown but potentially important ecological consequences.

  17. Comparing marine and terrestrial ecosystems: Implications for the design of coastal marine reserves

    USGS Publications Warehouse

    Carr, M.H.; Neigel, J.E.; Estes, J.A.; Andelman, S.; Warner, R.R.; Largier, J. L.

    2003-01-01

    Concepts and theory for the design and application of terrestrial reserves is based on our understanding of environmental, ecological, and evolutionary processes responsible for biological diversity and sustainability of terrestrial ecosystems and how humans have influenced these processes. How well this terrestrial-based theory can be applied toward the design and application of reserves in the coastal marine environment depends, in part, on the degree of similarity between these systems. Several marked differences in ecological and evolutionary processes exist between marine and terrestrial ecosystems as ramifications of fundamental differences in their physical environments (i.e., the relative prevalence of air and water) and contemporary patterns of human impacts. Most notably, the great extent and rate of dispersal of nutrients, materials, holoplanktonic organisms, and reproductive propagules of benthic organisms expand scales of connectivity among near-shore communities and ecosystems. Consequently, the "openness" of marine populations, communities, and ecosystems probably has marked influences on their spatial, genetic, and trophic structures and dynamics in ways experienced by only some terrestrial species. Such differences appear to be particularly significant for the kinds of organisms most exploited and targeted for protection in coastal marine ecosystems (fishes and macroinvertebrates). These and other differences imply some unique design criteria and application of reserves in the marine environment. In explaining the implications of these differences for marine reserve design and application, we identify many of the environmental and ecological processes and design criteria necessary for consideration in the development of the analytical approaches developed elsewhere in this Special Issue.

  18. Terrestrial ecosystems - Isobioclimates of the conterminous United States

    USGS Publications Warehouse

    Cress, Jill J.; Sayre, Roger G.; Comer, Patrick; Warner, Harumi

    2009-01-01

    However, the biophysical stratification approach used for the ecosystems modeling effort required a single climate layer that accurately reflected regional variation in wet/dry gradients and hot/cold gradients, with a manageable number of classes. Therefore, the data layers for thermotypes and ombrotypes were combined, yielding 127 unique thermotype-ombrotype combinations.The isobioclimates image shows ombrotypic regions (dry/wet gradients) for each thermotypic (warm/cold) region. Additional information about this map and any of the data developed for the ecosystems modeling of the conterminous United States is available online at http://rmgsc.cr.usgs.gov/ecosystems/.

  19. Biogeochemical cycling in terrestrial ecosystems - Modeling, measurement, and remote sensing

    NASA Technical Reports Server (NTRS)

    Peterson, D. L.; Matson, P. A.; Lawless, J. G.; Aber, J. D.; Vitousek, P. M.

    1985-01-01

    The use of modeling, remote sensing, and measurements to characterize the pathways and to measure the rate of biogeochemical cycling in forest ecosystems is described. The application of the process-level model to predict processes in intact forests and ecosystems response to disturbance is examined. The selection of research areas from contrasting climate regimes and sites having a fertility gradient in that regime is discussed, and the sites studied are listed. The use of remote sensing in determining leaf area index and canopy biochemistry is analyzed. Nitrous oxide emission is investigated by using a gas measurement instrument. Future research projects, which include studying the influence of changes on nutrient cycling in ecosystems and the effect of pollutants on the ecosystems, are discussed.

  20. ACID PRECIPITATION AND ITS EFFECTS ON TERRESTRIAL AND AQUATIC ECOSYSTEMS

    EPA Science Inventory

    Man-induced change in the chemical climate of the earth has increased. Recent research has demonstrated that atmospheric deposition contains both beneficial nutrients and injurious substances; plants, animals, and ecosystems vary greatly in susceptibility; injury is most likely w...

  1. Drought-Net: A global network to assess terrestrial ecosystem sensitivity to drought

    NASA Astrophysics Data System (ADS)

    Smith, Melinda; Sala, Osvaldo; Phillips, Richard

    2015-04-01

    All ecosystems will be impacted to some extent by climate change, with forecasts for more frequent and severe drought likely to have the greatest impact on terrestrial ecosystems. Terrestrial ecosystems are known to vary dramatically in their responses to drought. However, the factors that may make some ecosystems respond more or less than others remains unknown, but such understanding is critical for predicting drought impacts at regional and continental scales. To effectively forecast terrestrial ecosystem responses to drought, ecologists must assess responses of a range of different ecosystems to drought, and then improve existing models by incorporating the factors that cause such variation in response. Traditional site-based research cannot provide this knowledge because experiments conducted at individual sites are often not directly comparable due to differences in methodologies employed. Coordinated experimental networks, with identical protocols and comparable measurements, are ideally suited for comparative studies at regional to global scales. The US National Science Foundation-funded Drought-Net Research Coordination Network (www.drought-net.org) will advance understanding of the determinants of terrestrial ecosystem responses to drought by bringing together an international group of scientists to conduct two key activities conducted over the next five years: 1) planning and coordinating new research using standardized measurements to leverage the value of existing drought experiments across the globe (Enhancing Existing Experiments, EEE), and 2) finalizing the design and facilitating the establishment of a new international network of coordinated drought experiments (the International Drought Experiment, IDE). The primary goals of these activities are to assess: (1) patterns of differential terrestrial ecosystem sensitivity to drought and (2) potential mechanisms underlying those patterns.

  2. Drought-Net: An international network to assess terrestrial ecosystem sensitivity to drought

    NASA Astrophysics Data System (ADS)

    Smith, M.; Phillips, R.; Sala, O. E.

    2014-12-01

    All ecosystems will be impacted to some extent by climate change, with forecasts for more frequent and severe drought likely to have the greatest impact on terrestrial ecosystems. Terrestrial ecosystems are known to vary dramatically in their responses to drought. However, the factors that may make some ecosystems respond more or less than others remains unknown, but such understanding is critical for predicting drought impacts at regional and continental scales. To effectively forecast terrestrial ecosystem responses to drought, ecologists must assess responses of a range of different ecosystems to drought, and then improve existing models by incorporating the factors that cause such variation in response. Traditional site-based research cannot provide this knowledge because experiments conducted at individual sites are often not directly comparable due to differences in methodologies employed. Coordinated experimental networks, with identical protocols and comparable measurements, are ideally suited for comparative studies at regional to global scales. The US National Science Foundation-funded Drought-Net Research Coordination Network (www.drought-net.org) will advance understanding of the determinants of terrestrial ecosystem responses to drought by bringing together an international group of scientists to conduct two key activities conducted over the next five years: 1) planning and coordinating new research using standardized measurements to leverage the value of existing drought experiments across the globe (Enhancing Existing Experiments, EEE), and 2) finalizing the design and facilitating the establishment of a new international network of coordinated drought experiments (the International Drought Experiment, IDE). The primary goals of these activities are to assess: (1) patterns of differential terrestrial ecosystem sensitivity to drought and (2) potential mechanisms underlying those patterns.

  3. Terrestrial ecosystems and the global biogeochemical silica cycle

    NASA Astrophysics Data System (ADS)

    Conley, Daniel J.

    2002-12-01

    Most research on the global Si cycle has focused nearly exclusively on weathering or the oceanic Si cycle and has not explored the complexity of the terrestrial biogeochemical cycle. The global biogeochemical Si cycle is of great interest because of its impact on global CO2 concentrations through the combined processes of weathering of silicate minerals and transfer of CO2 from the atmosphere to the lithosphere. A sizable pool of Si is contained as accumulations of amorphous silica, or biogenic silica (BSi), in living tissues of growing plants, known as phytoliths, and, after decomposition of organic material, as remains in the soil. The annual fixation of phytolith silica ranges from 60-200 Tmol yr-1 and rivals that fixed in the oceanic biogeochemical cycle (240 Tmol yr-1). Internal recycling of the phytolith pool is intense with riverine fluxes of dissolved silicate to the oceans buffered by the terrestrial biogeochemical Si cycle, challenging the ability of weathering models to predict rates of weathering and consequently, changes in global climate. Consideration must be given to the influence of the terrestrial BSi pool on variations in the global biogeochemical Si cycle over geologic time and the influence man has had on modifying both the terrestrial and aquatic biogeochemical cycles.

  4. Freshwater ecology. Experimental nutrient additions accelerate terrestrial carbon loss from stream ecosystems.

    PubMed

    Rosemond, Amy D; Benstead, Jonathan P; Bumpers, Phillip M; Gulis, Vladislav; Kominoski, John S; Manning, David W P; Suberkropp, Keller; Wallace, J Bruce

    2015-03-01

    Nutrient pollution of freshwater ecosystems results in predictable increases in carbon (C) sequestration by algae. Tests of nutrient enrichment on the fates of terrestrial organic C, which supports riverine food webs and is a source of CO2, are lacking. Using whole-stream nitrogen (N) and phosphorus (P) additions spanning the equivalent of 27 years, we found that average terrestrial organic C residence time was reduced by ~50% as compared to reference conditions as a result of nutrient pollution. Annual inputs of terrestrial organic C were rapidly depleted via release of detrital food webs from N and P co-limitation. This magnitude of terrestrial C loss can potentially exceed predicted algal C gains with nutrient enrichment across large parts of river networks, diminishing associated ecosystem services. PMID:25745171

  5. Using the CARDAMOM framework to retrieve global terrestrial ecosystem functioning properties

    NASA Astrophysics Data System (ADS)

    Exbrayat, Jean-François; Bloom, A. Anthony; Smallman, T. Luke; van der Velde, Ivar R.; Feng, Liang; Williams, Mathew

    2016-04-01

    Terrestrial ecosystems act as a sink for anthropogenic emissions of fossil-fuel and thereby partially offset the ongoing global warming. However, recent model benchmarking and intercomparison studies have highlighted the non-trivial uncertainties that exist in our understanding of key ecosystem properties like plant carbon allocation and residence times. It leads to worrisome differences in terrestrial carbon stocks simulated by Earth system models, and their evolution in a warming future. In this presentation we attempt to provide global insights on these properties by merging an ecosystem model with remotely-sensed global observations of leaf area and biomass through a data-assimilation system: the CARbon Data MOdel fraMework (CARDAMOM). CARDAMOM relies on a Markov Chain Monte Carlo algorithm to retrieve confidence intervals of model parameters that regulate ecosystem properties independently of any prior land-cover information. The MCMC method thereby enables an explicit representation of the uncertainty in land-atmosphere fluxes and the evolution of terrestrial carbon stocks through time. Global experiments are performed for the first decade of the 21st century using a 1°×1° spatial resolution. Relationships emerge globally between key ecosystem properties. For example, our analyses indicate that leaf lifespan and leaf mass per area are highly correlated. Furthermore, there exists a latitudinal gradient in allocation patterns: high latitude ecosystems allocate more carbon to photosynthetic carbon (leaves) while plants invest more carbon in their structural parts (wood and root) in the wet tropics. Overall, the spatial distribution of these ecosystem properties does not correspond to usual land-cover maps and are also partially correlated with disturbance regimes. For example, fire-prone ecosystems present statistically significant higher values of carbon use efficiency than less disturbed ecosystems experiencing similar climatic conditions. These results

  6. Responses of terrestrial ecosystems and carbon budgets to current and future environmental variability

    PubMed Central

    Medvigy, David; Wofsy, Steven C.; Munger, J. William; Moorcroft, Paul R.

    2010-01-01

    We assess the significance of high-frequency variability of environmental parameters (sunlight, precipitation, temperature) for the structure and function of terrestrial ecosystems under current and future climate. We examine the influence of hourly, daily, and monthly variance using the Ecosystem Demography model version 2 in conjunction with the long-term record of carbon fluxes measured at Harvard Forest. We find that fluctuations of sunlight and precipitation are strongly and nonlinearly coupled to ecosystem function, with effects that accumulate through annual and decadal timescales. Increasing variability in sunlight and precipitation leads to lower rates of carbon sequestration and favors broad-leaved deciduous trees over conifers. Temperature variability has only minor impacts by comparison. We also find that projected changes in sunlight and precipitation variability have important implications for carbon storage and ecosystem structure and composition. Based on Intergovernmental Panel on Climate Change model estimates for changes in high-frequency meteorological variability over the next 100 years, we expect that terrestrial ecosystems will be affected by changes in variability almost as much as by changes in mean climate. We conclude that terrestrial ecosystems are highly sensitive to high-frequency meteorological variability, and that accurate knowledge of the statistics of this variability is essential for realistic predictions of ecosystem structure and functioning. PMID:20404190

  7. Responses of terrestrial ecosystems and carbon budgets to current and future environmental variability.

    PubMed

    Medvigy, David; Wofsy, Steven C; Munger, J William; Moorcroft, Paul R

    2010-05-01

    We assess the significance of high-frequency variability of environmental parameters (sunlight, precipitation, temperature) for the structure and function of terrestrial ecosystems under current and future climate. We examine the influence of hourly, daily, and monthly variance using the Ecosystem Demography model version 2 in conjunction with the long-term record of carbon fluxes measured at Harvard Forest. We find that fluctuations of sunlight and precipitation are strongly and nonlinearly coupled to ecosystem function, with effects that accumulate through annual and decadal timescales. Increasing variability in sunlight and precipitation leads to lower rates of carbon sequestration and favors broad-leaved deciduous trees over conifers. Temperature variability has only minor impacts by comparison. We also find that projected changes in sunlight and precipitation variability have important implications for carbon storage and ecosystem structure and composition. Based on Intergovernmental Panel on Climate Change model estimates for changes in high-frequency meteorological variability over the next 100 years, we expect that terrestrial ecosystems will be affected by changes in variability almost as much as by changes in mean climate. We conclude that terrestrial ecosystems are highly sensitive to high-frequency meteorological variability, and that accurate knowledge of the statistics of this variability is essential for realistic predictions of ecosystem structure and functioning. PMID:20404190

  8. A New Map of Standardized Terrestrial Ecosystems of the Conterminous United States

    USGS Publications Warehouse

    Sayre, Roger G.; Comer, Patrick; Warner, Harumi; Cress, Jill

    2009-01-01

    A new map of standardized, mesoscale (tens to thousands of hectares) terrestrial ecosystems for the conterminous United States was developed by using a biophysical stratification approach. The ecosystems delineated in this top-down, deductive modeling effort are described in NatureServe's classification of terrestrial ecological systems of the United States. The ecosystems were mapped as physically distinct areas and were associated with known distributions of vegetation assemblages by using a standardized methodology first developed for South America. This approach follows the geoecosystems concept of R.J. Huggett and the ecosystem geography approach of R.G. Bailey. Unique physical environments were delineated through a geospatial combination of national data layers for biogeography, bioclimate, surficial materials lithology, land surface forms, and topographic moisture potential. Combining these layers resulted in a comprehensive biophysical stratification of the conterminous United States, which produced 13,482 unique biophysical areas. These were considered as fundamental units of ecosystem structure and were aggregated into 419 potential terrestrial ecosystems. The ecosystems classification effort preceded the mapping effort and involved the independent development of diagnostic criteria, descriptions, and nomenclature for describing expert-derived ecological systems. The aggregation and labeling of the mapped ecosystem structure units into the ecological systems classification was accomplished in an iterative, expert-knowledge-based process using automated rulesets for identifying ecosystems on the basis of their biophysical and biogeographic attributes. The mapped ecosystems, at a 30-meter base resolution, represent an improvement in spatial and thematic (class) resolution over existing ecoregionalizations and are useful for a variety of applications, including ecosystem services assessments, climate change impact studies, biodiversity conservation, and

  9. Deep Atomic Binding (DAB) Approach in Interpretation of Fission Products Behavior in Terrestrial and Water Ecosystems

    SciTech Connect

    Ajlouni, Abdul-Wali M.S.

    2006-07-01

    A large number of studies and models were established to explain the fission products (FP) behavior within terrestrial and water ecosystems, but a number of behaviors were non understandable, which always attributed to unknown reasons. According to DAB hypothesis, almost all fission products behaviors in terrestrial and water ecosystems could be interpreted in a wide coincidence. The gab between former models predictions, and field behavior of fission products after accidents like Chernobyl have been explained. DAB represents a tool to reduce radio-phobia as well as radiation protection expenses. (author)

  10. Sensitivity of global terrestrial ecosystems to climate variability.

    PubMed

    Seddon, Alistair W R; Macias-Fauria, Marc; Long, Peter R; Benz, David; Willis, Kathy J

    2016-03-10

    The identification of properties that contribute to the persistence and resilience of ecosystems despite climate change constitutes a research priority of global relevance. Here we present a novel, empirical approach to assess the relative sensitivity of ecosystems to climate variability, one property of resilience that builds on theoretical modelling work recognizing that systems closer to critical thresholds respond more sensitively to external perturbations. We develop a new metric, the vegetation sensitivity index, that identifies areas sensitive to climate variability over the past 14 years. The metric uses time series data derived from the moderate-resolution imaging spectroradiometer (MODIS) enhanced vegetation index, and three climatic variables that drive vegetation productivity (air temperature, water availability and cloud cover). Underlying the analysis is an autoregressive modelling approach used to identify climate drivers of vegetation productivity on monthly timescales, in addition to regions with memory effects and reduced response rates to external forcing. We find ecologically sensitive regions with amplified responses to climate variability in the Arctic tundra, parts of the boreal forest belt, the tropical rainforest, alpine regions worldwide, steppe and prairie regions of central Asia and North and South America, the Caatinga deciduous forest in eastern South America, and eastern areas of Australia. Our study provides a quantitative methodology for assessing the relative response rate of ecosystems--be they natural or with a strong anthropogenic signature--to environmental variability, which is the first step towards addressing why some regions appear to be more sensitive than others, and what impact this has on the resilience of ecosystem service provision and human well-being. PMID:26886790

  11. Evaluation of the Terrestrial Ecosystem Formation and Diversity in a Modified Dynamic Global Vegetation Model

    NASA Astrophysics Data System (ADS)

    Zeng, X.; Shao, P.; Song, X.

    2010-12-01

    Terrestrial ecosystem formation and diversity have great impact on the stability and frangibility of ecosystem. It is important that Dynamic Global Vegetation Models (DGVMs) can capture these essential properties so that they can correctly simulate the succession and transition of terrestrial ecosystem in company with the global climate change. Previous studies have shown that DGVMs can roughly reproduce the spatial distributions of different vegetation types as well as the dependence of the vegetation distribution on climate conditions, however, the capability of DGVMs to reproduce the global vegetation distribution and ecosystem formation has not been fully evaluated. This study is based on our modified DGVM coupled with the Community Land Model (CLM-DGVM). The modified CLM-DGVM can simulate 12 plant functional types (PFTs) besides the bare soil. It allows two or more PFTs coexisting in a grid cell, in contrast to the DGVMs which tend to generate the ecosystem with single dominant plant functional type and hence lose the functional diversity of ecosystem. Our results show that the density distributions of fractional coverage (DDFC) of three vegetation categories (e.g., forest, grassland, and shrubland) and PFTs are different with the observation. In particular, the model overestimates the DDFC over regions with tree coverage larger than 70%, but underestimates the DDFC over regions with tree coverage less than 40%. Furthermore, the functional diversity of PFTs in each gridcell is generally lower than that in the observation. Sensitivity tests show that substantial changes in the terrestrial ecosystem usually occur within the areas where two or more PFTs coexist with comparable fractions, i.e., and the functional diversity is high. These results imply that current CLM-DGVM may not be able to appropriately produce the averaged amplitude and spatial pattern of the transition in global ecosystem. Therefore, we suggest that extensive studies are required to improve

  12. Impacts of droughts on carbon sequestration by China's terrestrial ecosystems from 2000 to 2011

    NASA Astrophysics Data System (ADS)

    Liu, Y.; Zhou, Y.; Ju, W.; Wang, S.; Wu, X.; He, M.; Zhu, G.

    2014-05-01

    In recent years, China's terrestrial ecosystems have experienced frequent droughts. How these droughts have affected carbon sequestration by the terrestrial ecosystems is still unclear. In this study, the process-based Boreal Ecosystem Productivity Simulator (BEPS) model, driven by remotely sensed vegetation parameters, was employed to assess the effects of droughts on net ecosystem productivity (NEP) of terrestrial ecosystems in China from 2000 to 2011. Droughts of differing severity, as indicated by a standard precipitation index (SPI), hit terrestrial ecosystems in China extensively in 2001, 2006, 2009, and 2011. The national total annual NEP exhibited the slight decline of -11.3 Tg C yr-2 during the aforementioned years of extensive droughts. The NEP reduction ranged from 61.1 Tg C yr-1 to 168.8 Tg C yr-1. National and regional total NEP anomalies were correlated with the annual mean SPI, especially in Northwest China, North China, Central China, and Southwest China. The reductions in annual NEP in 2001 and 2011 might have been caused by a larger decrease in annual gross primary productivity (GPP) than in annual ecosystem respiration (ER). The reductions experienced in 2009 might be due to a decrease in annual GPP and an increase in annual ER, while reductions in 2006 could stem from a larger increase in ER than in GPP. The effects of droughts on NEP lagged up to 3-6 months, due to different responses of GPP and ER. In eastern China, where is humid and warm, droughts have predominant and short-term lagged influences on NEP. In western regions, cold and arid, the drought effects on NEP were relatively weaker but prone to lasting longer.

  13. A source of terrestrial organic carbon to investigate the browning of aquatic ecosystems.

    PubMed

    Lennon, Jay T; Hamilton, Stephen K; Muscarella, Mario E; Grandy, A Stuart; Wickings, Kyle; Jones, Stuart E

    2013-01-01

    There is growing evidence that terrestrial ecosystems are exporting more dissolved organic carbon (DOC) to aquatic ecosystems than they did just a few decades ago. This "browning" phenomenon will alter the chemistry, physics, and biology of inland water bodies in complex and difficult-to-predict ways. Experiments provide an opportunity to elucidate how browning will affect the stability and functioning of aquatic ecosystems. However, it is challenging to obtain sources of DOC that can be used for manipulations at ecologically relevant scales. In this study, we evaluated a commercially available source of humic substances ("Super Hume") as an analog for natural sources of terrestrial DOC. Based on chemical characterizations, comparative surveys, and whole-ecosystem manipulations, we found that the physical and chemical properties of Super Hume are similar to those of natural DOC in aquatic and terrestrial ecosystems. For example, Super Hume attenuated solar radiation in ways that will not only influence the physiology of aquatic taxa but also the metabolism of entire ecosystems. Based on its chemical properties (high lignin content, high quinone content, and low C:N and C:P ratios), Super Hume is a fairly recalcitrant, low-quality resource for aquatic consumers. Nevertheless, we demonstrate that Super Hume can subsidize aquatic food webs through 1) the uptake of dissolved organic constituents by microorganisms, and 2) the consumption of particulate fractions by larger organisms (i.e., Daphnia). After discussing some of the caveats of Super Hume, we conclude that commercial sources of humic substances can be used to help address pressing ecological questions concerning the increased export of terrestrial DOC to aquatic ecosystems. PMID:24124511

  14. A Source of Terrestrial Organic Carbon to Investigate the Browning of Aquatic Ecosystems

    PubMed Central

    Lennon, Jay T.; Hamilton, Stephen K.; Muscarella, Mario E.; Grandy, A. Stuart; Wickings, Kyle; Jones, Stuart E.

    2013-01-01

    There is growing evidence that terrestrial ecosystems are exporting more dissolved organic carbon (DOC) to aquatic ecosystems than they did just a few decades ago. This “browning” phenomenon will alter the chemistry, physics, and biology of inland water bodies in complex and difficult-to-predict ways. Experiments provide an opportunity to elucidate how browning will affect the stability and functioning of aquatic ecosystems. However, it is challenging to obtain sources of DOC that can be used for manipulations at ecologically relevant scales. In this study, we evaluated a commercially available source of humic substances (“Super Hume”) as an analog for natural sources of terrestrial DOC. Based on chemical characterizations, comparative surveys, and whole-ecosystem manipulations, we found that the physical and chemical properties of Super Hume are similar to those of natural DOC in aquatic and terrestrial ecosystems. For example, Super Hume attenuated solar radiation in ways that will not only influence the physiology of aquatic taxa but also the metabolism of entire ecosystems. Based on its chemical properties (high lignin content, high quinone content, and low C:N and C:P ratios), Super Hume is a fairly recalcitrant, low-quality resource for aquatic consumers. Nevertheless, we demonstrate that Super Hume can subsidize aquatic food webs through 1) the uptake of dissolved organic constituents by microorganisms, and 2) the consumption of particulate fractions by larger organisms (i.e., Daphnia). After discussing some of the caveats of Super Hume, we conclude that commercial sources of humic substances can be used to help address pressing ecological questions concerning the increased export of terrestrial DOC to aquatic ecosystems. PMID:24124511

  15. A bottom-up evolution of terrestrial ecosystem modeling theory, and ideas toward global vegetation modeling

    NASA Technical Reports Server (NTRS)

    Running, Steven W.

    1992-01-01

    A primary purpose of this review is to convey lessons learned in the development of a forest ecosystem modeling approach, from it origins in 1973 as a single-tree water balance model to the current regional applications. The second intent is to use this accumulated experience to offer ideas of how terrestrial ecosystem modeling can be taken to the global scale: earth systems modeling. A logic is suggested where mechanistic ecosystem models are not themselves operated globally, but rather are used to 'calibrate' much simplified models, primarily driven by remote sensing, that could be implemented in a semiautomated way globally, and in principle could interface with atmospheric general circulation models (GCM's).

  16. DESIGN AND EVALUATION OF A TERRESTRIAL MODEL ECOSYSTEM FOR EVALUATION OF SUBSTITUTE PESTICIDE CHEMICALS

    EPA Science Inventory

    This grant was established to design a terrestrial model ecosystem that was simple, inexpensive, and suitable for examining the total environmental fate of radiolabeled pesticides in a soil crop model e.g. soil-corn or soil-soybean. This was accomplished with the practical develo...

  17. EFFECTS OF ULTRAVIOLET-B RADIATION ON PLANT COMPETITION IN TERRESTRIAL ECOSYSTEMS

    EPA Science Inventory

    Evidence regarding the interaction of ultraviolet-B (UV-B, 280-320 nm) radiation and plant competition in terrestrial ecosystems is examined. The competitive interactions of some species pairs were affected even by ambient solar UV-B radiation (as exists without ozone depletion),...

  18. Sensitivity of global terrestrial ecosystems to climate variability

    NASA Astrophysics Data System (ADS)

    Seddon, Alistair W. R.; Macias-Fauria, Marc; Long, Peter R.; Benz, David; Willis, Kathy J.

    2016-03-01

    The identification of properties that contribute to the persistence and resilience of ecosystems despite climate change constitutes a research priority of global relevance. Here we present a novel, empirical approach to assess the relative sensitivity of ecosystems to climate variability, one property of resilience that builds on theoretical modelling work recognizing that systems closer to critical thresholds respond more sensitively to external perturbations. We develop a new metric, the vegetation sensitivity index, that identifies areas sensitive to climate variability over the past 14 years. The metric uses time series data derived from the moderate-resolution imaging spectroradiometer (MODIS) enhanced vegetation index, and three climatic variables that drive vegetation productivity (air temperature, water availability and cloud cover). Underlying the analysis is an autoregressive modelling approach used to identify climate drivers of vegetation productivity on monthly timescales, in addition to regions with memory effects and reduced response rates to external forcing. We find ecologically sensitive regions with amplified responses to climate variability in the Arctic tundra, parts of the boreal forest belt, the tropical rainforest, alpine regions worldwide, steppe and prairie regions of central Asia and North and South America, the Caatinga deciduous forest in eastern South America, and eastern areas of Australia. Our study provides a quantitative methodology for assessing the relative response rate of ecosystems—be they natural or with a strong anthropogenic signature—to environmental variability, which is the first step towards addressing why some regions appear to be more sensitive than others, and what impact this has on the resilience of ecosystem service provision and human well-being.

  19. Identification, definition and mapping of terrestrial ecosystems in interior Alaska

    NASA Technical Reports Server (NTRS)

    Anderson, J. H. (Principal Investigator)

    1973-01-01

    The author has identified the following significant results. The primary objective is to identify and analyze vegetation types in as great of detail as possible on ERTS-1 imagery and to classify and delineate them through mapping. This is basic to the identification, definition, and mapping of ecosystems. Major conclusions are: (1) the ERTS-1 system is useful for regional scale studies of broadly defined Alaskan vegetation types; (2) the resolution and spectral capabilities of ERTS-1 MSS imagery in photographic formats is adequate for certain phytecenologic purposes; and (3) preparation of an improved State vegetation map will be feasible.

  20. Carbon fluxes, evapotranspiration, and water use efficiency of terrestrial ecosystems in China

    NASA Astrophysics Data System (ADS)

    Xiao, J.

    2013-12-01

    The magnitude, spatial patterns, and controlling factors of the carbon and water fluxes of terrestrial ecosystems in China are not well understood due to the lack of ecosystem-level flux observations. We synthesized flux and micrometeorological observations from 22 eddy covariance flux sites across China, and examined the carbon fluxes, evapotranspiration (ET), and water use efficiency (WUE) of terrestrial ecosystems at the annual scale. Our results show that annual carbon and water fluxes exhibited clear latitudinal patterns across sites. Both annual gross primary productivity (GPP) and ecosystem respiration (ER) declined with increasing latitude, leading to a declining pattern in net ecosystem productivity (NEP) with increasing latitude. Annual ET also generally declined with increasing latitude. The spatial patterns of annual carbon and water fluxes were mainly driven by annual temperature, precipitation, and growing season length. Carbon fluxes, ET, and water use efficiency (WUE) varied with vegetation type. Overall, forest and cropland sites had higher annual fluxes than grassland sites, and the annual fluxes of coastal wetland sites were similar to or slightly higher than those of forest sites. Annual WUE was associated with annual precipitation, GPP, and growing season length. Higher-productivity ecosystems (forests and coastal wetlands) also had higher WUE than lower-productivity ecosystems (grasslands and croplands). The strong relationships between annual GPP and ET demonstrated the coupling of the carbon and water cycles. Our results show that forest plantations had high annual net carbon uptake and WUE, and provide larger carbon sequestration capacity than natural forests. The coastal salt marsh and mangrove ecosystems also had high carbon sequestration capacity. Efforts to strengthen China's ecosystem carbon sequestration should focus on ecosystems such as forest plantations in southern China where heat and water are ideal for maintaining high

  1. Using carbon oxidation state and ecosystem oxidative ratio to understand terrestrial ecosystem response to elevated CO2

    NASA Astrophysics Data System (ADS)

    Hockaday, W. C.; Masiello, C. A.; Gallagher, M. E.

    2015-12-01

    Here we show that an easily-measured biogeochemical tracer, carbon oxidation state (Cox) can be used to understand ecosystem response to elevated atmospheric CO2 concentrations. We briefly review the use of Cox in understanding C sink estimates, and its role in understanding the coupled nature of carbon and oxygen cycles, which derives from its relationship with ecosystem oxidative ratio (OR). The Cox of a carbon pool provides an integrated measure of all processes that create and destroy organic matter (e.g. photosynthesis, respiration, fire) and therefore, can be used to estimate the oxidative ratio (O2/CO2) of biosphere-atmosphere exchange. Our preliminary data suggest that the OR of temperate hardwood forest and grassland ecosystems are influenced by atmospheric CO2 concentration. The variation in ecosystem Cox with atmospheric CO2 concentration suggest that OR is not a conservative property of terrestrial ecosystems on annual or decadal timescales. In the grassland ecosystem, the Cox of plant biomass increased by as much as 50% across a CO2 concentration gradient of 190 ppm, but the response was highly dependent upon soil properties. In the temperate forest, the Cox of the soil C pool increased by 40% after 9 seasons of CO2 enrichment (by 175 ppm). We will discuss our interpretation of Cox as a proxy and its potential use in studies of coupled O2 and CO2 cycling.

  2. Exploring the Terrestrial Ecosystem Response to Extreme Weather Events using Multiple Land Surface Models

    NASA Astrophysics Data System (ADS)

    Xu, L.; Schlosser, C. A.; Kicklighter, D. W.; Felzer, B. S.; Monier, E.; Paw U, K.

    2012-12-01

    This study investigates the complex terrestrial ecosystems response to extreme weather events using three different land surface models. Previous studies have showed that extreme weather events can have serious and damaging impacts on human and natural systems and they are most evident on regional and local scales. Under climate change, extreme weather events are likely to increase in both magnitude and frequency, making realistic simulation of ecosystems response to extreme events more essential than ever in assessing the potential damaging impacts. Three different land surface models are used to explore the impacts of extreme events on regional to continental ecosystem responses. The Terrestrial Ecosystem Model (TEM) is a process-based ecosystem model that uses spatially referenced information on climate, elevation, soils, vegetation and water availability to make monthly estimates of vegetation and soil carbon and nitrogen fluxes and pool sizes. The Advanced Canopy-Atmosphere-Soil Algorithm (ACASA) is a multi-layered land surface model based on eddy-covariance theory to calculate the biosphere-atmosphere exchanges of carbon dioxide, water, and momentums. The Community Land Model (CLM) is a community-based model widely used in global-scale land data assimilation research. The study focuses on the complex interactions and feedbacks between the terrestrial ecosystem and the atmosphere such as water cycle, carbon and nitrogen budgets, and environmental conditions. The model simulations and performances are evaluated using the biogeophysical and micrometeorological observation data from the AmeriFlux sites across the continental US. This study compares and evaluates the ability of different models and their key components to capture terrestrial response to extreme weather events.

  3. Tracing pyrogenic carbon (PyC) beyond terrestrial ecosystems

    NASA Astrophysics Data System (ADS)

    Wiedemeier, Daniel B.; Eglinton, Timothy I.; Hanke, Ulrich M.; Schmidt, Michael W. I.

    2015-04-01

    Combustion-derived, pyrogenic carbon (PyC) is a persistent organic carbon fraction. Due to its aromatic and condensed nature (Wiedemeier et al., 2015), it is relatively resistant against chemical and biological degradation in the environment, leading to a comparatively slow turnover, which would support carbon sequestration. PyC is produced on large scales (hundreds of teragrams) in biomass burning events such as wildfires, and by combustion of fossil fuel in industry and traffic. PyC is an inherently terrestrial product and thus has predominantly been investigated in soils and the atmosphere. Much fewer studies are available about the subsequent transport of PyC to rivers and oceans. Recently, awareness has been rising about the mobility of PyC from terrestrial to marine systems and its fate in coastal and abyssal sediments was recognized (Mitra et al, 2014). It is therefore crucial to extend our knowledge about the PyC cycle by tracing PyC through all environmental compartments. By comparing its biogeochemical behavior and budgets to that of other forms of organic carbon, it will eventually be possible to elucidate PyC's total spatiotemporal contribution to carbon sequestration. In this study, we are using a state-of-the-art PyC molecular marker method (Wiedemeier et al., 2013, Gierga et al., 2014) to trace quantity, quality as well as 13C and 14C signature of PyC in selected major river systems around the globe (Godavari, Yellow, Danube, Fraser, Mackenzie and Yukon river). Different size fractions of particulate suspended sediment are being analyzed and compared across a north-south gradient. Previous studies suggested a distinct relationship between the age of plant-derived suspended carbon and the latitude of the river system, indicating slower cycling of plant biomarkers in higher latitudes. We discuss this pattern with respect to PyC, its isotopic signature and quality and the resulting implications for the global carbon and PyC cycle. Gierga et al., 2014

  4. Integration of nitrogen dynamics into a global terrestrial ecosystem model

    SciTech Connect

    Yang, Xiaojuan; Wittig, Victoria; Jain, Atul; Post, Wilfred M

    2009-01-01

    A comprehensive model of terrestrial N dynamics has been developed and coupled with the geographically explicit terrestrial C cycle component of the Integrated Science Assessment Model (ISAM). The coupled C-N cycle model represents all the major processes in the N cycle and all major interactions between C and N that affect plant productivity and soil and litter decomposition. Observations from the LIDET data set were compiled for calibration and evaluation of the decomposition submodel within ISAM. For aboveground decomposition, the calibration is accomplished by optimizing parameters related to four processes: the partitioning of leaf litter between metabolic and structural material, the effect of lignin on decomposition, the climate control on decomposition and N mineralization and immobilization. For belowground decomposition, the calibrated processes include the partitioning of root litter between decomposable and resistant material as a function of litter quality, N mineralization and immobilization. The calibrated model successfully captured both the C and N dynamics during decomposition for all major biomes and a wide range of climate conditions. Model results show that net N immobilization and mineralization during litter decomposition are dominantly controlled by initial N concentration of litter and the mass remaining during decomposition. The highest and lowest soil organicNstorage are in tundra (1.24 KgNm2) and desert soil (0.06 Kg N m2). The vegetation N storage is highest in tropical forests (0.5 Kg N m2), and lowest in tundra and desert (<0.03 Kg N m2). N uptake by vegetation is highest in warm and moist regions, and lowest in cold and dry regions. Higher rates of N leaching are found in tropical regions and subtropical regions where soil moisture is higher. The global patterns of vegetation and soil N, N uptake and N leaching estimated with ISAM are consistent with measurements and previous modeling studies. This gives us confidence that ISAM

  5. Challenges of deriving a complete biosphere greenhouse gas balance through integration of terrestrial and aquatic ecosystems

    NASA Astrophysics Data System (ADS)

    Peichl, Matthias

    2013-04-01

    Past research efforts have mostly focused on separately investigating the exchange of greenhouse gases (GHGs) within the limits of different terrestrial and aquatic ecosystem types. More recently however, it has been recognized that GHG exchanges and budgets are not limited to boundaries of the terrestrial or aquatic biosphere components and instead are often tightly linked amongst the different ecosystem types. Primarily the aquatic production and export of GHGs due to substrate supply or discharge from surrounding terrestrial ecosystems play a major role in regional GHG budgets. Understanding the mechanisms and drivers of this connectivity between different terrestrial and aquatic ecosystem GHG exchanges is therefore necessary to develop landscape-level GHG budgets and to understand their sensitivity to disturbances of the biosphere. Moreover, the exchange of carbon dioxide (CO2) as the most important GHG species has been the primary research objective with regards to obtaining better estimates of the carbon sequestration potential of the biosphere. However, methane (CH4) and nitrous oxide (N2O) emissions may offset CO2 sinks and considerably affect the complete GHG balance in both terrestrial and aquatic systems. Including their contribution and improved knowledge on the dynamics of these two gas species is therefore essential for complete GHG budget estimates. At present, the integration of terrestrial and aquatic GHG exchanges toward landscape GHG budgets poses numerous challenges. These include the need for a better knowledge of i) the contribution of CH4 and N2O to the GHG budgets within contrasting terrestrial (forests, peatlands, grasslands, croplands) and aquatic (lake, streams) ecosystems when integrated over a full year, ii) the effect of ecosystem properties (e.g. age and/or development stage, size of water body) on the GHG balance, iii) the impact of management effects (e.g. nitrogen fertilizer application), iv) differences among climate regions and v

  6. Landscape cultivation alters δ30Si signature in terrestrial ecosystems

    NASA Astrophysics Data System (ADS)

    Vandevenne, Floor I.; Delvaux, Claire; Hughes, Harold J.; André, Luc; Ronchi, Benedicta; Clymans, Wim; Barão, Lúcia; Cornelis, Jean-Thomas; Govers, Gerard; Meire, Patrick; Struyf, Eric

    2015-01-01

    Despite increasing recognition of the relevance of biological cycling for Si cycling in ecosystems and for Si export from soils to fluvial systems, effects of human cultivation on the Si cycle are still relatively understudied. Here we examined stable Si isotope (δ30Si) signatures in soil water samples across a temperate land use gradient. We show that - independent of geological and climatological variation - there is a depletion in light isotopes in soil water of intensive croplands and managed grasslands relative to native forests. Furthermore, our data suggest a divergence in δ30Si signatures along the land use change gradient, highlighting the imprint of vegetation cover, human cultivation and intensity of disturbance on δ30Si patterns, on top of more conventionally acknowledged drivers (i.e. mineralogy and climate).

  7. Landscape cultivation alters δ30Si signature in terrestrial ecosystems

    PubMed Central

    Vandevenne, Floor I.; Delvaux, Claire; Hughes, Harold J.; André, Luc; Ronchi, Benedicta; Clymans, Wim; Barão, Lúcia; Govers, Gerard; Meire, Patrick; Struyf, Eric

    2015-01-01

    Despite increasing recognition of the relevance of biological cycling for Si cycling in ecosystems and for Si export from soils to fluvial systems, effects of human cultivation on the Si cycle are still relatively understudied. Here we examined stable Si isotope (δ30Si) signatures in soil water samples across a temperate land use gradient. We show that – independent of geological and climatological variation – there is a depletion in light isotopes in soil water of intensive croplands and managed grasslands relative to native forests. Furthermore, our data suggest a divergence in δ30Si signatures along the land use change gradient, highlighting the imprint of vegetation cover, human cultivation and intensity of disturbance on δ30Si patterns, on top of more conventionally acknowledged drivers (i.e. mineralogy and climate). PMID:25583031

  8. Quantification of terrestrial ecosystem carbon dynamics in the conterminous United States combining a process-based biogeochemical model and MODIS and AmeriFlux data

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Satellite remote sensing provides continuous temporal and spatial information of terrestrial ecosystems. Using these remote sensing data and eddy flux measurements and biogeochemical models, such as the Terrestrial Ecosystem Model (TEM), should provide a more adequate quantification of carbon dynami...

  9. A meta-analysis of the canopy light extinction coefficient in terrestrial ecosystems

    NASA Astrophysics Data System (ADS)

    Zhang, Liangxia; Hu, Zhongmin; Fan, Jiangwen; Zhou, Decheng; Tang, Fengpei

    2014-12-01

    The canopy light extinction coefficient ( K) is a key factor in affecting ecosystem carbon, water, and energy processes. However, K is assumed as a constant in most biogeochemical models owing to lack of in-site measurements at diverse terrestrial ecosystems. In this study, by compiling data of K measured at 88 terrestrial ecosystems, we investigated the spatiotemporal variations of this index across main ecosystem types, including grassland, cropland, shrubland, broadleaf forest, and needleleaf forest. Our results indicated that the average K of all biome types during whole growing season was 0.56. However, this value in the peak growing season was 0.49, indicating a certain degree of seasonal variation. In addition, large variations in K exist within and among the plant functional types. Cropland had the highest value of K (0.62), followed by broadleaf forest (0.59), shrubland (0.56), grassland (0.50), and needleleaf forest (0.45). No significant spatial correlation was found between K and the major environmental factors, i.e., mean annual precipitation, mean annual temperature, and leaf area index (LAI). Intra-annually, significant negative correlations between K and seasonal changes in LAI were found in the natural ecosystems. In cropland, however, the temporal relationship was site-specific. The ecosystem type specific values of K and its temporal relationship with LAI observed in this study may contribute to improved modeling of global biogeochemical cycles.

  10. Crossing the Threshold - Reviewed Evidence for Regime Shifts in Arctic Terrestrial Ecosystems

    NASA Astrophysics Data System (ADS)

    Mård Karlsson, J.; Destouni, G.; Peterson, G.; Gordon, L.

    2009-12-01

    The Arctic is rapidly changing, and the Arctic terrestrial ecosystems may respond to changing conditions in different ways. We review the evidence of regime shifts (ecosystem change from one set of mutually reinforcing feedbacks to another) in Arctic terrestrial ecosystems in relation to the hydrological cycle, as part of a larger interdisciplinary research project on Pan-Arctic ice-water-biogeochemical system responses and social-ecological resilience effects in a warming climate, which has in turn been part of the International Polar Year project Arctic-HYDRA. Such regime shifts may have implications for the Earth system as a whole, through changes in water flows and energy balance that yield feedbacks to hydrology and the local and global climate. Because the presence or absence of permafrost is a main control on local hydrological processes in the Arctic, we use the ecological response to permafrost warming to define three types of regime shifts: 1) Conversion of aquatic to terrestrial ecosystems due to draining of lakes and wetlands caused by permafrost degradation and thermokarst processes, which may have a large impact on local people and animals that depend on these ecosystems for food, domestic needs, and habitat, and on climate as the water conditions influence the direction of CO2 exchange. 2) Conversion of terrestrial to aquatic ecosystems as forests are being replaced by wet sedge meadows, bogs, and thermokarst ponds that favor aquatic birds and mammals, as thawing permafrost atop continuous permafrost undermines and destroys the root zone, leading to collapse and death of the trees. 3) Shifts in terrestrial ecosystems due to transition from tundra to shrubland and/or forest, caused by warming of air and soil, resulting in increased surface energy exchanges and albedo, which may in turn feed back to enhanced warming at the local-regional scale. We compare the impact, scale and key processes for each of these regime shifts, and assess the degree to

  11. California's Summer and Winter Coastal Upwelling Impact on the Terrestrial Ecosystem

    NASA Astrophysics Data System (ADS)

    Garcia Reyes, M.; Sydeman, W. J.; Black, B.

    2014-12-01

    The terrestrial ecosystem along the California coastal region depends on the water that winter rain and year-round fog brings. The location and strength of the North Pacific Ocean high pressure system off the California coast determine the amount of rain during winter by blocking or allowing the pass of winter storms through the region. It also determines the strength and timing of alongshore winds that drive coastal upwelling, which in turns lead to cool coastal water during the spring and summer that is closely relate to fog formation. Timing and intensity of coastal upwelling vary year to year due to a number of climate processes impacting the high pressure system and the coastal atmospheric and ocean conditions. Notably, persistent summer upwelling varies independently from the sporadic winter/early spring upwelling events (as well as other weather patterns), and in turn they impact differently the marine and terrestrial ecosystems. Here, we review the variability and source of variability of the North Pacific High, its impact on the upwelling conditions along the California coast, and investigate their influence on terrestrial rain and fog during winter and summer, highlighting their impact on coastal and terrestrial ecosystems.

  12. Stimulation of terrestrial ecosystem carbon storage by nitrogen addition: a meta-analysis.

    PubMed

    Yue, Kai; Peng, Yan; Peng, Changhui; Yang, Wanqin; Peng, Xin; Wu, Fuzhong

    2016-01-01

    Elevated nitrogen (N) deposition alters the terrestrial carbon (C) cycle, which is likely to feed back to further climate change. However, how the overall terrestrial ecosystem C pools and fluxes respond to N addition remains unclear. By synthesizing data from multiple terrestrial ecosystems, we quantified the response of C pools and fluxes to experimental N addition using a comprehensive meta-analysis method. Our results showed that N addition significantly stimulated soil total C storage by 5.82% ([2.47%, 9.27%], 95% CI, the same below) and increased the C contents of the above- and below-ground parts of plants by 25.65% [11.07%, 42.12%] and 15.93% [6.80%, 25.85%], respectively. Furthermore, N addition significantly increased aboveground net primary production by 52.38% [40.58%, 65.19%] and litterfall by 14.67% [9.24%, 20.38%] at a global scale. However, the C influx from the plant litter to the soil through litter decomposition and the efflux from the soil due to microbial respiration and soil respiration showed insignificant responses to N addition. Overall, our meta-analysis suggested that N addition will increase soil C storage and plant C in both above- and below-ground parts, indicating that terrestrial ecosystems might act to strengthen as a C sink under increasing N deposition. PMID:26813078

  13. Stimulation of terrestrial ecosystem carbon storage by nitrogen addition: a meta-analysis

    NASA Astrophysics Data System (ADS)

    Yue, Kai; Peng, Yan; Peng, Changhui; Yang, Wanqin; Peng, Xin; Wu, Fuzhong

    2016-01-01

    Elevated nitrogen (N) deposition alters the terrestrial carbon (C) cycle, which is likely to feed back to further climate change. However, how the overall terrestrial ecosystem C pools and fluxes respond to N addition remains unclear. By synthesizing data from multiple terrestrial ecosystems, we quantified the response of C pools and fluxes to experimental N addition using a comprehensive meta-analysis method. Our results showed that N addition significantly stimulated soil total C storage by 5.82% ([2.47%, 9.27%], 95% CI, the same below) and increased the C contents of the above- and below-ground parts of plants by 25.65% [11.07%, 42.12%] and 15.93% [6.80%, 25.85%], respectively. Furthermore, N addition significantly increased aboveground net primary production by 52.38% [40.58%, 65.19%] and litterfall by 14.67% [9.24%, 20.38%] at a global scale. However, the C influx from the plant litter to the soil through litter decomposition and the efflux from the soil due to microbial respiration and soil respiration showed insignificant responses to N addition. Overall, our meta-analysis suggested that N addition will increase soil C storage and plant C in both above- and below-ground parts, indicating that terrestrial ecosystems might act to strengthen as a C sink under increasing N deposition.

  14. Stimulation of terrestrial ecosystem carbon storage by nitrogen addition: a meta-analysis

    PubMed Central

    Yue, Kai; Peng, Yan; Peng, Changhui; Yang, Wanqin; Peng, Xin; Wu, Fuzhong

    2016-01-01

    Elevated nitrogen (N) deposition alters the terrestrial carbon (C) cycle, which is likely to feed back to further climate change. However, how the overall terrestrial ecosystem C pools and fluxes respond to N addition remains unclear. By synthesizing data from multiple terrestrial ecosystems, we quantified the response of C pools and fluxes to experimental N addition using a comprehensive meta-analysis method. Our results showed that N addition significantly stimulated soil total C storage by 5.82% ([2.47%, 9.27%], 95% CI, the same below) and increased the C contents of the above- and below-ground parts of plants by 25.65% [11.07%, 42.12%] and 15.93% [6.80%, 25.85%], respectively. Furthermore, N addition significantly increased aboveground net primary production by 52.38% [40.58%, 65.19%] and litterfall by 14.67% [9.24%, 20.38%] at a global scale. However, the C influx from the plant litter to the soil through litter decomposition and the efflux from the soil due to microbial respiration and soil respiration showed insignificant responses to N addition. Overall, our meta-analysis suggested that N addition will increase soil C storage and plant C in both above- and below-ground parts, indicating that terrestrial ecosystems might act to strengthen as a C sink under increasing N deposition. PMID:26813078

  15. Impacts of Environmental Nanoparticles on Chemical, Biological and Hydrological Processes in Terrestrial Ecosystems

    SciTech Connect

    Qafoku, Nikolla

    2012-01-01

    This chapter provides insights on nanoparticle (NP) influence or control on the extent and timescales of single or coupled physical, chemical, biological and hydrological reactions and processes that occur in terrestrial ecosystems. Examples taken from the literature that show how terrestrial NPs may determine the fate of the aqueous and sorbed (adsorbed or precipitated) chemical species of nutrients and contaminants, are also included in this chapter. Specifically, in the first section, chapter objectives, term definitions and discussions on size-dependent properties, the origin and occurrence of NP in terrestrial ecosystems and NP toxicity, are included. In the second section, the topic of the binary interactions of NPs of different sizes, shapes, concentrations and ages with the soil solution chemical species is covered, focusing on NP formation, stability, aggregation, ability to serve as sorbents, or surface-mediated precipitation catalysts, or electron donors and acceptors. In the third section, aspects of the interactions in the ternary systems composed of environmental NP, nutrient/contaminant chemical species, and the soil/sediment matrix are discussed, focusing on the inhibitory and catalytic effects of environmental NP on nutrient/contaminant advective mobility and mass transfer, adsorption and desorption, dissolution and precipitation and redox reactions that occur in terrestrial ecosystems. These three review sections are followed by a short summary of future research needs and directions, the acknowledgements, the list of the references, and the figures.

  16. Some New Windows into Terrestrial Deep Subsurface Microbial Ecosystems

    NASA Astrophysics Data System (ADS)

    Moser, D. P.

    2011-12-01

    Over the past several years, our group has surveyed the microbial ecology and biogeochemistry of a range of fracture rock subsurface ecosystems via deep mine boreholes in South Africa, the United States, and Canada; and boreholes from surface or deeply-sourced natural springs of the U.S. Great Basin. Collectively, these mostly unexplored habitats represent a wide range of geologic provinces, host rock types, aquatic chemistries, and the vast potential for biogeographic isolation. Thus, patterns of microbial diversity are of interest from the perspective of filling a fundamental knowledge gap; and while not necessarily expected, the detection of closely related microorganisms from geographically isolated settings would be noteworthy. Across these sample sets, microbial communities were invariably very low in biomass (e.g. 10e3 - 10e4 cells per mL) and dominated by deeply-branching bacterial lineages, particularly from the phyla Firmicutes and Nitrospira. In several cases, the Firmicutes have shown very close phylogenetic affiliations to lineages detected at divergent locations. For example, one abundant lineage from a new artesian well drilled into the Furnace Creek Fault of Death Valley, CA bears a very close phylogenetic relatedness to environmental DNA sequences (SSU rRNA gene) detected in one of the world's deepest mines (Tau Tona of South Africa) and what was North America's deepest gold mine (Homestake of South Dakota). Several radioactive wells from the Nevada National Security Site have produced rRNA gene sequences very close (e.g. greater than 99% identity) to that of Desulforudis audaxviator, a rarely detected microorganism thought to subsist as a single species ecosystem on the products of radiochemical reactions in deep crustal rocks from the South African Witwatersrand Basin. These sequences, along with more distantly related sequences from the marine subsurface (ridge flank basalt and mud volcanoes) and groundwater in Europe, hint at a role in certain

  17. Evaluation of atmospheric aerosol and tropospheric ozone effects on global terrestrial ecosystem carbon dynamics

    NASA Astrophysics Data System (ADS)

    Chen, Min

    The increasing human activities have produced large amounts of air pollutants ejected into the atmosphere, in which atmospheric aerosols and tropospheric ozone are considered to be especially important because of their negative impacts on human health and their impacts on global climate through either their direct radiative effect or indirect effect on land-atmosphere CO2 exchange. This dissertation dedicates to quantifying and evaluating the aerosol and tropospheric ozone effects on global terrestrial ecosystem dynamics using a modeling approach. An ecosystem model, the integrated Terrestrial Ecosystem Model (iTem), is developed to simulate biophysical and biogeochemical processes in terrestrial ecosystems. A two-broad-band atmospheric radiative transfer model together with the Moderate-Resolution Imaging Spectroradiometer (MODIS) measured atmospheric parameters are used to well estimate global downward solar radiation and the direct and diffuse components in comparison with observations. The atmospheric radiative transfer modeling framework were used to quantify the aerosol direct radiative effect, showing that aerosol loadings cause 18.7 and 12.8 W m -2 decrease of direct-beam Photosynthetic Active Radiation (PAR) and Near Infrared Radiation (NIR) respectively, and 5.2 and 4.4 W m -2 increase of diffuse PAR and NIR, respectively, leading to a total 21.9 W m-2 decrease of total downward solar radiation over the global land surface during the period of 2003-2010. The results also suggested that the aerosol effect may be overwhelmed by clouds because of the stronger extinction and scattering ability of clouds. Applications of the iTem with solar radiation data and with or without considering the aerosol loadings shows that aerosol loading enhances the terrestrial productions [Gross Primary Production (GPP), Net Primary Production (NPP) and Net Ecosystem Production (NEP)] and carbon emissions through plant respiration (RA) in global terrestrial ecosystems over the

  18. Identification, definition and mapping of terrestrial ecosystems in interior Alaska

    NASA Technical Reports Server (NTRS)

    Anderson, J. H. (Principal Investigator)

    1973-01-01

    The author has identified the following significant results. A reconstituted, simulated color-infrared print, enlarged to a scale of 1:250,000, was used to make a vegetation map of a 3,110 sq km area just west of Fairbanks, Alaska. Information was traced from the print which comprised the southeastern part of ERTS-1 scene 1033-21011. A 1:1,000,000 scale color-infrared transparency of this scene, obtained from NASA, was used along side the print as an aid in recognizing colors, color intensities and blends, and mosaics of different colors. Color units on the transparency and print were identified according to vegetation types using NASA air photos, U.S. Forest Service air photos, and experience of the investigator. Five more or less pure colors were identified and associated with vegetation types. These colors were designated according to their appearances on the print: (1) orange for forest vegetation dominated by broad-leaved trees: (2) gray for forest vegetation dominated by needle-leaved trees; (3) violet for scrub vegetation; (4) light violet denoting herbaceous tundra vegetation; and (5) dull violet for muskeg vegetation. This study has shown, through close examinations of the NASA transparency, that much more detailed vegetation landscape, or ecosystem maps could be produced, if only spectral signatures could be consistently and reliably recognized and transferred to a map of suitable scale.

  19. Spatial variability of water use efficiency in China's terrestrial ecosystems

    NASA Astrophysics Data System (ADS)

    Zhu, Xian-Jin; Yu, Gui-Rui; Wang, Qiu-Feng; Hu, Zhong-Min; Zheng, Han; Li, Sheng-Gong; Sun, Xiao-Min; Zhang, Yi-Ping; Yan, Jun-Hua; Wang, Hui-Min; Zhao, Feng-Hua; Zhang, Jun-Hui; Shi, Pei-Li; Li, Ying-Nian; Zhao, Liang; Zhang, Fa-Wei; Hao, Yan-Bin

    2015-06-01

    Water use efficiency (WUE) reflects the coupling of carbon and water cycles. Analyzing the spatial variability of WUE can improve our understanding on the interaction between carbon and water cycles at a large scale, which also provides a basis for improving the regional carbon budget assessment. Based on China's eddy covariance measurements, we examined the spatial variation of China's WUE and its affecting factors. WUE showed a decreasing trend with the increasing altitude, which was the result of ecosystem type distribution resulting from the climatic gradient. After fully considering the vertical variation of WUE, we found that not only mean annual air temperature (MAT), mean annual precipitation (MAP), and mean leaf area index (MLAI) but also mean annual total photosynthesis active radiation (MAR) affected the spatial variation of WUE. With the increasing MAT, MAP, and MLAI, WUE increased significantly but the increasing MAR decreased WUE. The spatial variation of WUE could be directly depicted by MLAI and altitude, the equation including which explained 65% of the spatial variation of WUE. The effects of MAT and MAP on the spatial variation of WUE may be achieved through altering MLAI, while the mechanism underlying the effect of MAR on the spatial variation of WUE was still unclear, which should be the subject of future investigations. This study reveals the vertical variation of WUE and provides a new approach to generate the spatial variation in WUE, which will benefit the regional carbon budget assessment.

  20. Characterizing terrestrial ecosystems and productivity from remote sensing data

    NASA Technical Reports Server (NTRS)

    Peterson, David L.; Running, Steven W.

    1985-01-01

    Predictive relationships were studied between the leaf area index (LAI) of temperate coniferous forests and the canopy of reflective properties as sensed by satellites. Also, the relationship was examined between this sensible variable, LAI, and functional properties such as net primary productivity (NPP) and nitrogen mineralization. Leaf surface area is a locus of many important material and energy exchanges. If LAI can be reasonably estimated from remote sensing measurements, then it could be used with models to predict evapotranspiration, radiation interception, precipitation interception, and other ecosystem processes over large areas. Nineteen mature closed canopy forest stands were measured for leaf area index distributed along a temperature moisture gradient across Oregon. The LAI varies from 15.4 to 0.6. Infrared radiation is strongly scattered by leaves so that it penetrates deeply and its reflectance is proportional to LAI. Red radiation is strongly absorbed by chlorophyll and its reflectance is inversely related to LAI, becoming asymptotic at LAI values of about 3. The ratio of infrared to red radiation compensates for irradiance variations across this transect.

  1. Quantifying terrestrial ecosystem carbon dynamics in the Jinsha watershed, upper Yangtze, China from 1975 to 2000.

    PubMed

    Zhao, Shuqing; Liu, Shuguang; Yin, Runsheng; Li, Zhengpeng; Deng, Yulin; Tan, Kun; Deng, Xiangzheng; Rothstein, David; Qi, Jiaguo

    2010-03-01

    Quantifying the spatial and temporal dynamics of carbon stocks in terrestrial ecosystems and carbon fluxes between the terrestrial biosphere and the atmosphere is critical to our understanding of regional patterns of carbon budgets. Here we use the General Ensemble biogeochemical Modeling System to simulate the terrestrial ecosystem carbon dynamics in the Jinsha watershed of China's upper Yangtze basin from 1975 to 2000, based on unique combinations of spatial and temporal dynamics of major driving forces, such as climate, soil properties, nitrogen deposition, and land use and land cover changes. Our analysis demonstrates that the Jinsha watershed ecosystems acted as a carbon sink during the period of 1975-2000, with an average rate of 0.36 Mg/ha/yr, primarily resulting from regional climate variation and local land use and land cover change. Vegetation biomass accumulation accounted for 90.6% of the sink, while soil organic carbon loss before 1992 led to a lower net gain of carbon in the watershed, and after that soils became a small sink. Ecosystem carbon sink/source patterns showed a high degree of spatial heterogeneity. Carbon sinks were associated with forest areas without disturbances, whereas carbon sources were primarily caused by stand-replacing disturbances. It is critical to adequately represent the detailed fast-changing dynamics of land use activities in regional biogeochemical models to determine the spatial and temporal evolution of regional carbon sink/source patterns. PMID:19296154

  2. Solar radiation uncorks the lignin bottleneck on plant litter decomposition in terrestrial ecosystems

    NASA Astrophysics Data System (ADS)

    Austin, A.; Ballare, C. L.; Méndez, M. S.

    2015-12-01

    Plant litter decomposition is an essential process in the first stages of carbon and nutrient turnover in terrestrial ecosystems, and together with soil microbial biomass, provide the principal inputs of carbon for the formation of soil organic matter. Photodegradation, the photochemical mineralization of organic matter, has been recently identified as a mechanism for previously unexplained high rates of litter mass loss in low rainfall ecosystems; however, the generality of this process as a control on carbon cycling in terrestrial ecosystems is not known, and the indirect effects of photodegradation on biotic stimulation of carbon turnover have been debated in recent studies. We demonstrate that in a wide range of plant species, previous exposure to solar radiation, and visible light in particular, enhanced subsequent biotic degradation of leaf litter. Moreover, we demonstrate that the mechanism for this enhancement involves increased accessibility for microbial enzymes to plant litter carbohydrates due to a reduction in lignin content. Photodegradation of plant litter reduces the structural and chemical bottleneck imposed by lignin in secondary cell walls. In litter from woody plant species, specific interactions with ultraviolet radiation obscured facilitative effects of solar radiation on biotic decomposition. The generalized positive effect of solar radiation exposure on subsequent microbial activity is mediated by increased accessibility to cell wall polysaccharides, which suggests that photodegradation is quantitatively important in determining rates of mass loss, nutrient release and the carbon balance in a broad range of terrestrial ecosystems.

  3. Climate Warming in Antarctica is Triggering Changes in Biodiversity and Terrestrial Ecosystems

    NASA Astrophysics Data System (ADS)

    Wall, D. H.

    2007-12-01

    Antarctica climate changes relating to ice and ocean currents have global impacts, but changes on terrestrial ecosystems in the Antarctic are less well known. This is partially due to the small area of exposed land, the apparent isolation, and lack of permanent residents. However, low diversity ecosystems, such as Antarctic polar deserts, are expected to be more vulnerable to global changes and are located in regions that are likely to see some of the greatest climate changes. Evidence is accumulating that terrestrial regions of Antarctica are experiencing substantial but variable responses to climate change and human disturbance. In the McMurdo Dry Valleys and in the rapidly warming Antarctic Peninsula region, temperature changes have a rippling effect that control habitat dynamics, species, carbon cycling, especially since these ecosystems are situated on a threshold between frozen and liquid water. Direct anthropogenic effects, including tourism and invasive species are also changing terrestrial communities but the magnitude and duration is dependent on numerous interacting factors. Global change scenarios incorporating species abundance, species traits, community change and monitoring of changes in biogeography will be important for determining alterations to ecosystem processes such as nutrient cycling.

  4. Identifying regional water quality patterns and their relationships with terrestrial ecosystems and fish distributions

    SciTech Connect

    McDaniel, T.W.; Hunsaker, C.T.; Beauchamp, J.J.

    1986-09-01

    A multivariate statistical method for analyzing spatial patterns in regional water quality was developed using existing water quality data in the US Environmental Protection Agency's STORET system. Regional patterns of terrestrial ecosystems have been described and mapped for various management and scientific purposes. Most of these methods ignored or placed little emphasis on the regional patterns in aquatic ecosystems even though they are bounded by the terrestrial systems and affected by their functioning. The procedure we used examined geographical patterns for selected water quality variables in Kansas and Georgia. It was able to distinguish regions with water quality very different from average conditions (as in Georgia) but did not discriminate well between regions that did not have diverse conditions in water quality (as in Kansas). The observed regional water quality patterns were compared with terrestrial ecosystem patterns. In addition, fish distributions were compared with regional patterns in water quality to determine if there was an association between them. In Georgia, water quality patterns were similar to ecosystem patterns and fish distributions, but correlation was not as good for the more homogeneous landscape in Kansas.

  5. Development of a terrestrial integrated model for the sustainable utilization strategy of land-water-ecosystems

    NASA Astrophysics Data System (ADS)

    Emori, S.; Yokohata, T.; Ito, A.; Hanasaki, N.; Pokhrel, Y. N.; Sato, Y.; Yoshimura, K.; Oki, T.; Kato, E.; Takahashi, K.; Yamagata, Y.

    2012-12-01

    Future climate changes possibly affect eco-system services, water resources, food pro-duction, energy supply, etc. In order for our society to respond to future climate changes, it is important to understand the interaction between the changes in these complicated factors. Studies so far mainly focus their attention to the impact of climate change on different sectors separately, such as eco-system, water, food, and so on, but it is very important to investigate these phenomena in the integrated system of natural environ-ment and human activities. In the present study, we develop an integrated terrestrial model which describes the natural biogeophysical environment as well as human activi-ties. Currently we develop a model version of a terrestrial land surface physical model coupled with eco-system vegetation and water resources model considering human ac-tivities. Using the terrestrial integrated model, we perform historical simulations to vali-date the model performance under the present climate conditions. In the future, we in-vestigate the interactions between the changes in eco-system services and water re-sources under warming conditions, and also explore the possible impact of climate miti-gation policy on the natural and human system.

  6. Quantifying terrestrial ecosystem carbon dynamics in the Jinsha watershed, Upper Yangtze, China from 1975 to 2000

    USGS Publications Warehouse

    Zhao, Shuqing

    2010-01-01

    Quantifying the spatial and temporal dynamics of carbon stocks in terrestrial ecosystems and carbon fluxes between the terrestrial biosphere and the atmosphere is critical to our understanding of regional patterns of carbon budgets. Here we use the General Ensemble biogeochemical Modeling System to simulate the terrestrial ecosystem carbon dynamics in the Jinsha watershed of China’s upper Yangtze basin from 1975 to 2000, based on unique combinations of spatial and temporal dynamics of major driving forces, such as climate, soil properties, nitrogen deposition, and land use and land cover changes. Our analysis demonstrates that the Jinsha watershed ecosystems acted as a carbon sink during the period of 1975–2000, with an average rate of 0.36 Mg/ha/yr, primarily resulting from regional climate variation and local land use and land cover change. Vegetation biomass accumulation accounted for 90.6% of the sink, while soil organic carbon loss before 1992 led to a lower net gain of carbon in the watershed, and after that soils became a small sink. Ecosystem carbon sink/source patterns showed a high degree of spatial heterogeneity. Carbon sinks were associated with forest areas without disturbances, whereas carbon sources were primarily caused by stand-replacing disturbances. It is critical to adequately represent the detailed fast-changing dynamics of land use activities in regional biogeochemical models to determine the spatial and temporal evolution of regional carbon sink/source patterns.

  7. Life in a temperate Polar sea: a unique taphonomic window on the structure of a Late Cretaceous Arctic marine ecosystem

    PubMed Central

    Chin, Karen; Bloch, John; Sweet, Arthur; Tweet, Justin; Eberle, Jaelyn; Cumbaa, Stephen; Witkowski, Jakub; Harwood, David

    2008-01-01

    As the earth faces a warming climate, the rock record reminds us that comparable climatic scenarios have occurred before. In the Late Cretaceous, Arctic marine organisms were not subject to frigid temperatures but still contended with seasonal extremes in photoperiod. Here, we describe an unusual fossil assemblage from Devon Island, Arctic Canada, that offers a snapshot of a ca 75 Myr ago marine palaeoecosystem adapted to such conditions. Thick siliceous biogenic sediments and glaucony sands reveal remarkably persistent high primary productivity along a high-latitude Late Cretaceous coastline. Abundant fossil faeces demonstrate that this planktonic bounty supported benthic invertebrates and large, possibly seasonal, vertebrates in short food chains. These ancient organisms filled trophic roles comparable to those of extant Arctic species, but there were fundamental differences in resource dynamics. Whereas most of the modern Arctic is oligotrophic and structured by resources from melting sea ice, we suggest that forested terrestrial landscapes helped support the ancient marine community through high levels of terrigenous organic input. PMID:18713718

  8. Effects of solar ultraviolet radiation on terrestrial ecosystems. Patterns, mechanisms, and interactions with climate change.

    PubMed

    Ballaré, C L; Caldwell, M M; Flint, S D; Robinson, S A; Bornman, J F

    2011-02-01

    Ultraviolet radiation (UV) is a minor fraction of the solar spectrum reaching the ground surface. In this assessment we summarize the results of previous work on the effects of the UV-B component (280-315 nm) on terrestrial ecosystems, and draw attention to important knowledge gaps in our understanding of the interactive effects of UV radiation and climate change. We highlight the following points: (i) The effects of UV-B on the growth of terrestrial plants are relatively small and, because the Montreal Protocol has been successful in limiting ozone depletion, the reduction in plant growth caused by increased UV-B radiation in areas affected by ozone decline since 1980 is unlikely to have exceeded 6%. (ii) Solar UV-B radiation has large direct and indirect (plant-mediated) effects on canopy arthropods and microorganisms. Therefore, trophic interactions (herbivory, decomposition) in terrestrial ecosystems appear to be sensitive to variations in UV-B irradiance. (iii) Future variations in UV radiation resulting from changes in climate and land-use may have more important consequences on terrestrial ecosystems than the changes in UV caused by ozone depletion. This is because the resulting changes in UV radiation may affect a greater range of ecosystems, and will not be restricted solely to the UV-B component. (iv) Several ecosystem processes that are not particularly sensitive to UV-B radiation can be strongly affected by UV-A (315-400 nm) radiation. One example is the physical degradation of plant litter. Increased photodegradation (in response to reduced cloudiness or canopy cover) will lead to increased carbon release to the atmosphere via direct and indirect mechanisms. PMID:21253661

  9. Extreme precipitation patterns reduced terrestrial ecosystem production across biomes

    NASA Astrophysics Data System (ADS)

    Zhang, Y.; Moran, S. M.; Nearing, M.; Ponce Campos, G. E.; Huete, A. R.; Buda, A. R.; Bosch, D. D.; Gunter, S. A.; Kitchen, S. G.; McNab, W.; Morgan, J. A.; McClaran, M. P.; Montoya, D. S.; Peters, D. P.; Starks, P. J.

    2012-12-01

    Precipitation regimes are predicted to shift to more extreme patterns that are characterized by more intense rainfall events and longer dry intervals, yet their ecological impacts on vegetation production remain uncertain across biomes in natural climatic conditions. This in situ study investigated the effects of novel climatic conditions on aboveground net primary production (ANPP) by combining a greenness index from satellite measurements and climatic records during 2000 to 2009 from 11 long-term experimental sites in multiple biomes and climates. Results showed that extreme precipitation patterns decreased the sensitivity of ANPP to total annual precipitation (PT), at the regional and decadal scales, leading to a mean 20% decrease in rain-use efficiency across biomes. Relative decreases in ANPP were greatest for arid grassland (16%) and Mediterranean forest (20%), and less for mesic grassland and temperate forest (3%). The co-occurrence of more heavy rainfall events and longer dry intervals caused greater water stress that resulted in reduced vegetation production. A new generalized model was developed to improve predictions of the ANPP response to changes in extreme precipitation patterns by using a function of both PT and an index of precipitation extremes. These findings suggest that extreme precipitation patterns have more substantial and complex effects on vegetation production across biomes, and are as important as total annual precipitation in understanding vegetation processes. With predictions of more extreme weather events, forecasts of ecosystem production should consider these non-linear responses to altered precipitation patterns associated with climate change. Figure. Relation of production across precipitation gradients for 11 sites for two groups (Low: R95p% < 20%, High: R95p% ≥ 20%). See Table 2 for R95p% definitions. The relations were significantly different for the two groups (F2, 106 = 18.51, P < 0.0001).

  10. Biogeochemical cycling in terrestrial ecosystems of the Caatinga Biome.

    PubMed

    Menezes, R S C; Sampaio, E V S B; Giongo, V; Pérez-Marin, A M

    2012-08-01

    The biogeochemical cycles of C, N, P and water, the impacts of land use in the stocks and flows of these elements and how they can affect the structure and functioning of Caatinga were reviewed. About half of this biome is still covered by native secondary vegetation. Soils are deficient in nutrients, especially N and P. Average concentrations of total soil P and C in the top layer (0-20 cm) are 196 mg kg(-1) and 9.3 g kg(-1), corresponding to C stocks around 23 Mg ha(-1). Aboveground biomass of native vegetation varies from 30 to 50 Mg ha(-1), and average root biomass from 3 to 12 Mg ha(-1). Average annual productivities and biomass accumulation in different land use systems vary from 1 to 7 Mg ha(-1) year(-1). Biological atmospheric N2 fixation is estimated to vary from 3 to 11 kg N ha(-1) year-1 and 21 to 26 kg N ha(-1) year(-1) in mature and secondary Caatinga, respectively. The main processes responsible for nutrient and water losses are fire, soil erosion, runoff and harvest of crops and animal products. Projected climate changes in the future point to higher temperatures and rainfall decreases. In face of the high intrinsic variability, actions to increase sustainability should improve resilience and stability of the ecosystems. Land use systems based on perennial species, as opposed to annual species, may be more stable and resilient, thus more adequate to face future potential increases in climate variability. Long-term studies to investigate the potential of the native biodiversity or adapted exotic species to design sustainable land use systems should be encouraged. PMID:23011295

  11. Lateral Diffusion of Nutrients by Mammalian Herbivores in Terrestrial Ecosystems

    PubMed Central

    Wolf, Adam; Doughty, Christopher E.; Malhi, Yadvinder

    2013-01-01

    Animals translocate nutrients by consuming nutrients at one point and excreting them or dying at another location. Such lateral fluxes may be an important mechanism of nutrient supply in many ecosystems, but lack quantification and a systematic theoretical framework for their evaluation. This paper presents a mathematical framework for quantifying such fluxes in the context of mammalian herbivores. We develop an expression for lateral diffusion of a nutrient, where the diffusivity is a biologically determined parameter depending on the characteristics of mammals occupying the domain, including size-dependent phenomena such as day range, metabolic demand, food passage time, and population size. Three findings stand out: (a) Scaling law-derived estimates of diffusion parameters are comparable to estimates calculated from estimates of each coefficient gathered from primary literature. (b) The diffusion term due to transport of nutrients in dung is orders of magnitude large than the coefficient representing nutrients in bodymass. (c) The scaling coefficients show that large herbivores make a disproportionate contribution to lateral nutrient transfer. We apply the diffusion equation to a case study of Kruger National Park to estimate the conditions under which mammal-driven nutrient transport is comparable in magnitude to other (abiotic) nutrient fluxes (inputs and losses). Finally, a global analysis of mammalian herbivore transport is presented, using a comprehensive database of contemporary animal distributions. We show that continents vary greatly in terms of the importance of animal-driven nutrient fluxes, and also that perturbations to nutrient cycles are potentially quite large if threatened large herbivores are driven to extinction. PMID:23951141

  12. The change of global terrestrial ecosystem net primary productivity (NPP) and its response to climate change in CMIP5

    NASA Astrophysics Data System (ADS)

    Li, Suosuo; Lü, Shihua; Zhang, Yongjun; Liu, Yuanpu; Gao, Yanhong; Ao, Yinhuan

    2015-07-01

    Using global terrestrial ecosystem observation and proxy data for net primary productivity (NPP), leaf area index (LAI), and climate data, we compared simulated NPP, LAI, and major climatic factors and explored the relationship between their variations in historical scenarios of ten Coupled Model Intercomparison Project (CMIP5) models. The results showed that global spatial patterns of the simulated terrestrial ecosystem and climate are consistent with proxy data, but the values have some differences for each model. Based on statistical analysis, the simulated climatic factors were found to be better than terrestrial ecosystem NPP and LAI, and the multi-model ensemble (MME) results were better than every single model. For the terrestrial ecosystem, air temperature (Ta) was found to be the major affecting factor, followed by precipitation, meaning the terrestrial ecosystem NPP and LAI are more related to Ta than precipitation. Meanwhile, surface downwelling shortwave radiation (Rsds) was found to inhibit the terrestrial ecosystem in almost all regions of the world. Between 1976 and 2005, precipitation had a slight increasing trend, Ta an obvious increasing trend, and Rsds a slight decreasing trend. The changes of precipitation, air temperature, and Rsds were favorable for the terrestrial ecosystem and for plant growth. Therefore, LAI and NPP showed an obvious increasing temporal trend, and the terrestrial ecosystem showed a positive response to climate change. All the model results showed NPP had an increasing temporal trend in the past 150 years, which also indicated that the terrestrial ecosystem has shown a positive response to climate change in that time period. In terms of the global average, the simulated NPP varied from 21.5 to 69.3 Pg C year-1, and the MME NPP is about 50.6, which was almost consistent with the International Geosphere Biosphere Program (IGBP) NPP result of 55.1 and Moderate Resolution Imaging Spectroradiometer (MODIS) NPP results of 60.5 Pg

  13. Landscape cultivation alters δ30Si signature in terrestrial ecosystems

    NASA Astrophysics Data System (ADS)

    Vandevenne, Floor; Delvaux, Claire; Hughes, Harold; Ronchi, Benedicta; Clymans, Wim; Barao, Ana Lucia; Govers, Gerard; Cornelis, Jean Thomas; André, Luc; Struyf, Eric

    2015-04-01

    Despite increasing recognition of the importance of biological Si cycling in controlling dissolved Si (DSi) in soil and stream water, effects of human cultivation on the Si cycle remain poorly understood. Sensitive tracer techniques to identify and quantify Si in the soil-plant-water system could be highly relevant in addressing these uncertainties. Stable Si isotopes are promising tools to define Si sources and sinks along the ecosystem flow path, as intense fractionation occurs during chemical weathering and uptake of dissolved Si in plants. Yet they remain underexploited in the end product of the soil-plant system: the soil water. Here, stable Si isotope ratios (δ30Si) of dissolved Si in soil water were measured along a land use gradient (continuous forest, continuous pasture, young cropland and continuous cropland) with similar parent material (loess) and homogenous bulk mineralogical and climatological (Belgium). Soil water δ30Si signatures are clearly separated along the gradient, with highest average signatures in continuous cropland (+1.61%), intermediate in pasture (+1.05%) and young cropland (+0.89%) and lowest in forest soil water (+0.62%). Our data do not allow distinguishing biological from pedogenic/lithogenic processes, but point to a strong interaction of both. We expect that increasing export of light isotopes in disturbed land uses (i.e. through agricultural harvest), and higher recycling of 28Si and elevated weathering intensity (including clay dissolution) in forest systems will largely determine soil water δ30Si signatures of our systems. Our results imply that soil water δ30Si signature is biased through land management before it reaches rivers and coastal zones, where other fractionation processes take over (e.g. diatom uptake and reverse weathering in floodplains). In particular, a direct role of agriculture systems in lowering export Si fluxes towards rivers and coastal systems has been shown. Stable Si isotopes have a large potential

  14. Landscape cultivation alters δ30Si signature in terrestrial ecosystems.

    NASA Astrophysics Data System (ADS)

    Vandevenne, F. I.; Delvaux, C.; Huyghes, H.; Ronchi, B.; Govers, G.; Barão, A. L.; Clymans, W.; Meire, P.; André, L.; Struyf, E.

    2014-12-01

    Despite increasing recognition of the importance of biological Si cycling in controlling dissolved Si (DSi) in soil and stream water, effects of human cultivation on the Si cycle remain poorly understood. Sensitive tracer techniques to identify and quantify Si in the soil-plant-water system could be highly relevant in addressing these uncertainties. Stable Si isotopes are promising tools to define Si sources and sinks along the ecosystem flow path, as intense fractionation occurs during chemical weathering and uptake of dissolved Si in plants. Yet they remain underexploited in the end product of the soil-plant system: the soil water. Here, stable Si isotope ratios (δ30Si) of dissolved Si in soil water were measured along a land use gradient (continuous forest, continuous pasture, young cropland and continuous cropland) with similar parent material (loess) and homogenous bulk mineralogical and climatological properties (Belgium). Soil water δ30Si signatures are clearly separated along the gradient, with highest average signatures in continuous cropland (+1.61‰), intermediate in pasture (+1.05‰) and young cropland (+0.89 ‰) and lowest in forest soil water (+0.62‰). Our data do not allow distinguishing biological from pedogenic/lithogenic processes, but point to a strong interaction of both. We expect that increasing export of light isotopes in disturbed land uses (i.e. through agricultural harvest), and higher recycling of 28Si and elevated weathering intensity (including clay dissolution) in forest systems will largely determine soil water δ30Si signatures of our systems. Our results imply that soil water δ30Si signature is biased through land management before it reaches rivers and coastal zones, where other fractionation processes take over (e.g. diatom uptake and reverse weathering in floodplains). In particular, a direct role of agriculture systems in lowering export Si fluxes towards rivers and coastal systems has been shown. Stable Si isotopes have

  15. Water use efficiency of China’s terrestrial ecosystems and responses to drought

    PubMed Central

    Liu, Yibo; Xiao, Jingfeng; Ju, Weimin; Zhou, Yanlian; Wang, Shaoqiang; Wu, Xiaocui

    2015-01-01

    Water use efficiency (WUE) measures the trade-off between carbon gain and water loss of terrestrial ecosystems, and better understanding its dynamics and controlling factors is essential for predicting ecosystem responses to climate change. We assessed the magnitude, spatial patterns, and trends of WUE of China’s terrestrial ecosystems and its responses to drought using a process-based ecosystem model. During the period from 2000 to 2011, the national average annual WUE (net primary productivity (NPP)/evapotranspiration (ET)) of China was 0.79 g C kg−1 H2O. Annual WUE decreased in the southern regions because of the decrease in NPP and the increase in ET and increased in most northern regions mainly because of the increase in NPP. Droughts usually increased annual WUE in Northeast China and central Inner Mongolia but decreased annual WUE in central China. “Turning-points” were observed for southern China where moderate and extreme droughts reduced annual WUE and severe drought slightly increased annual WUE. The cumulative lagged effect of drought on monthly WUE varied by region. Our findings have implications for ecosystem management and climate policy making. WUE is expected to continue to change under future climate change particularly as drought is projected to increase in both frequency and severity. PMID:26347998

  16. Water use efficiency of China's terrestrial ecosystems and responses to drought.

    PubMed

    Liu, Yibo; Xiao, Jingfeng; Ju, Weimin; Zhou, Yanlian; Wang, Shaoqiang; Wu, Xiaocui

    2015-01-01

    Water use efficiency (WUE) measures the trade-off between carbon gain and water loss of terrestrial ecosystems, and better understanding its dynamics and controlling factors is essential for predicting ecosystem responses to climate change. We assessed the magnitude, spatial patterns, and trends of WUE of China's terrestrial ecosystems and its responses to drought using a process-based ecosystem model. During the period from 2000 to 2011, the national average annual WUE (net primary productivity (NPP)/evapotranspiration (ET)) of China was 0.79 g C kg(-1) H2O. Annual WUE decreased in the southern regions because of the decrease in NPP and the increase in ET and increased in most northern regions mainly because of the increase in NPP. Droughts usually increased annual WUE in Northeast China and central Inner Mongolia but decreased annual WUE in central China. "Turning-points" were observed for southern China where moderate and extreme droughts reduced annual WUE and severe drought slightly increased annual WUE. The cumulative lagged effect of drought on monthly WUE varied by region. Our findings have implications for ecosystem management and climate policy making. WUE is expected to continue to change under future climate change particularly as drought is projected to increase in both frequency and severity. PMID:26347998

  17. K-Pg events facilitated lineage transitions between terrestrial and aquatic ecosystems.

    PubMed

    Procheş, Serban; Polgar, Gianluca; Marshall, David J

    2014-06-01

    We use dated phylogenetic trees for tetrapod vertebrates to identify lineages that shifted between terrestrial and aquatic ecosystems in terms of feeding or development, and to assess the timing of such events. Both stem and crown lineage ages indicate a peak in transition events in correspondence with the K-Pg mass extinction. This meets the prediction that changes in competitive pressure and resource availability following mass extinction events should facilitate such transitions. PMID:24919699

  18. Photodegradation alleviates the lignin bottleneck for carbon turnover in terrestrial ecosystems.

    PubMed

    Austin, Amy T; Méndez, M Soledad; Ballaré, Carlos L

    2016-04-19

    A mechanistic understanding of the controls on carbon storage and losses is essential for our capacity to predict and mitigate human impacts on the global carbon cycle. Plant litter decomposition is an important first step for carbon and nutrient turnover, and litter inputs and losses are essential in determining soil organic matter pools and the carbon balance in terrestrial ecosystems. Photodegradation, the photochemical mineralization of organic matter, has been recently identified as a mechanism for previously unexplained high rates of litter mass loss in arid lands; however, the global significance of this process as a control on carbon cycling in terrestrial ecosystems is not known. Here we show that, across a wide range of plant species, photodegradation enhanced subsequent biotic degradation of leaf litter. Moreover, we demonstrate that the mechanism for this enhancement involves increased accessibility to plant litter carbohydrates for microbial enzymes. Photodegradation of plant litter, driven by UV radiation, and especially visible (blue-green) light, reduced the structural and chemical bottleneck imposed by lignin in secondary cell walls. In leaf litter from woody species, specific interactions with UV radiation obscured facilitative effects of solar radiation on biotic decomposition. The generalized effect of sunlight exposure on subsequent microbial activity, mediated by increased accessibility to cell wall polysaccharides, suggests that photodegradation is quantitatively important in determining rates of mass loss, nutrient release, and the carbon balance in a broad range of terrestrial ecosystems. PMID:27044070

  19. Water Use Efficiency of China's Terrestrial Ecosystems and Responses to Drought

    NASA Astrophysics Data System (ADS)

    Liu, Y.; Xiao, J.; Ju, W.; Zhou, Y.; Wang, S.; Wu, X.

    2015-12-01

    Yibo Liu1, 2, Jingfeng Xiao2, Weimin Ju3, Yanlian Zhou4, Shaoqiang Wang5, Xiaocui Wu31 Jiangsu Key Laboratory of Agricultural Meteorology, School of Applied Meteorology, Nanjing University of Information Science and Technology, Nanjing, 210044, China, 2Earth Systems Research Center, Institute for the Study of Earth, Oceans, and Space, University of New Hampshire, Durham, NH 03824, USA, 3 International Institute for Earth System Sciences, Nanjing University, Nanjing, 210023, China, 4 School of Geographic and Oceanographic Sciences, Nanjing University, Nanjing, 210023, China, 5 Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, 100101, China Water use efficiency (WUE) measures the trade-off between carbon gain and water loss of terrestrial ecosystems, and better understanding its dynamics and controlling factors is essential for predicting ecosystem responses to climate change. We assessed the magnitude, spatial patterns, and trends of WUE of China's terrestrial ecosystems and its responses to drought using a process-based ecosystem model. During the period from 2000 to 2011, the national average annual WUE (net primary productivity (NPP)/evapotranspiration (ET)) of China was 0.79 g C kg-1 H2O. Annual WUE decreased in the southern regions because of the decrease in NPP and increase in ET and increased in most northern regions mainly because of the increase in NPP. Droughts usually increased annual WUE in Northeast China and central Inner Mongolia but decreased annual WUE in central China. "Turning-points" were observed for southern China where moderate and extreme drought reduced annual WUE and severe drought slightly increased annual WUE. The cumulative lagged effect of drought on monthly WUE varied by region. Our findings have implications for ecosystem management and climate policy making. WUE is expected to continue to change under future climate

  20. Sustainability of Carbon Sequestration in Terrestrial Ecosystems: Theoretical Framework and a Case Study

    NASA Astrophysics Data System (ADS)

    Luo, Y.

    2002-12-01

    A sound understanding of the sustainability of terrestrial carbon (C) sequestration is critical for the success of any policies geared to stabilize atmospheric greenhouse concentrations. This includes the controversial Kyoto Protocol and/or other greenhouse strategies by individual countries. However, the sustainability of C sinks and pools has not been carefully studied with either empirical or theoretical approaches. This study establishes a theoretical framework to define the sustainability based on C influx and residence time (t). Ecosystem C influx is determined by canopy photosynthetic capacity, which is regulated by leaf photosynthetic capacity and leaf area index. The residence time represents the capacity of an ecosystem to store C in plant and soil pools (i.e., the C-storage capacity). The C-sequestration capacity in an ecosystem is jointly determined by the canopy photosynthetic capacity and the C-storage capacity. The C-sequestration capacity is maintained in a future global change scenario only if neither the canopy photosynthetic capacity nor the C-storage capacity is up-or down-regulated. In that case, the future rate of terrestrial C sequestration is primarily determined by environmental forcing functions. The forcing functions could be the rising of atmospheric CO2 concentration, forest regrowth, woody plant encroachment, and nitrogen deposition. We applied this framework to the Free-Air CO2 Enrichment (FACE) experiment in Duke Forest, North Carolina, USA. We estimated C influx with a mechanistic canopy model and residence time via inverse analysis of multiple data sets. Our results indicated that neither canopy photosynthetic capacity nor the C-storage capacity was altered by elevated CO2 at this forest site Thus, the current evidence from both experimental observations and inverse analysis suggests that C sequestration in the ecosystem will increase gradually as Ca gradually increases. Nonetheless, the increased C sequestration in terrestrial

  1. Pressure and Buoyancy in Aquatic Ecosystems. Physical Processes in Terrestrial and Aquatic Ecosystems, Transport Processes.

    ERIC Educational Resources Information Center

    Cowan, Christina E.

    This module is part of a series designed to be used by life science students for instruction in the application of physical theory to ecosystem operation. Most modules contain computer programs which are built around a particular application of a physical process. This module explores some of the characteristics of aquatic organisms which can be…

  2. The First Law of Thermodynamics for Ecosystems. Physical Processes in Terrestrial and Aquatic Ecosystems, Thermodynamics.

    ERIC Educational Resources Information Center

    Stevenson, R. D.

    These materials were designed to be used by life science students for instruction in the application of physical theory to ecosystem operation. Most modules contain computer programs which are built around a particular application of a physical process. This module and a comparison module are concerned with elementary concepts of thermodynamics as…

  3. Australia’s TERN - Developing a National Terrestrial Ecosystem Monitoring Program

    NASA Astrophysics Data System (ADS)

    Phinn, S. R.

    2009-12-01

    Long-term monitoring of ecosystem structures and processes is a fundamental basis for understanding how environments function, and ensuring their sustainable use. This paper presents the rationale, objectives, structure and operational activities of an AU$55 million program to develop and sustain a long term ecosystem monitoring program for Australia. The rationale behind TERN (Terrestrial Ecosystem Research Network) is to build on a disparate set of ecosystem monitoring programs. This system has duplications of activities, gaps in data collection, and lack of access to regularly updated archives of validated ecosystem structure and process data. There is no direct link between resource management agencies and the development and supply of the ecosystem data sets required to address significant environmental problems. Hence, the overall aim of TERN is to build collaborations, infrastructure and programs to meet the needs of terrestrial and coastal ecosystem research and natural resource management in Australia. The specific objective of TERN is to provide an institutional framework to establish and sustain a national observational network to meet terrestrial ecosystem and natural resource management research needs in the longer term. TERN comprises six facilities, and operated by a central coordinating office, a national board and a government-science consultative group which includes the ecosystem information users from local, regional, state and national government agencies. The facilities are: 1.The Australian Centre for Ecological Analysis and Synthesis facility will operate national workshops to link resource management and ecosystem monitoring activities. 2.The AusCover Distributed Archive and Access Capability provides a nationally consistent approach to delivery and calibration of past, current and future satellite image based datasets, and the production of ecosystem science data products designed for Australian conditions. 3.Australian Flux Network will

  4. IMPACT OF HIGH CHEMICAL CONTAMINANT CONCENTRATIONS ON TERRESTRIAL AND AQUATIC ECOSYSTEMS: A STATE-OF-THE-ART REVIEW

    EPA Science Inventory

    The state-of-the-art of available methods for predicting the effects of high chemical concentrations on the properties, processes, functions, cycles, and responses of terrestrial and aquatic ecosystems was reviewed. Environmental problems associated with high chemical concentrati...

  5. Contrasting responses of terrestrial ecosystem production to hot temperature extreme regimes between grassland and forest

    NASA Astrophysics Data System (ADS)

    Zhang, Y.; Voigt, M.; Liu, H.

    2014-04-01

    Observational data during the past several decades show faster increase of hot temperature extremes over land than changes in mean temperature. Towards more extreme temperature is expected to affect terrestrial ecosystem function. However, the ecological impacts of hot extremes on vegetation production remain uncertain across biomes in natural climatic conditions. In this study, we investigated the effects of hot temperature extremes on aboveground net primary production (ANPP) by combining MODIS EVI dataset and in situ climatic records during 2000 to 2009 from 12 long-term experimental sites across biomes and climates. Our results showed that higher mean annual maximum temperatures (Tmax) greatly reduced grassland production, and yet enhanced forest production after removing the effects of precipitation. Relative decreases in ANPP were 16% for arid grassland and 7% for mesic grassland, and the increase were 5% for forest. We also observed a significant positive relationship between interannual ANPP and Tmax for forest biome (R2 = 0.79, P < 0.001). This line of evidence suggests that hot temperature extreme leads to contrasting ecosystem-level response of vegetation production to warming climate between grassland and forest. Given that many terrestrial ecosystem models use average daily temperature as input, predictions of ecosystem production should consider these contrasting responses to more hot temperature extreme regimes associated with climate change.

  6. Contrasting responses of terrestrial ecosystem production to hot temperature extreme regimes between grassland and forest

    NASA Astrophysics Data System (ADS)

    Zhang, Y.; Voigt, M.; Liu, H.

    2015-01-01

    During the past several decades, observational data have shown a faster increase in hot temperature extremes than the change in mean temperature. Increasingly high extreme temperatures are expected to affect terrestrial ecosystem function. The ecological impact of hot extremes on vegetation production, however, remains uncertain across biomes in natural climatic conditions. In this study, we investigated the effects of hot temperature extremes on vegetation production by combining the MODIS enhanced vegetation index (EVI) data set and in situ climatic records during the period 2000 to 2009 from 12 long-term experimental sites across biomes and climate. Our results show that higher mean annual maximum temperatures (Tmax) greatly reduced grassland production, and yet enhanced forest production after removing the effect of precipitation. The relative decrease in vegetation production was 16% for arid grassland and 7% for mesic grassland, and the increase was 5% for forest. We also observed a significantly positive relationship between interannual aboveground net primary production (ANPP) and Tmax for the forest biome (R2 = 0.79, P < 0.001). This line of evidence suggests that hot temperature extremes lead to contrasting ecosystem-level responses of vegetation production between grassland and forest biomes. Given that many terrestrial ecosystem models use average daily temperature as input, predictions of ecosystem production should consider such contrasting responses to increasingly hot temperature extreme regimes associated with climate change.

  7. Water use efficiency of net primary production in global terrestrial ecosystems

    NASA Astrophysics Data System (ADS)

    Xia, Lei; Wang, Fei; Mu, Xingmin; Jin, Kai; Sun, Wenyi; Gao, Peng; Zhao, Guangju

    2015-07-01

    The carbon and water cycles of terrestrial ecosystems, which are strongly coupled via water use efficiency (WUE), are influenced by global climate change. To explore the relationship between the carbon and water cycles and predict the effect of climate change on terrestrial ecosystems, it is necessary to study the WUE in global terrestrial ecosystems. In this study, the 13-year WUE (i.e., net primary production (NPP)/evapotranspiration (ET)) of global terrestrial ecosystems was calculated based on the Moderate Resolution Imaging Spectro-radiometer (MODIS) NPP (MOD17A3) and ET (MOD16A3) products from 2000 to 2012. The results indicate that the annual average WUE decreased but not significantly, and the 13-year mean value was 868.88 mg C m -2 mm -1. The variation trend of WUE value for each pixel differed greatly across the terrestrial ecosystems. A significant variation ( P<0.05) occurred in about 18.50% of the land surface. WUE was spatially distributed from 0 to 2541 mg C m -2 mm -1, and 58.78% of the WUE values were concentrated in the interval of 600-1200 mg C m -2 mm -1. The WUE increased from north to south in Africa and Oceania and from east to west in Europe and South America. Both latitudinal and longitudinal gradients existed in Asia and North America. The following trends in the WUE of different continents and Köppen-Geiger climates were observed: Europe (1129.71 mg C m -2 mm -1)> Oceania (1084.46 mg C m -2 mm -1)> Africa (893.51 mg C m -2 mm -1)> South America (893.07 mg C m -2 mm -1)> North America (870.79 mg C m -2 mm -1)> Asia (738.98 mg C m -2 mm -1) and warm temperate climates (1094 mg C m -2 mm -1)> snowy climates (862 mg C m -2 mm -1)> arid climates (785 mg C m -2 mm -1)> equatorial climates (732 mg C m -2 mm -1)> polar climates (435 mg C m -2 mm -1). Based on the WUE value and the present or future rainfall, the maximum carbon that fixed in one region may be theoretically calculated. Also, under the background of global climatic change, WUE may

  8. The Australian SuperSite Network: A continental, long-term terrestrial ecosystem observatory.

    PubMed

    Karan, Mirko; Liddell, Michael; Prober, Suzanne M; Arndt, Stefan; Beringer, Jason; Boer, Matthias; Cleverly, James; Eamus, Derek; Grace, Peter; Van Gorsel, Eva; Hero, Jean-Marc; Hutley, Lindsay; Macfarlane, Craig; Metcalfe, Dan; Meyer, Wayne; Pendall, Elise; Sebastian, Alvin; Wardlaw, Tim

    2016-10-15

    Ecosystem monitoring networks aim to collect data on physical, chemical and biological systems and their interactions that shape the biosphere. Here we introduce the Australian SuperSite Network that, along with complementary facilities of Australia's Terrestrial Ecosystem Research Network (TERN), delivers field infrastructure and diverse, ecosystem-related datasets for use by researchers, educators and policy makers. The SuperSite Network uses infrastructure replicated across research sites in different biomes, to allow comparisons across ecosystems and improve scalability of findings to regional, continental and global scales. This conforms with the approaches of other ecosystem monitoring networks such as Critical Zone Observatories, the U.S. National Ecological Observatory Network; Analysis and Experimentation on Ecosystems, Europe; Chinese Ecosystem Research Network; International Long Term Ecological Research network and the United States Long Term Ecological Research Network. The Australian SuperSite Network currently involves 10 SuperSites across a diverse range of biomes, including tropical rainforest, grassland and savanna; wet and dry sclerophyll forest and woodland; and semi-arid grassland, woodland and savanna. The focus of the SuperSite Network is on using vegetation, faunal and biophysical monitoring to develop a process-based understanding of ecosystem function and change in Australian biomes; and to link this with data streams provided by the series of flux towers across the network. The Australian SuperSite Network is also intended to support a range of auxiliary researchers who contribute to the growing body of knowledge within and across the SuperSite Network, public outreach and education to promote environmental awareness and the role of ecosystem monitoring in the management of Australian environments. PMID:27267722

  9. Modeling the above and below ground carbon and nitrogen stocks in northern high latitude terrestrial ecosystems

    NASA Astrophysics Data System (ADS)

    ElMasri, B.; Jain, A. K.

    2012-12-01

    Climate change is expected to cause warming in the northern high latitudes, but it is still uncertain what the respond of the northern high latitudes ecosystem will be to such warming. One of the biggest scientific questions is to determine whether northern high latitude ecosystem are or will act as a terrestrial carbon sink or source. Therefore, it is essential to understand and quantify the biogeochemical cycle of the northern high latitude ecosystems in order to predict their respond to climate change. Using a land surface model, the Integrated Science Assessment Model (ISAM) with its coupled carbon-nitrogen cycle, we provide a detail quantification of the carbon and nitrogen in the vegetation pools and the soil carbon for the northern high latitude ecosystems. We focus on soil carbon and vegetation carbon and nitrogen, though we provide results for gross primary production (GPP), autotrophic respiration (Ra), net primary production (NPP), net ecosystem exchange (NEE), and heterotrophic respiration (Rh). In addition, we examine the effect of nitrogen limitation on the carbon fluxes and soil carbon. We present the results for several flux tower sites representative of the tundra and the boreal ecosystems as well as for the northern high latitude region. Our results provide a comprehensive assessment of below and above ground carbon and nitrogen pools in the northern high latitude and the model calibrated parameters can be used to improve the results of other land surface models.

  10. Detecting a Terrestrial Biosphere Sink for Carbon Dioxide: Interannual Ecosystem Modeling for the Mid-1980s

    NASA Technical Reports Server (NTRS)

    Potter, Christopher S.; Klooster, Steven A.; Brooks, Vanessa; Gore, Warren J. (Technical Monitor)

    1998-01-01

    There is considerable uncertainty as to whether interannual variability in climate and terrestrial ecosystem production is sufficient to explain observed variation in atmospheric carbon content over the past 20-30 years. In this paper, we investigated the response of net CO2 exchange in terrestrial ecosystems to interannual climate variability (1983 to 1988) using global satellite observations as drivers for the NASA-CASA (Carnegie-Ames-Stanford Approach) simulation model. This computer model of net ecosystem production (NEP) is calibrated for interannual simulations driven by monthly satellite vegetation index data (NDVI) from the NOAA Advanced Very High Resolution Radiometer (AVHRR) at 1 degree spatial resolution. Major results from NASA-CASA simulations suggest that from 1985 to 1988, the northern middle-latitude zone (between 30 and 60 degrees N) was the principal region driving progressive annual increases in global net primary production (NPP; i.e., the terrestrial biosphere sink for carbon). The average annual increase in NPP over this predominantly northern forest zone was on the order of +0.4 Pg (10 (exp 15) g) C per year. This increase resulted mainly from notable expansion of the growing season for plant carbon fixation toward the zonal latitude extremes, a pattern uniquely demonstrated in our regional visualization results. A net biosphere source flux of CO2 in 1983-1984, coinciding with an El Nino event, was followed by a major recovery of global NEP in 1985 which lasted through 1987 as a net carbon sink of between 0.4 and 2.6 Avg C per year. Analysis of model controls on NPP and soil heterotrophic CO2 fluxes (Rh) suggests that regional warming in northern forests can enhance ecosystem production significantly. In seasonally dry tropical zones, periodic drought and temperature drying effects may carry over with at least a two-year lag time to adversely impact ecosystem production. These yearly patterns in our model-predicted NEP are consistent in

  11. Nitrogen and Phosphorus Limitation over Long-Term Ecosystem Development in Terrestrial Ecosystems

    PubMed Central

    Menge, Duncan N. L.; Hedin, Lars O.; Pacala, Stephen W.

    2012-01-01

    Nutrient limitation to net primary production (NPP) displays a diversity of patterns as ecosystems develop over a range of timescales. For example, some ecosystems transition from N limitation on young soils to P limitation on geologically old soils, whereas others appear to remain N limited. Under what conditions should N limitation and P limitation prevail? When do transitions between N and P limitation occur? We analyzed transient dynamics of multiple timescales in an ecosystem model to investigate these questions. Post-disturbance dynamics in our model are controlled by a cascade of rates, from plant uptake (very fast) to litter turnover (fast) to plant mortality (intermediate) to plant-unavailable nutrient loss (slow) to weathering (very slow). Young ecosystems are N limited when symbiotic N fixation (SNF) is constrained and P weathering inputs are high relative to atmospheric N deposition and plant N:P demand, but P limited under opposite conditions. In the absence of SNF, N limitation is likely to worsen through succession (decades to centuries) because P is mineralized faster than N. Over long timescales (centuries and longer) this preferential P mineralization increases the N:P ratio of soil organic matter, leading to greater losses of plant-unavailable N versus P relative to plant N:P demand. These loss dynamics favor N limitation on older soils despite the rising organic matter N:P ratio. However, weathering depletion favors P limitation on older soils when continual P inputs (e.g., dust deposition) are low, so nutrient limitation at the terminal equilibrium depends on the balance of these input and loss effects. If NPP switches from N to P limitation over long time periods, the transition time depends most strongly on the P weathering rate. At all timescales SNF has the capacity to overcome N limitation, so nutrient limitation depends critically on limits to SNF. PMID:22870281

  12. High resolution measurement of light in terrestrial ecosystems using photodegrading dyes.

    PubMed

    Roales, Javier; Durán, Jorge; Bechtold, Heather A; Groffman, Peter M; Rosi-Marshall, Emma J

    2013-01-01

    Incoming solar radiation is the main determinant of terrestrial ecosystem processes, such as primary production, litter decomposition, or soil mineralization rates. Light in terrestrial ecosystems is spatially and temporally heterogeneous due to the interaction among sunlight angle, cloud cover and tree-canopy structure. To integrate this variability and to know light distribution over time and space, a high number of measurements are needed, but tools to do this are usually expensive and limited. An easy-to-use and inexpensive method that can be used to measure light over time and space is needed. We used two photodegrading fluorescent organic dyes, rhodamine WT (RWT) and fluorescein, for the quantification of light. We measured dye photodegradation as the decrease in fluorescence across an irradiance gradient from full sunlight to deep shade. Then, we correlated it to accumulated light measured with PAR quantum sensors and obtained a model for this behavior. Rhodamine WT and fluorescein photodegradation followed an exponential decay curve with respect to accumulated light. Rhodamine WT degraded slower than fluorescein and remained unaltered after exposure to temperature changes. Under controlled conditions, fluorescence of both dyes decreased when temperatures increased, but returned to its initial values after cooling to the pre-heating temperature, indicating no degradation. RWT and fluorescein can be used to measure light under a varying range of light conditions in terrestrial ecosystems. This method is particularly useful to integrate solar radiation over time and to measure light simultaneously at different locations, and might be a better alternative to the expensive and time consuming traditional light measurement methods. The accuracy, low price and ease of this method make it a powerful tool for intensive sampling of large areas and for developing high resolution maps of light in an ecosystem. PMID:24069440

  13. Development of an Unmanned Aerial System (UAS) for Scaling Terrestrial Ecosystem Traits

    NASA Astrophysics Data System (ADS)

    Meng, R.; McMahon, A. M.; Serbin, S.; Rogers, A.

    2015-12-01

    The next generation of Ecosystem and Earth System Models (EESMs) will require detailed information on ecosystem structure and function, including properties of vegetation related to carbon (C), water, and energy cycling, in order to project the future state of ecosystems. High spatial-temporal resolution measurements of terrestrial ecosystem are also important for EESMs, because they can provide critical inputs and benchmark datasets for evaluation of EESMs simulations across scales. The recent development of high-quality, low-altitude remote sensing platforms or small UAS (< 25 kg) enables measurements of terrestrial ecosystems at unprecedented temporal and spatial scales. Specifically, these new platforms can provide detailed information on patterns and processes of terrestrial ecosystems at a critical intermediate scale between point measurements and suborbital and satellite platforms. Given their potential for sub-decimeter spatial resolution, improved mission safety, high revisit frequency, and reduced operation cost, these platforms are of particular interest in the development of ecological scaling algorithms to parameterize and benchmark EESMs, particularly over complex and remote terrain. Our group is developing a small UAS platform and integrated sensor package focused on measurement needs for scaling and informing ecosystem modeling activities, as well as scaling and mapping plant functional traits. To do this we are developing an integrated software workflow and hardware package using off-the-shelf instrumentation including a high-resolution digital camera for Structure from Motion, spectroradiometer, and a thermal infrared camera. Our workflow includes platform design, measurement, image processing, data management, and information extraction. The fusion of 3D structure information, thermal-infrared imagery, and spectroscopic measurements, will provide a foundation for the development of ecological scaling and mapping algorithms. Our initial focus is

  14. Linking Biological Responses of Terrestrial N Eutrophication to the Final Ecosystem Goods and Services Classification System

    NASA Astrophysics Data System (ADS)

    Bell, M. D.; Clark, C.; Blett, T.

    2015-12-01

    The response of a biological indicator to N deposition can indicate that an ecosystem has surpassed a critical load and is at risk of significant change. The importance of this exceedance is often difficult to digest by policy makers and public audiences if the change is not linked to a familiar ecosystem endpoint. A workshop was held to bring together scientists, resource managers, and policy makers with expertise in ecosystem functioning, critical loads, and economics in an effort to identify the ecosystem services impacted by air pollution. This was completed within the framework of the Final Ecosystem Goods and Services (FEGS) Classification System to produce a product that identified distinct interactions between society and the effects of nitrogen pollution. From each change in a biological indicator, we created multiple ecological production functions to identify the cascading effects of the change to a measureable ecosystem service that a user interacts with either by enjoying, consuming, or appreciating the good or service, or using it as an input in the human economy. This FEGS metric was then linked to a beneficiary group that interacts with the service. Chains detailing the links from the biological indicator to the beneficiary group were created for aquatic and terrestrial acidification and eutrophication at the workshop, and here we present a subset of the workshop results by highlighting for 9 different ecosystems affected by terrestrial eutrophication. A total of 213 chains that linked to 37 unique FEGS metrics and impacted 15 beneficiary groups were identified based on nitrogen deposition mediated changes to biological indicators. The chains within each ecosystem were combined in flow charts to show the complex, overlapping relationships among biological indicators, ecosystem services, and beneficiary groups. Strength of relationship values were calculated for each chain based on support for the link in the scientific literature. We produced the

  15. Neovenatorid theropods are apex predators in the Late Cretaceous of North America.

    PubMed

    Zanno, Lindsay E; Makovicky, Peter J

    2013-01-01

    Allosauroid theropods were a diverse and widespread radiation of Jurassic-Cretaceous megapredators. Achieving some of the largest body sizes among theropod dinosaurs, these colossal hunters dominated terrestrial ecosystems until a faunal turnover redefined apex predator guild occupancy during the final 20 million years of the Cretaceous. Here we describe a giant new species of allosauroid--Siats meekerorum gen. et sp. nov.--providing the first evidence for the cosmopolitan clade Neovenatoridae in North America. Siats is the youngest allosauroid yet discovered from the continent and demonstrates that the clade endured there into the Late Cretaceous. The discovery provides new evidence for ecologic sympatry of large allosauroids and small-bodied tyrannosauroids. These data support the hypothesis that extinction of Allosauroidea in terrestrial ecosystems of North America permitted ecological release of tyrannosauroids, which went on to dominate end-Cretaceous food webs. PMID:24264527

  16. Global covariation of carbon turnover times with climate in terrestrial ecosystems.

    PubMed

    Carvalhais, Nuno; Forkel, Matthias; Khomik, Myroslava; Bellarby, Jessica; Jung, Martin; Migliavacca, Mirco; Mu, Mingquan; Saatchi, Sassan; Santoro, Maurizio; Thurner, Martin; Weber, Ulrich; Ahrens, Bernhard; Beer, Christian; Cescatti, Alessandro; Randerson, James T; Reichstein, Markus

    2014-10-01

    The response of the terrestrial carbon cycle to climate change is among the largest uncertainties affecting future climate change projections. The feedback between the terrestrial carbon cycle and climate is partly determined by changes in the turnover time of carbon in land ecosystems, which in turn is an ecosystem property that emerges from the interplay between climate, soil and vegetation type. Here we present a global, spatially explicit and observation-based assessment of whole-ecosystem carbon turnover times that combines new estimates of vegetation and soil organic carbon stocks and fluxes. We find that the overall mean global carbon turnover time is 23(+7)(-4) years (95 per cent confidence interval). On average, carbon resides in the vegetation and soil near the Equator for a shorter time than at latitudes north of 75° north (mean turnover times of 15 and 255 years, respectively). We identify a clear dependence of the turnover time on temperature, as expected from our present understanding of temperature controls on ecosystem dynamics. Surprisingly, our analysis also reveals a similarly strong association between turnover time and precipitation. Moreover, we find that the ecosystem carbon turnover times simulated by state-of-the-art coupled climate/carbon-cycle models vary widely and that numerical simulations, on average, tend to underestimate the global carbon turnover time by 36 per cent. The models show stronger spatial relationships with temperature than do observation-based estimates, but generally do not reproduce the strong relationships with precipitation and predict faster carbon turnover in many semi-arid regions. Our findings suggest that future climate/carbon-cycle feedbacks may depend more strongly on changes in the hydrological cycle than is expected at present and is considered in Earth system models. PMID:25252980

  17. Contrasting responses of water use efficiency to drought across global terrestrial ecosystems.

    PubMed

    Yang, Yuting; Guan, Huade; Batelaan, Okke; McVicar, Tim R; Long, Di; Piao, Shilong; Liang, Wei; Liu, Bing; Jin, Zhao; Simmons, Craig T

    2016-01-01

    Drought is an intermittent disturbance of the water cycle that profoundly affects the terrestrial carbon cycle. However, the response of the coupled water and carbon cycles to drought and the underlying mechanisms remain unclear. Here we provide the first global synthesis of the drought effect on ecosystem water use efficiency (WUE = gross primary production (GPP)/evapotranspiration (ET)). Using two observational WUE datasets (i.e., eddy-covariance measurements at 95 sites (526 site-years) and global gridded diagnostic modelling based on existing observation and a data-adaptive machine learning approach), we find a contrasting response of WUE to drought between arid (WUE increases with drought) and semi-arid/sub-humid ecosystems (WUE decreases with drought), which is attributed to different sensitivities of ecosystem processes to changes in hydro-climatic conditions. WUE variability in arid ecosystems is primarily controlled by physical processes (i.e., evaporation), whereas WUE variability in semi-arid/sub-humid regions is mostly regulated by biological processes (i.e., assimilation). We also find that shifts in hydro-climatic conditions over years would intensify the drought effect on WUE. Our findings suggest that future drought events, when coupled with an increase in climate variability, will bring further threats to semi-arid/sub-humid ecosystems and potentially result in biome reorganization, starting with low-productivity and high water-sensitivity grassland. PMID:26983909

  18. Contrasting responses of water use efficiency to drought across global terrestrial ecosystems

    PubMed Central

    Yang, Yuting; Guan, Huade; Batelaan, Okke; McVicar, Tim R.; Long, Di; Piao, Shilong; Liang, Wei; Liu, Bing; Jin, Zhao; Simmons, Craig T.

    2016-01-01

    Drought is an intermittent disturbance of the water cycle that profoundly affects the terrestrial carbon cycle. However, the response of the coupled water and carbon cycles to drought and the underlying mechanisms remain unclear. Here we provide the first global synthesis of the drought effect on ecosystem water use efficiency (WUE = gross primary production (GPP)/evapotranspiration (ET)). Using two observational WUE datasets (i.e., eddy-covariance measurements at 95 sites (526 site-years) and global gridded diagnostic modelling based on existing observation and a data-adaptive machine learning approach), we find a contrasting response of WUE to drought between arid (WUE increases with drought) and semi-arid/sub-humid ecosystems (WUE decreases with drought), which is attributed to different sensitivities of ecosystem processes to changes in hydro-climatic conditions. WUE variability in arid ecosystems is primarily controlled by physical processes (i.e., evaporation), whereas WUE variability in semi-arid/sub-humid regions is mostly regulated by biological processes (i.e., assimilation). We also find that shifts in hydro-climatic conditions over years would intensify the drought effect on WUE. Our findings suggest that future drought events, when coupled with an increase in climate variability, will bring further threats to semi-arid/sub-humid ecosystems and potentially result in biome reorganization, starting with low-productivity and high water-sensitivity grassland. PMID:26983909

  19. Contrasting responses of water use efficiency to drought across global terrestrial ecosystems

    NASA Astrophysics Data System (ADS)

    Yang, Yuting; Guan, Huade; Batelaan, Okke; McVicar, Tim R.; Long, Di; Piao, Shilong; Liang, Wei; Liu, Bing; Jin, Zhao; Simmons, Craig T.

    2016-03-01

    Drought is an intermittent disturbance of the water cycle that profoundly affects the terrestrial carbon cycle. However, the response of the coupled water and carbon cycles to drought and the underlying mechanisms remain unclear. Here we provide the first global synthesis of the drought effect on ecosystem water use efficiency (WUE = gross primary production (GPP)/evapotranspiration (ET)). Using two observational WUE datasets (i.e., eddy-covariance measurements at 95 sites (526 site-years) and global gridded diagnostic modelling based on existing observation and a data-adaptive machine learning approach), we find a contrasting response of WUE to drought between arid (WUE increases with drought) and semi-arid/sub-humid ecosystems (WUE decreases with drought), which is attributed to different sensitivities of ecosystem processes to changes in hydro-climatic conditions. WUE variability in arid ecosystems is primarily controlled by physical processes (i.e., evaporation), whereas WUE variability in semi-arid/sub-humid regions is mostly regulated by biological processes (i.e., assimilation). We also find that shifts in hydro-climatic conditions over years would intensify the drought effect on WUE. Our findings suggest that future drought events, when coupled with an increase in climate variability, will bring further threats to semi-arid/sub-humid ecosystems and potentially result in biome reorganization, starting with low-productivity and high water-sensitivity grassland.

  20. Geochemical and tectonic uplift controls on rock nitrogen inputs across terrestrial ecosystems

    NASA Astrophysics Data System (ADS)

    Morford, Scott L.; Houlton, Benjamin Z.; Dahlgren, Randy A.

    2016-02-01

    Rock contains > 99% of Earth's reactive nitrogen (N), but questions remain over the direct importance of rock N weathering inputs to terrestrial biogeochemical cycling. Here we investigate the factors that regulate rock N abundance and develop a new model for quantifying rock N mobilization fluxes across desert to temperate rainforest ecosystems in California, USA. We analyzed the N content of 968 rock samples from 531 locations and compiled 178 cosmogenically derived denudation estimates from across the region to identify landscapes and ecosystems where rocks account for a significant fraction of terrestrial N inputs. Strong coherence between rock N content and geophysical factors, such as protolith, (i.e. parent rock), grain size, and thermal history, are observed. A spatial model that combines rock geochemistry with lithology and topography demonstrates that average rock N reservoirs range from 0.18 to 1.2 kg N m-3 (80 to 534 mg N kg-1) across the nine geomorphic provinces of California and estimates a rock N denudation flux of 20-92 Gg yr-1 across the entire study area (natural atmospheric inputs ~ 140 Gg yr-1). The model highlights regional differences in rock N mobilization and points to the Coast Ranges, Transverse Ranges, and the Klamath Mountains as regions where rock N could contribute meaningfully to ecosystem N cycling. Contrasting these data to global compilations suggests that our findings are broadly applicable beyond California and that the N abundance and variability in rock are well constrained across most of the Earth system.

  1. Early tetrapod evolution and the progressive integration of Permo-Carboniferous terrestrial ecosystems

    SciTech Connect

    Beerbower, J.R. . Dept. of Geological Science); Olson, E.C. . Dept. of Biology); Hotton, N. III . Dept. of Paleobiology)

    1992-01-01

    Variation among Permo-Carboniferous tetrapod assemblages demonstrates major transformations in pathways and rates of energy and nutrient transfer, in integration of terrestrial ecosystems and in predominant ecologic modes. Early Carboniferous pathways were through plant detritus to aquatic and terrestrial detritivores and thence to arthropod and vertebrate meso-and macro-predators. Transfer rates (and efficiency) were low as was ecosystem integration; the principal ecologic mode was conservation. Late Carboniferous and Early Permian assemblages demonstrate an expansion in herbivory, primarily in utilization of low-fiber plant tissue by insects. But transfer rates, efficiency and integration were still limited because the larger portion of plant biomass, high-fiber tissues, still went into detrital pathways; high-fiber'' herbivores, i.e., tetrapods, were neither abundant or diverse, reflecting limited resources, intense predation and limited capabilities for processing fiber-rich food. The abundance and diversity of tetrapod herbivores in upper Permian assemblages suggests a considerable transfer of energy from high-fiber tissues through these animals to tetrapod predators and thus higher transfer rates and efficiencies. It also brought a shift in ecological mode toward acquisition and regulation and tightened ecosystem integration.

  2. The response of terrestrial ecosystems to global climate change: towards an integrated approach.

    PubMed

    Rustad, Lindsey E

    2008-10-15

    Accumulating evidence points to an anthropogenic 'fingerprint' on the global climate change that has occurred in the last century. Climate change has, and will continue to have, profound effects on the structure and function of terrestrial ecosystems. As such, there is a critical need to continue to develop a sound scientific basis for national and international policies regulating carbon sequestration and greenhouse gas emissions. This paper reflects on the nature of current global change experiments, and provides recommendations for a unified multidisciplinary approach to future research in this dynamic field. These recommendations include: (1) better integration between experiments and models, and amongst experimental, monitoring, and space-for-time studies; (2) stable and increased support for long-term studies and multi-factor experiments; (3) explicit inclusion of biodiversity, disturbance, and extreme events in experiments and models; (4) consideration of timing vs intensity of global change factors in experiments and models; (5) evaluation of potential thresholds or ecosystem 'tipping points'; and (6) increased support for model-model and model-experiment comparisons. These recommendations, which reflect discussions within the TERACC international network of global change scientists, will facilitate the unraveling of the complex direct and indirect effects of global climate change on terrestrial ecosystems and their components. PMID:18675444

  3. The characteristics of soil N transformations regulate the composition of hydrologic N export from terrestrial ecosystem

    NASA Astrophysics Data System (ADS)

    Zhang, Jinbo; Tian, Peng; Tang, Jialiang; Yuan, Lei; Ke, Yun; Cai, Zucong; Zhu, Bo; Müller, Christoph

    2016-06-01

    It is important to clarify the quantity and composition of hydrologic N export from terrestrial ecosystem and its primary controlling factors, because it affected N availability, productivity, and C storage in natural ecosystems. The most previous investigations were focused on the effects of N deposition and human disturbance on the composition of hydrologic N export. However, few studies were aware of whether there were significant differences in the concentrations and composition of hydrologic N export from natural ecosystems in different climate zones and what is the primary controlling factor. In the present study, three natural forest ecosystems and one natural grassland ecosystem that were located in different climate zones and with different soil pH range were selected. The concentrations of total dissolved N, dissolved organic nitrogen (DON), NH4+, NO3- in soil solution and stream water, soil properties, and soil gross N transformation rates were measured to answer above questions. Our results showed that NO3- concentrations and the composition pattern of hydrologic N export from natural ecosystems varied greatly in the different climate zones. The NO3- concentrations in stream water varied largely, ranging from 0.1 mg N L-1 to 1.6 mg N L-1, while DON concentration in stream water, ranging from 0.1 to 0.9 mg N L-1, did not differ significantly, and the concentrations of NH4+ were uniformly low (average 0.1 mg N L-1) in all studied sites. There was a trade-off relationship between the proportions of NO3- and DON to total dissolved N in stream water. In subtropical strongly acidic forests soil site, DON was the dominance in total dissolved N in stream water, while NO3--N became dominance in temperate acidic forests soil site, subtropical alkaline forests soil region, and the alpine meadow sites on the Tibetan Plateau. The proportions of NO3- to total dissolved N in both soil solution and stream water significantly increased with the increasing of the gross

  4. The impact of Miocene atmospheric carbon dioxide fluctuations on climate and the evolution of terrestrial ecosystems

    PubMed Central

    Kürschner, Wolfram M.; Kvaček, Zlatko; Dilcher, David L.

    2008-01-01

    The Miocene is characterized by a series of key climatic events that led to the founding of the late Cenozoic icehouse mode and the dawn of modern biota. The processes that caused these developments, and particularly the role of atmospheric CO2 as a forcing factor, are poorly understood. Here we present a CO2 record based on stomatal frequency data from multiple tree species. Our data show striking CO2 fluctuations of ≈600–300 parts per million by volume (ppmv). Periods of low CO2 are contemporaneous with major glaciations, whereas elevated CO2 of 500 ppmv coincides with the climatic optimum in the Miocene. Our data point to a long-term coupling between atmospheric CO2 and climate. Major changes in Miocene terrestrial ecosystems, such as the expansion of grasslands and radiations among terrestrial herbivores such as horses, can be linked to these marked fluctuations in CO2. PMID:18174330

  5. The impact of Miocene atmospheric carbon dioxide fluctuations on climate and the evolution of terrestrial ecosystems.

    PubMed

    Kürschner, Wolfram M; Kvacek, Zlatko; Dilcher, David L

    2008-01-15

    The Miocene is characterized by a series of key climatic events that led to the founding of the late Cenozoic icehouse mode and the dawn of modern biota. The processes that caused these developments, and particularly the role of atmospheric CO2 as a forcing factor, are poorly understood. Here we present a CO2 record based on stomatal frequency data from multiple tree species. Our data show striking CO2 fluctuations of approximately 600-300 parts per million by volume (ppmv). Periods of low CO2 are contemporaneous with major glaciations, whereas elevated CO2 of 500 ppmv coincides with the climatic optimum in the Miocene. Our data point to a long-term coupling between atmospheric CO2 and climate. Major changes in Miocene terrestrial ecosystems, such as the expansion of grasslands and radiations among terrestrial herbivores such as horses, can be linked to these marked fluctuations in CO2. PMID:18174330

  6. Modeling gross primary production and ecosystem respiration for terrestrial ecosystems in North China and Tibet Plateau using MODIS imagery

    NASA Astrophysics Data System (ADS)

    Gao, Y.; Yu, G.; Yan, H.; Zhu, X.; Li, S.; Wang, Q.; Zhang, J.; Wang, Y.; Li, Y.; Zhao, L.; Shi, P.

    2013-12-01

    Gross primary production (GPP) and ecosystem respiration (Re) are two large components in the studying of regional and global carbon cycles. Accurate quantification of spatio-temporal variations of GPP and Re for terrestrial ecosystems is of great importance to research carbon budget on regional and global scales. In this study, we proposed two satellite-based models, i.e. Photosynthetic Capacity Model (PCM) and Ecosystem Respiration Model (ERM), to simulate GPP and Re of terrestrial ecosystems, respectively. Multi-year eddy CO2 flux data from five vegetation types in North China (temperate mixed forest, temperate steppe) and Tibet Plateau (alpine shrubland, alpine marsh and alpine meadow-steppe) were used for assessing the model performances. The PCM model was driven by the Enhanced Vegetation Index (EVI) and the Land Surface Water Index (LSWI) from MODIS imagery. In most cases, the PCM-simulated GPP and the observed GPP displayed very consistent seasonal and inter-seasonal variability regardless of vegetation types. The PCM predicted versus observed GPP performed better than the MODIS GPP products, and was compatible with the Vegetation Photosynthesis Model (VPM). Moreover, the model parameter of the PCM could be gained from the linear function of mean annual remote sensing data. Based on this linear function, the PCM model simulated 93% variations of the observed GPP across all five vegetation types. The ERM model was developed based on both GPP and temperature, and was driven by EVI, LSWI and the Land Surface Temperature (LST) from MODIS imagery. In most cases, the seasonal and interannual variations of the simulated Re matched well with the observed Re. Compared with the model driven by temperature, and the model further added GPP in the reference respiration, the ERM model was optimal in each vegetation type. The model parameters of the ERM could also be presented by the liner functions of mean annual remote sensing data. Based on these linear functions, 90

  7. High-precision U-Pb geochronologic constraints on the Late Cretaceous terrestrial cyclostratigraphy and geomagnetic polarity from the Songliao Basin, Northeast China

    NASA Astrophysics Data System (ADS)

    Wang, Tiantian; Ramezani, Jahandar; Wang, Chengshan; Wu, Huaichun; He, Huaiyu; Bowring, Samuel A.

    2016-07-01

    The Cretaceous continental sedimentary records are essential to our understanding of how the terrestrial geologic and ecologic systems responded to past climate fluctuations under greenhouse conditions and our ability to forecast climate change in the future. The Songliao Basin of Northeast China preserves a near-complete, predominantly lacustrine, Cretaceous succession, with sedimentary cyclicity that has been tied to Milankocitch forcing of the climate. Over 900 meters of drill-core recovered from the Upper Cretaceous (Turonian to Campanian) of the Songliao Basin has provided a unique opportunity for detailed analyses of its depositional and paleoenvironmental records through integrated and high-resolution cyclostratigraphic, magnetostratigraphic and geochronologic investigations. Here we report high-precision U-Pb zircon dates (CA-ID-TIMS method) from four interbedded bentonites from the drill-core that offer substantial improvements in accuracy, and a ten-fold enhancement in precision, compared to the previous U-Pb SIMS geochronology, and allow a critical evaluation of the Songliao astrochronological time scale. The results indicate appreciable deviations of the astrochronologic model from the absolute radioisotope geochronology, which more likely reflect cyclostratigraphic tuning inaccuracies and omitted cycles due to depositional hiatuses, rather than suspected limitations of astronomical models applied to distant geologic time. Age interpolation based on our new high-resolution geochronologic framework and the calibrated cyclostratigraphy places the end of the Cretaceous Normal Superchon (C34n-C33r chron boundary) in the Songliao Basin at 83.07 ± 0.15 Ma. This date also serves as a new and improved estimate for the global Santonian-Campanian stage boundary.

  8. Reviews and syntheses: Four decades of modeling methane cycling in terrestrial ecosystems

    DOE PAGESBeta

    Xu, Xiaofeng; Yuan, Fengming; Hanson, Paul J.; Wullschleger, Stan D.; Thornton, Peter E.; Riley, William J.; Song, Xia; Graham, David E.; Song, Changchun; Tian, Hanqin

    2016-01-28

    A number of numerical models have been developed to quantify the magnitude, over the past 4 decades, such that we have investigated the spatial and temporal variations, and understand the underlying mechanisms and environmental controls of methane (CH4) fluxes within terrestrial ecosystems. These CH4 models are also used for integrating multi-scale CH4 data, such as laboratory-based incubation and molecular analysis, field observational experiments, remote sensing, and aircraft-based measurements across a variety of terrestrial ecosystems. Here we summarize 40 terrestrial CH4 models to characterize their strengths and weaknesses and to suggest a roadmap for future model improvement and application. Our keymore » findings are that (1) the focus of CH4 models has shifted from theoretical to site- and regional-level applications over the past 4 decades, (2) large discrepancies exist among models in terms of representing CH4 processes and their environmental controls, and (3) significant data–model and model–model mismatches are partially attributed to different representations of landscape characterization and inundation dynamics. Furthermore three areas for future improvements and applications of terrestrial CH4 models are that (1) CH4 models should more explicitly represent the mechanisms underlying land–atmosphere CH4 exchange, with an emphasis on improving and validating individual CH4 processes over depth and horizontal space, (2) models should be developed that are capable of simulating CH4 emissions across highly heterogeneous spatial and temporal scales, particularly hot moments and hotspots, and (3) efforts should be invested to develop model benchmarking frameworks that can easily be used for model improvement, evaluation, and integration with data from molecular to global scales. Finally, these improvements in CH4 models would be beneficial for the Earth system models and further simulation of climate–carbon cycle feedbacks.« less

  9. Reviews and syntheses: Four decades of modeling methane cycling in terrestrial ecosystems

    NASA Astrophysics Data System (ADS)

    Xu, Xiaofeng; Yuan, Fengming; Hanson, Paul J.; Wullschleger, Stan D.; Thornton, Peter E.; Riley, William J.; Song, Xia; Graham, David E.; Song, Changchun; Tian, Hanqin

    2016-06-01

    Over the past 4 decades, a number of numerical models have been developed to quantify the magnitude, investigate the spatial and temporal variations, and understand the underlying mechanisms and environmental controls of methane (CH4) fluxes within terrestrial ecosystems. These CH4 models are also used for integrating multi-scale CH4 data, such as laboratory-based incubation and molecular analysis, field observational experiments, remote sensing, and aircraft-based measurements across a variety of terrestrial ecosystems. Here we summarize 40 terrestrial CH4 models to characterize their strengths and weaknesses and to suggest a roadmap for future model improvement and application. Our key findings are that (1) the focus of CH4 models has shifted from theoretical to site- and regional-level applications over the past 4 decades, (2) large discrepancies exist among models in terms of representing CH4 processes and their environmental controls, and (3) significant data-model and model-model mismatches are partially attributed to different representations of landscape characterization and inundation dynamics. Three areas for future improvements and applications of terrestrial CH4 models are that (1) CH4 models should more explicitly represent the mechanisms underlying land-atmosphere CH4 exchange, with an emphasis on improving and validating individual CH4 processes over depth and horizontal space, (2) models should be developed that are capable of simulating CH4 emissions across highly heterogeneous spatial and temporal scales, particularly hot moments and hotspots, and (3) efforts should be invested to develop model benchmarking frameworks that can easily be used for model improvement, evaluation, and integration with data from molecular to global scales. These improvements in CH4 models would be beneficial for the Earth system models and further simulation of climate-carbon cycle feedbacks.

  10. Reviews and syntheses: Four decades of modeling methane cycling in terrestrial ecosystems

    DOE PAGESBeta

    Xu, Xiaofeng; Yuan, Fengming; Hanson, Paul J.; Wullschleger, Stan D.; Thornton, Peter E.; Riley, William J.; Song, Xia; Graham, David E.; Song, Changchun; Tian, Hanqin

    2016-06-28

    Over the past 4 decades, a number of numerical models have been developed to quantify the magnitude, investigate the spatial and temporal variations, and understand the underlying mechanisms and environmental controls of methane (CH4) fluxes within terrestrial ecosystems. These CH4 models are also used for integrating multi-scale CH4 data, such as laboratory-based incubation and molecular analysis, field observational experiments, remote sensing, and aircraft-based measurements across a variety of terrestrial ecosystems. Here we summarize 40 terrestrial CH4 models to characterize their strengths and weaknesses and to suggest a roadmap for future model improvement and application. Our key findings are that (1) themore » focus of CH4 models has shifted from theoretical to site- and regional-level applications over the past 4 decades, (2) large discrepancies exist among models in terms of representing CH4 processes and their environmental controls, and (3) significant data–model and model–model mismatches are partially attributed to different representations of landscape characterization and inundation dynamics. Three areas for future improvements and applications of terrestrial CH4 models are that (1) CH4 models should more explicitly represent the mechanisms underlying land–atmosphere CH4 exchange, with an emphasis on improving and validating individual CH4 processes over depth and horizontal space, (2) models should be developed that are capable of simulating CH4 emissions across highly heterogeneous spatial and temporal scales, particularly hot moments and hotspots, and (3) efforts should be invested to develop model benchmarking frameworks that can easily be used for model improvement, evaluation, and integration with data from molecular to global scales. These improvements in CH4 models would be beneficial for the Earth system models and further simulation of climate–carbon cycle feedbacks.« less

  11. High-resolution sequence-stratigraphic correlation between shallow-marine and terrestrial strata: Examples from the Sunnyside Member of the Cretaceous Blackhawk Formation Book Cliffs eastern Utah

    SciTech Connect

    Davies, R.; Howell, J.; Boyd, R.; Flint, S.; Diessel, C.

    2006-07-15

    The Sunnyside Member of the Upper Cretaceous Blackhawk Formation in the Book Cliffs of eastern Utah provides an ideal opportunity to investigate high-resolution sequence-stratigraphic correlation between shallow-marine and terrestrial strata in an area of outstanding outcrop exposure. The thick, laterally extensive coal seam that caps the Sunnyside Member is critical for correlating between its shallow-marine and terrestrial components. Petrographic analysis of 281 samples obtained from 7 vertical sections spanning more than 30 km (18 mi) of depositional dip enabled us to recognize a series of transgressive-regressive coal facies trends in the seam. On this basis, we were able to identify a high-resolution record of accommodation change throughout the deposition of the coal, as well as a series of key sequence-stratigraphic surfaces. The stratigraphic relationships between the coal and the siliciclastic components of the Sunnyside Member enable us to correlate this record with that identified in the time-equivalent shallow-marine strata and to demonstrate that the coal spans the formation of two marine parasequences and two high-frequency, fourth-order sequence boundaries. This study has important implications for improving the understanding of sequence-stratigraphic expression in terrestrial strata and for correlating between marine and terrestrial records of base-level change. It may also have implications for improving the predictability of vertical and lateral variations in coal composition for mining and coalbed methane projects.

  12. Interdisciplinary research in global biogeochemical cycling Nitrous oxide in terrestrial ecosystems

    NASA Technical Reports Server (NTRS)

    Norman, S. D.; Peterson, D. L.

    1984-01-01

    NASA has begun an interdisciplinary research program to investigate various aspects of Global Biology and Global Habitability. An important element selected for the study of global phenomena is related to biogeochemical cycling. The studies involve a collaboration with recognized scientists in the areas of plant physiology, microbiology, nutrient cycling theory, and related areas. Selected subjects of study include nitrogen cycling dynamics in terrestrial ecosystems with special attention to biosphere/atmosphere interactions, and an identification of sensitive response variables which can be used in ecosystem models based on parameters derived from remotely sensed variables. A description is provided of the progress and findings over the past two years. Attention is given to the characteristics of nitrous oxide emissions, the approach followed in the investigations, the selection of study sites, radiometric measurements, and research in Sequoia.

  13. The Limits of Acclimation of land plants in a Terrestrial Ecosystems Model

    NASA Astrophysics Data System (ADS)

    Kothavala, Zavareh

    2014-05-01

    In this study, we examine the role of the terrestrial carbon cycle and the ability of different plant types to acclimate to a changing climate at the centennial scale using a global ecosystems model with updated biogeochemical processes related to moisture, carbon, and nitrogen. Elevated level of atmospheric carbon dioxide (CO2) increases CO2 fertilization, resulting in more CO2 uptake by vegetation, whereas the concomitant warming increases autotrophic and heterotrophic respiration, releasing CO2 to the atmosphere. Additionally, warming will enhance photosynthesis if current temperatures are below the optimal temperature for plant growth, while it will reduce photosynthesis if current temperatures are above the optimal temperature for plant growth. We present a series of ensemble simulations to evaluate the ability of plants to acclimate to changing conditions over the last century and how this affects the terrestrial carbon sink. A set of experiments related to (a) the varying relationship between CO2 fertilization and the half saturation constant, (b) the factors related to gross primary productivity and maintenance respiration, and (c) the variables related to heterotrophic respiration, were conducted with thirteen plant functional types. The experiments were performed using the Terrestrial Ecosystem Model (TEM) with a present-day vegetation distribution without the effects of natural or human disturbance, and a closed Nitrogen cycle, at a half-degree resolution over the globe. The experiment design consisted of eight scenarios that are consistent with past and future ecosystem conditions, presented in other scientific studies. The significance of model trends related to runoff, soil moisture, soil carbon, Net Primary Productivity (NPP), crop yield, and Net Ecosystem Productivity (NEP) for different seasons, as well as surface temperature, precipitation, vapor pressure, and photosynthetically active radiation are analyzed for various ecosystems at the global

  14. Dual role of lignin in plant litter decomposition in terrestrial ecosystems

    PubMed Central

    Austin, Amy T.; Ballaré, Carlos L.

    2010-01-01

    Plant litter decomposition is a critical step in the formation of soil organic matter, the mineralization of organic nutrients, and the carbon balance in terrestrial ecosystems. Biotic decomposition in mesic ecosystems is generally negatively correlated with the concentration of lignin, a group of complex aromatic polymers present in plant cell walls that is recalcitrant to enzymatic degradation and serves as a structural barrier impeding microbial access to labile carbon compounds. Although photochemical mineralization of carbon has recently been shown to be important in semiarid ecosystems, litter chemistry controls on photodegradative losses are not understood. We evaluated the importance of litter chemistry on photodegradation of grass litter and cellulose substrates with varying levels of lignin [cellulose-lignin (CL) substrates] under field conditions. Using wavelength-specific light attenuation filters, we found that light-driven mass loss was promoted by both UV and visible radiation. The spectral dependence of photodegradation correlated with the absorption spectrum of lignin but not of cellulose. Field incubations demonstrated that increasing lignin concentration reduced biotic decomposition, as expected, but linearly increased photodegradation. In addition, lignin content in CL substrates consistently decreased in photodegradative incubations. We conclude that lignin has a dual role affecting litter decomposition, depending on the dominant driver (biotic or abiotic) controlling carbon turnover. Under photodegradative conditions, lignin is preferentially degraded because it acts as an effective light-absorbing compound over a wide range of wavelengths. This mechanistic understanding of the role of lignin in plant litter decomposition will allow for more accurate predictions of carbon dynamics in terrestrial ecosystems. PMID:20176940

  15. Global Fire emissions and its impacts on terrestrial ecosystem carbon budget from 1901 to 2010

    NASA Astrophysics Data System (ADS)

    Yang, J.; Tian, H.; Tao, B.; Ren, W.; Wang, Y.; Liu, Y.

    2014-12-01

    As a natural disturbance in the earth system, fire plays a critical role in determining vegetation composition and distribution, atmospheric components, terrestrial carbon budget, and land surface energy balance, which all contribute to climate change. However, the fire regime prior to satellite era (the 1980s) is largely unknown at global level due to the lack of sufficient long-term fire records. Recently, a centurial-scale burned area dataset has been reconstructed at global level based on satellite information and fire model simulation. By incorporating this fire dataset into the Dynamic Land Ecosystem Model (DLEM), we estimated the fire emissions from global fires and analyzed the changes in terrestrial ecosystem carbon budget caused by fire during 1901 - 2010. Our preliminary results indicated that the average global fire emissions is 3.0 Pg C year-1 with a significantly decreasing trend during the study period. The difference between fire-on and fire-off simulations showed that fires reduced both net primary productivity (NPP) and ecosystem heterotrophic respiration (Rh). The immediate post-fire reduction in NPP is stronger than that in Rh, which dampened the Net Ecosystem Productivity; while the long-term post-fire recovery in NPP is much faster than that in Rh. Overall, the post-fire recovery processes sequestrated approximately 50% of the carbon emissions released from fires; the global fire cause a net carbon source at about 1.5 Pg C year-1 during the 110 years. In the 21st century, a large increase in global fire potential and burned area has been reported by previous studies according to climate projections. Our results imply that the future fires regime could produce more GHG emissions and reduce carbon sink size, which in turn cause positive feedbacks to global warming.

  16. Nitrogen feedbacks increase future terrestrial ecosystem carbon uptake in an individual-based dynamic vegetation model

    NASA Astrophysics Data System (ADS)

    Wårlind, D.; Smith, B.; Hickler, T.; Arneth, A.

    2014-11-01

    Recently a considerable amount of effort has been put into quantifying how interactions of the carbon and nitrogen cycle affect future terrestrial carbon sinks. Dynamic vegetation models, representing the nitrogen cycle with varying degree of complexity, have shown diverging constraints of nitrogen dynamics on future carbon sequestration. In this study, we use LPJ-GUESS, a dynamic vegetation model employing a detailed individual- and patch-based representation of vegetation dynamics, to evaluate how population dynamics and resource competition between plant functional types, combined with nitrogen dynamics, have influenced the terrestrial carbon storage in the past and to investigate how terrestrial carbon and nitrogen dynamics might change in the future (1850 to 2100; one representative "business-as-usual" climate scenario). Single-factor model experiments of CO2 fertilisation and climate change show generally similar directions of the responses of C-N interactions, compared to the C-only version of the model as documented in previous studies using other global models. Under an RCP 8.5 scenario, nitrogen limitation suppresses potential CO2 fertilisation, reducing the cumulative net ecosystem carbon uptake between 1850 and 2100 by 61%, and soil warming-induced increase in nitrogen mineralisation reduces terrestrial carbon loss by 31%. When environmental changes are considered conjointly, carbon sequestration is limited by nitrogen dynamics up to the present. However, during the 21st century, nitrogen dynamics induce a net increase in carbon sequestration, resulting in an overall larger carbon uptake of 17% over the full period. This contrasts with previous results with other global models that have shown an 8 to 37% decrease in carbon uptake relative to modern baseline conditions. Implications for the plausibility of earlier projections of future terrestrial C dynamics based on C-only models are discussed.

  17. Local adaptation of stream communities to intraspecific variation in a terrestrial ecosystem subsidy.

    PubMed

    Jackrel, Sara L; Wootton, J Timothy

    2014-01-01

    Cross-ecosystem fluxes can intertwine otherwise disparate food webs, but the effects of biodiversity at the genotypic level on fluxes across ecosystems boundaries is not known. Fresh leaves, which vary in traits such as defensive compounds against terrestrial herbivores, drop off trees and enter streams, providing a vital resource for riverine organisms. We demonstrate substantial variation in decomposition rates among individual trees in four different rivers in the Olympic Peninsula of Washington State, USA. We show that locally derived red alder leaf litter decomposes on average 24% faster than red alder leaf litter introduced from other riparian zones. Within rivers, leaves downstream of their parent trees decompose nearly as quickly as leaves from local trees. Leaves upstream of the parent tree decomposed as slowly as leaves from trees growing alongside different rivers. Over time, aquatic decomposer communities have locally adapted to the specific trees supplying the riparian subsidies. In energy-limited environments, such as small shaded streams, consumers must be efficient foragers. Our results indicate that this pressure for efficiency has led to adaptation at a particularly fine scale. More broadly, these results illustrate how genetic diversity and the effects of selection in one ecosystem can indirectly shape the structure of other ecosystems through ecological fluxes across boundaries. PMID:24649644

  18. Improved Climate Prediction through a System Level Understanding of Arctic Terrestrial Ecosystems: Next Generation Ecosystem Experiments (NGEE-Arctic)*

    NASA Astrophysics Data System (ADS)

    Hubbard, S. S.; Graham, D. E.; Hinzman, L. D.; Liang, L.; Liljedahl, A.; Norby, R. J.; Rogers, A.; Rowland, J. C.; Thornton, P. E.; Torn, M. S.; Riley, W. J.; Wilson, C. J.; Wullschleger, S. D.

    2013-12-01

    Characterized by vast amounts of carbon stored in permafrost and a rapidly evolving landscape, the Arctic has emerged as an important focal point for the study of climate change. Although recognized as an ecosystem highly vulnerable to climate change, mechanisms that govern feedbacks between the terrestrial and climate system are not well understood. Increasing our confidence in climate projections for high-latitude regions of the world requires coordinated investigations that target improved process understanding and model representation of important ecosystem-climate feedbacks. The Next-Generation Ecosystem Experiments (NGEE-Arctic) seeks to address this challenge by quantifying the physical, chemical, and biological behavior of terrestrial ecosystems in Alaska. The NGEE-Arctic project is a large, multi-disciplinary activity sponsored by the Department of Energy, Office of Science. Recent NGEE-Arctic research has focused on the highly dynamic landscapes of the North Slope Arctic tundra where thaw lakes, drained thaw lake basins, and ice-rich polygonal ground offer distinct land units for investigation and modeling. The project is working on the Barrow Environmental Observatory to study interactions that drive critical climate feedbacks within these environments through greenhouse gas fluxes and changes in surface energy balance associated with permafrost degradation and the many other processes that arise as a result of these landscape dynamics. Ongoing are mechanistic studies in the field and in the laboratory; modeling of critical and interrelated water, nitrogen, carbon, and energy dynamics; and characterization of important interactions from molecular to landscape scales that drive feedbacks to the climate system. A suite of climate-, intermediate- and fine-scale models are being used to guide observations and interpret data, while characterization information and process studies serve to initialize state variables in models, provide new algorithms and

  19. Comparing terrestrial, satellite, and ecosystem model output data for the Batéké Plateau, Gabon.

    NASA Astrophysics Data System (ADS)

    Fletcher, Charlotte; Petritsch, Richard; Pietsch, Stephan

    2010-05-01

    Productivity estimates hold an important role in decision making processes involving carbon sequestration and ecosystem management. They are also an integrated part of our efforts in understanding the effects of climate change on ecosystems. Yet exhaustive measurements of Net Primary Production (NPP) are difficult to accomplish, and the relationship between site-level and ecosystem model biomass estimates, and satellite and ecosystem model NPP estimates, is, as yet, not clearly defined. Past research undertaken in Austria suggests that (i) satellite-driven NPP estimates are similar to those of the ecosystem model's self-initialisation which represents potential NPP; (ii) NPP derived from field observations are correlated to the model results on actual ecosystem NPP; and (iii) correlations between satellite-derived versus terrestrial estimates are relatively poor. This study builds on the above-mentioned research within a different environmental context. Correlations between terrestrial data-driven biomass and NPP estimates and those derived from satellite imagery and an ecosystem model are analysed for the Batéké Plateau, Gabon - an area of savannah grasslands in the Congo basin. The biomass and NPP outputs of a biogeochemical (BGC) ecosystem model will be compared with biomass estimates calculated from field data, and NPP estimates as derived from the Moderate Resolution Imaging Spectroradiometer (MODIS) available on the internet, respectively. One potential reason offered for the lack of correlation between satellite-derived and terrestrial estimates of NPP is that the different estimation methods act on different scales. Indeed, prior results indicate that satellite and terrestrial estimates are more highly correlated for homogenous landscapes compared to ‘patchy' landscapes. The Batéké Plateau has a more homogenous landscape compared to the intensively managed, patchwork landscape of Austria. It is therefore predicted that this study will show stronger

  20. Soil nitric oxide emissions from terrestrial ecosystems in China: a synthesis of modeling and measurements

    PubMed Central

    Huang, Yong; Li, Dejun

    2014-01-01

    Soils are among the major sources of atmospheric nitric oxide (NO), which play a crucial role in atmospheric chemistry. Here we systematically synthesized the modeling studies and field measurements and presented a novel soil NO emission inventory of terrestrial ecosystems in China. The previously modeled inventories ranged from 480 to 1375 and from 242.8 to 550 Gg N yr−1 for all lands and croplands, respectively. Nevertheless, all the previous modeling studies were conducted based on very few measurements from China. According to the current synthesis of field measurements, most soil NO emission measurements were conducted at croplands, while the measurements were only conducted at two sites for forest and grassland. The median NO flux was 3.2 ng N m−2 s−1 with a fertilizer induced emission factor (FIE) of 0.04% for rice fields, and was 7.1 ng N m−2 s−1 with an FIE of 0.67% for uplands. A novel NO emission inventory of 1226.33 (ranging from 588.24 to 2132.05) Gg N yr−1 was estimated for China's terrestrial ecosystems, which was about 18% of anthropogenic emissions. More field measurements should be conducted to cover more biomes and obtain more representative data in order to well constrain soil NO emission inventory of China. PMID:25490942

  1. Biological nitrogen fixation: rates, patterns and ecological controls in terrestrial ecosystems

    USGS Publications Warehouse

    Vitousek, Peter M.; Menge, Duncan N.L.; Reed, Sasha C.; Cleveland, Cory C.

    2013-01-01

    New techniques have identified a wide range of organisms with the capacity to carry out biological nitrogen fixation (BNF)—greatly expanding our appreciation of the diversity and ubiquity of N fixers—but our understanding of the rates and controls of BNF at ecosystem and global scales has not advanced at the same pace. Nevertheless, determining rates and controls of BNF is crucial to placing anthropogenic changes to the N cycle in context, and to understanding, predicting and managing many aspects of global environmental change. Here, we estimate terrestrial BNF for a pre-industrial world by combining information on N fluxes with 15N relative abundance data for terrestrial ecosystems. Our estimate is that pre-industrial N fixation was 58 (range of 40–100) Tg N fixed yr−1; adding conservative assumptions for geological N reduces our best estimate to 44 Tg N yr−1. This approach yields substantially lower estimates than most recent calculations; it suggests that the magnitude of human alternation of the N cycle is substantially larger than has been assumed.

  2. Biological nitrogen fixation: rates, patterns and ecological controls in terrestrial ecosystems

    PubMed Central

    Vitousek, Peter M.; Menge, Duncan N. L.; Reed, Sasha C.; Cleveland, Cory C.

    2013-01-01

    New techniques have identified a wide range of organisms with the capacity to carry out biological nitrogen fixation (BNF)—greatly expanding our appreciation of the diversity and ubiquity of N fixers—but our understanding of the rates and controls of BNF at ecosystem and global scales has not advanced at the same pace. Nevertheless, determining rates and controls of BNF is crucial to placing anthropogenic changes to the N cycle in context, and to understanding, predicting and managing many aspects of global environmental change. Here, we estimate terrestrial BNF for a pre-industrial world by combining information on N fluxes with 15N relative abundance data for terrestrial ecosystems. Our estimate is that pre-industrial N fixation was 58 (range of 40–100) Tg N fixed yr−1; adding conservative assumptions for geological N reduces our best estimate to 44 Tg N yr−1. This approach yields substantially lower estimates than most recent calculations; it suggests that the magnitude of human alternation of the N cycle is substantially larger than has been assumed. PMID:23713117

  3. Geophysical Evidence to Link Terrestrial Insect Diversity and Groundwater Availability in Non-Riparian Ecosystems

    NASA Astrophysics Data System (ADS)

    Pehringer, M.; Carr, G.; Long, H.; Parsekian, A.

    2015-12-01

    Wyoming, the third driest state in the United States, is home to a high level of biodiversity. In many cases, ecosystems are dependent on the vast systems of water resting just below the surface. This groundwater supports a variety of organisms that live far from surface water and its surrounding riparian zone, where more than 70% of species reside. In order to observe the correlation of groundwater presence and biodiversity in non-riparian ecosystems, a study was conducted to look specifically at terrestrial insect species linked to groundwater in Bighorn National Forest, WY. It was hypothesized that the more groundwater present, the greater the diversity of insects would be. Sample areas were randomly selected in non-riparian zones and groundwater was evaluated using a transient electromagnetic (TEM) geophysical instrument. Electrical pulses were transmitted through a 40m by 40m square of wire to measure levels of resistivity from near the surface to several hundred meters below ground. Pulses are echoed back to the surface and received by a smaller 10m by 10m square of wire, and an even smaller 1m by 1m square of wire set inside the larger transmitting wire. An insect population and species count was then conducted within the perimeter set by the outer transmitting wire. The results were not as hypothesized. More inferred groundwater below the surface resulted in a smaller diversity of species. Inversely, the areas with a smaller diversity held a larger total population of terrestrial insects.

  4. Determination of volatile halogenated organic compounds in the tropical terrestrial ecosystem

    SciTech Connect

    Quintana, A.; Lopez-Garriga, J.

    1995-12-01

    Volatile Halogenated Organic Compounds are discharged into our biosphere by plants, marine organisms, fungi and by other natural processes. Due to the high rate of evaporation of the tropical terrestrial ecosystem, the production of VHOC by fungi, higher plants and other organisms may be one of the most important sources of the total amount of VHOC released to the atmosphere from biogenic origin. The main goal of this research was to determine the VHOC`s released to the surroundings from biogenic origin in the tropical terrestrial ecosystem. Using vacuum distillation with cryogenic trapping and a thermal desorption unit coupled to a GC-ECD, we found that samples of air, water and soil contains 36.418 ng/L, 0.222 ng/mL and 9.156 ng/g (wet) of chloroform. Microorganisms such as the Actinomycetes and Halobacterium salinarium were also analyzed for VHOC`S contents. Carbontetrachloride, 1,1-dichloroethene, dichlorodifluoromethane, trichlorofluoromethane and other VHOC`S of environmental importance were determined. This is the first time that the presence of VHOC`S is reported in pure cultured bacteria.

  5. Dynamical prediction of terrestrial ecosystems and the global carbon cycle: A 25-year hindcast experiment

    NASA Astrophysics Data System (ADS)

    Zeng, Ning; Yoon, Jin-Ho; Vintzileos, Augustin; Collatz, G. James; Kalnay, Eugenia; Mariotti, Annarita; Kumar, Arun; Busalacchi, Antonio; Lord, Stephen

    2008-12-01

    Using a 25-year hindcast experiment, we explore the possibility of seasonal-interannual prediction of terrestrial ecosystems and the global carbon cycle. This has been achieved using a prototype forecasting system in which the dynamic vegetation and terrestrial carbon cycle model VEGAS was forced with 15-member ensemble climate predictions generated by the NOAA/NCEP coupled climate forecasting system (CFS) for the period 1981-2005, with lead times up to 9 months. The results show that the predictability is dominated by the ENSO signal with its major influence on the tropical and subtropical regions, including South America, Indonesia, southern Africa, eastern Australia, western United States, and central Asia. There is also important non-ENSO related predictability such as that associated with midlatitude drought. Comparison of the dynamical prediction results with benchmark statistical prediction methods such as anomaly persistence and damping show that the dynamical method performs significantly better. The hindcasted ecosystem variables and carbon flux show significantly slower decrease in skill at longer lead time compared to the climate forcing variables, partly because of the memories in land and vegetation processes that filter out the higher-frequency noise and sustain the signal.

  6. Impact of desert dust on the biogeochemistry of phosphorus in terrestrial ecosystems

    NASA Astrophysics Data System (ADS)

    Okin, Gregory S.; Mahowald, Natalie; Chadwick, Oliver A.; Artaxo, Paulo

    2004-06-01

    Leaching, biomass removal, and partitioning of phosphorus (P) into reservoirs not available to plants can limit the long-term productivity of terrestrial ecosystems. We evaluate the importance of atmospheric P inputs to the world's soils by estimating the total soil P turnover time with respect to dustborne P additions. Estimated turnover times range from ˜104 to ˜107 years. Our estimates provide a unique perspective on the importance and patterns of aeolian deposition to terrestrial landscapes. Dust source regions are areas of intense soil P cycling on large scales, but are too water-limited for this rapid cycling to have a major influence on ecosystem dynamics. By contrast, semiarid desert margins receive significant aeolian P from neighboring deserts and are likely influenced by dustborne P additions for the long-term maintenance of productivity. This is particularly true for the semiarid steppes of Africa and Eurasia. The prevalence of large dust sources in Africa and Eurasia indicates that these areas may generally be more influenced by dustborne P additions than soils in the Americas. Significant western hemisphere exceptions to this pattern occur on very old landscapes, such as the forests of the southeastern United States and the Amazon Basin. The Amazon Basin is highly dependent on aeolian deposition for the maintenance of long-term productivity. Dust deposition to terrestrial environments has not been constant with time. Variability in past P deposition related to geologically recent climate change may provide the strongest controls on present and future soil P in the Amazon and elsewhere.

  7. Global evidence on nitrogen saturation of terrestrial ecosystem net primary productivity

    NASA Astrophysics Data System (ADS)

    Tian, Dashuan; Wang, Hong; Sun, Jian; Niu, Shuli

    2016-02-01

    The continually increasing nitrogen (N) deposition is expected to increase ecosystem aboveground net primary production (ANPP) until it exceeds plant N demand, causing a nonlinear response and N saturation for ANPP. However, the nonlinear response of ANPP to N addition gradient and the N saturation threshold have not been comprehensively quantified yet for terrestrial ecosystems. In this study, we compiled a global dataset of 44 experimental studies with at least three levels of N treatment. Nitrogen response efficiency (NRE, ANPP response per unit N addition) and the difference in NRE between N levels (ΔNRE) were quantified to test the nonlinearity in ANPP response. We found a universal response pattern of N saturation for ANPP with N addition gradient across all the studies and in different ecosystems. An averaged N saturation threshold for ANPP nonlinearity was found at the N addition rates of 5-6 g m-2 yr-1. The extent to which ANPP approaches N saturation varied with ecosystem type, N addition rate and environmental factors. ANPP in grasslands had lower NRE than those in forests and wetlands. Plant NRE decreased with reduced soil C:N ratio, and was the highest at intermediate levels of rainfall and temperature. These findings suggest that ANPP in grassland or the ecosystems with low soil C:N ratio (or low and high rainfall or temperature) is easier to be saturated with N enrichment. Overall, these results indicate that the beneficial effect of N deposition on plant productivity likely diminishes with continuous N enrichment when N loading surpasses the N saturation threshold for ANPP nonlinearity.

  8. The role of local-scale heterogeneities in terrestrial ecosystem modeling

    NASA Astrophysics Data System (ADS)

    Pappas, Christoforos; Fatichi, Simone; Rimkus, Stefan; Burlando, Paolo; Huber, Markus O.

    2015-02-01

    The coarse-grained spatial representation of many terrestrial ecosystem models hampers the importance of local-scale heterogeneities. To address this issue, we combine a range of observations (forest inventories, eddy flux tower data, and remote sensing products) and modeling approaches with contrasting degrees of abstraction. The following models are selected: (i) Lund-Potsdam-Jena (LPJ), a well-established, area-based, dynamic global vegetation model (DGVM); (ii) LPJ-General Ecosystem Simulator, a hybrid, individual-based approach that additionally considers plant population dynamics in greater detail; and (iii) distributed in space-LPJ, a spatially explicit version of LPJ, operating at a fine spatial resolution (100 m × 100 m), which uses an enhanced hydrological representation accounting for lateral connectivity of surface and subsurface water fluxes. By comparing model simulations with a multivariate data set available at the catchment scale, we argue that (i) local environmental and topographic attributes that are often ignored or crudely represented in DGVM applications exert a strong control on terrestrial ecosystem response; (ii) the assumption of steady state vegetation and soil carbon pools at the beginning of simulation studies (e.g., under "current conditions"), as embedded in many DGVM applications, is in contradiction with the current state of many forests that are often out of equilibrium; and (iii) model evaluation against vegetation carbon fluxes does not imply an accurate simulation of vegetation carbon stocks. Having gained insights about the magnitude of aggregation-induced biases due to smoothing of spatial variability at the catchment scale, we discuss the implications of our findings with respect to the global-scale modeling studies of carbon cycle and we illustrate alternative ways forward.

  9. Exploring the Sensitivity of Terrestrial Ecosystems and Atmospheric Exchange of CO2 to Global Environmental Factors

    NASA Astrophysics Data System (ADS)

    Jain, A. K.; Meiyappan, P.; Song, Y.; Barman, R.

    2011-12-01

    This presentation explores the sensitivity of terrestrial ecosystems and atmospheric exchange of carbon to global environmental factors to advance our understanding of uncertainty in CO2 projections. We use a land surface model, the Integrated Science Assessment Model (ISAM) recently coupled into the NCAR Community Earth System Model (CESM1) framework to evaluate ecosystem variability due to climatic and anthropogenic factors. The factors considered here include climate change, increasing ambient CO2 concentrations, anthropogenic nitrogen deposition, and land use change (LUC) activities such as clearing of land for agriculture, pasture, and wood harvest. Each factor has a potential to influence the net ecosystem exchange (NEE) of CO2. Using the ISAM-CESM modeling framework, we evaluate the individual and concurrent effects of all these environmental factors on the terrestrial NEE over the 20th century and the 21st century. The ISAM biogeochemical cycles consist of fully prognostic carbon and nitrogen dynamics associated with changes in land cover, litter decomposition, and soil organic matter. The ISAM biophysical model accounts for water and energy processes in the vegetation and soil column, integrated over a time step of 30 minutes. The newly available CRU-NCEP climate forcing data (1850-2010, 0.5ox0.5o spatial resolution) will be used for the historical period simulations. The 21st century simulations will be carried out using the Representative Concentration Pathway (RCP) storylines. This study will help quantify the importance of various environmental factors towards modeling land-atmosphere carbon exchange and better understand model related differences in CO2 estimates.

  10. Optimizing Parameters of Process-Based Terrestrial Ecosystem Model with Particle Filter

    NASA Astrophysics Data System (ADS)

    Ito, A.

    2014-12-01

    Present terrestrial ecosystem models still contain substantial uncertainties, as model intercomparison studies have shown, because of poor model constraint by observational data. So, development of advanced methodology of data-model fusion, or data-assimilation, is an important task to reduce the uncertainties and improve model predictability. In this study, I apply the Particle filter (or Sequential Monte Carlo filer) to optimize parameters of a process-based terrestrial ecosystem model (VISIT). The Particle filter is one of the data-assimilation methods, in which probability distribution of model state is approximated by many samples of parameter set (i.e., particle). This is a computationally intensive method and applicable to nonlinear systems; this is an advantage of the method in comparison with other techniques like Ensemble Kalman filter and variational method. At several sites, I used flux measurement data of atmosphere-ecosystem CO2 exchange in sequential and non-sequential manners. In the sequential data assimilation, a time-series data at 30-min or daily steps were used to optimize gas-exchange-related parameters; this method would be also effective to assimilate satellite observational data. On the other hand, in the non-sequential case, annual or long-term mean budget was adjusted to observations; this method would be also effective to assimilate carbon stock data. Although there remain technical issues (e.g., appropriate number of particles and likelihood function), I demonstrate that the Partile filter is an effective method of data-assimilation for process-based models, enhancing collaboration between field and model researchers.

  11. Avian, salamander, and forest floor mercury concentrations increase with elevation in a terrestrial ecosystem.

    PubMed

    Townsend, Jason M; Driscoll, Charles T; Rimmer, Christopher C; McFarland, Kent P

    2014-01-01

    High-elevation ecosystems of the northeastern United States are vulnerable to deposition and environmental accumulation of atmospheric pollutants, yet little work has been done to assess mercury (Hg) concentrations in organisms occupying montane ecosystems. The authors present data on Hg concentrations in ground-foraging insectivorous songbirds, a terrestrial salamander, and forest floor horizons sampled along a forested elevational gradient from 185 m to 1273 m in the Catskill Mountains, New York, USA. Mean Hg concentrations in Catharus thrushes and the salamander Plethodon cinereus increased with elevation, as did Hg concentrations in all forest floor horizons. Mean Hg concentrations in organic soils at approximately 1200 m elevation (503.5 ± 17.7 ng/g, dry wt) were 4.4-fold greater than those at approximately 200 m. Montane ecosystems of the northeastern United States, and probably elsewhere, are exposed to higher levels of atmospheric Hg deposition as reflected in accumulation patterns in the forest floor and associated high-elevation fauna. This information can be used to parameterize and test Hg transport and bioaccumulation models of landscape-specific patterns and may serve as a monitoring tool for decision makers considering future controls on Hg emissions. Further investigation is needed into the potential effects of increased Hg concentrations on high-elevation fauna. PMID:24302165

  12. Nitrogen limitation of net primary productivity in terrestrial ecosystems is globally distributed.

    PubMed

    LeBauer, David S; Treseder, Kathleen K

    2008-02-01

    Our meta-analysis of 126 nitrogen addition experiments evaluated nitrogen (N) limitation of net primary production (NPP) in terrestrial ecosystems. We tested the hypothesis that N limitation is widespread among biomes and influenced by geography and climate. We used the response ratio (R approximately equal ANPP(N)/ANPP(ctrl)) of aboveground plant growth in fertilized to control plots and found that most ecosystems are nitrogen limited with an average 29% growth response to nitrogen (i.e., R = 1.29). The response ratio was significant within temperate forests (R = 1.19), tropical forests (R = 1.60), temperate grasslands (R = 1.53), tropical grasslands (R = 1.26), wetlands (R = 1.16), and tundra (R = 1.35), but not deserts. Eight tropical forest studies had been conducted on very young volcanic soils in Hawaii, and this subgroup was strongly N limited (R = 2.13), which resulted in a negative correlation between forest R and latitude. The degree of N limitation in the remainder of the tropical forest studies (R = 1.20) was comparable to that of temperate forests, and when the young Hawaiian subgroup was excluded, forest R did not vary with latitude. Grassland response increased with latitude, but was independent of temperature and precipitation. These results suggest that the global N and C cycles interact strongly and that geography can mediate ecosystem response to N within certain biome types. PMID:18409427

  13. Arctic terrestrial biota: paleomagnetic evidence of age disparity with mid-northern latitudes during the late cretaceous and early tertiary.

    PubMed

    Hickey, L J; West, R M; Dawson, M R; Choi, D K

    1983-09-16

    Magnetostratigraphic correlation of the Eureka Sound Formation in the Canadian high Arctic reveals profound difference between the time of appearance of fossil land plants and vertebrates in the Arctic and in mid-northern latitudes. Latest Cretaceous plant fossils in the Arctic predate mid-latitude occurrences by as much as 18 million years, while typical Eocene vertebrate fossils appear some 2 to 4 million years early. PMID:17811507

  14. Spatial and temporal trends of contaminants in Canadian Arctic freshwater and terrestrial ecosystems: a review.

    PubMed

    Braune, B; Muir, D; DeMarch, B; Gamberg, M; Poole, K; Currie, R; Dodd, M; Duschenko, W; Eamer, J; Elkin, B; Evans, M; Grundy, S; Hebert, C; Johnstone, R; Kidd, K; Koenig, B; Lockhart, L; Marshall, H; Reimer, K; Sanderson, J; Shutt, L

    1999-06-01

    The state of knowledge of contaminants in Canadian Arctic biota of the freshwater and terrestrial ecosystems has advanced enormously since the publication of the first major reviews by Lockhart et al. and Thomas et al. in The Science of the Total Environment in 1992. The most significant gains are new knowledge of spatial trends of organochlorines and heavy metal contaminants in terrestrial animals, such as caribou and mink, and in waterfowl, where no information was previously available. Spatial trends in freshwater fish have been broadened, especially in the Yukon, where contaminant measurements of, for example, organochlorines were previously non-existent. A review of contaminants data for fish from the Northwest Territories, Yukon and northern Quebec showed mercury as the one contaminant which consistently exceeds guideline limits for subsistence consumption or commercial sale. Lake trout and northern pike in the Canadian Shield lakes of the Northwest Territories and northern Quebec generally had the most elevated levels. Levels of other heavy metals were generally not elevated in fish. Toxaphene was the major organochlorine contaminant in all fish analyzed. The concentrations of organochlorine contaminants in fish appear to be a function not only of trophic level but of other aspects of the lake ecosystem. Among Arctic terrestrial mammals, PCBs and cadmium were the most prominent contaminants in the species analyzed. Relatively high levels (10-60 micrograms g-1) of cadmium were observed in kidney and liver of caribou from the Yukon, the Northwest Territories and northern Quebec, with concentrations in western herds being higher than in those from the east. For the organochlorine contaminants, a west to east increase in zigma PCBs, HCB and zigma HCH was found in caribou, probably as a result of the predominant west to east/north-east atmospheric circulation pattern which delivers these contaminants from industrialized regions of central and eastern North

  15. Shifting species interactions in terrestrial dryland ecosystems under altered water availability and climate change

    USGS Publications Warehouse

    McCluney, Kevin E.; Belnap, Jayne; Collins, Scott L.; González, Angélica L.; Hagen, Elizabeth M.; Holland, J. Nathaniel; Kotler, Burt P.; Maestre, Fernando T.; Smith, Stanley D.; Wolf, Blair O.

    2012-01-01

    Species interactions play key roles in linking the responses of populations, communities, and ecosystems to environmental change. For instance, species interactions are an important determinant of the complexity of changes in trophic biomass with variation in resources. Water resources are a major driver of terrestrial ecology and climate change is expected to greatly alter the distribution of this critical resource. While previous studies have documented strong effects of global environmental change on species interactions in general, responses can vary from region to region. Dryland ecosystems occupy more than one-third of the Earth's land mass, are greatly affected by changes in water availability, and are predicted to be hotspots of climate change. Thus, it is imperative to understand the effects of environmental change on these globally significant ecosystems. Here, we review studies of the responses of population-level plant-plant, plant-herbivore, and predator-prey interactions to changes in water availability in dryland environments in order to develop new hypotheses and predictions to guide future research. To help explain patterns of interaction outcomes, we developed a conceptual model that views interaction outcomes as shifting between (1) competition and facilitation (plant-plant), (2) herbivory, neutralism, or mutualism (plant-herbivore), or (3) neutralism and predation (predator-prey), as water availability crosses physiological, behavioural, or population-density thresholds. We link our conceptual model to hypothetical scenarios of current and future water availability to make testable predictions about the influence of changes in water availability on species interactions. We also examine potential implications of our conceptual model for the relative importance of top-down effects and the linearity of patterns of change in trophic biomass with changes in water availability. Finally, we highlight key research needs and some possible broader impacts

  16. Shifting species interactions in terrestrial dryland ecosystems under altered water availability and climate change.

    PubMed

    McCluney, Kevin E; Belnap, Jayne; Collins, Scott L; González, Angélica L; Hagen, Elizabeth M; Nathaniel Holland, J; Kotler, Burt P; Maestre, Fernando T; Smith, Stanley D; Wolf, Blair O

    2012-08-01

    Species interactions play key roles in linking the responses of populations, communities, and ecosystems to environmental change. For instance, species interactions are an important determinant of the complexity of changes in trophic biomass with variation in resources. Water resources are a major driver of terrestrial ecology and climate change is expected to greatly alter the distribution of this critical resource. While previous studies have documented strong effects of global environmental change on species interactions in general, responses can vary from region to region. Dryland ecosystems occupy more than one-third of the Earth's land mass, are greatly affected by changes in water availability, and are predicted to be hotspots of climate change. Thus, it is imperative to understand the effects of environmental change on these globally significant ecosystems. Here, we review studies of the responses of population-level plant-plant, plant-herbivore, and predator-prey interactions to changes in water availability in dryland environments in order to develop new hypotheses and predictions to guide future research. To help explain patterns of interaction outcomes, we developed a conceptual model that views interaction outcomes as shifting between (1) competition and facilitation (plant-plant), (2) herbivory, neutralism, or mutualism (plant-herbivore), or (3) neutralism and predation (predator-prey), as water availability crosses physiological, behavioural, or population-density thresholds. We link our conceptual model to hypothetical scenarios of current and future water availability to make testable predictions about the influence of changes in water availability on species interactions. We also examine potential implications of our conceptual model for the relative importance of top-down effects and the linearity of patterns of change in trophic biomass with changes in water availability. Finally, we highlight key research needs and some possible broader impacts

  17. A Terrestrial Ecosystem Full Verified Carbon Accounting for Russian Land: Results and Uncertainty

    NASA Astrophysics Data System (ADS)

    Shvidenko, A.; Schepaschenko, D.; Maksyutov, S.

    2010-12-01

    We present a terrestrial full carbon account (FCA) for Russian land in a spatially explicit form for 2009 and aggregated country-wide annual estimates for 2004-2008. The integrated methodology of the FCA takes into account the fuzzy character of the studied systems. IIASA’s landscape-ecosystem approach (LEA) is used for designing the account boundaries and assessment of major pools and fluxes. An Integrated Land Information System (ILIS) serves as the information background of the FCA. The ILIS is based on a system integration of all available ground data and multi-sensor remote sensing applications. The ILIS includes a georeferenced hybrid land cover (~500 land classes, resolution 1 x 1 km), corresponding attributive datasets and sets of empirical and semi-empirical ecosystem and landscape models. The latter are based on long-period measurements of ecological parameters with corrections - if necessary - due to weather specifics of individual growth seasons. On average, terrestrial ecosystems of Russia served as a sink of roughly 0.6 Pg C yr-1 during the last five years which exceeds the technosphere’s emissions of the country by about one third. Two major fluxes (net primary production and heterotrophic respiration) for all productive lands of the country are estimated at 323 and 204 g C yr-1 m-2, respectively. Disturbance and consumption of plant products comprise from 15 to 20% of the net primary production. Forests serve as a major component of the sink (~85% of the country’s total). Disturbed forests and peatlands, as well as cultivated agricultural lands, are a relatively small carbon source. The interannual variability of the net ecosystem carbon balance are mostly driven by climatic conditions and natural disturbance (fire, insects) of the growth periods and is in limits of 10-15% for the country as a whole, but could exceed 25-30% for large regions with weather anomalies of the vegetation periods. Uncertainty within the LEA was assessed for all

  18. Biogenic and non-biogenic Si pools in terrestrial ecosystems: results from a novel analysis method

    NASA Astrophysics Data System (ADS)

    Barao, Lucia; Vandevenne, Floor; Clymans, Wim; Meire, Patrick; Frings, Patrick; Conley, Daniel; Struyf, Eric

    2015-04-01

    Silicon (Si) is a chemical element frequently associated with highly abundant silicate minerals in the Earth crust. Over millions of years, the interaction of such minerals with the atmosphere and hydrosphere produces a myriad of processed compounds, and the mineral weathering consumes CO2 during the process. The weathering of minerals also triggers the export of dissolved Si (DSi) to coastal waters and the ocean. Here, DSi is deposited in diatom frustules, in an amorphous biogenic form (BSi). Diatoms account for 50% of the primary production and are crucial for the export of carbon into the deep sea. In recent years, it was acknowledged that terrestrial systems filter the Si transition from the terrestrial mineral to the marine and coastal biological pool, by the incorporation of DSi into plants. In this process, DSi is taken up by roots together with other nutrients and precipitates in plant cells in amorphous structures named phytoliths. After dead, plant tissues become mixed in the top soil, where BSi is available for dissolution and will control the DSi availability in short time scales. Additionally, Si originated from soil forming processes can also significantly interfere with the global cycle. The Si cycle in terrestrial ecosystems is a key factor to coastal ecology, plant ecology, biogeochemistry and agro-sciences, but the high variability of different biogenic and non-biogenic Si pools remains as an obstacle to obtain accurate measurements. The traditional methods, developed to isolate diatoms in ocean sediments, only account for simple mineral corrections. In this dissertation we have adapted a novel continuous analysis method (during alkaline extraction) that uses Si-Al ratios and reactivity to differ biogenic from non-biogenic fractions. The method was originally used in marine sediments, but we have developed it to be applicable in a wide range of terrestrial, aquatic and coastal ecosystems. We first focused on soils under strong human impact in

  19. Wood phenology: from organ-scale processes to terrestrial ecosystem models

    NASA Astrophysics Data System (ADS)

    Delpierre, Nicolas; Guillemot, Joannès

    2016-04-01

    In temperate and boreal trees, a dormancy period prevents organ development during adverse climatic conditions. Whereas the phenology of leaves and flowers has received considerable attention, to date, little is known regarding the phenology of other tree organs such as wood, fine roots, fruits and reserve compounds. In this presentation, we review both the role of environmental drivers in determining the phenology of wood and the models used to predict its phenology in temperate and boreal forest trees. Temperature is a key driver of the resumption of wood activity in spring. There is no such clear dominant environmental cue involved in the cessation of wood formation in autumn, but temperature and water stress appear as prominent factors. We show that wood phenology is a key driver of the interannual variability of wood growth in temperate tree species. Incorporating representations of wood phenology in a terrestrial ecosystem model substantially improved the simulation of wood growth under current climate.

  20. The terminal Paleozoic fungal event: evidence of terrestrial ecosystem destabilization and collapse.

    PubMed Central

    Visscher, H; Brinkhuis, H; Dilcher, D L; Elsik, W C; Eshet, Y; Looy, C V; Rampino, M R; Traverse, A

    1996-01-01

    Because of its prominent role in global biomass storage, land vegetation is the most obvious biota to be investigated for records of dramatic ecologic crisis in Earth history. There is accumulating evidence that, throughout the world, sedimentary organic matter preserved in latest Permian deposits is characterized by unparalleled abundances of fungal remains, irrespective of depositional environment (marine, lacustrine, fluviatile), floral provinciality, and climatic zonation. This fungal event can be considered to reflect excessive dieback of arboreous vegetation, effecting destabilization and subsequent collapse of terrestrial ecosystems with concomitant loss of standing biomass. Such a scenario is in harmony with predictions that the Permian-Triassic ecologic crisis was triggered by the effects of severe changes in atmospheric chemistry arising from the rapid eruption of the Siberian Traps flood basalts. Images Fig. 1 Fig. 2 PMID:11607638

  1. Unmanned Aircraft Systems Used over Western U.S. Rangelands to Characterize Terrestrial Ecosystems

    NASA Astrophysics Data System (ADS)

    Rango, A.

    2015-12-01

    New remote sensing methods to quantify terrestrial ecosystems have developed rapidly over the past 10 years. New platforms with improved aeronautical capabilities have become known as Unmanned Aircraft Systems (UAS). In addition to the new aircraft, sensors are becoming smaller and some can fit into limited payload bays. The miniaturization process is well underway, but much remains to be done. Rather than using a wide variety of sensors, a limited number of instruments is recommended. At the moment we fly 2-3 instruments (digital SLR camera, 6-band multispectral camera, and single video camera). Our flights are primarily over low population density western U.S. rangeland with objectives to assess rangeland health, active erosion, vegetation change, phenology, livestock movement, and vegetation type consumed by grazing animals. All of our UAS flights are made using a serpentine flight path with overlapping images at an altitude of 700 ft (215 m). This altitude allows hyperspatial imagery with a resolution of 5-15 cm depending upon the sensor being used, and it allows determination of vegetation type based on the plant structure and vegetation geometries, or by multispectral analysis. In addition to advances in aircraft and sensor technology, image processing software has become more sophisticated. Future development is necessary, and we can expect improvement in sensors, aircraft, data collection, and application to terrestrial ecosystems. Of 17 ARS research laboratories across the country four laboratories are interested in future UAS applications and another 13 already have at least one UAS. In 2015 the Federal Aviation Administration proposed a framework of recommendations that would allow routine use of certain small UAS (those weighing less than 55 lb (25 kg)). Although these new regulations will provide increased flexibility in how flights are made, other operations will still require the use of a Certificate of Authorization.

  2. Chitinolytic and pectinolytic community of soils and terrestrial ecosystems of different climatic zones

    NASA Astrophysics Data System (ADS)

    Lukacheva, Evgeniya; Manucharova, Natalia

    2014-05-01

    Structural and functional features of the complex microbial degradation of biopolymers one of the most important direction in microbial ecology. But there is no a lot of data concerns degradation in vertical structure of terrestrial ecosystems. Microbial complexes of natural areas were analyzed only as humus horizons (A1) of the soil profile. Only small part of microbial community could be studied with this approach. The breakdown of chitin and pectin was studied. The aim was to provide a characterization of microorganisms involved in chitin and pectin degradation in the soils and terrestrial ecosystems in different climatic zones: steppe zone, deciduous forests and taiga. Samples of leaves, soils and litter were studied and compared. Quantity of eukaryote and procaryote organisms increased in samples with chitin and pectin comparing with control samples. Increasing of eukaryote in samples with pectin was more then in samples with chitin. Also should be noted the significant increasing of actinomycet's quantity in the samples with chitin in comparison with samples with pectin. Further prokaryote community was investigated by method FISH (fluorescence in situ hybridization). FISH is a cytogenetic technique developed that is used to detect and localize the presence or absence of specific DNA sequences on chromosomes. Quantity of Actinomycets and Firmicures was the largest among identified cells with metabolic activity in both types of the samples. Should be noted significant increasing of the quantity of Acidobateria and Bacteroidetes in pectinolytic community and Alphaproteobacteria in chitinolytic community soils. The difference between climatic zones was studied and the mathematical model was created. The mathematic model could be use in different aims, such as prognosis of microbial community composition and their classification.

  3. Nitrogen Inputs Stimulate Phosphorus Mineralizing Enzymes across a Wide Variety of Terrestrial Ecosystems

    NASA Astrophysics Data System (ADS)

    Marklein, A.; Houlton, B. Z.

    2010-12-01

    Nutrients - especially nitrogen (N) and phosphorus (P) - constrain plant growth; however human activities are drastically changing the nature of such nutrient limitations on land. Here we examine interactions between N and P cycles via meta-analysis of P mineralizing enzyme activities (phosphatase enzymes) across a wide variety of terrestrial ecosystems and conditions. This synthesis explores controversies over N vs. P limitations of ecological communities, and with respect to their responses to human modifications to Earth’s natural environment. Specifically, we address the response of phosphatase activity to fertilization by N, P, and NxP by evaluating response ratios of phosphatase activity among nutrient fertilized vs. control conditions. The compiled data set includes 124 observations from 19 separate studies, and spans six major biomes, including grassland, shrubland, temperate deciduous forest, tropical rainforest, tundra, and wetland. Moreover, we separately analyze results for external root and free soil phosphatases. We show that N fertilization enhances phosphatase activity, from the tropics to extra-tropics, and in both roots and soils; overall, added N stimulated phosphatase activity by 63.6% relative to control conditions. By contrast, P fertilizations strongly depress phosphatase production; added P depressed phosphatase activity by 35.5%. Fertilization by N plus P decreases phosphatase activity by 38% compared to controls, showing that P more strongly controls phosphatase activity than N alone. Phosphatase activity measured on plant roots and in the soil showed similar trends, but root-effects were stronger than those of soils. In sum, these results suggest that plants optimize growth via N allocations to phosphatase enzymes, thus delaying the onset of P limitations as induced by human modifications to the cycling of N, regardless of the type of terrestrial ecosystem. Phosphatase response to fertilization of N, P and both. A positive response

  4. Isotope Fractionation During N Mineralization and the N Isotope Composition of Terrestrial Ecosystem N Pools

    NASA Astrophysics Data System (ADS)

    Dijkstra, P.; Schwartz, E.; Hungate, B. A.; Hart, S. C.

    2008-12-01

    It has been an open question for several decades whether N mineralization is a fractionating process. This question is important for N cycling in terrestrial ecosystems because even a small fractionation during N mineralization could potentially have a large influence on the N isotope composition of other ecosystem N pools. Fractionation during N mineralization should result in a difference between the N isotope composition of the soil microorganisms, that of its substrates, and products. We analyzed the N isotope composition of the soil microbial biomass in a variety of ecosystems, and found that it was 15N enriched compared to that of other soil N pools, such as soil soluble, organic and inorganic N (Dijkstra et al. 2006a,b). We observed a negative correlation between the 15N enrichment of the microorganisms and the relative C and N availability for soil from ecosystems in Hawaii and Arizona, across a broad range of climates, grasslands and forests, and more than four million years of ecosystem development. This suggests that during N dissimilation (and associated transaminations) and N export, the lighter 14N N isotope is preferentially removed in a manner similar to that proposed for animals and ectomycorrhizae. This was further confirmed by the positive correlation between microbial 15N enrichment and net N mineralization rate (Dijkstra et al. 2008, Ecology Letters 11: 389-397) and by culture experiments with Escherichia coli (Collins et al. 2008). Since mineralization is the largest flux of N in ecosystems, fractionation during N mineralization has the potential to influence the N isotope composition of other N pools, such as inorganic N, plant N and soil organic matter N. We demonstrate that the N isotope compositions of these ecosystem N pools exhibit differences that are consistent with fractionation during N mineralization. Our results show that the N isotope composition can be used as a measure to trace N mineralization and decomposition in ecosystems

  5. Deriving Vegetation Dynamics of Natural Terrestrial Ecosystems from MODIS NDVI/EVI Data over Turkey

    PubMed Central

    Evrendilek, Fatih; Gulbeyaz, Onder

    2008-01-01

    The 16-day composite MODIS vegetation indices (VIs) at 500-m resolution for the period between 2000 to 2007 were seasonally averaged on the basis of the estimated distribution of 16 potential natural terrestrial ecosystems (NTEs) across Turkey. Graphical and statistical analyses of the time-series VIs for the NTEs spatially disaggregated in terms of biogeoclimate zones and land cover types included descriptive statistics, correlations, discrete Fourier transform (DFT), time-series decomposition, and simple linear regression (SLR) models. Our spatio-temporal analyses revealed that both MODIS VIs, on average, depicted similar seasonal variations for the NTEs, with the NDVI values having higher mean and SD values. The seasonal VIs were most correlated in decreasing order for: barren/sparsely vegetated land > grassland > shrubland/woodland > forest; (sub)nival > warm temperate > alpine > cool temperate > boreal = Mediterranean; and summer > spring > autumn > winter. Most pronounced differences between the MODIS VI responses over Turkey occurred in boreal and Mediterranean climate zones and forests, and in winter (the senescence phase of the growing season). Our results showed the potential of the time-series MODIS VI datasets in the estimation and monitoring of seasonal and interannual ecosystem dynamics over Turkey that needs to be further improved and refined through systematic and extensive field measurements and validations across various biomes.

  6. Passive Samplers for Monitoring Insidious N Air Pollutants and Estimating N Deposition to Terrestrial Ecosystems

    NASA Astrophysics Data System (ADS)

    Bytnerowicz, A.

    2004-12-01

    Ammonia (NH3), nitric acid vapor (HNO3), nitric oxide (NO) and nitrogen dioxide (NO2) are the main biologically important nitrogenous (N) air pollutants. At highly elevated concentrations, these pollutants have a potential of causing injury to sensitive plants. More importantly, gaseous N pollutants may provide significant amounts of atmospheric N to the terrestrial ecosystems. This is especially true for wildlands affected by photochemical smog and agricultural emissions (e.g. mountains near California Central Valley or Los Angeles Basin). Passive samplers developed in the 1990s and 2000s have allowed for reliable monitoring of ambient concentrations of the pollutants at large geographic scales. Information on spatial and temporal distribution of NH3, HNO3, NO and NO2 from passive samplers may allow for determining potential "hot spots" of N pollutants effects. Information on ambient concentrations of gaseous N can also be used for estimates of N deposition to various ecosystems. Monitoring of N air pollutants and estimates of N deposition have been conducted in deserts, coastal sage, serpentine grassland, chaparral, and mixed conifer forests in California. These efforts and potential future use of passive samplers will be discussed.

  7. Ground-based grasslands data to support remote sensing and ecosystem modeling of terrestrial primary production

    SciTech Connect

    Olson, R.J.; Turner, R.S.; Scurlock, J.M.O.; Jennings, S.V.

    1995-12-31

    Estimating terrestrial net primary production (NPP) using remote- sensing tools and ecosystem models requires adequate ground-based measurements for calibration, parameterization, and validation. These data needs were strongly endorsed at a recent meeting of ecosystem modelers organized by the International Geosphere-Biosphere Programme`s (IGBP`s) Data and Information System (DIS) and its Global Analysis, Interpretation, and Modelling (GAIM) Task Force. To meet these needs, a multinational, multiagency project is being coordinated by the IGBP DIS to compile existing NPP data from field sites and to regionalize NPP point estimates to various-sized grid cells. Progress at Oak Ridge National Laboratory (ORNL) on compiling NPP data for grasslands as part of the IGBP DIS data initiative is described. Site data and associated documentation from diverse field studies are being acquired for selected grasslands and are being reviewed for completeness, consistency, and adequacy of documentation, including a description of sampling methods. Data are being compiled in a database with spatial, temporal, and thematic characteristics relevant to remote sensing and global modeling. NPP data are available from the ORNL Distributed Active Archive Center (DAAC) for biogeochemical dynamics. The ORNL DAAC is part of the Earth Observing System Data and Information System, of the US National Aeronautics and Space Administration.

  8. Ground-based grasslands data to support remote sensing and ecosystem modeling of terrestrial primary production

    NASA Technical Reports Server (NTRS)

    Olson, R. J.; Scurlock, J. M. O.; Turner, R. S.; Jennings, S. V.

    1995-01-01

    Estimating terrestrial net primary production (NPP) using remote-sensing tools and ecosystem models requires adequate ground-based measurements for calibration, parameterization, and validation. These data needs were strongly endorsed at a recent meeting of ecosystem modelers organized by the International Geosphere-Biosphere Program's (IGBP's) Data and Information System (DIS) and its Global Analysis, Interpretation, and Modelling (GAIM) Task Force. To meet these needs, a multinational, multiagency project is being coordinated by the IGBP DIS to compile existing NPP data from field sites and to regionalize NPP point estimates to various-sized grid cells. Progress at Oak Ridge National Laboratory (ORNL) on compiling NPP data for grasslands as part of the IGBP DIS data initiative is described. Site data and associated documentation from diverse field studies are being acquired for selected grasslands and are being reviewed for completeness, consistency, and adequacy of documentation, including a description of sampling methods. Data are being compiled in a database with spatial, temporal, and thematic characteristics relevant to remote sensing and global modeling. NPP data are available from the ORNL Distributed Active Archive Center (DAAC) for biogeochemical dynamics. The ORNL DAAC is part of the Earth Observing System Data and Information System, of the US National Aeronautics and Space Administration.

  9. Global terrestrial ecosystem models of productivity and nutrient cycling and vegetation response to climate

    SciTech Connect

    Kercher, J.R.; Chambers, J.Q.; Axelrod, M.C. )

    1993-06-01

    We are developing two global terrestrial ecosystem models (TERRA and HABITAT) to be coupled to atmospheric and oceanic models in an Earth System Model. TERRA is a model of ecosystem productivity and biogeochemical cycling covering the Earth's land surface as a grid of independent, local models. HABITAT is being designed as a gridded, dynamic model of vegetation response to climate. The TERRA grid cell models are calibrated to 17 vegetation types. The parameter for maximum gross primary productivity was found to average (2.4 +/- 1.4 s.d.) x 10[sup 4] g m[sup [minus]2] y[sup [minus]1] across the 17 types. Maximum rate of nitrogen uptake by vegetation averaged 13 +/- 3 g m[sup [minus]2] y[sup [minus]1] for all forest types, 9 +/- 3 for all woodland and savanna types, and 5 +/- 2 for all grassland, tundra, and shrubland types. Preliminary analysis for designing HABITAT suggests that total annual precipitation and average monthly temperature do not resolve vegetation types. This result emphasizes the need for constructing a set of climatic variables that simplify the biological response.

  10. Evapotranspiration in Northern Eurasia: Impact of forcing uncertainties on terrestrial ecosystem model estimates

    NASA Astrophysics Data System (ADS)

    Liu, Yaling; Zhuang, Qianlai; Miralles, Diego; Pan, Zhihua; Kicklighter, David; Zhu, Qing; He, Yujie; Chen, Jiquan; Tchebakova, Nadja; Sirin, Andrey; Niyogi, Dev; Melillo, Jerry

    2015-04-01

    The ecosystems in Northern Eurasia (NE) play an important role in the global water cycle and the climate system. While evapotranspiration (ET) is a critical variable to understand this role, ET over this region remains largely unstudied. Using an improved version of the Terrestrial Ecosystem Model with five widely used forcing data sets, we examine the impact that uncertainties in climate forcing data have on the magnitude, variability, and dominant climatic drivers of ET for the period 1979-2008. Estimates of regional average ET vary in the range of 241.4-335.7 mm yr-1 depending on the choice of forcing data. This range corresponds to as much as 32% of the mean ET. Meanwhile, the spatial patterns of long-term average ET across NE are generally consistent for all forcing data sets. Our ET estimates in NE are largely affected by uncertainties in precipitation (P), air temperature (T), incoming shortwave radiation (R), and vapor pressure deficit (VPD). During the growing season, the correlations between ET and each forcing variable indicate that T is the dominant factor in the north and P in the south. Unsurprisingly, the uncertainties in climate forcing data propagate as well to estimates of the volume of water available for runoff (here defined as P-ET). While the Climate Research Unit data set is overall the best choice of forcing data in NE according to our assessment, the quality of these forcing data sets remains a major challenge to accurately quantify the regional water balance in NE.

  11. Large-Scale Mapping and Monitoring of Terrestrial Ecosystems with the NISAR Mission

    NASA Astrophysics Data System (ADS)

    Kellndorfer, J. M.; Dubayah, R.; Siqueira, P.; Saatchi, S. S.; Chapman, B. D.; Rosen, P. A.

    2014-12-01

    Set to launch at the early part of the next decade, the NI-SAR mission will measure globally the spatial distribution of vegetation and biomass to understand changes and trends in terrestrial forest and wetland ecosystems and their functioning as carbon sources and sinks, and characterize and quantify changes resulting from forest disturbance and recovery. Novel technology provides for unprecedented forest monitoring and ecosystem structure assessment with NI-SAR based on a 12-m reflector L-band scan-on-receive configuration (known as SweepSAR), which allows for a greater than 240 km swath and unprecedented global wall-to-wall coverage with a 12-day repeat cycle at pixel resolutions better than 25 m. Data from the mission will be made freely available through NASA's open data policy. Latency for basic data products such as co- and cross-pol reflectivity is expected to be less than several days. Through this capability, the mission will provide a crucial tool for forest carbon assessment and monitoring, important for treaties like REDD+, forest inundation monitoring, improved carbon stock estimates for low biomass regions, and monitoring of land-cover conversion to and from agricultural production. In this paper we summarize the capability of NI-SAR's observing strategy, anticipated approaches for monitoring forests, wetlands, and agricultural lands and their changes. We review the science background, science objectives and requirements, and data products stemming from the mission.

  12. Can ecosystem-scale translocations mitigate the impact of climate change on terrestrial biodiversity? Promises, pitfalls, and possibilities: Ecosystem-scale translocations.

    PubMed

    Boyer, Stéphane; Case, Bradley S; Lefort, Marie-Caroline; Waterhouse, Benjamin R; Wratten, Stephen D

    2016-01-01

    Because ecological interactions are the first components of the ecosystem to be impacted by climate change, future forms of threatened-species and ecosystem management should aim at conserving complete, functioning communities rather than single charismatic species. A possible way forward is the deployment of ecosystem-scale translocation (EST), where above- and below-ground elements of a functioning terrestrial ecosystem (including vegetation and topsoil) are carefully collected and moved together. Small-scale attempts at such practice have been made for the purpose of ecological restoration. By moving larger subsets of functioning ecosystems from climatically unstable regions to more stable ones, EST could provide a practical means to conserve mature and complex ecosystems threatened by climate change. However, there are a number of challenges associated with EST in the context of climate change mitigation, in particular the choice of donor and receptor sites. With the aim of fostering discussion and debate about the EST concept, we  1) outline the possible promises and pitfalls of EST in mitigating the impact of climate change on terrestrial biodiversity and 2) use a GIS-based approach to illustrate how  potential source and receptor sites, where EST could be trialed and evaluated globally, could be identified. PMID:26989475

  13. RESOLUTION AND ERROR IN MEASURING LAND-COVER CHANGE: EFFECTS ON ESTIMATING NET CARBON RELEASE FROM MEXICAN TERRESTRIAL ECOSYSTEMS

    EPA Science Inventory

    Reliable estimates of carbon exchange between terrestrial ecosystems and the atmosphere due to land-use change have become increasingly important. One source of land-use changes estimates comes from comparing multi-date remote sensing imagery, though the effect of land-cover clas...

  14. Terrestrial Carbon Sinks in the Brazilian Amazon and Cerrado Region Predicted from MODIS Satellite Data and Ecosystem Modeling

    EPA Science Inventory

    A simulation model based on satellite observations of monthly vegetation cover from the Moderate Resolution Imaging Spectroradiometer (MODIS) was used to estimate monthly carbon fluxes in terrestrial ecosystems of Brazilian Amazon and Cerrado regions over the period 2000-2004. Pr...

  15. Sinks for nitrogen inputs in terrestrial ecosystems: A meta-analysis of 15N tracer field studies

    EPA Science Inventory

    Anthropogenic nitrogen (N) deposition can have a range of effects on terrestrial ecosystems, but these effects depend in part on the fate of this deposited N, particularly in the amount retained or lost from the system, and in the partitioning of retained N between plants and soi...

  16. An eddy covariance derived annual carbon budget for an arctic terrestrial ecosystem (Disko, Greenland)

    NASA Astrophysics Data System (ADS)

    McConnell, Alistair; Lund, Magnus; Friborg, Thomas

    2016-04-01

    Ecosystems with underlying permafrost cover nearly 25% of the ice-free land area in the northern hemisphere and store almost half of the global soil carbon. Future climate changes are predicted to have the most pronounced effect in northern latitudes. These Arctic ecosystems are therefore subject to dramatic changes following thawing of permafrost, glacial retreat, and coastal erosion. The most dramatic effect of permafrost thawing is the accelerated decomposition and potential mobilization of organic matter stored in the permafrost. This will impact global climate through the mobilization of carbon and nitrogen accompanied by release of greenhouses gases, including carbon dioxide. This study presents the initial findings and first full annual carbon (CO2) budget, derived from eddy covariance measurements, for an Arctic landscape in West Greenland. The study site, a terrestrial Arctic maritime climate, is located at Østerlien, near Qeqertarsuaq, on the southern coast of Disko Island in central West Greenland (69° 15' N, 53° 34' W) within the transition zone from continuous to discontinuous permafrost. The mean annual air temperature is -5 C and the annual precipitation as rain is 150-200 mm. Arctic ecosystem feedback mechanisms and processes interact on micro, local and regional scales. This is further complicated by several potential feedback mechanisms likely to occur in permafrost-affected ecosystems, involving the interactions of microorganisms, vegetation and soil. The eddy covariance method allows us to interrogate the processes and drivers of land-atmosphere carbon exchange at extremely high temporary frequency (10 Hz), providing landscape-scale measurements of CO2, H2O and heat fluxes for the site, which are processed to derive daily, monthly and now, annual carbon fluxes. We discuss the scientific methodology, challenges, and analysis, as well as the practical and logistic challenges of working in the Arctic, and present an annual carbon budget

  17. Solar ultraviolet radiation and ozone depletion-driven climate change: effects on terrestrial ecosystems.

    PubMed

    Bornman, J F; Barnes, P W; Robinson, S A; Ballaré, C L; Flint, S D; Caldwell, M M

    2015-01-01

    In this assessment we summarise advances in our knowledge of how UV-B radiation (280-315 nm), together with other climate change factors, influence terrestrial organisms and ecosystems. We identify key uncertainties and knowledge gaps that limit our ability to fully evaluate the interactive effects of ozone depletion and climate change on these systems. We also evaluate the biological consequences of the way in which stratospheric ozone depletion has contributed to climate change in the Southern Hemisphere. Since the last assessment, several new findings or insights have emerged or been strengthened. These include: (1) the increasing recognition that UV-B radiation has specific regulatory roles in plant growth and development that in turn can have beneficial consequences for plant productivity via effects on plant hardiness, enhanced plant resistance to herbivores and pathogens, and improved quality of agricultural products with subsequent implications for food security; (2) UV-B radiation together with UV-A (315-400 nm) and visible (400-700 nm) radiation are significant drivers of decomposition of plant litter in globally important arid and semi-arid ecosystems, such as grasslands and deserts. This occurs through the process of photodegradation, which has implications for nutrient cycling and carbon storage, although considerable uncertainty exists in quantifying its regional and global biogeochemical significance; (3) UV radiation can contribute to climate change via its stimulation of volatile organic compounds from plants, plant litter and soils, although the magnitude, rates and spatial patterns of these emissions remain highly uncertain at present. UV-induced release of carbon from plant litter and soils may also contribute to global warming; and (4) depletion of ozone in the Southern Hemisphere modifies climate directly via effects on seasonal weather patterns (precipitation and wind) and these in turn have been linked to changes in the growth of plants

  18. Convergence and Divergence in a Multi-Model Ensemble of Terrestrial Ecosystem Models in North America

    NASA Astrophysics Data System (ADS)

    Dungan, J. L.; Wang, W.; Hashimoto, H.; Michaelis, A.; Milesi, C.; Ichii, K.; Nemani, R. R.

    2009-12-01

    In support of NACP, we are conducting an ensemble modeling exercise using the Terrestrial Observation and Prediction System (TOPS) to evaluate uncertainties among ecosystem models, satellite datasets, and in-situ measurements. The models used in the experiment include public-domain versions of Biome-BGC, LPJ, TOPS-BGC, and CASA, driven by a consistent set of climate fields for North America at 8km resolution and daily/monthly time steps over the period of 1982-2006. The reference datasets include MODIS Gross Primary Production (GPP) and Net Primary Production (NPP) products, Fluxnet measurements, and other observational data. The simulation results and the reference datasets are consistently processed and systematically compared in the climate (temperature-precipitation) space; in particular, an alternative to the Taylor diagram is developed to facilitate model-data intercomparisons in multi-dimensional space. The key findings of this study indicate that: the simulated GPP/NPP fluxes are in general agreement with observations over forests, but are biased low (underestimated) over non-forest types; large uncertainties of biomass and soil carbon stocks are found among the models (and reference datasets), often induced by seemingly “small” differences in model parameters and implementation details; the simulated Net Ecosystem Production (NEP) mainly responds to non-respiratory disturbances (e.g. fire) in the models and therefore is difficult to compare with flux data; and the seasonality and interannual variability of NEP varies significantly among models and reference datasets. These findings highlight the problem inherent in relying on only one modeling approach to map surface carbon fluxes and emphasize the pressing necessity of expanded and enhanced monitoring systems to narrow critical structural and parametrical uncertainties among ecosystem models.

  19. Next Generation Ecosystem Experiment: Quantification and prediction of coupled processes in the terrestrial Arctic system

    NASA Astrophysics Data System (ADS)

    Hubbard, S. S.; Hinzman, L. D.; Graham, D. E.; Liang, L.; Norby, R.; Riley, W. J.; Rogers, A.; Rowland, J. C.; Thornton, P. E.; Torn, M. S.; Wilson, C. J.; Wullschleger, S. D.; NGEE Scientific Team

    2011-12-01

    Predicting the evolution of Arctic ecosystems to a changing climate is complicated by the many interactions and feedbacks that occur within and between components of the system. A new DOE Biological and Environmental Research project, called the Next-Generation Ecosystem Experiments (NGEE) is being initiated to address "how does permafrost degradation in a warming Arctic, and the associated changes in landscape evolution, hydrology, soil biogeochemical processes, and plant community succession, affect feedbacks to the climate system?". A multi-disciplinary team will use observations, experiments, and simulations carried out from the pore to the landscape scales to address these questions. We will combine field research (performed around thermokarst features in Alaska on the North Slope and Seward Peninsula), laboratory research using a variety of approaches and techniques, and remote sensing observations to improve modeling capabilities for high-latitude systems. Our research is organized into four interrelated 'Challenges' to quantify: (1) environmental controls on permafrost degradation and its influence on hydrological state, stocks, fluxes and pathways; (2) mechanisms that drive structural and functional responses of the tundra plant community to changing resource availability; (3) controls, mechanisms and rates driving biodegradation of soil organic matter; and (4) the impact of permafrost degradation on ecosystem albedo, energy partitioning and total climate forcing. Coordinated data acquisition will be performed using a variety of commonly-used terrestrial ecosystem characterization approaches as well as novel molecular microbiological, geophysical, isotopic and synchrotron techniques. These datasets will be used in parallel with models to identify the key controls on coupled geomechanical, hydrological, soil biogeochemical, vegetation and land-surface processes, as well as the manifestation of these coupled processes over a broad range of space and time

  20. Evaluating the distribution of terrestrial dissolved organic matter in a complex coastal ecosystem using fluorescence spectroscopy

    NASA Astrophysics Data System (ADS)

    Yamashita, Youhei; Boyer, Joseph N.; Jaffé, Rudolf

    2013-09-01

    The coastal zone of the Florida Keys features the only living coral reef in the continental United States and as such represents a unique regional environmental resource. Anthropogenic pressures combined with climate disturbances such as hurricanes can affect the biogeochemistry of the region and threaten the health of this unique ecosystem. As such, water quality monitoring has historically been implemented in the Florida Keys, and six spatially distinct zones have been identified. In these studies however, dissolved organic matter (DOM) has only been studied as a quantitative parameter, and DOM composition can be a valuable biogeochemical parameter in assessing environmental change in coastal regions. Here we report the first data of its kind on the application of optical properties of DOM, in particular excitation emission matrix fluorescence with parallel factor analysis (EEM-PARAFAC), throughout these six Florida Keys regions in an attempt to assess spatial differences in DOM sources. Our data suggests that while DOM in the Florida Keys can be influenced by distant terrestrial environments such as the Everglades, spatial differences in DOM distribution were also controlled in part by local surface runoff/fringe mangroves, contributions from seasgrass communities, as well as the reefs and waters from the Florida Current. Application of principal component analysis (PCA) of the relative abundance of EEM-PARAFAC components allowed for a clear distinction between the sources of DOM (allochthonous vs. autochthonous), between different autochthonous sources and/or the diagenetic status of DOM, and further clarified contribution of terrestrial DOM in zones where levels of DOM were low in abundance. The combination between EEM-PARAFAC and PCA proved to be ideally suited to discern DOM composition and source differences in coastal zones with complex hydrology and multiple DOM sources.

  1. Four decades of modeling methane cycling in terrestrial ecosystems: Where we are heading?

    NASA Astrophysics Data System (ADS)

    Xu, X.; Yuan, F.; Hanson, P. J.; Wullschleger, S. D.; Thornton, P. E.; Tian, H.; Riley, W. J.; Song, X.; Graham, D. E.; Song, C.

    2015-12-01

    A modeling approach to methane (CH4) is widely used to quantify the budget, investigate spatial and temporal variabilities, and understand the mechanistic processes and environmental controls on CH4 fluxes across spatial and temporal scales. Moreover, CH4 models are an important tool for integrating CH4 data from multiple sources, such as laboratory-based incubation and molecular analysis, field observational experiments, remote sensing, and aircraft-based measurements across a variety of terrestrial ecosystems. We reviewed 39 terrestrial CH4 models to characterize their strengths and weaknesses and to design a roadmap for future model improvement and application. We found that: (1) the focus of CH4 models have been shifted from theoretical to site- to regional-level application over the past four decades, expressed as dramatic increases in CH4 model development on regional budget quantification; (2) large discrepancies exist among models in terms of representing CH4 processes and their environmental controls; (3) significant data-model and model-model mismatches are partially attributed to different representations of wetland characterization and inundation dynamics. Three efforts should be paid special attention for future improvements and applications of fully mechanistic CH4 models: (1) CH4 models should be improved to represent the mechanisms underlying land-atmosphere CH4 exchange, with emphasis on improving and validating individual CH4 processes over depth and horizontal space; (2) models should be developed that are capable of simulating CH4 fluxes across space and time (particularly hot moments and hot spots); (3) efforts should be invested to develop model benchmarking frameworks that can easily be used for model improvement, evaluation, and integration with data from molecular to global scales. A newly developed microbial functional group-based CH4 model (CLM-Microbe) was further used to demonstrate the features of mechanistic representation and

  2. Evidence for climate-driven synchrony of marine and terrestrial ecosystems in northwest Australia.

    PubMed

    Ong, Joyce J L; Rountrey, Adam N; Zinke, Jens; Meeuwig, Jessica J; Grierson, Pauline F; O'Donnell, Alison J; Newman, Stephen J; Lough, Janice M; Trougan, Mélissa; Meekan, Mark G

    2016-08-01

    The effects of climate change are difficult to predict for many marine species because little is known of their response to climate variations in the past. However, long-term chronologies of growth, a variable that integrates multiple physical and biological factors, are now available for several marine taxa. These allow us to search for climate-driven synchrony in growth across multiple taxa and ecosystems, identifying the key processes driving biological responses at very large spatial scales. We hypothesized that in northwest (NW) Australia, a region that is predicted to be strongly influenced by climate change, the El Niño Southern Oscillation (ENSO) phenomenon would be an important factor influencing the growth patterns of organisms in both marine and terrestrial environments. To test this idea, we analyzed existing growth chronologies of the marine fish Lutjanus argentimaculatus, the coral Porites spp. and the tree Callitris columellaris and developed a new chronology for another marine fish, Lethrinus nebulosus. Principal components analysis and linear model selection showed evidence of ENSO-driven synchrony in growth among all four taxa at interannual time scales, the first such result for the Southern Hemisphere. Rainfall, sea surface temperatures, and sea surface salinities, which are linked to the ENSO system, influenced the annual growth of fishes, trees, and corals. All four taxa had negative relationships with the Niño-4 index (a measure of ENSO status), with positive growth patterns occurring during strong La Niña years. This finding implies that future changes in the strength and frequency of ENSO events are likely to have major consequences for both marine and terrestrial taxa. Strong similarities in the growth patterns of fish and trees offer the possibility of using tree-ring chronologies, which span longer time periods than those of fish, to aid understanding of both historical and future responses of fish populations to climate variation

  3. Can ecosystem-scale translocations mitigate the impact of climate change on terrestrial biodiversity? Promises, pitfalls, and possibilities

    PubMed Central

    Boyer, Stéphane; Case, Bradley S.; Lefort, Marie-Caroline; Waterhouse, Benjamin R.; Wratten, Stephen D.

    2016-01-01

    Because ecological interactions are the first components of the ecosystem to be impacted by climate change, future forms of threatened-species and ecosystem management should aim at conserving complete, functioning communities rather than single charismatic species. A possible way forward is the deployment of ecosystem-scale translocation (EST), where above- and below-ground elements of a functioning terrestrial ecosystem (including vegetation and topsoil) are carefully collected and moved together. Small-scale attempts at such practice have been made for the purpose of ecological restoration. By moving larger subsets of functioning ecosystems from climatically unstable regions to more stable ones, EST could provide a practical means to conserve mature and complex ecosystems threatened by climate change. However, there are a number of challenges associated with EST in the context of climate change mitigation, in particular the choice of donor and receptor sites. With the aim of fostering discussion and debate about the EST concept, we  1) outline the possible promises and pitfalls of EST in mitigating the impact of climate change on terrestrial biodiversity and 2) use a GIS-based approach to illustrate how  potential source and receptor sites, where EST could be trialed and evaluated globally, could be identified. PMID:26989475

  4. Modeling of N2O emissions from soils in terrestrial ecosystems

    NASA Astrophysics Data System (ADS)

    Jain, A. K.; Jin, Y.; El-Masri, B.; Yang, X.

    2013-12-01

    Nitrous oxide (N2O) is not only one of the most important greenhouse gases, it also impacts stratospheric ozone. Soils under natural vegetation and agriculture are one of the main sources of N2O through nitrification and denitrification processes. Current estimates of N2O emissions on regional to global scales are based on the upscaling of limited measurements from specific measurement sites. These estimates have large uncertainties because of the heterogeneity of soils and the seasonal and interannual variability in the processes that control the nitrification/denitrification of soils. Here we employ a land surface model, the Integrated Science Assessment Model (ISAM), to model the N2O emissions from terrestrial ecosystems during the historical time period. In addition, we investigate the impacts of increasing CO2, climate change, N deposition, and land use change on the N2O emissions from soil over the historical time period. ISAM incorporates a fully prognostic carbon and nitrogen cycle component, coupled with biogeophysical processes. The N cycle module in the ISAM was calibrated with field experiment data, which includes representation of nitrogen immobilization, mineralization, nitrification and denitrification processes. In comparison to field measurements, the model is able to capture the temporal trends and magnitude of the N2O emissions. The climate and soil moisture control on N2O emissions are reflected in the model simulations and compared well with the observations. The calibrated and validated model was applied on the global scale to study the sources of N2O from terrestrial ecosystems. Our results show that tropical forest and tropical savanna are the major sources of N2O emissions, while there are very low emissions at the high latitude regions, which are consistent with both measurements and previous modeling studies. Our preliminary results also show that N2O emissions are sensitive to climate change, but not to CO2. In addition, N deposition and

  5. Bioadvection of mercury from the Great Salt Lake to surrounding terrestrial ecosystems

    NASA Astrophysics Data System (ADS)

    Black, F.; Goodman, J.; Collins, J.; Saxton, H.; Mansfield, C.

    2015-12-01

    The Great Salt Lake (GSL), Utah, USA, is a hypersaline terminal lake that is home to some of the highest concentrations of methylmercury (MeHg) ever measured in natural waters. While terrestrial organisms typically have very low concentrations of MeHg because it is produced almost exclusively in sub-oxic aquatic environments, we documented elevated concentrations of MeHg in brine flies (Ephydra spp.) and spiders along the shores of the GSL. We hypothesized that brine flies, with their larval and pupal stages in the GSL, act as vectors that transfer Hg from the lake to surrounding terrestrial ecosystems as flying adults where they are eaten by spiders and other organisms. The GSL is visited annually by millions of migratory birds, and a major food source for both resident and migratory birds at the GSL are brine flies, so brine flies may represent an important source of Hg to birds here. We conducted a spatial and temporal study of HgT and MeHg in surface waters, brine flies, spiders, and Loggerhead Shrikes (Lanius ludovicianus) a predatory terrestrial songbird of conservation concern, and investigated sublethal effects due to Hg exposure on Antelope Island in the GSL. Samples were also analyzed for their stable carbon and nitrogen isotopic ratios. While HgT and MeHg concentrations in surface waters were elevated, they varied relatively little throughout the year and exhibited no clear seasonal trends. However, seasonal maxima in concentrations of HgT and MeHg in brine flies and spiders occurred in spring and fall, periods of peak migratory bird numbers at the GSL. Approximately 20% of adult/juvenile shrikes had blood HgT concentrations above thresholds previously shown to reduce breeding success in other songbirds, with these concentrations increasing after the annual appearance of orb weaving spiders. HgT concentrations of shrikes decreased with increasing distance from the shoreline and decreasing brine fly abundance, again suggesting the GSL is the ultimate

  6. Byers Peninsula: A reference site for coastal, terrestrial and limnetic ecosystem studies in maritime Antarctica

    NASA Astrophysics Data System (ADS)

    Quesada, A.; Camacho, A.; Rochera, C.; Velázquez, D.

    2009-11-01

    This article describes the development of an international and multidisciplinary project funded by the Spanish Polar Programme on Byers Peninsula (Livingston Island, South Shetlands). The project adopted Byers Peninsula as an international reference site for coastal and terrestrial (including inland waters) research within the framework of the International Polar Year initiative. Over 30 scientists from 12 countries and 26 institutions participated in the field work, and many others participated in the processing of the samples. The main themes investigated were: Holocene changes in climate, using both lacustrine sediment cores and palaeo-nests of penguins; limnology of the lakes, ponds, rivers and wetlands; microbiology of microbial mats, ecology of microbial food webs and viral effects on aquatic ecosystems; ornithology, with investigations on a Gentoo penguin rookery ( Pygoscelis papua) as well as the flying ornithofauna; biocomplexity and life cycles of species from different taxonomic groups; analysis of a complete watershed unit from a landscape perspective; and human impacts, specifically the effect of trampling on soil characteristics and biota. Byers Peninsula offers many features as an international reference site given it is one of the largest ice-free areas in the Antarctic Peninsula region, it has a variety of different landscape units, and it hosts diverse aquatic ecosystems. Moreover, the Byers Peninsula is a hotspot for Antarctic biodiversity, and because of its high level of environmental protection, it has been very little affected by human activities. Finally, the proximity to the Spanish polar installations on Livingston Island and the experience derived from previous expeditions to the site make it logistically feasible as a site for ongoing monitoring and research.

  7. Benchmarking the seasonal cycle of CO2 fluxes simulated by terrestrial ecosystem models

    NASA Astrophysics Data System (ADS)

    Peng, Shushi; Ciais, Philippe; Chevallier, Frédéric; Peylin, Philippe; Cadule, Patricia; Sitch, Stephen; Piao, Shilong; Ahlström, Anders; Huntingford, Chris; Levy, Peter; Li, Xiran; Liu, Yongwen; Lomas, Mark; Poulter, Benjamin; Viovy, Nicolas; Wang, Tao; Wang, Xuhui; Zaehle, Sönke; Zeng, Ning; Zhao, Fang; Zhao, Hongfang

    2015-01-01

    We evaluated the seasonality of CO2 fluxes simulated by nine terrestrial ecosystem models of the TRENDY project against (1) the seasonal cycle of gross primary production (GPP) and net ecosystem exchange (NEE) measured at flux tower sites over different biomes, (2) gridded monthly Model Tree Ensembles-estimated GPP (MTE-GPP) and MTE-NEE obtained by interpolating many flux tower measurements with a machine-learning algorithm, (3) atmospheric CO2 mole fraction measurements at surface sites, and (4) CO2 total columns (XCO2) measurements from the Total Carbon Column Observing Network (TCCON). For comparison with atmospheric CO2 measurements, the LMDZ4 transport model was run with time-varying CO2 fluxes of each model as surface boundary conditions. Seven out of the nine models overestimate the seasonal amplitude of GPP and produce a too early start in spring at most flux sites. Despite their positive bias for GPP, the nine models underestimate NEE at most flux sites and in the Northern Hemisphere compared with MTE-NEE. Comparison with surface atmospheric CO2 measurements confirms that most models underestimate the seasonal amplitude of NEE in the Northern Hemisphere (except CLM4C and SDGVM). Comparison with TCCON data also shows that the seasonal amplitude of XCO2 is underestimated by more than 10% for seven out of the nine models (except for CLM4C and SDGVM) and that the MTE-NEE product is closer to the TCCON data using LMDZ4. From CO2 columns measured routinely at 10 TCCON sites, the constrained amplitude of NEE over the Northern Hemisphere is of 1.6 ± 0.4 gC m-2 d-1, which translates into a net CO2 uptake during the carbon uptake period in the Northern Hemisphere of 7.9 ± 2.0 PgC yr-1.

  8. Terrestrial Carbon Sinks in the Brazilian Amazon and Cerrado Region Predicted from MODIS Satellite Data and Ecosystem Modeling

    NASA Technical Reports Server (NTRS)

    Potter, C.; Klooster, S.; Huete, A.; Genovese, V.; Bustamante, M.; Ferreira, L. Guimaraes; deOliveira, R. C., Jr.; Zepp, R.

    2009-01-01

    A simulation model based on satellite observations of monthly vegetation cover from the Moderate Resolution Imaging Spectroradiometer (MODIS) was used to estimate monthly carbon fluxes in terrestrial ecosystems of Brazilian Amazon and Cerrado regions over the period 2000-2004. Net ecosystem production (NEP) flux for atmospheric CO2 in the region for these years was estimated. Consistently high carbon sink fluxes in terrestrial ecosystems on a yearly basis were found in the western portions of the states of Acre and Rondonia and the northern portions of the state of Par a. These areas were not significantly impacted by the 2002-2003 El Nino event in terms of net annual carbon gains. Areas of the region that show periodically high carbon source fluxes from terrestrial ecosystems to the atmosphere on yearly basis were found throughout the state of Maranhao and the southern portions of the state of Amazonas. As demonstrated though tower site comparisons, NEP modeled with monthly MODIS Enhanced Vegetation Index (EVI) inputs closely resembles the measured seasonal carbon fluxes at the LBA Tapajos tower site. Modeling results suggest that the capacity for use of MODIS Enhanced Vegetation Index (EVI) data to predict seasonal uptake rates of CO2 in Amazon forests and Cerrado woodlands is strong.

  9. Terrestrial carbon sinks in the Brazilian Amazon and Cerrado region predicted from MODIS satellite data and ecosystem modeling

    NASA Astrophysics Data System (ADS)

    Potter, C.; Klooster, S.; Huete, A.; Genovese, V.; Bustamante, M.; Guimaraes Ferreira, L.; de Oliveira, R. C., Jr.; Zepp, R.

    2009-06-01

    A simulation model based on satellite observations of monthly vegetation cover from the Moderate Resolution Imaging Spectroradiometer (MODIS) was used to estimate monthly carbon fluxes in terrestrial ecosystems of Brazilian Amazon and Cerrado regions over the period 2000-2004. Net ecosystem production (NEP) flux for atmospheric CO2 in the region for these years was estimated. Consistently high carbon sink fluxes in terrestrial ecosystems on a yearly basis were found in the western portions of the states of Acre and Rondônia and the northern portions of the state of Pará. These areas were not significantly impacted by the 2002-2003 El Niño event in terms of net annual carbon gains. Areas of the region that show periodically high carbon source fluxes from terrestrial ecosystems to the atmosphere on yearly basis were found throughout the state of Maranhão and the southern portions of the state of Amazonas. As demonstrated though tower site comparisons, NEP modeled with monthly MODIS Enhanced Vegetation Index (EVI) inputs closely resembles the measured seasonal carbon fluxes at the LBA Tapajos tower site. Modeling results suggest that the capacity for use of MODIS Enhanced Vegetation Index (EVI) data to predict seasonal uptake rates of CO2 in Amazon forests and Cerrado woodlands is strong.

  10. Terrestrial carbon sinks in the Brazilian Amazon and Cerrado region predicted from MODIS satellite data and ecosystem modeling

    NASA Astrophysics Data System (ADS)

    Potter, C.; Klooster, S.; Huete, A.; Genovese, V.; Bustamante, M.; Guimaraes Ferreira, L.; Cosme de Oliveira Junior, R.; Zepp, R.

    2009-01-01

    A simulation model based on satellite observations of monthly vegetation cover from the Moderate Resolution Imaging Spectroradiometer (MODIS) was used to estimate monthly carbon fluxes in terrestrial ecosystems of Brazilian Amazon and Cerrado regions over the period 2000-2004. Net ecosystem production (NEP) flux for atmospheric CO2 in the region for these years was estimated. Consistently high carbon sink fluxes in terrestrial ecosystems on a yearly basis were found in the western portions of the states of Acre and Rondônia and the northern portions of the state of Pará. These areas were not significantly impacted by the 2002-2003 El Niño event in terms of net annual carbon gains. Areas of the region that show periodically high carbon source fluxes from terrestrial ecosystems to the atmosphere on yearly basis were found throughout the state of Maranhão and the southern portions of the state of Amazonas. As demonstrated though tower site comparisons, NEP modeled with monthly MODIS Enhanced Vegetation Index (EVI) inputs closely resembles the measured seasonal carbon fluxes at the LBA Tapajos tower site. Modeling results suggest that the capacity for use of MODIS Enhanced Vegetation Index (EVI) data to predict seasonal uptake rates of CO2 in Amazon forests and Cerrado woodlands is strong.