Science.gov

Sample records for cretaceous-tertiary k-t boundary

  1. An extended Cretaceous-Tertiary (K/T) stable isotope record. Implications for paleoclimate and the nature of the K/T boundary event

    NASA Technical Reports Server (NTRS)

    Dhondt, Steven

    1988-01-01

    In order to obtain a detailed single site record of marine productivity and temperature across the Cretaceous-Tertiary (K/T) boundary, both delta C-13 and delta O-18 values were measured in paired surface and deep water microfossil and nannofossil samples of mid-latitude South Atlantic Deep Sea Drilling Project (DSDP) Site 528. Additionally, the percent sedimentary carbonate content of the rock samples from which the analyzed fossil samples were taken, were determined. The analyzed interval spanned the last approximately 1 million years of the Cretaceous (the Abathomphalus mayaroensis foraminiferal zone) and the first approximately 9 million years of the Tertiary (the Paleocene). Paired samples were analyzed every 150 cm of the entire 165 m sampled interval (1 sample per recovered DSDP section), every 20 cm for 2.0 m below and 2.5 m above the K/T boundary, and every 0.25 cm immediately below, at, and above the K/T boundary clay. The Cretaceous-Tertiary boundary and earliest Paleocene record of DSDP Site 528 is marked by at least two strong decreases in the surface-to-deep delta C-13 gradient (one at the K/T boundary (66.4 mybp1) and one approximately 150,000 to 200,000 years later). Both of these decreases co-occur with radical decreases in percent carbonate content and appear to indicate not one, but two, strong decreases in marine primary productivity during the analyzed interval.

  2. Impact and extinction signatures in complete Cretaceous-Tertiary (K-T) boundary sections

    NASA Technical Reports Server (NTRS)

    Smit, J.; Groot, H.; Dejonge, R.; Smit, P.

    1988-01-01

    The Zumaya, Caravaca and Agost sections in Spain, the El Kef section in Tunisia and the Negev (Nahal Avdat) sections in Israel are among the most continuous, expanded and complete K-T boundary sections. The distribution patterns of the planktic faunas were quantitatively analyzed in closely spaced samples across the K-T boundary in these sections, in conjuction with the geochemistry, stable isotopes, mineralogy and magnetostratigraphy. Three hundred foraminiferal specimens were randomly selected and determined. Reliable estimates for the foraminiferal productivity changes across the K-T boundary and for the 1 to 2 Ma interval preceding the K-T boundary were made from the numbers of individuals/gram of sediment corrected for the sedimentation rates (calculated from magnetic reversals and lithology). No gradual or stepwise extinction is seen below the K-T boundary nor any productivity decrease. Stable isotope analyses show a warming just after deposition of the ejecta layer, not cooling as predicted by nuclear winter scenarios, although the duration of such cooling may be too short to be observed even in these complete sections. Low REE values and cpx spherules with quench textures idential to quench-textures in diagenetically altered spherules, strongly indicate an oceanic site of (one of) the impactor(s).

  3. The Cretaceous/Tertiary (K/T) boundary: 25 Years of controversial discussion

    NASA Astrophysics Data System (ADS)

    Harting, M.; Wittler, F. A.

    2006-05-01

    The K/T transition is under geoscientific focus since many years. Ever since the discovery of the Chicxulub- Impact theory in the early 1980s, its ctrater and its subsurface structure in the late 1990s many scientists and media, Hollywood, and the general public have become convinced that a large meteorite caused the K/T boundary and killed the dinosaurs and other organisms in the late Maastrichtian. However, today a much more comprehensive and detailed scientific background is present. Many scientist today believe that there is doubt that the Chicxulub impact is the "smoking gun". Moreover, there is increasing evidence that the Chicxulub impact predates the K/T mass extinction by about 300.000 years and did not cause the end of the dinosaures or of other marine and terrestrial organisms. On the other hand, some scientist still fixed to the general theory of a catastropic event. Due to recent field work on highly important sites and drillings inside the Chicxulub Impact structure itself, major new results are present today. In general, these new evidence, such as multiple ejecta layer, in locations in the Gulf of Mexico, the Caribbean, the Tethys and beyond, could not be interpreted by secondary (e.g. sedimentological-) features (slumping, reworking). Unfortunately, due to the highly emotional and controversal discussion - sometimes more like a religious than a scientific fight - many scientist feel uncomfortable to join the K/T problem. In fact, in between only a couple of major groups in various Universities are focussed - and leading - the discussion. A more open interaction between various geoscientific disciplines and researcher may the key to solve the mystery of the Chicxulub Impact and its relation to the K/T boundary.

  4. Carbon isotopic compositions of organic matter across continental Cretaceous-Tertiary (K-T) boundary sections: Implications for paleoenvironment after the K-T impact event

    USGS Publications Warehouse

    Maruoka, T.; Koeberl, C.; Bohor, B.F.

    2007-01-01

    To assess the environmental perturbation induced by the impact event that marks the Cretaceous-Tertiary (K-T) boundary, concentrations and isotopic compositions of bulk organic carbon were determined in sedimentary rocks that span the terrestrial K-T boundary at Dogie Creek, Montana, and Brownie Butte, Wyoming in the Western Interior of the United States. The boundary clays at both sites are not bounded by coals. Although coals consist mainly of organic matter derived from plant tissue, siliceous sedimentary rocks, such as shale and clay, may contain organic matter derived from microbiota as well as plants. Coals record ??13C values of plant-derived organic matter, reflecting the ??13C value of atmospheric CO2, whereas siliceous sedimentary rocks record the ??13C values of organic matter derived from plants and microbiota. The microbiota ??13C value reflects not only the ??13C value of atmospheric CO2, but also biological productivity. Therefore, the siliceous rocks from these sites yields information that differs from that obtained previously from coal beds. Across the freshwater K-T boundary at Brownie Butte, the ??13C values decrease by 2.6??? (from - 26.15??? below the boundary clay to - 28.78??? above the boundary clay), similar to the trend in carbonate at marine K-T sites. This means that the organic ??13C values reflect the variation of ??13C of atmospheric CO2, which is in equilibrium with carbon isotopes at the ocean surface. Although a decrease in ??13C values is observed across the K-T boundary at Dogie Creek (from - 25.32??? below the boundary clay to - 26.11??? above the boundary clay), the degree of ??13C-decrease at Dogie Creek is smaller than that at Brownie Butte and that for marine carbonate. About 2??? decrease in ??13C of atmospheric CO2 was expected from the ??13C variation of marine carbonate at the K-T boundary. This ??13C-decrease of atmospheric CO2 should affect the ??13C values of organic matter derived from plant tissue. As such a decrease in ??13C value was not observed at Dogie Creek, a process that compensates the ??13C-decrease of atmospheric CO2 should be involved. For example, the enhanced contribution of 13C-enriched organic matter derived from algae in a high-productivity environment could be responsible. The ??13C values of algal organic matter become higher than, and thus distinguishable from, those of plant organic matter in situations with high productivity, where dissolved HCO3- becomes an important carbon source, as well as dissolved CO2. As the ??13C-decrease of atmospheric CO2 reflected a reduction of marine productivity, the compensation of the ??13C decrease by the enhanced activity of the terrestrial microbiota means that the microbiota at freshwater environment recovered more rapidly than those in the marine environment. A distinct positive ??13C excursion of 2??? in the K-T boundary clays is superimposed on the overall decreasing trend at Dogie Creek; this coincides with an increase in the content of organic carbon. We conclude that the K-T boundary clays include 13C-enriched organic matter derived from highly productive algae. Such a high biological productivity was induced by phenomena resulting from the K-T impact, such as nitrogen fertilization and/or eutrophication induced by enhanced sulfide formation. The high productivity recorded in the K-T boundary clays means that the freshwater environments (in contrast to marine environments) recovered rapidly enough to almost immediately (within 10??yr) respond to the impact-related environmental perturbations. ?? 2006 Elsevier B.V. All rights reserved.

  5. The Manson impact structure, a possible site for a Cretaceous-Tertiary (K-T) boundary impact

    NASA Technical Reports Server (NTRS)

    Hartung, J. B.; Kunk, M. J.; Anderson, R. R.

    1988-01-01

    The Manson impact structure, about 35 km in diameter, is the largest impact crater recognized in the United States. Its center is located near the town of Manson, 29 km west of Fort Dodge, Iowa. The structure is not well known geologically because it is covered by tens of meters of glacial deposits. What is known about the structure was learned mostly from the study of water well cuttings. At Manson the normal Phanerozoic and Proterozoic sedimentary rocks were replaced by centrally uplifted Proterozoic crystalline rocks that are representative of the normal basement: This central uplift is surrounded by completely disrupted rocks which are roughly encircled by peripherally faulted and slumped sequences of normal sedimentary strata. Radially outward normal sedimentary strata are uplifted slightly. Manson, once interpreted as a cryptovolcanic structure, is now considered an impact structure based on its circular shape, its central uplift and the presence of multiple intersecting sets of shock lamellae in quartz grains from the central uplift. The Ar-40/Ar-39 age spectrum dating results for a microcline separate from the Manson 2-A core in the central uplift is shown. This spectrum is interpreted to indicate a nearly complete degassing of the microcline at the time of the Manson impact. The remainder of the gas released climbs in age with increasing temperature of release. This pattern of the age spectrum is interpreted to represent diffusional loss due to reheating at the time of the impact and during subsequent cooling. Shocked quartz grains, present in the iridium-bearing layer at the K-T boundary throughout the world, have a significantly larger size and are more abundant in the western interior of North America than elsewhere in the world. Furthermore, shocked feldspar and granitic fragments are found at the K-T boundary in North America. These observations indicate the K-T boundary impact must have penetrated continental crust in North America.

  6. How complete are Cretaceous/Tertiary (K/T) boundary sections--2: High latitude extension of the K/T composite standard reference section

    SciTech Connect

    Macleod, N. . Dept. of Geological and Geophysical Sciences)

    1993-03-01

    Reliable interpretation of stratigraphic data bearing on the K/T boundary impact/extinction controversy requires the existence of accurate, high resolution, and independently-justified chronostratigraphic interpretations for K/T boundary sections and deep sea cores. MacLeod and Keller (1991a,b) employed graphic correlation to summarize biostratigraphic and lithostratigraphic data from 15 K/T boundary sections within a common chronostratigraphic model. Results of that study indicated that trans-K/T hiatuses were common in virtually all boundary sequences, especially those from deep sea cores. This observation is in accord with K/T sequence stratigraphy which predicts stratigraphic condensation and deep sea hiatuses production in response to the rapid rise in eustatic sea level that took place across the K/T boundary (see Haq, 1987). Olsson and Liu (1992) have recently criticized this model, arguing that the differences observed in biostratigraphic datum distribution between neritic sections and deep sea cores were the result of ecological exclusion of lowermost Danian Zone PO faunas from open ocean habitats. New stratigraphic data from the high latitude stratigraphic records of Nye Kloev (Denmark), ODP Site 690 (Weddell Sea) and ODP Site 738 (Kerguelen Plateau), along with a restudy of the original correlations, provides data that are inconsistent with Olsson and Liu's (1992) criticisms. A well-developed Zone PO fauna has now been recovered from a deep sea core (Site 738). Integration of these and other high latitude records into the K/T CSRS enables the relative duration of boundary hiatuses, relative sediment accumulation rates, and the global sequence of fossil appearances/disappearances to be estimated with greater accuracy.

  7. The Cretaceous-Tertiary (K/T) impact: One or more source craters?

    NASA Technical Reports Server (NTRS)

    Koeberl, Christian

    1992-01-01

    The Cretaceous-Tertiary (K/T) boundary is marked by signs of a worldwide catastrophe, marking the demise of more than 50 percent of all living species. Ever since Alvarez et al. found an enrichment of IR and other siderophile elements in rocks marking the K/T boundary and interpreted it as the mark of a giant asteroid (or comet) impact, scientists have tried to understand the complexities of the K/T boundary event. The impact theory received a critical boost by the discovery of shocked minerals that have so far been found only in association with impact craters. One of the problems of the K/T impact theory was, and still is, the lack of an adequate large crater that is close to the maximum abundance of shocked grains in K/T boundary sections, which was found to occur in sections in Northern America. The recent discovery of impact glasses from a K/T section in Haiti has been crucial in establishing a connection with documented impact processes. The location of the impact-glass findings and the continental nature of detritus found in all K/T sections supports at least one impact site near the North American continent. The Manson Impact Structure is the largest recognized in the United States, 35 km in diameter, and has a radiometric age indistinguishable from that of the Cretaceous-Tertiary (K/T) boundary. Although the Manson structure may be too small, it may be considered at least one element of the events that led to the catastrophic loss of life and extinction of many species at that time. A second candidate for the K/T boundary crater is the Chicxulub structure, which was first suggested to be an impact crater more than a decade ago. Only recently, geophysical studies and petrological (as well as limited chemical) analyses have indicated that this buried structure may in fact be of impact origin. At present we can conclude that the Manson crater is the only confirmed crater of K/T age, but Chicxulub is becoming a strong contender; however, detailed geochemical, geochronological, and isotopic data are necessary to provide definitive evidence.

  8. The Western North American Cretaceous-Tertiary (K-T) boundary interval and its content of shock-metamorphosed minerals: Implications concerning the K-T boundary impact-extinction theory

    NASA Technical Reports Server (NTRS)

    Izett, G. A.

    1988-01-01

    At 20 sites in the Raton Basin of Colorado and New Mexico, and at several other sites in Wyoming, Montana, and Canada, a pair of claystone units, an Ir abundance anomaly, and a concentration of shock-metamorphosed minerals mark the palynological K-T boundary. The K-T boundary claystone, which is composed of kaolinite and small amounts of illite/smectite mixed-layer clay, is similar in most respects to kaolinite tonstein layers in coal beds. At some, but not all, K-T boundary localities, the boundary claystone contains solid kaolinite and hollow and solid goyazite spherules, 0.05 to 1.2 mm in diameter. The upper unit, the K-T boundary impact layer, consists chiefly of kaolinite and various amounts of illite/smectite mixed-layer clay. The impact layer and boundary claystone are similar chemically, except that the former has slightly more Fe, K, Ba, Cr, Cu, Li, V, and Zn than the latter. The facts that the boundary claystone and impact layer contain anomalous amounts of Ir, comprise a stratigraphic couplet at Western North American sites, and form thin, discrete layers, similar to air-fall units (volcanic or impact), suggest that the claystone units are of impact origin. Significantly, the impact layer contains as much as 2 percent clastic mineral grains, about 30 percent of which contain multiple sets of shock lamellae. Only one such concentration of shocked minerals has been found near the K-T boundary. The type of K-T boundary shock-metamorphosed materials (quartzite and metaquartzite) in the impact layer and the lack of shock lamellae in quartz and feldspar of pumice lapilli and granitic xenoliths in air-fall pumice units of silicic tuffs, such as the Bishop Tuff, eliminate the possibility that the shock-metamorphosed minerals in the K-T impact layer are of volcanic origin. The global size distribution and abundance of shock-metamorphosed mineral grains suggest that the K-T impact occurred in North America.

  9. Fullerenes in the cretaceous-tertiary boundary layer

    SciTech Connect

    Heymann, D.; Chibante, L.P.F.; Smalley, R.E. ); Brooks, R.R. ); Wolbach, W.S. )

    1994-07-29

    High-pressure liquid chromatography with ultraviolet-visible spectral analysis of toluene extracts of samples from two Cretaceous-Tertiary (K-T) boundary sites in New Zealand has revealed the presence of C[sub 60] at concentrations of 0.1 to 0.2 parts per million of the associated soot. This technique verified also that fullerenes are produced in similar amounts in the soots of common flames under ambient atmospheric conditions. Therefore, the C[sub 60] in the K-T boundary layer may have originated in the extensive wildfires that were associated with the cataclysmic impact event that terminated the Mezozoic era about 65 million years ago.

  10. Osmium Isotopic Composition of the Sumbar Cretaceous- Tertiary Boundary, Turkmenia

    NASA Astrophysics Data System (ADS)

    Meisel, T.; Krahenbuhl, U.; Nazarov, M. A.

    1992-07-01

    Turekian (1982) propagated the use of the osmium isotopic composition as a cosmic indicator for the origin of the high osmium (and iridium) layers at the K/T boundaries. He did not consider the osmium isotopic signature of the terrestrial mantle, which also has a chondritic evolution of the Re-Os system. Osmium cannot serve alone as an infallible indicator of the impact theory, but interesting results can be obtained from their investigation. Different K/T boundary section have been analyzed so far for ^187Os/^186Os. An overview of the values is presented in the table. Boundary Clay layer Os ratio Reference Stevns Klint fish clay 1.66 Luck and Turekian, 1983 Woodside Creek 1.12 Lichte et al., 1986 Raton Basin 1.23 Kraehenbuehl et al., 1988 Raton Basin (several) 1.15-1.23 Esser and Turekian, 1989 Sumbar (0-1 cm) 1.16 This work We obtained a complete marine section of the K/T boundary in southern Turkmenia (decribed by Alekseyev, 1988). It shows a very high Ir concentration (66 ppb) at the boundary layer and a remarkable Ir enrichment over crustal rocks continuing up to 30 cm above the boundary. Our aim of this investigation is to analyze several samples from above and below the boundary for the ^187Os/^186Os ratio to obtain a complete picture of the isotopic evolution of the section. We want to evaluate mixing of Os with chondritic ratios with Os from upper crustal rocks. Another goal is to investigate a mobilization of Os. So far only one sample has been analyzed with NTI-MS after fire assay digestion of the sample. The sample 0 to 1 cm has an ^187Os/^186Os ratio of 1.162 +- 13, which is quite low. We expect an even lower value for the boundary clay (0 cm) itself not taking into account a contribution of radiogenic osmium from the decay of terrestrial rhenium. This might put this K/T boundary section closest of all to the present day chondritic value (approx. 1.05). Further analysis will be presented at the meeting. References Alekseyev A. S., Nazarov M. A., Barsukova L. D., Koselov G. M., Nizhegorodova I. V. and Amanniyazov K. N. (1988) The Cretaceous- Paleogene boundary in southern Turkmenia and its geochemical characteristics. Int. Geol. Rev. 30, 121-135. Esser B. K. and Turekian K. K. (1989) Osmium isotopic composition of the Raton Basin Cretaceous-Tertiary boundary interval. 70, 717. Kraehenbuehl U., Geissbuehler M., Buehler F. and Eberhardt P. (1988) The measurement of osmium isotopes in samples from a Cretaceous/Tertiary (K/T) section of the Raton Basin, USA. Meteoritics 23, 282. Lichte F. E., Wilson S. M., Brooks R. R., Reeves R. D., Holzbecher J. and Ryan D. E. (1986) New method for the measurement of osmium isotopes applied to a New Zealand Cretaceous/Tertiary boundary shale. Nature 322, 816-817. Luck J. M. and Turekian K. K. (1983) Osmium-^187/Osmium-^186 in manganese nodules and the Cretaceous-Tertiary boundary. Science 222, 613- 615. Turekian K. K. (1982) Potential of ^187Os/^186Os as a cosmic versus terrestrial indicator in high iridium layers of sedimentary strata. Geol. Bull. Am. Spec. Pap. 190, 243-249.

  11. Magnetostratigraphy of the Cretaceous-Tertiary boundary at Agost (Spain)

    NASA Astrophysics Data System (ADS)

    Groot, J. J.; de Jonge, R. B. G.; Langereis, C. G.; ten Kate, W. G. H. Z.; Smit, J.

    1989-09-01

    A detailed magnetostratigraphic investigation of the Agost section (Spain) containing the Cretaceous-Tertiary (K/T) boundary is reported. Thermal demagnetization—contrary to alternating field demagnetization—succeeds in revealing the polarity of the characteristic remanent magnetization, although an overlap in blocking temperature spectrum exists with a normal polarity, secondary magnetization component. The K/T boundary occurs at two-thirds from the base of a reversed polarity zone and by comparison with earlier results [1] this polarity zone is correlated to chron C29r. Linear regression of sedimentation rates in other sections with an established magnetostratigraphy and containing the K/T boundary yields an age of 66.45 Ma for this boundary. On the basis of this age and the magnetic reversal ages of the Berggren et al. [13] polarity time scale, new first appearance (FAD) ages around the K/T boundary are suggested for the planktonic species Morozovella trinidadensis (Bolli) (66.04 Ma), Morozovella pseudobulloides (Plummer) (66.34 Ma), Eoglobigerina taurica (Bang) (66.41 Ma) and "Globigerina eugubina" Luterbacher & Premoli Silva (66.43 Ma).

  12. Seawater strontium isotopes at the Cretaceous-Tertiary boundary

    NASA Technical Reports Server (NTRS)

    Macdougall, J. D.; Martin, E.

    1988-01-01

    Anomalously high values of Seawater Sr-87/Sr-86 near the Cretaceous-Tertiary (K-T) boundary have been reported. However, few of the data from the literature are from a single continuous section, and perhaps the most complete study of the boundary region, from a shallow marine limestone sequence in Alabama, showed elevated Sr-87/Sr-86 but no pronounced spike. Thus, in order to investigate the cause of the change in strontium isotopic composition, it is important to determine the exact nature and magnitude of the increase by studying in detail continuous sections through the boundary. If there is indeed a Sr isotope spike at the K-T boundary, it requires the addition of a large amount of radiogenic Sr to the oceans over a short time period, a phenomenon that may be linked to other large-scale environmental disturbances which occurred at that time. In order to address this question, a high-resolution strontium isotope study of foraminifera from three Deep Sea Drilling Project (DSDP) cores which recovered the K-T boundary section: Site 356 in the South Atlantic, Site 384 in the North Atlantic and Site 577 from the Shatsky Rise in the Pacific was initiated. The isotope measurements are being made on either single or small numbers of forams carefully picked and identified and in most cases examined by SEM before analysis. Because this work is not yet complete, conclusions drawn here must be viewed as tentative. They are briefly discussed.

  13. Proximal cretaceous-tertiary boundary impact deposits in the Caribbean.

    PubMed

    Hildebrand, A R; Boynton, W V

    1990-05-18

    Trace element, isotopic, and mineralogic studies indicate that the proposed impact at the Cretaceous-Tertiary (K-T) boundary occurred in an ocean basin, although a minor component of continental material is required. The size and abundance of shocked minerals and the restricted geographic occurrence of the ejecta layer and impact-wave deposits suggest an impact between the Americas. Coarse boundary sediments at sites 151 and 153 in the Colombian Basin and 5- to 450-meter-thick boundary sediments in Cuba may be deposits of a giant wave produced by a nearby oceanic impact. On the southern peninsula of Haiti, a approximately 50-centimeter-thick ejecta layer occurs at the K-T boundary. This ejecta layer is approximately 25 times as thick as that at any known K-T site and suggests an impact site within approximately 1000 kilometers. Seismic reflection profiles suggest that a buried approximately 300-km-diameter candidate structure occurs in the Colombian Basin. PMID:17811835

  14. The debate over the Cretaceous-Tertiary boundary

    NASA Astrophysics Data System (ADS)

    Alvarez, W.; Asaro, F.; Alvarez, L. W.; Michel, H. V.

    Large-body impact on the Earth is a rare but indisputable geologic process. The impact rate is approximately known from objects discovered in Earth-crossing orbits and from the statistics of craters on the Earth's surface. Tektite and microtektite strewn fields constitute unmistakable ejecta deposits that can be due only to large-body impacts. The Cretaceous-Tertiary (K-T) boundary coincides with an unusually severe biological trauma, and this stratigraphic horizon is marked on a worldwide basis by anomalous concentrations of noble metals in chondritic proportions, mineral spherules with relict quench-crystallization textures, and mineral and rock grains showing shock deformation. These features are precisely compatible with an impact origin. Although only impact explains all the types of K-T boundary evidence, the story may not be as simple as once thought. The original hypothesis envisioned one large impact, triggering one great extinction. Newer evidence hints at various complications. Different challenges are faced by the occupants of each apex of a three-cornered argument over the K-T event. Proponents of a non-impact explanation must show that the evidence fits their preferred model better than it fits the impact scenario. Proponents of the single impact-single extinction view must explain away the complications. Proponents of a more complex impact crisis must develop a reasonable scenario which honors the new evidence.

  15. The debate over the Cretaceous-Tertiary boundary

    NASA Technical Reports Server (NTRS)

    Alvarez, W.; Asaro, F.; Alvarez, L. W.; Michel, H. V.

    1988-01-01

    Large-body impact on the Earth is a rare but indisputable geologic process. The impact rate is approximately known from objects discovered in Earth-crossing orbits and from the statistics of craters on the Earth's surface. Tektite and microtektite strewn fields constitute unmistakable ejecta deposits that can be due only to large-body impacts. The Cretaceous-Tertiary (K-T) boundary coincides with an unusually severe biological trauma, and this stratigraphic horizon is marked on a worldwide basis by anomalous concentrations of noble metals in chondritic proportions, mineral spherules with relict quench-crystallization textures, and mineral and rock grains showing shock deformation. These features are precisely compatible with an impact origin. Although only impact explains all the types of K-T boundary evidence, the story may not be as simple as once thought. The original hypothesis envisioned one large impact, triggering one great extinction. Newer evidence hints at various complications. Different challenges are faced by the occupants of each apex of a three-cornered argument over the K-T event. Proponents of a non-impact explanation must show that the evidence fits their preferred model better than it fits the impact scenario. Proponents of the single impact-single extinction view must explain away the complications. Proponents of a more complex impact crisis must develop a reasonable scenario which honors the new evidence.

  16. Magnesioferrite from the Cretaceous-Tertiary boundary, Caravaca, Spain

    USGS Publications Warehouse

    Bohor, B.F.; Foord, E.E.; Ganapathy, R.

    1986-01-01

    Magnesioferrite grading toward magnetite has been identified as a very small but meaningful constituent of the basal iron-rich portion of the Cretaceous-Tertiary (K-T) boundary clay at the Barranco del Gredero section, Caravaca, Spain. This spinel-type phase and others of the spinel group, found in K-T boundary clays at many widely separated sites, have been proposed as representing unaltered remnants of ejecta deposited from an earth-girdling dust cloud formed from the impact of an asteroid or other large bolide at the end of the Cretaceous period. The magnesioferrite occurs as euhedral, frequently skeletal, micron-sized octahedral crystals. The magnesioferrite contains 29 ?? 11 ppb Ir, which accounts for only part of the Ir anomaly at this K-T boundary layer (52 ?? 1 ppb Ir). Major element analyses of the magnesioferrite show variable compositions. Some minor solid solution exists toward hercynite-spinel and chromite-magnesiochromite. A trevorite-nichromite (NiFe2O4NiCr2O4) component is also present. The analyses are very similar to those reported for sites at Furlo and Petriccio, Umbria, Italy. On the basis of the morphology and general composition of the magnesioferrite grains, rapid crystallization at high temperature is indicated, most likely directly from a vapor phase and in an environment of moderate oxygen fugacity. Elemental similarity with metallic alloy injected into rocks beneath two known impact craters suggests that part of the magnesioferrite may be derived from the vaporized chondritic bolide itself, or from the mantle; there is no supporting evidence for its derivation from crustal target rocks. ?? 1986.

  17. Cathodoluminescence of shocked quartz at the Cretaceous-Tertiary boundary

    NASA Technical Reports Server (NTRS)

    Owen, Michael R.; Anders, Mark H.

    1988-01-01

    Empirical studies have documented an association between rock type and the cathodoluminescence color of constituent quartz grains. Quartz from extrusive igneous sources luminesces uniform pale blue. Quartz from intrusive igneous and high-grade metamorphic rocks generally luminesces darker purple-blue, whereas quartz recrystallized under low-grade metamorphic conditions luminesces reddish-brown. Quartz grains in most sandstones luminesce a heterogeneous mixture of these colors because the grains were derived from a variety of ultimate source rocks. If shocked quartz found at the Cretaceous-Tertiary (K-T) boundary is volcanic in origin, its cathodoluminescence should be predominantly pale blue. Alternatively, quartz grains derived from bolide impact upon, and ejection of, mixed igneous, metamorphic, and sedimentary rocks should luminesce a variety of colors. Grain mounts of sand collected at the K-T boundary horizon from the Clear Creek North site in the Raton Basin, Colorado were examined. Shocked quartz luminesced a variety of colors and very few grains luminesced the pale blue color that is typical of volcanic quartz. It was concluded that the shocked quartz was derived from a petrologically diverse source region without substantial volcanic contribution. Most shocked grains apparently were derived from low-grade metamorphic rocks, with a slightly smaller contribution from high-grade metamorphic and intrusive igneous rocks. Rare quartz grains with brown-luminescing rims reflect a minor addition from detrital sedimentary sources. The apparent relative abundances of intrusive (and rare extrusive) igneous, metamorphic, and sedimentary ultimate source rocks suggested by CL colors of shock-deformed quartz at the K-T boundary is consistent with a crustal/supracrustal origin for the grains.

  18. 40Ar/39Ar age of Cretaceous-Tertiary boundary tektites from Haiti

    USGS Publications Warehouse

    Izett, G.A.; Dalrymple, G.B.; Snee, L.W.

    1991-01-01

    40Ar/39Ar dating of tektites discovered recently in Cretaceous-Tertiary (K-T) boundary marine sedimentary rocks on Haiti indicates that the K-T boundary and impact event are coeval at 64.5 ?? 0.1 million years ago. Sanidine from a bentonite that lies directly above the K-T boundary in continental, coal-bearing, sedimentary rocks of Montana was also dated and has a 40Ar/39Ar age of 64.6 ?? 0.2 million years ago, which is indistinguishable statistically from the age of the tektites.

  19. Marine Cretaceous-Tertiary boundary section in southwestern South Dakota

    NASA Astrophysics Data System (ADS)

    Terry, Dennis O., Jr.; Chamberlain, John A., Jr.; Stoffer, Philip W.; Messina, Paula; Jannett, Patricia A.

    2001-11-01

    A distinctive zone of disrupted strata, which we interpret as a distal manifestation of the end-Cretaceous Chicxulub impact event, occurs over 300 km2 in southwestern South Dakota. This disrupted zone is within the Fox Hills Formation, ranges from 0.5 to 5 m in thickness, and contains large-scale slump-roll structures, clastic dikes, flame structures, and massive, homogenized beds. The zone is ˜0.5 m above a belemnite fauna Sr dated as 67.6 ± 0.5 Ma, contains scaphitid ammonites characteristic of the Jeletzkytes nebrascensis ammonite zone of the Fox Hills Formation, and is capped by a 0.5 4-cm-thick brownish-black mudstone that contains spherules. Pollen of the late Maastrichtian Wodehouseia spinata palynostratigraphic zone occurs immediately above and below the disrupted zone. The disrupted zone is overlain by an additional 25 m of marine Fox Hills Formation. These stratigraphic relationships suggest that the upper part of the Fox Hills Formation in this part of South Dakota is Paleocene; that the Western Interior Seaway was locally present well into the Paleocene; and that scaphitid ammonites may range the Cretaceous-Tertiary (K-T) boundary.

  20. Extraterrestrial amino acids at the Cretaceous-Tertiary boundary

    SciTech Connect

    Lee, N.C.; Bada, J.L.

    1985-01-01

    The Earth has apparently been impacted by numerous large asteroids (>10 km diameter) or comets throughout its history. The rate of these collisions is roughly 2-4 x 10/sup -8/ events yr/sup -1/. The collision of a large asteroid or comet with the Earth could result in the addition of extra-terrestrial organic compounds. Certain types of meteorites (C2-carbonaceous chondrites) contain a vast assortment of organics, including amino acids, aliphatic and aromatic hydrocarbons, carboxylic acids, heterocycles, and various low molecular weight compounds. Molecules important in abiotic organic syntheses are present in comets, and thus these objects are also likely rich inorganics. The authors have investigated whether the amino acid ..cap alpha..-amino isobutyric acid (AIBA) can be used to ascertain whether extraterrestrial amino acids (ETAA) were added to the Earth's surface at the proposed asteroid or comet impact event associated with the Cretaceous-Tertiary (K-T) boundary. AIBA was utilized in these studies since it is a dominant amino acid in C2-carbonaceous meteorites and only rarely occurs in terrestrial organisms. Detection of AIBA was performed using OPA pre-column derivatization-HPLC methodology. Since the AIBA fluorescent yield is increased relative to non ..cap alpha..-methyl substituted amino acids at elevated temperatures, derivatization was carried out at both room temperature and 90/sup 0/C. Ocean sediments of various geological ages were analyzed. The results indicate that only in DSDP Leg 43 K-T boundary samples are detectable levels of AIBA present.

  1. Global fire at the Cretaceous-Tertiary boundary

    NASA Technical Reports Server (NTRS)

    Wolbach, Wendy S.; Gilmour, Iain; Anders, Edward; Orth, Charles J.; Brooks, Robert R.

    1988-01-01

    Cretaceous-Tertiary boundary clays rich in iridium from five sites in Europe and New Zealand were investigated. The clays are found to be 100-10,000-fold-enriched in elemental carbon (mainly soot), which is isotopically uniform and apparently comes from a single global fire. The soot layer coincides with the iridium layer, suggesting that the fire was triggered by meteorite impact and began before the ejecta had settled.

  2. Major wildfires at the Cretaceous-Tertiary boundary

    NASA Technical Reports Server (NTRS)

    Anders, Edward; Wolbach, Wendy S.; Gilmour, Iain

    1991-01-01

    The current status of the reconstruction of major biomass fire events at the Cretaceous-Tertiary boundary is discussed. Attention is given to the sources of charcoal and soot, the identification of biomass and fossil carbon, and such ignition-related problems as delated fires, high atmospheric O2 content, ignition mechanisms, and the greenhouse-effect consequences of fire on the scale envisioned. Consequences of these factors for species extinction patterns are noted.

  3. Emplacement of cretaceous-tertiary boundary shocked quartz from chicxulub crater.

    PubMed

    Alvarez, W; Claeys, P; Kieffer, S W

    1995-08-18

    Observations on shocked quartz in Cretaceous-Tertiary (K-T) boundary sediments compellingly tied to Chicxulub crater raise three problems. First, in North America shocked quartz occurs above the main K-T ejecta layer. Second, shocked quartz is more abundant west than east of Chicxulub. Third, shocked quartz reached distances requiring initial velocities up to 8 kilometers per second, corresponding to shock pressures that would produce melt, not the moderate-pressure shock lamellae observed. Shock devolatilization and the expansion of carbon dioxide and water from impacted wet carbonate, producing a warm, accelerating fireball after the initial hot fireball of silicate vapor, may explain all three problems. PMID:17807728

  4. Proximal Cretaceous-Tertiary boundary impact deposits in the Caribbean

    NASA Technical Reports Server (NTRS)

    Hildebrand, Alan R.; Boynton, Willam V.

    1990-01-01

    Trace element, isotopic, and mineralogic studies indicate that the proposed impact at the Cretaceous-Tertiary boundary occurred in an ocean basin, although a minor component of continental material is required. The size and abundance of shocked minerals and the restricted geographic occurrence of the ejecta layer and impact-wave deposits suggest an impact between the Americas. Coarse boundary sediments at sites 151 and 153 in the Colombian Basin and 5- to 450-meter-thick boundary sediments in Cuba may be deposits of a giant wave produced by a nearby oceanic impact.

  5. Proximal Cretaceous-Tertiary boundary impact deposits in the Caribbean

    NASA Astrophysics Data System (ADS)

    Hildebrand, Alan R.; Boynton, Willam V.

    1990-05-01

    Trace element, isotopic, and mineralogic studies indicate that the proposed impact at the Cretaceous-Tertiary boundary occurred in an ocean basin, although a minor component of continental material is required. The size and abundance of shocked minerals and the restricted geographic occurrence of the ejecta layer and impact-wave deposits suggest an impact between the Americas. Coarse boundary sediments at sites 151 and 153 in the Colombian Basin and 5- to 450-meter-thick boundary sediments in Cuba may be deposits of a giant wave produced by a nearby oceanic impact.

  6. Ignition of global wildfires at the Cretaceous/Tertiary boundary

    NASA Technical Reports Server (NTRS)

    Melosh, H. J.; Schneider, N. M.; Zahnle, K. J.; Latham, D.

    1990-01-01

    The recent discovery of an apparently global soot layer at the Cretaceous/Tertiary boundary indicates that global wildfires were somehow ignited by the impact of a comet or asteroid. It is shown here that the thermal radiation produced by the ballistic reentry of ejecta condensed from the vapor plume of the impact could have increased the global radiation flux by factors of 50 to 150 times the solar input for periods ranging from one to several hours. This great increase in thermal radiation may have been responsible for the ignition of global wildfires, as well as having deleterious effects on unprotected animal life.

  7. Ignition of global wildfires at the Cretaceous/Tertiary boundary.

    PubMed

    Melosh, H J; Schneider, N M; Zahnle, K J; Latham, D

    1990-01-18

    An impressive amount of evidence supports the proposal of Alvarez et al. that the Cretaceous era was ended abruptly by the impact of a comet or asteroid. The recent discovery of an apparently global soot layer at the Cretaceous/Tertiary boundary indicates that global wildfires were somehow ignited by the impact. Here we show that the thermal radiation produced by the ballistic re-entry of ejecta condensed from the vapour plume of the impact could have increased the global radiation flux by factors of 50 to 150 times the solar input for periods ranging from one to several hours. This great increase in thermal radiation may have been responsible for the ignition of global wildfires, as well as having deleterious effects on unprotected animal life. PMID:11536461

  8. A short duration of the Cretaceous-Tertiary boundary event: evidence from extraterrestrial helium-3.

    PubMed

    Mukhopadhyay, S; Farley, K A; Montanari, A

    2001-03-01

    Analyses of marine carbonates through the interval 63.9 to 65.4 million years ago indicate a near-constant flux of extraterrestrial helium-3, a tracer of the accretion rate of interplanetary dust to Earth. This observation indicates that the bolide associated with the Cretaceous-Tertiary (K-T) extinction event was not accompanied by enhanced solar system dustiness and so could not have been a member of a comet shower. The use of helium-3 as a constant-flux proxy of sedimentation rate implies deposition of the K-T boundary clay in (10 +/- 2) x 10(3) years, precluding the possibility of a long hiatus at the boundary and requiring extremely rapid faunal turnover. PMID:11239153

  9. Sanidine spherules at the Cretaceous-Tertiary boundary indicate a large impact event

    NASA Astrophysics Data System (ADS)

    Smit, J.; Klaver, G.

    1981-07-01

    The hypothesis that a catastrophic impact of an extraterrestrial body caused the terminal Cretaceous mass extinctions of dinosaurs, planktonic foraminfera and other species is now accepted as respectable following the discovery of a worldwide iridium enrichment in the Cretaceous-Tertiary (K-T) boundary clay1-5. In the basal lamina of the K-T boundary clay of Caravaca (Spain)7 numerous spherules were discovered composed of finely crystallized, almost pure K-feldspar in the structural state of high sanidine. It is concluded here that these spherules solidified from a melt and were probably derived from the impacting body. This poses problems as high K-values are not reported from bulk analyses of meteorites6. The K-feldspar phenocrysts reported in some iron meteorites23 suggest the body may have been a metal-sulphide-silicate planetesimal. A cometary body is suggested as an alternative.

  10. The Cretaceous-Tertiary boundary crisis at Zumaya (Northern Spain). Micropaleon-tological data

    NASA Astrophysics Data System (ADS)

    Lamolda, Marcos A.

    The Cretaceous-Tertiary (K/T) boundary sections in the Basque Country, mainly along cliff outcrops, are showing a key role in understanding the true nature of the End Mesozoic Biotic Crisis. The richness of their fossil associations — macro- and micro-fossils — and the sedimentologic conditions allow us to know a detailed biostratigraphy and the trends of fossil associations with regard to the K/T boundary. The well known Zumaya section has been a classic locality for the K/T boundary problems for more than 20 years. Furthermore, there are several others which match and complement the Zumaya section. Some planktonic foraminifera species disappeared before the K/T boundary — e.g. Abathomphalus mayaroensis (Bolli) — or underwent a strong decrease — e.g. Rosita contusa (Cushman), Rugoglobigerina rotundata Brönnimann. The total number of species decreased 15-20%, and the percentage of planktonic foraminifera was reduced from 92-95% to 84%, of all foraminifera. In addition, there is an increase of opportunistic species, both planktonic foraminifera and nannoflora species. These data allow us to recognize unstable conditions in the calcareous pelagic ecosystem, previous to the K/T boundary which is marked by geochemical anomalies. Therefore, our data do not fit well with causal models where extraterrestrial events are the only adduced causes.

  11. Palynologically calibrated vertebrate record from North Dakota consistent with abrupt dinosaur extinction at the Cretaceous-Tertiary boundary

    USGS Publications Warehouse

    Pearson, D.A.; Schaefer, T.; Johnson, K.R.; Nichols, D.J.

    2001-01-01

    New data from 17 Cretaceous-Tertiary (K-T) boundary sections and 53 vertebrate sites in the Hell Creek and Fort Union Formations in southwestern North Dakota document a 1.76 m barren interval between the highest Cretaceous vertebrate fossils and the palynologically recognized K-T boundary. The boundary is above the formational contact at 15 localities and coincident with it at two, demonstrating that the formational contact is diachronous. Dinosaurs are common in the highest Cretaceous vertebrate samples and a partial dinosaur skeleton in the Fort Union Formation is the highest recorded Cretaceous vertebrate fossil in this area.

  12. Cretaceous-tertiary boundary event - Evidence for a short time scale

    NASA Technical Reports Server (NTRS)

    Gilmour, Iain; Anders, Edward

    1989-01-01

    The origin of the 'As, Sb, Zn anomaly' in Cretaceous-Tertiary boundary sites is investigated using data on 11 K-T boundary sites for which comprehensive trace element analyses were available. It was found that the proportions As/Ir, Sb/Ir, and Zn/Ir were remarkably constant over about 100-fold range in concentration. The correlation persisted in sublayers of boundary clay and extended to soot from burned land biomass, indicating that all the components, despite their diverse origin, became associated in a single global component prior to deposition. Data relating the amounts of As, Sb, and Zn and the amounts of marine and land biomass to the steady-state global inventory suggest a catastrophic, rather than a gradualist scenario.

  13. New links between the Chicxulub impact structure and the Cretaceous/Tertiary boundary

    USGS Publications Warehouse

    Sharpton, V.L.; Dalrymple, G.B.; Marin, L.E.; Ryder, G.; Schuraytz, B.C.; Urrutia-Fucugauchi, J.

    1992-01-01

    THE 200-km-diameter Chicxulub structure1-3 in northern Yucatan, Mexico has emerged as the prime candidate for the Cretaceous/Tertiary (K/T) boundary impact crater3-6. Concentric geophysical anomalies associated with enigmatic occurrences of Upper Cretaceous breccias and andesitic rocks led Penfield and Camargo1 to suspect that this structure was a buried impact basin. More recently, the discovery of shocked quartz grains in a Chicxulub breccia3, and chemical similarities between Chicxulub rocks and K/T tektite-like glasses3-6 have been advanced as evidence that the Chicxulub structure is a K/T impact site. Here we present evidence from core samples that Chicxulub is indeed a K/T source crater, and can apparently account for all the evidence of impact distributed globally at the K/T boundary without the need for simultaneous multiple impacts or comet showers. Shocked breccia clasts found in the cores are similar to shocked lithic fragments found worldwide in the K/T boundary ejecta layer7,8. The Chicxulub melt rocks that we studied contain anomalously high levels of iridium (up to 13.5 parts per 109), also consistent with the indium-enriched K/T boundary layer9. Our best estimate of the crystallization age of these melt rocks, as determined by 40Ar/39Ar analyses, is 65.2??0.4 (1??) Myr, in good agreement with the mean plateau age of 64.98 ?? 0.05 Myr recently reported10. Furthermore, these melt rocks acquired a remanent magnetization indicating that they cooled during an episode of reversed geomagnetic polarity. The only such episode consistent with 40Ar/39Ar constraints is chron 29R, which includes the K/T boundary.

  14. Orbital Cyclicities Above and Below the Cretaceous-Tertiary Boundary, Umbria-Marche Region, Italy

    NASA Technical Reports Server (NTRS)

    King, D. T., Jr.; Petruny, L. W.; Rampino, M. R.; Prokoph, A.; Pope, K.; Fischer, A. G.; Montanari, A.; Ocampo, A. C.

    2000-01-01

    In the Umbria-Marche region of central Italy, the deep basinal carbonate Scaglia Rossa Formation contains an important sequence of Cretaceous-Tertiary strata including a detailed paleomagnetic record and the distal impactoclastic Cretaceous-Tertiary boundary clay layer. In addition to this significant paleomagnetic and impactoclastic record, the Scaglia Rossa also contains potentially important stratigraphic evidence of relatively long-term oceanic and atmospheric consequences of the Cretaceous-Tertiary bolide catastrophe, which we will describe for the first time herein. Additional information is contained in the original extended abstract.

  15. Wildfires and animal extinctions at the Cretaceous/Tertiary boundary

    NASA Astrophysics Data System (ADS)

    Adair, Robert K.

    2010-06-01

    Persuasive models of the ejection of material at high velocities from the Chicxulub asteroid impact marking the Cretaceous/Tertiary boundary have led to the conclusion that upon return, that material, heated in passage through the upper atmosphere, generated a high level of infrared energy density over the Earth's surface. That radiant energy has been considered to be a direct source of universal wildfires, which were presumed to be a major cause of plant and animal species extinctions. The extinction of many animal species, especially the dinosaurs, has also been attributed to the immediate lethal effects of the radiation. I find that the absorption of the radiation by the atmosphere, by cloud formations, and by ejecta drifting in the lower atmosphere reduced the radiation at the surface to a level that cannot be expected to have generated universal fires. Although the reduced radiation will have likely caused severe injuries to many animals, such insults alone seem unlikely to have generated the overall species extinctions that have been deduced.

  16. Field guide to the continental Cretaceous-Tertiary boundary in the Raton basin, Colorado and New Mexico

    USGS Publications Warehouse

    Pillmore, C.L.; Nichols, D.J.; Fleming

    1999-01-01

    This guide consists of three general sections: an introduction that includes discussions of Raton basin stratigraphy and the Cretaceous Tertiary (K-T) boundary; descriptions of the geology along the route from Denver, Colorado, to Raton, New Mexico; and descriptions of several K-T sites in the Raton basin. Much of the information is from previous articles and field guides by the authors together with R. M. Flores and from road logs co-authored with Glenn R. Scott, both of the U.S.Geological Survey.

  17. Extraterrestrial amino acids in Cretaceous/Tertiary boundary sediments at Stevns Klint, Denmark.

    PubMed

    Zhao, M; Bada, J L

    1989-06-01

    Since the discovery nearly a decade ago that Cretaceous/Tertiary (K/T) boundary layers are greatly enriched in iridium, a rare element in the Earth's crust, there has been intense controversy on the relationship between this Ir anomaly and the massive extinction of organisms ranging from dinosaurs to marine plankton that characterizes the K/T boundary. Convincing evidence suggests that both the Ir spike and the extinction event were caused by the collision of a large bolide (greater than 10 km in diameter) with the Earth. Alternative explanations claim that extensive, violent volcanism can account for the Ir, and that other independent causes were responsible for the mass extinctions. We surmise that the collision of a massive extraterrestrial object with the Earth may have produced a unique organic chemical signature because certain meteorites, and probably comets, contain organic compounds which are either rare or non-existent on the Earth. In contrast, no organic compounds would be expected to be associated with volcanic processes. Here we find that K/T boundary sediments at Stevns Klint, Denmark, contain both alpha-amino-isobutyric acid [AIB,(CH3)2CNH2COOH] and racemic isovaline [ISOVAL, CH3CH2(CH3)CNH2COOH], two amino acids that are exceedingly rare on the Earth but which are major amino acids in carbonaceous chondrites. An extraterrestrial source is the most reasonable explanation for the presence of these amino acids. PMID:2725679

  18. Selective extinction and survival across the Cretaceous/Tertiary boundary in the northern Atlantic Coastal Plain

    SciTech Connect

    Gallagher, W.B. )

    1991-10-01

    The inner Atlantic Coastal Plain in New Jersey and the Delmarva Peninsula is underlain by an Upper Cretaceous-lower Tertiary sequence of marine and paralic sand, clay, and glauconitic beds. Campanian, Maastrichtian, Danian, and Thanetian deposits are especially fossiliferous and yield a succession of marine faunas that reveal a pattern of selective extinction and survival across the Cretaceous/Tertiary (K/T) boundary in this area. Cretaceous benthic invertebrate communities are dominated by oysters and other semi-infaunal and infaunal molluscs with planktotrophic larval stages. These are replaced in the Danian by brachiopod-dominated communities that are composed of epifaunal benthos with a variety of nonplanktotrophic reproductive strategies. A similar pattern is observable in the nektonic cephalopod populations in this sequence; the typical ammonites of the Cretaceous became extinct at the K/T boundary, whereas the nautilids survived. Ammonites are thought to have had a planktotrophic larval stage, whereas nautilids are known to lay large lecithotrophic eggs. This pattern of differential survival is attributed to the planktonic population crash at the K/T boundary which placed planktotrophically reproducing species at a disadvantage while favoring the varied groups that practiced alternative reproductive strategies.

  19. High-resolution leaf-fossil record spanning the Cretaceous/Tertiary boundary

    USGS Publications Warehouse

    Johnson, K.R.; Nichols, D.J.; Attrep, M., Jr.; Orth, C.J.

    1989-01-01

    THEORIES that explain the extinctions characterizing the Cretaceous/Tertiary (K/T) boundary1-3 need to be tested by analyses of thoroughly sampled biotas. Palynological studies are the primary means for stratigraphic placement of the terrestrial boundary and for estimates of plant extinction4-12, but have not been combined with quantitative analyses of fossil leaves (megaflora). Megafloral studies complement palynology by representing local floras with assemblages capable of high taxonomic resolution13, but have previously lacked the sample size and stratigraphic spacing needed to resolve latest Cretaceous floral history5,14-18. We have now combined megafloral data from a 100-m-thick composite K/T boundary section in North Dakota with detailed palynological analysis. Here the boundary is marked by a 30% palynofloral extinction coincident with iridium and shocked-mineral anomalies and lies ???2 m above the highest dinosaur remains. The megaflora undergoes a 79% turnover across the boundary, and smaller changes 17- and 25-m below it. This pattern is consistent with latest Cretaceous climatic warming preceding a bolide impact. ?? 1989 Nature Publishing Group.

  20. Dinoflagellate and calcareous nannofossil response to sea-level change in Cretaceous-Tertiary boundary sections

    SciTech Connect

    Habib, D. ); Moshkovitz, S. ); Kramer, C. )

    1992-02-01

    Stratigraphic sections in south-central Alabama were studied to test palynological evidence of sea-level change across the Cretaceous-Tertiary boundary. New evidence from both calcareous nannofossils and dinoflagellate cysts places the regional disconformity in Alabama (Type 1 sequence boundary) virtually at the K-T boundary. This suggests that sea-level fall may have contributed to mass-extinction event. Dinoflagellate diversity varies between systems tract components of coastal onlap. This parameter is useful for interpreting sea-level change in this part of the section, because dinoflagellates did not participate in the mass extinction. The iridium spikes in the roadcut near Braggs are of earliest Danian age and correlate in relative magnitude with the lower values reported from directly above the K-T boundary in the Gubbio stratotype section. Iridium was concentrated in marine flooding surfaces in episodes of higher productivity of algal organic matter at the time when the iridium-enriched ocean encroached on the shelf during the first Cenozoic episode of sea-level rise.

  1. Magnetostratigraphy of the Cretaceous/Tertiary boundary section at La Ceiba, central-Eastern Mexico

    NASA Astrophysics Data System (ADS)

    Martinez-Lopez, M.; Urrutia-Fucugauchi, J.; Rebolledo-Vieyra, M.

    2003-04-01

    We report initial paleomagnetic and magnetostratigraphic results for one of the Cretaceous/Tertiary (K/T) boundary sections from northeastern Mexico. La Ceiba section is located in the Tampico-Mizantla carbonate basin, northeastern Puebla State. The section is characterized by three sedimentary clastic units, which have been described in detail in previous studies of K/T sections of northern Mexico. Its basal unit is formed by an alternation of calcareous reddish-greenish to gray shales, with calcareous clay layers. Unit II is 1.10-m thick and includes a shperulitic layer at the base and four sandstone layers. The top of the K/T sediments is marked by a clay layer and is covered by the Paleocene Velasco Formation. The Palaeocene is represented by 0.7-m dark brown-gray calcarenites with interbedded greenish-gray fine-grained material. Twenty-eight oriented cores were drilled from several beds in the K/T clastic units and the Paleocene sediments. All samples were measured in the laboratory (low-field magnetic susceptibility, NRM intensity and direction). Alternating field and thermal demagnetizations were used to investigate on the vectorial composition and stability of remanences. The magnetic mineralogy was further studied by imparting samples an isothermal remanent magnetization (IRM) and measuring magnetic hysteresis parameters using the MicroMag system. Well-defined characteristic magnetizations were isolated and used to construct a polarity stratigraphy for the K/T section. The clastic unit II and Paleocene sediments present a reverse polarity magnetization, which correlates with the expected polarity within 29r chron that includes the K/T boundary.

  2. Deccan volcanism at the Cretaceous-Tertiary boundary

    NASA Technical Reports Server (NTRS)

    Courtillot, V.; Vandamme, D.; Besse, J.

    1988-01-01

    The accuracy with which one can claim that Deccan trap volcanism occurred at the Cretaceous-Tertiary boundary (KTB) over a very short time interval is of key importance in deciding whether a volcanic origin of the KTB events should be taken seriously. In the two years since paleomagnetic, paleontological and geodynamic evidence was published, further data have become available and the case now appears to be well constrained. The Ar-40/Ar-39 results from six labs have yielded some 24 reliable plateau ages that narrow the age range to 65 to 69 Ma. Moreover, it appears that a significant part of this range results from inter-lab spread and possible minor alteration. Paleontology demonstrates that volcanism started in the Maestrichtian, more precisely in the A. mayaroensis zone. Paleomagnetism shows that volcanism spanned only 3 chrons and only one correlation remains possible, that of the main central reversed chron with 29R. Therefore, whereas Ar-40/Ar-39 is able only to restrict the duration of volcanism to some 4 Ma, paleomagnetism restricts it to 0.5 Ma. Using some geochemical indicators such as C-13 as proxy, it is suggested that volcanism actually consists of a few shorter events of unequal magnitude. Extrusion rates may be as high as 100 cu km/yr and fissure lengths as long as several 100 km. Such a scenario appears to be at least as successful as others in accounting for most anomalies observed at the KTB. Particularly important are Iridium and other platinum group elements (PGE) profiles, Sr-87/Sr-86, C-13, 0-18, other exotic geochemical signatures, spherules, soot, shocked minerals, selective and stepwise extinctions. The environmental impact of CO2 possibly released during explosive phases of volcanism, and SO2 released during effusive phases, and the ability of volcanism to ensure worldwide distribution of KTB products are now all addressed. In conclusion, the case for a causal link between internal hotspot activity, birth of the Reunion hotspot itself as the Deccan and KTB events appears to rest on an increasingly stronger basis.

  3. Benthic foraminifera at the Cretaceous-Tertiary boundary around the Gulf of Mexico

    NASA Astrophysics Data System (ADS)

    Alegret, Laia; Molina, Eustoquio; Thomas, Ellen

    2001-10-01

    Cretaceous-Tertiary (K-T) boundary sections in northeastern Mexico contain marly formations separated by a controversial clastic unit. Benthic foraminifera in seven sections indicate middle and lower bathyal depths of deposition for the marls, with the exception of the upper bathyal northernmost section. Mixed neritic-bathyal faunas were present in the clastic unit, indicating redeposition in the deep basin by mass-wasting processes resulting from the K-T bolide impact in the Gulf of Mexico. Benthic foraminifera in the Mexican sections, and at other deep-sea locations, were not subject to major extinction at the time of impact, but there were temporary changes in assemblage composition. Benthic faunas indicate well- oxygenated bottom waters and mesotrophic conditions during the late Maastrichtian and increased food supply during the latest Maastrichtian. The food supply decreased drastically just after the K-T boundary, possibly because of the collapse of surface productivity. Cretaceous and early Paleogene benthic foraminifera, however, did not exhibit the benthic-pelagic coupling of present-day faunas, as documented by the lack of significant extinction at the K-T collapse of surface productivity. Much of the food supplied to the benthic faunas along this continental margin might have been refractory material transported from land or shallow coastal regions. The decrease in food supply at the K-T boundary might be associated with the processes of mass wasting, which removed surface, food-rich sediment. Benthic faunas show a staggered pattern of faunal recovery in the lowermost Paleogene, consistent with a staged recovery of the vertical organic flux but also with a gradual buildup of organic matter in the sediment.

  4. Clay mineralogy of the Cretaceous-Tertiary boundary clay. [in search for asteroid ejecta

    NASA Technical Reports Server (NTRS)

    Rampino, M. R.; Reynolds, R. C.

    1983-01-01

    Cretaceous-Tertiary boundary layer clay samples from four localities were subjected to analyses which imply that they are neither mineralogically exotic nor distinct from locally derived clays above and below the boundary. The anomalous iridium-rich ejecta component predicted by the asteroid impact scenario of Alvarez et al (1980) was not detected. It is proposed that volcanic material be considered as an explanation of the geochemical anomalies of the Cretaceous-Tertiary boundary. A model which involves a period of intense volcanism at the end of the Cretaceous would generate a variety of climatic and biological effects consonant with the geologic history of that period.

  5. The origin of the White Beds below the Cretaceous-Tertiary boundary in the Gubbio section, Italy

    NASA Technical Reports Server (NTRS)

    Lowrie, W.; Alvarez, W.; Asaro, F.

    1990-01-01

    This paper examines the origin of the 20-50-cm-thick set of whitish limestone beds found immediately underlying the Cretaceous-Tertiary (K-T) boundary in Umbrian sections. On the basis of isothermal remanent magnetization (IRM) acquisitions and thermal demagnetization experiments, it is argued that the white beds were deposited under the same conditions as the underlying pink beds and that the anomalously low IRM intensities found in the white beds resulted from the reduction of hematite in the originally pink beds followed by the removal of the Fe(2+) ions. The whitening of the beds is ascribed to the consequence of downward infiltration of reducing waters resulting from the large quantity of organic matter produced by the extinctions at the K-T boundary. The white interval below the K-T boundary is thus compatible with the hypothesis of impact-triggered mass extinction.

  6. 40Ar-39Ar dating of the Manson impact structure: A cretaceous-tertiary boundary crater candidate

    USGS Publications Warehouse

    Kunk, M.J.; Izett, G.A.; Haugerud, R.A.; Sutter, J.F.

    1989-01-01

    The mineralogy of shocked mineral and lithic grains in the Cretaceous-Tertiary (K-T) boundary claystone worldwide is most consistent with a bolide impact on a continent. Both the concentrations and sizes of these shocked grains are greatest in the western interior of North America. These data suggest that the Manson impact structure in north-central Iowa is a viable candidate for the K-T boundary impact event. Argon-40-argon-39 age spectrum dating of shocked microcline from the crystalline central uplift of the Manson impact structure indicates that there was severe argon-40 loss at 65.7 ?? 1.0 million years ago, an age that is indistinguishable from that of the K-T boundary, within the limits of analytical precision.

  7. A New Cretaceous-Tertiary boundary site at Flaxbourne River, New Zealand: Biostratigraphy and geochemistry

    SciTech Connect

    Strong, C.P. ); Brooks, R.R.; Wilson, S.M.; Reeves, R.D. ); Orth, C.J.; Mao, Xueying; Quintana, L.R. ); Anders, E. )

    1987-10-01

    An exceptionally complete rock sequence across the Cretaceous-Tertiary (K-T) boundary has been discovered near the Flaxbourne River, Marlborough Province, South Island, New Zealand. The boundary is marked by a large Ir anomaly with an integrated abundance of 134 ng/cm{sup 2} after correction for background. Above the boundary there is a 30 cm transition zone, in which a few Cretaceous foraminiferal taxa such as Hedbergella monmouthensis and Guembelitria cretacea survived, though with reduced abundance and size, apparently reflecting environmental stress. INAA and ICP analyses show that, in addition to Ir, the boundary clay is also enriched in Cr and Ni, mainly from meteoritic material, and As, Co, Cu, Sb, and Zn from terrestrial sources. Volcanic sources, even when scaled to the 10{sup 7} km{sup 3} volume of the Deccan basalts, fail by three orders of magnitude to account for the Ir and As at the K-T boundary and by even larger factors for Sb, Zn, Cu, etc. Comparison of their data with those from six other K-T boundary sites shows that the Zn/Sb, As/Sb, and Zn/As ratios generally fall between crustal and oceanic values, suggesting contributions from both sources. Mass balance calculations show that As and Sb could be derived from only 300-500 m of ocean water or also for modest amounts (20-36 g/cm{sup 2}) of average crustal rock. Copper and Zn, on the other hand, can only be derived from crustal or mantle rock (5-15 g/cm{sup 2}), presumably impact ejecta. Such an amount of ejecta is fairly close to the global fallout of boundary clay (2-5 g/cm{sup 2}).

  8. Mineralogy of Cretaceous/Tertiary boundary clays in the Chicxulub structure in northern Yucatan

    NASA Technical Reports Server (NTRS)

    Ming, D. W.; Sharpton, Virgil L.; Schuraytz, B. C.

    1991-01-01

    The Cretaceous/Tertiary (K/T) boundary clay layer is thought to be derived from ejecta material from meteorite impact, based on the anomalous concentrations of noble metals in the layer. Because of recent findings of a half-meter thick ejecta deposit at the K/T boundary in Haiti, efforts have focused on locating a large impact feature in the Caribbean and the Gulf of Mexico. One of the leading candidates for the site of a large impact is the Chicxulub structure located on the northern Yucatan Peninsula in Mexico. The Chicxulub structure is a subsurface zone of upper Cretaceous igneous rocks, carbonates, and breccias. The structure has been interpreted to be a 200 km diameter; however, there is some question to the size of the structure or to the fact that it even is an impact feature. Little is known about the mineralogy of this structure; the objective of this study was to determine the clay mineralogy of core samples from within the Chicxulub structure.

  9. Palaeobotanical evidence for a June 'impact winter' at the Cretaceous/Tertiary boundary

    USGS Publications Warehouse

    Wolfe, J.A.

    1991-01-01

    A LARGE bolide impact, such as that thought to have occurred at the Cretaceous/Tertiary (K/T) boundary, should produce large amounts of light-attenuating debris, thereby causing an 'impact winter'1-3. Because of thermal buffering in the oceans, evidence for a brief (1-2 months2-4) impact winter would be found only in terrestrial environments. Aquatic leaves in the K/T boundary section near Teapot Dome, Wyoming, preserve structural deformation that can be duplicated experimentally in extant aquatic leaves by freezing. Reproductive stages reached by the fossil aquatic plants at the time of death suggest that freezing took place in approximately early June. Both the existence of the structurally deformed plants and the high abundance of fern spores occur in a horizon containing sparse impact debris, but below the horizon containing abundant impact debris; I therefore suggest that the lower horizon represents debris and effects from a large, distant bolide impact, and the upper horizon represents a small, nearby bolide impact.

  10. Cretaceous-Tertiary boundary in the Antarctic: Climatic cooling precedes biotic crisis

    NASA Technical Reports Server (NTRS)

    Stott, Lowell D.; Kennett, James P.

    1988-01-01

    Stable isotopic investigations were conducted on calcareous microfossils across two deep sea Cretaceous-Tertiary boundary sequences on Maud Rise, Weddell Sea, Antarctica. The boundary is taken at the level of massive extinctions in calcareous planktonic microfossils, and coincides with a sharp lithologic change from pure calcareous ooze to calcareous ooze with a large volcanic clay component. The uppermost Maestrichtian is marked by a long-term decrease in delta value of 0 to 18 which spans most of the lower and middle A. mayaroensis Zone and represents a warming trend which culminated in surface water temperatures of about 16 C. At approximately 3 meters below the K-T boundary this warming trend terminates abruptly and benthic and planktonic isotopic records exhibit a rapid increase in delta value of 0 to 18 that continues up to the K-T boundary. The trend towards cooler surface water temperatures stops abruptly at the K-T boundary and delta value of 0 to 18 values remain relatively stable through the Paleocene. Comparison of the Antarctic sequence with the previously documented deep sea records in the South Atlantic reveal shifts of similar magnitude in the latest Maestrichtian. It is indicated that the Southern Ocean underwent the most significant, and apparently permanent, climatic change. The latest Cretaceous oxygen isotopic shift recorded at Maud Rise and other deep sea sites is similar in magnitude to large positive delta valve of 0 to 18 shifts in the middle Eocene, at the Eocene/Oligocene boundary and in the middle Miocene that marked large scale climatic transitions which ultimately lead to cryospheric development of the Antarctic. The climatic shift at the end of the Cretaceous represents one of the most significant climatic transitions recorded in the latest Phanerozoic and had a profound effect on global climate as well as oceanic circulation.

  11. High-resolution late Maastrichtian early Danian oceanic 87Sr/86Sr record: Implications for Cretaceous-Tertiary boundary events

    NASA Astrophysics Data System (ADS)

    Vonhof, H. B.; Smit, J.

    1997-04-01

    A high-resolution late Maastrichtian early Danian seawater 87Sr/86Sr reference curve is constructed from two Cretaceous-Tertiary boundary (K-T boundary) sections: Bidart (France) and El Kef (Tunisia). The 87Sr/86Sr curve shows maxima at 0.3 0.4 Ma before the K-T boundary and at the K-T boundary. The first maximum could mark the onset of a major outflow of the Deccan Traps. The second maximum, a rapid 0.000 06 87Sr/86Sr, shift, extends from 3 4 m below to 1 m above the K-T boundary. This profile probably results from diagenetic smoothing of an originally sharp K-T boundary 87Sr/86Sr anomaly, rather than from a gradual process. The sharp shift could result from (1) the vaporization of the Chicxulub target rocks, (2) global wildfires, and (3) acid-rain leaching of soils and sialic surface rocks. Of these three possibilities, only Sr release by soil leaching combined with increased rainfall associated with the K-T event appears to be sufficiently large to produce the observed K-T 87Sr/86Sr anomaly.

  12. Major extinctions of land-dwelling vertebrates at the Cretaceous-Tertiary boundary, eastern Montana

    SciTech Connect

    Sheehan, P.M. ); Fastovsky, D.E. )

    1992-06-01

    A large database recording species of terrestrial vertebrates present in formations above and below the Cretaceous-Tertiary (K-T) boundary in eastern Montana was assembled by J.D. Archibald and L.J. Bryant. Division of the species in this database into freshwater and land-dwelling vertebrate assemblages reveals that the K-T vertebrate extinction was concentrated in land-dwelling forms. In data corrected for the effects of rare taxa, 90% of the species in the freshwater assemblage survived into the Tertiary, but only 12% of the land-dwelling forms survived. The pattern of differential extinction of terrestrial vertebrates in eastern Montana may be in large part the result of the dependence of land-based communities on primary productivity. This is in contrast to the riverine communities, which may derive much of their organic carbon from detritus. The pattern of extinction and survival is compatible with the hypothesis of an asteroid impact after which there was a temporary cessation of primary, photosynthetic productivity.

  13. Trace element patterns at a non-marine cretaceous-tertiary boundary

    USGS Publications Warehouse

    Gilmore, J.S.; Knight, J.D.; Orth, C.J.; Pillmore, C.L.; Tschudy, R.H.

    1984-01-01

    At the fossil-pollen-defined Cretaceous-Tertiary boundary in the Raton Basin of New Mexico and Colorado, an iridium abundance anomaly and excess scandium, titanium, and chromium are associated with a thin ash or dust fallout bed (now kaolinitic clay) that was preserved in freshwater coal swamps. ?? 1984 Nature Publishing Group.

  14. Geologic framework of nonmarine cretaceous-tertiary boundary sites, raton basin, new mexico and colorado

    USGS Publications Warehouse

    Pillmore, C.L.; Tschudy, R.H.; Orth, C.J.; Gilmore, J.S.; Knight, J.D.

    1984-01-01

    Indium concentrations are anomalously high at the palynological Cretaceous-Tertiary boundary in fluvial sedimentary rocks of the lower part of the Raton Formation at several localities in the Raton Basin of New Mexico and Colorado. The iridium anomaly is associated with a thin bed of kaolinitic claystone in a discontinuous carbonaceous shale and coal sequence.

  15. The Cretaceous-Tertiary boundary biotic crisis in the Basque country

    NASA Technical Reports Server (NTRS)

    Lamolda, M. A.

    1988-01-01

    The Zumaya section has been selected as a classic locality for the study of the Cretaceous-Tertiary (K-T) boundary due to its richness in microfaune, macrofaune, and nannoflora. The sections present similar good conditions for the study of the K-T boundary. The sedimentary rocks of the Uppermost Maastrichtian from the Basque Country are purple or pink marls and marls-tones. Above it is found a clayed bed, 40 to 29 cm thick, grey or dark grey in its basal part, of Lowermost Danian age. Above there is alternation of micritic grey-pink limestones and thin clay beds of Dano-Montian age. The average sedimentation is 7 to 8 times higher during the Upper Maastrichtian than in the Dano-Montian. The macrofauna underwent a decrease since the Campanian and was not found in the last 11 m of the Zumaya section; it was associated with changes in paleoceanographic conditions and primary productivity of the oceans. The microfossil assemblages in the K-T transition allows the recognition of several phases of a complex crisis between two well established planktonic ecosystems. In the Mayaroensis Zone there is a stable ecosystem with 45 to 47 planktonic foraminifera species. The disappearance of A. mayaroensis starts a degradation of the ecosystem. The number of planktonic foraminiera species decreases between 20 and 45 percent. The next phase of the crisis was the result of main extinction events in the planktonic calcareous ecosystem. There are several cretaceous planktonic foraminifera species, probably reworked, whose numbers decrease upward. The next and last phase of the biotic crisis shows a diversification of the ecosystem; the number of planktonic foraminifera is 2 to 3 times higher than before and it is noted the first appearance of Tertiary nannoflora species, while Cretaceous species decrease and persisting species are still the main ones.

  16. A new Cretaceous-Tertiary boundary locality in the western powder River basin, Wyoming: biological and geological implications

    USGS Publications Warehouse

    Nichols, D.J.; Brown, J.L.; Attrep, M., Jr.; Orth, C.J.

    1992-01-01

    A newly discovered Cretaceous-Tertiary (K-T) boundary locality in the western Powder River basin, Wyoming, is characterized by a palynologically defined extinction horizon, a fern-spore abundance anomaly, a strong iridium anomaly, and shock-metamorphosed quartz grains. Detailed microstratigraphic analyses show that about one third of the palynoflora (mostly angiosperm pollen) disappeared abruptly, placing the K-T boundary within a distinctive, 1- to 2-cm-thick claystone layer. Shocked quartz grains are concentrated at the top of this layer, and although fern-spore and iridium concentrations are high in this layer, they reach their maximum concentrations in a 2-cm-thick carbonaceous claystone that overlies the boundary claystone layer. The evidence supports the theory that the K-T boundary event was associated with the impact of an extraterrestrial body or bodies. Palynological analyses of samples from the K-T boundary interval document extensive changes in the flora that resulted from the boundary event. The palynologically and geochemically defined K-T boundary provides a unique time-line of use in regional basin analysis. ?? 1992.

  17. Major wildfires at the Cretaceous-Tertiary boundary

    NASA Technical Reports Server (NTRS)

    Gilmour, Iain; Wolbach, Wendy S.; Anders, Edward

    1989-01-01

    K-T boundary (KTB) clays from five sites are enriched in soot and charcoal by factors of 100-1000 over Cretaceous levels, apparently due to a global fire. The soot profile nearly coincides with the Ir profile, implying that the fire was triggered by the impact. Much or all of the fuel was biomass, as indicated by the presence of retene and by the C isotopic composition. The amount of elemental C at the KTB (0.012 g/sq cm) is very large, and requires either that most of the Cretaceous biomass burned down or that the soot yield was higher than in small fires. At undisturbed sites, soot correlates tightly with Ir, As, Sb, and Zn. Apparently soot and Ir-bearing ejecta particles coagulated in the stratosphere and then scavenged additional chalcophiles from the hydrosphere. In view of this coagulation, the K-T fire would only slightly prolong the period of darkness and cold caused by impact ejecta.

  18. Cretaceous/Tertiary boundary in the Eastern Carpathians: evidence from stable isotopes, mineralogy and calcareous nannoplancton

    NASA Astrophysics Data System (ADS)

    Bojar, A.-V.; Melinte-Dobrinescu, M. C.; Bojar, H.-P.

    2009-04-01

    This study presents the first integrated analyses of stable isotopes, mineralogical, and calcareous nannofossil data from a continuous Upper Campanian to Maastrichtian red bed sequence, including the K/T boundary interval, situated in the bend area of the Romanian Carpathians. The semi-quantitative calcareous nannofossil investigations have focused on six taxonomic groups, such as Watznaueria barnesae, Micula spp., Boreal nannofossils, Tethyan nannofossils, Braarudosphaera bigelowii, and the calcareous dinoflagellate genus Thoracosphaera. The nannofosil investigations show that the sequence spans the Upper Campanian and the whole Maastrichtian stage, including the K/T boundary. Calcite is present in all samples and varies from values up to 70 % down to 2 %. Its concentration varies in opposite direction with the concentration of layer silicates (smectite, chlorite, illite). Quartz and feldspars are plotted together and their content varies between 20 and 40 % and show no systematic fluctuations or long term trends. The delta 13C and d18O values are constant in the Upper Campanian and lower Maastrichtian red marls of the Gura Beliei Formation. In the upper Maastrichtian, lithological, mineralogical and nannofossil changes, together with several negative delta 13C and delta 18O excursions suggest instability of the ecosystems related to climatic changes and/or late Cretaceous tectonic phase. At the Cretaceous/Tertiary boundary, both d13C and d18O values show a negative excursion. Above the Cretaceous nannofossil mass extinction, successive blooms of the dinoflagellate genus Thoracosphaera and of the nannofossil species Braarudosphaera bigelowii were identified. Each of these blooms is marked by successive increases in productivity and positive delta 13C excursions.

  19. The Origin of White Beds below the Cretaceous-Tertiary Boundary Revisited

    NASA Astrophysics Data System (ADS)

    Abrajevitch, A.; Font, E.; Florindo, F.; Roberts, A. P.

    2014-12-01

    The respective roles of an asteroid impact and Deccan Traps eruptions in biotic changes at the Cretaceous-Tertiary (K-T) boundary are still debated. In many shallow marine sections around the world, the K-T boundary is marked by a distinct impact clay layer that is often underlain by a several decimeter-thick "white" low susceptibility zone. A previous study of the Gubbio section, Italy [Lowrie et al., 1990; EPSL, 98, 302-312], attributed the loss of coloration and low magnetization intensity in the white beds to post-depositional dissolution of ferrimagnetic minerals. Dissolution is thought to be a consequence of downward infiltration of reducing waters that resulted from rapid accumulation of organic matter produced by mass extinctions after the impact. We compared rock magnetic characteristics of the Gubbio section with those of the Bidart section in France. The two sections are similar in their carbonate lithology, presence of a boundary clay and low susceptibility zone. When compared to background Cretaceous sediments, the white zone in both sections is marked by an absence of biogenic magnetite, a decrease in total ferrimagnetic mineral content, and preferential loss of magnetite with respect to hematite - features that are consistent with reductive dissolution. However, unlike the Gubbio section, where the white zone starts immediately below the impact clay, at Bidart the low susceptibility zone and the clay layer are separated by a ~2 cm carbonate interval that contains abundant biogenic magnetite. Such separation casts doubt on a causal link between the impact and sediment bleaching. The white layer, thus, is more likely to record an episode of unusual bottom water chemistry that preceded the asteroid impact. A change in sea-water acidity associated with Deccan Traps volcanism may explain the magnetic mineral dissolution in the white beds.

  20. Step-wise extinctions at the Cretaceous-Tertiary boundary and their climatic implications

    NASA Technical Reports Server (NTRS)

    Maurrasse, Florentin J-M. R.

    1988-01-01

    A comparative study of planktonic foraminifera and radiolarian assemblages from the Cretaceous-Tertiary (K-T) boundary section of the Beloc Formation in the southern Peninsula of Haiti, and the lowermost Danian sequence of the Micara Formation in southern Cuba reveals a remarkable pattern of step-wise extinctions. This pattern is consistent in both places despite the widely different lithologies of the two formations. Because of a step-wise extinction and the delayed disappearance of taxa known to be more representative of cooler water realms, it is inferred that a cooling trend which characterized the close of the Maastrichtian and the onset of the Tertiary had the major adverse effect on the existing biota. Although repetitive lithologic and faunal fluctuations throughout the Maastrichtian sediments found at Deep Sea Drilling Project (DSDP) site 146/149 in the Caribbean Sea indicate variations reminiscent of known climatically induced cycles in the Cenozoic, rapid biotic succession appears to have taken place during a crisis period of a duration greater than 2 mission years. Widespread and abundant volcanic activities recorded in the Caribbean area during the crisis period gives further credence to earlier contention that intense volcanism may have played a major role in exhacerbating pre-existing climatic conditions during that time.

  1. Completeness of pelagic sequences at the Cretaceous/Tertiary boundary

    SciTech Connect

    Anders, M.H.; Krueger, S.W.

    1985-01-01

    Dingus has suggested that several Cretaceous-tertiary pelagic sections are sufficiently incomplete that a catastrophic extinction event spanning less than 100 years cannot be resolved. The authors show that his estimates of completeness are based in part on spurious data and therefore should be rejected. Completeness is defined by Dingus, over specific time intervals, as the ratio of long term to short term sedimentation rates. Long term rates are determined by the magneto-stratigraphic chrons of the section studied. Short term rates are determined by extrapolations of Sadler's sediment accumulation rate plot for calcareous oozes. The authors present evidence that shows the high short term sedimentation rates in Sadler's plots are an artifact of measurement precision and the use of fixed sampling intervals. To demonstrate the artificial character of the short term sedimentation rate resulting from measurement precision, a series of plots are generated. These plots are constructed using constant sedimentation rates at defined levels of precision and with standard deviations assigned to simulate measurement error. Fixed sampling intervals can also result in sedimentation accumulation rate plots exhibiting artificially high short term sedimentation. Examples from data used to construct Sadler's sediment accumulation plots show that fixed sampling intervals result in scattering of datum points toward higher accumulation rates. This is especially evident in the shorter time intervals where radiometric errors comprise a greater percentage of time measured. Although completeness estimates cannot be determined for short time intervals using Sadler's plot of calcareous oozes, estimates for intervals greater than 10,000 years may be possible. Extrapolations of data from intervals greater than 10,000 years to shorter time intervals suggest that many pelagic sections are complete enough to resolve catastrophic events.

  2. Ocean alkalinity and the Cretaceous/Tertiary boundary

    NASA Technical Reports Server (NTRS)

    Caldeira, K. G.; Rampino, Michael R.

    1988-01-01

    A biogeochemical cycle model resolving ocean carbon and alkalinity content is applied to the Maestrichtian and Danian. The model computes oceanic concentrations and distributions of Ca(2+), Mg(2+), and Sigma-CO2. From these values an atmospheric pCO2 value is calculated, which is used to estimate rates of terrestrial weathering of calcite, dolomite, and calcium and magnesium silicates. Metamorphism of carbonate rocks and the subsequent outgassing of CO2 to the atmosphere are parameterized in terms of carbonate rock reservoir sizes, total land area, and a measure of overall tectonic activity, the sea-floor generation rate. The ocean carbon reservoir computed by the model is used with Deep Sea Drilling Project (DSDP) C-13 data to estimate organic detrital fluxes under a variety of ocean mixing rate assumptions. Using Redfield ratios, the biogenic detrital flux estimate is used to partition the ocean carbon and alkalinity reservoirs between the mixed layer and deep ocean. The calcite flux estimate and carbonate ion concentrations are used to determine the rate of biologically mediated CaCO3 titration. Oceanic productivity was severely limited for approximately 500 kyr following the K/T boundary resulting in significant increases in total ocean alkalinity. As productivity returned to the ocean, excess carbon and alkalinity was removed from the ocean as CaCO3. Model runs indicate that this resulted in a transient imbalance in the other direction. Ocean chemistry returned to near-equilibrium by about 64 mybp.

  3. Geochemical evidence for suppression of pelagic marine productivity at the Cretaceous/Tertiary boundary

    USGS Publications Warehouse

    Zachos, J.C.; Arthur, M.A.; Dean, W.E.

    1989-01-01

    The normal, biologically productive ocean is characterized by a gradient of the 13C/12C ratio from surface to deep waters. Here we present stable isotope data from planktonic and benthic micro-fossils across the Cretaceous/Tertiary boundary in the North pacific, which reveal a rapid and complete breakdown in this biologically mediated gradient. The fluxes of barium (a proxy for organic carbon) and CaCO3 also decrease significantly at the time of the major marine plankton extinctions. The implied substantial reduction in oceanic primary productivity persisted for ???0.5 Myr before the carbon isotope gradient was gradually re-established. In addition, the stable isotope and preservational data indicate that environmental change, including cooling, began at least 200 kyr before the Cretaceous/Tertiary boundary, and a peak warming of ???3 ??C occurred 600 kyr after the boundary event. ?? 1989 Nature Publishing Group.

  4. Time Structure of a Mass Extinction: The Cretaceous- Tertiary Boundary

    NASA Astrophysics Data System (ADS)

    Hansen, H. J.; Rasmussen, K. L.; Gwozdz, R.; Walaszczyk, K. I.

    1992-07-01

    The uppermost Cretaceous chalk series is well exposed in Central Poland and its magnetostratigraphy has been established (Hansen et al. 1990). In the field 2.5-cm-diameter plugs were drilled spaced at 5-cm intervals (i.e., 20 plugs per meter corresponding to almost 50% coverage). All plugs were measured for their magnetic susceptibility and plotted against stratigraphic depth. The resultant curve from the Cretaceous part of magnetochron 29R corresponds to a time interval around 400 ky (Berggren et al. 1985). Magnetochron 29R has ben assigned a duration of 570-800 ky and contains the K/T boundary, where 2/3 of the time interval is earlier than the K/T boundary. In Fig. 1A two different periodicities are present. The larger peaks correspond to roughly 100 ky while the smaller corresponds to ca. 20 ky. No other frequencies are found. We suggest that the pulses correspond to the ellipse-precession complex in the Milankovitch band (compare Fisher and Bottjer 1991). Eight samples were analyzed by instrumental neutron activation. Four samples were from a pulse maximum and four from the neighboring trough. The results show a trace element doubling in the peak relative to the trough. By contrast the CaCO3 showed a decrease of 7% in the peak along with an increase in Sr of 4.2%. The drop in CaCO3 is much too low to account for the differences in trace elements. We suggest that the change is caused by variations in the early supply of terrigenuous material, mainly clay, related to variations in precipitation. We made a parallel study of the uppermost Maastrichtian red paleosoils with dinosaur nests from the region of Aix-en- Provence, South France. It disclosed the same pattern in susceptibility signal as that found in Poland (Fig. 1B). Here the magnetostratigraphy is also known (Hansen et al. 1989). We are thus dealing with a pattern common to both shallow water marine chalk and paleosoils. The interference pattern between the 100- and 20-ky cycles are in agreement in the two areas. This suggests to us that we are dealing with identical phenomena, where precipitation may affect both types of environments. Our method of study allows correlation (with a resolution of better than 10 ky) between marine and terrestrial deposits, timing of extinctions, estimates of accumulation rates plus realistic time estimates of magnetochrons. A study of the Uppermost Cretaceous chalk at the locality Nye Klov in North Jylland allows us to fix the extinction pattern of marine benthic fossils in a time frame. Detailed analysis of the boundary bed at Stevns Klint Karlstrup Quarry and Caravaca, Spain point at presence of two sediment pulses indicating a duration of Fish Clay time of around 40 ky. References: Berggren W. A., Kent D. V., and Flynn J. J. (1985) In The chronology of the geological record (ed. N. J. Snelling) Geol. Soc. Amer. Mem. 10, 141-195. Fisher A. G. and Bottjer D. J. (1991) Orbital forcing and sedimentary sequences. J. Sed. Petr. 61, 1063-1069. Hansen H. J., Rasmussen K. L., and Gwordz R. (1989) Cahiers de la Reserve Geologique de Haute Provence 1, 83-90. Hansen H. J., Rasmussen K. L., Gwordz R., Hansen J. M., and Radwanski A. (190) Acta Geologica Polinica 39, 1-12.

  5. Spherules from the Cretaceous/Tertiary boundary clay at Gubbio, Italy: the problem of outcrop contamination

    SciTech Connect

    Montanari, A.

    1986-12-01

    Surficial outcrop contamination has occurred in some well-known stratigraphic sections of carbonate rocks in the northern Apennines. A critical case involves several contaminated clay partings, including the Cretaceous/Tertiary boundary clay in the classic Bottaccione section near Gubbio, Italy. These clay layers contain shiny spherules which, in several recent studies, have been said to consist of volcanic glass and have been used to support the hypothesis that the terminal Cretaceous mass extinction was caused by widespread volcanism. Laboratory tests, however, indicate that these shiny spherules are made of HF-insoluble and combustible material and are therefore of recent biological origin. These objects were introduced into the Cretaceous/Tertiary boundary clay and other clay layers from the surrounding soil along with abundant detrital contaminants derived from erosion of the middle Miocene flysch exposed at the head of the Bottaccione Gorge. They are completely different from the altered and flattened microtektitelike spheroids that are found only in the iridium-rich Cretaceous/Tertiary boundary clay and that provide strong evidence for a large impact.

  6. Marine and continental K-T boundary clays compared

    NASA Technical Reports Server (NTRS)

    Schmitz, B.

    1988-01-01

    Detailed geochemical and mineralogical studies (1 to 5) of sediments across the Cretaceous-Tertiary (K-T) boundary at Stevns Klint, Karlstrup, Nye Klov, Dania, and Kjolby Gaard in Denmark, at Limhamn in Sweden, at Caravaca in Spain, at Waipara and Woodside Creek in New Zealand, at Trinidad in Colorado, and at various sites in Montana, have induced conclusions and reflections which are given and briefly discussed.

  7. A new Cretaceous-Tertiary boundary site at Flaxbourne River, New Zealand - Biostratigraphy and geochemistry

    NASA Technical Reports Server (NTRS)

    Strong, C. P.; Brooks, Robert R.; Wilson, Shane M.; Reeves, Roger D.; Orth, Charles J.

    1987-01-01

    On the basis of biostratigraphy data, it is shown that the Flaxbourne River Cretaceous-Tertiary boundary is among the most complete and least disturbed marine sequences yet found; this is particularly true with respect to its post-Ir anomaly and prelowermost Paleocene sequence. INAA and ICP analyses reveal that the boundary clay is also enriched in Cr and Ni, mainly from meteoritic material, and As, Co, Cu, Sb, and Zn from terrestrial sources. It is found that Zn/Sb, As/Sb, and Zn/As ratios generally fall between crustal and oceanic values, suggesting contributions from both sources.

  8. Disruption of the terrestrial plant ecosystem at the Cretaceous-Tertiary boundary, western interior

    USGS Publications Warehouse

    Tschudy, R.H.; Pillmore, C.L.; Orth, C.J.; Gilmore, J.S.; Knight, J.D.

    1984-01-01

    The palynologically defined Cretaceous-Tertiary boundary in the western interior of North America occurs at the top of an iridium-rich clay layer. The boundary is characterized by the abrupt disappearance of certain pollen species, immediately followed by a pronounced, geologically brief change in the ratio of fern spores to angiosperm pollen. The occurrence of these changes at two widely separated sites implies continentwide disruption of the terrestrial ecosystem, probably caused by a major catastrophic event at the end of the period.

  9. Palynological and iridium anomalies at Cretaceous-Tertiary boundary, south-central Saskatchewan

    USGS Publications Warehouse

    Nichols, D.J.; Jarzen, D.M.; Orth, C.J.; Oliver, P.Q.

    1986-01-01

    The Cretaceous-Tertiary boundary in south-central Saskatchewan is marked by coincident anomalies in abundance of iridium and fern spores at the extinction level of a suite of Cretaceous pollen taxa. Evidence of disruption of the terrestrial flora includes the fern-spore abundance anomaly and local extinction of as much as 30 percent of angiosperm species. The reorganized earliest Tertiary flora is made up largely of surviving species that assumed new roles of dominance. Persistence of climatically sensitive taxa across the boundary indicates that if paleoclimate was altered by the terminal Cretaceous event, it returned quickly to the pre-event condition.

  10. Disruption of the terrestrial plant ecosystem at the Cretaceous-Tertiary boundary, western interior

    SciTech Connect

    Tschudy, R.H.; Pillmore, C.L.; Orth, C.J.; Gilmore, J.S.; Knight, J.D.

    1984-09-07

    The palynologically defined Cretaceous-Tertiary boundary in the western interior of North America occurs at the top of an iridium-rich clay layer. The boundary is characterized by the abrupt disappearance of certain pollen species, immediately followed by a pronounced, geologically brief change in the ratio of fern spores to angiosperm pollen. The occurrence of these changes at two widely separated sites implies continent-wide disruption of the terrestrial ecosystem, probably caused by a major catastrophic event at the end of the period. 15 references, 2 figures.

  11. Biospheric effects of a large extraterrestrial impact: Case study of the cretaceous/tertiary boundary crater

    NASA Technical Reports Server (NTRS)

    Pope, Kevin O.

    1995-01-01

    The Chicxulub impact crater, buried in the Yucatan carbonate platform in Mexico, is the site of the impact purported to have caused mass extinctions at the Cretaceous/Tertiary (K/T) boundary. A recently discovered Chicxulub ejecta deposit in Belize contains evidence of carbonate vaporization and precipitation from the vapor plume. Sulfate clasts are almost absent in the Belize ejecta, but are abundant in the coarse ejecta near the crater rim, hwich may reflect the greater abundance of sulfates deep in the target section. The absence of sulfate precipitates in Belize may indicate that most of the vaporized sulfur was deposited in the upper atmosphere. Hydrocode modeling of the impact indicates that between 0.4 to 7.0 x 10(exp 17) g of sulfur were vaporized by the impact in sulfates. Laser experiments indicate that SO2, SO3, and SO4 are produced, and that complex chemical reactions between plume constituents occur during condensation. The sulfur released as SO3 or SO4 converted rapidly into H2HO4 aerosol. A radiative transfer model coupled with a model of coagulation predicts that the aerosol prolonged the initial blackout period caused by impact dust only if it contained impurities. The sulfur released as SO2 converted to aerosol slowly due to the rate limiting oxidation of SO2. Radiative transfer calculations combined with rates of acid production, coagulation, and diffusion indicate that solar transmission was reduced to 10-20 percent of normal for a period of 8-13 years. This reduction produced a climate forcing (cooling) of -300 Wm(exp -2), which far exceeded the +8 Wm(exp -2) greenhouse warming caused by the CO2 released through the vaporization of carbonates, and therefore produced a decade of freezing and near-freezing temperatures. Several decades of moderate warming followed the decade of severe cooling due to the long residence time of CO2. The prolonged impact winter may have been a major cause of the K/T extinctions.

  12. Biospheric effects of a large extraterrestrial impact: Case study of the Cretaceous/Tertiary boundary crater

    NASA Technical Reports Server (NTRS)

    Pope, Kevin O.

    1994-01-01

    The Chicxulub Crater in Yucatan, Mexico, is the primary candidate for the impact that caused mass extinctions at the Cretaceous/Tertiary boundary. The target rocks at Chicxulub contain 750 to 1500 m of anhydrite (CaSO4), which was vaporized upon impact, creating a large sulfuric acid aerosol cloud. In this study we apply a hydrocode model of asteroid impact to calculate the amount of sulfuric acid produced. We then apply a radiative transfer model to determine the atmospheric effects. Results include 6 to 9 month period of darkness followed by 12 to 26 years of cooling.

  13. Trace element and isotope geochemistry of Cretaceous-Tertiary boundary sediments: identification of extra-terrestrial and volcanic components

    NASA Technical Reports Server (NTRS)

    Margolis, S. V.; Doehne, E. F.

    1988-01-01

    Trace element and stable isotope analyses were performed on a series of sediment samples crossing the Cretaceous-Tertiary (K-T) boundary from critical sections at Aumaya and Sopelano, Spain. The aim is to possibly distinguish extraterrestrial vs. volcanic or authigenic concentration of platinum group and other elements in K-T boundary transitional sediments. These sediments also have been shown to contain evidence for step-wise extinction of several groups of marine invertebrates, associated with negative oxygen and carbon isotope excursions occurring during the last million years of the Cretaceous. These isotope excursions have been interpreted to indicate major changes in ocean thermal regime, circulation, and ecosystems that may be related to multiple events during latest Cretaceous time. Results to date on the petrographic and geochemical analyses of the Late Cretaceous and Early Paleocene sediments indicate that diagenesis has obviously affected the trace element geochemistry and stable isotope compositions at Zumaya. Mineralogical and geochemical analysis of K-T boundary sediments at Zumaya suggest that a substantial fraction of anomalous trace elements in the boundary marl are present in specific mineral phases. Platinum and nickel grains perhaps represent the first direct evidence of siderophile-rich minerals at the boundary. The presence of spinels and Ni-rich particles as inclusions in aluminosilicate spherules from Zumaya suggests an original, non-diagenetic origin for the spherules. Similar spherules from southern Spain (Caravaca), show a strong marine authigenic overprint. This research represents a new approach in trying to directly identify the sedimentary mineral components that are responsible for the trace element concentrations associated with the K-T boundary.

  14. A non-catastrophist explanation for the iridium anomaly at the Cretaceous/Tertiary boundary

    NASA Technical Reports Server (NTRS)

    Rampino, M. R.

    1982-01-01

    The iridium (Ir) anomaly at the Cretaceous/Tertiary (C/T) boundary can be explained by dissolution of normal pelagic limestones producing an insoluble clay residue containing Ir-rich meteoritic material. Further concentration of Ir and other trace metals in the clay can be explained by deposition under reducing conditions. Clay-mineral analyses indicate that the boundary clay is similar to locally derived clays in the limestones above and below the boundary, and contains no detectable exotic components. This supports a terrestrial origin for the boundary clay. The genesis of the boundary clay is attributed to changes in ocean chemistry (pH and oxygenation), leading to an interval of widespread dissolution of carbonate sequences in the oceans, and culminating in the development of submarine pyritic hardgrounds and a disconformity of global extent.

  15. Chicxulub impact predates the K-T boundary mass extinction

    PubMed Central

    Keller, Gerta; Adatte, Thierry; Stinnesbeck, Wolfgang; Rebolledo-Vieyra, Mario; Urrutia Fucugauchi, Jaime; Kramar, Utz; Stüben, Doris

    2004-01-01

    Since the early l990s the Chicxulub crater on Yucatan, Mexico, has been hailed as the smoking gun that proves the hypothesis that an asteroid killed the dinosaurs and caused the mass extinction of many other organisms at the Cretaceous-Tertiary (K-T) boundary 65 million years ago. Here, we report evidence from a previously uninvestigated core, Yaxcopoil-1, drilled within the Chicxulub crater, indicating that this impact predated the K-T boundary by ≈300,000 years and thus did not cause the end-Cretaceous mass extinction as commonly believed. The evidence supporting a pre-K-T age was obtained from Yaxcopoil-1 based on five independent proxies, each with characteristic signals across the K-T transition: sedimentology, biostratigraphy, magnetostratigraphy, stable isotopes, and iridium. These data are consistent with earlier evidence for a late Maastrichtian age of the microtektite deposits in northeastern Mexico. PMID:15004276

  16. Chicxulub impact predates the K-T boundary mass extinction.

    PubMed

    Keller, Gerta; Adatte, Thierry; Stinnesbeck, Wolfgang; Rebolledo-Vieyra, Mario; Fucugauchi, Jaime Urrutia; Kramar, Utz; Stüben, Doris

    2004-03-16

    Since the early l990s the Chicxulub crater on Yucatan, Mexico, has been hailed as the smoking gun that proves the hypothesis that an asteroid killed the dinosaurs and caused the mass extinction of many other organisms at the Cretaceous-Tertiary (K-T) boundary 65 million years ago. Here, we report evidence from a previously uninvestigated core, Yaxcopoil-1, drilled within the Chicxulub crater, indicating that this impact predated the K-T boundary by approximately 300,000 years and thus did not cause the end-Cretaceous mass extinction as commonly believed. The evidence supporting a pre-K-T age was obtained from Yaxcopoil-1 based on five independent proxies, each with characteristic signals across the K-T transition: sedimentology, biostratigraphy, magnetostratigraphy, stable isotopes, and iridium. These data are consistent with earlier evidence for a late Maastrichtian age of the microtektite deposits in northeastern Mexico. PMID:15004276

  17. Stratigraphic occurrences of iridium anomalies at four Cretaceous/Tertiary boundary sites in New Zealand

    SciTech Connect

    Brooks, R.R.; Strong, C.P.; Lee, J.; Orth, C.J.; Gilmore, J.S.; Ryan, D.E.; Holzbecher, J.

    1986-09-01

    Three new iridium anomaly sites have been discovered in Cretaceous/Tertiary boundary sequences in New Zealand. These are at Needles Point, Chancet Rocks, and Waipara, where integrated iridium deposition values were 165, 211, and 7 ng/cm/sup 2/, respectively. In contrast to the previously reported Woodside Creek stratigraphic sequence that had an iridium anomaly of 187 ng/cm/sup 2/, a ferruginous boundary clay is absent in the three new sites, though the base of the Tertiary is marked by limonite staining. The relatively weak anomaly at the Waipara section is probably due to extensive bioturbation coupled with a high sedimentation rate at the time of deposition. The discovery of these additional boundary rock sequences in New Zealand negates suggestions that the Woodside Creek iridium.

  18. Multiple factors in the origin of the Cretaceous/Tertiary boundary: the role of environmental stress and Deccan Trap volcanism.

    PubMed

    Glasby, G P; Kunzendorf, H

    1996-06-01

    A review of the scenarios for the Cretaceous/ Tertiary (K/T) boundary event is presented and a coherent hypothesis for the origin of the event is formulated. Many scientists now accept that the event was caused by a meteorite impact at Chicxulub in the Yucatan Peninsula, Mexico. Our investigations show that the oceans were already stressed by the end of the Late Cretaceous as a result of the long-term drop in atmospheric CO2, the long-term drop in sea level and the frequent development of oceanic anoxia. Extinction of some marine species was already occurring several million years prior to the K/T boundary. The biota were therefore susceptible to change. The eruption of the Deccan Traps, which began at 66.2 Ma, coincides with the K/T boundary events. It erupted huge quantities of H2SO4, HCl, CO2, dust and soot into the atmosphere and led to a significant drop in sea level and marked changes in ocean temperature. The result was a major reduction in oceanic productivity and the creation of an almost dead ocean. The volcanism lasted almost 0.7 m.y. Extinction of biological species was graded and appeared to correlate with the main eruptive events. Elements such as Ir were incorporated into the volcanic ash, possibly on soot particles. This horizon accumulated under anoxic conditions in local depressions and became the marker horizon for the K/T boundary. An oxidation front penetrated this horizon leading to the redistribution of elements. The eruption of the Deccan Traps is the largest volcanic event since the Permian-Triassic event at 245 Ma. It followed a period of 36 m.y. in which the earth's magnetic field failed to reverse. Instabilities in the mantle are thought to be responsible for this eruption and therefore for the K/T event. We therefore believe that the K/T event can be explained in terms of the effects of the Deccan volcanism on an already stressed biosphere. The meteorite impact at Chicxulub took place after the onset of Deccan volcanism. It probably played a regional, rather than global, role in the K/T extinction. PMID:11543126

  19. Palaeobotanical evidence for a marked temperature increase following the Cretaceous/Tertiary boundary

    USGS Publications Warehouse

    Wolfe, J.A.

    1990-01-01

    CORRESPONDENCE analysis of dicot leaf physiognomy of modern vegetational samples from a wide range of environments indicates that >70% of physiognomic variation corresponds to water or temperature factors, or both. Despite wide variation in single physiognomic characters, overall trends can be used to distinguish between samples from different climates. Some climate parameters are well correlated with changes in physiognomy, so that climate characteristics can be inferred from physiognomic analyses. Here I apply this climate-leaf analysis multivariate program (CLAMP) to leaf assemblages from the Cretaceous/Tertiary boundary. The results indicate a fourfold increase in precipitation at the boundary and an increase in mean annual temperature of 10??C. These levels persisted for 0.5-1.0 Myr, after which precipitation decreased to about three times the values for the latest Cretaceous, and the mean annual temperature decreased to 5-6??C above latest Cretaceous values.

  20. Local Structure of Sb in Cretaceous-Tertiary Boundary Clays from Stevns Klint By the XAFS Method

    NASA Astrophysics Data System (ADS)

    Hongu, H.; Yoshiasa, A.; Tobase, T.; Hiratoko, T.; Isobe, H.; Arima, H.; Sugiyama, K.; Okube, M.

    2014-12-01

    The Cretaceous-Tertiary (K-T) mass extinctions has been thought to be due to the asteroid impact since Ir anomalies was found by Alvarez et al. (1980) . The boundary clay is also enriched in Cr, Co, Ni, Cu, Zn, As and Sb. Especially concentrations of Sb and As are unusually large. However, the origins and concentration processes of Sb are unknown. In this study, local structure around antimony atoms in K-T boundary clay from Stevns Klint, Denmark, was determined by Sb K-edge XAFS spectroscopy. The XAFS analyses give the information about the chemical state and coordination environment around Sb atoms and help identify of the concentration phase, and also may provide various kinds of information about the asteroid impact and mass extinction. The XAFS measurements were performed at the BL-NW10A beamline at the Photon Factory in KEK, Tsukuba, Japan. The XANES spectra and radial structure function (RSF) showed that Sb in K-T boundary clays is high oxidation state Sb5+ and occupies a SbO6 octahedral site. The Sb-O interatomic distance in K-T clay sample is 2.08(1) A. It is known that Sb5+ is stable form in soil and soil water under an equilibrium situation within the Earth's surface environment. Antimony belongs to group 15 in the periodic table below arsenic, and the chemical behavior of Sb5+ is similar to that of As5+. Because there is a close correlation on co-precipitation between As and Fe (Ebihara and Miura, 1996; Sakai et al., 2007) , it is considered that Sb also correlates closely with Fe compounds (e.g., ferric hydroxides). Abundant ferric hydroxides occur in K-T boundary clays. It is considered that one of the reasons of abnormal high concentrations of Sb and As in K-T boundary clays is a lot of dust from impact ejecta falls with iron ions and deposits on surface of the Earth for a short period of time after the asteroid impact. ReferencesL. W. Alvarez, Science, 208, 1095-1108 (1980) M. Ebihara and T. Miura, Geochimica et Cosmochimica Acta, 60, 5133-5144 (1996) S. Sakai et al., The American Institute of Physics, Conference Proceeding, 882, 274-276 (2007)

  1. Tektite-bearing, deep-water clastic unit at the Cretaceous-Tertiary boundary in northeastern Mexico

    NASA Technical Reports Server (NTRS)

    Smit, J.; Montanari, A.; Swinburne, N. H.; Alvarez, W.; Hildebrand, A. R.; Margolis, S. V.; Claeys, P.; Lowrie, W.; Asaro, F.

    1992-01-01

    The hypothesis of Cretaceous-Tertiary (K-T) boundary impact on Yucatan, Mexico, predicts that nearby sites should show evidence of proximal impact ejecta and disturbance by giant waves. An outcrop along the Arroyo el Mimbral in northeastern Mexico contains a layered clastic unit up to 3 m thick that interrupts a biostratigraphically complete pelagic-marl sequence deposited at more than 400 m water depth. The marls were found to be unsuitable for determining magnetostratigraphy, but foraminiferal biostratigraphy places the clastic unit precisely at the K-T boundary. We interpret this clastic unit as the deposit of a megawave or tsunami produced by an extraterrestrial impact. The clastic unit comprises three main subunits. (1) The basal "spherule bed" contains glass in the form of tektites and microtektites, glass spherules replaced by chlorite-smectite and calcite, and quartz grains showing probable shock features. This bed is interpreted as a channelized deposit of proximal ejecta. (2) A set of lenticular, massive, graded "laminated beds" contains intraclasts and abundant plant debris, and may be the result of megawave backwash that carried coarse debris from shallow parts of the continental margin into deeper water. (3) At the top, several thin "ripple beds" composed of fine sand are separated by clay drapes; they are interpreted as deposits of oscillating currents, perhaps a seiche. An iridium anomaly (921 +/- 23 pg/g) is observed at the top of the ripple beds. Our observations at the Mimbral locality support the hypothesis of a K-T impact on nearby Yucatan.

  2. Surface alteration and physical properties of glass from the Cretaceous-Tertiary boundary

    USGS Publications Warehouse

    Barkatt, A.; Sang, J.C.; Thorpe, A.N.; Senftle, F.E.; Talmy, I.G.; Norr, M.K.; Mazer, J.J.; Izett, G.; Sigurdsson, Haraldur

    1994-01-01

    The scalloped surface feature on Cretaceous-Tertiary boundary glass is often explained as being due to terrestrial aqueous leaching. Leaching of man-made glass results in a reduction in density of the glass. Also, Fe, because of its relative insolubility, is concentrated by the leaching process. Thus, the Haitian glass specimens which have been heavily altered should have a thin rim of less dense glass in which the Fe is concentrated compared to the core glass. The higher Fe concentration in the rim glass should cause it to have an enhanced Curie constant and a lower density compared to the unaltered glass. The magnetic Curie constant, density, and scanning electron microscopic studies were made on altered specimens of Haitian glass and also on specimens showing a minimum of alteration. The results show that the less altered samples have the highest density and the lowest Curie constant. The data substantiate the terrestrial hypothesis. ?? 1994.

  3. Oxygen isotope constraints on the origin of impact glasses from the cretaceous-tertiary boundary

    SciTech Connect

    Blum, J.D.; Chamberlain, C.P. )

    1992-08-21

    Laser-extraction oxygen isotope and major element analyses of individual glass spherules from Haitian Cretaceous-Tertiary boundary sediments demonstrate that the glasses fall on a mixing line between an isotopically heavy ({delta}{sup 18}O = 14 per mil) high-calcium composition and an isotopically light ({delta}{sup 18}O = 6 per mil) high-silicon composition. This trend can be explained by melting of heterogeneous source rocks during the impact of an asteroid (or comet) {approximately}65 million years ago. The data indicate that the glasses are a mixture of carbonate and silicate rocks and exclude derivation of the glasses either by volcanic processes or as mixtures of sulfate-high evaporate and silicate rocks.

  4. Oxygen isotope constraints on the origin of impact glasses from the cretaceous-tertiary boundary.

    PubMed

    Blum, J D; Chamberlain, C P

    1992-08-21

    Laser-extraction oxygen isotope and major element analyses of individual glass spherules from Haitian Cretaceous-Tertiary boundary sediments demonstrate that the glasses fall on a mixing line between an isotopically heavy (delta(18)O = 14 per mil) high-calcium composition and an isotopically light (delta(18)O = 6 per mil) high-silicon composition. This trend can be explained by melting of heterogeneous source rocks during the impact of an asteroid (or comet) approximately 65 million years ago. The data indicate that the glasses are a mixture of carbonate and silicate rocks and exclude derivation of the glasses either by volcanic processes or as mixtures of sulfate-rich evaporate and silicate rocks. PMID:17840280

  5. Iridium and trace element measurements from the Cretaceous-Tertiary boundary, site 752, Broken Ridge, Indian Ocean

    NASA Technical Reports Server (NTRS)

    Schuraytz, B. C.; O'Connell, S.; Sharpton, V. L.

    1991-01-01

    Fourteen samples spanning a 2.5 m interval that includes the Cretaceous-Tertiary (K/T) boundary from Hole 752B near the crest of Broken Ridge in the eastern Indian Ocean were studied in order to search for anomalous enrichments of iridium (Ir) and shock-metamorphosed quartz grains. No allogenic quartz grains larger than 10 microns were observed, hence the presence of quartz containing diagnostic evidence of shock-metamorphism could not be confirmed. Two Ir anomalies of 2.2 +/- 0.6 and 2.0 +/- 0.4 parts per billion (ppb) were measured in samples of dark green ash-bearing chalk at depths of 357.93 and 358.80 m below seafloor, respectively. These samples containing anomalous enrichments of Ir were taken from approximately 82 cm above and 5 cm below the extinction level of Globotruncanids. Our results are consistent with those of Michel et al., who observe elevated concentrations of Ir at these depths in addition to a larger Ir anomaly associated with the extinction level of Globotruncanids.

  6. Biotic, geochemical, and paleomagnetic changes across the Cretaceous/Tertiary boundary at Braggs, Alabama

    NASA Astrophysics Data System (ADS)

    Jones, Douglas S.; Mueller, Paul A.; Bryan, Jonathan R.; Dobson, Jon P.; Channell, James E. T.; Zachos, James C.; Arthur, Michael A.

    1987-04-01

    Exposed near Braggs, Alabama, is one of the few well-studied, nearly continuous shallow-marine Cretaceous/Tertiary boundary sections; it allows a glimpse of the biotic and environmental changes that occurred in the latest Cretaceous to earliest Paleocene. Paleomagnetic, strontium isotopic, and biostratigraphic data closely constrain the age of a series of lithologic, geochemical, and biotic variations and suggest that no more than 100 200 ka could be missing at the boundary. A major reduction in macrofaunal diversity associated with lithofacies changes occurs prior to but within 300 ka of the nannofossil-defined boundary. Approximately 40% of the apparent faunal reduction is attributed to the Lazarus effect. Faunal and floral assemblages, trends in carbon isotopic composition of benthic invertebrates, and lithologic characteristics indicate that a latest Maestrichtian regression culminated near the boundary (Chron C29R; Micula murus zone), significantly later than recent estimates. Water depths at this site remained shallow during the subsequent early Paleocene (zone NP1) transgression and did not reach depths equivalent to those of the late Maestrichtian until zone NP2. Relatively minor climatic changes across the boundary are suggested by a ?4 C cooling trend seen in the oxygen-isotope paleotemperatures. A high-resolution 87Sr/86Sr record from well-preserved macrofossil calcite shows a pattern of smooth variation and elevated values near the boundary; however, the early Paleocene spike of other workers was not found.

  7. Cretaceous/Tertiary boundary event, El Kef Tunesia: a foraminiferal response

    SciTech Connect

    Chi, W.R.; Keller, G.

    1985-01-01

    The Cretaceous/Tertiary boundary extinction event affected benthic communities less than planktonic faunas. Only 9% of benthic species comprising 20% in relative abundance of the total population became extinct, but most species declined in abundance. Only one species, Gavelinella eriksdalensis rapidly increased in abundance through the Danian and Loxostomum and Alabamian dorsoplanata are common in the boundary clay. Two further extinction events of lesser magnitude are observed in the upper A. mayaroensis Zone where 2% of the species go extinct, or 9% of the population, and in the Globigerina engubina Zone where also 2% of the species go extinct or 4% of the population. Significant species abundance changes also accompany these extinction events. Similar stepwise extinction events are also observed in the planktonic foraminifers. Benthic foraminifers indicate that the C/T boundary event was accompanied by a shallowing environment from middle slope to outer shelf. Reducing conditions prevailed during deposition of the boundary clay as suggested by the abundance of pyrite. The authors study of the El Kef section suggests that the observed population turnovers in benthic and planktonic communities could be explained by a sea level fall and/or geotectonically induced changes in oceanic circulation accompanied by temperature and salinity fluctuations. Although they cannot rule out the possibility of impact induced extinction events, have found no evidence of microtektite-like spherules in the boundary clay.

  8. Cretaceous/Tertiary boundary in the North Pacific: planktonic foraminiferal results from deep sea drilling site 577, Shatsky Rise

    SciTech Connect

    Gerstel, J.; Thunell, R.

    1985-01-01

    A detailed micropalentologic analysis of sediments from DSDP hole 577 from the Shatsky Rise, North Pacific was undertaken to describe extinction and radiation patterns of planktonic foraminifera in an apparently continuous, undisturbed carbonate sequence spanning the Cretaceous/Tertiary boundary. The Cretaceous/Tertiary boundary was placed at the abrupt last appearance of all large Maastrichtian planktonic foraminifera. Coincident with these extinctions was the presence of a large number of sanadine spherules and an improvement in foraminiferal preservation. Diminutive populations of Guembelitria cretacea and Globigerina eugubina first appeared about 30cm below the boundary and survived the boundary event. Globigerina eugubina increase in size and inflatedness through the Danian. In addition, a large population of aberrative G. eugubina and Eoglobigerina was observed in the Danian, with these forms being characterized by the development of secondary apertures, bullae, and abnormal final chambers. These abnormal morphotypes are considered to be ecophenotypic variants, reflecting ecologic stress or instability in the earliest Cenozoic marine environment.

  9. Iridium profile for 10 million years across the Cretaceous-Tertiary boundary at Gubbio (Italy).

    PubMed

    Alvarez, W; Asaro, F; Montanari, A

    1990-12-21

    The iridium anomaly at the Cretaceous-Tertiary (KT) boundary was discovered in the pelagic limestone sequence at Gubbio on the basis of 12 samples analyzed by neutron activation analysis (NAA) and was interpreted as indicating impact of a large extraterrestrial object at exactly the time of the KT mass extinction. Continuing controversy over the shape of the Ir profile at the Gubbio KT boundary and its interpretation called for a more detailed follow-up study. Analysis of a 57-meter-thick, 10-million-year-old part of the Gubbio sequence using improved NAA techniques revealed that there is only one Ir anomaly at the KT boundary, but this anomaly shows an intricate fine structure, the origin of which cannot yet be entirely explained. The KT Ir anomaly peaks in a 1-centimeter-thick clay layer, where average Ir concentration is 3000 parts per trillion (ppt); this peak is flanked by tails with Ir concentrations of 20 to 80 ppt that rise above a background of 12 to 13 ppt. The fine structure of the tails is probably due in part to lateral reworking, diffusion, burrowing, and perhaps Milankovitch cyclicity. PMID:11538083

  10. Iridium profile for 10 million years across the Cretaceous-Tertiary boundary at Gubbio (Italy)

    NASA Astrophysics Data System (ADS)

    Alvarez, Walter; Asaro, Frank; Montanari, Alessandro

    1990-12-01

    The iridium anomaly at the Cretaceous-Tertiary (KT) boundary was discovered in the pelagic limestone sequence at Gubbio on the basis of 12 samples analyzed by neutron activation analysis (NAA) and was interpreted as indicating impact of a large extraterrestrial object at exactly the time of the KT mass extinction. Continuing controversy over the shape of the Ir profile at the Gubbio KT boundary and its interpretation called for a more detailed follow-up study. Analysis of a 57-meter-thick, 10-million-year-old part of the Gubbio sequence using improved NAA techniques revealed that there is only one Ir anomaly at the KT boundary, but this anomaly shows an intricate fine structure, the origin of which cannot yet be entirely explained. The KT Ir anomaly peaks in a 1-centimeter-thick clay layer, where the average Ir concentration is 3000 parts per trillion (ppt); this peak is flanked by tails with Ir concentrations of 20 to 80 ppt that rise above a background of 12 to 13 ppt. The fine structure of the tails is probably due in part to lateral reworking, diffusion, burrowing, and perhaps Milankovitch cyclicity.

  11. Iridium profile for 10 million years across the Cretaceous-Tertiary boundary at Gubbio (Italy)

    SciTech Connect

    Alvarez, W.; Montanari, A. ); Asaro, F. )

    1990-12-21

    The iridium anomaly at the Cretaceous-Tertiary (KT) boundary was discovered in the pelagic limestone sequence at Gubbio on the basis of 12 samples analyzed by neutron activation analysis (NAA) and was interpreted as indicating impact of a large extraterrestrial object at exactly the time of the KT mass extinction. Continuing controversy over the shape of the Ir profile at the Gubbio KT boundary and its interpretation called for a more detailed follow-up study. Analysis of a 57-meter-thick, 10-million-year-old part of the Gubbio sequence using improved NAA techniques revealed that there is only one Ir anomaly at the KT boundary, but this anomaly shows an intricate fine structure, the origin of which cannot yet be entirely explained. The KT Ir anomaly peaks in a 1-centimeter-thick clay layer, where the average Ir concentration is 3,000 parts per trillion (ppt); this peak is flanked by tails with Ir concentrations of 20 to 80 ppt that rise above a background of 12 to 13 ppt. The fine structure of the tails is probably due in part to lateral reworking, diffusion, burrowing, and perhaps Milankovitch cyclicity.

  12. Iridium profile for 10 million years across the Cretaceous-Tertiary boundary at Gubbio (Italy)

    NASA Technical Reports Server (NTRS)

    Alvarez, Walter; Asaro, Frank; Montanari, Alessandro

    1990-01-01

    The iridium anomaly at the Cretaceous-Tertiary (KT) boundary was discovered in the pelagic limestone sequence at Gubbio on the basis of 12 samples analyzed by neutron activation analysis (NAA) and was interpreted as indicating impact of a large extraterrestrial object at exactly the time of the KT mass extinction. Continuing controversy over the shape of the Ir profile at the Gubbio KT boundary and its interpretation called for a more detailed follow-up study. Analysis of a 57-meter-thick, 10-million-year-old part of the Gubbio sequence using improved NAA techniques revealed that there is only one Ir anomaly at the KT boundary, but this anomaly shows an intricate fine structure, the origin of which cannot yet be entirely explained. The KT Ir anomaly peaks in a 1-centimeter-thick clay layer, where the average Ir concentration is 3000 parts per trillion (ppt); this peak is flanked by tails with Ir concentrations of 20 to 80 ppt that rise above a background of 12 to 13 ppt. The fine structure of the tails is probably due in part to lateral reworking, diffusion, burrowing, and perhaps Milankovitch cyclicity.

  13. Oceanic primary productivity and dissolved oxygen levels at the Cretaceous/Tertiary Boundary: Their decrease, subsequent warming, and recovery

    NASA Astrophysics Data System (ADS)

    Kaiho, Kunio; Kajiwara, Yoshimichi; Tazaki, Kazue; Ueshima, Masato; Takeda, Nobuyori; Kawahata, Hodaka; Arinobu, Tetsuya; Ishiwatari, Ryoshi; Hirai, Akio; Lamolda, Marcos A.

    1999-08-01

    Thirty-six different geochemical and foraminiferal analyses were conducted on samples collected at closely spaced intervals across the Cretaceous/Tertiary (K/T) boundary exposed at Caravaca, Spain. A rapid reduction in the gradient between δ13C values in fine fraction carbonate and benthic foraminiferal calcite and a decrease in the abundance of phosphorus (a proxy for organic carbon) and calcium were recorded in sediments 0-0.5 cm above the K/T boundary. These trends imply that an abrupt mass mortality occurred among pelagic organisms, leading to a significant reduction in the flux of organic carbon to the seafloor. In addition, variations in sulfur isotope ratios, the hydrocarbon-generating potential of kerogen (measured as the hydrogen index), and foraminiferal indices of dissolved oxygen level all imply that a rapid decrease in dissolved oxygen was coincident with the δ13C event. Evidence of the low oxygen event has also been recognized in Japan and New Zealand, suggesting that intermediate water oxygen minima were widely developed during earliest Danian time. A threefold increase in the kaolinite/illite ratio and a 1.2‰ decrease in δ18O (carbonate fine fraction) were recorded in the basal 0.1-2 cm of Danian age sediments. These trends suggest that atmospheric warming and an increase in surface water temperature occurred 0-3 kyr after the δ13C event. Recovery in the difference between δ13C values in the carbonate fine fraction and in benthic foraminiferal calcite as well as increases in phosphorus and calcium contents occur at the base of planktonic foraminiferal Zone Pla, implying that an increase in primary productivity commenced some 13 kyr after the K/T boundary. Tables A1-A3 are available on diskette or via Anonymous FTP from kosmos.agu.org directory APENO (Username = anonymous, Password = guest). Diskette may be ordered from American Geophysical Union, 2000 Florida Avenue, N.W., Washington, DC 20009 or by phone at 800-966-2481; $15.00. Payment must accompany order.

  14. Osmium-187/osmium-186 in manganese nodules and the Cretaceous-Tertiary boundary

    SciTech Connect

    Luck, J.M.; Turekian, K.K.

    1983-11-11

    As a result of the radioactive decay of rhenium-187 (4.6 x 10/sup 10/ years) the osmium-187/osmium-186 ratio changes in planetary systems as a function of time and the rhenium-187/osmium-186 ratio. For a value of the rhenium-187/osmium-186 ratio of about 3.2, typical of meteorites and the earth's mantle, the present-day osmium-187/osmium-186 ratio is about 1. The earth's continental crust has an estimated rhenium-187/osmium-186 ratio of about 400, so that for a mean age of the continent of 2 x 10/sup 9/ years, a present-day osmium-187/osmium-186 ratio of about 10 is expected. Marine manganese nodules show values (6 to 8.4) compatible with this expectation if allowance for a 25 percent mantle osmium supply to the oceans is allowed. The Cretaceous-Tertiary boundary iridium-rich layer in the marine section at Stevns Klint, Denmark, yields an osmium-187/osmium-186 ratio of 1.65, and the one in a continental section in the Raton Basin, Colorado, is 1.29. The simplest explanation is that these represent osmium imprints of predominantly meteoritic origin.

  15. Evidence from paleosols for ecosystem changes across the Cretaceous/Tertiary boundary in eastern Montana

    NASA Astrophysics Data System (ADS)

    Retallack, Gregory J.; Leahy, Guy D.; Spoon, Michael D.

    1987-12-01

    Ancient soils (paleosols) of the latest Cretaceous Hell Creek Formation are mildly calcareous, have clayey subsurface (Bt) horizons, and exhibit abundant large root traces, as is typical of forested soils in subhumid climates. The fact that some of the paleosols are capped by thin, impure coals is evidence for seasonally dry swamps. The paleosol evidence thus supports published reconstructions, based on fossil leaves, pollen, and vertebrates, that this area was subtropical, seasonally dry, subhumid, and forested mainly by angiosperms. Paleosols within the earliest Tertiary (Paleocene) Tullock Formation have thicker, coaly, surface (O and A) horizons and are more drab colored and less calcareous than paleosols of the Hell Creek Formation. These features are indications of waterlogging and of a humid climate. Large root traces and clayey subsurface (Bt) horizons are evidence of swamp woodland and forest. Inferred base level and paleoclimate are compatible with evidence from fossil leaves and pollen that indicates more abundant deciduous, early successional angiosperms and swamp conifers compared to those of Late Cretaceous time. Most of the paleosols have drab Munsell hues and can be expected to preserve a reliable fossil record of pollen and other plant remains. The carbonate content of the paleosols declines toward the top of the Hell Creek Formation, and the uppermost 3 m of the formation is noncalcareous. Because of this, the decline in diversity and abundance of bone over this interval is interpreted as a taphonomic artifact. Evidence from paleosols supports paleobotani-cal evidence for catastrophic change in ecosystems at the Cretaceous/Tertiary boundary.

  16. Octopods: Nude ammonoids that survived the Cretaceous-Tertiary boundary mass extinction

    NASA Astrophysics Data System (ADS)

    Lewy, Z.

    1996-07-01

    Certain ammonoids changed the mode of coiling or the growth angle of their last body chamber, constricted the terminal aperture, or developed apertural processes, which restricted all life functions. The modified terminal body chamber of macroconchs apparently functioned as a floating egg case for a single breeding phase. The young that hatched from tiny eggs fed on the enclosed female corpse. This same breeding strategy is executed by the extant octopod Argonauta. As a nude cephalopod, the sexually mature female secretes an egg case, which resembles Cretaceous ammonites, for the tiny eggs. The remarkable similarity in mode of breeding between Argonauta and ammonoids with modified terminal body chambers suggests that the ancestral argonautid was a nude ammonoid. Other octopods, which lay large, yolk-rich eggs attached onto substrates, likewise originate from ancestral nude ammonoids, which, however, did not breed in a floating egg case. Nude ammonoids crossed the Cretaceous-Tertiary boundary, as did the genuine coleoids comprising rudimentary endoskeletons.

  17. Modelling of dispersal and deposition of impact glass spherules from the Cretaceous-Tertiary boundary deposit

    NASA Technical Reports Server (NTRS)

    Espindola, J. M.; Carey, S.; Sigurdsson, H.

    1993-01-01

    The dispersal of glass spherules or tektites from a bolide impact with the Earth is modelled as ballistic trajectories in standard atmosphere. Ballistic dispersal of Cretaceous-Tertiary boundary impact glass spherules found in Haiti and Mimbral, Mexico requires a fireball radius in excess of 50 km but less than 100 km to account for the observed distribution. Glass spherules from 1 and up to 8 mm in diameter have been found at the KT boundary at Beloc in Haiti, at Mimbral, Mexico, and at DSDP Sites 536 and 540 in the Gulf of Mexico corresponding to paleodistances of 600 to 1000 km from the Chicxulub crater. In Haiti the basal and major glass-bearing unit at the KT boundary is attributed to fallout on basis of sedimentologic features. When compared with theoretical and observed dispersal of volcanic ejecta, the grain size versus distance relationship of the KT boundary tektite fallout is extreme, and rules out a volcanic fallout origin. At a comparable distance from source, the KT impact glass spherules are more than an order of mangitude coarser than ejecta of the largest known volcanic events. We model the dispersal of KT boundary impact glass spherules as ballistic ejecta from a fireball generated by the impact of a 10 km diameter bolide. Mass of ejecta in the fireball is taken as twice the bolide mass. Melt droplets are accelerated by gas flow in the fireball cloud, and leave the fireball on ballistic trajectories within the atmosphere, subject to drag, depending on angle of ejection and altitude. The model for ballistic dispersal is based on equations of motion, drag and ablation for silicate spheres in standard atmosphere.

  18. Proximal impact deposits at the Cretaceous-Tertiary boundary in the Gulf of Mexico: a restudy of DSDP Leg 77 Sites 536 and 540.

    PubMed

    Alvarez, W; Smit, J; Lowrie, W; Asaro, F; Margolis, S V; Claeys, P; Kastner, M; Hildebrand, A R

    1992-08-01

    Restudy of Deep Sea Drilling Project Sites 536 and 540 in the southeast Gulf of Mexico gives evidence for a giant wave at Cretaceous-Tertiary boundary time. Five units are recognized: (1) Cenomanian limestone underlies a hiatus in which the five highest Cretaceous stages are missing, possibly because of catastrophic K-T erosion. (2) Pebbly mudstone, 45 m thick, represents a submarine landslide possibly of K-T age. (3) Current-bedded sandstone, more than 2.5 m thick, contains anomalous iridium, tektite glass, and shocked quartz; it is interpreted as ejecta from a nearby impact crater, reworked on the deep-sea floor by the resulting tsunami. (4) A 50-cm interval of calcareous mudstone containing small Cretaceous planktic foraminifera and the Ir peak is interpreted as the silt-size fraction of the Cretaceous material suspended by the impact-generated wave. (5) Calcareous mudstone with basal Tertiary forams and the uppermost tail of the Ir anomaly overlies the disturbed interval, dating the impact and wave event as K-T boundary age. Like Beloc in Haiti and Mimbral in Mexico, Sites 536 and 540 are consistent with a large K-T age impact at the nearby Chicxulub crater. PMID:11538163

  19. Proximal impact deposits at the Cretaceous-Tertiary boundary in the Gulf of Mexico: A restudy of DSDP Leg 77 Sites 536 and 540

    SciTech Connect

    Alvarez, W.; Asaro, F. ); Smit, J. ); Lowrie, W. ); Asaro, F. ); Margolis, S.V.; Claeys, P. ); Kastner, M. ); Hildebrand, A.R. )

    1992-08-01

    Restudy of Deep Sea Drilling Project Sites 536 and 540 in the southeast Gulf of Mexico gives evidence for a giant wave at Cretaceous-Tertiary boundary time. Five units are recognized: (1) Cenomanian limestone underlies a hiatus in which the five highest Cretaceous stages are missing, possibly because of catastrophic K-T erosion. (2) Pebbly mudstone, 45 m thick, represents a submarine landslide possibly of K-T age. (3) Current-bedded sandstone, more than 2.5 m thick, contains anomalous iridium, tektite glass, and shocked quartz; it is interpreted as ejecta from a nearby impact crater, reworked on the deep-sea floor by the resulting tsunami. (4) A 50-cm interval of calcareous mudstone containing small Cretaceous planktic foraminifera and the Ir peak is interpreted as the silt-size fraction of the Cretaceous material suspended by the impact-generated wave. (5) Calcareous mudstone with basal Tertiary forams and the uppermost tail of the Ir anomaly overlies the disturbed interval, dating the impact and wave event as K-T boundary age. Like Beloc in Haiti and Mimbral in Mexico, Sites 536 and 540 are consistent with a large K-T age impact at the nearby Chicxulub crater.

  20. Proximal impact deposits at the Cretaceous-Tertiary boundary in the Gulf of Mexico: a restudy of DSDP Leg 77 Sites 536 and 540

    NASA Technical Reports Server (NTRS)

    Alvarez, W.; Smit, J.; Lowrie, W.; Asaro, F.; Margolis, S. V.; Claeys, P.; Kastner, M.; Hildebrand, A. R.

    1992-01-01

    Restudy of Deep Sea Drilling Project Sites 536 and 540 in the southeast Gulf of Mexico gives evidence for a giant wave at Cretaceous-Tertiary boundary time. Five units are recognized: (1) Cenomanian limestone underlies a hiatus in which the five highest Cretaceous stages are missing, possibly because of catastrophic K-T erosion. (2) Pebbly mudstone, 45 m thick, represents a submarine landslide possibly of K-T age. (3) Current-bedded sandstone, more than 2.5 m thick, contains anomalous iridium, tektite glass, and shocked quartz; it is interpreted as ejecta from a nearby impact crater, reworked on the deep-sea floor by the resulting tsunami. (4) A 50-cm interval of calcareous mudstone containing small Cretaceous planktic foraminifera and the Ir peak is interpreted as the silt-size fraction of the Cretaceous material suspended by the impact-generated wave. (5) Calcareous mudstone with basal Tertiary forams and the uppermost tail of the Ir anomaly overlies the disturbed interval, dating the impact and wave event as K-T boundary age. Like Beloc in Haiti and Mimbral in Mexico, Sites 536 and 540 are consistent with a large K-T age impact at the nearby Chicxulub crater.

  1. Cretaceous-tertiary boundary spherules and Cenozoic microtektites: Similarities and differences

    NASA Technical Reports Server (NTRS)

    Glass, B. P.; Bohor, Bruce F.; Betterton, William J.

    1993-01-01

    Bohor and Betterton pointed out that the K-T spherules can be divided into three groups. Their Type 1 spherules appear to be found in or adjacent to North America, particularly the Western Interior and in Haiti and Mexico. The Type 1 spherules occur in the lower part of the K-T boundary clay below an Ir anomaly. It is the Type 1 spherules which are most similar to microtektites. The discovery of K-T boundary spherules in Beloc, Haiti, and Mimbral, Mexico, with residual tektite-like glass cores supports the hypothesis that the Type 1 spherules are diagenetically altered microtektites. The similarities and differences of the Type 1 K-T boundary spherules to previously described Cenozoic microtektites are discussed.

  2. An atmospheric pCO2 reconstruction across the Cretaceous-Tertiary boundary from leaf megafossils

    PubMed Central

    Beerling, D. J.; Lomax, B. H.; Royer, D. L.; Upchurch, G. R.; Kump, L. R.

    2002-01-01

    The end-Cretaceous mass extinctions, 65 million years ago, profoundly influenced the course of biotic evolution. These extinctions coincided with a major extraterrestrial impact event and massive volcanism in India. Determining the relative importance of each event as a driver of environmental and biotic change across the Cretaceous-Tertiary boundary (KTB) crucially depends on constraining the mass of CO2 injected into the atmospheric carbon reservoir. Using the inverse relationship between atmospheric CO2 and the stomatal index of land plant leaves, we reconstruct Late Cretaceous-Early Tertiary atmospheric CO2 concentration (pCO2) levels with special emphasis on providing a pCO2 estimate directly above the KTB. Our record shows stable Late Cretaceous/Early Tertiary background pCO2 levels of 350–500 ppm by volume, but with a marked increase to at least 2,300 ppm by volume within 10,000 years of the KTB. Numerical simulations with a global biogeochemical carbon cycle model indicate that CO2 outgassing during the eruption of the Deccan Trap basalts fails to fully account for the inferred pCO2 increase. Instead, we calculate that the postboundary pCO2 rise is most consistent with the instantaneous transfer of ≈4,600 Gt C from the lithic to the atmospheric reservoir by a large extraterrestrial bolide impact. A resultant climatic forcing of +12 W⋅m−2 would have been sufficient to warm the Earth's surface by ≈7.5°C, in the absence of counter forcing by sulfate aerosols. This finding reinforces previous evidence for major climatic warming after the KTB impact and implies that severe and abrupt global warming during the earliest Paleocene was an important factor in biotic extinction at the KTB. PMID:12060729

  3. The Karskiy craters are the probable records of catastrophe at the Cretaceous-Tertiary boundary

    NASA Technical Reports Server (NTRS)

    Kolesnikov, E. M.; Nazarov, M. A.; Badjukov, D. D.; Shukolyukov, Yu. A.

    1988-01-01

    In order to corroborate the hypothesis of Alvarez and others about the connection of mass mortality and meteorite or cometary impact at the Cretaceous-Tertiary boundary, it is necessary to find a meteorite crater which was formed at the same time. Masaitiss suggested that the Karskiy craters (USSR) are suitable, but previous K/Ar data from other laboratories are very different (from 47 to 82 million years). Impact glasses were gathered from the Karskiy and Ust-Karskiy craters K/Ar age analyses were performed. The glasses cooled very rapidly and had the youngest model ages from 65.8 to 67.6 million years. The slower cooling crypto-crystalline aggregates had more ancient model ages, from 70.5 to 73.9 my as had tagamite because they captured excess argon during crystallization. Least squares analysis showed that with probability of 99 percent the findings on crypto-crystalline aggregates, tagamite and quartz glasses from the Karskiy and Ust-Karskiy craters lie on an isochron which has an age of 65.8 + or - 1.1 million years and a content of excess argon. For the two glasses with identical composition which have different quantities of secondary non-potassium minerals, an independent method determined the content of excess argon. Taking into account these data a more exact slope of the first isochron of 66.4 + or - 1.0 million years was observed and the second glass isochron with age 66.5 + or - 1.1 million years was constructed.

  4. The Cretaceous/Tertiary Extinction Controversy Reconsidered.

    ERIC Educational Resources Information Center

    McCartney, Kevin; Nienstedt, Jeffrey

    1986-01-01

    Reviews varying positions taken in the Cretaceous/Tertiary (K/Y) extinction controversy. Analyzes and contests the meteoritic impact theory known as the Alvarez Model. Presents an alternative working hypothesis explaining the K/T transition. (ML)

  5. Rapid change in strontium isotopic composition of sea water before the Cretaceous/Tertiary boundary

    NASA Astrophysics Data System (ADS)

    Nelson, Bruce K.; MacLeod, G. K.; Ward, Peter D.

    1991-06-01

    The identification of the cause of the marked changes which occurred at the K/T boundary fundamentally depends on the determination of such matters as to whether (1) the development of species extinctions and geochemical changes was gradual (1000-1,000,000 years) or catastrophic (tens to hundreds of years), (2) the anomalies occur precisely at the boundary or precede it, and (3) the chemical and biological changes represent a single event or can be further resolved into several discrete events. Attention is presently given to an analysis of foraminifera from a well-characterized marine K/T section exposed at Bidart, France. A rapid increase is noted in the Sr-87/Sr-86 of ocean water 1.5-2.3 Myr prior to the K/T boundary; this is explainable by a 10 percent increase in the continental Sr flux to the oceans over a 1-Myr period.

  6. The Manson impact structure - Its contribution to impact materials observed at the Cretaceous/Tertiary boundary

    NASA Technical Reports Server (NTRS)

    Anderson, Raymond R.; Hartung, Jack B.

    1992-01-01

    The Manson impact structure (MIS) in Iowa is an excellently preserved complex crater that formed 65.7 Ma ago at the K/T boundary. Drill and seismic data have been used to identify three primary terranes within the 35-km diameter crater: (1) an outermost ring graben composed of listric normal fault blocks that structurally preserve Paleozoic and Cretaceous strata, impact ejecta, and possibly earliest Tertiary lake sediments; (2) a crater moat region of slumped and fallback materials overlain by Tertiary lake sediments in most areas; and (3) a central peak of uplifted basement rock capped in many areas by impact breccia. It is argued that concentrations of Ir at a K/T boundary exposure near Gubbio, Italy and clasts of glass reported from the K/T boundary in Haiti are consistent with possible production in the MIS.

  7. The Unique Significance and Origin of the Cretaceous-Tertiary Boundary: Historical Context and Burdens of Proof

    NASA Technical Reports Server (NTRS)

    Ryder, Graham

    1996-01-01

    The abruptness and intensity of the Cretaceous-Tertiary boundary have been deemphasized by some authors over recent years, mainly by those skeptical of an impact origin for the boundary. However, it was recognized at the birth of stratigraphy as both abrupt and of major importance. It was used to define the change from the Mesozoic to the Cenozoic; the boundary has become continually more precisely defined and its global sequences more correlatable. It is now unique in being an event boundary marked by an iridium-bearing layer of global extent, rather than an arbitrary boundary in a sequence of little change. The Permian-Triassic boundary, in contrast, is arbitrary and the transition is not yet proven to be abrupt, the extinctions that define it perhaps having taken place in pulses over several millions of years. Some of those who have denied the importance (and in some cases even the existence) of an impact in the Cretaceous-Tertiary extinctions have placed burdens of proof on the impact hypothesis that they do not place on strictly terrestrial mechanisms. Terrestrial mechanisms have always been unsatisfactory (or at least unconvincing for global, massive, multienvironment faunal change) and are now even more so. Some authors have required of the impact hypothesis attributes that are not inherent in it, including particular patterns of extinction selectivity and timing.

  8. The Origin of Fullerenes in the 65 Myr Old Cretaceous/Tertiary Boundary

    NASA Technical Reports Server (NTRS)

    Becker, L.; Poreda, R. J.; Bunch, T. E.

    2000-01-01

    In this work we have searched for extraterrestrial (ET) helium (He) in fullerenes isolated from several K/T boundary (KTB) sediments. Measurements of He in these KTB fullerene residues revealed He-3/He-4 ratios that can only be explained as ET in origin.

  9. New Evidence links Deccan Traps to the Cretaceous-Tertiary Boundary Mass Extinction

    NASA Astrophysics Data System (ADS)

    Adatte, T.; Keller, G.

    2012-04-01

    Recent studies indicate that Deccan Trap volcanism began with a relatively minor eruption phase (~6% of total volume) during the late Maastrichtian magnetic polarity C30n. The main eruption phase (~80%) occurred over a short period in C29r just below the Cretaceous-Tertiary boundary (KTB) and the last Deccan phase (~14%) erupted in the early Danian C29n. Multiproxy studies from sections in Meghalaya (NE India), Jhilmili in central India (Madhya Pradesh), 6 quarry outcrops from Rajahmundry (SE India), 10 deep wells from the Krishna-Godavari Basin (K-G) (Andhra Pradesh) place the KTB mass extinction near the end of the main Deccan phase coincident with the mass extinction. These studies show that the second and third phase of eruptions each produced the world's largest and longest lava megaflows ~1500 km across India through the K-G Basin into the Bay of Bengal. These megaflows are separated by sand, silt and shale which record the mass extinction across an interval that spans zones CF1-CF2 and most of the nannofossil Micula prinsii zone and is correlative with the rapid global warming and subsequent cooling near the end of the Maastrichtian. The mass extinction began preceding the first of the four mega-flows in C29r. Planktic foraminifera suffered a 50% drop in species richness. Survivors suffered another 50% drop after the first mega-flow, leaving just 7 to 8 survivor species. No recovery occurred between the next three mega-flows and the mass extinction was complete with the last phase-2 megaflow at the KTB. The last phase of Deccan volcanism and its 3 to 4 megaflows in the early Danian C29n (zone P1b) delayed biotic recovery of marine plankton. Correlative with these intense volcanic phases, climate changed from humid/tropical to arid conditions and returned to normal tropical humidity after the last phase of volcanism. Similar environmental conditions, mass extinction and delayed recovery patterns are observed in Meghalaya, NE India.The mass extinction was likely the consequence of rapid and massive volcanic CO2 and SO2 gas emissions, leading to high continental weathering rates, global warming, cooling, acid rains, ocean acidification and a carbonate crisis in the marine environment.

  10. Ar-40 to Ar-39 ages of the large impact structures Kara and Manicouagan and their relevance to the Cretaceous-Tertiary and the Triassic-Jurassic boundary

    NASA Technical Reports Server (NTRS)

    Trieloff, M.; Jessberger, E. K.

    1992-01-01

    Since the discovery of the Ir enrichment in Cretaceous-Tertiary boundary clays in 1980, the effects of a 10-km asteroid impacting on the Earth 65 Ma ago have been discussed as the possible reason for the mass extinction--including the extinction of the dinosaurs--at the end of the Cretaceous. But up to now no crater of this age that is large enough (ca. 200 km in diameter) has been found. One candidate is the Kara Crater in northern Siberia. Kolesnikov et al. determined a K-Ar isochron of 65.6 +/- 0.5 Ma, indistinguishable from the age of the K-T boundary and interpreted this as confirmation of earlier proposals that the Kara bolide would have been at least one of the K-T impactors. Koeberl et al. determined Ar-40 to Ar-39 ages ranging from 70 to 82 Ma and suggested an association to the Campanian-Maastrichtian boundary, another important extinction horizon 73 Ma ago. We dated four impact melts, KA2-306, KA2-305, SA1-302, and AN9-182. Results from the investigation are discussed.

  11. Comet dust as a source of amino acids at the Cretaceous/Tertiary boundary

    NASA Technical Reports Server (NTRS)

    Zahnle, Kevin; Grinspoon, David

    1990-01-01

    It is suggested here that the large amounts of apparently extraterrestrial amino acids detected recently in rocks at the K/T boundary at Stevns Klint, Denmark were actually deposited with the dust from a giant comet trapped in the inner solar system, a fragment of which comprised the K/T impactor. Amino acids or their precursors in the comet dust would have been swept up by the earth both before and after the impact, but any conveyed by the impactor itself would have been destroyed. The observed amino acid layers would thus have been deposited without an impact.

  12. Evidence for a single impact at the Cretaceous-Tertiary boundary from trace elements

    NASA Technical Reports Server (NTRS)

    Gilmour, Iain; Anders, Edward

    1988-01-01

    Not only meteoritic elements (Ir, Ni, Au, Pt metals), but also some patently non-meteoritic elements (As, Sb) are enriched at the K-T boundary. Eight enriched elements at 7 K-T sites were compared and it was found that: All have fairly constant proportions to Ir and Kilauea (invoked as an example of a volcanic source of Ir by opponents of the impact theory) has too little of 7 of these 8 elements to account for the boundary enrichments. The distribution of trace elements at the K-T boundary was reexamined using data from 11 sites for which comprehensive are available. The meteoritic component can be assessed by first normalizing the data to Ir, the most obviously extraterrestrial element, and then to Cl chondrites. The double normalization reduces the concentration range from 11 decades to 5 and also facilitates the identification of meteoritic elements. At sites where trace elements were analyzed in sub-divided samples of boundary clay, namely, Caravaca (SP), Stevns Klint (DK), Flaxbourne River (NZ) and Woodside Creek (NZ), Sb, As and Zn are well correlated with Ir across the boundary implying a common deposition mechanism. Elemental carbon is also enriched by up to 10,000 x in boundary clay from 5 K-T sides and is correlated with Ir across the boundary at Woodside Creek. While biomass would appear to be the primary fuel source for this carbon a contribution from a fossil fuel source may be necessary in order to account for the observed C abundance.

  13. Cretaceous-tertiary boundary event: Evidence for a short time scale

    SciTech Connect

    Gilmour, I.; Anders, E. )

    1989-02-01

    Three non-meteoritic trace elements (Sb, As and Zn) are strongly enriched at eleven K-T boundary sites, along with mainly or partly meteoritic elements (Ir, Ni, Cr, Fe and Co). The proportions (As, Sb, Zn/Ir) are remarkably constant over a {approx}100-fold range in concentration. This correlation persists in sub-layers of boundary clay and even extends to soot (from burned land biomass). Apparently, all the components, despite their diverse origins, became associated in a single, global component prior to deposition. No wholly satisfactory source is available for As, Sb and Zn: the trace element pattern in volcanic gases does not match that in K-T boundary clay, with ratios to Ir falling short by 1 to 2 orders of magnitude, terrestrial rocks do not reach high enough concentrations and (modern) ocean water contains too little Zn, but on balance, the latter source seems preferable--perhaps augmented by volatiles from the impact crater. Apparently, Ir-bearing ejecta and soot from forest fires coagulated in the stratosphere and then fell out together, sweeping out oceanic biomass and anoxically precipitating As, Sb and Zn. Significantly, the amounts of marine and land biomass at the K-T boundary correspond to about the steady-state global inventory (1 generation), and the amounts of As, Sb and Zn are also within a factor of {approx}5 of the global inventory. This is expected in a catastrophic but not a gradualist scenario.

  14. Macrofossil extinction patterns at Bay of Biscay Cretaceous-Tertiary boundary sections

    NASA Technical Reports Server (NTRS)

    Ward, Peter D.; Macleod, Kenneth

    1988-01-01

    Researchers examined several K-T boundary cores at Deep Sea Drilling Project (DSDP) core repositories to document biostratigraphic ranges of inoceramid shell fragments and prisms. As in land-based sections, prisms in the deep sea cores disappear well before the K-T boundary. Ammonites show a very different extinction pattern than do the inoceramids. A minimum of seven ammonite species have been collected from the last meter of Cretaceous strata in the Bay of Biscay basin. In three of the sections there is no marked drop in either species numbers or abundance prior to the K-T boundary Cretaceous strata; at the Zumaya section, however, both species richness and abundance drop in the last 20 m of the Cretaceous, with only a single ammonite specimen recovered to date from the uppermost 12 m of Cretaceous strata in this section. Researchers conclude that inoceramid bivalves and ammonites showed two different times and patterns of extinction, at least in the Bay of Biscay region. The inoceramids disappeared gradually during the Early Maestrichtian, and survived only into the earliest Late Maestrichtian. Ammonites, on the other hand, maintained relatively high species richness throughout the Maestrichtian, and then disappeared suddenly, either coincident with, or immediately before the microfossil extinction event marking the very end of the Cretaceous.

  15. Main Deccan Trap Eruptions occurred close to the Cretaceous-Tertiary Boundary: increasing Multiproxy Evidence

    NASA Astrophysics Data System (ADS)

    Adatte, Thierry; Keller, Gerta

    2010-05-01

    Recent studies indicate that the bulk (80%) of the Deccan trap eruptions occurred over less than 0.8 m.y. in magnetic polarity C29r spanning the Cretaceous-Tertiary boundary (KTB) (Chenet et al, 2007, 2008). Detailed multiproxy studies from several sections from southeastern India (Rajhamundry, Andhra Pradesh) and central India (Jilmili, Madhya Pradesh) place the KTB event near the end of the main Deccan eruptive phase and indicate that Deccan volcanism could have been a major contributor to the mass extinction (Keller et al., 2008, 2009). Geochemical, mineralogical and micropaleontogical evidence from localities outside India suggest that this megapulse took place in the uppermost Maastrichtian C29r (CF2-CF1 transition). For example, a rapid shift in 187Os/188Os ratios observed in three deep-sea sections (Atlantic, Pacific and Indian Oceans) are interpreted to mark the onset of the main Deccan pulse in C29r (Robinson et al., 2009). Foraminiferal oxygen isotope data from DSDP Site 525 (South Atlantic) show a short rapid global warming in C29r (Li and Keller, 1998) coincident with the decline in 187Os/188Os ratios. This warming is also observed in the terrestrial plant record (Wilf 2003). A coeval increase in weathering observed in Site 525 and Tunisia (Adatte et al., 2002) is marked by dominant kaolinite clay assemblages. In the same interval a significant decrease in bulk carbonate content suggests acidification due to volcanic SO2. Enhanced dissolution is also observed at DSDP Site 527 and Gubbio, Italy. Calcareous microfossils (planktic foraminifera and nannofossils) experienced major stress conditions expressed by species dwarfing, decreased diversity and decreased abundance (Keller, 2005). These observations indicate that Deccan volcanism played a key role in increasing atmospheric CO2 levels that resulted in global warming and enhanced greenhouse effect, which coupled with high SO2 emission increased biotic stress and predisposed faunas to eventual extinction at the KTB. Adatte, T. Keller, G. & Stinnesbeck, W. (2002). PPP 178; 3-4, Pages 165-196. Chenet, A-L., Quidelleur, X., Fluteau, F., Courtillot, V., 2007. EPSL. 263, 1-15. Chenet, A-L., Fluteau, F., Courtillot, V., Gerard, M., Subbarao, K.V., 2008. J. Geophys. Res. 113, B04101. Li, L., Keller, G., 1998c. Geology 26, 995-998. Keller, G. 2005. Lithos, 79, 3-4, 317-341. Keller, G., Adatte, T., Gardin, S., Bartolini, A., Bajpai, S., 2008. EPSL 268, 293-311. Keller, G., Adatte, T., Bajpai, S., Mohabey, D.M., Widdowson, M., Khosla, A., Sharma, R., Khosla, S. C., Gertsch, B., Fleitmann, D., Sahni, A. 2009.. EPSL, 282, 1-4, 10-23 Robinson, Ravizza, G., Coccioni, R. Peucker-Ehrenbrink, B. Norris, R. 2009. EPSL, 281, 3-4, 159-158. Wilf, P., Johnson, K.R., Huber, B.T., 2003. PNAS 100, 599-604.

  16. Ammonite and inoceramid bivalve extinction patterns in Cretaceous/Tertiary boundary sections of the Biscay region (southwestern France, northern Spain)

    NASA Astrophysics Data System (ADS)

    Ward, P. D.; Kennedy, W. J.; MacLeod, K. G.; Mount, J. F.

    1991-12-01

    Cretaceous/Tertiary boundary sections located in the Biscay region of southwestern France and northern Spain are among the most complete of all known land-based sequences across this boundary. New collections of ammonites and inoceramid bivalves from five localities show quite distinct extinction patterns for these two groups of characteristic Cretaceous molluscs: from eight to ten ammonite species extend into the latest Cretaceous, and possibly to the boundary. In contrast, inoceramid bivalve diversity gradually diminished from a minimum of six species in the early Maastrichtian to zero at the beginning of the late Maastrichtian, when they were replaced by the cryptic pteriomorph Tenuipteria. Extinction of typical inoceramids well before the end of the Maastrichtian is supported by data from other regions, indicating that it was a global rather than local phenomenon.

  17. Extinction and survival of plant life following the Cretaceous/Tertiary boundary event, Western Interior, North America ( USA).

    USGS Publications Warehouse

    Tschudy, R.H.; Tschudy, B.D.

    1986-01-01

    The palynological Cretaceous/Tertiary boundary is recognized in the northern part of the Western Interior by the abrupt disappearance of a few characteristic Cretaceous pollen genera. In the southern part, the boundary is recognized by the disappearance of a somewhat different group of pollen. The abrupt change in both regions takes place precisely at the stratigraphic horizon at which boundary clay layers containing anomalously high concentrations of iridium are found. All the principal Cretaceous pollen genera that disappear regionally have been reported from Tertiary rocks in other parts of North America. Differential apparent extinction and/or survival reflects a pronounced temporary disruption of plant life immediately after the impact event. Some Cretaceous plants must have persisted in refugia to have provided the propagules for the rapid recovery of the flora. No massive total extinction of plant genera at the end of the Cretaceous can be seen from the palynologic record. -from Authors

  18. Iridium, shocked minerals, and trace elements across the Cretaceous/Tertiary boundary at Maud Rise, Wedell Sea, and Walvis Ridge, South Atlantic Ocean

    NASA Technical Reports Server (NTRS)

    Huffman, Alan R.; Crocket, James H.; Carter, Neville L.

    1988-01-01

    Sediments spanning a 5 meter section across the Cretaceous-Tertiary boundary at ODP holes 689B and 690D, Maud Rise, Wedell Sea and hole 527, Walvis Ridge, are being analyzed for shock deformation, PGE's and other trace elements (including REE's). Mineral separates from each sample were studied with optical microscopy to determine the distribution and microstructural state of quartz and feldspar present in the sediments. Samples from Maud Rise were taken of the K/T transition and at about 50 cm intervals above and below it. These samples consist of carbonate-rich sediments, with the K/T transition marked by a change from white Maastrichtian oozes to a greenish ooze with higher concentrations of altered volcanic clay and vitric ash. The Walvis Ridge site is characterized by more clay-rich sediments with average carbonate content about 60 to 70 percent. Initial results from RNAA studies indicate that iridium is present in all the Maud Rise samples in concentrations equal to or greater than 0.01 ppb (whole-rock basis). Preliminary results from optical microscopy indicate the occurrence of shock mosaicism in quartz and feldspar in all of the samples studied. The pervasiveness of shock mosaicism and presence of planar features to 2 meters from the K/T boundary indicates that a single impact or volcanic explosion 66 ma may be ruled out as responsible for the K/T event. A similar conclusion may be drawn independently from the distribution of iridium and other trace elements. Regardless of the source of the shock waves and sediment contamination, multiple events are required over a ca.0.5 my timespan; currently we favor endogenous sources.

  19. Faunal, geochemical and paleomagnetic change across the Cretaceous-Tertiary boundary at Braggs, Alabama

    SciTech Connect

    Jones, D.S.; Mueller, P.A.; Channell, J.E.T.; Dobson, J.P.; Bryan, J.R.

    1985-01-01

    Near Braggs, Alabama the Upper Cretaceous Prairie Bluff Chalk underlies the Paleocene Pine barren Member of the Clayton Formation in a well-exposed, continuous K/T boundary section composed of interbedded sands, shales, and limestones of shallow marine origin. As determined from foraminiferal and calcareous nannofossil biostratigraphies, and the Maastrichtian/Danian contact at Braggs lies below a marine hardground in a zone associated with slow sedimentation and a deepening paleoenvironment. The K/T boundary occurs within a well-defined reversed magnetozone which we correlate to the reversed interval between marine magnetic anomalies 29 and 30. This magnetozone is approx.3.2 m thick, suggesting a sedimentation rate of only 6.8 m/m.y. across the boundary. The boundary occurs in the lower part of the magnetozone, about 1 m above its base, unlike the Italian sections where the boundary occurs toward the top of the reversed magnetozone. Marine macrofossils occur abundantly throughout the sequence had have been analyzed on a bed by bed basis to document the pattern of extinction and paleoenvironmental change. To help calibrate the rate of faunal change and refine the bio- and magnetostratigraphies, the Rb-Sr systematics of glauconites from the section are being investigated and the change of /sup 87/Sr//sup 86/Sr in seawater is being investigated by analysis of CaCO/sub 3/ from molluscan shells and foraminiferal tests. Initial Rb-Sr measurements of glauconites from a bed above the contact suggest an age of 60 Ma with an initial /sup 87/Sr//sup 86/Sr compatible with /sup 87/Sr//sup 86/Sr measured in shell carbonate at this site. Values for shell carbonate range from .707713 to .707826 and appear to show a maximum near the boundary.

  20. The Cretaceous-Tertiary boundary marine extinction and global primary productivity collapse

    NASA Technical Reports Server (NTRS)

    Zachos, J. C.; Arthus, M. A.; Dean, W. E.

    1988-01-01

    The extinction of marine phyto-and zoo-plankton across the K-T boundary has been well documented. Such an event may have resulted in decreased photosynthetic fixation of carbon in surface waters and a collapse of the food chain in the marine biosphere. Because the vertical and horizontal distribution of the carbon isotopic composition of total dissolved carton (TDC) in the modern ocean is controlled by the transfer of organic carbon from the surface to deep reservoirs, it follows that a major disruption of the marine biosphere would have had a major effect on the distribution of carbon isotopes in the ocean. Negative carbon isotope excursions have been identified at many marine K-T boundary sequences worldwide and are interpreted as a signal of decreased oceanic primary productivity. However, the magnitude, duration and consequences of this productivity crisis have been poorly constrained. On the basis of planktonic and benthic calcareous microfossil carbon isotope and other geochemical data from DSDP Site 577 located on the Shatsky Rise in the north-central Pacific, as well as other sites, researchers have been able to provide a reasonable estimate of the duration and magnitude of this event.

  1. Ruthenium/iridium ratios in the Cretaceous-Tertiary boundary clay: Implications for global dispersal and fractionation within the ejecta cloud

    NASA Technical Reports Server (NTRS)

    Evans, Noreen Joyce; Goodfellow, W. D.; Gregoire, D. C.; Veizer, J.

    1992-01-01

    Ruthenium (Ru) and iridium (Ir) are the least mobile platinum group elements (PGE's) within the Cretaceous-Tertiary (K-T) boundary clay (BC). The Ru/Ir ratio is, therefore, the most useful PGE interelement ratio for distinguishing terrestrial and extraterrestrial contributions to the BC. The Ru/Ir ratio of marine K-T sections (1.77 +/- 0.53) is statistically different from that of the continental sections (0.93 +/- 0.28). The marine Ru/Ir ratios are chondritic (C1 = 1.48 +/- 0.09), but the continental ratios are not. We discovered an inverse correlation of shocked quartz size (or distance from the impact site) and Ru/Ir ratio. This correlation may arise from the difference in Ru and Ir vaporization temperature and/or fractionation during condensation from the ejecta cloud. Postsedimentary alteration, remobilization, or terrestrial PGE input may be responsible for the Ru/Ir ratio variations within the groups of marine and continental sites studied. The marine ratios could also be attained if approximately 15 percent of the boundary metals were contributed by Deccan Trap emissions. However, volcanic emissions could not have been the principal source of the PGE's in the BC because mantle PGE ratios and abundances are inconsistent with those measured in the clay. The Ru/Ir values for pristine Tertiary mantle xenoliths (2.6 +/- 0.48), picrites (4.1 +/- 1.8), and Deccan Trap basalt (3.42 +/- 1.96) are all statistically distinct from those measured in the K-T BC.

  2. Dynamic deformation of volcanic ejecta from the Toba caldera: possible relevance to Cretaceous/Tertiary boundary phenomena

    SciTech Connect

    Carter, N.L.; Officer, C.B.; Chesner, C.A.; Rose, W.I.

    1986-05-01

    Plagioclase and biotite phenocrysts in ignimbrites erupted from the Toba caldera, Sumatra, show microstructures and textures indicative of shock stress levels higher than 10 GPa. Strong dynamic deformation has resulted in intense kinking in biotite and, with increasing shock intensity, the development of plagioclase of planar features, shock mosaicism, incipient recrystallization, and possible partial melting. Microstructures in quartz indicative of strong shock deformation are rare, however, and many shock lamellae, if formed, may have healed during post-shock residence in the hot ignimbrite; they might be preserved in ash falls. Peak shock stresses from explosive silicic volcanism and other endogenous processes may be high and if so would obviate the need for extraterrestrial impacts to produce all dynamically deformed structures, possibly including shock features observed near the Cretaceous/Tertiary boundary. 38 references, 3 figures.

  3. Extended period of K/T boundary mass extinction in the marine realm

    NASA Technical Reports Server (NTRS)

    Keller, G.

    1988-01-01

    The Cretaceous/Tertiary (K/T) boundary mass extinction has been widely recognized as a nearly instantaneous catastrophy among marine plankton such as foraminifera. However, the suddenness of this extinction event may have been overemphasized because most pelagic K/T boundary sequences are stratigraphically incomplete and generally lack the earliest Tertiary (Zones P0 and P1a) either due to carbonate dissolution and/or non-deposition. Stratigraphically complete sections appear to be restricted to continental shelf regions with high sedimentation rates and deposition well above the CCD. Such sections have been recovered from El Kef, Tunisia (1) and Brazos River, Texas. Quantitative foraminiferal analysis of these sections indicate an extinction pattern beginning below the K/T boundary and ending above the boundary. These data imply that the mass extinction event was not geologically instantaneous, but occurred over an extended period of time. Evidence supporting this conclusion is discussed.

  4. Nitrogen geochemistry of a Cretaceous-Tertiary boundary site in New Zealand

    NASA Technical Reports Server (NTRS)

    Gilmour, Iain; Boyd, Stuart R.

    1988-01-01

    Nitrogen in the basal layer of the K-T boundary clay at Woodside Creek, New Zealand, has an abundance of 1100 ppm, a 20-fold enrichment over Cretaceous and Tertiary values. The enrichment parallels that for Ir and elemental carbon (soot); all decrease over the next 6 mm of the boundary clay. The C/N ratio, assuming the nitrogen to be associated with organic rather than elemental carbon, is approximately 5 for the basal layer compared to 20 to 30 for the remainder of the boundary clay. The correlation between N and Ir abundances appears to persist above the boundary, implying that the N is intimately associated with the primary fallout and remained with it during the secondary redeposition processes that kept the Ir abundance relatively high into the lowermost Tertiary. Apparently the basal layer of the boundary clay represents the accumulation of a substantial quantity of N with an isotopic composition approximately 10 percent heavier than background delta value of N-15 values. If the boundary clay represents an altered impact glass from a meteorite impact than it probably denotes a time period of less than 1 year. Therefore, the changes in nitrogen geochemistry apparently occurred over a very short period of time. The high abundance of N and the correspondingly low C/N ratio may reflect enhanced preservation of organic material as a result of the rapid sweepout and burial of plankton by impact ejecta, with little or no bacterial degradation. It is conceivable that the shift in delta value of N-15 may represent an influx of nitrogen from a different source deposited contemporaneously with the impact ejecta. An interesting possibility is that it may be derived from nitrate, produced from the combustion of atmospheric nitrogen.

  5. Biogeochemical and ecological consequences of dissolved organic carbon released from soot particles from global firestorms at the Cretaceous/Tertiary boundary: Was the Strangelove Ocean a blackwater ocean?

    NASA Astrophysics Data System (ADS)

    McKnight, D. M.; Steinberg, C.; Baron, J. S.

    2002-12-01

    Phytoplankton productivity in the oceans was suppressed for about 200,000 years after the Cretaceous/Tertiary (K/T) boundary event, and many species of marine calcareous plankton became extinct at the boundary. Proposed causes for what has been called the "Strangelove Ocean" include acidification of oceanic surface waters and effects associated with deposition from a global cloud of firestorm ash. We evaluate the potential effects on the marine ecosystem of leaching of dissolved organic carbon (DOC) from firestorm soot particles. Based upon the quantity of soot deposited in the clay layer at the K/T boundary, we estimate that DOC concentrations in oceanic surface waters increased by at least a factor of two. These results are also supported by extrapolations based upon DOC increases in lakes and streams associated with deposition of ash in Rocky Mountain National Park from the Yellowstone fire of 1988. The soluble soot-derived humic substances would have had different chemical properties than marine humic substances, including a more aromatic character, greater absorptivity for visible light and greater quinone content. These humic substances could have acted as stress-inducing xenobiotic compounds and could have changed the physical and chemical characteristics of the marine environment. Cellular uptake of these humic compounds could have also inhibited calcite precipitation by coccolithophorids and foraminifera, contributing to the greater extinction of these species compared to dinoflagellates. Calculations show that the greater light absorption by the firestorm-derived humic substances would have decreased the depth of the mixed zone, limiting the dilution of the DOC pulse, and would have decreased the depth of the photic zone, spatially restructuring marine ecosystems.

  6. Impact mineralogy and chemistry of the cretaceous-tertiary boundary at DSDP site 576

    NASA Technical Reports Server (NTRS)

    Bostwick, Jennifer A.; Kyte, Frank T.

    1993-01-01

    We have identified the K/T boundary in pelagic clay sediments from cores at DSDP Site 576 in the western North Pacific. Detailed geochemical and trace mineralogical analyses of this boundary section are in progress and initial results indicate similarities and differences relative to the only other clay core investigated in detail; DSDP Site 596, a locality in the western South Pacific. Peak Ir concentrations of 13 ng/g in DSDP Hole 576B are virtually identical with those observed in the South Pacific, but in the North Pacific this peak is much narrower and the integrated Ir fluence of 85 ng cm(exp -2) is 4 times lower (320 in Hole 596). Of the 34 elements measured, only Ir and Cr were found to have anomalous concentrations in K/T boundary samples. Trace mineral residues were obtained by washing away clays and sequential chemical leaches (including HF) to remove typical hydrogenous and biogenous sediment components (e.g., zeolites and radiolarian opal). We attempted to quantitatively recover the entire trace mineral assemblage for grains greater than 30 micrometers in diameter. Our mineral residues were dominated by two phases: quartz and magnesioferrite spinel. Other non-opaque mineral grains we have positively identified were trace K-feldspar, plagioclase, corundum, and muscovite. Of these only K-feldspar exhibited planar deformation features (PDF). We have not found abundant plagioclase, as in the South Pacific suggesting that this phase was either not preserved in the North Pacific, or that in the south, it has a non-impact (i.e., volcanic) source. PDF in quartz were commonly obscured by secondary overgrowths on the surfaces of quartz grains, presumably from diagenetic reprecipitation of silica dissolved from opaline radiolarian tests that are common in these sediments. However, careful examination revealed that most grains had multiple sets of PDF. Of the 133 quartz grains greater than 30 micrometers analyzed, 62 percent showed evidence of shock. The largest shocked grain recovered to date had a maximum diameter of 160 micrometers, consistent with other sites in the Pacific.

  7. Tektites in Cretaceous-Tertiary boundary rocks on Haiti and their bearing on the Alvarez impact extinction hypothesis

    USGS Publications Warehouse

    Izett, G.A.

    1991-01-01

    Relic tektites are associated with a Pt-group metal abundance anomaly and shocked minerals in a thin marl bed that marks the K-T boundary on Haiti. The presence of these three impact-produced materials at the precise K-T boundary enormously strengthens the Alvarez impact extinction hypothesis. The Haitian tektites are the first datable impact products in K-T boundary rocks, and 40Ar-39Ar ages of the glass show that the K-T boundary and impact event are coeval at 64.5 ?? 0.1 Ma. -from Author

  8. Chicxulub's Cretaceous-Tertiary Boundary Twin Crater. Was There a Double Impact in the Yucatan Peninsula?

    NASA Astrophysics Data System (ADS)

    Camargo, A. Z.; Juarez, J. S.

    2004-05-01

    In 1980, Alvarez and co-authors proposed that the K/T extinctions were caused by the effects of a celestial body falling on Earth. After a long search for the impact site, the 1981 work by Penfield and Camargo on a 170 km structure in the Yucatan Peninsula got the attention of the specialists, and it was later proved that it was the crater created by the impact of that celestial body. New data suggests the existence of a second impact crater close to Chicxulub, both being of the same age and created by two fragments of the same celestial boby. A new magnetic map plotted as a color-coded shaded relief surface, reveals a feature not evident before: two interlaced ringed anomalies of about 100 and 50 km diameters, the larger one related to the magnetic signature of the Chicxulub Crater, and the second located at its E-SE edge. The 50 km anomaly, with morphology similar to Chicxulub's, is interpreted as also corresponding to an impact crater, centered at about 89 Deg. Long. W and 21 Deg. Lat. N, close to the city of Izamal. The anomaly size indicates that the diameter of the IZAMAL CRATER is about 85 km. The Chicxulub Crater, being buried under several hundred meters of Tertiary carbonate rocks, is not visible from the surface or from space; although some surface expression of its morphology has been reported. The best known is the ring of cenotes (sink holes) at the crater's rim, visible on satellite images and photographs. The JPL/NASA image PIA03379, is a color-coded shaded relief image of terrain elevation in which the topography was exagerated to highlight the Chicxulub Crater rim. On this image, a semi circular arc of dark spots is also visible immediately to the E-SE of the Chicxulub Crater rim. These spots are interpreted as large irregular karstic depressions, similar to the ones along the cenote ring of Chicxulub. On the evidence of the spatial relationship of the magnetic anomalies and the satellite image features, we tested how well the proposed Izamal Crater would fit the karstic depressions E-SE of the Chicxulub crater. We found that an 82 km diameter circle fits well the semi circle of dark spots, and interpret it as a portion of the rim of the IZAMAL impact crater. The interpreted relationships and origin of the Chicxulub and Izamal craters are: The Chicxulub crater was created after Izamal. They were created by two different impact bodies. The craters are of the same age. They were formed by two parts of the same celestial body, the MAYA BOLIDE. The diameter of the fragment impacted in Izamal is estimated to be about 4 km. This finding has implications on studies related to the K/T extinction event. Some scientists argue that the Chicxulub crater is somewhat small to account for the global K/T extinction all by itself. The double impact may account for the observed effects. Also, multiple impacts at sea may have put into the atmosphere much more sea water salts capable of dissociating into damaging chlorine compounds. Furthermore, the impact sequence may help explain the origin of the K/T boundary glasses from Haiti and better define the ballistic trajectories of the impacts ejecta and its effects on the extinctions. And the Maya Bolide orbit can be investigated to define its origin and characteristics as a comet or asteroid.

  9. Provenance of mineral phases in the Cretaceous-Tertiary boundary sediments exposed on the southern peninsula of Haiti

    NASA Technical Reports Server (NTRS)

    Kring, David A.; Hildebrand, Alan R.; Boynton, William V.

    1994-01-01

    Acid-insoluble mineral residua of tektite-bearing Cretaceous-Tertiary boundary sediments in the Beloc Formation of Haiti contain abundant shocked quartz and lesser amounts of shocked plagioclase. The shocked quartz grains typically have 2 or 3 sets of planar deformation features, although grains with up to 15 sets were observed. The proportion of shocked quartz in the boundary sediments increases with stratigraphic height; at least 70 +/- 11% of the proportion of the quartz grains are shocked in the uppermost stratigraphic interval. The proportion of shocked quartz throughout the boundary sediments indicates that these grains were excavated primarily from crystalline silicate units, which may have been covered with a small amount of porous quartz-bearing sediments. Polyhedral and moderately sutured margins in shocked polycrystalline quartz grains, the size of the crystal units in these grains and the presence of shocked plagioclase, indicate these ejecta components were excavated from a target with continental affinites, containing quartzites or metaquartzites and a sialic metamorphic and/or igneous component. Other evidence suggests the target may also have contained a significant amount of calcium carbonate and/or sulfate. The large size and amount of shocked quartz grains deposited in Haiti indicate the crater from which they were excavated was produced in the proto-Caribbean region.

  10. Provenance of mineral phases in the Cretaceous-Tertiary boundary sediments exposed on the southern peninsula of Haiti

    NASA Astrophysics Data System (ADS)

    Kring, David A.; Hildebrand, Alan R.; Boynton, William V.

    1994-12-01

    Acid-insoluble mineral residua of tektite-bearing Cretaceous-Tertiary boundary sediments in the Beloc Formation of Haiti contain abundant shocked quartz and lesser amounts of shocked plagioclase. The shocked quartz grains typically have 2 or 3 sets of planar deformation features, although grains with up to 15 sets were observed. The proportion of shocked quartz in the boundary sediments increases with stratigraphic height; at least 70 +/- 11% of the proportion of the quartz grains are shocked in the uppermost stratigraphic interval. The proportion of shocked quartz throughout the boundary sediments indicates that these grains were excavated primarily from crystalline silicate units, which may have been covered with a small amount of porous quartz-bearing sediments. Polyhedral and moderately sutured margins in shocked polycrystalline quartz grains, the size of the crystal units in these grains and the presence of shocked plagioclase, indicate these ejecta components were excavated from a target with continental affinites, containing quartzites or metaquartzites and a sialic metamorphic and/or igneous component. Other evidence suggests the target may also have contained a significant amount of calcium carbonate and/or sulfate. The large size and amount of shocked quartz grains deposited in Haiti indicate the crater from which they were excavated was produced in the proto-Caribbean region.

  11. Field guide to Cretaceous-tertiary boundary sections in northeastern Mexico

    NASA Technical Reports Server (NTRS)

    Keller, Gerta; Stinnesbeck, Wolfgang; Adatte, Thierry; Macleod, Norman; Lowe, Donald R.

    1994-01-01

    This guide was prepared for the field trip to the KT elastic sequence of northeastern Mexico, 5-8 February 1994, in conjunction with the Conference on New Developments Regarding the KT Event and Other Catastrophes in Earth History, held in Houston, Texas. The four-day excursion offers an invaluable opportunity to visit three key outcrops: Arroyo El Mimbral, La Lajilla, and El Pinon. These and other outcrops of this sequence have recently been interpreted as tsunami deposits produced by the meteorite impact event that produced the 200 to 300-km Chicxulub basin in Yucatan, and distributed ejecta around the world approximately 65 m.y. ago that today is recorded as a thin clay layer found at the K/T boundary. The impact tsunami interpretation for these rocks has not gone unchallenged, and others examining the outcrops arrive at quite different conclusions: not tsunami deposits but turbidites; not KT at all but 'upper Cretaceous.' Indeed, it is in hopes of resolving this debate through field discussion, outcrop evaluation, and sampling that led the organizers of the conference to sanction this field trip. This field guide provides participants with background information on the KT clastic sequence outcrops and is divided into two sections. The first section provides regional and logistical context for the outcrops and a description of the clastic sequence. The second section presents three representative interpretations of the outcrops by their advocates. There is clearly no way that these models can be reconciled and so two, if not all three, must be fundamentally wrong. Readers of this guide should keep in mind that many basic outcrop observations that these models are based upon remain unresolved. While great measures were taken to ensure that the information in the description section was as objective as possible, many observations are rooted in interpretations and the emphasis placed on certain observations depends to some degree upon the perspective of the author.

  12. New method for the measurement of osmium isotopes applied to a New Zealand Cretaceous/Tertiary boundary shale

    USGS Publications Warehouse

    Lichte, F.E.; Wilson, S.M.; Brooks, R.R.; Reeves, R.D.; Holzbecher, J.; Ryan, D.E.

    1986-01-01

    The determination of osmium content and isotopic abundances in geological materials has received increasing attention in recent years following the proposal of Alvarez et al.1 that mass extinctions at the end of the Cretaceous period were caused by the impact of a large (???10km) meteorite which left anomalously high iridium levels as a geochemical signature in the boundary shales. Here we report a new and simple method for measuring osmium in geological materials, involving fusion of the sample with sodium peroxide, distillation of the osmium as the tetroxide using perchloric acid, extraction into chloroform, and absorption of the chloroform extract onto graphite powder before instrumental neutron activation analysis. In a variant of this technique, the chloroform extract is back-extracted into an aqueous phase and the osmium isotopes are determined by plasma-source mass spectrometry (ICPMS). We have used this method on the Woodside Creek (New Zealand) Cretaceous/Tertiary boundary clay and have obtained the first osmium content (6g ng g-1) for this material. The 187Os/186Os ratio is 1.12??0.16, showing a typical non-crustal signature. This combined distillation-extraction- ICPMS method will prove to be useful for measuring osmium isotopes in other geological materials. ?? 1986 Nature Publishing Group.

  13. Extended mitogenomic phylogenetic analyses yield new insight into crocodylian evolution and their survival of the Cretaceous-Tertiary boundary.

    PubMed

    Roos, Jonas; Aggarwal, Ramesh K; Janke, Axel

    2007-11-01

    The mitochondrial genomes of the dwarf crocodile, Osteolaemus tetraspis, and two species of dwarf caimans, the smooth-fronted caiman, Paleosuchus trigonatus, and Cuvier's dwarf caiman, Paleosuchus palpebrosus, were sequenced and included in a mitogenomic phylogenetic study. The phylogenetic analyses, which included a total of ten crocodylian species, yielded strong support to a basal split between Crocodylidae and Alligatoridae. Osteolaemus fell within the Crocodylidae as the sister group to Crocodylus. Gavialis and Tomistoma, which joined on a common branch, constituted a sister group to Crocodylus/Osteolaemus. This suggests that extant crocodylians are organized in two families: Alligatoridae and Crocodylidae. Within the Alligatoridae there was a basal split between Alligator and a branch that contained Paleosuchus and Caiman. The analyses also provided molecular estimates of various divergences applying recently established crocodylian and outgroup fossil calibration points. Molecular estimates based on amino acid data placed the divergence between Crocodylidae and Alligatoridae at 97-103 million years ago and that between Alligator and Caiman/Paleosuchus at 65-72 million years ago. Other crocodilian divergences were placed after the Cretaceous-Tertiary boundary. Thus, according to the molecular estimates, three extant crocodylian lineages have their roots in the Cretaceous. Considering the crocodylian diversification in the Cretaceous the molecular datings suggest that the extinction of the dinosaurs was also to some extent paralleled in the crocodylian evolution. However, for whatever reason, some crocodylian lineages survived into the Tertiary. PMID:17719245

  14. Micropaleontology and sedimentology across the Cretaceous/Tertiary boundary at La Ceiba (Mexico): impact-generated sediment gravity flows

    NASA Astrophysics Data System (ADS)

    Arz, J. A.; Arenillas, I.; Soria, A. R.; Alegret, L.; Grajales-Nishimura, J. M.; Liesa, C. L.; Melndez, A.; Molina, E.; Rosales, M. C.

    2001-10-01

    A micropaleontological and sedimentological study across the Cretaceous/Tertiary boundary-officially Cretaceous/Paleogene (K/P) boundary from the La Ceiba section (Mexico) was performed to examine the K/P planktic foraminiferal biostratigraphy, the sedimentology of a controversial K/P clastic unit, and the benthic and planktic foraminiferal assemblages turnover across this boundary. The clastic unit is stratigraphically placed between two pelagic marly units (Mndez and Velasco Formations) and displays a fining-upward gradation similar to a turbidite sequence. This K/P clastic unit contains a basal subunit consisting of calcareous marls rich in millimeter-sized spherules (microtektites) altered to clay minerals, abundant detrital quartz, mica minerals, and shocked quartz. According to the K/P stratotype definition from El Kef (Tunisia), the K/P boundary at La Ceiba must be placed at the base of the clastic (microspherules) unit since it is equivalent to the base of the boundary clay at El Kef. A short hiatus affects the lower part of the Danian, including the Guembelitria cretacea and Parvularugoglobigerina eugubina biozones and the lower part of the Parasubbotina pseudobulloides biozone. Nearly all commonly recorded Maastrichtian planktic foraminiferal species were found in the uppermost Maastrichtian interval, and there was no support for a gradual mass extinction pattern in the terminal Cretaceous. Benthic foraminiferal assemblages suggest that the La Ceiba section was deposited at lower bathyal depths. Oscillating megatsunami waves and/or a sea-level lowstand cannot explain the nature of the clastic deposits because of the observed deposition paleodepth (more than 1000 m). There is also evidence that the clastic unit was deposited under a high-sedimentation rate in upper flow regimes and that was emplaced as a single-pulse event as turbidites. This datum and other sedimentological features support a sediment gravity flow genesis for the clastic unit. All these results are consistent with the K/P impact theory and the asteroid impact on the Yucatan Peninsula.

  15. Metal precipitation in the Cretaceous-Tertiary boundary clay at Stevns Klint, Denmark

    NASA Astrophysics Data System (ADS)

    Schmitz, B.

    1985-11-01

    The theory that enrichment of the Fish Clay in Denmark occurs by the precipitation of metals at a geochemical barrier is proposed. The compositions of the layers of the Fish Clay are described, and a table of the elemental concentrations in the Fish Clay is provided. Data supporting the precipitation of elements as sulfides at the redoxcline include: (1) the chalcophile element abundance pattern in the Fish Clay; (2) the precipitation of metals at the anoxic-oxic boundary; and (3) the large amount of small pyrite spheroids at the redoxcline. A precipitation model depicting the process of elemental enrichment in the Fish Clay, based on metal-bearing pore solutions losing their metals by precipitation upon passing the boundary between the oxic Cretaceous chalk and the overlying anoxic and hydrogen sulfide-rich Fish Clay, is examined.

  16. Abrupt appearance of shocked quartz at the Cretaceous-Tertiary boundary, Raton Basin, Colorado and New Mexico

    SciTech Connect

    Izett, G.A.; Pillmore, C.L.

    1985-01-01

    Unique quartz grains as large as 0.5 mm and having up to 6 sets of closely spaced microfractures (CSM) occur at the palynological K-T boundary at 9 scattered sites from Trinidad, Colorado, south 50 km to Raton, New Mexico. Similar quartz grains at the K-T boundary in Montana and Europe were ascribed a shock-metamorphic origin by B. Bohor and colleagues in 1984-85. In the Raton Basin, quartz grains with CSM are concentrated at the top and base of a 2.5-cm-tick kaolinite bed in a nonmarine sequence of somber-colored sandstone, siltstone, shale, and coal. No quartz grains with CSM have yet been found below the K-T bed in the Raton Basin, but a few have been found about 25 cm below the K-T bed at Brownie Butte, Montana. Most quartz grains having CSM are single optical units, but some are compound grains showing sutured boundaries (metaquartzite). Nearly all quartz grains with CSM have refractive indices and birefringence normal for quartz which suggests they formed at not more than 100 kb (low shock); however, a few have n/sub 0/ lowered to 1.538, but have normal birefringence. About half of 100 measured CSM in quartz make an angle of 15-25 degrees with the base (0001). The K-T kaolinite bed in the Raton Basin contains anomalously large amounts of Ir and is possibly coeval with marine, Ir-bearing K-T claystone beds in Europe described in 1980 by W. Alvarez and his associated who suggested they formed when a large bolide struck the Earth causing mass extinction of certain animals and plants. The shocked quartz and metaquartzite at the K-T boundary is compelling evidence that a bolide struck an onland-area of quartz-rich crustal rocks--not in an ocean.

  17. Quenched magnetite in cretaceous-tertiary boundary microtekite-like spheroid

    NASA Technical Reports Server (NTRS)

    Smit, J.; Kyte, F. T.; Wasson, J. T.

    1984-01-01

    The magnetite containing spheres collected from a kt boundary localities in Italy were analyzed. It was found that these spheres contain relatively high concentrations of Ir. The spheres were analyzed for siderophile elements Ir, Pt, Au, Pd, Os, and Re. Elements Ir, Pt, Pd, and Au were found in high concentrations in magnetic spheres and their concentrations are similar to those in most meteorites. It is suggested that the magnetite spheres do not contain a meteorite component which may be a relic of the kt event.

  18. Faunal and erosional events in the Eastern Tethyan Sea across the K/T boundary

    NASA Technical Reports Server (NTRS)

    Keller, G.; Benjamini, C.

    1988-01-01

    A regional pattern of three closely spaced erosional events at and above the K/T boundary was determined from six Cretaceous/Tertiary boundary sections in the Negev of Israel. The sections were collected from locations throughout the central and northern Negev. All sections are lithologically similar. The Maastrichtian consists of a sequence of limestone beds intercalated with thin marly beds. In some sections, the last limestone bed is followed by 1 to 2 m of calcareous marls grading upwards into several meters of grey shale. In other sections the limestone bed is followed directly by grey shale with the contact containing particles of limestone and marl. A 5 to 20 cm thick dark grey organic-rich clay layer is present about 1.5 to 2.5 m above the base of the grey shale. The grey shale grades upwards into increasingly carbonate rich marls. No unconformities are apparent in field outcrops. During field collection the dark grey clay layer was believed to represent the K/T boundary clay. Microfossil analysis however identified the boundary at the base of the grey shale. The black shale represents a low productivity anoxic event similar to, but younger than, the K/T boundary clay in other K/T boundary sections. High resolution planktic foraminiferal and carbonate analysis of these sections (at 5 to 10 cm intervals) yield surprising results. The K/T boundary is marked by an erosional event which removed part or all of the uppermost Maastrichtian marls above the last limestone bed. Percent carbonate data for four Negev sections are illustrated and show the regional similarities in carbonate sedimentation. Faunal and carbonate data from the Negev sections thus show three closely spaced short erosional events at the K/T boundary and within the first 50,000 to 100,000 years of the Danian. These K/T boundary erosional events may represent global climatic or paleoceanographic events.

  19. The causes for geographical variations in OS187/OS186 at the Cretaceous-Tertiary boundary

    NASA Technical Reports Server (NTRS)

    Turekian, K. K.; Esser, B. K.; Ravizza, G. E.

    1988-01-01

    Researchers at Yale has approached the problem of the osmium isotopic composition of marine deposits formed in contact with both oxidized and reduced bottom waters. The measured (187) Os/(186) Os ratios of modern bulk sediment can be explained using mixing equations involving continental detrital, volcaniclastic, cosmogenic and hydrogeneous components. These studies show that sediments deposited under reducing marine conditions contain a hydrogenous component which is enriched in Re and has a radiogenic (187) Os/(186) Os ratio. The presence of such a hydrogenous component in the marine fish clay at Stevns Klint can account for the elevation of its (187) Os/(186) Os ration above the expected meteoritic value. Mass balance considerations require the Re/Os ratio of the phase precipitated from the terminal Cretaceous sea at Stevns Klint to have been about one tenth the value observed in contemporary deposits in the Black Sea, assuming Re has not been lost (or Os gained) subsequent to precipitation. In continental sections, the elevation of the (187) Os/(186) Os ratio in boundary layers may be due to precipitation from continental waters of crustally-derived radiogenic osmium either contemporaneous with the meteoritic (or mantle) osmium deposition or later during diagenesis.

  20. A Search for Soot from Global Wildfires in Central Pacific Cretaceous-Tertiary Boundary and Other Extinction and Impact Horizon Sediments

    NASA Astrophysics Data System (ADS)

    Wolbach, Wendy S.; Widicus, Susanna; Kyte, Frank T.

    2003-01-01

    Hypotheses of global wildfires following the Cretaceous-Tertiary (KT) boundary impact are supported by high concentrations of elemental carbon (3.6 mg cm-2) and soot (1.8 mg cm-2) in DSDP Site 465, which was located several thousand kilometers from potential continental sources at 65 Ma. Soot is not preserved at four other central Pacific KT localities, but this is attributed to loss during oxic diagenesis. We find no evidence for wildfires related to major impacts in the late Eocene or to Ir anomalies and extinctions in the late Cenomanian.

  1. A search for soot from global wildfires in central Pacific Cretaceous-Tertiary boundary and other extinction and impact horizon sediments.

    PubMed

    Wolbach, Wendy S; Widicus, Susanna; Kyte, Frank T

    2003-01-01

    Hypotheses of global wildfires following the Cretaceous-Tertiary (KT) boundary impact are supported by high concentrations of elemental carbon (3.6 mg cm(-2)) and soot (1.8 mg cm(-2)) in DSDP Site 465, which was located several thousand kilometers from potential continental sources at 65 Ma. Soot is not preserved at four other central Pacific KT localities, but this is attributed to loss during oxic diagenesis. We find no evidence for wildfires related to major impacts in the late Eocene or to Ir anomalies and extinctions in the late Cenomanian. PMID:12804367

  2. A Search for Soot from Global Wildfires in Central Pacific Cretaceous-Tertiary Boundary and Other Extinction and Impact Horizon Sediments

    NASA Technical Reports Server (NTRS)

    Wolbach, Wendy S.; Widicus, Susanna; Kyte, Frank T.

    2003-01-01

    Hypotheses of global wildfires following the Cretaceous-Tertiary (KT) boundary impact are supported by high concentrations of elemental carbon (3.6 mg cm-3) and soot (1.8 mg cm-2) in DSDP Site 465, which was located several thousand kilometers from potential continental sources at 65 Ma. Soot is not preserved at four other central Pacific KT localities, but this is attributed to loss during oxic diagenesis. We find no evidence for wildfires related to major impacts in the late Eocene or to Ir anomalies and extinctions in the late Cenomanian.

  3. Detritus in K/T boundary clays of western North America - Evidence against a single oceanic impact

    NASA Technical Reports Server (NTRS)

    Sharpton, V. L.; Schuraytz, B. C.; Burke, K.; Murali, A. V.; Ryder, G.

    1990-01-01

    Understanding the crustal signature of impact ejecta contained in the Cretaceous/Tertiary (K/T) boundary layer is crucial to constraining the possible site(s) of the postulated K/T impact event. The relatively unaltered clastic constituents of the boundary layer at widely separated outcrops within the western interior of North America are not compatible with a single oceanic impact but require instead an impact site on a continent or continental margin. On the other hand, chemical compositions of highly altered K/T boundary layer components in some marine sections have suggested to others an impact into oceanic crust. We suspect that post-depositional alteration within the marine setting accounts for this apparent oceanic affinity. If, however, this is not the case, multiple simultaneous impacts, striking continent as well as ocean floor, would seem to be required.

  4. Shocked quartz and more: Impact signatures in K-T boundary clays and claystones

    NASA Technical Reports Server (NTRS)

    Bohor, Bruce F.

    1988-01-01

    Quartz grains displaying multiple sets of planar features are described from numerous Cretaceous-Tertiary (K-T) boundary clays and claystones at both marine and nonmarine depositional sites around the world. All these sites also show anomalously high amounts of iridium and enrichments of other siderophile elements in cosmic ratios within these boundary units. This combination of mineralogical and geochemical features are used in support of an impact hypothesis for the end-Cretaceous event. Recently, it was suggested that some combination of explosive and nonexplosive volcanism associated with the formation of the Deccan traps in India could be responsible for the mineralogy and geochemistry seen in the K-T boundary units. Besides the obvious contradition of simultaneous explosive and nonexplosive volcanism from one locality during an instant of geologic time, there remains the difficulty of spreading both iridium (and trace elements in cosmic proportions) and quartz grains around the world by volcanic (atmospheric) transport. In addition, the ability of volcanism to produce the type of shock metamorphism seen in minerals at the K-T boundary was not demonstrated. Multiple sets of shock lamellae in quartz are considered characteristic of shock metamorphism in rocks at the sites of known impact craters and are the type of deformation seen in quartz from K-T boundary clays and claystones. Single sets of poorly defined lamellae described from rare quartz grains in certain volcanic deposits are characteristic of tectonic deformation and do not correspond to the shock lamellae in quartz from K-T sediments and impact structures. So-called shock mosaicism in quartz and feldspar grains described from volcanic deposits can result from many processes other than shock metamorphism, and therefore is not considered to be an effect characteristic solely of shock. The mineralogy of shock-metamorphosed grains at the K-T boundary also argues against a volcanic origin.

  5. Deccan volcanism and K-T boundary signatures

    NASA Technical Reports Server (NTRS)

    Murali, A. V.; Schuraytz, B. C.; Parekh, P. P.

    1988-01-01

    The Deccan Traps in the Indian subcontinent represent one of the most extensive flood basalt provinces in the world. These basalts occur mainly as flat-lying, subaerially erupted tholeiitic lava flows, some of which are traceable for distances of more than 100 km. Offshore drilling and geophysical surveys indicate that a part of the Deccan subsided or was downfaulted to the west beneath the Arabian Sea. The presence of 1 to 5 m thick intertrappean sediments deposited by lakes and rivers indicates periods of quiescence between eruptions. The occurrence of numerous red bole beds among the flows suggests intense weathering of flow tops between eruptive intervals. Although the causative relationship of the Cretaceous-Tertiary (K-T) biotic extinctions to Deccan volcanism is debatable, the fact that the main Deccan eruptions straddle the K-T event appears beyond doubt from the recent Ar-40/Ar-39 ages of various Deccan flows. This temporal relationship of the K-T event with Deccan volcanism makes the petrochemical signatures of the entire Deccan sequence (basalt flows, intercalated intertrappean sediments, infratrappean Lameta beds (with dinosaur fossils), and the bole beds) pertinent to studies of the K-T event. The results of ongoing study is presented.

  6. Impact wave deposits provide new constraints on the location of the K/T boundary impact

    NASA Technical Reports Server (NTRS)

    Hildebrand, A. R.; Boynton, W. V.

    1988-01-01

    All available evidence is consistent with an impact into oceanic crust terminating the Cretaceous Period. Although much of this evidence is incompatible with an endogenic origin, some investigators still feel that a volcanic origin is possible for the Cretaceous/Tertiary (K/T) boundary clay layers. The commonly cited evidence for a large impact stems from delicate clay layers and their components and the impact site has not yet been found. Impact sites have been suggested all over the globe. The impact is felt to have occurred near North America by: the occurrence of a 2 cm thick ejecta layer only at North American locales, the global variation of shocked quartz grain sizes peaking in North America, the global variation of spinel compositions with most refractory compositions occurring in samples from the Pacific region and possibly uniquely severe plant extinctions in the North American region. The K/T boundary interval was investigated as preserved on the banks of the Brazos River, Texas. The K/T fireball and ejecta layers with associated geochemical anomalies were found interbedded with this sequence which apparently allows a temporal resolution 4 orders of magnitude greater than typical K/T boundary sections. A literature search reveals that such coarse deposits are widely preserved at the K/T boundary. Impact wave deposits have not been found elsewhere on the globe, suggesting the impact occurred between North and South America. The coarse deposits preserved in Deep Sea Drilling Project (DSDP) holes 151-3 suggest the impact occurred nearby. Subsequent tectonism has complicated the picture.

  7. Constraints on the Nature and Distribution of Iridium Host Phases at the Cretaceous-Tertiary Boundary: Implications for Projectile Identity and dispersal on impact

    NASA Technical Reports Server (NTRS)

    Schuraytz, B. C.; Lindstrom, D. J.; Sharpton, V. L.

    1997-01-01

    Among Cretaceous-Tertiary boundary sites worldwide, variations in the concentrations and ratios of elements commonly enriched in meteorites complicate traditional geochemical attempts at impactor identification. Yet they may provide constraints on the physical and chemical processes associated with large-body disruption and dispersal, as well as with diagenesis of projectile components. To this end, we continue our efforts to identify the mineral host-phases of projectile-derived elements, particularly for Ir, and to document their partitioning between crater deposits and ejecta resulting from the Chicxulub basin-forming impact. Building on earlier work, we used INAA to measure Ir concentrations in successively smaller splits of finely powdered impact melt breccia from the Chicxulub Crater in Mexico (sample Y6Nl9-R(b)), and K/T boundary fish clay from Stevns Klint, Denmark (sample FC-1, split from 40 kg of homogenized material intended as an analytical standard). Results for the Chicxulub sample show a heterogeneous Ir distribution and document that at least five discrete Ir-bearing host phases were isolated in subsequent splits, having Ir masses equivalent to pure Ir spheres from about 0.8 to about 3.5 mm in diameter. Three of these are within a sufficiently reduced mass of powder to warrant searching for them using backscattered electron microscopy. In contrast, successively smaller splits of the Stevns Klint fish clay show no statistically significant deviation from the reported value of 32 +/- 2 ng/g Ir, suggesting a uniform Ir host-phase distribution. For the smallest split obtained thus far (100 +/- 40 ng/g Ir), a pure Ir sphere of equivalent Ir mass would be <0.05 min in diameter. (n.b. Although homogenizing and sieving of FC-1 to <75 min obviously obscured variations in stratigraphic distribution, it is unlikely to have affected the size-frequency distribution of Ir host phases.) We previously identified micrometer-scale Ir host phases by electron microscopy in melt-rock samples from two widely separated drill holes at the Chicxulub Basin, including a replicate split of Y6-NI9-R. One is an aggregate of subhedral Ir metal grains enclosed in silicate, in which no other Pt group elements (PGE) were detected. A second particle with twice the mass as the first, concentrated predominantly in a single grain, is associated with minor concentrations of Os, Ru, and Pt, and with adhering particles of corundum and perovskite. A third Ir-rich particle, with a greater apparent Os concentration, was identified before being lost as a result of charging under the electron beam. In addition to demonstrating the preservation of projectile components within the Chicxulub Crater, analogous phase associations in Ca- and Al-rich inclusions (CAI) from C2 and C3 chondrites suggest to us that these melt-rock Ir host phases are relics from a carbonaceous chondrite K/T boundary impactor Although the obviously low Ru/Ir ratios of the Chicxulub Ir host phases are qualitatively consistent with suggested PGE fractionation with distance during condensation in an ejecta cloud, it seems difficult to explain the accumulation of the about 3 x 10(exp 11) Ir atoms required to form a about 10(exp -10) g nugget of pure Ir metal within a jet of vaporized projectile expanding at 1-4 km/s, or to effectively exclude or remove commonly alloyed PGE and siderophile elements by fractionation processes resulting from condensation, oxidation, sulfidization, exsolution, or autometamorphism during cooling of the melt. We do not dismiss the importance of these processes entirely; on the contrary, other geochemical and mineralogical aspects of the melt rocks require them, and condensation from the expanding ejecta cloud appears to best explain the primary Ir host-phase distribution in the fish clay, as well as the high Ir concentrations associated with spinel-bearing spheroids at the K/T boundary in the Pacific Ocean . If the "relict" hypothesis is correct, micronuggets of other PGEs and alloys, not detected by our INAA screening, should also occur in the melt rocks. Possibly, the discrete host phases with lesser Ir masses are such alloys with subordinate Ir, rather than simply smaller, predominantly Ir-bearing particles. A CAI source for the relics would be consistent with either a comet or an asteroid K/T impact at Chicxulub. (Additional information contained in the original.)

  8. Platinum-group elements (PGE) and Rhenium in Marine Sediments across the Cretaceous-Tertiary Boundary: Constraints on Re-PGE Transport in the Marine Environment

    NASA Technical Reports Server (NTRS)

    Lee, Cin-Ty Aeolus; Wasserburg, Gerald J.; Kyte, Frank T.

    2003-01-01

    The nature of Re-platinum-group element (PGE; Pt, Pd, Ir, Os, Ru) transport in the marine environment was investigated by means of marine sediments at and across the Cretaceous-Tertiary boundary (KTB) at two hemipelagic sites in Europe and two pelagic sites in the North and South Pacific. A traverse across the KTB in the South Pacific pelagic clay core found elevated levels of Re, Pt, Ir, Os, and Ru, each of which is approximately symmetrically distributed over a distance of approx. 1.8 m across the KTB. The Re-PGE abundance patterns are fractionated from chondritic relative abundances: Ru, Pt, Pd, and Re contents are slightly subchondritic relative to Ir, and Os is depleted by approx. 95% relative to chondritic Ir proportions. A similar depletion in Os (approx. 90%) was found in a sample of the pelagic KTB in the North Pacific, but it is enriched in Ru, Pt, Pd, and Re relative to Ir. The two hemipelagic KTB clays have near-chondritic abundance patterns. The approx. 1.8-m-wide Re-PGE peak in the pelagic South Pacific section cannot be reconciled with the fallout of a single impactor, indicating that postdepositional redistribution has occurred. The elemental profiles appear to fit diffusion profiles, although bioturbation could have also played a role. If diffusion had occurred over approx. 65 Ma, the effective diffusivities are approx. 10(exp -13)sq cm/s, much smaller than that of soluble cations in pore waters (approx. 10(exp -5) sq cm/s). The coupling of Re and the PGEs during redistribution indicates that postdepositional processes did not significantly fractionate their relative abundances. If redistribution was caused by diffusion, then the effective diffusivities are the same. Fractionation of Os from Ir during the KTB interval must therefore have occurred during aqueous transport in the marine environment. Distinctly subchondritic Os/Ir ratios throughout the Cenozoic in the South Pacific core further suggest that fractionation of Os from Ir in the marine environment is a general process throughout geologic time because most of the inputs of Os and Ir into the ocean have OsAr ratios greater than or = 1. Mass balance calculations show that Os and Re burial fluxes in pelagic sediments account for only a small fraction of the riverine Os (less than 10%) and Re (less than 0.1%) inputs into the oceans. In contrast, burial of Ir in pelagic sediments is similar to the riverine Ir input, indicating that pelagic sediments are a much larger repository for Ir than for Os and Re. If all of the missing Os and Re is assumed to reside in anoxic sediments in oceanic margins, the calculated burial fluxes in anoxic sediments are similar to observed burial fluxes. However, putting all of the missing Os and Re into estuarine sediments would require high concentrations to balance the riverine input and would also fail to explain the depletion of Os at pelagic KTB sites, where at most approx. 25% of the K-T impactor's Os could have passed through estuaries. If Os is preferentially sequestered in anoxic marine environments, it follows that the OsAr ratio of pelagic sediments should be sensitive to changes in the rates of anoxic sediment deposition. There is thus a clear fractionation of Os and Re from Ir in precipitation out of sea water in pelagic sections. Accordingly, it is inferred here that Re and Os are removed from sea water in anoxic marine depositional regimes.

  9. Isotopic signatures of black tektites from the K-T boundary on Haiti - Implications for the age and type of source material

    NASA Technical Reports Server (NTRS)

    Premo, W. R.; Izett, G. A.

    1992-01-01

    An isotopic study was carried out to characterize the type of black tektites from the Cretaceous-Tertiary (K-T) boundary on Haiti (the first reasonably well-preserved impact-derived material recovered from the K-T boundary), in order to help characterize the tektite source material (i.e., the type of rocks that were melted and ejected during the impact event(s) at around 64.5 Ma). Results show that the isotopic data and all of the element concentration data obtained are consistent with an andesitic-dacitic composition for the tektites and their source material. The Nd isotopic data suggest that the source rocks were not older than Silurian (T(chur) = 400 Ma) in age, and were composed largely of young (less than 1080 Ma) crustal material. Of the suspected K-T boundary impact sites, both the Manson (Iowa) and Chicxulub (Yucatan) structures occur in suitable lithologies to yield the Haitian black tektites.

  10. Rb-Sr, Sm-Nd, K-Ca, O, and H isotopic study of Cretaceous-Tertiary boundary sediments, Caravaca, Spain Evidence for an oceanic impact site

    NASA Technical Reports Server (NTRS)

    Depaolo, D. J.; Kyte, F. T.; Marshall, B. D.; Oneil, J. R.; Smit, J.

    1983-01-01

    The results of isotopic and trace-element-abundance analyses of Ir-enriched Cretaceous-Tertiary-boundary clay sediments from Caravaca, Spain, and of adjacent carbonate and marl layers, are presented. Acetic-acid and HCl leachates and residues were analyzed by isotope dilution to determine K, Rb, Sr, Sm, and Nd concentrations and Sr-87/Sr-86 and Nd-143/Nd-144 ratios. The stable isotope ratios delta-D, delta-(C-13), and delta-(0-18) were also determined. The results are presented in tables and graphs and compared with published data on the Caravaca sediments and on samples from other locations. The boundary clay is found to be distinguished from the adjacent layers by its isotopic ratios and to be of mainly terrestrial, lithospheric (deeper than 3-km) origin. Although submarine-weathering effects are evident and difficult to quantify, the degree of variation in Ni, Ir, Sr, and REE concentrations is considered too large to be attributed to postdepositional processes alone. These findings are seen as evidence for the ocean impact of a large single asteroid producing a worldwide blanket of ejecta, a large injection of water vapor into the atmosphere, and perhaps a gigantic tsunami, at the end of the Cretaceous period.

  11. Geochemistry of K/T boundaries in India and contributions of Deccan volcanism

    NASA Technical Reports Server (NTRS)

    Bhandari, N.; Gupta, M.; Pandey, J.; Shukla, P. N.

    1988-01-01

    Three possible Cretaceous/Tertiary (K/T) boundary sections in the Indian subcontinent were studied for their geochemical and fossil characteristics. These include two marine sections of Meghalaya and Zanskar and one continental section of Nagpur. The Um Sohryngkew river section of Meghalaya shows a high iridium, osmium, iron, cobalt, nickel and chromium concentration in a 1.5 cm thick limonitic layer about 30 cm below the planktonic Cretaceous-Palaeocene boundary identified by the characteristic fossils. The Bottaccione and Contessa sections at Gubbio were also analyzed for these elements. The geochemical pattern at the boundary at the Um Sohryngkew river and Gubbio sections are similar but the peak concentrations and the enrichment factors are different. The biological boundary is not as sharp as the geochemical boundary and the extinction appears to be a prolonged process. The Zanskar section shows, in general, similar concentration of the siderophile, lithophile and rare earth elements but no evidence of enrichment of siderophiles has so far been observed. The Takli section is a shallow inter-trappean deposit within the Deccan province, sandwiched between flow 1 and flow 2. The geochemical stratigraphy of the inter-trappeans is presented. The various horizons of ash, clay and marl show concentration of Fe and Co, generally lower than the adjacent basalts. Two horizons of slight enrichment of iridium are found within the ash layers, one near the contact of flow 1 and other near the contact of flow 2, where iridium occurs at 170 and 260 pg/g. These levels are lower by a factor of 30 compared to Ir concentration in the K/T boundary in Meghalaya section. If the enhanced level of some elements in a few horizons of the ash layer are considered as volcanic contribution by some fractionation processes than the only elements for which it occurs are REE, Ir and possibly Cr.

  12. Shocked quartz found at the K/T boundary

    NASA Astrophysics Data System (ADS)

    Loper, David E.; McCartney, Kevin

    What killed the dinosaurs? This is the most popular question of the “Cretaceous/Tertiary (K/T) controversy,” which is concerned with the extinction some 65 m.y. ago of more than 75% of the world's existing floral and faunal species [Surlyk, 1980]. A popular hypothesis of their untimely demise is the impact of a meteorite [Alvarez et al., 1980]. However, despite the claim [Alvarez, 1983] that this has been proven, some serious doubts remain [Hallam, 1987; Officer et al., 1987]. A rival claim, that the dinosaurs were done in by a catastrophic volcanic eruption, has attracted some proponents and has some evidence in its favor, but that case is far from proven. However, it does have the advantage of having a definite event to point to the Deccan Traps in India. These are the largest continental flood basalts known from the Phanerozoic. According to recent studies [Courtillot et al., 1986; Feraud et al., 1988], the Deccan Traps were emplaced close to 65 m.y. ago. Is this timing a coincidence or are the two events (the mass extinction and the Deccan volcanism) related?

  13. Coeval 40Ar/39Ar Ages of 65.0 Million Years Ago from Chicxulub Crater Melt Rock and Cretaceous-Tertiary Boundary Tektites.

    PubMed

    Swisher, C C; Grajales-Nishimura, J M; Montanari, A; Margolis, S V; Claeys, P; Alvarez, W; Renne, P; Cedillo-Pardoa, E; Maurrasse, F J; Curtis, G H; Smit, J; McWilliams, M O

    1992-08-14

    (40)Ar/(39)Ar dating of drill core samples of a glassy melt rock recovered from beneath a massive impact breccia contained within the 180-kilometer subsurface Chicxulub crater in Yucatán, Mexico, has yielded well-behaved incremental heating spectra with a mean plateau age of 64.98 +/- 0.05 million years ago (Ma). The glassy melt rock of andesitic composition was obtained from core 9 (1390 to 1393 meters) in the Chicxulub 1 well. The age of the melt rock is virtually indistinguishable from (40)Ar/(39)Ar ages obtained on tektite glass from Beloc, Haiti, and Arroyo el Mimbral, northeastern Mexico, of 65.01 +/- 0.08 Ma (mean plateau age for Beloc) and 65.07 +/- 0.10 Ma (mean total fusion age for both sites). The (40)Ar/(39)Ar ages, in conjunction with geochemical and petrological similarities, strengthen the recent suggestion that the Chicxulub structure is the source for the Haitian and Mexican tektites and is a viable candidate for the Cretaceous-Tertiary boundary impact site. PMID:17789640

  14. Coeval Ar-40/Ar-39 ages of 65.0 million years ago from Chicxulub crater melt rock and Cretaceous-Tertiary boundary tektites

    NASA Technical Reports Server (NTRS)

    Swisher, Carl C., III; Grajales-Nishimura, Jose M.; Montanari, Alessandro; Margolis, Stanley V.; Claeys, Philippe; Alvarez, Walter; Renne, Paul; Cedillo-Pardo, Esteban; Maurrasse, Florentin J.-M. R.; Curtis, Garniss H.

    1992-01-01

    Ar-40/Ar-39 dating of drill-core samples of a glassy melt rock recovered from beneath a massive impact breccia contained with the 180-kilometer subsurface Chicxulub crater yields well-behaved incremental heating spectra with a mean plateau age of 64.98 +/- 0.05 million years ago (Ma). The glassy melt rock of andesitic composition was obtained from core 9 (1390 to 1393 meters) in the Chicxulub 1 well. The age of the melt rock is virtually indistinguishable from Ar-40/Ar-39 ages obtained on tektite glass from Beloc, Haiti, and Arroyo el Mimbral, northeastern Mexico, of 65.01 +/- 0.08 Ma (mean plateau age for Beloc) and 65.07 +/- 0.10 Ma (mean total fusion age for both sites). The Ar-40/Ar-39 ages, in conjunction with geochemical and petrological similarities, strengthen the suggestion that the Chicxulub structure is the source for the Haitian and Mexican tektites and is a viable candidate for the Cretaceous-Tertiary boundary impact site.

  15. Rb-Sr, Sm-Nd, K-Ca, O, and H isotopic study of Cretaceous-Tertiary boundary sediments, Caravaca, Spain: evidence for an oceanic impact site

    USGS Publications Warehouse

    DePaolo, D.J.; Kyte, F.T.; Marshall, B.D.; O'Neil, J.R.; Smit, J.

    1983-01-01

    Isotopic ratios and trace element abundances were measured on samples of Ir-enriched clay at the Cretaceous-Tertiary boundary, and in carbonate and marl from 5 cm below and 3 cm above the boundary. Samples were leached with acetic acid to remove carbonate, and with hydrochloric acid. Leachates and residues were measured. The Sr, Nd, O and H isotopic compositions of the boundary clay residues are distinct from those of the stratigraphically neighboring materials. The data indicate that most of the clay material was derived from a terrestrial source with relatively low 87Sr/86Sr and high 143Nd/144Nd ratios. The ??18O data suggest that the detritus has been modified by submarine weathering. K-Ca and Rb-Sr systematics, as well as O isotope ratios of K-feldspar spherules within the boundary clay, suggest that they are predominantly authigenic and may have formed after the time of deposition. However, Sm-Nd and Rb-Sr isotopic data indicate that the spherules contain relict material that provides information on the nature of the original detritus. The isotopic evidence for foreign terrestrial detritus in the boundary clay, the low rare earth element concentrations and high Ni concentration, support the hypothesis of a terminal Cretaceous asteroidal impact that produced a global layer of fallout. The data are most easily explained if the impact site was on oceanic crust rather than continental crust, and if a substantial fraction of the fallout was derived from relatively deep within the lithosphere (>3 km). This would probably require a single large impactor. ?? 1983.

  16. Climatic changes resulting from mass extinctions at the K-T boundary (and other bio-events)

    NASA Technical Reports Server (NTRS)

    Rampino, Michael R.; Volk, Tyler

    1988-01-01

    The mass extinctions at the Cretaceous-Tertiary (K-T) boundary include about 90 percent of marine calcareous nannoplankton (coccoliths), and carbon-isotope data show that marine primary productivity was drastically reduced for about 500,000 years after the boundary event, the so-called Strangelove Ocean effect. One result of the elimination of most marine phytoplankton would have been a severe reduction in production of dimethyl sulfide (DMS), a biogenic gas that is believed to be the major precursor of cloud condensation nuclei (CCN) over the oceans. A drastic reduction in marine CCN should lead to a cloud canopy with significantly lower reflectivity, and hence cause a significant warming at the earth's surface. Calculations suggest that, all other things being held constant, a reduction in CCN of more than 80 percent (a reasonable value for the K-T extinctions) could have produced a rapid global warming of 6 C or more. Oxygen-isotope analyses of marine sediments, and other kinds of paleoclimatic data, have provided for a marked warming, and a general instability of climate coincident with the killoff of marine plankton at the K-T boundary. Similar reductions in phytoplankton abundance at other boundaries, as indicated by marked shifts in carbon-isotope curves, suggest that severe temperature changes may have accompanied other mass extinctions, and raises the intriguing possibility that the extinction events themselves could have contributed to the climatic instabilities at critical bio-events in the geologic record.

  17. Collapse of florisitic diversity coincident with a fungal spike and iridium anomaly at the Cretaceous-Tertiary boundary in New Zealand

    NASA Astrophysics Data System (ADS)

    Vajda, V.; Raine, J. I.

    2003-04-01

    Analysis of pollen and spore assemblages from both terrestrial and near-shore marine sediments in New Zealand had revealed an instant, extensive destruction of land plants directly associated with the Cretaceous-Tertiary boundary (KTB) event, (Vajda et al., 2001). A recent palynological investigation, based on millimeter resolution sampling of the terrestrial KTB sediments at Moody Creek Mine, Greymouth coalfield, New Zealand has been carried out. The sediments were deposited in a terrestrial wetland environment and the KTB is defined within a coal seam. Preliminary results of the high-resolution investigation reveal a diverse vascular plant spore/pollen flora (>80 species) that was replaced by an assemblage impoverished in vascular plant pollen and spores, but rich in fungal spores. The "barren" layer is coincident with the extinction of several miospore taxa and contains an iridium abundance of 3ppb. The fungal spike covers 5 mm, and is followed by a 40-cm interval with abundant fern spores. The relative abundance of fern spores, increases from 25% below the boundary to 98% in the sediment following the KTB. We argue that the abrupt palynofloristic changes at this high southern palaeolatitude site are evidence of massive disruptions to terrestrial plant communities as a consequence of the Chicxulub impact. Palynofloristic evidence indicates that the complex mire and forest vegetation was totally devastated at the time of impact. Global cooling and several months with extremely low light levels following the impact, perhaps in combination with extensive wildfires would explain the devastation of the vegetation. The "barren" layer at the KTB corresponds to immediate post-impact conditions with low light levels and dust-related cooling unfavorable to forest growth but favoring saprophytic fungi. The recovery succession is initiated by opportunistic species of ground ferns, the plants best adapted to low light, lowered temperatures and high acidity. Vajda, V., Raine, I. &Hollis, C. (2001). Science, Vol. 294, p. 1700-1702.

  18. Pb isotopic tracers of the Cretaceous-Tertiary extinction event

    SciTech Connect

    Galer, S.J.G.; Macdougall, J.D.; Erickson, D.J. III )

    1989-11-01

    The global excess of Ir in sediments at the Cretaceous-Tertiary (K-T) boundary has been attributed to either a meteorite impact or enhanced volcanism (e.g. Decan Traps). The isotropic composition of Pb associated with this Ir provides a test of these hypotheses because meteoritic Pb is isotopically quite distinct from Pb of volcanic or continental origin. Pb abundances and isotopic compositions of pelagic oozes from DSDP Site 577A (Shatsky Rise, NW Pacific) measured in this study show little change over the deposition interval of Ir-rich sediment ({approximately}10 cm). However, a Pb enriched layer with a more radiogenic isotopic composition is found in the basal {approximately}0.5 cm of the Tertiary. These observations appear to preclude the Ir excess in these sediments originating as impact fallout from a stony meteorite although an iron meteorite impactor cannot be excluded. Any Pb flux accompanying Ir in volcanogenic aerosols from the Decan Traps should be considerable. However, the boundary Pb spike does not isotopically resemble known Deccan Trap lavas. There is isotopic overlap with coal ash although the lack of correlation between soot and Pb abundance precludes any simple relationship between the two. Overall, any wind pattern changes following the K-T event were apparently short-lived as neither airborne sources of Pb nor their magnitude to the then central Pacific were affected while Ir enriched sediments were being laid down.

  19. A Cretaceous-Tertiary mass extinction? Were most of Earth's species killed off?

    NASA Technical Reports Server (NTRS)

    Briggs, J. C.

    1991-01-01

    For the past decade, the scientific and popular press have carried frequent articles about a catastrophic mass extinction that supposedly destroyed the majority of the earth's species, including the dinosaurs, approximately 65 million years ago. Since 1980, more than 2000 papers and books have dealt with some aspect of a mass extinction at the Cretaceous-Tertiary (K/T) boundary. One authoritative estimate of the severity of the extinctions is that 60-80% of all the living species became extinct at this boundary (Raup 1988). There appears to be a general acceptance of the fact that such a great catastrophe did occur. Most of the argument among scientists now is devoted to the determination of the cause. In this article, I argue that the species changes at the K/T boundary were neither sudden nor catastrophic. They were most likely caused by a regression of sea level that led to a decrease in primary production.

  20. Mineralogy and petrology of the Cretaceous- Tertiary boundary clay bed and adjacent clay-rich rocks, Raton Basin, New Mexico and Colorado.

    USGS Publications Warehouse

    Pollastro, R.M.; Pillmore, C.L.

    1987-01-01

    The K-T boundary occurs at the top of a kaolinitic claystone layer, commonly referred to as the 'boundary clay layer', in an interval of coal and carbonaceous shale. The boundary is defined by the disappearance of certain fossil-pollen taxa. The boundary clay layer also contains shocked quartz grains and abundance anomalies of iridium, chromium, and other elements. Each of these characteristics support the hypothesis of an asteroid impact at the end of the Cretaceous. -from Authors

  1. Biospheric Effects of the Chicxulub Impact and Their Role in the Cretaceous/Tertiary Mass Extinction

    NASA Technical Reports Server (NTRS)

    Pope, Kevin O.

    1997-01-01

    A comprehensive analysis of volatiles in the Chicxulub impact strongly supports the hypothesis that impact-generated sulfate aerosols caused over a decade of global cooling, acid rain, and disruption of ocean circulation, which contributed to the mass extinction at the Cretaceous/Tertiary (K/T) boundary. The crater size, meteoritic content of the K/T boundary clay, and impact models indicate that the Chicxulub crater was formed by a short period comet or an asteroid impact that released 0.7-3.4 x 10(exp 31) ergs of energy. Impact models and experiments combined with estimates of volatiles in the projectile and target rocks predict that over 200 gigatons (Gt) each of SO2 and water vapor, and over 500 Gt of CO2, were globally distributed in the stratosphere by the impact.

  2. The Cretaceous-Tertiary extinction: A lethal mechanism involving anhydrite target rocks

    USGS Publications Warehouse

    Brett, R.

    1992-01-01

    The Chicxulub Crater, Yucatan, Mexico, is a leading contender as the site for the impact event that caused the Cretaceous-Tertiary (K-T) extinctions. A considerable thickness of anhydrite (CaSO4) forms part of the target rock. High temperatures resulting from impact would drive SO2 off from the anhydrite. Hundreds of billions of tonnes of sulfuric acid aerosol would thus enter the stratosphere and cause considerable cooling of the Earth's surface, decrease photosynthesis by orders of magnitude, deplete the ozone layer, and permit increased UV radiation to reach the Earth's surface. Finally, the aerosol would fall back to Earth as acid rain and devastate land and some lacustrine biota and near-surface marine creatures. The presence of anhydrite in the Chicxulub target rock may thus help explain the many extinctions observed at the K-T boundary. ?? 1992.

  3. Dinosaurs, spherules, and the “magic” layer: A new K-T boundary clay site in Wyoming

    NASA Astrophysics Data System (ADS)

    Bohor, Bruce F.; Triplehorn, Don M.; Nichols, Douglas J.; Millard, Hugh T., Jr.

    1987-10-01

    A new Cretaceous-Tertiary (K-T) boundary clay site has been found along Dogie Creek in Wyoming in the drainage of Lance Creek—the type area of the Lance Formation of latest Cretaceous age. The boundary clay was discovered in the uppermost part of the Lance Formation, 4 7 cm beneath the lowest lignite in the Paleocene Fort Union Formation and approximately 1 m above a fragmented dinosaur bone. The boundary clay consists of a basal kaolinitic claystone layer as much as 3 cm thick containing hollow goyazite spherules, overlain by a 2 3 mm smectitic layer (the “magic” layer) containing both shock-metamorphosed minerals and an iridium anomaly of 21 ppb. A palynological break coincides with the base of the claystone layer; numerous Late Cretaceous palynomorph species terminate at this boundary. The paleontological significance of this new boundary site lies in its close association with the well-studied assemblage of dinosaurs and other vertebrates and flora within the type area of the Lance Formation. The spherules at the Dogie Creek site are extremely well preserved by virtue of their replacement by the mineral goyazite. This preservation should facilitate the resolution of the origin of the spherules and of their host layer.

  4. Rocks, resolution, and the record at the terrestrial K/T boundary, eastern Montana and western North Dakota

    NASA Technical Reports Server (NTRS)

    Fastovsky, D. E.

    1988-01-01

    Reconstructions of mass extinction events are based upon faunal patterns, reconstructed from numerical and diversity data ultimately derived from rocks. It follows that geological complexity must not be subsumed in the desire to establish patterns. This is exemplified at the Terrestrial Cretaceous-Tertiary (K/T) boundary in eastern Montana and western North Dakota, where there are represented all of the major indicators of the terrestrial K/T transition: dinosaurian and non-dinosaurian vertebrate faunas, pollen, a megaflora, iridium, and shocked quartz. It is the patterns of these indicators that shape ideas about the terrestrial K/T transition. In eastern Montana and western North Dakota, the K/T transition is represented lithostratigraphically by the Cretaceous Hell Creek Formation, and the Tertiary Tullock Formation. Both of these are the result of aggrading, meandering, fluvial systems, a fact that has important consequences for interpretations of fossils they contain. Direct consequences of the fluvial depositional environments are: facies are lenticular, interfingering, and laterally discontinuous; the occurrence of fossils in the Hell Creek and Tullock formations is facies-dependent; and the K/T sequence in eastern Montana and western North Dakota is incomplete, as indicated by repetitive erosional contacts and soil successions. The significance for faunal patterns of lenticular facies, facies-dependent preservation, and incompleteness is discussed. A project attempting to reconstruct vertebrate evolution in a reproducible manner in Hell Creek-type sediments must be based upon a reliable scale of correlations, given the lenticular nature of the deposits, and a recognition of the fact that disparate facies are not comparable in terms of either numbers of preserved vertebrates or depositional rates.

  5. Explosive volcanism, shock metamorphism and the K-T boundary

    NASA Technical Reports Server (NTRS)

    Desilva, S. L.; Sharpton, V. L.

    1988-01-01

    The issue of whether shocked quartz can be produced by explosive volcanic events is important in understanding the origin of the K-T boundary constituents. Proponents of a volcanic origin for the shocked quartz at the K-T boundary cite the suggestion of Rice, that peak overpressures of 1000 kbars can be generated during explosive volcanic eruptions, and may have occurred during the May, 1980 eruption of Mt. St. Helens. Attention was previously drawn to the fact that peak overpressures during explosive eruptions are limited by the strength of the rock confining the magma chamber to less than 8 kbars even under ideal conditions. The proposed volcanic mechanisms for generating pressures sufficient to shock quartz are further examined. Theoretical arguments, field evidence and petrographic data are presented showing that explosive volcanic eruptions cannot generate shock metamorphic features of the kind seen in minerals at the K-T boundary.

  6. Terrestrial ecosystem destabilization at the K/T boundary in southwestern North Dakota, USA.

    NASA Astrophysics Data System (ADS)

    Bercovici, Antoine; Pearson, Dean; Villanueva-Amadoz, Uxue

    2010-05-01

    Much of the debate regarding mass extinction events tend to discuss the relationship between such events relative to the moment and timing of internal or external factors (such as volcanism, impact(s), climate, sea-level changes and so on). However, the details of the extinction process itself is still poorly understood, and most of the analysis are based on biodiversity patterns without integrating the biogeographic and environmental context. Another way of approaching the problem would be to propose precise paleoenvironment reconstructions and analyzing their evolution through time, which allows for the understanding of such processes. The badlands of southwestern North Dakota provides some of the most prolific exposures of the continental Cretaceous/Tertiary (K/T) boundary in the world. The stratigraphical context indicates that the K/T boundary is coincident or lies in close proximity to the contact between the Hell Creek and the Fort Union Formations. In this area, a series of eight stratigraphical sections across a 40 km north-south transect were studied. These sections bracket the formational contact on a 10 m stratigraphical interval. Reconstruction of the depositional environment was undertaken at a centimeter scale by using sedimentological data, as well as palynological, paleobotanical and palaeontological content of the strata, using the K/T boundary as a precise chronological datum of correlation between the sections. Results shows a consistent evolution of pattern across the entire study area : 1) The uppermost 10 to 20 cm of the Hell Creek Formation always corresponds to a sequence of dark rooted mudstone. Pollen content is consistent with a Cretaceous age and displays a diversity of terrestrial taxa. 2) Immediately above, the formation contact lies at the lower part of the first laterally traceable lignite horizon. The K/T boundary indicators (iridium anomaly, shocked quartz, fern spike and boundary claystone) are located at or adjacent to this stratigraphical interval, when preserved. 3) Within or just above the formation contact coal, the relative abundance of palynological taxa indicative of the Cretaceous (K-taxa) drop significantly without significant subsequent recovery. 4) Above the formation contact lignite, lithology systematically the lithology consistently appears as a 1-2 m thick dark mudstone sequence. The palynological record of this interval is dominated by freshwater taxa (Pediastrum sp. and Penetetrapites sp.) indicating general flooding in the study area. 5) Change in the sedimentation style in comparison of the Hell Creek is reflected by the preservation of variegated beds, multiple lignite seams and small scale meandering river systems. The palynological content attest for reworking and erosion. Conclusions shows that both palaeoenviroments and biodiversity patterns stay consistent throughout the Hell Creek Formation, with the exception of its uppermost part. The vertebrate and plant communities underwent a significant change at this time coincident with the evidence for a impact scenario or catastrophic event of massive scale. Beginning at the very end of the Cretaceous and continuing up into the overlying Fort Union Formation, the area was experiencing the onset of a transgression cycle which contributed to widespread ponding. Following the impact, modifications in the environment caused by land denudation, changes in sea level and drainage patterns promoted run-off and reworking. The destabilization of terrestrial ecosystems in southwestern North Dakota is coincident with markers of the K/T boundary that supports a catastrophic event taking place over a very short duration.

  7. The global Cretaceous-Tertiary fire: Biomass or fossil carbon

    NASA Technical Reports Server (NTRS)

    Gilmour, Iain; Guenther, Frank

    1988-01-01

    The global soot layer at the K-T boundary indicates a major fire triggered by meteorite impact. However, it is not clear whether the principal fuel was biomass or fossil carbon. Forests are favored by delta value of C-13, which is close to the average for trees, but the total amount of elemental C is approximately 10 percent of the present living carbon, and thus requires very efficient conversion to soot. The PAH was analyzed at Woodside Creek, in the hope of finding a diagnostic molecular marker. A promising candidate is 1-methyl-7-isopropyl phenanthrene (retene,), which is probably derived by low temperature degradation of abietic acid. Unlike other PAH that form by pyrosynthesis at higher temperatures, retene has retained the characteristic side chains of its parent molecule. A total of 11 PAH compounds were identified in the boundary clay. Retene is present in substantial abundance. The identification was confirmed by analysis of a retene standard. Retene is characteristic of the combustion of resinous higher plants. Its formation depends on both temperature and oxygen access, and is apparently highest in oxygen-poor fires. Such fires would also produce soot more efficiently which may explain the high soot abundance. The relatively high level of coronene is not typical of a wood combustion source, however, though it can be produced during high temperature pyrolysis of methane, and presumably other H, C-containing materials. This would require large, hot, low O2 zones, which may occur only in very large fires. The presence of retene indicates that biomass was a significant fuel source for the soot at the Cretaceous-Tertiary boundary. The total amount of elemental C produced requires a greater than 3 percent soot yield, which is higher than typically observed for wildfires. However, retene and presumably coronene imply limited access of O2 and hence high soot yield.

  8. The global Cretaceous-Tertiary fire: Biomass or fossil carbon

    NASA Astrophysics Data System (ADS)

    Gilmour, Iain; Guenther, Frank

    The global soot layer at the K-T boundary indicates a major fire triggered by meteorite impact. However, it is not clear whether the principal fuel was biomass or fossil carbon. Forests are favored by delta value of C-13, which is close to the average for trees, but the total amount of elemental C is approximately 10 percent of the present living carbon, and thus requires very efficient conversion to soot. The PAH was analyzed at Woodside Creek, in the hope of finding a diagnostic molecular marker. A promising candidate is 1-methyl-7-isopropyl phenanthrene (retene,), which is probably derived by low temperature degradation of abietic acid. Unlike other PAH that form by pyrosynthesis at higher temperatures, retene has retained the characteristic side chains of its parent molecule. A total of 11 PAH compounds were identified in the boundary clay. Retene is present in substantial abundance. The identification was confirmed by analysis of a retene standard. Retene is characteristic of the combustion of resinous higher plants. Its formation depends on both temperature and oxygen access, and is apparently highest in oxygen-poor fires. Such fires would also produce soot more efficiently which may explain the high soot abundance. The relatively high level of coronene is not typical of a wood combustion source, however, though it can be produced during high temperature pyrolysis of methane, and presumably other H, C-containing materials. This would require large, hot, low O2 zones, which may occur only in very large fires. The presence of retene indicates that biomass was a significant fuel source for the soot at the Cretaceous-Tertiary boundary. The total amount of elemental C produced requires a greater than 3 percent soot yield, which is higher than typically observed for wildfires. However, retene and presumably coronene imply limited access of O2 and hence high soot yield.

  9. Catastrophic volcanism as a cause of shocked features found at the K/T boundary and in cryptoexplosion structures

    NASA Technical Reports Server (NTRS)

    Loper, D. E.; Mccartney, K.

    1988-01-01

    The presence of quartz grains containing shock lamellae at the Cretaceous/Tertiary (K/T) boundary is viewed by many as the single most compelling evidence of meteoritic or cometary impact because there is no known endogenous mechanism for producing these features. Similarly the presence of shocked quartz, shatter cones, coesite and stishovite at cryptoexplosion structures is comonly taken as conclusive evidence of impact. However, several recent studies have cast doubt on this interpretation. It is argued that basaltic volcanism, although not normally explosive, can under exceptional circumstances produce overpressures sufficiently high to produce shock features. The exceptional circumstances include a high content of volatiles, usually CO2, and no preestablished pathway to the surface. Rapid cooling of the saturated basaltic magma can occur if it underlies a cooler more evolved magma in a chamber. Initial slow cooling and partial exsolution of the volatiles will cause the density of the basaltic magma to become less than that of the overlying magma, leading to overturning and mixing. Gas will escape the magma chamber along planar cracks once the pressure becomes sufficiently high. In the vicinity of the crack tip there is a smallscale deviatoric stress pattern which is thought to be sufficiently high to produce transient cracks along secondary axes in the quartz crystals, causing the planar features. The CO2-rich fluid inclusions which have been found along planar elements of quartz in basement rocks of the Vredefort Dome were likely to have been emplaced by such a process. If the mechanism described is capable of producing shocked features as above, it would require a reassessment of the origin of many cryptoexplosion structures as well as seriously weakening the case for an impact origin of the K/T event.

  10. The Cretaceous/Tertiary Extinction Controversy.

    ERIC Educational Resources Information Center

    McCartney, Kevin

    1984-01-01

    The cause of the Cretaceous/Tertiary extinction has become a major geologic controversy. Current evidence for the two opposing views is reviewed to provide an introduction to the controversy and to form the basis for a seminar of discussion topic. (Author/JN)

  11. A regional perspective on the palynofloral response to K-T boundary event(s) with emphasis on variations imposed by the effects of sedimentary facies and latitude

    NASA Technical Reports Server (NTRS)

    Sweet, A. R.

    1988-01-01

    Palynological studies deal with fossil reproductive bodies that were produced by fully functioning plants, whereas most faunal studies are based on death assemblages. Therefore, changes in pollen and spore assemblages cannot be used directly as evidence of catastrophic mass killings but only to indicate changes in ecological conditions. The impact of the Cretaceous-Tertiary boundary event on terrestrial plant communities is illustrated by the degree, rate and selectivity of change. As in most classical palynological studies, the degree of change is expressed in terms of relative abundance and changes in species diversity. It is recognized that sampling interval and continuity of the rock record within individual sections can affect the percieved rate of change. Even taking these factors into account, a gradual change in relative abundance and multiple levels of apparent extinctions, associated with the interval bounding the K-T boundary, can be demonstrated. Climatic change, which locally exceeds the tolerance of individual species, and the possible loss of a group of pollinating agents are examined as possible explanations for the selectivity of apparent extinctions and/or locally truncated occurrences. The aspects of change are demonstrated with data from four different K-T boundary localities in Western Canada between paleolatitudes 60 and 75 deg north. Together, the four localities discussed allow changes imposed by latitude and differences in the depositional environment be isolated from the boundary event itself which is reflected by the truncated ranges of several species throughout the region of study. What must be recognized is that variations in the response of vegetation to the K-T boundary event(s) occurred throughout the Western Interior basin.

  12. The record of impact on earth - Implications for a major Cretaceous/Tertiary impact event

    NASA Technical Reports Server (NTRS)

    Grieve, R. A. F.

    1982-01-01

    Cratering mechanics suggests that if the proposed Cretaceous-Tertiary impact event occurred in the ocean, it may have been able to locally excavate the oceanic crust and bring upper mantle material to the surface, thereby creating a geophysical anomaly that has yet to be detected. If the siderophile enrichments in the Cretaceous-Tertiary boundary layer denote projectile-contaminated ejecta from a major impact, the source of this material will probably be ejecta which had been accelerated upwards as the projectile penetrated the target rocks. The difficulties in defining projectile types from the siderophile anomalies in the relatively well known environment of impact melt rocks suggest that more detailed geochemistry and mineralogy will be needed before the siderophile enrichments at the Cretaceous-Tertiary boundary can be linked to a specific meteoritic compositional class.

  13. Evidence for the recovery of terrestrial ecosystems ahead of marine primary production following a biotic crisis at the Cretaceous-Tertiary boundary

    USGS Publications Warehouse

    Beerling, D.J.; Lomax, B.H.; Upchurch, G.R., Jr.; Nichols, D.J.; Pillmore, C.L.; Handley, L.L.; Scrimgeour, C.M.

    2001-01-01

    The fossil record demonstrates that mass extinction across the Cretaceous–Tertiary (K–T) boundary is more severe in the marine than the terrestrial realm. We hypothesize that terrestrial ecosystems were able to recover faster than their marine counterparts. To test this hypothesis, we measured sedimentary δ13C as a tracer for global carbon cycle changes and compared it with palaeovegetational changes reconstructed from palynomorphs and cuticles across the K–T boundary at Sugarite, New Mexico, USA. Different patterns of perturbation and timescales of recovery of isotopic and palaeobotanical records indicate that the δ13C excursion reflects the longer recovery time of marine versus terrestrial ecosystems.

  14. Large meteorite impacts: The K/T model

    NASA Technical Reports Server (NTRS)

    Bohor, B. F.

    1992-01-01

    The Cretaceous/Tertiary (K/T) boundary event represents probably the largest meteorite impact known on Earth. It is the only impact event conclusively linked to a worldwide mass extinction, a reflection of its gigantic scale and global influence. Until recently, the impact crater was not definitively located and only the distal ejecta of this impact was available for study. However, detailed investigations of this ejecta's mineralogy, geochemistry, microstratigraphy, and textures have allowed its modes of ejection and dispersal to be modeled without benefit of a source crater of known size and location.

  15. Extraterrestrial cause for the Cretaceous-Tertiary extinction

    NASA Technical Reports Server (NTRS)

    Alvarez, L. W.; Alvarez, W.; Asaro, F.; Michel, H. V.

    1980-01-01

    Direct physical evidence is presented for an unusual event at exactly the time of extinctions in the planktonic realm. Deep-sea limestones exposed in Italy, Denmark, and New Zealand indicate iridium increases of about 30, 160, and 20 times, respectively, above the background level at precisely the time of the Cretaceous-Tertiary extinctions, 65 million years ago. Reasons are given that this iridium is of extraterrestrial origin, but did not come from a nearby supernova. A hypothesis is set forth which accounts for the extinctions and the iridium observations. One prediction of this hypothesis is verified, that the chemical composition of the boundary clay, which is thought to come from the stratospheric dust, is markedly different from that of clay mixed with the chemically similar Cretaceous and Tertiary limestones.

  16. Reverse Polarity Magnetized Melt Rocks from the Cretaceous/Tertiary Chicxulub Structure, Yucatan Peninsula, Mexico

    NASA Technical Reports Server (NTRS)

    Urrutia-Fucugauchi, J.; Marin, Luis; Sharpton, Virgil L.

    1994-01-01

    We report paleomagnetic results for core samples of the breccia and andesitic rocks recovered from the Yucatan-6 Petrolcos Mexicanos exploratory well within the Chicxulub structure (about 60 km SSW from its center), northern Yucatan, Mexico. A previous study has shown that the rocks studied contain high iridium levels and shocked breccia clasts and an Ar/Ar date of 65.2 +/- 0.4 Ma. Andesitic rocks are characterized by stable single-component magnetizations with a mean inclination of -42.6 deg +/- 2.4 deg. Breccias present a complex paleomagnetic record characterized by multivectorial magnetizations with widely different initial NRM inclinations. However, after alternating field demagnetization, well defined characteristic components with upward inclinations are defined. IRM acquisition experiments, comparison of IRM and NRM coercivity spectra and the single component magnetization of the andesitic rocks indicate the occurrence of iron-rich titanomagnetites of single or pseudo-single domain states as the dominant magnetic carriers. Mean inclinations from the andesitic rocks and most of the breccia samples give a mean inclination of about -40 deg to -45 deg, indicating a reverse polarity for the characteristic magnetization that is consistent with geomagnetic chron 29R, which spans the Cretaceous/Tertiary (K/T) boundary. The inclination is also consistent with the expected value (and corresponding paleolatitude) for the site estimated from the reference polar wander curve for North America. We suggest that the characteristic magnetizations for the andesitic and breccia rocks are the result of shock heating at the time of formation of the impact structure and that the age, polarity and pateolatitude are consistent with a time at the K/T boundary.

  17. Impact winter and the Cretaceous/Tertiary extinctions: Results of a Chicxulub asteroid impact model

    NASA Technical Reports Server (NTRS)

    Pope, Kevin O.; Baines, Kevin H.; Ocampo, Adriana C.; Ivanov, Boris A.

    1994-01-01

    The Chicxulub impact crater in Mexico is the site of the impact purported to have caused mass extinctions at the Cretaceous/Tertiary (K/T) boundary. 2-D hydrocode modeling of the impact, coupled with studies of the impact site geology, indiate that between 0.4 and 7.0 x 10(exp 17) g of sulfur were vaporized by the impact into anhydrite target rocks. A small portion of the sulfur was released as SO3 or SO4, which converted rapidly into H2SO4 aerosol and fell as acid rain. A radiative transfer model, coupled with a model of coagulation indicates that the aerosol prolonged the initial blackout period caused by impact dust only if the aerosol contained impurities. A larger portion of sulfur was released as SO2, which converted to aerosol slowly, due to the rate-limiting oxidation of SO2. Our radiative transfer calculations, combined with rates of acid production, coagulation, and diffusion indicate that solar transmission was reduced to 10-20% of normal for a period of 8-13 yr. This reduction produced a climate forcing (cooling) of -300 W/sq.m, which far exceeded the +8 W/sq.m greenhouse warming, caused by the CO2 released through the vaporization of carbonates, and therefore produced a decade of freezing and near-freezing temperatures. Several decades of moderate warming followed the decade of severe cooling due to the long residence time of CO2. The prolonged impact winter may have been a major cause of the K/T extinctions.

  18. Impact winter and the Cretaceous/Tertiary extinctions: results of a Chicxulub asteroid impact model.

    PubMed

    Pope, K O; Baines, K H; Ocampo, A C; Ivanov, B A

    1994-01-01

    The Chicxulub impact crater in Mexico is the site of the impact purported to have caused mass extinctions at the Cretaceous/Tertiary (K/T) boundary. 2-D hydrocode modeling of the impact, coupled with studies of the impact site geology, indicate that between 0.4 and 7.0 x 10(17) g of sulfur were vaporized by the impact into anhydrite target rocks. A small portion of the sulfur was released as SO3 or SO4, which converted rapidly into H2SO4 aerosol and fell as acid rain. A radiative transfer model, coupled with a model of coagulation indicates that the aerosol prolonged the initial blackout period caused by impact dust only if the aerosol contained impurities. A larger portion of sulfur was released as SO2, which converted to aerosol slowly, due to the rate-limiting oxidation of SO2. Our radiative transfer calculations, combined with rates of acid production, coagulation, and diffusion indicate that solar transmission was reduced to 10-20% of normal for a period of 8-13 yr. This reduction produced a climate forcing (cooling) of -300 Wm-2, which far exceeded the +8 Wm-2 greenhouse warming, caused by the CO2 released through the vaporization of carbonates, and therefore produced a decade of freezing and near-freezing temperatures. Several decades of moderate warming followed the decade of severe cooling due to the long residence time of CO2. The prolonged impact winter may have been a major cause of the K/T extinctions. PMID:11539442

  19. Cretaceous-Tertiary findings, paradigms and problems

    NASA Technical Reports Server (NTRS)

    Officer, C. B.; Drake, C. L.

    1988-01-01

    The asteroid hypothesis has stimulated numerous studies of the paleontological record at Cretaceous/Tertiary time as well as of geological indicators of environmental crisis preserved in the rock record. Both extinctions and geological anomalies often occur at times that do not appear to be synchronous or instantaneous. The record includes paleontological indicators of dinosaurs, terrestrial flora, marine planktonic organisms, and shallow water marine macrofauna and geological phenomena include occurrences of iridium and other platinum metals, trace elements, clay mineralogy, shocked minerals, soot, microspherules, and isotopes of osmium, strontium and carbon. These findings are reviewed in the context of the alternate hypotheses of an exogenic cause, involving either a single asteroid impact or multiple commentary impacts, and an endogenic cause, involving intense global volcanism and major sea level regression.

  20. Provenance of the K/T boundary layers

    NASA Technical Reports Server (NTRS)

    Hildebrand, A. R.; Boynton, W. V.

    1988-01-01

    An array of chemical, physical and isotopic evidence indicates that an impact into oceanic crust terminated the Cretaceous Period. Approximately 1500 cu km of debris, dispersed by the impact fireball, fell out globally in marine and nonmarine environments producing a 2 to 4 mm thick layer (fireball layer). In North American locales, the fireball layer overlies a 15 to 25 mm thick layer of similar but distinct composition. This 15 to 25 mm layer (ejecta layer) may represent approximately 1000 cu km of lower energy ejecta from a nearby impact site. Isotopic and chemical evidence supports a mantle provenance for the bulk of the layers. The extraordinary REE pattern of the boundary clays was modelled as a mixture of oceanic crust, mantle, and approximately 10 percent continental material. The results are presented. If the siderophiles of the ejecta layer were derived solely from the mantle, a test may be available to see if the siderophile element anomaly of the fireball layer had an extraterrestrial origin. Radiogenic Os-187 is depleted in the mantle relative to an undifferentiated chondritic source. Os-187/Os-186 ratios of 1.049 and 1.108 were calculated for the ejecta and fireball layers, respectively.

  1. Energy, volatile production, and climatic effects of the Chicxulub Cretaceous/Tertiary impact

    NASA Technical Reports Server (NTRS)

    Pope, K. O.; Baines, K. H.; Ocampo, A. C.; Ivanov, B. A.

    1997-01-01

    A comprehensive analysis of volatiles in the Chicxulub impact strongly supports the hypothesis that impact-generated sulfate aerosols caused over a decade of global cooling, acid rain, and disruption of ocean circulation, which contributed to the mass extinction at the Cretaceous/Tertiary (K/T) boundary. The crater size, meteoritic content of the K/T boundary clay, and impact models indicate that the Chicxulub crater was formed by a short period comet or an asteroid impact that released 0.7-3.4 x 10(31) ergs of energy. Impact models and experiments combined with estimates of volatiles in the projectile and target rocks predict that over 200 gigatons (Gt) each of SO2 and water vapor, and over 500 Gt of CO2, were globally distributed in the stratosphere by the impact. Additional volatiles may have been produced on a global or regional scale that formed sulfate aerosols rapidly in cooler parts of the vapor plume, causing an early, intense pulse of sulfuric acid rain. Estimates of the conversion rate of stratospheric SO2 and water vapor to sulfate aerosol, based on volcanic production of sulfate aerosols, coupled with calculations of diffusion, coagulation, and sedimentation, demonstrate that the 200 Gt stratospheric SO2 and water vapor reservoir would produce sulfate aerosols for 12 years. These sulfate aerosols caused a second pulse of acid rain that was global. Radiative transfer modeling of the aerosol clouds demonstrates (1) that if the initial rapid pulse of sulfate aerosols was global, photosynthesis may have been shut down for 6 months and (2) that for the second prolonged aerosol cloud, solar transmission dropped 80% by the end of first year and remained 50% below normal for 9 years. As a result, global average surface temperatures probably dropped between 5 degrees and 31 degrees K, suggesting that global near-freezing conditions may have been reached. Impact-generated CO2 caused less than 1 degree K greenhouse warming and therefore was insignificant compare to the sulfate cooling. The magnitude of sulfate cooling depends largely upon the rate of ocean mixing as surface waters cool, sink, and are replaced by upwelling of deep ocean water. This upwelling apparently drastically altered ocean stratification and circulation, which may explain the global collapse of the delta 13C gradient between surface and deep ocean waters at the K/T boundary.

  2. Energy, volatile production, and climatic effects of the Chicxulub Cretaceous/Tertiary impact.

    PubMed

    Pope, K O; Baines, K H; Ocampo, A C; Ivanov, B A

    1997-09-25

    A comprehensive analysis of volatiles in the Chicxulub impact strongly supports the hypothesis that impact-generated sulfate aerosols caused over a decade of global cooling, acid rain, and disruption of ocean circulation, which contributed to the mass extinction at the Cretaceous/Tertiary (K/T) boundary. The crater size, meteoritic content of the K/T boundary clay, and impact models indicate that the Chicxulub crater was formed by a short period comet or an asteroid impact that released 0.7-3.4 x 10(31) ergs of energy. Impact models and experiments combined with estimates of volatiles in the projectile and target rocks predict that over 200 gigatons (Gt) each of SO2 and water vapor, and over 500 Gt of CO2, were globally distributed in the stratosphere by the impact. Additional volatiles may have been produced on a global or regional scale that formed sulfate aerosols rapidly in cooler parts of the vapor plume, causing an early, intense pulse of sulfuric acid rain. Estimates of the conversion rate of stratospheric SO2 and water vapor to sulfate aerosol, based on volcanic production of sulfate aerosols, coupled with calculations of diffusion, coagulation, and sedimentation, demonstrate that the 200 Gt stratospheric SO2 and water vapor reservoir would produce sulfate aerosols for 12 years. These sulfate aerosols caused a second pulse of acid rain that was global. Radiative transfer modeling of the aerosol clouds demonstrates (1) that if the initial rapid pulse of sulfate aerosols was global, photosynthesis may have been shut down for 6 months and (2) that for the second prolonged aerosol cloud, solar transmission dropped 80% by the end of first year and remained 50% below normal for 9 years. As a result, global average surface temperatures probably dropped between 5 degrees and 31 degrees K, suggesting that global near-freezing conditions may have been reached. Impact-generated CO2 caused less than 1 degree K greenhouse warming and therefore was insignificant compare to the sulfate cooling. The magnitude of sulfate cooling depends largely upon the rate of ocean mixing as surface waters cool, sink, and are replaced by upwelling of deep ocean water. This upwelling apparently drastically altered ocean stratification and circulation, which may explain the global collapse of the delta 13C gradient between surface and deep ocean waters at the K/T boundary. PMID:11541145

  3. Enregistrement des événements remarquables de la limite Crétacé Tertiaire dans la coupe d'Ellès (Tunisie)Characteristic events record of the K/T boundary in the Ellès section (Tunisia).

    NASA Astrophysics Data System (ADS)

    Zaghbib-Turki, Dalila; Karoui-Yaakoub, Narjess; Rocchia, Robert; Robin, Eric; Belayouni, Habib

    2000-07-01

    The review of the Cretaceous-Paleogene interval deposits of the Ellès section based on a detailed sampling gives a good characterization of the K/T boundary and reconstitution of the geological events underlining this boundary. Thus, the discovery of a thin Ir-rich layer, with Ni and Cr-rich spinel and shocked quartz is a well preserved record of the known cosmic event that occurred at that time. This sudden event is also corroborated by the quantitative and qualitative organic components distribution along the K/T interval. Added to some other long-term events (e.g. climatic, eustatic), it generated a mass extinction, at the K/T boundary, of specialists among the Globotruncanids and Heterohelicids planktic foraminifera species. Following this biological crisis, the biotic turnover into the Danian is slow. The underlining of all the Cretaceous-Tertiary interval biozones attests that the Ellès section is complete. If compared to the K/T stratotype and El Kef II sections, the Ellès section is found to display a better exposure of the K/T interval and shows more expanded zones and subzones. Such characteristics promote the Ellès section to be considered as a parastratotype.

  4. The Cretaceous-Tertiary Impact Crater and the Cosmic Projectile that Produced it

    NASA Technical Reports Server (NTRS)

    Sharpton, Virgil L.; Marin, Luis E.

    1997-01-01

    Evidence gathered to date from topographic data, geophysical data, well logs, and drill-core samples indicates that the buried Chicxulub basin, the source crater for the approximately 65 Ma Cretaceous-Tertiary (K/T) boundary deposits, is approximately 300 km in diameter. A prominent topographic ridge and a ring of gravity anomalies mark the position of the basin rim at approximately 150 km from the center. Wells in this region recovered thick sequences of impact-generated breccias at 200-300 m below present sea level. Inside the rim, which has been severely modified by erosion following impact, the subsurface basin continues to deepen until near the center it is approximately 1 km deep. The best planetary analog for this crater appears to be the 270 km-diameter Mead basin on Venus. Seismic reflection data indicate that the central zone of downward displacement and excavation (the transient crater is approximately 130 km in diameter, consistent with previous studies of gravity anomaly data). Our analysis of projectile characteristics utilizes this information, coupled with conventional scaling relationships, and geochemical constraints on the mass of extraterrestrial material deposited within the K/T boundary layer. Results indicate that the Chicxulub crater would most likely be formed by a long-period comet composed primarily of nonsilicate materials (ice, hydrocarbons, etc.) and subordinate amounts (less than or equal to 50 percent) primitive chondritic material. This collision would have released the energy equivalent to between 4 x 10(exp 8) and 4 x 10(exp 9) megatons of TNT. Studies of terrestrial impact rates suggest that such an event would have a mean production rate of approximately 1.25 x 10(exp -9) y(exp -1). This rate is considerably lower than that of the major mass extinctions over the last 250 million years (approximately 5 x 10(exp -7) y(exp -1). Consequently, while there is substantial circumstantial evidence establishing the cause-effect link between the Chicxulub basin forming event and the K/T biological extinctions, the results of our analysis do not support models of impact as a common or singular causative agent of mass extinctions on Earth.

  5. The Cretaceous-Tertiary impact crater and the cosmic projectile that produced it.

    PubMed

    Sharpton, V L; Marin, L E

    1997-05-30

    Evidence gathered to date from topographic data, geophysical data, well logs, and drill-core samples indicates that the buried Chicxulub basin, the source crater for the approximately 65 Ma Cretaceous-Tertiary (K/T) boundary deposits, is approximately 300 km in diameter. A prominent topographic ridge and a ring of gravity anomalies mark the position of the basin rim at approximately 150 km from the center. Wells in this region recovered thick sequences of impact-generated breccias at 200-300 m below present sea level. Inside the rim, which has been severely modified by erosion following impact, the subsurface basin continues to deepen until near the center it is approximately 1 km deep. The best planetary analog for this crater appears to be the 270 km-diameter Mead basin on Venus. Seismic reflection data indicate that the central zone of downward displacement and excavation (the transient crater is approximately 130 km in diameter, consistent with previous studies of gravity anomaly data). Our analysis of projectile characteristics utilizes this information, coupled with conventional scaling relationships, and geochemical constraints on the mass of extraterrestrial material deposited within the K/T boundary layer. Results indicate that the Chicxulub crater would most likely be formed by a long-period comet composed primarily of nonsilicate materials (ice, hydrocarbons, etc.) and subordinate amounts (< or = 50%) primitive chondritic material. This collision would have released the energy equivalent to between 4 x 10(8) and 4 x 10(9) megatons of TNT. Studies of terrestrial impact rates suggest that such an event would have a mean production rate of approximately 1.25 x 10(-9) y-1. This rate is considerably lower than that of the major mass extinctions over the last 250 million years (approximately 5 x 10(-7) y-1). Consequently, while there is substantial circumstantial evidence establishing the cause-effect link between the Chicxulub basin forming event and the K/T biological extinctions, the results of our analysis do not support models of impact as a common or singular causative agent of mass extinctions on Earth. PMID:11543120

  6. Extraterrestrial cause for the Cretaceous-Tertiary extinction

    SciTech Connect

    Alvarez, L.W.; Alvarez, W.; Asaro, F.; Michel, H.V.

    1980-06-06

    Platinum metals are depleted in the earth's crust relative to their cosmic abundance; concentrations of these elements in deep-sea sediments may thus indicate influxes of extraterrestrial material. Deep-sea limestones exposed in Italy, Denmark, and New Zealand show iridium increases of about 30, 160, and 20 times, respectively, above the background level at precisely the time of the Cretaceous-Tertiary extinctions, 65 million years ago. Reasons are given to indicate that this iridium is of extraterrestrial origin, but did not come from a nearby supernova. A hypothesis is suggested which accounts for the extinctions and the iridium observations. Impact of a large earth-crossing asteroid would inject about 60 times the object's mass into the atmosphere as pulverized rock; a fraction of this dust would stay in the stratosphere for several years and be distributed worldwide. The resulting darkness would suppress photosynthesis, and the expected biological consequences match quite closely the extinctions observed in the paleontological record. One prediction of this hypothesis has been verified: the chemical composition of the boundary clay, which is thought to come from the stratospheric dust, is markedly different from that of clay mixed with the Cretaceous and Tertiary limestones, which are chemically similar to each other. Four different independent estimates of the diameter of the asteroid give values that lie in the range 10 +- 4 kilometers.

  7. K/T boundary stratigraphy: Evidence for multiple impacts and a possible comet stream

    NASA Technical Reports Server (NTRS)

    Shoemaker, E. M.; Izett, G. A.

    1992-01-01

    A critical set of observations bearing on the K/T boundary events were obtained from several dozen sites in western North America. Thin strata at and adjacent to the K/T boundary are locally preserved in association with coal beds at these sites. The strata were laid down in local shallow basins that were either intermittently flooded or occupied by very shallow ponds. Detailed examination of the stratigraphy at numerous sites led to the recognition of two distinct strata at the boundary. From the time that the two strata were first recognized, E.M. Shoemaker has maintained that they record two impact events. We report some of the evidence that supports this conclusion.

  8. Resistance of spiders to Cretaceous-Tertiary extinction events.

    PubMed

    Penney, David; Wheater, C Philip; Selden, Paul A

    2003-11-01

    Throughout Earth history a small number of global catastrophic events leading to biotic crises have caused mass extinctions. Here, using a technique that combines taxonomic and numerical data, we consider the effects of the Cenomanian-Turonian and Cretaceous-Tertiary mass extinctions on the terrestrial spider fauna in the light of new fossil data. We provide the first evidence that spiders suffered no decline at the family level during these mass extinction events. On the contrary, we show that they increased in relative numbers through the Cretaceous and beyond the Cretaceous-Tertiary extinction event. PMID:14686534

  9. Shocked minerals at the K/T boundary: explosive volcanism as a source

    NASA Astrophysics Data System (ADS)

    Rice, Alan

    1987-09-01

    Azimuthal symmetry of P waves, first motion up and diminished S wave amplitude indicates an explosion to be the source of the seismicity of the 18 May 1980 eruption at Mt. St. Helens. Explosion coupling efficiencies and scaling from underground mining, excavation and nuclear explosions imply that peak pressures could have been as high as 1000 kbar, which is more than sufficient for the formation of shocked minerals. In addition, high load rates as well as contamination may lower phase transition pressures. A region of formation of shocked minerals surrounding the magma chamber is indicated to have a thickness on the order of 100 m. The outer portions of this region should be sufficiently cool so that shocked features are not annealed, hence the source of shocked minerals should be the country rock surrounding the magma chamber. It is unlikely any of the magmatic material would be able to retain shocked features due its high temperature. The explosive mechanism may be quench supersaturation which theoretically can yield shock producing pressures but chemical processes should not be dismissed as an explosive source. Tektite distributions show no iridium or mass extinction association. Industrial and present volcanic atmospheric discharge are known to have worldwide distribution. The clays present at the K/T boundary may have had a volcanic origin and it is now known that the Deccan Traps, which have been suggested by others as a source of the iridium, lie athwart the K/T boundary. As there is common intimacy between silicic and mafic volcanism, both should be anticipated at the K/T boundary and their global appearance there may be a manifestation of a surge in whole mantle convection. In short, there is a definite possibility shocked minerals at the K/T boundary have a volcanic source.

  10. Preliminary Ar-40/Ar-39 age spectrum and laser probe dating of the M1 core of the Manson Impact Structure, Iowa: A K-T boundary crater candidate

    NASA Technical Reports Server (NTRS)

    Kunk, M. J.; Snee, L. W.; French, B. M.; Harlan, S. S.; Mcgee, J. J.

    1993-01-01

    Preliminary Ar-40/Ar-39 age spectrum and laser probe dating results from new drill core from the 35-km-diameter Manson Impact Structure (MIS), Iowa indicates a reasonable possibility that the MIS is a Cretaceous-Tertiary (K-T) boundary impact event. Several different types of samples from a melt-matrix breccia, a unit of apparent crater fill intersected by the M1 core, were analyzed. Ar-40/Ar-39 results from these samples indicate a maximum age for the MIS of about 65.4 plus or minus 0.4(2 sigma) Ma. Petrographic analyses of the samples indicate a high probability that all the dated samples from the melt-matrix breccia contain relict grains that were not entirely melted or degassed at the time of impact, suggesting that the actual age of the MIS could be somewhat younger than our preliminary results indicate. The results are consistent with a previously published age estimate of shocked microcline from the MIS central uplift of 65.7 plus or minus 1.0 Ma.

  11. Geochemical comparison of K-T boundaries from the Northern and Southern Hemispheres

    NASA Technical Reports Server (NTRS)

    Tredous, M.; Verhagen, B. TH.; Hart, R. J.; Dewit, C. B.; Smith, C. B.; Perch-Nielsen, K.; Sellschop, J. P. F.

    1988-01-01

    Closely spaced (cm-scale) traverses through the K-T boundary at Stevns Klint (Denmark), Woodside Creek (New Zealand) and a new Southern Hemisphere site at Richards Bay (South Africa) were subjected to trace element and isotopic (C, O, Sr) investigation. Intercomparison between these data-sets, and correlation with the broad K-T database available in the literature, indicate that the chemistry of the boundary clays is not globally constant. Variations are more common than similarities, both of absolute concentrations, and interelement ratios. For example, the chondrite normalized platinum-group elements (PGE) patterns of Stevns Klint are not like those of Woodside Creek, with the Pt/Os ratios showing the biggest variation. These differences in PGE patterns are difficult to explain by secondary alteration of a layer that was originally chemically homogeneous, especially for elements of such dubious crustal mobility as Os and Ir. The data also show that enhanced PGE concentrations, with similar trends to those of the boundary layers, occur in the Cretaceous sediments below the actual boundary at Stevns Klint and all three the New Zealand localities. This confirms the observations of others that the geochemistry of the boundary layers apparently does not record a unique component. It is suggested that terrestrial processes, eg. an extended period of Late Cretaceous volcanism can offer a satisfactory explanation for the features of the K-T geochemical anomaly. Such models would probably be more consistent with the observed stepwise, or gradual, palaeontological changes across this boundary, than the instant catastrophe predicated by the impact theory.

  12. Mass extinctions, atmospheric sulphur and climatic warming at the K/T boundary

    NASA Technical Reports Server (NTRS)

    Rampino, Michael R.; Volk, Tyler

    1988-01-01

    The possible climatic effects of a drastic decrease in cloud condensation nuclei (CCN) associated with a severe reduction in the global marine phytoplankton abundance are investigated. Calculations suggest that a reduction in CCN of more than 80 percent and the resulting decrease in marine cloud albedo could have produced a rapid global warming of 6 C or more. Oxygen isotope analyses of marine sediments from many parts of the world have been interpreted as indicating a marked warming coincident with the demise of calcareous nannoplankton at the K/T boundary. Decreased marine cloud albedo and resulting high sea surface temperatures could have been a factor in the maintenance of low productivity in the 'Strangelove Ocean' period following the K/T extinctions.

  13. Magnetic properties and Moessbauer analyses of glass from the K-T boundary, Beloc, Haiti

    NASA Technical Reports Server (NTRS)

    Senftle, F. E.; Thorpe, A. N.; May, L.; Barkatt, A.; Adel-Hadadi, M. A.; Marbury, G. S.; Izett, G.; Sigurdsson, H.; Maurasse, F. J.-M. R.

    1993-01-01

    The experimental magnetic susceptibility, the temperature-independent component of the magnetic susceptibility, the magnetization, and the Curie constant have been measured for a number of specimens of glass from the K-T boundary found at Beloc, Haiti, and the results are compared with those of similar measurements of tektites. Because the Fe(3+)/Fe(2+) ratio is needed to calculate the magnetic parameters, Moessbauer spectroscopic measurements were also made. The data were consistent with the classification of the Beloc glasses as tektites.

  14. The Koshak section: Evidence for element fractionation and an oxidation event at the K/T boundary

    NASA Technical Reports Server (NTRS)

    Nazarov, M. A.; Badjukov, D. D.; Barsukova, L. D.; Kolesov, G. M.; Naidin, D. P.

    1993-01-01

    The Koshak site is a new K/T section located about 125 km EEN of the Fort Shevchenko city, Mangyshlak, Kazakhstan. In this paper, we report results of geochemical and mineralogical studies of this section which indicate a deep element fractionation and an oxidation event at the K/T boundary.

  15. Micropaleontological and Paleomagnetic Characterization of La Ceiba K/T Boundary Section, Central Mexico

    NASA Astrophysics Data System (ADS)

    Martnez-Lpez, M.; Urrutia-Fucugauchi, J.

    2007-05-01

    We report results of a micropaleontological and magnetostratigraphic study of the La Ceiba section that spans the K/T boundary. La Ceiba is located in central Mexico (20o 19.8' N, 97o 41.0' W) within the Tampico-Mizantla basin. The K/T boundary is marked by a clastic unit of about one-meter thickness intercalated between the carbonate hemipelagic marls of the Cretaceous Mendez Formation and the Paleocene Velasco Formation. The clastic unit can be divided into four sub-units, according to their texture and architectural characteristics following Arenillas et al. (2002). The basal sub-unit is formed by calcareous marls and is rich in shocked quartz and millimeter size spherules with microtektites and bioclasts of shallow water origin. The second sub-unit is formed by medium-grained sandstones, with clasts and quartz fragments, feldspars, metamorphic and calcareous fragments and re-worked benthic and planktic foraminifera. The third sub-unit is composed by a single body of medium- to fine-grained sandstones with tabular geometry. In this sub-unit, cross- and parallel-lamination trough cross-stratification, current ripples and climbing ripples have been observed. The top sub-unit is a tabular body of fine-grained sandstones, showing parallel-lamination and low-angle cross-lamination, with asymmetric ripples and burrow traces to the top. For the paleontologic and paleomagnetic study we collected twenty-five oriented samples across the section. We measured the low-field susceptibility, intensity and direction of the NRM. The vectorial composition and stability of NRM were analyzed by progressive thermal and alternating field demagnetization. Vectorial orthogonal diagrams and vector subtraction and principal component analysis were used to determine the characteristic magnetization and secondary components for each sample. The characteristic NRM negative inclination and southward declination in the K/T clastic sediments indicate a reverse polarity, which is correlated to reverse chron 29r that spans the K/T boundary. Micropaleontology analyses permit identification of six biozones. Two biozones (biozone of Rugoglobigerina scootti and Abathomphalus mayaroensis) correspond to the Maastrichtian. Four biozones (Guembelitria cretcea, Parvularogoglobigerina eugubina, Parasubotina pseudobulloides and Acarina trinidadensis) correspond to the Danian.

  16. First Evidence for a Massive Extinction Event Affecting Bees Close to the K-T Boundary

    PubMed Central

    Rehan, Sandra M.; Leys, Remko; Schwarz, Michael P.

    2013-01-01

    Bees and eudicot plants both arose in the mid-late Cretaceous, and their co-evolutionary relationships have often been assumed as an important element in the rise of flowering plants. Given the near-complete dependence of bees on eudicots we would expect that major extinction events affecting the latter would have also impacted bees. However, given the very patchy distribution of bees in the fossil record, identifying any such extinctions using fossils is very problematic. Here we use molecular phylogenetic analyses to show that one bee group, the Xylocopinae, originated in the mid-Cretaceous, coinciding with the early radiation of the eudicots. Lineage through time analyses for this bee subfamily show very early diversification, followed by a long period of seemingly no radiation and then followed by rapid diversification in each of the four constituent tribes. These patterns are consistent with both a long-fuse model of radiation and a massive extinction event close to the K-T boundary. We argue that massive extinction is much more plausible than a long fuse, given the historical biogeography of these bees and the diversity of ecological niches that they occupy. Our results suggest that events near the K-T boundary would have disrupted many plant-bee relationships, with major consequences for the subsequent evolution of eudicots and their pollinators. PMID:24194843

  17. First evidence for a massive extinction event affecting bees close to the K-T boundary.

    PubMed

    Rehan, Sandra M; Leys, Remko; Schwarz, Michael P

    2013-01-01

    Bees and eudicot plants both arose in the mid-late Cretaceous, and their co-evolutionary relationships have often been assumed as an important element in the rise of flowering plants. Given the near-complete dependence of bees on eudicots we would expect that major extinction events affecting the latter would have also impacted bees. However, given the very patchy distribution of bees in the fossil record, identifying any such extinctions using fossils is very problematic. Here we use molecular phylogenetic analyses to show that one bee group, the Xylocopinae, originated in the mid-Cretaceous, coinciding with the early radiation of the eudicots. Lineage through time analyses for this bee subfamily show very early diversification, followed by a long period of seemingly no radiation and then followed by rapid diversification in each of the four constituent tribes. These patterns are consistent with both a long-fuse model of radiation and a massive extinction event close to the K-T boundary. We argue that massive extinction is much more plausible than a long fuse, given the historical biogeography of these bees and the diversity of ecological niches that they occupy. Our results suggest that events near the K-T boundary would have disrupted many plant-bee relationships, with major consequences for the subsequent evolution of eudicots and their pollinators. PMID:24194843

  18. Geochemical evidence for combustion of hydrocarbons during the K-T impact event.

    PubMed

    Belcher, Claire M; Finch, Paul; Collinson, Margaret E; Scott, Andrew C; Grassineau, Nathalie V

    2009-03-17

    It has been proposed that extensive wildfires occurred after the Cretaceous-Tertiary (K-T) impact event. An abundance of soot and pyrosynthetic polycyclic aromatic hydrocarbons (pPAHs) in marine K-T boundary impact rocks (BIRs) have been considered support for this hypothesis. However, nonmarine K-T BIRs, from across North America, contain only rare occurrences of charcoal yet abundant noncharred plant remains. pPAHs and soot can be formed from a variety of sources, including partial combustion of vegetation and hydrocarbons whereby modern pPAH signatures are traceable to their source. We present results from multiple nonmarine K-T boundary sites from North America and reveal that the K-T BIRs have a pPAH signature consistent with the combustion of hydrocarbons and not living plant biomass, providing further evidence against K-T wildfires and compelling evidence that a significant volume of hydrocarbons was combusted during the K-T impact event. PMID:19251660

  19. Twelve-year trail of clues leads to impact crater from the K-T boundary

    SciTech Connect

    Levi, B.G.

    1992-12-01

    In 1980, scientists at the University of California, Berkeley proposed that a massive comet or asteroid might have struck the earth about 65 million years ago, changing the earth's climate so drastically that dinosaurs and other creatures could no longer survive. This article describes the evidence for the elusive crater required to support this theory. The structure in question is 180 km in diameter and is submeged beneath the Yucatan peninsula and centered on the Mexican village of Chicxulub. Material drilled from this crater has been linked chemically and geologically to pellets found in Northeast Mexico and Haiti. The link between this ejecta material and the crater was confirmed by a report that the Chicxulub melt rock and pellets are coeval, all having ages consistent with 65 million years. This puts the possible impact at the K-T boundary -- the dividing line between the Cretaceous period of the dinosaurs and the Tertiary period of the mammals. 13 refs.

  20. Environmental effects of an impact-generated dust cloud - Implications for the Cretaceous-Tertiary extinctions

    NASA Technical Reports Server (NTRS)

    Pollack, J. B.; Toon, O. B.; Ackerman, T. P.; Mckay, C. P.; Turco, R. P.

    1983-01-01

    A model of the evolution and radiative effects of a debris cloud from a hypothesized impact event at the Cretaceous-Tertiary boundary suggests that the cloud could have reduced the amount of light at the earth's surface below that required for photosynthesis for several months and, for a somewhat shorter interval, even below that needed for many animals to see. For 6 months to 1 year, the surface would cool; the oceans could cool only a few degrees Celsius at most, but the continents might cool a maximum of 40 Kelvin. Extinctions in the ocean may have been caused primarily by the temporary cessation of photosynthesis, but those on land may have been primarily induced by a combination of lowered temperatures and reduced light.

  1. Meteorite impact, cryptoexplosion, and shock metamorphism - A perspective on the evidence at the K/T boundary

    NASA Technical Reports Server (NTRS)

    Sharpton, V. L.; Grieve, R. A. F.

    1990-01-01

    A perspective on the evidence of a major impact event at the K/T boundary is proposed using field and laboratory studies of terrestrial impact craters. Recent assertions that diagnostic indications of shock metamorphism are also produced in volcanic environments are challenged. A general geological framework of impact structures is developed and the issue of volcanically induced shock metamorphism is examined. Cryptoexplosion is addressed by assessing the geology of two structures: the Slate Islands and Manson, which are often cited by advocates of an internal origin for shock metamorphism as volcanic structures. It is concluded that the link between shock metamorphism and meteorite impact is now established beyond reasonable doubt. The occurrence and worldwide distribution of shocked minerals at the K/T boundary is considered to be the conclusive evidence for a major impact event.

  2. Geochemical evidences for two chondritic-like cometary or asteroidal impacts before and at the K/T boundary

    NASA Technical Reports Server (NTRS)

    Liu, Y.-G.; Schmitt, R. A.

    1993-01-01

    A number of geological and palaeontological evidences support multiple impacts of cometary showers within a short time (approximately 1-3 Ma) and their connection with mass extinctions. Observations include clustered crater ages, stratigraphic horizons of impact ejecta closely spaced in time, and evidence for stepwise mass extinctions spanning intervals of 1-3 Ma. For the K/T boundary, three candidates, Popigai, Manson, and Yucatan, have been proposed as impact craters. Two distinct strata at the K/T boundary in western North America have been interpreted as evidence for two sequential impacts. If multiple impacts occurred within a time span of about 1 Ma then multiple Ir enrichments should be observed. DSDP Hole 577B on the Shatsky Plateau in the northern Pacific at K/T time is the first site. Samples contain approximately greater than 97 percent CaCO3, which exhibit clear chemical signals associated with asteroidal/cometary impact. Ir, Fe, and Cr data are presented. From the Th-normalized data, two satellite peaks below the major peak at 78 cm and 81 cm of 577B-1-4 are clearly shown. The major Ir peak (K/T boundary) is at 72 cm. Fe and Cr, from C1-like impactor ejecta fallout, also show two peaks at the same positions. For hole 738C on the southern Kerguelen Plateau, Ir values reach a peak concentration of 18 ppb in the clay layer at 96.0-96.2 cm in section 20R-5, and gradually tail off. In the sample 115 cm above the boundary, Ir concentrations have still not reached background levels. From the Ir peak downward to the lowermost sample analyzed at 102 cm, the Ir concentration is still as high as 1.7 ppb. From the Th-normalized data, we observe a small Ir/Th peak at 100-101 cm. Though this peak is within the error margin, the trend is clear. Fe and Cr exhibit the same pattern. The third case is Hole 690C on the Queen Maud Ridge. Again, the Ir/Th plot indicates the strong possibility of satellite peaks at approximately 52 cm. The main peak is at 39-40 cm. For the Stevns Klint K/T boundary layers, the stratification of trace elements appears threefold with peak concentrations in sublayers A1, A3, and B2 for different element groups, including Ir. C1 ratios for many siderophile elements found in combined layers III and IV, corresponding to layers A, B, C, and D, strongly support the impact hypothesis. Also, multiple Ir anomalies in the K/T section at Lattengebirge, Bavarian Alps are reported. Recent works on Ni-rich spinels and Ir at the K/T boundaries clearly establish cometary/asteroidal impacts at the K/T boundary. Lastly, cometary showers can explain the enhanced Ir contents over approximately a 1 Ma interval in Gubbio shales.

  3. The Disposition of Pt, Pd, Ir, Os, and Ru in Marine Sediments and the K/T Boundary

    NASA Technical Reports Server (NTRS)

    Lee, Cin-Ty; Wasserburg, Gerald; Kyte, Frank

    2003-01-01

    The marine record of platinum group elements (PGEs) and Os isotopic compositions provides information on different inputs of PGEs into the oceans. Some studies based on a smaller subset of the PGEs suggest that the PGEs may suffer post-depositional mobility during diagenesis. In some K/T boundary clays, Kyte and others showed that the relative abundances of Pt, Pd, Ir, and Os can differ significantly from chondritic, which is the signature expected from fallout of the meteorite impact. In some K/T boundary sections, elevated Ir concentrations are observed as far as 1 meter from the cm-thick boundary clay containing the meteoritic ejecta. The purpose of this study was to characterize Pt, Pd, Ir, Os, and Ru abundances in zones including the K/T boundary. We determined PGE abundances of boundary clays at two hemipelagic sites (Stevns Klint, Denmark and Caravaca, Spain) in which previous studies by Kyte and others showed that the Ir anomaly is confined to within a few cm. We also analyzed two pelagic Pacific sites: a boundary clay from the north Pacific (Hole 465A) characterized by a 0.5 m thick Ir anomaly and a transect across the K/T boundary from the south Pacific (Hole 596) where the Ir anomaly spans 2 m. The Stevns Klint, Caravaca, and north Pacific sites are characterized by abundant marls and limestones in the section, whereas the south Pacific site is dominated by clays. Samples were spiked with isotopic tracers, mixed with a flux, S and Ni, and equilibrated by fusion. PGEs were extracted from the Ni and analyzed on a Finnigan Element ICP-MS. We find that the narrow Caravaca and Stevns Klint boundary clays have relative PGE abundance patterns indistinguishable from chondritic values. The two Pacific sites were found to have nearly identical PGE patterns but have ratios at the peak, which differ from chondritic values as found earlier by Evans et al. The Pacific sites were found to have nearly identical PGE patterns but are extremely depleted in OS (Os/Ir = 0.07-0.15) and slightly enriched in Pd and Pt relative to Ir.

  4. Environments and extinctions at the K-T boundary in eastern Montana are compatible with an asteroid impact

    SciTech Connect

    Fastovsky, D.E. ); Sheehan, P.M. )

    1992-01-01

    In the terrestrial latest Cretaceous Hell Creek (HC) Formation, both non-biotic events and patterns of extinction and survivorship are consistent with an asteroid impact causing the extinctions. Environments through the last 2--3 million-year interval represented by the HC remained relatively constant: an aggrading coastal lowland dissected by meandering rivers. The K-T boundary occurred during an abrupt change to impeded drainage represented by coals and pond deposits formed under low-energy conditions. Because of the close temporal proximity of the sediments of the Paleocene Cannonball Sea to the K-T boundary in South Dakota, impeded drainage in the earliest Paleocene in eastern Montana may be attributable to riverine base-level changes associated with a renewed transgression of the western interior sea during the K-T transition. Patterns within the biota mirror those of the paleoenvironments. The ecological diversity of HC dinosaurs remains statistically unchanged through HC time. Analyses of vertebrates at the species level indicate a differential extinction in which the terrestrial biota underwent far more extinction than its aquatic counterpart. There is no evidence for changing environments in the upper HC, and there is circumstantial evidence that the latest Cretaceous was a time of renewed transgression rather than regression. Likewise, biotic patterns do not accord with gradual, environmentally driven extinctions. While the paleoenvironmental change that marks the K-T transition in eastern Montana accounts for some of the extinctions, the pattern of differential extinction is concordant with an asteroid impact. In this scenario, aquatic ecosystems and some land-based food chains would be buffered by detritus-based feeding. Terrestrial systems, dependent upon primary productivity, would undergo a short-term loss of resources causing extinctions.

  5. Diamonds from the iridium-rich K-T boundary layer at Arroyo el Mimbral, Tamaulipas, Mexico

    NASA Astrophysics Data System (ADS)

    Hough, R. M.; Gilmour, I.; Pillinger, C. T.; Langenhorst, F.; Montanari, A.

    1997-11-01

    Diamonds, up to 30 ?m in size, were found in the iridium-rich layer from the K-T boundary site at Arroyo El Mimbral and the spherule bed from Arroyo El Peon, northeastern Mexico. Stepped heating experiments indicate two or more isotopically distinct diamond components with carbon isotopic compositions characteristic of a mixture of carbon sources. The diamonds' crystal form is cubicnot the hexagonal polymorph of diamond, lonsdaleite, which has been used previously to infer formation due to shock transformation of graphite. The size, crystallography, and mineralogic associations of K-T diamonds are similar to those of impact-produced diamonds from the Ries crater in Germany where both shock transformation of graphite and a mode of formation by condensation from a vapor plume have been inferred. The discovery of impact-produced diamonds in association with high Ir contents for these sediments supports their impact origin, K-T age, and the inference that their source was from the buried impact crater of Chicxulub on the Yucatan peninsula, Mexico.

  6. Iridium enrichment in volcanic dust from blue ice fields, Antarctica, and possible relevance to the K/T boundary event

    NASA Technical Reports Server (NTRS)

    Koeberl, Christian

    1989-01-01

    The analysis of samples of volcanic ash dust layers from the Lewis Cliff/Beardmore Glacier in Antarctica shows that some of the samples contain Ir concentrations up to 7.5 ppb. It is shown that the Ir is positively correlated with Se, As, Sb, and other volcanogenic elements. The results show that Ir may be present in some volcanic ash deposits, suggesting that the Ir in the K/T boundary clays is not necessarily of cosmic origin, but may have originated from mantle reservoirs tapped during extensive volcanic eruptions possibly triggered by impact events.

  7. U-Pb provenance ages of shocked zircons from the K-T boundary, Raton Basin, Colorado

    NASA Technical Reports Server (NTRS)

    Premo, W. R.; Izett, G. A.

    1993-01-01

    U-Pb isotopic systematics from analyses of single zircons identify at least two provenance ages, approximately 575 Ma and approximately 330 Ma, for zircons from the impact layer of the K-T boundary, Raton Basin, Colorado. These data are a preliminary confirmation of results reported from the same layer. The zircon provenance ages provide a unique signature for identification of the source crater since igneous rocks of these ages (or sedimentary rocks derived from them) must characterize part of the impact stratigraphy.

  8. Environmental effects of Deccan volcanism across the Cretaceous-Tertiary transition in Meghalaya, India

    NASA Astrophysics Data System (ADS)

    Gertsch, B.; Keller, G.; Adatte, T.; Garg, R.; Prasad, V.; Berner, Z.; Fleitmann, D.

    2011-10-01

    The Um Sohryngkew section of Meghalaya, NE India, located 800-1000 km from the Deccan volcanic province, is one of the most complete Cretaceous-Tertiary boundary (KTB) transitions worldwide with all defining and supporting criteria present: mass extinction of planktic foraminifera, first appearance of Danian species, δ 13C shift, Ir anomaly (12 ppb) and KTB red layer. The geochemical signature of the KTB layer indicates not only an extraterrestrial signal (Ni and all Platinum Group Elements (PGEs)) of a second impact that postdates Chicxulub, but also a significant component resulting from condensed sedimentation (P), redox fluctuations (As, Co, Fe, Pb, Zn, and to a lesser extent Ni and Cu) and volcanism. From the late Maastrichtian C29r into the early Danian, a humid climate prevailed (kaolinite: 40-60%, detrital minerals: 50-80%). During the latest Maastrichtian, periodic acid rains (carbonate dissolution; CIA index: 70-80) associated with pulsed Deccan eruptions and strong continental weathering resulted in mesotrophic waters. The resulting super-stressed environmental conditions led to the demise of nearly all planktic foraminiferal species and blooms (> 95%) of the disaster opportunist Guembelitria cretacea. These data reveal that detrimental marine conditions prevailed surrounding the Deccan volcanic province during the main phase of eruptions in C29r below the KTB. Ultimately these environmental conditions led to regionally early extinctions followed by global extinctions at the KTB.

  9. Geochemistry of K/T-boundary Chicxulub ejecta of NE-Mexico

    NASA Astrophysics Data System (ADS)

    Harting, M.; Deutsch, A.; Rickers, K.

    2003-12-01

    Many K/T sections all over the world contain impact spherules supposed related to the Chicxulub event. This study focus on ejecta layers in NE-Mexican profiles. We carried out systematic XRF and synchrotron radiation measurements on such spherules at the HASYLAB and ANKA facilities as well as microprobe analyses (CAMECA SX50). Area scans on tektite-like material of the Bochil section reveal a pronounced zonation in the inner part, dominated by Ba and Sr whereas secondary CaCO3 dominates in the altered margin. The composition of the spherules from the Mesa-Juan Perez section differ significantly from the Beloc (Haiti) and Bochil tektite glasses. At Mesa-Juan Perez, spherules are either extremely rich in Fe and Ca or consist of smectite, some of those carry carbonate inclusions. Yttrium, La and Ce are zoned within the smectite with concentrations below the detection limit and up to 20 æg/g The Ca-rich inclusions are enriched in Y (up to 35 æg/g) and La (18 æg/g) and, compared to the surrounding smectite, also in Ce (up to 34 æg/g). The Ce enrichment in spherules from the Mesa-Juan Perez section indicates impact-melted carbonates of the Yucatan carbonate platform as possible precursor rocks. Recent investigations focus on the chemistry of melt rock samples from the PEMEX wells Yucatan-6 and Chicxulub-1: Their average composition (mean of 250 data points in wt-percent ) is 61.6 for SiO2, 0.16 for TiO2, 18.07 for Al2O3, 0.01 for Cr2O3, 1.98 for Na2O, 1.5 for FeO, 0.05 for MnO, 0.01 for NiO, 0.31 for MgO, 9.14 for K2O, 3.44 for CaO, and 0.01 for SO2. These results are in some cases comparable to the geochemistry of ejecta glasses, e.g. from Beloc (Haiti).

  10. Cosmic Genes in the Cretaceous-Tertiary transition

    NASA Astrophysics Data System (ADS)

    Wallis, M. K.

    2003-07-01

    It is proposed that genes coding for Aib-polypeptides arose early on in the K/T transition, presumed from the Earth's accretion of interplanetary (comet) dust. Aib-fungi flourished because of the evolutionary advantage of novel antibiotics. The stress on Cretaceous biology led directly and indirectly to mass species extinctions, including many dinosaur species, in the epoch preceding the Chicxulub impact.

  11. Strontium and oxygen isotope study of M-1, M-3 and M-4 drill core samples from the Manson impact structure, Iowa: Comparison with Haitian K-T impact glasses

    NASA Technical Reports Server (NTRS)

    Blum, Joel D.; Chamberlain, C. Page; Hingston, Michael P.; Koeberl, Christian

    1993-01-01

    Strontium and oxygen isotope analyses were performed on 8 samples from the M-1, M-3, and M-4 cores recently drilled at the Manson impact structure. The samples were three elastic sedimentary rocks (of probable Cretaceous age) which occurred as clasts within the sedimentary clast breccia, two samples of crystalline rock breccia matrix, and three samples of dolomite and limestone. The Sr-87/Sr-86 (corrected to 65 Ma) ratios were much higher than those in impact glasses from the Haitian Cretaceous-Tertiary (K-T) boundary. Isotope mixing calculations demonstrate that neither the silicate or carbonate rocks analyzed from the Manson crater, or mixtures of these rocks are appropriate source materials for the Haitian impact glasses. However, the Sr-87/Sr-86 (65Ma) ratio and delta O-18 value of the Ca-rich Haitian glasses are well reproduced by mixtures of Si-rich Haitian glass with platform carbonate of K-T age.

  12. Mineralogy and phase-chemistry of the Cretaceous/Tertiary section in the Lattengebirge, Bavarian Alps

    NASA Technical Reports Server (NTRS)

    Graup, G.

    1988-01-01

    The Lattengebirge K/T section reveals three distinct Ir spikes. Two of them are contained in the K/T transition zone sensu-strictu termed clayey interval, with 4.4 ppb Ir at the actual K/T boundary, and 2.8 ppb Ir 10 cm above the boundary. The highest Ir enrichment of 9 ppb, however, was detected in semi-cleaned organic material from a thin sandstone layer of Upper Maastrichtian age at 16 cm below the boundary. In this layer various discernible phases are preserved, contrasting with the worldwide observed K/T transition zones which are generally entirely composed of diagenetically altered materials. Given that, important clues to understanding the Cretaceous terminal events may be provided. The phases of the Cretaceous Ir bearing layer at Lattengebirge consist of: sandstone fragmental minerals in a carbonate matrix, coal which is partly burnt, melt glasses presumably of combustion-metamorphic origin, and sulfides, mainly chalcopyrite, contained in the coal. Like many known K/T sections and the Lattengebirge boundary sensu-strictu, the Cretaceous horizon is enriched in Ir and chalcophile elements as well. Although the Lattengebirge section offers the freshest materials, including melt glasses, of all K/T localities investigated, no unequivocal evidence of formation by impact has been found there.

  13. Impact mechanics of the Cretaceous-Tertiary extinction bolide

    NASA Technical Reports Server (NTRS)

    Okeefe, J. D.; Ahrens, T. J.

    1982-01-01

    An examination of the mechanics of asteroidal, cometary, and meteor swarm impact on the earth determined if the enrichment of projectile material in the K-T layer is consistent with melts and impact breccias on the earth and moon, the size of the impacters, the distribution of the kinetic energy, and the sequence of impacts that could give rise to observed extinction phenomena. Flows resulting from spherical projectile impacts onto layers of air, water, and silicates were modeled and Eulerian finite difference algorithms were employed to solve conservation equations and equations of state. A range of speeds and impacter densities were considered, along with sizes from 0.17 km, which would be consumed in the atmosphere, to a 10 km object, which would have had a diameter greater than a reference 7.1 km atmosphere depth. It is concluded that an impact of the K-T bolide could result in global biotic extinction and worldwide material deposition.

  14. Trace-element composition of Chicxulub crater melt rock, K/T tektites and Yucatan basement

    NASA Technical Reports Server (NTRS)

    Hildebrand, A. R.; Gregoire, D. C.; Attrep, M., Jr.; Claeys, P.; Thompson, C. M.; Boynton, W. V.

    1993-01-01

    The Cretaceous/Tertiary (K/T) boundary Chicxulub impact is the best preserved large impact in the geologic record. The Chicxulub crater has been buried with no apparent erosion of its intracrater deposits, and its ejecta blanket is known and is well preserved at hundreds of localities globally. Although most of the molten material ejected from the crater has been largely altered, a few localities still preserve tektite glass. Availability of intra- and extracrater impact products as well as plausible matches to the targeted rocks allows the comparison of compositions of the different classes of impact products to those of the impacted lithologies. Determination of trace-element compositions of the K/T tektites, Chicxulub melt rock, and the targeted Yucatan silicate basement and carbonate/evaporite lithologies have been made using instrumental neutron activation analysis (INAA) and inductively coupled plasma mass spectrometry (ICP-MS). Some sample splits were studied with both techniques to ensure that inter-laboratory variation was not significant or could be corrected. The concentration of a few major and minor elements was also checked against microprobe results. Radiochemical neutron activation analysis (RNAA) was used to determine Ir abundances in some samples.

  15. Avian evolution, Gondwana biogeography and the Cretaceous-Tertiary mass extinction event.

    PubMed Central

    Cracraft, J.

    2001-01-01

    The fossil record has been used to support the origin and radiation of modern birds (Neornithes) in Laurasia after the Cretaceous-Tertiary mass extinction event, whereas molecular clocks have suggested a Cretaceous origin for most avian orders. These alternative views of neornithine evolution are examined using an independent set of evidence, namely phylogenetic relationships and historical biogeography. Pylogenetic relationships of basal lineages of neornithines, including ratite birds and their allies (Palaleocognathae), galliforms and anseriforms (Galloanserae), as well as lineages of the more advanced Neoves (Gruiformes, (Capimulgiformes, Passeriformes and others) demonstrate pervasive trans-Antarctic distribution patterns. The temporal history of the neornithines can be inferred from fossil taxa and the ages of vicariance events, and along with their biogeographical patterns, leads to the conclusion that neornithines arose in Gondwana prior to the Cretaceous Tertiary extinction event. PMID:11296857

  16. Cretaceous - Tertiary Hoploparia species: Occurrence, paleobiogeography and predation context

    NASA Astrophysics Data System (ADS)

    El-Shazly, Soheir

    2015-12-01

    The study of Hoploparia species in 25 localities in Northern and Southern Hemispheres from Early Cretaceous to Early Miocene reveals the appearance of 51 species in Early Cretaceous, mostly in Northern Hemisphere, 46 species from Late Cretaceous (42 and 4 carryover from the Early Cretaceous), 7 species from Danian (4 plus 3 carryover from the Late Cretaceous), 7 species from Eocene (6 plus one from the Early Cretaceous), 2 species from Lower Oligocene and the last recorded species Hoploparia persisted in the Early Miocene of Antarctica. The oldest Hoploparia was recorded from Europe and distributed through the Northern and Southern Hemispheres with the facilitation of the Indo-Madagascar sea-way and Hispanic corridor. The tolerance for temperature and water depth as well as the morphological changes in genus Hoploparia in the Late Cretaceous and Tertiary periods, helped some species to survive the K/T event. Drill-hole predation in Hoploparia longimana (Sowerby, 1826) was recorded for the first time from the Lower Cretaceous (Albian) of Egypt.

  17. RESULTS OF A DATING ATTEMPT -CHEMICAL AND PHYSICAL MEASUREMENTS RELEVANT TO THE CASE OF THE CRETACEOUS TERTIARY EXTINCTIONS

    SciTech Connect

    Asaro, Frank; Michel, Helen V.; Alvarez, Luis W.; Alvarez, Walter

    1980-09-01

    In Gubbio, Italy, a l em layer of clay between extensive limestone formations marks the boundary between the Cretaceous and Tertiary Periods. This clay layer was known to have been deposited about 65 million years ago when many life forms became extinct, but the length of time associated with the deposition was not known. In an attempt to measure this time with normally deposited meteoritic material as a clock, extensive measurements of iridium abundances (and those of many other elements) were made on the Gubbio rocks. Neutron activation analysis was the principal tool used in these studies. About 50 elements are searched for in materials like the earth's crust, about 40 are detected and about 30 are measured with useful precision. We were not able to determine exactly how long the clay deposition took. Instead the laboratory studies on the chemical and physical nature of the Cretaceous-Tertiary boundary led to the theory that an asteroid collision with the earth was responsible for the extinction of many forms of life including the dinosaurs.

  18. Plants with double genomes might have had a better chance to survive the Cretaceous-Tertiary extinction event.

    PubMed

    Fawcett, Jeffrey A; Maere, Steven; Van de Peer, Yves

    2009-04-01

    Most flowering plants have been shown to be ancient polyploids that have undergone one or more whole genome duplications early in their evolution. Furthermore, many different plant lineages seem to have experienced an additional, more recent genome duplication. Starting from paralogous genes lying in duplicated segments or identified in large expressed sequence tag collections, we dated these youngest duplication events through penalized likelihood phylogenetic tree inference. We show that a majority of these independent genome duplications are clustered in time and seem to coincide with the Cretaceous-Tertiary (KT) boundary. The KT extinction event is the most recent mass extinction caused by one or more catastrophic events such as a massive asteroid impact and/or increased volcanic activity. These events are believed to have generated global wildfires and dust clouds that cut off sunlight during long periods of time resulting in the extinction of approximately 60% of plant species, as well as a majority of animals, including dinosaurs. Recent studies suggest that polyploid species can have a higher adaptability and increased tolerance to different environmental conditions. We propose that polyploidization may have contributed to the survival and propagation of several plant lineages during or following the KT extinction event. Due to advantages such as altered gene expression leading to hybrid vigor and an increased set of genes and alleles available for selection, polyploid plants might have been better able to adapt to the drastically changed environment 65 million years ago. PMID:19325131

  19. Cretaceous Tertiary phenomena in the context of seafloor rearrangements and P(CO 2) fluctuations over the past 100 m.y.

    NASA Astrophysics Data System (ADS)

    Liu, Y.-G.; Schmitt, R. A.

    1996-03-01

    Both the bolide impact hypothesis and the volcanism hypothesis suggest, as one of the major environmental consequences, the release of large amounts of SO 2 and CO 2 into the atmosphere, with consequent lowering of the pH of ocean water. In the study of rare earth elements (REEs) in seawater and in carbonate sediments, we found that the Ce in seawater is depleted relative to other REEs due to the partial oxidation of Ce 3+ to Ce 4+ by dissolved oxygen. This oxidation is enhanced by the formation of highly insoluble Ce(OH) 4 and its removal from seawater. The relative Ce depletion is expressed as the Ce anomaly, Ce A*. A quantitative expression for relating Ce A* with pH and PO 2 has been derived. Owing to the involvement of OH - in this process, Ce A* is essentially controlled by the pH of seawater. The REE pattern in seawater is preserved in carbonate sediments. Therefore, the Ce anomalies in marine carbonate sediments provide a unique tool for recording pH changes in paleo-ocean water. Furthermore, the pH of ocean water is controlled by the partial pressure of CO 2, PCO 2, in the atmosphere; therefore, the corresponding PCO 2 changes are derived. About 340 Pacific carbonate sediment samples have been studied by INAA (Instrumental Neutron Activation Analysis). Three major Ce A* peaks at ~17, ~53, and ~63 Ma, as well as two minor peaks at 64.6 and 65.2 Ma, were found. The correspondence between observed Ce A* major peaks and the enhanced hydrothermal activity associated with tectonic seafloor rearrangements at these times suggests that the pH of the deep (>600 m) Pacific water was lowered by CO 2 generated by enhanced hydrothermal activity. Manganese and Co, which are highly enriched in hydrothermal solutions, closely follow the Ce A* pattern. This is strong evidence that the Ce A* peaks are related to the elevated levels of hydrothermal activity. The absence of Ce A* changes at the K/T (Cretaceous/Tertiary)-Ir boundary (≡65.0 Ma) suggests that the proposed release of SO 2 and CO 2 by cratering has not significantly lowered the pH of deep ocean water. Our analysis supports only ≲5× increase of atmospheric CO 2 by the putative K/T bolide impact into a ~3 km thick carbonate terrane. We did not observe the pH changes of deep ocean water which could be unambiguously attributed to the volcanic release of SO 2 and CO 2 from the Deccan Trap flows. The ~5 ka (FWHM, Full Width Half Maximum) Ce A* peak ~0.2 m.y. before the K/T-Ir boundary is too short to account for the Deccan Trap eruptions. Of course, our results do not rule out surface water pH changes due to either the Urey-comet or Alvarezasteroid impact or volcanism. The elevated PCO 2 of ~1.9× PCO 20 ( PCO 20 ≡ present pressure) which started ~0.75 Ma after the K/T-Ir event and lasted for ~2.3 m.y., may be one of the factors responsible for the extended period of extinctions across the K/T boundary for some species. If any species of dinosaurs lived beyond the K/T-Ir event, we predict that they would not have survived the greenhouse effect that very likely occurred between 64.25-62.0 Ma. Our PCO 2 absolute values are in general much lower than the theoretical values suggested by Berner (1990, 1993) during the Phanerozoic except for the Carboniferous and very late Cenozoic where our estimates of ~1.0× PCO 20 agree with Berner's. Also, our PCO 2 values are lower than CO 2 estimates derived from paleosol carbonate studies (e.g., Cerling, 1992; Mora et al., 1991).

  20. Dynamics of exploding magma chambers: Implications for K-T volcanism and mass extinctions

    NASA Technical Reports Server (NTRS)

    Rice, A. R.

    1988-01-01

    Although it is well known that unconfined chemical explosives may yield pressures to several megabars on detonation in air, the explosive literature has yet to be accessed by some contributors to the volcanological literature who've indicated that pressures in excess of the overburden and/or tensile cannot be obtained. Idealized ballistic assessments of pressures internal to volcanoes yield pressures in the hundreds of kilobar range upon correction by addition of friction, etc. Previous assessments of exploding magma chamber pressure have been made from the characteristics of the Mt. St. Helens explosion. A variety of methods yield pressures of similar value: at least hundreds of kilobars. Such results are consistent with free energy requirements for quench supersaturation explosion, a process occurring in solidifying industrial melts. Several reviews of geochemical literature emphasize the carbon event at the Cretaceous-Tertiary (K-T) boundary as being an indicator of a massive dump of CO2 derived from the mantle and entering the atmosphere by extensive global volcanism. Oxygen isotope data indicates extreme warming at the end of the Cretaceous which is consistent with a greenhouse effect attending the CO2 event. Reaction rate equations for the quench supersaturation explosion mechanism indicated, are consistent with the rise in pressure to 30 kbar on solidification of magmatic melts, these pressures limited by the strength of the experimental apparatus.

  1. Paleosols and the Cretaceous/Tertiary transition in the Big Bend region of Texas

    NASA Astrophysics Data System (ADS)

    Lehman, Thomas M.

    1990-04-01

    A marked change in paleosols coincides with the Cretaceous/Tertiary transition in fluvial sediments of the Big Bend region in Texas. Early Paleocene paleosols exhibit thick, black epipedons and a greater depth to the argillic and petrocalcic horizons compared to Late Cretaceous paleosols. These features and comparison with modern soils suggest that early Paleocene soils developed under conditions of higher rainfall and cooler temperatures than did Late Cretaceous soils. The change in paleosols occurs abruptly at the highest occurrence of dinosaur bones in the section.

  2. Paleosols and the Cretaceous/Tertiary transition in the Big Bend region of Texas

    SciTech Connect

    Lehman, T.M. )

    1990-04-01

    A marked change in paleosols coincides with Cretaceous/Tertiary transition in fluvial sediments of the Big Bend region in Texas. Early Paleocene paleosols exhibit thick, black epipedons and a greater depth to the argillic and petrocalcic horizons compared to Late Cretaceous paleosols. These features and comparison with modern soils suggest that early Paleocene soils developed under conditions of higher rainfall and cooler temperatures than did Late Cretaceous soils. The change in paleosols occurs abruptly at the highest occurrence of dinosaur bones in the section.

  3. Assessment of Undiscovered Oil and Gas Resources in Cretaceous-Tertiary Coal Beds of the Gulf Coast Region, 2007

    USGS Publications Warehouse

    Warwick, Peter D.

    2007-01-01

    Using a geology-based assessment methodology, the U.S. Geological Survey estimated a mean of 4.06 trillion cubic feet of undiscovered, technically recoverable natural gas in Cretaceous-Tertiary coal beds of the onshore lands and State waters of the Gulf Coast.

  4. Evidence of volcanic ash at a K-T boundary section: Ocean drilling program hole 690 C, Maud Rise, Weddell Sea off East Antarctica

    NASA Technical Reports Server (NTRS)

    Wise, S. W.; Hamilton, N.; Pospichal, J.; Barker, P. F.; Kennett, James P.; Oconnell, S.; Bryant, W. R.; Burckle, L. H.; Egeberg, P. K.; Futterer, D. K.

    1988-01-01

    Rare vitric volcanogenic ash but more abundant clay minerals considered volcanogenic in origin are associated with an expanded and essentially complete K-T boundary sequence from Ocean Drilling Project (ODP) Hole 690 C on Maud Rise in the Weddell Sea off East Antarctica. Results at this writing are preliminary and are still based to some extent on shipboard descriptions. Further shore-based studies are in progress. It would appear, however, that the presence of volcanic ash and altered ash in the Danian section beginning at the biostratigraphically and paleomagnetically determined K-T boundary on Maud Rise can be cited as evidence of significant volcanic activity within the South Atlantic-Indian Ocean sector of the Southern Ocean coincident with the time of biotic crises at the end of the Maestrichtian. This is a postulated time of tectonic and volcanic activity within this Southern Hemisphere region, including possible initiation of the Reunion hot spot and a peak in explosive volcanism on Walvis Ridge (1) among other events. A causal relationship with the biotic crisis is possible and volcanism should be given serious consideration as a testable working hypothesis to explain these extinctions.

  5. Mass Wasting during the Cretaceous/Tertiary Transition in the North Atlantic: Relationship to the Chicxulub Impact?

    NASA Astrophysics Data System (ADS)

    Mateo, Paula; Keller, Gerta; Adatte, Thierry; Spangenberg, Jorge

    2015-04-01

    Deep-sea sections in the North Atlantic are claimed to contain the most complete sedimentary records and ultimate proof that the Chicxulub impact is Cretaceous-Tertiary boundary (KTB) in age and caused the mass extinction. A multi-disciplinary study of North Atlantic DSDP Sites 384, 386 and 398, based on high-resolution planktonic foraminiferal biostratigraphy, carbon and oxygen stable isotopes, clay and whole-rock mineralogy and granulometry, reveals the age, stratigraphic completeness and nature of sedimentary disturbances. Results show a major KTB hiatus at Site 384 with zones CF1, P0 and P1a missing, spanning at least ~540 ky, similar to other North Atlantic and Caribbean localities associated with tectonic activity and Gulf Stream erosion. At Sites 386 and 398, discrete intervals of disturbed sediments with mm-to-cm-thick spherule layers have previously been interpreted as KTB age impact-generated earthquakes destabilizing continental margins prior to settling of impact spherules. However, improved age control based on planktonic foraminifera indicates deposition in the early Danian zone P1a(2) (upper Parvularugoglobigerina eugubina zone) more than 100 ky after the KTB. At Site 386, two intervals of white chalk contain very small (<63 μm) early Danian zone P1a(2) (65%) and common reworked Cretaceous (35%) species, in contrast to the in situ red-brown and green abyssal clays that are devoid of carbonate. In addition, high calcite, mica and kaolinite and upward-fining are observed in the chalks, indicating downslope transport from shallow waters and sediment winnowing via distal turbidites. At Site 398, convoluted red to tan sediments with early Danian and reworked Cretaceous species represent slumping of shallow water sediments as suggested by dominance of mica and low smectite compared to in situ deposition. We conclude that mass wasting was likely the result of earthquakes associated with increased tectonic activity in the Caribbean and the Iberian Peninsula during the early Danian well after the Chicxulub impact.

  6. Geochemistry of impact glasses from the K/T boundary in Haiti - Relation to smectites and a new type of glass

    NASA Technical Reports Server (NTRS)

    Koeberl, Christian; Sigurdsson, Haraldur

    1992-01-01

    Detailed element analyses were carried out on 12 black and seven yellow glasses from the K/T boundary section at Beloc (Haiti), and of three samples from smectite mantles around black glasses. The results obtained for bulk black and yellow glasses show differences between these, confirming the results of Sigurdsson et al. (1991) and Izett (1991), and the results obtained on individual spherules and shards are in agreement with bulk data. The present data also demonstrate, for the first time, the existence of yellow glass samples with high CaO but low S contents, which might have formed by fusion of various proportions of carbonates and evaporites or carbonates alone. One of the black glasses was found to have higher than average SiO2 and K2O abundances but lower concentrations of all other major elements. This suggests the existence of a third glass type, named the high Si-K variety (HSi,K) glass.

  7. Sea water strontium isotopes, acid rain, and the cretaceous-tertiary boundary

    SciTech Connect

    MacDougall, J.D.

    1988-01-29

    A large bolide impact at the end of the Cretaceous would have produced significant amounts of nitrogen oxides by shock heating of the atmosphere. The resulting acid precipitation would have increased continental weathering greatly and could be an explanation for the observed high ratio of strontium-87 to strontium-86 in sea water at about this time, due to the dissolution of large amounts of strontium from the continental crust. Spikes to high values in the sea water strontium isotope record at other times may reflect similar episodes. 17 references, 1 figure, 1 table.

  8. Seawater strontium isotopes, Acid rain, and the cretaceous-tertiary boundary.

    PubMed

    Macdougall, J D

    1988-01-29

    A large bolide impact at the end of the Cretaceous would have produced significant amounts of nitrogen oxides by shock heating of the atmosphere. The resulting acid precipitation would have increased continental weathering greatly and could be an explanation for the observed high ratio of strontium-87 to strontium-86 in seawater at about this time, due to the dissolution of large amounts of strontium from the continental crust. Spikes to high values in the seawater strontium isotope record at other times may reflect similar episodes. PMID:17838885

  9. Seawater strontium isotopes, acid rain, and the Cretaceous-Tertiary boundary

    NASA Technical Reports Server (NTRS)

    Macdougall, J. D.

    1988-01-01

    A large bolide impact at the end of the Cretaceous would have produced significant amounts of nitrogen oxides by shock heating of the atmosphere. The resulting acid precipitation would have increased continental weathering greatly and could be an explanation for the observed high ratio of strontium-87 to strontium-86 in seawater at about this time, due to the dissolution of large amounts of strontium from the continental crust. Spikes to high values in the seawater strontium isotope record at other times may reflect similar episodes.

  10. Bolide impacts, acid rain, and biospheric traumas at the Cretaceous-Tertiary boundary

    NASA Technical Reports Server (NTRS)

    Prinn, Ronald G.; Fegley, Bruce, Jr.

    1987-01-01

    Two plausible projectiles are considered: an ice-rich long-period comet and a much smaller rock-metal asteroid. In the framework of a proposal addressed by Lewis et al. (1982), it is shown that, while the impact projectiles themselves do not shock-heat the atmosphere very extensively, the supersonic plume of water vapor and rock produced on impact does shock the atmosphere up to global scales and the shock is of sufficient intensity to produce abundant nitric oxide. For example, an ice-rich long-period comet with a mass of 1.25 x 10 to the 16th kg and a velocity of 65 km/s striking the earth would produce about 7 x 10 to the 40th molecules NO through shock-heating of the atmosphere by the high-velocity ejecta plume fragments. Specific attention is given to the fraction of the atmosphere shock-heated, the global circulation of the nitrogen oxides, the effects of the ejecta plume water on acid rain (AR) predictions, the effects of AR on continental soils, the relationship between AR production rates and the total amount of acid needed to acidify the surface oceans, and the longevity of the oceanic acidity event and the exhaled CO2 event and their implications for the environment in the first millenia or so after the impact.

  11. An iridium abundance anomaly at the palynological Cretaceous-Tertiary boundary in northern New Mexico

    USGS Publications Warehouse

    Orth, C.J.; Gilmore, J.S.; Knight, J.D.; Pillmore, C.L.; Tschudy, R.H.; Fassett, J.E.

    1981-01-01

    An iridium abundance anomaly, with concentrations up to 5000 parts per trillion over a background level of 4 to 20 parts per trillion, has been located in sedimentary rocks laid down under freshwater swamp conditions in the Raton Basin of northeastern New Mexico. The anomaly occurs at the base of a coal bed, at the same stratigraphic position at which several well-known species of Cretaceous-age pollen became extinct. Copyright ?? 1981 AAAS.

  12. Clasts of Bladed Serpentine in a K/T Boundary Layer From the Central North Pacific: Implications for Catastrophic Impact by a Chondritic Projectile

    NASA Astrophysics Data System (ADS)

    Leung, I. S.; Hagstrum, J. T.

    2007-12-01

    A 24-m long piston core (LL44-GPC3) retrieved marine sediments from the central North Pacific. At a depth of 2055-2056 cm downcore, a thin layer having an Ir anomaly of 10 ng/g was identified as the 65 m.y. old K/T boundary layer by Kyte et al.,1995. We studied 6 samples of clay selected from 2042-2060 cm by Jim Broda (Woods Hole Oceanographic Institution), and found that only the 1 cm-thick Ir layer contains many microtektites (impact glass), 4 crystals of silicon carbide (SiC), about 20 clasts of serpentine, usually associated with several grains of magnetite. We believe that this sharply defined Ir layer might have been deposited by a catastrophic event of relatively short duration, perhaps triggered by an impactor. Serpentine crystals in the clasts are blade-like, but may also be foliated or granular. Bladed crystals are reminiscent of barred textures, or excentroradial groups of olivine and/or pyroxene, commonly found in chondrules. We also found a fine-grained, white substance which forms veins between serpentine crystals, resembling "Saponite" reported in an interplanetary dust particle (IDP) which was also composed of serpentine, by Keller et al., 1992, who believed that the IDP had links to hydrated CI chondrites. Thus, the precursor of serpentine clasts found in the GPC3 core, might have been a CI, or a carbonaceous chondrite (carrier of SiC) whose collision with Earth might have set off a fireball capable of transporting serpentinized chondritic particles and grains of SiC to our core site in the North Pacific.

  13. K-T magmatism of western Rajasthan, India: Manifestation of Reunion plume activity or extensional lithospheric tectonics?

    NASA Astrophysics Data System (ADS)

    Sharma, K.

    2004-12-01

    A number of alkaline plutons have been recorded at the K-T (Cretaceous-Tertiary) boundary in western Rajasthan, India. Significant magmatism occurred at Mundwara, Barmer, Sarnu-Dandali and Tavider. The evolution of the Cambay-Sanchor-Barmer rift during the K-T period resulted in these alkaline complexes at the rift margins. Sedimentary basins are developed in the Barmer and Jaiselmer regions. The magmatism of Mundwara and Sarnu-Dandali is dated at 68.50 Ma and considered as an early pulse of Deccan volcanism. Several workers correlated K-T sedimentary basin evolution, magmatism and other tectonic features of western Rajasthan with the Reunion plume-interaction in the northwestern Indian shield. Alkaline igneous complexes along the rift from the southern part are reported from Phenai Mata, Amba Dongar and Seychelles. The Seychelles was part of the northwestern Indian shield prior to Deccan volcanism. The Mundwara igneous complex represents three distinct circular plutonic bodies - Toa, Mer and Mushala, which are situated in the periphery of an area three kilometers in radius. Besides these, there are numerous concentric and radial dykes of lamprophyre, carbonatite, dolerite and amphibolite. All these three bodies represent different phases of intrusion and are not similar to each other. The alkaline rocks of Sarnu-Dandali occur as dykes and isolated plugs in the desert sand. Carbonatite dykes are also reported from southeast of Barmer. The Tavider outcrop is devoid of any plutonic rock and consists of rhyolite, andesite and basalt. These rocks occur along the Precambrian Malani magmatic lineaments. The development of the Cambay-Sanchor-Barmer rift caused reactivation of Precambrian fractures and resulted in magmatism at the basin margin. The Gondwanaland fragmentation during the Mesozoic era caused extensional tectonics in the northwestern Indian shield. This led to the development of rift basins in Gujarat and western Rajasthan. Deccan volcanism, separation of the Seychelles microcontinent from India, sedimentary basin development in western Rajasthan and the alkaline magmatism of Mundwara, Sarnu-Dandali and elsewhere are considered to be the products of Reunion plume activity in western India. However, basin development began in western Rajasthan in the Jurassic period and no plume has been suggested for this. The continual extensional tectonic regime caused deep fractures in the continental and oceanic lithosphere. The Cambay-Sanchor-Barmer rift developed in continental lithosphere. The Mundwara, Sarnu-Dandali and Barmer magmatism with nephelinite-carbonatite affinity at the basin margin represents a typical rift-tectonic setting. The tectonic setting and crustal development during the K-T period in western Rajasthan represents an extensional tectonic regime rather than the manifestation of Reunion plume activity.

  14. The Talara Basin province of northwestern Peru: cretaceous-tertiary total petroleum system

    USGS Publications Warehouse

    Higley, Debra K.

    2004-01-01

    More than 1.68 billion barrels of oil (BBO) and 340 billion cubic feet of gas (BCFG) have been produced from the Cretaceous-Tertiary Total Petroleum System in the Talara Basin province, northwestern Peru. Oil and minor gas fields are concentrated in the onshore northern third of the province. Current production is primarily oil, but there is excellent potential for offshore gas resources, which is a mostly untapped resource because of the limited local market for gas and because there are few pipelines. Estimated mean recoverable resources from undiscovered fields in the basin are 1.71 billion barrels of oil (BBO), 4.79 trillion cubic feet of gas (TCFG), and 255 million barrels of natural gas liquids (NGL). Of this total resource, 15 percent has been allocated to onshore and 85 percent to offshore; volumes are 0.26 BBO and 0.72 TCFG onshore, and 1.45 BBO and 4.08 TCFG offshore. The mean estimate of numbers of undiscovered oil and gas fields is 83 and 27, respectively. Minimum size of fields that were used in this analysis is 1 million barrels of oil equivalent and (or) 6 BCFG. The Paleocene Talara forearc basin is superimposed on a larger, Mesozoic and pre-Mesozoic basin. Producing formations, ranging in age from Pennsylvanian to Oligocene, are mainly Upper Cretaceous through Oligocene sandstones of fluvial, deltaic, and nearshore to deep-marine depositional origins. The primary reservoirs and greatest potential for future development are Eocene sandstones that include turbidites of the Talara and Salinas Groups. Additional production and undiscovered resources exist within Upper Cretaceous, Paleocene, and Oligocene formations. Pennsylvanian Amotape quartzites may be productive where fractured. Trap types in this block-faulted basin are mainly structural or a combination of structure and stratigraphy. Primary reservoir seals are interbedded and overlying marine shales. Most fields produce from multiple reservoirs, and production is reported commingled. For this reason, and also because geochemical data on oils and source rocks is very limited, Tertiary and Cretaceous production is grouped into one total petroleum system. The most likely source rocks are Tertiary marine shales, but some of the Cretaceous marine shales are also probable source rocks, and these would represent separate total petroleum systems. Geochemical data on one oil sample from Pennsylvanian rock indicates that it was probably also sourced from Tertiary shales.

  15. Strangelove ocean at era boundaries, terrestrial or extraterrestrial cause

    NASA Technical Reports Server (NTRS)

    Hsue, Kenneth J.

    1988-01-01

    Negative perturbations in carbon-isotope value of calcite in pelagic sediments were found at times of biotic crisis, marking horizons which are, or were proposed as era boundaries: Cretaceous/Tertiary (K/T), Permian/Triassic (P/T), and Precambrian/Cambrian (PreC/C). The anomaly was also found at several other mass-extinction horizons, such as terminal Ordovician, Frasnian-Famenian, etc. Studies of K/T boundary indicate that only the planktic fraction of the sediments has the negative isotope anomaly, whereas the benthic fraction has the same value across the boundary. This geochemical signal is thus considered a record of strangelove ocean, or an ocean where isotope fractionation of dissolved carbonate ions in surface waters (by biotic function of planktic organisms) has been significantly reduced because of the drastic reduction of the biomass in the oceans. The reduction of marine biomass at each of the era boundaries was related to chemical pollution of the oceans as a consequence of a catastrophic event; a pH decrease of 0.5 could inhibit the fertility of planktons. Studies of earthquakes, volcanic eruptions, and meteorite-impact occurrences have indicated a linearly inverse log/log relationship between the magnitude and frequency of events. The frequency of era boundaries in geologic history supports the postulate that the rare events causing those biotic crises were large bolide-impacts.

  16. Toward understanding the post-collisional evolution of an orogen influenced by convergence at adjacent plate margins: Late Cretaceous-Tertiary thermotectonic history of the Apuseni Mountains

    NASA Astrophysics Data System (ADS)

    Merten, S.; Matenco, L.; Foeken, J. P. T.; Andriessen, P. A. M.

    2011-12-01

    The relationship between syn- to post-collisional orogenic shortening and stresses transmitted from other neighboring plate boundaries is important for understanding the kinematics of mountain belts, but has received little attention so far. The Apuseni Mountains are an example of an orogen in the interference zone between two other subduction systems located in the external Carpathians and Dinarides. This interference is demonstrated by the results of a combined thermochronological and structural field study that quantifies the post-collisional latest Cretaceous-Tertiary evolution. The exhumation history derived from apatite fission track and (U-Th)/He thermochronology indicates that the present-day topography of the Apuseni Mountains originates mainly from latest Cretaceous times, modified by two tectonic pulses during the Paleogene. The latter are suggested by cooling ages clustering around ˜45 Ma and ˜30 Ma and the associated shortening recorded along deep-seated fault systems. Paleogene exhumation pulses are similar in magnitude (˜3.5 km) and are coeval with the final collisional phases recorded in the Dinarides and with part of the Carpathian rotation around the Moesian promontory. These newly quantified Paleogene exhumation and shortening pulses contradict the general view of tectonic quiescence, subsidence and overall sedimentation for this time interval. The Miocene collapse of the Pannonian Basin did not induce significant regional exhumation along the western Apuseni flank, nor did the subsequent Carpathian collision. This is surprising in the overall context of Pannonian Basin formation and its subsequent inversion, in which the Apuseni Mountains were previously interpreted as being significantly uplifted in both deformation stages.

  17. Formation of the Shelf-edge Cretaceous-Tertiary contact off the southeastern U.S. Coast

    USGS Publications Warehouse

    Poppe, L.J.; Hathaway, J.C.; Hall, R.E.; Commeau, R.F.

    1986-01-01

    Submarine erosion, associated with changes in position of the proto-Gulf Stream, was the dominant mechanism controlling the formation of the Cretaceous-Tertiary unconformity in AMCOR borehole 6004. Paleontologic evidence indicates that this unconformity, which is marked by a gravelly-sand enriched in glauconitic and phosphoritic concretions, represents a hiatus of about 7 m.y. Both Cretaceous and Paleocene sediments contain middle-outer neritic foraminiferal assemblages that become more diverse with distance from the contact. Of the elemental abundances measured, Al, Ba, Co, Fe, Ga, K, Mg/Ca, Mo, Ni, P, Sr/Ca, V, Y, and Zn show a strong positive correlation with proximity to the contact, probably as a result of the concentration of authigenic and heavy minerals present as lag sediments on the erosion surface. ?? 1986.

  18. Ejecta of Multiple Impacts Found Across the K/T Boundary in Deep-Sea Cores LL44- GPC3 and DSDP 91-596 from the Northern and Southern Pacific Ocean

    NASA Astrophysics Data System (ADS)

    Hagstrum, J. T.; Premo, W. R.; Bullen, T. D.; Abbott, D. H.

    2008-12-01

    Cores of brown pelagic clay recovered from sites LL44-GPC3 (30°19.9'N, 157°49.4'W) and DSDP 91- 596 (23°51.2'S, 169°39.3'W) in the abyssal Pacific Ocean include the K/T boundary at 20.56 and 20.10 mbsf, respectively. The boundary has been identified in both cores by peak Ir and magnetic susceptibility anomalies, and by ichthyolith fossils. Abundant shocked quartz, magnesioferrite spinels, and microspherules were also found within the cores' K/T boundary sediments. Although lacking high-resolution stratigraphies, abyssal sediment cores have advantages for recovering impact ejecta, mainly slow accumulation rates, uniform composition, and the general absence of coarse-grained detrital minerals. Corliss and Hollister [1] initially reported finding small (~20 μm) cristobalite "spheres" scattered in the lower part of core GPC3 between 22 and 24 mbsf. Similarly, between 21.79 and 24.12 mbsf, we have found numerous large (often >100 μm) euhedral crystals of feldspar, iron oxide, apatite, and SiO2 (few), in addition to microkrystite spherules, microtektite spherules (some with quenched textures), and several pieces of amorphous carbon. Dozens of the more common feldspar crystals contain smaller iron oxide and/or apatite crystals that were ballistically "shot" into the feldspar crystals, clearly fracturing them. The microkrystites include mineral grains of Cr-rich spinel, olivine, feldspar, Mg-silicate, Fe-sulfide, Fe-Ti oxide, and SiO2. In core 596 between 19.85 and 20.97 mbsf, including the K/T boundary at 20.10 mbsf, we found abundant microspherules and microkrystites at 8 of 9 levels sampled. In addition, Pb spherules were found 17 cm above and 51 cm below the boundary level. The isotopic compositions of the two Pb spherules (206Pb/204Pb=19.23 and 19.27; 207Pb/204Pb=15.67 and 15.72; and 208Pb/204Pb=38.63 and 38.75) are indistinguishable from common MORB Pb isotopic compositions, plotting at the intersection of values for DM, EMI, EMII, and HIMU mantle sources. The Pb composition for the spherules also places them within the Pb isotopic field for modern pelagic sediments. Between 24.00 and 24.46 mbsf in core 596, ~4 m below the K/T boundary, we also found large pieces (>400 μm) of platy FeO and microkrystite spherules. The sedimentation rate in both cores has been estimated to be between 20 to 30 cm per Myr, and we provisionally interpret the ejecta found across the K/T boundary in core 596 to be from multiple impact events that occurred between ~68 and ~64 Ma, some possibly in the ancient Pacific Ocean. An earlier impact event might also have occurred 16 to 18 Myr before (~4 m below) the K/T event. We infer that the pre-K/T mineral crystals, microkrystites, and microspherules in core GPC3 are vapor-phase condensates, microtektites and possibly fine target particulates entrained in the fireball from a large oceanic impact at ~68 Ma, perhaps nearby to the east on seafloor now subducted beneath western North America. Dispersal of the mineral crystals in core GPC3 between 22 and 24 mbsf might have been caused by seismically-induced slumping and megatsunami associated with the nearby impact. [1] Corliss and Hollister, Nature, 282, p. 707.

  19. The Cretaceous-Tertiary transition in Guatemala: limestone breccia deposits from the South Petén basin

    NASA Astrophysics Data System (ADS)

    Stinnesbeck, W.; Keller, G.; de la Cruz, J.; de León, C.; MacLeod, N.; Whittaker, J. E.

    Limestone breccia deposits in southern Mexico, Guatemala and Belize have recently been interpreted as proximal to distal ballistic fallout deposits, generated by a bolide impact that struck Yucatan at K/T boundary time. We review the age, lithology and the depositional environment of five K/T boundary sections in the South Petén area of Guatemala (Caribe, Aserradero, Chisec, Actela, Chemal) in order to evaluate the nature and origin of K/T limestone breccia deposition. The sections are located 500 km south of the proposed impact site at Chicxulub and trend in an east-west direction from the Guatemala/Mexico border to southern Belize. In four of the five sections examined, a breccia unit up to 50 m thick overlies reef-bearing shallow-water limestones of late Cretaceous (Campanian-Maastrichtian) age. Rhythmically bedded limestones, marls and siltstones of early Danian age overlie the breccia and were deposited under middle-to outer-neritic conditions. The breccia consists of differently coloured layers of shallow-water limestones. Clast size generally decreases upsection to thin layers of predominantly rounded clasts, and these fine-grained rudstones grade into grainstones at the top. In at least one section (EI Caribe) diagenetically altered glass spherules are present in the uppermost layers of the grainstone. These glass spherules are of stratigraphic position and chemical composition similar to black and yellow glass from Beloc, Haiti and Mimbral, Mexico, which some workers have chemically linked to melt glass within the breccia of the Chicxulub cores. We suggest that breccia deposition in Guatemala may have been multi-event, over an extended time period, and related to the collision of the Yucatan and Chortis plates as well as related to a major impact or volcanic event at the end of the Cretaceous.

  20. An asteroid breakup 160 Myr ago as the probable source of the K/T impactor.

    PubMed

    Bottke, William F; Vokrouhlický, David; Nesvorný, David

    2007-09-01

    The terrestrial and lunar cratering rate is often assumed to have been nearly constant over the past 3 Gyr. Different lines of evidence, however, suggest that the impact flux from kilometre-sized bodies increased by at least a factor of two over the long-term average during the past approximately 100 Myr. Here we argue that this apparent surge was triggered by the catastrophic disruption of the parent body of the asteroid Baptistina, which we infer was a approximately 170-km-diameter body (carbonaceous-chondrite-like) that broke up 160(-20)+30Myr ago in the inner main asteroid belt. Fragments produced by the collision were slowly delivered by dynamical processes to orbits where they could strike the terrestrial planets. We find that this asteroid shower is the most likely source (>90 per cent probability) of the Chicxulub impactor that produced the Cretaceous/Tertiary (K/T) mass extinction event 65 Myr ago. PMID:17805288

  1. Biogeochemical modeling at mass extinction boundaries

    NASA Technical Reports Server (NTRS)

    Rampino, M. R.; Caldeira, K. G.

    1991-01-01

    The causes of major mass extinctions is a subject of considerable interest to those concerned with the history and evolution of life on earth. The primary objectives of the proposed plan of research are: (1) to develop quantitative time-dependent biogeochemical cycle models, coupled with an ocean atmosphere in order to improve the understanding of global scale physical, chemical, and biological processes that control the distribution of elements important for life at times of mass extinctions; and (2) to develop a comprehensive data base of the best available geochemical, isotopic, and other relevant geologic data from sections across mass extinction boundaries. These data will be used to constrain and test the biogeochemical model. These modeling experiments should prove useful in: (1) determining the possible cause(s) of the environmental changes seen at bio-event boundaries; (2) identifying and quantifying little-known feedbacks among the oceans, atmosphere, and biosphere; and (3) providing additional insights into the possible responses of the earth system to perturbations of various timescales. One of the best known mass extinction events marks the Cretaceous/Tertiary (K/T) boundary (66 Myr ago). Data from the K/T boundary are used here to constrain a newly developed time-dependent biogeochemical cycle model that is designed to study transient behavior of the earth system. Model results predict significant fluctuations in ocean alkalinity, atmospheric CO2, and global temperatures caused by extinction of calcareous plankton and reduction in the sedimentation rates of pelagic carbonates and organic carbon. Oxygen-isotome and other paleoclimatic data from K/T time provide some evidence that such climatic fluctuations may have occurred, but stabilizing feedbacks may have acted to reduce the ocean alkalinity and carbon dioxide fluctuations.

  2. Mantle degassing induced dead ocean in the cretaceous-tertiary transition

    NASA Astrophysics Data System (ADS)

    McLean, D. M.

    A treatment is presented of the terminal Cretaceous marine and Early Tertiary terrestrial dinosaur extinctions coincident with the Deccan Traps flood basalt volcanism in India. The rate of this basalt production was 4.91 cu km/yr as opposed to modern midocean ridge basalt production of 1.2 cu cm/yr. Deccan Traps total mantle CO2 release was about 5 x 10 to the 17th moles CO2, released at a rate of 9.6 x 10 to the 11th moles/yr, versus the modern rate of about 4.1 x 10 to the 12th moles/yr. This mantle CO2 release coupled with trans-K-T deep ocean warming triggered CO2 accumulation in the atmosphere/mixed layer and caused failure of the Williams-Riley productivity-gravity pump of CO2 from the atmosphere/mixed layer into the deep oceans. Hence, the trans-K-T dead ocean was created.

  3. Assessment of undiscovered oil and gas resources of the Cretaceous-Tertiary Composite Total Petroleum System, Taranaki Basin Assessment Unit, New Zealand

    USGS Publications Warehouse

    Wandrey, Craig J.; Schenk, Christopher J.; Klett, Timothy R.; Brownfield, Michael E.; Charpentier, Ronald R.; Cook, Troy A.; Pollastro, Richard M.; Tennyson, Marilyn E.

    2013-01-01

    The Cretaceous-Tertiary Composite Total Petroleum System coincident Taranaki Basin Assessment Unit was recently assessed for undiscovered technically recoverable oil, natural gas, and natural gas liquids resources as part of the U.S. Geological Survey (USGS) World Energy Resources Project, World Oil and Gas Assessment. Using a geology-based assessment methodology, the USGS estimated mean volumes of 487 million barrels of oil, 9.8 trillion cubic feet of gas, and 408 million barrels of natural gas liquids.

  4. A Detailed Study of the Drastic Worldwide Climatic Change by the Cretaceous/Paleogene (K/T)-Impact of Chicxulub

    NASA Astrophysics Data System (ADS)

    Preisinger, Anton; Aslanian, Selma; Grass, Fritz; Beigelbeck, Roman; Wernisch, Johann

    2010-05-01

    The impact of Chicxulub (Yucatan, Mexico) was a global event exhibiting a short-time (fallout) and a long-time (boundary clay) sedimentation of the K/T-boundary [1]. The fallout is mainly characterized by iridium, Ni-Cr-rich magnesia-ferrite spinels (K/T-spinels), spherules, as well as shocked quartzes. The amount of the sediments and their distribution depend on the distance from the impact crater. The Cretaceous/Paleogene (K/T) boundaries at three different locations namely Caravaca (Spain), Cerbara (Italy), and Bjala (Bulgaria) have been well analyzed. About 65 million years ago, they were located at the distances from the impact crater ~6000 km, ~7500 km, and ~8800 km, respectively. The boundary clay is characterized by transported minerals like quartzes and feldspars, authigenically formed minerals, as well as biominerals like Mg-calcites and greigites (Fe3S4). The samples were analyzed by scanning X-ray diffractometry (Bruker Analytical X-ray System), scanning electronic microscopy (XL30, ESEM-Philips), neutron activation analyses, Delta13C and Delta18O analyses, and the determination of nannofossils and foraminifera. Owing to the Earth's rotation, the analyzed samples lie along a great circle (crossing the equator under an angle of ~23° ) which covers Chicxulub, Caravaca, Cerbara, and Bjala indicating the existence of only a single impact. The study of this K/T-boundary by means of high resolution scanning X-ray diffractometry in combination with the scanning electron microscopy and neutron activation analyzes revealed the time dependency of the K/T-event in the fallout as well as in the boundary clay. The biomineralization of sulfate-reducing bacteria by greigites provided the duration of the sulfuric acid rain. The reoccurrence of algae is indicated by the appearance of Mg-calcite at the end of the boundary clay. The K/T-spinels were formed on the nucleus of metallic iridium [2]. They were built in the mesosphere (in a height of about 100 km) and grew during the fall to the Earth's surface by forming ferrimagnetic twins, which were etched by the H2SO4 content of the atmosphere. We developed an extensive mathematical model incorporating all relevant physical effects (particle growth, pressure dependence of the atmosphere, fluid resistance, centrifugal and coriolis forces, etc.) in order to study the development of the particles during the fall. For Caravaca, the shortest flight time for the Iridium fallout is approximately 6.5 days, while the shortest flight time for the ejecta near Chicxulub last only a few hours. The K/T-impact took place about 65 million years ago in a sea depth of more than 2000 m. Consequently, the impact heated up the sea water and the water molecules reacted with the CaCO3, CaSO4, and the silicates down to a depth of 28 km. This hydrothermal reaction reduced the melt temperature significantly, especially those of silicates. Therefore, the pyroxenes and plagioclases changed to clay minerals. The sedimentation rate of Chron 29RK is about twice than that of Chron 29RT, which equals to Chron 29N in Caravaca, Cerbara, and Bjala. The precession cycles of Chron 29R and Chron 29N are 22.5 kyears. The time span of the K/T-boundaries between Chron 29RK and Chron 29RT is worldwide about 1 kyear. Concluding all our results, only one big impact took place at Chicxulub (Yucatan, Mexico) about 65 million years ago and caused, during the formation of the K/T-boundary, a worldwide climatic change. References: [1] Eder, G. and Preisinger, A.: Zeitstruktur globaler Ereignisse veranschaulicht an der Kreide/Terziär-Grenze. Naturwissenschaften, Band 74, 35-37, 1987. [2] Preisinger, A., Aslanian, S., Brandstätter, F., Grass, F., Stradner, H., and Summesberger, H.: Cretaceous-Tertiary profile, rhythmic deposition, and geomagnetic polarity reversals of marine sediments near Bjala, Bulgaria. Geo. Soc. Amer. special paper 356, 229-312, 2002.

  5. End of the Cretaceous: sharp boundary or gradual transition

    SciTech Connect

    Alvarez, W.; Alvarez, L.W.; Asaro, F.; Michel, H.V.

    1984-03-16

    Evidence indicates that the Cretaceous-Tertiary boundary is very sharp, and, within the limits of resolution, it is apparently synchronous at the various boundary localities. Arguments to the contrary, particularly those of Officer and Drake, are shown to be invalid. 35 references, 2 figures.

  6. Iridium abundance patterns across extinction boundaries

    SciTech Connect

    Orth, C.J.; Gilmore, J.S.; Oliver, P.Q.; Quintana, L.R.

    1985-01-01

    The authors are measuring elemental abundances, with emphasis on high sensitivity Ir assay, across biological crisis zones in the fossil record. Samples are measured in an automated neutron activation analysis system, with radiochemical separations for the heavy Pt-group elements and Au. They are collaborating with paleontologic and stratigraphic experts to home-in on the boundaries, and to date they have performed at least one set of measurements across the following transition and extinction boundaries: Precambrian/Cambrian(Pc/C); 2 U. Cambrian biomere boundaries; the basal Ordovician; Ordovician;/Silurian; U. Devonian Frasnian/Famennian (F/F); Devonian/Miss.; Miss./Penn.; Permian/Triassic (P/Tr); Triassic/Jurassic; L. Jurassic Toarcian; Cretaceous/Tertiary (K/T); and the U. Eocene. The authors work on K/T sequences that were deposited under freshwater conditions in the western interior of North America supports the Alvarez asteroid impact hypothesis. The Earth has been struck many times in the Phanerozoic by large impactors that probably have done tremendous damage to the local environment. However, to day scientists have not found any firm chemical evidence for the association of impacts with global extinctions older than the massive terminal Cretaceous event, which might have been unique in the Phanerozoic. Although they have measured a moderate Ir and Pt anomaly in the F/F boundary zone in NW Australia, their evidence indicates that these and several other elements were enriched from seawater by bacteria. Although the authors data, except for the U. Eocene, do not support the periodic comet swarm-global extinction arguments, much more work is needed to resolve this issue.

  7. Comparison of the magnetic properties and Mossbauer analysis of glass from the Cretaceous-Tertiary boundary, Beloc, Haiti, with tektites

    NASA Technical Reports Server (NTRS)

    Thorpe, A. N.; Senftle, F. E.; May, L.; Barkatt, A.; Adel-Hadadi, M. A.; Marbury, G. S.; Izett, G. A.; Maurrasse, F. R.

    1994-01-01

    The magnetic properties of black Beloc glass have been measured. The Curie constant, the magnetization, and the magnetic susceptibility of the Beloc glass fall within the known ranges observed for tektites. However, the temperature-independent component of the magnetic susceptibility is slightly higher than that found for tektites. Moreover, it is not possible to match the experimental magnetic data for the Beloc glass with the calculated values using the previously reported Fe(3+)/Fe(2+) ratio of 0.7. The oxidation state of Fe was therefore redetermined by Mossbauer measurements, and the Fe(3+)/Fe(2+) ratio was found to be 0.024 plus or minus 0.015. Using the redetermined value of the ratio, the magnetic parameters were again calculated using formulas that are applicable to tektites, and good agreement was found between the calculated and experimental values. The experimental magnetic measurements and the redetermined Fe(3+)/Fe(2+) ratio of the Beloc glass specimens are essentially the same as those found for tektite glass.

  8. Patterns of megafloral change across the Cretaceous-Tertiary boundary in the Northern Great Plains and Rocky Mountains

    NASA Technical Reports Server (NTRS)

    Johnson, Kirk R.; Hickey, Leo J.

    1988-01-01

    The spatial and temporal distribution of vegetation in the terminal Cretaceous of Western Interior North America was a complex mosaic resulting from the interaction of factors including a shifting coastline, tectonic activity, a mild, possibly deteriorating climate, dinosaur herbivory, local facies effects, and a hypothesized bolide impact. In order to achieve sufficient resolution to analyze this vegetational pattern, over 100 megafloral collecting sites were established, yielding approximately 15,000 specimens, in Upper Cretaceous and lower Paleocene strata in the Williston, Powder River, and Bighorn basins in North Dakota, Montana, and Wyoming. These localities were integrated into a lithostratigraphic framework that is based on detailed local reference sections and constrained by vertebrate and palynomorph biostratigraphy, magnetostratigraphy, and sedimentary facies analysis. A regional biostratigraphy based on well located and identified plant megafossils that can be used to address patterns of floral evolution, ecology, and extinction is the goal of this research. Results of the analyses are discussed.

  9. Mantle degassing induced dead ocean in the cretaceous-Tertiary transition

    NASA Astrophysics Data System (ADS)

    McLean, Dewey M.

    Prior to the terminal Cretaceous marine extinctions about 65 m.y. ago (polarity chron R29), ecological stability prevailed suggesting steady state between rate of mantle CO2 degassing and uptake by surficial sinks. The extinctions were characterized by ecological instability that persisted into the Early Tertiary; instability was coeval with the Deccan Traps flood basalt volcanism in India that flooded earth's surface with 2.6×106 km3 of lavas; radiometric ages concentrate around 66-60 m.y., with the main volcanic activity around 65 m.y. during a reversed-to-normal polarity sequence; most Deccan Traps basalts were erupted during the Deccan Reversed Magnetic Polarity Epoch, with some activity into the overlying Nipani normal. Using the geomagnetic time scale of Harland et al. the Deccan Reversed Interval is R29, and the Nipani N29. Ages of lower and upper boundaries of R29 are 65.39 and 64.86 m.y. (5.3×105 years); based on this duration for the bulk of Deccan Traps volcanism, the rate of basalt production was 4.91 km3/yr versus modern mid-ocean ridge basalt production of 1.2 km3/yr. Deccan Traps total mantle CO2 release was about 5×1017 moles CO2, released at a rate of 9.6×1011 moles/yr, versus the modern release rate of about 4.1×1012 moles/yr. Nearly 25% of total annual CO2 release from all other sources, Deccan Traps CO2 addition would have upset steady state, with release exceeding uptake, leading to CO2 buildup in the atmosphere and marine mixed layer, triggering ecological instability. Reduced mixed layer photosynthesis and CaCO3 production indicated in the record evidence of failure of the Williams-Riley pump (productivity plus gravity pump of CO2 from shallow into deep oceans), producing dead ocean conditions which would have triggered additional CO2 release and global ecological instability. The dinosaurs seem to have become extinct during magnetic polarity chron R28.

  10. The K/T-boundary carbonate breccia succession at the Cantarell Field, Campeche Bay area: a representative example of the influence of the Chicxulub meteorite-impact event on the formation of extraordinary petroleum reservoirs

    NASA Astrophysics Data System (ADS)

    Murillo-Muñeton, G.; Grajales-Nishimura, J. M.; Velasquillo-Martínez, L. G.; García-Hernández, J.

    2013-05-01

    Over the last decade, intense petroleum exploration and exploitation activities have been conducted in the Campeche Bay area. Detailed stratigraphic studies in this region based on seismic, well logs, and core data have allowed the documentation of numerous deep-water carbonate breccia deposits throughout the Cretaceous stratigraphic column. However, the uppermost carbonate breccia succession is very distinctive in terms of its sedimentological properties compared to the underlying and older calcareous breccia layers. The unique characteristics of this deposit include: its unusual thickness, stratigraphic position, distribution, and content of impact-metamorphic constituents. At the Cantarell field, this carbonate breccia sedimentary package is a representative example of how the Chuxulub meteorite-impact event influenced the formation of a remarkable carbonate reservoir. This deposit was the most important oil-producing stratigraphic horizon for long time in that field. Nevertheless, this reservoir is still important not only in that field but also in other fields in offshore Campeche. The K/T boundary carbonate breccia succession is a typical fining-upward deposit made up, from base to top, of three units. The 50 to 300-m thick, basal Unit 1 consists of a coarse-grained carbonate breccia. Unit 2 is a 10 to 20 m-thick, fine-grained carbonate breccia. The 25 to 30 m-thick, uppermost Unit 3 is a greenish interval of friable sand, silt and clay-sized constituents with abundant ejecta material. In some wells, a 10 to 20 m-thick, non-oil producing fine-grained calcareous breccia occurs interbedded within Unit 3. The K/T boundary carbonate sedimentary package is underlain and overlain by deep-water shaly calcareous facies of Upper Maastrichtian and Lower Paleocene age, respectively. Studies of cronostratigraphic-equivalent outcrop analogs of this K/T boundary carbonate reservoir carried out by the authors in the Sierra de Chiapas (El Guayal, Tabasco and Bochil, Chiapas) support the stratigraphic architecture documented at the Cantarell Field. Lithoclasts of the calcareous breccias were derived dominantly from platform-interior and platform-margin environments and a few from deep-water settings. Ejecta material includes: shocked quartz, quartz with ballen structure, shocked plagioclase, altered melt rock, and rare fragments of the crystalline basement. Its paleogeographic distribution, stratigraphic position, and abundance of impact-metamorphic constituents in this carbonate breccia deposit are the most striking evidences of a genetic relation to the Chicxulub meteorite-impact event. Hence, this carbonate breccia succession, deposited by gravity-driven processes under deep-water conditions, represents the collapse of the western paleomargin of the Yucatan Peninsula, ballistic transport and tsunami-related current reworking as a consequence of the Chicxulub meteorite-impact incident.

  11. K-T impact(s): Continental, oceanic or both

    NASA Technical Reports Server (NTRS)

    Sharpton, V. L.; Schuraytz, B. C.; Murali, A. V.; Ryder, G.; Burke, K.

    1988-01-01

    Although geochemical and mineralogical evidence indicate that a major accretionary event occurred at the K-T boundary, no impact crater of suitable size and age was recognized. The 35 km Manson Structure, Iowa, was suggested recently as a possibility and Ar-40/Ar-39 determinations indicate that its formation age is indistinguishable from that of the K-T boundary. In order to test a possible association between Manson and the K-T boundary clay, the geochemistry and mineralogy of the K-T boundary clays at the Scollard Canyon section, Alberta and the Starkville South section, Colorado are compared with three dominant lithologies affected by the Manson impact: Proterozoic red clastics, underlying late-state granites, and gneisses. The chemical and mineralogical makeup of the Scollard Canyon boundary clay and its clastic constituents are presented, commenting on the implications for impact models. An impact into crystalline material of continental affinity appears to be required to explain the mineralogy and chemistry of the Scollard Canyon (and other Western N. American K-T sections). The low REE abundances of some K-T boundary layers are unusual but perhaps attempts should be made to understand the contributions of individual crustal components (e.g., carbonates, arkoses) as well as the potential for alteration involving these and other elements during and after impact-induced vaporization, before mantle excavation is invoked. If further studies confirm the results of published studies of marine boundary clays that indicate an oceanic target, attention must be paid to the possibility that multiple impacts occurred at the K-T boundary - one or more on the continents and one or more in the ocean.

  12. The role of Deccan volcanism during the K-T mass extinction

    NASA Astrophysics Data System (ADS)

    Adatte, T.; Keller, G.; Gertsch, B.

    2012-12-01

    The potential role of major volcanic provinces has long been neglected as potential cause for major mass extinctions in Earth's history. This is despite the fact that volcanic activity is implicated in four of the five Phanerozoic mass extinctions, whereas a large asteroid impact is only associated with the K-T mass extinction. After 28 years of nearly unchallenged perception that a large impact (Chicxulub) on Yucatan caused the end-Cretaceous mass extinction, this theory is facing its most serious challenge from Deccan volcanism in India. Recent advances in Deccan volcanic studies show that Deccan Trap volcanism began with a relatively minor eruption phase (~6% of total volume) during the late Maastrichtian magnetic polarity C30n. The main eruption phase (~80%) occurred over a short period in C29r just below the Cretaceous-Tertiary boundary (KTB) and the last Deccan phase (~14%) erupted in the early Danian C29n. Multiproxy studies from sections in Meghalaya (NE India), Jhilmili in central India (Madhya Pradesh), 6 quarry outcrops from Rajahmundry (SE India), 10 deep wells from the Krishna-Godavari Basin (K-G) (Andhra Pradesh) place the KTB mass extinction near the end of the main Deccan phase coincident with the mass extinction. These studies show that the second and third phase of eruptions each produced the world's largest and longest lava megaflows ~1500 km across India through the K-G Basin into the Bay of Bengal. These megaflows are separated by sand, silt and shale which record the mass extinction across an interval that spans zones CF1-CF2 and most of the nannofossil Micula prinsii zone and is correlative with the rapid global warming and subsequent cooling near the end of the Maastrichtian. The mass extinction began preceding the first of the four mega-flows in C29r. Planktic foraminifera suffered a 50% drop in species richness. Survivors suffered another 50% drop after the first mega-flow, leaving just 7 to 8 survivor species. No recovery occurred between the next three mega-flows and the mass extinction was complete with the last phase-2 megaflow at the KTB. The last phase of Deccan volcanism and its 3 to 4 megaflows in the early Danian C29n (zone P1b) delayed biotic recovery of marine plankton. Correlative with these intense volcanic phases, climate changed from humid/tropical to arid conditions and returned to normal tropical humidity after the last phase of volcanism. Similar environmental conditions, mass extinction and delayed recovery patterns are observed in Meghalaya, NE India. The mass extinction was likely the consequence of rapid and massive volcanic CO2 and SO2 gas emissions, leading to high continental weathering rates, global warming, cooling, acid rains, ocean acidification and a carbonate crisis in the marine environment. Combined with an impact, Deccan volcanism can thus explain both the KTB mass extinction and the long delayed biotic recovery that has been an enigma for so long. But added to impact catastrophe, a cascade of rapid massive volcanic eruptions and their complex destructive interactions with Earth's equilibrium may have done the deed. The observed climate, faunal and floral changes may have been triggered by Deccan volcanism as a result of massive CO2 and SO2 emissions.

  13. Shock-induced devolatilization of calcium sulfate and implications for K-T extinctions

    NASA Technical Reports Server (NTRS)

    Chen, Guangqing; Tyburczy, James A.; Ahrens, Thomas J.

    1994-01-01

    The devolatilization of calcium sulfate, which is present in the target rock of the Chicxulub, Mexico impact structure, and dispersal in the stratosphere of the resultant sulfuric acid aerosol have been suggested as a possible mechanism for the Cretaceous-Tertiary extinctions. We measured the amount of SO2 produced from two shock-induced devolatilization reactions of calcium sulfate up to 42 GPa in the laboratory. We found both to proceed to a much lower extent than calculated by equilibrium thermodynamic calculations. Reaction products are found to be approx. 10(exp -2) times those calculated for equilibrium. Upon modeling the quantity of sulfur oxides degassed into the atmosphere from shock devolatilization of CaSO4 in the Chicxulub lithographic section, the resulting 9 x 10(exp 16) to 6 x 10(exp 17) g (in sulfur mass) is lower by a factor of 10-100 than previous upper limit estimates, the related environmental stress arising from the resultant global cooling and fallout of acid rain is insufficient to explain the widespread K-T extinctions.

  14. Shock-induced devolatization of calcium sulfate and implications for K-T extinctions

    NASA Technical Reports Server (NTRS)

    Chen, Guangqing; Tyburczy, James A.; Ahrens, Thomas J.

    1993-01-01

    Calcium sulfate devolatization during the impact at Chicxulub, Mexico and dispersal in the stratosphere of the resultant sulfuric acid aerosol have been suggested as a possible mechanism for the Cretaceous-Tertiary extinctions. In this paper, we investigated two shock-induced devolatization reactions of calcium sulfate up to 42 GPa in the laboratory: CaSO4 + SiO2 yields CaSiO3 + SO3(degassed) and CaSO4 yields CaO + SO2(degassed) + 1/2 O2(degassed). We found both to proceed to a much less extent than calculated by equilibrium thermodynamic calculations. Reaction products are found to be 10(exp -2) times those calculated for equilibrium. Consequently our estimate of the amount of sulfur oxides degassed into the atmosphere from shock devolatization of CaS04 in the Chicxulub lithographic section (6x10(exp 15)-2x10(exp 16)g in sulfur mass) is lower by a factor of 70 to 400 than previous estimates; the related environmental stress arising from the resultant global cooling of approximately 4 K and fallout of acid rain does not appear to suffice to explain the widespread K-T extinctions.

  15. Relative contribution of Precambrian metamorphic rocks and Cretaceous-Tertiary igneous rocks to Oligocene and Holocene fluvial sands and the unroofing of a magmatic arc

    SciTech Connect

    Molinaroli, E.; Basu, A. )

    1991-03-01

    Oligocene and Holocene fluvial sands were deposited in small extensional basins in a magmatic arc in southwestern Montana under relatively humid and semi-arid conditions, respectively. The source rocks are roof-pendants and thrust-slices of Precambrian metamorphic rocks (PCM) and Cretaceous-Tertiary igneous rocks (KTI) that make up the arc. The authors have surveyed 143,607 heavy mineral grains (HMGs) in polished thin sections of 55 samples collected from adjacent but discrete geomorphologic units. In the Holocene sands, of 5440 HMGs 519 are garnets and of 97,667 HMGs 395 are zircons. In the Oligocene sandstones, of 6397 HMGs 998 are garnets, and of 45,940 HMGs 331 are zircons. Garnets are absent in the igneous rocks and zircons are extremely rare in the metamorphic rocks. Garnets ar estimated to be about 100 times as abundant in the metamorphic rocks as the zircons are in the igneous rocks. Mass balance calculations show that the proportion of PCM/(PCM+KTI) ranges from 0 to 21% in Oligocene sandstones, and from 3 to 76% in Holocene sands in different local units. However, the overall PCM/(PCM+KTI) proportions in the Holocene and the Oligocene sands in southwestern Montana are 19% and 18%, respectively. This suggests that the roof pendants, thrust slices, and magmatic arc rocks have been unroofed in constant proportions since the Oligocene although locally the proportions have been different.

  16. Geochemical anomalies near the Eocene-Oligocene and Permian-Triassic boundaries

    SciTech Connect

    Asaro, F.; Alvarez, L.W.; Alvarez, W.; Michel, H.V.

    1981-10-01

    Evidence is presented to support the theory that several mass extinctions, i.e., those that define the Permian-Triassic boundary, the Cretaceous-Tertiary boundary, and the Eocene-1 Oligocene boundary, were caused by impact on the earth of extraterrestrial objects having the composition of carbonaceous chondrites and diameters of about 10 km. The evidence consists of anomalously high concentrations of iridium and other siderophile elements at the stratigraphic levels defining the extinctions. (ACR)

  17. An Asteroid Breakup 160 My Ago as the Probable Source of the K-T Impactor

    NASA Astrophysics Data System (ADS)

    Bottke, William; Vokrouhlicky, D.; Nesvorny, D.

    2007-10-01

    The terrestrial and lunar cratering rate is often assumed to have been nearly constant over the last 3 Gy. Different lines of evidence, however, suggest the impact flux from kilometer-sized bodies increased by at least a factor of 2 over the last 100 My. Here we report that this apparent surge was triggered by the catastrophic disruption of the Baptistina parent body, a 170 km diameter carbonaceous chondrite-like asteroid that broke up 160 ± 20 My ago in the inner main belt. According to our numerical simulations, this family's age, location near Jupiter's 7:2 and Mars' 5:9 mean motion resonances, and its steep fragment size distribution are remarkably well suited to generate a prolonged surge in the multi-kilometer NEO population and explain the above observations. Numerous fragments produced by the collision were slowly delivered by dynamical processes (Yarkovsky effect, resonances) to orbits where they could strike the terrestrial planets. The number of D > 1 km, D > 5 km, and D > 10 km impacts produced on Earth by Baptistina fragments are 200 ± 60, 6 ± 2, and 1 ± 1, respectively, while those from the background are 260 ± 20, 3 ± 2, and 0.5 ± 0.7, respectively. Using numerical modeling this asteroid shower and combining our results with meteoritic constraints, we find it is the most likely source (> 90% probability) of the Chicxulub impactor that produced the Cretaceous-Tertiary (K/T) mass extinction event 65 My ago. This shower may have also produced the conspicuous lunar crater Tycho that formed 109 My ago (> 70% probability). Among all km-sized NEOs, Baptistina fragments may currently be responsible for 40% of all C/X-types and 20% of the entire population. These bodies should predominantly have compositions that mimic CM meteorites.

  18. QCD dipole model and k T factorization

    NASA Astrophysics Data System (ADS)

    Bialas, A.; Navelet, H.; Peschanski, R.

    2001-01-01

    It is shown that the colour dipole approach to hard scattering at high energy is fully compatible with k T factorization at the leading logarithm approximation (in - logx Bj). The relations between the dipole amplitudes and unintegrated diagonal and non-diagonal gluon distributions are given. It is also shown that including the exact gluon kinematics in the k T factorization formula destroys the conservation of transverse position vectors and thus is incompatible with the dipole model for both elastic and diffractive amplitudes.

  19. Shock-synthesized hexagonal diamonds in Younger Dryas boundary sediments

    PubMed Central

    Kennett, Douglas J.; Kennett, James P.; West, Allen; West, G. James; Bunch, Ted E.; Culleton, Brendan J.; Erlandson, Jon M.; Que Hee, Shane S.; Johnson, John R.; Mercer, Chris; Shen, Feng; Sellers, Marilee; Stafford, Thomas W.; Stich, Adrienne; Weaver, James C.; Wittke, James H.; Wolbach, Wendy S.

    2009-01-01

    The long-standing controversy regarding the late Pleistocene megafaunal extinctions in North America has been invigorated by a hypothesis implicating a cosmic impact at the Ållerød-Younger Dryas boundary or YDB (≈12,900 ± 100 cal BP or 10,900 ± 100 14C years). Abrupt ecosystem disruption caused by this event may have triggered the megafaunal extinctions, along with reductions in other animal populations, including humans. The hypothesis remains controversial due to absence of shocked minerals, tektites, and impact craters. Here, we report the presence of shock-synthesized hexagonal nanodiamonds (lonsdaleite) in YDB sediments dating to ≈12,950 ± 50 cal BP at Arlington Canyon, Santa Rosa Island, California. Lonsdaleite is known on Earth only in meteorites and impact craters, and its presence strongly supports a cosmic impact event, further strengthened by its co-occurrence with other nanometer-sized diamond polymorphs (n-diamonds and cubics). These shock-synthesized diamonds are also associated with proxies indicating major biomass burning (charcoal, carbon spherules, and soot). This biomass burning at the Younger Dryas (YD) onset is regional in extent, based on evidence from adjacent Santa Barbara Basin and coeval with broader continent-wide biomass burning. Biomass burning also coincides with abrupt sediment mass wasting and ecological disruption and the last known occurrence of pygmy mammoths (Mammuthus exilis) on the Channel Islands, correlating with broader animal extinctions throughout North America. The only previously known co-occurrence of nanodiamonds, soot, and extinction is the Cretaceous-Tertiary (K/T) impact layer. These data are consistent with abrupt ecosystem change and megafaunal extinction possibly triggered by a cosmic impact over North America at ≈12,900 ± 100 cal BP. PMID:19620728

  20. Shock-synthesized hexagonal diamonds in Younger Dryas boundary sediments.

    PubMed

    Kennett, Douglas J; Kennett, James P; West, Allen; West, G James; Bunch, Ted E; Culleton, Brendan J; Erlandson, Jon M; Que Hee, Shane S; Johnson, John R; Mercer, Chris; Shen, Feng; Sellers, Marilee; Stafford, Thomas W; Stich, Adrienne; Weaver, James C; Wittke, James H; Wolbach, Wendy S

    2009-08-01

    The long-standing controversy regarding the late Pleistocene megafaunal extinctions in North America has been invigorated by a hypothesis implicating a cosmic impact at the Allerød-Younger Dryas boundary or YDB (approximately 12,900 +/- 100 cal BP or 10,900 +/- 100 (14)C years). Abrupt ecosystem disruption caused by this event may have triggered the megafaunal extinctions, along with reductions in other animal populations, including humans. The hypothesis remains controversial due to absence of shocked minerals, tektites, and impact craters. Here, we report the presence of shock-synthesized hexagonal nanodiamonds (lonsdaleite) in YDB sediments dating to approximately 12,950 +/- 50 cal BP at Arlington Canyon, Santa Rosa Island, California. Lonsdaleite is known on Earth only in meteorites and impact craters, and its presence strongly supports a cosmic impact event, further strengthened by its co-occurrence with other nanometer-sized diamond polymorphs (n-diamonds and cubics). These shock-synthesized diamonds are also associated with proxies indicating major biomass burning (charcoal, carbon spherules, and soot). This biomass burning at the Younger Dryas (YD) onset is regional in extent, based on evidence from adjacent Santa Barbara Basin and coeval with broader continent-wide biomass burning. Biomass burning also coincides with abrupt sediment mass wasting and ecological disruption and the last known occurrence of pygmy mammoths (Mammuthus exilis) on the Channel Islands, correlating with broader animal extinctions throughout North America. The only previously known co-occurrence of nanodiamonds, soot, and extinction is the Cretaceous-Tertiary (K/T) impact layer. These data are consistent with abrupt ecosystem change and megafaunal extinction possibly triggered by a cosmic impact over North America at approximately 12,900 +/- 100 cal BP. PMID:19620728

  1. Determination of rapid Deccan eruptions across the Cretaceous-Tertiary boundary using paleomagnetic secular variation: Results from a 1200-m-thick section in the Mahabaleshwar escarpment

    NASA Astrophysics Data System (ADS)

    Chenet, Anne-Lise; Fluteau, FréDéRic; Courtillot, Vincent; GéRard, Martine; Subbarao, K. V.

    2008-04-01

    Flow-by-flow reanalysis of paleomagnetic directions in two sections of the Mahabaleshwar escarpment, coupled with analysis of intertrappean alteration levels shows that volcanism spanned a much shorter time than previously realized. The sections comprise the upper part of magnetic chron C29r, transitional directions and the lowermost part of C29n. Lack of paleosecular variation allows identification of four directional groups, implying very large (40 to 180 m thick) single eruptive events (SEEs) having occurred in a few decades. Paleomagnetism allows temporal constraints upon the formation of 9 out of 23 thin red bole levels found in the sections to no more than a few decades; the two thickest altered layers could have formed in 1 to 50 ka. The typical volumes of SEEs (corresponding to magnetic directional groups) are estimated at 3000 to 20,000 km3, with flux rates ˜100 km3 a-1, having lasted for decades. Flood basalt emission can be translated into SO2 injection rates of several Gt a-1, which could have been the main agent of environmental change. The total volume of SO2 emitted by the larger SEEs could be on the order of that released by the Chicxulub impact. Moreover, each SEE may have injected 10 to 100 times more SO2 in the atmosphere than the deleterious 1783 Laki eruption. The detailed time sequence of SEEs appears to be the key feature having controlled the extent of climate change. If several SEEs erupted in a short sequence (compared to the equilibration time of the ocean), they could have generated a runaway effect leading to mass extinction.

  2. Search for extractable fullerenes in clays from the cretaceous/tertiary boundary of the Woodsite Creek and Flaxbourne River sites, New Zealand

    SciTech Connect

    Heymann, D.; Chibante, L.P.F.; Smalley, R.E. ); Wolbach, W.S. ); Brooks, R.R. )

    1994-08-01

    When fullerenes were first discovered to form spontaneously in condensing carbon vapors, it was suggested that they might be widely distributed in the Universe. Searchers for fullerenes in meteorites were unsuccessful, but C[sub 60] and C[sub 70] were reported to occur on Earth in samples of shungite, a meta-anthracite from a deposit near Shunga, Russia, and in [open quotes]fulgurite[close quotes], a substance formed when lightning strikes certain soils or rocks. The occurrence of fullerenes in shungite is particularly surprising since fullerene synthesis in the laboratory has always involved gas phase chemistry at temperatures over 1000[degrees]C. Such conditions may be attained during lightning strikes, but shungite is believed to have formed from carbonaceous material creeping into fissures of a Precambrian rock which metamorphosed under extreme pressures. If the original carbonaceous material did not already contain fullerenes perhaps from wildfires, they must have formed during the metamorphism by as yet unknown solid- or liquid-phase mechanisms.

  3. Darkness after the K-T impact: Effects of soot

    NASA Technical Reports Server (NTRS)

    Wolbach, Wendy S.; Anders, Edward; Orth, Charles J.

    1988-01-01

    Dust from the K-T impact apparently settled from the atmosphere in less than 6 months, restoring sunlight to minimum photosynthesis levels in about 4 months. However, the discovery of a global soot component in the boundary clay makes it necessary to reconsider the problem, as soot particles not only are smaller (0.1 vs. about 0.5 micrometer) and thus settle more slowly, but also are better light absorbers (optical depth of 13 mg soot cm(-2) about 1800; and are more resistant to rainout. Still, the darkness cannot have lasted very much longer than 6 months, else no larger animals would have survived. Perhaps the soot coagulated with the rock dust and fell out with it. Evidence on this point may be sought at a relatively undisturbed K-T boundary site, such as Woodside Creek, N.Z. There the boundary clay and lowermost Tertiary strata are finely laminated and show large chemical and isotopic differences on a millimeter scale, apparently representing a detailed time sequence. Researchers studied a 3 m section across the boundary at this site, analyzing the principal forms of carbon (soot, elemental C, kerogen, and carbonate) as well as 33 elements. Correlations among the elements were sought. Apparently soot came early and coagulated with the ejecta, staying with them for the primary fallout and in the next 5 cm, but then parting company, perhaps due to size sorting.

  4. Geochemical evidence for combustion of hydrocarbons during the K-T impact event

    PubMed Central

    Belcher, Claire M.; Finch, Paul; Collinson, Margaret E.; Scott, Andrew C.; Grassineau, Nathalie V.

    2009-01-01

    It has been proposed that extensive wildfires occurred after the Cretaceous–Tertiary (K-T) impact event. An abundance of soot and pyrosynthetic polycyclic aromatic hydrocarbons (pPAHs) in marine K-T boundary impact rocks (BIRs) have been considered support for this hypothesis. However, nonmarine K-T BIRs, from across North America, contain only rare occurrences of charcoal yet abundant noncharred plant remains. pPAHs and soot can be formed from a variety of sources, including partial combustion of vegetation and hydrocarbons whereby modern pPAH signatures are traceable to their source. We present results from multiple nonmarine K-T boundary sites from North America and reveal that the K-T BIRs have a pPAH signature consistent with the combustion of hydrocarbons and not living plant biomass, providing further evidence against K-T wildfires and compelling evidence that a significant volume of hydrocarbons was combusted during the K-T impact event. PMID:19251660

  5. Magnetic microspherules associated with the K/T and upper Eocene extinction events

    NASA Technical Reports Server (NTRS)

    Cisowski, Stanley M.

    1988-01-01

    Magnetic microspherules were identified in over 20 K/T boundary sites, and in numerous Deep Sea Drilling Project (DSDP) cores from the Caribbean and Pacific, synchronous with the extinction of several radiolarian species near the end of the Eocene. The K/T magnetic spherules are of particular interest as carriers of Ir and other siderophiles generally found in abundance in K/T boundary clay. Furthermore the textures and unusual chemistry of their component magnetic phases indicate an origin at high temperature, possibly related to (an) unusual event(s) marking the end of the Cretaceous and Eocene periods. Their origin, along with the non-magnetic (sanidine) spheules, is generally ascribed directly to megaimpact events hypothesized to have periodically disrupted life on Earth. A survey of microspherical forms associated with known meteorite and impact derived materials reveals fundamental differences from the extinction related spherules. Low temperature magnetic experiments on the K/T and Upper Eocene spheroids indicate that, unlike tektites, extremely small superparamagnetic carriers are not present in abundance. The extensive subaerial exposure of Cretaceous combustible black shale during sea level regression in the latest Cretaceous represents a potential source for the magnetic spheroids found in certain K/T boundary clays. The recent discovery of high Ir abundances distributed above and below the K/T boundary within shallow water sediments in Israel, which also contain the most extensive known zones of combustion metamorphism, the so called Mottled Zone, adds a further dramatic footnote to the proposed association between the magnetic spheroids and combustion of organic shales. Interestingly, the Mottled Zone also contains the rare mineral magnesioferrite, which was identified both within the K/T magnetic spheroids and as discrete crystals in boundary clay from marine and continental sites.

  6. KT boundary impact glasses from the Gulf of Mexico region

    NASA Technical Reports Server (NTRS)

    Claeys, Philippe; Alvarez, Walter; Smit, Jan; Hildebrand, A. R.; Montanari, Alessandro

    1993-01-01

    Cretaceous-Tertiary boundary (KTB) tektite glasses occur at several sites around the Gulf of Mexico. Contrary to rumor among KTB workers, glass fragments have been found by several researchers in the base of the spherule bed at Arroyo el Mimbral in NE Mexico. The presence of green, red, and transparent glass fragments at Mimbral only, demonstrates that the Mimbral glass is not a laboratory contamination by Beloc glass. The chemistry and ages of the glass are consistent with an origin from the Chixculub impact crater in Yucatan. No evidence supports a volcanic origin for the KTB glasses. A discussion of tektite glass from the KT boundary is presented.

  7. Mass extinction of birds at the Cretaceous-Paleogene (K-Pg) boundary.

    PubMed

    Longrich, Nicholas R; Tokaryk, Tim; Field, Daniel J

    2011-09-13

    The effect of the Cretaceous-Paleogene (K-Pg) (formerly Cretaceous-Tertiary, K-T) mass extinction on avian evolution is debated, primarily because of the poor fossil record of Late Cretaceous birds. In particular, it remains unclear whether archaic birds became extinct gradually over the course of the Cretaceous or whether they remained diverse up to the end of the Cretaceous and perished in the K-Pg mass extinction. Here, we describe a diverse avifauna from the latest Maastrichtian of western North America, which provides definitive evidence for the persistence of a range of archaic birds to within 300,000 y of the K-Pg boundary. A total of 17 species are identified, including 7 species of archaic bird, representing Enantiornithes, Ichthyornithes, Hesperornithes, and an Apsaravis-like bird. None of these groups are known to survive into the Paleogene, and their persistence into the latest Maastrichtian therefore provides strong evidence for a mass extinction of archaic birds coinciding with the Chicxulub asteroid impact. Most of the birds described here represent advanced ornithurines, showing that a major radiation of Ornithurae preceded the end of the Cretaceous, but none can be definitively referred to the Neornithes. This avifauna is the most diverse known from the Late Cretaceous, and although size disparity is lower than in modern birds, the assemblage includes both smaller forms and some of the largest volant birds known from the Mesozoic, emphasizing the degree to which avian diversification had proceeded by the end of the age of dinosaurs. PMID:21914849

  8. k-t PCA: temporally constrained k-t BLAST reconstruction using principal component analysis.

    PubMed

    Pedersen, Henrik; Kozerke, Sebastian; Ringgaard, Steffen; Nehrke, Kay; Kim, Won Yong

    2009-09-01

    The k-t broad-use linear acquisition speed-up technique (BLAST) has become widespread for reducing image acquisition time in dynamic MRI. In its basic form k-t BLAST speeds up the data acquisition by undersampling k-space over time (referred to as k-t space). The resulting aliasing is resolved in the Fourier reciprocal x-f space (x = spatial position, f = temporal frequency) using an adaptive filter derived from a low-resolution estimate of the signal covariance. However, this filtering process tends to increase the reconstruction error or lower the achievable acceleration factor. This is problematic in applications exhibiting a broad range of temporal frequencies such as free-breathing myocardial perfusion imaging. We show that temporal basis functions calculated by subjecting the training data to principal component analysis (PCA) can be used to constrain the reconstruction such that the temporal resolution is improved. The presented method is called k-t PCA. PMID:19585603

  9. Search for iridium abundance anomalies at two Late Cambrian biomere boundaries in western Utah

    SciTech Connect

    Orth, C.J.; Knight, J.D.; Quintana, L.R.; Gilmore, J.S.; Palmer, A.R.

    1984-01-13

    Iridium concentrations have been measured in samples taken across two Late Cambrian biomere boundaries (crisis zones) in search of evidence for possible elemental abundance anomalies similar to the one observed at the Cretaceous-Tertiary boundary. Sampling was performed in uplifted marine limestone deposits in the House Range of western Utah. Although the two trilobite-brachiopod extinction boundaries could be assigned to +/- 4 millimeters of vertical section by laboratory examination of the rocks, only background amounts of iridium (2 x 10/sup -12/ to 17 x 10/sup -12/ gram per gram of whole rock) were observed.

  10. Synchroneity of the K-T oceanic mass extinction and meteorite impact: Blake Nose, western North Atlantic

    USGS Publications Warehouse

    Norris, R.D.; Huber, B.T.; Self-Trail, J.

    1999-01-01

    A 10-cm-thick layer of green spherules occurs precisely at the biostratigraphic boundary between the Cretaceous and Paleogene (K-T boundary) at Ocean Drilling Program Site 1049 (lat 30??08???N, long 76??06???W). The spherulitic layer contains abundant rock fragments (chalk, limestone, dolomite, chert, mica books, and schist) as well as shocked quartz, abundant large Cretaceous planktic foraminifera, and rounded clasts of clay as long as 4 mm interpreted as altered tektite glass probably derived from the Chicxulub impact structure. Most of the Cretaceous foraminifera present above the spherule layer are not survivors since small specimens are conspicuously rare compared to large individuals. Instead, the Cretaceous taxa in Paleocene sediments are thought to be reworked. The first Paleocene planktic foraminifera and calcareous nannofossil species are recorded immediately above the spherule bed, the upper part of which contains an iridium anomaly. Hence, deposition of the impact ejecta exactly coincided with the biostratigraphic K-T boundary and demonstrates that the impact event was synchronous with the evolutionary turnover in the oceans. These results are consistent with a reanalysis of the biostratigraphy of the K-T boundary stratotype, which argues that shallow-marine K-T boundary sections are not biostratigraphically more complete than deep-sea K-T boundary sites.

  11. K/T spherules from Haiti and Wyoming: Origin, diagenesis, and similarity to some microtektites

    NASA Technical Reports Server (NTRS)

    Bohor, B. F.; Glass, B. P.; Betterton, W. J.

    1993-01-01

    Spherules with relict glass cores in the K/T boundary bed of Haiti allow for a comparison of these bodies with hollow goyazite shells in the K/T boundary claystone of Wyoming and with younger microtektites of the Ivory Coast strewn field. Samples of the Haitian beds from undisturbed sections at Beloc, as determined by Jehanno et al., contain both hollow shells and relict glass cores rimmed by palagonite that has been partially converted to smectite. These palagonite rims developed from hydration zones formed when hot, splash-form droplets of andesitic impact glass were deposited into water. Mutual collisions between these droplets in the ejecta curtain may have formed point-source stresses on their surfaces. Initiation of hydration would be facilitated at these surface stress points and propagated radially into the glass. The inner surface of these merged hemispherical fronts appears mammillary, which is reflected as scalloping in Haitian relict glass cores.

  12. Factors responsible for catastrophic extinction of marine organisms at the Mesozoic-Cenozoic boundary

    NASA Astrophysics Data System (ADS)

    Barash, M. S.

    2011-08-01

    The mass death of organisms at the Cretaceous-Tertiary boundary (KT boundary) resulted in the extinction of approximately half of marine genera. Some taxa had degraded by the end of the Cretaceous to become eventually extinct either before or precisely at the KT boundary. Most of them became extinct immediately at this boundary. The terminal Cretaceous was marked by changes in many environmental processes, which influenced the biota. These included tectonic events, powerful basalt eruptions, falls of large asteroids (impact events), anoxia, transgressions and regressions, cooling and warming episodes, and the chemistry of the atmosphere and seawater. All these factors, except for impact events, could stimulate degradation of some groups of organisms, not their extinction. The Cretaceous-Tertiary boundary was marked by major impact events, which are reflected in the occurrence of the Chicxulub, Shiva, Boltysh, Silverpit, and, probably some other impact craters. Some known craters were left by asteroids at that time or slightly earlier. At least as many asteroids undoubtedly fell into the ocean. The combination of many factors in the terminal Cretaceous harmful for organisms and seemingly unrelated to each other may be likely explained only by a single supreme cause beyond the Solar System.

  13. Dinosaur bone beds and mass mortality: Implications for the K-T extinction

    NASA Technical Reports Server (NTRS)

    Carpenter, Kenneth

    1988-01-01

    Mass accumulations of fossilized large terrestrial vertebrate skeletons (bone beds: BB) provide a test for K-T catastrophic extinction hypotheses. The two major factors contributing to BB formation are mode of death and sedimentation rate. Catastrophic mass mortality (CMM) is the sudden death of numerous individuals where species, age, health, gender, or social ranking offer no survivorship advantage. Noncatastrophic mass mortality (NCMM) occurs over time and is strongly influenced by species, age, or gender. In addition to cause of death, sedimentation rate is also important in BB formation. Models of BBs can be made. The CMM drops all individuals in their tracks, therefore, the BB should reflect the living population with respect to species, age, or gender. The NCMM results in monospecific BBs skewed in the direction of the less fit, usually the very young or very old, or towards a specific gender. The NCMM and AM BBs may become more similar the more spread out over time NCMM deaths occur because carcasses are widely scattered requiring hydraulic accumulation, and the greater time allows for more disarticulation and weathering. The CMM and NCMM BB appear to be dominated by social animals. Applying this and the characteristics of mortality patterns to the uppermost Cretaceous Hell Creek Formation indicates that only NCMM and AM BB occur. Furthermore, NCMM BB are rare in the upper third of the Hell Creek. Near the K-T boundary, only AM BB are known. The absence of CMM and NCMM BB appears to be real reflecting a decrease in population levels of some dinosaurs prior to the K-T event. The absence of CMM suggests that the K-T event did not lead to an instantaneous extinction of dinosaurs. Nor was there a protracted die-off due to an asteroid impact winter, because no NCMM BB are known at or near the K-T boundary.

  14. Origin and diagenesis of K/T impact spherules -- From Haiti to Wyoming and beyond

    NASA Astrophysics Data System (ADS)

    Bohor, B. F.; Glass, B. P.

    1995-03-01

    Impact spherules in Cretaceous/Tertiary (KIT) boundary clays and claystones consist of two types; each type is confined to its own separate layer of the boundary couplet in the Western Hemisphere. The form and composition of each of the spherule types result from its own unique mode of origin during the KIT event. Type 1 splash-form spherules occur only in the melt-ejecta (basal) layer of the KIT couplet. This layer was deposited from a ballistic ejecta curtain composed of melt-glass droplets transported mostly within the atmosphere. h contrast, Type 2 spherules are accreted, partially crystalline, spheroidal bodies that formed by condensation of vaporized bolide and target-rock materials in an expanding fireball cloud, from which they settled out of buoyant suspension to form the fireball layer. Dendritic and skeletal Ni-rich spinel crystals are unique to these Type 2 spherules in the fireball layer. Compositions of relict glasses found in Type 1 KIT spherules from Haiti indicate that they were derived from intermediate silicic target rocks. These melt-glass droplets were deposited into an aqueous environment at both continental and marine sites. We propose that the surfaces of the hot melt droplets hydrated rapidly in water and that these hydrated glass rims then altered to palagonite. Subsequent alteration of the palagonite rims to smectite, glauconite, chlorite, kaolinite, or goyazite occurred later during various modes of progressive diagenesis, accompanied by dissolution of some of the glass cores in spherules from continental sections and from marine sections that were subsequently raised above sea level. In many of the nonmarine sections in the Western Interior, the glass cores altered to kaolinite instead of dissolving. Directly comparable spherule morphologies (splash forms), textural features of the altered shells, and scalloping and grooving of relict glass cores or secondary casts demonstrate that the Haitian and Wyoming spherules are equivalent altered Type 1 melt-droplet bodies. The spherules at both locations were deposited in a melt-ejecta layer as part of the KIT impact event. Previously, two types of relict impact glasses had been identified in the Haitian spherule beds: black glass of andesitic composition and high-Ca yellow glass with an unusually high S content. Most workers agree that the latter probably formed by impact melting and mixing of surficial carbonate (and minor anhydrite) rocks with the more deeply-buried crystalline parent rocks of the black glasses. However, some workers have suggested that an intermediate compositional gap exists between the two groups of glasses, implying a different origin than simple mixing of end members during impact. We report glass compositional analyses with values extending throughout this intermediate range, lending support to the impact-mixing model. Inclusions of CaSO4 found by us in relict yellow glasses further support this model.

  15. Chicxulub Impact and the Stratigraphy, Nature and Origin of Near-K-T Breccia

    NASA Astrophysics Data System (ADS)

    Adatte, T.; Keller, G.; Berner, Z.; Stüben, D.

    2007-05-01

    Breccias with altered impact glass and located at or near the K-T boundary in Texas (USA), northern and southern Mexico, Belize, Guatemala, Haiti and Brazil are investigated to determine their age, stratigraphy and origin. Ages are variable. The oldest breccia deposit is within the uppermost Maastrichtian in the southern USA (Brazos, Texas), NE Mexico (e.g., Loma Cerca, El Penon) and in the Chicxulub impact crater cores on Yucatan (e.g., cores Yaxcopoil-1, Y6, C1). In all these sections, the geochemistry of glass within the breccias is identical and consistent with Chicxulub impact ejecta. The K-T boundary, Ir anomaly and mass extinction is located well above these impact breccia layers. This strongly supports a pre-K-T age for the Chicxulub impact, as also determined based on sedimentology, stratigraphy and paleontology. In NE Mexico and Texas the oldest Chicxulub impact spherule ejecta layer is interbedded in normal marine sedimentation in the upper Maastrichtian (base of CF1 Zone), about 300'000 year prior to the K-T boundary. All stratigraphically younger spherule ejecta layers represent repeated episodes of reworking and transport of the original layer during a sea-level regression and re- deposition in incised valleys in shallow environments (e.g., Brazos, Texas, La Popa Basin NE Mexico) and submarine canyons in deeper environments via mass flows and turbidites (e.g. Mimbral, Penon, Loma Cerca and many other section throughout NE Mexico). In southern Mexico, Belize and eastern Guatemala, the widespread thick microspherule and larger spheroid deposits are interbedded with breccia, microbreccias and conglomerates in the early Danian as a result of erosion in shallow carbonate platform sediments. The presence of early Danian planktic foraminifera in the matrix of the breccia, as well as within spherule clasts, indicate that redeposition occurred during the early Danian Parvularugoglobigerina eugubina (P1a) zone. In Haiti (Beloc sections), spherule deposits and microbreccias are also reworked together with late Maastrichtian microfossils and redeposited during the early Danian zone P1a. In NE Brazil (Poty Quarry) and Argentina (Neuquen Basin), the breccia layers identified as K-T age are also younger and deposited in the early Danian P1a and P1c zones, respectively. No extraterrestrial markers, such as glass, glass spherules or shocked quartz are present. These breccia and sandstone deposits thus represent normal sedimentary processes with deposition primarily linked to sea-level changes. However, an Ir anomaly is detected in the Early Danian P1a(1) subzone (100-200ky after the KT boundary) in southern Mexico (Coxquihui, Bochil), Guatemala (Actela), Haiti (Beloc) and Brasil (Poty). This suggests that the K-T transition was a time comet showers with current evidence of two large impacts, the pre-K-T Chicxulub impact and K-T impact, and smaller impacts in the early Danian and late Maastrichtian (Boltysh crater). The distribution of the K-T impact breccia is consistent with a multi-impact scenario.

  16. Chondritic ratios of Fe/Cr/Ir in Kerguelen Plateau (Hole 738C) K/T carbonate-rich sediments support asteroid-cometary impact at K/T time

    NASA Technical Reports Server (NTRS)

    Liu, Y. G.; Schmitt, R. A.

    1993-01-01

    In the study of marine carbonate sediments from Holes 577 and 577B, Shatsky Plateau (Rise), a net extraterrestrial Fe/Ir = C1 chondritic ratio at the K/T boundary was reported. Applying a similar procedure to Hole 738C (Kerguelen Plateau) data reported, Fe/Cr/Ir ratios similar to C1 or C2 chondritic ratios were obtained.

  17. Primary Mineralogical and Chemical Characteristics of the Major K/T and Late Eocene Impact Deposits

    NASA Astrophysics Data System (ADS)

    Kyte, F. T.

    2004-12-01

    Three well-characterized, distal impact deposits at the K/T boundary and in upper Eocene sediments serve as a baseline for understanding other proposed impact deposits. All contain abundant spherules, evidence of shock metamorphism, and the largest have significant extraterrestrial components (ETCs). The K/T and the Eocene cpx-spherule (cpxS) deposits are global - likely from the events that produced the 180 km Chicxulub and 100 km Popigai craters. The Eocene North American microtektite (NAM) deposit is regional and likely from the event that produced the 45 km Chesapeake Bay crater. These deposits all contain abundant spherules formed from both shock-melted target and mixtures of target and projectile in the ejecta plume. Spherules constitute most of the mass of the distal ejecta. K/T spherules in regional deposits around the Gulf of Mexico are from low-velocity, target-rich ejecta. These can be a few mm in size and form deposits 10s of cm thick. Globally deposited K/T spherules from the plume (typically a few hundred micron size) are both target- and projectile- rich. When well preserved, the global deposits are 3 mm thick. Eocene cpxS deposits are similar to distal K/T with both target- and projectile-rich varieties (i.e., glassy microtektite, and cpx spherules). They are smaller on average than K/T spherules, concentrated in the 125-250 micron and smaller fractions. They are invariably bioturbated, but the initial deposit was probably less than 1 mm thick. The NAM are composed entirely of target-rich glass. They are similar in size to the cpxS. Size is an important criterion for distal ejecta because droplet size in the impact plume is proportional to the energy of the impact. Both the K/T and cpxS deposits are characterized by well-defined ETCs, commonly measured by Ir. The total Ir deposited is about 55 ng per square cm in K/T sediments, and about 11 ng for the cpxS layer. This 5/1 proportion in Ir is generally consistent with the ~1.8/1 ratio in crater diameters. The NAM have no significant ETC. This may be a function of the smaller impact. It indicates there was no significant projectile-rich plume deposit. All three deposits also contain evidence of shock metamorphism, including quartz with planar deformation features, and coesite. K/T and NAM deposits are also known to contain shocked feldspar and zircon. Shocked minerals are not as ubiquitous as spherules, although in K/T deposits they are found in the Pacific, North America, and in trace amounts in Europe. Shocked minerals are only a small fraction of the total mass (typically less than 1 mg/g). These diagnostic criteria are clearly demonstrated by numerous labs on samples from a large number of K/T and Eocene sites. At present, such evidence of impact is not ubiquitous in P/T or T/J boundary sediments. Scattered reports of very small spherules (less than 100 microns) in P/T boundaries do not include abundance data. There are no convincing Ir anomalies that would represent a large ETC. Reported traces of meteorite fragments or anomalous noble gases, while intriguing, could be derived from non-impact sources (e.g., interplanetary dust particles). A few reports of shocked quartz in P/T boundaries are also intriguing, but this author won't be convinced of their accuracy until confirmed by TEM analysis. A problem with searching for evidence of impact at the P/T and T/J boundaries is the paucity of good localities with continuous sediment records and the fact that they are unavailable to most researchers. Those who wish to advance impact at the T/J and P/T need to work to get key samples distributed the broader impact community.

  18. Mexican site for K/T impact crater?

    NASA Astrophysics Data System (ADS)

    Pope, K. O.; Ocampo, A. C.; Duller, C. E.

    1991-05-01

    Research throughout the Caribbean suggests that the geophysical anomalies in the Yucatan first noted by Penfield and Camargo (1981) and called the Chicxulub crater could be the site of the impact purported to have caused the K/T extinctions. A semicircular ring of sink holes, known locally as cenotes, which correlates with the geophysical anomalies has been identified, and it is argued that the origin of the cenote ring is related to postimpact subsidence of the Chicxulub crater rim. If there is indeed a crater, the region within the cenote ring corresponds to its floor and the crater rim diameter is probably larger than 200 km. If confirmed as a site of impact, the Chicxulub crater would be the largest terrestrial impact crater known, which is consistent with the uniqueness of the K/T global catastrophe.

  19. Mexican site for K/T impact crater?

    NASA Technical Reports Server (NTRS)

    Pope, Kevin O.; Ocampo, Adriana C.; Duller, Charles E.

    1991-01-01

    Research throughout the Caribbean suggests that the geophysical anomalies in the Yucatan first noted by Penfield and Camargo (1981) and called the Chicxulub crater could be the site of the impact purported to have caused the K/T extinctions. A semicircular ring of sink holes, known locally as cenotes, which correlates with the geophysical anomalies has been identified, and it is argued that the origin of the cenote ring is related to postimpact subsidence of the Chicxulub crater rim. If there is indeed a crater, the region within the cenote ring corresponds to its floor and the crater rim diameter is probably larger than 200 km. If confirmed as a site of impact, the Chicxulub crater would be the largest terrestrial impact crater known, which is consistent with the uniqueness of the K/T global catastrophe.

  20. Did the European dinosaurs disappear before the K-T event? Magnetostratigraphic evidence

    NASA Astrophysics Data System (ADS)

    Galbrun, Bruno

    1997-05-01

    Debate on the non-catastrophic or catastrophic extinction of the dinosaurs by an asteroid impact, K-T event, remains a controversy and is mainly based on the interpretation of the sedimentary continental sequences in the North American Western Interior. The global aspect of this event needs to be tested in sedimentary record from all continents where continuous terrestrial deposits through the Cretaceous-Paleogene are well preserved. In the western Mediterranean realm, recognition of the Cretaceous-Paleogene boundary is limited by the lack of biostratigraphic data in the upper Cretaceous-lower Tertiary continental sedimentary sequences. New magnetostratigraphic results were obtained from the analysis of two sections in southern France and compared to previous results in northern Spain. The last occurrence of in situ dinosaurs eggshells, the only dinosaur remains found, is located in Chron 30n (southeast France) or 31n (southwest France and northern Spain). This last occurrence could demonstrate that the extinction of the European dinosaurs occurred prior to the Cretaceous-Paleogene boundary, and would therefore support the idea of a gradual or stepwise extinction unlinked to the K-T event.

  1. New Analysis Of The Baptistina Asteroid Family: Implications For Its Link With The K/t Impactor

    NASA Astrophysics Data System (ADS)

    Delbo, Marco; Nesvorny, D.; Licandro, J.; Ali-Lagoa, V.

    2012-10-01

    The Baptistina Asteroid Family (BAF) is the result of the breakup of an asteroid roughly 100 million years ago. This family is the source of meteoroids and near-Earth asteroids and likely caused an asteroid shower of impactors on our Earth. Bottke et al. (2007) proposed a link between the BAF and the K/T impactor, based on the favorable timing, large probability of a terrestrial impact of one 10-km BAF asteroid, and the Sloan colors of the BAF members, indicating that the BAF may have composition consistent with the K/T impactor (CM2-type carbonaceous meteorite, as inferred from chromium studies at different K/T boundary sites; Alvarez et al. 1980, Kring et al. 2007). The relationship between the BAF and K/T impactor is now controversial. Masiero et al. (2011) found that the albedo of BAF family members is 0.15, significantly higher than expected for a dark carbonaceous parent body. Also, Reddy et al. (2011) reported the spectroscopic observations of (298) Baptistina and objects in the general neighborhood of the BAF, and suggested the BAF includes a mixture of spectroscopic types that is not very different from the background (mostly S-type asteroids in the background Flora family). Unfortunately, Reddy et al. observed only the large asteroids near (298) Baptistina, and not the K/T-impactor-size BAF members with D 10 km. Using WISE albedos, Sloan colors and newly obtained spectroscopic observations of BAF members, here we show that (1) the large objects in the BAF are mostly BAF interlopers, (2) that BAF has an homogeneous composition consistent with an X-type class. We discuss the implications of the link between the BAF and the K/T impactor.

  2. Independent mammalian genome contractions following the KT boundary.

    PubMed

    Rho, Mina; Zhou, Mo; Gao, Xiang; Kim, Sun; Tang, Haixu; Lynch, Michael

    2009-01-01

    Although it is generally accepted that major changes in the earth's history are significant drivers of phylogenetic diversification and extinction, such episodes may also have long-lasting effects on genomic architecture. Here we show that widespread reductions in genome size have occurred in multiple lineages of mammals subsequent to the Cretaceous-Tertiary (KT) boundary, whereas there is no evidence for such changes in other vertebrate, invertebrate, or land plant lineages. Although the mechanisms remain unclear, such shifts in mammalian genome evolution may be a consequence of an increase in the efficiency of selection against excess DNA resulting from post-KT population size expansions. Independent historical changes in genome architecture in diverse lineages raise a significant challenge to the idea that genome size is finely tuned to achieve adaptive phenotypic modifications and suggest that attempts to use phylogenetic analysis to infer ancestral genome sizes may be problematical. PMID:20333172

  3. Primary Mineralogical and Chemical Characteristics of the Major K/T and Late Eocene Impact Deposits

    NASA Technical Reports Server (NTRS)

    Kyte, Frank T.

    2004-01-01

    Three well-characterized, distal impact deposits at the WT boundary and in upper Eocene sediments serve as a baseline for understanding other proposed impact deposits. All contain abundant spherules, evidence of shock metamorphism, and the largest have significant extraterrestrial components (ETCs). The K/T and the Eocene cpx-spherule (cpxS) deposits are global - likely from the events that produced the 180 km Chicxulub and 100 km Popigai craters. The Eocene North American microtektite (NAM) deposit is regional and likely from the event that produced the 45 km Chesapeake Bay crater. These deposits all contain abundant spherules formed from both shock-melted target and mixtures of target and projectile in the ejecta plume. Spherules constitute most of the mass of the distal ejecta. K/T spherules in regional deposits around the Gulf of Mexico are from low-velocity, target-rich ejecta. These can be a few mm in size and form deposits 10s of cm thick. Globally deposited KIT spherules from the plume (typically a few hundred micron size) are both target- and projectile-rich. When well preserved, the global deposits are 3 mm thick. Eocene cpxS deposits are similar to distal K/T with both target- and projectile-rich varieties (Le., glassy microtektite, and cpx spherules). They are smaller on average than WT spherules, concentrated in the 125-250 micron and smaller fractions. They are invariably bioturbated, but the initial deposit was probably less than 1 mm thick. The NAM are composed entirely of target-rich glass. They are similar in size to the cpxS. Size is an important criterion for distal ejecta because droplet size in the impact plume is proportional to the energy of the impact. Both the JUT and cpxS deposits are characterized by well-defined ETCs, commonly measured by Ir. The total Ir deposited is about 55 ng per square cm in WT sediments, and about 11 ng for the cpxS layer. This 5/1 proportion in Ir is generally consistent with the approx.1.8/1 ratio in crater diameters. The NAM have no significant ETC. This may be a function of the smaller impact. It indicates there was no significant projectile-rich plume deposit.

  4. Shock pressures in igneous processes: Implications for K/T events

    NASA Astrophysics Data System (ADS)

    Rice, Alan

    The seismicity initiating the May 18, 1980 catastrophic eruption at Mt. St. Helens indicates an explosion occurred at depth generating an average pressure of about 500 kbar. Such pressures fall off with distance from the magma chamber although jointing, fractures, etc. may act as stress concentrators to extend the radius of formation of shocked minerals as far as a kilometer. Shocked minerals are not to be expected from the magma itself as high temperatures would anneal such features but temperatures fall away rapidly enough from the chamber wall to allow retention even of such possible exotics as stishovite. The subsequent kinetics of the failure of the north slope support these pressures as do thermodynamic considerations and nucleation kinetics of CO2 exsolution from magmatic melt. Confining pressures (e.g., overburden head) are not a limiting factor. Unconfined detonations in open air yield pressures to several megabars although some recent arguments asserted to be volcanological would indicate open air bursts greater than one bar to be impossible. Further, it has been indicated that pressure estimates from ballistic considerations have been too high and large phenocryst content in the discharge material argues against high pressure explosions. In the first instance, sonic choking and volatile diffusion time constraints make these assessments implausible and in the second instance, both theoretical and geological considerations provide for the phenocryst distributions under explosive situations. These results and recent discoveries of high levels of iridium in volcanic ash in the Antarctic blue ice have implication for K/T boundary events, mass extinctions and endoexplosions. The geographical breadth of volcanic activity attending the K-T transition (e.g., Antarctic volcanism as well as the Deccan Traps) indicates a global mechanism and suggests a large portion of the mantle experienced convective surge as occurs at high Rayleigh number flow. Scaling to mantle conditions yields episodicities of the same order as the 30 my intervals.

  5. Multiproxy Approach of the K-T and Chicxulub Ejecta Layers Along the Brazos River, Texas, USA

    NASA Astrophysics Data System (ADS)

    Adatte, T.; Keller, G.

    2006-05-01

    We report the results of preliminary investigations of four K-T boundary sections, which are located in small tributaries (Cottonmouth and Darting Minnow creeks) of the Brazos River and the recently drilled Mullinax-1 core. The study is based on high-resolution sampling, sedimentological observations, biostratigraphy, bulk rock and clay mineralogy, major and trace elements geochemistry and granulometry. The Cottonmouth Creek exposure is characterized by Late Maastrichtian dark grey fossiliferous claystone, interrupted by laterally variable channel fill storm deposits, which previously have been erroneously interpreted as impact tsunami deposits. These deposits consist of a basal shell hash (10cm), followed by glauconitic sand with altered impact spherules (10cm), laminated sandstones, and 4 to 5 hummocky cross-bedded sandstone layers separated by burrowed erosion surfaces that mark repeated colonization of the ocean floor between storm events. Above and below these storm events are dark grey fossiliferous claystones of the late Maastrichtian zone CF1, which spans the last 300,000 years of the Cretaceous. The observed sedimentary succession correspond therefore to incised valley infillings linked to a sea-level drop with a possible emersion, followed by a transgression which culminates at the K-T boundary. More specifically, the storms beds overlying the sequence boundary would correspond to late LST sediments which infill the incised valley, the overlying Maastrichtian claystone corresponds to the Early TST with a maximum at KTB (MFS). The K-T boundary is 40 cm and 90 cm above the storm deposits in the outcrop and Mullinax-1 core respectively. In the Mullinax-1 core, high resolution granulometric analyses of this interval reveal the event bed as repeated thinning upwards sequences, from the spherule- and glauconite-rich sandstones with HCS to fine laminated carbonated sandstones and finally thick bedded mudstone. But the last thinning upwards sequence is separated from the K-T boundary by at least 20 to cm of normal hemipelagic claystone showing calcite, phyllosilicates, TOC, isotope and granulometric values similar to the pre-event sediments and reflect therefore normal sedimentary conditions. The Chicxulub spherule ejecta in the glauconitic sand near the base of the storm beds is reworked from an older original ejecta layer, as indicated by abundant reworked fossil shells. This is similar to the reworked spherule layers at the base of the siliciclastic deposits throughout NE Mexico, where the original layer is within marls up to 5 m below (base of CF1) and predating the K-T by 300,000 years. The original ejecta layer in Cottonmouth Creek lies 60 cm below the basal unconformity of the storm beds and within claystones near the base of zone CF1. This layer consists of a prominent 3-4 cm thick yellow clay of pure and well-crystallized smectite (Cheto Mg-smectite) that possibly represents the alteration product of Chicxulub impact glass. Glass altered smectite spherules are commonly present and present the same geochemical composition as glass and spherules weathered to smectite from Haiti and NE-Mexico. Similar Cheto smectite layers have been documented from ejecta spherule deposits in Central America and the Caribbean. The Brazos results confirm that the Chicxulub impact predates the K-T boundary by about 300,000 years, as earlier observed based on impact glass spherule layers in northeastern Mexico and the suevite breccia from the Yaxcopoil-1 core in Yucatan.

  6. Carbon dioxide emissions from Deccan volcanism and a K/T boundary greenhouse effect

    NASA Technical Reports Server (NTRS)

    Caldeira, Ken; Rampino, Michael R.

    1990-01-01

    A greenhouse warming caused by increased emissions of carbon dioxide from the Deccan Traps volcanism has been suggested as the cause of the terminal Cretaceous extinctions on land and in the sea. Total eruptive and noneruptive CO2 output by the Deccan eruptions (from 6 to 20 x 10 to the 16th moles) over a period of several hundred thousand years is estimated based on best estimates of the CO2 weight fraction of the original basalts and basaltic melts, the fraction of CO2 degassed, and the volume of the Deccan Traps eruptions. Results of a model designed to estimate the effects of increased CO2 on climate and ocean chemistry suggest that increases in atmospheric pCO2 due to Deccan Traps CO2 emissions would have been less than 75 ppm, leading to a predicted global warming of less than 1 C over several hundred thousand years. It is concluded that the direct climate effects of CO2 emissions from the Deccan eruptions would have been too weak to be an important factor in the end-Cretaceous mass extinctions.

  7. Investigating a 65-Ma-Old Smoking Gun: Deep Drilling of the Chicxulub Impact Structure

    NASA Technical Reports Server (NTRS)

    Dressler, B.; Sharpton, V. L.; Morgan, J.; Buffler, R.; Moran, D.; Smit, J.; Stoeffler, D.; Urrutia, J.

    2003-01-01

    The Phanerozoic paleontological record is marked by several biological extinction events. One of them,at the Cretaceous/Tertiary (K/T) boundary was responsible for the demise of about 50% of genera and 75% of species, including the dinosaurs.These drastic and abrupt changes in the development of life on Earth puzzled paleontologists in the past. Many a cause was put forward to account for them, amongst them climate changes, disease, or overspecialization.

  8. Benthic foraminifera across the K/Pg boundary in the Brazos River area (Texas) and Stevns Klint (Denmark): sequence stratigraphy, sea level change and extinctions.

    NASA Astrophysics Data System (ADS)

    Hart, Malcolm; Smart, Christopher; Searle, Sarah; Feist, Sean; Leighton, Andrew; Price, Gregory; Twitchett, Richard

    2010-05-01

    While the majority of micropalaeontologists have concentrated on the planktic foraminifera of the Brazos River succession (in order to define the position of the K/T boundary), there are relatively few studies of the benthic foraminifera published. There are a number of sites available for study, including the Brazos River itself and the tributaries of Cottonmouth Creek and Darting Minnow Creek. There have also been a number of drill cores recovered from the area including the Mullinax - 1 core which we have studied. Almost all of the benthic foraminifera recovered from the Mullinax - 1 core were described by Joseph Cushman (1946) in his monograph. The Corsicana Formation (Kemp Formation of the State Geological Map) of latest Maastrichtian age is overlain by the Littig Member of the Kincaid Formation which includes, at its base, the so-called "Event Bed". The base of this unit is the "impact-defined K/T boundary" of many authors (e.g., Yancey, 1996). The "Event Bed" contains a number of discreet (but thin) sedimentary units including spherule-rich layers, shell lags and a number of hummocky sandstone beds (Gale, 2006). In a recent paper, Keller et al. (2009) have identified an "impact" layer below the "Event Bed" and a K/T boundary higher in the succession that most other authors. In the Mullinax - 1 core, there is a diverse fauna of benthic foraminifera, although the species count is much less than that described by Cushman (1946). This is almost certainly the result of the small sample size available in the small diameter core. There is a distinctive assemblage of mid-outer shelf taxa, including agglutinated foramininfera (Tritaxia, Verneuilina, Plectina, etc.) and aragonitic taxa (Epistomina). The numbers of agglutinated taxa in the Mullinax - 1 core are much reduced at the level of the "Event Bed" and this, coupled with the changes in the planktic fauna, indicates a (fairly) marked drop in sea level. Both Yancey (1996) and Gale (2006) argue that this brings the sea floor into the range of storm wave base and that this is what is indicated by the "Event Bed". There are a number of water-depth changes in the famous Stevns Klint succession in Denmark, although the majority of the benthic taxa are different. All belong to the normal Chalk Sea assemblage of North West Europe. The planktic assemblage in Denmark is limited and there are no aragonitic taxa (preservation problems). Benthic foraminifera are rare, though generally more abundant in the chalks immediately below the K/T boundary. Work on material from Denmark and the Brazos River successions is on-going including a more detailed assessment of the various morphogroups represented. The presence of an unusual "foraminiferal sand" within the lowermost Paleocene of the Cottonmouth Creek succession has yet to be fully described and its presence is not fully understood (environmental control or re-deposition?). A sequence stratigraphical interpretation of the successions in Texas and Denmark has shown parallel changes in sea level (of the same magnitude in both areas) that are coincident with the major lithological changes. The most significant feature is a fall in sea level some tens of thousands of years before the K/Pg boundary. Cushman, J. A. 1946. Upper Cretaceous Foraminifera of the Gulf Coastal Region of the United States and adjacent areas. U. S. Geological Survey, Professional Paper, 206, 1 - 241. Gale, A. S. 2006. The Cretaceous-Palaeogene boundary on the Brazos River, Falls County, Texas: is there evidence for impact-induced tsunami sedimentation? Proceedings of the Geologists' Association, London, 117, 173 - 185. Keller, G., Abramovich, S., Berner, Z. & Adatte, T. 2009. Biotic effects of the Chicxulub Impact, K-T catastrophe and sea level change in Texas. Palaegeography, Palaeoclimatology, Palaeoecology, 271, 52 - 68. Yancey, T. E. 1996. Stratigraphy and depositional environments of the Cretaceous-Tertiary Boundary Complex and Basal Paleocene section, Brazos River, Texas. Transactions of the Gulf Coast Association of Geological Societies, 46, 433 - 442.

  9. End-Cretaceous devastation of terrestrial flora in the boreal Far East

    NASA Astrophysics Data System (ADS)

    Saito, T.; Yamanoi, T.; Kaiho, K.

    1986-09-01

    Terrestrial palynomorphs from the Hokkaido marime sedimentary sequence spanning the Cretaceous/Tertiary (K/T) boundary record sudden changes in the floristic composition at the exact base of the boundary claystone layer; pollen abundance declines that are accompanied by an abrupt rise in the proportion of fern spores are noted to resemble the palynologically defined K/T boundary in the western interior of North America, which coincides with the top of an IR-rich clay layer. The possible synchronous occurrence of analogous floral changes at such widely separated regions implies a devastation of the land flora which although brief was intercontinental in scope, such as a catastrophic meteorite impact.

  10. Sudden and Gradual Molluscan Extinctions in the Latest Cretaceous of Western European Tethys

    PubMed

    Marshall; Ward

    1996-11-22

    Incompleteness of the fossil record has confounded attempts to establish the role of the end-Cretaceous bolide impact in the Late Cretaceous mass extinctions. Statistical analysis of latest Cretaceous outer-shelf macrofossils from western European Tethys reveals (i) a major extinction at or near the Cretaceous-Tertiary (K-T) boundary, probably caused by the impact, (ii) either a faunal abundance change or an extinction of up to nine ammonite species associated with a regression event shortly before the boundary, (iii) gradual extinction of most inoceramid bivalves well before the K-T boundary, and (iv) background extinction of approximately six ammonites throughout the latest Cretaceous. PMID:8910273

  11. Optimizing spatiotemporal sampling for k-t BLAST and k-t SENSE: application to high-resolution real-time cardiac steady-state free precession.

    PubMed

    Tsao, Jeffrey; Kozerke, Sebastian; Boesiger, Peter; Pruessmann, Klaas P

    2005-06-01

    In k-t BLAST and k-t SENSE, data acquisition is accelerated by sparsely sampling k-space over time. This undersampling in k-t space causes the object signals to be convolved with a point spread function in x-f space (x = spatial position, f = temporal frequency). The resulting aliasing is resolved by exploiting spatiotemporal correlations within the data. In general, reconstruction accuracy can be improved by controlling the k-t sampling pattern to minimize signal overlap in x-f space. In this work, we describe an approach to obtain generally favorable patterns for typical image series without specific knowledge of the image series itself. These optimized sampling patterns were applied to free-breathing, untriggered (i.e., real-time) cardiac imaging with steady-state free precession (SSFP). Eddy-current artifacts, which are otherwise increased drastically in SSFP by the undersampling, were minimized using alternating k-space sweeps. With the synergistic combination of the k-t approach with optimized sampling and SSFP with alternating k-space sweeps, it was possible to achieve a high signal-to-noise ratio, high contrast, and high spatiotemporal resolutions, while achieving substantial immunity against eddy currents. Cardiac images are shown, demonstrating excellent image quality and an in-plane resolution of approximately 2.0 mm at >25 frames/s, using one or more receiver coils. PMID:15906282

  12. The Cometary Hypothesis of the K/t Mass Extinctions

    NASA Astrophysics Data System (ADS)

    Wickramasinghe, N. C.; Wallis, M. K.

    1994-09-01

    The correlation of the extended period of biological mass extinctions around the KIT boundary with extraterrestrial amino acids in the sediment record constitutes strong evidence of a cometary cause. While the fact that the dinosaurs' extinction coincided with the Chixculub cratering event and iridium-rich sediments suggests a chance asteroidal or cometary impact, the enhanced input of extraterrestrial matter over 1 0 yr supports the hypothesis of a Jupiter-associated giant comet, fragmented into a multitude of pieces, as demonstrated by comet Shoemaker-Levy 9, and perturbed into Earth-crossing orbits. Copious amounts of dust were released also, enhancing the dust abundance in the Solar system by several orders of magnitude. By studying the radiative properties of the submicron dust fraction of organic composition, we find that it is retained in the inner Solar system and is available for planetary accretion, uniike the IR-containing metallic and mineral dust. The shroud of dust accreted in the Earth's upper atmosphere can be sufficient to impose climatic stresses and cause extinctions of species over a protracted period of 10 yr. Dynamical arguments imply that the impacting comet most probably came directly from Jupiter's family. Details of the iridium record are compatible with re-accretion of some of the material ejected into space from the Chixculub impact. Key words: gravitation - comets: general - Earth - interplanetary medium - planets and satellites: individual: Jupiter - Solar system: general.

  13. A detailed taxonomy of Upper Cretaceous and lower Tertiary Crassatellidae in the Eastern United States; an example of the nature of extinction at the boundary

    USGS Publications Warehouse

    Wingard, G. Lynn

    1993-01-01

    Current theories on the causes of extinction at the CretaceousTertiary boundary have been based on previously published data; however, few workers have stopped to ask the question, 'How good is the basic data set?' To test the accuracy of the published record, a quantitative and qualitative analysis of the Crassatellidae (Mollusca, Bivalvia) of the Gulf and Mid-Atlantic Coastal Plains of the United States for the Upper Cretaceous and lower Tertiary was conducted. Thirty-eight species names and four generic names are used in publications for the Crassatellidae within the geographic and stratigraphic constraints of this analysis. Fourteen of the 38 species names are represented by statistically valid numbers of specimens and were tested by using canonical discriminant analysis. All 38 names, with the exception of 1 invalid name and 4 names for which no representative specimen could be located, were evaluated qualitatively. The results show that the published fossil record is highly inaccurate. Only 8 valid, recognizable species exist in the Crassatellidae within the limits of this study, 14 names are synonymized, and 11 names are represented by indeterminate molds or poorly preserved specimens. Three of the four genera are well founded; the fourth is based on the juvenile of another genus and therefore synonymized. This detailed taxonomic analysis of the Crassatellidae illustrates that the published fossil record is not reliable. Calculations of evolutionary and paleobiologic significance based on poorly defined, overly split fossil groups, such as the Crassatellidae, are biased in the following ways: Rates of evolution and extinction are higher, Faunal turnover at mass extinctions appears more catastrophic, Species diversity is high, Average species durations are shortened, and Geographic ranges are restricted. The data on the taxonomically standardized Crassatellidae show evolutionary rates one-quarter to one-half that of the published fossil record; faunal change at the Cretaceous-Tertiary boundary that was not catastrophic; a constant number of species on each side of the Cretaceous-Tertiary boundary; a decrease in abundance in the Tertiary; and lower species diversity, longer average species durations, and expanded geographic ranges. Similar detailed taxonomic studies need to be conducted on other groups of organisms to test the patterns illustrated for the Crassatellidae and to determine the extent and direction of the bias in the published fossil record. Answers to our questions about evolutionary change cannot be found in the literature but rather with the fossils themselves. Evolution and extinction occur within small populations of species groups, and it is only through detailed analysis of these groups that we can achieve an understanding of the causes and effects of evolution and extinction.

  14. Analysis of exclusive kT jet algorithms in electron-positron annihilation

    NASA Astrophysics Data System (ADS)

    Chay, Junegone; Kim, Chul; Kim, Inchol

    2015-10-01

    We study the factorization of the dijet cross section in e+e- annihilation using the generalized exclusive jet algorithm which includes the cone-type, the JADE, the kT, the anti-kT and the Cambridge/Aachen jet algorithms as special cases. In order to probe the characteristics of the jet algorithms in a unified way, we consider the generalized kT jet algorithm with an arbitrary weight of the energies, in which various types of the kT-type algorithms are included for specific values of the parameter. We show that the jet algorithm respects the factorization property for the parameter α <2 . The factorized jet function and the soft function are well defined and infrared safe for all the jet algorithms except the kT algorithm. The kT algorithm (α =2 ) breaks the factorization since the jet and the soft functions are infrared divergent and are not defined for α =2 , though the dijet cross section is infrared finite. In the jet algorithms which enable factorization, we give a phenomenological analysis using the resummed and the fixed-order results.

  15. Quasistellar spectrum for neutron activation measurements at kT=5 keV

    SciTech Connect

    Heil, M.; Dababneh, S.; Juseviciute, A.; Kaeppeler, F.; Plag, R.; Reifarth, R.; O'Brien, S.

    2005-02-01

    We have measured the neutron energy spectrum of the {sup 18}O(p,n){sup 18}F reaction at a proton energy of 2582 keV, 8 keV above the reaction threshold. At this energy the resulting neutron spectrum resembles almost perfectly a Maxwellian distribution at a thermal energy of kT=5.1{+-}0.1 keV. Since all neutrons are emitted in a forward cone of 140 degrees opening angle, this reaction can be used for neutron activation measurements similar to the {sup 7}Li(p,n){sup 7}Be reaction, which is known for producing a thermal spectrum with kT=25 keV. Measured neutron capture cross sections at kT=5.1 keV and kT=25 keV can be used to interpolate to kT=8 keV, which characterizes the dominant neutron exposure during s-process nucleosynthesis in thermally pulsing low-mass AGB stars. In a first application of this new method the Maxwellian-averaged neutron capture cross section of {sup 138}Ba was measured to be <{sigma}v>/v{sub T}=13.0{+-}0.5 mb at kT=5.1 keV.

  16. Fullerenes and Interplanetary Dust at the Permian-Triassic Boundary

    NASA Astrophysics Data System (ADS)

    Poreda, Robert J.; Becker, Luann

    2003-01-01

    We recently presented new evidence that an impact occurred ~250 million years ago at the Permian-Triassic boundary (PTB), triggering the most severe mass extinction in the history of life on Earth. We used a new extraterrestrial tracer, fullerene, a third carbon carrier of noble gases besides diamond and graphite. By exploiting the unique properties of this molecule to trap noble gases inside of its caged structure (helium, neon, argon), the origin of the fullerenes can be determined. Here, we present new evidence for fullerenes with extraterrestrial noble gases in the PTB at Graphite Peak, Antarctica, similar to PTB fullerenes from Meishan, China and Sasayama, Japan. In addition, we isolated a 3He-rich magnetic carrier phase in three fractions from the Graphite Peak section. The noble gases in this magnetic fraction were similar to zero-age deep-sea interplanetary dust particles (IDPs) and some magnetic grains isolated from the Cretaceous-Tertiary boundary. The helium and neon isotopic compositions for both the bulk Graphite Peak sediments and an isolated magnetic fraction from the bulk material are consistent with solar-type gases measured in zero-age deep-sea sediments and point to a common source, namely, the flux of IDPs to the Earth's surface. In this instance, the IDP noble gas signature for the bulk sediment can be uniquely decoupled from fullerene, demonstrating that two separate tracers are present (direct flux of IDPs for 3He vs. giant impact for fullerene).

  17. Accelerating free breathing myocardial perfusion MRI using multi coil radial k - t SLR

    NASA Astrophysics Data System (ADS)

    Goud Lingala, Sajan; DiBella, Edward; Adluru, Ganesh; McGann, Christopher; Jacob, Mathews

    2013-10-01

    The clinical utility of myocardial perfusion MR imaging (MPI) is often restricted by the inability of current acquisition schemes to simultaneously achieve high spatio-temporal resolution, good volume coverage, and high signal to noise ratio. Moreover, many subjects often find it difficult to hold their breath for sufficiently long durations making it difficult to obtain reliable MPI data. Accelerated acquisition of free breathing MPI data can overcome some of these challenges. Recently, an algorithm termed as k - t SLR has been proposed to accelerate dynamic MRI by exploiting sparsity and low rank properties of dynamic MRI data. The main focus of this paper is to further improve k - t SLR and demonstrate its utility in considerably accelerating free breathing MPI. We extend its previous implementation to account for multi-coil radial MPI acquisitions. We perform k - t sampling experiments to compare different radial trajectories and determine the best sampling pattern. We also introduce a novel augmented Lagrangian framework to considerably improve the algorithm’s convergence rate. The proposed algorithm is validated using free breathing rest and stress radial perfusion data sets from two normal subjects and one patient with ischemia. k - t SLR was observed to provide faithful reconstructions at high acceleration levels with minimal artifacts compared to existing MPI acceleration schemes such as spatio-temporal constrained reconstruction and k - t SPARSE/SENSE.

  18. Late Paleocene to Early Eocene marine vertebrates from the Uppermost Aruma Formation (northern Saudi Arabia): implications for the K-T transition

    NASA Astrophysics Data System (ADS)

    Thomas, Herbert; Roger, Jack; Halawani, Mohammed; Memesh, Abdallah; Lebret, Patrick; Bourdillon, Chantal; Buffetaut, Eric; Cappetta, Henri; Cavelier, Claude; Dutheil, Didier; Tonge, Haiyan; Vaslet, Denis

    1999-12-01

    A new assemblage of marine vertebrates from northern Saudi Arabia, east of the Nafud, leads us to reconsider the age of the top unit of the Aruma Formation, the Lina Member, hitherto referred to the Maastrichtian. This assemblage contains the remains of a dozen selachian and actinopterygian fishes, as well as those of a giant sea turtle representing a new dermochelyid taxon. It suggests a Late Paleocene to Early Eocene age for this unit. This new dating and a revision of the stratigraphic position of the Lina Member demonstrate the existence, on a regional scale, of an important hiatus at the K-T boundary.

  19. Geochemical and climatic effects of increased marine organic carbon burial at the Cenomanian/Turonian boundary

    USGS Publications Warehouse

    Arthur, M.A.; Dean, W.E.; Pratt, L.M.

    1988-01-01

    Perhaps the most significant event in the Cretaceous record of the carbon isotope composition of carbonate1,2, other than the 1-2.5??? negative shift in the carbon isotope composition of calcareous plankton at the Cretaceous/Tertiary boundary3, is the rapid global positive excursion of ???2??? (13C enrichment) which took place between ???91.5 Myr and 90.3 Myr (late Cenomanian to earliest Turonian (C/T boundary event))1,4,5. This excursion has been attributed to a change in the isotope composition of the marine total dissolved carbon (TDC) reservoir resulting from an increase in rate of burial of 13C-depleted organic carbon, which coincided with a major global rise in sea level5 during the so-called C/T oceanic anoxic event (OAE)6. Here we present new data, from nine localities, which demonstrate that a positive excursion in the carbon isotope composition of organic carbon at or near the C/T boundary7,8 is nearly synchronous with that for carbonate and is widespread throughout the Tethys and Atlantic basins (Fig. 1), as well as in more high-latitude epicontinental seas. The postulated increase in the rate of burial of organic carbon may have had a significant effect on CO2 and O2 concentrations in the oceans and atmosphere, and consequent effects on global climate and sedimentary facies. ?? 1988 Nature Publishing Group.

  20. Monitoring oil displacement processes with k-t accelerated spin echo SPI.

    PubMed

    Li, Ming; Xiao, Dan; Romero-Zern, Laura; Balcom, Bruce J

    2016-03-01

    Magnetic resonance imaging (MRI) is a robust tool to monitor oil displacement processes in porous media. Conventional MRI measurement times can be lengthy, which hinders monitoring time-dependent displacements. Knowledge of the oil and water microscopic distribution is important because their pore scale behavior reflects the oil trapping mechanisms. The oil and water pore scale distribution is reflected in the magnetic resonance T2 signal lifetime distribution. In this work, a pure phase-encoding MRI technique, spin echo SPI (SE-SPI), was employed to monitor oil displacement during water flooding and polymer flooding. A k-t acceleration method, with low-rank matrix completion, was employed to improve the temporal resolution of the SE-SPI MRI measurements. Comparison to conventional SE-SPI T2 mapping measurements revealed that the k-t accelerated measurement was more sensitive and provided higher-quality results. It was demonstrated that the k-t acceleration decreased the average measurement time from 66.7 to 20.3?min in this work. A perfluorinated oil, containing no (1) H, and H2 O brine were employed to distinguish oil and water phases in model flooding experiments. High-quality 1D water saturation profiles were acquired from the k-t accelerated SE-SPI measurements. Spatially and temporally resolved T2 distributions were extracted from the profile data. The shift in the (1) H T2 distribution of water in the pore space to longer lifetimes during water flooding and polymer flooding is consistent with increased water content in the pore space. Copyright 2015 John Wiley & Sons, Ltd. PMID:26626141

  1. Monitoring Oil Displacement Processes with k-t Accelerated Spin Echo SPI.

    PubMed

    Li, Ming; Xiao, Dan; Romero-Zern, Laura; Balcom, Bruce J

    2016-03-01

    Magnetic Resonance Imaging is a robust tool to monitor oil displacement processes in porous media. Conventional MRI measurement times can be lengthy which hinders monitoring time dependent displacements. Knowledge of the oil and water microscopic distribution is important because their pore scale behavior reflects the oil trapping mechanisms. The oil and water pore scale distribution is reflected in the magnetic resonance T2 signal lifetime distribution. In this feature article, the authors employed a pure phase encoding MRI technique, Spin Echo SPI, to monitor oil displacement during water flooding and polymer flooding. A k-t acceleration method, with low rank matrix completion, was employed to improve the temporal resolution of the SE-SPI MRI measurements. The authors demonstrate the k-t accelerated SE-SPI MRI method improves measurement efficiency and SNR compared to conventional T2 mapping SE-SPI measurement. High-quality 1D water saturation profiles were acquired from the k-t SE-SPI measurements. Spatially and temporally resolved T2 distributions were extracted from the profile data. The shift in the (1) H T2 distribution of water in the pore space to longer lifetimes during water flooding and polymer flooding is consistent with increased water content in the pore space. PMID:26849391

  2. A critical stress critical area statistical model of the K(T) curve for MA957 in the cleavage transition

    NASA Astrophysics Data System (ADS)

    Yang, W. J.; Odette, G. R.; Yamamoto, T.; Miao, P.; Alinger, M. J.; Hribernik, M.; Lee, J. H.

    2007-08-01

    We model the temperature ( T) dependent fracture toughness K(T) of MA957 based on a statistically modified critical stress-critical stressed area ( σ∗- A∗) local fracture criteria. The K(T) of MA957 is strongly dependent on the specimen orientation. Analysis of cleavage initiation in the longitudinal-radial (L-R) orientation, with the highest K(T), yielded the highest σ∗ ≈ 3600 MPa. In contrast, the σ∗ for the circumferential-longitudinal (C-L) orientation, with the lowest K(T), yielded the lowest σ∗ ≈ 2850 MPa, while for the circumferential-radial (C-R) orientation with intermediate K(T), σ∗ ≈ 3000 MPa. The A∗ ranged from ≈ 30 to 400 μm 2. The cleavage initiation sites are μm-scale Al 2O 3 particles aligned in the textured low toughness extrusion direction.

  3. Arroyo el Mimbral, Mexico, K/T unit: Origin as debris flow/turbidite, not a tsunami deposit

    NASA Technical Reports Server (NTRS)

    Bohor, Bruce F.; Betterton, William J.

    1993-01-01

    Coarse, spherule-bearing, elastic units have been discovered at 10 marine sites that span the K/T boundary in northeastern Mexico. We examined one of the best exposed sites in Arroyo el Mimbral, northwest of Tampico. The Mimbral outcrop displays a layered elastic unit up to 3 m thick enclosed by marly limestones of the Mendez (Latest Maastrichian) and Velasco (Earliest Danian) Formations. At its thickest point, this channelized elastic unit is comprised of 3 subunits: (1) a basal, poorly-sorted, ungraded calcareous spherule bed 1 m thick containing relict impact glass and shocked mineral grains, (2) a massive set of laminated calcite-cemented sandstones up to 2 m thick with plant debris at its base, (3) capped by a thin (up to 20 cm) set of rippled sandstone layers separated by silty mudstone drapes containing a small (921 pg/g) iridium anomaly. This tripartite elastic unit is conformably overlain by marls of the Velasco Formation. We also visited the La Lajilla site east of Ciudad Victoria; its stratigraphy is similar to Mimbral's, but its elastic beds are thinner and less extensive laterally. The Mimbral elastic unit has been interpreted previously as being deposited by a megawave or tsunami produced by an asteroid impact on nearby Yucatan (Chicxulub crater). However, a presumed 400-m paleodepth of water at the Mimbral site, channeling of the spherule subunit into the underlying Mendez Formation marls, and the overtopping of the basal, spherule-bearing subunit by the laminated sandstone subunit, all suggest a combined debris flow/turbidite origin for this elastic unit similar to that proposed for Upper Pleistocene sand/silt beds occurring elsewhere in the Gulf of Mexico. In this latter model, the sediment source region for the elastic unit is the lower continental shelf and slope escarpment. For the K/T unit at Mimbral, we propose that thick ejecta blanket deposits composed mostly of spherules were rapidly loaded onto the lower shelf and slope from an impact-generated ejecta curtain.

  4. The Kara and Ust-Kara impact structures (USSR) and their relevance to the K/T boundary event

    NASA Technical Reports Server (NTRS)

    Koeberl, Christian; Nazarov, M. A.; Harrison, T. M.; Sharpton, V. L.; Murali, A. V.; Burke, K.

    1988-01-01

    The Kara and Ust-Kara craters are twin impact structures situated at about 69 deg 10 min N; 65 deg 00 min E at the Kara Sea. For Kara a diameter of about 55 km would be a very conservative estimate, and field observations indicate a maximum current diameter of about 60 km. The diameter of Ust-Kara has to be larger than 16 km. A better estimate might be 25 km but in all likelihood it is even larger. Suevites and impactites from the Kara area have been known since the beginning of the century, but had been misidentified as glacial deposits. Only about 15 years ago the impact origin of the two structures was demonstrated, following the recognition of shock metamorphism in the area. The composition of the target rocks is mirrored by the composition of the clasts within the suevites. In the southern part of Kara, Permian shales and limestones are sometimes accompanied by diabasic dykes, similar to in the central uplift. Due to the high degree of shock metamorphism the shocked magmatic rocks are not easily identified, although most of them seem to be of diabasic or dioritic composition. The impact melts (tagamites) are grey to dark grey fine grained crystallized rocks showing very fine mineral components and are the product of shock-melting with later recrystallization. The impact glasses show a layered structure, inclusions, and vesicles, and have colors ranging from translucent white over brown and grey to black. A complete geochemical characterization of the Kara and Ust-Kara impact craters was attempted by analyzing more than 40 samples of target rocks, shocked rocks, suevites, impact melts, and impact glasses for major and trace elements.

  5. Accelerated Phase-Contrast Cine MRI Using k-t SPARSE-SENSE

    PubMed Central

    Kim, Daniel; Dyvorne, Hadrien A.; Otazo, Ricardo; Feng, Li; Sodickson, Daniel K.; Lee, Vivian S.

    2012-01-01

    Phase-contrast (PC) cine MRI is a promising method for assessment of pathologic hemodynamics, including cardiovascular and hepatoportal vascular dynamics, but its low data acquisition efficiency limits the achievable spatial and temporal resolutions within clinically acceptable breath-hold durations. We propose to accelerate PC cine MRI using an approach which combines compressed sensing and parallel imaging (k-t SPARSE-SENSE). We validated the proposed 6-fold accelerated PC cine MRI against 3-fold accelerated PC cine MRI with parallel imaging (generalized autocalibrating partially parallel acquisitions). With the programmable flow pump, we simulated a time varying waveform emulating hepatic blood flow. Normalized root mean square error between two sets of velocity measurements was 2.59%. In multiple blood vessels of 12 control subjects, two sets of mean velocity measurements were in good agreement (mean difference = –0.29 cm/s; lower and upper 95% limits of agreement = –5.26 and 4.67 cm/s, respectively). The mean phase noise, defined as the standard deviation of the phase in a homogeneous stationary region, was significantly lower for k-t SPARSE-SENSE than for generalized autocalibrating partially parallel acquisitions (0.05 ± 0.01 vs. 0.19 ± 0.06 radians, respectively; P < 0.01). The proposed 6-fold accelerated PC cine MRI pulse sequence with k-t SPARSE-SENSE is a promising investigational method for rapid velocity measurement with relatively high spatial (1.7 mm × 1.7 mm) and temporal (~35 ms) resolutions. PMID:22083998

  6. A new measure of molecular attractions between nanoparticles near kT adhesion energy

    NASA Astrophysics Data System (ADS)

    Kendall, Kevin; Dhir, Aman; Du, Shangfeng

    2009-07-01

    The weak molecular attractions of nanoparticles are important because they drive self-assembly mechanisms, allow processing in dispersions e.g. of pigments, catalysts or device structures, influence disease through the attraction of viruses to cells and also cause potential toxic effects through nanoparticle interference with biomolecules and organs. The problem is to understand these small forces which pull nanoparticles into intimate contact; forces which are comparable with 3kT/2z the thermal impact force experienced by an average Brownian particle hitting a linear repulsive potential of range z. Here we describe a new method for measuring the atomic attractions of nanoparticles based on the observation of aggregates produced by these small forces. The method is based on the tracking of individual monosize nanoparticles whose diameter can be calculated from the Stokes-Einstein analysis of the tracks in aqueous suspensions. Then the doublet aggregates are distinguished because they move slower and are also very much brighter than the dispersed nanoparticles. By finding the ratio of doublets to singlets, the adhesive energy between the particles can be calculated from known statistical thermodynamic theory using assumptions about the shape of the interaction potential. In this way, very small adhesion energies of 2kT have been measured, smaller than those seen previously by atomic force microscopy (AFM) and scanning tunneling microscopy (STM).

  7. Global blackout following the K/T Chicxulub impact: Results of impact and atmospheric modeling

    NASA Technical Reports Server (NTRS)

    Pope, K. O.; Ocampo, A. C.; Baines, K. H.; Ivanov, B. A.

    1993-01-01

    Several recent studies have suggested that shock decomposition of anhydrite (CaSO4) target rocks during the K/T Chicxulub impact would have ejected tremendous amounts of sulfur gas into the stratosphere. One of the many potential biospheric effects of this sulfur gas is the generation of a sulfuric acid (H2SO4) aerosol layer capable of causing darkness and severe disruption of photosynthesis for periods of years. In this paper we report the preliminary results of our modeling of shock pressures within the anhydrites and of light attenuation by the H2SO4 aerosol cloud. These models indicate that earlier studies over-estimated the amount of sulfur gas produced, but that more than enough was produced to extend global blackout conditions 4-6 times longer than the approximately 3 month predictions for silicate dust alone.

  8. Prompt photon and associated heavy quark production at hadron colliders with k T -factorization

    NASA Astrophysics Data System (ADS)

    Lipatov, A. V.; Malyshev, M. A.; Zotov, N. P.

    2012-05-01

    In the framework of the k T -factorization approach, the production of prompt photons in association with a heavy (charm or beauty) quarks at high energies is studied. The consideration is based on the {O}( {α α_s^2} ) off-shell amplitudes of gluon-gluon fusion and quark-(anti)quark interaction subprocesses. The unintegrated parton densities in a proton are determined using the Kimber-Martin-Ryskin prescription. The analysis covers the total and differential cross sections and extends to specific angular correlations between the produced prompt photons and muons originating from the semileptonic decays of associated heavy quarks. Theoretical uncertainties of our evaluations are studied and comparison with the results of standard NLO pQCD calculations is performed. Our numerical predictions are compared with the recent experimental data taken by the D∅ and CDF collaborations at the Tevatron. Finally, we extend our results to LHC energies.

  9. Modeling study of infrasonic detection of 1 kT atmospheric blast

    SciTech Connect

    Dighe, K.A.; Whitaker, R.W.; Armstrong, W.T.

    1998-12-31

    A modified version of the ``Pierce code``, which provides a theoretical prediction of acoustic-gravity pressure waveforms generated by explosions in the atmosphere, has been used to simulate detectable signal amplitudes from a 1 kT atmospheric detonation at high latitudes upton distances of about 1,000 kilometers from the source. Realistic prevailing winds and temperature profiles have been included in these simulations and propagation results for with wind and counter wind conditions are presented. En route, the code has been successfully ported from a CRAY/UNICOS platform to a more general UNIX/workstation environment in FORTRAN90. The effects of seasonal variations of winds and temperature at high latitudes will be presented at the symposium.

  10. Chicxulub multiring impact basin: size and other characteristics derived from gravity analysis.

    PubMed

    Sharpton, V L; Burke, K; Camargo-Zanoguera, A; Hall, S A; Lee, D S; Marín, L E; Suáarez-Reynoso, G; Quezada-Muñeton, J M; Spudis, P D; Urrutia-Fucugauchi, J

    1993-09-17

    The buried Chicxulub impact structure in Mexico, which is linked to the Cretaceous- Tertiary (K-T) boundary layer, may be significantly larger than previously suspected. Reprocessed gravity data over Northern Yucatan reveal three major rings and parts of a fourth ring, spaced similarly to those observed at multiring impact basins on other planets. The outer ring, probably corresponding to the basin's topographic rim, is almost 300 kilometers in diameter, indicating that Chicxulub may be one of the largest impact structures produced in the inner solar system since the period of early bombardment ended nearly 4 billion years ago. PMID:17798115

  11. Chicxulub multiring impact basin - Size and other characteristics derived from gravity analysis

    NASA Technical Reports Server (NTRS)

    Sharpton, Virgil L.; Burke, Kevin; Camargo-Zanoguera, Antonio; Hall, Stuart A.; Lee, D. S.; Marin, Luis E.; Suarez-Reynoso, Gerardo; Quezada-Muneton, Juan M.; Spudis, Paul D.; Urrutia-Fucugauchi, Jaime

    1993-01-01

    The buried Chicxulub impact structure in Mexico, which is linked to the Cretaceous-Tertiary (K-T) boundary layer, may be significantly larger than previously suspected. Reprocessed gravity data over Northern Yucatan reveal three major rings and parts of a fourth ring, spaced similarly to those observed at multiring impact basins on other planets. The outer ring, probably corresponding to the basin's topographic rim, is almost 300 kilometers in diameter, indicating that Chicxulub may be one of the largest impact structures produced in the inner solar system since the period of early bombardment ended nearly 4 billion years ago.

  12. Response of marine and freshwater algae to nitric acid and elevated carbon dioxide levels simulating environmental effects of bolide impact

    NASA Technical Reports Server (NTRS)

    Boston, P. J.

    1988-01-01

    One of the intriguing facets of the Cretaceous-Tertiary extinction is the apparently selective pattern of mortality amongst taxa. Some groups of organisms were severely affected and some remained relatively unscathed as they went through the K/T boundary. While there is argument concerning the exact interpretation of the fossil record, one of the best documented extinctions at the Cretaceous-Tertiary boundary is that of the calcareous nannoplankton. These organisms include coccolithic algae and foraminiferans. Attempts to explain their decline at the K/T boundary center around chemistry which could affect their calcium carbonate shells while leaving their silica-shelled cousins less affected or unaffected. Two environmental consequences of an extraterrestrial body impact which were suggested are the production of large quantities of nitrogen oxides generated by the shock heating of the atmosphere and the possible rise in CO2 from the dissolution of CaCO3 shells. Both of these phenomena would acidify the upper layers of the oceans and bodies of freshwater not otherwise buffered. The effects of nitric acid, carbon dioxide, or both factors on the growth and reproduction of calcareous marine coccoliths and non-calcareous marine and freshwater species of algae were considered. These experiments demonstrate that nitric acid and carbon dioxide have significant effects on important aspects of the physiology and reproduction of modern algae representative of extinct taxa thought to have suffered significant declines at the Cretaceous-Tertiary boundary. Furthermore, calcareous species showed more marked effects than siliceous species and marine species tested were more sensitive than freshwater species.

  13. Mechanics performance test and feasibility analysis to replace the rigid sucker rod for 6K T300

    NASA Astrophysics Data System (ADS)

    Tong, Changhong

    2015-07-01

    A experiment plan was designed according to the working conditions of sucker rod and the requirements for pump depth in 3000 m in the oil field, the tensile strength for 6K T300 under a normal temperature and high temperature was measured by using universal testing machine, and then, the resistance to corrosion for a crude oil was verified by measuring the tensile strength for 6K T300 after crude oil immersion at a certain time, and the conclusions are that the material is sensitive relatively to corrosion of crude oil and that the tensile strength of the 6K T300 compared with similar products is lower, a proposal to the GH company that to meet the need of oil field production instead of the rigid rod the tensile strength and corrosion resistant for a crude of the T300 6 k materials have to do further efforts was pointed out.

  14. Measurement of the MACS of {sup 159}Tb(n, ?) at kT=30 keV by Activation

    SciTech Connect

    Praena, J.; Mastinu, P.F.; Pignatari, M.; Quesada, J.M.; Capote, R.; Morilla, Y.

    2014-06-15

    The measurement of the Maxwellian-Averaged Cross-Section (MACS) of the {sup 159}Tb(n, ?) reaction at kT=30 keV by the activation technique is presented. An innovative method for the generation of Maxwellian neutron spectra at kT=30 keV is used. An experimental value of 2166181 mb agrees well with the MACS value derived from the ENDF/B-VII.1 evaluation, but is higher than KADoNiS recommended value of 1580150 mb. Astrophysical implications are studied.

  15. Search for impact remains at the Frasnian-Famennian boundary in the stratotype area, southern France.

    PubMed

    Girard, C; Robin, E; Rocchia, R; Froget, L; Feist, R

    1997-08-01

    In order to detect whether the end-Frasnian worldwide biotic crisis is related to an extraterrestrial impact, the global stratotype section of the Frasnian-Famennian boundary and auxiliary sections within the stratotype area have been examined for impact indicators: iridium. Ni-rich spinel bearing spherules and glassy microtektites. This area is particularly well suited to the search for discrete events because it exhibits biostratigraphically continuous sections of sedimentologically homogenous off-shore deposits. Different environmental settings on oxygenated deep-water seamounts, such as the stratotype section at Coumiac, and in oxygen-depleted depressions (La Serre section) are available. The latter is investigated in more detail because it is the least condensed across the boundary, which is determined by the first occurrence of the typical morphotype of Palmatolepis triangularis, the indicator of the first Famennian conodont biozone. Samples from the biostratigraphically defined boundary and adjacent levels failed to provide significantly high Ir values and no Ni-rich spinel or microtektite has been recovered. This is in contradiction with the results of earlier investigations carried out by H. Geldsetzer on the same section. In contrast, the values of Ir concentrations that we measured are always very low or not detectable. The small overabundances observed in some samples, which are about two orders of magnitude lower than what is currently observed at the Cretaceous-Tertiary boundary, are probably due to the accumulation of the normal flux of cosmic dust during periods of relatively low depositional rates or to a terrestrial origin. At present, we have no evidence that an extraterrestrial impact occurred at the F-F transition. PMID:11541727

  16. Constraining mass accumulation rates across the Cretaceous-Paleogene boundary clay layer using extraterrestrial helium-3

    NASA Astrophysics Data System (ADS)

    Giron, M.; Sepulveda, J.; Mukhopadhyay, S.; Alegret, L.; Summons, R. E.

    2012-12-01

    The extended duration of the negative δ13C excursion observed in marine carbonates spanning the Cretaceous-Paleogene (K-Pg) mass extinction event has lead to two main hypothesized post-extinction models ("Strangelove" and "Living Ocean";[1, 2]) for the status of marine primary productivity and the global carbon cycle. However, these models are largely inconsistent with recent paleontological and geochemical evidence suggesting heterogeneous changes in marine productivity and carbon export [3, 4]. While the analysis of lipid biomarkers in the cosmopolitan boundary clay layer allows us to assess changes in primary production by non-calcifying organisms in the immediate aftermath of the mass extinction [4], our poor understanding of the deposition of the clay layer precludes a more detailed reconstruction of short-term variations in marine ecosystem resilience. Here, we present data on extraterrestrial 3He derived from interplanetary dust particles used as a constant flux proxy to constrain fluctuations in mass accumulation rates (MARs) [5] and the duration of the boundary clay deposition in three classic and expanded K-Pg boundary sections: El Kef (Tunisia), Caravaca (Spain), and Kulstirenden (Denmark). Our results from different depositional environments indicate average durations for the sedimentation of the clay layer that are comparable (~10 kyr) to other localities [5], thus confirming its globally brief deposition. Early Paleogene MARs vary among locations when compared to background Late Cretaceous values and do not strictly follow carbonate content as traditionally assumed, thus suggesting variable depositional conditions at different locations. Changes in sediment MARs across the K-Pg will be used to calculate MARs of algal- and bacterial-derived biomarkers, as well as benthic foraminifera, in order to assess the timing and global nature of the recovery of marine primary production and carbon export. 1. Hsu, K.J., He, Q., Mckenzie, J.A., Weissert, H., Perchnielsen, K., Oberhansli, H., Kelts, K., Labrecque, J., Tauxe, L., Krahenbuhl, U., et al. (1982). Mass Mortality and Its Environmental and Evolutionary Consequences. Science 216, 249-256. 2. D'hondt, S. (1998). Organic carbon fluxes and ecological recovery from the Cretaceous-Tertiary mass extinction (vol 282, pg 276, 1998). Science 282, 1051-1051. 3. Alegret, L., Thomas, E., and Lohmann, K.C. (2012). End-Cretaceous marine mass extinction not caused by productivity collapse. P Natl Acad Sci USA 109, 728-732. 4. Sepulveda, J., Wendler, J.E., Summons, R.E., and Hinrichs, K.U. (2009). Rapid Resurgence of Marine Productivity After the Cretaceous-Paleogene Mass Extinction. Science 326, 129-132. 5. Mukhopadhyay, S., Farley, K.A., and Montanari, A. (2001). A short duration of the Cretaceous-Tertiary boundary event: Evidence from extraterrestrial helium-3. Science 291, 1952-1955.

  17. What killed the dinosaurs?

    USGS Publications Warehouse

    Glen, W.

    1990-01-01

    Out of a number of earlier attempts to explain mass extinctions, only the volcanism alternative to the impact hypothesis remains under serious consideration. The evidence for an impact is reviewed, and the mechanisms which might have brought about the apocalyptic series of extinctions at the Cretaceous-Tertiary (K-T) boundary are reviewed, referring to Alvarez's and other research teams working on the problem. As suggested by the patterns of extinctions and the periodicity of this and other mass extinctions, the "volcanist alternative' is introduced. This would produce a series of selective extinctions spread over a considerable length of time, and which is similar to what the fossil record shows, and could account for the iridium anomaly at the K-T boundary. More support for this theory comes from models put forward by volcanist exponents, but it is concluded that the debate is far from ended. -J.W.Cooper

  18. Sub-kT/q subthreshold slope p-metal-oxide-semiconductor field-effect transistors with single-grained Pb(Zr,Ti)O3 featuring a highly reliable negative capacitance

    NASA Astrophysics Data System (ADS)

    Park, Jae Hyo; Joo, Seung Ki

    2016-03-01

    A reliable on/off switching with an sub-kT/q subthreshold slope (38 mV/dec at room temperature) is experimentally demonstrated with using selectively nucleated laterally crystallized single-grain Pb(Zr,Ti)O3 (PZT) ferroelectric and ZrTiO4 paraelectric thin-film. The combination of ferroelectric and paraelectric thin-film is enabled to form a negative capacitance (NC) at the weak inversion region. However, the PZT grain-boundary easily degrades the NC properties after switching the on/off more than 108 times. It is found that the polarization of PZT is diminished from the path of grain-boundary. Here, we effectively suppress the degradation of NC MOS-FET which did not showed any fatigue even after 108 on/off switching.

  19. k-t acceleration in pure phase encode MRI to monitor dynamic flooding processes in rock core plugs.

    PubMed

    Xiao, Dan; Balcom, Bruce J

    2014-06-01

    Monitoring the pore system in sedimentary rocks with MRI when fluids are introduced is very important in the study of petroleum reservoirs and enhanced oil recovery. However, the lengthy acquisition time of each image, with pure phase encode MRI, limits the temporal resolution. Spatiotemporal correlations can be exploited to undersample the k-t space data. The stacked frames/profiles can be well approximated by an image matrix with rank deficiency, which can be recovered by nonlinear nuclear norm minimization. Sparsity of the x-t image can also be exploited for nonlinear reconstruction. In this work the results of a low rank matrix completion technique were compared with k-t sparse compressed sensing. These methods are demonstrated with one dimensional SPRITE imaging of a Bentheimer rock core plug and SESPI imaging of a Berea rock core plug, but can be easily extended to higher dimensionality and/or other pure phase encode measurements. These ideas will enable higher dimensionality pure phase encode MRI studies of dynamic flooding processes in low magnetic field systems. PMID:24809307

  20. Investigating a 65-Ma-Old Smoking Gun: Deep Drilling of the Chicxulub Impact Structure

    NASA Astrophysics Data System (ADS)

    Dressler, B. O.; Sharpton, V. L.; Morgan, J.; Buffler, R.; Moran, D.; Smit, J.; Stöffler, D.; Urrutia, J.

    The Phanerozoic paleontological record is marked by several biological extinction events. One of them, at the Cretaceous/Tertiary (K/T) boundary, was responsible for the demise of about 5% of genera and 75% of species, including the dinosaurs. These drastic and abrupt changes in the development of life on Earth puzzled paleontologists in the past. Many a cause was put forward to account for them, amongst them climate changes, disease, or overspecialization. About 20 years ago, Alvarez et al. [1980] discovered a high iridium concentration in an Italian K/T boundary clay layer. They proposed that the iridium was derived from an extra-terrestrial impact 65 Ma ago and that the impact was the cause for the K/T boundary extinctions. The iridium layer was subsequently found at K/T boundary locations worldwide. Further evidence for a K/T impact came from the discovery of shocked quartz, nano-diamonds, glass spherules, and nickel-rich spinels in microkrystites in the iridium-rich layer. There was evidence for an impact event, but no crater.

  1. Associated production of Higgs bosons and heavy quarks at the LHC: Predictions with the kT-factorization approach

    NASA Astrophysics Data System (ADS)

    Lipatov, A. V.; Zotov, N. P.

    2009-07-01

    In the framework of the kT-factorization approach, we study the production of Higgs bosons associated with a heavy (beauty or top) quark pair at the CERN LHC collider conditions. Our consideration is based mainly on the off-shell gluon-gluon fusion subprocess g*g*→Q Qmacr H. The corresponding matrix element squared has been calculated for the first time. We investigate the total and differential cross sections of b bmacr H and t tmacr H production taking into account also the non-negligible contribution from the q qmacr →Q Qmacr H mechanism. In the numerical calculations we use the unintegrated gluon distributions obtained from the Ciafaloni-Catani-Fiorani-Marchesini evolution equation. Our results are compared with the leading predictions of the collinear factorization of QCD.

  2. Discovery and focused study of the Chicxulub impact crater

    NASA Astrophysics Data System (ADS)

    Urrutia-Fucugauchi, Jaime; Camargo-Zanoguera, Antonio; Pérez-Cruz, Ligia

    2011-06-01

    Three decades ago, a landmark paper by Alvarez et al. [1980] proposed that an asteroid impact 65.5 million years ago was the cause of the mass extinction of about 75% of species, including the dinosaurs, at the boundary between the Cretaceous and Paleogene periods (K-Pg), formerly known as the Cretaceous-Tertiary (K-T) boundary. Alvarez et al. used geochemical studies on carbonate sequences from Italy, Denmark, and New Zealand to study the boundary layer, which was enriched in iridium and other platinum group elements (PGEs) at concentrations well above background levels. They associated these enrichments with the collision of an asteroid that injected large amounts of pulverized debris into the atmosphere, resulting in blockage of solar radiation, global cooling, and a shutdown of photosynthesis.

  3. Vertebrate time-tree elucidates the biogeographic pattern of a major biotic change around the K-T boundary in Madagascar.

    PubMed

    Crottini, Angelica; Madsen, Ole; Poux, Celine; Strauss, Axel; Vieites, David R; Vences, Miguel

    2012-04-01

    The geographic and temporal origins of Madagascar's biota have long been in the center of debate. We reconstructed a time-tree including nearly all native nonflying and nonmarine vertebrate clades present on the island, from DNA sequences of two single-copy protein-coding nuclear genes (BDNF and RAG1) and a set of congruent time constraints. Reconstructions calculated with autocorrelated or independent substitution rates over clades agreed in placing the origins of the 31 included clades in Cretaceous to Cenozoic times. The two clades with sister groups in South America were the oldest, followed by those of a putative Asian ancestry that were significantly older than the prevalent clades of African ancestry. No colonizations from Asia occurred after the Eocene, suggesting that dispersal and vicariance of Asian/Indian groups were favored over a comparatively short period during, and shortly after, the separation of India and Madagascar. Species richness of clades correlates with their age but those clades that have a large proportion of species diversity in rainforests are significantly more species-rich. This finding suggests an underlying pattern of continuous speciation through time in Madagascar's vertebrates, with accelerated episodes of adaptive diversification in those clades that succeeded radiating into the rainforests. PMID:22431616

  4. Boundary Crossing and Boundary Objects

    ERIC Educational Resources Information Center

    Akkerman, Sanne F.; Bakker, Arthur

    2011-01-01

    Diversity and mobility in education and work present a paramount challenge that needs better conceptualization in educational theory. This challenge has been addressed by educational scholars with the notion of "boundaries", particularly by the concepts of "boundary crossing" and "boundary objects". Although studies on boundary crossing and…

  5. Petroleum geology of Cretaceous-Tertiary rift basins in Niger, Chad, and Central African Republic

    SciTech Connect

    Genik, G.J. )

    1993-08-01

    This overview of the petroleum geology of rift basins in Niger, Chad, and Central African Republic (CAR) is based on exploration work by Exxon and partners in the years 1969-1991. The work included 50,000 km of modern reflection seismic, 53 exploration wells, 1,000,000 km[sup 2] of aeromagnetic coverage, and about 10,500 km of gravity profiles. The results outline ten Cretaceous and Tertiary rift basins, which constitute a major part of the West and Central African rift system (WCARS). The rift basins derive from a multiphased geologic history dating from the Pan-African (approximately 750-550 Ma) to the Holocene. WCARS in the study area is divided into the West African rift subsystem (WAS) and the Central African rift subsystem (WAS) and the Central African rift subsystem (CAS). WAS basins in Niger and Chad are chiefly extensional, and are filled by up to 13,000 m of Lower Cretaceous to Holocene continental and marine clastics. The basins contain five oil (19-43[degrees]API) and two oil and gas accumulations in Upper Cretaceous and Eocene sandstone reservoirs. The hydrocarbons are sourced and sealed by Upper Cretaceous and Eocene marine and lacustrine shales. The most common structural styles and hydrocarbon traps usually are associated with normal fault blocks. CAS rift basins in Chad and CAR are extensional and transtensional, and are filled by up to 7500 m of chiefly Lower Cretaceous continental clastics. The basins contain eight oil (15-39[degrees]API) and one oil and gas discovery in Lower and Upper Cretaceous sandstone reservoirs. The hydrocarbons are sourced by Lower Cretaceous shales and sealed by interbedded lacustrine and flood-plain shales. Structural styles range from simple fault blocks through complex flower structures. The main hydrocarbon traps are in contractional anticlines. Geological conditions favor the discovery of potentially commercial volumes of oil in WCARS basins, of Niger, Chad and CAR. 108 refs., 24 figs., 4 tabs.

  6. Emergence of a Rival Paradigm to Account for the Cretaceous/Tertiary Event.

    ERIC Educational Resources Information Center

    McCartney, Kevin; Loper, David E.

    1989-01-01

    Discusses the origin of the catastrophic event as to whether it was an episodic process or of extraterrestrial or endogenous origin. Develops a model of a volcanic mechanism to produce shocked quartz like those found in the Deccan basalts. (MVL)

  7. Hydrogeologic characterization of the cretaceous-tertiary Coastal Plain sequence at the Savannah River Site

    SciTech Connect

    Aadland, R.K.

    1990-01-01

    Several hydrostratigraphic classification schemes have been devised to describe the hydrogeology at the Savannah River Site SRS. Central to these schemes is the one-to-one fixed relationship between the hydrostratigraphic units and the lithostratigraphic units currently favored for the Site. This fixed relationship has proven difficult to apply in studies of widely separated locations at the Site due to the various facies observed in the updip Coastal Plain sequence. A detailed analysis and synthesis of the geophysical, core, and hydrologic data available from more than 164 deep wells from 23 cluster locations both on the Site and in the surrounding region was conducted to provide the basis for a hydrostratigraphic classification scheme which could be applied to the entire SRS region. As a result, an interim hydrostratigraphic classification was developed that defines the regional hydrogeologic characteristics of the aquifers underlying the Site (Aadland et al., 1990). The hydrostratigraphic code accounts for and accommodates the rapid lateral variation in lithofacies observed in the region, and eliminates all formal'' connection between the hydrostratigraphic nomenclature and the lithostratigraphic nomenclature. The code is robust and can be made as detailed as is needed to characterize the aquifer units and aquifer zones described in Site-specific studies. 15 refs., 2 figs.

  8. The interaction of the cretaceous-tertiary extinction bolide with the atmosphere, ocean, and solid earth

    NASA Technical Reports Server (NTRS)

    Okeefe, J. D.; Ahrens, T. J.

    1981-01-01

    A number of investigations, including those reported by Orth et al. (1981), have provided physical evidence for the impact of an extraterrestrial object on earth 65 million years ago. This time corresponds to the end of the cretaceous period. This impact could, therefore, be responsible for the observed extinction of biological species at the end of the Mesozoic era. Among the species becoming extinct are found also flying and walking dinosaurs, which include all land animals that had masses greater than 25 kg. The present investigation is concerned with a study of the possibilities for the collision of earth with 10 km-size object, and the consequences produced by such a collision. It is found that the penetration of the atmosphere by the bolide creates a temporary hole in the atmosphere. The resulting flow fields can inject melt droplets and finely commuted solid particles into the atmosphere. Short-term effects of heating, followed by dust induced worldwide cooling, may provide several mechanisms for the observed extinction of the species.

  9. The interaction of the cretaceous-tertiary extinction bolide with the atmosphere, ocean, and solid earth

    NASA Astrophysics Data System (ADS)

    Okeefe, J. D.; Ahrens, T. J.

    1981-10-01

    A number of investigations, including those reported by Orth et al. (1981), have provided physical evidence for the impact of an extraterrestrial object on earth 65 million years ago. This time corresponds to the end of the cretaceous period. This impact could, therefore, be responsible for the observed extinction of biological species at the end of the Mesozoic era. Among the species becoming extinct are found also flying and walking dinosaurs, which include all land animals that had masses greater than 25 kg. The present investigation is concerned with a study of the possibilities for the collision of earth with 10 km-size object, and the consequences produced by such a collision. It is found that the penetration of the atmosphere by the bolide creates a temporary hole in the atmosphere. The resulting flow fields can inject melt droplets and finely commuted solid particles into the atmosphere. Short-term effects of heating, followed by dust induced worldwide cooling, may provide several mechanisms for the observed extinction of the species.

  10. Diagenesis and reservoir characterization of the Cretaceous-Tertiary sequence, eastern Venezuela

    SciTech Connect

    Aquado, B.; Ghosh, S.; Isea, A. )

    1990-05-01

    The giant El Furrial field Maturin subbasin is the most important oil field discovered in Venezuela in the last three decades. The average oil column has a thickness of 400 m and the reservoirs consist of essentially sandy siliciclastic sediments of nearshore-shallow marine origin. The oil's API gravity ranges from light to extra heavy and occurs in a stratified manner in the reservoirs. A total of 1,080 m of core from the producing sequence was studied through x-ray diffraction scanning electron microscopy, and petrography. This data, along with petrophysical measurements, show a clear differentiation between the Upper Cretaceous and the Oligocene reservoirs. The Upper Cretaceous reservoirs are characterized by relatively fine and uniform grain size, subarkosic composition with common volcanic rock fragments, high degree of chemical and mechanical compaction highly illitic mixed-layer I/S assemblage with less than 10% expandable layers, and ubiquitous baroque dolomite. Additionally, porosity and permeability values are persistently low. Clearly, the Cretaceous sediments are diagenetically mature and may indicate diagenetic transformation at greater depths or under a different thermal regime. In contrast the coarser grained Oligocene reservoirs of quartz arenitic composition show a lesser diagenetic overprint, and greater porosity and permeability. Porosity is dominantly secondary due to cement and grain (mostly quartz) dissolution, as well as tectonically induced grain fracturing. Common kaolinite and minor amounts of I/S with up to 20% of expandable layers attest to a lower diagenetic regime than in the Cretaceous reservoirs.

  11. Biospheric effects of volatiles produced by the Chicxulub Cretaceous/Tertiary impact

    NASA Technical Reports Server (NTRS)

    Pope, Kevin O.

    1996-01-01

    The meteorite impact that formed the Chicxulub crater 65 million years ago caused a mass extinction of life. Analyses indicate that the projectile was either a 9.4-16.8 km diameter asteroid or a 14.2-24.0 km diameter comet. We estimate that 200 gigatons each of S02 and H2O were deposited globally in the stratosphere by the impact into water saturated sulfate-rich sediments. Conversion of these gases into sulfuric acid aerosols blocked an average of 68 percent of the sun's radiation for a period of 12 years. Global average temperatures probably dropped to near freezing in 5 years and remained near or below freezing for 7 years. Greenhouse warming due to impact-generated C02 was negligible, hence global cooling from sulfates was the major cause of climate change and contributed greatly to the mass extinction.

  12. Borehole gravity surveys in the Cretaceous-Tertiary Sagavanirktok Formation, Kuparuk River oil field, Alaska

    SciTech Connect

    Beyer, L.A. )

    1990-05-01

    Detailed borehole gravity surveys (sponsored by the US Department of Energy) were made in three wells in the Kuparuk River and westernmost Prudhoe Bay oil fields, Alaska from depths as shallow as 15 m to as great as 1,340 m through permafrost and underlying heavy oil bearing sandstones of the Sagavanirktok Formation. A subbituminous coal-bearing sequence and the stability field for methane hydrate occur partly within and partly below the permafrost zone, whose base, defined by the 0{degree}C isotherm, varies from 464 to 564 m. The surveys provided accurate, large-volume estimates of in-situ bulk density from which equivalent porosity was calculated using independent grain and pore-fluid density information. This density and porosity data helped to define the rock mass properties within the hydrate stability field and the thermal conductivity, seismic character, and compaction history of the permafrost. Bulk density of the unconsolidated to poorly consolidated sections ranges mostly from 1.9 to 2.3 g/cm{sup 3}. The shallow permafrost section appears to be slightly overcompacted in comparison to similar sedimentary sequences in nonpermafrost regions. The cause of this apparent overcompaction is unknown but may be due to freeze-thaw processes that have similarly affected sea floor and surficial deposits elsewhere in the Arctic. Fluctuations of bulk density appear to be controlled principally by (1) textural variations of the sediments, possibly exaggerated locally within the permafrost zone by excess ice, (2) presence or absence of carbonaceous material, and (3) type of pore-fluid (water-ice vs. water vs. hydrocarbons). As hypothetical models predict bulk-density is slightly lower opposite one interval of possible methane hydrate. Porosity may be as high as 40-45% for selected coarser grained units within the permafrost zone, and as high as 30-35% in a series of well sorted, heavy oil-bearing sandstones.

  13. Impact-induced devolatilization of CaSO4 anhydrite and implications for K-T extinctions: Preliminary results

    NASA Technical Reports Server (NTRS)

    Tyburczy, James A.; Ahrens, Thomas J.

    1993-01-01

    The recent suggestions that the target area for the K-T bolide may have been a sulfate-rich evaporite and that the resulting sulfuric acid-rich aerosol was responsible for the subsequent cooling of the Earth and the resulting biological extinctions has prompted us to experimentally examine the impact-induced devolatization of the sulfate minerals anhydrite (CaSO4) and gypsum (CaSO4(2H2O)). Preliminary results for anhydrite are reported. Up to 42 GPa peak shock pressure, little or no devolatilization occurs, consistent with chemical thermodynamic calculations. Calculation of the influence of the partial pressure of the gas species on impact-induced devolatilization suggests that an even greater amount of sulfur than that proposed by Brett could have been released to the atmosphere by an impact into a sulfate-rich layer. Solid recovery, impact-induced devolatilization experiments were performed on the Caltech 20mm gun using vented, stainless steel sample assemblies.

  14. Performance of the NOνA Data Acquisition and Trigger Systems for the full 14 kT Far Detector

    NASA Astrophysics Data System (ADS)

    Norman, A.; Davies, G. S.; Ding, P. F.; Dukes, E. C.; Duyan, H.; Frank, M. J.; R. C. Group; Habig, A.; Henderson, W.; Niner, E.; Mina, R.; Moren, A.; Mualem, L.; Oksuzian, Y.; Rebel, B.; Shanahan, P.; Sheshukov, A.; Tamsett, M.; Tomsen, K.; Vinton, L.; Wang, Z.; Zamorano, B.; Zirnstien, J.

    2015-12-01

    The NOvA experiment uses a continuous, free-running, dead-timeless data acquisition system to collect data from the 14 kT far detector. The DAQ system readouts the more than 344,000 detector channels and assembles the information into an raw unfiltered high bandwidth data stream. The NOvA trigger systems operate in parallel to the readout and asynchronously to the primary DAQ readout/event building chain. The data driven triggering systems for NOvA are unique in that they examine long contiguous time windows of the high resolution readout data and enable the detector to be sensitive to a wide range of physics interactions from those with fast, nanosecond scale signals up to processes with long delayed coincidences between hits which occur at the tens of milliseconds time scale. The trigger system is able to achieve a true 100% live time for the detector, making it sensitive to both beam spill related and off-spill physics.

  15. Clustering dynamics in water/methanol mixtures: a nuclear magnetic resonance study at 205 k<295 k.

    PubMed

    Corsaro, Carmelo; Spooren, Jeroen; Branca, Caterina; Leone, Nancy; Broccio, Matteo; Kim, Chansoo; Chen, Sow-Hsin; Stanley, H Eugene; Mallamace, Francesco

    2008-08-28

    Proton nuclear magnetic resonance (1H NMR) experiments have been performed to measure the spin-lattice, T1, and spin-spin, T2, relaxation times of the three functional groups in water/methanol mixtures at different methanol molar fractions (XMeOH=0, 0.04, 0.1, 0.24, 0.5, 1) as a function of temperature in the range 205 K<295 K. The measured relaxation times in the mixtures, at all the methanol molar fractions, are faster than those of pure water and methanol because of strong interactions, resulting in a complex hydrogen bonding dynamics that determines their thermodynamic properties. In particular, we observe how the interplay between hydrophobicity and hydrophilicity changes with temperature and influences the peculiar thermal behavior of the NMR relaxation times of the solution. The obtained results are interpreted in terms of the existence of stable water-methanol clusters at high temperature whereas, upon cooling to low temperature, clusters of single species are present in the mixture. PMID:18672927

  16. Paleoenvironmental Changes linked to Deccan Volcanism and the K-T Mass Extinction across India and their Correlations with more distant Areas

    NASA Astrophysics Data System (ADS)

    Adatte, T.; Keller, G.; Gerstch, B.; Gardin, S.; Bartolini, A.; Bajpai, S.

    2009-04-01

    Recent studies indicate that the bulk (80%) of the Deccan Trap eruptions occurred over a relatively short time period coinciding with the KT mass extinction. Here we present results based on multiproxy data from intertrappean sediments located at Anjar, Kutch, western India, Jhilmili, Madhya Pradesh, central India, and Rajahmundry, SE India. We compare these results with a KT sequence in Meghalya, NE India, about 800 km from the Deccan volcanic province and more distant areas (e.g. South Atlantic, Tunisia, Kazakhstan) . Intertrappean sediments at Anjar consist mainly of lacustrine sediments and paleosoils, which exhibit at least three PGE anomalies with high Pd contents but only one with a significant Ir enrichment. The presence of dinosaur eggshells and bone fragments above the Ir anomaly implies an upper Maastrichtian age for these sediments. Thus, the PGE anomalies do not coincide with the KT boundary, nor are they of cosmic origin because normalized PGE values suggest a flood basalt origin. Clay minerals consist mainly of smectite and palygorskite and reflect arid conditions, probably linked to higher surface temperatures on a young volcanic landscape subjected to effusive volcanic activity. In the Rajhamundry area, two Deccan basalt flows, known as the Rajahmundry traps, mark the most extensive lava flows extending 1000 km across the Indian continent. The sediments directly overlying the lower trap contain the earliest Danian planktic foraminifera of zones P0-P1a and mark the initial evolution in the aftermath of the KT mass extinction. The upper trap was deposited during zone P1b corresponding to the lower part of magnetic polarity C29n. Sedimentological, mineralogical data reveal that deposition occurred in a shallow estuarine to inner neritic environment with periods of subaerial deposition marked by paleosoils. Clay minerals consist exclusively of smectite, typical of vertisol developed under semi-arid conditions. Outcrop correlation reveals an incised valley estuarine system. At Jhilmili, multidisciplinary analyses reveal the KT boundary at or close to the lower trap basalt in C29R and the upper trap near the C29R/C29N transition. Intertrappean deposition occurred in predominantly terrestrial environments. But a short aquatic interval of fresh water ponds and lakes followed by shallow estuarine marine conditions with brackish ostracods and early Danian zone P1a planktic foraminifera mark this interval close to the K-T boundary. Clays from paleosoils and sediments consist of smectite and palygorskyte and indicate sub-humid to semi-arid conditions. In Meghalaya to the northeast, the KT transition consists of Upper Cretaceous sediments dominated by sandstone, shale, sandy shale and rare coal layers, which indicate deposition in a shallow marine environment with high detrital influx from nearby continental areas. The KTB is characterized by major PGE anomalies in Ir (11.8 ppb), Ru (108 ppb), Rh (93 ppb) and Pd (75 pbb). Contrary to the sections located in the Deccan traps, dominant kaolinite in clay mineral assemblages indicates high humidity and high runoff, which is likely linked with increased warming (greenhouse effect) due to Deccan activity on the mainland. Such climatic conditions have been observed worldwide (e.g. Tunisia, Kazakhstan, South Atlantic). The contemporaneous semi-arid climate conditions that are observed in the Deccan Traps province are not observed elsewhere and therefore appear to be restricted to areas of volcanic activity.

  17. Ground boundaries

    SciTech Connect

    Balluffi, R.W.; Bristowe, P.D.

    1990-01-01

    The present document is a progress report describing the work accomplished on the study of grain boundaries in Ag, Au, Ni, Si, and Ge. Research was focused on the following four major efforts: study of the atomic structure of grain boundaries by means of x-ray diffraction, transmission electron microscopy and computer modeling; grain boundary migration; short-circuit diffusion along grain boundaries; and development of Thin-Film Deposition/Bonding Apparatus for the manufacture of high purity bicrystals. 10 refs., 1 fig.

  18. Boundary Layer

    NASA Technical Reports Server (NTRS)

    Loitsianskii. L. G.

    1956-01-01

    The fundamental, practically the most important branch of the modern mechanics of a viscous fluid or a gas, is that branch which concerns itself with the study of the boundary layer. The presence of a boundary layer accounts for the origin of the resistance and lift force, the breakdown of the smooth flow about bodies, and other phenomena that are associated with the motion of a body in a real fluid. The concept of boundary layer was clearly formulated by the founder of aerodynamics, N. E. Joukowsky, in his well-known work "On the Form of Ships" published as early as 1890. In his book "Theoretical Foundations of Air Navigation," Joukowsky gave an account of the most important properties of the boundary layer and pointed out the part played by it in the production of the resistance of bodies to motion. The fundamental differential equations of the motion of a fluid in a laminar boundary layer were given by Prandtl in 1904; the first solutions of these equations date from 1907 to 1910. As regards the turbulent boundary layer, there does not exist even to this day any rigorous formulation of this problem because there is no closed system of equations for the turbulent motion of a fluid. Soviet scientists have done much toward developing a general theory of the boundary layer, and in that branch of the theory which is of greatest practical importance at the present time, namely the study of the boundary layer at large velocities of the body in a compressed gas, the efforts of the scientists of our country have borne fruit in the creation of a new theory which leaves far behind all that has been done previously in this direction. We shall herein enumerate the most important results by Soviet scientists in the development of the theory of the boundary layer.

  19. Grain boundaries

    SciTech Connect

    Balluffi, R.W.; Bristowe, P.D.

    1991-01-01

    The present document is a progress report describing the work accomplished to date during the second year of our four-year grant (February 15, 1990--February 14, 1994) to study grain boundaries. The research was focused on the following three major efforts: Study of the atomic structure of grain boundaries by means of x-ray diffraction, transmission electron microscopy and computer modeling; study of short-circuit diffusion along grain boundaries; and development of a Thin-film Deposition/Bonding Apparatus for the manufacture of high purity bicrystals.

  20. Sub-kT/q Subthreshold-Slope Using Negative Capacitance in Low-Temperature Polycrystalline-Silicon Thin-Film Transistor

    NASA Astrophysics Data System (ADS)

    Park, Jae Hyo; Jang, Gil Su; Kim, Hyung Yoon; Seok, Ki Hwan; Chae, Hee Jae; Lee, Sol Kyu; Joo, Seung Ki

    2016-04-01

    Realizing a low-temperature polycrystalline-silicon (LTPS) thin-film transistor (TFT) with sub-kT/q subthreshold slope (SS) is significantly important to the development of next generation active-matrix organic-light emitting diode displays. This is the first time a sub-kT/q SS (31.44 mV/dec) incorporated with a LTPS-TFT with polycrystalline-Pb(Zr,Ti)O3 (PZT)/ZrTiO4 (ZTO) gate dielectrics has been demonstrated. The sub-kT/q SS was observed in the weak inversion region at ‑0.5 V showing ultra-low operating voltage with the highest mobility (250.5 cm2/Vsec) reported so far. In addition, the reliability of DC negative bias stress, hot carrier stress and self-heating stress in LTPS-TFT with negative capacitance was investigated for the first time. It was found that the self-heating stress showed accelerated SS degradation due to the PZT Curie temperature.

  1. Sub-kT/q Subthreshold-Slope Using Negative Capacitance in Low-Temperature Polycrystalline-Silicon Thin-Film Transistor

    PubMed Central

    Park, Jae Hyo; Jang, Gil Su; Kim, Hyung Yoon; Seok, Ki Hwan; Chae, Hee Jae; Lee, Sol Kyu; Joo, Seung Ki

    2016-01-01

    Realizing a low-temperature polycrystalline-silicon (LTPS) thin-film transistor (TFT) with sub-kT/q subthreshold slope (SS) is significantly important to the development of next generation active-matrix organic-light emitting diode displays. This is the first time a sub-kT/q SS (31.44 mV/dec) incorporated with a LTPS-TFT with polycrystalline-Pb(Zr,Ti)O3 (PZT)/ZrTiO4 (ZTO) gate dielectrics has been demonstrated. The sub-kT/q SS was observed in the weak inversion region at −0.5 V showing ultra-low operating voltage with the highest mobility (250.5 cm2/Vsec) reported so far. In addition, the reliability of DC negative bias stress, hot carrier stress and self-heating stress in LTPS-TFT with negative capacitance was investigated for the first time. It was found that the self-heating stress showed accelerated SS degradation due to the PZT Curie temperature. PMID:27098115

  2. Sub-kT/q Subthreshold-Slope Using Negative Capacitance in Low-Temperature Polycrystalline-Silicon Thin-Film Transistor.

    PubMed

    Park, Jae Hyo; Jang, Gil Su; Kim, Hyung Yoon; Seok, Ki Hwan; Chae, Hee Jae; Lee, Sol Kyu; Joo, Seung Ki

    2016-01-01

    Realizing a low-temperature polycrystalline-silicon (LTPS) thin-film transistor (TFT) with sub-kT/q subthreshold slope (SS) is significantly important to the development of next generation active-matrix organic-light emitting diode displays. This is the first time a sub-kT/q SS (31.44 mV/dec) incorporated with a LTPS-TFT with polycrystalline-Pb(Zr,Ti)O3 (PZT)/ZrTiO4 (ZTO) gate dielectrics has been demonstrated. The sub-kT/q SS was observed in the weak inversion region at -0.5 V showing ultra-low operating voltage with the highest mobility (250.5 cm(2)/Vsec) reported so far. In addition, the reliability of DC negative bias stress, hot carrier stress and self-heating stress in LTPS-TFT with negative capacitance was investigated for the first time. It was found that the self-heating stress showed accelerated SS degradation due to the PZT Curie temperature. PMID:27098115

  3. Joint design of kT-points trajectories and RF pulses under explicit SAR and power constraints in the large flip angle regime

    NASA Astrophysics Data System (ADS)

    Gras, Vincent; Luong, Michel; Amadon, Alexis; Boulant, Nicolas

    2015-12-01

    In Magnetic Resonance Imaging at ultra-high field, kT-points radiofrequency pulses combined with parallel transmission are a promising technique to mitigate the B1 field inhomogeneity in 3D imaging applications. The optimization of the corresponding k-space trajectory for its slice-selective counterpart, i.e. the spokes method, has been shown in various studies to be very valuable but also dependent on the hardware and specific absorption rate constraints. Due to the larger number of degrees of freedom than for spokes excitations, joint design techniques based on the fine discretization (gridding) of the parameter space become hardly tractable for kT-points pulses. In this article, we thus investigate the simultaneous optimization of the 3D blipped k-space trajectory and of the kT-points RF pulses, using a magnitude least squares cost-function, with explicit constraints and in the large flip angle regime. A second-order active-set algorithm is employed due to its demonstrated success and robustness in similar problems. An analysis of global optimality and of the structure of the returned trajectories is proposed. The improvement provided by the k-space trajectory optimization is validated experimentally by measuring the flip angle on a spherical water phantom at 7T and via Quantum Process Tomography.

  4. Mass extinctions in the deep sea

    NASA Technical Reports Server (NTRS)

    Thomas, E.

    1988-01-01

    The character of mass extinctions can be assessed by studying extinction patterns of organisms, the fabric of the extinction, and assessing the environmental niche and mode of life of survivors. Deep-sea benthic foraminifera have been listed as little affected by the Cretaceous-Tertiary (K-T) mass extinction, but very few quantitative data are available. New data on deep-sea Late Maestrichtian-Eocene benthic foraminifera from Maud Rise (Antractica) indicate that about 10 percent of the species living at depths of 2000 to 2500 m had last appearances within 1 my of the Cretaceous-Tertiary (K-T) boundary, versus about 25 percent of species at 1000 to 1500 m. Many survivors from the Cretaceous became extinct in a period of global deep-sea benthic foraminiferal extinction at the end of the Paleocene, a time otherwise marked by very few extinctions. Preliminary conclusions suggest that the deep oceanic environment is essentially decoupled from the shallow marine and terrestrial environment, and that even major disturbances of one of these will not greatly affect the other. This gives deep-sea benthic faunas a good opportunity to recolonize shallow environments from greater depths and vice versa after massive extinctions. The decoupling means that data on deep-sea benthic boundary was caused by the environmental effects of asteriod impact or excessive volcanism. The benthic foraminiferal data strongly suggest, however, that the environmental results were strongest at the Earth's surface, and that there was no major disturbance of the deep ocean; this pattern might result both from excessive volcanism and from an impact on land.

  5. Boundary States in Boundary LCFT:

    NASA Astrophysics Data System (ADS)

    Ishimoto, Yukitaka

    It is well known that LCFT generally contains Jordan cell structure and, in our previous paper, we have proposed a conjecture that one and only one boundary sate is allowed in the rank-2 cell. With these states in c=-2 rational LCFT, we can express boundary states in the closed string picture, in regard to corresponding boundary conditions in the open string picture. In this paper, We briefly review our previous paper on boundary states in LCFTs. We also add one more proof which supports the conjecture, and confirm this doesn't change our previous results. This paper is based on the talk given at School & Workshop On Logarithmic Conformal Field Theory and Its Applications held in Tehran, Iran.

  6. Dinosaur extinction: closing the '3 m gap'.

    PubMed

    Lyson, Tyler R; Bercovici, Antoine; Chester, Stephen G B; Sargis, Eric J; Pearson, Dean; Joyce, Walter G

    2011-12-23

    Modern debate regarding the extinction of non-avian dinosaurs was ignited by the publication of the Cretaceous-Tertiary (K-T) asteroid impact theory and has seen 30 years of dispute over the position of the stratigraphically youngest in situ dinosaur. A zone devoid of dinosaur fossils reported from the last 3 m of the Upper Cretaceous, coined the '3 m gap', has helped drive controversy. Here, we report the discovery of the stratigraphically youngest in situ dinosaur specimen: a ceratopsian brow horn found in a poorly rooted, silty, mudstone floodplain deposit located no more than 13 cm below the palynologically defined boundary. The K-T boundary is identified using three criteria: (i) decrease in Cretaceous palynomorphs without subsequent recovery, (ii) the existence of a 'fern spike', and (iii) correlation to a nearby stratigraphic section where primary extraterrestrial impact markers are present (e.g. iridium anomaly, spherules, shocked quartz). The in situ specimen demonstrates that a gap devoid of non-avian dinosaur fossils does not exist and is inconsistent with the hypothesis that non-avian dinosaurs were extinct prior to the K-T boundary impact event. PMID:21752814

  7. Definitive fossil evidence for the extant avian radiation in the Cretaceous.

    PubMed

    Clarke, Julia A; Tambussi, Claudia P; Noriega, Jorge I; Erickson, Gregory M; Ketcham, Richard A

    2005-01-20

    Long-standing controversy surrounds the question of whether living bird lineages emerged after non-avian dinosaur extinction at the Cretaceous/Tertiary (K/T) boundary or whether these lineages coexisted with other dinosaurs and passed through this mass extinction event. Inferences from biogeography and molecular sequence data (but see ref. 10) project major avian lineages deep into the Cretaceous period, implying their 'mass survival' at the K/T boundary. By contrast, it has been argued that the fossil record refutes this hypothesis, placing a 'big bang' of avian radiation only after the end of the Cretaceous. However, other fossil data--fragmentary bones referred to extant bird lineages--have been considered inconclusive. These data have never been subjected to phylogenetic analysis. Here we identify a rare, partial skeleton from the Maastrichtian of Antarctica as the first Cretaceous fossil definitively placed within the extant bird radiation. Several phylogenetic analyses supported by independent histological data indicate that a new species, Vegavis iaai, is a part of Anseriformes (waterfowl) and is most closely related to Anatidae, which includes true ducks. A minimum of five divergences within Aves before the K/T boundary are inferred from the placement of Vegavis; at least duck, chicken and ratite bird relatives were coextant with non-avian dinosaurs. PMID:15662422

  8. Evolutionary Catastrophes: The Science of Mass Extinction

    NASA Astrophysics Data System (ADS)

    Hames, Willis

    The stories behind the greatest scientific controversies are more than entertaining. They provide windows into the evolution of scientific thought, scientific method, technological achievements and their research applications, and the influence of individuals and personalities on a community's acceptance of a theory Epic controversies surround the theories for Earth's mass extinction events, and none is more spectacular than the continuing polemic over the Cretaceous-Tertiary (K/T) mass extinctions and ultimate demise of the dinosaurs.In contrast to other great scientific debates, we tend to view the K/T event in the context of a crime scene, where the spectacularly diverse flora and fauna of a primordial Eden were unwittingly slain by one or more ruthless and efficient killers. A “foreign” suspect has been fingered; an intruder that killed suddenly and randomly has become the principal suspect. The main clues uncovered in the case include a global K/T iridium anomaly; shock-deformed minerals in K/T boundary sediments; the ˜6 5 m.y-old Deccan flood-basalt province, which covered an area roughly the size of France; and the ˜6 5 m.y-old Chicxulub impact crater in the Yucatan peninsula, which seems to be among the largest to have formed in the inner solar system over the past billion years.

  9. Fingerprinting the K/T impact site and determining the time of impact by UPb dating of single shocked zircons from distal ejecta

    USGS Publications Warehouse

    Krogh, T.E.; Kamo, S.L.; Bohor, B.F.

    1993-01-01

    UPb isotopic dating of single 1-3 ??g zircons from K/T distal ejecta from a site in the Raton Basin, Colorado provides a powerful new tool with which to determine both the time of the impact event and the age of the basement at the impact site. Data for the least shocked zircons are slightly displaced from the 544 ?? 5 Ma primary age for a component of the target site, white those for highly shocked and granular grains are strongly displaced towards the time of impact at 65.5 ?? 3.0 Ma. Such shocked and granular zircons have never been reported from any source, including explosive volcanic rocks. Zircon is refractory and has one of the highest thermal blocking temperatures; hence, it can record both shock features and primary and secondary ages without modification by post-crystallization processes. Unlike shocked quartz, which can come from almost anywhere on the Earth's crust, shocked zircons can be shown to come from a specific site because basement ages vary on the scale of meters to kilometers. With UPb zircon dating, it is now possible to correlate ejecta layers derived from the same target site, test the single versus multiple impact hypothesis, and identify the target source of impact ejecta. The ages obtained in this study indicate that the Manson impact site, Iowa, which has basement rocks that are mid-Proterozoic in age, cannot be the source of K/T distal ejecta. The K/T distal ejecta probably originated from a single impact site because most grains have the same primary age. ?? 1993.

  10. Fingerprinting the K/T impact site and determining the time of impact by U-Pb dating of single shocked zircons from distal ejecta

    NASA Technical Reports Server (NTRS)

    Krogh, T. E.; Kamo, S. L.; Bohor, B. F.

    1993-01-01

    U-Pb isotopic dating of single 1 - 3 micrograms zircons from K/T distal ejecta from a site in the Raton Basin, Colorado provides a powerful new tool with which to determine both the time of the impact event and the age of the basement at the impact site. Data for the least shocked zircons are slightly displaced from the 544 +/- 5 Ma primary age for a component of the target site, while those for highly shocked and granular grains are strongly displaced towards the time of impact at 65.5 +/- 3.0 Ma. Such shocked and granular zircons have never been reported from any source, including explosive volcanic rocks. Zircon is refractory and has one of the highest thermal blocking temperatures; hence, it can record both shock features and primary and secondary ages without modification by post-crystallization processes. Unlike shocked quartz, which can come from almost anywhere on the Earth's crust, shocked zircons can be shown to come from a specific site because basement ages vary on the scale of meters to kilometers. With U-Pb zircon dating, it is now possible to correlate ejecta layers derived from the same target site, test the single versus multiple impact hypothesis, and identify the target source of impact ejecta. The ages obtained in this study indicate that the Manson impact site, Iowa, which has basement rocks that are mid-Proterozoic in age, cannot be the source of K/T distal ejecta. The K/T distal ejecta probably originated from a single impact site because most grains have the same primary age.

  11. Iridium abundance measurements across bio-event horizons in the geological record

    NASA Technical Reports Server (NTRS)

    Orth, C. J.; Attrep, M., Jr.

    1988-01-01

    Geochemical studies have been performed on thousands of rock samples collected across bio-event horizons in the fossil record using INAA for about 40 common and trace elements and radiochemical isolation procedures for Os, Ir, Pt, and Au on selected samples. These studies were begun soon after the Alvarez team announced their discovery of the Cretaceous-Tertiary (K-T) Ir anomaly in marine rock sequences in Europe. With their encouragement the Authors searched for the anomaly in nearby continental (freshwater coal swamp) deposits. In collaboration with scientists from the U.S.G.S. in Denver, the anomaly was located and it was observed that a floral crisis occurred at the same stratigraphic position as the Ir spike. Further work in the Raton Basin has turned up numerous well-preserved K-T boundary sections. Although the Authors have continued to study the K-T boundary and provide geochemical measurements for other groups trying to precisely locate it, the primary effort was turned to examining the other bio-events in the Phanerozoic, especially to those that are older than the terminal Cretaceous. A list of horizons that were examined in collaboration with paleontologists and geologists is given. Results are also given and discussed.

  12. Effect of environmental variables on body size evolution of crinoids between periods of mass extinctions

    NASA Astrophysics Data System (ADS)

    Jani, T.; Heim, N. A.; Payne, J.

    2013-12-01

    Body size plays a major role in determining whether or not an organism can sustain in its local environment. The ecosystem of an animal has a major effect on the fitness of organisms, and it would be interesting to note the degree to which various environmental factors alter body size. In my project, I identify three environmental factors that seem to affect body size of crinoids, marine invertebrates from phylum Echinodermata, and explore how these variables play out in the intervals between the five mass extinctions. The particular factors I study include atmospheric CO2 concentration (proxy for temperature), O2 concentration, and sea level. Although the r and p values for all of these factors were statistically insignificant to definitively make any correlation, there was a visual correlation. For O2, I noted a generally positive correlation with body size over time. CO2 trends suggested a negative correlation until the K-T boundary, but a positive correlation afterwards. Correlation with sea level was a little more complicated: correlation was positive from the start of the Phanerozoic to the Permian extinction; it turned negative until the Cretaceous-Tertiary boundary; afterwards, it again became positive. However, for all three variables, statistical values are too low to say definitively mark any correlation. Out of all three factors, CO2 levels had the highest correlation and lowest p-values in the most time intervals: from the start of the Phanerozoic to Ordovician-Silurian Extinction, from the Late Devonian to the Permian Extinction, and from the Cretaceous-Tertiary boundary to the present. When considering first differences, CO2 levels also had the highest correlation from the Permian Extinction to Triassic-Jurassic Extinction and from the Triassic-Jurassic Extinction to Cretaceous-Tertiary Extinction. Using PaleoTS, I found that body size evolution patterns either seemed to follow either an unbiased random walk (URW) or stasis in the intervals between mass extinctions. Put together, these results suggest that environmental factors may have an effect of body size, but it may be the consequence of several environmental factors in conjunction. That is a correlation between body size and an individual environmental factor is hard to determine, but several biotic and abiotic factors may work interdependently to alter body size of crinoids.

  13. Boundary issues

    NASA Astrophysics Data System (ADS)

    Townsend, Alan R.; Porder, Stephen

    2011-03-01

    What is our point of no return? Caesar proclaimed 'the die is cast' while crossing the Rubicon, but rarely does modern society find so visible a threshold in our continued degradation of ecosystems and the services they provide. Humans have always used their surroundings to make a living— sometimes successfully, sometimes not (Diamond 2005)—and we intuitively know that there are boundaries to our exploitation. But defining these boundaries has been a challenge since Malthus first prophesied that nature would limit the human population (Malthus 1798). In 2009, Rockström and colleagues tried to quantify what the 6.8 billion (and counting) of us could continue to get away with, and what we couldn't (Rockström et al 2009). In selecting ten 'planetary boundaries', the authors contend that a sustainable human enterprise requires treating a number of environmental thresholds as points of no return. They suggest we breach these Rubicons at our own peril, and that we've already crossed three: biodiversity loss, atmospheric CO2, and disruption of the global nitrogen (N) cycle. As they clearly hoped, the very act of setting targets has provoked scientific inquiry about their accuracy, and about the value of hard targets in the first place (Schlesinger 2009). Such debate is a good thing. Despite recent emphasis on the science of human-ecosystem interactions, understanding of our planetary boundaries is still in its infancy, and controversy can speed scientific progress (Engelhardt and Caplan 1987). A few weeks ago in this journal, Carpenter and Bennett (2011) took aim at one of the more controversial boundaries in the Rockström analysis: that for human alteration of the global phosphorus (P) cycle. Rockström's group chose riverine P export as the key indicator, suggesting that humans should not exceed a value that could trigger widespread marine anoxic events—and asserting that we have not yet crossed this threshold. There are defensible reasons for a marine-centric boundary (Filippelli 2008, Handoh and Lenton 2003). However, human alteration of the P cycle has multiple potential boundaries (figure 1), including P-driven freshwater eutrophication (Smith and Schindler 2009), the potential for world P supply to place an ultimate limit on food production (Smil 2000, Childers et al 2011), and depletion of soil P stocks in some world regions (MacDonald et al 2011). Carpenter and Bennett revisit the P boundary from the freshwater eutrophication perspective. Given the extraordinary variation in freshwater ecosystems across the globe, this is a challenging task, but the authors strengthen their analysis by using three different boundaries with relevance to eutrophication, along with two water quality targets and a range of estimates of P flow to the sea. In doing so, they make a compelling case that if freshwater eutrophication is indeed a Rubicon, we have already crossed it. Importantly, Carpenter and Bennett go beyond the calculation of new boundaries to make broader points about humanity's relationship with the P cycle. Disruptions of both the P and N cycles are mostly about our need for food (Galloway et al 2008, Cordell et al 2009), but unlike N, P supplies are finite and irreplaceable. Environmental concerns aside, we can fix all the N2 from the atmosphere we want—but deplete our economically viable P reserves and we're in trouble. Figure 1 Figure 1. Human alteration of the global P cycle has multiple possible boundaries. These include the environmental risks posed by freshwater eutrophication and marine anoxic events, and the food security risks that come from depletion of soil P stocks in some world regions, as well as finite global supplies of high-value mineral P reserves. Photo credits beyond authors: upper left, Shelby Riskin; upper right, Pedro Sanchez. In effect, Carpenter and Bennett argue that among P's multiple boundaries, the one for freshwaters is less forgiving of our current activities (but no less important) than is the one for oceans. Encouragingly, while they argue that we've already crossed one key boundary in the P cycle, they also suggest it's not a Rubicon moment. The inefficiencies in P use that motivate these boundary debates are also clear targets for improvement, and some world regions may be on a trajectory towards greater P use efficiency (Vitousek et al 2009). This is a critical step for society, because even absent concerns over freshwater eutrophication or marine anoxic events, accelerating rates of P mining and inefficiencies in agricultural P use would still pose very real threats. There is legitimate debate over when readily accessible P reserves may run out (Cordell et al 2009, Van Kauenbergh 2010), but nobody argues with their finite nature. Sooner or later, we will be forced to keep P out of our waterways, if only because we will have to keep it on our farms. Without such a shift, we may face severe P constraints to food security within just a few human generations. As current P reserves decline, rising economic values of low concentration P stores may catalyze their harvest, but without considerable policy interventions, that price hike would exacerbate already strong global inequities in the distribution and use of chemical fertilizers (Sanchez and Swaminathan 2005). The harvest of low concentration P reserves would also create substantial collateral damage to the surrounding environment. Furthermore, even without exhaustion of high-concentration P reserves, their location in only a few countries creates geopolitical risks from the demand for an increasingly valuable resource (Cordell et al 2009). Policies aimed at lowering P inputs to aquatic environments will not only reduce the eutrophication risks explored by Carpenter and Bennett, they will increase P retention in agricultural landscapes and slow the decline of finite P reserves. Shifts in human diets can also make a profound difference in the amount of P (and N) required to meet caloric needs. Society can (and ultimately must) learn to capture and re-use P in human and animal wastes. And, as Carpenter and Bennett highlight, inequities in P availability across world regions are not just a problem, they are an opportunity: transfers from P-rich to P-poor regions could simultaneously reduce environmental and food security risks. Above all, Carpenter and Bennett's analyses highlight the need for new management strategies that better target not only P's environmental risks, but also recognize the element's standing as an irreplaceable resource. Human society has been built from the massive alteration of four global biogeochemical cycles (C, N, H2O and P). We can replace carbon-based fuels, plant legumes in lieu of Haber-Bosch-based N fixation, and the rain will still fall. But for P, there is neither substitute nor renewal. Without an almost closed loop between fertilizer application, food consumption, and waste management, society could solve the remainder of the environmental threats Rockström and colleagues identify, and still be facing a bleak future. References Carpenter S R and Bennett E M 2011 Reconsideration of the planetary boundary for phosphorus Environ. Res. Lett. 6 014009 Childers C L, Corman J, Edwards M and Elser J J 2011 Sustainability challenges of phosphorus and food: solutions from closing the human phosphorus cycle BioScience 61 117-24 Cordell D, Drangert J-O and White S 2009 The story of phosphorus: Global food security and food for thought global Environmental Change 19 292-305 Diamond J 2005 Collapse: How Societies Choose to Fail or Succeed (New York: Viking) Engelhardt H T and Caplan A L (ed) 1987 Scientific Controversies: Case Studies in the Resolution and Closure of Disputes in Science and Technology (New York: Cambridge University Press) Filippelli G M 2008 The global phosphorus cycle: Past, present, and future Elements 4 89-95 Galloway J N, Townsend A R, Erisman J W, Bekunda M, Cai Z C, Freney J R, Martinelli L A, Seitzinger S P and Sutton M A 2008 Transformation of the nitrogen cycle: Recent trends, questions, and potential solutions Science 320 889-92 Handoh I C and Lenton T M 2003 Periodic mid-Cretaceous oceanic anoxic events linked by oscillations of the phosphorus and oxygen biogeochemical cycles global Biogeochemical Cycles 17 1092 MacDonald G K, Bennett E M, Potter P A and Ramankutty N 2011 Agronomic phosphorus imbalances across the world_s croplands Proc. Natl Acad. Sci. 108 3086-91 Malthus T 1798 An Essay on the Principle of Population (available at http://www.gutenberg.org/browse/authors/m\\#a1411 Smil V 2000 Phosphorus in the environment: Natural flows and human interferences Annu. Rev. Energy Environ. 25 53-88 Rockström J et al 2009 A safe operating space for humanity Nature 461 472-5 Sanchez P A and Swaminathan M S 2005 Cutting world hunger in half Science 307 357-9 Schlesinger W H 2009 Planetary boundaries: Thresholds risk prolonged degradation Nature Reports Climate Change doi:10.1038/climate.2009.93 Smith V H and Schindler D W 2009 Eutrophication science: where do we go from here? Trends in Ecology and Evolution 24 201-7 Van Kauenbergh S J 2010 World Phosphate Rock Reserves and Resources (Muscle Shoals, AL: International Fertilizer Development Center) Vitousek P M, Naylor R, Crews T, David M B, Drinkwater L E, Holland E, Johnes P J, Katzenberger J, Martinelli L A, Matson P A, Nziguheba G, Ojima D, Palm C A, Robertson G P, Sanchez P A, Townsend A R, Zhang F S 2009 Nutrient Imbalances in Agricultural Development Science 324 1519-20

  14. Comet impacts and chemical evolution on the bombarded earth

    NASA Technical Reports Server (NTRS)

    Oberbeck, Verne R.; Aggarwal, Hans

    1992-01-01

    Amino acids yields for previously published shock tube experiments are used with minimum Cretaceous-Tertiary (K/T) impactor mass and comet composition to predict AIB amino acid K/T boundary sediment column density. The inferred initial concentration of all amino acids in the K/T sea and in similar primordial seas just after 10 km comet impacts would have been at least 10 exp -7 M. However, sinks for amino acids must also be considered in calculating amino acid concentrations after comet impacts and in assessing the contribution of comets to the origin of life. The changing concentration of cometary amino acids due to ultraviolet light is compared with the equilibrium concentration of amino acids produced in the sea from corona discharge in the atmosphere, deposition in water, and degradation by ultraviolet light. Comets could have been more important than endogenous agents for initial evolution of amino acids. Sites favorable for chemical evolution of amino acids are examined, and it is concluded that chemical evolution could have occurred at or above the surface even during periods of intense bombardment of earth before 3.8 billion years ago.

  15. The Yukon Flats Cretaceous(?)-Tertiary Extensional Basin, East-Central Alaska: Burial and Thermal History Modeling

    USGS Publications Warehouse

    Rowan, Elisabeth L.; Stanley, Richard G.

    2008-01-01

    One-dimensional burial and thermal history modeling of the Yukon Flats basin, east-central Alaska, was conducted as part of an assessment of the region's undiscovered oil and gas resources. No deep exploratory wells have been drilled in the Yukon Flats region, and the subsurface geology of the basin is inferred from seismic reflection, gravity and magnetic surveys, and studies of shallow core holes in the basin and outcrops in the surrounding region. A thick sequence of Upper Cretaceous(?) and Cenozoic nonmarine sedimentary rocks is believed to fill the basin; coal and organic-rich mudstone and shale within this sequence represent potential hydrocarbon source rocks. The burial and thermal history models presented here represent the sole source of information on the thermal maturity of these potential source rocks at depth. We present four alternative burial history scenarios for a hypothetical well through the deepest portion of Yukon Flats basin. They differ from each other in the thicknesses of Upper Cretaceous and Cenozoic strata, the timing of initial basin subsidence, and the timing of inferred unconformities. The burial modeling results suggest a present-day depth to the oil window of approximately 6,000 feet.

  16. Impact production of CO2 by the Cretaceous/Tertiary extinction bolide and the resultant heating of the earth

    NASA Technical Reports Server (NTRS)

    O'Keefe, John D.; Ahrens, Thomas J.

    1989-01-01

    Various observations and data demonstrate that sea level at the end of the Cretaceous was 150-200 m higher than at present, suggesting the possibility that the extinction bolide struck a shallow marine carbonate-rich sedimentary section. It is shown here that the impact of such a bolide (about 5 km in radius) onto a carbonate-rich terrane would increase the CO2 content of the atmosphere by a factor of two to ten. Additional dissolution of CO2 from the ocean's photic zone could release much larger quantities of CO2. The impact-induced release of CO2, by itself, would enhance atmospheric greenhouse heating and give rise to a worldwide increase in temperature from 2 K to 10 K for periods of 10,000 to 100,000 years.

  17. PTt path in metamorphic rocks of the Khoy region (northwest Iran) and their tectonic significance for Cretaceous Tertiary continental collision

    NASA Astrophysics Data System (ADS)

    Azizi, H.; Moinevaziri, H.; Mohajjel, M.; Yagobpoor, A.

    2006-06-01

    Metamorphic rocks in the Khoy region are exposed between obducted ophiolites to the southwest and sedimentary rocks of Precambrian-Paleozoic age to the northeast. The Qom formation (Oligocene-Miocene) with a basal conglomerate transgressively overlies all of these rocks. The metamorphic rocks consist of both metasediments and metabasites. The metasediments are micaschist, garnet-staurolite schist and garnet-staurolite sillimanite schist with some meta-arkose, marble and quartzite. The metabasites are metamorphosed to greenschist and amphibolite facies from a basaltic and gabbroic protolith of tholeiitic and calc-alkaline rocks. Geothermobarometry based on the equivalence of minerals stability and their paragenesis in these rocks and microprobe analyses by several different methods indicate that metamorphism occurred in a temperature range between 450 and 680 °C at 5.5 and 7.5 kb pressure. Rims of minerals reveal a considerable decrease of pressure (<2 kb) and insignificant decrease of temperature. The PTt path of this metamorphism is normal. The MFG line passes above the triple junction of Al 2SiO 5 polymorphs, and the average geothermal gradient during metamorphism was from 27 to 37 °C/km, which is more concordant with the temperature regime of collision zones. We infer that crustal thickening during post-Cretaceous (possibly Eocene) collision of the Arabian plate and the Azerbaijan-Albourz block was the main factor that caused the metamorphism in the studied area.

  18. Boundary dynamics in landscapes

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Landscapes consist of a mosaic of distinct vegetation types and their intervening boundaries with distinct characteristics. Boundaries can exist along abrupt environmental gradients or along gradual changes that are reinforced by feedback mechanisms between plants and soil properties. Boundaries can...

  19. Selective extinction of marine plankton at the end of the Mesozoic era: The fossil and stable isotope record

    NASA Technical Reports Server (NTRS)

    Herman, Y.; Bhattacharya, S. K.

    1988-01-01

    Floral, faunal and stable isotope evidence in a continuous sequence of latest Cretaceous and earliest Tertiary shallow water marine deposits in the Mangyshlak Peninsula, USSR suggest severe environmental changes at the Cretaceous/Tertiary (K/T) boundary. Time frame is provided by nanno, micro and macrofossils as well as by magnetic stratigraphy and an iridium spike. Oxygen isotopic analyses of the bulk sediments, composed of nanno and microplankton skeletal remains, show a sharp positive spike at the K/T boundary. This shift is primarily attributed to severe cooling possibly accompanied by increased salinities of the surface mixed layer. Floral and faunal extinctions were selective, affecting approximately 90 percent of the warm water calcareous phyto and zooplankton genera in the Tethyan-Paratethyan regions. These highly diverse taxa with many endemic representatives were at the peak of their evolutionary development. Geologic evidence indicates that the terminal Cretaceous temperature decline was coeval with widespread and intense volcanic activity which reached a peak at the close of the Mesozoic Era. Increased acidity temporarily prohibited calcite nucleation of the surface dwelling warm-water plankton. Superimposed upon decreased alkalinity, severe and rapid climatic changes caused the extinction of calcareous phyto and zooplankton.

  20. A Model of the Chicxulub Impact Basin Based on Evaluation of Geophysical Data, Well Logs, and Drill Core Samples

    NASA Technical Reports Server (NTRS)

    Sharpton, Virgil L.; Marin, Luis E.; Carney, John D.; Lee, Scott; Ryder, Graham; Schuraytz, Benjamin C.; Sikora, Paul; Spudis, Paul D.

    1996-01-01

    Abundant evidence now shows that the buried Chicxulub structure in northern Yucatan, Mexico, is indeed the intensely sought-after source of the ejecta found world-wide at the Cretaceous-Tertiary (K/T) boundary. In addition to large-scale concentric patterns in gravity and magnetic data over the structure, recent analyses of drill-core samples reveal a lithological assemblage similar to that observed at other terrestrial craters. This assemblage comprises suevite breccias, ejecta deposit breccias (Bunte Breccia equivalents), fine-grained impact melt rocks, and melt-matrix breccias. All these impact-produced lithologies contain diagnostic evidence of shock metamorphism, including planar deformation features in quartz, feldspar, and zircons; diaplectic glasses of quartz and feldspar; and fused mineral melts and whole-rock melts. In addition, elevated concentrations of Ir, Re, and Os, in meteoritic relative proportions, have been detected in some melt-rock samples from the center of the structure. Isotopic analyses, magnetization of melt-rock samples, and local stratigraphic constraints identify this crater as the source of K/T boundary deposits.

  1. Manson impact structure, Iowa: First geochemical results for drill core M-1

    NASA Technical Reports Server (NTRS)

    Koeberl, Christian; Anderson, Raymond R.; Hartung, Jack B.; Reimold, Wolf Uwe

    1993-01-01

    The Manson Impact Structure is a large complex impact crater centered ca. S km north of the town of Manson, Iowa. It is the largest intact impact structure recognized in the United States (35 km in diameter). Its Ar-40/Ar-39 age is indistinguishable from that of the Cretaceous-Tertiary (K-T) boundary. The Manson structure may be one element of the events at the K-T boundary. The crater is completely covered by Quaternary glacial sedimentary deposits that are normally underlain by Cretaceous clastic sediments and flat-lying carbonate sediments of Phanerozoic age, as well as Proterozoic red clastic, metamorphic, volcanic, and plutonic rock sequences. The study of a reflection seismic profile, provided by Amoco, was critical in interpreting the structure. In the 35 km diameter zone that marks the extension of the crater the normal rock sequence is disturbed due to the impact, and at the center of the structure granitic basement rocks are present that have been uplifted from about 4 km depth. Our studies consist of detailed petrological and geochemical characterization of all cores, with emphasis on a detailed description of all rock types found in the core samples and their relationship to target rocks. Geochemical data on samples from the Manson M-1 core are presented.

  2. Projectile-target mixing in melted ejecta formed during a hypervelocity impact cratering event

    NASA Technical Reports Server (NTRS)

    Evans, Noreen Joyce; Ahrens, Thomas J.; Shahinpoor, M.; Anderson, W. W.

    1993-01-01

    Tektites contain little to no projectile contamination while, in contrast, some distal ejecta deposits can be relatively projectile-rich (e.g. the Cretaceous-Tertiary (K-T) boundary clay). This compositional difference motivated an experimental study of hypervelocity target-projectile mixing processes. We hope to scale up the results from these experiments and apply them to terrestrial impact structures like the Chicxulub Crater, Yucutan, Mexico, the leading contender as the site for the impact that caused the mass extinction that marks the K-T boundary. Shock decomposition of the approximately 500m thickness of anhydrite, or greater thickness of limestone, in the target rocks at Chicxulub may have been a critical mechanism for either global cooling via SO3, and subsequently H2SO4, formation, or possibly, global warming via increased CO2 formation. Understanding target-projectile mixing processes during hypervelocity impact may permit more accurate estimates of the amount of potentially toxic, target-derived material reaching stratospheric heights.

  3. How close to ideal is the photon gas Corrections to Planck's laws at kT. much lt. m sub e

    SciTech Connect

    Barton, G. )

    1991-01-01

    At temperatures well below the electron rest mass, the electron-positron concentrations in black-body radiation (BBR) are negligible, and deviations from Planck's laws are due to the photon-photon coupling described (in natural units) by the classic Euler-Heisenberg local interaction Lagrangean density ({alpha}{sup 2}/360{pi}{sup 2}m{sub e}{sup 4})((E{sup 2}{minus}B{sup 2}){sup 2}+7(E{center dot}B){sup 2}). Though unobservably small, these corrections answer the question in the title. They are best expressed in terms of the (frequency-independent) shift in the refractive index {kappa} = (1+{Delta}{kappa}) of BBR, where {Delta}{kappa} = {alpha}{sup 2}(kT/m{sub e}){sup 4}44{pi}{sup 2}/2025 {approx} 7.5 {times} 10{sup {minus}35}(T/300){sup 4}. There are fractional changes of 3 {Delta}{kappa}/2 in the free-energy density and the pressure; 7 {Delta}{kappa}/2 in the energy density; and 2 {Delta}{kappa} in the mean-square electric field in any frequency range, whence only the intensity of the Planck spectrum is shifted but not its shape. The dielectric constant {var epsilon} = (1 + {Delta}{var epsilon}) and magnetic susceptibility {mu} = (1 + {Delta}{mu}) of BBR are equal, with {Delta}{var epsilon} = {Delta}{mu} = {Delta}{kappa}, whence the author compares the BBR shifts with those in an ordinary linear nondispersive medium having {var epsilon} = {mu} = {kappa} {triple bond} {radical}{epsilon}{mu}.

  4. Petromagnetic and paleomagnetic characterization deposits at Mesozoic/Cenozoic boundary: The Tetritskaro section (Georgia)

    NASA Astrophysics Data System (ADS)

    Pechersky, D. M.; Asanidze, B. Z.; Nourgaliev, D. K.; Sharonova, Z. N.

    2009-02-01

    Petromagnetic and magnetostratigraphic characteristics are obtained for the Tetritskaro section. The boundary layer at the Mesozoic/Cenozoic (K/T) boundary is fixed primarily by an abrupt rise in the paramagnetic magnetization (total Fe concentration) and, to a lesser degree, by an increase in the concentration of such magnetic minerals as goethite, hemoilmenite, and magnetite. The along-section distribution of titanomagnetite of volcanic origin and metallic iron of cosmic origin does not correlate with the K/T boundary and lithologic properties of the sediments. The boundary of the Mesozoic and Cenozoic geological eras lies within the reversed polarity chron C29r and is marked by an abrupt rise in the geomagnetic field paleointensity and an instability of paleomagnetic directions, rather than by a polarity change. The accumulation time of the boundary clay layer is about 1.5-2 kyr, while abrupt changes in the paleointensity and direction of the geomagnetic field encompass 30-40 kyr. Such long occurrence intervals of the events in question cannot be related to a short-term impact phenomenon.

  5. Ontogenetic niche shifts in dinosaurs influenced size, diversity and extinction in terrestrial vertebrates.

    PubMed

    Codron, Daryl; Carbone, Chris; Müller, Dennis W H; Clauss, Marcus

    2012-08-23

    Given the physiological limits to egg size, large-bodied non-avian dinosaurs experienced some of the most extreme shifts in size during postnatal ontogeny found in terrestrial vertebrate systems. In contrast, mammals--the other dominant vertebrate group since the Mesozoic--have less complex ontogenies. Here, we develop a model that quantifies the impact of size-specific interspecies competition on abundances of differently sized dinosaurs and mammals, taking into account the extended niche breadth realized during ontogeny among large oviparous species. Our model predicts low diversity at intermediate size classes (between approx. 1 and 1000 kg), consistent with observed diversity distributions of dinosaurs, and of Mesozoic land vertebrates in general. It also provides a mechanism--based on an understanding of different ecological and evolutionary constraints across vertebrate groups--that explains how mammals and birds, but not dinosaurs, were able to persist beyond the Cretaceous-Tertiary (K-T) boundary, and how post-K-T mammals were able to diversify into larger size categories. PMID:22513279

  6. Decline of the Maastrichtian pelagic ecosystem based on planktic foraminifera assemblage change: Implication for the terminal Cretaceous faunal crisis

    NASA Astrophysics Data System (ADS)

    Abramovich, Sigal; Almogi-Labin, Ahuva; Benjamini, Chaim

    1998-01-01

    An outer shelf upper slope tropical Tethyan pelagic environment existed over southern Israel during Maastrichtian time. Planktic foraminifera in the >63 and >149 μm size fractions from four sections in this area were studied quantitatively for a high-resolution ecostratigraphic analysis of the pre Cretaceous-Tertiary (K-T) paleoenvironment. During the Maastrichtian, 41% of the planktic foraminifera species became extinct, mostly keeled Globotruncanidae, which also became quantitatively reduced near the end of the Maastrichtian from as much as 35% to only 5% of the planktic foraminifera population. Evolutionary replacement of extinct species by new forms nearly ceased in that interval. Two major opportunistic blooms of Guembelitria took place, associated with reduced abundances of keeled forms and the dominant species Heterohelix globulosa. The first bloom occurred within the upper Gansserina gansseri to lower Abathomphalus mayaroensis Zones and the second within the Plummerita hantkeninoides Zone. The extinctions, concomitant changes in faunal dominance, and opportunist blooms indicate that the pelagic ecosystem in the Negev area experienced multiple stresses during the Maastrichtian. The planktic foraminiferal assemblages were taxonomically impoverished and in decline prior to the K-T boundary crisis.

  7. Cenozoic bolide impacts and biotic change in North American mammals.

    PubMed

    Alroy, John

    2003-01-01

    North American mammals experienced a major mass extinction at the Cretaceous/Tertiary (K/T) boundary that is tied unambiguously to the Chicxulub impact event. Immediately afterwards, there was an immense adaptive radiation that greatly expanded taxonomic diversity and the range of body sizes and ecological strategies. However, ties between later, Cenozoic impact events and specific episodes in mammalian evolution cannot be demonstrated. A time series of maximum known crater sizes within 1.0-million-year-long temporal bins is shown not to cross-correlate with five separate measures of taxonomic turnover rate, one measure of change in relative taxonomic composition, and four measures of change in body mass distributions. The lack of correlation persists even after excluding the volatile Paleocene mammalian data, adding dummy data to represent intervals without known craters, or lagging the time series against each other for up to 5 million years. Furthermore, the data fail to support broad-brush correspondences between ages of major (>20 km in diameter) craters and the timing of five key, post-K/T biotic transitions, including medium-sized extinction episodes during the late Paleocene and latest Miocene. The results challenge the idea that extraterrestrial impacts drive all, most, or even many extinction and radiation episodes in terrestrial organisms, and add to other evidence that natural, long-term biotic changes are often independent of changes in the physical environment. PMID:12804369

  8. NATIONAL FOREST BOUNDARIES

    EPA Science Inventory

    This dataset contains National Forest boundaries for the lower 48 states, including Puerto Rico. Alaska is maintained separately. This dataset includes administrative unit boundaries, derived primarily from the GSTC SOC data system, comprised of Cartographic Feature Files (CFFs...

  9. Method for solving moving boundary value problems for linear evolution equations

    PubMed

    Fokas; Pelloni

    2000-05-22

    We introduce a method of solving initial boundary value problems for linear evolution equations in a time-dependent domain, and we apply it to an equation with dispersion relation omega(k), in the domain l(t)k)t]rho(k) along a time-dependent contour, or an integral of exp[ikx-iomega(k)t]rho(k, &kmacr;) over a fixed two-dimensional domain. The functions rho(k) and rho(k,&kmacr;) can be computed through the solution of a system of Volterra linear integral equations. This method can be generalized to nonlinear integrable partial differential equations. PMID:10990798

  10. Mitogenomic analyses place the gharial (Gavialis gangeticus) on the crocodile tree and provide pre-K/T divergence times for most crocodilians.

    PubMed

    Janke, Axel; Gullberg, Anette; Hughes, Sandrine; Aggarwal, Ramesh K; Arnason, Ulfur

    2005-11-01

    Based on morphological analyses, extant members of the order Crocodylia are divided into three families, Alligatoridae, Crocodylidae, and Gavialidae. Gavialidae includes one species, the gharial, Gavialis gangeticus. In this study we have examined crocodilian relationships in phylogenetic analyses of seven mitochondrial genomes that have been sequenced in their entirety. The analyses did not support the morphologically acknowledged separate position of the gharial in the crocodilian tree. Instead the gharial joined the false gharial (Tomistoma schlegelii) on a common branch that was shown to constitute a sister group to traditional Crocodylidae (less Tomistoma). Thus, the analyses suggest the recognition of only two Crocodylia families, Alligatoridae and Crocodylidae, with the latter encompassing traditional Crocodylidae plus Gavialis/Tomistoma. A molecular dating of the divergence between Alligatoridae and Crocodylidae suggests that this basal split among recent crocodilians took place approximately 140 million years before present, at the Jurassic/Cretaceous boundary. The results suggest that at least five crocodilian lineages survived the mass extinction at the KT boundary. PMID:16211427

  11. On boundary superalgebras

    SciTech Connect

    Doikou, Anastasia

    2010-04-15

    We examine the symmetry breaking of superalgebras due to the presence of appropriate integrable boundary conditions. We investigate the boundary breaking symmetry associated with both reflection algebras and twisted super-Yangians. We extract the generators of the resulting boundary symmetry as well as we provide explicit expressions of the associated Casimir operators.

  12. Numerical Boundary Condition Procedures

    NASA Technical Reports Server (NTRS)

    1981-01-01

    Topics include numerical procedures for treating inflow and outflow boundaries, steady and unsteady discontinuous surfaces, far field boundaries, and multiblock grids. In addition, the effects of numerical boundary approximations on stability, accuracy, and convergence rate of the numerical solution are discussed.

  13. Boundary-layer transition

    NASA Astrophysics Data System (ADS)

    Matthews, R. K.

    The prediction of the boundary layer transition Reynolds number for the design of hypersonic vehicles is considered. The boundary layer state (laminar or turbulent) that approaches the vehicle control surfaces can significantly affect the control surface effectiveness. In addition, the heating rates associated with turbulent boundary layers are often ten times higher than those of laminar boundary layers. Unfortunately, the methodology to predict transition has eluded the aerodynamicist for over three decades, and there are still many unanswered questions. Many parameters that affect transition are considered and numerous references for those who are interested in specializing in this topic are provided. It is emphasized that during wind tunnel testing it is very important to know the boundary layer state. Typically, heat transfer distributions can provide this information; however, it is often necessary to artificially trip the flow to induce a turbulent boundary layer. The methodology of using trip spheres is discussed, and illustrative data are presented.

  14. Experimental evidence that an asteroid impact led to the extinction of many species 65 million years ago

    SciTech Connect

    Alvarez, L.W.

    1982-09-01

    The development of the theory that the mass extinction of the dinosaurs at the Cretaceous-Tertiary boundary was caused by an asteroid impact is reviewed. The personnel involved, the objections to the theory, and the evidence refuting those objections are presented chronologically. (ACR)

  15. Experimental evidence that an asteroid impact LED to the extinction of many species 65 million years ago

    NASA Astrophysics Data System (ADS)

    Alvarez, L. W.

    1982-09-01

    The development of the theory that the mass extinction of the dinosaurs at the Cretaceous-Tertiary boundary was caused by as asteroid impact is reviewed. The scientists involved, the objections to the theory, and the evidence refuting those objections are presented chronologically.

  16. Diachronism between extinction time of terrestrial and marine dinosaurs

    NASA Technical Reports Server (NTRS)

    Hansen, H. J.

    1988-01-01

    The dinosaur eggs of southern France occur in continental, fine-grained red-beds, rich in carbonate. The last eggs in the region occur in the magnetic polarity interval 30 normal. Estimates of the accumulation rate of these sediments on the basis of the magneto-stratigraphy leads to placement of the time of disappearance of the dinosaurs in this region of 200,000 to 400,000 years earlier than the Cretaceous-Tertiary boundary. In the Red Deer Valley, Canada, estimates of average accumulation rate lead to a time of disappearance of the dinosaurs of 135,000 to 157,000 years earlier than the Cretaceous-Tertiary boundary. In the central part of Poland, in the Nasilow Quarry, the paleomagnetic pattern shows 7 m of chalk of reversed polarity containing in its upper part the marine Cretaceous-Tertiary biostratigraphic boundary. A greensand deposit contains numerous re-deposited Maastrichtian fossils. The fossils show no signs of wear and are of very different sizes including 1 mm thick juvenile belemnites. The deposit was described as a lag-sediment. Among the various fossils are teeth of mosasaurs. Thus there is coincidence in time between the extinction of mosasaurs and other Cretaceous organisms. This leads to the conclusion, that extinction of terrestrial dinosaurs took place earlier than extinction of marine dinosaurs at the Cretaceous-Tertiary boundary.

  17. Boundary lubrication: Revisited

    NASA Technical Reports Server (NTRS)

    Jones, W. R., Jr.

    1982-01-01

    A review of the various lubrication regimes, with particular, emphasis on boundary lubrication, is presented. The types of wear debris and extent of surface damage is illustrated for each regime. The role of boundary surface films along with their modes of formation and important physical properties are discussed. In addition, the effects of various operating parameters on friction and wear in the boundary lubrication regime are considered.

  18. Language and Ethnic Boundaries.

    ERIC Educational Resources Information Center

    Paulston, Christina Bratt; Paulston, Rolland G.

    The paper examines the phenomenon of group bilingualism, the origin of the contact situations which lead to it, and the role of language in maintaining ethnic boundaries, especially in revitalization movements. Language shift and language maintenance are seen as indicators of the degree to which ethnic boundaries are being maintained. Many ethnic…

  19. NATIONAL PARK BOUNDARIES

    EPA Science Inventory

    The National Park Service has produced a data base of boundaries for its National Parks. A copy of this data was downloaded from the National Parks Service ftp site by Region 10. These digital boundaries represent the best guess and data that could be collected in a short time....

  20. The Atmospheric Boundary Layer

    ERIC Educational Resources Information Center

    Tennekes, Hendrik

    1974-01-01

    Discusses some important parameters of the boundary layer and effects of turbulence on the circulation and energy dissipation of the atmosphere. Indicates that boundary-layer research plays an important role in long-term forecasting and the study of air-pollution meteorology. (CC)

  1. Experimentally Shock-loaded Anhydrite: Unit-Cell Dimensions, Microstrain and Domain Size from X-Ray Diffraction

    NASA Technical Reports Server (NTRS)

    Skala, R.; Hoerz, F.

    2003-01-01

    Cretaceous Tertiary (K/T) boundary is traditionally associated with one of the most dramatic mass extinctions in the Earth history. A number of killing mechanisms have been suggested to contribute to the widespread extinctions of Cretaceous biota at this boundary, including severe, global deterioration of the atmosphere and hydrosphere from the shock-induced release of CO2 and SO(x) from carbonate- and sulfate-bearing target rocks, respectively. Recently carried out calculations revealed that the global warming caused by CO2 release was considerably less important than the cooling due to SO(x) gases release during the Chicxulub impact event. Considering apparent potential importance of the response of sulfates to the shock metamorphism, relative lack of the data on shock behavior of sulfates as well as some general difficulties encountered during thermodynamic modeling of the shock-induced CO2 loss from carbonates we subjected anhydrite to a series of shock experiments designed for complete recovery of the shocked material. We report here on the detail X-ray diffraction analysis of seven samples that were subjected to experimental shock-loading from 10 to 65 GPa.

  2. Anomalies, entropy, and boundaries

    NASA Astrophysics Data System (ADS)

    Fursaev, Dmitry V.; Solodukhin, Sergey N.

    2016-04-01

    A relation between the conformal anomaly and the logarithmic term in the entanglement entropy is known to exist for CFTs in even dimensions. In odd dimensions, the local anomaly and the logarithmic term in the entropy are absent. As was observed recently, there exists a nontrivial integrated anomaly if an odd-dimensional spacetime has boundaries. We show that, similarly, there exists a logarithmic term in the entanglement entropy when the entangling surface crosses the boundary of spacetime. The relation of the entanglement entropy to the integrated conformal anomaly is elaborated for three-dimensional theories. Distributional properties of intrinsic and extrinsic geometries of the boundary in the presence of conical singularities in the bulk are established. This allows one to find contributions to the entropy that depend on the relative angle between the boundary and the entangling surface.

  3. Boundary Layer Relaminarization Device

    NASA Technical Reports Server (NTRS)

    Creel, Theodore R. (Inventor)

    1993-01-01

    Relamination of a boundary layer formed in supersonic flow over the leading edge of a swept airfoil is accomplished using at least one band, especially a quadrangular band, and most preferably a square band. Each band conforms to the leading edge and the upper and lower surfaces of the airfoil as an integral part thereof and extends perpendicularly from the leading edge. Each band has a height of about two times the thickness of the maximum expected boundary layer.

  4. Psychodynamic Perspective on Therapeutic Boundaries

    PubMed Central

    Bridges, Nancy A.

    1999-01-01

    Discussion of boundaries in therapeutic work most often focuses on boundary maintenance, risk management factors, and boundary violations. The psychodynamic meaning and clinical management of boundaries in therapeutic relationships remains a neglected area of discourse. Clinical vignettes will illustrate a psychodynamic, developmental-relational perspective using boundary dilemmas to deepen and advance the therapeutic process. This article contributes to the dialogue about the process of making meaning and constructing therapeutically useful and creative boundaries that further the psychotherapeutic process. PMID:10523432

  5. Evolution of Modern Birds Revealed by Mitogenomics: Timing the Radiation and Origin of Major Orders

    PubMed Central

    Pacheco, M. Andreína; Battistuzzi, Fabia U.; Lentino, Miguel; Aguilar, Roberto F.; Kumar, Sudhir; Escalante, Ananias A.

    2011-01-01

    Mitochondrial (mt) genes and genomes are among the major sources of data for evolutionary studies in birds. This places mitogenomic studies in birds at the core of intense debates in avian evolutionary biology. Indeed, complete mt genomes are actively been used to unveil the phylogenetic relationships among major orders, whereas single genes (e.g., cytochrome c oxidase I [COX1]) are considered standard for species identification and defining species boundaries (DNA barcoding). In this investigation, we study the time of origin and evolutionary relationships among Neoaves orders using complete mt genomes. First, we were able to solve polytomies previously observed at the deep nodes of the Neoaves phylogeny by analyzing 80 mt genomes, including 17 new sequences reported in this investigation. As an example, we found evidence indicating that columbiforms and charadriforms are sister groups. Overall, our analyses indicate that by improving the taxonomic sampling, complete mt genomes can solve the evolutionary relationships among major bird groups. Second, we used our phylogenetic hypotheses to estimate the time of origin of major avian orders as a way to test if their diversification took place prior to the Cretaceous/Tertiary (K/T) boundary. Such timetrees were estimated using several molecular dating approaches and conservative calibration points. Whereas we found time estimates slightly younger than those reported by others, most of the major orders originated prior to the K/T boundary. Finally, we used our timetrees to estimate the rate of evolution of each mt gene. We found great variation on the mutation rates among mt genes and within different bird groups. COX1 was the gene with less variation among Neoaves orders and the one with the least amount of rate heterogeneity across lineages. Such findings support the choice of COX 1 among mt genes as target for developing DNA barcoding approaches in birds. PMID:21242529

  6. Measurement of the ratio of inclusive jet cross sections using the anti-kT algorithm with radius parameters R=0.5 and 0.7 in pp collisions ats=7TeV

    DOE PAGESBeta

    Chatrchyan, S.; Khachatryan, V.; Sirunyan, A. M.; Tumasyan, A.; Adam, W.; Bergauer, T.; Dragicevic, M.; Erö, J.; Fabjan, C.; Friedl, M.; et al

    2014-10-16

    Measurements of the inclusive jet cross section with the anti-kT clustering algorithm are presented for two radius parameters, R = 0.5 and 0.7. They are based on data from LHC proton-proton collisions at √s = 7  TeV corresponding to an integrated luminosity of 5.0  fb⁻¹ collected with the CMS detector in 2011. The ratio of these two measurements is obtained as a function of the rapidity and transverse momentum of the jets. Significant discrepancies are found comparing the data to leading-order simulations and to fixed-order calculations at next-to-leading order, corrected for nonperturbative effects, whereas simulations with next-to-leading-order matrix elements matched to partonmore » showers describe the data best.« less

  7. Road boundary detection

    NASA Technical Reports Server (NTRS)

    Sowers, J.; Mehrotra, R.; Sethi, I. K.

    1989-01-01

    A method for extracting road boundaries using the monochrome image of a visual road scene is presented. The statistical information regarding the intensity levels present in the image along with some geometrical constraints concerning the road are the basics of this approach. Results and advantages of this technique compared to others are discussed. The major advantages of this technique, when compared to others, are its ability to process the image in only one pass, to limit the area searched in the image using only knowledge concerning the road geometry and previous boundary information, and dynamically adjust for inconsistencies in the located boundary information, all of which helps to increase the efficacy of this technique.

  8. Probabilistic boundary element method

    NASA Technical Reports Server (NTRS)

    Cruse, T. A.; Raveendra, S. T.

    1989-01-01

    The purpose of the Probabilistic Structural Analysis Method (PSAM) project is to develop structural analysis capabilities for the design analysis of advanced space propulsion system hardware. The boundary element method (BEM) is used as the basis of the Probabilistic Advanced Analysis Methods (PADAM) which is discussed. The probabilistic BEM code (PBEM) is used to obtain the structural response and sensitivity results to a set of random variables. As such, PBEM performs analogous to other structural analysis codes such as finite elements in the PSAM system. For linear problems, unlike the finite element method (FEM), the BEM governing equations are written at the boundary of the body only, thus, the method eliminates the need to model the volume of the body. However, for general body force problems, a direct condensation of the governing equations to the boundary of the body is not possible and therefore volume modeling is generally required.

  9. Boundary layer simulator improvement

    NASA Technical Reports Server (NTRS)

    Praharaj, Sarat C.; Schmitz, Craig P.; Nouri, Joseph A.

    1989-01-01

    Boundary Layer Integral Matrix Procedure (BLIMPJ) has been identified by the propulsion community as the rigorous boundary layer program in connection with the existing JANNAF reference programs. The improvements made to BLIMPJ and described herein have potential applications in the design of the future Orbit Transfer Vehicle engines. The turbulence model is validated to include the effects of wall roughness and a way is devised to treat multiple smooth-rough surfaces. A prediction of relaminarization regions is examined as is the combined effects of wall cooling and surface roughness on relaminarization. A turbulence model to represent the effects of constant condensed phase loading is given. A procedure is described for thrust decrement calculation in thick boundary layers by coupling the T-D Kinetics Program and BLIMPJ and a way is provided for thrust loss optimization. Potential experimental studies in rocket nozzles are identified along with the required instrumentation to provide accurate measurements in support of the presented new analytical models.

  10. Behavior of carbonate shelf communities in the Upper Triassic of Nevada: Evidence of impact mediated faunal turnover

    SciTech Connect

    Hogler, J.A. . Museum of Paleontology)

    1993-04-01

    The carbonate shelf sediments of the Luning and Gabbs Formations of Nevada span the last several million years of the Triassic. This richly fossiliferous sequence provides a relatively continuous record of benthic community behavior during a long interval of global biotic turnover. Upper Carnian-Lower Norian and Upper Norian sea floors in this region were inhabited by a variety of invertebrate communities, all of them mollusc-dominated. Across a range of offshore shelf to basinal environments and throughout repeated community replacements, the most abundant and diverse taxa were infaunal and epifaunal bivalves and ammonites. The sequence of Upper Triassic molluscan communities was interrupted by a Lower or Middle Norian interval of brachiopod-dominated faunas. Although preserved in similar offshore carbonate shelf sediments, these communities are nearly devoid of the infaunal bivalves and ammonites that characterize both older and younger assemblages in the section. This pattern, of a temporary replacement of molluscan communities by brachiopod faunas, mimics that reported for some shelf assemblages across the Cretaceous-Tertiary boundary. That brief resurgence of brachiopods is linked to a sharp drop in marine primary productivity, which suggests that a disruption of planktonic food chains may also have occurred early in the Norian. The timing and pattern of Carnian-Norian faunal and physical events and their resemblance to K/T sequences are consistent with the proposal that an asteroid impact played a role in the Upper Triassic faunal transition.

  11. Iridium in sediments containing large abundances of Australasian microtektites from DSDP hole 758B in the Eastern Indian Ocean and from DSDP hole 769A in the Sulu Sea

    NASA Technical Reports Server (NTRS)

    Schmidt, Gerhard; Zhou, Lei; Wasson, John T.

    1993-01-01

    Excess Ir found in sediments at the Cretaceous/Tertiary (K/T) boundary and in other (e.g., Pliocene) sediments from deep sea drilling cores is widely interpreted as evidence of major impact events. The Australasian tektites originated in an impact event approximately 0.77 Ma ago; microtektites have been found in deep-sea sediment cores from throughout the Indian Ocean, the Philippine Sea, and western Pacific Ocean, but Ir has not been previously reported in these horizons. The deep-sea record of tektites is of particular interest, because in contrast to most continental occurrences, the stratigraphy preserves the original depositional position. Recently several cores having exceptionally high contents of Australasian microtektites have been investigated, Glass and Wu found shocked quartz associated with the microtektites. We used neutron activation to determine concentrations of Ir and other elements in two cores bearing microtektites, one from Deep Sea Drilling Project (DSDP) hole 758B in the Eastern Indian Ocean and one from DSDP hole 769A in the Sulu Sea (near Mindanao, Philippines). The sedimentation age for the microtektite layers in core 758B lies between 0.73 - 0.78 Ma and agrees well with the mean laser-fusion Ar-40/Ar-39 age of Australasian tektites of 0.77 +/- 0.02 Ma by Izett et al. We are able to resolve a small positive Ir enhancement in 758B. Core 769A shows too much scatter to allow resolution of an Ir peak.

  12. Mammalian phylogeny reveals recent diversification rate shifts.

    PubMed

    Stadler, Tanja

    2011-04-12

    Phylogenetic trees of present-day species allow investigation of the rate of evolution that led to the present-day diversity. A recent analysis of the mammalian phylogeny challenged the view of explosive mammalian evolution after the Cretaceous-Tertiary (K/T) boundary (65 Mya). However, due to lack of appropriate methods, the diversification (speciation minus extinction) rates in the more recent past of mammalian evolution could not be determined. In this paper, I provide a method that reveals that the tempo of mammalian evolution did not change until ∼ 33 Mya. This constant period was followed by a peak of diversification rates between 33 and 30 Mya. Thereafter, diversification rates remained high and constant until 8.55 Mya. Diversification rates declined significantly at 8.55 and 3.35 Mya. Investigation of mammalian subgroups (marsupials, placentals, and the six largest placental subgroups) reveals that the diversification rate peak at 33-30 Mya is mainly driven by rodents, cetartiodactyla, and marsupials. The recent diversification rate decrease is significant for all analyzed subgroups but eulipotyphla, cetartiodactyla, and primates. My likelihood approach is not limited to mammalian evolution. It provides a robust framework to infer diversification rate changes and mass extinction events in phylogenies, reconstructed from, e.g., present-day species or virus data. In particular, the method is very robust toward noise and uncertainty in the phylogeny and can account for incomplete taxon sampling. PMID:21444816

  13. USACE DIVISION AND DISTRICT BOUNDARIES

    EPA Science Inventory

    The USACE Division and District Boundary data contains the delination of Corps Division and District boundaries. District and Division Boundaries are based on the US political and watershed boundaries. In the mid 1990's, WES created the file by digitizing the 1984 Civil Wor...

  14. K-T Transition into Chaos.

    ERIC Educational Resources Information Center

    McLean, Dewey M.

    1988-01-01

    Discusses the destabilizing influences that affect feedback systems in the earth and trigger disorganization. Presents information that integrates mantle degassing with feed-back systems, and the Sun-Earth-Space energy flow system which is the primary source of energy that drives the Earth's biosphere. (RT)

  15. Accretion rate of extraterrestrial matter: Iridium deposited over the last 70 million years

    NASA Technical Reports Server (NTRS)

    Kyte, Frank T.

    1988-01-01

    In order to quantify the accretion rate of extraterrestrial matter during the Cenozoic, Ir concentrations were measured in a continuous series of 450 samples across most of the length of piston core LL44-GPC3. LL44-GPC3 is a 25-meter-long, large-diameter piston core of abyssal clay from the central North Pacific. This core contains a nearly continuous record of sedimentation over the last 70 Ma, as this site migrated from a region near the Equator in the late Cretaceous to its present position north of Hawaii. The first-cut survey across the core is nearing completion, and all of the conclusions of the earlier study, in which was reported the concentrations of Ir, Co, and Sb across 9 meters of this core, remain unchanged. The only strongly enhanced Ir concentrations occur at the Cretaceous-Tertiary (K-T) boundary and outside the K-T boundary Ir correlates well with Co, a terrestrial element which is largely present in hydrogenous ferromanganese oxide precipitates from seawater. Concentrations of both elements appear to be inversely correlated with the sedimentation rate. Although the K-T Ir anomaly is unique in magnitude in this core, there are several small bumps in the Ir profile which may reflect smaller accretionary events. The most promising Ir enhancement was observed in a 30 cm section approximately 1 m below the K-T boundary. Preliminary data suggest deposition of an excess across this interval at a time estimate to be approximate 1 Ma before the K-T impact event, but there is insufficient evidence at present to prove that this reflects enhanced accretion of extraterrestrial matter. A detailed model is being prepared of the chemical record of sedimentation in this core using a combined database of 39 elements in approximately 450 samples across the Cenozoic. Preliminary working model indicates that the only sedimentary sources which contribute significantly to the Ir budget in this core are the hydrogenous precipitates and extraterrestrial particulates.

  16. 2000 CENSUS BLOCK BOUNDARIES

    EPA Science Inventory

    This data set is a polygon shapefile of the boundaries of Census Blocks in New England derived from U.S. Census Bureau 2000 TIGER/Line data. Numerous attributes pertaining to population are included. TIGER, TIGER/Line, and Census TIGER are registered trademarks of the Bureau o...

  17. Saturn's Magnetospheric Boundaries

    NASA Astrophysics Data System (ADS)

    Kurth, W. S.; Gurnett, D. A.; Hospodarsky, G. B.; Dougherty, M. K.; Arridge, C. S.; Achilleos, N. A.; Andre, N.; Crary, F. J.; McAndrews, H. J.; Szego, K.; Rymer, A. M.; Krimigis, S. M.; Mitchell, D. G.; Krupp, N.; Hamilton, D. C.; Hansen, K. C.

    2005-12-01

    Cassini has now been in orbit at Saturn for more than a year, making more than 12 passes through Saturn's magnetosphere. While the apoapses of these orbits have so far remained clustered near dawn and the inclinations have been mostly below about 20 degrees, progress has been made in mapping and understanding various magnetospheric boundaries. For example, initial modeling of the bow shock and magnetopause by Hendricks et al. [GRL, 32, 2005] suggest the magnetosphere is somewhat more inflated than thought from Pioneer- and Voyager-based models. Of perhaps even more interest are internal boundaries within the magnetosphere. These boundaries separate various magnetospheric regions and are less rigorously defined than the external boundaries. In fact, a number of authors have identified different regions based on particular sets of measurements; we review some of these and attempt to integrate these into a scheme of general utility, realizing that ongoing work on interpretation of existing observations and high inclination orbits to come will likely modify any such scheme we may devise this early in Cassini's tour.

  18. Rethinking the Boundaries

    ERIC Educational Resources Information Center

    Schuller, Tom

    2011-01-01

    The splintering of the public domain makes the development of a coherent lifelong learning system less likely. But while people might want to resist plans to dissolve the boundaries between the public, private and voluntary sectors, debate about the relationship between professionals and volunteers in adult education suggests those boundaries…

  19. RCRA TSD BOUNDARIES

    EPA Science Inventory

    This is a shapefile of RCRA Treatment, Storage, and Disposal facility boundaries developed by PRC Environmental Management, Inc (PRC) per a Work Assignment from the U.S. EPA under the Resource Conservation and Recovery Act (RCRA) Enforcement, Permitting, and Assistance (REPA) Con...

  20. Carbonate-silicate cycle models of the long-term carbon cycle, carbonate accumulation in the oceans, and climate

    SciTech Connect

    Caldeira, K.G.

    1991-01-01

    Several models of the long-term carbon cycle, incorporating models of the carbonate-silicate cycle, were developed and utilized to investigate issues relating to global climate and the causes and consequences of changes in calcium carbonate accumulation in the oceans. Model results indicate that the marked mid-Cretaceous (120 Ma) global warming could be explained by increased rates of release of carbon dioxide from subduction-zone metamorphism and mid-ocean-ridges, in conjunction with paleogeographic factors. Since the mid-Cretaceous, the primary setting for calcium carbonate accumulation in the oceans has shifted from shallow-water to deep-water environments. Model results suggest that this shift could have major consequences for the carbonate-silicate cycle and climate, and lead to significant increases in the flux of metamorphic carbon dioxide to the atmosphere. Increases in pelagic carbonate productivity, and decreases in tropical shallow-water area available for neritic carbonate accumulation, have both been proposed as the primary cause of this shift. Two lines of evidence developed here (one involving a statistical analysis of Tertiary carbonate-accumulation and oxygen-isotope data, and another based on modeling the carbonate-silicate cycle and ocean chemistry) suggest that a decrease in tropical shallow-water area was more important than increased pelagic productivity in explaining this shift. Model investigations of changes in ocean chemistry at the Cretaceous/Tertiary (K/T) boundary (66 Ma) indicate that variations in deep-water carbonate productivity may affect shallow-water carbonate accumulation rates through a mechanism involving surface-water carbonate-ion concentration. In the aftermath of the K/T boundary event, deep-water carbonate production and accumulation were significantly reduced as a result of the extinction of calcareous plankton.

  1. Biodiversity changes in Cretaceous palynofloras of eastern Asia and western North America

    USGS Publications Warehouse

    Nichols, D.J.

    2003-01-01

    Palynology has great potential for providing comparative data and interpretations about changes in biodiversity during the Cretaceous Period. This is especially true for both eastern Asia and western North America because of strong floristic similarities that existed between these regions during Cretaceous time. Also, because palynomorphs of terrestrial origin can be deposited in offshore as well as terrestrial environments, significant potential exists for marine-to-continental palynostratigraphic correlations in both regions. Palynological biostratigraphy can improve the geologic dating of changes in biodiversity. During the Early Cretaceous, eastern Asia and western North America lay within the Cerebropollenites palynofloral province, a circumpolar phytogeographic zone characterized by distinctive palynological assemblages. During most of the Late Cretaceous, these regions lay within the palynofloristically unique Aquilapollenites Province, which was more restricted geographically than the Cerebropollenites Province. The most important development during Cretaceous time that is reflected in palynological assemblages was the rise of the angiosperms as the numerically and ecologically dominant forms of vegetation. The most striking short-term palynofloral event in the two regions was the sudden disappearance of species of Aquilapollenites and associated genera at the Cretaceous-Tertiary (K/T) boundary. Both of these occurrences produced major changes in biodiversity in the terrestrial realm. Geologic research in International Geological Correlation Program Project 434 can benefit from applications of palynostratigraphy. Palynologic research within Project 434 could include development of a comprehensive palynostratigraphic zonation for the Cretaceous, the definition of regional palynostratigraphic datums, and investigation of the record of floral change at the K/T boundary. ?? 2002 Elsevier Science Ltd. All rights reserved.

  2. Boundary layer simulator improvement

    NASA Technical Reports Server (NTRS)

    Praharaj, S. C.; Schmitz, C.; Frost, C.; Engel, C. D.; Fuller, C. E.; Bender, R. L.; Pond, J.

    1984-01-01

    High chamber pressure expander cycles proposed for orbit transfer vehicles depend primarily on the heat energy transmitted from the combustion products through the thrust wall chamber wall. The heat transfer to the nozzle wall is affected by such variables as wall roughness, relamarization, and the presence of particles in the flow. Motor performance loss for these nozzles with thick boundary layers is inaccurate using the existing procedure coded BLIMPJ. Modifications and innovations to the code are examined. Updated routines are listed.

  3. Boundary transfer matrices and boundary quantum KZ equations

    SciTech Connect

    Vlaar, Bart

    2015-07-15

    A simple relation between inhomogeneous transfer matrices and boundary quantum Knizhnik-Zamolodchikov (KZ) equations is exhibited for quantum integrable systems with reflecting boundary conditions, analogous to an observation by Gaudin for periodic systems. Thus, the boundary quantum KZ equations receive a new motivation. We also derive the commutativity of Sklyanin’s boundary transfer matrices by merely imposing appropriate reflection equations, in particular without using the conditions of crossing symmetry and unitarity of the R-matrix.

  4. A compilation of information and data on the Manson impact structure

    NASA Technical Reports Server (NTRS)

    Hartung, Jack B.; Anderson, Raymond R.

    1988-01-01

    A problem for the impact hypothesis for the Cretaceous-Tertiary (K-T) mass extinction is the apparent absence of an identifiable impact site. The Manson Impact Structure is a candidate because it is the largest recognized in the U.S.; it is relatively close to the largest and most abundant shocked quartz grains found at the K-T boundary; and its age is indistinguishable from that of the K-T boundary based on paleontological evidence, fission track dates, and preliminary Ar-40/Ar-39 measurements. The region of northwest central Iowa containing the Manson Impact Structure is covered by Quaternary glacial deposits underlain by Phanerozoic sedimentary rocks (mostly flat-lying carbonates) and Proterozoic red clastic, metamorphic, volcanic, and plutonic rocks. In a circular area about 22 miles (35 km) in diameter around Manson, Iowa, this normal sequence is absent or disturbed and near the center of the disturbed area granitic basement rocks have been uplifted some 20,000 ft (6000m). Attention was drawn to Manson initially by the unusual quality of the groundwater there. Within the structure three roughly concentric zones of rock associations have been identified: (1) displaced strata; (2) completely disrupted strata, and igneous and metamorphic rocks. Manson was established as an impact structure based on its circular shape, its central uplift, and the presence of shocked quartz within the granitic central uplift. A gravity survey identified locations of low-density brecciated rocks and high-density uplifted crystalline rocks, but the outer boundary of the structure could not be established. Aeromagnetic and ground magnetic surveys showed locations and depths of shallowly buried crystalline rock and the locations of faults. A refraction seismic survey identified the crystalline central uplift, determined that the average elevation of bedrock is 70 ft (20 m) higher outside the structure than within, and was used to map the bedrock topography within the structure. A connection between the Manson impact and the K-T boundary may be established or refuted through study of the impact energy, the impact time, and composition of host rock, possible impactors, and impact melts.

  5. Cell boundary fault detection system

    SciTech Connect

    Archer, Charles Jens; Pinnow, Kurt Walter; Ratterman, Joseph D.; Smith, Brian Edward

    2009-05-05

    A method determines a nodal fault along the boundary, or face, of a computing cell. Nodes on adjacent cell boundaries communicate with each other, and the communications are analyzed to determine if a node or connection is faulty.

  6. Maritime boundaries and ocean resources

    SciTech Connect

    Blake, G.

    1987-01-01

    International maritime boundaries have become a major issue in international politics with the increasing exploitation of maritime resources, including mineral extraction from the sea bed, and the associated exstention of territorial waters and zones of exclusive economic activity. This book examines this important international problem. It considers the growth in the exploration of marine resources. It examines particular boundary disputes in different parts of the world and discusses the implications for international law, international politics and maritime activity and management. Contents. Antarctic maritime boundary problems; the law of the sea and the mediterranean; historical geography and the world court line of delimitation across the Gulf of Maine; maritime boundary delimitation worldwide: the current state of play; technical delimitation problems in the Mediterranean Sea; offshore boundaries and mineral resources; maritime boundaries and the emerging regional bases of world ocean management; recent delimitation decisions and trends in international law; maritime boundary problems in the Barents Sea; local government boundaries in U.K. coastal areas.

  7. Boundary conditions as dynamical fields

    NASA Astrophysics Data System (ADS)

    Karabali, Dimitra; Nair, V. P.

    2015-12-01

    The possibility of treating boundary conditions in terms of a bilocal dynamical field is formalized in terms of a boundary action. This allows for a simple path-integral perturbation theory approach to physical effects such as radiation from a time-dependent boundary. The nature of the action which governs the dynamics of the bilocal field is investigated for a limited case (which includes the Robin boundary conditions).

  8. Teaching Educators to Respect Boundaries.

    ERIC Educational Resources Information Center

    Summy, Sarah E.; Bunsen, Teresa D.

    1996-01-01

    Introduces to teachers the concept of defining boundaries, traditionally referred to as appropriate limits, in the relationship between helper and client. Defines the concept of boundaries within current school systems and addresses the importance of boundary issues within all educator training programs, especially in training programs for special…

  9. Anisotropy across Superplume Boundaries

    NASA Astrophysics Data System (ADS)

    Cottaar, S.; Romanowicz, B. A.

    2011-12-01

    Sdiff data sets are presented for paths that run parallel to the African and the Pacific superplume boundaries. Objective clustering of waveforms illustrates sharp changes across these boundaries. The African plume shows a sharp offset in travel times in the SHdiff phase, while a more gradual offset towards slower arrivals is seen in the case of the Pacific superplume. Additionally, Pdiff phases display no offset around the African plume and a weak one around the Pacific plume. Here we focus mainly on another striking feature observed in both cases: outside of the superplume the Sdiff particle motion is strongly elliptical, but becomes linear within the superplume (first noticed by To et al. 2005 in the African superplume case). For the African plume we argue that these observations of delayed SV at large distances (~120 degrees) are indicative of the occurrence of azimuthal anisotropy. The SV arrivals have similar polarity as SH, opposite from what their radiation pattern predicts. Azimuthal anisotropy causes SH energy to be converted to SV (Maupin, 1994), explaining the travel time, polarity and amplitude. Forward modeling through different isotropic and anisotropic models supports this statement, although there are trade-offs between direction and magnitude of azimuthal anisotropy. The strong elliptical particle motions are also observed outside the Pacific plume, but at shorter distances (95-105 degrees). Elliptical motions can occur in the absence of anisotropy when strong velocity deviations or layering occurs close to the CMB, which, based on velocity profiles with depth in global tomographic models would be more likely within the superplume rather than on the fast side. The elliptical particle motions here can be modelled with a simple transverse isotropic model with VSH>VSV, but azimuthal anisotropy cannot be ruled out. The complexities within the Pacific superplume, including strong amplitude drop and existence of a post-cursor, are likely caused by an ultra low velocity zone (Cottaar and Romanowicz, this meeting) and make it difficult to constrain anisotropy within the Pacific superplume. Notably, however, in both cases, elliptical particle motions become more linear, and thus anisotropy decreases, from the fast side towards the slow side across superplume boundaries. Possibly this is caused by a rotation in the deformational regime, causing rotation of the pre-existing anisotropic fast directions. Forward modeling of deformation using tracers in mantle convection models, considering different mineral physics scenarios (Wenk et al., 2011) suggest that the boundaries in anisotropy from downwellings to upwellings can be sharp, and could possibly contribute to explaining the sharp boundary in VSH, in addition to effects of lateral variations in temperature and composition. Moreover the model for post-perovskite with (001)-slip predicts anti-correlation between S and P wave anisotropy. Variation in VPH due to anisotropy would then be anti-correlated with the variation caused by temperature, and this could explain the lack of correlation in the variations of VSH and VPH across the superplume boundary. Our modeling shows that care must be taken when computing R=dlnVs/dlnVp in the presence of anisotropy.

  10. Open boundary molecular dynamics

    NASA Astrophysics Data System (ADS)

    Delgado-Buscalioni, R.; Sablić, J.; Praprotnik, M.

    2015-09-01

    This contribution analyzes several strategies and combination of methodologies to perform molecular dynamic simulations in open systems. Here, the term open indicates that the total system has boundaries where transfer of mass, momentum and energy can take place. This formalism, which we call Open Boundary Molecular Dynamics (OBMD), can act as interface of different schemes, such as Adaptive Resolution Scheme (AdResS) and Hybrid continuum-particle dynamics to link atomistic, coarse-grained (CG) and continuum (Eulerian) fluid dynamics in the general framework of fluctuating Navier-Stokes equations. The core domain of the simulation box is solved using all-atom descriptions. The CG layer introduced using AdResS is located at the outer part of the open box to make feasible the insertion of large molecules into the system. Communications between the molecular system and the outer world are carried out in the outer layers, called buffers. These coupling preserve momentum and mass conservation laws and can thus be linked with Eulerian hydro- dynamic solvers. In its simpler form, OBMD allows, however, to impose a local pressure tensor and a heat flux across the system's boundaries. For a one component molecular system, the external normal pressure and temperature determine the external chemical potential and thus the independent parameters of a grand-canonical ensemble simulation. Extended ensembles under non-equilibrium stationary states can also be simulated as well as time dependent forcings (e.g. oscillatory rheology). To illustrate the robustness of the combined OBMD-AdResS method, we present simulations of star-polymer melts at equilibrium and in sheared flow.

  11. Boundaries and Boundary Marks - Substantive Cultural Heritage of Extensive Importance

    NASA Astrophysics Data System (ADS)

    Waldhaeusl, P.; Koenig, H.; Mansberger, R.

    2015-08-01

    The Austrian Society for surveying and Geoinformation (ASG) has proposed to submit "Boundaries and Boundary Marks" for the UNESCO World Heritage title. It was time that boundaries, borders and limits of all types as well as ownership rights would find the proper attention in the global public. Landmarks symbolize the real property and the associated rights and obligations, in a figurative sense, the property generally and all legal limits. A democratic state of law is impossible at today's population density without a functioning land administration system with surveying and jurisdiction. As monumental World Heritage representatives of the geodetic artwork "Boundaries and Boundary Marks" are specifically proposed: remaining monuments of the original cadastral geodetic network, the first pan-Austrian surveying headquarters in Vienna, and a specific selection of outstanding boundary monuments. Landmarks are monuments to the boundaries which separate rights and obligations, but also connect the neighbors peacefully after written agreement. "And cursed be he who does not respect the boundaries" you wrote already 3000 years ago. Boundaries and Boundary Marks are a real thing; they all belong to the tangible or material heritage of human history. In this context also the intangible heritage is discussed. This refers to oral tradition and expressions, performing arts; social practices, rituals and festive events; as well as to knowledge and practices handling nature and the universe. "Boundaries and Boundary Marks" do not belong to it, but clearly to the material cultural world heritage. "Boundary and Boundary Marks" is proposed to be listed according to the criteria (ii),(iv),(vi).

  12. The Hale solar sector boundary

    NASA Technical Reports Server (NTRS)

    Svalgaard, L.; Wilcox, J. M.

    1976-01-01

    A Hale solar sector boundary is defined as the half (Northern Hemisphere or Southern Hemisphere) of a sector boundary in which the change of sector magnetic field polarity is the same as the change of polarity from a preceding spot to a following spot. Above a Hale sector boundary the green corona has maximum brightness, while above a non-Hale boundary the green corona has a minimum brightness. The Hale portion of a photospheric sector boundary tends to have maximum magnetic field strength, while the non-Hale portion has minimum field strength.

  13. Vortex boundary-layer interactions

    NASA Technical Reports Server (NTRS)

    Bradshaw, P.

    1986-01-01

    The interaction of a turbulent boundary layer (on a flat plate) with a strong artificially-generated longitudinal vortex, which may or may not actually enter the boundary layer, was studied. Experiments, including extensive hot-wire measurements, were completed for the case in which the vortex does enter the boundary layer, and measurements for the somewhat simpler cases in which the boundary layer and vortex remain distinct are now in progress. Contours of total pressure (recently acquired) and of turbulent kinetic energy at various downstream positions are presented to show the overall development of the vortex imbedded in the boundary layer.

  14. Propagation of Macroscopic Phase Boundary

    NASA Astrophysics Data System (ADS)

    Wang, Wenqiang; Tang, Z. P.

    1999-06-01

    The Propagation of macroscopic phase boundary in materials with CdS type phase transition constitutive law was investigated. Three kinds of loading-unloading stress boundary condition were considered. Results show that the phase boundary comprises two segments relating to the purely new phase and mixed phase respectively. The step by step approximation method can be used to the new phase segment, however, the mixed phase segment can only be solved by numerical method. We gave calculation examples for the three kinds of stress boundary condition. Analytical results could be obtained for suddenly loading-unloading stress boundary condition. The results with different methods fit to each other quite well.

  15. A classification of ecological boundaries

    USGS Publications Warehouse

    Strayer, D.L.; Power, M.E.; Fagan, W.F.; Pickett, S.T.A.; Belnap, J.

    2003-01-01

    Ecologists use the term boundary to refer to a wide range of real and conceptual structures. Because imprecise terminology may impede the search for general patterns and theories about ecological boundaries, we present a classification of the attributes of ecological boundaries to aid in communication and theory development. Ecological boundaries may differ in their origin and maintenance, their spatial structure, their function, and their temporal dynamics. A classification system based on these attributes should help ecologists determine whether boundaries are truly comparable. This system can be applied when comparing empirical studies, comparing theories, and testing theoretical predictions against empirical results.

  16. [Surgery without boundaries].

    PubMed

    Sándor, J; Máté, M; Irtó, I; Záborszky, A; Benedek, G; Sterlik, G; Regöly-Mérei, J

    2001-10-01

    Surgery at the turn of the century and at the millennium is characterised by an extremely rapid development. There are no boundaries anymore among the different branches of medicine, in different anatomical regions of the human body, between the living human and the artificial tissues, between the reality and the virtual reality. Nanotechnology and robotics offer new possibilities for minimally invasive procedures. By the introduction of telepresence surgery there are no more surgical limits among countries and continents, between Earth and Space as well. A new chapter in history of medicine is the Cyber Surgery. The future has already arrived. Even in this new world we have to follow the ethical requirements summarised in the Hyppocrates Oath. PMID:11723733

  17. Boundary layer transition studies

    NASA Technical Reports Server (NTRS)

    Watmuff, Jonathan H.

    1995-01-01

    A small-scale wind tunnel previously used for turbulent boundary layer experiments was modified for two sets of boundary layer transition studies. The first study concerns a laminar separation/turbulent reattachment. The pressure gradient and unit Reynolds number are the same as the fully turbulent flow of Spalart and Watmuff. Without the trip wire, a laminar layer asymptotes to a Falkner & Skan similarity solution in the FPG. Application of the APG causes the layer to separate and a highly turbulent and approximately 2D mean flow reattachment occurs downstream. In an effort to gain some physical insight into the flow processes a small impulsive disturbance was introduced at the C(sub p) minimum. The facility is totally automated and phase-averaged data are measured on a point-by-point basis using unprecedently large grids. The evolution of the disturbance has been tracked all the way into the reattachment region and beyond into the fully turbulent boundary layer. At first, the amplitude decays exponentially with streamwise distance in the APG region, where the layer remains attached, i.e. the layer is viscously stable. After separation, the rate of decay slows, and a point of minimum amplitude is reached where the contours of the wave packet exhibit dispersive characteristics. From this point, exponential growth of the amplitude of the disturbance is observed in the detached shear layer, i.e. the dominant instability mechanism is inviscid. A group of large-scale 3D vortex loops emerges in the vicinity of the reattachment. Remarkably, the second loop retains its identify far downstream in the turbulent boundary layer. The results provide a level of detail usually associated with CFD. Substantial modifications were made to the facility for the second study concerning disturbances generated by Suction Holes for laminar flow Control (LFC). The test section incorporates suction through interchangeable porous test surfaces. Detailed studies have been made using isolated holes in the impervious test plate that used to establish the Blasius base flow. The suction is perturbed harmonically and data are averaged on the basis of the phase of the disturbance, for conditions corresponding to strong suction and without suction. The technique was enhanced by using up to nine multiple probes to reduce the experimental run-time. In both cases, 3D contour surfaces in the vicinity of the hole show highly 3D TS waves which fan out in the spanwise direction forming bow-shaped waves downstream. The case without suction has proved useful for evaluating calculation methods. With suction, the perturbations on the centerline are much stronger and decay less rapidly, while the TS waves in the far field are similar to the case without suction. Downstream, the contour surfaces of the TS waves develop spanwise irregularities which eventually form into clumps. The spanwise clumping is evidence of a secondary instability that could be associated with suction vortices. Designers of porous surfaces use Goldsmith's Criterion to minimize cross-stream interactions. It is shown that partial TS wave cancellation is possible, depending on the hole spacing, disturbance frequency and free-stream velocity. New high-performance Constant Temperature Hot-Wire Anemometers were designed and built, based on a linear system theory analysis that can be extended to arbitrary order. The motivation was to achieve the highest possible frequency reponse while ensuring overall system stability. The performance is equal to or superior to commercially available instruments at about 10% of the cost. Details, such as fabrication drawings and a parts list, have been published to enable the instrument to be construced by others.

  18. Boundary terms of conformal anomaly

    NASA Astrophysics Data System (ADS)

    Solodukhin, Sergey N.

    2016-01-01

    We analyze the structure of the boundary terms in the conformal anomaly integrated over a manifold with boundaries. We suggest that the anomalies of type B, polynomial in the Weyl tensor, are accompanied with the respective boundary terms of the Gibbons-Hawking type. Their form is dictated by the requirement that they produce a variation which compensates the normal derivatives of the metric variation on the boundary in order to have a well-defined variational procedure. This suggestion agrees with recent findings in four dimensions for free fields of various spins. We generalize this consideration to six dimensions and derive explicitly the respective boundary terms. We point out that the integrated conformal anomaly in odd dimensions is non-vanishing due to the boundary terms. These terms are specified in three and five dimensions.

  19. Critical frequencies at ocean boundaries

    NASA Astrophysics Data System (ADS)

    Clarke, Allan J.; Shi, Chuan

    1991-06-01

    Past theoretical work has shown that for low-frequency flow at a given ocean boundary location, a critical frequency ωc exists such that for ω > ωc unforced motion is trapped to the coast while for ω; < ωc energy leaves the coast. Alternatively, for motion of a given frequency ω on the boundary, there exists a critical latitude such that the motion is trapped to the coast poleward of that latitude but equatorward it is not. This theory is discussed physically for both meridional and nonmeridional boundaries. The simple formula for critical frequency along a nonmeridional boundary is used to document critical periods for the eastern and western Atlantic, Pacific, and Indian Ocean boundaries. The theory occasionally breaks down when boundary curvature is too large.

  20. Modeling the urban boundary layer

    NASA Technical Reports Server (NTRS)

    Bergstrom, R. W., Jr.

    1976-01-01

    A summary and evaluation is given of the Workshop on Modeling the Urban Boundary Layer; held in Las Vegas on May 5, 1975. Edited summaries from each of the session chairpersons are also given. The sessions were: (1) formulation and solution techniques, (2) K-theory versus higher order closure, (3) surface heat and moisture balance, (4) initialization and boundary problems, (5) nocturnal boundary layer, and (6) verification of models.

  1. Boundary-Layer & health

    NASA Astrophysics Data System (ADS)

    Costigliola, V.

    2010-09-01

    It has long been known that specific atmospheric processes, such as weather and longer-term climatic fluctuations, affect human health. The biometeorological literature refers to this relationship as meteorotropism, defined as a change in an organism that is correlated with a change in atmospheric conditions. Plenty of (patho)physiological functions are affected by those conditions - like the respiratory diseases - and currently it is difficult to put any limits for pathologies developed in reply. Nowadays the importance of atmospheric boundary layer and health is increasingly recognised. A number of epidemiologic studies have reported associations between ambient concentrations of air pollution, specifically particulate pollution, and adverse health effects, even at the relatively low concentrations of pollution found. Since 1995 there have been over twenty-one studies from four continents that have explicitly examined the association between ambient air pollutant mixes and daily mortality. Statistically significant and positive associations have been reported in data from various locations around the world, all with varying air pollutant concentrations, weather conditions, population characteristics and public health policies. Particular role has been given to atmospheric boundary layer processes, the impact of which for specific patient-cohort is, however, not well understood till now. Assessing and monitoring air quality are thus fundamental to improve Europe's welfare. One of current projects run by the "European Medical Association" - PASODOBLE will develop and demonstrate user-driven downstream information services for the regional and local air quality sectors by combining space-based and in-situ data with models in 4 thematic service lines: - Health community support for hospitals, pharmacies, doctors and people at risk - Public information for regions, cities, tourist industry and sporting event organizers - Compliance monitoring support on particulate matter for regional environmental agencies - Local forecast model evaluation support for local authorities and city bodies. Giving value to the above listed aspects, PASODOBLE objectives are following: - Evolution of existing and development of new sustainable air quality services for Europe on regional and local scales - Development and testing of a generic service framework for coordinated input data acquisition and customizable user-friendly access to services - Utilization of multiple cycles of delivery, use and assessment versus requirements and market planning in cooperation with users - Promotion and harmonisation of best practise tools for air quality communities. Further European multidisciplinary projects should be created to better understand the most prevalent atmospheric factors to be impacted in predictive, preventive and personalised medicine considered as the central concept for future medicine.

  2. Symbolic Boundary Work in Schools: Demarcating and Denying Ethnic Boundaries

    ERIC Educational Resources Information Center

    Tabib-Calif, Yosepha; Lomsky-Feder, Edna

    2014-01-01

    This article examines the symbolic boundary work that is carried out at a school whose student population is heterogeneous in terms of ethnicity and class. Based on ethnography, the article demonstrates how the school's staff seeks to neutralize ethnic boundaries and their accompanying discourse, while the pupils try to bring ethnic…

  3. U-Pb isotopic results for single shocked and polycrystalline zircons record 550-65.5-Ma ages for a K-T target site and 2700-1850-Ma ages for the Sudbury impact event

    NASA Technical Reports Server (NTRS)

    Krogh, T. E.; Kamo, S. L.; Bohor, B. F.

    1992-01-01

    The refractory mineral zircon develops distinct morphological features during shock metamorphism and retains these features under conditions that would anneal them in other minerals. In addition, weakly shocked zircon grains give primary ages for the impact site, while highly reconstituted (polycrystalline) single grains give ages that approach the age of the impact event. Data for a series of originally coeval grains will define a mixing line that gives both of these ages providing that no subsequent geological disturbances have overprinted the isotopic systematics. In this study, we have shown that the three zircon grain types described by Bohor, from both K-T distal ejecta (Fireball layer, Raton Basin, Colorado) and the Onaping Formation, represent a progressive increase in impact-related morphological change that coincides with a progressive increase in isotopic resetting in zircons from the ejecta and basement rocks. Unshocked grains are least affected by isotopic resetting while polycrystalline grains are most affected. U-Pb isotopic results for 12 of 14 single zircon grains from the Fireball layer plot on or close to a line recording a primary age of 550 +/- 10 Ma and a secondary age of 65.5 +/- 3 Ma. Data for the least and most shocked grains plot closest to the primary and secondary ages respectively. The two other grains each give ages between 300 and 350 Ma. This implies that the target ejecta was dominated by 550-Ma rocks and that the recrystallization features of the zircon were superimposed during the impact event at 65.5 Ma. A predominant age of 550 Ma for zircons from the Fireball layer provides an excellent opportunity to identify the impact site and to test the hypothesis that multiple impacts occurred at this time. A volcanic origin for the Fireball layer is ruled out by shock-related morphological changes in zircon and the fact that the least shocked grains are old. Basement Levack gneisses north of the Sudbury structure have a primary age of 2711 Ma. Data for three single zircons from this rock, which record a progressive increase in shock features, are displaced 24, 36, and 45 percent along a Pb-loss line toward the 1850 +/- 1 Ma minimum age for the impact as defined by the age of the norite. Southeast of the structure three shocked grains from the Murray granite record a primary age of 2468 Ma and are displaced 24, 41, and 56 percent toward the 1853 +/- 4 Ma even as defined by coexisting titanite.

  4. Dependence of Boundary Layer Mixing On Lateral Boundary Conditions

    NASA Astrophysics Data System (ADS)

    Straub, D.

    Ocean circulation models often show strong mixing in association with lateral bound- ary layers. Such mixing is generally considered to be artifactual rather than real. Fur- thermore, the severity of the problem is boundary condition dependent. For example, an inconsistency between geostrophy and insulating boundary conditions on tempera- ture and salinity cause many modelers to opt for the no slip, rather than slip boundary condtion on the tangential component of momentum. As modellers increasingly move into the eddy revealing regime, biharmonic, rather than harmonic dissipative operators are likely to become more common. Biharmonic operators, however, require specifi- cation of additional boundary conditions. For example, there are several `natural ex- tensions' to each of the slip and no slip conditions. Here, these various possiblities are considered in the context of a simple model. Particular attention is payed to how mixing (and the associated overturning cell) is affected by the choice of boundary condition.

  5. Boundary Condtions of Gravity

    NASA Astrophysics Data System (ADS)

    Goradia, Shantilal

    2014-05-01

    Our quantum mechanical derivation of the strong coupling using modified Newtonian inverse square logic in (1) and the fine structure constant (ALPHA) using Boltzmann expression in our book (2) come close to Einstein (1919) merging nuclear force with gravitation and retracting his cosmological constant. Its conflict with the inflationary aspect of the universe can be reconciled with the possibility that the light coming from the receding galaxies follow a curvilinear path increasing in length due to its ever increasing curvature without receding only in the radial direction. In (1), we implicitly show gravity as nothing but the cumulative effect of quantum mechanical forces, making G vary at different locations in the universe. The subsequent effects of gravitational variation would be on the curvature of the paths of the geodesics they create. Further investigation along these lines is warranted as we do not have unification, evidence of graviton, quantum gravity or anything else very concrete after a century of hard work. Strong coupling and ALPHA may be the boundary conditions of gravitational constants. Newtonian Gravity in Natural Units, Journal of Physical Science and Application 2 (7) (2012)265-268, [2] Quantum Consciousness - The Road to Reality by S. Goradia, 4/27/20.

  6. Cell boundary fault detection system

    SciTech Connect

    Archer, Charles Jens; Pinnow, Kurt Walter; Ratterman, Joseph D.; Smith, Brian Edward

    2011-04-19

    An apparatus and program product determine a nodal fault along the boundary, or face, of a computing cell. Nodes on adjacent cell boundaries communicate with each other, and the communications are analyzed to determine if a node or connection is faulty.

  7. The Blake Nose Cretaceous-Paleogene (Florida Atlantic margin, ODP Leg 171B): an exemplar record of the Maastrichtian-Danian transition

    USGS Publications Warehouse

    Bellier, J.-P.; Marca, S.; Norris, R.D.; Kroon, D.; Klaus, A.; Alexander, I.T.; Bardot, L.P.; Barker, C.E.; Blome, C.D.; Clarke, L.J.; Erbacher, J.; Faul, K.L.; Holmes, M.A.; Huber, B.T.; Katz, M.E.; MacLeod, K.G.; Martinez-Ruiz, F. C.; Mita, I.; Nakai, M.; Ogg, J.G.; Pak, D.K.; Pletsch, T.K.; Self-Trail J.M.; Shackleton, N.J.; Smit, J.; Ussler, W., III; Watkins, D.K.; Widmark, J.; Wilson, P.A.

    1997-01-01

    During ODP Leg 171B, devoted to the analysis of the Blake Plateau margin in front of Florida, 16 holes have been drilled in 5 distinct sites. The sites have documented a sedimentary succession ranging in age from Aptian to Eocene. Emphasis has been put on critical periods, comprising the Paleocene-Eocene transition, the Cretaceous-Tertiary boundary which has been cored in excellent conditions, the middle Maastrichtian extinctions and the Albian anoxic episodes.

  8. No statistical support for sudden (or gradual) extinction of dinosaurs

    NASA Astrophysics Data System (ADS)

    Hurlbert, Stuart H.; Archibald, J. David

    1995-10-01

    Did dinosaurs decline gradually or abruptly at the Cretaceous-Tertiary boundary? An analysis of familial diversity patterns in dinosaur fossils from the Hell Creek Formation of central North America has claimed to present strong statistical evidence against the idea that dinosaurs declined gradually near the end of the Cretaceous. Examination of the quantitative methodologies used shows that these provide no basis for choosing between scenarios of abrupt extinction and gradual decline.

  9. Alvarez, Luis Walter (1911-88)

    NASA Astrophysics Data System (ADS)

    Murdin, P.

    2000-11-01

    Physicist and astronomer, born in San Francisco, CA, professor at the University of California, Nobel prizewinner (1968) for his discoveries in particle physics. Used cosmic rays to `x-ray' the pyramids of Egypt, finding in particular that the tombs in the Great Pyramid at Giza had no hidden rooms. Alvarez (and his son) discovered globally distributed iridium at the Cretaceous/Tertiary boundary i...

  10. Le Crétacé-Paléogène du Blake Nose (marge atlantique de la Floride, campagne ODP 171 B): un enregistrement exemplaire de la transition Maastrichtien-Danien

    NASA Astrophysics Data System (ADS)

    Bellier, Jean-Pierre; Marca, Sandra; Norris, Richard D.; Kroon, Dick; Klaus, Adam; Alexander, Ian T.; Bardot, Léon Paul; Barker, Charles E.; Blome, Charles D.; Clarke, Leon J.; Erbacher, Jochen; Faul, Kristina L.; Holmes, Mary Anne; Huber, Brian T.; Kate, Miriam E.; MacLeod, Kenneth G.; Martinez-Ruiz, Francisca C.; Mita, Isao; Nakai, Mutsumi; Ogg, James G.; Pak, Dorothy K.; Pletsch, Thomas K.; Self-Trail, Jean M.; Shackleton, Nicholas J.; Smit, Jan; Ussler, William; Watkins, David K.; Widmark, Joen; Wilson, Paul A.

    1997-10-01

    During ODP Leg 171B, devoted to the analysis of the Blake Plateau margin in front of Florida, 16 holes have been drilled in 5 distinct sites. The sites have documented a sedimentary succession ranging in age from Aptian to Eocene. Emphasis has been put on critical periods, comprising the Paleocene-Eocene transition, the Cretaceous-Tertiary boundary which has been cored in excellent conditions, the middle Maastrichtian extinctions and the Albian anoxic episodes.

  11. Dimension of fractal basin boundaries

    SciTech Connect

    Park, B.S.

    1988-01-01

    In many dynamical systems, multiple attractors coexist for certain parameter ranges. The set of initial conditions that asymptotically approach each attractor is its basin of attraction. These basins can be intertwined on arbitrary small scales. Basin boundary can be either smooth or fractal. Dynamical systems that have fractal basin boundary show final state sensitivity of the initial conditions. A measure of this sensitivity (uncertainty exponent {alpha}) is related to the dimension of the basin boundary d = D - {alpha}, where D is the dimension of the phase space and d is the dimension of the basin boundary. At metamorphosis values of the parameter, there might happen a conversion from smooth to fractal basin boundary (smooth-fractal metamorphosis) or a conversion from fractal to another fractal basin boundary characteristically different from the previous fractal one (fractal-fractal metamorphosis). The dimension changes continuously with the parameter except at the metamorphosis values where the dimension of the basin boundary jumps discontinuously. We chose the Henon map and the forced damped pendulum to investigate this. Scaling of the basin volumes near the metamorphosis values of the parameter is also being studied for the Henon map. Observations are explained analytically by using low dimensional model map.

  12. Vortex boundary-layer interactions

    NASA Technical Reports Server (NTRS)

    Bradshaw, P.

    1985-01-01

    The interaction of a turbulent boundary layer on a flat plate with a strong artificially generated longitudinal vortex which may or may not actually enter the boundary layer is studied. The vortices are generated by a delta wing suspended ahead of the test plate, so that the configuration is approximately that of a close coupled carnard with zero main-wing sweep and an invisible body. All necessary configuration and parametric checks are completed, and data acquisition and analysis on the first configuration chosen for detailed study, in which the vortex starts to merge with the boundary layer a short distance downstream of the leading edge of the test plate, are nearly complete.

  13. Lozenge Tilings with Free Boundaries

    NASA Astrophysics Data System (ADS)

    Panova, Greta

    2015-11-01

    We study lozenge tilings of a domain with partially free boundary. In particular, we consider a trapezoidal domain (half-hexagon), s.t. the horizontal lozenges on the long side can intersect it anywhere to protrude halfway across. We show that the positions of the horizontal lozenges near the opposite flat vertical boundary have the same joint distribution as the eigenvalues from a Gaussian Unitary Ensemble (the GUE-corners/minors process). We also prove the existence of a limit shape of the height function, which is also a vertically symmetric plane partition. Both behaviors are shown to coincide with those of the corresponding doubled fixed boundary hexagonal domain. We also consider domains where the different sides converge to {∞} at different rates and recover again the GUE-corners process near the boundary.

  14. Boundary Layer Control on Airfoils.

    ERIC Educational Resources Information Center

    Gerhab, George; Eastlake, Charles

    1991-01-01

    A phenomena, boundary layer control (BLC), produced when visualizing the fluidlike flow of air is described. The use of BLC in modifying aerodynamic characteristics of airfoils, race cars, and boats is discussed. (KR)

  15. Changing the Structure Boundary Geometry

    SciTech Connect

    Karasev, Viktor; Dzlieva, Elena; Ivanov, Artyom

    2008-09-07

    Analysis of previously obtained results shows that hexagonal crystal lattice is the dominant type of ordering, in particular, in striated glow discharges. We explore the possibility for changing the dust distribution in horizontal cross sections of relatively highly ordered structures in a glow-discharge. Presuming that boundary geometry can affect dust distribution, we used cylindrical coolers held at 0 deg. C and placed against a striation containing a structure, to change the geometry of its outer boundary. By varying the number of coolers, their positions, and their separations from the tube wall, azimuthally asymmetric thermophoretic forces can be used to form polygonal boundaries and vary the angles between their segments (in a horizontal cross section). The corner in the structure's boundary of 60 deg. stimulates formation of hexagonal cells. The structure between the supported parallel boundaries is also characterized by stable hexagonal ordering. We found that a single linear boundary segment does not give rise to any sizable domain, but generates a lattice extending from the boundary (without edge defects). A square lattice can be formed by setting the angle equal to 90 deg. . However, angles of 45 deg. and 135 deg. turned out easier to form. Square lattice was created by forming a near-135 deg. corner with four coolers. It was noted that no grain ordering is observed in the region adjacent to corners of angles smaller than 30 deg. , which do not promote ordering into cells of any shape. Thus, manipulation of a structure boundary can be used to change dust distribution, create structures free of the ubiquitous edge defects that destroy orientation order, and probably change the crystal lattice type.

  16. Removing Boundary Layer by Suction

    NASA Technical Reports Server (NTRS)

    Ackeret, J

    1927-01-01

    Through the utilization of the "Magnus effect" on the Flettner rotor ship, the attention of the public has been directed to the underlying physical principle. It has been found that the Prandtl boundary-layer theory furnishes a satisfactory explanation of the observed phenomena. The present article deals with the prevention of this separation or detachment of the flow by drawing the boundary layer into the inside of a body through a slot or slots in its surface.

  17. Pyramidal inversion domain boundaries revisited

    SciTech Connect

    Remmele, T.; Albrecht, M.; Irmscher, K.; Fornari, R.; Strassburg, M.

    2011-10-03

    The structure of pyramidal inversion domain boundaries in GaN:Mg was investigated by aberration corrected transmission electron microscopy. The analysis shows the upper (0001) boundary to consist of a single Mg layer inserted between polarity inverted GaN layers in an abcab stacking. The Mg bound in these defects is at least one order of magnitude lower than the chemical Mg concentration. Temperature dependent Hall effect measurements show that up to 27% of the Mg acceptors is electrically compensated.

  18. The Cantarell Breccia System, Southern Gulf Of Mexico: Structural Evolution And Support For An Origin Relarted To The Chixculub Meteorite Impact

    NASA Astrophysics Data System (ADS)

    Ricoy, V.

    2003-04-01

    The Upper Cretaceous within the Campeche Basin, southern Gulf of Mexico hosts a world class petroleum system. Cantarell is the most important reservoir that consists of a complex brecciated carbonate reservoir deposited at or around the Cretaceous-Tertiary boundary. Previous sedimentological studies suggests that the Upper Cretaceous Carbonate breccias found in the Cantarell oilfield system and through the Bay of Campeche, were the result of a catastrophic shelf collapse event triggered by the Chixculub meteorite impact. This work presents new evidence from structural and stratigraphic interpretation of 3D seismic and 2D lines which gives light to features that support the platform collapse model. The reservoir consists of thick (up to 300 m), heterogeneous, monomyctic and polymictic breccias developed at the K-T boundary, and widely distributed throughout the Campeche Basin. The timing, internal architecture, widespread deposition and distance to the platform margin source (over 30 kms) of the breccia unit, combined with a contorted irregular seismic reflector near the base of the Cretaceous carbonate platform, suggests that the geological processes accountable for the emplacement of the breccias relates to the massive catastrophic collapse of the Cretaceous platform as a result of the Chixculub meteorite impact. Structural interpretation of the 3D seismic data, together with well stratigraphic markers unraveled a complex Oligocene-Miocene structural deformation history of the Cantarell field, which resulted in several discrete reservoir blocks partitioned by a complex array of thrusts, normal and reverse faults. It is proposed that the structural deformation of the area controlled to a large extent the distribution of the reservoir properties found in the Cantarell area. This idea is tested using the structural model matched against the well log porosity data.

  19. Calculation of State Specific Rate Coefficients for Non-Equilibrium Hypersonics Applications: from H(Psi) = E(Psi) to k(T) = A *exp(-E(sub a)/RT)

    NASA Technical Reports Server (NTRS)

    Jaffe, Richard; Schwenke, David; Chaban, Galina; Panesi, Marco

    2014-01-01

    Development of High-Fidelity Physics-Based Models to describe hypersonic flight through the atmospheres of Earth and Mars is underway at NASA Ames Research Center. The goal is to construct chemistry models of the collisional and radiative processes that occur in the bow shock and boundary layers of spacecraft during atmospheric entry that are free of empiricism. In this talk I will discuss our philosophy and describe some of our progress. Topics to be covered include thermochemistry, internal energy relaxation, collisional dissociation and radiative emission and absorption. For this work we start by solving the Schrodinger equation to obtain accurate interaction potentials and radiative properties. Then we invoke classical mechanics to compute state-specific heavy particle collision cross sections and reaction rate coefficients. Finally, phenomenological rate coefficients and relaxation times are determined from master equation solutions.

  20. Tidal Boundary Conditions in SEAWAT

    USGS Publications Warehouse

    Mulligan, Ann E.; Langevin, Christian; Post, Vincent E.A.

    2011-01-01

    SEAWAT, a U.S. Geological Survey groundwater flow and transport code, is increasingly used to model the effects of tidal motion on coastal aquifers. Different options are available to simulate tidal boundaries but no guidelines exist nor have comparisons been made to identify the most effective approach. We test seven methods to simulate a sloping beach and a tidal flat. The ocean is represented in one of the three ways: directly using a high hydraulic conductivity (high-K) zone and indirect simulation via specified head boundaries using either the General Head Boundary (GHB) or the new Periodic Boundary Condition (PBC) package. All beach models simulate similar water fluxes across the upland boundary and across the sediment-water interface although the ratio of intertidal to subtidal flow is different at low tide. Simulating a seepage face results in larger intertidal fluxes and influences near-shore heads and salinity. Major differences in flow occur in the tidal flat simulations. Because SEAWAT does not simulate unsaturated flow the water table only rises via flow through the saturated zone. This results in delayed propagation of the rising tidal signal inland. Inundation of the tidal flat is delayed as is flow into the aquifer across the flat. This is severe in the high-K and PBC models but mild in the GHB models. Results indicate that any of the tidal boundary options are fine if the ocean-aquifer interface is steep. However, as the slope of that interface decreases, the high-K and PBC approaches perform poorly and the GHB boundary is preferable.

  1. Tidal boundary conditions in SEAWAT.

    PubMed

    Mulligan, Ann E; Langevin, Christian; Post, Vincent E A

    2011-01-01

    SEAWAT, a U.S. Geological Survey groundwater flow and transport code, is increasingly used to model the effects of tidal motion on coastal aquifers. Different options are available to simulate tidal boundaries but no guidelines exist nor have comparisons been made to identify the most effective approach. We test seven methods to simulate a sloping beach and a tidal flat. The ocean is represented in one of the three ways: directly using a high hydraulic conductivity (high-K) zone and indirect simulation via specified head boundaries using either the General Head Boundary (GHB) or the new Periodic Boundary Condition (PBC) package. All beach models simulate similar water fluxes across the upland boundary and across the sediment-water interface although the ratio of intertidal to subtidal flow is different at low tide. Simulating a seepage face results in larger intertidal fluxes and influences near-shore heads and salinity. Major differences in flow occur in the tidal flat simulations. Because SEAWAT does not simulate unsaturated flow the water table only rises via flow through the saturated zone. This results in delayed propagation of the rising tidal signal inland. Inundation of the tidal flat is delayed as is flow into the aquifer across the flat. This is severe in the high-K and PBC models but mild in the GHB models. Results indicate that any of the tidal boundary options are fine if the ocean-aquifer interface is steep. However, as the slope of that interface decreases, the high-K and PBC approaches perform poorly and the GHB boundary is preferable. PMID:21275984

  2. Boundary layer simulator (BLIMPJ) improvement

    NASA Astrophysics Data System (ADS)

    Praharaj, S. C.

    1985-10-01

    Improvements made to the existing Boundary Layer Integral Matrix Procedure, Version J (BLIMPJ) are discussed. These improvements have application to high area ratio nozzle design such as those being considered on future Orbit Transfer Vehicle (OTV) engines. The heat transfer to the nozzle wall, which is affected by such variables as wall roughness, relaminarization, and the presence of particles in the flow, was investigated. The existing motor performance loss calculation for these nozzles with thick boundary layers, which is inaccurate using the JANNAF procedure coded in BLIMPJ, was modified. The wall roughness effect was modeled successfully by modification of the turbulence model, and compared against two other engineering models giving good comparison. The relaminarization effects were modeled using the ideas of Nash-Webber, and an approximation was given to modify the turbulence model. The results were compared against the available data of Back and Cuffel giving approximate correlation between theory and measured data. The boundary layer particle effects were accounted for by an engineering approach, but no nozzle data was available for comparison. The accuracy of the nozzle performance loss calculation from thick boundary layers was improved by determining the edge of the boundary layer through an iteration procedure. The iteration used RAMP for the inviscid flowfield and BLIMPJ for the viscous flowfield. An example of the iteration procedure is given for a typical OTV nozzle with an area ratio of 1293.

  3. Undulatory microswimming near solid boundaries

    NASA Astrophysics Data System (ADS)

    Schulman, R. D.; Backholm, M.; Ryu, W. S.; Dalnoki-Veress, K.

    2014-10-01

    The hydrodynamic forces involved in the undulatory microswimming of the model organism C. elegans are studied in proximity to solid boundaries. Using a micropipette deflection technique, we attain direct and time-resolved force measurements of the viscous forces acting on the worm near a single planar boundary as well as confined between two planar boundaries. We observe a monotonic increase in the lateral and propulsive forces with increasing proximity to the solid interface. We determine normal and tangential drag coefficients for the worm, and find these to increase with confinement. The measured drag coefficients are compared to existing theoretical models. The ratio of normal to tangential drag coefficients is found to assume a constant value of 1.5 ± 0.1(5) at all distances from a single boundary, but increases significantly as the worm is confined between two boundaries. In response to the increased drag due to confinement, we observe a gait modulation of the nematode, which is primarily characterized by a decrease in the swimming amplitude.

  4. Unsteady turbulent boundary layer analysis

    NASA Technical Reports Server (NTRS)

    Singleton, R. E.; Nash, J. F.; Carl, L. W.; Patel, V. C.

    1973-01-01

    The governing equations for an unsteady turbulent boundary layer on a swept infinite cylinder, composed of a continuity equation, a pair of momentum equations and a pair of turbulent energy equations which include upstream history efforts, are solved numerically. An explicit finite difference analog to the partial differential equations is formulated and developed into a computer program. Calculations were made for a variety of unsteady flows in both two and three dimensions but primarily for two dimensional flow fields in order to first understand some of the fundamental physical aspects of unsteady turbulent boundary layers. Oscillating free stream flows without pressure gradient, oscillating retarded free stream flows and monotonically time-varying flows have all been studied for a wide frequency range. It was found that to the lowest frequency considered, the lower frequency bound being determined by economic considerations (machine time), there were significant unsteady effects on the turbulent boundary layer.

  5. Physics of magnetospheric boundary layers

    NASA Technical Reports Server (NTRS)

    Cairns, Iver H.

    1995-01-01

    This final report was concerned with the ideas that: (1) magnetospheric boundary layers link disparate regions of the magnetosphere-solar wind system together; and (2) global behavior of the magnetosphere can be understood only by understanding its internal linking mechanisms and those with the solar wind. The research project involved simultaneous research on the global-, meso-, and micro-scale physics of the magnetosphere and its boundary layers, which included the bow shock, the magnetosheath, the plasma sheet boundary layer, and the ionosphere. Analytic, numerical, and simulation projects were performed on these subjects, as well as comparisons of theoretical results with observational data. Other related activity included in the research included: (1) prediction of geomagnetic activity; (2) global MHD (magnetohydrodynamic) simulations; (3) Alfven resonance heating; and (4) Critical Ionization Velocity (CIV) effect. In the appendixes are list of personnel involved, list of papers published; and reprints or photocopies of papers produced for this report.

  6. Boundary layer simulator (BLIMPJ) improvement

    NASA Technical Reports Server (NTRS)

    Praharaj, S. C.; Schmitz, C. P.

    1987-01-01

    Improvements were made to advance the current Boundary Layer Integral Matrix Procedure - Version J (BLIMPJ) containing previously modeled simplified calculation methods accounting for surface roughness, relaminarization, and thick boundary layer effects. These improvements have potential applications in the design of the future Orbit Transfer Vehicles (OTV) engines. The coded wall roughness module was validated successfully against measured data from the LeRC 60-15 degree half-angle conical nozzle. The relaminarization model was modified to include wall cooling and roughness based on a set of test data from the same nozzle. The model was compared against typical data sets for validation in different flow regimes. The thrust loss calculation for thick boundary layer effects was computerized where the iterations between TDK and BLIMPJ proceeded automatically until convergence was achieved. An example is given for a typical OTV nozzle with an area ratio 1293.

  7. Boundary effect in electrorheological fluids

    NASA Astrophysics Data System (ADS)

    Gong, X. L.; Yang, F.; Xuan, S. H.; Zong, L. H.; Zhu, W.; Jiang, W. Q.

    2011-12-01

    The effect of the boundary friction coefficient on the rheological properties of the electrorheological (ER) fluids in quasistatic and dynamic states is investigated by computer simulation. The relation between the shear stress and the boundary friction coefficient in quasistatic and dynamic states is discussed qualitatively and quantitatively, and the trend matches the previously reported experimental results well. The flow curves of ER fluids, under different friction coefficients, are calculated, and it is found that the friction coefficient affects the flow curves. In two dimensions, the transitions in structure corresponding to the shear stress variations are presented to understand the mechanism of ER fluids.

  8. Boundaries and the Exploration of Self

    ERIC Educational Resources Information Center

    Gharabaghi, Kiaras

    2008-01-01

    Boundaries and the exploration of self are conceptualized within the agency-structure problem first articulated in social theory during the 1970s. Constructing boundaries as a professional issue within the discipline has to take account the agency embedded within boundaries. Multiple boundary dilemmas are discussed within the framework of the

  9. Boundaries and the Exploration of Self

    ERIC Educational Resources Information Center

    Gharabaghi, Kiaras

    2008-01-01

    Boundaries and the exploration of self are conceptualized within the agency-structure problem first articulated in social theory during the 1970s. Constructing boundaries as a professional issue within the discipline has to take account the agency embedded within boundaries. Multiple boundary dilemmas are discussed within the framework of the…

  10. Nucleation of small-angle boundaries

    SciTech Connect

    Nabarro, F.R.N.; Wilsdorf, D.K.

    1996-12-01

    The internal stresses induced by the strain gradients in an array of lattice cells delineated by low-angle dislocation boundaries are partially relieved by the creation of new low-angle boundaries. This is shown to be a first-order transition, the new boundaries having finite misorientations. The calculated misorientations both of the new boundaries and of the existing boundaries which provoke the transition agree well with observations.

  11. Prosodic Boundaries in Alaryngeal Speech

    ERIC Educational Resources Information Center

    van Rossum, M. A.; Quene, H.; Nooteboom, S. G.

    2008-01-01

    Alaryngeal speakers (speakers in whom the larynx has been removed) have inconsistent control over acoustic parameters such as F[subscript 0] and duration. This study investigated whether proficient tracheoesophageal and oesophageal speakers consistently convey phrase boundaries. It was further investigated if these alaryngeal speakers used the…

  12. Boundary Element Programming in Mechanics

    NASA Astrophysics Data System (ADS)

    Gao, Xiao-Wei; Davies, Trevor G.

    2002-03-01

    This monograph describes the application of boundary element methods (BEM) in solid mechanics, beginning with basic theory and then explaining the numerical implementation of BEM in nonlinear stress analysis. In addition, the authors have developed state-of-the-art BEM source code, available for the first time on a CD-ROM included with the book.

  13. Science beyond the Classroom Boundaries

    ERIC Educational Resources Information Center

    Feasey, Rosemary; Bianchi, Lynne

    2011-01-01

    There have been many years of innovation in primary science education. Surprisingly, however, most of this has taken place within the confines of the classroom. What primary science has not yet done with universal success is step outside the classroom boundaries to use the school grounds for teaching and learning across all aspects of the science…

  14. The Double Absorbing Boundary method

    NASA Astrophysics Data System (ADS)

    Hagstrom, Thomas; Givoli, Dan; Rabinovich, Daniel; Bielak, Jacobo

    2014-02-01

    A new approach is devised for solving wave problems in unbounded domains. It has common features to each of two types of existing techniques: local high-order Absorbing Boundary Conditions (ABC) and Perfectly Matched Layers (PML). However, it is different from both and enjoys relative advantages with respect to both. The new method, called the Double Absorbing Boundary (DAB) method, is based on truncating the unbounded domain to produce a finite computational domain Ω, and on applying a local high-order ABC on two parallel artificial boundaries, which are a small distance apart, and thus form a thin non-reflecting layer. Auxiliary variables are defined on the two boundaries and inside the layer bounded by them, and participate in the numerical scheme. The DAB method is first introduced in general terms, using the 2D scalar time-dependent wave equation as a model. Then it is applied to the 1D Klein-Gordon equation, using finite difference discretization in space and time, and to the 2D wave equation in a wave guide, using finite element discretization in space and dissipative time stepping. The computational aspects of the method are discussed, and numerical experiments demonstrate its performance.

  15. The seismotectonics of plate boundaries

    NASA Technical Reports Server (NTRS)

    Berger, J.; Brune, J. N.; Goodkind, J.; Wyatt, F.; Agnew, D. C.; Beaumont, C.

    1981-01-01

    Research on the seismotectonics of plate boundaries is summarized. Instrumental development and an observational program designed to study various aspects of the seismotectonics of southern California and the northern Gulf of California are described. A unique superconducting gravimeter was further developed and supported under this program for deployment and operation at several sites. Work on Earth tides is also discussed.

  16. Computing texture boundaries from images.

    PubMed

    Voorhees, H; Poggio, T

    1988-05-26

    Recent computational and psychological theories of human texture vision assert that texture discrimination is based on first-order differences in geometric and luminance attributes of texture elements, called 'textons'. Significant differences in the density, orientation, size, or contrast of line segments or other small features in an image have been shown to cause immediate perception of texture boundaries. However, the psychological theories, which are based on the perception of synthetic images composed of lines and symbols, neglect two important issues. First, how can textons be computed from grey-level images of natural scenes? And second, how, exactly, can texture boundaries be found? Our analysis of these two issues has led to an algorithm that is fully implemented and which successfully detects boundaries in natural images. We propose that blobs computed by a centre-surround operator are useful as texture elements, and that a simple non-parametric statistic can be used to compare local distributions of blob attributes to locate texture boundaries. Although designed for natural images, our computation agrees with some psychophysical findings, in particular, those of Adelson and Bergen (described in the preceding article), which cast doubt on the hypothesis that line segment crossings or termination points are textons. PMID:3374570

  17. Boundary elements for structural analysis

    NASA Technical Reports Server (NTRS)

    1989-01-01

    The intent here is to discuss the status of the boundary element method (BEM) for structural analysis, both in terms of the present and anticipated capabilities of the method and in terms of the incorporation of the method in the design/analysis process, particularly for gas turbine engine components.

  18. Physics of magnetospheric boundary layers

    NASA Technical Reports Server (NTRS)

    Cairns, I. H.

    1993-01-01

    The central ideas of this grant are that the magnetospheric boundary layers link disparate regions of the magnetosphere together, and the global behavior of the magnetosphere can be understood only by understanding the linking mechanisms. Accordingly the present grant includes simultaneous research on the global, meso-, and micro-scale physics of the magnetosphere and its boundary layers. These boundary layers include the bow shock, magnetosheath, the plasma sheet boundary layer, and the ionosphere. Analytic, numerical and simulation projects have been performed on these subjects, as well as comparison of theoretical results with observational data. Very good progress has been made, with four papers published or in press and two additional papers submitted for publication during the six month period 1 June - 30 November 1993. At least two projects are currently being written up. In addition, members of the group have given papers at scientific meetings. The further structure of this report is as follows: section two contains brief accounts of research completed during the last six months, while section three describes the research projects intended for the grant's final period.

  19. Patients, friends, and relationship boundaries.

    PubMed Central

    Rourke, J. T.; Smith, L. F.; Brown, J. B.

    1993-01-01

    When patient and physician are close friends, both professional and personal relationships can suffer. Jointly exploring and setting explicit boundaries can help avoid conflict and maintain these valuable relationships. This is particularly important when the physician practises in a small community where such concurrent relationships are unavoidable. PMID:8292931

  20. NEVADA RCRA TSD FACILITY BOUNDARIES

    EPA Science Inventory

    Polygon coverage of RCRA TSD facility boundaries in Nevada. These are derived from original maps and descriptions located in the US EPA Region 9 Records Center files. Current TSD facility designations were extracted from the ARIS (RCRIS) database in June 1998. Auxiliary tables i...

  1. CALIFORNIA RCRA TSD FACILITY BOUNDARIES

    EPA Science Inventory

    Polygon coverage of RCRA TSD facility boundaries in California. These are derived from original maps and descriptions located in the US EPA Region 9 Records Center files. Current TSD facility designations were extracted from the ARIS (RCRIS) database in June 1998. Auxiliary tabl...

  2. HAWAII RCRA TSD FACILITY BOUNDARIES

    EPA Science Inventory

    Polygon coverage of RCRA TSD facility boundaries in Hawaii. These are derived from original maps and descriptions located in the US EPA Region 9 Records Center files. Current TSD facility designations were extracted from the ARIS (RCRIS) database in June 1998. Auxiliary tables i...

  3. ARIZONA RCRA TSD FACILITY BOUNDARIES

    EPA Science Inventory

    Polygon coverage of RCRA TSD facility boundaries in Arizona. These are derived from original maps and descriptions located in the US EPA Region 9 Records Center files. Current TSD facility designations were extracted from the ARIS (RCRIS) database in June 1998. Auxiliary tables ...

  4. AC conductivity scaling behavior in grain and grain boundary response regime of fast lithium ionic conductors

    NASA Astrophysics Data System (ADS)

    Mariappan, C. R.

    2014-05-01

    AC conductivity spectra of Li-analogues NASICON-type Li1.5Al0.5Ge1.5P3O12 (LAGP), Li-Al-Ti-P-O (LATP) glass-ceramics and garnet-type Li7La2Ta2O13 (LLTO) ceramic are analyzed by universal power law and Summerfield scaling approaches. The activation energies and pre-exponential factors of total and grain conductivities are following the Meyer-Neldel (M-N) rule for NASICON-type materials. However, the garnet-type LLTO material deviates from the M-N rule line of NASICON-type materials. The frequency- and temperature-dependent conductivity spectra of LAGP and LLTO are superimposed by Summerfield scaling. The scaled conductivity curves of LATP are not superimposed at the grain boundary response region. The superimposed conductivity curves are observed at cross-over frequencies of grain boundary response region for LATP by incorporating the exp ( {{{ - (EAt - EAg )} {{{ - (EAt - EAg )} {kT}}} ) factor along with Summerfield scaling factors on the frequency axis, where EAt and EAg are the activation energies of total and grain conductivities, respectively.

  5. X-ray and EUV observations of the boundary layer emission of nonmagnetic cataclysmic variables

    SciTech Connect

    Mauche, C.W.

    1996-03-09

    EUVE, ROSAT, and ASCA observations of the boundary layer emission of nonmagnetic cataclysmic variables (CVs) are reviewed. EUVE spectra reveal that the effective temperature of the soft component of high-M nonmagnetic CVs is kT {approx}10-20 eV and that its luminosity is {approx} 0.1-0.5 times the accretion disk luminosity. Although the EUV spectra are very complex and belie simple interpretation, the physical conditions of the boundary layer gas are constrained by emission lines of highly ionized Ne, Mg, Si, and Fe. ROSAT and ASCA spectra of the hard component of nonmagnetic CVs are satisfactorily but only phenomenologically described by multi-temperature thermal plasmas, and the constraints imposed on the physical conditions of this gas are limited by the relatively weak and blended fines. It is argued that significant progress in our understanding of the X-ray spectra of nonmagnetic CVs will come with future observations with XMM, AXAF, and Astro-E.

  6. Squirmer dynamics near a boundary

    NASA Astrophysics Data System (ADS)

    Ishimoto, Kenta; Gaffney, Eamonn A.

    2013-12-01

    The boundary behavior of axisymmetric microswimming squirmers is theoretically explored within an inertialess Newtonian fluid for a no-slip interface and also a free surface in the small capillary number limit, preventing leading-order surface deformation. Such squirmers are commonly presented as abridged models of ciliates, colonial algae, and Janus particles and we investigate the case of low-mode axisymmetric tangential surface deformations with, in addition, the consideration of a rotlet dipole to represent torque-motor swimmers such as flagellated bacteria. The resulting boundary dynamics reduces to a phase plane in the angle of attack and distance from the boundary, with a simplifying time-reversal duality. Stable swimming adjacent to a no-slip boundary is demonstrated via the presence of stable fixed points and, more generally, all types of fixed points as well as stable and unstable limit cycles occur adjacent to a no-slip boundary with variations in the tangential deformations. Nonetheless, there are constraints on swimmer behavior—for instance, swimmers characterized as pushers are never observed to exhibit stable limit cycles. All such generalities for no-slip boundaries are consistent with observations and more geometrically faithful simulations to date, suggesting the tangential squirmer is a relatively simple framework to enable predications and classifications for the complexities associated with axisymmetric boundary swimming. However, in the presence of a free surface, with asymptotically small capillary number, and thus negligible leading-order surface deformation, no stable surface swimming is predicted across the parameter space considered. While this is in contrast to experimental observations, for example, the free-surface accumulation of sterlet sperm, extensive surfactants are present, most likely invalidating the low capillary number assumption. In turn, this suggests the necessity of surface deformation for stable free-surface three-dimensional finite-size microswimming, as previously highlighted in a two-dimensional mathematical study of singularity swimmers [Crowdy , J. Fluid Mech.JFLSA70022-112010.1017/jfm.2011.223 681, 24 (2011)].

  7. Lagrangian variational framework for boundary value problems

    NASA Astrophysics Data System (ADS)

    Figotin, Alexander; Reyes, Guillermo

    2015-09-01

    A boundary value problem is commonly associated with constraints imposed on a system at its boundary. We advance here an alternative point of view treating the system as interacting "boundary" and "interior" subsystems. This view is implemented through a Lagrangian framework that allows to account for (i) a variety of forces including dissipative acting at the boundary; (ii) a multitude of features of interactions between the boundary and the interior fields when the boundary fields may differ from the boundary limit of the interior fields; (iii) detailed pictures of the energy distribution and its flow; and (iv) linear and nonlinear effects. We provide a number of elucidating examples of the structured boundary and its interactions with the system interior. We also show that the proposed approach covers the well known boundary value problems.

  8. Boundary Integrable Quantum Field Theories

    NASA Astrophysics Data System (ADS)

    Dorey, Patrick

    2001-04-01

    These lectures concerned the properties of quantum field theories in the presence of boundaries. There are many different approaches to this subject. One can begin by studying conformal field theories with boundaries - the principal theme of the lectures at this school by Jean-Bernard Zuber and by Christoph Schweigert - and then, as described in Gérard Watts' lectures, consider their perturbations. In many cases these perturbations result in massive integrable quantum field theories, and it was the direct study of such theories in their own right that formed my main topic. A number of reviews of this subject can be found on the electronic archives, and so in this contribution I shall restrict myself to an outline of the questions touched on in my talks, and a brief list of references to which the interested reader can turn to find at least some of the answers...

  9. Boundary Preserving Dense Local Regions.

    PubMed

    Kim, Jaechul; Grauman, Kristen

    2015-05-01

    We propose a dense local region detector to extract features suitable for image matching and object recognition tasks. Whereas traditional local interest operators rely on repeatable structures that often cross object boundaries (e.g., corners, scale-space blobs), our sampling strategy is driven by segmentation, and thus preserves object boundaries and shape. At the same time, whereas existing region-based representations are sensitive to segmentation parameters and object deformations, our novel approach to robustly sample dense sites and determine their connectivity offers better repeatability. In extensive experiments, we find that the proposed region detector provides significantly better repeatability and localization accuracy for object matching compared to an array of existing feature detectors. In addition, we show our regions lead to excellent results on two benchmark tasks that require good feature matching: weakly supervised foreground discovery and nearest neighbor-based object recognition. PMID:26353319

  10. Free boundary ballooning mode representation

    SciTech Connect

    Zheng, L. J.

    2012-10-15

    A new type of ballooning mode invariance is found in this paper. Application of this invariance is shown to be able to reduce the two-dimensional problem of free boundary high n modes, such as the peeling-ballooning modes, to a one-dimensional problem. Here, n is toroidal mode number. In contrast to the conventional ballooning representation, which requires the translational invariance of the Fourier components of the perturbations, the new invariance reflects that the independent solutions of the high n mode equations are translationally invariant from one radial interval surrounding a single singular surface to the other intervals. The conventional ballooning mode invariance breaks down at the vicinity of plasma edge, since the Fourier components with rational surfaces in vacuum region are completely different from those with rational surfaces in plasma region. But, the new type of invariance remains valid. This overcomes the limitation of the conventional ballooning mode representation for studying free boundary modes.

  11. Transition in hypersonic boundary layers

    NASA Astrophysics Data System (ADS)

    Zhang, Chuanhong; Zhu, Yiding; Chen, Xi; Yuan, Huijing; Wu, Jiezhi; Chen, Shiyi; Lee, Cunbiao; Gad-el-Hak, Mohamed

    2015-10-01

    Transition and turbulence production in a hypersonic boundary layer is investigated in a Mach 6 wind tunnel using Rayleigh-scattering visualization, fast-response pressure measurements, and particle image velocimetry. It is found that the second-mode instability is a key modulator of the transition process. Although the second-mode is primarily an acoustic wave, it causes the formation of high-frequency vortical waves, which triggers a fast transition to turbulence.

  12. Jupiter's deep magnetotail boundary layer

    NASA Astrophysics Data System (ADS)

    Nicolaou, G.; McComas, D. J.; Bagenal, F.; Elliott, H. A.; Ebert, R. W.

    2015-06-01

    In 2007 the New Horizons (NH) spacecraft flew by Jupiter for a gravity assist en route to Pluto. After closest approach on day of year (DOY) 58, 2007, NH followed a tailward trajectory that provided a unique opportunity to explore the deep jovian magnetotail and the surrounding magnetosheath. After DOY 132, 16 magnetopause crossings were observed between 1654 and 2429 Jupiter radii (Rj) along the dusk flank tailward of the planet. In some cases the crossings were identified as rapid transitions from the magnetotail to the magnetosheath and vice versa. In other cases a boundary layer was observed just inside the magnetopause. Solar Wind Around Pluto (SWAP) is an instrument on board NH that obtained spectra of low energy ions during the flyby period. We use a forward model including the SWAP instrument response to derive plasma parameters (density, temperature and velocity) which best reproduce the observations. We also vary the plasma parameters in our model in order to fit the observations more accurately on occasions where the measurements exhibit significant variability. We compare the properties of the plasma in the boundary layer with those of the magnetosheath plasma derived in our earlier work. We attempt to estimate the magnetic field in the boundary layer assuming pressure balance between it and the magnetosheath. Finally, we investigate several possible scenarios to assess if magnetopause movement and structure could cause the variations seen in the data.

  13. Event boundaries and memory improvement.

    PubMed

    Pettijohn, Kyle A; Thompson, Alexis N; Tamplin, Andrea K; Krawietz, Sabine A; Radvansky, Gabriel A

    2016-03-01

    The structure of events can influence later memory for information that is embedded in them, with evidence indicating that event boundaries can both impair and enhance memory. The current study explored whether the presence of event boundaries during encoding can structure information to improve memory. In Experiment 1, memory for a list of words was tested in which event structure was manipulated by having participants walk through a doorway, or not, halfway through the word list. In Experiment 2, memory for lists of words was tested in which event structure was manipulated using computer windows. Finally, in Experiments 3 and 4, event structure was manipulated by having event shifts described in narrative texts. The consistent finding across all of these methods and materials was that memory was better when the information was distributed across two events rather than combined into a single event. Moreover, Experiment 4 demonstrated that increasing the number of event boundaries from one to two increased the memory benefit. These results are interpreted in the context of the Event Horizon Model of event cognition. PMID:26780472

  14. Boundary detection via dynamic programming

    NASA Astrophysics Data System (ADS)

    Udupa, Jayaram K.; Samarasekera, Supun; Barrett, William A.

    1992-09-01

    This paper reports a new method for detecting optimal boundaries in multidimensional scene data via dynamic programming (DP). In its current form the algorithm detects 2-D contours on slices and differs from other reported DP-based algorithms in an essential way in that it allows freedom in 2-D for finding optimal contour paths (as opposed to a single degree of freedom in the published methods). The method is being successfully used in segmenting object boundaries in a variety of medical applications including orbital volume from CT images (for craniofacial surgical planning), segmenting bone in MR images for kinematic analysis of the joints of the foot, segmenting the surface of the brain from the inner surface of the cranial vault, segmenting pituitary gland tumor for following the effect of a drug on the tumor, segmenting the boundaries of the heart in MR images, and segmenting the olfactory bulb for verifying hypotheses related to the size of this bulb in certain disease states.

  15. Boundary layer receptivity and control

    NASA Technical Reports Server (NTRS)

    Hill, D. C.

    1993-01-01

    Receptivity processes initiate natural instabilities in a boundary layer. The instabilities grow and eventually break down to turbulence. Consequently, receptivity questions are a critical element of the analysis of the transition process. Success in modeling the physics of receptivity processes thus has a direct bearing on technological issues of drag reduction. The means by which transitional flows can be controlled is also a major concern: questions of control are tied inevitably to those of receptivity. Adjoint systems provide a highly effective mathematical method for approaching many of the questions associated with both receptivity and control. The long term objective is to develop adjoint methods to handle increasingly complex receptivity questions, and to find systematic procedures for deducing effective control strategies. The most elementary receptivity problem is that in which a parallel boundary layer is forced by time-harmonic sources of various types. The characteristics of the response to such forcing form the building blocks for more complex receptivity mechanisms. The first objective of this year's research effort was to investigate how a parallel Blasius boundary layer responds to general direct forcing. Acoustic disturbances in the freestream can be scattered by flow non-uniformities to produce Tollmien-Schlichting waves. For example, scattering by surface roughness is known to provide an efficient receptivity path. The present effort is directed towards finding a solution by a simple adjoint analysis, because adjoint methods can be extended to more complex problems. In practice, flows are non-parallel and often three-dimensional. Compressibility may also be significant in some cases. Recent developments in the use of Parabolized Stability Equations (PSE) offer a promising possibility. By formulating and solving a set of adjoint parabolized equations, a method for mapping the efficiency with which external forcing excites the three-dimensional motions of a non-parallel boundary layer was developed. The method makes use of the same computationally efficient formulation that makes the PSE currently so appealing. In the area of flow control, adjoint systems offer a powerful insight into the effect of control forces. One of the simplest control strategies for boundary layers involves the application of localized mean wall suction.

  16. Regional variations in seismic boundaries

    NASA Astrophysics Data System (ADS)

    Shumlyanska, Ludmila

    2010-05-01

    Dividing of the Earth into zones in the frame one-dimensional velocity model was proposed Jeffreys and Gutenberg is the first half of XX century. They recovered the following zones: A - the crust; B - zone in the depth interval 33-413 km, C - zone 413-984 km, D - zone 984-2898 km, E - 2898-4982 km, F - 4982-5121 km, G - 5121-6371 km (centre of the Earth). These zones differ in their seismic properties. Later, zone D was divided to the areas D' (984-2700 km) and D" (2700-2900 km). At present, this scheme is significantly modified and only the layer D" is in wide use. The more seismological studies are carried out, the more seismic boundaries appear. Boundaries at 410, 520, 670, and 2900 km, at which increase in the velocity of the seismic waves is particularly noticeable are considered as having global significance. Moreover, there are indications of the existence of geophysical boundaries at 800, 1200-1300, 1700, 1900-2000 km. Using 3D P-velocity model of the mantle based on Taylor approximation method for solving of the inverse kinematics multi-dimensional seismic task we have obtained seismic boundaries for the area covering 20-55 E 40-55 N. Data on the time of first arrivals of P waves from earthquakes and nuclear explosions recorded at ISC stations during 1964-2002 were used as input to construct a 3-D model. The model has two a priori limits: 1) the velocity is a continuous function of spatial coordinates, 2) the function v(r)/r where r is a radius in the spherical coordinate system r, ?, ? decreases with depth. The first limitation is forced since velocity leaps can not be sustainably restored from the times of first arrival; the second one follows from the nature of the observed data. Results presented as horizontal sections of the actual velocity every 25 km in the depth interval 850-2850 km, and as the longitudinal and latitudinal sections of the discrepancy on the 1-D reference model, obtained as a result of solving of the inversion task at 1 in the same depth interval [1, 2]. A general approach to the solving of the seismic tomography task by the method of Taylor's approximation is as follows: construction of a generalized field of mid-point of arrival times of waves at the observation station; construction of mid-points travel-time curves, i.e. cross-sections of the generalized field of mid-point of the arrival times of waves; inversion of travel time of the mid-point curve into speed curve. Due to the imposed limitations there are no abrupt velocity leaps in the model in use. First derivatives of the velocity for each curve were calculated points of local extreme were identified in order to determine the seismic boundaries. Maps of depths of occurrences of seismic boundaries at about 410 km, 670 km, 1700 km, and 2800 km were constructed. In general there is a deviation from generally accepted values beneath regions with different geodynamic regimes. There is a correlation of the 410 km and 670 km boundaries behaviour with the observed heat flow anomalies and gravitational field. [1] V.Geyko, T. Tsvetkova, L. Shymlanskaya, I. Bugaienko, L. Zaets Regional 3-D velocity model of the mantle of Sarmatia (south-west of the East European Platform). Geophysical Journal, 2005, iss. 6, P. 927-939. (In Russian) [2] V. Geyko, L. Shymlanskaya, T. Tsvetkova, I.Bugaenko, L.Zaets Three-dimensional model of the upper mantle of Ukraine constructed from the times of P waves arrival. Geophysical Journal, 2006, iss. 1, P. 3-16. (In Russian)

  17. Boundary Channel of the Potomac River

    The Boundary Channel of the Potomac River, which forms the boundary between the District of Columbia and the Commonwealth of Virginia. On the right of the image is the Lyndon Baines Johnson Memorial Grove on the Potomac....

  18. Characterization of grain boundaries in silicon

    NASA Technical Reports Server (NTRS)

    Cheng, L. J.; Shyu, C. M.; Stika, K. M.; Daud, T.; Crotty, G. T.

    1983-01-01

    Zero-bias conductance and capacitance measurements at various temperatures were used to study trapped charges and potential barrier height at the boundaries. Deep-level transient spectroscopy (DLTS) was applied to measure the density of states at the boundary. A study of photoconductivity of grain boundaries in p-type silicon demonstrated the applicability of the technique in the measurement of minority carrier recombination velocity at the grain boundary. Enhanced diffusion of phosphorus at grain boundaries in three cast polycrystalline photovoltaic materials was studied. Enhancements for the three were the same, indicating that the properties of boundaries are similar, although grown by different techniques. Grain boundaries capable of enhancing the diffusion were found always to have strong recombination activities; the phenomena could be related to dangling bonds at the boundaries. Evidence that incoherent second-order twins of (111)/(115) type are diffusion-active is presented.

  19. 76 FR 23335 - Notification of Boundary Revision

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-04-26

    ... congressional committees, and following publication of a revised boundary map, drawing or other boundary... depicted on Segment Map 43, identified as Tract 43-124, dated June 1971. The map is on file and...

  20. Nonequilibrium chemistry boundary layer integral matrix procedure

    NASA Technical Reports Server (NTRS)

    Tong, H.; Buckingham, A. C.; Morse, H. L.

    1973-01-01

    The development of an analytic procedure for the calculation of nonequilibrium boundary layer flows over surfaces of arbitrary catalycities is described. An existing equilibrium boundary layer integral matrix code was extended to include nonequilibrium chemistry while retaining all of the general boundary condition features built into the original code. For particular application to the pitch-plane of shuttle type vehicles, an approximate procedure was developed to estimate the nonequilibrium and nonisentropic state at the edge of the boundary layer.

  1. Boundaries in the Practice of Humanistic Counselling.

    ERIC Educational Resources Information Center

    Owen, Ian R.

    1997-01-01

    Uses the concept of boundary to describe the ground rules, quality, and type of therapeutic relationships in a humanistic form of counseling--a form that blends Rogerian principles with ideas taken from psychodynamic practice. Discusses the work of Robert Langs, boundaries in person-centered work, and the limits of boundaries. (RJM)

  2. Outline of research on oscillating boundary layers

    NASA Technical Reports Server (NTRS)

    Cousteix, J.

    1979-01-01

    The state of the art in the field of unsteady boundary layers is outlined with emphasis on turbulent boundary layers. The unsteady flows considered are mainly periodic with the external velocity varying around a zero or nonzero mean time value. The principal results obtained on laminar boundary layers are also presented.

  3. Turbulent boundary layer of an airfoil

    NASA Technical Reports Server (NTRS)

    Fediaevsky, K

    1937-01-01

    A need has arisen for a new determination of the velocity profiles in the boundary layer. Assuming that the character of the velocity distribution depends to a large extent on the character of the shear distribution across the boundary layer, we shall consider the nature of the shear distribution for a boundary layer with a pressure gradient.

  4. Solute redistribution by a migrating grain boundary

    SciTech Connect

    Lillo, T.M.; Siclen, C.DeW. van; Wright, R.N.

    1998-05-05

    Although the role of volume diffusion during homogenization of as-cast microstructures is fairly well understood, the effect of grain boundaries on the homogenization process is largely unknown. To address the role of moving grain boundaries in homogenization, the authors have monitored grain boundary migration in a chill-cast Cu-8wt% Ni alloy at temperatures around 0.6 T{sub mp} where volume diffusion is expected to be minimal. Energy dispersive x-ray spectra (EDS) taken from both sides of mobile grain boundaries were used to assess homogenization of the as-cast microstructure by grain boundary diffusion. The degree of homogenization due to migration, given by the change in the minimum and maximum values of Ni concentration on opposite sides of a migrated grain boundary, is expected to reflect the grain boundary diffusivity and the grain boundary velocity. A relationship incorporating these parameters was obtained from a simple model describing solute redistribution within a moving grain boundary. This relationship allows calculation of the grain boundary diffusivity from experimentally-determined solute concentration profiles ahead of and behind the grain boundary and the migration velocity. The free energy change due to the reduction in compositional inhomogeneity is also calculated from the compositional free energy densities associated with the composition profiles. Estimates of the grain boundary mobility are then calculated assuming that this change in free energy is the major contributor to the driving force.

  5. Mean Flow Boundary Conditions for Computational Aeroacoustics

    NASA Technical Reports Server (NTRS)

    Hixon, R.; Nallasamy, M.; Sawyer, S.; Dyson, R.

    2003-01-01

    In this work, a new type of boundary condition for time-accurate Computational Aeroacoustics solvers is described. This boundary condition is designed to complement the existing nonreflective boundary conditions while ensuring that the correct mean flow conditions are maintained throughout the flow calculation. Results are shown for a loaded 2D cascade, started with various initial conditions.

  6. Boundary layers on oscillating airfoils

    NASA Technical Reports Server (NTRS)

    Carr, L. W.; Cebeci, T.

    1985-01-01

    A two-point finite-difference unsteady laminar and turbulent boundary-layer computational method has been used to investigate the properties of the flow around an airfoil (NACA 0012) oscillating through angles of attack up to 18 degrees, and for reduced frequencies of 0.01 and 0.20. The unsteady potential flow was determined using the method of Geissler. The influence of transition location on stall behavior has been investigated, using both experimentally determined transition information, and transition located at the pressure peak; the results show the need for viscous-inviscid interaction in future computations of such flows.

  7. Grain Boundary Rotations in Solids

    NASA Astrophysics Data System (ADS)

    Bobylev, S. V.; Ovid'ko, I. A.

    2012-10-01

    A new physical mechanism of plastic flow in solids is suggested and theoretically described. The mechanism represents stress-driven rotations of grain boundaries (GBs) in subsurface areas of solids. The stress and energy characteristics of the GB rotations are calculated. In the case of nickel, we find that such rotations are energetically favorable processes in a wide range of GB parameters. Our theory is consistent with the experimental observation [D. Jang and J. R. Greer, Scr. Mater. 64, 77 (2011).SCMAF71359-646210.1016/j.scriptamat.2010.09.010] of GB rotations in deformed nanocrystalline nickel nanopillars.

  8. Computing region moments from boundary representations

    NASA Technical Reports Server (NTRS)

    Wilf, J. M.; Cunningham, R. T.

    1979-01-01

    The class of all possible formulas for computing arbitrary moments of a region from the region's boundary is derived. The selection of a particular formula depends on the choice of an independent parameter. Several choices of this parameter are explored for region boundaries approximated by polygons. The parameter choice that minimizes computation time for boundaries represented by chain code is derived. Algorithms are presented for computing arbitrary moments for a region from a polygonal approximation of its boundary and for computing low order moments from chain encoded boundaries.

  9. Phase Boundaries in Algebraic Conformal QFT

    NASA Astrophysics Data System (ADS)

    Bischoff, Marcel; Kawahigashi, Yasuyuki; Longo, Roberto; Rehren, Karl-Henning

    2016-02-01

    We study the structure of local algebras in relativistic conformal quantum field theory with phase boundaries. Phase boundaries are instances of a more general notion of boundaries that give rise to a variety of algebraic structures. These can be formulated in a common framework originating in Algebraic QFT, with the principle of Einstein Causality playing a prominent role. We classify the phase boundary conditions by the centre of a certain universal construction, which produces a reducible representation in which all possible boundary conditions are realized. For a large class of models, the classification reproduces results obtained in a different approach by Fuchs et al. before.

  10. Work-Family Boundary Strategies: Stability and Alignment between Preferred and Enacted Boundaries

    ERIC Educational Resources Information Center

    Ammons, Samantha K.

    2013-01-01

    Are individuals bounding work and family the way they would like? Much of the work-family boundary literature focuses on whether employees are segmenting or integrating work with family, but does not explore the boundaries workers would like to have, nor does it examine the fit between desired and enacted boundaries, or assess boundary stability.…

  11. Work-Family Boundary Strategies: Stability and Alignment between Preferred and Enacted Boundaries

    ERIC Educational Resources Information Center

    Ammons, Samantha K.

    2013-01-01

    Are individuals bounding work and family the way they would like? Much of the work-family boundary literature focuses on whether employees are segmenting or integrating work with family, but does not explore the boundaries workers would like to have, nor does it examine the fit between desired and enacted boundaries, or assess boundary stability.

  12. Transcending boundaries with Ira Hirsh

    NASA Astrophysics Data System (ADS)

    Singh, Punita G.

    2002-05-01

    Ira Hirsh has made many contributions to various fields of acoustics from speech, hearing, psychological and physiological acoustics, to musical and architectural acoustics. It was a privilege for me to have been his student in all these areas, and to have had him as a guide through masters and doctoral degree programs that focused on topics that lie at the boundaries connecting these disciplines. Ira was not a prescriptive advisor, imposing particular research topics or procedures on his graduate students. Rather, he encouraged originality, innovation, and personal goal setting. He would subtly suggest starting points and provide landmarks as references, rather than explicit directions leading to them. One had to navigate the path by ones own wits. This approach encouraged lateral, out-of-the box thinking, while also leading to respectful appreciation of historic trajectories in scientific research. During our time together, we worked on several aspects of music, including, rhythm, melody, pitch, and timber perception. Some of this work will be recapitulated, highlighting Ira's role in its exposition and development. His multidimensional personality, astute insights, colorful remarks, wry humor, care, and concern are qualities to be cherished-beyond the boundaries of campus, city, country, and contemporaneity.

  13. Boundary Layer Heights from CALIOP

    NASA Astrophysics Data System (ADS)

    Kuehn, R.; Ackerman, S. A.; Holz, R.; Roubert, L.

    2012-12-01

    This work is focused on the development of a planetary boundary layer (PBL) height retrieval algorithm for CALIOP and validation studies. Our current approach uses a wavelet covariance transform analysis technique to find the top of the boundary layer. We use the methodology similar to that found in Davis et. al. 2000, ours has been developed to work with the lower SNR data provided by CALIOP, and is intended to work autonomously. Concurrently developed with the CALIOP algorithm we will show results from a PBL height retrieval algorithm from profiles of potential temperature, these are derived from Aircraft Meteorological DAta Relay (AMDAR) observations. Results from 5 years of collocated AMDAR - CALIOP retrievals near O'Hare airport demonstrate good agreement between the CALIOP - AMDAR retrievals. In addition, because we are able to make daily retrievals from the AMDAR measurements, we are able to observe the seasonal and annual variation in the PBL height at airports that have sufficient instrumented-aircraft traffic. Also, a comparison has been done between the CALIOP retrievals and the NASA Langley airborne High Spectral Resolution Lidar (HSRL) PBL height retrievals acquired during the GoMACCS experiment. Results of this comparison, like the AMDAR comparison are favorable. Our current work also involves the analysis and verification of the CALIOP PBL height retrieval from the 6 year CALIOP global data set. Results from this analysis will also be presented.

  14. Boundary Conditions of the Heliosphere

    NASA Technical Reports Server (NTRS)

    Slavin, Jonathan D.; Frisch, Priscilla C .

    2001-01-01

    We present new calculations of the ionization of the Local Interstellar Cloud (LIC) by directly observed sources including nearby stellar extreme ultraviolet (EUV) sources and the diffuse emission of the Soft X-ray Background (SXRB). In addition, we model the important, unobserved EUV emission both from the hot gas responsible for the SXRB and from a possible evaporative boundary between the LIC and the hot gas. We show that these ionization sources can provide the necessary ionization and heating of the cloud to match observations. Including the radiation from the conductive boundary, while not required, does improve the agreement with observations of the temperature of the LIC. The ionization predicted in our models shows good agreement with pickup ion results, interstellar absorption line data towards epsilon CMa, and EUV opacity measurements of nearby white dwarf stars. The areas of disagreement point to a possible underabundance (relative to solar abundance) of neon in the LIC. The presence of dust in the cloud, or at least depleted abundances, is necessary to maintain the heating/cooling balance and reach the observed temperature.

  15. Modelling the transitional boundary layer

    NASA Technical Reports Server (NTRS)

    Narasimha, R.

    1990-01-01

    Recent developments in the modelling of the transition zone in the boundary layer are reviewed (the zone being defined as extending from the station where intermittency begins to depart from zero to that where it is nearly unity). The value of using a new non-dimensional spot formation rate parameter, and the importance of allowing for so-called subtransitions within the transition zone, are both stressed. Models do reasonably well in constant pressure 2-dimensional flows, but in the presence of strong pressure gradients further improvements are needed. The linear combination approach works surprisingly well in most cases, but would not be so successful in situations where a purely laminar boundary layer would separate but a transitional one would not. Intermittency-weighted eddy viscosity methods do not predict peak surface parameters well without the introduction of an overshooting transition function whose connection with the spot theory of transition is obscure. Suggestions are made for further work that now appears necessary for developing improved models of the transition zone.

  16. Countable and uncountable boundaries in chaotic scattering.

    PubMed

    De Moura, Alessandro P S; Grebogi, Celso

    2002-10-01

    We study the topological structure of basin boundaries of open chaotic Hamiltonian systems in general. We show that basin boundaries can be classified as either type I or type II, according to their topology. Let B be the intersection of the boundary with a one-dimensional curve. In type I boundaries, B is a Cantor set, whereas in type II boundaries B is a Cantor set plus a countably infinite set of isolated points. We show that the occurrence of one or the other type of boundary is determined by the topology of the accessible configuration space, and also by the chosen definition of escapes. We show that the basin boundary may undergo a transition from type I to type II, as the system's energy crosses a critical value. We illustrate our results with a two-dimensional scattering system. PMID:12443306

  17. Local Geometrical Boundary Data for Einstein's Equations

    NASA Astrophysics Data System (ADS)

    Winicour, Jeffrey

    2014-03-01

    An outstanding issue in the treatment of boundaries in general relativity is the lack of a local geometric interpretation of the necessary boundary data. For the Cauchy problem, the initial data is supplied by the 3-metric and extrinsic curvature of the initial Cauchy hypersurface, subject to constraints. This Cauchy data determine a solution to Einstein's equations which is unique up to a diffeomorphism. In joint work with H.-O. Kreiss, we show how three pieces of unconstrained boundary data, which are associated locally with the geometry of the boundary, likewise determine a solution of the initial-boundary value problem which is unique up to a diffeomorphism. One piece of this data, constructed from the extrinsic curvature of the boundary, determines the dynamical evolution of the boundary. The other two pieces constitute a conformal class of rank-2 metrics, which represent the two gravitational degrees of freedom. Research supported by NSF grant PHY-1201276 to the University of Pittsburgh.

  18. Problems with the Younger Dryas Boundary (YDB) Impact Hypothesis

    NASA Astrophysics Data System (ADS)

    Boslough, M.

    2009-12-01

    One breakthrough of 20th-century Earth science was the recognition of impacts as an important geologic process. The most obvious result is a crater. There are more than 170 confirmed terrestrial impact structures with a non-uniform spatial distribution suggesting more to be found. Many have been erased by tectonics and erosion. Deep water impacts do not form craters, and craters in ice sheets disappear when the ice melts. There is growing speculation that such hidden impacts have caused frequent major environmental events of the Holocene, but this is inconsistent with the astronomically-constrained population of Earth-crossing asteroids. Impacts can have consequences much more significant than excavation of a crater. The K/T boundary mass extinction is attributed to the environmental effects of a major impact, and some researchers argue that other extinctions, abrupt climate changes, and even civilization collapses have resulted from impacts. Nuclear winter models suggest that 2-km diameter asteroids exceed a "global catastrophe threshold" by injecting sufficient dust into the stratosphere to cause short-term climate changes, but would not necessarily collapse most natural ecosystems or cause mass extinctions. Globally-catastrophic impacts recur on timescales of about one million years. The 1994 collision of Comet Shoemaker-Levy 9 with Jupiter led us recognize the significance of terrestrial airbursts caused by objects exploding violently in Earth’s atmosphere. We have invoked airbursts to explain rare forms of non-volcanic glasses and melts by using high-resolution computational models to improve our understanding of atmospheric explosions, and have suggested that multiple airbursts from fragmented impactors could be responsible for regional effects. Our models have been cited in support of the widely-publicized YDB impact hypothesis. Proponents claim that a broken comet exploded over North America, with some fragments cratering the Laurentide Ice Sheet. They suggest an abrupt climate change caused by impact-triggered meltwater forcing, along with massive wildfires, resulted in megafaunal extinctions and collapse of the Clovis culture. We argue that the physics of fragmentation, dispersion, and airburst is not consistent with the hypothesis; that observations are no more compatible with impact than with other causes; and that the probability of the scenario is effectively nil. Moreover, millennial-scale climate events are far more frequent than catastrophic impacts, and pose a much greater threat to humanity. Sandia is a multiprogram laboratory operated by Sandia Corp, a Lockheed Martin Company, for the US DOE under Contract DE-AC04-94AL85000. Probability density for largest asteroid impact since Last Glacial Maximum based on power-law size distribution. Comets are orders of magnitude less likely. Grazing trajectory or recent fragmentation further reduces probability.

  19. Iridium and Spherules in Late Eocene Impact Deposits

    NASA Technical Reports Server (NTRS)

    Kyte, F. T.; Liu, S.

    2002-01-01

    We have been independently examining the Ir (FTK) and spherule (SL) contents of recently discovered late Eocene impact deposits from the south Atlantic and western Indian oceans. These include ODP Sites 1090 [14,15], 709 [lo], and 699 [Liu in prep.]. Iridium abundances at these sites are within the typical range reported for late Eocene deposits, with peak concentrations between 100 and 1000 pg/g. In Table 1 we present estimated net Ir fluences (in ng Ir/cm ) for these and nine other sites. Although there are fewer sites than the K/T boundary, the average of 9 ng Ir/cm2 is probably a good estimate of the late Eocene global flux. This is enough Ir for a 6 km comet (assuming 250 ng/g Ir, p=1.5), is sufficient to produce the Popigai or Chesapeake Bay structures, and is 16% of the flux estimated for the K/T boundary (55 ng/cm2 [ 161). Figure 1 shows the relative abundances of Ir, glassy microtektites and cpx-bearing spherules in sediments from Sites 699 and 1090, which are separated by only 3100 km. Although these two sites have similar Ir anomalies, the abundances of spherules are quite different. Site 1090 has well-defined peaks for both types of spherules, with a peak of 562 cpx spheruledg, while Site 699 contains only a few glassy microtektites and no cpx spherules. While the different abundances of spherules may reflect a heterogeneous distribution of spherules on the Earth s surface, an equally likely cause of this difference may be differential preservation of spherules in the sediment. recovered are only a trace residue of the initial impact deposit. Earlier work found 0.22 ng/g Ir in glassy microtektites from Site 689 [17], an insufficient concentration to support 0.16 ng/g in the bulk sediment at this site. We measured 15 ng/g Ir in a group of 95 cpx spherules from Site 1090 with sizes from 63 to -200 pm, a set typical of the size distribution at this site. Although this is a significant concentration it also cannot support the Ir peak. We presently lack quantitative data on the mass concentration of cpx spherules in Site 1090 sediments, but it is certainly <1 mg/g in The impact record in the late Eocene is very different from that at the Cretaceous-Tertiary In contrast, the late Eocene probably experienced multiple impact events.

  20. Evidence for timing of the initiation of India \\-Asia collision from igneous rocks in Tibet

    NASA Astrophysics Data System (ADS)

    Mo, X.; Zhao, Z.; Zhou, S.; Dong, G.; Guo, T.; Wang, L.

    2002-12-01

    Resent studies on igneous rocks in Tibet provide new evidence for timing of the initiation of India\\-Asia collision. It has been defined that the Neo\\-Tethys started to open from middle Triassic (T2) and reached its widest width in J2\\-K1 (177 \\­¦120 Ma) by petrological and paleontology evidence from Indus\\-Yalung Zangbo ophiolites, which marked the suture between south margin of Lhasa block and north margin of Indian block. Andesite\\-dominated arc volcanic rocks and calc\\-alkaline granitoids in the Gangdese to the north of the ophiolites zone, as indicators of subduction of Neo\\-Tethys oceanic plate, formed in 155.7 \\­¦65 Ma. Petrotectonic assemblages of muscovite\\-bearing granite, leuco\\-granite and high\\- potassium calc\\-alkaline granite aged from 55.7 Ma to less than 10 Ma are no doubt records of collision and post\\-collision processes. Wide spreading post\\-collisional high\\-potassium volcanic rocks (high\\-K calc\\-alkaline and shoshonitic series) in Tibet erupted during 40 \\­¦30 Ma, 25 \\­¦10 Ma and less than 10 Ma. Therefore, India\\-Asia collision took place during the period between 65 Ma and 55 Ma. More critical evidence, however, came from Linzizong volcanic formation, which widely spread in southern Gangdese magmatic belt. The Paleocene\\-Eocene (aged 63.89 \\­¦49.2 Ma) sub\\-horizontal terrestrial volcanic strata unconfomably overlay on the late Cretaceous sedimentary strata (Shexing Formation) being strongly deformed. Linzizong volcanic formation mainly consists of high\\-K2O andesite, trachyandesite, trachyte, rhyolite and thick acidic ignimbrite, characterized by high content of K2O and partly peraluminous, especially in the middle to upper parts of the column, showing obvious geochemical signature of collisional \\­¦post\\-collisional volcanic rocks. In combination with the stratigraphical and paleontological evidence in southern Tibet that documented dramatic change in sedimentary facies and microfuna content across the Cretaceous \\-Tertiary (K/T) boundary (Wan et al., 2002), it is concluded that the collision between India and Lhasa Continental blocks was most likely initiated at ~ K/T boundary time (~ 65 Ma).