Science.gov

Sample records for cretaceous-tertiary k-t boundary

  1. Astronomical age of the Cretaceous-Tertiary (K-T) Boundary

    NASA Astrophysics Data System (ADS)

    Runnegar, B.; Varadi, F.; Jögi, P.; Ghil, M.

    2007-12-01

    Recent refinements of models for the motions of the planets, including the Earth-Moon system, have led to the realization that the calculated cyclical changes in Earth's orbital eccentricity may be approximately correct for the whole of the Cenozoic. This raises the possibility of an astronomically-tuned geological timescale that extends to, and perhaps beyond, the Cretaceous-Tertiary (K-T) boundary. In order to test the validity of these long numerical integrations, we compare calculations of Earth's orbital eccentricity 62-67 million years (Ma) ago with a well-documented succession of basinal limestones and marlstones at Zumaia in the Basque region of Spain. Previous work has shown that each limestone-marlstone couplet records one axial precession cycle (~21 ka). An obvious bundling of couplets defines 36 "short" (~100-ka) eccentricity cycles between a carbonate-rich interval, used previously to tie the Zumaia section to our calculations, and the K-T boundary. If we assume an uninterrupted succession of couplets, each 20.8 ka in duration, and step the amplitudes of the time series according to the color (white, pink, or red) of the carbonates, we retrieve a strong 102-ka eccentricity signal with spectral analysis. This permits other ties to be made between prominent features of the calculated time series and the observed rock record. On this basis, the K-T boundary is >65.83 or >65.84 Ma using the ~100 ka cycles, >65.88 Ma using the 20.8-ka precessional cycles, and ≥65.95 Ma using the metronomic 406-ka eccentricity cycle line frequency, all significantly older than the current consensus age of 65.5 Ma.

  2. An extended Cretaceous-Tertiary (K/T) stable isotope record. Implications for paleoclimate and the nature of the K/T boundary event

    NASA Technical Reports Server (NTRS)

    Dhondt, Steven

    1988-01-01

    In order to obtain a detailed single site record of marine productivity and temperature across the Cretaceous-Tertiary (K/T) boundary, both delta C-13 and delta O-18 values were measured in paired surface and deep water microfossil and nannofossil samples of mid-latitude South Atlantic Deep Sea Drilling Project (DSDP) Site 528. Additionally, the percent sedimentary carbonate content of the rock samples from which the analyzed fossil samples were taken, were determined. The analyzed interval spanned the last approximately 1 million years of the Cretaceous (the Abathomphalus mayaroensis foraminiferal zone) and the first approximately 9 million years of the Tertiary (the Paleocene). Paired samples were analyzed every 150 cm of the entire 165 m sampled interval (1 sample per recovered DSDP section), every 20 cm for 2.0 m below and 2.5 m above the K/T boundary, and every 0.25 cm immediately below, at, and above the K/T boundary clay. The Cretaceous-Tertiary boundary and earliest Paleocene record of DSDP Site 528 is marked by at least two strong decreases in the surface-to-deep delta C-13 gradient (one at the K/T boundary (66.4 mybp1) and one approximately 150,000 to 200,000 years later). Both of these decreases co-occur with radical decreases in percent carbonate content and appear to indicate not one, but two, strong decreases in marine primary productivity during the analyzed interval.

  3. Impact and extinction signatures in complete Cretaceous-Tertiary (K-T) boundary sections

    NASA Technical Reports Server (NTRS)

    Smit, J.; Groot, H.; Dejonge, R.; Smit, P.

    1988-01-01

    The Zumaya, Caravaca and Agost sections in Spain, the El Kef section in Tunisia and the Negev (Nahal Avdat) sections in Israel are among the most continuous, expanded and complete K-T boundary sections. The distribution patterns of the planktic faunas were quantitatively analyzed in closely spaced samples across the K-T boundary in these sections, in conjuction with the geochemistry, stable isotopes, mineralogy and magnetostratigraphy. Three hundred foraminiferal specimens were randomly selected and determined. Reliable estimates for the foraminiferal productivity changes across the K-T boundary and for the 1 to 2 Ma interval preceding the K-T boundary were made from the numbers of individuals/gram of sediment corrected for the sedimentation rates (calculated from magnetic reversals and lithology). No gradual or stepwise extinction is seen below the K-T boundary nor any productivity decrease. Stable isotope analyses show a warming just after deposition of the ejecta layer, not cooling as predicted by nuclear winter scenarios, although the duration of such cooling may be too short to be observed even in these complete sections. Low REE values and cpx spherules with quench textures idential to quench-textures in diagenetically altered spherules, strongly indicate an oceanic site of (one of) the impactor(s).

  4. Carbon isotopic compositions of organic matter across continental Cretaceous Tertiary (K T) boundary sections: Implications for paleoenvironment after the K T impact event

    NASA Astrophysics Data System (ADS)

    Maruoka, Teruyuki; Koeberl, Christian; Bohor, Bruce F.

    2007-01-01

    To assess the environmental perturbation induced by the impact event that marks the Cretaceous-Tertiary (K-T) boundary, concentrations and isotopic compositions of bulk organic carbon were determined in sedimentary rocks that span the terrestrial K-T boundary at Dogie Creek, Montana, and Brownie Butte, Wyoming in the Western Interior of the United States. The boundary clays at both sites are not bounded by coals. Although coals consist mainly of organic matter derived from plant tissue, siliceous sedimentary rocks, such as shale and clay, may contain organic matter derived from microbiota as well as plants. Coals record δ13C values of plant-derived organic matter, reflecting the δ13C value of atmospheric CO 2, whereas siliceous sedimentary rocks record the δ13C values of organic matter derived from plants and microbiota. The microbiota δ13C value reflects not only the δ13C value of atmospheric CO 2, but also biological productivity. Therefore, the siliceous rocks from these sites yields information that differs from that obtained previously from coal beds. Across the freshwater K-T boundary at Brownie Butte, the δ13C values decrease by 2.6‰ (from - 26.15‰ below the boundary clay to - 28.78‰ above the boundary clay), similar to the trend in carbonate at marine K-T sites. This means that the organic δ13C values reflect the variation of δ13C of atmospheric CO 2, which is in equilibrium with carbon isotopes at the ocean surface. Although a decrease in δ13C values is observed across the K-T boundary at Dogie Creek (from - 25.32‰ below the boundary clay to - 26.11‰ above the boundary clay), the degree of δ13C-decrease at Dogie Creek is smaller than that at Brownie Butte and that for marine carbonate. About 2‰ decrease in δ13C of atmospheric CO 2 was expected from the δ13C variation of marine carbonate at the K-T boundary. This δ13C-decrease of atmospheric CO 2 should affect the δ13C values of organic matter derived from plant tissue. As such a

  5. Carbon isotopic compositions of organic matter across continental Cretaceous-Tertiary (K-T) boundary sections: Implications for paleoenvironment after the K-T impact event

    USGS Publications Warehouse

    Maruoka, T.; Koeberl, C.; Bohor, B.F.

    2007-01-01

    To assess the environmental perturbation induced by the impact event that marks the Cretaceous-Tertiary (K-T) boundary, concentrations and isotopic compositions of bulk organic carbon were determined in sedimentary rocks that span the terrestrial K-T boundary at Dogie Creek, Montana, and Brownie Butte, Wyoming in the Western Interior of the United States. The boundary clays at both sites are not bounded by coals. Although coals consist mainly of organic matter derived from plant tissue, siliceous sedimentary rocks, such as shale and clay, may contain organic matter derived from microbiota as well as plants. Coals record ??13C values of plant-derived organic matter, reflecting the ??13C value of atmospheric CO2, whereas siliceous sedimentary rocks record the ??13C values of organic matter derived from plants and microbiota. The microbiota ??13C value reflects not only the ??13C value of atmospheric CO2, but also biological productivity. Therefore, the siliceous rocks from these sites yields information that differs from that obtained previously from coal beds. Across the freshwater K-T boundary at Brownie Butte, the ??13C values decrease by 2.6??? (from - 26.15??? below the boundary clay to - 28.78??? above the boundary clay), similar to the trend in carbonate at marine K-T sites. This means that the organic ??13C values reflect the variation of ??13C of atmospheric CO2, which is in equilibrium with carbon isotopes at the ocean surface. Although a decrease in ??13C values is observed across the K-T boundary at Dogie Creek (from - 25.32??? below the boundary clay to - 26.11??? above the boundary clay), the degree of ??13C-decrease at Dogie Creek is smaller than that at Brownie Butte and that for marine carbonate. About 2??? decrease in ??13C of atmospheric CO2 was expected from the ??13C variation of marine carbonate at the K-T boundary. This ??13C-decrease of atmospheric CO2 should affect the ??13C values of organic matter derived from plant tissue. As such a

  6. The Manson impact structure, a possible site for a Cretaceous-Tertiary (K-T) boundary impact

    NASA Technical Reports Server (NTRS)

    Hartung, J. B.; Kunk, M. J.; Anderson, R. R.

    1988-01-01

    The Manson impact structure, about 35 km in diameter, is the largest impact crater recognized in the United States. Its center is located near the town of Manson, 29 km west of Fort Dodge, Iowa. The structure is not well known geologically because it is covered by tens of meters of glacial deposits. What is known about the structure was learned mostly from the study of water well cuttings. At Manson the normal Phanerozoic and Proterozoic sedimentary rocks were replaced by centrally uplifted Proterozoic crystalline rocks that are representative of the normal basement: This central uplift is surrounded by completely disrupted rocks which are roughly encircled by peripherally faulted and slumped sequences of normal sedimentary strata. Radially outward normal sedimentary strata are uplifted slightly. Manson, once interpreted as a cryptovolcanic structure, is now considered an impact structure based on its circular shape, its central uplift and the presence of multiple intersecting sets of shock lamellae in quartz grains from the central uplift. The Ar-40/Ar-39 age spectrum dating results for a microcline separate from the Manson 2-A core in the central uplift is shown. This spectrum is interpreted to indicate a nearly complete degassing of the microcline at the time of the Manson impact. The remainder of the gas released climbs in age with increasing temperature of release. This pattern of the age spectrum is interpreted to represent diffusional loss due to reheating at the time of the impact and during subsequent cooling. Shocked quartz grains, present in the iridium-bearing layer at the K-T boundary throughout the world, have a significantly larger size and are more abundant in the western interior of North America than elsewhere in the world. Furthermore, shocked feldspar and granitic fragments are found at the K-T boundary in North America. These observations indicate the K-T boundary impact must have penetrated continental crust in North America.

  7. The Manson impact structure, a possible site for a Cretaceous-Tertiary (K-T) boundary impact

    NASA Astrophysics Data System (ADS)

    Hartung, J. B.; Kunk, M. J.; Anderson, R. R.

    The Manson impact structure, about 35 km in diameter, is the largest impact crater recognized in the United States. Its center is located near the town of Manson, 29 km west of Fort Dodge, Iowa. The structure is not well known geologically because it is covered by tens of meters of glacial deposits. What is known about the structure was learned mostly from the study of water well cuttings. At Manson the normal Phanerozoic and Proterozoic sedimentary rocks were replaced by centrally uplifted Proterozoic crystalline rocks that are representative of the normal basement: This central uplift is surrounded by completely disrupted rocks which are roughly encircled by peripherally faulted and slumped sequences of normal sedimentary strata. Radially outward normal sedimentary strata are uplifted slightly. Manson, once interpreted as a cryptovolcanic structure, is now considered an impact structure based on its circular shape, its central uplift and the presence of multiple intersecting sets of shock lamellae in quartz grains from the central uplift. The Ar-40/Ar-39 age spectrum dating results for a microcline separate from the Manson 2-A core in the central uplift is shown. This spectrum is interpreted to indicate a nearly complete degassing of the microcline at the time of the Manson impact. The remainder of the gas released climbs in age with increasing temperature of release. This pattern of the age spectrum is interpreted to represent diffusional loss due to reheating at the time of the impact and during subsequent cooling. Shocked quartz grains, present in the iridium-bearing layer at the K-T boundary throughout the world, have a significantly larger size and are more abundant in the western interior of North America than elsewhere in the world. Furthermore, shocked feldspar and granitic fragments are found at the K-T boundary in North America. These observations indicate the K-T boundary impact must have penetrated continental crust in North America.

  8. The Cretaceous-Tertiary (K/T) impact: One or more source craters?

    NASA Technical Reports Server (NTRS)

    Koeberl, Christian

    1992-01-01

    The Cretaceous-Tertiary (K/T) boundary is marked by signs of a worldwide catastrophe, marking the demise of more than 50 percent of all living species. Ever since Alvarez et al. found an enrichment of IR and other siderophile elements in rocks marking the K/T boundary and interpreted it as the mark of a giant asteroid (or comet) impact, scientists have tried to understand the complexities of the K/T boundary event. The impact theory received a critical boost by the discovery of shocked minerals that have so far been found only in association with impact craters. One of the problems of the K/T impact theory was, and still is, the lack of an adequate large crater that is close to the maximum abundance of shocked grains in K/T boundary sections, which was found to occur in sections in Northern America. The recent discovery of impact glasses from a K/T section in Haiti has been crucial in establishing a connection with documented impact processes. The location of the impact-glass findings and the continental nature of detritus found in all K/T sections supports at least one impact site near the North American continent. The Manson Impact Structure is the largest recognized in the United States, 35 km in diameter, and has a radiometric age indistinguishable from that of the Cretaceous-Tertiary (K/T) boundary. Although the Manson structure may be too small, it may be considered at least one element of the events that led to the catastrophic loss of life and extinction of many species at that time. A second candidate for the K/T boundary crater is the Chicxulub structure, which was first suggested to be an impact crater more than a decade ago. Only recently, geophysical studies and petrological (as well as limited chemical) analyses have indicated that this buried structure may in fact be of impact origin. At present we can conclude that the Manson crater is the only confirmed crater of K/T age, but Chicxulub is becoming a strong contender; however, detailed geochemical

  9. The Cretaceous-Tertiary (K/T) impact: One or more source craters?

    NASA Astrophysics Data System (ADS)

    Koeberl, Christian

    The Cretaceous-Tertiary (K/T) boundary is marked by signs of a worldwide catastrophe, marking the demise of more than 50 percent of all living species. Ever since Alvarez et al. found an enrichment of IR and other siderophile elements in rocks marking the K/T boundary and interpreted it as the mark of a giant asteroid (or comet) impact, scientists have tried to understand the complexities of the K/T boundary event. The impact theory received a critical boost by the discovery of shocked minerals that have so far been found only in association with impact craters. One of the problems of the K/T impact theory was, and still is, the lack of an adequate large crater that is close to the maximum abundance of shocked grains in K/T boundary sections, which was found to occur in sections in Northern America. The recent discovery of impact glasses from a K/T section in Haiti has been crucial in establishing a connection with documented impact processes. The location of the impact-glass findings and the continental nature of detritus found in all K/T sections supports at least one impact site near the North American continent. The Manson Impact Structure is the largest recognized in the United States, 35 km in diameter, and has a radiometric age indistinguishable from that of the Cretaceous-Tertiary (K/T) boundary. Although the Manson structure may be too small, it may be considered at least one element of the events that led to the catastrophic loss of life and extinction of many species at that time. A second candidate for the K/T boundary crater is the Chicxulub structure, which was first suggested to be an impact crater more than a decade ago. Only recently, geophysical studies and petrological (as well as limited chemical) analyses have indicated that this buried structure may in fact be of impact origin. At present we can conclude that the Manson crater is the only confirmed crater of K/T age, but Chicxulub is becoming a strong contender; however, detailed geochemical

  10. Fullerenes in the cretaceous-tertiary boundary layer

    SciTech Connect

    Heymann, D.; Chibante, L.P.F.; Smalley, R.E. ); Brooks, R.R. ); Wolbach, W.S. )

    1994-07-29

    High-pressure liquid chromatography with ultraviolet-visible spectral analysis of toluene extracts of samples from two Cretaceous-Tertiary (K-T) boundary sites in New Zealand has revealed the presence of C[sub 60] at concentrations of 0.1 to 0.2 parts per million of the associated soot. This technique verified also that fullerenes are produced in similar amounts in the soots of common flames under ambient atmospheric conditions. Therefore, the C[sub 60] in the K-T boundary layer may have originated in the extensive wildfires that were associated with the cataclysmic impact event that terminated the Mezozoic era about 65 million years ago.

  11. The Western North American Cretaceous-Tertiary (K-T) boundary interval and its content of shock-metamorphosed minerals: Implications concerning the K-T boundary impact-extinction theory

    NASA Technical Reports Server (NTRS)

    Izett, G. A.

    1988-01-01

    At 20 sites in the Raton Basin of Colorado and New Mexico, and at several other sites in Wyoming, Montana, and Canada, a pair of claystone units, an Ir abundance anomaly, and a concentration of shock-metamorphosed minerals mark the palynological K-T boundary. The K-T boundary claystone, which is composed of kaolinite and small amounts of illite/smectite mixed-layer clay, is similar in most respects to kaolinite tonstein layers in coal beds. At some, but not all, K-T boundary localities, the boundary claystone contains solid kaolinite and hollow and solid goyazite spherules, 0.05 to 1.2 mm in diameter. The upper unit, the K-T boundary impact layer, consists chiefly of kaolinite and various amounts of illite/smectite mixed-layer clay. The impact layer and boundary claystone are similar chemically, except that the former has slightly more Fe, K, Ba, Cr, Cu, Li, V, and Zn than the latter. The facts that the boundary claystone and impact layer contain anomalous amounts of Ir, comprise a stratigraphic couplet at Western North American sites, and form thin, discrete layers, similar to air-fall units (volcanic or impact), suggest that the claystone units are of impact origin. Significantly, the impact layer contains as much as 2 percent clastic mineral grains, about 30 percent of which contain multiple sets of shock lamellae. Only one such concentration of shocked minerals has been found near the K-T boundary. The type of K-T boundary shock-metamorphosed materials (quartzite and metaquartzite) in the impact layer and the lack of shock lamellae in quartz and feldspar of pumice lapilli and granitic xenoliths in air-fall pumice units of silicic tuffs, such as the Bishop Tuff, eliminate the possibility that the shock-metamorphosed minerals in the K-T impact layer are of volcanic origin. The global size distribution and abundance of shock-metamorphosed mineral grains suggest that the K-T impact occurred in North America.

  12. Seawater strontium isotopes at the Cretaceous-Tertiary boundary

    NASA Technical Reports Server (NTRS)

    Macdougall, J. D.; Martin, E.

    1988-01-01

    Anomalously high values of Seawater Sr-87/Sr-86 near the Cretaceous-Tertiary (K-T) boundary have been reported. However, few of the data from the literature are from a single continuous section, and perhaps the most complete study of the boundary region, from a shallow marine limestone sequence in Alabama, showed elevated Sr-87/Sr-86 but no pronounced spike. Thus, in order to investigate the cause of the change in strontium isotopic composition, it is important to determine the exact nature and magnitude of the increase by studying in detail continuous sections through the boundary. If there is indeed a Sr isotope spike at the K-T boundary, it requires the addition of a large amount of radiogenic Sr to the oceans over a short time period, a phenomenon that may be linked to other large-scale environmental disturbances which occurred at that time. In order to address this question, a high-resolution strontium isotope study of foraminifera from three Deep Sea Drilling Project (DSDP) cores which recovered the K-T boundary section: Site 356 in the South Atlantic, Site 384 in the North Atlantic and Site 577 from the Shatsky Rise in the Pacific was initiated. The isotope measurements are being made on either single or small numbers of forams carefully picked and identified and in most cases examined by SEM before analysis. Because this work is not yet complete, conclusions drawn here must be viewed as tentative. They are briefly discussed.

  13. Magnesioferrite from the Cretaceous-Tertiary boundary, Caravaca, Spain

    NASA Astrophysics Data System (ADS)

    Bohor, Bruce F.; Foord, Eugene E.; Ganapathy, Ramachandran

    1986-12-01

    The results of an analysis of samples separated from the Cretaceous-Tertiary (K-T) boundary clay at Caravaca, Spain are presented. Magnetically fractionated samples were irradiated with thermal neutrons, and the element concentrations were determined by gamma-ray counting. The magnetic mineral separated from the basal layer of the K-T boundary is a spinel-type phase having the composition of magnesioferrite, and is high (about 29 ppb) in iridium. This spinel-type phase and others of the spinel group found in K-T boundary clays have been proposed to represent unaltered remnants of ejecta deposited from an earth-girdling dust cloud formed from the impact of an asteroid or other large bolide at the end of the Cretaceous period. Major element composition (high Cr and Ni) and trace element ratios of the analyzed samples indicate either an extraterrestrial or mantle source for the magnesioferrite. On the basis of the crystal morphology and general compositon of the grains, rapid crystallization at high temperature is indicated, most likely directly from a vapor phase or emanating cloud and in an environment of moderate oxygen fugacity.

  14. The debate over the Cretaceous-Tertiary boundary

    NASA Technical Reports Server (NTRS)

    Alvarez, W.; Asaro, F.; Alvarez, L. W.; Michel, H. V.

    1988-01-01

    Large-body impact on the Earth is a rare but indisputable geologic process. The impact rate is approximately known from objects discovered in Earth-crossing orbits and from the statistics of craters on the Earth's surface. Tektite and microtektite strewn fields constitute unmistakable ejecta deposits that can be due only to large-body impacts. The Cretaceous-Tertiary (K-T) boundary coincides with an unusually severe biological trauma, and this stratigraphic horizon is marked on a worldwide basis by anomalous concentrations of noble metals in chondritic proportions, mineral spherules with relict quench-crystallization textures, and mineral and rock grains showing shock deformation. These features are precisely compatible with an impact origin. Although only impact explains all the types of K-T boundary evidence, the story may not be as simple as once thought. The original hypothesis envisioned one large impact, triggering one great extinction. Newer evidence hints at various complications. Different challenges are faced by the occupants of each apex of a three-cornered argument over the K-T event. Proponents of a non-impact explanation must show that the evidence fits their preferred model better than it fits the impact scenario. Proponents of the single impact-single extinction view must explain away the complications. Proponents of a more complex impact crisis must develop a reasonable scenario which honors the new evidence.

  15. Magnesioferrite from the Cretaceous-Tertiary boundary, Caravaca, Spain

    USGS Publications Warehouse

    Bohor, B.F.; Foord, E.E.; Ganapathy, R.

    1986-01-01

    Magnesioferrite grading toward magnetite has been identified as a very small but meaningful constituent of the basal iron-rich portion of the Cretaceous-Tertiary (K-T) boundary clay at the Barranco del Gredero section, Caravaca, Spain. This spinel-type phase and others of the spinel group, found in K-T boundary clays at many widely separated sites, have been proposed as representing unaltered remnants of ejecta deposited from an earth-girdling dust cloud formed from the impact of an asteroid or other large bolide at the end of the Cretaceous period. The magnesioferrite occurs as euhedral, frequently skeletal, micron-sized octahedral crystals. The magnesioferrite contains 29 ?? 11 ppb Ir, which accounts for only part of the Ir anomaly at this K-T boundary layer (52 ?? 1 ppb Ir). Major element analyses of the magnesioferrite show variable compositions. Some minor solid solution exists toward hercynite-spinel and chromite-magnesiochromite. A trevorite-nichromite (NiFe2O4NiCr2O4) component is also present. The analyses are very similar to those reported for sites at Furlo and Petriccio, Umbria, Italy. On the basis of the morphology and general composition of the magnesioferrite grains, rapid crystallization at high temperature is indicated, most likely directly from a vapor phase and in an environment of moderate oxygen fugacity. Elemental similarity with metallic alloy injected into rocks beneath two known impact craters suggests that part of the magnesioferrite may be derived from the vaporized chondritic bolide itself, or from the mantle; there is no supporting evidence for its derivation from crustal target rocks. ?? 1986.

  16. Cathodoluminescence of shocked quartz at the Cretaceous-Tertiary boundary

    NASA Technical Reports Server (NTRS)

    Owen, Michael R.; Anders, Mark H.

    1988-01-01

    Empirical studies have documented an association between rock type and the cathodoluminescence color of constituent quartz grains. Quartz from extrusive igneous sources luminesces uniform pale blue. Quartz from intrusive igneous and high-grade metamorphic rocks generally luminesces darker purple-blue, whereas quartz recrystallized under low-grade metamorphic conditions luminesces reddish-brown. Quartz grains in most sandstones luminesce a heterogeneous mixture of these colors because the grains were derived from a variety of ultimate source rocks. If shocked quartz found at the Cretaceous-Tertiary (K-T) boundary is volcanic in origin, its cathodoluminescence should be predominantly pale blue. Alternatively, quartz grains derived from bolide impact upon, and ejection of, mixed igneous, metamorphic, and sedimentary rocks should luminesce a variety of colors. Grain mounts of sand collected at the K-T boundary horizon from the Clear Creek North site in the Raton Basin, Colorado were examined. Shocked quartz luminesced a variety of colors and very few grains luminesced the pale blue color that is typical of volcanic quartz. It was concluded that the shocked quartz was derived from a petrologically diverse source region without substantial volcanic contribution. Most shocked grains apparently were derived from low-grade metamorphic rocks, with a slightly smaller contribution from high-grade metamorphic and intrusive igneous rocks. Rare quartz grains with brown-luminescing rims reflect a minor addition from detrital sedimentary sources. The apparent relative abundances of intrusive (and rare extrusive) igneous, metamorphic, and sedimentary ultimate source rocks suggested by CL colors of shock-deformed quartz at the K-T boundary is consistent with a crustal/supracrustal origin for the grains.

  17. 40Ar/39Ar age of Cretaceous-Tertiary boundary tektites from Haiti

    USGS Publications Warehouse

    Izett, G.A.; Dalrymple, G.B.; Snee, L.W.

    1991-01-01

    40Ar/39Ar dating of tektites discovered recently in Cretaceous-Tertiary (K-T) boundary marine sedimentary rocks on Haiti indicates that the K-T boundary and impact event are coeval at 64.5 ?? 0.1 million years ago. Sanidine from a bentonite that lies directly above the K-T boundary in continental, coal-bearing, sedimentary rocks of Montana was also dated and has a 40Ar/39Ar age of 64.6 ?? 0.2 million years ago, which is indistinguishable statistically from the age of the tektites.

  18. Major wildfires at the Cretaceous-Tertiary boundary

    NASA Technical Reports Server (NTRS)

    Anders, Edward; Wolbach, Wendy S.; Gilmour, Iain

    1991-01-01

    The current status of the reconstruction of major biomass fire events at the Cretaceous-Tertiary boundary is discussed. Attention is given to the sources of charcoal and soot, the identification of biomass and fossil carbon, and such ignition-related problems as delated fires, high atmospheric O2 content, ignition mechanisms, and the greenhouse-effect consequences of fire on the scale envisioned. Consequences of these factors for species extinction patterns are noted.

  19. Biostratigraphy of the Cretaceous/Tertiary boundary in the Sirwan Valley (Sulaimani Region, Kurdistan, NE Iraq)

    NASA Astrophysics Data System (ADS)

    Sharbazheri, Khalid Mahmood; Ghafor, Imad Mahmood; Muhammed, Qahtan Ahmad

    2009-10-01

    The Cretaceous/Tertiary (K/T) boundary sequence, which crops out in the studied area is located within the High Folded Zone, in the Sirwan Valley, northeastern Iraq. These units mainly consist of flysch and flysch-type successions of thick clastic beds of Tanjero/Kolosh Formations. A detailed lithostratigraphic study is achieved on the outcropping uppermost part of the Upper Cretaceous successions (upper part of Tanjero Formation) and the lowermost part of the Kolosh Formation. On the basis of the identified planktonic foraminiferal assemblages, five biozones are recorded from the uppermost part of Tanjero Formation and four biozones from the lower part of the Kolosh Formation (Lower Paleocene) in the Sirwan section. The biostratigraphic correlations based on planktonic foraminiferal zonations showed a comparison between the biostratigraphic zones established in this study and other equivalents of the commonly used planktonic zonal scheme around the Cretaceous/Tertiary boundary in and outside Iraq.

  20. Proximal Cretaceous-Tertiary boundary impact deposits in the Caribbean

    NASA Technical Reports Server (NTRS)

    Hildebrand, Alan R.; Boynton, Willam V.

    1990-01-01

    Trace element, isotopic, and mineralogic studies indicate that the proposed impact at the Cretaceous-Tertiary boundary occurred in an ocean basin, although a minor component of continental material is required. The size and abundance of shocked minerals and the restricted geographic occurrence of the ejecta layer and impact-wave deposits suggest an impact between the Americas. Coarse boundary sediments at sites 151 and 153 in the Colombian Basin and 5- to 450-meter-thick boundary sediments in Cuba may be deposits of a giant wave produced by a nearby oceanic impact.

  1. Ignition of global wildfires at the Cretaceous/Tertiary boundary

    NASA Technical Reports Server (NTRS)

    Melosh, H. J.; Schneider, N. M.; Zahnle, K. J.; Latham, D.

    1990-01-01

    The recent discovery of an apparently global soot layer at the Cretaceous/Tertiary boundary indicates that global wildfires were somehow ignited by the impact of a comet or asteroid. It is shown here that the thermal radiation produced by the ballistic reentry of ejecta condensed from the vapor plume of the impact could have increased the global radiation flux by factors of 50 to 150 times the solar input for periods ranging from one to several hours. This great increase in thermal radiation may have been responsible for the ignition of global wildfires, as well as having deleterious effects on unprotected animal life.

  2. Palynologically calibrated vertebrate record from North Dakota consistent with abrupt dinosaur extinction at the Cretaceous-Tertiary boundary

    USGS Publications Warehouse

    Pearson, D.A.; Schaefer, T.; Johnson, K.R.; Nichols, D.J.

    2001-01-01

    New data from 17 Cretaceous-Tertiary (K-T) boundary sections and 53 vertebrate sites in the Hell Creek and Fort Union Formations in southwestern North Dakota document a 1.76 m barren interval between the highest Cretaceous vertebrate fossils and the palynologically recognized K-T boundary. The boundary is above the formational contact at 15 localities and coincident with it at two, demonstrating that the formational contact is diachronous. Dinosaurs are common in the highest Cretaceous vertebrate samples and a partial dinosaur skeleton in the Fort Union Formation is the highest recorded Cretaceous vertebrate fossil in this area.

  3. New links between the Chicxulub impact structure and the Cretaceous/Tertiary boundary

    USGS Publications Warehouse

    Sharpton, V.L.; Dalrymple, G.B.; Marin, L.E.; Ryder, G.; Schuraytz, B.C.; Urrutia-Fucugauchi, J.

    1992-01-01

    THE 200-km-diameter Chicxulub structure1-3 in northern Yucatan, Mexico has emerged as the prime candidate for the Cretaceous/Tertiary (K/T) boundary impact crater3-6. Concentric geophysical anomalies associated with enigmatic occurrences of Upper Cretaceous breccias and andesitic rocks led Penfield and Camargo1 to suspect that this structure was a buried impact basin. More recently, the discovery of shocked quartz grains in a Chicxulub breccia3, and chemical similarities between Chicxulub rocks and K/T tektite-like glasses3-6 have been advanced as evidence that the Chicxulub structure is a K/T impact site. Here we present evidence from core samples that Chicxulub is indeed a K/T source crater, and can apparently account for all the evidence of impact distributed globally at the K/T boundary without the need for simultaneous multiple impacts or comet showers. Shocked breccia clasts found in the cores are similar to shocked lithic fragments found worldwide in the K/T boundary ejecta layer7,8. The Chicxulub melt rocks that we studied contain anomalously high levels of iridium (up to 13.5 parts per 109), also consistent with the indium-enriched K/T boundary layer9. Our best estimate of the crystallization age of these melt rocks, as determined by 40Ar/39Ar analyses, is 65.2??0.4 (1??) Myr, in good agreement with the mean plateau age of 64.98 ?? 0.05 Myr recently reported10. Furthermore, these melt rocks acquired a remanent magnetization indicating that they cooled during an episode of reversed geomagnetic polarity. The only such episode consistent with 40Ar/39Ar constraints is chron 29R, which includes the K/T boundary.

  4. Orbital Cyclicities Above and Below the Cretaceous-Tertiary Boundary, Umbria-Marche Region, Italy

    NASA Technical Reports Server (NTRS)

    King, D. T., Jr.; Petruny, L. W.; Rampino, M. R.; Prokoph, A.; Pope, K.; Fischer, A. G.; Montanari, A.; Ocampo, A. C.

    2000-01-01

    In the Umbria-Marche region of central Italy, the deep basinal carbonate Scaglia Rossa Formation contains an important sequence of Cretaceous-Tertiary strata including a detailed paleomagnetic record and the distal impactoclastic Cretaceous-Tertiary boundary clay layer. In addition to this significant paleomagnetic and impactoclastic record, the Scaglia Rossa also contains potentially important stratigraphic evidence of relatively long-term oceanic and atmospheric consequences of the Cretaceous-Tertiary bolide catastrophe, which we will describe for the first time herein. Additional information is contained in the original extended abstract.

  5. Wildfires and animal extinctions at the Cretaceous/Tertiary boundary

    NASA Astrophysics Data System (ADS)

    Adair, Robert K.

    2010-06-01

    Persuasive models of the ejection of material at high velocities from the Chicxulub asteroid impact marking the Cretaceous/Tertiary boundary have led to the conclusion that upon return, that material, heated in passage through the upper atmosphere, generated a high level of infrared energy density over the Earth's surface. That radiant energy has been considered to be a direct source of universal wildfires, which were presumed to be a major cause of plant and animal species extinctions. The extinction of many animal species, especially the dinosaurs, has also been attributed to the immediate lethal effects of the radiation. I find that the absorption of the radiation by the atmosphere, by cloud formations, and by ejecta drifting in the lower atmosphere reduced the radiation at the surface to a level that cannot be expected to have generated universal fires. Although the reduced radiation will have likely caused severe injuries to many animals, such insults alone seem unlikely to have generated the overall species extinctions that have been deduced.

  6. Selective extinction and survival across the Cretaceous/Tertiary boundary in the northern Atlantic Coastal Plain

    SciTech Connect

    Gallagher, W.B. )

    1991-10-01

    The inner Atlantic Coastal Plain in New Jersey and the Delmarva Peninsula is underlain by an Upper Cretaceous-lower Tertiary sequence of marine and paralic sand, clay, and glauconitic beds. Campanian, Maastrichtian, Danian, and Thanetian deposits are especially fossiliferous and yield a succession of marine faunas that reveal a pattern of selective extinction and survival across the Cretaceous/Tertiary (K/T) boundary in this area. Cretaceous benthic invertebrate communities are dominated by oysters and other semi-infaunal and infaunal molluscs with planktotrophic larval stages. These are replaced in the Danian by brachiopod-dominated communities that are composed of epifaunal benthos with a variety of nonplanktotrophic reproductive strategies. A similar pattern is observable in the nektonic cephalopod populations in this sequence; the typical ammonites of the Cretaceous became extinct at the K/T boundary, whereas the nautilids survived. Ammonites are thought to have had a planktotrophic larval stage, whereas nautilids are known to lay large lecithotrophic eggs. This pattern of differential survival is attributed to the planktonic population crash at the K/T boundary which placed planktotrophically reproducing species at a disadvantage while favoring the varied groups that practiced alternative reproductive strategies.

  7. High-resolution leaf-fossil record spanning the Cretaceous/Tertiary boundary

    USGS Publications Warehouse

    Johnson, K.R.; Nichols, D.J.; Attrep, M., Jr.; Orth, C.J.

    1989-01-01

    THEORIES that explain the extinctions characterizing the Cretaceous/Tertiary (K/T) boundary1-3 need to be tested by analyses of thoroughly sampled biotas. Palynological studies are the primary means for stratigraphic placement of the terrestrial boundary and for estimates of plant extinction4-12, but have not been combined with quantitative analyses of fossil leaves (megaflora). Megafloral studies complement palynology by representing local floras with assemblages capable of high taxonomic resolution13, but have previously lacked the sample size and stratigraphic spacing needed to resolve latest Cretaceous floral history5,14-18. We have now combined megafloral data from a 100-m-thick composite K/T boundary section in North Dakota with detailed palynological analysis. Here the boundary is marked by a 30% palynofloral extinction coincident with iridium and shocked-mineral anomalies and lies ???2 m above the highest dinosaur remains. The megaflora undergoes a 79% turnover across the boundary, and smaller changes 17- and 25-m below it. This pattern is consistent with latest Cretaceous climatic warming preceding a bolide impact. ?? 1989 Nature Publishing Group.

  8. Planktonic foraminiferal bioevents and faunal turnover across the Cretaceous Tertiary boundary in north of Iran

    NASA Astrophysics Data System (ADS)

    Darvishzad, B.; Khaje Tash, R.

    2009-04-01

    In the north of Iran in the Galanderud area, similar to those known from the eastern Tethys realm, experienced unusually adverse environmental conditions for planktic foraminifera during the last two million years of the terminal Cretaceous to early Danian. This section is studied to determine the foraminiferal biozones of the upper Cretaceous to lower Paleocene and to detect patterns of foraminiferal changes across the Cretaceous-Tertiary (K-T) boundary. All late Maastrichtian planktic foraminiferal biozones CF1 to CF4, and Danian biozones P0 (Parvularugoglobogerina extensa) P1a (Parvularugoglobogerina eugubina) and Parasubbotina pseudobulloides are present. Faunal studies show that all but four of the Cretaceous species identified disappeared at or below the K-T boundary in zone CF1 (P. hantkeninoides). Another four species (Heterohelix globulosa, H. dentata, H. monmouthensis, G. cretacea) appear to have survived in to the early Danian. Early disappearances appear to be environmentally controlled. Coarse ornamented species with small populations disappeared first, where as small species will little or no ornamented and generally large populations tended to survive after the environment changing. This indicates a pattern of gradual and selective faunal turnover in planktonic foraminifera during the latest Maastrichtian and in to the earliest Danian that is similar to that observed at the El kef stratotype of Tunisia, as well as K-T sequences in west of Iran, Egypt, Italy, Spain and Mexico.

  9. Deccan volcanism at the Cretaceous-Tertiary boundary

    NASA Technical Reports Server (NTRS)

    Courtillot, V.; Vandamme, D.; Besse, J.

    1988-01-01

    The accuracy with which one can claim that Deccan trap volcanism occurred at the Cretaceous-Tertiary boundary (KTB) over a very short time interval is of key importance in deciding whether a volcanic origin of the KTB events should be taken seriously. In the two years since paleomagnetic, paleontological and geodynamic evidence was published, further data have become available and the case now appears to be well constrained. The Ar-40/Ar-39 results from six labs have yielded some 24 reliable plateau ages that narrow the age range to 65 to 69 Ma. Moreover, it appears that a significant part of this range results from inter-lab spread and possible minor alteration. Paleontology demonstrates that volcanism started in the Maestrichtian, more precisely in the A. mayaroensis zone. Paleomagnetism shows that volcanism spanned only 3 chrons and only one correlation remains possible, that of the main central reversed chron with 29R. Therefore, whereas Ar-40/Ar-39 is able only to restrict the duration of volcanism to some 4 Ma, paleomagnetism restricts it to 0.5 Ma. Using some geochemical indicators such as C-13 as proxy, it is suggested that volcanism actually consists of a few shorter events of unequal magnitude. Extrusion rates may be as high as 100 cu km/yr and fissure lengths as long as several 100 km. Such a scenario appears to be at least as successful as others in accounting for most anomalies observed at the KTB. Particularly important are Iridium and other platinum group elements (PGE) profiles, Sr-87/Sr-86, C-13, 0-18, other exotic geochemical signatures, spherules, soot, shocked minerals, selective and stepwise extinctions. The environmental impact of CO2 possibly released during explosive phases of volcanism, and SO2 released during effusive phases, and the ability of volcanism to ensure worldwide distribution of KTB products are now all addressed. In conclusion, the case for a causal link between internal hotspot activity, birth of the Reunion hotspot itself as

  10. Benthic foraminifera at the Cretaceous-Tertiary boundary around the Gulf of Mexico

    NASA Astrophysics Data System (ADS)

    Alegret, Laia; Molina, Eustoquio; Thomas, Ellen

    2001-10-01

    Cretaceous-Tertiary (K-T) boundary sections in northeastern Mexico contain marly formations separated by a controversial clastic unit. Benthic foraminifera in seven sections indicate middle and lower bathyal depths of deposition for the marls, with the exception of the upper bathyal northernmost section. Mixed neritic-bathyal faunas were present in the clastic unit, indicating redeposition in the deep basin by mass-wasting processes resulting from the K-T bolide impact in the Gulf of Mexico. Benthic foraminifera in the Mexican sections, and at other deep-sea locations, were not subject to major extinction at the time of impact, but there were temporary changes in assemblage composition. Benthic faunas indicate well- oxygenated bottom waters and mesotrophic conditions during the late Maastrichtian and increased food supply during the latest Maastrichtian. The food supply decreased drastically just after the K-T boundary, possibly because of the collapse of surface productivity. Cretaceous and early Paleogene benthic foraminifera, however, did not exhibit the benthic-pelagic coupling of present-day faunas, as documented by the lack of significant extinction at the K-T collapse of surface productivity. Much of the food supplied to the benthic faunas along this continental margin might have been refractory material transported from land or shallow coastal regions. The decrease in food supply at the K-T boundary might be associated with the processes of mass wasting, which removed surface, food-rich sediment. Benthic faunas show a staggered pattern of faunal recovery in the lowermost Paleogene, consistent with a staged recovery of the vertical organic flux but also with a gradual buildup of organic matter in the sediment.

  11. Clay mineralogy of the Cretaceous-Tertiary boundary clay. [in search for asteroid ejecta

    NASA Technical Reports Server (NTRS)

    Rampino, M. R.; Reynolds, R. C.

    1983-01-01

    Cretaceous-Tertiary boundary layer clay samples from four localities were subjected to analyses which imply that they are neither mineralogically exotic nor distinct from locally derived clays above and below the boundary. The anomalous iridium-rich ejecta component predicted by the asteroid impact scenario of Alvarez et al (1980) was not detected. It is proposed that volcanic material be considered as an explanation of the geochemical anomalies of the Cretaceous-Tertiary boundary. A model which involves a period of intense volcanism at the end of the Cretaceous would generate a variety of climatic and biological effects consonant with the geologic history of that period.

  12. 40Ar-39Ar dating of the Manson impact structure: A cretaceous-tertiary boundary crater candidate

    USGS Publications Warehouse

    Kunk, M.J.; Izett, G.A.; Haugerud, R.A.; Sutter, J.F.

    1989-01-01

    The mineralogy of shocked mineral and lithic grains in the Cretaceous-Tertiary (K-T) boundary claystone worldwide is most consistent with a bolide impact on a continent. Both the concentrations and sizes of these shocked grains are greatest in the western interior of North America. These data suggest that the Manson impact structure in north-central Iowa is a viable candidate for the K-T boundary impact event. Argon-40-argon-39 age spectrum dating of shocked microcline from the crystalline central uplift of the Manson impact structure indicates that there was severe argon-40 loss at 65.7 ?? 1.0 million years ago, an age that is indistinguishable from that of the K-T boundary, within the limits of analytical precision.

  13. Ar-40 - Ar-39 dating of the Manson impact structure - A Cretaceous-Tertiary boundary crater candidate

    NASA Astrophysics Data System (ADS)

    Kunk, M. J.; Sutter, J. F.; Izett, G. A.; Haugerud, R. A.

    1989-06-01

    The mineralogy of shocked mineral and lithic grains in the Cretaceous-Tertiary (K-T) boundary claystone worldwide is most consistent with a bolide impact on a continent. Both the concentrations and sizes of these shocked grains are greatest in the western interior of North America. These data suggest that the Manson impact structure in north-central Iowa is a viable candidate for the K-T boundary impact event. Argon-40-argon-39 age spectrum dating of shocked microcline from the crystalline central uplift of the Manson impact structure indicates that there was severe argon-40 loss at 65.7 + or - 1.0 million years ago, an age that is indistinguishable from that of the K-T boundary, within the limits of analytical precision.

  14. sup 40 Ar- sup 39 Ar dating of the manson impact structure: A cretaceous-tertiary boundary crater candidate

    SciTech Connect

    Kunk, M.J.; Sutter, J.F. ); Izett, G.A. ); Haugerud, R.A. )

    1989-06-30

    The mineralogy of shocked mineral and lithic grains in the Cretaceous-Tertiary (K-T) boundary claystone worldwide is most consistent with a bolide impact on a continent. Both the concentrations and sizes of these shocked grains are greatest in the western interior of North America. These data suggest that the Manson impact structure in north-central Iowa is a viable candidate for the K-T boundary impact event. Argon-40-argon-39 age spectrum dating of shocked microcline from the crystalline central uplift of the Manson impact structure indicates that there was severe argon-40 loss at 65.7 {plus minus} 1.0 million years ago, an age that is indistinguishable from that of the K-T boundary, within the limits of analytical precision. 36 refs., 2 figs., 1 tab.

  15. Mineralogy of Cretaceous/Tertiary boundary clays in the Chicxulub structure in northern Yucatan

    NASA Technical Reports Server (NTRS)

    Ming, D. W.; Sharpton, Virgil L.; Schuraytz, B. C.

    1991-01-01

    The Cretaceous/Tertiary (K/T) boundary clay layer is thought to be derived from ejecta material from meteorite impact, based on the anomalous concentrations of noble metals in the layer. Because of recent findings of a half-meter thick ejecta deposit at the K/T boundary in Haiti, efforts have focused on locating a large impact feature in the Caribbean and the Gulf of Mexico. One of the leading candidates for the site of a large impact is the Chicxulub structure located on the northern Yucatan Peninsula in Mexico. The Chicxulub structure is a subsurface zone of upper Cretaceous igneous rocks, carbonates, and breccias. The structure has been interpreted to be a 200 km diameter; however, there is some question to the size of the structure or to the fact that it even is an impact feature. Little is known about the mineralogy of this structure; the objective of this study was to determine the clay mineralogy of core samples from within the Chicxulub structure.

  16. Palaeobotanical evidence for a June 'impact winter' at the Cretaceous/Tertiary boundary

    USGS Publications Warehouse

    Wolfe, J.A.

    1991-01-01

    A LARGE bolide impact, such as that thought to have occurred at the Cretaceous/Tertiary (K/T) boundary, should produce large amounts of light-attenuating debris, thereby causing an 'impact winter'1-3. Because of thermal buffering in the oceans, evidence for a brief (1-2 months2-4) impact winter would be found only in terrestrial environments. Aquatic leaves in the K/T boundary section near Teapot Dome, Wyoming, preserve structural deformation that can be duplicated experimentally in extant aquatic leaves by freezing. Reproductive stages reached by the fossil aquatic plants at the time of death suggest that freezing took place in approximately early June. Both the existence of the structurally deformed plants and the high abundance of fern spores occur in a horizon containing sparse impact debris, but below the horizon containing abundant impact debris; I therefore suggest that the lower horizon represents debris and effects from a large, distant bolide impact, and the upper horizon represents a small, nearby bolide impact.

  17. Cretaceous-Tertiary boundary in the Antarctic: Climatic cooling precedes biotic crisis

    NASA Technical Reports Server (NTRS)

    Stott, Lowell D.; Kennett, James P.

    1988-01-01

    Stable isotopic investigations were conducted on calcareous microfossils across two deep sea Cretaceous-Tertiary boundary sequences on Maud Rise, Weddell Sea, Antarctica. The boundary is taken at the level of massive extinctions in calcareous planktonic microfossils, and coincides with a sharp lithologic change from pure calcareous ooze to calcareous ooze with a large volcanic clay component. The uppermost Maestrichtian is marked by a long-term decrease in delta value of 0 to 18 which spans most of the lower and middle A. mayaroensis Zone and represents a warming trend which culminated in surface water temperatures of about 16 C. At approximately 3 meters below the K-T boundary this warming trend terminates abruptly and benthic and planktonic isotopic records exhibit a rapid increase in delta value of 0 to 18 that continues up to the K-T boundary. The trend towards cooler surface water temperatures stops abruptly at the K-T boundary and delta value of 0 to 18 values remain relatively stable through the Paleocene. Comparison of the Antarctic sequence with the previously documented deep sea records in the South Atlantic reveal shifts of similar magnitude in the latest Maestrichtian. It is indicated that the Southern Ocean underwent the most significant, and apparently permanent, climatic change. The latest Cretaceous oxygen isotopic shift recorded at Maud Rise and other deep sea sites is similar in magnitude to large positive delta valve of 0 to 18 shifts in the middle Eocene, at the Eocene/Oligocene boundary and in the middle Miocene that marked large scale climatic transitions which ultimately lead to cryospheric development of the Antarctic. The climatic shift at the end of the Cretaceous represents one of the most significant climatic transitions recorded in the latest Phanerozoic and had a profound effect on global climate as well as oceanic circulation.

  18. Assessing the Evidence for Extensive Wildfires at the Cretaceous-Tertiary Boundary

    NASA Astrophysics Data System (ADS)

    Belcher, C. M.; Collinson, M. E.; Finch, P.; Scott, A. C.

    2004-12-01

    Models of the Cretaceous-Tertiary impact at Chicxulub have suggested that the thermal radiation released by the impact would have been sufficient to ignite extensive wildfires. Eight non-marine K-T sequences stretching from New Mexico to Saskatchewan have been studied in order to test this hypothesis. A multi-proxy approach has been devised by identifying and using key palaeo wildfire proxies (charcoal, soot and polyaromatic hydrocarbons (PAH's)) in combination to assess the extent of biomass burning as part of the K-T events. Soot and PAH's cannot be used to indicate fire location, as soot and PAH's from one large fire could be spread globally. The morphology of the soot and nature of the PAH's present can be used to determine their source, allowing identification of those created by biomass burning versus those from coal, gas and hydrocarbons in the K-T rocks. In contrast to soot and PAH's charcoal is a product uniquely produced by the combustion of vegetation. Charcoal in non-marine rocks provides an excellent tool to record the distribution of wildfires and therefore assess the extent of any thermal radiation associated with the impact at Chicxulub. Quantitative data from three different measures of charcoal abundance (in situ in polished blocks of rock and macro- and microscopic charcoal particles released from sieving of demineralised sediment) reveal that the K-T boundary rocks across the Western Interior of North America contain significantly less charcoal than is typical of the Cretaceous background of this area. The Cretaceous sedimentary rocks contain between 4 and 9 times (according to the measure used) more charcoal particles than the K-T sedimentary rocks. Taphonomic factors do not explain this difference. Furthermore non-charred plant remains are also abundant in the K-T rock layers. Re-assessment of the record of soot and PAH's reported in the K-T rocks suggests that the morphology of the soot and the signature of the PAH's is more consistent with

  19. High-resolution late Maastrichtian early Danian oceanic 87Sr/86Sr record: Implications for Cretaceous-Tertiary boundary events

    NASA Astrophysics Data System (ADS)

    Vonhof, H. B.; Smit, J.

    1997-04-01

    A high-resolution late Maastrichtian early Danian seawater 87Sr/86Sr reference curve is constructed from two Cretaceous-Tertiary boundary (K-T boundary) sections: Bidart (France) and El Kef (Tunisia). The 87Sr/86Sr curve shows maxima at 0.3 0.4 Ma before the K-T boundary and at the K-T boundary. The first maximum could mark the onset of a major outflow of the Deccan Traps. The second maximum, a rapid 0.000 06 87Sr/86Sr, shift, extends from ˜3 4 m below to ˜1 m above the K-T boundary. This profile probably results from diagenetic smoothing of an originally sharp K-T boundary 87Sr/86Sr anomaly, rather than from a gradual process. The sharp shift could result from (1) the vaporization of the Chicxulub target rocks, (2) global wildfires, and (3) acid-rain leaching of soils and sialic surface rocks. Of these three possibilities, only Sr release by soil leaching combined with increased rainfall associated with the K-T event appears to be sufficiently large to produce the observed K-T 87Sr/86Sr anomaly.

  20. The Cretaceous-Tertiary boundary biotic crisis in the Basque country

    NASA Technical Reports Server (NTRS)

    Lamolda, M. A.

    1988-01-01

    The Zumaya section has been selected as a classic locality for the study of the Cretaceous-Tertiary (K-T) boundary due to its richness in microfaune, macrofaune, and nannoflora. The sections present similar good conditions for the study of the K-T boundary. The sedimentary rocks of the Uppermost Maastrichtian from the Basque Country are purple or pink marls and marls-tones. Above it is found a clayed bed, 40 to 29 cm thick, grey or dark grey in its basal part, of Lowermost Danian age. Above there is alternation of micritic grey-pink limestones and thin clay beds of Dano-Montian age. The average sedimentation is 7 to 8 times higher during the Upper Maastrichtian than in the Dano-Montian. The macrofauna underwent a decrease since the Campanian and was not found in the last 11 m of the Zumaya section; it was associated with changes in paleoceanographic conditions and primary productivity of the oceans. The microfossil assemblages in the K-T transition allows the recognition of several phases of a complex crisis between two well established planktonic ecosystems. In the Mayaroensis Zone there is a stable ecosystem with 45 to 47 planktonic foraminifera species. The disappearance of A. mayaroensis starts a degradation of the ecosystem. The number of planktonic foraminiera species decreases between 20 and 45 percent. The next phase of the crisis was the result of main extinction events in the planktonic calcareous ecosystem. There are several cretaceous planktonic foraminifera species, probably reworked, whose numbers decrease upward. The next and last phase of the biotic crisis shows a diversification of the ecosystem; the number of planktonic foraminifera is 2 to 3 times higher than before and it is noted the first appearance of Tertiary nannoflora species, while Cretaceous species decrease and persisting species are still the main ones.

  1. Major wildfires at the Cretaceous-Tertiary boundary

    NASA Technical Reports Server (NTRS)

    Gilmour, Iain; Wolbach, Wendy S.; Anders, Edward

    1989-01-01

    K-T boundary (KTB) clays from five sites are enriched in soot and charcoal by factors of 100-1000 over Cretaceous levels, apparently due to a global fire. The soot profile nearly coincides with the Ir profile, implying that the fire was triggered by the impact. Much or all of the fuel was biomass, as indicated by the presence of retene and by the C isotopic composition. The amount of elemental C at the KTB (0.012 g/sq cm) is very large, and requires either that most of the Cretaceous biomass burned down or that the soot yield was higher than in small fires. At undisturbed sites, soot correlates tightly with Ir, As, Sb, and Zn. Apparently soot and Ir-bearing ejecta particles coagulated in the stratosphere and then scavenged additional chalcophiles from the hydrosphere. In view of this coagulation, the K-T fire would only slightly prolong the period of darkness and cold caused by impact ejecta.

  2. A new Cretaceous-Tertiary boundary locality in the western powder River basin, Wyoming: biological and geological implications

    USGS Publications Warehouse

    Nichols, D.J.; Brown, J.L.; Attrep, M., Jr.; Orth, C.J.

    1992-01-01

    A newly discovered Cretaceous-Tertiary (K-T) boundary locality in the western Powder River basin, Wyoming, is characterized by a palynologically defined extinction horizon, a fern-spore abundance anomaly, a strong iridium anomaly, and shock-metamorphosed quartz grains. Detailed microstratigraphic analyses show that about one third of the palynoflora (mostly angiosperm pollen) disappeared abruptly, placing the K-T boundary within a distinctive, 1- to 2-cm-thick claystone layer. Shocked quartz grains are concentrated at the top of this layer, and although fern-spore and iridium concentrations are high in this layer, they reach their maximum concentrations in a 2-cm-thick carbonaceous claystone that overlies the boundary claystone layer. The evidence supports the theory that the K-T boundary event was associated with the impact of an extraterrestrial body or bodies. Palynological analyses of samples from the K-T boundary interval document extensive changes in the flora that resulted from the boundary event. The palynologically and geochemically defined K-T boundary provides a unique time-line of use in regional basin analysis. ?? 1992.

  3. The Origin of White Beds below the Cretaceous-Tertiary Boundary Revisited

    NASA Astrophysics Data System (ADS)

    Abrajevitch, A.; Font, E.; Florindo, F.; Roberts, A. P.

    2014-12-01

    The respective roles of an asteroid impact and Deccan Traps eruptions in biotic changes at the Cretaceous-Tertiary (K-T) boundary are still debated. In many shallow marine sections around the world, the K-T boundary is marked by a distinct impact clay layer that is often underlain by a several decimeter-thick "white" low susceptibility zone. A previous study of the Gubbio section, Italy [Lowrie et al., 1990; EPSL, 98, 302-312], attributed the loss of coloration and low magnetization intensity in the white beds to post-depositional dissolution of ferrimagnetic minerals. Dissolution is thought to be a consequence of downward infiltration of reducing waters that resulted from rapid accumulation of organic matter produced by mass extinctions after the impact. We compared rock magnetic characteristics of the Gubbio section with those of the Bidart section in France. The two sections are similar in their carbonate lithology, presence of a boundary clay and low susceptibility zone. When compared to background Cretaceous sediments, the white zone in both sections is marked by an absence of biogenic magnetite, a decrease in total ferrimagnetic mineral content, and preferential loss of magnetite with respect to hematite - features that are consistent with reductive dissolution. However, unlike the Gubbio section, where the white zone starts immediately below the impact clay, at Bidart the low susceptibility zone and the clay layer are separated by a ~2 cm carbonate interval that contains abundant biogenic magnetite. Such separation casts doubt on a causal link between the impact and sediment bleaching. The white layer, thus, is more likely to record an episode of unusual bottom water chemistry that preceded the asteroid impact. A change in sea-water acidity associated with Deccan Traps volcanism may explain the magnetic mineral dissolution in the white beds.

  4. Step-wise extinctions at the Cretaceous-Tertiary boundary and their climatic implications

    NASA Technical Reports Server (NTRS)

    Maurrasse, Florentin J-M. R.

    1988-01-01

    A comparative study of planktonic foraminifera and radiolarian assemblages from the Cretaceous-Tertiary (K-T) boundary section of the Beloc Formation in the southern Peninsula of Haiti, and the lowermost Danian sequence of the Micara Formation in southern Cuba reveals a remarkable pattern of step-wise extinctions. This pattern is consistent in both places despite the widely different lithologies of the two formations. Because of a step-wise extinction and the delayed disappearance of taxa known to be more representative of cooler water realms, it is inferred that a cooling trend which characterized the close of the Maastrichtian and the onset of the Tertiary had the major adverse effect on the existing biota. Although repetitive lithologic and faunal fluctuations throughout the Maastrichtian sediments found at Deep Sea Drilling Project (DSDP) site 146/149 in the Caribbean Sea indicate variations reminiscent of known climatically induced cycles in the Cenozoic, rapid biotic succession appears to have taken place during a crisis period of a duration greater than 2 mission years. Widespread and abundant volcanic activities recorded in the Caribbean area during the crisis period gives further credence to earlier contention that intense volcanism may have played a major role in exhacerbating pre-existing climatic conditions during that time.

  5. Ocean alkalinity and the Cretaceous/Tertiary boundary

    NASA Technical Reports Server (NTRS)

    Caldeira, K. G.; Rampino, Michael R.

    1988-01-01

    A biogeochemical cycle model resolving ocean carbon and alkalinity content is applied to the Maestrichtian and Danian. The model computes oceanic concentrations and distributions of Ca(2+), Mg(2+), and Sigma-CO2. From these values an atmospheric pCO2 value is calculated, which is used to estimate rates of terrestrial weathering of calcite, dolomite, and calcium and magnesium silicates. Metamorphism of carbonate rocks and the subsequent outgassing of CO2 to the atmosphere are parameterized in terms of carbonate rock reservoir sizes, total land area, and a measure of overall tectonic activity, the sea-floor generation rate. The ocean carbon reservoir computed by the model is used with Deep Sea Drilling Project (DSDP) C-13 data to estimate organic detrital fluxes under a variety of ocean mixing rate assumptions. Using Redfield ratios, the biogenic detrital flux estimate is used to partition the ocean carbon and alkalinity reservoirs between the mixed layer and deep ocean. The calcite flux estimate and carbonate ion concentrations are used to determine the rate of biologically mediated CaCO3 titration. Oceanic productivity was severely limited for approximately 500 kyr following the K/T boundary resulting in significant increases in total ocean alkalinity. As productivity returned to the ocean, excess carbon and alkalinity was removed from the ocean as CaCO3. Model runs indicate that this resulted in a transient imbalance in the other direction. Ocean chemistry returned to near-equilibrium by about 64 mybp.

  6. Magnetic characterization of Cretaceous-Tertiary boundary sediments

    NASA Astrophysics Data System (ADS)

    Villasante-Marcos, Víctor; Martínez-Ruiz, Francisca; Osete, María Luisa; Urrutia-Fucugauchi, Jaime

    Rock magnetic properties across several K-T boundary sections have been investigated to reveal any possible magnetic signature associated with the remains of the impact event at the end of the Cretaceous. Studied sections' locations vary in distance to the Chicxulub structure from distal (Agost and Caravaca, Spain), through closer (ODP Hole 1049A, Blake Nose, North Atlantic), to proximal (El Mimbral and La Lajilla, Mexico). A clear magnetic signature is associated with the fireball layer in the most distal sections, consisting of a sharp increase in susceptibility and saturation isothermal remanent magnetization (SIRM), and a decrease in remanence coercivity. Magnetic properties in these sections point to a distinctive ferrimagnetic phase, probably corresponding to the reported Mg- and Ni-rich, highly oxidized spinels of meteoritic origin. At closer and proximal sections magnetic properties are different. Although there is an increase in susceptibility and SIRM associated with a rusty layer placed on top of the siliciclastic deposit in proximal sections, and with a similar limonitic layer on top of the spherule bed that defines the boundary at Blake Nose, the magnetic properties indicate a mixture of iron oxyhydroxides dominated by fine-grained goethite. Based on previous geochemical studies at Blake Nose and new geochemical and PGE abundance measurements performed in this work at El Mimbral, this goethite-rich layer can be interpreted as an effect of diagenetic remobilization and precipitation of Fe. There is not enough evidence to assert that this Fe concentration layer at proximal sections is directly related to deposition of fine meteoritic material. Magnetic, geochemical, and iridium data reject it as a primary meteoritic phase.

  7. Geochemical evidence for suppression of pelagic marine productivity at the Cretaceous/Tertiary boundary

    USGS Publications Warehouse

    Zachos, J.C.; Arthur, M.A.; Dean, W.E.

    1989-01-01

    The normal, biologically productive ocean is characterized by a gradient of the 13C/12C ratio from surface to deep waters. Here we present stable isotope data from planktonic and benthic micro-fossils across the Cretaceous/Tertiary boundary in the North pacific, which reveal a rapid and complete breakdown in this biologically mediated gradient. The fluxes of barium (a proxy for organic carbon) and CaCO3 also decrease significantly at the time of the major marine plankton extinctions. The implied substantial reduction in oceanic primary productivity persisted for ???0.5 Myr before the carbon isotope gradient was gradually re-established. In addition, the stable isotope and preservational data indicate that environmental change, including cooling, began at least 200 kyr before the Cretaceous/Tertiary boundary, and a peak warming of ???3 ??C occurred 600 kyr after the boundary event. ?? 1989 Nature Publishing Group.

  8. Shocked quartz in the cretaceous-tertiary boundary clays: Evidence for a global distribution

    USGS Publications Warehouse

    Bohor, B.F.; Modreski, P.J.; Foord, E.E.

    1987-01-01

    Shocked quartz grains displaying planar features were isolated from Cretaceous-Tertiary boundary days at five sites in Europe, a core from the north-central Pacific Ocean, and a site in New Zealand. At all of these sites, the planar features in the shocked quartz can be indexed to rational crystallographic planes of the quartz lattice. The grains display streaking indicative of shock in x-ray diffraction photographs and also show reduced refractive indices. These characteristic features of shocked quartz at several sites worldwide confirm that an impact event at the Cretaceous-Tertiary boundary distributed ejecta products in an earth-girdling dust cloud, as postulated by the Alvarez impact hypothesis.

  9. Spherules from the Cretaceous/Tertiary boundary clay at Gubbio, Italy: the problem of outcrop contamination

    SciTech Connect

    Montanari, A.

    1986-12-01

    Surficial outcrop contamination has occurred in some well-known stratigraphic sections of carbonate rocks in the northern Apennines. A critical case involves several contaminated clay partings, including the Cretaceous/Tertiary boundary clay in the classic Bottaccione section near Gubbio, Italy. These clay layers contain shiny spherules which, in several recent studies, have been said to consist of volcanic glass and have been used to support the hypothesis that the terminal Cretaceous mass extinction was caused by widespread volcanism. Laboratory tests, however, indicate that these shiny spherules are made of HF-insoluble and combustible material and are therefore of recent biological origin. These objects were introduced into the Cretaceous/Tertiary boundary clay and other clay layers from the surrounding soil along with abundant detrital contaminants derived from erosion of the middle Miocene flysch exposed at the head of the Bottaccione Gorge. They are completely different from the altered and flattened microtektitelike spheroids that are found only in the iridium-rich Cretaceous/Tertiary boundary clay and that provide strong evidence for a large impact.

  10. Marine and continental K-T boundary clays compared

    NASA Technical Reports Server (NTRS)

    Schmitz, B.

    1988-01-01

    Detailed geochemical and mineralogical studies (1 to 5) of sediments across the Cretaceous-Tertiary (K-T) boundary at Stevns Klint, Karlstrup, Nye Klov, Dania, and Kjolby Gaard in Denmark, at Limhamn in Sweden, at Caravaca in Spain, at Waipara and Woodside Creek in New Zealand, at Trinidad in Colorado, and at various sites in Montana, have induced conclusions and reflections which are given and briefly discussed.

  11. Disruption of the terrestrial plant ecosystem at the Cretaceous-Tertiary boundary, western interior

    SciTech Connect

    Tschudy, R.H.; Pillmore, C.L.; Orth, C.J.; Gilmore, J.S.; Knight, J.D.

    1984-09-07

    The palynologically defined Cretaceous-Tertiary boundary in the western interior of North America occurs at the top of an iridium-rich clay layer. The boundary is characterized by the abrupt disappearance of certain pollen species, immediately followed by a pronounced, geologically brief change in the ratio of fern spores to angiosperm pollen. The occurrence of these changes at two widely separated sites implies continent-wide disruption of the terrestrial ecosystem, probably caused by a major catastrophic event at the end of the period. 15 references, 2 figures.

  12. Disruption of the terrestrial plant ecosystem at the Cretaceous-Tertiary boundary, western interior

    USGS Publications Warehouse

    Tschudy, R.H.; Pillmore, C.L.; Orth, C.J.; Gilmore, J.S.; Knight, J.D.

    1984-01-01

    The palynologically defined Cretaceous-Tertiary boundary in the western interior of North America occurs at the top of an iridium-rich clay layer. The boundary is characterized by the abrupt disappearance of certain pollen species, immediately followed by a pronounced, geologically brief change in the ratio of fern spores to angiosperm pollen. The occurrence of these changes at two widely separated sites implies continentwide disruption of the terrestrial ecosystem, probably caused by a major catastrophic event at the end of the period.

  13. Palynological and iridium anomalies at Cretaceous-Tertiary boundary, south-central Saskatchewan

    USGS Publications Warehouse

    Nichols, D.J.; Jarzen, D.M.; Orth, C.J.; Oliver, P.Q.

    1986-01-01

    The Cretaceous-Tertiary boundary in south-central Saskatchewan is marked by coincident anomalies in abundance of iridium and fern spores at the extinction level of a suite of Cretaceous pollen taxa. Evidence of disruption of the terrestrial flora includes the fern-spore abundance anomaly and local extinction of as much as 30 percent of angiosperm species. The reorganized earliest Tertiary flora is made up largely of surviving species that assumed new roles of dominance. Persistence of climatically sensitive taxa across the boundary indicates that if paleoclimate was altered by the terminal Cretaceous event, it returned quickly to the pre-event condition.

  14. A new Cretaceous-Tertiary boundary site at Flaxbourne River, New Zealand - Biostratigraphy and geochemistry

    NASA Technical Reports Server (NTRS)

    Strong, C. P.; Brooks, Robert R.; Wilson, Shane M.; Reeves, Roger D.; Orth, Charles J.

    1987-01-01

    On the basis of biostratigraphy data, it is shown that the Flaxbourne River Cretaceous-Tertiary boundary is among the most complete and least disturbed marine sequences yet found; this is particularly true with respect to its post-Ir anomaly and prelowermost Paleocene sequence. INAA and ICP analyses reveal that the boundary clay is also enriched in Cr and Ni, mainly from meteoritic material, and As, Co, Cu, Sb, and Zn from terrestrial sources. It is found that Zn/Sb, As/Sb, and Zn/As ratios generally fall between crustal and oceanic values, suggesting contributions from both sources.

  15. Biospheric effects of a large extraterrestrial impact: Case study of the cretaceous/tertiary boundary crater

    NASA Technical Reports Server (NTRS)

    Pope, Kevin O.

    1995-01-01

    The Chicxulub impact crater, buried in the Yucatan carbonate platform in Mexico, is the site of the impact purported to have caused mass extinctions at the Cretaceous/Tertiary (K/T) boundary. A recently discovered Chicxulub ejecta deposit in Belize contains evidence of carbonate vaporization and precipitation from the vapor plume. Sulfate clasts are almost absent in the Belize ejecta, but are abundant in the coarse ejecta near the crater rim, hwich may reflect the greater abundance of sulfates deep in the target section. The absence of sulfate precipitates in Belize may indicate that most of the vaporized sulfur was deposited in the upper atmosphere. Hydrocode modeling of the impact indicates that between 0.4 to 7.0 x 10(exp 17) g of sulfur were vaporized by the impact in sulfates. Laser experiments indicate that SO2, SO3, and SO4 are produced, and that complex chemical reactions between plume constituents occur during condensation. The sulfur released as SO3 or SO4 converted rapidly into H2HO4 aerosol. A radiative transfer model coupled with a model of coagulation predicts that the aerosol prolonged the initial blackout period caused by impact dust only if it contained impurities. The sulfur released as SO2 converted to aerosol slowly due to the rate limiting oxidation of SO2. Radiative transfer calculations combined with rates of acid production, coagulation, and diffusion indicate that solar transmission was reduced to 10-20 percent of normal for a period of 8-13 years. This reduction produced a climate forcing (cooling) of -300 Wm(exp -2), which far exceeded the +8 Wm(exp -2) greenhouse warming caused by the CO2 released through the vaporization of carbonates, and therefore produced a decade of freezing and near-freezing temperatures. Several decades of moderate warming followed the decade of severe cooling due to the long residence time of CO2. The prolonged impact winter may have been a major cause of the K/T extinctions.

  16. Biospheric effects of a large extraterrestrial impact: Case study of the Cretaceous/Tertiary boundary crater

    NASA Technical Reports Server (NTRS)

    Pope, Kevin O.

    1994-01-01

    The Chicxulub Crater in Yucatan, Mexico, is the primary candidate for the impact that caused mass extinctions at the Cretaceous/Tertiary boundary. The target rocks at Chicxulub contain 750 to 1500 m of anhydrite (CaSO4), which was vaporized upon impact, creating a large sulfuric acid aerosol cloud. In this study we apply a hydrocode model of asteroid impact to calculate the amount of sulfuric acid produced. We then apply a radiative transfer model to determine the atmospheric effects. Results include 6 to 9 month period of darkness followed by 12 to 26 years of cooling.

  17. Trace element and isotope geochemistry of Cretaceous-Tertiary boundary sediments: identification of extra-terrestrial and volcanic components

    NASA Technical Reports Server (NTRS)

    Margolis, S. V.; Doehne, E. F.

    1988-01-01

    Trace element and stable isotope analyses were performed on a series of sediment samples crossing the Cretaceous-Tertiary (K-T) boundary from critical sections at Aumaya and Sopelano, Spain. The aim is to possibly distinguish extraterrestrial vs. volcanic or authigenic concentration of platinum group and other elements in K-T boundary transitional sediments. These sediments also have been shown to contain evidence for step-wise extinction of several groups of marine invertebrates, associated with negative oxygen and carbon isotope excursions occurring during the last million years of the Cretaceous. These isotope excursions have been interpreted to indicate major changes in ocean thermal regime, circulation, and ecosystems that may be related to multiple events during latest Cretaceous time. Results to date on the petrographic and geochemical analyses of the Late Cretaceous and Early Paleocene sediments indicate that diagenesis has obviously affected the trace element geochemistry and stable isotope compositions at Zumaya. Mineralogical and geochemical analysis of K-T boundary sediments at Zumaya suggest that a substantial fraction of anomalous trace elements in the boundary marl are present in specific mineral phases. Platinum and nickel grains perhaps represent the first direct evidence of siderophile-rich minerals at the boundary. The presence of spinels and Ni-rich particles as inclusions in aluminosilicate spherules from Zumaya suggests an original, non-diagenetic origin for the spherules. Similar spherules from southern Spain (Caravaca), show a strong marine authigenic overprint. This research represents a new approach in trying to directly identify the sedimentary mineral components that are responsible for the trace element concentrations associated with the K-T boundary.

  18. Surface-water acidification and extinction at the Cretaceous-Tertiary boundary

    NASA Astrophysics Data System (ADS)

    D'Hondt, Steven; Pilson, Michael E. Q.; Sigurdsson, Haraldur; Hanson, Alfred K., Jr.; Carey, Steven

    1994-11-01

    If published estimates of SO2 volatilization and NOx generation by the Cretaceous-Tertiary (K-T) impact were atmospherically converted to sulfuric and nitric acid, globally dispersed, and rapidly rained out, the resulting acid concentrations would bracket a critical threshold in surface-ocean chemistry. Rapid and globally uniform deposition of masses corresponding to the lowest estimates would have had no major effect on sea-surface chemistry. However, similar deposition of masses corresponding to the highest estimates would have provided enough acid to destroy the carbonate-buffering capacity of the upper 100 m of the world ocean and catastrophically reduce surface-ocean pH. Despite the possible effect of the highest estimated acid yields, scenarios that rely on acid rain as the primary explanation of global K-T extinctions are not readily compatible with K-T records of terrestrial and marine survival or culturing studies of modern marine plankton. The possibility that acid rain was a primary cause of K-T extinctions can be tested further by analysis of geographic variation in extinction intensity, because such variation was a likely consequence if the impact resulted in global dispersal and rapid globally uniform deposition of more than ˜6 x 1016 mol of H2SO4 or 1.2 x 1017 mol of HNO3.

  19. Multiple factors in the origin of the Cretaceous/Tertiary boundary: the role of environmental stress and Deccan Trap volcanism.

    PubMed

    Glasby, G P; Kunzendorf, H

    1996-06-01

    A review of the scenarios for the Cretaceous/ Tertiary (K/T) boundary event is presented and a coherent hypothesis for the origin of the event is formulated. Many scientists now accept that the event was caused by a meteorite impact at Chicxulub in the Yucatan Peninsula, Mexico. Our investigations show that the oceans were already stressed by the end of the Late Cretaceous as a result of the long-term drop in atmospheric CO2, the long-term drop in sea level and the frequent development of oceanic anoxia. Extinction of some marine species was already occurring several million years prior to the K/T boundary. The biota were therefore susceptible to change. The eruption of the Deccan Traps, which began at 66.2 Ma, coincides with the K/T boundary events. It erupted huge quantities of H2SO4, HCl, CO2, dust and soot into the atmosphere and led to a significant drop in sea level and marked changes in ocean temperature. The result was a major reduction in oceanic productivity and the creation of an almost dead ocean. The volcanism lasted almost 0.7 m.y. Extinction of biological species was graded and appeared to correlate with the main eruptive events. Elements such as Ir were incorporated into the volcanic ash, possibly on soot particles. This horizon accumulated under anoxic conditions in local depressions and became the marker horizon for the K/T boundary. An oxidation front penetrated this horizon leading to the redistribution of elements. The eruption of the Deccan Traps is the largest volcanic event since the Permian-Triassic event at 245 Ma. It followed a period of 36 m.y. in which the earth's magnetic field failed to reverse. Instabilities in the mantle are thought to be responsible for this eruption and therefore for the K/T event. We therefore believe that the K/T event can be explained in terms of the effects of the Deccan volcanism on an already stressed biosphere. The meteorite impact at Chicxulub took place after the onset of Deccan volcanism. It probably

  20. Palaeobotanical evidence for a marked temperature increase following the Cretaceous/Tertiary boundary

    USGS Publications Warehouse

    Wolfe, J.A.

    1990-01-01

    CORRESPONDENCE analysis of dicot leaf physiognomy of modern vegetational samples from a wide range of environments indicates that >70% of physiognomic variation corresponds to water or temperature factors, or both. Despite wide variation in single physiognomic characters, overall trends can be used to distinguish between samples from different climates. Some climate parameters are well correlated with changes in physiognomy, so that climate characteristics can be inferred from physiognomic analyses. Here I apply this climate-leaf analysis multivariate program (CLAMP) to leaf assemblages from the Cretaceous/Tertiary boundary. The results indicate a fourfold increase in precipitation at the boundary and an increase in mean annual temperature of 10??C. These levels persisted for 0.5-1.0 Myr, after which precipitation decreased to about three times the values for the latest Cretaceous, and the mean annual temperature decreased to 5-6??C above latest Cretaceous values.

  1. Chicxulub impact predates the K-T boundary mass extinction

    PubMed Central

    Keller, Gerta; Adatte, Thierry; Stinnesbeck, Wolfgang; Rebolledo-Vieyra, Mario; Urrutia Fucugauchi, Jaime; Kramar, Utz; Stüben, Doris

    2004-01-01

    Since the early l990s the Chicxulub crater on Yucatan, Mexico, has been hailed as the smoking gun that proves the hypothesis that an asteroid killed the dinosaurs and caused the mass extinction of many other organisms at the Cretaceous-Tertiary (K-T) boundary 65 million years ago. Here, we report evidence from a previously uninvestigated core, Yaxcopoil-1, drilled within the Chicxulub crater, indicating that this impact predated the K-T boundary by ≈300,000 years and thus did not cause the end-Cretaceous mass extinction as commonly believed. The evidence supporting a pre-K-T age was obtained from Yaxcopoil-1 based on five independent proxies, each with characteristic signals across the K-T transition: sedimentology, biostratigraphy, magnetostratigraphy, stable isotopes, and iridium. These data are consistent with earlier evidence for a late Maastrichtian age of the microtektite deposits in northeastern Mexico. PMID:15004276

  2. Local Structure of Sb in Cretaceous-Tertiary Boundary Clays from Stevns Klint By the XAFS Method

    NASA Astrophysics Data System (ADS)

    Hongu, H.; Yoshiasa, A.; Tobase, T.; Hiratoko, T.; Isobe, H.; Arima, H.; Sugiyama, K.; Okube, M.

    2014-12-01

    The Cretaceous-Tertiary (K-T) mass extinctions has been thought to be due to the asteroid impact since Ir anomalies was found by Alvarez et al. (1980) . The boundary clay is also enriched in Cr, Co, Ni, Cu, Zn, As and Sb. Especially concentrations of Sb and As are unusually large. However, the origins and concentration processes of Sb are unknown. In this study, local structure around antimony atoms in K-T boundary clay from Stevns Klint, Denmark, was determined by Sb K-edge XAFS spectroscopy. The XAFS analyses give the information about the chemical state and coordination environment around Sb atoms and help identify of the concentration phase, and also may provide various kinds of information about the asteroid impact and mass extinction. The XAFS measurements were performed at the BL-NW10A beamline at the Photon Factory in KEK, Tsukuba, Japan. The XANES spectra and radial structure function (RSF) showed that Sb in K-T boundary clays is high oxidation state Sb5+ and occupies a SbO6 octahedral site. The Sb-O interatomic distance in K-T clay sample is 2.08(1) A. It is known that Sb5+ is stable form in soil and soil water under an equilibrium situation within the Earth's surface environment. Antimony belongs to group 15 in the periodic table below arsenic, and the chemical behavior of Sb5+ is similar to that of As5+. Because there is a close correlation on co-precipitation between As and Fe (Ebihara and Miura, 1996; Sakai et al., 2007) , it is considered that Sb also correlates closely with Fe compounds (e.g., ferric hydroxides). Abundant ferric hydroxides occur in K-T boundary clays. It is considered that one of the reasons of abnormal high concentrations of Sb and As in K-T boundary clays is a lot of dust from impact ejecta falls with iron ions and deposits on surface of the Earth for a short period of time after the asteroid impact. ReferencesL. W. Alvarez, Science, 208, 1095-1108 (1980) M. Ebihara and T. Miura, Geochimica et Cosmochimica Acta, 60, 5133

  3. Tektite-bearing, deep-water clastic unit at the Cretaceous-Tertiary boundary in northeastern Mexico

    SciTech Connect

    Smit, J. ); Montanari, A.; Swinburne, N.H.M.; Alvarez, W. ); Hildebrand, A.R. ); Margolis, S.V.; Claeys, P. ); Lowrie, W. ); Asaro, F. )

    1992-02-01

    The hypothesis of Cretaceous-Tertiary (K-T) boundary impact on Yucatan, Mexico, predicts that nearby sites should show evidence of proximal impact ejecta and disturbance by giant waves. An outcrop along the Arroyo el Mimbral in northeastern Mexico contains a layered clastic unit up to 3 m thick that interrupts a biostratigraphically complete pelagic-marl sequence deposited at more than 400 m water depth. The marls were found to be unsuitable for determining magnetostratigraphy, but foraminiferal biostratigraphy places the clastic unit precisely at the K-T boundary. The authors interpret this clastic unit as the deposit of a megawave or tsunami produced by an extraterrestrial impact. The clastic unit comprises three main subunits. (1) The basal 'spherule bed' contains glass in the form of tektites and microtektites, glass spherules replaced by chlorite-smectite and calcite, and quartz grains showing probable shock features. This bed is interpreted as a channelized deposit of proximal ejecta. (2) A set of lenticular, massive, graded 'laminated beds' contains intraclasts can abundant plant debris, and may the result of megawave backwash that carried coarse debris from shallow parts of the continental margin into deeper water. (3) At the top, several thin 'ripple beds' composed of fine sand are separated by clay drapes; they are interpreted as deposits of oscillating currents, perhaps a seiche. An iridium anomaly (921 {plus minus} 23 pg/g) is observed at the top of the ripple beds. Their observations at the Mimbral locality support the hypothesis of a K-T impact on nearby Yucatan.

  4. Tektite-bearing, deep-water clastic unit at the Cretaceous-Tertiary boundary in northeastern Mexico.

    PubMed

    Smit, J; Montanari, A; Swinburne, N H; Alvarez, W; Hildebrand, A R; Margolis, S V; Claeys, P; Lowrie, W; Asaro, F

    1992-02-01

    The hypothesis of Cretaceous-Tertiary (K-T) boundary impact on Yucatán, Mexico, predicts that nearby sites should show evidence of proximal impact ejecta and disturbance by giant waves. An outcrop along the Arroyo el Mimbral in northeastern Mexico contains a layered clastic unit up to 3 m thick that interrupts a biostratigraphically complete pelagic-marl sequence deposited at more than 400 m water depth. The marls were found to be unsuitable for determining magnetostratigraphy, but foraminiferal biostratigraphy places the clastic unit precisely at the K-T boundary. We interpret this clastic unit as the deposit of a megawave or tsunami produced by an extraterrestrial impact. The clastic unit comprises three main subunits. (1) The basal "spherule bed" contains glass in the form of tektites and microtektites, glass spherules replaced by chlorite-smectite and calcite, and quartz grains showing probable shock features. This bed is interpreted as a channelized deposit of proximal ejecta. (2) A set of lenticular, massive, graded "laminated beds" contains intraclasts and abundant plant debris, and may be the result of megawave backwash that carried coarse debris from shallow parts of the continental margin into deeper water. (3) At the top, several thin "ripple beds" composed of fine sand are separated by clay drapes; they are interpreted as deposits of oscillating currents, perhaps a seiche. An iridium anomaly (921 +/- 23 pg/g) is observed at the top of the ripple beds. Our observations at the Mimbral locality support the hypothesis of a K-T impact on nearby Yucatán. PMID:11537752

  5. Tektite-bearing, deep-water clastic unit at the Cretaceous-Tertiary boundary in northeastern Mexico

    NASA Technical Reports Server (NTRS)

    Smit, J.; Montanari, A.; Swinburne, N. H.; Alvarez, W.; Hildebrand, A. R.; Margolis, S. V.; Claeys, P.; Lowrie, W.; Asaro, F.

    1992-01-01

    The hypothesis of Cretaceous-Tertiary (K-T) boundary impact on Yucatan, Mexico, predicts that nearby sites should show evidence of proximal impact ejecta and disturbance by giant waves. An outcrop along the Arroyo el Mimbral in northeastern Mexico contains a layered clastic unit up to 3 m thick that interrupts a biostratigraphically complete pelagic-marl sequence deposited at more than 400 m water depth. The marls were found to be unsuitable for determining magnetostratigraphy, but foraminiferal biostratigraphy places the clastic unit precisely at the K-T boundary. We interpret this clastic unit as the deposit of a megawave or tsunami produced by an extraterrestrial impact. The clastic unit comprises three main subunits. (1) The basal "spherule bed" contains glass in the form of tektites and microtektites, glass spherules replaced by chlorite-smectite and calcite, and quartz grains showing probable shock features. This bed is interpreted as a channelized deposit of proximal ejecta. (2) A set of lenticular, massive, graded "laminated beds" contains intraclasts and abundant plant debris, and may be the result of megawave backwash that carried coarse debris from shallow parts of the continental margin into deeper water. (3) At the top, several thin "ripple beds" composed of fine sand are separated by clay drapes; they are interpreted as deposits of oscillating currents, perhaps a seiche. An iridium anomaly (921 +/- 23 pg/g) is observed at the top of the ripple beds. Our observations at the Mimbral locality support the hypothesis of a K-T impact on nearby Yucatan.

  6. Surface alteration and physical properties of glass from the Cretaceous-Tertiary boundary

    USGS Publications Warehouse

    Barkatt, A.; Sang, J.C.; Thorpe, A.N.; Senftle, F.E.; Talmy, I.G.; Norr, M.K.; Mazer, J.J.; Izett, G.; Sigurdsson, Haraldur

    1994-01-01

    The scalloped surface feature on Cretaceous-Tertiary boundary glass is often explained as being due to terrestrial aqueous leaching. Leaching of man-made glass results in a reduction in density of the glass. Also, Fe, because of its relative insolubility, is concentrated by the leaching process. Thus, the Haitian glass specimens which have been heavily altered should have a thin rim of less dense glass in which the Fe is concentrated compared to the core glass. The higher Fe concentration in the rim glass should cause it to have an enhanced Curie constant and a lower density compared to the unaltered glass. The magnetic Curie constant, density, and scanning electron microscopic studies were made on altered specimens of Haitian glass and also on specimens showing a minimum of alteration. The results show that the less altered samples have the highest density and the lowest Curie constant. The data substantiate the terrestrial hypothesis. ?? 1994.

  7. Iridium and trace element measurements from the Cretaceous-Tertiary boundary, site 752, Broken Ridge, Indian Ocean

    NASA Technical Reports Server (NTRS)

    Schuraytz, B. C.; O'Connell, S.; Sharpton, V. L.

    1991-01-01

    Fourteen samples spanning a 2.5 m interval that includes the Cretaceous-Tertiary (K/T) boundary from Hole 752B near the crest of Broken Ridge in the eastern Indian Ocean were studied in order to search for anomalous enrichments of iridium (Ir) and shock-metamorphosed quartz grains. No allogenic quartz grains larger than 10 microns were observed, hence the presence of quartz containing diagnostic evidence of shock-metamorphism could not be confirmed. Two Ir anomalies of 2.2 +/- 0.6 and 2.0 +/- 0.4 parts per billion (ppb) were measured in samples of dark green ash-bearing chalk at depths of 357.93 and 358.80 m below seafloor, respectively. These samples containing anomalous enrichments of Ir were taken from approximately 82 cm above and 5 cm below the extinction level of Globotruncanids. Our results are consistent with those of Michel et al., who observe elevated concentrations of Ir at these depths in addition to a larger Ir anomaly associated with the extinction level of Globotruncanids.

  8. Iridium profile for 10 million years across the Cretaceous-Tertiary boundary at Gubbio (Italy)

    NASA Technical Reports Server (NTRS)

    Alvarez, Walter; Asaro, Frank; Montanari, Alessandro

    1990-01-01

    The iridium anomaly at the Cretaceous-Tertiary (KT) boundary was discovered in the pelagic limestone sequence at Gubbio on the basis of 12 samples analyzed by neutron activation analysis (NAA) and was interpreted as indicating impact of a large extraterrestrial object at exactly the time of the KT mass extinction. Continuing controversy over the shape of the Ir profile at the Gubbio KT boundary and its interpretation called for a more detailed follow-up study. Analysis of a 57-meter-thick, 10-million-year-old part of the Gubbio sequence using improved NAA techniques revealed that there is only one Ir anomaly at the KT boundary, but this anomaly shows an intricate fine structure, the origin of which cannot yet be entirely explained. The KT Ir anomaly peaks in a 1-centimeter-thick clay layer, where the average Ir concentration is 3000 parts per trillion (ppt); this peak is flanked by tails with Ir concentrations of 20 to 80 ppt that rise above a background of 12 to 13 ppt. The fine structure of the tails is probably due in part to lateral reworking, diffusion, burrowing, and perhaps Milankovitch cyclicity.

  9. Oceanic primary productivity and dissolved oxygen levels at the Cretaceous/Tertiary Boundary: Their decrease, subsequent warming, and recovery

    NASA Astrophysics Data System (ADS)

    Kaiho, Kunio; Kajiwara, Yoshimichi; Tazaki, Kazue; Ueshima, Masato; Takeda, Nobuyori; Kawahata, Hodaka; Arinobu, Tetsuya; Ishiwatari, Ryoshi; Hirai, Akio; Lamolda, Marcos A.

    1999-08-01

    Thirty-six different geochemical and foraminiferal analyses were conducted on samples collected at closely spaced intervals across the Cretaceous/Tertiary (K/T) boundary exposed at Caravaca, Spain. A rapid reduction in the gradient between δ13C values in fine fraction carbonate and benthic foraminiferal calcite and a decrease in the abundance of phosphorus (a proxy for organic carbon) and calcium were recorded in sediments 0-0.5 cm above the K/T boundary. These trends imply that an abrupt mass mortality occurred among pelagic organisms, leading to a significant reduction in the flux of organic carbon to the seafloor. In addition, variations in sulfur isotope ratios, the hydrocarbon-generating potential of kerogen (measured as the hydrogen index), and foraminiferal indices of dissolved oxygen level all imply that a rapid decrease in dissolved oxygen was coincident with the δ13C event. Evidence of the low oxygen event has also been recognized in Japan and New Zealand, suggesting that intermediate water oxygen minima were widely developed during earliest Danian time. A threefold increase in the kaolinite/illite ratio and a 1.2‰ decrease in δ18O (carbonate fine fraction) were recorded in the basal 0.1-2 cm of Danian age sediments. These trends suggest that atmospheric warming and an increase in surface water temperature occurred 0-3 kyr after the δ13C event. Recovery in the difference between δ13C values in the carbonate fine fraction and in benthic foraminiferal calcite as well as increases in phosphorus and calcium contents occur at the base of planktonic foraminiferal Zone Pla, implying that an increase in primary productivity commenced some 13 kyr after the K/T boundary. Tables A1-A3 are available on diskette or via Anonymous FTP from kosmos.agu.org directory APENO (Username = anonymous, Password = guest). Diskette may be ordered from American Geophysical Union, 2000 Florida Avenue, N.W., Washington, DC 20009 or by phone at 800-966-2481; $15.00. Payment must

  10. Octopods: Nude ammonoids that survived the Cretaceous-Tertiary boundary mass extinction

    NASA Astrophysics Data System (ADS)

    Lewy, Z.

    1996-07-01

    Certain ammonoids changed the mode of coiling or the growth angle of their last body chamber, constricted the terminal aperture, or developed apertural processes, which restricted all life functions. The modified terminal body chamber of macroconchs apparently functioned as a floating egg case for a single breeding phase. The young that hatched from tiny eggs fed on the enclosed female corpse. This same breeding strategy is executed by the extant octopod Argonauta. As a nude cephalopod, the sexually mature female secretes an egg case, which resembles Cretaceous ammonites, for the tiny eggs. The remarkable similarity in mode of breeding between Argonauta and ammonoids with modified terminal body chambers suggests that the ancestral argonautid was a nude ammonoid. Other octopods, which lay large, yolk-rich eggs attached onto substrates, likewise originate from ancestral nude ammonoids, which, however, did not breed in a floating egg case. Nude ammonoids crossed the Cretaceous-Tertiary boundary, as did the genuine coleoids comprising rudimentary endoskeletons.

  11. Evidence from paleosols for ecosystem changes across the Cretaceous/Tertiary boundary in eastern Montana

    NASA Astrophysics Data System (ADS)

    Retallack, Gregory J.; Leahy, Guy D.; Spoon, Michael D.

    1987-12-01

    Ancient soils (paleosols) of the latest Cretaceous Hell Creek Formation are mildly calcareous, have clayey subsurface (Bt) horizons, and exhibit abundant large root traces, as is typical of forested soils in subhumid climates. The fact that some of the paleosols are capped by thin, impure coals is evidence for seasonally dry swamps. The paleosol evidence thus supports published reconstructions, based on fossil leaves, pollen, and vertebrates, that this area was subtropical, seasonally dry, subhumid, and forested mainly by angiosperms. Paleosols within the earliest Tertiary (Paleocene) Tullock Formation have thicker, coaly, surface (O and A) horizons and are more drab colored and less calcareous than paleosols of the Hell Creek Formation. These features are indications of waterlogging and of a humid climate. Large root traces and clayey subsurface (Bt) horizons are evidence of swamp woodland and forest. Inferred base level and paleoclimate are compatible with evidence from fossil leaves and pollen that indicates more abundant deciduous, early successional angiosperms and swamp conifers compared to those of Late Cretaceous time. Most of the paleosols have drab Munsell hues and can be expected to preserve a reliable fossil record of pollen and other plant remains. The carbonate content of the paleosols declines toward the top of the Hell Creek Formation, and the uppermost 3 m of the formation is noncalcareous. Because of this, the decline in diversity and abundance of bone over this interval is interpreted as a taphonomic artifact. Evidence from paleosols supports paleobotani-cal evidence for catastrophic change in ecosystems at the Cretaceous/Tertiary boundary.

  12. Osmium-187/osmium-186 in manganese nodules and the Cretaceous-Tertiary boundary

    SciTech Connect

    Luck, J.M.; Turekian, K.K.

    1983-11-11

    As a result of the radioactive decay of rhenium-187 (4.6 x 10/sup 10/ years) the osmium-187/osmium-186 ratio changes in planetary systems as a function of time and the rhenium-187/osmium-186 ratio. For a value of the rhenium-187/osmium-186 ratio of about 3.2, typical of meteorites and the earth's mantle, the present-day osmium-187/osmium-186 ratio is about 1. The earth's continental crust has an estimated rhenium-187/osmium-186 ratio of about 400, so that for a mean age of the continent of 2 x 10/sup 9/ years, a present-day osmium-187/osmium-186 ratio of about 10 is expected. Marine manganese nodules show values (6 to 8.4) compatible with this expectation if allowance for a 25 percent mantle osmium supply to the oceans is allowed. The Cretaceous-Tertiary boundary iridium-rich layer in the marine section at Stevns Klint, Denmark, yields an osmium-187/osmium-186 ratio of 1.65, and the one in a continental section in the Raton Basin, Colorado, is 1.29. The simplest explanation is that these represent osmium imprints of predominantly meteoritic origin.

  13. Proximal impact deposits at the Cretaceous-Tertiary boundary in the Gulf of Mexico: a restudy of DSDP Leg 77 Sites 536 and 540.

    PubMed

    Alvarez, W; Smit, J; Lowrie, W; Asaro, F; Margolis, S V; Claeys, P; Kastner, M; Hildebrand, A R

    1992-08-01

    Restudy of Deep Sea Drilling Project Sites 536 and 540 in the southeast Gulf of Mexico gives evidence for a giant wave at Cretaceous-Tertiary boundary time. Five units are recognized: (1) Cenomanian limestone underlies a hiatus in which the five highest Cretaceous stages are missing, possibly because of catastrophic K-T erosion. (2) Pebbly mudstone, 45 m thick, represents a submarine landslide possibly of K-T age. (3) Current-bedded sandstone, more than 2.5 m thick, contains anomalous iridium, tektite glass, and shocked quartz; it is interpreted as ejecta from a nearby impact crater, reworked on the deep-sea floor by the resulting tsunami. (4) A 50-cm interval of calcareous mudstone containing small Cretaceous planktic foraminifera and the Ir peak is interpreted as the silt-size fraction of the Cretaceous material suspended by the impact-generated wave. (5) Calcareous mudstone with basal Tertiary forams and the uppermost tail of the Ir anomaly overlies the disturbed interval, dating the impact and wave event as K-T boundary age. Like Beloc in Haiti and Mimbral in Mexico, Sites 536 and 540 are consistent with a large K-T age impact at the nearby Chicxulub crater. PMID:11538163

  14. Proximal impact deposits at the Cretaceous-Tertiary boundary in the Gulf of Mexico: A restudy of DSDP Leg 77 Sites 536 and 540

    SciTech Connect

    Alvarez, W.; Asaro, F. ); Smit, J. ); Lowrie, W. ); Asaro, F. ); Margolis, S.V.; Claeys, P. ); Kastner, M. ); Hildebrand, A.R. )

    1992-08-01

    Restudy of Deep Sea Drilling Project Sites 536 and 540 in the southeast Gulf of Mexico gives evidence for a giant wave at Cretaceous-Tertiary boundary time. Five units are recognized: (1) Cenomanian limestone underlies a hiatus in which the five highest Cretaceous stages are missing, possibly because of catastrophic K-T erosion. (2) Pebbly mudstone, 45 m thick, represents a submarine landslide possibly of K-T age. (3) Current-bedded sandstone, more than 2.5 m thick, contains anomalous iridium, tektite glass, and shocked quartz; it is interpreted as ejecta from a nearby impact crater, reworked on the deep-sea floor by the resulting tsunami. (4) A 50-cm interval of calcareous mudstone containing small Cretaceous planktic foraminifera and the Ir peak is interpreted as the silt-size fraction of the Cretaceous material suspended by the impact-generated wave. (5) Calcareous mudstone with basal Tertiary forams and the uppermost tail of the Ir anomaly overlies the disturbed interval, dating the impact and wave event as K-T boundary age. Like Beloc in Haiti and Mimbral in Mexico, Sites 536 and 540 are consistent with a large K-T age impact at the nearby Chicxulub crater.

  15. Proximal impact deposits at the Cretaceous-Tertiary boundary in the Gulf of Mexico: a restudy of DSDP Leg 77 Sites 536 and 540

    NASA Technical Reports Server (NTRS)

    Alvarez, W.; Smit, J.; Lowrie, W.; Asaro, F.; Margolis, S. V.; Claeys, P.; Kastner, M.; Hildebrand, A. R.

    1992-01-01

    Restudy of Deep Sea Drilling Project Sites 536 and 540 in the southeast Gulf of Mexico gives evidence for a giant wave at Cretaceous-Tertiary boundary time. Five units are recognized: (1) Cenomanian limestone underlies a hiatus in which the five highest Cretaceous stages are missing, possibly because of catastrophic K-T erosion. (2) Pebbly mudstone, 45 m thick, represents a submarine landslide possibly of K-T age. (3) Current-bedded sandstone, more than 2.5 m thick, contains anomalous iridium, tektite glass, and shocked quartz; it is interpreted as ejecta from a nearby impact crater, reworked on the deep-sea floor by the resulting tsunami. (4) A 50-cm interval of calcareous mudstone containing small Cretaceous planktic foraminifera and the Ir peak is interpreted as the silt-size fraction of the Cretaceous material suspended by the impact-generated wave. (5) Calcareous mudstone with basal Tertiary forams and the uppermost tail of the Ir anomaly overlies the disturbed interval, dating the impact and wave event as K-T boundary age. Like Beloc in Haiti and Mimbral in Mexico, Sites 536 and 540 are consistent with a large K-T age impact at the nearby Chicxulub crater.

  16. Cretaceous-tertiary boundary spherules and Cenozoic microtektites: Similarities and differences

    NASA Technical Reports Server (NTRS)

    Glass, B. P.; Bohor, Bruce F.; Betterton, William J.

    1993-01-01

    Bohor and Betterton pointed out that the K-T spherules can be divided into three groups. Their Type 1 spherules appear to be found in or adjacent to North America, particularly the Western Interior and in Haiti and Mexico. The Type 1 spherules occur in the lower part of the K-T boundary clay below an Ir anomaly. It is the Type 1 spherules which are most similar to microtektites. The discovery of K-T boundary spherules in Beloc, Haiti, and Mimbral, Mexico, with residual tektite-like glass cores supports the hypothesis that the Type 1 spherules are diagenetically altered microtektites. The similarities and differences of the Type 1 K-T boundary spherules to previously described Cenozoic microtektites are discussed.

  17. The Karskiy craters are the probable records of catastrophe at the Cretaceous-Tertiary boundary

    NASA Technical Reports Server (NTRS)

    Kolesnikov, E. M.; Nazarov, M. A.; Badjukov, D. D.; Shukolyukov, Yu. A.

    1988-01-01

    In order to corroborate the hypothesis of Alvarez and others about the connection of mass mortality and meteorite or cometary impact at the Cretaceous-Tertiary boundary, it is necessary to find a meteorite crater which was formed at the same time. Masaitiss suggested that the Karskiy craters (USSR) are suitable, but previous K/Ar data from other laboratories are very different (from 47 to 82 million years). Impact glasses were gathered from the Karskiy and Ust-Karskiy craters K/Ar age analyses were performed. The glasses cooled very rapidly and had the youngest model ages from 65.8 to 67.6 million years. The slower cooling crypto-crystalline aggregates had more ancient model ages, from 70.5 to 73.9 my as had tagamite because they captured excess argon during crystallization. Least squares analysis showed that with probability of 99 percent the findings on crypto-crystalline aggregates, tagamite and quartz glasses from the Karskiy and Ust-Karskiy craters lie on an isochron which has an age of 65.8 + or - 1.1 million years and a content of excess argon. For the two glasses with identical composition which have different quantities of secondary non-potassium minerals, an independent method determined the content of excess argon. Taking into account these data a more exact slope of the first isochron of 66.4 + or - 1.0 million years was observed and the second glass isochron with age 66.5 + or - 1.1 million years was constructed.

  18. An atmospheric pCO2 reconstruction across the Cretaceous-Tertiary boundary from leaf megafossils

    PubMed Central

    Beerling, D. J.; Lomax, B. H.; Royer, D. L.; Upchurch, G. R.; Kump, L. R.

    2002-01-01

    The end-Cretaceous mass extinctions, 65 million years ago, profoundly influenced the course of biotic evolution. These extinctions coincided with a major extraterrestrial impact event and massive volcanism in India. Determining the relative importance of each event as a driver of environmental and biotic change across the Cretaceous-Tertiary boundary (KTB) crucially depends on constraining the mass of CO2 injected into the atmospheric carbon reservoir. Using the inverse relationship between atmospheric CO2 and the stomatal index of land plant leaves, we reconstruct Late Cretaceous-Early Tertiary atmospheric CO2 concentration (pCO2) levels with special emphasis on providing a pCO2 estimate directly above the KTB. Our record shows stable Late Cretaceous/Early Tertiary background pCO2 levels of 350–500 ppm by volume, but with a marked increase to at least 2,300 ppm by volume within 10,000 years of the KTB. Numerical simulations with a global biogeochemical carbon cycle model indicate that CO2 outgassing during the eruption of the Deccan Trap basalts fails to fully account for the inferred pCO2 increase. Instead, we calculate that the postboundary pCO2 rise is most consistent with the instantaneous transfer of ≈4,600 Gt C from the lithic to the atmospheric reservoir by a large extraterrestrial bolide impact. A resultant climatic forcing of +12 W⋅m−2 would have been sufficient to warm the Earth's surface by ≈7.5°C, in the absence of counter forcing by sulfate aerosols. This finding reinforces previous evidence for major climatic warming after the KTB impact and implies that severe and abrupt global warming during the earliest Paleocene was an important factor in biotic extinction at the KTB. PMID:12060729

  19. Geologic and biostratigraphic framework of the non-marine Cretaceous-Tertiary boundary interval in western North America

    USGS Publications Warehouse

    Nichols, D.J.

    1990-01-01

    Palynologically defined Cretaceous-Tertiary boundary sites in nonmarine rocks in western North America exhibit similar characteristics. All are marked by abrupt disappearance of the regional uppermost Cretaceous palynoflora at the level of an iridium anomaly; most also yeild shock-metamorphosed minerals. All are in coal-bearing, fluvial or paludal depositional settings, although the boundary horizon may be below, within, above, or at some stratigraphic distance from coal seams. At many sites the lowermost Tertiary beds contain assemblages overwhelmed by fern spores that, together with extinctions of some groups of angiosperms, are taken as evidence of regional devastation of terrestrial plant communities and subsequent recolonization by pioneer species. ?? 1990.

  20. The Manson impact structure - Its contribution to impact materials observed at the Cretaceous/Tertiary boundary

    NASA Astrophysics Data System (ADS)

    Anderson, Raymond R.; Hartung, Jack B.

    The Manson impact structure (MIS) in Iowa is an excellently preserved complex crater that formed 65.7 Ma ago at the K/T boundary. Drill and seismic data have been used to identify three primary terranes within the 35-km diameter crater: (1) an outermost ring graben composed of listric normal fault blocks that structurally preserve Paleozoic and Cretaceous strata, impact ejecta, and possibly earliest Tertiary lake sediments; (2) a crater moat region of slumped and fallback materials overlain by Tertiary lake sediments in most areas; and (3) a central peak of uplifted basement rock capped in many areas by impact breccia. It is argued that concentrations of Ir at a K/T boundary exposure near Gubbio, Italy and clasts of glass reported from the K/T boundary in Haiti are consistent with possible production in the MIS.

  1. The Manson impact structure - Its contribution to impact materials observed at the Cretaceous/Tertiary boundary

    NASA Technical Reports Server (NTRS)

    Anderson, Raymond R.; Hartung, Jack B.

    1992-01-01

    The Manson impact structure (MIS) in Iowa is an excellently preserved complex crater that formed 65.7 Ma ago at the K/T boundary. Drill and seismic data have been used to identify three primary terranes within the 35-km diameter crater: (1) an outermost ring graben composed of listric normal fault blocks that structurally preserve Paleozoic and Cretaceous strata, impact ejecta, and possibly earliest Tertiary lake sediments; (2) a crater moat region of slumped and fallback materials overlain by Tertiary lake sediments in most areas; and (3) a central peak of uplifted basement rock capped in many areas by impact breccia. It is argued that concentrations of Ir at a K/T boundary exposure near Gubbio, Italy and clasts of glass reported from the K/T boundary in Haiti are consistent with possible production in the MIS.

  2. The Unique Significance and Origin of the Cretaceous-Tertiary Boundary: Historical Context and Burdens of Proof

    NASA Technical Reports Server (NTRS)

    Ryder, Graham

    1996-01-01

    The abruptness and intensity of the Cretaceous-Tertiary boundary have been deemphasized by some authors over recent years, mainly by those skeptical of an impact origin for the boundary. However, it was recognized at the birth of stratigraphy as both abrupt and of major importance. It was used to define the change from the Mesozoic to the Cenozoic; the boundary has become continually more precisely defined and its global sequences more correlatable. It is now unique in being an event boundary marked by an iridium-bearing layer of global extent, rather than an arbitrary boundary in a sequence of little change. The Permian-Triassic boundary, in contrast, is arbitrary and the transition is not yet proven to be abrupt, the extinctions that define it perhaps having taken place in pulses over several millions of years. Some of those who have denied the importance (and in some cases even the existence) of an impact in the Cretaceous-Tertiary extinctions have placed burdens of proof on the impact hypothesis that they do not place on strictly terrestrial mechanisms. Terrestrial mechanisms have always been unsatisfactory (or at least unconvincing for global, massive, multienvironment faunal change) and are now even more so. Some authors have required of the impact hypothesis attributes that are not inherent in it, including particular patterns of extinction selectivity and timing.

  3. The Origin of Fullerenes in the 65 Myr Old Cretaceous/Tertiary Boundary

    NASA Technical Reports Server (NTRS)

    Becker, L.; Poreda, R. J.; Bunch, T. E.

    2000-01-01

    In this work we have searched for extraterrestrial (ET) helium (He) in fullerenes isolated from several K/T boundary (KTB) sediments. Measurements of He in these KTB fullerene residues revealed He-3/He-4 ratios that can only be explained as ET in origin.

  4. New Evidence links Deccan Traps to the Cretaceous-Tertiary Boundary Mass Extinction

    NASA Astrophysics Data System (ADS)

    Adatte, T.; Keller, G.

    2012-04-01

    Recent studies indicate that Deccan Trap volcanism began with a relatively minor eruption phase (~6% of total volume) during the late Maastrichtian magnetic polarity C30n. The main eruption phase (~80%) occurred over a short period in C29r just below the Cretaceous-Tertiary boundary (KTB) and the last Deccan phase (~14%) erupted in the early Danian C29n. Multiproxy studies from sections in Meghalaya (NE India), Jhilmili in central India (Madhya Pradesh), 6 quarry outcrops from Rajahmundry (SE India), 10 deep wells from the Krishna-Godavari Basin (K-G) (Andhra Pradesh) place the KTB mass extinction near the end of the main Deccan phase coincident with the mass extinction. These studies show that the second and third phase of eruptions each produced the world's largest and longest lava megaflows ~1500 km across India through the K-G Basin into the Bay of Bengal. These megaflows are separated by sand, silt and shale which record the mass extinction across an interval that spans zones CF1-CF2 and most of the nannofossil Micula prinsii zone and is correlative with the rapid global warming and subsequent cooling near the end of the Maastrichtian. The mass extinction began preceding the first of the four mega-flows in C29r. Planktic foraminifera suffered a 50% drop in species richness. Survivors suffered another 50% drop after the first mega-flow, leaving just 7 to 8 survivor species. No recovery occurred between the next three mega-flows and the mass extinction was complete with the last phase-2 megaflow at the KTB. The last phase of Deccan volcanism and its 3 to 4 megaflows in the early Danian C29n (zone P1b) delayed biotic recovery of marine plankton. Correlative with these intense volcanic phases, climate changed from humid/tropical to arid conditions and returned to normal tropical humidity after the last phase of volcanism. Similar environmental conditions, mass extinction and delayed recovery patterns are observed in Meghalaya, NE India.The mass extinction was

  5. Ar-40 to Ar-39 ages of the large impact structures Kara and Manicouagan and their relevance to the Cretaceous-Tertiary and the Triassic-Jurassic boundary

    NASA Astrophysics Data System (ADS)

    Trieloff, M.; Jessberger, E. K.

    Since the discovery of the Ir enrichment in Cretaceous-Tertiary boundary clays in 1980, the effects of a 10-km asteroid impacting on the Earth 65 Ma ago have been discussed as the possible reason for the mass extinction--including the extinction of the dinosaurs--at the end of the Cretaceous. But up to now no crater of this age that is large enough (ca. 200 km in diameter) has been found. One candidate is the Kara Crater in northern Siberia. Kolesnikov et al. determined a K-Ar isochron of 65.6 +/- 0.5 Ma, indistinguishable from the age of the K-T boundary and interpreted this as confirmation of earlier proposals that the Kara bolide would have been at least one of the K-T impactors. Koeberl et al. determined Ar-40 to Ar-39 ages ranging from 70 to 82 Ma and suggested an association to the Campanian-Maastrichtian boundary, another important extinction horizon 73 Ma ago. We dated four impact melts, KA2-306, KA2-305, SA1-302, and AN9-182. Results from the investigation are discussed.

  6. Ar-40 to Ar-39 ages of the large impact structures Kara and Manicouagan and their relevance to the Cretaceous-Tertiary and the Triassic-Jurassic boundary

    NASA Technical Reports Server (NTRS)

    Trieloff, M.; Jessberger, E. K.

    1992-01-01

    Since the discovery of the Ir enrichment in Cretaceous-Tertiary boundary clays in 1980, the effects of a 10-km asteroid impacting on the Earth 65 Ma ago have been discussed as the possible reason for the mass extinction--including the extinction of the dinosaurs--at the end of the Cretaceous. But up to now no crater of this age that is large enough (ca. 200 km in diameter) has been found. One candidate is the Kara Crater in northern Siberia. Kolesnikov et al. determined a K-Ar isochron of 65.6 +/- 0.5 Ma, indistinguishable from the age of the K-T boundary and interpreted this as confirmation of earlier proposals that the Kara bolide would have been at least one of the K-T impactors. Koeberl et al. determined Ar-40 to Ar-39 ages ranging from 70 to 82 Ma and suggested an association to the Campanian-Maastrichtian boundary, another important extinction horizon 73 Ma ago. We dated four impact melts, KA2-306, KA2-305, SA1-302, and AN9-182. Results from the investigation are discussed.

  7. Evidence for a single impact at the Cretaceous-Tertiary boundary from trace elements

    NASA Technical Reports Server (NTRS)

    Gilmour, Iain; Anders, Edward

    1988-01-01

    Not only meteoritic elements (Ir, Ni, Au, Pt metals), but also some patently non-meteoritic elements (As, Sb) are enriched at the K-T boundary. Eight enriched elements at 7 K-T sites were compared and it was found that: All have fairly constant proportions to Ir and Kilauea (invoked as an example of a volcanic source of Ir by opponents of the impact theory) has too little of 7 of these 8 elements to account for the boundary enrichments. The distribution of trace elements at the K-T boundary was reexamined using data from 11 sites for which comprehensive are available. The meteoritic component can be assessed by first normalizing the data to Ir, the most obviously extraterrestrial element, and then to Cl chondrites. The double normalization reduces the concentration range from 11 decades to 5 and also facilitates the identification of meteoritic elements. At sites where trace elements were analyzed in sub-divided samples of boundary clay, namely, Caravaca (SP), Stevns Klint (DK), Flaxbourne River (NZ) and Woodside Creek (NZ), Sb, As and Zn are well correlated with Ir across the boundary implying a common deposition mechanism. Elemental carbon is also enriched by up to 10,000 x in boundary clay from 5 K-T sides and is correlated with Ir across the boundary at Woodside Creek. While biomass would appear to be the primary fuel source for this carbon a contribution from a fossil fuel source may be necessary in order to account for the observed C abundance.

  8. Geochemistry and Stratigraphy of the Cretaceous/tertiary Boundary Impact Ejecta

    NASA Astrophysics Data System (ADS)

    Hildebrand, Alan Russell

    1992-01-01

    An array of stratigraphic, chemical, isotopic, and mineralogical evidence indicates that an impact terminated the Cretaceous Period. The 180-km-diameter Chicxulub crater, which now lies buried on the Yucatan peninsula of Mexico, was probably formed by the impact. The impactor was probably a long-period comet. Shock devolatization of the thick carbonate/evaporite sequence impacted at Chicxulub probably led to a severe and long-lasting greenhouse warming and a prompt pulse of sulfuric acid rain. The fallout of crater ejecta formed two layers: a lower layer which varies in thickness following a power -law relation based on distance from the Chicxulub crater and an upper, globally-distributed, uniformly ~3-mm-thick layer. The upper layer probably represents the fallout of condensates and entrained solid and liquid particles which were distributed globally by the impact fireball. The lower layer consists of brecciated rock and impact melt near the crater and largely altered tektites far from the crater. The clasts of this layer were probably ballistically transported. The Raton, New Mexico K/T boundary section preserves the fireball and ejecta layers in a coal-free nonmarine environment. Siderophile, chalcophile, and lithophile trace element anomalies occur similar to those found at marine K/T boundary localities. Soot occurs peaking in the 3-mm-thick fireball layer and the immediately overlying 3 mm of sediment, implying prompt burning of the Cretaceous forests. The Brazos River, Texas continental-shelf K/T sections preserve coarse boundary sediments which were probably produced by impact waves. Siderophile and chalcophile trace-element anomalies occur suggesting that the fireball layer and possibly part of the ejecta layer are interbedded with the coarse boundary sediments. The Beloc, Haiti deep-sea K/T sections preserve a thick ejecta sequence including altered and unaltered tektites and shocked minerals capped by the fireball layer. The thick K/T ejecta preserved at

  9. Macrofossil extinction patterns at Bay of Biscay Cretaceous-Tertiary boundary sections

    NASA Technical Reports Server (NTRS)

    Ward, Peter D.; Macleod, Kenneth

    1988-01-01

    Researchers examined several K-T boundary cores at Deep Sea Drilling Project (DSDP) core repositories to document biostratigraphic ranges of inoceramid shell fragments and prisms. As in land-based sections, prisms in the deep sea cores disappear well before the K-T boundary. Ammonites show a very different extinction pattern than do the inoceramids. A minimum of seven ammonite species have been collected from the last meter of Cretaceous strata in the Bay of Biscay basin. In three of the sections there is no marked drop in either species numbers or abundance prior to the K-T boundary Cretaceous strata; at the Zumaya section, however, both species richness and abundance drop in the last 20 m of the Cretaceous, with only a single ammonite specimen recovered to date from the uppermost 12 m of Cretaceous strata in this section. Researchers conclude that inoceramid bivalves and ammonites showed two different times and patterns of extinction, at least in the Bay of Biscay region. The inoceramids disappeared gradually during the Early Maestrichtian, and survived only into the earliest Late Maestrichtian. Ammonites, on the other hand, maintained relatively high species richness throughout the Maestrichtian, and then disappeared suddenly, either coincident with, or immediately before the microfossil extinction event marking the very end of the Cretaceous.

  10. Main Deccan Trap Eruptions occurred close to the Cretaceous-Tertiary Boundary: increasing Multiproxy Evidence

    NASA Astrophysics Data System (ADS)

    Adatte, Thierry; Keller, Gerta

    2010-05-01

    Recent studies indicate that the bulk (80%) of the Deccan trap eruptions occurred over less than 0.8 m.y. in magnetic polarity C29r spanning the Cretaceous-Tertiary boundary (KTB) (Chenet et al, 2007, 2008). Detailed multiproxy studies from several sections from southeastern India (Rajhamundry, Andhra Pradesh) and central India (Jilmili, Madhya Pradesh) place the KTB event near the end of the main Deccan eruptive phase and indicate that Deccan volcanism could have been a major contributor to the mass extinction (Keller et al., 2008, 2009). Geochemical, mineralogical and micropaleontogical evidence from localities outside India suggest that this megapulse took place in the uppermost Maastrichtian C29r (CF2-CF1 transition). For example, a rapid shift in 187Os/188Os ratios observed in three deep-sea sections (Atlantic, Pacific and Indian Oceans) are interpreted to mark the onset of the main Deccan pulse in C29r (Robinson et al., 2009). Foraminiferal oxygen isotope data from DSDP Site 525 (South Atlantic) show a short rapid global warming in C29r (Li and Keller, 1998) coincident with the decline in 187Os/188Os ratios. This warming is also observed in the terrestrial plant record (Wilf 2003). A coeval increase in weathering observed in Site 525 and Tunisia (Adatte et al., 2002) is marked by dominant kaolinite clay assemblages. In the same interval a significant decrease in bulk carbonate content suggests acidification due to volcanic SO2. Enhanced dissolution is also observed at DSDP Site 527 and Gubbio, Italy. Calcareous microfossils (planktic foraminifera and nannofossils) experienced major stress conditions expressed by species dwarfing, decreased diversity and decreased abundance (Keller, 2005). These observations indicate that Deccan volcanism played a key role in increasing atmospheric CO2 levels that resulted in global warming and enhanced greenhouse effect, which coupled with high SO2 emission increased biotic stress and predisposed faunas to eventual extinction

  11. Extinction and survival of plant life following the Cretaceous/Tertiary boundary event, Western Interior, North America ( USA).

    USGS Publications Warehouse

    Tschudy, R.H.; Tschudy, B.D.

    1986-01-01

    The palynological Cretaceous/Tertiary boundary is recognized in the northern part of the Western Interior by the abrupt disappearance of a few characteristic Cretaceous pollen genera. In the southern part, the boundary is recognized by the disappearance of a somewhat different group of pollen. The abrupt change in both regions takes place precisely at the stratigraphic horizon at which boundary clay layers containing anomalously high concentrations of iridium are found. All the principal Cretaceous pollen genera that disappear regionally have been reported from Tertiary rocks in other parts of North America. Differential apparent extinction and/or survival reflects a pronounced temporary disruption of plant life immediately after the impact event. Some Cretaceous plants must have persisted in refugia to have provided the propagules for the rapid recovery of the flora. No massive total extinction of plant genera at the end of the Cretaceous can be seen from the palynologic record. -from Authors

  12. Iridium, shocked minerals, and trace elements across the Cretaceous/Tertiary boundary at Maud Rise, Wedell Sea, and Walvis Ridge, South Atlantic Ocean

    NASA Technical Reports Server (NTRS)

    Huffman, Alan R.; Crocket, James H.; Carter, Neville L.

    1988-01-01

    Sediments spanning a 5 meter section across the Cretaceous-Tertiary boundary at ODP holes 689B and 690D, Maud Rise, Wedell Sea and hole 527, Walvis Ridge, are being analyzed for shock deformation, PGE's and other trace elements (including REE's). Mineral separates from each sample were studied with optical microscopy to determine the distribution and microstructural state of quartz and feldspar present in the sediments. Samples from Maud Rise were taken of the K/T transition and at about 50 cm intervals above and below it. These samples consist of carbonate-rich sediments, with the K/T transition marked by a change from white Maastrichtian oozes to a greenish ooze with higher concentrations of altered volcanic clay and vitric ash. The Walvis Ridge site is characterized by more clay-rich sediments with average carbonate content about 60 to 70 percent. Initial results from RNAA studies indicate that iridium is present in all the Maud Rise samples in concentrations equal to or greater than 0.01 ppb (whole-rock basis). Preliminary results from optical microscopy indicate the occurrence of shock mosaicism in quartz and feldspar in all of the samples studied. The pervasiveness of shock mosaicism and presence of planar features to 2 meters from the K/T boundary indicates that a single impact or volcanic explosion 66 ma may be ruled out as responsible for the K/T event. A similar conclusion may be drawn independently from the distribution of iridium and other trace elements. Regardless of the source of the shock waves and sediment contamination, multiple events are required over a ca.0.5 my timespan; currently we favor endogenous sources.

  13. Faunal, geochemical and paleomagnetic change across the Cretaceous-Tertiary boundary at Braggs, Alabama

    SciTech Connect

    Jones, D.S.; Mueller, P.A.; Channell, J.E.T.; Dobson, J.P.; Bryan, J.R.

    1985-01-01

    Near Braggs, Alabama the Upper Cretaceous Prairie Bluff Chalk underlies the Paleocene Pine barren Member of the Clayton Formation in a well-exposed, continuous K/T boundary section composed of interbedded sands, shales, and limestones of shallow marine origin. As determined from foraminiferal and calcareous nannofossil biostratigraphies, and the Maastrichtian/Danian contact at Braggs lies below a marine hardground in a zone associated with slow sedimentation and a deepening paleoenvironment. The K/T boundary occurs within a well-defined reversed magnetozone which we correlate to the reversed interval between marine magnetic anomalies 29 and 30. This magnetozone is approx.3.2 m thick, suggesting a sedimentation rate of only 6.8 m/m.y. across the boundary. The boundary occurs in the lower part of the magnetozone, about 1 m above its base, unlike the Italian sections where the boundary occurs toward the top of the reversed magnetozone. Marine macrofossils occur abundantly throughout the sequence had have been analyzed on a bed by bed basis to document the pattern of extinction and paleoenvironmental change. To help calibrate the rate of faunal change and refine the bio- and magnetostratigraphies, the Rb-Sr systematics of glauconites from the section are being investigated and the change of /sup 87/Sr//sup 86/Sr in seawater is being investigated by analysis of CaCO/sub 3/ from molluscan shells and foraminiferal tests. Initial Rb-Sr measurements of glauconites from a bed above the contact suggest an age of 60 Ma with an initial /sup 87/Sr//sup 86/Sr compatible with /sup 87/Sr//sup 86/Sr measured in shell carbonate at this site. Values for shell carbonate range from .707713 to .707826 and appear to show a maximum near the boundary.

  14. The Cretaceous-Tertiary boundary marine extinction and global primary productivity collapse

    NASA Technical Reports Server (NTRS)

    Zachos, J. C.; Arthus, M. A.; Dean, W. E.

    1988-01-01

    The extinction of marine phyto-and zoo-plankton across the K-T boundary has been well documented. Such an event may have resulted in decreased photosynthetic fixation of carbon in surface waters and a collapse of the food chain in the marine biosphere. Because the vertical and horizontal distribution of the carbon isotopic composition of total dissolved carton (TDC) in the modern ocean is controlled by the transfer of organic carbon from the surface to deep reservoirs, it follows that a major disruption of the marine biosphere would have had a major effect on the distribution of carbon isotopes in the ocean. Negative carbon isotope excursions have been identified at many marine K-T boundary sequences worldwide and are interpreted as a signal of decreased oceanic primary productivity. However, the magnitude, duration and consequences of this productivity crisis have been poorly constrained. On the basis of planktonic and benthic calcareous microfossil carbon isotope and other geochemical data from DSDP Site 577 located on the Shatsky Rise in the north-central Pacific, as well as other sites, researchers have been able to provide a reasonable estimate of the duration and magnitude of this event.

  15. Ruthenium/Iridium Ratios in the Cretaceous-tertiary Boundary Clay: Implications for Global Dispersal and Fractionation Within the Ejecta Cloud

    NASA Technical Reports Server (NTRS)

    Evans, Noreen Joyce; Goodfellow, W. D.; Gregoire, D. C.; Veizer, J.

    1992-01-01

    Ruthenium (Ru) and iridium (Ir) are the least mobile platinum group elements (PGE's) within the Cretaceous-Tertiary (K-T) boundary clay (BC). The Ru/Ir ratio is, therefore, the most useful PGE interelement ratio for distinguishing terrestrial and extraterrestrial contributions to the BC. The Ru/Ir ratio of marine K-T sections (1.77 +/- 0.53) is statistically different from that of the continental sections (0.93 +/- 0.28). The marine Ru/Ir ratios are chondritic (C1 = 1.48 +/- 0.09), but the continental ratios are not. We discovered an inverse correlation of shocked quartz size (or distance from the impact site) and Ru/Ir ratio. This correlation may arise from the difference in Ru and Ir vaporization temperature and/or fractionation during condensation from the ejecta cloud. Postsedimentary alteration, remobilization, or terrestrial PGE input may be responsible for the Ru/Ir ratio variations within the groups of marine and continental sites studied. The marine ratios could also be attained if approximately 15 percent of the boundary metals were contributed by Deccan Trap emissions. However, volcanic emissions could not have been the principal source of the PGE's in the BC because mantle PGE ratios and abundances are inconsistent with those measured in the clay. The Ru/Ir values for pristine Tertiary mantle xenoliths (2.6 +/- 0.48), picrites (4.1 +/- 1.8), and Deccan Trap basalt (3.42 +/- 1.96) are all statistically distinct from those measured in the K-T BC.

  16. Dynamic deformation of volcanic ejecta from the Toba caldera: possible relevance to Cretaceous/Tertiary boundary phenomena

    SciTech Connect

    Carter, N.L.; Officer, C.B.; Chesner, C.A.; Rose, W.I.

    1986-05-01

    Plagioclase and biotite phenocrysts in ignimbrites erupted from the Toba caldera, Sumatra, show microstructures and textures indicative of shock stress levels higher than 10 GPa. Strong dynamic deformation has resulted in intense kinking in biotite and, with increasing shock intensity, the development of plagioclase of planar features, shock mosaicism, incipient recrystallization, and possible partial melting. Microstructures in quartz indicative of strong shock deformation are rare, however, and many shock lamellae, if formed, may have healed during post-shock residence in the hot ignimbrite; they might be preserved in ash falls. Peak shock stresses from explosive silicic volcanism and other endogenous processes may be high and if so would obviate the need for extraterrestrial impacts to produce all dynamically deformed structures, possibly including shock features observed near the Cretaceous/Tertiary boundary. 38 references, 3 figures.

  17. Nitrogen geochemistry of a Cretaceous-Tertiary boundary site in New Zealand

    NASA Technical Reports Server (NTRS)

    Gilmour, Iain; Boyd, Stuart R.

    1988-01-01

    Nitrogen in the basal layer of the K-T boundary clay at Woodside Creek, New Zealand, has an abundance of 1100 ppm, a 20-fold enrichment over Cretaceous and Tertiary values. The enrichment parallels that for Ir and elemental carbon (soot); all decrease over the next 6 mm of the boundary clay. The C/N ratio, assuming the nitrogen to be associated with organic rather than elemental carbon, is approximately 5 for the basal layer compared to 20 to 30 for the remainder of the boundary clay. The correlation between N and Ir abundances appears to persist above the boundary, implying that the N is intimately associated with the primary fallout and remained with it during the secondary redeposition processes that kept the Ir abundance relatively high into the lowermost Tertiary. Apparently the basal layer of the boundary clay represents the accumulation of a substantial quantity of N with an isotopic composition approximately 10 percent heavier than background delta value of N-15 values. If the boundary clay represents an altered impact glass from a meteorite impact than it probably denotes a time period of less than 1 year. Therefore, the changes in nitrogen geochemistry apparently occurred over a very short period of time. The high abundance of N and the correspondingly low C/N ratio may reflect enhanced preservation of organic material as a result of the rapid sweepout and burial of plankton by impact ejecta, with little or no bacterial degradation. It is conceivable that the shift in delta value of N-15 may represent an influx of nitrogen from a different source deposited contemporaneously with the impact ejecta. An interesting possibility is that it may be derived from nitrate, produced from the combustion of atmospheric nitrogen.

  18. Biogeochemical and ecological consequences of dissolved organic carbon released from soot particles from global firestorms at the Cretaceous/Tertiary boundary: Was the Strangelove Ocean a blackwater ocean?

    NASA Astrophysics Data System (ADS)

    McKnight, D. M.; Steinberg, C.; Baron, J. S.

    2002-12-01

    Phytoplankton productivity in the oceans was suppressed for about 200,000 years after the Cretaceous/Tertiary (K/T) boundary event, and many species of marine calcareous plankton became extinct at the boundary. Proposed causes for what has been called the "Strangelove Ocean" include acidification of oceanic surface waters and effects associated with deposition from a global cloud of firestorm ash. We evaluate the potential effects on the marine ecosystem of leaching of dissolved organic carbon (DOC) from firestorm soot particles. Based upon the quantity of soot deposited in the clay layer at the K/T boundary, we estimate that DOC concentrations in oceanic surface waters increased by at least a factor of two. These results are also supported by extrapolations based upon DOC increases in lakes and streams associated with deposition of ash in Rocky Mountain National Park from the Yellowstone fire of 1988. The soluble soot-derived humic substances would have had different chemical properties than marine humic substances, including a more aromatic character, greater absorptivity for visible light and greater quinone content. These humic substances could have acted as stress-inducing xenobiotic compounds and could have changed the physical and chemical characteristics of the marine environment. Cellular uptake of these humic compounds could have also inhibited calcite precipitation by coccolithophorids and foraminifera, contributing to the greater extinction of these species compared to dinoflagellates. Calculations show that the greater light absorption by the firestorm-derived humic substances would have decreased the depth of the mixed zone, limiting the dilution of the DOC pulse, and would have decreased the depth of the photic zone, spatially restructuring marine ecosystems.

  19. Extended period of K/T boundary mass extinction in the marine realm

    NASA Technical Reports Server (NTRS)

    Keller, G.

    1988-01-01

    The Cretaceous/Tertiary (K/T) boundary mass extinction has been widely recognized as a nearly instantaneous catastrophy among marine plankton such as foraminifera. However, the suddenness of this extinction event may have been overemphasized because most pelagic K/T boundary sequences are stratigraphically incomplete and generally lack the earliest Tertiary (Zones P0 and P1a) either due to carbonate dissolution and/or non-deposition. Stratigraphically complete sections appear to be restricted to continental shelf regions with high sedimentation rates and deposition well above the CCD. Such sections have been recovered from El Kef, Tunisia (1) and Brazos River, Texas. Quantitative foraminiferal analysis of these sections indicate an extinction pattern beginning below the K/T boundary and ending above the boundary. These data imply that the mass extinction event was not geologically instantaneous, but occurred over an extended period of time. Evidence supporting this conclusion is discussed.

  20. Impact mineralogy and chemistry of the cretaceous-tertiary boundary at DSDP site 576

    NASA Technical Reports Server (NTRS)

    Bostwick, Jennifer A.; Kyte, Frank T.

    1993-01-01

    We have identified the K/T boundary in pelagic clay sediments from cores at DSDP Site 576 in the western North Pacific. Detailed geochemical and trace mineralogical analyses of this boundary section are in progress and initial results indicate similarities and differences relative to the only other clay core investigated in detail; DSDP Site 596, a locality in the western South Pacific. Peak Ir concentrations of 13 ng/g in DSDP Hole 576B are virtually identical with those observed in the South Pacific, but in the North Pacific this peak is much narrower and the integrated Ir fluence of 85 ng cm(exp -2) is 4 times lower (320 in Hole 596). Of the 34 elements measured, only Ir and Cr were found to have anomalous concentrations in K/T boundary samples. Trace mineral residues were obtained by washing away clays and sequential chemical leaches (including HF) to remove typical hydrogenous and biogenous sediment components (e.g., zeolites and radiolarian opal). We attempted to quantitatively recover the entire trace mineral assemblage for grains greater than 30 micrometers in diameter. Our mineral residues were dominated by two phases: quartz and magnesioferrite spinel. Other non-opaque mineral grains we have positively identified were trace K-feldspar, plagioclase, corundum, and muscovite. Of these only K-feldspar exhibited planar deformation features (PDF). We have not found abundant plagioclase, as in the South Pacific suggesting that this phase was either not preserved in the North Pacific, or that in the south, it has a non-impact (i.e., volcanic) source. PDF in quartz were commonly obscured by secondary overgrowths on the surfaces of quartz grains, presumably from diagenetic reprecipitation of silica dissolved from opaline radiolarian tests that are common in these sediments. However, careful examination revealed that most grains had multiple sets of PDF. Of the 133 quartz grains greater than 30 micrometers analyzed, 62 percent showed evidence of shock. The largest

  1. Tektites in Cretaceous-Tertiary boundary rocks on Haiti and their bearing on the Alvarez impact extinction hypothesis

    USGS Publications Warehouse

    Izett, G.A.

    1991-01-01

    Relic tektites are associated with a Pt-group metal abundance anomaly and shocked minerals in a thin marl bed that marks the K-T boundary on Haiti. The presence of these three impact-produced materials at the precise K-T boundary enormously strengthens the Alvarez impact extinction hypothesis. The Haitian tektites are the first datable impact products in K-T boundary rocks, and 40Ar-39Ar ages of the glass show that the K-T boundary and impact event are coeval at 64.5 ?? 0.1 Ma. -from Author

  2. Chicxulub's Cretaceous-Tertiary Boundary Twin Crater. Was There a Double Impact in the Yucatan Peninsula?

    NASA Astrophysics Data System (ADS)

    Camargo, A. Z.; Juarez, J. S.

    2004-05-01

    Crater would fit the karstic depressions E-SE of the Chicxulub crater. We found that an 82 km diameter circle fits well the semi circle of dark spots, and interpret it as a portion of the rim of the IZAMAL impact crater. The interpreted relationships and origin of the Chicxulub and Izamal craters are: The Chicxulub crater was created after Izamal. They were created by two different impact bodies. The craters are of the same age. They were formed by two parts of the same celestial body, the MAYA BOLIDE. The diameter of the fragment impacted in Izamal is estimated to be about 4 km. This finding has implications on studies related to the K/T extinction event. Some scientists argue that the Chicxulub crater is somewhat small to account for the global K/T extinction all by itself. The double impact may account for the observed effects. Also, multiple impacts at sea may have put into the atmosphere much more sea water salts capable of dissociating into damaging chlorine compounds. Furthermore, the impact sequence may help explain the origin of the K/T boundary glasses from Haiti and better define the ballistic trajectories of the impacts ejecta and its effects on the extinctions. And the Maya Bolide orbit can be investigated to define its origin and characteristics as a comet or asteroid.

  3. Mineralogical and geochemical anomalous data of the K-T boundary samples

    NASA Technical Reports Server (NTRS)

    Miura, Y.; Shibya, G.; Imai, M.; Takaoka, N.; Saito, S.

    1988-01-01

    Cretaceous-Tertiary boundary problem has been discussed previously from the geological research, mainly by fossil changes. Although geochemical bulk data of Ir anomaly suggest the extraterrestrial origin of the K-T boundary, the exact formation process discussed mainly by mineralogical and geochemical study has been started recently, together with noble gas contents. The K-T boundary sample at Kawaruppu River, Hokkaido was collected, in order to compare with the typical K-T boundary samples of Bubbio, Italy, Stevns Klint, Denmark, and El Kef, Tunisia. The experimental data of the silicas and calcites in these K-T boundary samples were obtained from the X-ray unit-cell dimension (i.e., density), ESR signal and total linear absorption coefficient, as well as He and Ne contents. The K-T boundary samples are usually complex mixture of the terrestrial activities after the K-T boundary event. The mineralogical and geochemical anomalous data indicate special terrestrial atmosphere at the K-T boundary formation probably induced by asteroid impact, followed the many various terrestrial activities (especially the strong role of sea-water mixture, compared with terrestrial highland impact and impact craters in the other earth-type planetary bodies).

  4. Provenance of mineral phases in the Cretaceous-Tertiary boundary sediments exposed on the southern peninsula of Haiti

    NASA Technical Reports Server (NTRS)

    Kring, David A.; Hildebrand, Alan R.; Boynton, William V.

    1994-01-01

    Acid-insoluble mineral residua of tektite-bearing Cretaceous-Tertiary boundary sediments in the Beloc Formation of Haiti contain abundant shocked quartz and lesser amounts of shocked plagioclase. The shocked quartz grains typically have 2 or 3 sets of planar deformation features, although grains with up to 15 sets were observed. The proportion of shocked quartz in the boundary sediments increases with stratigraphic height; at least 70 +/- 11% of the proportion of the quartz grains are shocked in the uppermost stratigraphic interval. The proportion of shocked quartz throughout the boundary sediments indicates that these grains were excavated primarily from crystalline silicate units, which may have been covered with a small amount of porous quartz-bearing sediments. Polyhedral and moderately sutured margins in shocked polycrystalline quartz grains, the size of the crystal units in these grains and the presence of shocked plagioclase, indicate these ejecta components were excavated from a target with continental affinites, containing quartzites or metaquartzites and a sialic metamorphic and/or igneous component. Other evidence suggests the target may also have contained a significant amount of calcium carbonate and/or sulfate. The large size and amount of shocked quartz grains deposited in Haiti indicate the crater from which they were excavated was produced in the proto-Caribbean region.

  5. Provenance of mineral phases in the Cretaceous-Tertiary boundary sediments exposed on the southern peninsula of Haiti

    NASA Astrophysics Data System (ADS)

    Kring, David A.; Hildebrand, Alan R.; Boynton, William V.

    1994-12-01

    Acid-insoluble mineral residua of tektite-bearing Cretaceous-Tertiary boundary sediments in the Beloc Formation of Haiti contain abundant shocked quartz and lesser amounts of shocked plagioclase. The shocked quartz grains typically have 2 or 3 sets of planar deformation features, although grains with up to 15 sets were observed. The proportion of shocked quartz in the boundary sediments increases with stratigraphic height; at least 70 +/- 11% of the proportion of the quartz grains are shocked in the uppermost stratigraphic interval. The proportion of shocked quartz throughout the boundary sediments indicates that these grains were excavated primarily from crystalline silicate units, which may have been covered with a small amount of porous quartz-bearing sediments. Polyhedral and moderately sutured margins in shocked polycrystalline quartz grains, the size of the crystal units in these grains and the presence of shocked plagioclase, indicate these ejecta components were excavated from a target with continental affinites, containing quartzites or metaquartzites and a sialic metamorphic and/or igneous component. Other evidence suggests the target may also have contained a significant amount of calcium carbonate and/or sulfate. The large size and amount of shocked quartz grains deposited in Haiti indicate the crater from which they were excavated was produced in the proto-Caribbean region.

  6. Field guide to Cretaceous-tertiary boundary sections in northeastern Mexico

    NASA Technical Reports Server (NTRS)

    Keller, Gerta; Stinnesbeck, Wolfgang; Adatte, Thierry; Macleod, Norman; Lowe, Donald R.

    1994-01-01

    This guide was prepared for the field trip to the KT elastic sequence of northeastern Mexico, 5-8 February 1994, in conjunction with the Conference on New Developments Regarding the KT Event and Other Catastrophes in Earth History, held in Houston, Texas. The four-day excursion offers an invaluable opportunity to visit three key outcrops: Arroyo El Mimbral, La Lajilla, and El Pinon. These and other outcrops of this sequence have recently been interpreted as tsunami deposits produced by the meteorite impact event that produced the 200 to 300-km Chicxulub basin in Yucatan, and distributed ejecta around the world approximately 65 m.y. ago that today is recorded as a thin clay layer found at the K/T boundary. The impact tsunami interpretation for these rocks has not gone unchallenged, and others examining the outcrops arrive at quite different conclusions: not tsunami deposits but turbidites; not KT at all but 'upper Cretaceous.' Indeed, it is in hopes of resolving this debate through field discussion, outcrop evaluation, and sampling that led the organizers of the conference to sanction this field trip. This field guide provides participants with background information on the KT clastic sequence outcrops and is divided into two sections. The first section provides regional and logistical context for the outcrops and a description of the clastic sequence. The second section presents three representative interpretations of the outcrops by their advocates. There is clearly no way that these models can be reconciled and so two, if not all three, must be fundamentally wrong. Readers of this guide should keep in mind that many basic outcrop observations that these models are based upon remain unresolved. While great measures were taken to ensure that the information in the description section was as objective as possible, many observations are rooted in interpretations and the emphasis placed on certain observations depends to some degree upon the perspective of the author.

  7. New method for the measurement of osmium isotopes applied to a New Zealand Cretaceous/Tertiary boundary shale

    USGS Publications Warehouse

    Lichte, F.E.; Wilson, S.M.; Brooks, R.R.; Reeves, R.D.; Holzbecher, J.; Ryan, D.E.

    1986-01-01

    The determination of osmium content and isotopic abundances in geological materials has received increasing attention in recent years following the proposal of Alvarez et al.1 that mass extinctions at the end of the Cretaceous period were caused by the impact of a large (???10km) meteorite which left anomalously high iridium levels as a geochemical signature in the boundary shales. Here we report a new and simple method for measuring osmium in geological materials, involving fusion of the sample with sodium peroxide, distillation of the osmium as the tetroxide using perchloric acid, extraction into chloroform, and absorption of the chloroform extract onto graphite powder before instrumental neutron activation analysis. In a variant of this technique, the chloroform extract is back-extracted into an aqueous phase and the osmium isotopes are determined by plasma-source mass spectrometry (ICPMS). We have used this method on the Woodside Creek (New Zealand) Cretaceous/Tertiary boundary clay and have obtained the first osmium content (6g ng g-1) for this material. The 187Os/186Os ratio is 1.12??0.16, showing a typical non-crustal signature. This combined distillation-extraction- ICPMS method will prove to be useful for measuring osmium isotopes in other geological materials. ?? 1986 Nature Publishing Group.

  8. Kara and Ust-Kara impact structures (USSR) and their relevance to the K/T boundary event

    NASA Technical Reports Server (NTRS)

    Koeberl, Christian; Sharpton, Virgil; Murali, A. V.; Burke, Kevin

    1990-01-01

    Ample evidence exists for at least one major meteorite impact event at the time of the Cretaceous/Tertiary (K/T) boundary, and it is therefore important to establish if any recognized terrestrial impact craters are K/T in age. The Kara, USSR, impact structure consists of two adjacent large impact craters (a rare and interesting geologic phenomenon), and it has been suggested that this twin impact structure might be related to the K/T boundary event. However, newly determined (Ar-40)/(Ar-39) and K-Ar ages presented here suggest that these structures are slightly older than 70 Ma, and may thus be too old for a 66 Ma K/T boundary event. Still, these two craters represent a substantial impact event that could have initiated regional, if not global, degradation of the biosphere. Their age suggests a possible relation with the Campanian/Maastrichtian boundary.

  9. 40Ar-39Ar Ages of the Large Impact Structures Kara and Manicouagan and their Relevance to the Cretaceous-Tertiary and the Triassic-Jurassic Boundary

    NASA Astrophysics Data System (ADS)

    Trieloff, M.; Jessberger, E. K.

    1992-07-01

    Since the discovery of the iridium enrichment in Cretaceous- Tertiary boundary clays by Alvarez et al. (1980) the search for the crater of the K/T impactor is in progress. Petrographic evidence at the K/T boundary material points towards an impact into an ocean as well as onto the continental crust, multiple K/T impacts are now being considered (Alvarez and Asaro, 1990). One candidate is the Kara crater in northern Siberia of which Kolesnikov et al. (1988) determined a K-Ar isochrone age of 65.6 +- 0.5 Ma, regarding this as indicating that the Kara bolide is at least one of the K/T impactors. Koeberl et al. (1990) determined ^40Ar-^39Ar ages of six impact melts ranging from 70 to 82 Ma and suggested rather an association to the Campanian- Maastrichtian boundary, another important extinction horizon 73 Ma ago (Harland et al., 1982). We dated with the ^40Ar-^39Ar technique four impact melts, KA2- 306, KA2-305, SA1-302 and AN9-182. The spectra have rather well- defined plateaus, shown with highly extended age scales (Fig. 1). The plateau ages range from 69.3 to 71.7 Ma. Our data do not support an association either with the Cretaceous-Tertiary or with the Campanian-Maastrichtian boundary. We deduce an age of 69-71 Ma for the Kara impact structure. Nazarov et al. (1991) have demonstrated by isotopic hydrogen studies that the Kara bolide impacted on dry land, while the last regression at the target area before the end of the Cretaceous occurred 69-70 Ma ago. Our data are consistent with an impact shortly after the regression. We further dated impact metamorphic anorthosite samples (10BD5 and 10BD3C) of the Manicouagan crater, Canada, which may be related to the Triassic-Jurassic boundary (McLaren and Goodfellow, 1990). The samples consist of two different phases, one degassing at low temperatures yielding a plateau age of 212 Ma and another phase which was degassed during the cratering event to varying degrees with apparent ages increasing up to 950 Ma, the age of the

  10. Plants and the K-T Boundary

    NASA Astrophysics Data System (ADS)

    Nichols, Douglas J.; Johnson, Kirk R.

    In Plants and the K--T Boundary, two of the world's leading experts in palynology and paleobotany provide a comprehensive account of the fate of land plants during the 'great extinction' about 65 million years ago. They describe how the time boundary between the Cretaceous and Paleogene Periods (the K--T boundary) is recognized in the geological record, and how fossil plants can be used to understand global events of that time. There are case studies from over 100 localities around the world, including North America, China, Russia and New Zealand. The book concludes with an evaluation of possible causes of the K--T boundary event and its effects on floras of the past and present. This book is written for researchers and students in paleontology, botany, geology and Earth history, and everyone who has been following the course of the extinction debate and the K--T boundary paradigm shift.

  11. Quenched magnetite in cretaceous-tertiary boundary microtekite-like spheroid

    NASA Technical Reports Server (NTRS)

    Smit, J.; Kyte, F. T.; Wasson, J. T.

    1984-01-01

    The magnetite containing spheres collected from a kt boundary localities in Italy were analyzed. It was found that these spheres contain relatively high concentrations of Ir. The spheres were analyzed for siderophile elements Ir, Pt, Au, Pd, Os, and Re. Elements Ir, Pt, Pd, and Au were found in high concentrations in magnetic spheres and their concentrations are similar to those in most meteorites. It is suggested that the magnetite spheres do not contain a meteorite component which may be a relic of the kt event.

  12. The causes for geographical variations in OS187/OS186 at the Cretaceous-Tertiary boundary

    NASA Technical Reports Server (NTRS)

    Turekian, K. K.; Esser, B. K.; Ravizza, G. E.

    1988-01-01

    Researchers at Yale has approached the problem of the osmium isotopic composition of marine deposits formed in contact with both oxidized and reduced bottom waters. The measured (187) Os/(186) Os ratios of modern bulk sediment can be explained using mixing equations involving continental detrital, volcaniclastic, cosmogenic and hydrogeneous components. These studies show that sediments deposited under reducing marine conditions contain a hydrogenous component which is enriched in Re and has a radiogenic (187) Os/(186) Os ratio. The presence of such a hydrogenous component in the marine fish clay at Stevns Klint can account for the elevation of its (187) Os/(186) Os ration above the expected meteoritic value. Mass balance considerations require the Re/Os ratio of the phase precipitated from the terminal Cretaceous sea at Stevns Klint to have been about one tenth the value observed in contemporary deposits in the Black Sea, assuming Re has not been lost (or Os gained) subsequent to precipitation. In continental sections, the elevation of the (187) Os/(186) Os ratio in boundary layers may be due to precipitation from continental waters of crustally-derived radiogenic osmium either contemporaneous with the meteoritic (or mantle) osmium deposition or later during diagenesis.

  13. A Search for Soot from Global Wildfires in Central Pacific Cretaceous-Tertiary Boundary and Other Extinction and Impact Horizon Sediments

    NASA Technical Reports Server (NTRS)

    Wolbach, Wendy S.; Widicus, Susanna; Kyte, Frank T.

    2003-01-01

    Hypotheses of global wildfires following the Cretaceous-Tertiary (KT) boundary impact are supported by high concentrations of elemental carbon (3.6 mg cm-3) and soot (1.8 mg cm-2) in DSDP Site 465, which was located several thousand kilometers from potential continental sources at 65 Ma. Soot is not preserved at four other central Pacific KT localities, but this is attributed to loss during oxic diagenesis. We find no evidence for wildfires related to major impacts in the late Eocene or to Ir anomalies and extinctions in the late Cenomanian.

  14. Faunal and erosional events in the Eastern Tethyan Sea across the K/T boundary

    NASA Technical Reports Server (NTRS)

    Keller, G.; Benjamini, C.

    1988-01-01

    A regional pattern of three closely spaced erosional events at and above the K/T boundary was determined from six Cretaceous/Tertiary boundary sections in the Negev of Israel. The sections were collected from locations throughout the central and northern Negev. All sections are lithologically similar. The Maastrichtian consists of a sequence of limestone beds intercalated with thin marly beds. In some sections, the last limestone bed is followed by 1 to 2 m of calcareous marls grading upwards into several meters of grey shale. In other sections the limestone bed is followed directly by grey shale with the contact containing particles of limestone and marl. A 5 to 20 cm thick dark grey organic-rich clay layer is present about 1.5 to 2.5 m above the base of the grey shale. The grey shale grades upwards into increasingly carbonate rich marls. No unconformities are apparent in field outcrops. During field collection the dark grey clay layer was believed to represent the K/T boundary clay. Microfossil analysis however identified the boundary at the base of the grey shale. The black shale represents a low productivity anoxic event similar to, but younger than, the K/T boundary clay in other K/T boundary sections. High resolution planktic foraminiferal and carbonate analysis of these sections (at 5 to 10 cm intervals) yield surprising results. The K/T boundary is marked by an erosional event which removed part or all of the uppermost Maastrichtian marls above the last limestone bed. Percent carbonate data for four Negev sections are illustrated and show the regional similarities in carbonate sedimentation. Faunal and carbonate data from the Negev sections thus show three closely spaced short erosional events at the K/T boundary and within the first 50,000 to 100,000 years of the Danian. These K/T boundary erosional events may represent global climatic or paleoceanographic events.

  15. Detritus in K/T boundary clays of western North America - Evidence against a single oceanic impact

    NASA Technical Reports Server (NTRS)

    Sharpton, V. L.; Schuraytz, B. C.; Burke, K.; Murali, A. V.; Ryder, G.

    1990-01-01

    Understanding the crustal signature of impact ejecta contained in the Cretaceous/Tertiary (K/T) boundary layer is crucial to constraining the possible site(s) of the postulated K/T impact event. The relatively unaltered clastic constituents of the boundary layer at widely separated outcrops within the western interior of North America are not compatible with a single oceanic impact but require instead an impact site on a continent or continental margin. On the other hand, chemical compositions of highly altered K/T boundary layer components in some marine sections have suggested to others an impact into oceanic crust. We suspect that post-depositional alteration within the marine setting accounts for this apparent oceanic affinity. If, however, this is not the case, multiple simultaneous impacts, striking continent as well as ocean floor, would seem to be required.

  16. Shocked quartz and more: Impact signatures in K-T boundary clays and claystones

    NASA Technical Reports Server (NTRS)

    Bohor, Bruce F.

    1988-01-01

    Quartz grains displaying multiple sets of planar features are described from numerous Cretaceous-Tertiary (K-T) boundary clays and claystones at both marine and nonmarine depositional sites around the world. All these sites also show anomalously high amounts of iridium and enrichments of other siderophile elements in cosmic ratios within these boundary units. This combination of mineralogical and geochemical features are used in support of an impact hypothesis for the end-Cretaceous event. Recently, it was suggested that some combination of explosive and nonexplosive volcanism associated with the formation of the Deccan traps in India could be responsible for the mineralogy and geochemistry seen in the K-T boundary units. Besides the obvious contradition of simultaneous explosive and nonexplosive volcanism from one locality during an instant of geologic time, there remains the difficulty of spreading both iridium (and trace elements in cosmic proportions) and quartz grains around the world by volcanic (atmospheric) transport. In addition, the ability of volcanism to produce the type of shock metamorphism seen in minerals at the K-T boundary was not demonstrated. Multiple sets of shock lamellae in quartz are considered characteristic of shock metamorphism in rocks at the sites of known impact craters and are the type of deformation seen in quartz from K-T boundary clays and claystones. Single sets of poorly defined lamellae described from rare quartz grains in certain volcanic deposits are characteristic of tectonic deformation and do not correspond to the shock lamellae in quartz from K-T sediments and impact structures. So-called shock mosaicism in quartz and feldspar grains described from volcanic deposits can result from many processes other than shock metamorphism, and therefore is not considered to be an effect characteristic solely of shock. The mineralogy of shock-metamorphosed grains at the K-T boundary also argues against a volcanic origin.

  17. Constraints on the Nature and Distribution of Iridium Host Phases at the Cretaceous-Tertiary Boundary: Implications for Projectile Identity and dispersal on impact

    NASA Technical Reports Server (NTRS)

    Schuraytz, B. C.; Lindstrom, D. J.; Sharpton, V. L.

    1997-01-01

    Among Cretaceous-Tertiary boundary sites worldwide, variations in the concentrations and ratios of elements commonly enriched in meteorites complicate traditional geochemical attempts at impactor identification. Yet they may provide constraints on the physical and chemical processes associated with large-body disruption and dispersal, as well as with diagenesis of projectile components. To this end, we continue our efforts to identify the mineral host-phases of projectile-derived elements, particularly for Ir, and to document their partitioning between crater deposits and ejecta resulting from the Chicxulub basin-forming impact. Building on earlier work, we used INAA to measure Ir concentrations in successively smaller splits of finely powdered impact melt breccia from the Chicxulub Crater in Mexico (sample Y6Nl9-R(b)), and K/T boundary fish clay from Stevns Klint, Denmark (sample FC-1, split from 40 kg of homogenized material intended as an analytical standard). Results for the Chicxulub sample show a heterogeneous Ir distribution and document that at least five discrete Ir-bearing host phases were isolated in subsequent splits, having Ir masses equivalent to pure Ir spheres from about 0.8 to about 3.5 mm in diameter. Three of these are within a sufficiently reduced mass of powder to warrant searching for them using backscattered electron microscopy. In contrast, successively smaller splits of the Stevns Klint fish clay show no statistically significant deviation from the reported value of 32 +/- 2 ng/g Ir, suggesting a uniform Ir host-phase distribution. For the smallest split obtained thus far (100 +/- 40 ng/g Ir), a pure Ir sphere of equivalent Ir mass would be <0.05 min in diameter. (n.b. Although homogenizing and sieving of FC-1 to <75 min obviously obscured variations in stratigraphic distribution, it is unlikely to have affected the size-frequency distribution of Ir host phases.) We previously identified micrometer-scale Ir host phases by electron

  18. Bio-, Magneto- and event-stratigraphy across the K-T boundary

    NASA Technical Reports Server (NTRS)

    Preisinger, A.; Stradner, H.; Mauritsch, H. J.

    1988-01-01

    Determining the time and the time structure of rare events in geology can be accomplished by applying three different and independent stratigraphic methods: Biostratigraphy, magneto-stratigraphy and event-stratigraphy. The optimal time resolution of the two former methods is about 1000 years, while by means of event-stratigraphy a resolution of approximately one year can be achieved. For biostratigraphy across the Cretaceous-Tertiary (K-T) boundary micro- and nannofossils have been found best suited. The qualitative and quantitative analyses of minerals and trace elements across the K-T boundary show anomalies on a millimeter scale and permit conclusions regarding the time structure of the K-T event itself. The results of the analyses find a most consistent explanation by the assumption of an extraterrestrial impact. The main portion of the material rain from the atmosphere evidently was deposited within a short time. The long-time components consist of the finest portion of the material rain from the atmosphere and the transported and redeposited fall-out.

  19. Deccan volcanism and K-T boundary signatures

    NASA Technical Reports Server (NTRS)

    Murali, A. V.; Schuraytz, B. C.; Parekh, P. P.

    1988-01-01

    The Deccan Traps in the Indian subcontinent represent one of the most extensive flood basalt provinces in the world. These basalts occur mainly as flat-lying, subaerially erupted tholeiitic lava flows, some of which are traceable for distances of more than 100 km. Offshore drilling and geophysical surveys indicate that a part of the Deccan subsided or was downfaulted to the west beneath the Arabian Sea. The presence of 1 to 5 m thick intertrappean sediments deposited by lakes and rivers indicates periods of quiescence between eruptions. The occurrence of numerous red bole beds among the flows suggests intense weathering of flow tops between eruptive intervals. Although the causative relationship of the Cretaceous-Tertiary (K-T) biotic extinctions to Deccan volcanism is debatable, the fact that the main Deccan eruptions straddle the K-T event appears beyond doubt from the recent Ar-40/Ar-39 ages of various Deccan flows. This temporal relationship of the K-T event with Deccan volcanism makes the petrochemical signatures of the entire Deccan sequence (basalt flows, intercalated intertrappean sediments, infratrappean Lameta beds (with dinosaur fossils), and the bole beds) pertinent to studies of the K-T event. The results of ongoing study is presented.

  20. Impact wave deposits provide new constraints on the location of the K/T boundary impact

    NASA Technical Reports Server (NTRS)

    Hildebrand, A. R.; Boynton, W. V.

    1988-01-01

    All available evidence is consistent with an impact into oceanic crust terminating the Cretaceous Period. Although much of this evidence is incompatible with an endogenic origin, some investigators still feel that a volcanic origin is possible for the Cretaceous/Tertiary (K/T) boundary clay layers. The commonly cited evidence for a large impact stems from delicate clay layers and their components and the impact site has not yet been found. Impact sites have been suggested all over the globe. The impact is felt to have occurred near North America by: the occurrence of a 2 cm thick ejecta layer only at North American locales, the global variation of shocked quartz grain sizes peaking in North America, the global variation of spinel compositions with most refractory compositions occurring in samples from the Pacific region and possibly uniquely severe plant extinctions in the North American region. The K/T boundary interval was investigated as preserved on the banks of the Brazos River, Texas. The K/T fireball and ejecta layers with associated geochemical anomalies were found interbedded with this sequence which apparently allows a temporal resolution 4 orders of magnitude greater than typical K/T boundary sections. A literature search reveals that such coarse deposits are widely preserved at the K/T boundary. Impact wave deposits have not been found elsewhere on the globe, suggesting the impact occurred between North and South America. The coarse deposits preserved in Deep Sea Drilling Project (DSDP) holes 151-3 suggest the impact occurred nearby. Subsequent tectonism has complicated the picture.

  1. Platinum-group elements (PGE) and Rhenium in Marine Sediments across the Cretaceous-Tertiary Boundary: Constraints on Re-PGE Transport in the Marine Environment

    NASA Technical Reports Server (NTRS)

    Lee, Cin-Ty Aeolus; Wasserburg, Gerald J.; Kyte, Frank T.

    2003-01-01

    The nature of Re-platinum-group element (PGE; Pt, Pd, Ir, Os, Ru) transport in the marine environment was investigated by means of marine sediments at and across the Cretaceous-Tertiary boundary (KTB) at two hemipelagic sites in Europe and two pelagic sites in the North and South Pacific. A traverse across the KTB in the South Pacific pelagic clay core found elevated levels of Re, Pt, Ir, Os, and Ru, each of which is approximately symmetrically distributed over a distance of approx. 1.8 m across the KTB. The Re-PGE abundance patterns are fractionated from chondritic relative abundances: Ru, Pt, Pd, and Re contents are slightly subchondritic relative to Ir, and Os is depleted by approx. 95% relative to chondritic Ir proportions. A similar depletion in Os (approx. 90%) was found in a sample of the pelagic KTB in the North Pacific, but it is enriched in Ru, Pt, Pd, and Re relative to Ir. The two hemipelagic KTB clays have near-chondritic abundance patterns. The approx. 1.8-m-wide Re-PGE peak in the pelagic South Pacific section cannot be reconciled with the fallout of a single impactor, indicating that postdepositional redistribution has occurred. The elemental profiles appear to fit diffusion profiles, although bioturbation could have also played a role. If diffusion had occurred over approx. 65 Ma, the effective diffusivities are approx. 10(exp -13)sq cm/s, much smaller than that of soluble cations in pore waters (approx. 10(exp -5) sq cm/s). The coupling of Re and the PGEs during redistribution indicates that postdepositional processes did not significantly fractionate their relative abundances. If redistribution was caused by diffusion, then the effective diffusivities are the same. Fractionation of Os from Ir during the KTB interval must therefore have occurred during aqueous transport in the marine environment. Distinctly subchondritic Os/Ir ratios throughout the Cenozoic in the South Pacific core further suggest that fractionation of Os from Ir in the marine

  2. Platinum-group elements (PGE) and rhenium in marine sediments across the Cretaceous-Tertiary boundary: constraints on Re-PGE transport in the marine environment

    NASA Astrophysics Data System (ADS)

    Lee, Cin-Ty Aeolus; Wasserburg, Gerald J.; Kyte, Frank T.

    The nature of Re-platinum-group element (PGE; Pt, Pd, Ir, Os, Ru) transport in the marine environment was investigated by means of marine sediments at and across the Cretaceous-Tertiary boundary (KTB) at two hemipelagic sites in Europe and two pelagic sites in the North and South Pacific. A traverse across the KTB in the South Pacific pelagic clay core found elevated levels of Re, Pt, Ir, Os, and Ru, each of which is approximately symmetrically distributed over a distance of ˜1.8 m across the KTB. The Re-PGE abundance patterns are fractionated from chondritic relative abundances: Ru, Pt, Pd, and Re contents are slightly subchondritic relative to Ir, and Os is depleted by ˜95% relative to chondritic Ir proportions. A similar depletion in Os (˜90%) was found in a sample of the pelagic KTB in the North Pacific, but it is enriched in Ru, Pt, Pd, and Re relative to Ir. The two hemipelagic KTB clays have near-chondritic abundance patterns. The ˜1.8-m-wide Re-PGE peak in the pelagic South Pacific section cannot be reconciled with the fallout of a single impactor, indicating that postdepositional redistribution has occurred. The elemental profiles appear to fit diffusion profiles, although bioturbation could have also played a role. If diffusion had occurred over ˜65 Ma, the effective diffusivities are ˜10 -13 cm 2/s, much smaller than that of soluble cations in pore waters (˜10 -6 cm 2/s). The coupling of Re and the PGEs during redistribution indicates that postdepositional processes did not significantly fractionate their relative abundances. If redistribution was caused by diffusion, then the effective diffusivities are the same. Fractionation of Os from Ir during the KTB interval must therefore have occurred during aqueous transport in the marine environment. Distinctly subchondritic Os/Ir ratios throughout the Cenozoic in the South Pacific core further suggest that fractionation of Os from Ir in the marine environment is a general process throughout geologic

  3. Acid-neutralizing scenario after the Cretaceous-Tertiary impact event

    NASA Astrophysics Data System (ADS)

    Maruoka, Teruyuki; Koeberl, Christian

    2003-06-01

    Acid rain from the Cretaceous-Tertiary (K-T) boundary impact event should have caused significant damage to freshwater life, but only minor extinctions of freshwater species are actually observed. We propose a mechanism to neutralize the acid using larnite (β-Ca2SiO4), produced as a result of the specific lithology at the Chicxulub impact site. The impact vapor plume must have been enriched in calcium from the carbonate-rich target, leading to the crystallization of larnite. The acid-neutralizing capacity of the larnite grains would have been high enough to consume acid produced after the K-T event within several hours, reducing it to a level at which freshwater life would not have been affected, even if all the acid had precipitated instantaneously after the K-T impact. This scenario can explain some of the extinction selectivity at the K-T boundary.

  4. Rb-Sr, Sm-Nd, K-Ca, O, and H isotopic study of Cretaceous-Tertiary boundary sediments, Caravaca, Spain Evidence for an oceanic impact site

    NASA Technical Reports Server (NTRS)

    Depaolo, D. J.; Kyte, F. T.; Marshall, B. D.; Oneil, J. R.; Smit, J.

    1983-01-01

    The results of isotopic and trace-element-abundance analyses of Ir-enriched Cretaceous-Tertiary-boundary clay sediments from Caravaca, Spain, and of adjacent carbonate and marl layers, are presented. Acetic-acid and HCl leachates and residues were analyzed by isotope dilution to determine K, Rb, Sr, Sm, and Nd concentrations and Sr-87/Sr-86 and Nd-143/Nd-144 ratios. The stable isotope ratios delta-D, delta-(C-13), and delta-(0-18) were also determined. The results are presented in tables and graphs and compared with published data on the Caravaca sediments and on samples from other locations. The boundary clay is found to be distinguished from the adjacent layers by its isotopic ratios and to be of mainly terrestrial, lithospheric (deeper than 3-km) origin. Although submarine-weathering effects are evident and difficult to quantify, the degree of variation in Ni, Ir, Sr, and REE concentrations is considered too large to be attributed to postdepositional processes alone. These findings are seen as evidence for the ocean impact of a large single asteroid producing a worldwide blanket of ejecta, a large injection of water vapor into the atmosphere, and perhaps a gigantic tsunami, at the end of the Cretaceous period.

  5. Isotopic signatures of black tektites from the K-T boundary on Haiti - Implications for the age and type of source material

    NASA Technical Reports Server (NTRS)

    Premo, W. R.; Izett, G. A.

    1992-01-01

    An isotopic study was carried out to characterize the type of black tektites from the Cretaceous-Tertiary (K-T) boundary on Haiti (the first reasonably well-preserved impact-derived material recovered from the K-T boundary), in order to help characterize the tektite source material (i.e., the type of rocks that were melted and ejected during the impact event(s) at around 64.5 Ma). Results show that the isotopic data and all of the element concentration data obtained are consistent with an andesitic-dacitic composition for the tektites and their source material. The Nd isotopic data suggest that the source rocks were not older than Silurian (T(chur) = 400 Ma) in age, and were composed largely of young (less than 1080 Ma) crustal material. Of the suspected K-T boundary impact sites, both the Manson (Iowa) and Chicxulub (Yucatan) structures occur in suitable lithologies to yield the Haitian black tektites.

  6. Isotopic signatures of black tektites from the K-T boundary on Haiti - Implications for the age and type of source material

    NASA Astrophysics Data System (ADS)

    Premo, W. R.; Izett, G. A.

    1992-09-01

    An isotopic study was carried out to characterize the type of black tektites from the Cretaceous-Tertiary (K-T) boundary on Haiti (the first reasonably well-preserved impact-derived material recovered from the K-T boundary), in order to help characterize the tektite source material (i.e., the type of rocks that were melted and ejected during the impact event(s) at around 64.5 Ma). Results show that the isotopic data and all of the element concentration data obtained are consistent with an andesitic-dacitic composition for the tektites and their source material. The Nd isotopic data suggest that the source rocks were not older than Silurian (T(chur) = 400 Ma) in age, and were composed largely of young (less than 1080 Ma) crustal material. Of the suspected K-T boundary impact sites, both the Manson (Iowa) and Chicxulub (Yucatan) structures occur in suitable lithologies to yield the Haitian black tektites.

  7. Coeval Ar-40/Ar-39 ages of 65.0 million years ago from Chicxulub crater melt rock and Cretaceous-Tertiary boundary tektites

    NASA Technical Reports Server (NTRS)

    Swisher, Carl C., III; Grajales-Nishimura, Jose M.; Montanari, Alessandro; Margolis, Stanley V.; Claeys, Philippe; Alvarez, Walter; Renne, Paul; Cedillo-Pardo, Esteban; Maurrasse, Florentin J.-M. R.; Curtis, Garniss H.

    1992-01-01

    Ar-40/Ar-39 dating of drill-core samples of a glassy melt rock recovered from beneath a massive impact breccia contained with the 180-kilometer subsurface Chicxulub crater yields well-behaved incremental heating spectra with a mean plateau age of 64.98 +/- 0.05 million years ago (Ma). The glassy melt rock of andesitic composition was obtained from core 9 (1390 to 1393 meters) in the Chicxulub 1 well. The age of the melt rock is virtually indistinguishable from Ar-40/Ar-39 ages obtained on tektite glass from Beloc, Haiti, and Arroyo el Mimbral, northeastern Mexico, of 65.01 +/- 0.08 Ma (mean plateau age for Beloc) and 65.07 +/- 0.10 Ma (mean total fusion age for both sites). The Ar-40/Ar-39 ages, in conjunction with geochemical and petrological similarities, strengthen the suggestion that the Chicxulub structure is the source for the Haitian and Mexican tektites and is a viable candidate for the Cretaceous-Tertiary boundary impact site.

  8. Coeval 40Ar/39Ar Ages of 65.0 Million Years Ago from Chicxulub Crater Melt Rock and Cretaceous-Tertiary Boundary Tektites.

    PubMed

    Swisher, C C; Grajales-Nishimura, J M; Montanari, A; Margolis, S V; Claeys, P; Alvarez, W; Renne, P; Cedillo-Pardoa, E; Maurrasse, F J; Curtis, G H; Smit, J; McWilliams, M O

    1992-08-14

    (40)Ar/(39)Ar dating of drill core samples of a glassy melt rock recovered from beneath a massive impact breccia contained within the 180-kilometer subsurface Chicxulub crater in Yucatán, Mexico, has yielded well-behaved incremental heating spectra with a mean plateau age of 64.98 +/- 0.05 million years ago (Ma). The glassy melt rock of andesitic composition was obtained from core 9 (1390 to 1393 meters) in the Chicxulub 1 well. The age of the melt rock is virtually indistinguishable from (40)Ar/(39)Ar ages obtained on tektite glass from Beloc, Haiti, and Arroyo el Mimbral, northeastern Mexico, of 65.01 +/- 0.08 Ma (mean plateau age for Beloc) and 65.07 +/- 0.10 Ma (mean total fusion age for both sites). The (40)Ar/(39)Ar ages, in conjunction with geochemical and petrological similarities, strengthen the recent suggestion that the Chicxulub structure is the source for the Haitian and Mexican tektites and is a viable candidate for the Cretaceous-Tertiary boundary impact site. PMID:17789640

  9. Rb-Sr, Sm-Nd, K-Ca, O, and H isotopic study of Cretaceous-Tertiary boundary sediments, Caravaca, Spain: evidence for an oceanic impact site

    USGS Publications Warehouse

    DePaolo, D.J.; Kyte, F.T.; Marshall, B.D.; O'Neil, J.R.; Smit, J.

    1983-01-01

    Isotopic ratios and trace element abundances were measured on samples of Ir-enriched clay at the Cretaceous-Tertiary boundary, and in carbonate and marl from 5 cm below and 3 cm above the boundary. Samples were leached with acetic acid to remove carbonate, and with hydrochloric acid. Leachates and residues were measured. The Sr, Nd, O and H isotopic compositions of the boundary clay residues are distinct from those of the stratigraphically neighboring materials. The data indicate that most of the clay material was derived from a terrestrial source with relatively low 87Sr/86Sr and high 143Nd/144Nd ratios. The ??18O data suggest that the detritus has been modified by submarine weathering. K-Ca and Rb-Sr systematics, as well as O isotope ratios of K-feldspar spherules within the boundary clay, suggest that they are predominantly authigenic and may have formed after the time of deposition. However, Sm-Nd and Rb-Sr isotopic data indicate that the spherules contain relict material that provides information on the nature of the original detritus. The isotopic evidence for foreign terrestrial detritus in the boundary clay, the low rare earth element concentrations and high Ni concentration, support the hypothesis of a terminal Cretaceous asteroidal impact that produced a global layer of fallout. The data are most easily explained if the impact site was on oceanic crust rather than continental crust, and if a substantial fraction of the fallout was derived from relatively deep within the lithosphere (>3 km). This would probably require a single large impactor. ?? 1983.

  10. Geochemistry of K/T boundaries in India and contributions of Deccan volcanism

    NASA Technical Reports Server (NTRS)

    Bhandari, N.; Gupta, M.; Pandey, J.; Shukla, P. N.

    1988-01-01

    Three possible Cretaceous/Tertiary (K/T) boundary sections in the Indian subcontinent were studied for their geochemical and fossil characteristics. These include two marine sections of Meghalaya and Zanskar and one continental section of Nagpur. The Um Sohryngkew river section of Meghalaya shows a high iridium, osmium, iron, cobalt, nickel and chromium concentration in a 1.5 cm thick limonitic layer about 30 cm below the planktonic Cretaceous-Palaeocene boundary identified by the characteristic fossils. The Bottaccione and Contessa sections at Gubbio were also analyzed for these elements. The geochemical pattern at the boundary at the Um Sohryngkew river and Gubbio sections are similar but the peak concentrations and the enrichment factors are different. The biological boundary is not as sharp as the geochemical boundary and the extinction appears to be a prolonged process. The Zanskar section shows, in general, similar concentration of the siderophile, lithophile and rare earth elements but no evidence of enrichment of siderophiles has so far been observed. The Takli section is a shallow inter-trappean deposit within the Deccan province, sandwiched between flow 1 and flow 2. The geochemical stratigraphy of the inter-trappeans is presented. The various horizons of ash, clay and marl show concentration of Fe and Co, generally lower than the adjacent basalts. Two horizons of slight enrichment of iridium are found within the ash layers, one near the contact of flow 1 and other near the contact of flow 2, where iridium occurs at 170 and 260 pg/g. These levels are lower by a factor of 30 compared to Ir concentration in the K/T boundary in Meghalaya section. If the enhanced level of some elements in a few horizons of the ash layer are considered as volcanic contribution by some fractionation processes than the only elements for which it occurs are REE, Ir and possibly Cr.

  11. A multi-isotopic and trace element investigation of the Cretaceous-Tertiary boundary layer at Stevns Klint, Denmark - inferences for the origin and nature of siderophile and lithophile element geochemical anomalies

    NASA Astrophysics Data System (ADS)

    Frei, Robert; Frei, Karin M.

    2002-10-01

    Os, Sr, Nd and Pb isotope data were collected from a profile across the Cretaceous-Tertiary (K-T) boundary layer at Stevns Klint, Denmark. ɛNd [ T=65 Ma] values from within the boundary layer (Fish Clay) are lower by ˜1 ɛ unit than those of the underlying Maastrichtian limestone and the overlying Danian chalk sequences. Systematic profile-upward changes of Pb, Sr and Os isotopic compositions and concentrations in the boundary layer cannot be accounted for by in situ growth of daughter products since the sedimentation of the Fish Clay. While Os, Nd and Pb isotopes indicate the admixing of less radiogenic components to the Fish Clay, Sr isotopes show elevated radiogenic values in the boundary layer, relative to the carbonate sequences beneath and above it. The sudden change in lithophile (e.g., Sr, Pb and Nd) isotope compositions at the base of the Fish Clay and profile-upward trends of 87Sr/ 86Sr and 206Pb/ 204Pb ratios towards those of the overlying Danian chalk are interpreted to reflect recovery from enhanced, acid rain-induced continental (local?) weathering input to the seawater. However, a continental crustal source is invalid for the siderophile element Os. In the light of evidence from chromium isotopes for a cosmic origin of the platinum group elements (PGEs) and certain moderately siderophile elements (Cr, Ni, Co, V) in K-T boundary sediments, including Stevns Klint [Shukolyukov and Lugmair, Science 282 (1998) 927-929], and supported by the finding of projectile debris [Bauluz et al., Earth Planet. Sci. Lett. 182 (2000) 127-136] and the occurrence of abundant Ni-rich spinel at many K-T sites [Robin et al., Nature 363 (1993) 615-617; Kyte, Nature 396 (1998) 237-239], we favor to explain the sudden drop of 187Os/ 188Os ratios from 0.210 to 0.160 at the K-T boundary to derive from global fall-out of extraterrestrial matter. The present 186Os/ 188Os ratio of 0.119836±0.000004 measured in the basal layer of the Fish Clay is within the uncertainty a

  12. Collapse of florisitic diversity coincident with a fungal spike and iridium anomaly at the Cretaceous-Tertiary boundary in New Zealand

    NASA Astrophysics Data System (ADS)

    Vajda, V.; Raine, J. I.

    2003-04-01

    Analysis of pollen and spore assemblages from both terrestrial and near-shore marine sediments in New Zealand had revealed an instant, extensive destruction of land plants directly associated with the Cretaceous-Tertiary boundary (KTB) event, (Vajda et al., 2001). A recent palynological investigation, based on millimeter resolution sampling of the terrestrial KTB sediments at Moody Creek Mine, Greymouth coalfield, New Zealand has been carried out. The sediments were deposited in a terrestrial wetland environment and the KTB is defined within a coal seam. Preliminary results of the high-resolution investigation reveal a diverse vascular plant spore/pollen flora (>80 species) that was replaced by an assemblage impoverished in vascular plant pollen and spores, but rich in fungal spores. The "barren" layer is coincident with the extinction of several miospore taxa and contains an iridium abundance of 3ppb. The fungal spike covers 5 mm, and is followed by a 40-cm interval with abundant fern spores. The relative abundance of fern spores, increases from 25% below the boundary to 98% in the sediment following the KTB. We argue that the abrupt palynofloristic changes at this high southern palaeolatitude site are evidence of massive disruptions to terrestrial plant communities as a consequence of the Chicxulub impact. Palynofloristic evidence indicates that the complex mire and forest vegetation was totally devastated at the time of impact. Global cooling and several months with extremely low light levels following the impact, perhaps in combination with extensive wildfires would explain the devastation of the vegetation. The "barren" layer at the KTB corresponds to immediate post-impact conditions with low light levels and dust-related cooling unfavorable to forest growth but favoring saprophytic fungi. The recovery succession is initiated by opportunistic species of ground ferns, the plants best adapted to low light, lowered temperatures and high acidity. Vajda, V., Raine

  13. Climatic changes resulting from mass extinctions at the K-T boundary (and other bio-events)

    NASA Technical Reports Server (NTRS)

    Rampino, Michael R.; Volk, Tyler

    1988-01-01

    The mass extinctions at the Cretaceous-Tertiary (K-T) boundary include about 90 percent of marine calcareous nannoplankton (coccoliths), and carbon-isotope data show that marine primary productivity was drastically reduced for about 500,000 years after the boundary event, the so-called Strangelove Ocean effect. One result of the elimination of most marine phytoplankton would have been a severe reduction in production of dimethyl sulfide (DMS), a biogenic gas that is believed to be the major precursor of cloud condensation nuclei (CCN) over the oceans. A drastic reduction in marine CCN should lead to a cloud canopy with significantly lower reflectivity, and hence cause a significant warming at the earth's surface. Calculations suggest that, all other things being held constant, a reduction in CCN of more than 80 percent (a reasonable value for the K-T extinctions) could have produced a rapid global warming of 6 C or more. Oxygen-isotope analyses of marine sediments, and other kinds of paleoclimatic data, have provided for a marked warming, and a general instability of climate coincident with the killoff of marine plankton at the K-T boundary. Similar reductions in phytoplankton abundance at other boundaries, as indicated by marked shifts in carbon-isotope curves, suggest that severe temperature changes may have accompanied other mass extinctions, and raises the intriguing possibility that the extinction events themselves could have contributed to the climatic instabilities at critical bio-events in the geologic record.

  14. A Cretaceous-Tertiary mass extinction? Were most of Earth's species killed off?

    NASA Technical Reports Server (NTRS)

    Briggs, J. C.

    1991-01-01

    For the past decade, the scientific and popular press have carried frequent articles about a catastrophic mass extinction that supposedly destroyed the majority of the earth's species, including the dinosaurs, approximately 65 million years ago. Since 1980, more than 2000 papers and books have dealt with some aspect of a mass extinction at the Cretaceous-Tertiary (K/T) boundary. One authoritative estimate of the severity of the extinctions is that 60-80% of all the living species became extinct at this boundary (Raup 1988). There appears to be a general acceptance of the fact that such a great catastrophe did occur. Most of the argument among scientists now is devoted to the determination of the cause. In this article, I argue that the species changes at the K/T boundary were neither sudden nor catastrophic. They were most likely caused by a regression of sea level that led to a decrease in primary production.

  15. Shock-induced microdeformations in quartz and other mineralogical indications of an impact event at the Cretaceous-Tertiary boundary

    USGS Publications Warehouse

    Bohor, B.F.

    1990-01-01

    The event terminating the Cretaceous period and the Mesozoic era caused massive extinctions of flora and fauna worldwide. Theories of the nature of this event can be classed as endogenic (volcanic, climatic, etc.) or exogenic (extraterrestrial causes). Mineralogical evidence from the boundary clays and claystones strongly favor the impact of an extraterrestrial body as the cause of this event. Nonmarine KT boundary claystones are comprised of two separate layers-an upper layer composed of high-angle ejecta material (shocked quartz, altered glass and spinel) and a basal kaolinitic layer containing spherules, clasts, and altered glass, together with some shocked grains. Recognition of this dual-layered nature of the boundary clay is important for the determination of the timing and processes involved in the impact event and in the assignment and interpretation of geochemical signatures. Multiple sets of shock-induced microdeformations (planar features) in quartz grains separated from KT boundary clays provide compelling evidence of an impact event. This mineralogical manifestation of shock metamorphism is associated worldwide with a large positive anomaly of iridium in these boundary clays, which has also been considered indicative of the impact of a large extraterrestrial body. Global distributions of maximum sizes of shocked quartz grains from the boundary clays and the mineralogy of the ejecta components favor an impact on or near the North American continent. Spinel crystals (magnesioferrite) occur in the boundary clays as micrometer-sized octahedra or skeletal forms. Their composition differs from that of spinels found in terrestrial oceanic basalts. Magnesioferrite crystals are restricted to the high-angle ejecta layer of the boundary clays and their small size and skeletal morphology suggest that they are condensation products of a vaporized bolide. Hollow spherules ranging up to 1 mm in size are ubiquitously associated with the boundary clays. In nonmarine

  16. Mineralogy and petrology of the Cretaceous- Tertiary boundary clay bed and adjacent clay-rich rocks, Raton Basin, New Mexico and Colorado.

    USGS Publications Warehouse

    Pollastro, R.M.; Pillmore, C.L.

    1987-01-01

    The K-T boundary occurs at the top of a kaolinitic claystone layer, commonly referred to as the 'boundary clay layer', in an interval of coal and carbonaceous shale. The boundary is defined by the disappearance of certain fossil-pollen taxa. The boundary clay layer also contains shocked quartz grains and abundance anomalies of iridium, chromium, and other elements. Each of these characteristics support the hypothesis of an asteroid impact at the end of the Cretaceous. -from Authors

  17. Biospheric Effects of the Chicxulub Impact and Their Role in the Cretaceous/Tertiary Mass Extinction

    NASA Technical Reports Server (NTRS)

    Pope, Kevin O.

    1997-01-01

    A comprehensive analysis of volatiles in the Chicxulub impact strongly supports the hypothesis that impact-generated sulfate aerosols caused over a decade of global cooling, acid rain, and disruption of ocean circulation, which contributed to the mass extinction at the Cretaceous/Tertiary (K/T) boundary. The crater size, meteoritic content of the K/T boundary clay, and impact models indicate that the Chicxulub crater was formed by a short period comet or an asteroid impact that released 0.7-3.4 x 10(exp 31) ergs of energy. Impact models and experiments combined with estimates of volatiles in the projectile and target rocks predict that over 200 gigatons (Gt) each of SO2 and water vapor, and over 500 Gt of CO2, were globally distributed in the stratosphere by the impact.

  18. Impact dust not the cause of the Cretaceous-Tertiary mass extinction

    NASA Astrophysics Data System (ADS)

    Pope, Kevin O.

    2002-02-01

    Most of the 3-mm-thick globally distributed Chicxulub ejecta layer found at the Cretaceous-Tertiary (K-T) boundary was deposited as condensation droplets from the impact vapor plume. A small fraction of this layer (<1%) is clastic debris. Theoretical calculations, coupled with observations of the coarse dust fraction, indicate that very little (<1014 g) was submicrometer-size dust. The global mass and grain-size distribution of the clastic debris indicate that stratospheric winds spread the debris from North America, over the Pacific Ocean, to Europe, and little debris reached high southern latitudes. These findings indicate that the original K-T impact extinction hypothesis—the shutdown of photosynthesis by submicrometer-size dust—is not valid, because it requires more than two orders of magnitude more fine dust than is estimated here. Furthermore, estimates of future impact hazards, which rely upon inaccurate impact-dust loadings, are greatly overstated.

  19. The Cretaceous-Tertiary extinction: A lethal mechanism involving anhydrite target rocks

    USGS Publications Warehouse

    Brett, R.

    1992-01-01

    The Chicxulub Crater, Yucatan, Mexico, is a leading contender as the site for the impact event that caused the Cretaceous-Tertiary (K-T) extinctions. A considerable thickness of anhydrite (CaSO4) forms part of the target rock. High temperatures resulting from impact would drive SO2 off from the anhydrite. Hundreds of billions of tonnes of sulfuric acid aerosol would thus enter the stratosphere and cause considerable cooling of the Earth's surface, decrease photosynthesis by orders of magnitude, deplete the ozone layer, and permit increased UV radiation to reach the Earth's surface. Finally, the aerosol would fall back to Earth as acid rain and devastate land and some lacustrine biota and near-surface marine creatures. The presence of anhydrite in the Chicxulub target rock may thus help explain the many extinctions observed at the K-T boundary. ?? 1992.

  20. The Cretaceous-Tertiary extinction - A lethal mechanism involving anhydrite target rocks

    NASA Astrophysics Data System (ADS)

    Brett, Robin

    1992-09-01

    The Chicxulub Crater, Yucatan, Mexico, is a leading contender as the site for the impact event that caused the Cretaceous-Tertiary (K-T) extinctions. A considerable thickness of anhydrite (CaSO4) forms part of the target rock. High temperatures resulting from impact would drive SO2 off from the anhydrite. Hundreds of billions of tonnes of sulfuric acid aerosol would thus enter the stratosphere and cause considerable cooling of the earth's surface, decrease photosynthesis by orders of magnitude, deplete the ozone layer, and permit increased UV radiation to reach the earth's surface. Finally, the aerosol would fall back to earth as acid rain and devastate land and some lacustrine biota and near-surface marine creatures. The presence of anhydrite in the Chicxulub target rock may thus help explain the many extinctions observed at the K-T boundary.

  1. Main Deccan volcanism phase ends near the K-T boundary: Evidence from the Krishna-Godavari Basin, SE India

    NASA Astrophysics Data System (ADS)

    Keller, G.; Adatte, T.; Gardin, S.; Bartolini, A.; Bajpai, S.

    2008-04-01

    Recent studies indicate that the bulk (80%) of the Deccan trap eruptions occurred over less than 0.8 m.y. in magnetic polarity C29r spanning the Cretaceous-Tertiary (K-T) boundary. Determining where within this major eruptive phase the K-T mass extinction occurred has remained problematic. For this reason, models estimating the biotic and environmental consequences have generally underestimated the rate and quantity of Deccan gas emissions by orders of magnitude leading to conclusions that volcanism could not have been one of the major causes for the K-T mass extinction. In this study we report that the most massive Deccan trap eruption occurred near the K-T mass extinction. These results are based on sedimentologic, microfacies and biostratigraphic data of 4-9 m thick intertrappean sediments in four quarry outcrops in the Rajahmundry area of the Krishna-Godavari Basin of southeastern India. In this area two Deccan basalt flows, known as the Rajahmundry traps, mark the longest lava flows extending 1500 km across the Indian continent and into the Bay of Bengal. The sediments directly overlying the lower Rajahmundry trap contain early Danian planktic foraminiferal assemblages of zone P1a, which mark the evolution in the aftermath of the K-T mass extinction. The upper Rajahmundry trap was deposited in magnetic polarity C29n, preceding full biotic recovery. These results suggest that volcanism may have played critical roles in both the K-T mass extinction and the delayed biotic recovery.

  2. Rocks, resolution, and the record at the terrestrial K/T boundary, eastern Montana and western North Dakota

    NASA Technical Reports Server (NTRS)

    Fastovsky, D. E.

    1988-01-01

    Reconstructions of mass extinction events are based upon faunal patterns, reconstructed from numerical and diversity data ultimately derived from rocks. It follows that geological complexity must not be subsumed in the desire to establish patterns. This is exemplified at the Terrestrial Cretaceous-Tertiary (K/T) boundary in eastern Montana and western North Dakota, where there are represented all of the major indicators of the terrestrial K/T transition: dinosaurian and non-dinosaurian vertebrate faunas, pollen, a megaflora, iridium, and shocked quartz. It is the patterns of these indicators that shape ideas about the terrestrial K/T transition. In eastern Montana and western North Dakota, the K/T transition is represented lithostratigraphically by the Cretaceous Hell Creek Formation, and the Tertiary Tullock Formation. Both of these are the result of aggrading, meandering, fluvial systems, a fact that has important consequences for interpretations of fossils they contain. Direct consequences of the fluvial depositional environments are: facies are lenticular, interfingering, and laterally discontinuous; the occurrence of fossils in the Hell Creek and Tullock formations is facies-dependent; and the K/T sequence in eastern Montana and western North Dakota is incomplete, as indicated by repetitive erosional contacts and soil successions. The significance for faunal patterns of lenticular facies, facies-dependent preservation, and incompleteness is discussed. A project attempting to reconstruct vertebrate evolution in a reproducible manner in Hell Creek-type sediments must be based upon a reliable scale of correlations, given the lenticular nature of the deposits, and a recognition of the fact that disparate facies are not comparable in terms of either numbers of preserved vertebrates or depositional rates.

  3. Terrestrial ecosystem destabilization at the K/T boundary in southwestern North Dakota, USA.

    NASA Astrophysics Data System (ADS)

    Bercovici, Antoine; Pearson, Dean; Villanueva-Amadoz, Uxue

    2010-05-01

    Much of the debate regarding mass extinction events tend to discuss the relationship between such events relative to the moment and timing of internal or external factors (such as volcanism, impact(s), climate, sea-level changes and so on). However, the details of the extinction process itself is still poorly understood, and most of the analysis are based on biodiversity patterns without integrating the biogeographic and environmental context. Another way of approaching the problem would be to propose precise paleoenvironment reconstructions and analyzing their evolution through time, which allows for the understanding of such processes. The badlands of southwestern North Dakota provides some of the most prolific exposures of the continental Cretaceous/Tertiary (K/T) boundary in the world. The stratigraphical context indicates that the K/T boundary is coincident or lies in close proximity to the contact between the Hell Creek and the Fort Union Formations. In this area, a series of eight stratigraphical sections across a 40 km north-south transect were studied. These sections bracket the formational contact on a 10 m stratigraphical interval. Reconstruction of the depositional environment was undertaken at a centimeter scale by using sedimentological data, as well as palynological, paleobotanical and palaeontological content of the strata, using the K/T boundary as a precise chronological datum of correlation between the sections. Results shows a consistent evolution of pattern across the entire study area : 1) The uppermost 10 to 20 cm of the Hell Creek Formation always corresponds to a sequence of dark rooted mudstone. Pollen content is consistent with a Cretaceous age and displays a diversity of terrestrial taxa. 2) Immediately above, the formation contact lies at the lower part of the first laterally traceable lignite horizon. The K/T boundary indicators (iridium anomaly, shocked quartz, fern spike and boundary claystone) are located at or adjacent to this

  4. Explosive volcanism, shock metamorphism and the K-T boundary

    NASA Technical Reports Server (NTRS)

    Desilva, S. L.; Sharpton, V. L.

    1988-01-01

    The issue of whether shocked quartz can be produced by explosive volcanic events is important in understanding the origin of the K-T boundary constituents. Proponents of a volcanic origin for the shocked quartz at the K-T boundary cite the suggestion of Rice, that peak overpressures of 1000 kbars can be generated during explosive volcanic eruptions, and may have occurred during the May, 1980 eruption of Mt. St. Helens. Attention was previously drawn to the fact that peak overpressures during explosive eruptions are limited by the strength of the rock confining the magma chamber to less than 8 kbars even under ideal conditions. The proposed volcanic mechanisms for generating pressures sufficient to shock quartz are further examined. Theoretical arguments, field evidence and petrographic data are presented showing that explosive volcanic eruptions cannot generate shock metamorphic features of the kind seen in minerals at the K-T boundary.

  5. XAFS Study of As in K-T Boundary Clays

    NASA Astrophysics Data System (ADS)

    Sakai, Shunsuke; Yoshiasa, Akira; Arima, Hiroshi; Okube, Maki; Numako, Chiya; Sato, Tsutomu

    2007-02-01

    Local structure around arsenic atoms in K-T boundary clays was studied by As K-edge XAFS spectroscopy. The threshold E0 energy of As and the characterization of the white peak of XANES spectra agree well with the values of As(+5) minerals like Zn2(AsO4)2(OH)22H2O and CaCu(AsO4)(OH) according to the comparison with several types of arsenic minerals. This indicates that arsenic is in a high oxidation state As(+5) and occupies the AsO4 tetrahedral site of a mineral in K-T boundary clays.

  6. The global Cretaceous-Tertiary fire: Biomass or fossil carbon

    NASA Technical Reports Server (NTRS)

    Gilmour, Iain; Guenther, Frank

    1988-01-01

    The global soot layer at the K-T boundary indicates a major fire triggered by meteorite impact. However, it is not clear whether the principal fuel was biomass or fossil carbon. Forests are favored by delta value of C-13, which is close to the average for trees, but the total amount of elemental C is approximately 10 percent of the present living carbon, and thus requires very efficient conversion to soot. The PAH was analyzed at Woodside Creek, in the hope of finding a diagnostic molecular marker. A promising candidate is 1-methyl-7-isopropyl phenanthrene (retene,), which is probably derived by low temperature degradation of abietic acid. Unlike other PAH that form by pyrosynthesis at higher temperatures, retene has retained the characteristic side chains of its parent molecule. A total of 11 PAH compounds were identified in the boundary clay. Retene is present in substantial abundance. The identification was confirmed by analysis of a retene standard. Retene is characteristic of the combustion of resinous higher plants. Its formation depends on both temperature and oxygen access, and is apparently highest in oxygen-poor fires. Such fires would also produce soot more efficiently which may explain the high soot abundance. The relatively high level of coronene is not typical of a wood combustion source, however, though it can be produced during high temperature pyrolysis of methane, and presumably other H, C-containing materials. This would require large, hot, low O2 zones, which may occur only in very large fires. The presence of retene indicates that biomass was a significant fuel source for the soot at the Cretaceous-Tertiary boundary. The total amount of elemental C produced requires a greater than 3 percent soot yield, which is higher than typically observed for wildfires. However, retene and presumably coronene imply limited access of O2 and hence high soot yield.

  7. Osmium, tungsten, and chromium isotopes in sediments and in Ni-rich spinel at the K-T boundary: Signature of a chondritic impactor

    NASA Astrophysics Data System (ADS)

    Quitté, Ghylaine; Robin, Eric; Levasseur, Sylvain; Capmas, Françoise; Rocchia, Robert; Birck, Jean-Louis; Allègre, Claude Jean

    It is now established that a large extraterrestrial object hit the Earth at the end of the Cretaceous period, about 65 Ma ago. We have investigated Re-Os, Hf-W, and Mn-Cr isotope systems in sediments from the Cretaceous and the Paleogene in order to characterize the type of impactor. Within the Cretaceous-Tertiary (K-T) boundary layer, extraterrestrial material is mixed with terrestrial material, causing a dilution of the extraterrestrial isotope signature that is difficult to quantify. A phase essentially composed of Ni-rich spinel, formed in the atmosphere mainly from melted projectile material, is likely to contain the extraterrestrial isotopic signature of the impactor. We show that the analysis of spinel is indeed the best approach to determine the initial isotope composition of the impactor, and that W and Cr isotopes confirm that the projectile was a carbonaceous chondrite.

  8. A possible K-T boundary bolide impact site offshore near Bombay and triggering of rapid Deccan volcanism

    NASA Astrophysics Data System (ADS)

    Negi, J. G.; Agrawal, P. K.; Pandey, O. P.; Singh, A. P.

    1993-03-01

    The temporal coincidence of a major biological mass extinction (including dinosaurs), the well-known iridium excess anomaly at the Cretaceous-Tertiary (K-T) boundary and the eruption of Deccan flood basalts at about 65 Ma has aroused global interest among geologists and biologists. It is widely debated whether the mass extinction and iridium anomaly are due to an asteroid impact or the massive outpouring of extensive Deccan volcanism. An oval shaped unusual positive gravity anomaly (10 000 km 2 in area) near Bombay has attracted our attention during a search for an impact site near Deccan basalts. A detailed gravity interpretation indicates the presence of a fossil conduit structure of 12 km height extending from a shallow crust-mantle boundary (at 18 km) to an approximate depth of 6 km from the surface. The conduit structure, with a maximum diameter of about 35 km at its base, may originate from cracking of a weak pre-Deccan trap shallow upwarped mantle. The structure may have been caused by a bolide impact which triggered the eruption of massive flood basalts (Deccan traps) on the western margin of the fast-moving Indian plate. An impact in this locality can explain the sudden detachment of the arcuate Seychelles block from India as well as the large-scale reorganisation of plate boundaries in the Indian Ocean. Our hypothesis of impact-triggered volcanism at 65 Ma advocates a bimodal cause for the mass extinction at the K-T boundary. Extraordinary geothermal and structural conditions of the nearby region are also discussed as circumstantial evidence to support the twin-cause mechanism by weakened features and the presence of partial melt at subcrustal depth.

  9. Determination of rapid Deccan eruptions across the Cretaceous-Tertiary boundary using paleomagnetic secular variation: 2. Constraints from analysis of eight new sections and synthesis for a 3500-m-thick composite section

    NASA Astrophysics Data System (ADS)

    Chenet, Anne-Lise; Courtillot, Vincent; Fluteau, FréDéRic; GéRard, Martine; Quidelleur, Xavier; Khadri, S. F. R.; Subbarao, K. V.; Thordarson, Thor

    2009-06-01

    two largest around 65 ± 1 Ma, one entirely within C29r just before the K-T boundary, the other shortly afterward spanning the C29r/C29n reversal. We next estimate sulfur dioxide (likely a major agent of environmental stress) amounts and fluxes released by SEEs: they would have ranged from 5 to 100 Gt and 0.1 to 1 Gt/a, respectively, over durations possibly as short as 100 years for each SEE. The chemical input of the Chicxulub impact would have been on the same order as that of a very large single pulse. The impact, therefore, appears as important but incremental, neither the sole nor main cause of the Cretaceous-Tertiary mass extinctions.

  10. 87Sr/86Sr anomalies in Late Cretaceous-Early Tertiary strata of the Cauvery basin, south India: Constraints on nature and rate of environmental changes across K-T boundary

    NASA Astrophysics Data System (ADS)

    Ramkumar, Mu; Stüben, Doris; Berner, Zsolt; Schneider, Jens

    2010-02-01

    The Ariyalur-Pondicherry sub-basin of the Cauvery basin comprises a near complete stratigraphic record of Upper Cretaceous-Lower Tertiary periods. Earlier studies have documented variations of clay mineral assemblages, change in microtexture of siliciclasts and many geochemical and stable isotopic anomalies far below the Cretaceous-Tertiary boundary (KTB) in these strata. This paper documents the occurrences of two positive 87Sr/86Sr anomalies preceding K-T boundary in this basin and discusses plausible causes. Analysis of trace elemental and stable isotopic profiles, sedimentation history, petrography and mineralogy of the rocks reveal that while both the anomalies may be due to increased detrital influx caused by sea level and climatic changes, the second anomaly might have been influenced by Deccan volcanism which in turn predated KTB. Record of such anomalies preceding K-T boundary supports the view of multi-causal step-wise extinction of biota across KTB.

  11. Coastal landsliding and catastrophic sedimentation triggered by Cretaceous-Tertiary bolide impact: A Pacific margin example?

    NASA Astrophysics Data System (ADS)

    Busby, Cathy J.; Yip, Grant; Blikra, Lars; Renne, Paul

    2002-08-01

    We report here the first-recognized Pacific margin stratigraphic sequence containing evidence for catastrophic landsliding attributed to bolide impact related seismic shocking at the Cretaceous-Tertiary (K-T) boundary. The K-T boundary is not commonly preserved in stratigraphic sequences of the Pacific margin, but we have discovered it within a coastal paleovalley in Baja California, Mexico (near El Rosario). This 5-km-wide, 15-km-long, and 200-m-deep coastal paleovalley formed by massive gravitational collapses and rapidly filled with coastal (shallow marine and lesser fluvial) gravels and sands, as well as slide sheets of marine mudstone that range from meters to kilometers in length. We infer that seismic shocking caused liquefaction and extremely rapid sedimentation of the gravels and sands, simultaneous with unleashing of slide sheets. Laser-heating 40Ar/39Ar data for biotite, hornblende, and plagioclase (single crystal and bulk step heating) on a 20-m-thick pumice lapilli tuff in the middle of the valley fill give an age of 65.5 ± 0.6 Ma; this is indistinguishable from the age of Haitian tektites dated by the same laboratory. Our new Pacific margin sequence, like many K-T boundary sequences in the Gulf of Mexico Caribbean region, provides evidence of giant landslides and catastrophic sedimentation 1800 km from the bolide impact site.

  12. Remanence Acquisition in Marine Carbonates: a Lesson from the K-T Boundary Interval

    NASA Astrophysics Data System (ADS)

    Abrajevitch, A.; Kodama, K.

    2008-12-01

    An apparently complete carbonate-rich Cretaceous-Tertiary boundary interval in ODP section 119-738C- 20R-5 from the southern Kerguelen Plateau provides a unique insight into processes of magnetization acquisition in marine carbonates. The boundary interval is characterized by a 1-m-thick clay-rich zone. The basal 15 cm of this zone is finely laminated, the upper part is bioturbated. It has been inferred that the clay- rich zone formed over a long time interval, and the bulk of the clay in this zone has a local provenance. Although the elevated Ir concentration and the evolutionary change in the nannofossil assemblage are spread over the laminated interval, there is no recognizable change in the composition of the clay mineral assemblage between the laminated and bioturbated zones. No faunal, mineralogical, or chemical evidence for anoxic/sulfate-reducing conditions within the clay-rich zone was found. The total iron content of the clay-rich zone co-varies with the alumosilicate content, indicating detrital source for iron. Normalized by the alumosilicate content, the laminated and bioturbated intervals have comparable total iron values, yet strikingly different magnetic properties. The initial susceptibility and NRM intensities are approximately an order of magnitude higher in the bioturbated interval compared to the laminated one. Our detailed rock magnetic study indicates that PSD magnetite grains likely of biogenic origin are the dominant iron-bearing phase in the bioturbated interval. In the laminated interval, apart from a small ferromagnetic fraction with MD-like behavior, non-silicate-bound iron is mainly sequestered in paramagnetic phases, probably (poorly crystalline) oxyhydroxides. It appears that a shut-down of biological productivity after the K-T event allowed preservation of the initial detrital/early authigenic iron phases that are dominated by reactive iron oxyhydroxides. With the recovery of normal biological activity as evidenced by the resumption

  13. Catastrophic volcanism as a cause of shocked features found at the K/T boundary and in cryptoexplosion structures

    NASA Technical Reports Server (NTRS)

    Loper, D. E.; Mccartney, K.

    1988-01-01

    The presence of quartz grains containing shock lamellae at the Cretaceous/Tertiary (K/T) boundary is viewed by many as the single most compelling evidence of meteoritic or cometary impact because there is no known endogenous mechanism for producing these features. Similarly the presence of shocked quartz, shatter cones, coesite and stishovite at cryptoexplosion structures is comonly taken as conclusive evidence of impact. However, several recent studies have cast doubt on this interpretation. It is argued that basaltic volcanism, although not normally explosive, can under exceptional circumstances produce overpressures sufficiently high to produce shock features. The exceptional circumstances include a high content of volatiles, usually CO2, and no preestablished pathway to the surface. Rapid cooling of the saturated basaltic magma can occur if it underlies a cooler more evolved magma in a chamber. Initial slow cooling and partial exsolution of the volatiles will cause the density of the basaltic magma to become less than that of the overlying magma, leading to overturning and mixing. Gas will escape the magma chamber along planar cracks once the pressure becomes sufficiently high. In the vicinity of the crack tip there is a smallscale deviatoric stress pattern which is thought to be sufficiently high to produce transient cracks along secondary axes in the quartz crystals, causing the planar features. The CO2-rich fluid inclusions which have been found along planar elements of quartz in basement rocks of the Vredefort Dome were likely to have been emplaced by such a process. If the mechanism described is capable of producing shocked features as above, it would require a reassessment of the origin of many cryptoexplosion structures as well as seriously weakening the case for an impact origin of the K/T event.

  14. Osmium Isotopic Composition of the K/T Boundary Sediments from Sumbar: A Progress Report

    NASA Astrophysics Data System (ADS)

    Meisel, T.; Krahenbuhl, U.; Nazarov, M. A.

    1993-07-01

    Osmium isotope measurements have been performed on the boundary clay at different Cretaceous-Tertiary boundary (KTB) sites [1-5] since [6] suggested that Os isotopes are an indicator of an extraterrestrial component. The debate over "impact vs. volcanic" could not be resolved, but an isotope ratio close to chondritic could be demonstrated. The study of the distribution of iridium in the stratigraphy of the KTB cannot distinguish the contribution of chondritic and/or terrestrial Ir respectively, whereas the Os isotopes allow us to better constrain a mixing model. The ^187Os/^186Os ratio of the continental crust and chondritic reservoirs differ by at least 10-30 times. Assuming certain parameters, we should be able to calculate the proportion of the reservoirs making up the sediments of the KTB section. We studied a complete section of the KTB of Sumbar, Turkmenistan [7], for its Os isotopic composition. In the section 0-30 cm above the boundary clay, the ^187Os/^186Os ratio increases from 1.15 to 1.47, whereas the Ir concentration decreases from 66 to 1.4 ng/g or 66 to 4.7 ng/g on a carbonate-free basis respectively. Calculations show that the chondritic component makes up 9% at the boundary layer and decreases down to 0.6% at +30 cm. The data cannot be simply explained by varying admixtures of a chondritic component to a sediment of constant Os concentration and isotopic signature. To explain the Os ratios completely it is necessary to consider a mixture of four components (extraterrestrial, ejecta material, local terrigeneous, and carbonacous sediments) with certain assumptions: (1) The extraterrestrial source is chondritic in its Os and Re content and has an initial Os isotope ratio of 1.12 at 65 Ma (time of impact), which is above the average for normal chondrites but is within the range measured so far (e.g., Murray). (2) The ejecta material has a higher Os concentration (0.2 ng/g) than the sediments and is only present in the first 5 cm of the sequence above

  15. Biochemical vs. detrital mechanism of remanence acquisition in marine carbonates: A lesson from the K-T boundary interval

    NASA Astrophysics Data System (ADS)

    Abrajevitch, Alexandra; Kodama, Kazuto

    2009-08-01

    An apparently complete carbonate-rich Cretaceous-Tertiary boundary interval in ODP section 119-738C-20R-5 from the southern Kerguelen Plateau provides a unique insight into processes of magnetization acquisition in marine carbonates. The boundary interval is characterized by a 1-m-thick clay-rich zone. Distinct depositional lamina are preserved within the basal 15 cm of this zone; the upper part is bioturbated. Previous studies have demonstrated that the bulk of the detrital fraction in the laminated and bioturbated carbonates has the same local source, and hence, the two intervals likely had similar initial detrital assemblages. Magnetic properties of these rocks, however, differ significantly. The laminated sediments have a higher content of non-silicate-bound iron, yet approximately an order of magnitude lower intensity of the natural remanent magnetization compared to the bioturbated rocks. Our detailed rock magnetic study indicates that in the bioturbated interval the dominant iron-bearing phase is single-domain magnetite, likely of biogenic origin. In the laminated interval, apart from a small ferromagnetic fraction with multi-domain-like behavior, non-silicate-bound iron is mainly sequestered in paramagnetic phases, likely poorly-crystalline oxyhydroxides. It appears that a shut-down of biological productivity after the K-T event allowed preservation of the initial detrital/early authigenic iron phases that are dominated by reactive iron oxyhydroxides. With recovery of the normal biological activity as evidenced by resumption of bioturbation, the oxyhydroxides had been replaced with biogenic magnetite. Thus produced biochemical magnetization led to a several-fold increase in the remanence. Our results suggest that in areas where bioavailable iron constitutes a significant part of the detrital input, such as in pelagic marine environments distant from clastic sources, the biochemical remanent magnetization may be the dominant process of magnetization

  16. Mineralogical Data of Shocked Quartz Materials from K/T Boundary and Impact Crater

    NASA Astrophysics Data System (ADS)

    Miura, Y.; Kato, T.; Imai, M.

    1992-07-01

    Shocked quartz minerals from the Cretaceous-Tertiary (K/T) boundary and impact craters have been mainly discussed from distribution of optical directions, mean optical refractive index, and X-ray data (1). The purpose of the present study is presentation of the detailed mineralogical data of shocked quartz found in the K/T boundaries and terrestrial impact craters (2,3,4,5). X-ray powder diffraction pattern of shocked quartz aggregate reveals that all Xray peaks are split into major three peaks composed of low-density quartz (LQ), normal quartz (Q), and shocked quartz with high density (SQ). X-ray peaks of (110), (200), (201), (202), and (211) in the hexagonal cell are also split into many peaks. The X-ray intensity among LQ, Q, and SQ phases indicates that the SQ phase shows 36% to 53% in six K/T boundary samples (5). The relative X-ray intensity ratio of shocked quartz to standard rock crystal decreases into 13% to 37%, which suggests that shocked quartz materials contain major parts of diaplectic amorphous phases (G1) in the K/T boundary and impact crater. Although the LQ and Q type quartz phases, which can be also obtained at artificial impact processes (2,3,4,5), could not be distinguished from magmatic terrestrial origins, the SQ type quartz with high density has been selected for X-ray structure analysis to obtain the atomic arrangement of shocked quartz crystal. The detailed X-ray structural analyses of the SQ type shocked quartz indicate that atomic distance between oxygen and oxygen is shrunk largely (-0.8% than standard quartz Q), but that between silicon and oxygen is shrunk relatively small (-0.3%). The structural shrinkage is considered to be major causes of high density value of the SQ parts (up to +0.8% of the density deviation) (4,5). The chemical composition of shocked quartz phase (SQ) from electron and ion microprobe analyzers shows almost pure silica without Al element, though amorphous silica glassy phases (G2) contain Al contamination (ca. 0

  17. A regional perspective on the palynofloral response to K-T boundary event(s) with emphasis on variations imposed by the effects of sedimentary facies and latitude

    NASA Technical Reports Server (NTRS)

    Sweet, A. R.

    1988-01-01

    Palynological studies deal with fossil reproductive bodies that were produced by fully functioning plants, whereas most faunal studies are based on death assemblages. Therefore, changes in pollen and spore assemblages cannot be used directly as evidence of catastrophic mass killings but only to indicate changes in ecological conditions. The impact of the Cretaceous-Tertiary boundary event on terrestrial plant communities is illustrated by the degree, rate and selectivity of change. As in most classical palynological studies, the degree of change is expressed in terms of relative abundance and changes in species diversity. It is recognized that sampling interval and continuity of the rock record within individual sections can affect the percieved rate of change. Even taking these factors into account, a gradual change in relative abundance and multiple levels of apparent extinctions, associated with the interval bounding the K-T boundary, can be demonstrated. Climatic change, which locally exceeds the tolerance of individual species, and the possible loss of a group of pollinating agents are examined as possible explanations for the selectivity of apparent extinctions and/or locally truncated occurrences. The aspects of change are demonstrated with data from four different K-T boundary localities in Western Canada between paleolatitudes 60 and 75 deg north. Together, the four localities discussed allow changes imposed by latitude and differences in the depositional environment be isolated from the boundary event itself which is reflected by the truncated ranges of several species throughout the region of study. What must be recognized is that variations in the response of vegetation to the K-T boundary event(s) occurred throughout the Western Interior basin.

  18. The Cretaceous-Tertiary extinction: Modeling carbon flux and ecological response

    NASA Astrophysics Data System (ADS)

    Adams, J. Brad; Mann, Michael E.; D'Hondt, Steven

    2004-03-01

    It is widely recognized that a significant negative excursion in carbon isotopic (δ13C) differences between planktic and benthic foraminiferal tests occurred at the Cretaceous-Tertiary (K-T) boundary. We applied parametric and nonparametric breakpoint tests and statistical comparisons of different recovery models to assess the timing and pattern of recovery from this negative excursion at South Atlantic Deep Sea Drilling Project (DSDP) Site 528 and equatorial Pacific DSDP Site 577. Our results indicate a two-stage recovery with an initial recovery to an intermediate state of planktic-to-benthic δ13C differences followed by a discontinuous shift to a final state with planktic-to-benthic δ13C differences similar to preextinction values. The final discontinuous shift in both the Pacific and Atlantic Ocean sites occurred several million years after the K-T collapse of planktic-to-benthic δ13C differences. Both the first and second stages of recovery are best described by damped exponential relaxations. The pattern and timing of this carbon cycle recovery may have been contingent on the occurrence of key biological events.

  19. Evidence for the recovery of terrestrial ecosystems ahead of marine primary production following a biotic crisis at the Cretaceous-Tertiary boundary

    USGS Publications Warehouse

    Beerling, D.J.; Lomax, B.H.; Upchurch, G.R., Jr.; Nichols, D.J.; Pillmore, C.L.; Handley, L.L.; Scrimgeour, C.M.

    2001-01-01

    The fossil record demonstrates that mass extinction across the Cretaceous–Tertiary (K–T) boundary is more severe in the marine than the terrestrial realm. We hypothesize that terrestrial ecosystems were able to recover faster than their marine counterparts. To test this hypothesis, we measured sedimentary δ13C as a tracer for global carbon cycle changes and compared it with palaeovegetational changes reconstructed from palynomorphs and cuticles across the K–T boundary at Sugarite, New Mexico, USA. Different patterns of perturbation and timescales of recovery of isotopic and palaeobotanical records indicate that the δ13C excursion reflects the longer recovery time of marine versus terrestrial ecosystems.

  20. Large meteorite impacts: The K/T model

    NASA Technical Reports Server (NTRS)

    Bohor, B. F.

    1992-01-01

    The Cretaceous/Tertiary (K/T) boundary event represents probably the largest meteorite impact known on Earth. It is the only impact event conclusively linked to a worldwide mass extinction, a reflection of its gigantic scale and global influence. Until recently, the impact crater was not definitively located and only the distal ejecta of this impact was available for study. However, detailed investigations of this ejecta's mineralogy, geochemistry, microstratigraphy, and textures have allowed its modes of ejection and dispersal to be modeled without benefit of a source crater of known size and location.

  1. Extraterrestrial cause for the Cretaceous-Tertiary extinction

    NASA Technical Reports Server (NTRS)

    Alvarez, L. W.; Alvarez, W.; Asaro, F.; Michel, H. V.

    1980-01-01

    Direct physical evidence is presented for an unusual event at exactly the time of extinctions in the planktonic realm. Deep-sea limestones exposed in Italy, Denmark, and New Zealand indicate iridium increases of about 30, 160, and 20 times, respectively, above the background level at precisely the time of the Cretaceous-Tertiary extinctions, 65 million years ago. Reasons are given that this iridium is of extraterrestrial origin, but did not come from a nearby supernova. A hypothesis is set forth which accounts for the extinctions and the iridium observations. One prediction of this hypothesis is verified, that the chemical composition of the boundary clay, which is thought to come from the stratospheric dust, is markedly different from that of clay mixed with the chemically similar Cretaceous and Tertiary limestones.

  2. Reverse Polarity Magnetized Melt Rocks from the Cretaceous/Tertiary Chicxulub Structure, Yucatan Peninsula, Mexico

    NASA Technical Reports Server (NTRS)

    Urrutia-Fucugauchi, J.; Marin, Luis; Sharpton, Virgil L.

    1994-01-01

    We report paleomagnetic results for core samples of the breccia and andesitic rocks recovered from the Yucatan-6 Petrolcos Mexicanos exploratory well within the Chicxulub structure (about 60 km SSW from its center), northern Yucatan, Mexico. A previous study has shown that the rocks studied contain high iridium levels and shocked breccia clasts and an Ar/Ar date of 65.2 +/- 0.4 Ma. Andesitic rocks are characterized by stable single-component magnetizations with a mean inclination of -42.6 deg +/- 2.4 deg. Breccias present a complex paleomagnetic record characterized by multivectorial magnetizations with widely different initial NRM inclinations. However, after alternating field demagnetization, well defined characteristic components with upward inclinations are defined. IRM acquisition experiments, comparison of IRM and NRM coercivity spectra and the single component magnetization of the andesitic rocks indicate the occurrence of iron-rich titanomagnetites of single or pseudo-single domain states as the dominant magnetic carriers. Mean inclinations from the andesitic rocks and most of the breccia samples give a mean inclination of about -40 deg to -45 deg, indicating a reverse polarity for the characteristic magnetization that is consistent with geomagnetic chron 29R, which spans the Cretaceous/Tertiary (K/T) boundary. The inclination is also consistent with the expected value (and corresponding paleolatitude) for the site estimated from the reference polar wander curve for North America. We suggest that the characteristic magnetizations for the andesitic and breccia rocks are the result of shock heating at the time of formation of the impact structure and that the age, polarity and pateolatitude are consistent with a time at the K/T boundary.

  3. Impact winter and the Cretaceous/Tertiary extinctions: Results of a Chicxulub asteroid impact model

    NASA Technical Reports Server (NTRS)

    Pope, Kevin O.; Baines, Kevin H.; Ocampo, Adriana C.; Ivanov, Boris A.

    1994-01-01

    The Chicxulub impact crater in Mexico is the site of the impact purported to have caused mass extinctions at the Cretaceous/Tertiary (K/T) boundary. 2-D hydrocode modeling of the impact, coupled with studies of the impact site geology, indiate that between 0.4 and 7.0 x 10(exp 17) g of sulfur were vaporized by the impact into anhydrite target rocks. A small portion of the sulfur was released as SO3 or SO4, which converted rapidly into H2SO4 aerosol and fell as acid rain. A radiative transfer model, coupled with a model of coagulation indicates that the aerosol prolonged the initial blackout period caused by impact dust only if the aerosol contained impurities. A larger portion of sulfur was released as SO2, which converted to aerosol slowly, due to the rate-limiting oxidation of SO2. Our radiative transfer calculations, combined with rates of acid production, coagulation, and diffusion indicate that solar transmission was reduced to 10-20% of normal for a period of 8-13 yr. This reduction produced a climate forcing (cooling) of -300 W/sq.m, which far exceeded the +8 W/sq.m greenhouse warming, caused by the CO2 released through the vaporization of carbonates, and therefore produced a decade of freezing and near-freezing temperatures. Several decades of moderate warming followed the decade of severe cooling due to the long residence time of CO2. The prolonged impact winter may have been a major cause of the K/T extinctions.

  4. Cretaceous-Tertiary findings, paradigms and problems

    NASA Technical Reports Server (NTRS)

    Officer, C. B.; Drake, C. L.

    1988-01-01

    The asteroid hypothesis has stimulated numerous studies of the paleontological record at Cretaceous/Tertiary time as well as of geological indicators of environmental crisis preserved in the rock record. Both extinctions and geological anomalies often occur at times that do not appear to be synchronous or instantaneous. The record includes paleontological indicators of dinosaurs, terrestrial flora, marine planktonic organisms, and shallow water marine macrofauna and geological phenomena include occurrences of iridium and other platinum metals, trace elements, clay mineralogy, shocked minerals, soot, microspherules, and isotopes of osmium, strontium and carbon. These findings are reviewed in the context of the alternate hypotheses of an exogenic cause, involving either a single asteroid impact or multiple commentary impacts, and an endogenic cause, involving intense global volcanism and major sea level regression.

  5. TEM study of meteorite impact glass at New Zealand Cretaceous-Tertiary sites: evidence for multiple impacts or differentiation during global circulation?

    NASA Astrophysics Data System (ADS)

    Bauluz, Blanca; Peacor, Donald R.; Hollis, Christopher J.

    2004-03-01

    Study by transmission electron microscopy of samples from the Cretaceous-Tertiary (K-T) boundary clay at Flaxbourne River and Woodside Creek, New Zealand, has revealed the occurrence of nanometer-sized meteorite impact-derived glass. The average glass composition is exceptionally Ca-rich and is distinct from other glass found on Earth, apart from glass inferred to be of impact origin at Mexican and Haitian K-T sites. The glass shards are partially altered to montmorillonite-like smectite, with the dominant interlayer cation, Ca, reflecting the composition of the parent glass. The data imply a heterogeneous global distribution in composition of K-T boundary impact glass: Si-rich and Ca-rich in Mexico and Haiti, Si-rich in Denmark, and Ca-rich in New Zealand. This heterogeneous distribution may relate to dispersal processes similar to those used to account for the asymmetric distribution of clastic debris from the Chicxulub impact site. However, recent discovery of an impact crater of K-T boundary age in Ukraine raises the possibility of impact clusters which produce material of heterogeneous composition.

  6. Energy, volatile production, and climatic effects of the Chicxulub Cretaceous/Tertiary impact

    NASA Technical Reports Server (NTRS)

    Pope, K. O.; Baines, K. H.; Ocampo, A. C.; Ivanov, B. A.

    1997-01-01

    A comprehensive analysis of volatiles in the Chicxulub impact strongly supports the hypothesis that impact-generated sulfate aerosols caused over a decade of global cooling, acid rain, and disruption of ocean circulation, which contributed to the mass extinction at the Cretaceous/Tertiary (K/T) boundary. The crater size, meteoritic content of the K/T boundary clay, and impact models indicate that the Chicxulub crater was formed by a short period comet or an asteroid impact that released 0.7-3.4 x 10(31) ergs of energy. Impact models and experiments combined with estimates of volatiles in the projectile and target rocks predict that over 200 gigatons (Gt) each of SO2 and water vapor, and over 500 Gt of CO2, were globally distributed in the stratosphere by the impact. Additional volatiles may have been produced on a global or regional scale that formed sulfate aerosols rapidly in cooler parts of the vapor plume, causing an early, intense pulse of sulfuric acid rain. Estimates of the conversion rate of stratospheric SO2 and water vapor to sulfate aerosol, based on volcanic production of sulfate aerosols, coupled with calculations of diffusion, coagulation, and sedimentation, demonstrate that the 200 Gt stratospheric SO2 and water vapor reservoir would produce sulfate aerosols for 12 years. These sulfate aerosols caused a second pulse of acid rain that was global. Radiative transfer modeling of the aerosol clouds demonstrates (1) that if the initial rapid pulse of sulfate aerosols was global, photosynthesis may have been shut down for 6 months and (2) that for the second prolonged aerosol cloud, solar transmission dropped 80% by the end of first year and remained 50% below normal for 9 years. As a result, global average surface temperatures probably dropped between 5 degrees and 31 degrees K, suggesting that global near-freezing conditions may have been reached. Impact-generated CO2 caused less than 1 degree K greenhouse warming and therefore was insignificant compare

  7. Energy, volatile production, and climatic effects of the Chicxulub Cretaceous/Tertiary impact.

    PubMed

    Pope, K O; Baines, K H; Ocampo, A C; Ivanov, B A

    1997-09-25

    A comprehensive analysis of volatiles in the Chicxulub impact strongly supports the hypothesis that impact-generated sulfate aerosols caused over a decade of global cooling, acid rain, and disruption of ocean circulation, which contributed to the mass extinction at the Cretaceous/Tertiary (K/T) boundary. The crater size, meteoritic content of the K/T boundary clay, and impact models indicate that the Chicxulub crater was formed by a short period comet or an asteroid impact that released 0.7-3.4 x 10(31) ergs of energy. Impact models and experiments combined with estimates of volatiles in the projectile and target rocks predict that over 200 gigatons (Gt) each of SO2 and water vapor, and over 500 Gt of CO2, were globally distributed in the stratosphere by the impact. Additional volatiles may have been produced on a global or regional scale that formed sulfate aerosols rapidly in cooler parts of the vapor plume, causing an early, intense pulse of sulfuric acid rain. Estimates of the conversion rate of stratospheric SO2 and water vapor to sulfate aerosol, based on volcanic production of sulfate aerosols, coupled with calculations of diffusion, coagulation, and sedimentation, demonstrate that the 200 Gt stratospheric SO2 and water vapor reservoir would produce sulfate aerosols for 12 years. These sulfate aerosols caused a second pulse of acid rain that was global. Radiative transfer modeling of the aerosol clouds demonstrates (1) that if the initial rapid pulse of sulfate aerosols was global, photosynthesis may have been shut down for 6 months and (2) that for the second prolonged aerosol cloud, solar transmission dropped 80% by the end of first year and remained 50% below normal for 9 years. As a result, global average surface temperatures probably dropped between 5 degrees and 31 degrees K, suggesting that global near-freezing conditions may have been reached. Impact-generated CO2 caused less than 1 degree K greenhouse warming and therefore was insignificant compare

  8. Provenance of the K/T boundary layers

    NASA Technical Reports Server (NTRS)

    Hildebrand, A. R.; Boynton, W. V.

    1988-01-01

    An array of chemical, physical and isotopic evidence indicates that an impact into oceanic crust terminated the Cretaceous Period. Approximately 1500 cu km of debris, dispersed by the impact fireball, fell out globally in marine and nonmarine environments producing a 2 to 4 mm thick layer (fireball layer). In North American locales, the fireball layer overlies a 15 to 25 mm thick layer of similar but distinct composition. This 15 to 25 mm layer (ejecta layer) may represent approximately 1000 cu km of lower energy ejecta from a nearby impact site. Isotopic and chemical evidence supports a mantle provenance for the bulk of the layers. The extraordinary REE pattern of the boundary clays was modelled as a mixture of oceanic crust, mantle, and approximately 10 percent continental material. The results are presented. If the siderophiles of the ejecta layer were derived solely from the mantle, a test may be available to see if the siderophile element anomaly of the fireball layer had an extraterrestrial origin. Radiogenic Os-187 is depleted in the mantle relative to an undifferentiated chondritic source. Os-187/Os-186 ratios of 1.049 and 1.108 were calculated for the ejecta and fireball layers, respectively.

  9. The Cretaceous-Tertiary Impact Crater and the Cosmic Projectile that Produced it

    NASA Technical Reports Server (NTRS)

    Sharpton, Virgil L.; Marin, Luis E.

    1997-01-01

    Evidence gathered to date from topographic data, geophysical data, well logs, and drill-core samples indicates that the buried Chicxulub basin, the source crater for the approximately 65 Ma Cretaceous-Tertiary (K/T) boundary deposits, is approximately 300 km in diameter. A prominent topographic ridge and a ring of gravity anomalies mark the position of the basin rim at approximately 150 km from the center. Wells in this region recovered thick sequences of impact-generated breccias at 200-300 m below present sea level. Inside the rim, which has been severely modified by erosion following impact, the subsurface basin continues to deepen until near the center it is approximately 1 km deep. The best planetary analog for this crater appears to be the 270 km-diameter Mead basin on Venus. Seismic reflection data indicate that the central zone of downward displacement and excavation (the transient crater is approximately 130 km in diameter, consistent with previous studies of gravity anomaly data). Our analysis of projectile characteristics utilizes this information, coupled with conventional scaling relationships, and geochemical constraints on the mass of extraterrestrial material deposited within the K/T boundary layer. Results indicate that the Chicxulub crater would most likely be formed by a long-period comet composed primarily of nonsilicate materials (ice, hydrocarbons, etc.) and subordinate amounts (less than or equal to 50 percent) primitive chondritic material. This collision would have released the energy equivalent to between 4 x 10(exp 8) and 4 x 10(exp 9) megatons of TNT. Studies of terrestrial impact rates suggest that such an event would have a mean production rate of approximately 1.25 x 10(exp -9) y(exp -1). This rate is considerably lower than that of the major mass extinctions over the last 250 million years (approximately 5 x 10(exp -7) y(exp -1). Consequently, while there is substantial circumstantial evidence establishing the cause-effect link

  10. Stratigraphy and sedimentology of the K/T boundary deposit in Haiti

    NASA Technical Reports Server (NTRS)

    Carey, S.; Sigurdsson, H.; Dhondt, S.; Espindola, J. M.

    1993-01-01

    The K/T boundary sequence is exposed in uplifted carbonate sediments of the southwest peninsula of Haiti. It is found at 15 localities within the Beloc formation, a sequence of limestone and marls interpreted as a monoclinal nappe structure thrust to the north. This tectonic deformation has affected the K/T boundary deposit to varying degrees. In some cases the less competent K/T deposit has acted as a slip plane leading to extensive shearing of the boundary layer, as well as duplication of the section. The presence of glassy tektites, shocked quartz, and an Ir anomaly directly link the deposit to a bolide impact. Stratigraphic and sedimentological features of the tripartite sequence indicate that it was formed by deposition from ballistic fallout of coarse tektites, emplacement of particle gravity flows and fine grained fallout of widely dispersed impact ejecta.

  11. Shocked Minerals in the K-T Boundary: Implications for Obliquity of Impact

    NASA Astrophysics Data System (ADS)

    Morgan, J.; Lana, C.; Artemieva, N. A.

    2006-03-01

    This study combines observational data on the distribution of the coarse ejecta within the global K-T boundary layer with numerical modeling of vertical and oblique impacts, in an attempt to constrain the direction and angle of impact at Chicxulub.

  12. K/T boundary stratigraphy: Evidence for multiple impacts and a possible comet stream

    NASA Technical Reports Server (NTRS)

    Shoemaker, E. M.; Izett, G. A.

    1992-01-01

    A critical set of observations bearing on the K/T boundary events were obtained from several dozen sites in western North America. Thin strata at and adjacent to the K/T boundary are locally preserved in association with coal beds at these sites. The strata were laid down in local shallow basins that were either intermittently flooded or occupied by very shallow ponds. Detailed examination of the stratigraphy at numerous sites led to the recognition of two distinct strata at the boundary. From the time that the two strata were first recognized, E.M. Shoemaker has maintained that they record two impact events. We report some of the evidence that supports this conclusion.

  13. Chicxulub Impact Predates K-T Boundary: new evidence from Texas

    NASA Astrophysics Data System (ADS)

    Keller, G.; Adatte, T.; Harting, M.; Berner, Z.; Baum, G. R.; Stueben, D.

    2006-05-01

    In March 2005 NSF-EAR supported the drilling of three holes by DOSECC, along the Brazos River, Falls County, Texas, about 1000 km from the impact crater in order to test earlier observations in NE Mexico and the Chicxulub crater that this impact predates the K-T boundary by about 300,000 years. The new Texas Mullinax cores and new outcrops recovered the most complete K-T sequences known in this area and a stratigraphic record which revealed: (1) the K-T boundary 90 cm above the event deposit that is commonly interpreted as impact tsunami, and (2) the discovery of the original Chicxulub impact ejecta layer 40 cm below the event deposit. Multidisciplinary biostratigraphic, sedimentological, geochemical and mineralogical analyses reveal that in the new Mullinax-1 core and the outcrop the K-T boundary is marked by the global K-T negative /?13C excursion, a major faunal turnover from Cretaceous to Tertiary dominated assemblages and the first appearances of Tertiary species in all microfossil groups (planktic foraminifera, nannofossils, palynomorphs). A major iridium anomaly was earlier reported coincident with these K-T characteristics at the classic Brazos-1 outcrop only 150 m to the east. The underlying 45 cm thick event deposit, interbedded in late Maastrichtian sediments, contains multiple depositional events with burrows, and near the base reworked and altered Chicxulub impact glass spherules in a clast-rich, shelly, glauconitic sandstone. The event deposits infill a channel and overlie an erosional surface. The original impact ejecta layer is in a claystone 40 cm below the event deposit and consists of a 3 cm thick layer of altered impact glass in the lower part of chron 29R and near the base of biozone CF1, which marks the last 300,000 years of the Cretaceous. The new Brazos results confirm the earlier results from NE Mexico and the crater core Yaxcopoil-1 that the Chicxulub impact predates the K-T boundary by about 300,000 years.

  14. Chicxulub Impact Predates K-T Boundary in Texas and Caused no Mass Extinction

    NASA Astrophysics Data System (ADS)

    Fucugauchi, J. U.; Soler-Arechalde, A. M.; Rebolledo-Vieyra, M.; Keller, G.; Adatte, T.; Berner, Z.; Baum, G.; Stueben, D.

    2005-05-01

    In the Chicxulub crater and throughout NE Mexico the impact breccia and spherule ejecta layer, respectively, predate the K-T boundary by about 300,000 years (Keller et al., 2003, 2004). The stratigraphic separation between the K-T boundary and the Chicxulub impact ejecta varies from 50 cm in the Chicxulub crater, to over 14 m in NE Mexico, with the variation due to erosion, non-deposition and paloetopography. New studies from drilling and exposures along the Brazos River, Texas, confirm these findings based on biostratigraphy, paleomagnetic stratigraphy, geochemistry, stable isotopes, and faunal assemblages. In this area, the spherule ejecta is reworked near the base of a series of `event beds' representing variable storm deposits separated by repeated colonization of the ocean floor by invertebrates. The base of these storm beds overlies an undulating erosion surface of latest Maastrichtian claystone. The original spherule ejecta layer appears to be within the underlying claystone, in the lower part of chron 29R and near the base of biozone CF1, which marks the last 300,000 years of the Cretaceous. Above the `event beds' latest Maastrichtian claystone sedimentation continues up to the K-T boundary, which is characterized by a sharp (1.4 ng/g) iridium anomaly that marks the K-T as a second major impact. The distance between the top of the `event beds' and the K-T boundary varies from 20 cm to 1.6 m depending on local tectonics and erosion. Evaluation of the biotic effects of the Chicxulub and K-T impacts upon planktic foraminifera, which suffered most severely of all marine organisms, reveals no species extinctions associated with the Chicxulub impact and no significant species population changes, except for species dwarfing as a result of increased biotic stress. These Brazos results confirm the 65.3 Ma age for the Chicxulub impact determined from NE Mexico and the crater core Yaxcopoil-1. They also show that the Chicxulub impact did not cause a mass extinction

  15. Sea-floor methane blow-out and global firestorm at the K-T boundary

    USGS Publications Warehouse

    Max, M.D.; Dillon, William P.; Nishimura, C.; Hurdle, B.G.

    1999-01-01

    A previously unsuspected source of fuel for the global firestorm recorded by soot in the Cretaceous-Tertiary impact layer may have resided in methane gas associated with gas hydrate in the end-Cretaceous seafloor. End-Cretaceous impact-generated shock and megawaves would have had the potential to initiate worldwide oceanic methane gas blow-outs from these deposits. The methane would likely have ignited and incompletely combusted. This large burst of methane would have been followed by longer-term methane release as a part of a positive thermal feedback in the disturbed ocean-atmosphere system.

  16. Preliminary Ar-40/Ar-39 age spectrum and laser probe dating of the M1 core of the Manson Impact Structure, Iowa: A K-T boundary crater candidate

    NASA Astrophysics Data System (ADS)

    Kunk, M. J.; Snee, L. W.; French, B. M.; Harlan, S. S.; McGee, J. J.

    1993-03-01

    Preliminary Ar-40/Ar-39 age spectrum and laser probe dating results from new drill core from the 35-km-diameter Manson Impact Structure (MIS), Iowa indicates a reasonable possibility that the MIS is a Cretaceous-Tertiary (K-T) boundary impact event. Several different types of samples from a melt-matrix breccia, a unit of apparent crater fill intersected by the M1 core, were analyzed. Ar-40/Ar-39 results from these samples indicate a maximum age for the MIS of about 65.4 plus or minus 0.4(2 sigma) Ma. Petrographic analyses of the samples indicate a high probability that all the dated samples from the melt-matrix breccia contain relict grains that were not entirely melted or degassed at the time of impact, suggesting that the actual age of the MIS could be somewhat younger than our preliminary results indicate. The results are consistent with a previously published age estimate of shocked microcline from the MIS central uplift of 65.7 plus or minus 1.0 Ma.

  17. Preliminary Ar-40/Ar-39 age spectrum and laser probe dating of the M1 core of the Manson Impact Structure, Iowa: A K-T boundary crater candidate

    NASA Technical Reports Server (NTRS)

    Kunk, M. J.; Snee, L. W.; French, B. M.; Harlan, S. S.; Mcgee, J. J.

    1993-01-01

    Preliminary Ar-40/Ar-39 age spectrum and laser probe dating results from new drill core from the 35-km-diameter Manson Impact Structure (MIS), Iowa indicates a reasonable possibility that the MIS is a Cretaceous-Tertiary (K-T) boundary impact event. Several different types of samples from a melt-matrix breccia, a unit of apparent crater fill intersected by the M1 core, were analyzed. Ar-40/Ar-39 results from these samples indicate a maximum age for the MIS of about 65.4 plus or minus 0.4(2 sigma) Ma. Petrographic analyses of the samples indicate a high probability that all the dated samples from the melt-matrix breccia contain relict grains that were not entirely melted or degassed at the time of impact, suggesting that the actual age of the MIS could be somewhat younger than our preliminary results indicate. The results are consistent with a previously published age estimate of shocked microcline from the MIS central uplift of 65.7 plus or minus 1.0 Ma.

  18. Geochemical comparison of K-T boundaries from the Northern and Southern Hemispheres

    NASA Technical Reports Server (NTRS)

    Tredous, M.; Verhagen, B. TH.; Hart, R. J.; Dewit, C. B.; Smith, C. B.; Perch-Nielsen, K.; Sellschop, J. P. F.

    1988-01-01

    Closely spaced (cm-scale) traverses through the K-T boundary at Stevns Klint (Denmark), Woodside Creek (New Zealand) and a new Southern Hemisphere site at Richards Bay (South Africa) were subjected to trace element and isotopic (C, O, Sr) investigation. Intercomparison between these data-sets, and correlation with the broad K-T database available in the literature, indicate that the chemistry of the boundary clays is not globally constant. Variations are more common than similarities, both of absolute concentrations, and interelement ratios. For example, the chondrite normalized platinum-group elements (PGE) patterns of Stevns Klint are not like those of Woodside Creek, with the Pt/Os ratios showing the biggest variation. These differences in PGE patterns are difficult to explain by secondary alteration of a layer that was originally chemically homogeneous, especially for elements of such dubious crustal mobility as Os and Ir. The data also show that enhanced PGE concentrations, with similar trends to those of the boundary layers, occur in the Cretaceous sediments below the actual boundary at Stevns Klint and all three the New Zealand localities. This confirms the observations of others that the geochemistry of the boundary layers apparently does not record a unique component. It is suggested that terrestrial processes, eg. an extended period of Late Cretaceous volcanism can offer a satisfactory explanation for the features of the K-T geochemical anomaly. Such models would probably be more consistent with the observed stepwise, or gradual, palaeontological changes across this boundary, than the instant catastrophe predicated by the impact theory.

  19. The K-T boundary in Oman: identified using magnetic susceptibility field measurements with geochemical confirmation

    NASA Astrophysics Data System (ADS)

    Ellwood, Brooks B.; MacDonald, William D.; Wheeler, Christopher; Benoist, Stephen L.

    2003-02-01

    Recognizing distal ejecta marker horizons and correlating these among widely separated sections is typically difficult in the absence of visually distinctive marker beds. Here we propose a magnetic susceptibility (MS) field method to locate such horizons, and explore the K-T boundary interval at Abat, Oman, as a test of the method. A distinctive pattern of high MS values was used to approximately locate the K-T boundary interval in a sequence of platform carbonates, which were then sampled in detail. Whole-rock geochemical enrichments in Ir, V, As, Ni, Co, Zn and Zr and a large negative carbon isotope anomaly confirmed the inferred boundary location. Common microspherules whose chemistry reflects the whole-rock geochemistry are associated with the boundary interval. The association suggests that the microspherules formed during or as a result of the impact. The geochemical record at the Abat locality shows two levels where Ir is high (>1 ppb) suggesting input from two impacts, separated in the section by 1.35 m. The upper level is chosen as the boundary interval based on the high Ir (1.19 ppb), δ 13C negative excursion (˜7‰), and distinctive MS pattern.

  20. Fires at the K/T boundary - Carbon at the Sumbar, Turkmenia, site

    NASA Technical Reports Server (NTRS)

    Wolbach, Wendy S.; Anders, Edward; Nazarov, Michael A.

    1990-01-01

    Results are reported on carbon analysis and on C and Ir correlations in samples from the marine K-T boundary site SM-4 at the Sumbar River in Turkmenia (USSR), which has the largest known Ir anomaly (580 ng/cq cm). In addition, the boundary clay is thick, and is undisturbed by bioturbation. Kerogen and delta-C-13 elemental carbon in the boundary clay were resolved using a Cr2O7(2-) oxidation method of Wolbach and Anders (1989). It was found that Ir and shocked quartz, both representing impact ejecta, rise sharply at the boundary, peak in the basal layer, and then decline. On the other hand, soot and total elemental C show a similar spike in the basal layer but then rise rather than fall, peking at 7 cm. Results indicate that fires at the SM-4 K-T boundary site started before the basal layer had settled, implying that ignition and spreading of major fires became possible at the time of or very soon after the meteorite impact.

  1. Mass extinctions, atmospheric sulphur and climatic warming at the K/T boundary

    NASA Technical Reports Server (NTRS)

    Rampino, Michael R.; Volk, Tyler

    1988-01-01

    The possible climatic effects of a drastic decrease in cloud condensation nuclei (CCN) associated with a severe reduction in the global marine phytoplankton abundance are investigated. Calculations suggest that a reduction in CCN of more than 80 percent and the resulting decrease in marine cloud albedo could have produced a rapid global warming of 6 C or more. Oxygen isotope analyses of marine sediments from many parts of the world have been interpreted as indicating a marked warming coincident with the demise of calcareous nannoplankton at the K/T boundary. Decreased marine cloud albedo and resulting high sea surface temperatures could have been a factor in the maintenance of low productivity in the 'Strangelove Ocean' period following the K/T extinctions.

  2. Magnetic properties and Moessbauer analyses of glass from the K-T boundary, Beloc, Haiti

    NASA Technical Reports Server (NTRS)

    Senftle, F. E.; Thorpe, A. N.; May, L.; Barkatt, A.; Adel-Hadadi, M. A.; Marbury, G. S.; Izett, G.; Sigurdsson, H.; Maurasse, F. J.-M. R.

    1993-01-01

    The experimental magnetic susceptibility, the temperature-independent component of the magnetic susceptibility, the magnetization, and the Curie constant have been measured for a number of specimens of glass from the K-T boundary found at Beloc, Haiti, and the results are compared with those of similar measurements of tektites. Because the Fe(3+)/Fe(2+) ratio is needed to calculate the magnetic parameters, Moessbauer spectroscopic measurements were also made. The data were consistent with the classification of the Beloc glasses as tektites.

  3. The Koshak section: Evidence for element fractionation and an oxidation event at the K/T boundary

    NASA Technical Reports Server (NTRS)

    Nazarov, M. A.; Badjukov, D. D.; Barsukova, L. D.; Kolesov, G. M.; Naidin, D. P.

    1993-01-01

    The Koshak site is a new K/T section located about 125 km EEN of the Fort Shevchenko city, Mangyshlak, Kazakhstan. In this paper, we report results of geochemical and mineralogical studies of this section which indicate a deep element fractionation and an oxidation event at the K/T boundary.

  4. Chicxulub impact predates K T boundary: New evidence from Brazos, Texas

    NASA Astrophysics Data System (ADS)

    Keller, Gerta; Adatte, Thierry; Berner, Zsolt; Harting, Markus; Baum, Gerald; Prauss, Michael; Tantawy, Abdel; Stueben, Doris

    2007-03-01

    Multidisciplinary studies, including stratigraphy, sedimentology, mineralogy and geochemistry, of the new core Mullinax-1 and outcrops along the Brazos River and Cottonmouth Creek, Falls County, Texas, reveal the complex history of the Chicxulub impact, the event deposit and the K-T boundary event. The K-T boundary, as identified by the negative δ13C shift, first occurrence of Danian planktic foraminifera and palynomorphs occurs 80 cm above the event deposit in core Mullinax-1. The underlying 80 cm interval was deposited in a shallow low oxygen environment during the latest Maastrichtian, as indicated by high stress microfossil assemblages, small shells and burrows infilled with framboidal pyrite. The underlying event deposit, commonly interpreted as K-T impact tsunami, consists of a basal conglomerate with clasts containing Chicxulub impact spherules, repeated upward fining units of spherule-rich sands, followed by hummocky cross-bedded and laminated sands, which are burrowed by Thalassinoides, Planolites and Ophiomorpha and truncated by erosion. This suggests a series of temporally separated storm events with re-colonization of the ocean floor by invertebrates between storms, rather than a series of waning tsunami-generated waves. The lithified clasts with impact spherules at the base of the event deposit provide strong evidence that the Chicxulub impact ejecta layer predates the event deposit, but was eroded and re-deposited during the latest Maastrichtian sea level lowstand. The original Chicxulub ejecta layer was discovered in a 3 cm thick yellow clay layer interbedded in undisturbed late Maastrichtian clay- and mudstones 40 cm below the base of the event deposit and near the base of planktic foraminiferal zone CF1, which spans the last 300 kyr of the Maastrichtian. The yellow clay consists of cheto smectite derived from alteration of impact glass, as indicated by rare altered glass spherules with similar chemical compositions as reworked spherules from the

  5. First evidence for a massive extinction event affecting bees close to the K-T boundary.

    PubMed

    Rehan, Sandra M; Leys, Remko; Schwarz, Michael P

    2013-01-01

    Bees and eudicot plants both arose in the mid-late Cretaceous, and their co-evolutionary relationships have often been assumed as an important element in the rise of flowering plants. Given the near-complete dependence of bees on eudicots we would expect that major extinction events affecting the latter would have also impacted bees. However, given the very patchy distribution of bees in the fossil record, identifying any such extinctions using fossils is very problematic. Here we use molecular phylogenetic analyses to show that one bee group, the Xylocopinae, originated in the mid-Cretaceous, coinciding with the early radiation of the eudicots. Lineage through time analyses for this bee subfamily show very early diversification, followed by a long period of seemingly no radiation and then followed by rapid diversification in each of the four constituent tribes. These patterns are consistent with both a long-fuse model of radiation and a massive extinction event close to the K-T boundary. We argue that massive extinction is much more plausible than a long fuse, given the historical biogeography of these bees and the diversity of ecological niches that they occupy. Our results suggest that events near the K-T boundary would have disrupted many plant-bee relationships, with major consequences for the subsequent evolution of eudicots and their pollinators. PMID:24194843

  6. First Evidence for a Massive Extinction Event Affecting Bees Close to the K-T Boundary

    PubMed Central

    Rehan, Sandra M.; Leys, Remko; Schwarz, Michael P.

    2013-01-01

    Bees and eudicot plants both arose in the mid-late Cretaceous, and their co-evolutionary relationships have often been assumed as an important element in the rise of flowering plants. Given the near-complete dependence of bees on eudicots we would expect that major extinction events affecting the latter would have also impacted bees. However, given the very patchy distribution of bees in the fossil record, identifying any such extinctions using fossils is very problematic. Here we use molecular phylogenetic analyses to show that one bee group, the Xylocopinae, originated in the mid-Cretaceous, coinciding with the early radiation of the eudicots. Lineage through time analyses for this bee subfamily show very early diversification, followed by a long period of seemingly no radiation and then followed by rapid diversification in each of the four constituent tribes. These patterns are consistent with both a long-fuse model of radiation and a massive extinction event close to the K-T boundary. We argue that massive extinction is much more plausible than a long fuse, given the historical biogeography of these bees and the diversity of ecological niches that they occupy. Our results suggest that events near the K-T boundary would have disrupted many plant-bee relationships, with major consequences for the subsequent evolution of eudicots and their pollinators. PMID:24194843

  7. Iridium contents in the Late Cretaceous-Early Tertiary clays in relation to the K/T boundary, North Jordan

    NASA Astrophysics Data System (ADS)

    Abboud, Iyad Ahmed

    2016-06-01

    The mineralogy, lithology, and geochemistry of five discrete laminations across the K/T boundary of clayey shale at the Yarmouk River area, Jordan, were examined. There were no marked changes in the mineralogy of the clayey shale within the K/T boundary. This outcrop consists of more than 100 m of Maastrichtian oil shale overlying about 20 m limestone. Marly limestone included many clay laminations from organic and volcanic origins, which are considered an evidence of the K/T boundary through detected iridium anomalies. Any of these particular lamellae range from 2 mm to 5 mm in thickness. Smectite was the predominant clay mineral in smectitic shale laminations. It was located at eight meters above the K/T boundary and includes some anomalous concentrations of iridium and traces of other elements. The analysis of geochemical platinum group at the K/T boundary clays showed anomalous enrichments of iridium, compared with other carbonate rocks as a result of weathering processes of oil shale, or through concentration from weathering of basalt flows, but not pointing to an impact process. The clays in late Maastrichtian have Ir-Sc prevailed anomalies and synchronize with increasing of terrigenous and volcanogenic traced elements. Kaolin, smectite, and volkonskoite were the dominant clay minerals at the K/T boundary with high concentrations of iridium. The concentration levels of iridium in some laminations of the Yarmouk sediments ranged between 1.6 and 7.8 ppb.

  8. Isotopic comparison of K/T boundary impact glass with melt rock from the Chicxulub and Manson impact structures

    NASA Astrophysics Data System (ADS)

    Blum, Joel D.; Chamberlain, C. P.; Hingston, Michael P.; Koeberl, Christian; Marin, Luis E.; Schuraytz, Benjamin C.; Sharpton, Virgil L.

    1993-07-01

    Strontium, neodymium, and oxygen isotopic compositions are reported for core samples of impact melt rock recovered from drill holes into the Chicxulub and Manson craters, which are candidate source craters for the catastrophic impact that occurred at the boundary between the Cretaceous and Tertiary periods (K/T boundary). The data are compared with previously published isotopic data from impact glasses from the K/T boundary of the Beloc formation in Haiti. It is found that the Chicxulub melt rocks are isotopically indistinguishable from the K/T impact glass, supporting the hypothesis that Chicxulub is a source crater for the K/T catastrophe. In contrast, the Manson melt rocks have a clearly different isotopic composition.

  9. Twelve-year trail of clues leads to impact crater from the K-T boundary

    SciTech Connect

    Levi, B.G.

    1992-12-01

    In 1980, scientists at the University of California, Berkeley proposed that a massive comet or asteroid might have struck the earth about 65 million years ago, changing the earth's climate so drastically that dinosaurs and other creatures could no longer survive. This article describes the evidence for the elusive crater required to support this theory. The structure in question is 180 km in diameter and is submeged beneath the Yucatan peninsula and centered on the Mexican village of Chicxulub. Material drilled from this crater has been linked chemically and geologically to pellets found in Northeast Mexico and Haiti. The link between this ejecta material and the crater was confirmed by a report that the Chicxulub melt rock and pellets are coeval, all having ages consistent with 65 million years. This puts the possible impact at the K-T boundary -- the dividing line between the Cretaceous period of the dinosaurs and the Tertiary period of the mammals. 13 refs.

  10. Late cretaceous and paroxysmal cretaceous/tertiary extinctions

    NASA Astrophysics Data System (ADS)

    Officer, Charles B.; Drake, Charles L.; Hallam, Anthony; Devine, Joseph D.

    1987-03-01

    The various geological signatures at Cretaceous/Tertiary time including iridium and other associated elements, microspherules, and shock deformation features are compatible with the suggestion that the transition is marked by a period of intense volcanism. The volatile emissions from this volcanism would lead to acid rain, reduction in the alkalinity and pH of the surface ocean, global atmospheric temperature changes, and ozone layer depletion. These environmental effects coupled with those related to the major sea level regression of the late Cretaceous provide the framework for an explanation of the selective nature of the observed extinction record.

  11. Style, Magnitude, and Rate of Deccan Lava Super-eruptions at K-T Boundary Times

    NASA Astrophysics Data System (ADS)

    Self, S.; Jay, A. E.; Widdowson, M.; Kelley, S. P.

    2005-12-01

    A study of 100s of individual lava flow units exposed in sections through the upper part of the main Deccan basaltic lava pile includes flow fields that were being erupted across the K-T boundary, about 65 Ma ago. Pahoehoe flow fields (the products of one eruption), each commonly 50 m, and exceptionally 80 m, thick, dominate the pile in the central Western Ghats region. The main landscape-builders are inflated sheet lobes between 15-30 m (occasionally 50 m) thick, with subordinate smaller inflated lobes and units down to the size of toes. These are typical tholeiitic pahoehoe sheet lobes, similar to those found in many other flood basalt provinces. Defining flow fields by several criteria permits an estimate of how many eruptions built up this portion of the Deccan pile, which is 30-40 in number. Based on the extent of the formations, some of the lava fields may be the longest yet described on Earth (1000 km). All formations studied have the same style lava flows, and, thus, fissure-fed, pahoehoe-flow-forming effusive volcanism dominated. Evidence from inter-flow horizons suggests extensive explosive activity also accompanied some eruptions (cf. Icelandic eruptions such as Eldgja AD 934). The 1,200-m-thick lava pile can be assigned to Deccan Group formations in the Wai Sub-group (WSG) by compositional fingerprinting, to the paleomagnetic timescale by polarity and declination measurements, and, by cross-correlation, to the radiometric time scale. During eruptions that built up the WSG lavas, which encompass the K-T boundary and the slightly younger paleomagnetic chron 29R-N boundary, the widespread nature of the formations attests that enormous volumes of lava were produced during each eruption. Volumes of eruptive units (flow fields) exceeded 2,000, and probably 5,000, cubic km of lava, and this was likely repeated in most eruptive events, each lasting many years. The age span of the WSG series of lava eruptions was so short that it falls within the errors of

  12. Environmental Effects of an Impact-Generated Dust Cloud: Implications for the Cretaceous-Tertiary Extinctions

    NASA Astrophysics Data System (ADS)

    Pollack, James B.; Toon, Owen B.; Ackerman, Thomas P.; McKay, Christopher P.; Turco, Richard P.

    1983-01-01

    A model of the evolution and radiative effects of a debris cloud from a hypothesized impact event at the Cretaceous-Tertiary boundary suggests that the cloud could have reduced the amount of light at the earth's surface below that required for photosynthesis for several months and, for a somewhat shorter interval, even below that needed for many animals to see. For 6 months to 1 year, the surface would cool; the oceans would cool only a few degrees Celsius at most, but the continents might cool a maximum of 40 Kelvin. Extinctions in the ocean may have been caused primarily by the temporary cessation of photosynthesis, but those on land may have been primarily induced by a combination of lowered temperatures and reduced light.

  13. Environmental effects of an impact-generated dust cloud - Implications for the Cretaceous-Tertiary extinctions

    NASA Technical Reports Server (NTRS)

    Pollack, J. B.; Toon, O. B.; Ackerman, T. P.; Mckay, C. P.; Turco, R. P.

    1983-01-01

    A model of the evolution and radiative effects of a debris cloud from a hypothesized impact event at the Cretaceous-Tertiary boundary suggests that the cloud could have reduced the amount of light at the earth's surface below that required for photosynthesis for several months and, for a somewhat shorter interval, even below that needed for many animals to see. For 6 months to 1 year, the surface would cool; the oceans could cool only a few degrees Celsius at most, but the continents might cool a maximum of 40 Kelvin. Extinctions in the ocean may have been caused primarily by the temporary cessation of photosynthesis, but those on land may have been primarily induced by a combination of lowered temperatures and reduced light.

  14. Seismic Refraction Mapping of the K-T Boundary Complex Near the Brazos River, Falls County, Texas

    NASA Astrophysics Data System (ADS)

    Gowan, J. S.; Everett, M. E.

    2007-12-01

    The relationship between the Chicxulub impact and the paleontologically defined boundary between the Cretaceous and Tertiary periods is a hotly debated subject. The K-T complex, with its distinctive yellow spherule- rich clay layer, is capped by sandstone beds in streambed exposures along the Brazos River in Falls County, TX. Studies of the microfossils in the Falls Co. location show that the paleontological K-T boundary is stratigraphically removed from the yellow clay layer associated with Chicxulub. This study is an attempt to construct a 3-D image of the top of "event complex" by the use of geophysical methods. A near surface seismic refraction survey was completed in an area near the exposed K-T sections. Our seismic images may shed some light on competing theories as to the depositional environment at the time the sandstone bed was formed. Important seismically-resolved topographic features such as undulations and discontinuities could play a large role in shaping a better understanding of the K-T boundary complex origins.

  15. K-T transition in Deccan Traps of central India marks major marine Seaway across India

    NASA Astrophysics Data System (ADS)

    Keller, G.; Adatte, T.; Bajpai, S.; Mohabey, D. M.; Widdowson, M.; Khosla, A.; Sharma, R.; Khosla, S. C.; Gertsch, B.; Fleitmann, D.; Sahni, A.

    2009-05-01

    Deccan intertrappean sediments in central India are generally considered as terrestrial deposits of Maastrichtian age, but the Cretaceous-Tertiary (K-T) position is still unknown. Here we report the discovery of the K-T transition, a marine incursion and environmental changes preserved within the intertrappean sediments at Jhilmili, Chhindwara District, Madhya Pradesh. Integrative biostratigraphic, sedimentologic, mineralogic and chemostratigraphic analyses reveal the basal Danian in the intertrappean sediments between lower and upper trap basalts that regionally correspond to C29r and the C29R/C29N transition, respectively. Intertrappean deposition occurred in predominantly terrestrial semi-humid to arid environments. But a short aquatic interval of fresh water ponds and lakes followed by shallow coastal marine conditions with brackish marine ostracods and early Danian zone P1a planktic foraminifera mark this interval very close to the K-T boundary. This marine incursion marks the existence of a nearby seaway, probably extending inland from the west through the Narmada and Tapti rift valleys. The Jhilmili results thus identify the K-T boundary near the end of the main phase of Deccan eruptions and indicate that a major seaway extended at least 800 km across India.

  16. Carbon isotope geochemistry of the Cretaceous-Tertiary section of the Wasserfallgraben, Lattengebirge, southeast Germany

    NASA Astrophysics Data System (ADS)

    Arneth, J.-D.; Matzigkeit, U.; Boos, A.

    1985-09-01

    Carbonates and organic matter in sediments of the Cretaceous-Tertiary (C/T) section of the Wasserfallgraben, Lattengebirge (Bavaria) have been investigated. All parameters—the carbonate content (C carb), its isotopic composition ( δ 13C carb, δ 18O carb) as well as the organic carbon content (C org), its isotopic composition ( δ 13C org) and the H/C ratio of the sedimentary organic matter—display systematic variations across the C/T boundary which cannot be attributed to a single cause. The boundary zone as a whole is tectonically disturbed and shows significant features of detrital contaminations. Unidirectional shift in δ 13C carb and δ 13C org are observed when directly comparing Maastrichtian (latest Cretaceous) and Danian (earliest Tertiary) sediments. These synchronous isotope displacements towards more negative readings are interpreted to reflect the reduced photosynthetic activity as consequence of the mass extinction at the C/T boundary. The results may have some bearings on other C/T profiles investigated where measurements on the reduced carbon species are still lacking.

  17. Meteorite impact, cryptoexplosion, and shock metamorphism - A perspective on the evidence at the K/T boundary

    NASA Technical Reports Server (NTRS)

    Sharpton, V. L.; Grieve, R. A. F.

    1990-01-01

    A perspective on the evidence of a major impact event at the K/T boundary is proposed using field and laboratory studies of terrestrial impact craters. Recent assertions that diagnostic indications of shock metamorphism are also produced in volcanic environments are challenged. A general geological framework of impact structures is developed and the issue of volcanically induced shock metamorphism is examined. Cryptoexplosion is addressed by assessing the geology of two structures: the Slate Islands and Manson, which are often cited by advocates of an internal origin for shock metamorphism as volcanic structures. It is concluded that the link between shock metamorphism and meteorite impact is now established beyond reasonable doubt. The occurrence and worldwide distribution of shocked minerals at the K/T boundary is considered to be the conclusive evidence for a major impact event.

  18. Meteorite impact, cryptoexplosion, and shock metamorphism - A perspective on the evidence at the K/T boundary

    NASA Astrophysics Data System (ADS)

    Sharpton, V. L.; Grieve, R. A. F.

    A perspective on the evidence of a major impact event at the K/T boundary is proposed using field and laboratory studies of terrestrial impact craters. Recent assertions that diagnostic indications of shock metamorphism are also produced in volcanic environments are challenged. A general geological framework of impact structures is developed and the issue of volcanically induced shock metamorphism is examined. Cryptoexplosion is addressed by assessing the geology of two structures: the Slate Islands and Manson, which are often cited by advocates of an internal origin for shock metamorphism as volcanic structures. It is concluded that the link between shock metamorphism and meteorite impact is now established beyond reasonable doubt. The occurrence and worldwide distribution of shocked minerals at the K/T boundary is considered to be the conclusive evidence for a major impact event.

  19. Geochemical evidences for two chondritic-like cometary or asteroidal impacts before and at the K/T boundary

    NASA Technical Reports Server (NTRS)

    Liu, Y.-G.; Schmitt, R. A.

    1993-01-01

    A number of geological and palaeontological evidences support multiple impacts of cometary showers within a short time (approximately 1-3 Ma) and their connection with mass extinctions. Observations include clustered crater ages, stratigraphic horizons of impact ejecta closely spaced in time, and evidence for stepwise mass extinctions spanning intervals of 1-3 Ma. For the K/T boundary, three candidates, Popigai, Manson, and Yucatan, have been proposed as impact craters. Two distinct strata at the K/T boundary in western North America have been interpreted as evidence for two sequential impacts. If multiple impacts occurred within a time span of about 1 Ma then multiple Ir enrichments should be observed. DSDP Hole 577B on the Shatsky Plateau in the northern Pacific at K/T time is the first site. Samples contain approximately greater than 97 percent CaCO3, which exhibit clear chemical signals associated with asteroidal/cometary impact. Ir, Fe, and Cr data are presented. From the Th-normalized data, two satellite peaks below the major peak at 78 cm and 81 cm of 577B-1-4 are clearly shown. The major Ir peak (K/T boundary) is at 72 cm. Fe and Cr, from C1-like impactor ejecta fallout, also show two peaks at the same positions. For hole 738C on the southern Kerguelen Plateau, Ir values reach a peak concentration of 18 ppb in the clay layer at 96.0-96.2 cm in section 20R-5, and gradually tail off. In the sample 115 cm above the boundary, Ir concentrations have still not reached background levels. From the Ir peak downward to the lowermost sample analyzed at 102 cm, the Ir concentration is still as high as 1.7 ppb. From the Th-normalized data, we observe a small Ir/Th peak at 100-101 cm. Though this peak is within the error margin, the trend is clear. Fe and Cr exhibit the same pattern. The third case is Hole 690C on the Queen Maud Ridge. Again, the Ir/Th plot indicates the strong possibility of satellite peaks at approximately 52 cm. The main peak is at 39-40 cm. For the

  20. Geochemical evidences for two chondritic-like cometary or asteroidal impacts before and at the K/T boundary

    NASA Astrophysics Data System (ADS)

    Liu, Y.-G.; Schmitt, R. A.

    1993-03-01

    A number of geological and palaeontological evidences support multiple impacts of cometary showers within a short time (approximately 1-3 Ma) and their connection with mass extinctions. Observations include clustered crater ages, stratigraphic horizons of impact ejecta closely spaced in time, and evidence for stepwise mass extinctions spanning intervals of 1-3 Ma. For the K/T boundary, three candidates, Popigai, Manson, and Yucatan, have been proposed as impact craters. Two distinct strata at the K/T boundary in western North America have been interpreted as evidence for two sequential impacts. If multiple impacts occurred within a time span of about 1 Ma then multiple Ir enrichments should be observed. DSDP Hole 577B on the Shatsky Plateau in the northern Pacific at K/T time is the first site. Samples contain approximately greater than 97 percent CaCO3, which exhibit clear chemical signals associated with asteroidal/cometary impact. Ir, Fe, and Cr data are presented. From the Th-normalized data, two satellite peaks below the major peak at 78 cm and 81 cm of 577B-1-4 are clearly shown. The major Ir peak (K/T boundary) is at 72 cm. Fe and Cr, from C1-like impactor ejecta fallout, also show two peaks at the same positions. For hole 738C on the southern Kerguelen Plateau, Ir values reach a peak concentration of 18 ppb in the clay layer at 96.0-96.2 cm in section 20R-5, and gradually tail off. In the sample 115 cm above the boundary, Ir concentrations have still not reached background levels. From the Ir peak downward to the lowermost sample analyzed at 102 cm, the Ir concentration is still as high as 1.7 ppb. From the Th-normalized data, we observe a small Ir/Th peak at 100-101 cm. Though this peak is within the error margin, the trend is clear. Fe and Cr exhibit the same pattern. The third case is Hole 690C on the Queen Maud Ridge.

  1. The Disposition of Pt, Pd, Ir, Os, and Ru in Marine Sediments and the K/T Boundary

    NASA Technical Reports Server (NTRS)

    Lee, Cin-Ty; Wasserburg, Gerald; Kyte, Frank

    2003-01-01

    The marine record of platinum group elements (PGEs) and Os isotopic compositions provides information on different inputs of PGEs into the oceans. Some studies based on a smaller subset of the PGEs suggest that the PGEs may suffer post-depositional mobility during diagenesis. In some K/T boundary clays, Kyte and others showed that the relative abundances of Pt, Pd, Ir, and Os can differ significantly from chondritic, which is the signature expected from fallout of the meteorite impact. In some K/T boundary sections, elevated Ir concentrations are observed as far as 1 meter from the cm-thick boundary clay containing the meteoritic ejecta. The purpose of this study was to characterize Pt, Pd, Ir, Os, and Ru abundances in zones including the K/T boundary. We determined PGE abundances of boundary clays at two hemipelagic sites (Stevns Klint, Denmark and Caravaca, Spain) in which previous studies by Kyte and others showed that the Ir anomaly is confined to within a few cm. We also analyzed two pelagic Pacific sites: a boundary clay from the north Pacific (Hole 465A) characterized by a 0.5 m thick Ir anomaly and a transect across the K/T boundary from the south Pacific (Hole 596) where the Ir anomaly spans 2 m. The Stevns Klint, Caravaca, and north Pacific sites are characterized by abundant marls and limestones in the section, whereas the south Pacific site is dominated by clays. Samples were spiked with isotopic tracers, mixed with a flux, S and Ni, and equilibrated by fusion. PGEs were extracted from the Ni and analyzed on a Finnigan Element ICP-MS. We find that the narrow Caravaca and Stevns Klint boundary clays have relative PGE abundance patterns indistinguishable from chondritic values. The two Pacific sites were found to have nearly identical PGE patterns but have ratios at the peak, which differ from chondritic values as found earlier by Evans et al. The Pacific sites were found to have nearly identical PGE patterns but are extremely depleted in OS (Os/Ir = 0

  2. Environments and extinctions at the K-T boundary in eastern Montana are compatible with an asteroid impact

    SciTech Connect

    Fastovsky, D.E. ); Sheehan, P.M. )

    1992-01-01

    In the terrestrial latest Cretaceous Hell Creek (HC) Formation, both non-biotic events and patterns of extinction and survivorship are consistent with an asteroid impact causing the extinctions. Environments through the last 2--3 million-year interval represented by the HC remained relatively constant: an aggrading coastal lowland dissected by meandering rivers. The K-T boundary occurred during an abrupt change to impeded drainage represented by coals and pond deposits formed under low-energy conditions. Because of the close temporal proximity of the sediments of the Paleocene Cannonball Sea to the K-T boundary in South Dakota, impeded drainage in the earliest Paleocene in eastern Montana may be attributable to riverine base-level changes associated with a renewed transgression of the western interior sea during the K-T transition. Patterns within the biota mirror those of the paleoenvironments. The ecological diversity of HC dinosaurs remains statistically unchanged through HC time. Analyses of vertebrates at the species level indicate a differential extinction in which the terrestrial biota underwent far more extinction than its aquatic counterpart. There is no evidence for changing environments in the upper HC, and there is circumstantial evidence that the latest Cretaceous was a time of renewed transgression rather than regression. Likewise, biotic patterns do not accord with gradual, environmentally driven extinctions. While the paleoenvironmental change that marks the K-T transition in eastern Montana accounts for some of the extinctions, the pattern of differential extinction is concordant with an asteroid impact. In this scenario, aquatic ecosystems and some land-based food chains would be buffered by detritus-based feeding. Terrestrial systems, dependent upon primary productivity, would undergo a short-term loss of resources causing extinctions.

  3. U-Pb provenance ages of shocked zircons from the K-T boundary, Raton Basin, Colorado

    NASA Technical Reports Server (NTRS)

    Premo, W. R.; Izett, G. A.

    1993-01-01

    U-Pb isotopic systematics from analyses of single zircons identify at least two provenance ages, approximately 575 Ma and approximately 330 Ma, for zircons from the impact layer of the K-T boundary, Raton Basin, Colorado. These data are a preliminary confirmation of results reported from the same layer. The zircon provenance ages provide a unique signature for identification of the source crater since igneous rocks of these ages (or sedimentary rocks derived from them) must characterize part of the impact stratigraphy.

  4. Iridium enrichment in volcanic dust from blue ice fields, Antarctica, and possible relevance to the K/T boundary event

    NASA Technical Reports Server (NTRS)

    Koeberl, Christian

    1989-01-01

    The analysis of samples of volcanic ash dust layers from the Lewis Cliff/Beardmore Glacier in Antarctica shows that some of the samples contain Ir concentrations up to 7.5 ppb. It is shown that the Ir is positively correlated with Se, As, Sb, and other volcanogenic elements. The results show that Ir may be present in some volcanic ash deposits, suggesting that the Ir in the K/T boundary clays is not necessarily of cosmic origin, but may have originated from mantle reservoirs tapped during extensive volcanic eruptions possibly triggered by impact events.

  5. Geochemistry of K/T-boundary Chicxulub ejecta of NE-Mexico

    NASA Astrophysics Data System (ADS)

    Harting, M.; Deutsch, A.; Rickers, K.

    2003-12-01

    Many K/T sections all over the world contain impact spherules supposed related to the Chicxulub event. This study focus on ejecta layers in NE-Mexican profiles. We carried out systematic XRF and synchrotron radiation measurements on such spherules at the HASYLAB and ANKA facilities as well as microprobe analyses (CAMECA SX50). Area scans on tektite-like material of the Bochil section reveal a pronounced zonation in the inner part, dominated by Ba and Sr whereas secondary CaCO3 dominates in the altered margin. The composition of the spherules from the Mesa-Juan Perez section differ significantly from the Beloc (Haiti) and Bochil tektite glasses. At Mesa-Juan Perez, spherules are either extremely rich in Fe and Ca or consist of smectite, some of those carry carbonate inclusions. Yttrium, La and Ce are zoned within the smectite with concentrations below the detection limit and up to 20 æg/g The Ca-rich inclusions are enriched in Y (up to 35 æg/g) and La (18 æg/g) and, compared to the surrounding smectite, also in Ce (up to 34 æg/g). The Ce enrichment in spherules from the Mesa-Juan Perez section indicates impact-melted carbonates of the Yucatan carbonate platform as possible precursor rocks. Recent investigations focus on the chemistry of melt rock samples from the PEMEX wells Yucatan-6 and Chicxulub-1: Their average composition (mean of 250 data points in wt-percent ) is 61.6 for SiO2, 0.16 for TiO2, 18.07 for Al2O3, 0.01 for Cr2O3, 1.98 for Na2O, 1.5 for FeO, 0.05 for MnO, 0.01 for NiO, 0.31 for MgO, 9.14 for K2O, 3.44 for CaO, and 0.01 for SO2. These results are in some cases comparable to the geochemistry of ejecta glasses, e.g. from Beloc (Haiti).

  6. Carbon and Oxygen Isotopic Measurements of K/T Boundary Spherules from Haiti

    NASA Astrophysics Data System (ADS)

    Hough, R. M.; Sigurdsson, H.; Franchi, I. A.; Wright, I. P.; Pillinger, C. T.; Gilmour, I.

    1993-07-01

    Glass spherules thought to be tektites from Haiti have previously been analyzed for their mineralogy and chemical composition to identify their origin and mode of formation [1]. They contain bubbles and occur in various colors dependent upon the original target rock. To investigate these spherules and the nature of any gas phase, several dark brown glasses have been analyzed for their carbon content and isotope composition, using stepped combustion analysis and static mass spectrometry. Both brown and yellow spherules were analyzed for oxygen isotope composition using laser fluorination and conventional dynamic gas-source mass spectrometry. Some spherules were analyzed whole for carbon but one was broken into fragments for the purpose of replication. Individual fragments were initially analyzed and found to yield a total of 0.2 wt% carbon in two components of different isotopic composition. The first, released between 350-400 degrees C had a delta^13C of -22 per mil whereas the second, between 500-600 degrees C had a delta^13C of -6.3 per mil. As the lower temperature release was presumed to be contaminated, other spherule fragments were pre- treated with 0.1M chromic acid to remove organic and carbonate components. Analyses of cleaned fragments indicated a variable carbon content from 0.005 to 2.6 wt% carbon but still with two isotopically different components. The first with a delta^13C of -0.8 per mil and the second, a delta^13C of -19.0 per mil. The spherules are both variable and heterogeneous. The -19 per mil component is apparently present in most of the spherules and released by 600 degrees C. A component with a similar combustion temperature and delta^13C has been encountered in K/T residues containing nanodiamonds [2]. There is currently no information available confirming its identity, but it does not appear to be surficial or an oxidizable organic. Identification of these carbon components by future work may reveal a possible source and mode of

  7. Cosmic Genes in the Cretaceous-Tertiary transition

    NASA Astrophysics Data System (ADS)

    Wallis, M. K.

    2003-07-01

    It is proposed that genes coding for Aib-polypeptides arose early on in the K/T transition, presumed from the Earth's accretion of interplanetary (comet) dust. Aib-fungi flourished because of the evolutionary advantage of novel antibiotics. The stress on Cretaceous biology led directly and indirectly to mass species extinctions, including many dinosaur species, in the epoch preceding the Chicxulub impact.

  8. Altered spherules of impact melt and associated relic glass from the K/T boundary sediments in Haiti

    NASA Technical Reports Server (NTRS)

    Kring, David A.; Boynton, William V.

    1991-01-01

    Partially to wholly altered glass spherules produced by impact-induced shock melting have been found in the K/T boundary sediments of Haiti which also contain grains of shocked quartz. The relic glass has an approximately dacitic composition, and although grossly similar in composition to most previously described tektite glasses, it is slightly enriched in Ca and slightly depleted in Si, suggesting the Haitian glass was produced either from a target with a greater fraction of carbonate and anhydrite lithologies and fewer silicate units than the targets from which most other tektites were produced, and/or from one with a significant mafic component. The composition of the glass can best be reconciled with a continental margin terrane, consistent with studies of shocked mineral phases reported elsewhere. The thickness of the deposit in which the impact spherules occur indicates the source of the ejecta was in the proto-Caribbean region.

  9. Altered spherules of impact melt and associated relic glass from the K/T boundary sediments in Haiti

    SciTech Connect

    Kring, D.A.; Boynton, W.V. )

    1991-06-01

    Partially to wholly altered glass spherules produced by impact-induced shock melting have been found in the K/T boundary sediments of Haiti which also contain grains of shocked quartz. The relic glass has an approximately dacitic composition, and although grossly similar in composition to most previously described tektite glasses, it is slightly enriched in Ca and slightly depleted in Si, suggesting the Haitian glass was produced either from a target with a greater fraction of carbonate and anhydrite lithologies and fewer silicate units than the targets from which most other tektites were produced, and/or from one with a significant mafic component. The composition of the glass can best be reconciled with a continental margin terrane, consistent with studies of shocked mineral phases reported elsewhere. The thickness of the deposit in which the impact spherules occur indicates the source of the ejecta was in the proto-Caribbean region.

  10. Major Marine Seaway Across India During the K-T Transition: Evidence From Deccan Traps

    NASA Astrophysics Data System (ADS)

    Sunil, B.; Keller, G.; Adatte, T.; Mohabey, D.; Widdowson, M.; Khosla, A.; Sharma, R.; Khosla, S. C.; Gertsch, B.; Fleitmann, D.; Sahni, A.

    2008-12-01

    Intertrappean beds in the main part of the Deccan Traps volcanic province of peninsular India are generally considered to be terrestrial deposits of late Maastrichtian age, lthough the precise position of the Cretaceous-Tertiary (K-T) boundary event has remained speculative. Recent investigations of the outlying Deccan Traps exposures around Rajahmundry near the southeastern coast, however, revealed the K-T event in intertrappean beds overlying the end of the main Deccan volcanic phase with the last phase of volcanic eruptions at the C29R/C29N transition (Keller et al., 2008). Further investigations in central India confirm these results and indicate that a major marine seaway existed across India during the K-T transition. The new evidence is from Deccan Traps at Jhilmili, Chhindwara District of central India, located about 800 km from the nearest ocean. Intertrappean sediments in this area have been considered as terrestrial deposition. Our multi-disciplinary investigations, including biostratigraphic, sedimentologic, mineralogic, chemo- and magnetostratigraphic analyses of the Deccan Traps and intertrappean sediments revealed: i) predominantly terrestrial to fresh water (lacustrine, palustrine) deposition with short marine incursions transporting planktic foraminifera and forming brackish-marine environments; ii) planktic foraminiferal assemblages that indicate an early Danian zone P1a age for these marine incursions; iii) the K-T boundary is above the last reversely magnetized (C29R) basalt flow, and iv) the upper basalt flow occurs near the C29R/C29N transition. These biostratigraphic and magnetostratigraphic ages corroborate the previous results from Rajahmundry and place the K-T boundary at the end of the main phase of Deccan Traps volcanism. Deposition at Jhilmili during the K/T transition thus occurred in predominantly terrestrial semi-humid to arid environmental settings with short aquatic intervals of fresh water ponds and lakes, followed by shallow

  11. Mineralogy and phase-chemistry of the Cretaceous/Tertiary section in the Lattengebirge, Bavarian Alps

    NASA Technical Reports Server (NTRS)

    Graup, G.

    1988-01-01

    The Lattengebirge K/T section reveals three distinct Ir spikes. Two of them are contained in the K/T transition zone sensu-strictu termed clayey interval, with 4.4 ppb Ir at the actual K/T boundary, and 2.8 ppb Ir 10 cm above the boundary. The highest Ir enrichment of 9 ppb, however, was detected in semi-cleaned organic material from a thin sandstone layer of Upper Maastrichtian age at 16 cm below the boundary. In this layer various discernible phases are preserved, contrasting with the worldwide observed K/T transition zones which are generally entirely composed of diagenetically altered materials. Given that, important clues to understanding the Cretaceous terminal events may be provided. The phases of the Cretaceous Ir bearing layer at Lattengebirge consist of: sandstone fragmental minerals in a carbonate matrix, coal which is partly burnt, melt glasses presumably of combustion-metamorphic origin, and sulfides, mainly chalcopyrite, contained in the coal. Like many known K/T sections and the Lattengebirge boundary sensu-strictu, the Cretaceous horizon is enriched in Ir and chalcophile elements as well. Although the Lattengebirge section offers the freshest materials, including melt glasses, of all K/T localities investigated, no unequivocal evidence of formation by impact has been found there.

  12. Strontium and oxygen isotope study of M-1, M-3 and M-4 drill core samples from the Manson impact structure, Iowa: Comparison with Haitian K-T impact glasses

    NASA Technical Reports Server (NTRS)

    Blum, Joel D.; Chamberlain, C. Page; Hingston, Michael P.; Koeberl, Christian

    1993-01-01

    Strontium and oxygen isotope analyses were performed on 8 samples from the M-1, M-3, and M-4 cores recently drilled at the Manson impact structure. The samples were three elastic sedimentary rocks (of probable Cretaceous age) which occurred as clasts within the sedimentary clast breccia, two samples of crystalline rock breccia matrix, and three samples of dolomite and limestone. The Sr-87/Sr-86 (corrected to 65 Ma) ratios were much higher than those in impact glasses from the Haitian Cretaceous-Tertiary (K-T) boundary. Isotope mixing calculations demonstrate that neither the silicate or carbonate rocks analyzed from the Manson crater, or mixtures of these rocks are appropriate source materials for the Haitian impact glasses. However, the Sr-87/Sr-86 (65Ma) ratio and delta O-18 value of the Ca-rich Haitian glasses are well reproduced by mixtures of Si-rich Haitian glass with platform carbonate of K-T age.

  13. Strontium and oxygen isotope study of M-1, M-3 and M-4 drill core samples from the Manson impact structure, Iowa: Comparison with Haitian K-T impact glasses

    NASA Astrophysics Data System (ADS)

    Blum, Joel D.; Chamberlain, C. Page; Hingston, Michael P.; Koeberl, Christian

    1993-03-01

    Strontium and oxygen isotope analyses were performed on 8 samples from the M-1, M-3, and M-4 cores recently drilled at the Manson impact structure. The samples were three elastic sedimentary rocks (of probable Cretaceous age) which occurred as clasts within the sedimentary clast breccia, two samples of crystalline rock breccia matrix, and three samples of dolomite and limestone. The Sr-87/Sr-86 (corrected to 65 Ma) ratios were much higher than those in impact glasses from the Haitian Cretaceous-Tertiary (K-T) boundary. Isotope mixing calculations demonstrate that neither the silicate or carbonate rocks analyzed from the Manson crater, or mixtures of these rocks are appropriate source materials for the Haitian impact glasses. However, the Sr-87/Sr-86 (65Ma) ratio and delta O-18 value of the Ca-rich Haitian glasses are well reproduced by mixtures of Si-rich Haitian glass with platform carbonate of K-T age.

  14. Impact mechanics of the Cretaceous-Tertiary extinction bolide

    NASA Technical Reports Server (NTRS)

    Okeefe, J. D.; Ahrens, T. J.

    1982-01-01

    An examination of the mechanics of asteroidal, cometary, and meteor swarm impact on the earth determined if the enrichment of projectile material in the K-T layer is consistent with melts and impact breccias on the earth and moon, the size of the impacters, the distribution of the kinetic energy, and the sequence of impacts that could give rise to observed extinction phenomena. Flows resulting from spherical projectile impacts onto layers of air, water, and silicates were modeled and Eulerian finite difference algorithms were employed to solve conservation equations and equations of state. A range of speeds and impacter densities were considered, along with sizes from 0.17 km, which would be consumed in the atmosphere, to a 10 km object, which would have had a diameter greater than a reference 7.1 km atmosphere depth. It is concluded that an impact of the K-T bolide could result in global biotic extinction and worldwide material deposition.

  15. Trace-element composition of Chicxulub crater melt rock, K/T tektites and Yucatan basement

    NASA Technical Reports Server (NTRS)

    Hildebrand, A. R.; Gregoire, D. C.; Attrep, M., Jr.; Claeys, P.; Thompson, C. M.; Boynton, W. V.

    1993-01-01

    The Cretaceous/Tertiary (K/T) boundary Chicxulub impact is the best preserved large impact in the geologic record. The Chicxulub crater has been buried with no apparent erosion of its intracrater deposits, and its ejecta blanket is known and is well preserved at hundreds of localities globally. Although most of the molten material ejected from the crater has been largely altered, a few localities still preserve tektite glass. Availability of intra- and extracrater impact products as well as plausible matches to the targeted rocks allows the comparison of compositions of the different classes of impact products to those of the impacted lithologies. Determination of trace-element compositions of the K/T tektites, Chicxulub melt rock, and the targeted Yucatan silicate basement and carbonate/evaporite lithologies have been made using instrumental neutron activation analysis (INAA) and inductively coupled plasma mass spectrometry (ICP-MS). Some sample splits were studied with both techniques to ensure that inter-laboratory variation was not significant or could be corrected. The concentration of a few major and minor elements was also checked against microprobe results. Radiochemical neutron activation analysis (RNAA) was used to determine Ir abundances in some samples.

  16. Avian evolution, Gondwana biogeography and the Cretaceous-Tertiary mass extinction event.

    PubMed Central

    Cracraft, J.

    2001-01-01

    The fossil record has been used to support the origin and radiation of modern birds (Neornithes) in Laurasia after the Cretaceous-Tertiary mass extinction event, whereas molecular clocks have suggested a Cretaceous origin for most avian orders. These alternative views of neornithine evolution are examined using an independent set of evidence, namely phylogenetic relationships and historical biogeography. Pylogenetic relationships of basal lineages of neornithines, including ratite birds and their allies (Palaleocognathae), galliforms and anseriforms (Galloanserae), as well as lineages of the more advanced Neoves (Gruiformes, (Capimulgiformes, Passeriformes and others) demonstrate pervasive trans-Antarctic distribution patterns. The temporal history of the neornithines can be inferred from fossil taxa and the ages of vicariance events, and along with their biogeographical patterns, leads to the conclusion that neornithines arose in Gondwana prior to the Cretaceous Tertiary extinction event. PMID:11296857

  17. Weathering and precipitation after meteorite impact of Ni, Cr, Fe, Ca and Mn in K-T boundary clays from Stevns Klint

    NASA Astrophysics Data System (ADS)

    Miyano, Yumiko; Yoshiasa, Akira; Tobase, Tsubasa; Isobe, Hiroshi; Hongu, Hidetomo; Okube, Maki; Nakatsuka, Akihiko; Sugiyama, Kazumasa

    2016-05-01

    Ni, Cr, Fe, Ca and Mn K-edge XANES and EXAFS spectra were measured on K-T boundary clays from Stevns Klint in Denmark. According to XANES spectra and EXAFS analyses, the local structures of Ni, Cr and Fe in K-T boundary clays is similar to Ni(OH)2, Cr2O3 and FeOOH, respectively. It is assumed that the Ni, Cr and Fe elements in impact related glasses is changing into stable hydrate and oxide by the weathering and diagenesis at the surface of the Earth. Ca in K-T boundary clays maintains the diopside-like structure. Local structure of Ca in K-T clays seems to keep information on the condition at meteorite impact. Mn has a local structure like MnCO3 with divalent state. It is assumed that the origin on low abundant of Mn in the Fe-group element in K-T clays was the consumption by life activity and the diffusion to other parts.

  18. Cretaceous - Tertiary Hoploparia species: Occurrence, paleobiogeography and predation context

    NASA Astrophysics Data System (ADS)

    El-Shazly, Soheir

    2015-12-01

    The study of Hoploparia species in 25 localities in Northern and Southern Hemispheres from Early Cretaceous to Early Miocene reveals the appearance of 51 species in Early Cretaceous, mostly in Northern Hemisphere, 46 species from Late Cretaceous (42 and 4 carryover from the Early Cretaceous), 7 species from Danian (4 plus 3 carryover from the Late Cretaceous), 7 species from Eocene (6 plus one from the Early Cretaceous), 2 species from Lower Oligocene and the last recorded species Hoploparia persisted in the Early Miocene of Antarctica. The oldest Hoploparia was recorded from Europe and distributed through the Northern and Southern Hemispheres with the facilitation of the Indo-Madagascar sea-way and Hispanic corridor. The tolerance for temperature and water depth as well as the morphological changes in genus Hoploparia in the Late Cretaceous and Tertiary periods, helped some species to survive the K/T event. Drill-hole predation in Hoploparia longimana (Sowerby, 1826) was recorded for the first time from the Lower Cretaceous (Albian) of Egypt.

  19. RESULTS OF A DATING ATTEMPT -CHEMICAL AND PHYSICAL MEASUREMENTS RELEVANT TO THE CASE OF THE CRETACEOUS TERTIARY EXTINCTIONS

    SciTech Connect

    Asaro, Frank; Michel, Helen V.; Alvarez, Luis W.; Alvarez, Walter

    1980-09-01

    In Gubbio, Italy, a l em layer of clay between extensive limestone formations marks the boundary between the Cretaceous and Tertiary Periods. This clay layer was known to have been deposited about 65 million years ago when many life forms became extinct, but the length of time associated with the deposition was not known. In an attempt to measure this time with normally deposited meteoritic material as a clock, extensive measurements of iridium abundances (and those of many other elements) were made on the Gubbio rocks. Neutron activation analysis was the principal tool used in these studies. About 50 elements are searched for in materials like the earth's crust, about 40 are detected and about 30 are measured with useful precision. We were not able to determine exactly how long the clay deposition took. Instead the laboratory studies on the chemical and physical nature of the Cretaceous-Tertiary boundary led to the theory that an asteroid collision with the earth was responsible for the extinction of many forms of life including the dinosaurs.

  20. Plants with double genomes might have had a better chance to survive the Cretaceous-Tertiary extinction event.

    PubMed

    Fawcett, Jeffrey A; Maere, Steven; Van de Peer, Yves

    2009-04-01

    Most flowering plants have been shown to be ancient polyploids that have undergone one or more whole genome duplications early in their evolution. Furthermore, many different plant lineages seem to have experienced an additional, more recent genome duplication. Starting from paralogous genes lying in duplicated segments or identified in large expressed sequence tag collections, we dated these youngest duplication events through penalized likelihood phylogenetic tree inference. We show that a majority of these independent genome duplications are clustered in time and seem to coincide with the Cretaceous-Tertiary (KT) boundary. The KT extinction event is the most recent mass extinction caused by one or more catastrophic events such as a massive asteroid impact and/or increased volcanic activity. These events are believed to have generated global wildfires and dust clouds that cut off sunlight during long periods of time resulting in the extinction of approximately 60% of plant species, as well as a majority of animals, including dinosaurs. Recent studies suggest that polyploid species can have a higher adaptability and increased tolerance to different environmental conditions. We propose that polyploidization may have contributed to the survival and propagation of several plant lineages during or following the KT extinction event. Due to advantages such as altered gene expression leading to hybrid vigor and an increased set of genes and alleles available for selection, polyploid plants might have been better able to adapt to the drastically changed environment 65 million years ago. PMID:19325131

  1. Stratigraphy of the Cretaceous-Tertiary and Paleocene-Eocene transition rocks of Big Bend National Park, Texas

    SciTech Connect

    Schiebout, J.A.; Rigsby, C.A.; Rapp, S.D.; Hartnell, J.A.; Standhardt, B.R.

    1987-05-01

    The marine to terrestrial transition in the Big Bend area falls within the Late Cretaceous Aguja Formation, and, in light of new biostratigraphic data resulting from screening for small vertebrates and magneto-stratigraphic data, the Cretaceous-Tertiary boundary falls within the Javelina Formation, which includes the first red banding produced by oxidation of overbank fluvial mudstones. No record of a catastrophic event is apparent in the Javelina Formation. The Javelina, Black Peaks, and Hannold Hill Formations and the Big Yellow Sandstone Member of the Canoe Formation record increasing uplift in the region, culminating in uplift and volcanism in the Chisos mountains, the source for upper Canoe Formation sediments. The sequence of changes produced by this trend and by unroofing in source highlands to the west is sufficiently gradual that the Javelina through Black Peaks units are not lithostratigraphically distinct at the formation level and therefore are reduced to member status, and placed, along with the Big Yellow Sandstone Member, within the redefined Tornillo Formation. The Aguja Formation and the Tornillo Formation are united in the Chilicotal Group (new), which spans the deposits from the first significant influxes of terrestrial sediments, formed as the Cretaceous sea retreated, up to the beginning of local volcanism in the Chisos. The volcanic strata of the upper Canoe Formation are reassigned to the Chisos Formation. 46 references.

  2. Cretaceous Tertiary phenomena in the context of seafloor rearrangements and P(CO 2) fluctuations over the past 100 m.y.

    NASA Astrophysics Data System (ADS)

    Liu, Y.-G.; Schmitt, R. A.

    1996-03-01

    Both the bolide impact hypothesis and the volcanism hypothesis suggest, as one of the major environmental consequences, the release of large amounts of SO 2 and CO 2 into the atmosphere, with consequent lowering of the pH of ocean water. In the study of rare earth elements (REEs) in seawater and in carbonate sediments, we found that the Ce in seawater is depleted relative to other REEs due to the partial oxidation of Ce 3+ to Ce 4+ by dissolved oxygen. This oxidation is enhanced by the formation of highly insoluble Ce(OH) 4 and its removal from seawater. The relative Ce depletion is expressed as the Ce anomaly, Ce A*. A quantitative expression for relating Ce A* with pH and PO 2 has been derived. Owing to the involvement of OH - in this process, Ce A* is essentially controlled by the pH of seawater. The REE pattern in seawater is preserved in carbonate sediments. Therefore, the Ce anomalies in marine carbonate sediments provide a unique tool for recording pH changes in paleo-ocean water. Furthermore, the pH of ocean water is controlled by the partial pressure of CO 2, PCO 2, in the atmosphere; therefore, the corresponding PCO 2 changes are derived. About 340 Pacific carbonate sediment samples have been studied by INAA (Instrumental Neutron Activation Analysis). Three major Ce A* peaks at ~17, ~53, and ~63 Ma, as well as two minor peaks at 64.6 and 65.2 Ma, were found. The correspondence between observed Ce A* major peaks and the enhanced hydrothermal activity associated with tectonic seafloor rearrangements at these times suggests that the pH of the deep (>600 m) Pacific water was lowered by CO 2 generated by enhanced hydrothermal activity. Manganese and Co, which are highly enriched in hydrothermal solutions, closely follow the Ce A* pattern. This is strong evidence that the Ce A* peaks are related to the elevated levels of hydrothermal activity. The absence of Ce A* changes at the K/T (Cretaceous/Tertiary)-Ir boundary (≡65.0 Ma) suggests that the proposed

  3. Paleosols and the Cretaceous/Tertiary transition in the Big Bend region of Texas

    SciTech Connect

    Lehman, T.M. )

    1990-04-01

    A marked change in paleosols coincides with Cretaceous/Tertiary transition in fluvial sediments of the Big Bend region in Texas. Early Paleocene paleosols exhibit thick, black epipedons and a greater depth to the argillic and petrocalcic horizons compared to Late Cretaceous paleosols. These features and comparison with modern soils suggest that early Paleocene soils developed under conditions of higher rainfall and cooler temperatures than did Late Cretaceous soils. The change in paleosols occurs abruptly at the highest occurrence of dinosaur bones in the section.

  4. Dynamics of exploding magma chambers: Implications for K-T volcanism and mass extinctions

    NASA Technical Reports Server (NTRS)

    Rice, A. R.

    1988-01-01

    Although it is well known that unconfined chemical explosives may yield pressures to several megabars on detonation in air, the explosive literature has yet to be accessed by some contributors to the volcanological literature who've indicated that pressures in excess of the overburden and/or tensile cannot be obtained. Idealized ballistic assessments of pressures internal to volcanoes yield pressures in the hundreds of kilobar range upon correction by addition of friction, etc. Previous assessments of exploding magma chamber pressure have been made from the characteristics of the Mt. St. Helens explosion. A variety of methods yield pressures of similar value: at least hundreds of kilobars. Such results are consistent with free energy requirements for quench supersaturation explosion, a process occurring in solidifying industrial melts. Several reviews of geochemical literature emphasize the carbon event at the Cretaceous-Tertiary (K-T) boundary as being an indicator of a massive dump of CO2 derived from the mantle and entering the atmosphere by extensive global volcanism. Oxygen isotope data indicates extreme warming at the end of the Cretaceous which is consistent with a greenhouse effect attending the CO2 event. Reaction rate equations for the quench supersaturation explosion mechanism indicated, are consistent with the rise in pressure to 30 kbar on solidification of magmatic melts, these pressures limited by the strength of the experimental apparatus.

  5. Assessment of Undiscovered Oil and Gas Resources in Cretaceous-Tertiary Coal Beds of the Gulf Coast Region, 2007

    USGS Publications Warehouse

    Warwick, Peter D.

    2007-01-01

    Using a geology-based assessment methodology, the U.S. Geological Survey estimated a mean of 4.06 trillion cubic feet of undiscovered, technically recoverable natural gas in Cretaceous-Tertiary coal beds of the onshore lands and State waters of the Gulf Coast.

  6. Mass Wasting during the Cretaceous/Tertiary Transition in the North Atlantic: Relationship to the Chicxulub Impact?

    NASA Astrophysics Data System (ADS)

    Mateo, Paula; Keller, Gerta; Adatte, Thierry; Spangenberg, Jorge

    2015-04-01

    Deep-sea sections in the North Atlantic are claimed to contain the most complete sedimentary records and ultimate proof that the Chicxulub impact is Cretaceous-Tertiary boundary (KTB) in age and caused the mass extinction. A multi-disciplinary study of North Atlantic DSDP Sites 384, 386 and 398, based on high-resolution planktonic foraminiferal biostratigraphy, carbon and oxygen stable isotopes, clay and whole-rock mineralogy and granulometry, reveals the age, stratigraphic completeness and nature of sedimentary disturbances. Results show a major KTB hiatus at Site 384 with zones CF1, P0 and P1a missing, spanning at least ~540 ky, similar to other North Atlantic and Caribbean localities associated with tectonic activity and Gulf Stream erosion. At Sites 386 and 398, discrete intervals of disturbed sediments with mm-to-cm-thick spherule layers have previously been interpreted as KTB age impact-generated earthquakes destabilizing continental margins prior to settling of impact spherules. However, improved age control based on planktonic foraminifera indicates deposition in the early Danian zone P1a(2) (upper Parvularugoglobigerina eugubina zone) more than 100 ky after the KTB. At Site 386, two intervals of white chalk contain very small (<63 μm) early Danian zone P1a(2) (65%) and common reworked Cretaceous (35%) species, in contrast to the in situ red-brown and green abyssal clays that are devoid of carbonate. In addition, high calcite, mica and kaolinite and upward-fining are observed in the chalks, indicating downslope transport from shallow waters and sediment winnowing via distal turbidites. At Site 398, convoluted red to tan sediments with early Danian and reworked Cretaceous species represent slumping of shallow water sediments as suggested by dominance of mica and low smectite compared to in situ deposition. We conclude that mass wasting was likely the result of earthquakes associated with increased tectonic activity in the Caribbean and the Iberian Peninsula

  7. Did Deccan Volcanism or the Chicxulub Impact Cause the K-T Mass Extinction?

    NASA Astrophysics Data System (ADS)

    Keller, G.; Reddy, A. N.; Jaiprakash, B. C.; Gertsch, B.; Adatte, T.; Upadhyay, H.; Bhowmick, P. K.; Pande, D. K.

    2008-12-01

    It is generally believed that the Chicxulub impact caused the Cretaceous-Tertiary (K-T) mass extinction. However, strong evidence from Mexico and Texas shows that this impact predates the K-T boundary and caused no species extinctions or any other significant environmental effects (Keller et al., 2003, 2007). The Chicxulub impact and K-T mass extinction are thus two separate and unrelated events and the biotic effects of this impact have been vastly overestimated. The real cause for the K-T mass extinction may now have been discovered in the Deccan volcanic eruptions of India. Recent discoveries reveal Deccan volcanism as the most likely cause for the K-T mass extinction for several reasons detailed in Chenet et al. (2007), Keller et al. (2008) and Self et al. (2008): (1) The main phase of Deccan Trap eruptions may have occurred over as little as 10,000 to 100,000 years. (2) The K-T mass extinction coincides with the end of this main phase of volcanism. (3) The longest lava flows (megaflows), spanning 1000 km across India and out to the Gulf of Bengal, mark this phase of Deccan volcanism and the mass extinction. (4) SO2 emissions associated with just one of these major volcanic pulses, or megaflows, are on the order of SO2 emissions estimated from the Chicxulub impact. (5) The total SO2 emissions during the main phase of Deccan volcanism are estimated at 30 to 100 times that of the Chicxulub impact. Thus, the short duration of volcanism and the repeated massive SO2 injections may have caused a deadly runaway effect that lead to the K-T mass extinction. Critical new data on the K-T mass extinction comes from investigations of Deccan Traps outcrops at Jhilmili, Madhya Pradesh, central India, quarry outcrops in Rajahmundry and subsurface cores drilled in the Krishna-Godavari Basin, eastern India, by the Oil and Natural Gas Corporation of India (ONGC). In eight subsurface cores examined, a total of 9 volcanic megaflows have been identified as occurring in very rapid

  8. Evidence of volcanic ash at a K-T boundary section: Ocean drilling program hole 690 C, Maud Rise, Weddell Sea off East Antarctica

    NASA Technical Reports Server (NTRS)

    Wise, S. W.; Hamilton, N.; Pospichal, J.; Barker, P. F.; Kennett, James P.; Oconnell, S.; Bryant, W. R.; Burckle, L. H.; Egeberg, P. K.; Futterer, D. K.

    1988-01-01

    Rare vitric volcanogenic ash but more abundant clay minerals considered volcanogenic in origin are associated with an expanded and essentially complete K-T boundary sequence from Ocean Drilling Project (ODP) Hole 690 C on Maud Rise in the Weddell Sea off East Antarctica. Results at this writing are preliminary and are still based to some extent on shipboard descriptions. Further shore-based studies are in progress. It would appear, however, that the presence of volcanic ash and altered ash in the Danian section beginning at the biostratigraphically and paleomagnetically determined K-T boundary on Maud Rise can be cited as evidence of significant volcanic activity within the South Atlantic-Indian Ocean sector of the Southern Ocean coincident with the time of biotic crises at the end of the Maestrichtian. This is a postulated time of tectonic and volcanic activity within this Southern Hemisphere region, including possible initiation of the Reunion hot spot and a peak in explosive volcanism on Walvis Ridge (1) among other events. A causal relationship with the biotic crisis is possible and volcanism should be given serious consideration as a testable working hypothesis to explain these extinctions.

  9. The K-T Transition in Meghalaya, NE India

    NASA Astrophysics Data System (ADS)

    Gertsch, B.; Keller, G.; Adatte, T.; Garg, R.; Prasad, V.; Berner, Z.; Ateequzzaman, K.; Stueben, D.

    2008-12-01

    produced in the hypolimnion. Sedimentological, mineralogical, geochemical, biostratigraphic and paleoecological studies of the Um Sohryngkew Cretaceous-Tertiary (K-T) transition in the Khasi Hills of Meghalaya, India, reveal biotic and environmental changes about 800 km from the Deccan volcanic province (DVP). Upper Cretaceous sediments consist mainly of conglomerates, glauconitic sandstone, sandy shale, calcareous shale with a few shell beds and rare coal pockets, all of which indicate deposition in a shallow marine environment with high detrital influx from nearby continental terrains. High kaolinite and illite indicate high humidity and high runoff. The K-T transition is in calcareous silty shale and marked by a 1 cm thin "rust colored" layer with high anomalies in Ir (11.8 ppb), Ru (108 ppb), Rh (93 ppb) and Pd (75 pbb). In the Danian, kaolinite remains the dominant clay mineral, suggesting humid climatic conditions. In contrast, semi-arid climate conditions prevailed in the contemporaneous Deccan Traps province, which appears to be linked to "mock aridity" (Harris and Van Couvering, 1995, Khadkikar et al., 1999). Microfossil assemblages define the K-T boundary. Nannofossils are common throughout the Upper Maastrichtian interval. Assemblages dominated by Micula decussata and Watzenueria barnesae along with common Ceratolithioides kampteneri and Lithraphidites quadratus are typical of the low latitude Tethys and Micula prinsii attests to the presence of the terminal Maastrichtian. Dinoflagellate cysts are common to abundant with increased frequencies of peridiniods, terrestrial organic matter and framboidal pyrite in the uppermost Maastrichtian. This suggests high nutrient loading possibly leading to stressful eutrophic conditions. Dinogymnium and Alisogymnium species have their last occurrences at the K-T boundary. The first appearence of Danian nannofossil species Neobiscutum romeinii and Biantholithus sparsus appear at 5 cm and 15 cm above the K-T boundary

  10. Geochemistry of impact glasses from the K/T boundary in Haiti - Relation to smectites and a new type of glass

    NASA Technical Reports Server (NTRS)

    Koeberl, Christian; Sigurdsson, Haraldur

    1992-01-01

    Detailed element analyses were carried out on 12 black and seven yellow glasses from the K/T boundary section at Beloc (Haiti), and of three samples from smectite mantles around black glasses. The results obtained for bulk black and yellow glasses show differences between these, confirming the results of Sigurdsson et al. (1991) and Izett (1991), and the results obtained on individual spherules and shards are in agreement with bulk data. The present data also demonstrate, for the first time, the existence of yellow glass samples with high CaO but low S contents, which might have formed by fusion of various proportions of carbonates and evaporites or carbonates alone. One of the black glasses was found to have higher than average SiO2 and K2O abundances but lower concentrations of all other major elements. This suggests the existence of a third glass type, named the high Si-K variety (HSi,K) glass.

  11. Bolide impacts, acid rain, and biospheric traumas at the Cretaceous-Tertiary boundary

    NASA Technical Reports Server (NTRS)

    Prinn, Ronald G.; Fegley, Bruce, Jr.

    1987-01-01

    Two plausible projectiles are considered: an ice-rich long-period comet and a much smaller rock-metal asteroid. In the framework of a proposal addressed by Lewis et al. (1982), it is shown that, while the impact projectiles themselves do not shock-heat the atmosphere very extensively, the supersonic plume of water vapor and rock produced on impact does shock the atmosphere up to global scales and the shock is of sufficient intensity to produce abundant nitric oxide. For example, an ice-rich long-period comet with a mass of 1.25 x 10 to the 16th kg and a velocity of 65 km/s striking the earth would produce about 7 x 10 to the 40th molecules NO through shock-heating of the atmosphere by the high-velocity ejecta plume fragments. Specific attention is given to the fraction of the atmosphere shock-heated, the global circulation of the nitrogen oxides, the effects of the ejecta plume water on acid rain (AR) predictions, the effects of AR on continental soils, the relationship between AR production rates and the total amount of acid needed to acidify the surface oceans, and the longevity of the oceanic acidity event and the exhaled CO2 event and their implications for the environment in the first millenia or so after the impact.

  12. Seawater strontium isotopes, acid rain, and the Cretaceous-Tertiary boundary

    NASA Technical Reports Server (NTRS)

    Macdougall, J. D.

    1988-01-01

    A large bolide impact at the end of the Cretaceous would have produced significant amounts of nitrogen oxides by shock heating of the atmosphere. The resulting acid precipitation would have increased continental weathering greatly and could be an explanation for the observed high ratio of strontium-87 to strontium-86 in seawater at about this time, due to the dissolution of large amounts of strontium from the continental crust. Spikes to high values in the seawater strontium isotope record at other times may reflect similar episodes.

  13. An iridium abundance anomaly at the palynological Cretaceous-Tertiary boundary in northern New Mexico

    USGS Publications Warehouse

    Orth, C.J.; Gilmore, J.S.; Knight, J.D.; Pillmore, C.L.; Tschudy, R.H.; Fassett, J.E.

    1981-01-01

    An iridium abundance anomaly, with concentrations up to 5000 parts per trillion over a background level of 4 to 20 parts per trillion, has been located in sedimentary rocks laid down under freshwater swamp conditions in the Raton Basin of northeastern New Mexico. The anomaly occurs at the base of a coal bed, at the same stratigraphic position at which several well-known species of Cretaceous-age pollen became extinct. Copyright ?? 1981 AAAS.

  14. Nature and timing of extinctions in Cretaceous-Tertiary planktic foraminifera preserved in Deccan intertrappean sediments of the Krishna-Godavari Basin, India

    NASA Astrophysics Data System (ADS)

    Keller, G.; Adatte, T.; Bhowmick, P. K.; Upadhyay, H.; Dave, A.; Reddy, A. N.; Jaiprakash, B. C.

    2012-08-01

    In C29r below the Cretaceous-Tertiary boundary (KTB) massive Deccan Trap eruptions in India covered an area the size of France or Texas and produced the world’s largest and longest lava megaflows 1500 km across India through the Krishna-Godavari (K-G) Basin into the Bay of Bengal. Investigation of ten deep wells from the K-G Basin revealed four lava megaflows separated by sand, silt and shale with the last megaflow ending at or near the KTB. The biologic response in India was swift and devastating. During Deccan eruptions prior to the first megaflow, planktic foraminifera suffered 50% species extinctions. Survivors suffered another 50% extinctions after the first megaflow leaving just 7-8 species. No recovery occurred between the next three megaflows and the mass extinction was complete with the last mega-flow at or near the KTB. The last phase of Deccan volcanism occurred in the early Danian C29n with deposition of another four megaflows accompanied by delayed biotic recovery of marine plankton. Correlative with these intense volcanic phases, climate changed from humid/tropical to arid conditions and returned to normal tropical humidity after the last phase of volcanism. The global climatic and biotic effects attributable to Deccan volcanism have yet to be fully investigated. However, preliminary studies from India to Texas reveal extreme climate changes associated with high-stress environmental conditions among planktic foraminifera leading to blooms of the disaster opportunist Guembelitria cretacea during the late Maastrichtian.

  15. The high oxygen atmosphere toward the end-Cretaceous; a possible contributing factor to the K/T boundary extinctions and to the emergence of C(4) species.

    PubMed

    Gale, J; Rachmilevitch, S; Reuveni, J; Volokita, M

    2001-04-01

    Angiosperm plants were grown under either the present day 21 kPa O(2) atmosphere or 28 kPa, as estimated for the end-Cretaceous (100-65 MyBP). CO(2) was held at different levels, within the 24-60 Pa range, as also estimated for the same period. In C(3) Xanthium strumarium and Atriplex prostrata, leaf area and net photosynthesis per unit leaf area, were reduced by the high O(2), while the whole-plant respiration/photosynthesis ratio increased. The high O(2) effects were strongest under 24 Pa, but still significant under 60 Pa CO(2). Growth was reduced by high O(2) in these C(3) species, but not in Flaveria sp., whether C(3), C(4), or intermediary grown under light intensities <350 micromol m(-2) s(-1) PPF. Photosynthesis of C(3) Flaveria sp. was reduced by high O(2), but only at light intensities >350 micromol m(-2) s(-1) PPF. It is concluded that the high O(2) atmosphere at the end-Cretaceous would have reduced growth of at least some of the vegetation, thus adversely affecting dependent fauna. The weakened biota would have been predisposed to the consequences of volcanism and the K/T boundary bolide impact. Conversely, photosynthesis and growth of C(4) Zea mays and Atriplex halimus were little affected by high, 28 kPa, O(2). This suggests an environmental driver for the evolution of C(4) physiology. PMID:11413216

  16. The Talara Basin province of northwestern Peru: cretaceous-tertiary total petroleum system

    USGS Publications Warehouse

    Higley, Debra K.

    2004-01-01

    More than 1.68 billion barrels of oil (BBO) and 340 billion cubic feet of gas (BCFG) have been produced from the Cretaceous-Tertiary Total Petroleum System in the Talara Basin province, northwestern Peru. Oil and minor gas fields are concentrated in the onshore northern third of the province. Current production is primarily oil, but there is excellent potential for offshore gas resources, which is a mostly untapped resource because of the limited local market for gas and because there are few pipelines. Estimated mean recoverable resources from undiscovered fields in the basin are 1.71 billion barrels of oil (BBO), 4.79 trillion cubic feet of gas (TCFG), and 255 million barrels of natural gas liquids (NGL). Of this total resource, 15 percent has been allocated to onshore and 85 percent to offshore; volumes are 0.26 BBO and 0.72 TCFG onshore, and 1.45 BBO and 4.08 TCFG offshore. The mean estimate of numbers of undiscovered oil and gas fields is 83 and 27, respectively. Minimum size of fields that were used in this analysis is 1 million barrels of oil equivalent and (or) 6 BCFG. The Paleocene Talara forearc basin is superimposed on a larger, Mesozoic and pre-Mesozoic basin. Producing formations, ranging in age from Pennsylvanian to Oligocene, are mainly Upper Cretaceous through Oligocene sandstones of fluvial, deltaic, and nearshore to deep-marine depositional origins. The primary reservoirs and greatest potential for future development are Eocene sandstones that include turbidites of the Talara and Salinas Groups. Additional production and undiscovered resources exist within Upper Cretaceous, Paleocene, and Oligocene formations. Pennsylvanian Amotape quartzites may be productive where fractured. Trap types in this block-faulted basin are mainly structural or a combination of structure and stratigraphy. Primary reservoir seals are interbedded and overlying marine shales. Most fields produce from multiple reservoirs, and production is reported commingled. For this

  17. K-T magmatism of western Rajasthan, India: Manifestation of Reunion plume activity or extensional lithospheric tectonics?

    NASA Astrophysics Data System (ADS)

    Sharma, K.

    2004-12-01

    A number of alkaline plutons have been recorded at the K-T (Cretaceous-Tertiary) boundary in western Rajasthan, India. Significant magmatism occurred at Mundwara, Barmer, Sarnu-Dandali and Tavider. The evolution of the Cambay-Sanchor-Barmer rift during the K-T period resulted in these alkaline complexes at the rift margins. Sedimentary basins are developed in the Barmer and Jaiselmer regions. The magmatism of Mundwara and Sarnu-Dandali is dated at 68.50 Ma and considered as an early pulse of Deccan volcanism. Several workers correlated K-T sedimentary basin evolution, magmatism and other tectonic features of western Rajasthan with the Reunion plume-interaction in the northwestern Indian shield. Alkaline igneous complexes along the rift from the southern part are reported from Phenai Mata, Amba Dongar and Seychelles. The Seychelles was part of the northwestern Indian shield prior to Deccan volcanism. The Mundwara igneous complex represents three distinct circular plutonic bodies - Toa, Mer and Mushala, which are situated in the periphery of an area three kilometers in radius. Besides these, there are numerous concentric and radial dykes of lamprophyre, carbonatite, dolerite and amphibolite. All these three bodies represent different phases of intrusion and are not similar to each other. The alkaline rocks of Sarnu-Dandali occur as dykes and isolated plugs in the desert sand. Carbonatite dykes are also reported from southeast of Barmer. The Tavider outcrop is devoid of any plutonic rock and consists of rhyolite, andesite and basalt. These rocks occur along the Precambrian Malani magmatic lineaments. The development of the Cambay-Sanchor-Barmer rift caused reactivation of Precambrian fractures and resulted in magmatism at the basin margin. The Gondwanaland fragmentation during the Mesozoic era caused extensional tectonics in the northwestern Indian shield. This led to the development of rift basins in Gujarat and western Rajasthan. Deccan volcanism, separation of the

  18. Strangelove ocean at era boundaries, terrestrial or extraterrestrial cause

    NASA Technical Reports Server (NTRS)

    Hsue, Kenneth J.

    1988-01-01

    Negative perturbations in carbon-isotope value of calcite in pelagic sediments were found at times of biotic crisis, marking horizons which are, or were proposed as era boundaries: Cretaceous/Tertiary (K/T), Permian/Triassic (P/T), and Precambrian/Cambrian (PreC/C). The anomaly was also found at several other mass-extinction horizons, such as terminal Ordovician, Frasnian-Famenian, etc. Studies of K/T boundary indicate that only the planktic fraction of the sediments has the negative isotope anomaly, whereas the benthic fraction has the same value across the boundary. This geochemical signal is thus considered a record of strangelove ocean, or an ocean where isotope fractionation of dissolved carbonate ions in surface waters (by biotic function of planktic organisms) has been significantly reduced because of the drastic reduction of the biomass in the oceans. The reduction of marine biomass at each of the era boundaries was related to chemical pollution of the oceans as a consequence of a catastrophic event; a pH decrease of 0.5 could inhibit the fertility of planktons. Studies of earthquakes, volcanic eruptions, and meteorite-impact occurrences have indicated a linearly inverse log/log relationship between the magnitude and frequency of events. The frequency of era boundaries in geologic history supports the postulate that the rare events causing those biotic crises were large bolide-impacts.

  19. Placental mammal diversification and the Cretaceous–Tertiary boundary

    PubMed Central

    Springer, Mark S.; Murphy, William J.; Eizirik, Eduardo; O'Brien, Stephen J.

    2003-01-01

    Competing hypotheses for the timing of the placental mammal radiation focus on whether extant placental orders originated and diversified before or after the Cretaceous-Tertiary (K/T) boundary. Molecular studies that have addressed this issue suffer from single calibration points, unwarranted assumptions about the molecular clock, and/or taxon sampling that lacks representatives of all placental orders. We investigated this problem using the largest available molecular data set for placental mammals, which includes segments of 19 nuclear and three mitochondrial genes for representatives of all extant placental orders. We used the Thorne/Kishino method, which permits simultaneous constraints from the fossil record and allows rates of molecular evolution to vary on different branches of a phylogenetic tree. Analyses that used different sets of fossil constraints, different priors for the base of Placentalia, and different data partitions all support interordinal divergences in the Cretaceous followed by intraordinal diversification mostly after the K/T boundary. Four placental orders show intraordinal diversification that predates the K/T boundary, but only by an average of 10 million years. In contrast to some molecular studies that date the rat–mouse split as old as 46 million years, our results show improved agreement with the fossil record and place this split at 16–23 million years. To test the hypothesis that molecular estimates of Cretaceous divergence times are an artifact of increased body size subsequent to the K/T boundary, we also performed analyses with a “K/T body size” taxon set. In these analyses, interordinal splits remained in the Cretaceous. PMID:12552136

  20. Multielement geochemical investigations by SRXRF microprobe studies on tectite material: Evidence from the NE-Mexican Cretaceous/Tertiary record

    NASA Astrophysics Data System (ADS)

    Harting, M.; Rickers, K.; Kramar, U.; Simon, R.; Staub, S.; Schulte, P.

    2002-12-01

    The K/T boundary is long known as one of a few mass extinctions in earth history. The impact of a big meteorite at the Chicxulub on the northern Yucatan peninsula in Mexico is discussed to have triggered the faunal mass extinction and the rapid change of the palaeoenvironmental conditions near the K/T boundary. Tectite material, especially spherules are explained from many of the sections in correlation to the K/T-boundary event. This rare, glassy or alterated material is extremely variable in its major element chemistry, morphology and stratigraphic position in K/T transitions worldwide. For the first time, we perfom trace element analysis on tectites from the K/T boundary using synchrotron radiation XRF (SRXRF). Measurements were performed at the Hamburger Strahlungssynchrotronlabor HASYLAB at DESY (Hamburg, Germany) and at the ANKA (Karlsruhe, Germany) with polychromatic and monochromatic excitation, respectively collimating the beam to 15 æm by capillary optics. Based on results from SRXRF microprobe determinations, these structures are to be interpreted as mixing of several melts with different chemical composition. The different components may represent melts from different sediment layers and possibly of basement material excavated by the Chicxulub impact. Igneous rocks with andesitic composition in cores at Chicxulub are considered to be impact melt rocks and are correlated mainly by the composition of major elements with the glass spherules found in the surrounding. Our investigations show that it is possible to trace elements with high sensitivity and a high spatial resolution. Some of the samples show clearly zonation and alteration parts, as well as carbonate inclusions, triggered by the Chicxulub impact event. In general, the results from the SRXRF show that the tectite material have different trace element patterns, formed by mixing of melts with different chemical composition derived from different sediment layers and possibly of basement material

  1. Formation of the Shelf-edge Cretaceous-Tertiary contact off the southeastern U.S. Coast

    USGS Publications Warehouse

    Poppe, L.J.; Hathaway, J.C.; Hall, R.E.; Commeau, R.F.

    1986-01-01

    Submarine erosion, associated with changes in position of the proto-Gulf Stream, was the dominant mechanism controlling the formation of the Cretaceous-Tertiary unconformity in AMCOR borehole 6004. Paleontologic evidence indicates that this unconformity, which is marked by a gravelly-sand enriched in glauconitic and phosphoritic concretions, represents a hiatus of about 7 m.y. Both Cretaceous and Paleocene sediments contain middle-outer neritic foraminiferal assemblages that become more diverse with distance from the contact. Of the elemental abundances measured, Al, Ba, Co, Fe, Ga, K, Mg/Ca, Mo, Ni, P, Sr/Ca, V, Y, and Zn show a strong positive correlation with proximity to the contact, probably as a result of the concentration of authigenic and heavy minerals present as lag sediments on the erosion surface. ?? 1986.

  2. An asteroid breakup 160 Myr ago as the probable source of the K/T impactor.

    PubMed

    Bottke, William F; Vokrouhlický, David; Nesvorný, David

    2007-09-01

    The terrestrial and lunar cratering rate is often assumed to have been nearly constant over the past 3 Gyr. Different lines of evidence, however, suggest that the impact flux from kilometre-sized bodies increased by at least a factor of two over the long-term average during the past approximately 100 Myr. Here we argue that this apparent surge was triggered by the catastrophic disruption of the parent body of the asteroid Baptistina, which we infer was a approximately 170-km-diameter body (carbonaceous-chondrite-like) that broke up 160(-20)+30Myr ago in the inner main asteroid belt. Fragments produced by the collision were slowly delivered by dynamical processes to orbits where they could strike the terrestrial planets. We find that this asteroid shower is the most likely source (>90 per cent probability) of the Chicxulub impactor that produced the Cretaceous/Tertiary (K/T) mass extinction event 65 Myr ago. PMID:17805288

  3. Biogeochemical modeling at mass extinction boundaries

    NASA Technical Reports Server (NTRS)

    Rampino, M. R.; Caldeira, K. G.

    1991-01-01

    The causes of major mass extinctions is a subject of considerable interest to those concerned with the history and evolution of life on earth. The primary objectives of the proposed plan of research are: (1) to develop quantitative time-dependent biogeochemical cycle models, coupled with an ocean atmosphere in order to improve the understanding of global scale physical, chemical, and biological processes that control the distribution of elements important for life at times of mass extinctions; and (2) to develop a comprehensive data base of the best available geochemical, isotopic, and other relevant geologic data from sections across mass extinction boundaries. These data will be used to constrain and test the biogeochemical model. These modeling experiments should prove useful in: (1) determining the possible cause(s) of the environmental changes seen at bio-event boundaries; (2) identifying and quantifying little-known feedbacks among the oceans, atmosphere, and biosphere; and (3) providing additional insights into the possible responses of the earth system to perturbations of various timescales. One of the best known mass extinction events marks the Cretaceous/Tertiary (K/T) boundary (66 Myr ago). Data from the K/T boundary are used here to constrain a newly developed time-dependent biogeochemical cycle model that is designed to study transient behavior of the earth system. Model results predict significant fluctuations in ocean alkalinity, atmospheric CO2, and global temperatures caused by extinction of calcareous plankton and reduction in the sedimentation rates of pelagic carbonates and organic carbon. Oxygen-isotome and other paleoclimatic data from K/T time provide some evidence that such climatic fluctuations may have occurred, but stabilizing feedbacks may have acted to reduce the ocean alkalinity and carbon dioxide fluctuations.

  4. Assessment of undiscovered oil and gas resources of the Cretaceous-Tertiary Composite Total Petroleum System, Taranaki Basin Assessment Unit, New Zealand

    USGS Publications Warehouse

    Wandrey, Craig J.; Schenk, Christopher J.; Klett, Timothy R.; Brownfield, Michael E.; Charpentier, Ronald R.; Cook, Troy A.; Pollastro, Richard M.; Tennyson, Marilyn E.

    2013-01-01

    The Cretaceous-Tertiary Composite Total Petroleum System coincident Taranaki Basin Assessment Unit was recently assessed for undiscovered technically recoverable oil, natural gas, and natural gas liquids resources as part of the U.S. Geological Survey (USGS) World Energy Resources Project, World Oil and Gas Assessment. Using a geology-based assessment methodology, the USGS estimated mean volumes of 487 million barrels of oil, 9.8 trillion cubic feet of gas, and 408 million barrels of natural gas liquids.

  5. Comparison of the magnetic properties and Mossbauer analysis of glass from the Cretaceous-Tertiary boundary, Beloc, Haiti, with tektites

    NASA Technical Reports Server (NTRS)

    Thorpe, A. N.; Senftle, F. E.; May, L.; Barkatt, A.; Adel-Hadadi, M. A.; Marbury, G. S.; Izett, G. A.; Maurrasse, F. R.

    1994-01-01

    The magnetic properties of black Beloc glass have been measured. The Curie constant, the magnetization, and the magnetic susceptibility of the Beloc glass fall within the known ranges observed for tektites. However, the temperature-independent component of the magnetic susceptibility is slightly higher than that found for tektites. Moreover, it is not possible to match the experimental magnetic data for the Beloc glass with the calculated values using the previously reported Fe(3+)/Fe(2+) ratio of 0.7. The oxidation state of Fe was therefore redetermined by Mossbauer measurements, and the Fe(3+)/Fe(2+) ratio was found to be 0.024 plus or minus 0.015. Using the redetermined value of the ratio, the magnetic parameters were again calculated using formulas that are applicable to tektites, and good agreement was found between the calculated and experimental values. The experimental magnetic measurements and the redetermined Fe(3+)/Fe(2+) ratio of the Beloc glass specimens are essentially the same as those found for tektite glass.

  6. Patterns of megafloral change across the Cretaceous-Tertiary boundary in the Northern Great Plains and Rocky Mountains

    NASA Technical Reports Server (NTRS)

    Johnson, Kirk R.; Hickey, Leo J.

    1988-01-01

    The spatial and temporal distribution of vegetation in the terminal Cretaceous of Western Interior North America was a complex mosaic resulting from the interaction of factors including a shifting coastline, tectonic activity, a mild, possibly deteriorating climate, dinosaur herbivory, local facies effects, and a hypothesized bolide impact. In order to achieve sufficient resolution to analyze this vegetational pattern, over 100 megafloral collecting sites were established, yielding approximately 15,000 specimens, in Upper Cretaceous and lower Paleocene strata in the Williston, Powder River, and Bighorn basins in North Dakota, Montana, and Wyoming. These localities were integrated into a lithostratigraphic framework that is based on detailed local reference sections and constrained by vertebrate and palynomorph biostratigraphy, magnetostratigraphy, and sedimentary facies analysis. A regional biostratigraphy based on well located and identified plant megafossils that can be used to address patterns of floral evolution, ecology, and extinction is the goal of this research. Results of the analyses are discussed.

  7. The K/T-boundary carbonate breccia succession at the Cantarell Field, Campeche Bay area: a representative example of the influence of the Chicxulub meteorite-impact event on the formation of extraordinary petroleum reservoirs

    NASA Astrophysics Data System (ADS)

    Murillo-Muñeton, G.; Grajales-Nishimura, J. M.; Velasquillo-Martínez, L. G.; García-Hernández, J.

    2013-05-01

    Over the last decade, intense petroleum exploration and exploitation activities have been conducted in the Campeche Bay area. Detailed stratigraphic studies in this region based on seismic, well logs, and core data have allowed the documentation of numerous deep-water carbonate breccia deposits throughout the Cretaceous stratigraphic column. However, the uppermost carbonate breccia succession is very distinctive in terms of its sedimentological properties compared to the underlying and older calcareous breccia layers. The unique characteristics of this deposit include: its unusual thickness, stratigraphic position, distribution, and content of impact-metamorphic constituents. At the Cantarell field, this carbonate breccia sedimentary package is a representative example of how the Chuxulub meteorite-impact event influenced the formation of a remarkable carbonate reservoir. This deposit was the most important oil-producing stratigraphic horizon for long time in that field. Nevertheless, this reservoir is still important not only in that field but also in other fields in offshore Campeche. The K/T boundary carbonate breccia succession is a typical fining-upward deposit made up, from base to top, of three units. The 50 to 300-m thick, basal Unit 1 consists of a coarse-grained carbonate breccia. Unit 2 is a 10 to 20 m-thick, fine-grained carbonate breccia. The 25 to 30 m-thick, uppermost Unit 3 is a greenish interval of friable sand, silt and clay-sized constituents with abundant ejecta material. In some wells, a 10 to 20 m-thick, non-oil producing fine-grained calcareous breccia occurs interbedded within Unit 3. The K/T boundary carbonate sedimentary package is underlain and overlain by deep-water shaly calcareous facies of Upper Maastrichtian and Lower Paleocene age, respectively. Studies of cronostratigraphic-equivalent outcrop analogs of this K/T boundary carbonate reservoir carried out by the authors in the Sierra de Chiapas (El Guayal, Tabasco and Bochil, Chiapas

  8. Evolutionary Events and Phytoplankton Recovery After the K/T Mass Extinction

    NASA Astrophysics Data System (ADS)

    Fuqua, L. M.; Bralower, T. J.

    2004-12-01

    The recovery of the open ocean ecosystem after the Cretaceous-Tertiary boundary mass extinction (65 Ma) was extremely slow. The surface to deep carbon isotopic gradient remained below latest Cretaceous levels for more than three million years after the boundary event, suggesting suppressed rates of carbon cycling and low phytoplankton productivity. There is a rapid change in the carbon isotopic gradient between 62 and 61 Ma, indicating the final recovery of surface water production levels (D'Hondt et al., 1998). We are investigating nannoplankton communities in the interval from 61.5 to 62.5 Ma to determine the relationship between the recovery and changes in productivity and carbon cycling. Samples were collected at high resolution from Ocean Drilling Program Site 1209 in the western Pacific, and Deep Sea Drilling Project Sites 384 in the North Atlantic and 528 in the South Atlantic. Results show major diversification of two dominant Cenozoic nannoliths (non-coocolith bearing, calcite-secreting nannoplankton), Fasciculithus and Sphenolithus, occurred shortly after carbon gradients were restored. The first occurrences of these two genera are associated with significant changes in calcareous nannoplankton communities, indicative of abrupt changes in surface water circulation. A rapid evolutionary sequence of early forms of Fasciculithus has been identified at Sites 1209 and 384. Two unidentified taxa were found before the first occurrence of the earliest documented species, F. pileatus. SEM work currently underway is designed to elucidate the evolution of this genus. At the Pacific site, the diversification is associated with an interval of dissolution, presumably resulting from a change in deep water circulation. The significance of this relationship is currently not understood. D'Hondt, S. et al., Organic carbon fluxes and ecological recovery from the Cretaceous-Tertiary mass extinction, Science, 282, 276-279, 1998.

  9. K-T impact(s): Continental, oceanic or both

    NASA Technical Reports Server (NTRS)

    Sharpton, V. L.; Schuraytz, B. C.; Murali, A. V.; Ryder, G.; Burke, K.

    1988-01-01

    Although geochemical and mineralogical evidence indicate that a major accretionary event occurred at the K-T boundary, no impact crater of suitable size and age was recognized. The 35 km Manson Structure, Iowa, was suggested recently as a possibility and Ar-40/Ar-39 determinations indicate that its formation age is indistinguishable from that of the K-T boundary. In order to test a possible association between Manson and the K-T boundary clay, the geochemistry and mineralogy of the K-T boundary clays at the Scollard Canyon section, Alberta and the Starkville South section, Colorado are compared with three dominant lithologies affected by the Manson impact: Proterozoic red clastics, underlying late-state granites, and gneisses. The chemical and mineralogical makeup of the Scollard Canyon boundary clay and its clastic constituents are presented, commenting on the implications for impact models. An impact into crystalline material of continental affinity appears to be required to explain the mineralogy and chemistry of the Scollard Canyon (and other Western N. American K-T sections). The low REE abundances of some K-T boundary layers are unusual but perhaps attempts should be made to understand the contributions of individual crustal components (e.g., carbonates, arkoses) as well as the potential for alteration involving these and other elements during and after impact-induced vaporization, before mantle excavation is invoked. If further studies confirm the results of published studies of marine boundary clays that indicate an oceanic target, attention must be paid to the possibility that multiple impacts occurred at the K-T boundary - one or more on the continents and one or more in the ocean.

  10. The role of Deccan volcanism during the K-T mass extinction

    NASA Astrophysics Data System (ADS)

    Adatte, T.; Keller, G.; Gertsch, B.

    2012-12-01

    The potential role of major volcanic provinces has long been neglected as potential cause for major mass extinctions in Earth's history. This is despite the fact that volcanic activity is implicated in four of the five Phanerozoic mass extinctions, whereas a large asteroid impact is only associated with the K-T mass extinction. After 28 years of nearly unchallenged perception that a large impact (Chicxulub) on Yucatan caused the end-Cretaceous mass extinction, this theory is facing its most serious challenge from Deccan volcanism in India. Recent advances in Deccan volcanic studies show that Deccan Trap volcanism began with a relatively minor eruption phase (~6% of total volume) during the late Maastrichtian magnetic polarity C30n. The main eruption phase (~80%) occurred over a short period in C29r just below the Cretaceous-Tertiary boundary (KTB) and the last Deccan phase (~14%) erupted in the early Danian C29n. Multiproxy studies from sections in Meghalaya (NE India), Jhilmili in central India (Madhya Pradesh), 6 quarry outcrops from Rajahmundry (SE India), 10 deep wells from the Krishna-Godavari Basin (K-G) (Andhra Pradesh) place the KTB mass extinction near the end of the main Deccan phase coincident with the mass extinction. These studies show that the second and third phase of eruptions each produced the world's largest and longest lava megaflows ~1500 km across India through the K-G Basin into the Bay of Bengal. These megaflows are separated by sand, silt and shale which record the mass extinction across an interval that spans zones CF1-CF2 and most of the nannofossil Micula prinsii zone and is correlative with the rapid global warming and subsequent cooling near the end of the Maastrichtian. The mass extinction began preceding the first of the four mega-flows in C29r. Planktic foraminifera suffered a 50% drop in species richness. Survivors suffered another 50% drop after the first mega-flow, leaving just 7 to 8 survivor species. No recovery occurred between

  11. Shock-induced devolatilization of calcium sulfate and implications for K-T extinctions

    NASA Technical Reports Server (NTRS)

    Chen, Guangqing; Tyburczy, James A.; Ahrens, Thomas J.

    1994-01-01

    The devolatilization of calcium sulfate, which is present in the target rock of the Chicxulub, Mexico impact structure, and dispersal in the stratosphere of the resultant sulfuric acid aerosol have been suggested as a possible mechanism for the Cretaceous-Tertiary extinctions. We measured the amount of SO2 produced from two shock-induced devolatilization reactions of calcium sulfate up to 42 GPa in the laboratory. We found both to proceed to a much lower extent than calculated by equilibrium thermodynamic calculations. Reaction products are found to be approx. 10(exp -2) times those calculated for equilibrium. Upon modeling the quantity of sulfur oxides degassed into the atmosphere from shock devolatilization of CaSO4 in the Chicxulub lithographic section, the resulting 9 x 10(exp 16) to 6 x 10(exp 17) g (in sulfur mass) is lower by a factor of 10-100 than previous upper limit estimates, the related environmental stress arising from the resultant global cooling and fallout of acid rain is insufficient to explain the widespread K-T extinctions.

  12. Shock-induced devolatization of calcium sulfate and implications for K-T extinctions

    NASA Technical Reports Server (NTRS)

    Chen, Guangqing; Tyburczy, James A.; Ahrens, Thomas J.

    1993-01-01

    Calcium sulfate devolatization during the impact at Chicxulub, Mexico and dispersal in the stratosphere of the resultant sulfuric acid aerosol have been suggested as a possible mechanism for the Cretaceous-Tertiary extinctions. In this paper, we investigated two shock-induced devolatization reactions of calcium sulfate up to 42 GPa in the laboratory: CaSO4 + SiO2 yields CaSiO3 + SO3(degassed) and CaSO4 yields CaO + SO2(degassed) + 1/2 O2(degassed). We found both to proceed to a much less extent than calculated by equilibrium thermodynamic calculations. Reaction products are found to be 10(exp -2) times those calculated for equilibrium. Consequently our estimate of the amount of sulfur oxides degassed into the atmosphere from shock devolatization of CaS04 in the Chicxulub lithographic section (6x10(exp 15)-2x10(exp 16)g in sulfur mass) is lower by a factor of 70 to 400 than previous estimates; the related environmental stress arising from the resultant global cooling of approximately 4 K and fallout of acid rain does not appear to suffice to explain the widespread K-T extinctions.

  13. Relative contribution of Precambrian metamorphic rocks and Cretaceous-Tertiary igneous rocks to Oligocene and Holocene fluvial sands and the unroofing of a magmatic arc

    SciTech Connect

    Molinaroli, E.; Basu, A. )

    1991-03-01

    Oligocene and Holocene fluvial sands were deposited in small extensional basins in a magmatic arc in southwestern Montana under relatively humid and semi-arid conditions, respectively. The source rocks are roof-pendants and thrust-slices of Precambrian metamorphic rocks (PCM) and Cretaceous-Tertiary igneous rocks (KTI) that make up the arc. The authors have surveyed 143,607 heavy mineral grains (HMGs) in polished thin sections of 55 samples collected from adjacent but discrete geomorphologic units. In the Holocene sands, of 5440 HMGs 519 are garnets and of 97,667 HMGs 395 are zircons. In the Oligocene sandstones, of 6397 HMGs 998 are garnets, and of 45,940 HMGs 331 are zircons. Garnets are absent in the igneous rocks and zircons are extremely rare in the metamorphic rocks. Garnets ar estimated to be about 100 times as abundant in the metamorphic rocks as the zircons are in the igneous rocks. Mass balance calculations show that the proportion of PCM/(PCM+KTI) ranges from 0 to 21% in Oligocene sandstones, and from 3 to 76% in Holocene sands in different local units. However, the overall PCM/(PCM+KTI) proportions in the Holocene and the Oligocene sands in southwestern Montana are 19% and 18%, respectively. This suggests that the roof pendants, thrust slices, and magmatic arc rocks have been unroofed in constant proportions since the Oligocene although locally the proportions have been different.

  14. Geochemical anomalies near the Eocene-Oligocene and Permian-Triassic boundaries

    SciTech Connect

    Asaro, F.; Alvarez, L.W.; Alvarez, W.; Michel, H.V.

    1981-10-01

    Evidence is presented to support the theory that several mass extinctions, i.e., those that define the Permian-Triassic boundary, the Cretaceous-Tertiary boundary, and the Eocene-1 Oligocene boundary, were caused by impact on the earth of extraterrestrial objects having the composition of carbonaceous chondrites and diameters of about 10 km. The evidence consists of anomalously high concentrations of iridium and other siderophile elements at the stratigraphic levels defining the extinctions. (ACR)

  15. Causal Link Between Flood Basalts and Large Impacts: Were The K-t and P-tr Impactors `verneshots' Fired From Terrestrial Plume-fed Co2-guns?

    NASA Astrophysics Data System (ADS)

    Phipps Morgan, J.; Reston, T.; Ranero, C.

    Both bolide impacts (Alvarez et al., 1980) and Continental Flood Basalt (CFB) events (Courtillot, 1996; Courtillot et al., 1994; Morgan, 1986) have been proposed to be the cause of the three largest Phanerozoic mass-extinctions. The Cretaceous-Tertiary (K-T) boundary is the age of both one of the largest known terrestrial impact struc- tures (the Chixculub site on the Yucatan peninsula) and a very large continental flood basalt (the Deccan Traps event, the first well-documented trace of the Reunion plume- hotspot). In the past year, two papers (Becker et al., 2001; Kaiho et al., 2001) have suggested that the Permian-Triassic (P-Tr) boundary, the age of the largest well- documented CFB (the Siberian Traps), is also marked, in some marine sediments, by the geochemical signature of a large bolide impact. If correct, this would require that both a bolide impact and a CFB occurred at the P-Tr boundary. Finally, the Frasnian- Famennian (Late Devonian) event appears to be contemporaneous with an impact or impacts (e.g. Siljan Ring - Grieve and Robertson, 1987), the eruption of both a Siberian Kimberlite field (Agashev et al., 2001), and the Dniepr-Donets CFB (Wilson et al., 1996). Both large bolide impacts (K-T anomaly appears to occur well within the flood-basalt stratigraphy (Bhandari et al., 1994). Therefore, here we examine whether terrestrial processes can produce the `signal' of an extraterrestrial impact event. We explore a physical model where sub-cratonic plume

  16. Shock-synthesized hexagonal diamonds in Younger Dryas boundary sediments

    PubMed Central

    Kennett, Douglas J.; Kennett, James P.; West, Allen; West, G. James; Bunch, Ted E.; Culleton, Brendan J.; Erlandson, Jon M.; Que Hee, Shane S.; Johnson, John R.; Mercer, Chris; Shen, Feng; Sellers, Marilee; Stafford, Thomas W.; Stich, Adrienne; Weaver, James C.; Wittke, James H.; Wolbach, Wendy S.

    2009-01-01

    The long-standing controversy regarding the late Pleistocene megafaunal extinctions in North America has been invigorated by a hypothesis implicating a cosmic impact at the Ållerød-Younger Dryas boundary or YDB (≈12,900 ± 100 cal BP or 10,900 ± 100 14C years). Abrupt ecosystem disruption caused by this event may have triggered the megafaunal extinctions, along with reductions in other animal populations, including humans. The hypothesis remains controversial due to absence of shocked minerals, tektites, and impact craters. Here, we report the presence of shock-synthesized hexagonal nanodiamonds (lonsdaleite) in YDB sediments dating to ≈12,950 ± 50 cal BP at Arlington Canyon, Santa Rosa Island, California. Lonsdaleite is known on Earth only in meteorites and impact craters, and its presence strongly supports a cosmic impact event, further strengthened by its co-occurrence with other nanometer-sized diamond polymorphs (n-diamonds and cubics). These shock-synthesized diamonds are also associated with proxies indicating major biomass burning (charcoal, carbon spherules, and soot). This biomass burning at the Younger Dryas (YD) onset is regional in extent, based on evidence from adjacent Santa Barbara Basin and coeval with broader continent-wide biomass burning. Biomass burning also coincides with abrupt sediment mass wasting and ecological disruption and the last known occurrence of pygmy mammoths (Mammuthus exilis) on the Channel Islands, correlating with broader animal extinctions throughout North America. The only previously known co-occurrence of nanodiamonds, soot, and extinction is the Cretaceous-Tertiary (K/T) impact layer. These data are consistent with abrupt ecosystem change and megafaunal extinction possibly triggered by a cosmic impact over North America at ≈12,900 ± 100 cal BP. PMID:19620728

  17. Search for extractable fullerenes in clays from the cretaceous/tertiary boundary of the Woodsite Creek and Flaxbourne River sites, New Zealand

    SciTech Connect

    Heymann, D.; Chibante, L.P.F.; Smalley, R.E. ); Wolbach, W.S. ); Brooks, R.R. )

    1994-08-01

    When fullerenes were first discovered to form spontaneously in condensing carbon vapors, it was suggested that they might be widely distributed in the Universe. Searchers for fullerenes in meteorites were unsuccessful, but C[sub 60] and C[sub 70] were reported to occur on Earth in samples of shungite, a meta-anthracite from a deposit near Shunga, Russia, and in [open quotes]fulgurite[close quotes], a substance formed when lightning strikes certain soils or rocks. The occurrence of fullerenes in shungite is particularly surprising since fullerene synthesis in the laboratory has always involved gas phase chemistry at temperatures over 1000[degrees]C. Such conditions may be attained during lightning strikes, but shungite is believed to have formed from carbonaceous material creeping into fissures of a Precambrian rock which metamorphosed under extreme pressures. If the original carbonaceous material did not already contain fullerenes perhaps from wildfires, they must have formed during the metamorphism by as yet unknown solid- or liquid-phase mechanisms.

  18. Darkness after the K-T impact: Effects of soot

    NASA Technical Reports Server (NTRS)

    Wolbach, Wendy S.; Anders, Edward; Orth, Charles J.

    1988-01-01

    Dust from the K-T impact apparently settled from the atmosphere in less than 6 months, restoring sunlight to minimum photosynthesis levels in about 4 months. However, the discovery of a global soot component in the boundary clay makes it necessary to reconsider the problem, as soot particles not only are smaller (0.1 vs. about 0.5 micrometer) and thus settle more slowly, but also are better light absorbers (optical depth of 13 mg soot cm(-2) about 1800; and are more resistant to rainout. Still, the darkness cannot have lasted very much longer than 6 months, else no larger animals would have survived. Perhaps the soot coagulated with the rock dust and fell out with it. Evidence on this point may be sought at a relatively undisturbed K-T boundary site, such as Woodside Creek, N.Z. There the boundary clay and lowermost Tertiary strata are finely laminated and show large chemical and isotopic differences on a millimeter scale, apparently representing a detailed time sequence. Researchers studied a 3 m section across the boundary at this site, analyzing the principal forms of carbon (soot, elemental C, kerogen, and carbonate) as well as 33 elements. Correlations among the elements were sought. Apparently soot came early and coagulated with the ejecta, staying with them for the primary fallout and in the next 5 cm, but then parting company, perhaps due to size sorting.

  19. Biostratigraphy of Cretaceous-Paleogene marine succession, foraminiferal changes across the K/T boundary, sequence stratigraphy and response to sedimentary cyclicity in the Haymana Basin (Central Anatolia, Turkey)

    NASA Astrophysics Data System (ADS)

    Amirov, Elnur

    2016-04-01

    The aim of this study is to establish the planktonic foraminiferal biozonation, to construct the sequence stratigraphical framework and to determine the foraminiferal response to sedimentary cyclicity in the sedimentary sequence spanning Upper Cretaceous-Paleocene in the Haymana basin (Central Anatolia, Turkey). In order to achieve this study, the stratigraphic section was measured from sedimentary sequence of the Haymana, Beyobası and Yeşilyurt formations. The sedimentary sequence is mainly characterized by flyschoidal sequence that is composed of alternating of siliciclastic and carbonate units. On the account of the detailed taxonomic study of planktonic foraminifers, the biostratigraphic framework was established for the Maastrichtian-Paleocene interval. The biozonation includes 7 zones; Pseudoguembelina hariaensis, Pα, P1, P2, P3, P4 and P5 zones. The Cretaceous-Paleogene (K/P) boundary was delineated between the samples HEA-105 and 106. In order to construct the sequence-stratigraphical framework, the A, B, C and D-type meter-scale cycles were identified. Based on the stacking patterns of them, six depositional sequences, six third and two second order cycles were determined. Third order cycles coincide with the Global Sea Level Change Curve. On the account of the conducted petrographic analysis sandstone, mudstone, marl, limestone and muddy-limestone lithofacies were recorded in the studied samples. In order to demonstrate the response of foraminifers to cyclicity, quantitative analysis has been carried out by counting the individuals of planktonic, benthonic foraminifers and ostracods. The best response to sedimentary cyclicity was revealed from planktonic foraminifers. The average abundance of planktonic foraminifers increases in the transgressive systems tract and decreases in the highstand systems tract. Foraminifera are the most abundant marine protozoa in the benthic, epipelagic and pelagic realm. Because of the complexity and diversity of habitats

  20. Geochemical evidence for combustion of hydrocarbons during the K-T impact event

    PubMed Central

    Belcher, Claire M.; Finch, Paul; Collinson, Margaret E.; Scott, Andrew C.; Grassineau, Nathalie V.

    2009-01-01

    It has been proposed that extensive wildfires occurred after the Cretaceous–Tertiary (K-T) impact event. An abundance of soot and pyrosynthetic polycyclic aromatic hydrocarbons (pPAHs) in marine K-T boundary impact rocks (BIRs) have been considered support for this hypothesis. However, nonmarine K-T BIRs, from across North America, contain only rare occurrences of charcoal yet abundant noncharred plant remains. pPAHs and soot can be formed from a variety of sources, including partial combustion of vegetation and hydrocarbons whereby modern pPAH signatures are traceable to their source. We present results from multiple nonmarine K-T boundary sites from North America and reveal that the K-T BIRs have a pPAH signature consistent with the combustion of hydrocarbons and not living plant biomass, providing further evidence against K-T wildfires and compelling evidence that a significant volume of hydrocarbons was combusted during the K-T impact event. PMID:19251660

  1. KT boundary impact glasses from the Gulf of Mexico region

    NASA Technical Reports Server (NTRS)

    Claeys, Philippe; Alvarez, Walter; Smit, Jan; Hildebrand, A. R.; Montanari, Alessandro

    1993-01-01

    Cretaceous-Tertiary boundary (KTB) tektite glasses occur at several sites around the Gulf of Mexico. Contrary to rumor among KTB workers, glass fragments have been found by several researchers in the base of the spherule bed at Arroyo el Mimbral in NE Mexico. The presence of green, red, and transparent glass fragments at Mimbral only, demonstrates that the Mimbral glass is not a laboratory contamination by Beloc glass. The chemistry and ages of the glass are consistent with an origin from the Chixculub impact crater in Yucatan. No evidence supports a volcanic origin for the KTB glasses. A discussion of tektite glass from the KT boundary is presented.

  2. Deccan Volcanism likely cause for K-T Mass Extinction

    NASA Astrophysics Data System (ADS)

    Keller, G.; Reddy, A. N.; Jaiprakash, B. C.; Adatte, T.; Gertsch, B.; Bajpai, S.; Garg, R.; Prasad, V.; Upadhyay, H.; Bhowmick, P. K.

    2009-04-01

    Recent advances in Deccan volcanic studies suggest that the main phase of eruptions occurred rapidly over tens of thousands of years near the end of the Maastrichtian (Chenet et al. 2007, 2008) and may have caused the mass extinction as initially discovered in intertrappean sediments exposed in quarries of Rajahmundry, SE India. In these shallow marine sediments early Danian zone P1a planktic foraminifera were deposited in C29r immediately above the last mega eruption of the main volcanic phase (Keller et al. (2008). At Jhilmili in central India (Madhya Pradesh), early Danian zone P1a assemblages were also discovered in intertrappean sediments, which mark a marine incursion in a predominantly terrestrial sequence which signals a major seaway existed at K-T time. In Meghalaya, NE India, about 600 km from the Deccan volcanic province the K-T boundary and mass extinction identified from planktic foraminifera, calcareous nannofossils and palynomorphs is marked by very large Ir (11.8 ppb), Ru, Rh and Pd anomalies. High biotic stress conditions precede the KTB. Critical new data linking Deccan volcanism to the K-T mass extinction comes also from investigations of subsurface cores drilled in the Krishna-Godavari Basin, eastern India, by the Oil and Natural Gas Corporation of India (ONGC). In eight subsurface cores examined, a total of 4 volcanic megaflows have been identified as occurring in very rapid succession near the end of the Maastrichtian. These megaflows span a 1000 km across India and out to the Gulf of Bengal. They are the longest lava flows known in Earth's history. Preliminary evaluation of the biotic effects of these megaflows on planktic foraminifera indicate that after the first megaflow up to 50% of the species disappeared and with each new megaflow more species died out culminating in near total mass extinction coincident with the last megaflow by K-T boundary time. After the mass extinction, no megaflows reached the Krishna-Godavari Basin for about 250

  3. Mass extinction of birds at the Cretaceous-Paleogene (K-Pg) boundary.

    PubMed

    Longrich, Nicholas R; Tokaryk, Tim; Field, Daniel J

    2011-09-13

    The effect of the Cretaceous-Paleogene (K-Pg) (formerly Cretaceous-Tertiary, K-T) mass extinction on avian evolution is debated, primarily because of the poor fossil record of Late Cretaceous birds. In particular, it remains unclear whether archaic birds became extinct gradually over the course of the Cretaceous or whether they remained diverse up to the end of the Cretaceous and perished in the K-Pg mass extinction. Here, we describe a diverse avifauna from the latest Maastrichtian of western North America, which provides definitive evidence for the persistence of a range of archaic birds to within 300,000 y of the K-Pg boundary. A total of 17 species are identified, including 7 species of archaic bird, representing Enantiornithes, Ichthyornithes, Hesperornithes, and an Apsaravis-like bird. None of these groups are known to survive into the Paleogene, and their persistence into the latest Maastrichtian therefore provides strong evidence for a mass extinction of archaic birds coinciding with the Chicxulub asteroid impact. Most of the birds described here represent advanced ornithurines, showing that a major radiation of Ornithurae preceded the end of the Cretaceous, but none can be definitively referred to the Neornithes. This avifauna is the most diverse known from the Late Cretaceous, and although size disparity is lower than in modern birds, the assemblage includes both smaller forms and some of the largest volant birds known from the Mesozoic, emphasizing the degree to which avian diversification had proceeded by the end of the age of dinosaurs. PMID:21914849

  4. Magnetic microspherules associated with the K/T and upper Eocene extinction events

    NASA Technical Reports Server (NTRS)

    Cisowski, Stanley M.

    1988-01-01

    Magnetic microspherules were identified in over 20 K/T boundary sites, and in numerous Deep Sea Drilling Project (DSDP) cores from the Caribbean and Pacific, synchronous with the extinction of several radiolarian species near the end of the Eocene. The K/T magnetic spherules are of particular interest as carriers of Ir and other siderophiles generally found in abundance in K/T boundary clay. Furthermore the textures and unusual chemistry of their component magnetic phases indicate an origin at high temperature, possibly related to (an) unusual event(s) marking the end of the Cretaceous and Eocene periods. Their origin, along with the non-magnetic (sanidine) spheules, is generally ascribed directly to megaimpact events hypothesized to have periodically disrupted life on Earth. A survey of microspherical forms associated with known meteorite and impact derived materials reveals fundamental differences from the extinction related spherules. Low temperature magnetic experiments on the K/T and Upper Eocene spheroids indicate that, unlike tektites, extremely small superparamagnetic carriers are not present in abundance. The extensive subaerial exposure of Cretaceous combustible black shale during sea level regression in the latest Cretaceous represents a potential source for the magnetic spheroids found in certain K/T boundary clays. The recent discovery of high Ir abundances distributed above and below the K/T boundary within shallow water sediments in Israel, which also contain the most extensive known zones of combustion metamorphism, the so called Mottled Zone, adds a further dramatic footnote to the proposed association between the magnetic spheroids and combustion of organic shales. Interestingly, the Mottled Zone also contains the rare mineral magnesioferrite, which was identified both within the K/T magnetic spheroids and as discrete crystals in boundary clay from marine and continental sites.

  5. Synchroneity of the K-T oceanic mass extinction and meteorite impact: Blake Nose, western North Atlantic

    USGS Publications Warehouse

    Norris, R.D.; Huber, B.T.; Self-Trail, J.

    1999-01-01

    A 10-cm-thick layer of green spherules occurs precisely at the biostratigraphic boundary between the Cretaceous and Paleogene (K-T boundary) at Ocean Drilling Program Site 1049 (lat 30??08???N, long 76??06???W). The spherulitic layer contains abundant rock fragments (chalk, limestone, dolomite, chert, mica books, and schist) as well as shocked quartz, abundant large Cretaceous planktic foraminifera, and rounded clasts of clay as long as 4 mm interpreted as altered tektite glass probably derived from the Chicxulub impact structure. Most of the Cretaceous foraminifera present above the spherule layer are not survivors since small specimens are conspicuously rare compared to large individuals. Instead, the Cretaceous taxa in Paleocene sediments are thought to be reworked. The first Paleocene planktic foraminifera and calcareous nannofossil species are recorded immediately above the spherule bed, the upper part of which contains an iridium anomaly. Hence, deposition of the impact ejecta exactly coincided with the biostratigraphic K-T boundary and demonstrates that the impact event was synchronous with the evolutionary turnover in the oceans. These results are consistent with a reanalysis of the biostratigraphy of the K-T boundary stratotype, which argues that shallow-marine K-T boundary sections are not biostratigraphically more complete than deep-sea K-T boundary sites.

  6. Evidence for a K/T impact event in the Pacific Ocean

    NASA Astrophysics Data System (ADS)

    Robin, E.; Froget, L.; Jehanno, C.; Rocchia, R.

    1993-06-01

    The spinel-bearing material recovered from K/T boundary deposits at site 577 in the Pacific Ocean has been examined, and two distinct populations of particles are found: spherules with dendritic spinel textures dispersed throughout the grains and irregularly shaped fragments with spinels essentially confined to the rim. The morphology and composition of the particles are characteristic of melted and partially melted meteoritic ablation debris, but their location is difficult to reconcile with an impact on the Yucatan peninsula, some 10,000 km away. It is suggested instead that the spinel-bearing particles at site 577 are derived from the impact of a 2-km asteroid in the Pacific Ocean, and that several accretionary events of this type are required to explain the local distribution of spinel-bearing spherules at the K/T boundary.

  7. K/T spherules from Haiti and Wyoming: Origin, diagenesis, and similarity to some microtektites

    NASA Technical Reports Server (NTRS)

    Bohor, B. F.; Glass, B. P.; Betterton, W. J.

    1993-01-01

    Spherules with relict glass cores in the K/T boundary bed of Haiti allow for a comparison of these bodies with hollow goyazite shells in the K/T boundary claystone of Wyoming and with younger microtektites of the Ivory Coast strewn field. Samples of the Haitian beds from undisturbed sections at Beloc, as determined by Jehanno et al., contain both hollow shells and relict glass cores rimmed by palagonite that has been partially converted to smectite. These palagonite rims developed from hydration zones formed when hot, splash-form droplets of andesitic impact glass were deposited into water. Mutual collisions between these droplets in the ejecta curtain may have formed point-source stresses on their surfaces. Initiation of hydration would be facilitated at these surface stress points and propagated radially into the glass. The inner surface of these merged hemispherical fronts appears mammillary, which is reflected as scalloping in Haitian relict glass cores.

  8. Dinosaur bone beds and mass mortality: Implications for the K-T extinction

    NASA Technical Reports Server (NTRS)

    Carpenter, Kenneth

    1988-01-01

    Mass accumulations of fossilized large terrestrial vertebrate skeletons (bone beds: BB) provide a test for K-T catastrophic extinction hypotheses. The two major factors contributing to BB formation are mode of death and sedimentation rate. Catastrophic mass mortality (CMM) is the sudden death of numerous individuals where species, age, health, gender, or social ranking offer no survivorship advantage. Noncatastrophic mass mortality (NCMM) occurs over time and is strongly influenced by species, age, or gender. In addition to cause of death, sedimentation rate is also important in BB formation. Models of BBs can be made. The CMM drops all individuals in their tracks, therefore, the BB should reflect the living population with respect to species, age, or gender. The NCMM results in monospecific BBs skewed in the direction of the less fit, usually the very young or very old, or towards a specific gender. The NCMM and AM BBs may become more similar the more spread out over time NCMM deaths occur because carcasses are widely scattered requiring hydraulic accumulation, and the greater time allows for more disarticulation and weathering. The CMM and NCMM BB appear to be dominated by social animals. Applying this and the characteristics of mortality patterns to the uppermost Cretaceous Hell Creek Formation indicates that only NCMM and AM BB occur. Furthermore, NCMM BB are rare in the upper third of the Hell Creek. Near the K-T boundary, only AM BB are known. The absence of CMM and NCMM BB appears to be real reflecting a decrease in population levels of some dinosaurs prior to the K-T event. The absence of CMM suggests that the K-T event did not lead to an instantaneous extinction of dinosaurs. Nor was there a protracted die-off due to an asteroid impact winter, because no NCMM BB are known at or near the K-T boundary.

  9. Origin and diagenesis of K/T impact spherules -- From Haiti to Wyoming and beyond

    NASA Astrophysics Data System (ADS)

    Bohor, B. F.; Glass, B. P.

    1995-03-01

    Impact spherules in Cretaceous/Tertiary (KIT) boundary clays and claystones consist of two types; each type is confined to its own separate layer of the boundary couplet in the Western Hemisphere. The form and composition of each of the spherule types result from its own unique mode of origin during the KIT event. Type 1 splash-form spherules occur only in the melt-ejecta (basal) layer of the KIT couplet. This layer was deposited from a ballistic ejecta curtain composed of melt-glass droplets transported mostly within the atmosphere. h contrast, Type 2 spherules are accreted, partially crystalline, spheroidal bodies that formed by condensation of vaporized bolide and target-rock materials in an expanding fireball cloud, from which they settled out of buoyant suspension to form the fireball layer. Dendritic and skeletal Ni-rich spinel crystals are unique to these Type 2 spherules in the fireball layer. Compositions of relict glasses found in Type 1 KIT spherules from Haiti indicate that they were derived from intermediate silicic target rocks. These melt-glass droplets were deposited into an aqueous environment at both continental and marine sites. We propose that the surfaces of the hot melt droplets hydrated rapidly in water and that these hydrated glass rims then altered to palagonite. Subsequent alteration of the palagonite rims to smectite, glauconite, chlorite, kaolinite, or goyazite occurred later during various modes of progressive diagenesis, accompanied by dissolution of some of the glass cores in spherules from continental sections and from marine sections that were subsequently raised above sea level. In many of the nonmarine sections in the Western Interior, the glass cores altered to kaolinite instead of dissolving. Directly comparable spherule morphologies (splash forms), textural features of the altered shells, and scalloping and grooving of relict glass cores or secondary casts demonstrate that the Haitian and Wyoming spherules are equivalent

  10. Chicxulub Impact and the Stratigraphy, Nature and Origin of Near-K-T Breccia

    NASA Astrophysics Data System (ADS)

    Adatte, T.; Keller, G.; Berner, Z.; Stüben, D.

    2007-05-01

    Breccias with altered impact glass and located at or near the K-T boundary in Texas (USA), northern and southern Mexico, Belize, Guatemala, Haiti and Brazil are investigated to determine their age, stratigraphy and origin. Ages are variable. The oldest breccia deposit is within the uppermost Maastrichtian in the southern USA (Brazos, Texas), NE Mexico (e.g., Loma Cerca, El Penon) and in the Chicxulub impact crater cores on Yucatan (e.g., cores Yaxcopoil-1, Y6, C1). In all these sections, the geochemistry of glass within the breccias is identical and consistent with Chicxulub impact ejecta. The K-T boundary, Ir anomaly and mass extinction is located well above these impact breccia layers. This strongly supports a pre-K-T age for the Chicxulub impact, as also determined based on sedimentology, stratigraphy and paleontology. In NE Mexico and Texas the oldest Chicxulub impact spherule ejecta layer is interbedded in normal marine sedimentation in the upper Maastrichtian (base of CF1 Zone), about 300'000 year prior to the K-T boundary. All stratigraphically younger spherule ejecta layers represent repeated episodes of reworking and transport of the original layer during a sea-level regression and re- deposition in incised valleys in shallow environments (e.g., Brazos, Texas, La Popa Basin NE Mexico) and submarine canyons in deeper environments via mass flows and turbidites (e.g. Mimbral, Penon, Loma Cerca and many other section throughout NE Mexico). In southern Mexico, Belize and eastern Guatemala, the widespread thick microspherule and larger spheroid deposits are interbedded with breccia, microbreccias and conglomerates in the early Danian as a result of erosion in shallow carbonate platform sediments. The presence of early Danian planktic foraminifera in the matrix of the breccia, as well as within spherule clasts, indicate that redeposition occurred during the early Danian Parvularugoglobigerina eugubina (P1a) zone. In Haiti (Beloc sections), spherule deposits and

  11. Chondritic ratios of Fe/Cr/Ir in Kerguelen Plateau (Hole 738C) K/T carbonate-rich sediments support asteroid-cometary impact at K/T time

    NASA Technical Reports Server (NTRS)

    Liu, Y. G.; Schmitt, R. A.

    1993-01-01

    In the study of marine carbonate sediments from Holes 577 and 577B, Shatsky Plateau (Rise), a net extraterrestrial Fe/Ir = C1 chondritic ratio at the K/T boundary was reported. Applying a similar procedure to Hole 738C (Kerguelen Plateau) data reported, Fe/Cr/Ir ratios similar to C1 or C2 chondritic ratios were obtained.

  12. Chicxulub Impact and K-T Mass Extinction in Mexico and Texas

    NASA Astrophysics Data System (ADS)

    Keller, G.; Adatte, T.; Berner, Z.; Stueben, D.

    2007-05-01

    New cores and outcrops from El Penon, NE Mexico, and the Brazos River, Falls County, Texas, reveal the stratigraphic and temporal separation between the Chicxulub impact, the sandstone complex (commonly interpreted as "impact-tsunami") and the K-T mass extinction. In NE Mexico, where deposition occurred in about 500 m water depth, the original Chicxulub impact ejecta was discovered in a 1.8 m thick impact glass spherule layer within undisturbed pelagic marls more than 4 m below the base of the sandstone complex. At Brazos, Texas, where deposition occurred in shallow waters (20-80 m), the original spherule ejecta layer was found in a 3 cm thick clay-altered impact spherule layer within undisturbed late Maastrichtian claystones, about 60 cm below the sandstone complex. In both localities, the base of the sandstone complex contains spherules and clasts from shallow nearshore areas, which were eroded from the original impact spherule layer and transported into deeper waters during the latest Maastrichtian sea level lowstand. The K-T mass extinction and Ir anomaly occurred at a much later time. The Chicxulub impact is dated at 300 ky before the K-T boundary and the sea level lowstand about 100 ky before. These data reveal that the K-T mass extinction was not directly related to either the Chicxulub impact, or the sea level lowstand. The discovery of the original Chicxulub impact ejecta spherule layer in Mexico and Texas permits evaluation of the biotic effects of this large impact upon marine faunas and floras in both deep and shallow water environments at 1000 km and 1700 km from the impact crater, respectively. Quantitative analysis of planktic foraminifera reveals a major surprise: No species extinctions or significant species population changes occurred at the time of the Chicxulub impact. The impact coincides with greenhouse warming associated with Deccan volcanism, but appears to have caused no significant environmental stress even within 1000 km, let alone

  13. Mexican site for K/T impact crater?

    NASA Technical Reports Server (NTRS)

    Pope, Kevin O.; Ocampo, Adriana C.; Duller, Charles E.

    1991-01-01

    Research throughout the Caribbean suggests that the geophysical anomalies in the Yucatan first noted by Penfield and Camargo (1981) and called the Chicxulub crater could be the site of the impact purported to have caused the K/T extinctions. A semicircular ring of sink holes, known locally as cenotes, which correlates with the geophysical anomalies has been identified, and it is argued that the origin of the cenote ring is related to postimpact subsidence of the Chicxulub crater rim. If there is indeed a crater, the region within the cenote ring corresponds to its floor and the crater rim diameter is probably larger than 200 km. If confirmed as a site of impact, the Chicxulub crater would be the largest terrestrial impact crater known, which is consistent with the uniqueness of the K/T global catastrophe.

  14. Mexican site for K/T impact crater?

    NASA Astrophysics Data System (ADS)

    Pope, K. O.; Ocampo, A. C.; Duller, C. E.

    1991-05-01

    Research throughout the Caribbean suggests that the geophysical anomalies in the Yucatan first noted by Penfield and Camargo (1981) and called the Chicxulub crater could be the site of the impact purported to have caused the K/T extinctions. A semicircular ring of sink holes, known locally as cenotes, which correlates with the geophysical anomalies has been identified, and it is argued that the origin of the cenote ring is related to postimpact subsidence of the Chicxulub crater rim. If there is indeed a crater, the region within the cenote ring corresponds to its floor and the crater rim diameter is probably larger than 200 km. If confirmed as a site of impact, the Chicxulub crater would be the largest terrestrial impact crater known, which is consistent with the uniqueness of the K/T global catastrophe.

  15. The Global K-T Ejecta layer - Is it Diagnostic of Impact Angle, and was There More Than one Impact Site?

    NASA Astrophysics Data System (ADS)

    Lana, C.; Morgan, J.

    2005-05-01

    We have collected samples from the Chicxulub impact breccias in Yaxcopoil-1, from the global K-T iridium-rich layer found at distances greater that ~1400 km from Chicxulub, and also from the proximal spherule layer close to Chicxulub. We will use these samples to: try to determine the angle and direction of impact at Chicxulub, provide the compelling evidence that Chicxulub is K-T, and ascertain whether there were multiple impacts at the K-T boundary. The clearest indicator of angle of impact for circular craters on other planetary bodies is in the ejecta pattern. Experiments, numerical modelling and field observations all indicate that the plumes of oblique impacts expand initially in the downrange direction. We are currently documenting how the size of the coarse-grained ejecta particles and the geochemistry of spinels varies with geographical location. If the distribution of the size and/or geochemistry of the ejecta is asymmetric it is likely to be diagnostic of the direction of vapour plume expansion, and hence an indicator of impact direction. The majority of planetary scientists agree that Chicxulub is the K-T impact crater - but dissenters argue that the evidence is not yet compelling. To link Chicxulub unequivocally to the K-T boundary we must be able to prove that components of this global K-T ejecta layer originate from the target rocks at the Chicxulub impact site. All the evidence presented so far (the dating of melt rocks, the change in ejecta size with distance from Chicxulub, the dating of zircons,) is compatible with a genetic link but does not prove it. Dating of melt-rich rocks at Chicxulub at ~64.98 Myr show that the Chicxulub impact occurred at about K-T time. Zircons dates at Chicxulub (main age of ~545 Myr, minor component of ~420 Myr) are similar to those found at a few North American K-T sites, suggesting that these zircons could have originated from Yucatan basement rocks. However, some of the ages found within the global K-T ejecta layer

  16. K-t sparse GROWL: sequential combination of partially parallel imaging and compressed sensing in k-t space using flexible virtual coil.

    PubMed

    Huang, Feng; Lin, Wei; Duensing, George R; Reykowski, Arne

    2012-09-01

    Because dynamic MR images are often sparse in x-f domain, k-t space compressed sensing (k-t CS) has been proposed for highly accelerated dynamic MRI. When a multichannel coil is used for acquisition, the combination of partially parallel imaging and k-t CS can improve the accuracy of reconstruction. In this work, an efficient combination method is presented, which is called k-t sparse Generalized GRAPPA fOr Wider readout Line. One fundamental aspect of this work is to apply partially parallel imaging and k-t CS sequentially. A partially parallel imaging technique using a Generalized GRAPPA fOr Wider readout Line operator is adopted before k-t CS reconstruction to decrease the reduction factor in a computationally efficient way while preserving temporal resolution. Channel combination and relative sensitivity maps are used in the flexible virtual coil scheme to alleviate the k-t CS computational load with increasing number of channels. Using k-t FOCUSS as a specific example of k-t CS, the experiments with Cartesian and radial data sets demonstrate that k-t sparse Generalized GRAPPA fOr Wider readout Line can produce results with two times lower root-mean-square error than conventional channel-by-channel k-t CS while consuming up to seven times less computational cost. PMID:22162191

  17. Multiproxy Approach of the K-T and Chicxulub Ejecta Layers Along the Brazos River, Texas, USA

    NASA Astrophysics Data System (ADS)

    Adatte, T.; Keller, G.

    2006-05-01

    We report the results of preliminary investigations of four K-T boundary sections, which are located in small tributaries (Cottonmouth and Darting Minnow creeks) of the Brazos River and the recently drilled Mullinax-1 core. The study is based on high-resolution sampling, sedimentological observations, biostratigraphy, bulk rock and clay mineralogy, major and trace elements geochemistry and granulometry. The Cottonmouth Creek exposure is characterized by Late Maastrichtian dark grey fossiliferous claystone, interrupted by laterally variable channel fill storm deposits, which previously have been erroneously interpreted as impact tsunami deposits. These deposits consist of a basal shell hash (10cm), followed by glauconitic sand with altered impact spherules (10cm), laminated sandstones, and 4 to 5 hummocky cross-bedded sandstone layers separated by burrowed erosion surfaces that mark repeated colonization of the ocean floor between storm events. Above and below these storm events are dark grey fossiliferous claystones of the late Maastrichtian zone CF1, which spans the last 300,000 years of the Cretaceous. The observed sedimentary succession correspond therefore to incised valley infillings linked to a sea-level drop with a possible emersion, followed by a transgression which culminates at the K-T boundary. More specifically, the storms beds overlying the sequence boundary would correspond to late LST sediments which infill the incised valley, the overlying Maastrichtian claystone corresponds to the Early TST with a maximum at KTB (MFS). The K-T boundary is 40 cm and 90 cm above the storm deposits in the outcrop and Mullinax-1 core respectively. In the Mullinax-1 core, high resolution granulometric analyses of this interval reveal the event bed as repeated thinning upwards sequences, from the spherule- and glauconite-rich sandstones with HCS to fine laminated carbonated sandstones and finally thick bedded mudstone. But the last thinning upwards sequence is separated

  18. PDF orientations in shocked quartz grains around the Chicxulub crater

    NASA Astrophysics Data System (ADS)

    Nakano, Yoichiro; Goto, Kazuhisa; Matsui, Takafumi; Tada, Ryuji; Tajika, Eiichi

    2008-04-01

    We measured 852 sets of planar deformation features (PDFs) in shocked quartz grains in impactite samples of the Yaxcopoil (YAX-1) core and from 4 Cretaceous/Tertiary (K/T) boundary deposits: the Monaca, the Cacarajícara, and the Peñalver formations in Cuba, and DSDP site 536, within 800 km of the Chicxulub crater, in order to investigate variations of PDF orientations in the proximity of the crater.

  19. Investigating a 65-Ma-Old Smoking Gun: Deep Drilling of the Chicxulub Impact Structure

    NASA Technical Reports Server (NTRS)

    Dressler, B.; Sharpton, V. L.; Morgan, J.; Buffler, R.; Moran, D.; Smit, J.; Stoeffler, D.; Urrutia, J.

    2003-01-01

    The Phanerozoic paleontological record is marked by several biological extinction events. One of them,at the Cretaceous/Tertiary (K/T) boundary was responsible for the demise of about 50% of genera and 75% of species, including the dinosaurs.These drastic and abrupt changes in the development of life on Earth puzzled paleontologists in the past. Many a cause was put forward to account for them, amongst them climate changes, disease, or overspecialization.

  20. Visualization of a 3-D Simulation of the K-T Boundary Impact

    NASA Astrophysics Data System (ADS)

    Gisler, G.; Greene, R.; Weaver, R.; Gittings, M.

    2003-12-01

    Sixty-five million years ago, late Cretaceous life came to an abrupt end with the impact of a large bolide in the shallow water off the coast of modern Mexico. Effects of this catastrophic event were felt worldwide, and dramatically changed the course of biological evolution on this planet. Understanding the dynamics of this event, and guiding further exploration of the crater and proximal and distal deposits, are goals of a simulation project we have recently undertaken at Los Alamos. We performed the simulations with the Adaptive Mesh Refinement code SAGE and followed the development of the crater out to two minutes past impact. Visualization and analysis of the results were performed mainly using the CEI Ensight package. We will present our results and discuss how the visualization informs the scientific interpretation.

  1. Carbon dioxide emissions from Deccan volcanism and a K/T boundary greenhouse effect

    NASA Technical Reports Server (NTRS)

    Caldeira, Ken; Rampino, Michael R.

    1990-01-01

    A greenhouse warming caused by increased emissions of carbon dioxide from the Deccan Traps volcanism has been suggested as the cause of the terminal Cretaceous extinctions on land and in the sea. Total eruptive and noneruptive CO2 output by the Deccan eruptions (from 6 to 20 x 10 to the 16th moles) over a period of several hundred thousand years is estimated based on best estimates of the CO2 weight fraction of the original basalts and basaltic melts, the fraction of CO2 degassed, and the volume of the Deccan Traps eruptions. Results of a model designed to estimate the effects of increased CO2 on climate and ocean chemistry suggest that increases in atmospheric pCO2 due to Deccan Traps CO2 emissions would have been less than 75 ppm, leading to a predicted global warming of less than 1 C over several hundred thousand years. It is concluded that the direct climate effects of CO2 emissions from the Deccan eruptions would have been too weak to be an important factor in the end-Cretaceous mass extinctions.

  2. Benthic foraminifera across the K/Pg boundary in the Brazos River area (Texas) and Stevns Klint (Denmark): sequence stratigraphy, sea level change and extinctions.

    NASA Astrophysics Data System (ADS)

    Hart, Malcolm; Smart, Christopher; Searle, Sarah; Feist, Sean; Leighton, Andrew; Price, Gregory; Twitchett, Richard

    2010-05-01

    sea floor into the range of storm wave base and that this is what is indicated by the "Event Bed". There are a number of water-depth changes in the famous Stevns Klint succession in Denmark, although the majority of the benthic taxa are different. All belong to the normal Chalk Sea assemblage of North West Europe. The planktic assemblage in Denmark is limited and there are no aragonitic taxa (preservation problems). Benthic foraminifera are rare, though generally more abundant in the chalks immediately below the K/T boundary. Work on material from Denmark and the Brazos River successions is on-going including a more detailed assessment of the various morphogroups represented. The presence of an unusual "foraminiferal sand" within the lowermost Paleocene of the Cottonmouth Creek succession has yet to be fully described and its presence is not fully understood (environmental control or re-deposition?). A sequence stratigraphical interpretation of the successions in Texas and Denmark has shown parallel changes in sea level (of the same magnitude in both areas) that are coincident with the major lithological changes. The most significant feature is a fall in sea level some tens of thousands of years before the K/Pg boundary. Cushman, J. A. 1946. Upper Cretaceous Foraminifera of the Gulf Coastal Region of the United States and adjacent areas. U. S. Geological Survey, Professional Paper, 206, 1 - 241. Gale, A. S. 2006. The Cretaceous-Palaeogene boundary on the Brazos River, Falls County, Texas: is there evidence for impact-induced tsunami sedimentation? Proceedings of the Geologists' Association, London, 117, 173 - 185. Keller, G., Abramovich, S., Berner, Z. & Adatte, T. 2009. Biotic effects of the Chicxulub Impact, K-T catastrophe and sea level change in Texas. Palaegeography, Palaeoclimatology, Palaeoecology, 271, 52 - 68. Yancey, T. E. 1996. Stratigraphy and depositional environments of the Cretaceous-Tertiary Boundary Complex and Basal Paleocene section, Brazos River

  3. A detailed taxonomy of Upper Cretaceous and lower Tertiary Crassatellidae in the Eastern United States; an example of the nature of extinction at the boundary

    USGS Publications Warehouse

    Wingard, G. Lynn

    1993-01-01

    Current theories on the causes of extinction at the CretaceousTertiary boundary have been based on previously published data; however, few workers have stopped to ask the question, 'How good is the basic data set?' To test the accuracy of the published record, a quantitative and qualitative analysis of the Crassatellidae (Mollusca, Bivalvia) of the Gulf and Mid-Atlantic Coastal Plains of the United States for the Upper Cretaceous and lower Tertiary was conducted. Thirty-eight species names and four generic names are used in publications for the Crassatellidae within the geographic and stratigraphic constraints of this analysis. Fourteen of the 38 species names are represented by statistically valid numbers of specimens and were tested by using canonical discriminant analysis. All 38 names, with the exception of 1 invalid name and 4 names for which no representative specimen could be located, were evaluated qualitatively. The results show that the published fossil record is highly inaccurate. Only 8 valid, recognizable species exist in the Crassatellidae within the limits of this study, 14 names are synonymized, and 11 names are represented by indeterminate molds or poorly preserved specimens. Three of the four genera are well founded; the fourth is based on the juvenile of another genus and therefore synonymized. This detailed taxonomic analysis of the Crassatellidae illustrates that the published fossil record is not reliable. Calculations of evolutionary and paleobiologic significance based on poorly defined, overly split fossil groups, such as the Crassatellidae, are biased in the following ways: Rates of evolution and extinction are higher, Faunal turnover at mass extinctions appears more catastrophic, Species diversity is high, Average species durations are shortened, and Geographic ranges are restricted. The data on the taxonomically standardized Crassatellidae show evolutionary rates one-quarter to one-half that of the published fossil record; faunal change

  4. A high resolution, one million year record of extraterrestrial 3Helium from the Shatsky Rise (site 1209) following the K/T impact

    NASA Astrophysics Data System (ADS)

    Bhattacharya, A.; Mukhopadhyay, S.; Hull, P. M.; Norris, R. D.

    2010-12-01

    Located in the North Pacific Ocean, site 1209 on the Shatsky rise offers one of the best-preserved sections for studying biological, oceanographic and climatic events in the aftermath of the K-T impact at ~65 Ma. At this site, the first 450 kyrs after the boundary is represented by an extended carbonate section [1]. The expanded section, also known as the ‘strange interval’ [1] is in direct contrast to sites in the Atlantic and Indian Ocean that have low carbonate deposition during this interval. The strange interval is important for evaluating the immediate changes in climate, ocean circulation, and evolutionary dynamics that accompanied K-T impact in the Pacific Ocean. Here we present measurements of extraterrestrial 3He at site 1209 for the first one million year following the K-T impact event at a resolution of 2.5 cm. Our goal is to better constrain the timescale of climatic and biotic events during this interval of time. Accumulation rates of interplanetary dust particles (IDPs), as traced by extraterrestrial 3He [2], provide a tool with which to investigate sedimentation rates at high resolution. Prior work has shown that the accretion rate of IDPs across the K-T boundary is constant [2], allowing us to invert the extraterrestrial 3He flux for instantaneous sedimentation rates. Sedimentation rates derived from extraterrestrial 3He for the first 1.91 meters i.e. 261.60-259.72 revised composite meters depth (rmcd) following the K-T impact are on an average 0.48 cm/kyr- a factor of 1.6 lower than previously suggested [1]. For a brief period, between 259.69-259.44 rmcd after the K/T boundary, 3He-based sedimentation rates increase sharply to 2.88cm/kyr—a factor of 4.23 higher than has been reported for the same time interval [1]. The short lived increase in sedimentation rate may be explained by higher productivity and/or better carbonate preservation through a deepening lysocline. The 3He based sedimentation rates indicate that the duration of the

  5. Manson structure team will help guide research

    NASA Astrophysics Data System (ADS)

    Hartung, Jack

    The Manson impact structure, in northwest-central Iowa, is about 35 km in diameter and the largest such structure known in the United States. Scientific interest in the Manson structure increased sharply last year when preliminary 40Ar/39Ar data indicated a time for the impact of less than, but not much less than, 70 million years. That age is temptingly close to the time established for the Cretaceous/Tertiary (K/T) boundary, about 66 million years ago, and allows the possibility of a connection between the Manson impact and mass extinctions produced by the K/T boundary event

  6. Origin of the kT smearing in direct photon production

    NASA Astrophysics Data System (ADS)

    Lai, Hung-Liang; Li, Hsiang-Nan

    1998-12-01

    We show that the Sudakov factor from the resummation of double logarithms ln(s/k2T) contained in the distribution functions is responsible for the kT smearing mechanism employed in the next-to-leading-order QCD (αα2s) calculations of direct photon production. s is the center-of-mass energy, and kT the transverse momentum carried by a parton in a colliding hadron. This factor exhibits the appropriate s-dependent Gaussian width in kT, such that our predictions are in good agreement with experimental data.

  7. Analysis of exclusive kT jet algorithms in electron-positron annihilation

    NASA Astrophysics Data System (ADS)

    Chay, Junegone; Kim, Chul; Kim, Inchol

    2015-10-01

    We study the factorization of the dijet cross section in e+e- annihilation using the generalized exclusive jet algorithm which includes the cone-type, the JADE, the kT, the anti-kT and the Cambridge/Aachen jet algorithms as special cases. In order to probe the characteristics of the jet algorithms in a unified way, we consider the generalized kT jet algorithm with an arbitrary weight of the energies, in which various types of the kT-type algorithms are included for specific values of the parameter. We show that the jet algorithm respects the factorization property for the parameter α <2 . The factorized jet function and the soft function are well defined and infrared safe for all the jet algorithms except the kT algorithm. The kT algorithm (α =2 ) breaks the factorization since the jet and the soft functions are infrared divergent and are not defined for α =2 , though the dijet cross section is infrared finite. In the jet algorithms which enable factorization, we give a phenomenological analysis using the resummed and the fixed-order results.

  8. Accelerating free breathing myocardial perfusion MRI using multi coil radial k - t SLR

    NASA Astrophysics Data System (ADS)

    Goud Lingala, Sajan; DiBella, Edward; Adluru, Ganesh; McGann, Christopher; Jacob, Mathews

    2013-10-01

    The clinical utility of myocardial perfusion MR imaging (MPI) is often restricted by the inability of current acquisition schemes to simultaneously achieve high spatio-temporal resolution, good volume coverage, and high signal to noise ratio. Moreover, many subjects often find it difficult to hold their breath for sufficiently long durations making it difficult to obtain reliable MPI data. Accelerated acquisition of free breathing MPI data can overcome some of these challenges. Recently, an algorithm termed as k - t SLR has been proposed to accelerate dynamic MRI by exploiting sparsity and low rank properties of dynamic MRI data. The main focus of this paper is to further improve k - t SLR and demonstrate its utility in considerably accelerating free breathing MPI. We extend its previous implementation to account for multi-coil radial MPI acquisitions. We perform k - t sampling experiments to compare different radial trajectories and determine the best sampling pattern. We also introduce a novel augmented Lagrangian framework to considerably improve the algorithm’s convergence rate. The proposed algorithm is validated using free breathing rest and stress radial perfusion data sets from two normal subjects and one patient with ischemia. k - t SLR was observed to provide faithful reconstructions at high acceleration levels with minimal artifacts compared to existing MPI acceleration schemes such as spatio-temporal constrained reconstruction and k - t SPARSE/SENSE.

  9. k-t FASTER: Acceleration of functional MRI data acquisition using low rank constraints

    PubMed Central

    Chiew, Mark; Smith, Stephen M; Koopmans, Peter J; Graedel, Nadine N; Blumensath, Thomas; Miller, Karla L

    2015-01-01

    Purpose In functional MRI (fMRI), faster sampling of data can provide richer temporal information and increase temporal degrees of freedom. However, acceleration is generally performed on a volume-by-volume basis, without consideration of the intrinsic spatio-temporal data structure. We present a novel method for accelerating fMRI data acquisition, k-t FASTER (FMRI Accelerated in Space-time via Truncation of Effective Rank), which exploits the low-rank structure of fMRI data. Theory and Methods Using matrix completion, 4.27× retrospectively and prospectively under-sampled data were reconstructed (coil-independently) using an iterative nonlinear algorithm, and compared with several different reconstruction strategies. Matrix reconstruction error was evaluated; a dual regression analysis was performed to determine fidelity of recovered fMRI resting state networks (RSNs). Results The retrospective sampling data showed that k-t FASTER produced the lowest error, approximately 3–4%, and the highest quality RSNs. These results were validated in prospectively under-sampled experiments, with k-t FASTER producing better identification of RSNs than fully sampled acquisitions of the same duration. Conclusion With k-t FASTER, incoherently under-sampled fMRI data can be robustly recovered using only rank constraints. This technique can be used to improve the speed of fMRI sampling, particularly for multivariate analyses such as temporal independent component analysis. Magn Reson Med 74:353–364, 2015. © 2014 Wiley Periodicals, Inc. PMID:25168207

  10. Late Paleocene to Early Eocene marine vertebrates from the Uppermost Aruma Formation (northern Saudi Arabia): implications for the K-T transition

    NASA Astrophysics Data System (ADS)

    Thomas, Herbert; Roger, Jack; Halawani, Mohammed; Memesh, Abdallah; Lebret, Patrick; Bourdillon, Chantal; Buffetaut, Eric; Cappetta, Henri; Cavelier, Claude; Dutheil, Didier; Tonge, Haiyan; Vaslet, Denis

    1999-12-01

    A new assemblage of marine vertebrates from northern Saudi Arabia, east of the Nafud, leads us to reconsider the age of the top unit of the Aruma Formation, the Lina Member, hitherto referred to the Maastrichtian. This assemblage contains the remains of a dozen selachian and actinopterygian fishes, as well as those of a giant sea turtle representing a new dermochelyid taxon. It suggests a Late Paleocene to Early Eocene age for this unit. This new dating and a revision of the stratigraphic position of the Lina Member demonstrate the existence, on a regional scale, of an important hiatus at the K-T boundary.

  11. Geochemical and climatic effects of increased marine organic carbon burial at the Cenomanian/Turonian boundary

    USGS Publications Warehouse

    Arthur, M.A.; Dean, W.E.; Pratt, L.M.

    1988-01-01

    Perhaps the most significant event in the Cretaceous record of the carbon isotope composition of carbonate1,2, other than the 1-2.5??? negative shift in the carbon isotope composition of calcareous plankton at the Cretaceous/Tertiary boundary3, is the rapid global positive excursion of ???2??? (13C enrichment) which took place between ???91.5 Myr and 90.3 Myr (late Cenomanian to earliest Turonian (C/T boundary event))1,4,5. This excursion has been attributed to a change in the isotope composition of the marine total dissolved carbon (TDC) reservoir resulting from an increase in rate of burial of 13C-depleted organic carbon, which coincided with a major global rise in sea level5 during the so-called C/T oceanic anoxic event (OAE)6. Here we present new data, from nine localities, which demonstrate that a positive excursion in the carbon isotope composition of organic carbon at or near the C/T boundary7,8 is nearly synchronous with that for carbonate and is widespread throughout the Tethys and Atlantic basins (Fig. 1), as well as in more high-latitude epicontinental seas. The postulated increase in the rate of burial of organic carbon may have had a significant effect on CO2 and O2 concentrations in the oceans and atmosphere, and consequent effects on global climate and sedimentary facies. ?? 1988 Nature Publishing Group.

  12. Transverse-momentum-dependent quark splitting functions in k T -factorization: real contributions

    NASA Astrophysics Data System (ADS)

    Gituliar, Oleksandr; Hentschinski, Martin; Kutak, Krzysztof

    2016-01-01

    We calculate transverse momentum dependent quark splitting kernels P gq and P qq within k T -factorization, completing earlier results which concentrated on gluon splitting functions P gg and P qg . The complete set of splitting kernels is an essential requirement for the formulation of a complete set of evolution equations for transverse momentum dependent parton distribution functions and the development of corresponding parton shower algorithms.

  13. Monitoring oil displacement processes with k-t accelerated spin echo SPI.

    PubMed

    Li, Ming; Xiao, Dan; Romero-Zerón, Laura; Balcom, Bruce J

    2016-03-01

    Magnetic resonance imaging (MRI) is a robust tool to monitor oil displacement processes in porous media. Conventional MRI measurement times can be lengthy, which hinders monitoring time-dependent displacements. Knowledge of the oil and water microscopic distribution is important because their pore scale behavior reflects the oil trapping mechanisms. The oil and water pore scale distribution is reflected in the magnetic resonance T2 signal lifetime distribution. In this work, a pure phase-encoding MRI technique, spin echo SPI (SE-SPI), was employed to monitor oil displacement during water flooding and polymer flooding. A k-t acceleration method, with low-rank matrix completion, was employed to improve the temporal resolution of the SE-SPI MRI measurements. Comparison to conventional SE-SPI T2 mapping measurements revealed that the k-t accelerated measurement was more sensitive and provided higher-quality results. It was demonstrated that the k-t acceleration decreased the average measurement time from 66.7 to 20.3 min in this work. A perfluorinated oil, containing no (1) H, and H2 O brine were employed to distinguish oil and water phases in model flooding experiments. High-quality 1D water saturation profiles were acquired from the k-t accelerated SE-SPI measurements. Spatially and temporally resolved T2 distributions were extracted from the profile data. The shift in the (1) H T2 distribution of water in the pore space to longer lifetimes during water flooding and polymer flooding is consistent with increased water content in the pore space. Copyright © 2015 John Wiley & Sons, Ltd. PMID:26626141

  14. Arroyo el Mimbral, Mexico, K/T unit: Origin as debris flow/turbidite, not a tsunami deposit

    NASA Technical Reports Server (NTRS)

    Bohor, Bruce F.; Betterton, William J.

    1993-01-01

    Coarse, spherule-bearing, elastic units have been discovered at 10 marine sites that span the K/T boundary in northeastern Mexico. We examined one of the best exposed sites in Arroyo el Mimbral, northwest of Tampico. The Mimbral outcrop displays a layered elastic unit up to 3 m thick enclosed by marly limestones of the Mendez (Latest Maastrichian) and Velasco (Earliest Danian) Formations. At its thickest point, this channelized elastic unit is comprised of 3 subunits: (1) a basal, poorly-sorted, ungraded calcareous spherule bed 1 m thick containing relict impact glass and shocked mineral grains, (2) a massive set of laminated calcite-cemented sandstones up to 2 m thick with plant debris at its base, (3) capped by a thin (up to 20 cm) set of rippled sandstone layers separated by silty mudstone drapes containing a small (921 pg/g) iridium anomaly. This tripartite elastic unit is conformably overlain by marls of the Velasco Formation. We also visited the La Lajilla site east of Ciudad Victoria; its stratigraphy is similar to Mimbral's, but its elastic beds are thinner and less extensive laterally. The Mimbral elastic unit has been interpreted previously as being deposited by a megawave or tsunami produced by an asteroid impact on nearby Yucatan (Chicxulub crater). However, a presumed 400-m paleodepth of water at the Mimbral site, channeling of the spherule subunit into the underlying Mendez Formation marls, and the overtopping of the basal, spherule-bearing subunit by the laminated sandstone subunit, all suggest a combined debris flow/turbidite origin for this elastic unit similar to that proposed for Upper Pleistocene sand/silt beds occurring elsewhere in the Gulf of Mexico. In this latter model, the sediment source region for the elastic unit is the lower continental shelf and slope escarpment. For the K/T unit at Mimbral, we propose that thick ejecta blanket deposits composed mostly of spherules were rapidly loaded onto the lower shelf and slope from an impact

  15. The Kara and Ust-Kara impact structures (USSR) and their relevance to the K/T boundary event

    NASA Technical Reports Server (NTRS)

    Koeberl, Christian; Nazarov, M. A.; Harrison, T. M.; Sharpton, V. L.; Murali, A. V.; Burke, K.

    1988-01-01

    The Kara and Ust-Kara craters are twin impact structures situated at about 69 deg 10 min N; 65 deg 00 min E at the Kara Sea. For Kara a diameter of about 55 km would be a very conservative estimate, and field observations indicate a maximum current diameter of about 60 km. The diameter of Ust-Kara has to be larger than 16 km. A better estimate might be 25 km but in all likelihood it is even larger. Suevites and impactites from the Kara area have been known since the beginning of the century, but had been misidentified as glacial deposits. Only about 15 years ago the impact origin of the two structures was demonstrated, following the recognition of shock metamorphism in the area. The composition of the target rocks is mirrored by the composition of the clasts within the suevites. In the southern part of Kara, Permian shales and limestones are sometimes accompanied by diabasic dykes, similar to in the central uplift. Due to the high degree of shock metamorphism the shocked magmatic rocks are not easily identified, although most of them seem to be of diabasic or dioritic composition. The impact melts (tagamites) are grey to dark grey fine grained crystallized rocks showing very fine mineral components and are the product of shock-melting with later recrystallization. The impact glasses show a layered structure, inclusions, and vesicles, and have colors ranging from translucent white over brown and grey to black. A complete geochemical characterization of the Kara and Ust-Kara impact craters was attempted by analyzing more than 40 samples of target rocks, shocked rocks, suevites, impact melts, and impact glasses for major and trace elements.

  16. A new measure of molecular attractions between nanoparticles near kT adhesion energy.

    PubMed

    Kendall, Kevin; Dhir, Aman; Du, Shangfeng

    2009-07-01

    The weak molecular attractions of nanoparticles are important because they drive self-assembly mechanisms, allow processing in dispersions e.g. of pigments, catalysts or device structures, influence disease through the attraction of viruses to cells and also cause potential toxic effects through nanoparticle interference with biomolecules and organs. The problem is to understand these small forces which pull nanoparticles into intimate contact; forces which are comparable with 3kT/2z the thermal impact force experienced by an average Brownian particle hitting a linear repulsive potential of range z. Here we describe a new method for measuring the atomic attractions of nanoparticles based on the observation of aggregates produced by these small forces. The method is based on the tracking of individual monosize nanoparticles whose diameter can be calculated from the Stokes-Einstein analysis of the tracks in aqueous suspensions. Then the doublet aggregates are distinguished because they move slower and are also very much brighter than the dispersed nanoparticles. By finding the ratio of doublets to singlets, the adhesive energy between the particles can be calculated from known statistical thermodynamic theory using assumptions about the shape of the interaction potential. In this way, very small adhesion energies of 2kT have been measured, smaller than those seen previously by atomic force microscopy (AFM) and scanning tunneling microscopy (STM). PMID:19531867

  17. Erice International Seminars on Planetary Emergencies. 17th Workshop: The Collision of an Asteroid or Comet with the Earth

    NASA Astrophysics Data System (ADS)

    1993-05-01

    Participating papers of this workshop included: K/T Mass Extinctions: Some Astronomical Constraints; The dynamical Properties of Near-Earth Objects; Predicting Close Earth Approaches of Asteroids and Comets; Australasian Near-Earth Object Programs; The Cosmic Impact Hazard: Overview; Large Body Impacts And Mass Extinction Events: Evidence from the Cretaceous/Tertiary Boundary and a Possible General Relationship; Historical Perspectives on Impact Hazards; Research Activities on Asteroids and Comets conducted in Japan; Physical and Chemical Properties of Near-Earth Objects; and Search for Near-Earth Objects with Ground-Based Electro-Optical Deep Space Surveillance (GEODSS) Assets. An abstract of each is contained herein.

  18. Chicxulub multiring impact basin - Size and other characteristics derived from gravity analysis

    NASA Technical Reports Server (NTRS)

    Sharpton, Virgil L.; Burke, Kevin; Camargo-Zanoguera, Antonio; Hall, Stuart A.; Lee, D. S.; Marin, Luis E.; Suarez-Reynoso, Gerardo; Quezada-Muneton, Juan M.; Spudis, Paul D.; Urrutia-Fucugauchi, Jaime

    1993-01-01

    The buried Chicxulub impact structure in Mexico, which is linked to the Cretaceous-Tertiary (K-T) boundary layer, may be significantly larger than previously suspected. Reprocessed gravity data over Northern Yucatan reveal three major rings and parts of a fourth ring, spaced similarly to those observed at multiring impact basins on other planets. The outer ring, probably corresponding to the basin's topographic rim, is almost 300 kilometers in diameter, indicating that Chicxulub may be one of the largest impact structures produced in the inner solar system since the period of early bombardment ended nearly 4 billion years ago.

  19. Characterization of the K-T and Chicxulub Ejecta Layers along the Brazos River, Texas: Correlation with NE Mexico and Yucatan.

    NASA Astrophysics Data System (ADS)

    Thierry, A.; Gerta, K.

    2005-05-01

    We report the results of preliminary investigations of four K-T boundary sections, which are located in small tributaries (Cottonmouth and Darting Minnow creeks) of the Brazos River. The study is based on high-resolution sampling, sedimentological observations, biostratigraphy, bulk rock and clay mineralogy, geochemistry and granulometry. The Cottonmouth Creek exposure is characterized by Late Maastrichtian dark grey fossiliferous claystone, interrupted by laterally variable channel fill storm deposits, which previously have been erroneously interpreted as impact tsunami deposits. These deposits consist of a basal shell hash (10cm), followed by glauconitic sand with altered impact spherules (10cm), laminated sandstones, and 4 to 5 hummocky cross-bedded sandstone layers separated by burrowed erosion surfaces that mark repeated colonization of the ocean floor between storm events. Above and below these storm events are dark grey fossiliferous claystones of the late Maastrichtian zone CF1, which spans the last 300,000 years of the Cretaceous. The K-T boundary is 40 cm above the storm deposits. Granulometric analyses of this interval reveal no size grading due to suspension settling from storm or tsunami waves, but rather indicate normal hemipelagic sedimentation. The Chicxulub spherule ejecta in the glauconitic sand near the base of the storm beds is reworked from an older original ejecta layer, as indicated by abundant reworked fossil shells. This is similar to the reworked spherule layers at the base of the siliclastic deposits throughout NE Mexico, where the original layer is within marls up to 5 m below (base of CF1) and predating the K-T by 300,000 years. We may have discovered the original ejecta layer in Cottonmouth Creek 60 cm below the basal unconformity of the storm beds and within claystones near the base of zone CF1. This layer consists of a prominent 3-4 cm thick yellow clay of pure and well-crystallized smectite (Cheto Mg-smectite) that possibly

  20. Reconsideration of the inclusive prompt photon production at the LHC with kT-factorization

    NASA Astrophysics Data System (ADS)

    Lipatov, A. V.; Malyshev, M. A.

    2016-08-01

    We reconsider the inclusive production of isolated prompt photons in p p collisions at the LHC energies in the framework of kT-factorization approach. Our analysis is based on the O (α αs) off-shell (depending on the transverse momenta of initial quarks and gluons) production amplitudes of q*g*→γ q and q*q¯*→γ g partonic subprocesses and transverse momentum dependent (or unintegrated) quark and gluon densities in a proton, which are chosen in accordance with the Kimber-Martin-Ryskin prescription. We show that the subleading high-order O (α αs2) contributions, not covered by the noncollinear evolution of parton densities, are important to describe latest LHC data.

  1. Response of marine and freshwater algae to nitric acid and elevated carbon dioxide levels simulating environmental effects of bolide impact

    NASA Technical Reports Server (NTRS)

    Boston, P. J.

    1988-01-01

    One of the intriguing facets of the Cretaceous-Tertiary extinction is the apparently selective pattern of mortality amongst taxa. Some groups of organisms were severely affected and some remained relatively unscathed as they went through the K/T boundary. While there is argument concerning the exact interpretation of the fossil record, one of the best documented extinctions at the Cretaceous-Tertiary boundary is that of the calcareous nannoplankton. These organisms include coccolithic algae and foraminiferans. Attempts to explain their decline at the K/T boundary center around chemistry which could affect their calcium carbonate shells while leaving their silica-shelled cousins less affected or unaffected. Two environmental consequences of an extraterrestrial body impact which were suggested are the production of large quantities of nitrogen oxides generated by the shock heating of the atmosphere and the possible rise in CO2 from the dissolution of CaCO3 shells. Both of these phenomena would acidify the upper layers of the oceans and bodies of freshwater not otherwise buffered. The effects of nitric acid, carbon dioxide, or both factors on the growth and reproduction of calcareous marine coccoliths and non-calcareous marine and freshwater species of algae were considered. These experiments demonstrate that nitric acid and carbon dioxide have significant effects on important aspects of the physiology and reproduction of modern algae representative of extinct taxa thought to have suffered significant declines at the Cretaceous-Tertiary boundary. Furthermore, calcareous species showed more marked effects than siliceous species and marine species tested were more sensitive than freshwater species.

  2. Accelerated dynamic MRI exploiting sparsity and low-rank structure: k-t SLR.

    PubMed

    Lingala, Sajan Goud; Hu, Yue; DiBella, Edward; Jacob, Mathews

    2011-05-01

    We introduce a novel algorithm to reconstruct dynamic magnetic resonance imaging (MRI) data from under-sampled k-t space data. In contrast to classical model based cine MRI schemes that rely on the sparsity or banded structure in Fourier space, we use the compact representation of the data in the Karhunen Louve transform (KLT) domain to exploit the correlations in the dataset. The use of the data-dependent KL transform makes our approach ideally suited to a range of dynamic imaging problems, even when the motion is not periodic. In comparison to current KLT-based methods that rely on a two-step approach to first estimate the basis functions and then use it for reconstruction, we pose the problem as a spectrally regularized matrix recovery problem. By simultaneously determining the temporal basis functions and its spatial weights from the entire measured data, the proposed scheme is capable of providing high quality reconstructions at a range of accelerations. In addition to using the compact representation in the KLT domain, we also exploit the sparsity of the data to further improve the recovery rate. Validations using numerical phantoms and in vivo cardiac perfusion MRI data demonstrate the significant improvement in performance offered by the proposed scheme over existing methods. PMID:21292593

  3. Neutron activation of natural zinc samples at kT=25 keV

    NASA Astrophysics Data System (ADS)

    Reifarth, R.; Dababneh, S.; Heil, M.; Käppeler, F.; Plag, R.; Sonnabend, K.; Uberseder, E.

    2012-03-01

    The neutron-capture cross sections of 64Zn, 68Zn, and 70Zn have been measured with the activation technique in a quasistellar neutron spectrum corresponding to a thermal energy of kT=25 keV. By a series of repeated irradiations with different experimental conditions, an uncertainty of 3% could be achieved for the 64Zn(n,γ)65Zn cross section and for the partial cross section 68Zn(n,γ)69Znm feeding the isomeric state in 69Zn. For the partial cross sections 70Zn(n,γ)71Znm and 70Zn(n,γ)71Zng, which had not been measured so far, uncertainties of only 16% and 6% could be reached because of limited counting statistics and decay intensities. Compared to previous measurements on 64,68Zn, the uncertainties could be significantly improved, while the 70Zn cross section was found to be two times smaller than existing model calculations. From these results Maxwellian average cross sections were determined between 5 and 100 keV. Additionally, the β-decay half-life of 71Znm could be determined with significantly improved accuracy. The consequences of these data have been studied by network calculations for convective core He burning and convective shell C burning in massive stars.

  4. Mechanics performance test and feasibility analysis to replace the rigid sucker rod for 6K T300

    NASA Astrophysics Data System (ADS)

    Tong, Changhong

    2015-07-01

    A experiment plan was designed according to the working conditions of sucker rod and the requirements for pump depth in 3000 m in the oil field, the tensile strength for 6K T300 under a normal temperature and high temperature was measured by using universal testing machine, and then, the resistance to corrosion for a crude oil was verified by measuring the tensile strength for 6K T300 after crude oil immersion at a certain time, and the conclusions are that the material is sensitive relatively to corrosion of crude oil and that the tensile strength of the 6K T300 compared with similar products is lower, a proposal to the GH company that to meet the need of oil field production instead of the rigid rod the tensile strength and corrosion resistant for a crude of the T300 6 k materials have to do further efforts was pointed out.

  5. Spinel-bearing spherules condensed from the Chicxulub impact-vapor plume

    NASA Astrophysics Data System (ADS)

    Ebel, Denton S.; Grossman, Lawrence

    2005-04-01

    Formation of the giant Chicxulub crater off Mexico's Yucatan Peninsula coincided with deposition of the global Ir-rich Cretaceous-Tertiary (K-T) stratigraphic boundary layer ca. 65 Ma. The boundary is marked most sharply by abundant spherules containing unaltered grains of magnesioferrite spinel. Here we predict for the first time the sequential condensation of solids and liquids from the plume of vaporized rock expected from oblique K-T impacts. We predict highly oxidizing plumes that condense silicate liquid droplets bearing spinel grains whose compositions closely match those marking the actual boundary. Systematic global variations in spinel composition are consistent with higher condensation temperatures for spinels found at Atlantic and European sites than for those in the Pacific.

  6. Constraining mass accumulation rates across the Cretaceous-Paleogene boundary clay layer using extraterrestrial helium-3

    NASA Astrophysics Data System (ADS)

    Giron, M.; Sepulveda, J.; Mukhopadhyay, S.; Alegret, L.; Summons, R. E.

    2012-12-01

    ., Perchnielsen, K., Oberhansli, H., Kelts, K., Labrecque, J., Tauxe, L., Krahenbuhl, U., et al. (1982). Mass Mortality and Its Environmental and Evolutionary Consequences. Science 216, 249-256. 2. D'hondt, S. (1998). Organic carbon fluxes and ecological recovery from the Cretaceous-Tertiary mass extinction (vol 282, pg 276, 1998). Science 282, 1051-1051. 3. Alegret, L., Thomas, E., and Lohmann, K.C. (2012). End-Cretaceous marine mass extinction not caused by productivity collapse. P Natl Acad Sci USA 109, 728-732. 4. Sepulveda, J., Wendler, J.E., Summons, R.E., and Hinrichs, K.U. (2009). Rapid Resurgence of Marine Productivity After the Cretaceous-Paleogene Mass Extinction. Science 326, 129-132. 5. Mukhopadhyay, S., Farley, K.A., and Montanari, A. (2001). A short duration of the Cretaceous-Tertiary boundary event: Evidence from extraterrestrial helium-3. Science 291, 1952-1955.

  7. What killed the dinosaurs?

    USGS Publications Warehouse

    Glen, W.

    1990-01-01

    Out of a number of earlier attempts to explain mass extinctions, only the volcanism alternative to the impact hypothesis remains under serious consideration. The evidence for an impact is reviewed, and the mechanisms which might have brought about the apocalyptic series of extinctions at the Cretaceous-Tertiary (K-T) boundary are reviewed, referring to Alvarez's and other research teams working on the problem. As suggested by the patterns of extinctions and the periodicity of this and other mass extinctions, the "volcanist alternative' is introduced. This would produce a series of selective extinctions spread over a considerable length of time, and which is similar to what the fossil record shows, and could account for the iridium anomaly at the K-T boundary. More support for this theory comes from models put forward by volcanist exponents, but it is concluded that the debate is far from ended. -J.W.Cooper

  8. Sub-kT/q subthreshold slope p-metal-oxide-semiconductor field-effect transistors with single-grained Pb(Zr,Ti)O3 featuring a highly reliable negative capacitance

    NASA Astrophysics Data System (ADS)

    Park, Jae Hyo; Joo, Seung Ki

    2016-03-01

    A reliable on/off switching with an sub-kT/q subthreshold slope (38 mV/dec at room temperature) is experimentally demonstrated with using selectively nucleated laterally crystallized single-grain Pb(Zr,Ti)O3 (PZT) ferroelectric and ZrTiO4 paraelectric thin-film. The combination of ferroelectric and paraelectric thin-film is enabled to form a negative capacitance (NC) at the weak inversion region. However, the PZT grain-boundary easily degrades the NC properties after switching the on/off more than 108 times. It is found that the polarization of PZT is diminished from the path of grain-boundary. Here, we effectively suppress the degradation of NC MOS-FET which did not showed any fatigue even after 108 on/off switching.

  9. Europe's last Mesozoic bird

    NASA Astrophysics Data System (ADS)

    Dyke, Gareth; Dortangs, Rudi; Jagt, John; Mulder, Eric; Schulp, Anne; Chiappe, Luis

    2002-08-01

    Birds known from more than isolated skeletal elements are rare in the fossil record, especially from the European Mesozoic. This paucity has hindered interpretations of avian evolution immediately prior to, and in the aftermath of, the Cretaceous-Tertiary (K-T) extinction event. We report on a specimen of a large ornithurine bird (closely related to Ichthyornis) from the uppermost Cretaceous (Maastricht Formation) of Belgium. This is the first record of a bird from these historic strata and the only phylogenetically informative ornithurine to be recovered from the Mesozoic of Europe. Because this new specimen was collected from 40 m below the K-T boundary (approximate age of 65.8 Ma), it is also the youngest non-neornithine (=non-modern) bird known from anywhere in the world.

  10. Investigating a 65-Ma-Old Smoking Gun: Deep Drilling of the Chicxulub Impact Structure

    NASA Astrophysics Data System (ADS)

    Dressler, B. O.; Sharpton, V. L.; Morgan, J.; Buffler, R.; Moran, D.; Smit, J.; Stöffler, D.; Urrutia, J.

    The Phanerozoic paleontological record is marked by several biological extinction events. One of them, at the Cretaceous/Tertiary (K/T) boundary, was responsible for the demise of about 5% of genera and 75% of species, including the dinosaurs. These drastic and abrupt changes in the development of life on Earth puzzled paleontologists in the past. Many a cause was put forward to account for them, amongst them climate changes, disease, or overspecialization. About 20 years ago, Alvarez et al. [1980] discovered a high iridium concentration in an Italian K/T boundary clay layer. They proposed that the iridium was derived from an extra-terrestrial impact 65 Ma ago and that the impact was the cause for the K/T boundary extinctions. The iridium layer was subsequently found at K/T boundary locations worldwide. Further evidence for a K/T impact came from the discovery of shocked quartz, nano-diamonds, glass spherules, and nickel-rich spinels in microkrystites in the iridium-rich layer. There was evidence for an impact event, but no crater.

  11. k-t acceleration in pure phase encode MRI to monitor dynamic flooding processes in rock core plugs.

    PubMed

    Xiao, Dan; Balcom, Bruce J

    2014-06-01

    Monitoring the pore system in sedimentary rocks with MRI when fluids are introduced is very important in the study of petroleum reservoirs and enhanced oil recovery. However, the lengthy acquisition time of each image, with pure phase encode MRI, limits the temporal resolution. Spatiotemporal correlations can be exploited to undersample the k-t space data. The stacked frames/profiles can be well approximated by an image matrix with rank deficiency, which can be recovered by nonlinear nuclear norm minimization. Sparsity of the x-t image can also be exploited for nonlinear reconstruction. In this work the results of a low rank matrix completion technique were compared with k-t sparse compressed sensing. These methods are demonstrated with one dimensional SPRITE imaging of a Bentheimer rock core plug and SESPI imaging of a Berea rock core plug, but can be easily extended to higher dimensionality and/or other pure phase encode measurements. These ideas will enable higher dimensionality pure phase encode MRI studies of dynamic flooding processes in low magnetic field systems. PMID:24809307

  12. k-t Acceleration in pure phase encode MRI to monitor dynamic flooding processes in rock core plugs

    NASA Astrophysics Data System (ADS)

    Xiao, Dan; Balcom, Bruce J.

    2014-06-01

    Monitoring the pore system in sedimentary rocks with MRI when fluids are introduced is very important in the study of petroleum reservoirs and enhanced oil recovery. However, the lengthy acquisition time of each image, with pure phase encode MRI, limits the temporal resolution. Spatiotemporal correlations can be exploited to undersample the k-t space data. The stacked frames/profiles can be well approximated by an image matrix with rank deficiency, which can be recovered by nonlinear nuclear norm minimization. Sparsity of the x-t image can also be exploited for nonlinear reconstruction. In this work the results of a low rank matrix completion technique were compared with k-t sparse compressed sensing. These methods are demonstrated with one dimensional SPRITE imaging of a Bentheimer rock core plug and SESPI imaging of a Berea rock core plug, but can be easily extended to higher dimensionality and/or other pure phase encode measurements. These ideas will enable higher dimensionality pure phase encode MRI studies of dynamic flooding processes in low magnetic field systems.

  13. Search for optimal conditions for exploring double-parton scattering in four-jet production: kT -factorization approach

    NASA Astrophysics Data System (ADS)

    Kutak, Krzysztof; Maciuła, Rafał; Serino, Mirko; Szczurek, Antoni; van Hameren, Andreas

    2016-07-01

    In the present paper, we discuss how to maximize the double-parton scattering (DPS) contribution in four-jet production by selecting kinematical cuts. Here both single-parton and double-parton scattering effects are calculated in the kT -factorization approach, following our recent developments of relevant methods and tools. Several differential distributions are shown and discussed in the context of future searches for DPS effects, such as rapidity of jets, rapidity distance, and azimuthal correlations between jets. The dependence of the relative DPS amount is studied as a function of those observables. The regions with an enhanced DPS contribution are identified. Future experimental explorations could extract more precise values of σeff and its potential dependence on kinematical variables.

  14. Boundary Crossing and Boundary Objects

    ERIC Educational Resources Information Center

    Akkerman, Sanne F.; Bakker, Arthur

    2011-01-01

    Diversity and mobility in education and work present a paramount challenge that needs better conceptualization in educational theory. This challenge has been addressed by educational scholars with the notion of "boundaries", particularly by the concepts of "boundary crossing" and "boundary objects". Although studies on boundary crossing and…

  15. Biospheric effects of volatiles produced by the Chicxulub Cretaceous/Tertiary impact

    NASA Technical Reports Server (NTRS)

    Pope, Kevin O.

    1996-01-01

    The meteorite impact that formed the Chicxulub crater 65 million years ago caused a mass extinction of life. Analyses indicate that the projectile was either a 9.4-16.8 km diameter asteroid or a 14.2-24.0 km diameter comet. We estimate that 200 gigatons each of S02 and H2O were deposited globally in the stratosphere by the impact into water saturated sulfate-rich sediments. Conversion of these gases into sulfuric acid aerosols blocked an average of 68 percent of the sun's radiation for a period of 12 years. Global average temperatures probably dropped to near freezing in 5 years and remained near or below freezing for 7 years. Greenhouse warming due to impact-generated C02 was negligible, hence global cooling from sulfates was the major cause of climate change and contributed greatly to the mass extinction.

  16. Hydrogeologic characterization of the cretaceous-tertiary Coastal Plain sequence at the Savannah River Site

    SciTech Connect

    Aadland, R.K.

    1990-01-01

    Several hydrostratigraphic classification schemes have been devised to describe the hydrogeology at the Savannah River Site SRS. Central to these schemes is the one-to-one fixed relationship between the hydrostratigraphic units and the lithostratigraphic units currently favored for the Site. This fixed relationship has proven difficult to apply in studies of widely separated locations at the Site due to the various facies observed in the updip Coastal Plain sequence. A detailed analysis and synthesis of the geophysical, core, and hydrologic data available from more than 164 deep wells from 23 cluster locations both on the Site and in the surrounding region was conducted to provide the basis for a hydrostratigraphic classification scheme which could be applied to the entire SRS region. As a result, an interim hydrostratigraphic classification was developed that defines the regional hydrogeologic characteristics of the aquifers underlying the Site (Aadland et al., 1990). The hydrostratigraphic code accounts for and accommodates the rapid lateral variation in lithofacies observed in the region, and eliminates all formal'' connection between the hydrostratigraphic nomenclature and the lithostratigraphic nomenclature. The code is robust and can be made as detailed as is needed to characterize the aquifer units and aquifer zones described in Site-specific studies. 15 refs., 2 figs.

  17. Emergence of a Rival Paradigm to Account for the Cretaceous/Tertiary Event.

    ERIC Educational Resources Information Center

    McCartney, Kevin; Loper, David E.

    1989-01-01

    Discusses the origin of the catastrophic event as to whether it was an episodic process or of extraterrestrial or endogenous origin. Develops a model of a volcanic mechanism to produce shocked quartz like those found in the Deccan basalts. (MVL)

  18. Diagenesis and reservoir characterization of the Cretaceous-Tertiary sequence, eastern Venezuela

    SciTech Connect

    Aquado, B.; Ghosh, S.; Isea, A. )

    1990-05-01

    The giant El Furrial field Maturin subbasin is the most important oil field discovered in Venezuela in the last three decades. The average oil column has a thickness of 400 m and the reservoirs consist of essentially sandy siliciclastic sediments of nearshore-shallow marine origin. The oil's API gravity ranges from light to extra heavy and occurs in a stratified manner in the reservoirs. A total of 1,080 m of core from the producing sequence was studied through x-ray diffraction scanning electron microscopy, and petrography. This data, along with petrophysical measurements, show a clear differentiation between the Upper Cretaceous and the Oligocene reservoirs. The Upper Cretaceous reservoirs are characterized by relatively fine and uniform grain size, subarkosic composition with common volcanic rock fragments, high degree of chemical and mechanical compaction highly illitic mixed-layer I/S assemblage with less than 10% expandable layers, and ubiquitous baroque dolomite. Additionally, porosity and permeability values are persistently low. Clearly, the Cretaceous sediments are diagenetically mature and may indicate diagenetic transformation at greater depths or under a different thermal regime. In contrast the coarser grained Oligocene reservoirs of quartz arenitic composition show a lesser diagenetic overprint, and greater porosity and permeability. Porosity is dominantly secondary due to cement and grain (mostly quartz) dissolution, as well as tectonically induced grain fracturing. Common kaolinite and minor amounts of I/S with up to 20% of expandable layers attest to a lower diagenetic regime than in the Cretaceous reservoirs.

  19. The interaction of the cretaceous-tertiary extinction bolide with the atmosphere, ocean, and solid earth

    NASA Technical Reports Server (NTRS)

    Okeefe, J. D.; Ahrens, T. J.

    1981-01-01

    A number of investigations, including those reported by Orth et al. (1981), have provided physical evidence for the impact of an extraterrestrial object on earth 65 million years ago. This time corresponds to the end of the cretaceous period. This impact could, therefore, be responsible for the observed extinction of biological species at the end of the Mesozoic era. Among the species becoming extinct are found also flying and walking dinosaurs, which include all land animals that had masses greater than 25 kg. The present investigation is concerned with a study of the possibilities for the collision of earth with 10 km-size object, and the consequences produced by such a collision. It is found that the penetration of the atmosphere by the bolide creates a temporary hole in the atmosphere. The resulting flow fields can inject melt droplets and finely commuted solid particles into the atmosphere. Short-term effects of heating, followed by dust induced worldwide cooling, may provide several mechanisms for the observed extinction of the species.

  20. Vertebrate time-tree elucidates the biogeographic pattern of a major biotic change around the K-T boundary in Madagascar.

    PubMed

    Crottini, Angelica; Madsen, Ole; Poux, Celine; Strauss, Axel; Vieites, David R; Vences, Miguel

    2012-04-01

    The geographic and temporal origins of Madagascar's biota have long been in the center of debate. We reconstructed a time-tree including nearly all native nonflying and nonmarine vertebrate clades present on the island, from DNA sequences of two single-copy protein-coding nuclear genes (BDNF and RAG1) and a set of congruent time constraints. Reconstructions calculated with autocorrelated or independent substitution rates over clades agreed in placing the origins of the 31 included clades in Cretaceous to Cenozoic times. The two clades with sister groups in South America were the oldest, followed by those of a putative Asian ancestry that were significantly older than the prevalent clades of African ancestry. No colonizations from Asia occurred after the Eocene, suggesting that dispersal and vicariance of Asian/Indian groups were favored over a comparatively short period during, and shortly after, the separation of India and Madagascar. Species richness of clades correlates with their age but those clades that have a large proportion of species diversity in rainforests are significantly more species-rich. This finding suggests an underlying pattern of continuous speciation through time in Madagascar's vertebrates, with accelerated episodes of adaptive diversification in those clades that succeeded radiating into the rainforests. PMID:22431616

  1. Prompt charmonia production and polarization at LHC in the NRQCD with kT-factorization. II. χc mesons

    NASA Astrophysics Data System (ADS)

    Baranov, S. P.; Lipatov, A. V.; Zotov, N. P.

    2016-05-01

    In the framework of the kT-factorization approach, the production of prompt ψ (2 S ) mesons in p p collisions at the LHC energies is studied. Our consideration is based on the off-shell amplitudes for hard partonic subprocesses g*g*→χc J and nonrelativistic QCD formalism for bound states. The transverse-momentum-dependent (unintegrated) gluon densities in a proton were derived from the Ciafaloni-Catani-Fiorani-Marchesini evolution equation or, alternatively, were chosen in accordance with the Kimber-Martin-Ryskin prescription. Taking into account both color-singlet and color-octet contributions, we deduce the corresponding nonperturbative long-distance matrix elements from the fits to the latest ATLAS data on χc 1 and χc 2 transverse-momentum distributions at √{s }=7 TeV . We find that these distributions at small and moderate pT are formed mainly by the color-singlet components. We successfully described the data on the relative production rates σ (χc 2)/σ (χc 1) presented by the ATLAS, CMS, and LHCb Collaborations. We find that the fit points to unequal wave functions of χc 1 and χc 2 states.

  2. Performance of the NOνA Data Acquisition and Trigger Systems for the full 14 kT Far Detector

    NASA Astrophysics Data System (ADS)

    Norman, A.; Davies, G. S.; Ding, P. F.; Dukes, E. C.; Duyan, H.; Frank, M. J.; R. C. Group; Habig, A.; Henderson, W.; Niner, E.; Mina, R.; Moren, A.; Mualem, L.; Oksuzian, Y.; Rebel, B.; Shanahan, P.; Sheshukov, A.; Tamsett, M.; Tomsen, K.; Vinton, L.; Wang, Z.; Zamorano, B.; Zirnstien, J.

    2015-12-01

    The NOvA experiment uses a continuous, free-running, dead-timeless data acquisition system to collect data from the 14 kT far detector. The DAQ system readouts the more than 344,000 detector channels and assembles the information into an raw unfiltered high bandwidth data stream. The NOvA trigger systems operate in parallel to the readout and asynchronously to the primary DAQ readout/event building chain. The data driven triggering systems for NOvA are unique in that they examine long contiguous time windows of the high resolution readout data and enable the detector to be sensitive to a wide range of physics interactions from those with fast, nanosecond scale signals up to processes with long delayed coincidences between hits which occur at the tens of milliseconds time scale. The trigger system is able to achieve a true 100% live time for the detector, making it sensitive to both beam spill related and off-spill physics.

  3. Impact-induced devolatilization of CaSO4 anhydrite and implications for K-T extinctions: Preliminary results

    NASA Technical Reports Server (NTRS)

    Tyburczy, James A.; Ahrens, Thomas J.

    1993-01-01

    The recent suggestions that the target area for the K-T bolide may have been a sulfate-rich evaporite and that the resulting sulfuric acid-rich aerosol was responsible for the subsequent cooling of the Earth and the resulting biological extinctions has prompted us to experimentally examine the impact-induced devolatization of the sulfate minerals anhydrite (CaSO4) and gypsum (CaSO4(2H2O)). Preliminary results for anhydrite are reported. Up to 42 GPa peak shock pressure, little or no devolatilization occurs, consistent with chemical thermodynamic calculations. Calculation of the influence of the partial pressure of the gas species on impact-induced devolatilization suggests that an even greater amount of sulfur than that proposed by Brett could have been released to the atmosphere by an impact into a sulfate-rich layer. Solid recovery, impact-induced devolatilization experiments were performed on the Caltech 20mm gun using vented, stainless steel sample assemblies.

  4. Paleoenvironmental Changes linked to Deccan Volcanism and the K-T Mass Extinction across India and their Correlations with more distant Areas

    NASA Astrophysics Data System (ADS)

    Adatte, T.; Keller, G.; Gerstch, B.; Gardin, S.; Bartolini, A.; Bajpai, S.

    2009-04-01

    valley estuarine system. At Jhilmili, multidisciplinary analyses reveal the KT boundary at or close to the lower trap basalt in C29R and the upper trap near the C29R/C29N transition. Intertrappean deposition occurred in predominantly terrestrial environments. But a short aquatic interval of fresh water ponds and lakes followed by shallow estuarine marine conditions with brackish ostracods and early Danian zone P1a planktic foraminifera mark this interval close to the K-T boundary. Clays from paleosoils and sediments consist of smectite and palygorskyte and indicate sub-humid to semi-arid conditions. In Meghalaya to the northeast, the KT transition consists of Upper Cretaceous sediments dominated by sandstone, shale, sandy shale and rare coal layers, which indicate deposition in a shallow marine environment with high detrital influx from nearby continental areas. The KTB is characterized by major PGE anomalies in Ir (11.8 ppb), Ru (108 ppb), Rh (93 ppb) and Pd (75 pbb). Contrary to the sections located in the Deccan traps, dominant kaolinite in clay mineral assemblages indicates high humidity and high runoff, which is likely linked with increased warming (greenhouse effect) due to Deccan activity on the mainland. Such climatic conditions have been observed worldwide (e.g. Tunisia, Kazakhstan, South Atlantic). The contemporaneous semi-arid climate conditions that are observed in the Deccan Traps province are not observed elsewhere and therefore appear to be restricted to areas of volcanic activity.

  5. Measurement of the MACS of {sup 159}Tb(n, γ) at kT=30 keV by Activation

    SciTech Connect

    Praena, J.; Mastinu, P.F.; Pignatari, M.; Quesada, J.M.; Capote, R.; Morilla, Y.

    2014-06-15

    The measurement of the Maxwellian-Averaged Cross-Section (MACS) of the {sup 159}Tb(n, γ) reaction at kT=30 keV by the activation technique is presented. An innovative method for the generation of Maxwellian neutron spectra at kT=30 keV is used. An experimental value of 2166±181 mb agrees well with the MACS value derived from the ENDF/B-VII.1 evaluation, but is higher than KADoNiS recommended value of 1580±150 mb. Astrophysical implications are studied.

  6. Ground boundaries

    SciTech Connect

    Balluffi, R.W.; Bristowe, P.D.

    1990-01-01

    The present document is a progress report describing the work accomplished on the study of grain boundaries in Ag, Au, Ni, Si, and Ge. Research was focused on the following four major efforts: study of the atomic structure of grain boundaries by means of x-ray diffraction, transmission electron microscopy and computer modeling; grain boundary migration; short-circuit diffusion along grain boundaries; and development of Thin-Film Deposition/Bonding Apparatus for the manufacture of high purity bicrystals. 10 refs., 1 fig.

  7. Boundary Layer

    NASA Technical Reports Server (NTRS)

    Loitsianskii. L. G.

    1956-01-01

    The fundamental, practically the most important branch of the modern mechanics of a viscous fluid or a gas, is that branch which concerns itself with the study of the boundary layer. The presence of a boundary layer accounts for the origin of the resistance and lift force, the breakdown of the smooth flow about bodies, and other phenomena that are associated with the motion of a body in a real fluid. The concept of boundary layer was clearly formulated by the founder of aerodynamics, N. E. Joukowsky, in his well-known work "On the Form of Ships" published as early as 1890. In his book "Theoretical Foundations of Air Navigation," Joukowsky gave an account of the most important properties of the boundary layer and pointed out the part played by it in the production of the resistance of bodies to motion. The fundamental differential equations of the motion of a fluid in a laminar boundary layer were given by Prandtl in 1904; the first solutions of these equations date from 1907 to 1910. As regards the turbulent boundary layer, there does not exist even to this day any rigorous formulation of this problem because there is no closed system of equations for the turbulent motion of a fluid. Soviet scientists have done much toward developing a general theory of the boundary layer, and in that branch of the theory which is of greatest practical importance at the present time, namely the study of the boundary layer at large velocities of the body in a compressed gas, the efforts of the scientists of our country have borne fruit in the creation of a new theory which leaves far behind all that has been done previously in this direction. We shall herein enumerate the most important results by Soviet scientists in the development of the theory of the boundary layer.

  8. Grain boundaries

    SciTech Connect

    Balluffi, R.W.; Bristowe, P.D.

    1991-01-01

    The present document is a progress report describing the work accomplished to date during the second year of our four-year grant (February 15, 1990--February 14, 1994) to study grain boundaries. The research was focused on the following three major efforts: Study of the atomic structure of grain boundaries by means of x-ray diffraction, transmission electron microscopy and computer modeling; study of short-circuit diffusion along grain boundaries; and development of a Thin-film Deposition/Bonding Apparatus for the manufacture of high purity bicrystals.

  9. Mass extinctions in the deep sea

    NASA Technical Reports Server (NTRS)

    Thomas, E.

    1988-01-01

    The character of mass extinctions can be assessed by studying extinction patterns of organisms, the fabric of the extinction, and assessing the environmental niche and mode of life of survivors. Deep-sea benthic foraminifera have been listed as little affected by the Cretaceous-Tertiary (K-T) mass extinction, but very few quantitative data are available. New data on deep-sea Late Maestrichtian-Eocene benthic foraminifera from Maud Rise (Antractica) indicate that about 10 percent of the species living at depths of 2000 to 2500 m had last appearances within 1 my of the Cretaceous-Tertiary (K-T) boundary, versus about 25 percent of species at 1000 to 1500 m. Many survivors from the Cretaceous became extinct in a period of global deep-sea benthic foraminiferal extinction at the end of the Paleocene, a time otherwise marked by very few extinctions. Preliminary conclusions suggest that the deep oceanic environment is essentially decoupled from the shallow marine and terrestrial environment, and that even major disturbances of one of these will not greatly affect the other. This gives deep-sea benthic faunas a good opportunity to recolonize shallow environments from greater depths and vice versa after massive extinctions. The decoupling means that data on deep-sea benthic boundary was caused by the environmental effects of asteriod impact or excessive volcanism. The benthic foraminiferal data strongly suggest, however, that the environmental results were strongest at the Earth's surface, and that there was no major disturbance of the deep ocean; this pattern might result both from excessive volcanism and from an impact on land.

  10. Sub-kT/q Subthreshold-Slope Using Negative Capacitance in Low-Temperature Polycrystalline-Silicon Thin-Film Transistor

    NASA Astrophysics Data System (ADS)

    Park, Jae Hyo; Jang, Gil Su; Kim, Hyung Yoon; Seok, Ki Hwan; Chae, Hee Jae; Lee, Sol Kyu; Joo, Seung Ki

    2016-04-01

    Realizing a low-temperature polycrystalline-silicon (LTPS) thin-film transistor (TFT) with sub-kT/q subthreshold slope (SS) is significantly important to the development of next generation active-matrix organic-light emitting diode displays. This is the first time a sub-kT/q SS (31.44 mV/dec) incorporated with a LTPS-TFT with polycrystalline-Pb(Zr,Ti)O3 (PZT)/ZrTiO4 (ZTO) gate dielectrics has been demonstrated. The sub-kT/q SS was observed in the weak inversion region at ‑0.5 V showing ultra-low operating voltage with the highest mobility (250.5 cm2/Vsec) reported so far. In addition, the reliability of DC negative bias stress, hot carrier stress and self-heating stress in LTPS-TFT with negative capacitance was investigated for the first time. It was found that the self-heating stress showed accelerated SS degradation due to the PZT Curie temperature.

  11. Sub-kT/q Subthreshold-Slope Using Negative Capacitance in Low-Temperature Polycrystalline-Silicon Thin-Film Transistor

    PubMed Central

    Park, Jae Hyo; Jang, Gil Su; Kim, Hyung Yoon; Seok, Ki Hwan; Chae, Hee Jae; Lee, Sol Kyu; Joo, Seung Ki

    2016-01-01

    Realizing a low-temperature polycrystalline-silicon (LTPS) thin-film transistor (TFT) with sub-kT/q subthreshold slope (SS) is significantly important to the development of next generation active-matrix organic-light emitting diode displays. This is the first time a sub-kT/q SS (31.44 mV/dec) incorporated with a LTPS-TFT with polycrystalline-Pb(Zr,Ti)O3 (PZT)/ZrTiO4 (ZTO) gate dielectrics has been demonstrated. The sub-kT/q SS was observed in the weak inversion region at −0.5 V showing ultra-low operating voltage with the highest mobility (250.5 cm2/Vsec) reported so far. In addition, the reliability of DC negative bias stress, hot carrier stress and self-heating stress in LTPS-TFT with negative capacitance was investigated for the first time. It was found that the self-heating stress showed accelerated SS degradation due to the PZT Curie temperature. PMID:27098115

  12. Optimization of Resin Infusion Processing for Composite Pipe Key-Part and K/T Type Joints Using Vacuum-Assisted Resin Transfer Molding

    NASA Astrophysics Data System (ADS)

    Wang, Changchun; Bai, Guanghui; Yue, Guangquan; Wang, Zhuxi; Li, Jin; Zhang, Boming

    2016-05-01

    In present study, the optimization injection processes for manufacturing the composite pipe key-part and K/T type joints in vacuum-assisted resin transfer molding (VARTM) were determined by estimating the filling time and flow front shape of four kinds of injection methods. Validity of the determined process was proved with the results of a scaling-down composite pipe key-part containing of the carbon fiber four axial fabrics and a steel core with a complex surface. In addition, an expanded-size composite pipe part was also produced to further estimate the effective of the determined injection process. Moreover, the resin injection method for producing the K/T type joints via VARTM was also optimized with the simulation method, and then manufactured on a special integrated mould by the determined injection process. The flow front pattern and filling time of the experiments show good agreement with that from simulation. Cross-section images of the cured composite pipe and K/T type joints parts prove the validity of the optimized injection process, which verify the efficiency of simulation method in obtaining a suitable injection process of VARTM.

  13. Sub-kT/q Subthreshold-Slope Using Negative Capacitance in Low-Temperature Polycrystalline-Silicon Thin-Film Transistor.

    PubMed

    Park, Jae Hyo; Jang, Gil Su; Kim, Hyung Yoon; Seok, Ki Hwan; Chae, Hee Jae; Lee, Sol Kyu; Joo, Seung Ki

    2016-01-01

    Realizing a low-temperature polycrystalline-silicon (LTPS) thin-film transistor (TFT) with sub-kT/q subthreshold slope (SS) is significantly important to the development of next generation active-matrix organic-light emitting diode displays. This is the first time a sub-kT/q SS (31.44 mV/dec) incorporated with a LTPS-TFT with polycrystalline-Pb(Zr,Ti)O3 (PZT)/ZrTiO4 (ZTO) gate dielectrics has been demonstrated. The sub-kT/q SS was observed in the weak inversion region at -0.5 V showing ultra-low operating voltage with the highest mobility (250.5 cm(2)/Vsec) reported so far. In addition, the reliability of DC negative bias stress, hot carrier stress and self-heating stress in LTPS-TFT with negative capacitance was investigated for the first time. It was found that the self-heating stress showed accelerated SS degradation due to the PZT Curie temperature. PMID:27098115

  14. Evolutionary Catastrophes: The Science of Mass Extinction

    NASA Astrophysics Data System (ADS)

    Hames, Willis

    The stories behind the greatest scientific controversies are more than entertaining. They provide windows into the evolution of scientific thought, scientific method, technological achievements and their research applications, and the influence of individuals and personalities on a community's acceptance of a theory Epic controversies surround the theories for Earth's mass extinction events, and none is more spectacular than the continuing polemic over the Cretaceous-Tertiary (K/T) mass extinctions and ultimate demise of the dinosaurs.In contrast to other great scientific debates, we tend to view the K/T event in the context of a crime scene, where the spectacularly diverse flora and fauna of a primordial Eden were unwittingly slain by one or more ruthless and efficient killers. A “foreign” suspect has been fingered; an intruder that killed suddenly and randomly has become the principal suspect. The main clues uncovered in the case include a global K/T iridium anomaly; shock-deformed minerals in K/T boundary sediments; the ˜6 5 m.y-old Deccan flood-basalt province, which covered an area roughly the size of France; and the ˜6 5 m.y-old Chicxulub impact crater in the Yucatan peninsula, which seems to be among the largest to have formed in the inner solar system over the past billion years.

  15. Fingerprinting the K/T impact site and determining the time of impact by UPb dating of single shocked zircons from distal ejecta

    USGS Publications Warehouse

    Krogh, T.E.; Kamo, S.L.; Bohor, B.F.

    1993-01-01

    UPb isotopic dating of single 1-3 ??g zircons from K/T distal ejecta from a site in the Raton Basin, Colorado provides a powerful new tool with which to determine both the time of the impact event and the age of the basement at the impact site. Data for the least shocked zircons are slightly displaced from the 544 ?? 5 Ma primary age for a component of the target site, white those for highly shocked and granular grains are strongly displaced towards the time of impact at 65.5 ?? 3.0 Ma. Such shocked and granular zircons have never been reported from any source, including explosive volcanic rocks. Zircon is refractory and has one of the highest thermal blocking temperatures; hence, it can record both shock features and primary and secondary ages without modification by post-crystallization processes. Unlike shocked quartz, which can come from almost anywhere on the Earth's crust, shocked zircons can be shown to come from a specific site because basement ages vary on the scale of meters to kilometers. With UPb zircon dating, it is now possible to correlate ejecta layers derived from the same target site, test the single versus multiple impact hypothesis, and identify the target source of impact ejecta. The ages obtained in this study indicate that the Manson impact site, Iowa, which has basement rocks that are mid-Proterozoic in age, cannot be the source of K/T distal ejecta. The K/T distal ejecta probably originated from a single impact site because most grains have the same primary age. ?? 1993.

  16. Fingerprinting the K/T impact site and determining the time of impact by U-Pb dating of single shocked zircons from distal ejecta

    NASA Astrophysics Data System (ADS)

    Krogh, T. E.; Kamo, S. L.; Bohor, B. F.

    1993-09-01

    U-Pb isotopic dating of single 1 - 3 micrograms zircons from K/T distal ejecta from a site in the Raton Basin, Colorado provides a powerful new tool with which to determine both the time of the impact event and the age of the basement at the impact site. Data for the least shocked zircons are slightly displaced from the 544 +/- 5 Ma primary age for a component of the target site, while those for highly shocked and granular grains are strongly displaced towards the time of impact at 65.5 +/- 3.0 Ma. Such shocked and granular zircons have never been reported from any source, including explosive volcanic rocks. Zircon is refractory and has one of the highest thermal blocking temperatures; hence, it can record both shock features and primary and secondary ages without modification by post-crystallization processes. Unlike shocked quartz, which can come from almost anywhere on the Earth's crust, shocked zircons can be shown to come from a specific site because basement ages vary on the scale of meters to kilometers. With U-Pb zircon dating, it is now possible to correlate ejecta layers derived from the same target site, test the single versus multiple impact hypothesis, and identify the target source of impact ejecta. The ages obtained in this study indicate that the Manson impact site, Iowa, which has basement rocks that are mid-Proterozoic in age, cannot be the source of K/T distal ejecta. The K/T distal ejecta probably originated from a single impact site because most grains have the same primary age.

  17. Fingerprinting the K/T impact site and determining the time of impact by U-Pb dating of single shocked zircons from distal ejecta

    NASA Technical Reports Server (NTRS)

    Krogh, T. E.; Kamo, S. L.; Bohor, B. F.

    1993-01-01

    U-Pb isotopic dating of single 1 - 3 micrograms zircons from K/T distal ejecta from a site in the Raton Basin, Colorado provides a powerful new tool with which to determine both the time of the impact event and the age of the basement at the impact site. Data for the least shocked zircons are slightly displaced from the 544 +/- 5 Ma primary age for a component of the target site, while those for highly shocked and granular grains are strongly displaced towards the time of impact at 65.5 +/- 3.0 Ma. Such shocked and granular zircons have never been reported from any source, including explosive volcanic rocks. Zircon is refractory and has one of the highest thermal blocking temperatures; hence, it can record both shock features and primary and secondary ages without modification by post-crystallization processes. Unlike shocked quartz, which can come from almost anywhere on the Earth's crust, shocked zircons can be shown to come from a specific site because basement ages vary on the scale of meters to kilometers. With U-Pb zircon dating, it is now possible to correlate ejecta layers derived from the same target site, test the single versus multiple impact hypothesis, and identify the target source of impact ejecta. The ages obtained in this study indicate that the Manson impact site, Iowa, which has basement rocks that are mid-Proterozoic in age, cannot be the source of K/T distal ejecta. The K/T distal ejecta probably originated from a single impact site because most grains have the same primary age.

  18. Rapidity and kT dependence of HBT correlations in Au+Au collisions at 200 GeV with PHOBOS

    NASA Astrophysics Data System (ADS)

    Holzman, Burt; PHOBOS Collaboration; Back, B. B.; Baker, M. D.; Ballintijn, M.; Barton, D. S.; Betts, R. R.; Bickley, A. A.; Bindel, R.; Budzanowski, A.; Busza, W.; Carroll, A.; Decowski, M. P.; García, E.; George, N.; Gulbrandsen, K.; Gushue, S.; Halliwell, C.; Hamblen, J.; Heintzelman, G. A.; Henderson, C.; Hofman, D. J.; Hollis, R. S.; Holynski, R.; Holzman, B.; Iordanova, A.; Johnson, E.; Kane, J. L.; Katzy, J.; Khan, N.; Kucewicz, W.; Kulinich, P.; Kuo, C. M.; Lin, W. T.; Manly, S.; McLeod, D.; Mignerey, A. C.; Nouicer, R.; Olszewski, A.; Pak, R.; Park, I. C.; Pernegger, H.; Reed, C.; Remsberg, L. P.; Reuter, M.; Roland, C.; Roland, G.; Rosenberg, L.; Sagerer, J.; Sarin, P.; Sawicki, P.; Skulski, W.; Steinberg, P.; Stephans, G. S. F.; Sukhanov, A.; Tang, J.-L.; Tonjes, M. B.; Trzupek, A.; Vale, C.; van Nieuwenhuizen, G. J.; Verdier, R.; Wolfs, F. L. H.; Wosiek, B.; Wozniak, K.; Wuosmaa, A. H.; Wyslouch, B.

    2004-08-01

    Two-particle correlations of identical charged pion pairs from Au+Au collisions at \\sqrt{s_{\\rm NN}} = 200 GeV were measured by the PHOBOS experiment at RHIC. Data for the most central (0 15%) events were analysed with Bertsch Pratt (BP) and Yano Koonin Podgoretskii (YKP) parametrizations using pairs with rapidities of 0.4 < y < 1.3 and transverse momenta 0.1 < kT < 1.4 GeV/c. The Bertsch Pratt radii decrease as a function of pair transverse momentum. The pair rapidity Ypgrpgr roughly scales with the source rapidity YYKP, indicating strong dynamical correlations.

  19. Boundary issues

    NASA Astrophysics Data System (ADS)

    Townsend, Alan R.; Porder, Stephen

    2011-03-01

    What is our point of no return? Caesar proclaimed 'the die is cast' while crossing the Rubicon, but rarely does modern society find so visible a threshold in our continued degradation of ecosystems and the services they provide. Humans have always used their surroundings to make a living— sometimes successfully, sometimes not (Diamond 2005)—and we intuitively know that there are boundaries to our exploitation. But defining these boundaries has been a challenge since Malthus first prophesied that nature would limit the human population (Malthus 1798). In 2009, Rockström and colleagues tried to quantify what the 6.8 billion (and counting) of us could continue to get away with, and what we couldn't (Rockström et al 2009). In selecting ten 'planetary boundaries', the authors contend that a sustainable human enterprise requires treating a number of environmental thresholds as points of no return. They suggest we breach these Rubicons at our own peril, and that we've already crossed three: biodiversity loss, atmospheric CO2, and disruption of the global nitrogen (N) cycle. As they clearly hoped, the very act of setting targets has provoked scientific inquiry about their accuracy, and about the value of hard targets in the first place (Schlesinger 2009). Such debate is a good thing. Despite recent emphasis on the science of human-ecosystem interactions, understanding of our planetary boundaries is still in its infancy, and controversy can speed scientific progress (Engelhardt and Caplan 1987). A few weeks ago in this journal, Carpenter and Bennett (2011) took aim at one of the more controversial boundaries in the Rockström analysis: that for human alteration of the global phosphorus (P) cycle. Rockström's group chose riverine P export as the key indicator, suggesting that humans should not exceed a value that could trigger widespread marine anoxic events—and asserting that we have not yet crossed this threshold. There are defensible reasons for a marine

  20. Albedo Boundary

    NASA Technical Reports Server (NTRS)

    2003-01-01

    MGS MOC Release No. MOC2-510, 11 October 2003

    The sharp, nearly straight line that runs diagonally across the center of this April 2003 Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) image is an albedo boundary. Albedois a term that refers to reflectance of sunlight. A surface with a low albedo is one that appears dark because it reflects less light than a high albedo (bright) surface. On Mars, albedo boundaries occur between two materials of differing texture, particle size, or composition, or some combination of these three factors. The boundary shown here is remarkable because it is so sharp and straight. This is caused by wind. Most likely, the entire surface was once covered with the lower-albedo (darker) material that is now seen in the upper half of the image. At some later time, wind stripped away this darker material from the surfaces in the lower half of the image. The difference in albedo here might be related to composition, and possibly particle size. This picture is located near the southwest rim of Schiaparelli Basin at 5.5oS, 345.9oW. The picture covers an area 3 km (1.9 mi) wide and is illuminated by sunlight from the left.

  1. Iridium abundance measurements across bio-event horizons in the geological record

    NASA Technical Reports Server (NTRS)

    Orth, C. J.; Attrep, M., Jr.

    1988-01-01

    Geochemical studies have been performed on thousands of rock samples collected across bio-event horizons in the fossil record using INAA for about 40 common and trace elements and radiochemical isolation procedures for Os, Ir, Pt, and Au on selected samples. These studies were begun soon after the Alvarez team announced their discovery of the Cretaceous-Tertiary (K-T) Ir anomaly in marine rock sequences in Europe. With their encouragement the Authors searched for the anomaly in nearby continental (freshwater coal swamp) deposits. In collaboration with scientists from the U.S.G.S. in Denver, the anomaly was located and it was observed that a floral crisis occurred at the same stratigraphic position as the Ir spike. Further work in the Raton Basin has turned up numerous well-preserved K-T boundary sections. Although the Authors have continued to study the K-T boundary and provide geochemical measurements for other groups trying to precisely locate it, the primary effort was turned to examining the other bio-events in the Phanerozoic, especially to those that are older than the terminal Cretaceous. A list of horizons that were examined in collaboration with paleontologists and geologists is given. Results are also given and discussed.

  2. Effect of environmental variables on body size evolution of crinoids between periods of mass extinctions

    NASA Astrophysics Data System (ADS)

    Jani, T.; Heim, N. A.; Payne, J.

    2013-12-01

    Body size plays a major role in determining whether or not an organism can sustain in its local environment. The ecosystem of an animal has a major effect on the fitness of organisms, and it would be interesting to note the degree to which various environmental factors alter body size. In my project, I identify three environmental factors that seem to affect body size of crinoids, marine invertebrates from phylum Echinodermata, and explore how these variables play out in the intervals between the five mass extinctions. The particular factors I study include atmospheric CO2 concentration (proxy for temperature), O2 concentration, and sea level. Although the r and p values for all of these factors were statistically insignificant to definitively make any correlation, there was a visual correlation. For O2, I noted a generally positive correlation with body size over time. CO2 trends suggested a negative correlation until the K-T boundary, but a positive correlation afterwards. Correlation with sea level was a little more complicated: correlation was positive from the start of the Phanerozoic to the Permian extinction; it turned negative until the Cretaceous-Tertiary boundary; afterwards, it again became positive. However, for all three variables, statistical values are too low to say definitively mark any correlation. Out of all three factors, CO2 levels had the highest correlation and lowest p-values in the most time intervals: from the start of the Phanerozoic to Ordovician-Silurian Extinction, from the Late Devonian to the Permian Extinction, and from the Cretaceous-Tertiary boundary to the present. When considering first differences, CO2 levels also had the highest correlation from the Permian Extinction to Triassic-Jurassic Extinction and from the Triassic-Jurassic Extinction to Cretaceous-Tertiary Extinction. Using PaleoTS, I found that body size evolution patterns either seemed to follow either an unbiased random walk (URW) or stasis in the intervals between

  3. The generation of tens kT magnetic fields by transport instability of laser generated electrons in a near critical preformed plasma

    NASA Astrophysics Data System (ADS)

    Toncian, Toma; Hegelich, Bjorn Manuel; Willi, Oswald; Lehmann, Goetz

    2014-10-01

    First direct measurements of the electron transport along extended wire targets by Quinn et al. [PRL 102 (2009)] revealed a charging current and associated magnetic field moving close to the speed of light away from focal volume of the employed heating laser. The motion of the electrons is bound electrostatic to the proximity of the solid. A return current compensating the escaping charge is formed at the surface of the solid, the overall current loop sustaining kT magnetic fields, with traversal decay lengths of μm. In our study we show by means of numerical 2 dimensional particle in cell simulations that the motion of the hot electrons and dynamic of the charge compensating return current can be dramatically affected by a preformed μm scale length plasma gradient on the solid surface. In particularly the two velocities distribution and two antiparallel currents developing in the near critical plasma are unstable in respect of two stream and Kevin Helmholtz instability. The particle motion becomes locally magnetized resulting in current eddies trapping particles and localized magnetic and electric fields with values of tens of kT and TV/m sustained on μm scales and with characteristic decay times of ps.

  4. Boundary issues

    NASA Astrophysics Data System (ADS)

    Townsend, Alan R.; Porder, Stephen

    2011-03-01

    What is our point of no return? Caesar proclaimed 'the die is cast' while crossing the Rubicon, but rarely does modern society find so visible a threshold in our continued degradation of ecosystems and the services they provide. Humans have always used their surroundings to make a living— sometimes successfully, sometimes not (Diamond 2005)—and we intuitively know that there are boundaries to our exploitation. But defining these boundaries has been a challenge since Malthus first prophesied that nature would limit the human population (Malthus 1798). In 2009, Rockström and colleagues tried to quantify what the 6.8 billion (and counting) of us could continue to get away with, and what we couldn't (Rockström et al 2009). In selecting ten 'planetary boundaries', the authors contend that a sustainable human enterprise requires treating a number of environmental thresholds as points of no return. They suggest we breach these Rubicons at our own peril, and that we've already crossed three: biodiversity loss, atmospheric CO2, and disruption of the global nitrogen (N) cycle. As they clearly hoped, the very act of setting targets has provoked scientific inquiry about their accuracy, and about the value of hard targets in the first place (Schlesinger 2009). Such debate is a good thing. Despite recent emphasis on the science of human-ecosystem interactions, understanding of our planetary boundaries is still in its infancy, and controversy can speed scientific progress (Engelhardt and Caplan 1987). A few weeks ago in this journal, Carpenter and Bennett (2011) took aim at one of the more controversial boundaries in the Rockström analysis: that for human alteration of the global phosphorus (P) cycle. Rockström's group chose riverine P export as the key indicator, suggesting that humans should not exceed a value that could trigger widespread marine anoxic events—and asserting that we have not yet crossed this threshold. There are defensible reasons for a marine

  5. Measurement of the k(T) distribution of particles in jets produced in pp collisions at sqrt(s)=1.96 TeV.

    PubMed

    Aaltonen, T; Adelman, J; Akimoto, T; Alvarez González, B; Amerio, S; Amidei, D; Anastassov, A; Annovi, A; Antos, J; Apollinari, G; Apresyan, A; Arisawa, T; Artikov, A; Ashmanskas, W; Attal, A; Aurisano, A; Azfar, F; Azzurri, P; Badgett, W; Barbaro-Galtieri, A; Barnes, V E; Barnett, B A; Bartsch, V; Bauer, G; Beauchemin, P-H; Bedeschi, F; Beecher, D; Behari, S; Bellettini, G; Bellinger, J; Benjamin, D; Beretvas, A; Beringer, J; Bhatti, A; Binkley, M; Bisello, D; Bizjak, I; Blair, R E; Blocker, C; Blumenfeld, B; Bocci, A; Bodek, A; Boisvert, V; Bolla, G; Bortoletto, D; Boudreau, J; Boveia, A; Brau, B; Bridgeman, A; Brigliadori, L; Bromberg, C; Brubaker, E; Budagov, J; Budd, H S; Budd, S; Burke, S; Burkett, K; Busetto, G; Bussey, P; Buzatu, A; Byrum, K L; Cabrera, S; Calancha, C; Campanelli, M; Campbell, M; Canelli, F; Canepa, A; Carls, B; Carlsmith, D; Carosi, R; Carrillo, S; Carron, S; Casal, B; Casarsa, M; Castro, A; Catastini, P; Cauz, D; Cavaliere, V; Cavalli-Sforza, M; Cerri, A; Cerrito, L; Chang, S H; Chen, Y C; Chertok, M; Chiarelli, G; Chlachidze, G; Chlebana, F; Cho, K; Chokheli, D; Chou, J P; Choudalakis, G; Chuang, S H; Chung, K; Chung, W H; Chung, Y S; Chwalek, T; Ciobanu, C I; Ciocci, M A; Clark, A; Clark, D; Compostella, G; Convery, M E; Conway, J; Cordelli, M; Cortiana, G; Cox, C A; Cox, D J; Crescioli, F; Cuenca Almenar, C; Cuevas, J; Culbertson, R; Cully, J C; Dagenhart, D; Datta, M; Davies, T; de Barbaro, P; De Cecco, S; Deisher, A; De Lorenzo, G; Dell'orso, M; Deluca, C; Demortier, L; Deng, J; Deninno, M; Derwent, P F; di Giovanni, G P; Dionisi, C; Di Ruzza, B; Dittmann, J R; D'Onofrio, M; Donati, S; Dong, P; Donini, J; Dorigo, T; Dube, S; Efron, J; Elagin, A; Erbacher, R; Errede, D; Errede, S; Eusebi, R; Fang, H C; Farrington, S; Fedorko, W T; Feild, R G; Feindt, M; Fernandez, J P; Ferrazza, C; Field, R; Flanagan, G; Forrest, R; Frank, M J; Franklin, M; Freeman, J C; Furic, I; Gallinaro, M; Galyardt, J; Garberson, F; Garcia, J E; Garfinkel, A F; Genser, K; Gerberich, H; Gerdes, D; Gessler, A; Giagu, S; Giakoumopoulou, V; Giannetti, P; Gibson, K; Gimmell, J L; Ginsburg, C M; Giokaris, N; Giordani, M; Giromini, P; Giunta, M; Giurgiu, G; Glagolev, V; Glenzinski, D; Gold, M; Goldschmidt, N; Golossanov, A; Gomez, G; Gomez-Ceballos, G; Goncharov, M; González, O; Gorelov, I; Goshaw, A T; Goulianos, K; Gresele, A; Grinstein, S; Grosso-Pilcher, C; Grundler, U; Guimaraes da Costa, J; Gunay-Unalan, Z; Haber, C; Hahn, K; Hahn, S R; Halkiadakis, E; Han, B-Y; Han, J Y; Happacher, F; Hara, K; Hare, D; Hare, M; Harper, S; Harr, R F; Harris, R M; Hartz, M; Hatakeyama, K; Hays, C; Heck, M; Heijboer, A; Heinrich, J; Henderson, C; Herndon, M; Heuser, J; Hewamanage, S; Hidas, D; Hill, C S; Hirschbuehl, D; Hocker, A; Hou, S; Houlden, M; Hsu, S-C; Huffman, B T; Hughes, R E; Husemann, U; Hussein, M; Husemann, U; Huston, J; Incandela, J; Introzzi, G; Iori, M; Ivanov, A; James, E; Jayatilaka, B; Jeon, E J; Jha, M K; Jindariani, S; Johnson, W; Jones, M; Joo, K K; Jun, S Y; Jung, J E; Junk, T R; Kamon, T; Kar, D; Karchin, P E; Kato, Y; Kephart, R; Keung, J; Khotilovich, V; Kilminster, B; Kim, D H; Kim, H S; Kim, H W; Kim, J E; Kim, M J; Kim, S B; Kim, S H; Kim, Y K; Kimura, N; Kirsch, L; Klimenko, S; Knuteson, B; Ko, B R; Kondo, K; Kong, D J; Konigsberg, J; Korytov, A; Kotwal, A V; Kreps, M; Kroll, J; Krop, D; Krumnack, N; Kruse, M; Krutelyov, V; Kubo, T; Kuhr, T; Kulkarni, N P; Kurata, M; Kwang, S; Laasanen, A T; Lami, S; Lammel, S; Lancaster, M; Lander, R L; Lannon, K; Lath, A; Latino, G; Lazzizzera, I; Lecompte, T; Lee, E; Lee, H S; Lee, S W; Leone, S; Lewis, J D; Lin, C-S; Linacre, J; Lindgren, M; Lipeles, E; Lister, A; Litvintsev, D O; Liu, C; Liu, T; Lockyer, N S; Loginov, A; Loreti, M; Lovas, L; Lucchesi, D; Luci, C; Lueck, J; Lujan, P; Lukens, P; Lungu, G; Lyons, L; Lys, J; Lysak, R; Macqueen, D; Madrak, R; Maeshima, K; Makhoul, K; Maki, T; Maksimovic, P; Malde, S; Malik, S; Manca, G; Manousakis-Katsikakis, A; Margaroli, F; Marino, C; Marino, C P; Martin, A; Martin, V; Martínez, M; Martínez-Ballarín, R; Maruyama, T; Mastrandrea, P; Masubuchi, T; Mathis, M; Mattson, M E; Mazzanti, P; McFarland, K S; McIntyre, P; McNulty, R; Mehta, A; Mehtala, P; Menzione, A; Merkel, P; Mesropian, C; Miao, T; Miladinovic, N; Miller, R; Mills, C; Milnik, M; Mitra, A; Mitselmakher, G; Miyake, H; Moggi, N; Moon, C S; Moore, R; Morello, M J; Morlok, J; Movilla Fernandez, P; Mülmenstädt, J; Mukherjee, A; Muller, Th; Mumford, R; Murat, P; Mussini, M; Nachtman, J; Nagai, Y; Nagano, A; Naganoma, J; Nakamura, K; Nakano, I; Napier, A; Necula, V; Nett, J; Neu, C; Neubauer, M S; Neubauer, S; Nielsen, J; Nodulman, L; Norman, M; Norniella, O; Nurse, E; Oakes, L; Oh, S H; Oh, Y D; Oksuzian, I; Okusawa, T; Orava, R; Pagan Griso, S; Palencia, E; Papadimitriou, V; Papaikonomou, A; Paramonov, A A; Parks, B; Pashapour, S; Patrick, J; Pauletta, G; Paulini, M; Paus, C; Peiffer, T; Pellett, D E; Penzo, A; Phillips, T J; Piacentino, G; Pianori, E; Pinera, L; Pitts, K; Plager, C; Pondrom, L; Poukhov, O; Pounder, N; Prakoshyn, F; Pronko, A; Proudfoot, J; Ptohos, F; Pueschel, E; Punzi, G; Pursley, J; Rademacker, J; Rahaman, A; Ramakrishnan, V; Ranjan, N; Redondo, I; Renton, P; Renz, M; Rescigno, M; Richter, S; Rimondi, F; Ristori, L; Robson, A; Rodrigo, T; Rodriguez, T; Rogers, E; Rolli, S; Roser, R; Rossi, M; Rossin, R; Roy, P; Ruiz, A; Russ, J; Rusu, V; Safonov, A; Sakumoto, W K; Saltó, O; Santi, L; Sarkar, S; Sartori, L; Sato, K; Savoy-Navarro, A; Schlabach, P; Schmidt, A; Schmidt, E E; Schmidt, M A; Schmidt, M P; Schmitt, M; Schwarz, T; Scodellaro, L; Scribano, A; Scuri, F; Sedov, A; Seidel, S; Seiya, Y; Semenov, A; Sexton-Kennedy, L; Sforza, F; Sfyrla, A; Shalhout, S Z; Shears, T; Shepard, P F; Shimojima, M; Shiraishi, S; Shochet, M; Shon, Y; Shreyber, I; Sidoti, A; Sinervo, P; Sisakyan, A; Slaughter, A J; Slaunwhite, J; Sliwa, K; Smith, J R; Snider, F D; Snihur, R; Soha, A; Somalwar, S; Sorin, V; Spalding, J; Spreitzer, T; Squillacioti, P; Stanitzki, M; St Denis, R; Stelzer, B; Stelzer-Chilton, O; Stentz, D; Strologas, J; Strycker, G L; Stuart, D; Suh, J S; Sukhanov, A; Suslov, I; Suzuki, T; Taffard, A; Takashima, R; Takeuchi, Y; Tanaka, R; Tecchio, M; Teng, P K; Terashi, K; Thom, J; Thompson, A S; Thompson, G A; Thomson, E; Tipton, P; Ttito-Guzmán, P; Tkaczyk, S; Toback, D; Tokar, S; Tollefson, K; Tomura, T; Tonelli, D; Torre, S; Torretta, D; Totaro, P; Tourneur, S; Trovato, M; Tsai, S-Y; Tu, Y; Turini, N; Ukegawa, F; Vallecorsa, S; van Remortel, N; Varganov, A; Vataga, E; Vázquez, F; Velev, G; Vellidis, C; Veszpremi, V; Vidal, M; Vidal, R; Vila, I; Vilar, R; Vine, T; Vogel, M; Volobouev, I; Volpi, G; Wagner, P; Wagner, R G; Wagner, R L; Wagner, W; Wagner-Kuhr, J; Wakisaka, T; Wallny, R; Wang, S M; Warburton, A; Waters, D; Weinberger, M; Weinelt, J; Wester, W C; Whitehouse, B; Whiteson, D; Wicklund, A B; Wicklund, E; Wilbur, S; Williams, G; Williams, H H; Wilson, P; Winer, B L; Wittich, P; Wolbers, S; Wolfe, C; Wright, T; Wu, X; Würthwein, F; Wynne, S M; Xie, S; Yagil, A; Yamamoto, K; Yamaoka, J; Yang, U K; Yang, Y C; Yao, W M; Yeh, G P; Yoh, J; Yorita, K; Yoshida, T; Yu, G B; Yu, I; Yu, S S; Yun, J C; Zanello, L; Zanetti, A; Zhang, X; Zheng, Y; Zucchelli, S

    2009-06-12

    We present a measurement of the transverse momentum with respect to the jet axis (k(t)) of particles in jets produced in pp collisions at sqrt(s)=1.96 TeV. Results are obtained for charged particles in a cone of 0.5 radians around the jet axis in events with dijet invariant masses between 66 and 737 GeV/c(2). The experimental data are compared to theoretical predictions obtained for fragmentation partons within the framework of resummed perturbative QCD using the modified leading log and next-to-modified leading log approximations. The comparison shows that trends in data are successfully described by the theoretical predictions, indicating that the perturbative QCD stage of jet fragmentation is dominant in shaping basic jet characteristics. PMID:19658924

  6. Mass extinctions: Ecological selectivity and primary production

    NASA Astrophysics Data System (ADS)

    Rhodes, Melissa Clark; Thayer, Charles W.

    1991-09-01

    If mass extinctions were caused by reduced primary productivity, then extinctions should be concentrated among animals with starvation-susceptible feeding modes, active lifestyles, and high-energy budgets. The stratigraphic ranges (by stage) of 424 genera of bivalves and 309 genera of articulate brachiopods suggest that there was an unusual reduction of primary productivity at the Cretaceous/Tertiary (K/T) boundary extinction. For bivalves at the K/T, there were (1) selective extinction of suspension feeders and other susceptible trophic categories relative to deposit feeders and other resistant categories, and (2) among suspension feed-ers, selective extinction of bivalves with active locomotion. During the Permian-Triassic (P/Tr) extinction and Jurassic background time, extinction rates among suspension feeders were greater for articulate brachiopods than for bivalves. But during the K/T event, extinction rates of articulates and suspension-feeding bivalves equalized, possibly because the low-energy budgets of articulates gave them an advantage when food was scarce.

  7. Comet impacts and chemical evolution on the bombarded earth

    NASA Technical Reports Server (NTRS)

    Oberbeck, Verne R.; Aggarwal, Hans

    1992-01-01

    Amino acids yields for previously published shock tube experiments are used with minimum Cretaceous-Tertiary (K/T) impactor mass and comet composition to predict AIB amino acid K/T boundary sediment column density. The inferred initial concentration of all amino acids in the K/T sea and in similar primordial seas just after 10 km comet impacts would have been at least 10 exp -7 M. However, sinks for amino acids must also be considered in calculating amino acid concentrations after comet impacts and in assessing the contribution of comets to the origin of life. The changing concentration of cometary amino acids due to ultraviolet light is compared with the equilibrium concentration of amino acids produced in the sea from corona discharge in the atmosphere, deposition in water, and degradation by ultraviolet light. Comets could have been more important than endogenous agents for initial evolution of amino acids. Sites favorable for chemical evolution of amino acids are examined, and it is concluded that chemical evolution could have occurred at or above the surface even during periods of intense bombardment of earth before 3.8 billion years ago.

  8. Cretaceous-Tertiary paleobathymetry of Labrador and Baffin shelves, and its significance to evolution of Labrador Sea

    SciTech Connect

    Helenes, J.; Gradstein, F.

    1988-03-01

    The integrated micropaleontological and palynological analyses of 17 wells from offshore Labrador and southern Baffin Island allowed consistent assignments of biozones, ages, and depositional environments to the sections. Resolution attained is approximately at the stage level or finer. Interpretation of the foraminifera and palynomorphs from the Labrador Shelf indicates that the depositional environments were mainly neritic during the Early and early Late Cretaceous, changed to bathyal during the Maastrichtian to late Eocene, and returned to neritic during the Oligocene to Miocene. The sections drilled on the Baffin Shelf do not include Cretaceous sediments, but indicate bathyal environments from Paleocene to early Eocene, and neritic to nonmarine environments from late Eocene to Miocene. The Barremian to Campanian continental to neritic sediments from the Labrador Shelf correspond to the initial rifting phase of the Labrador-Greenland continental plate; whereas the Maastrichtian to late Eocene bathyal sediments correspond to the opening of the southern part of the Labrador Sea with the creation of oceanic crust. The Labrador Sea reached the Baffin shelf area during the Maastrichtian. The Oligocene to Miocene neritic to continental sediments of both the Labrador and Baffin Shelf areas correspond to the filling phase of the basin, with resulting buildup of the continental shelves and slopes.

  9. Impact production of CO2 by the Cretaceous/Tertiary extinction bolide and the resultant heating of the earth

    NASA Technical Reports Server (NTRS)

    O'Keefe, John D.; Ahrens, Thomas J.

    1989-01-01

    Various observations and data demonstrate that sea level at the end of the Cretaceous was 150-200 m higher than at present, suggesting the possibility that the extinction bolide struck a shallow marine carbonate-rich sedimentary section. It is shown here that the impact of such a bolide (about 5 km in radius) onto a carbonate-rich terrane would increase the CO2 content of the atmosphere by a factor of two to ten. Additional dissolution of CO2 from the ocean's photic zone could release much larger quantities of CO2. The impact-induced release of CO2, by itself, would enhance atmospheric greenhouse heating and give rise to a worldwide increase in temperature from 2 K to 10 K for periods of 10,000 to 100,000 years.

  10. PTt path in metamorphic rocks of the Khoy region (northwest Iran) and their tectonic significance for Cretaceous Tertiary continental collision

    NASA Astrophysics Data System (ADS)

    Azizi, H.; Moinevaziri, H.; Mohajjel, M.; Yagobpoor, A.

    2006-06-01

    Metamorphic rocks in the Khoy region are exposed between obducted ophiolites to the southwest and sedimentary rocks of Precambrian-Paleozoic age to the northeast. The Qom formation (Oligocene-Miocene) with a basal conglomerate transgressively overlies all of these rocks. The metamorphic rocks consist of both metasediments and metabasites. The metasediments are micaschist, garnet-staurolite schist and garnet-staurolite sillimanite schist with some meta-arkose, marble and quartzite. The metabasites are metamorphosed to greenschist and amphibolite facies from a basaltic and gabbroic protolith of tholeiitic and calc-alkaline rocks. Geothermobarometry based on the equivalence of minerals stability and their paragenesis in these rocks and microprobe analyses by several different methods indicate that metamorphism occurred in a temperature range between 450 and 680 °C at 5.5 and 7.5 kb pressure. Rims of minerals reveal a considerable decrease of pressure (<2 kb) and insignificant decrease of temperature. The PTt path of this metamorphism is normal. The MFG line passes above the triple junction of Al 2SiO 5 polymorphs, and the average geothermal gradient during metamorphism was from 27 to 37 °C/km, which is more concordant with the temperature regime of collision zones. We infer that crustal thickening during post-Cretaceous (possibly Eocene) collision of the Arabian plate and the Azerbaijan-Albourz block was the main factor that caused the metamorphism in the studied area.

  11. A Planetary Ring Around Earth as Source for the Ir-Enrichment at the KT-Boundary

    NASA Astrophysics Data System (ADS)

    Stage, M.; Rasmussen, K. L.

    1992-07-01

    Since the discovery of the Ir enrichment at the Cretaceous- Tertiary boundary a majority of the researchers have claimed a meteorite impact as origin of the event. But up till now the search for an impact crater has not been conclusive, and alternative explanations have been suggested, e.g., a volcanic origin (Hansen 1990). If, however, we maintain that the KT- boundary material is extraterrestrial, the missing crater constitutes a problem. The missing-crater-problem can be solved by postulating the existence of a temporary planetary ring around the Earth. We suggest the following scenario: an incoming asteroid is captured by the Earth inside the Roche limit, and the breakup of the asteroid creates a planetary ring. Atmospheric drag and partially inelastic collisions between particles cause the ring particles to lose energy and slowly accrete onto Earth. Once the asteroid is decomposed, the atmospheric drag on the ring particles will primarily drain the smaller particles from the ring. The figure shows residence times as a function of starting position. Each curve represents one particle size. Thus the needed amount of Ir is brought down to Earth as a gentle rain lasting perhaps thousands of years, without major crater production. Our 3D computer simulations of the ring dynamics show accretion profiles, which are comparable to the Ir profiles at the KT boundary. In our model partially inelastic collisions occur between ring particles (Brahic, 1976, 1977) and the particles experience a slight atmospheric drag (10^-14 atm at 0.75 Earth radii). The particles are injected into randomly oriented orbits near the Earth upper atmosphere, from 0.1 to 0.75 Earth radii. The number and the density profile of the inward spiralling particles are calculated, until the distance from the Earth is small enough to assure that they are lost to the Earth surface within a few hours. The profile reflects the composition of the ring, and thereby the asteroid. In conclusion we suggest that

  12. Boundary dynamics in landscapes

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Landscapes consist of a mosaic of distinct vegetation types and their intervening boundaries with distinct characteristics. Boundaries can exist along abrupt environmental gradients or along gradual changes that are reinforced by feedback mechanisms between plants and soil properties. Boundaries can...

  13. Selective extinction of marine plankton at the end of the Mesozoic era: The fossil and stable isotope record

    NASA Technical Reports Server (NTRS)

    Herman, Y.; Bhattacharya, S. K.

    1988-01-01

    Floral, faunal and stable isotope evidence in a continuous sequence of latest Cretaceous and earliest Tertiary shallow water marine deposits in the Mangyshlak Peninsula, USSR suggest severe environmental changes at the Cretaceous/Tertiary (K/T) boundary. Time frame is provided by nanno, micro and macrofossils as well as by magnetic stratigraphy and an iridium spike. Oxygen isotopic analyses of the bulk sediments, composed of nanno and microplankton skeletal remains, show a sharp positive spike at the K/T boundary. This shift is primarily attributed to severe cooling possibly accompanied by increased salinities of the surface mixed layer. Floral and faunal extinctions were selective, affecting approximately 90 percent of the warm water calcareous phyto and zooplankton genera in the Tethyan-Paratethyan regions. These highly diverse taxa with many endemic representatives were at the peak of their evolutionary development. Geologic evidence indicates that the terminal Cretaceous temperature decline was coeval with widespread and intense volcanic activity which reached a peak at the close of the Mesozoic Era. Increased acidity temporarily prohibited calcite nucleation of the surface dwelling warm-water plankton. Superimposed upon decreased alkalinity, severe and rapid climatic changes caused the extinction of calcareous phyto and zooplankton.

  14. A Model of the Chicxulub Impact Basin Based on Evaluation of Geophysical Data, Well Logs, and Drill Core Samples

    NASA Technical Reports Server (NTRS)

    Sharpton, Virgil L.; Marin, Luis E.; Carney, John D.; Lee, Scott; Ryder, Graham; Schuraytz, Benjamin C.; Sikora, Paul; Spudis, Paul D.

    1996-01-01

    Abundant evidence now shows that the buried Chicxulub structure in northern Yucatan, Mexico, is indeed the intensely sought-after source of the ejecta found world-wide at the Cretaceous-Tertiary (K/T) boundary. In addition to large-scale concentric patterns in gravity and magnetic data over the structure, recent analyses of drill-core samples reveal a lithological assemblage similar to that observed at other terrestrial craters. This assemblage comprises suevite breccias, ejecta deposit breccias (Bunte Breccia equivalents), fine-grained impact melt rocks, and melt-matrix breccias. All these impact-produced lithologies contain diagnostic evidence of shock metamorphism, including planar deformation features in quartz, feldspar, and zircons; diaplectic glasses of quartz and feldspar; and fused mineral melts and whole-rock melts. In addition, elevated concentrations of Ir, Re, and Os, in meteoritic relative proportions, have been detected in some melt-rock samples from the center of the structure. Isotopic analyses, magnetization of melt-rock samples, and local stratigraphic constraints identify this crater as the source of K/T boundary deposits.

  15. Manson impact structure, Iowa: First geochemical results for drill core M-1

    NASA Technical Reports Server (NTRS)

    Koeberl, Christian; Anderson, Raymond R.; Hartung, Jack B.; Reimold, Wolf Uwe

    1993-01-01

    The Manson Impact Structure is a large complex impact crater centered ca. S km north of the town of Manson, Iowa. It is the largest intact impact structure recognized in the United States (35 km in diameter). Its Ar-40/Ar-39 age is indistinguishable from that of the Cretaceous-Tertiary (K-T) boundary. The Manson structure may be one element of the events at the K-T boundary. The crater is completely covered by Quaternary glacial sedimentary deposits that are normally underlain by Cretaceous clastic sediments and flat-lying carbonate sediments of Phanerozoic age, as well as Proterozoic red clastic, metamorphic, volcanic, and plutonic rock sequences. The study of a reflection seismic profile, provided by Amoco, was critical in interpreting the structure. In the 35 km diameter zone that marks the extension of the crater the normal rock sequence is disturbed due to the impact, and at the center of the structure granitic basement rocks are present that have been uplifted from about 4 km depth. Our studies consist of detailed petrological and geochemical characterization of all cores, with emphasis on a detailed description of all rock types found in the core samples and their relationship to target rocks. Geochemical data on samples from the Manson M-1 core are presented.

  16. Manson impact structure, Iowa: First geochemical results for drill core M-1

    NASA Astrophysics Data System (ADS)

    Koeberl, Christian; Anderson, Raymond R.; Hartung, Jack B.; Reimold, Wolf Uwe

    1993-03-01

    The Manson Impact Structure is a large complex impact crater centered ca. S km north of the town of Manson, Iowa. It is the largest intact impact structure recognized in the United States (35 km in diameter). Its Ar-40/Ar-39 age is indistinguishable from that of the Cretaceous-Tertiary (K-T) boundary. The Manson structure may be one element of the events at the K-T boundary. The crater is completely covered by Quaternary glacial sedimentary deposits that are normally underlain by Cretaceous clastic sediments and flat-lying carbonate sediments of Phanerozoic age, as well as Proterozoic red clastic, metamorphic, volcanic, and plutonic rock sequences. The study of a reflection seismic profile, provided by Amoco, was critical in interpreting the structure. In the 35 km diameter zone that marks the extension of the crater the normal rock sequence is disturbed due to the impact, and at the center of the structure granitic basement rocks are present that have been uplifted from about 4 km depth. Our studies consist of detailed petrological and geochemical characterization of all cores, with emphasis on a detailed description of all rock types found in the core samples and their relationship to target rocks. Geochemical data on samples from the Manson M-1 core are presented.

  17. Joint Spatial-Spectral Reconstruction and k-t Spirals for Accelerated 2D Spatial/1D Spectral Imaging of 13C Dynamics

    PubMed Central

    Gordon, Jeremy W.; Niles, David J.; Fain, Sean B.; Johnson, Kevin M.

    2014-01-01

    Purpose To develop a novel imaging technique to reduce the number of excitations and required scan time for hyperpolarized 13C imaging. Methods A least-squares based optimization and reconstruction is developed to simultaneously solve for both spatial and spectral encoding. By jointly solving both domains, spectral imaging can potentially be performed with a spatially oversampled single echo spiral acquisition. Digital simulations, phantom experiments, and initial in vivo hyperpolarized [1-13C]pyruvate experiments were performed to assess the performance of the algorithm as compared to a multi-echo approach. Results Simulations and phantom data indicate that accurate single echo imaging is possible when coupled with oversampling factors greater than six (corresponding to a worst case of pyruvate to metabolite ratio < 9%), even in situations of substantial T2* decay and B0 heterogeneity. With lower oversampling rates, two echoes are required for similar accuracy. These results were confirmed with in vivo data experiments, showing accurate single echo spectral imaging with an oversampling factor of 7 and two echo imaging with an oversampling factor of 4. Conclusion The proposed k-t approach increases data acquisition efficiency by reducing the number of echoes required to generate spectroscopic images, thereby allowing accelerated acquisition speed, preserved polarization, and/or improved temporal or spatial resolution. Magn Reson Med PMID:23716402

  18. Exclusive photoproduction of charmonia in γ p → V p and pp → pV p reactions within k t -factorization approach

    NASA Astrophysics Data System (ADS)

    Cisek, Anna; Schäfer, Wolfgang; Szczurek, Antoni

    2015-04-01

    The amplitude for γ p → J/ψp (γ p → ψ ' p) is calculated in a pQCD k T -factorization approach. The total cross section for this process is calculated for different unintegrated gluon distributions and compared with the HERA data and the data extracted recently by the LHCb collaboration. The amplitude for γ p → J/ψp (γ p → ψ ' p) is used to predict the cross section for exclusive photoproduction of J/ψ ( ψ ') mesons in proton-proton collisions. Compared to earlier calculations we include both Dirac and Pauli electromagnetic form factors. The effect of the Pauli form factor is quantified. We discuss the role of the J/ψ and ψ ' wave functions for differential distributions and corresponding ratios for ψ ' and J/ψ. Absorption effects are taken into account and their role is discussed in detail. Different differential distributions e.g. in J/ψ ( ψ ') rapidity and transverse momentum are presented and compared with existing experimental data. The unintegrated gluon distribution with nonlinear effects built in and Gaussian wave functions better describe recent experimental data of the LHCb collaboration but no definite conclusion on onset of saturation can be drawn. We present our results also for the Tevatron. A good agreement with the CDF experimental data points at the midrapidity for both J/ψ and ψ ' is achieved.

  19. Petrology of Tullock Member, Fort Union Formation, Wyoming and Montana: Evidence for early Paleocene uplift of Bighorn Mountains

    SciTech Connect

    Brown, J.L.; Hansley, P.L. )

    1989-09-01

    New petrologic data collected from sandstones in the Paleocene Tullock Member of the Fort Union Formation above the Cretaceous/Tertiary boundary in the Powder River basin (PRB) and from the lowermost Paleocene in the Bighorn basin, Wyoming and Montana, compel reevaluation of the timing of the bighorn uplift, formerly thought to be middle Paleocene. The Cretaceous/Tertiary boundary is identified by regionally valid palynological and trace element geochemical criteria. Basin-wide outcrop and subsurface studies of the Tullock Member indicate deposition on a low-gradient alluvial plain extending toward the retreating Cannonball sea. Eastward-flowing, low-sinuosity paleostreams containing small, sandy, stable channels characterized the fluvial systems.

  20. How close to ideal is the photon gas Corrections to Planck's laws at kT. much lt. m sub e

    SciTech Connect

    Barton, G. )

    1991-01-01

    At temperatures well below the electron rest mass, the electron-positron concentrations in black-body radiation (BBR) are negligible, and deviations from Planck's laws are due to the photon-photon coupling described (in natural units) by the classic Euler-Heisenberg local interaction Lagrangean density ({alpha}{sup 2}/360{pi}{sup 2}m{sub e}{sup 4})((E{sup 2}{minus}B{sup 2}){sup 2}+7(E{center dot}B){sup 2}). Though unobservably small, these corrections answer the question in the title. They are best expressed in terms of the (frequency-independent) shift in the refractive index {kappa} = (1+{Delta}{kappa}) of BBR, where {Delta}{kappa} = {alpha}{sup 2}(kT/m{sub e}){sup 4}44{pi}{sup 2}/2025 {approx} 7.5 {times} 10{sup {minus}35}(T/300){sup 4}. There are fractional changes of 3 {Delta}{kappa}/2 in the free-energy density and the pressure; 7 {Delta}{kappa}/2 in the energy density; and 2 {Delta}{kappa} in the mean-square electric field in any frequency range, whence only the intensity of the Planck spectrum is shifted but not its shape. The dielectric constant {var epsilon} = (1 + {Delta}{var epsilon}) and magnetic susceptibility {mu} = (1 + {Delta}{mu}) of BBR are equal, with {Delta}{var epsilon} = {Delta}{mu} = {Delta}{kappa}, whence the author compares the BBR shifts with those in an ordinary linear nondispersive medium having {var epsilon} = {mu} = {kappa} {triple bond} {radical}{epsilon}{mu}.

  1. Petromagnetic and paleomagnetic characterization deposits at Mesozoic/Cenozoic boundary: The Tetritskaro section (Georgia)

    NASA Astrophysics Data System (ADS)

    Pechersky, D. M.; Asanidze, B. Z.; Nourgaliev, D. K.; Sharonova, Z. N.

    2009-02-01

    Petromagnetic and magnetostratigraphic characteristics are obtained for the Tetritskaro section. The boundary layer at the Mesozoic/Cenozoic (K/T) boundary is fixed primarily by an abrupt rise in the paramagnetic magnetization (total Fe concentration) and, to a lesser degree, by an increase in the concentration of such magnetic minerals as goethite, hemoilmenite, and magnetite. The along-section distribution of titanomagnetite of volcanic origin and metallic iron of cosmic origin does not correlate with the K/T boundary and lithologic properties of the sediments. The boundary of the Mesozoic and Cenozoic geological eras lies within the reversed polarity chron C29r and is marked by an abrupt rise in the geomagnetic field paleointensity and an instability of paleomagnetic directions, rather than by a polarity change. The accumulation time of the boundary clay layer is about 1.5-2 kyr, while abrupt changes in the paleointensity and direction of the geomagnetic field encompass 30-40 kyr. Such long occurrence intervals of the events in question cannot be related to a short-term impact phenomenon.

  2. Ontogenetic niche shifts in dinosaurs influenced size, diversity and extinction in terrestrial vertebrates.

    PubMed

    Codron, Daryl; Carbone, Chris; Müller, Dennis W H; Clauss, Marcus

    2012-08-23

    Given the physiological limits to egg size, large-bodied non-avian dinosaurs experienced some of the most extreme shifts in size during postnatal ontogeny found in terrestrial vertebrate systems. In contrast, mammals--the other dominant vertebrate group since the Mesozoic--have less complex ontogenies. Here, we develop a model that quantifies the impact of size-specific interspecies competition on abundances of differently sized dinosaurs and mammals, taking into account the extended niche breadth realized during ontogeny among large oviparous species. Our model predicts low diversity at intermediate size classes (between approx. 1 and 1000 kg), consistent with observed diversity distributions of dinosaurs, and of Mesozoic land vertebrates in general. It also provides a mechanism--based on an understanding of different ecological and evolutionary constraints across vertebrate groups--that explains how mammals and birds, but not dinosaurs, were able to persist beyond the Cretaceous-Tertiary (K-T) boundary, and how post-K-T mammals were able to diversify into larger size categories. PMID:22513279

  3. Large Deep-Ocean Impacts, Sea-Floor Hiatuses, and Apparent Short Term Sea-Level Changes

    NASA Astrophysics Data System (ADS)

    Hagstrum, J. T.

    2001-12-01

    Widespread discontinuities and unconformities in deep-sea sedimentary records (hiatuses) often correspond to rapid fluctuations in eustatic sea level. Such global paleoceanographic events have been attributed to vertical tectonic movements, to changes in ocean basin configuration and volume, and to glacial versus non-glacial climates. Alternatively, megatsunami waves generated by large deep-ocean impacts cause widespread erosion of the sea floor centered on the impact site. At the shoreline, run-up heights can exceed 1 km on a global scale. These high-energy events might be the source of some sea-floor hiatuses as well as stratigraphic intervals currently interpreted as short-term regression and transgression (r-t) pulses in sea level. A widespread hiatus, probable impact ejecta, ocean chemistry and sediment changes, and r-t pulse occurring at ~68-67 Ma indicate that a large oceanic impact might have preceded the Chicxulub impact by a few million years. The hiatus proximal to the Cretaceous-Tertiary (K-T) boundary is most pronounced in the northern Pacific basin and, because tsunami amplitude is proportional to water depth, could not have been caused by the shallow-water (<=100 m) Chicxulub impact at ~65 Ma. Thus K-T time likely experienced two large bolide impacts, one of which occurred in the deep ocean.

  4. NATIONAL FOREST BOUNDARIES

    EPA Science Inventory

    This dataset contains National Forest boundaries for the lower 48 states, including Puerto Rico. Alaska is maintained separately. This dataset includes administrative unit boundaries, derived primarily from the GSTC SOC data system, comprised of Cartographic Feature Files (CFFs...

  5. Comparative analysis of SV40 17kT and LT function in vivo demonstrates that LT's C-terminus re-programs hepatic gene expression and is necessary for tumorigenesis in the liver

    PubMed Central

    Comerford, S A; Schultz, N; Hinnant, E A; Klapproth, S; Hammer, R E

    2012-01-01

    Transformation by Simian Virus 40 (SV40) large T antigen (LT) is mediated in large part by its interaction with a variety of cellular proteins at distinct binding domains within LT. While the interaction of LT's N-terminus with the tumor suppressor Rb is absolutely required for LT-dependent transformation, the requirement for the interaction of LT's C-terminus with p53 is less clear and cell- and context-dependent. Here, we report a line of transgenic mice expressing a doxycycline-inducible liver-specific viral transcript that produces abundant 17kT, a naturally occurring SV40 early product that is co-linear with LT for the first 131 amino acids and that binds to Rb, but not p53. Comparative analysis of livers of transgenic mice expressing either 17kT or full length LT demonstrates that 17kT stimulates cell proliferation and induces hepatic hyperplasia but is incapable of inducing hepatic dysplasia or promoting hepatocarcinogenesis. Gene expression profiling demonstrates that 17kT and LT invoke a set of shared molecular signatures consistent with the action of LT's N-terminus on Rb-E2F-mediated control of hepatocyte transcription. However, 17kT also induces a unique set of genes, many of which are known transcriptional targets of p53, while LT actively suppresses them. LT also uniquely deregulates the expression of a subset of genes within the imprinted network and rapidly re-programs hepatocyte gene expression to a more fetal-like state. Finally, we provide evidence that the LT/p53 complex provides a gain-of-function for LT-dependent transformation in the liver, and confirm the absolute requirement for LT's C-terminus for liver tumor development by demonstrating that phosphatase and tensin homolog (PTEN)-deficiency readily cooperates with LT, but not 17kT, for tumorigenesis. These results confirm independent and inter-dependent functions for LT's N- and C-terminus and emphasize differences in the requirements for LT's C-terminus in cell-type dependent

  6. Numerical Boundary Condition Procedures

    NASA Technical Reports Server (NTRS)

    1981-01-01

    Topics include numerical procedures for treating inflow and outflow boundaries, steady and unsteady discontinuous surfaces, far field boundaries, and multiblock grids. In addition, the effects of numerical boundary approximations on stability, accuracy, and convergence rate of the numerical solution are discussed.

  7. On boundary superalgebras

    SciTech Connect

    Doikou, Anastasia

    2010-04-15

    We examine the symmetry breaking of superalgebras due to the presence of appropriate integrable boundary conditions. We investigate the boundary breaking symmetry associated with both reflection algebras and twisted super-Yangians. We extract the generators of the resulting boundary symmetry as well as we provide explicit expressions of the associated Casimir operators.

  8. Diachronism between extinction time of terrestrial and marine dinosaurs

    NASA Technical Reports Server (NTRS)

    Hansen, H. J.

    1988-01-01

    The dinosaur eggs of southern France occur in continental, fine-grained red-beds, rich in carbonate. The last eggs in the region occur in the magnetic polarity interval 30 normal. Estimates of the accumulation rate of these sediments on the basis of the magneto-stratigraphy leads to placement of the time of disappearance of the dinosaurs in this region of 200,000 to 400,000 years earlier than the Cretaceous-Tertiary boundary. In the Red Deer Valley, Canada, estimates of average accumulation rate lead to a time of disappearance of the dinosaurs of 135,000 to 157,000 years earlier than the Cretaceous-Tertiary boundary. In the central part of Poland, in the Nasilow Quarry, the paleomagnetic pattern shows 7 m of chalk of reversed polarity containing in its upper part the marine Cretaceous-Tertiary biostratigraphic boundary. A greensand deposit contains numerous re-deposited Maastrichtian fossils. The fossils show no signs of wear and are of very different sizes including 1 mm thick juvenile belemnites. The deposit was described as a lag-sediment. Among the various fossils are teeth of mosasaurs. Thus there is coincidence in time between the extinction of mosasaurs and other Cretaceous organisms. This leads to the conclusion, that extinction of terrestrial dinosaurs took place earlier than extinction of marine dinosaurs at the Cretaceous-Tertiary boundary.

  9. Experimental evidence that an asteroid impact led to the extinction of many species 65 million years ago

    SciTech Connect

    Alvarez, L.W.

    1982-09-01

    The development of the theory that the mass extinction of the dinosaurs at the Cretaceous-Tertiary boundary was caused by an asteroid impact is reviewed. The personnel involved, the objections to the theory, and the evidence refuting those objections are presented chronologically. (ACR)

  10. New chronostratigraphy of the Cretaceous-Paleogene boundary interval at Bidart (France)

    NASA Astrophysics Data System (ADS)

    Galbrun, Bruno; Gardin, Silvia

    2004-07-01

    The Cretaceous-Paleogene boundary section at Bidart (French basque coast) was prevented for a long time to be considered as a reference section for the K-T boundary due to a suspected hiatus comprising most of Chron C29r. In our new magneto- and biostratigraphic study of this section we discovered that the underlying primary magnetic polarity is not revealed in the vector directions but in a small, but consistent, intensity excursion during laboratory demagnetization trends. Magnetite and maghemite are the main carriers of remanence, with contribution of hematite to the magnetic mineralogy of the red-brown lowermost Danian and Maastrichtian marly limestones. Magnetite is the main magnetic mineral in the white to pink Danian limestones. The NRM of marls and marly limestones is characterized by: (1) a present-day field overprint, (2) a medium-temperature (300-400 °C) reversed component interpreted as a relic of the characteristic remanent magnetization (ChRM) carried by magnetite grains which are not completely oxidized into maghemite, and (3) a high temperature (up to 590 °C) normal component due to late diagenesis hematite growth. The NRM of Danian limestones is characterized by (1) a present-day field overprint and (2) a ChRM component of normal or reversed polarity. The ChRM directions allow a new correlation of the magnetic polarity sequence with the Geomagnetic Polarity Time Scale (GPTS): Chron C29r corresponds to the Maastrichtian unit and extends up to 3.5 m above the K-T boundary, and Chron C29n occurs at the top of the section. There is no evidence for a hiatus at or below the K-T boundary, and the section does not extend up to Chron C28r as previously suggested. These new chronostratigraphic assignments are in good agreement with the previous biostratigraphic data and from the new biostratigraphic analyses based on calcareous nannofossils presented in this paper. Our study demonstrates that the section of Bidart can be considered as a key section to

  11. Boundary lubrication: Revisited

    NASA Technical Reports Server (NTRS)

    Jones, W. R., Jr.

    1982-01-01

    A review of the various lubrication regimes, with particular, emphasis on boundary lubrication, is presented. The types of wear debris and extent of surface damage is illustrated for each regime. The role of boundary surface films along with their modes of formation and important physical properties are discussed. In addition, the effects of various operating parameters on friction and wear in the boundary lubrication regime are considered.

  12. Influence of grain boundaries on recombination in polysilicon pn-junction solar cells

    SciTech Connect

    Fossum, J.G.; Neugroschel, A.; Lindholm, F.A.; Mazer, J.A.

    1980-01-01

    The physics controlling recombination in polysilicon pn-junction cells is described. Analytic models characterizing this recombination, whose parameters can be related directly to experiment, are developed. The analysis reveals that, in general, the description of intra-grain and grain-boundary recombination in a polysilicon solar cell requires the solution of a nonlinear, three-dimensional boundary-value problem. Cases of practical interest for which this problem is tractable are discussed. The analysis predicts an exp(qV/2kT) dependence (the reciprocal slope factor is exactly two) for carrier recombination at a grain boundary within the junction space-charge region of a non-illuminated, forward-biased cell. This result, and others of the analysis, are shown to be consistent with measured current-voltage characteristics of pn junctions fabricated on polycrystalline silicon.

  13. Recalibration of the Palaeocene-Eocene boundary (P-E) using high precision U-Pb and Ar-Ar isotopic dating

    NASA Astrophysics Data System (ADS)

    Chambers, L.; Pringle, M.; Fitton, G.; Larsen, L. M.; Pedersen, A. K.; Parrish, R.

    2003-04-01

    In the current time scales (Cande and Kent, 95; Berggren et al, 95) the P-E Boundary is positioned at 55 Ma based primarily on the age of the -17 ash layer in Denmark. In the absence of a global stratigraphic section and point the boundary is an interval of 1 m.y. from 55.5 to 54.5 Ma that includes all of the different means of calibrating the boundary tie point, including the NP9/NP10 calcareous nannofossil zonal boundary, the planktonic foraminiferal P5/P6a zonal boundary, preliminary ages for the -17 and +19 ash layers (unpub.), the base of the London Clay Formation, and the δ13C spike. Here we present new Ar-Ar ages for the -17 and +19 ash layers in Denmark and combine this study with a calibration of the Ar-Ar with the U-Pb method. As Ar-Ar ages are relative to the known age of a standard or monitor, U-Pb ages on zircons from the same rocks from the British Tertiary Igneous Province provide an absolute age calibration for all of our Ar-Ar ages (including the monitors). An additional complication arises because the time scale is currently being revised (J. Ogg, Pers. Comm.). In the new time scale the P-E boundary will stay at 55 Ma and the K-T boundary will move by 0.5 m.y. to 65.5 Ma. Our results have a direct impact on the positioning of the P-E Boundary relative to the K-T boundary as definitive K-T tektite is used as one of our Ar-Ar standards. Ar-Ar ages and U-Pb ages for the same sample from the BTIP are indistinguishable when the ages used for the Ar-Ar monitor minerals are those recommended in Renne et al (98). This means that the K-T tektite is 65.78 ± 0.03 Ma, the -17 ash is 54.52 ± 0.05Ma, and the +19 ash is 54.04 ± 0.14 Ma. If the P-E boundary is taken to be between the -17 and +19 ash layers, as in DSDP Hole 550 (the ashes bracket the planktonic foraminiferal P5/P6a zonal boundary) then the current position at 55 Ma is too old. We therefore suggest that if the K-T boundary moves to 65.5 Ma, then the P-E boundary should not stay at 55 Ma, but

  14. NATIONAL PARK BOUNDARIES

    EPA Science Inventory

    The National Park Service has produced a data base of boundaries for its National Parks. A copy of this data was downloaded from the National Parks Service ftp site by Region 10. These digital boundaries represent the best guess and data that could be collected in a short time....

  15. The Atmospheric Boundary Layer

    ERIC Educational Resources Information Center

    Tennekes, Hendrik

    1974-01-01

    Discusses some important parameters of the boundary layer and effects of turbulence on the circulation and energy dissipation of the atmosphere. Indicates that boundary-layer research plays an important role in long-term forecasting and the study of air-pollution meteorology. (CC)

  16. Experimentally Shock-loaded Anhydrite: Unit-Cell Dimensions, Microstrain and Domain Size from X-Ray Diffraction

    NASA Technical Reports Server (NTRS)

    Skala, R.; Hoerz, F.

    2003-01-01

    Cretaceous Tertiary (K/T) boundary is traditionally associated with one of the most dramatic mass extinctions in the Earth history. A number of killing mechanisms have been suggested to contribute to the widespread extinctions of Cretaceous biota at this boundary, including severe, global deterioration of the atmosphere and hydrosphere from the shock-induced release of CO2 and SO(x) from carbonate- and sulfate-bearing target rocks, respectively. Recently carried out calculations revealed that the global warming caused by CO2 release was considerably less important than the cooling due to SO(x) gases release during the Chicxulub impact event. Considering apparent potential importance of the response of sulfates to the shock metamorphism, relative lack of the data on shock behavior of sulfates as well as some general difficulties encountered during thermodynamic modeling of the shock-induced CO2 loss from carbonates we subjected anhydrite to a series of shock experiments designed for complete recovery of the shocked material. We report here on the detail X-ray diffraction analysis of seven samples that were subjected to experimental shock-loading from 10 to 65 GPa.

  17. The Cretaceous-Paleogene boundary in turbiditic deposits identified to the bed: a case study from the Skole Nappe (Outer Carpathians, southern Poland)

    NASA Astrophysics Data System (ADS)

    Gasiński, M. Adam; Uchman, Alfred

    2011-08-01

    The Cretaceous-Paleogene (K-T) boundary has been recognized in turbiditic sediments of the Ropianka Formation in the Skole Nappe (Bąkowiec section) on the basis of planktonic foraminiferids with an accuracy of 40 cm. Such precise determination of the K-T boundary for the first time in the Carpathians and in turbiditic flysch sediments in general was possible due to the successive occurrence of the Early Paleocene planktonic taxa of the P1 Zone above the latest Maastrichtian Abathomphalus mayaroensis Zone with the Racemiguembelina fructicosa Subzone. The trends in composition of the latest Maastrichtian foraminiferal assemblages are similar to the Gaj section from the adjacent thrust sheet, probably due to the influence of the same paleoenvironmental factors.

  18. Psychodynamic Perspective on Therapeutic Boundaries

    PubMed Central

    Bridges, Nancy A.

    1999-01-01

    Discussion of boundaries in therapeutic work most often focuses on boundary maintenance, risk management factors, and boundary violations. The psychodynamic meaning and clinical management of boundaries in therapeutic relationships remains a neglected area of discourse. Clinical vignettes will illustrate a psychodynamic, developmental-relational perspective using boundary dilemmas to deepen and advance the therapeutic process. This article contributes to the dialogue about the process of making meaning and constructing therapeutically useful and creative boundaries that further the psychotherapeutic process. PMID:10523432

  19. Shock Deformation and Volcanism across the Cretaceous - Transition.

    NASA Astrophysics Data System (ADS)

    Huffman, Alan Royce

    1990-01-01

    The cause of the Cretaceous-Tertiary (K/T) transition remains one of the most controversial scientific topics in the geosciences. Geological and geophysical evidence associated with the K/T boundary have been used to argue that the extinctions were caused by meteor impact or volcanism. The goal of this study was to assess the viability of a volcanic model for the K/T transition. Comparison of natural and experimentally-shocked quartz and feldspar using optical and transmission electron microscopy (TEM) revealed that the optical and statistical character of shock-induced microstructures in volcanic rocks are different from both classic impact microstructures, and from the Raton K/T samples. A series of 31 high-explosive (HE) shock-recovery experiments at pressures to 25 GPa and temperatures to 750^circC were completed on samples of granite and quartzite. TEM and optical microscopy reveal that pre-shock temperature and pulse duration have a first-order effect on the development of shock-induced microstructures in quartz and feldspar. Application of the experimental results to natural shock-induced microstructures indicates that the volcanic microstructures are probably produced at elevated temperatures and shock pressures that do not exceed 15 GPa. The results also suggest that the Raton K/T deposits were produced at pressures below about 25 GPa. Analysis of samples from the K/T transition at DSDP Site 527 and correlations between biostratigraphy, isotopes, and the data from this study suggest that the decline in marine productivity over an extended period of time may be due to climate changes induced by basaltic volcanism. The eruption of the Deccan Traps is a viable mechanism for the K/T extinctions, and the correlation of flood basalts with every major biotic crisis in the last 250 Ma supports the link between these two phenomena. Eruption of flood basalts enriched in F, Cl, CO_2 , and SO_2, could disrupt the terrestrial ecosystem, and could produce effects

  20. Placenta-Specific Protein 1 Is Conserved throughout the Placentalia under Purifying Selection

    PubMed Central

    Devor, Eric J.

    2014-01-01

    Placental mammals (Placentalia) are a very successful group that, today, comprise 94% of all mammalian species. Recent phylogenetic analyses, coupled with new, quite complete fossils, suggest that the crown orders were all established rapidly from a common ancestor just after the Cretaceous/Tertiary (K/T) boundary 65 million years ago. Extensive molecular and morphologic evidence has led to a description of the common ancestor of all Placentalia in which a two-horned uterus and a hemochorial placenta are present. Thus, the process of placentation in which the placenta invades and anchors to the uterine epithelium was already established. One factor that has been suggested as a crucial component of this process is placenta-specific protein 1 (PLAC1). A phylogenetic analysis of the PLAC1 protein in 25 placental mammal species, representing nine of the sixteen crown orders of the Placentalia, suggests that this protein was present in the placental common ancestor in the form we see it today, that it evolved in the Placentalia and has been subject to the effects of purifying selection since its appearance. PMID:25180201

  1. Placenta-specific protein 1 is conserved throughout the Placentalia under purifying selection.

    PubMed

    Devor, Eric J

    2014-01-01

    Placental mammals (Placentalia) are a very successful group that, today, comprise 94% of all mammalian species. Recent phylogenetic analyses, coupled with new, quite complete fossils, suggest that the crown orders were all established rapidly from a common ancestor just after the Cretaceous/Tertiary (K/T) boundary 65 million years ago. Extensive molecular and morphologic evidence has led to a description of the common ancestor of all Placentalia in which a two-horned uterus and a hemochorial placenta are present. Thus, the process of placentation in which the placenta invades and anchors to the uterine epithelium was already established. One factor that has been suggested as a crucial component of this process is placenta-specific protein 1 (PLAC1). A phylogenetic analysis of the PLAC1 protein in 25 placental mammal species, representing nine of the sixteen crown orders of the Placentalia, suggests that this protein was present in the placental common ancestor in the form we see it today, that it evolved in the Placentalia and has been subject to the effects of purifying selection since its appearance. PMID:25180201

  2. Behavior of carbonate shelf communities in the Upper Triassic of Nevada: Evidence of impact mediated faunal turnover

    SciTech Connect

    Hogler, J.A. . Museum of Paleontology)

    1993-04-01

    The carbonate shelf sediments of the Luning and Gabbs Formations of Nevada span the last several million years of the Triassic. This richly fossiliferous sequence provides a relatively continuous record of benthic community behavior during a long interval of global biotic turnover. Upper Carnian-Lower Norian and Upper Norian sea floors in this region were inhabited by a variety of invertebrate communities, all of them mollusc-dominated. Across a range of offshore shelf to basinal environments and throughout repeated community replacements, the most abundant and diverse taxa were infaunal and epifaunal bivalves and ammonites. The sequence of Upper Triassic molluscan communities was interrupted by a Lower or Middle Norian interval of brachiopod-dominated faunas. Although preserved in similar offshore carbonate shelf sediments, these communities are nearly devoid of the infaunal bivalves and ammonites that characterize both older and younger assemblages in the section. This pattern, of a temporary replacement of molluscan communities by brachiopod faunas, mimics that reported for some shelf assemblages across the Cretaceous-Tertiary boundary. That brief resurgence of brachiopods is linked to a sharp drop in marine primary productivity, which suggests that a disruption of planktonic food chains may also have occurred early in the Norian. The timing and pattern of Carnian-Norian faunal and physical events and their resemblance to K/T sequences are consistent with the proposal that an asteroid impact played a role in the Upper Triassic faunal transition.

  3. Iridium in sediments containing large abundances of Australasian microtektites from DSDP hole 758B in the Eastern Indian Ocean and from DSDP hole 769A in the Sulu Sea

    NASA Technical Reports Server (NTRS)

    Schmidt, Gerhard; Zhou, Lei; Wasson, John T.

    1993-01-01

    Excess Ir found in sediments at the Cretaceous/Tertiary (K/T) boundary and in other (e.g., Pliocene) sediments from deep sea drilling cores is widely interpreted as evidence of major impact events. The Australasian tektites originated in an impact event approximately 0.77 Ma ago; microtektites have been found in deep-sea sediment cores from throughout the Indian Ocean, the Philippine Sea, and western Pacific Ocean, but Ir has not been previously reported in these horizons. The deep-sea record of tektites is of particular interest, because in contrast to most continental occurrences, the stratigraphy preserves the original depositional position. Recently several cores having exceptionally high contents of Australasian microtektites have been investigated, Glass and Wu found shocked quartz associated with the microtektites. We used neutron activation to determine concentrations of Ir and other elements in two cores bearing microtektites, one from Deep Sea Drilling Project (DSDP) hole 758B in the Eastern Indian Ocean and one from DSDP hole 769A in the Sulu Sea (near Mindanao, Philippines). The sedimentation age for the microtektite layers in core 758B lies between 0.73 - 0.78 Ma and agrees well with the mean laser-fusion Ar-40/Ar-39 age of Australasian tektites of 0.77 +/- 0.02 Ma by Izett et al. We are able to resolve a small positive Ir enhancement in 758B. Core 769A shows too much scatter to allow resolution of an Ir peak.

  4. Mammalian phylogeny reveals recent diversification rate shifts.

    PubMed

    Stadler, Tanja

    2011-04-12

    Phylogenetic trees of present-day species allow investigation of the rate of evolution that led to the present-day diversity. A recent analysis of the mammalian phylogeny challenged the view of explosive mammalian evolution after the Cretaceous-Tertiary (K/T) boundary (65 Mya). However, due to lack of appropriate methods, the diversification (speciation minus extinction) rates in the more recent past of mammalian evolution could not be determined. In this paper, I provide a method that reveals that the tempo of mammalian evolution did not change until ∼ 33 Mya. This constant period was followed by a peak of diversification rates between 33 and 30 Mya. Thereafter, diversification rates remained high and constant until 8.55 Mya. Diversification rates declined significantly at 8.55 and 3.35 Mya. Investigation of mammalian subgroups (marsupials, placentals, and the six largest placental subgroups) reveals that the diversification rate peak at 33-30 Mya is mainly driven by rodents, cetartiodactyla, and marsupials. The recent diversification rate decrease is significant for all analyzed subgroups but eulipotyphla, cetartiodactyla, and primates. My likelihood approach is not limited to mammalian evolution. It provides a robust framework to infer diversification rate changes and mass extinction events in phylogenies, reconstructed from, e.g., present-day species or virus data. In particular, the method is very robust toward noise and uncertainty in the phylogeny and can account for incomplete taxon sampling. PMID:21444816

  5. Recognition of microfossils in rock matrix using Infrared and Raman Spectroscopy: a potential for Biosignatures Detection

    NASA Astrophysics Data System (ADS)

    Politi, R.; Marzo, G. A.; Bonaccorsi, R.; Fonti, S.; Blanco, A.; Brunetto, R.; Marra, A. C.

    The widespread evidences of ancient water on Mars and the improving rover technology demand to foster the search for traces of extinct micro-organisms on Mars In order to implement the search for extinct life in the next decades missions the Astrophysics Group of the University of Lecce has started a research program based on a systematic study of terrestrial fossils We use a combination of visual and spectroscopic techniques to understand the suitable configuration of instruments capable of detecting possible microfossils-like structure in a geological sample We present here reflectance IR and micro Raman spectroscopy data obtained from the Cretaceous-Tertiary boundary K-T sequence Gubbio Italy together with their albedo-correlated maps and microscope images plane polarized light We used K and T limestone samples comprising thicksim 95 calcareous nanofloras and planktonic foraminifera and 5 clay as a test bed for this experiment Although extensive carbonate outcrops were not observed on the surface of Mars fossiliferous rocks could still exist beneath the lava flow widespread at surface The basic idea here is to acquire and model spectral features of a mineral matrix i e CaCO 3 progressively enriched in microfossil-like inclusions then compare the synthetic spectra with that of an actual sample rich in calcareous microfossils Fossilization is complex process to predict and model We attempt to reduce this complexity by using an iterative model where at a very first approximation the microfossil-like particle is a small

  6. Turbulent boundary layers over nonstationary plane boundaries

    NASA Technical Reports Server (NTRS)

    Roper, A. T.

    1976-01-01

    Methods of predicting integral parameters and skin-friction coefficients of turbulent boundary layers developing over moving-ground-planes are evaluated using test information from three different wind tunnel facilities at the NASA Langley Research Center. These data include test information from the VSTOL tunnel which is presented for the first time. The three methods evaluated were: (1) relative integral parameter method, (2) relative power law method, and (3) modified law of the wall method. Methods (1) and (2) can be used to predict moving-ground-plane shape factors with an expected accuracy of + or - 10%. They may also be used to predict moving-ground-plane displacement and momentum thicknesses with lower expected accuracy. This decrease in accuracy can be traced to the failure of approximations upon which these methods are based to prove universal when compared with VSTOL tunnel test results.

  7. Probabilistic boundary element method

    NASA Technical Reports Server (NTRS)

    Cruse, T. A.; Raveendra, S. T.

    1989-01-01

    The purpose of the Probabilistic Structural Analysis Method (PSAM) project is to develop structural analysis capabilities for the design analysis of advanced space propulsion system hardware. The boundary element method (BEM) is used as the basis of the Probabilistic Advanced Analysis Methods (PADAM) which is discussed. The probabilistic BEM code (PBEM) is used to obtain the structural response and sensitivity results to a set of random variables. As such, PBEM performs analogous to other structural analysis codes such as finite elements in the PSAM system. For linear problems, unlike the finite element method (FEM), the BEM governing equations are written at the boundary of the body only, thus, the method eliminates the need to model the volume of the body. However, for general body force problems, a direct condensation of the governing equations to the boundary of the body is not possible and therefore volume modeling is generally required.

  8. Boundary layer simulator improvement

    NASA Technical Reports Server (NTRS)

    Praharaj, Sarat C.; Schmitz, Craig P.; Nouri, Joseph A.

    1989-01-01

    Boundary Layer Integral Matrix Procedure (BLIMPJ) has been identified by the propulsion community as the rigorous boundary layer program in connection with the existing JANNAF reference programs. The improvements made to BLIMPJ and described herein have potential applications in the design of the future Orbit Transfer Vehicle engines. The turbulence model is validated to include the effects of wall roughness and a way is devised to treat multiple smooth-rough surfaces. A prediction of relaminarization regions is examined as is the combined effects of wall cooling and surface roughness on relaminarization. A turbulence model to represent the effects of constant condensed phase loading is given. A procedure is described for thrust decrement calculation in thick boundary layers by coupling the T-D Kinetics Program and BLIMPJ and a way is provided for thrust loss optimization. Potential experimental studies in rocket nozzles are identified along with the required instrumentation to provide accurate measurements in support of the presented new analytical models.

  9. Road boundary detection

    NASA Technical Reports Server (NTRS)

    Sowers, J.; Mehrotra, R.; Sethi, I. K.

    1989-01-01

    A method for extracting road boundaries using the monochrome image of a visual road scene is presented. The statistical information regarding the intensity levels present in the image along with some geometrical constraints concerning the road are the basics of this approach. Results and advantages of this technique compared to others are discussed. The major advantages of this technique, when compared to others, are its ability to process the image in only one pass, to limit the area searched in the image using only knowledge concerning the road geometry and previous boundary information, and dynamically adjust for inconsistencies in the located boundary information, all of which helps to increase the efficacy of this technique.

  10. USACE DIVISION AND DISTRICT BOUNDARIES

    EPA Science Inventory

    The USACE Division and District Boundary data contains the delination of Corps Division and District boundaries. District and Division Boundaries are based on the US political and watershed boundaries. In the mid 1990's, WES created the file by digitizing the 1984 Civil Wor...

  11. Measurement of the ratio of inclusive jet cross sections using the anti-kT algorithm with radius parameters R=0.5 and 0.7 in pp collisions ats=7TeV

    DOE PAGESBeta

    Chatrchyan, S.; Khachatryan, V.; Sirunyan, A. M.; Tumasyan, A.; Adam, W.; Bergauer, T.; Dragicevic, M.; Erö, J.; Fabjan, C.; Friedl, M.; et al

    2014-10-16

    Measurements of the inclusive jet cross section with the anti-kT clustering algorithm are presented for two radius parameters, R = 0.5 and 0.7. They are based on data from LHC proton-proton collisions at √s = 7  TeV corresponding to an integrated luminosity of 5.0  fb⁻¹ collected with the CMS detector in 2011. The ratio of these two measurements is obtained as a function of the rapidity and transverse momentum of the jets. Significant discrepancies are found comparing the data to leading-order simulations and to fixed-order calculations at next-to-leading order, corrected for nonperturbative effects, whereas simulations with next-to-leading-order matrix elements matched to partonmore » showers describe the data best.« less

  12. Accretion rate of extraterrestrial matter: Iridium deposited over the last 70 million years

    NASA Technical Reports Server (NTRS)

    Kyte, Frank T.

    1988-01-01

    In order to quantify the accretion rate of extraterrestrial matter during the Cenozoic, Ir concentrations were measured in a continuous series of 450 samples across most of the length of piston core LL44-GPC3. LL44-GPC3 is a 25-meter-long, large-diameter piston core of abyssal clay from the central North Pacific. This core contains a nearly continuous record of sedimentation over the last 70 Ma, as this site migrated from a region near the Equator in the late Cretaceous to its present position north of Hawaii. The first-cut survey across the core is nearing completion, and all of the conclusions of the earlier study, in which was reported the concentrations of Ir, Co, and Sb across 9 meters of this core, remain unchanged. The only strongly enhanced Ir concentrations occur at the Cretaceous-Tertiary (K-T) boundary and outside the K-T boundary Ir correlates well with Co, a terrestrial element which is largely present in hydrogenous ferromanganese oxide precipitates from seawater. Concentrations of both elements appear to be inversely correlated with the sedimentation rate. Although the K-T Ir anomaly is unique in magnitude in this core, there are several small bumps in the Ir profile which may reflect smaller accretionary events. The most promising Ir enhancement was observed in a 30 cm section approximately 1 m below the K-T boundary. Preliminary data suggest deposition of an excess across this interval at a time estimate to be approximate 1 Ma before the K-T impact event, but there is insufficient evidence at present to prove that this reflects enhanced accretion of extraterrestrial matter. A detailed model is being prepared of the chemical record of sedimentation in this core using a combined database of 39 elements in approximately 450 samples across the Cenozoic. Preliminary working model indicates that the only sedimentary sources which contribute significantly to the Ir budget in this core are the hydrogenous precipitates and extraterrestrial particulates.

  13. An Investigation of the Effect of a Highly Favorable Pressure Gradient on Boundary-Layer Transition as Caused by Various Types of Roughnesses on a 10-foot-Diameter Hemisphere at Subsonic Speeds

    NASA Technical Reports Server (NTRS)

    Peterson, John B., Jr.; Horton, Elmer A.

    1959-01-01

    Tests were made on a 10-foot-diameter hemispherical nose at Reynolds numbers up to 10 x 10(exp 6) and at a maximum Mach number of about 0.1 to determine the effects of a highly favorable pressure gradient on boundary-layer transition caused by roughness. Both two-dimensional and three-dimensional roughness particles were used, and the transition of the boundary layer was determined by hot-wire anemometers. The roughness Reynolds number for transition R(sub k,t) caused by three-dimensional particles such as Carborundum grains, spherical particles, and rimmed craters was found. The results show that for particles immersed in the boundary layer, R(sub k,t) is independent of the particle size or position on the hemispherical nose and depends mainly on the height-to-width ratio of the particle. The values of R(sub k,t) found on the hemispherical nose compare closely with those previously found on a flat plate and on airfoils with roughness. For two-dimensional roughness, the ratio of roughness height to boundary-layer displacement thickness necessary to cause transition was found to increase appreciably as the roughness was moved forward on the nose. Also included in the investigation were studies of the spread of turbulence behind a single particle of roughness and the effect of holes such as pressure orifices.

  14. RCRA TSD BOUNDARIES

    EPA Science Inventory

    This is a shapefile of RCRA Treatment, Storage, and Disposal facility boundaries developed by PRC Environmental Management, Inc (PRC) per a Work Assignment from the U.S. EPA under the Resource Conservation and Recovery Act (RCRA) Enforcement, Permitting, and Assistance (REPA) Con...

  15. 2000 CENSUS BLOCK BOUNDARIES

    EPA Science Inventory

    This data set is a polygon shapefile of the boundaries of Census Blocks in New England derived from U.S. Census Bureau 2000 TIGER/Line data. Numerous attributes pertaining to population are included. TIGER, TIGER/Line, and Census TIGER are registered trademarks of the Bureau o...

  16. Saturn's Magnetospheric Boundaries

    NASA Astrophysics Data System (ADS)

    Kurth, W. S.; Gurnett, D. A.; Hospodarsky, G. B.; Dougherty, M. K.; Arridge, C. S.; Achilleos, N. A.; Andre, N.; Crary, F. J.; McAndrews, H. J.; Szego, K.; Rymer, A. M.; Krimigis, S. M.; Mitchell, D. G.; Krupp, N.; Hamilton, D. C.; Hansen, K. C.

    2005-12-01

    Cassini has now been in orbit at Saturn for more than a year, making more than 12 passes through Saturn's magnetosphere. While the apoapses of these orbits have so far remained clustered near dawn and the inclinations have been mostly below about 20 degrees, progress has been made in mapping and understanding various magnetospheric boundaries. For example, initial modeling of the bow shock and magnetopause by Hendricks et al. [GRL, 32, 2005] suggest the magnetosphere is somewhat more inflated than thought from Pioneer- and Voyager-based models. Of perhaps even more interest are internal boundaries within the magnetosphere. These boundaries separate various magnetospheric regions and are less rigorously defined than the external boundaries. In fact, a number of authors have identified different regions based on particular sets of measurements; we review some of these and attempt to integrate these into a scheme of general utility, realizing that ongoing work on interpretation of existing observations and high inclination orbits to come will likely modify any such scheme we may devise this early in Cassini's tour.

  17. The atmospheric boundary layer

    SciTech Connect

    Garratt, J.R.

    1992-01-01

    This book is aimed at researchers in the atmospheric and associated sciences who require a moderately advanced text on the Atmospheric Boundary Layer (ABL) in which the many links between turbulence, air-surface transfer, boundary-layer structure and dynamics, and numerical modeling are discussed and elaborated upon. Chapter 1 serves as an introduction, with Chapters 2 and 3 dealing with the development of mean and turbulence equations, and the many scaling laws and theories that are the cornerstone of any serious ABL treatment. Modelling of the ABL is crucially dependent for its realism on the surface boundary conditions, and Chapters 4 and 5 deal with aerodynamic and energy considerations, with attention to both dry and wet land surfaces and the sea. The structure of the clear-sky, thermally stratified ABL is treated in Chapter 6, including the convective and stable cases over homogeneous land, the marine ABL and the internal boundary layer at the coastline. Chapter 7 then extends the discussion to the cloudy ABL. This is seen as particularly relevant since the extensive stratocumulus regions over the sub-tropical oceans and stratus regions over the Arctic are now identified as key players in the climate system. Finally, Chapters 8 and 9 bring much of the book's material together in a discussion of appropriate ABL and surface parameterization schemes for the general circulation models of the atmosphere that are being used for climate simulation.

  18. Computation of grain boundary stiffness and mobility from boundary fluctuations.

    SciTech Connect

    Hoyt, Jeffrey John; Foiles, Stephen Martin

    2005-06-01

    Grain boundary stiffness and mobility determine the kinetics of curvature-driven grain growth. Here the stiffness and mobility are computed using an analysis of fluctuations in the grain boundary position during molecular dynamics simulations. This work represents the first determination of grain boundary stiffness for a realistic three-dimensional system. The results indicate that the boundary stiffness for a given boundary plane has a strong dependence on the direction of the boundary distortion. The mobility deduced is comparable with that determined in previous computer simulation studies. The advantages and limitations of the fluctuation approach are discussed.

  19. Biodiversity changes in Cretaceous palynofloras of eastern Asia and western North America

    USGS Publications Warehouse

    Nichols, D.J.

    2003-01-01

    Palynology has great potential for providing comparative data and interpretations about changes in biodiversity during the Cretaceous Period. This is especially true for both eastern Asia and western North America because of strong floristic similarities that existed between these regions during Cretaceous time. Also, because palynomorphs of terrestrial origin can be deposited in offshore as well as terrestrial environments, significant potential exists for marine-to-continental palynostratigraphic correlations in both regions. Palynological biostratigraphy can improve the geologic dating of changes in biodiversity. During the Early Cretaceous, eastern Asia and western North America lay within the Cerebropollenites palynofloral province, a circumpolar phytogeographic zone characterized by distinctive palynological assemblages. During most of the Late Cretaceous, these regions lay within the palynofloristically unique Aquilapollenites Province, which was more restricted geographically than the Cerebropollenites Province. The most important development during Cretaceous time that is reflected in palynological assemblages was the rise of the angiosperms as the numerically and ecologically dominant forms of vegetation. The most striking short-term palynofloral event in the two regions was the sudden disappearance of species of Aquilapollenites and associated genera at the Cretaceous-Tertiary (K/T) boundary. Both of these occurrences produced major changes in biodiversity in the terrestrial realm. Geologic research in International Geological Correlation Program Project 434 can benefit from applications of palynostratigraphy. Palynologic research within Project 434 could include development of a comprehensive palynostratigraphic zonation for the Cretaceous, the definition of regional palynostratigraphic datums, and investigation of the record of floral change at the K/T boundary. ?? 2002 Elsevier Science Ltd. All rights reserved.

  20. K-T Transition into Chaos.

    ERIC Educational Resources Information Center

    McLean, Dewey M.

    1988-01-01

    Discusses the destabilizing influences that affect feedback systems in the earth and trigger disorganization. Presents information that integrates mantle degassing with feed-back systems, and the Sun-Earth-Space energy flow system which is the primary source of energy that drives the Earth's biosphere. (RT)

  1. Boundary layer simulator improvement

    NASA Technical Reports Server (NTRS)

    Praharaj, S. C.; Schmitz, C.; Frost, C.; Engel, C. D.; Fuller, C. E.; Bender, R. L.; Pond, J.

    1984-01-01

    High chamber pressure expander cycles proposed for orbit transfer vehicles depend primarily on the heat energy transmitted from the combustion products through the thrust wall chamber wall. The heat transfer to the nozzle wall is affected by such variables as wall roughness, relamarization, and the presence of particles in the flow. Motor performance loss for these nozzles with thick boundary layers is inaccurate using the existing procedure coded BLIMPJ. Modifications and innovations to the code are examined. Updated routines are listed.

  2. Boundary transfer matrices and boundary quantum KZ equations

    SciTech Connect

    Vlaar, Bart

    2015-07-15

    A simple relation between inhomogeneous transfer matrices and boundary quantum Knizhnik-Zamolodchikov (KZ) equations is exhibited for quantum integrable systems with reflecting boundary conditions, analogous to an observation by Gaudin for periodic systems. Thus, the boundary quantum KZ equations receive a new motivation. We also derive the commutativity of Sklyanin’s boundary transfer matrices by merely imposing appropriate reflection equations, in particular without using the conditions of crossing symmetry and unitarity of the R-matrix.

  3. A compilation of information and data on the Manson impact structure

    NASA Technical Reports Server (NTRS)

    Hartung, Jack B.; Anderson, Raymond R.

    1988-01-01

    A problem for the impact hypothesis for the Cretaceous-Tertiary (K-T) mass extinction is the apparent absence of an identifiable impact site. The Manson Impact Structure is a candidate because it is the largest recognized in the U.S.; it is relatively close to the largest and most abundant shocked quartz grains found at the K-T boundary; and its age is indistinguishable from that of the K-T boundary based on paleontological evidence, fission track dates, and preliminary Ar-40/Ar-39 measurements. The region of northwest central Iowa containing the Manson Impact Structure is covered by Quaternary glacial deposits underlain by Phanerozoic sedimentary rocks (mostly flat-lying carbonates) and Proterozoic red clastic, metamorphic, volcanic, and plutonic rocks. In a circular area about 22 miles (35 km) in diameter around Manson, Iowa, this normal sequence is absent or disturbed and near the center of the disturbed area granitic basement rocks have been uplifted some 20,000 ft (6000m). Attention was drawn to Manson initially by the unusual quality of the groundwater there. Within the structure three roughly concentric zones of rock associations have been identified: (1) displaced strata; (2) completely disrupted strata, and igneous and metamorphic rocks. Manson was established as an impact structure based on its circular shape, its central uplift, and the presence of shocked quartz within the granitic central uplift. A gravity survey identified locations of low-density brecciated rocks and high-density uplifted crystalline rocks, but the outer boundary of the structure could not be established. Aeromagnetic and ground magnetic surveys showed locations and depths of shallowly buried crystalline rock and the locations of faults. A refraction seismic survey identified the crystalline central uplift, determined that the average elevation of bedrock is 70 ft (20 m) higher outside the structure than within, and was used to map the bedrock topography within the structure. A

  4. A compilation of information and data on the Manson impact structure

    NASA Astrophysics Data System (ADS)

    Hartung, Jack B.; Anderson, Raymond R.

    A problem for the impact hypothesis for the Cretaceous-Tertiary (K-T) mass extinction is the apparent absence of an identifiable impact site. The Manson Impact Structure is a candidate because it is the largest recognized in the U.S.; it is relatively close to the largest and most abundant shocked quartz grains found at the K-T boundary; and its age is indistinguishable from that of the K-T boundary based on paleontological evidence, fission track dates, and preliminary Ar-40/Ar-39 measurements. The region of northwest central Iowa containing the Manson Impact Structure is covered by Quaternary glacial deposits underlain by Phanerozoic sedimentary rocks (mostly flat-lying carbonates) and Proterozoic red clastic, metamorphic, volcanic, and plutonic rocks. In a circular area about 22 miles (35 km) in diameter around Manson, Iowa, this normal sequence is absent or disturbed and near the center of the disturbed area granitic basement rocks have been uplifted some 20,000 ft (6000m). Attention was drawn to Manson initially by the unusual quality of the groundwater there. Within the structure three roughly concentric zones of rock associations have been identified: (1) displaced strata; (2) completely disrupted strata, and igneous and metamorphic rocks. Manson was established as an impact structure based on its circular shape, its central uplift, and the presence of shocked quartz within the granitic central uplift. A gravity survey identified locations of low-density brecciated rocks and high-density uplifted crystalline rocks, but the outer boundary of the structure could not be established. Aeromagnetic and ground magnetic surveys showed locations and depths of shallowly buried crystalline rock and the locations of faults. A refraction seismic survey identified the crystalline central uplift, determined that the average elevation of bedrock is 70 ft (20 m) higher outside the structure than within, and was used to map the bedrock topography within the structure. A

  5. SOLE SOURCE AQUIFER BOUNDARY DATA

    EPA Science Inventory

    There are 7 polygons representing 6 individual sole source aquifer boundaries and one streamflow source area in California, Arizona, and Nevada. Various efforts were combined to create the final product, which represents the Federal Register boundary description. Sole source aqu...

  6. Cell boundary fault detection system

    DOEpatents

    Archer, Charles Jens; Pinnow, Kurt Walter; Ratterman, Joseph D.; Smith, Brian Edward

    2009-05-05

    A method determines a nodal fault along the boundary, or face, of a computing cell. Nodes on adjacent cell boundaries communicate with each other, and the communications are analyzed to determine if a node or connection is faulty.

  7. Boundary terms for causal sets

    NASA Astrophysics Data System (ADS)

    Buck, Michel; Dowker, Fay; Jubb, Ian; Surya, Sumati

    2015-10-01

    We propose a family of boundary terms for the action of a causal set with a spacelike boundary. We show that in the continuum limit one recovers the Gibbons-Hawking-York boundary term in the mean. We also calculate the continuum limit of the mean causal set action for an Alexandrov interval in flat spacetime. We find that it is equal to the volume of the codimension-2 intersection of the two light-cone boundaries of the interval.

  8. Boundaries and Boundary Marks - Substantive Cultural Heritage of Extensive Importance

    NASA Astrophysics Data System (ADS)

    Waldhaeusl, P.; Koenig, H.; Mansberger, R.

    2015-08-01

    The Austrian Society for surveying and Geoinformation (ASG) has proposed to submit "Boundaries and Boundary Marks" for the UNESCO World Heritage title. It was time that boundaries, borders and limits of all types as well as ownership rights would find the proper attention in the global public. Landmarks symbolize the real property and the associated rights and obligations, in a figurative sense, the property generally and all legal limits. A democratic state of law is impossible at today's population density without a functioning land administration system with surveying and jurisdiction. As monumental World Heritage representatives of the geodetic artwork "Boundaries and Boundary Marks" are specifically proposed: remaining monuments of the original cadastral geodetic network, the first pan-Austrian surveying headquarters in Vienna, and a specific selection of outstanding boundary monuments. Landmarks are monuments to the boundaries which separate rights and obligations, but also connect the neighbors peacefully after written agreement. "And cursed be he who does not respect the boundaries" you wrote already 3000 years ago. Boundaries and Boundary Marks are a real thing; they all belong to the tangible or material heritage of human history. In this context also the intangible heritage is discussed. This refers to oral tradition and expressions, performing arts; social practices, rituals and festive events; as well as to knowledge and practices handling nature and the universe. "Boundaries and Boundary Marks" do not belong to it, but clearly to the material cultural world heritage. "Boundary and Boundary Marks" is proposed to be listed according to the criteria (ii),(iv),(vi).

  9. Open boundary molecular dynamics

    NASA Astrophysics Data System (ADS)

    Delgado-Buscalioni, R.; Sablić, J.; Praprotnik, M.

    2015-09-01

    This contribution analyzes several strategies and combination of methodologies to perform molecular dynamic simulations in open systems. Here, the term open indicates that the total system has boundaries where transfer of mass, momentum and energy can take place. This formalism, which we call Open Boundary Molecular Dynamics (OBMD), can act as interface of different schemes, such as Adaptive Resolution Scheme (AdResS) and Hybrid continuum-particle dynamics to link atomistic, coarse-grained (CG) and continuum (Eulerian) fluid dynamics in the general framework of fluctuating Navier-Stokes equations. The core domain of the simulation box is solved using all-atom descriptions. The CG layer introduced using AdResS is located at the outer part of the open box to make feasible the insertion of large molecules into the system. Communications between the molecular system and the outer world are carried out in the outer layers, called buffers. These coupling preserve momentum and mass conservation laws and can thus be linked with Eulerian hydro- dynamic solvers. In its simpler form, OBMD allows, however, to impose a local pressure tensor and a heat flux across the system's boundaries. For a one component molecular system, the external normal pressure and temperature determine the external chemical potential and thus the independent parameters of a grand-canonical ensemble simulation. Extended ensembles under non-equilibrium stationary states can also be simulated as well as time dependent forcings (e.g. oscillatory rheology). To illustrate the robustness of the combined OBMD-AdResS method, we present simulations of star-polymer melts at equilibrium and in sheared flow.

  10. BOUndary Plasma Turbulence

    Energy Science and Technology Software Center (ESTSC)

    2008-01-25

    BOUT is a parallelized 3D nonlocal electromagnetic turbulence code. The principal calculations are the boundary plasma turbulence in a realistic magnetic geometry. BOUT uses fluid Braginskii equations for plasma vorticity, density, electron and ion temperature and Parallel mementum. With sources added in the core-edge region and sinks in the scrape-off-layer (SOL), BOUT follows the self-consistent profile evolution together with turbulence. BOUT also includes coupling to a magnetohyfrodynamic equlibrium (EFIT package) and a two-dimensional hydrodynamic edgemore » transport model (UEDGE package).« less

  11. Space Boundary Tool (SBT)

    Energy Science and Technology Software Center (ESTSC)

    2012-07-01

    SBT is an application that automatically calculates thermal zone boundaries suitable for input to the EnergyPlus simulation engine from building element and space geometry defined in IFC. SBT has multiple components. There is a general computational core, a DLL for reading and writing IFC files, and a GUI front end. The GUI also has the capability to create ready-to-simulate IDF files for EnergyPlus. Hardware req: PC; Operating Syst/Version: MSVC++2010; Type of files: source code; Documentation:more » User Manual (Electronic).« less

  12. Boundary anomalies and correlation functions

    NASA Astrophysics Data System (ADS)

    Huang, Kuo-Wei

    2016-08-01

    It was shown recently that boundary terms of conformal anomalies recover the universal contribution to the entanglement entropy and also play an important role in the boundary monotonicity theorem of odd-dimensional quantum field theories. Motivated by these results, we investigate relationships between boundary anomalies and the stress tensor correlation functions in conformal field theories. In particular, we focus on how the conformal Ward identity and the renormalization group equation are modified by boundary central charges. Renormalized stress tensors induced by boundary Weyl invariants are also discussed, with examples in spherical and cylindrical geometries.

  13. The Hale solar sector boundary

    NASA Technical Reports Server (NTRS)

    Svalgaard, L.; Wilcox, J. M.

    1976-01-01

    A Hale solar-sector boundary is defined as that half (northern hemisphere or southern hemisphere) of a sector boundary in which the change of sector-magnetic-field polarity is the same as the change of polarity from a preceding spot to a following spot. Above a Hale sector boundary the green corona has maximum brightness, while above a non-Hale boundary the green corona has a minimum brightness. The Hale portion of a photospheric sector boundary tends to have maximum magnetic-field strength, while the non-Hale portion has minimum field strength.

  14. The Hale solar sector boundary

    NASA Technical Reports Server (NTRS)

    Svalgaard, L.; Wilcox, J. M.

    1976-01-01

    A Hale solar sector boundary is defined as the half (Northern Hemisphere or Southern Hemisphere) of a sector boundary in which the change of sector magnetic field polarity is the same as the change of polarity from a preceding spot to a following spot. Above a Hale sector boundary the green corona has maximum brightness, while above a non-Hale boundary the green corona has a minimum brightness. The Hale portion of a photospheric sector boundary tends to have maximum magnetic field strength, while the non-Hale portion has minimum field strength.

  15. A classification of ecological boundaries

    USGS Publications Warehouse

    Strayer, D.L.; Power, M.E.; Fagan, W.F.; Pickett, S.T.A.; Belnap, J.

    2003-01-01

    Ecologists use the term boundary to refer to a wide range of real and conceptual structures. Because imprecise terminology may impede the search for general patterns and theories about ecological boundaries, we present a classification of the attributes of ecological boundaries to aid in communication and theory development. Ecological boundaries may differ in their origin and maintenance, their spatial structure, their function, and their temporal dynamics. A classification system based on these attributes should help ecologists determine whether boundaries are truly comparable. This system can be applied when comparing empirical studies, comparing theories, and testing theoretical predictions against empirical results.

  16. Electromigration-induced void grain-boundary interactions: The mean time to failure for copper interconnects with bamboo and near-bamboo structures

    NASA Astrophysics Data System (ADS)

    Ogurtani, Tarik Omer; Oren, Ersin Emre

    2004-12-01

    A well-posed moving boundary-value problem, describing the dynamics of curved interfaces and surfaces associated with voids and/or cracks that are interacting with grain boundaries, is obtained. Extensive computer simulations are performed for void configuration evolution during intergranular motion, under the actions of capillary and electromigration forces in thin-film metallic interconnects with bamboo structures. The analysis of experimental data, utilizing the mean time to failure formulas derived in this paper, gives consistent values for the interface diffusion coefficients and enthalpies of voids. 5.85×10-5exp(-0.95eV/kT)m2s-1 is the value obtained for voids that form in the interior of the copper interconnects avoiding any surface contamination. 1.80×10-4exp(-1.20eV/kT)m2s-1 is obtained for those voids that nucleate either at triple junctions or at the grain-boundary technical surface intersections (grain-boundary groove), where the chemical impurities such as Si, O, S, and even C are segregated during the metallization and annealing processes and may act as trap centers for hopping vacancies.

  17. A boundary term for the gravitational action with null boundaries

    NASA Astrophysics Data System (ADS)

    Parattu, Krishnamohan; Chakraborty, Sumanta; Majhi, Bibhas Ranjan; Padmanabhan, T.

    2016-07-01

    Constructing a well-posed variational principle is a non-trivial issue in general relativity. For spacelike and timelike boundaries, one knows that the addition of the Gibbons-Hawking-York (GHY) counter-term will make the variational principle well-defined. This result, however, does not directly generalize to null boundaries on which the 3-metric becomes degenerate. In this work, we address the following question: What is the counter-term that may be added on a null boundary to make the variational principle well-defined? We propose the boundary integral of 2 √{-g} ( Θ +κ ) as an appropriate counter-term for a null boundary. We also conduct a preliminary analysis of the variations of the metric on the null boundary and conclude that isolating the degrees of freedom that may be fixed for a well-posed variational principle requires a deeper investigation.

  18. Boundary layer transition studies

    NASA Technical Reports Server (NTRS)

    Watmuff, Jonathan H.

    1995-01-01

    A small-scale wind tunnel previously used for turbulent boundary layer experiments was modified for two sets of boundary layer transition studies. The first study concerns a laminar separation/turbulent reattachment. The pressure gradient and unit Reynolds number are the same as the fully turbulent flow of Spalart and Watmuff. Without the trip wire, a laminar layer asymptotes to a Falkner & Skan similarity solution in the FPG. Application of the APG causes the layer to separate and a highly turbulent and approximately 2D mean flow reattachment occurs downstream. In an effort to gain some physical insight into the flow processes a small impulsive disturbance was introduced at the C(sub p) minimum. The facility is totally automated and phase-averaged data are measured on a point-by-point basis using unprecedently large grids. The evolution of the disturbance has been tracked all the way into the reattachment region and beyond into the fully turbulent boundary layer. At first, the amplitude decays exponentially with streamwise distance in the APG region, where the layer remains attached, i.e. the layer is viscously stable. After separation, the rate of decay slows, and a point of minimum amplitude is reached where the contours of the wave packet exhibit dispersive characteristics. From this point, exponential growth of the amplitude of the disturbance is observed in the detached shear layer, i.e. the dominant instability mechanism is inviscid. A group of large-scale 3D vortex loops emerges in the vicinity of the reattachment. Remarkably, the second loop retains its identify far downstream in the turbulent boundary layer. The results provide a level of detail usually associated with CFD. Substantial modifications were made to the facility for the second study concerning disturbances generated by Suction Holes for laminar flow Control (LFC). The test section incorporates suction through interchangeable porous test surfaces. Detailed studies have been made using isolated

  19. Boundary work in knowledge teams.

    PubMed

    Faraj, Samer; Yan, Aimin

    2009-05-01

    The purpose of this article is to promote an open systems perspective on team research. The authors develop a model of team boundary activities: boundary spanning, buffering, and reinforcement. The model examines the relationship between these boundary activities and team performance, the moderating effects of organizational contextual factors, and the mediating effect of team psychological safety on the boundary work-performance relationship. These relationships were empirically tested with data collected from 64 software development teams. Boundary spanning, buffering, and boundary reinforcement were found to relate to team performance and psychological safety. Both relationships are moderated by the team's task uncertainty and resource scarcity. The implications of the findings are offered for future research and practice. PMID:19450002

  20. Boundary terms of conformal anomaly

    NASA Astrophysics Data System (ADS)

    Solodukhin, Sergey N.

    2016-01-01

    We analyze the structure of the boundary terms in the conformal anomaly integrated over a manifold with boundaries. We suggest that the anomalies of type B, polynomial in the Weyl tensor, are accompanied with the respective boundary terms of the Gibbons-Hawking type. Their form is dictated by the requirement that they produce a variation which compensates the normal derivatives of the metric variation on the boundary in order to have a well-defined variational procedure. This suggestion agrees with recent findings in four dimensions for free fields of various spins. We generalize this consideration to six dimensions and derive explicitly the respective boundary terms. We point out that the integrated conformal anomaly in odd dimensions is non-vanishing due to the boundary terms. These terms are specified in three and five dimensions.

  1. Modeling the urban boundary layer

    NASA Technical Reports Server (NTRS)

    Bergstrom, R. W., Jr.

    1976-01-01

    A summary and evaluation is given of the Workshop on Modeling the Urban Boundary Layer; held in Las Vegas on May 5, 1975. Edited summaries from each of the session chairpersons are also given. The sessions were: (1) formulation and solution techniques, (2) K-theory versus higher order closure, (3) surface heat and moisture balance, (4) initialization and boundary problems, (5) nocturnal boundary layer, and (6) verification of models.

  2. Magnetospheric plasma regions and boundaries

    NASA Technical Reports Server (NTRS)

    Heikkila, W. J.

    1975-01-01

    The boundaries of the various regions of the magnetospheric plasma are considered, taking into account the bow shock, the magnetopause, the outer boundary of the plasma sheet, the inner boundary of the plasma sheet, and the trapping boundary for energetic particles. Attention is given to the steady state, or quasi-steady state, to substorm effects in which temporal changes are important, and to primary auroral processes. A description is presented of the high latitude lobes of the magnetotail. The characteristics of magnetic field topology associated with interconnected interplanetary and geomagnetic field lines are illustrated with the aid of a graph.

  3. Symbolic Boundary Work in Schools: Demarcating and Denying Ethnic Boundaries

    ERIC Educational Resources Information Center

    Tabib-Calif, Yosepha; Lomsky-Feder, Edna

    2014-01-01

    This article examines the symbolic boundary work that is carried out at a school whose student population is heterogeneous in terms of ethnicity and class. Based on ethnography, the article demonstrates how the school's staff seeks to neutralize ethnic boundaries and their accompanying discourse, while the pupils try to bring ethnic…

  4. Boundary-Layer & health

    NASA Astrophysics Data System (ADS)

    Costigliola, V.

    2010-09-01

    It has long been known that specific atmospheric processes, such as weather and longer-term climatic fluctuations, affect human health. The biometeorological literature refers to this relationship as meteorotropism, defined as a change in an organism that is correlated with a change in atmospheric conditions. Plenty of (patho)physiological functions are affected by those conditions - like the respiratory diseases - and currently it is difficult to put any limits for pathologies developed in reply. Nowadays the importance of atmospheric boundary layer and health is increasingly recognised. A number of epidemiologic studies have reported associations between ambient concentrations of air pollution, specifically particulate pollution, and adverse health effects, even at the relatively low concentrations of pollution found. Since 1995 there have been over twenty-one studies from four continents that have explicitly examined the association between ambient air pollutant mixes and daily mortality. Statistically significant and positive associations have been reported in data from various locations around the world, all with varying air pollutant concentrations, weather conditions, population characteristics and public health policies. Particular role has been given to atmospheric boundary layer processes, the impact of which for specific patient-cohort is, however, not well understood till now. Assessing and monitoring air quality are thus fundamental to improve Europe's welfare. One of current projects run by the "European Medical Association" - PASODOBLE will develop and demonstrate user-driven downstream information services for the regional and local air quality sectors by combining space-based and in-situ data with models in 4 thematic service lines: - Health community support for hospitals, pharmacies, doctors and people at risk - Public information for regions, cities, tourist industry and sporting event organizers - Compliance monitoring support on particulate

  5. Dependence of Boundary Layer Mixing On Lateral Boundary Conditions

    NASA Astrophysics Data System (ADS)

    Straub, D.

    Ocean circulation models often show strong mixing in association with lateral bound- ary layers. Such mixing is generally considered to be artifactual rather than real. Fur- thermore, the severity of the problem is boundary condition dependent. For example, an inconsistency between geostrophy and insulating boundary conditions on tempera- ture and salinity cause many modelers to opt for the no slip, rather than slip boundary condtion on the tangential component of momentum. As modellers increasingly move into the eddy revealing regime, biharmonic, rather than harmonic dissipative operators are likely to become more common. Biharmonic operators, however, require specifi- cation of additional boundary conditions. For example, there are several `natural ex- tensions' to each of the slip and no slip conditions. Here, these various possiblities are considered in the context of a simple model. Particular attention is payed to how mixing (and the associated overturning cell) is affected by the choice of boundary condition.

  6. Boundary effects in entanglement entropy

    NASA Astrophysics Data System (ADS)

    Berthiere, Clément; Solodukhin, Sergey N.

    2016-09-01

    We present a number of explicit calculations of Renyi and entanglement entropies in situations where the entangling surface intersects the boundary of d-dimensional Minkowski spacetime. When the boundary is a single plane we compute the contribution to the entropy due to this intersection, first in the case of the Neumann and Dirichlet boundary conditions, and then in the case of a generic Robin type boundary condition. The flow in the boundary coupling between the Neumann and Dirichlet phases is analyzed in arbitrary dimension d and is shown to be monotonic, the peculiarity of d = 3 case is noted. We argue that the translational symmetry along the entangling surface is broken due the presence of the boundary which reveals that the entanglement is not homogeneous. In order to characterize this quantitatively, we introduce a density of entanglement entropy and compute it explicitly. This quantity clearly indicates that the entanglement is maximal near the boundary. We then consider the situation where the boundary is composed of two parallel planes at a finite separation and compute the entanglement entropy as well as its density in this case. The complete contribution to entanglement entropy due to the boundaries is shown not to depend on the distance between the planes and is simply twice the entropy in the case of single plane boundary. Additionally, we find how the area law, the part in the entropy proportional to the area of entire entangling surface, depends on the size of the separation between the two boundaries. The latter is shown to appear in the UV finite part of the entropy.

  7. Probability of marine invasion into the chicxulub crater and consequent generation of large tsunamis

    NASA Astrophysics Data System (ADS)

    Goto, K.; Tada, R.; Bralower, T.; Tajika, E.; Matsui, T.

    2003-04-01

    A great number of Cretaceous/Tertiary (K/T) boundary tsunami deposits around the Gulf of Mexico have been reported (e. g., Smit, 1999). However, the origin, propagation process and magnitude of tsunamis have been poorly understood. Although Matsui et al. (2002) suggested that the movement of water rushing into and receding from the Chicxulub crater have a potential to generate the largest tsunamis, no strong evidence to support this mechanism has been presented. In this study, samples from the YAX-1 site drilled by the Chicxulub Scientific Drilling Program (CSDP), were investigated to test the probability of the marine invasion into the crater and consequent generation of tsunamis. The impactite in the YAX-1 occurred between 794.60 (?) m and 894.94 m depth and is divided into two lithologic units: impact melt rock unit (822.86 m to 894.94 m) and suevite unit (794.60 (?) m to 822.86 m). The impact melt rock unit is mainly composed of infinite form of melt fragments with small amount of basement and carbonate rock fragments. The suevite unit overlies the impact melt breccia unit with irregular contact. The suevite unit is composed of fragments of rocks and minerals together with melt in a clastic matrix. Poorly-sorted, grain-supported fabric and intraclast-like nature suggest lower part of the suevite unit was re-deposited as a debris flow from the crater rim. On the other hand, normal grading, relatively well-sorting and “K/T boundary cocktail (Bralower et al., 1998)” nature of nannofossil assemblage in the upper part of the suevite unit suggest that this part was deposited from a dense sediment suspended cloud. Furthermore, compositional oscillations repeated by >5 times are observed in this part, similar compositional oscillations are observed in the K/T boundary deep-sea tsunami deposit in Cuba (Goto et al., 2002). The uppermost several tens centimeter of the suevite unit is composed of medium to coarse, greenish sandstone with parallel lamination, suggesting

  8. Evidence for a Large Bolide Impact in the Proto-Pacific Ocean Preceding the Chicxulub Impact by About 2 Million Years

    NASA Astrophysics Data System (ADS)

    Hagstrum, J. T.; Abbott, D.

    2002-12-01

    Although the Cretaceous-Tertiary (K-T) transition is generally accepted as having been caused by a single large asteroid impact at ~65 Ma near Chicxulub on the Yucatán Peninsula, a `comet shower' or multiple-impact hypothesis has also been proposed to explain multiple extinction pulses in latest Cretaceous time. The contributory effects of contemporaneous Deccan volcanism and rapid sea level changes also remain controversial. We have discovered spherule layers several meters below the K-T boundary (Chicxulub impact layer) in giant piston core GPC-3 and in DSDP drill cores 576-8-1 (43-45 cm) and 596-3-6 (142-144 cm) from the northern and southern Pacific Ocean, respectively. We have also found a spherule layer ~8 cm below the peak K-T Ir anomaly in core 596-3-4 (50-51 cm); this layer contains the farthest known spherules from the Chicxulub crater (>10,000 km at 65 Ma). Corliss and Hollister [Nature, 282, 1979, p. 707-9] initially reported small (~20 μm) cristobalite spherules in core GPC-3 within a zone of disrupted layering, between ~2 m below the K-T boundary and the core bottom (~2 m thick), but considered them of volcanic origin. We have found larger spherules and mineral crystals (up to >200 μm) dispersed within this disturbed zone. The spherule layers found ~5.5 m below the peak K-T Ir anomaly in hole 576, and ~3.8 m below the peak K-T Ir anomaly in hole 596 are relatively undisturbed. Hole GPC-3 is the easternmost on Mesozoic crust in the Pacific Ocean, and we interpret the pre-K-T spherules and mineral crystals as ejecta and vapor-phase condensates, respectively, from an oceanic impact site farther east on crust now subducted beneath western North America. Apparently, the pre-K-T spherule layers are related to an earlier large impact because of the size of the condensed particles (>100 μm) in the GPC-3 core, and because some of the particles have chemical compositions (Fe-Ti-C-O) that are not of volcanic origin. Disruption of the sediments and dispersal

  9. Expansive Learning across Workplace Boundaries

    ERIC Educational Resources Information Center

    Kerosuo, Hannele; Toiviainen, Hanna

    2011-01-01

    The article analyses a collaborative effort of learning across workplace boundaries in a regional learning network of South Savo, Finland. The focus is on the "Forum of In-house Development" in the network. Our objective is to highlight a dialectical approach to boundaries that draws from the ideas of cultural-historical activity theory. Expansive…

  10. Cell boundary fault detection system

    DOEpatents

    Archer, Charles Jens; Pinnow, Kurt Walter; Ratterman, Joseph D.; Smith, Brian Edward

    2011-04-19

    An apparatus and program product determine a nodal fault along the boundary, or face, of a computing cell. Nodes on adjacent cell boundaries communicate with each other, and the communications are analyzed to determine if a node or connection is faulty.

  11. Entanglement and boundary critical phenomena

    SciTech Connect

    Zhou Huanqiang; Barthel, Thomas; Schollwoeck, Ulrich; Fjaerestad, John Ove

    2006-11-15

    We investigate boundary critical phenomena from a quantum-information perspective. Bipartite entanglement in the ground state of one-dimensional quantum systems is quantified using the Renyi entropy S{sub {alpha}}, which includes the von Neumann entropy ({alpha}{yields}1) and the single-copy entanglement ({alpha}{yields}{infinity}) as special cases. We identify the contribution of the boundaries to the Renyi entropy, and show that there is an entanglement loss along boundary renormalization group (RG) flows. This property, which is intimately related to the Affleck-Ludwig g theorem, is a consequence of majorization relations between the spectra of the reduced density matrix along the boundary RG flows. We also point out that the bulk contribution to the single-copy entanglement is half of that to the von Neumann entropy, whereas the boundary contribution is the same.

  12. U-Pb isotopic results for single shocked and polycrystalline zircons record 550-65.5-Ma ages for a K-T target site and 2700-1850-Ma ages for the Sudbury impact event

    NASA Technical Reports Server (NTRS)

    Krogh, T. E.; Kamo, S. L.; Bohor, B. F.

    1992-01-01

    The refractory mineral zircon develops distinct morphological features during shock metamorphism and retains these features under conditions that would anneal them in other minerals. In addition, weakly shocked zircon grains give primary ages for the impact site, while highly reconstituted (polycrystalline) single grains give ages that approach the age of the impact event. Data for a series of originally coeval grains will define a mixing line that gives both of these ages providing that no subsequent geological disturbances have overprinted the isotopic systematics. In this study, we have shown that the three zircon grain types described by Bohor, from both K-T distal ejecta (Fireball layer, Raton Basin, Colorado) and the Onaping Formation, represent a progressive increase in impact-related morphological change that coincides with a progressive increase in isotopic resetting in zircons from the ejecta and basement rocks. Unshocked grains are least affected by isotopic resetting while polycrystalline grains are most affected. U-Pb isotopic results for 12 of 14 single zircon grains from the Fireball layer plot on or close to a line recording a primary age of 550 +/- 10 Ma and a secondary age of 65.5 +/- 3 Ma. Data for the least and most shocked grains plot closest to the primary and secondary ages respectively. The two other grains each give ages between 300 and 350 Ma. This implies that the target ejecta was dominated by 550-Ma rocks and that the recrystallization features of the zircon were superimposed during the impact event at 65.5 Ma. A predominant age of 550 Ma for zircons from the Fireball layer provides an excellent opportunity to identify the impact site and to test the hypothesis that multiple impacts occurred at this time. A volcanic origin for the Fireball layer is ruled out by shock-related morphological changes in zircon and the fact that the least shocked grains are old. Basement Levack gneisses north of the Sudbury structure have a primary age of

  13. Microtektites, microkrystites, and spinels from a late Pliocene asteroid impact in the southern ocean

    NASA Astrophysics Data System (ADS)

    Margolis, S. V.; Claeys, P.; Kyte, F. T.

    1991-03-01

    The properties of glassy spherules found in sedimentary deposits of a late Pliocene asteroid impact into the southeast Pacific are similar to those of both microtektites and microkrystites. These spherules probably formed from molten silicate droplets that condensed from an impact-generated vapor cloud. The spherules contain inclusions of magnesioferrite spinels similar to those in spherules found at the Cretaceous-Tertiary boundary, indicating that both sets of spherules are impact debris formed under similar physical and chemical conditions.

  14. The Blake Nose Cretaceous-Paleogene (Florida Atlantic margin, ODP Leg 171B): an exemplar record of the Maastrichtian-Danian transition

    USGS Publications Warehouse

    Bellier, J.-P.; Marca, S.; Norris, R.D.; Kroon, D.; Klaus, A.; Alexander, I.T.; Bardot, L.P.; Barker, C.E.; Blome, C.D.; Clarke, L.J.; Erbacher, J.; Faul, K.L.; Holmes, M.A.; Huber, B.T.; Katz, M.E.; MacLeod, K.G.; Martinez-Ruiz, F. C.; Mita, I.; Nakai, M.; Ogg, J.G.; Pak, D.K.; Pletsch, T.K.; Self-Trail J.M.; Shackleton, N.J.; Smit, J.; Ussler, W., III; Watkins, D.K.; Widmark, J.; Wilson, P.A.

    1997-01-01

    During ODP Leg 171B, devoted to the analysis of the Blake Plateau margin in front of Florida, 16 holes have been drilled in 5 distinct sites. The sites have documented a sedimentary succession ranging in age from Aptian to Eocene. Emphasis has been put on critical periods, comprising the Paleocene-Eocene transition, the Cretaceous-Tertiary boundary which has been cored in excellent conditions, the middle Maastrichtian extinctions and the Albian anoxic episodes.

  15. Alvarez, Luis Walter (1911-88)

    NASA Astrophysics Data System (ADS)

    Murdin, P.

    2000-11-01

    Physicist and astronomer, born in San Francisco, CA, professor at the University of California, Nobel prizewinner (1968) for his discoveries in particle physics. Used cosmic rays to `x-ray' the pyramids of Egypt, finding in particular that the tombs in the Great Pyramid at Giza had no hidden rooms. Alvarez (and his son) discovered globally distributed iridium at the Cretaceous/Tertiary boundary i...

  16. No statistical support for sudden (or gradual) extinction of dinosaurs

    NASA Astrophysics Data System (ADS)

    Hurlbert, Stuart H.; Archibald, J. David

    1995-10-01

    Did dinosaurs decline gradually or abruptly at the Cretaceous-Tertiary boundary? An analysis of familial diversity patterns in dinosaur fossils from the Hell Creek Formation of central North America has claimed to present strong statistical evidence against the idea that dinosaurs declined gradually near the end of the Cretaceous. Examination of the quantitative methodologies used shows that these provide no basis for choosing between scenarios of abrupt extinction and gradual decline.

  17. Dimension of fractal basin boundaries

    SciTech Connect

    Park, B.S.

    1988-01-01

    In many dynamical systems, multiple attractors coexist for certain parameter ranges. The set of initial conditions that asymptotically approach each attractor is its basin of attraction. These basins can be intertwined on arbitrary small scales. Basin boundary can be either smooth or fractal. Dynamical systems that have fractal basin boundary show final state sensitivity of the initial conditions. A measure of this sensitivity (uncertainty exponent {alpha}) is related to the dimension of the basin boundary d = D - {alpha}, where D is the dimension of the phase space and d is the dimension of the basin boundary. At metamorphosis values of the parameter, there might happen a conversion from smooth to fractal basin boundary (smooth-fractal metamorphosis) or a conversion from fractal to another fractal basin boundary characteristically different from the previous fractal one (fractal-fractal metamorphosis). The dimension changes continuously with the parameter except at the metamorphosis values where the dimension of the basin boundary jumps discontinuously. We chose the Henon map and the forced damped pendulum to investigate this. Scaling of the basin volumes near the metamorphosis values of the parameter is also being studied for the Henon map. Observations are explained analytically by using low dimensional model map.

  18. An Evaluation of Boundary Conditions for Modeling Urban Boundary Layers

    SciTech Connect

    Calhoun, R.J.; Chan, S.T.; Lee, R.L.

    2000-05-18

    Numerical modeling of the urban boundary layer is complicated by the need to describe airflow patterns outside of the computational domain. These patterns have an impact on how successfully the simulation is able to model the turbulence associated with the urban boundary layer. This talk presents experiments with the model boundary conditions for simulations that were done to support two Department of Energy observational programs involving the Salt Lake City basin. The Chemical/Biological Non-proliferation Program (CBNP) is concerned with the effects of buildings on influencing dispersion patterns in urban environments. The Vertical Transport and Mixing Program (VTMX) investigating mixing mechanisms in the stable boundary layer and how they are influenced by the channeling caused by drainage flows or by obstacles such as building complexes. Both of these programs are investigating the turbulent mixing caused by building complexes and other urban obstacles.

  19. Lamellar diblock copolymer grain boundary morphology. 1. Twist boundary characterization

    SciTech Connect

    Gido, S.P.; Gunther, J.; Thomas, E.L. . Dept. of Materials Science and Engineering); Hoffman, D. . Dept. of Mathematics and Statistics)

    1993-08-16

    Grain boundary morphologies in poly(styrene-b-butadiene) lamellar diblock copolymers were characterized using transmission electron microscopy (TEM). Two types of twist grain boundaries were observed in which microphase separation of the two blocks was maintained in the grain boundary region by intermaterial dividing surfaces that approximate classically known minimal surfaces. The geometry of these interfaces was demonstrated by comparing experimental TEM images with ray tracing computer simulations of the model surfaces as the projection direction was systematically varied in both the experimental and simulated images. The two morphologies observed were found to have intermaterial dividing surfaces that approximate either Scherk's first (doubly periodic) surface or a section of the right helicoid. The helicoid section boundary was observed at low twist angles, less than or equal to about 15. The Scherk surface family of boundary morphologies, which consists of a doubly periodic array of saddle surfaces, was found over the entire twist range from 0 to 90[degree]. As the twist angle approaches 0[degree] the Scherk surface grain boundary morphology is transformed into a single screw dislocation that has an intermaterial dividing surface with the geometry of a single helicoid. Direct TEM imaging of the detailed core structure of this screw dislocation is presented. These images demonstrate that in the lamellar diblock copolymer the screw dislocation core is nonsingular. This nonsingular core structure represents a radical departure from the singular core structures observed in classical studies of dislocations in atomic crystals.

  20. Brain response to prosodic boundary cues depends on boundary position

    PubMed Central

    Holzgrefe, Julia; Wellmann, Caroline; Petrone, Caterina; Truckenbrodt, Hubert; Höhle, Barbara; Wartenburger, Isabell

    2013-01-01

    Prosodic information is crucial for spoken language comprehension and especially for syntactic parsing, because prosodic cues guide the hearer's syntactic analysis. The time course and mechanisms of this interplay of prosody and syntax are not yet well-understood. In particular, there is an ongoing debate whether local prosodic cues are taken into account automatically or whether they are processed in relation to the global prosodic context in which they appear. The present study explores whether the perception of a prosodic boundary is affected by its position within an utterance. In an event-related potential (ERP) study we tested if the brain response evoked by the prosodic boundary differs when the boundary occurs early in a list of three names connected by conjunctions (i.e., after the first name) as compared to later in the utterance (i.e., after the second name). A closure positive shift (CPS)—marking the processing of a prosodic phrase boundary—was elicited for stimuli with a late boundary, but not for stimuli with an early boundary. This result is further evidence for an immediate integration of prosodic information into the parsing of an utterance. In addition, it shows that the processing of prosodic boundary cues depends on the previously processed information from the preceding prosodic context. PMID:23882234

  1. Boundary Layer Control on Airfoils.

    ERIC Educational Resources Information Center

    Gerhab, George; Eastlake, Charles

    1991-01-01

    A phenomena, boundary layer control (BLC), produced when visualizing the fluidlike flow of air is described. The use of BLC in modifying aerodynamic characteristics of airfoils, race cars, and boats is discussed. (KR)

  2. Pyramidal inversion domain boundaries revisited

    SciTech Connect

    Remmele, T.; Albrecht, M.; Irmscher, K.; Fornari, R.; Strassburg, M.

    2011-10-03

    The structure of pyramidal inversion domain boundaries in GaN:Mg was investigated by aberration corrected transmission electron microscopy. The analysis shows the upper (0001) boundary to consist of a single Mg layer inserted between polarity inverted GaN layers in an abcab stacking. The Mg bound in these defects is at least one order of magnitude lower than the chemical Mg concentration. Temperature dependent Hall effect measurements show that up to 27% of the Mg acceptors is electrically compensated.

  3. Changing the Structure Boundary Geometry

    SciTech Connect

    Karasev, Viktor; Dzlieva, Elena; Ivanov, Artyom

    2008-09-07

    Analysis of previously obtained results shows that hexagonal crystal lattice is the dominant type of ordering, in particular, in striated glow discharges. We explore the possibility for changing the dust distribution in horizontal cross sections of relatively highly ordered structures in a glow-discharge. Presuming that boundary geometry can affect dust distribution, we used cylindrical coolers held at 0 deg. C and placed against a striation containing a structure, to change the geometry of its outer boundary. By varying the number of coolers, their positions, and their separations from the tube wall, azimuthally asymmetric thermophoretic forces can be used to form polygonal boundaries and vary the angles between their segments (in a horizontal cross section). The corner in the structure's boundary of 60 deg. stimulates formation of hexagonal cells. The structure between the supported parallel boundaries is also characterized by stable hexagonal ordering. We found that a single linear boundary segment does not give rise to any sizable domain, but generates a lattice extending from the boundary (without edge defects). A square lattice can be formed by setting the angle equal to 90 deg. . However, angles of 45 deg. and 135 deg. turned out easier to form. Square lattice was created by forming a near-135 deg. corner with four coolers. It was noted that no grain ordering is observed in the region adjacent to corners of angles smaller than 30 deg. , which do not promote ordering into cells of any shape. Thus, manipulation of a structure boundary can be used to change dust distribution, create structures free of the ubiquitous edge defects that destroy orientation order, and probably change the crystal lattice type.

  4. Removing Boundary Layer by Suction

    NASA Technical Reports Server (NTRS)

    Ackeret, J

    1927-01-01

    Through the utilization of the "Magnus effect" on the Flettner rotor ship, the attention of the public has been directed to the underlying physical principle. It has been found that the Prandtl boundary-layer theory furnishes a satisfactory explanation of the observed phenomena. The present article deals with the prevention of this separation or detachment of the flow by drawing the boundary layer into the inside of a body through a slot or slots in its surface.

  5. Thermal boundaries analysis program document

    NASA Technical Reports Server (NTRS)

    Evans, M. E.

    1975-01-01

    The digital program TBAP has been developed to provide thermal boundaries in the DD/M-relative velocity (D-V), dynamic pressure-relative velocity (q-V), and altitude-relative velocity (h-V) planes. These thermal boundaries are used to design and/or analyze shuttle orbiter entry trajectories. The TBAP has been used extensively in supporting the Flight Performance Branch of NASA in evaluating candidate trajectories for the thermal protection system design trajectory.

  6. Biodiversity during the Deccan volcanic eruptive episode

    NASA Astrophysics Data System (ADS)

    Khosla, A.; Sahni, A.

    2003-06-01

    This paper gives a detailed overview of biotic assemblages recovered from the Deccan trap intercalated sedimentary sequences (infra- and intertrappean beds) of peninsular India as a result of extensive research done during the last 20 years. The infra- and intertrappean beds contain remnants of Gondwanan forms such as myobatrachinae frogs, pelomedusid turtles, dinosaurs (i.e. titanosaurids and abelisaurids), and mammals. Apart from these Gondwanan elements, the infra- and intertrappean beds also contain forms of Laurasian affinity though recently doubt has been cast on such relationships. Based on previous fossil records, Laurasiatic forms were considered to be represented by a great variety of micro- and megavertebrate assemblages such as discoglossid and pelobatid frogs, anguid lizards, alligatorid crocodiles, palaeoryctid mammals, charophytes and ostracodes. The biotic assemblages show a remarkable similarity between the infra- and intertrappean beds indicating a short time period for the deposition of these Deccan volcano-sedimentary beds. The recovered biotic assemblages strongly indicate a Maastrichtian age for the initiation of Deccan volcanic activity and the sedimentary beds associated with it. The Cretaceous/Tertiary boundary as such remains to be defined in any known sections in sedimentary sequences in so far investigated localities of peninsular India. What have been identified are Maastrichtian age beds in the east-central and western Narmada river region on the basis of pollens, vertebrate assemblage and planktonic foraminiferas in infratrappean offshore sequences. A Palaeocene intertrappean bed at Lalitpur (Uttar Pradesh) that is among those lacking dinosaurian remains but having palynological assemblages similar to those from well established Palaeocene sequences, suggests the presence of Palaeocene intertrappeans, but the K/T boundary is yet to be properly defined.

  7. The Cantarell Breccia System, Southern Gulf Of Mexico: Structural Evolution And Support For An Origin Relarted To The Chixculub Meteorite Impact

    NASA Astrophysics Data System (ADS)

    Ricoy, V.

    2003-04-01

    The Upper Cretaceous within the Campeche Basin, southern Gulf of Mexico hosts a world class petroleum system. Cantarell is the most important reservoir that consists of a complex brecciated carbonate reservoir deposited at or around the Cretaceous-Tertiary boundary. Previous sedimentological studies suggests that the Upper Cretaceous Carbonate breccias found in the Cantarell oilfield system and through the Bay of Campeche, were the result of a catastrophic shelf collapse event triggered by the Chixculub meteorite impact. This work presents new evidence from structural and stratigraphic interpretation of 3D seismic and 2D lines which gives light to features that support the platform collapse model. The reservoir consists of thick (up to 300 m), heterogeneous, monomyctic and polymictic breccias developed at the K-T boundary, and widely distributed throughout the Campeche Basin. The timing, internal architecture, widespread deposition and distance to the platform margin source (over 30 kms) of the breccia unit, combined with a contorted irregular seismic reflector near the base of the Cretaceous carbonate platform, suggests that the geological processes accountable for the emplacement of the breccias relates to the massive catastrophic collapse of the Cretaceous platform as a result of the Chixculub meteorite impact. Structural interpretation of the 3D seismic data, together with well stratigraphic markers unraveled a complex Oligocene-Miocene structural deformation history of the Cantarell field, which resulted in several discrete reservoir blocks partitioned by a complex array of thrusts, normal and reverse faults. It is proposed that the structural deformation of the area controlled to a large extent the distribution of the reservoir properties found in the Cantarell area. This idea is tested using the structural model matched against the well log porosity data.

  8. Grain-boundary migration in KCl bicrystals

    NASA Technical Reports Server (NTRS)

    Gibbon, C. F.

    1968-01-01

    Boundary migration in melt-grown bicrystals of KCl containing pure twist boundaries was investigated. The experiments involve the use of bicrystal specimens in the shape of right-triangular prisms with the boundary parallel to one side.

  9. Boundary Condition for Modeling Semiconductor Nanostructures

    NASA Technical Reports Server (NTRS)

    Lee, Seungwon; Oyafuso, Fabiano; von Allmen, Paul; Klimeck, Gerhard

    2006-01-01

    A recently proposed boundary condition for atomistic computational modeling of semiconductor nanostructures (particularly, quantum dots) is an improved alternative to two prior such boundary conditions. As explained, this boundary condition helps to reduce the amount of computation while maintaining accuracy.

  10. Squirmer dynamics near a boundary.

    PubMed

    Ishimoto, Kenta; Gaffney, Eamonn A

    2013-12-01

    The boundary behavior of axisymmetric microswimming squirmers is theoretically explored within an inertialess Newtonian fluid for a no-slip interface and also a free surface in the small capillary number limit, preventing leading-order surface deformation. Such squirmers are commonly presented as abridged models of ciliates, colonial algae, and Janus particles and we investigate the case of low-mode axisymmetric tangential surface deformations with, in addition, the consideration of a rotlet dipole to represent torque-motor swimmers such as flagellated bacteria. The resulting boundary dynamics reduces to a phase plane in the angle of attack and distance from the boundary, with a simplifying time-reversal duality. Stable swimming adjacent to a no-slip boundary is demonstrated via the presence of stable fixed points and, more generally, all types of fixed points as well as stable and unstable limit cycles occur adjacent to a no-slip boundary with variations in the tangential deformations. Nonetheless, there are constraints on swimmer behavior-for instance, swimmers characterized as pushers are never observed to exhibit stable limit cycles. All such generalities for no-slip boundaries are consistent with observations and more geometrically faithful simulations to date, suggesting the tangential squirmer is a relatively simple framework to enable predications and classifications for the complexities associated with axisymmetric boundary swimming. However, in the presence of a free surface, with asymptotically small capillary number, and thus negligible leading-order surface deformation, no stable surface swimming is predicted across the parameter space considered. While this is in contrast to experimental observations, for example, the free-surface accumulation of sterlet sperm, extensive surfactants are present, most likely invalidating the low capillary number assumption. In turn, this suggests the necessity of surface deformation for stable free-surface three

  11. Tidal Boundary Conditions in SEAWAT

    USGS Publications Warehouse

    Mulligan, Ann E.; Langevin, Christian; Post, Vincent E.A.

    2011-01-01

    SEAWAT, a U.S. Geological Survey groundwater flow and transport code, is increasingly used to model the effects of tidal motion on coastal aquifers. Different options are available to simulate tidal boundaries but no guidelines exist nor have comparisons been made to identify the most effective approach. We test seven methods to simulate a sloping beach and a tidal flat. The ocean is represented in one of the three ways: directly using a high hydraulic conductivity (high-K) zone and indirect simulation via specified head boundaries using either the General Head Boundary (GHB) or the new Periodic Boundary Condition (PBC) package. All beach models simulate similar water fluxes across the upland boundary and across the sediment-water interface although the ratio of intertidal to subtidal flow is different at low tide. Simulating a seepage face results in larger intertidal fluxes and influences near-shore heads and salinity. Major differences in flow occur in the tidal flat simulations. Because SEAWAT does not simulate unsaturated flow the water table only rises via flow through the saturated zone. This results in delayed propagation of the rising tidal signal inland. Inundation of the tidal flat is delayed as is flow into the aquifer across the flat. This is severe in the high-K and PBC models but mild in the GHB models. Results indicate that any of the tidal boundary options are fine if the ocean-aquifer interface is steep. However, as the slope of that interface decreases, the high-K and PBC approaches perform poorly and the GHB boundary is preferable.

  12. Event boundaries and anaphoric reference.

    PubMed

    Thompson, Alexis N; Radvansky, Gabriel A

    2016-06-01

    The current study explored the finding that parsing a narrative into separate events impairs anaphor resolution. According to the Event Horizon Model, when a narrative event boundary is encountered, a new event model is created. Information associated with the prior event model is removed from working memory. So long as the event model containing the anaphor referent is currently being processed, this information should still be available when there is no narrative event boundary, even if reading has been disrupted by a working-memory-clearing distractor task. In those cases, readers may reactivate their prior event model, and anaphor resolution would not be affected. Alternatively, comprehension may not be as event oriented as this account suggests. Instead, any disruption of the contents of working memory during comprehension, event related or not, may be sufficient to disrupt anaphor resolution. In this case, reading comprehension would be more strongly guided by other, more basic language processing mechanisms and the event structure of the described events would play a more minor role. In the current experiments, participants were given stories to read in which we included, between the anaphor and its referent, either the presence of a narrative event boundary (Experiment 1) or a narrative event boundary along with a working-memory-clearing distractor task (Experiment 2). The results showed that anaphor resolution was affected by narrative event boundaries but not by a working-memory-clearing distractor task. This is interpreted as being consistent with the Event Horizon Model of event cognition. PMID:26452376

  13. Undulatory microswimming near solid boundaries

    NASA Astrophysics Data System (ADS)

    Schulman, R. D.; Backholm, M.; Ryu, W. S.; Dalnoki-Veress, K.

    2014-10-01

    The hydrodynamic forces involved in the undulatory microswimming of the model organism C. elegans are studied in proximity to solid boundaries. Using a micropipette deflection technique, we attain direct and time-resolved force measurements of the viscous forces acting on the worm near a single planar boundary as well as confined between two planar boundaries. We observe a monotonic increase in the lateral and propulsive forces with increasing proximity to the solid interface. We determine normal and tangential drag coefficients for the worm, and find these to increase with confinement. The measured drag coefficients are compared to existing theoretical models. The ratio of normal to tangential drag coefficients is found to assume a constant value of 1.5 ± 0.1(5) at all distances from a single boundary, but increases significantly as the worm is confined between two boundaries. In response to the increased drag due to confinement, we observe a gait modulation of the nematode, which is primarily characterized by a decrease in the swimming amplitude.

  14. Calculation of State Specific Rate Coefficients for Non-Equilibrium Hypersonics Applications: from H(Psi) = E(Psi) to k(T) = A *exp(-E(sub a)/RT)

    NASA Technical Reports Server (NTRS)

    Jaffe, Richard; Schwenke, David; Chaban, Galina; Panesi, Marco

    2014-01-01

    Development of High-Fidelity Physics-Based Models to describe hypersonic flight through the atmospheres of Earth and Mars is underway at NASA Ames Research Center. The goal is to construct chemistry models of the collisional and radiative processes that occur in the bow shock and boundary layers of spacecraft during atmospheric entry that are free of empiricism. In this talk I will discuss our philosophy and describe some of our progress. Topics to be covered include thermochemistry, internal energy relaxation, collisional dissociation and radiative emission and absorption. For this work we start by solving the Schrodinger equation to obtain accurate interaction potentials and radiative properties. Then we invoke classical mechanics to compute state-specific heavy particle collision cross sections and reaction rate coefficients. Finally, phenomenological rate coefficients and relaxation times are determined from master equation solutions.

  15. Physics of magnetospheric boundary layers

    NASA Technical Reports Server (NTRS)

    Cairns, Iver H.

    1995-01-01

    This final report was concerned with the ideas that: (1) magnetospheric boundary layers link disparate regions of the magnetosphere-solar wind system together; and (2) global behavior of the magnetosphere can be understood only by understanding its internal linking mechanisms and those with the solar wind. The research project involved simultaneous research on the global-, meso-, and micro-scale physics of the magnetosphere and its boundary layers, which included the bow shock, the magnetosheath, the plasma sheet boundary layer, and the ionosphere. Analytic, numerical, and simulation projects were performed on these subjects, as well as comparisons of theoretical results with observational data. Other related activity included in the research included: (1) prediction of geomagnetic activity; (2) global MHD (magnetohydrodynamic) simulations; (3) Alfven resonance heating; and (4) Critical Ionization Velocity (CIV) effect. In the appendixes are list of personnel involved, list of papers published; and reprints or photocopies of papers produced for this report.

  16. Unsteady turbulent boundary layer analysis

    NASA Technical Reports Server (NTRS)

    Singleton, R. E.; Nash, J. F.; Carl, L. W.; Patel, V. C.

    1973-01-01

    The governing equations for an unsteady turbulent boundary layer on a swept infinite cylinder, composed of a continuity equation, a pair of momentum equations and a pair of turbulent energy equations which include upstream history efforts, are solved numerically. An explicit finite difference analog to the partial differential equations is formulated and developed into a computer program. Calculations were made for a variety of unsteady flows in both two and three dimensions but primarily for two dimensional flow fields in order to first understand some of the fundamental physical aspects of unsteady turbulent boundary layers. Oscillating free stream flows without pressure gradient, oscillating retarded free stream flows and monotonically time-varying flows have all been studied for a wide frequency range. It was found that to the lowest frequency considered, the lower frequency bound being determined by economic considerations (machine time), there were significant unsteady effects on the turbulent boundary layer.

  17. Boundary layer control for airships

    NASA Technical Reports Server (NTRS)

    Pake, F. A.; Pipitone, S. J.

    1975-01-01

    An investigation is summarized of the aerodynamic principle of boundary layer control for nonrigid LTA craft. The project included a wind tunnel test on a BLC body of revolution at zero angle of attack. Theoretical analysis is shown to be in excellent agreement with the test data. Methods are evolved for predicting the boundary layer development on a body of revolution and the suction pumping and propulsive power requirements. These methods are used to predict the performance characteristics of a full-scale airship. The analysis indicates that propulsive power reductions of 15 to 25 percent and endurance improvements of 20 to 40 percent may be realized in employing boundary-layer control to nonrigid airships.

  18. Watershed Boundary Dataset for Mississippi

    USGS Publications Warehouse

    Wilson, K. Van, Jr.; Clair, Michael G., II; Turnipseed, D. Phil; Rebich, Richard A.

    2009-01-01

    The U.S. Geological Survey, in cooperation with the Mississippi Department of Environmental Quality, U.S. Department of Agriculture-Natural Resources Conservation Service, Mississippi Department of Transportation, U.S. Department of Agriculture-Forest Service, and the Mississippi Automated Resource Information System developed a 1:24,000-scale Watershed Boundary Dataset for Mississippi including watershed and subwatershed boundaries, codes, names, and areas. The Watershed Boundary Dataset for Mississippi provides a standard geographical framework for water-resources and selected land-resources planning. The original 8-digit subbasins (Hydrologic Unit Codes) were further subdivided into 10-digit watersheds (62.5 to 391 square miles (mi2)) and 12-digit subwatersheds (15.6 to 62.5 mi2) - the exceptions being the Delta part of Mississippi and the Mississippi River inside levees, which were subdivided into 10-digit watersheds only. Also, large water bodies in the Mississippi Sound along the coast were not delineated as small as a typical 12-digit subwatershed. All of the data - including watershed and subwatershed boundaries, subdivision codes and names, and drainage-area data - are stored in a Geographic Information System database, which are available at: http://ms.water.usgs.gov/. This map shows information on drainage and hydrography in the form of U.S. Geological Survey hydrologic unit boundaries for water-resource 2-digit regions, 4-digit subregions, 6-digit basins (formerly called accounting units), 8-digit subbasins (formerly called cataloging units), 10-digit watershed, and 12-digit subwatersheds in Mississippi. A description of the project study area, methods used in the development of watershed and subwatershed boundaries for Mississippi, and results are presented in Wilson and others (2008). The data presented in this map and by Wilson and others (2008) supersede the data presented for Mississippi by Seaber and others (1987) and U.S. Geological Survey (1977).

  19. Nonparallel stability of boundary layers

    NASA Technical Reports Server (NTRS)

    Nayfeh, Ali H.

    1987-01-01

    The asymptotic formulations of the nonparallel linear stability of incompressible growing boundary layers are critically reviewed. These formulations can be divided into two approaches. The first approach combines a numerical method with either the method of multiple scales, or the method of averaging, of the Wentzel-Kramers-Brillouin (WKB) approximation; all these methods yield the same result. The second approach combined a multi-structure theory with the method of multiple scales. The first approach yields results that are in excellent agreement with all available experimental data, including the growth rates as well as the neutral stability curve. The derivation of the linear stability of the incompressible growing boundary layers is explained.

  20. Nested and Dynamic Contract Boundaries

    NASA Astrophysics Data System (ADS)

    Strickland, T. Stephen; Felleisen, Matthias

    Previous work on software contracts assumes fixed and statically known boundaries between the parties to a contract. Implementations of contract monitoring systems rely on this assumption to explain the nature of contract violations and to assign blame to violators. In this paper, we explain how to implement arbitrary, nested, and dynamic contract boundaries with two examples. First, we add nestable contract regions to a static, first-order module system. Second, we show that even a dynamic, higher-order, and hierarchical module system can be equipped with software contracts that support precise blame assignment.

  1. The Shaping of Communication across Boundaries

    ERIC Educational Resources Information Center

    Daniels, Harry

    2011-01-01

    This article will consider the formative effect of boundaries between activities in directing and deflecting the attention of actors who are seeking to develop innovatory practice at these boundaries. Specific attention will be directed to practices of communication at these boundaries and also to the way in which these boundaries shape the…

  2. Ego Boundary Disturbance in Juvenile Anorexia Nervosa.

    ERIC Educational Resources Information Center

    Strober, Michael; Goldenberg, Irene

    1981-01-01

    Anorexics were compared to female depressed controls to measure boundary impairment. Anorexics scored higher on inner-outer and conceptual boundary disturbance and produced significantly more responses that emphasized the solidity of object boundaries. Boundary scores were unrelated to degree of weight loss and global symptom severity. (Author)

  3. Boundary operators of BCFW recursion relation

    NASA Astrophysics Data System (ADS)

    Jin, Qingjun; Feng, Bo

    2016-04-01

    We show that boundary contributions of BCFW recursions can be interpreted as the form factors of some composite operators which we call `boundary operators'. The boundary operators can be extracted from the operator product expansion of deformed fields. We also present an algorithm to compute the boundary operators using path integral.

  4. 76 FR 23335 - Notification of Boundary Revision

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-04-26

    ... National Park Service Notification of Boundary Revision AGENCY: National Park Service, Interior. ACTION: Notification of boundary revision. SUMMARY: Notice is hereby given that the boundary of the Chesapeake and Ohio... within the Park's boundary will make significant contributions to the purposes for which the Park...

  5. Boundaries and the Exploration of Self

    ERIC Educational Resources Information Center

    Gharabaghi, Kiaras

    2008-01-01

    Boundaries and the exploration of self are conceptualized within the agency-structure problem first articulated in social theory during the 1970s. Constructing boundaries as a professional issue within the discipline has to take account the agency embedded within boundaries. Multiple boundary dilemmas are discussed within the framework of the…

  6. Nucleation of small-angle boundaries

    SciTech Connect

    Nabarro, F.R.N. |; Wilsdorf, D.K.

    1996-12-01

    The internal stresses induced by the strain gradients in an array of lattice cells delineated by low-angle dislocation boundaries are partially relieved by the creation of new low-angle boundaries. This is shown to be a first-order transition, the new boundaries having finite misorientations. The calculated misorientations both of the new boundaries and of the existing boundaries which provoke the transition agree well with observations.

  7. X-ray and EUV observations of the boundary layer emission of nonmagnetic cataclysmic variables

    SciTech Connect

    Mauche, C.W.

    1996-03-09

    EUVE, ROSAT, and ASCA observations of the boundary layer emission of nonmagnetic cataclysmic variables (CVs) are reviewed. EUVE spectra reveal that the effective temperature of the soft component of high-M nonmagnetic CVs is kT {approx}10-20 eV and that its luminosity is {approx} 0.1-0.5 times the accretion disk luminosity. Although the EUV spectra are very complex and belie simple interpretation, the physical conditions of the boundary layer gas are constrained by emission lines of highly ionized Ne, Mg, Si, and Fe. ROSAT and ASCA spectra of the hard component of nonmagnetic CVs are satisfactorily but only phenomenologically described by multi-temperature thermal plasmas, and the constraints imposed on the physical conditions of this gas are limited by the relatively weak and blended fines. It is argued that significant progress in our understanding of the X-ray spectra of nonmagnetic CVs will come with future observations with XMM, AXAF, and Astro-E.

  8. AC conductivity scaling behavior in grain and grain boundary response regime of fast lithium ionic conductors

    NASA Astrophysics Data System (ADS)

    Mariappan, C. R.

    2014-05-01

    AC conductivity spectra of Li-analogues NASICON-type Li1.5Al0.5Ge1.5P3O12 (LAGP), Li-Al-Ti-P-O (LATP) glass-ceramics and garnet-type Li7La2Ta2O13 (LLTO) ceramic are analyzed by universal power law and Summerfield scaling approaches. The activation energies and pre-exponential factors of total and grain conductivities are following the Meyer-Neldel (M-N) rule for NASICON-type materials. However, the garnet-type LLTO material deviates from the M-N rule line of NASICON-type materials. The frequency- and temperature-dependent conductivity spectra of LAGP and LLTO are superimposed by Summerfield scaling. The scaled conductivity curves of LATP are not superimposed at the grain boundary response region. The superimposed conductivity curves are observed at cross-over frequencies of grain boundary response region for LATP by incorporating the exp ( {{{ - (EAt - EAg )} {{{ - (EAt - EAg )} {kT}}} ) factor along with Summerfield scaling factors on the frequency axis, where EAt and EAg are the activation energies of total and grain conductivities, respectively.

  9. Prosodic Boundaries in Alaryngeal Speech

    ERIC Educational Resources Information Center

    van Rossum, M. A.; Quene, H.; Nooteboom, S. G.

    2008-01-01

    Alaryngeal speakers (speakers in whom the larynx has been removed) have inconsistent control over acoustic parameters such as F[subscript 0] and duration. This study investigated whether proficient tracheoesophageal and oesophageal speakers consistently convey phrase boundaries. It was further investigated if these alaryngeal speakers used the…

  10. Physics of magnetospheric boundary layers

    NASA Technical Reports Server (NTRS)

    Cairns, I. H.

    1993-01-01

    The central ideas of this grant are that the magnetospheric boundary layers link disparate regions of the magnetosphere together, and the global behavior of the magnetosphere can be understood only by understanding the linking mechanisms. Accordingly the present grant includes simultaneous research on the global, meso-, and micro-scale physics of the magnetosphere and its boundary layers. These boundary layers include the bow shock, magnetosheath, the plasma sheet boundary layer, and the ionosphere. Analytic, numerical and simulation projects have been performed on these subjects, as well as comparison of theoretical results with observational data. Very good progress has been made, with four papers published or in press and two additional papers submitted for publication during the six month period 1 June - 30 November 1993. At least two projects are currently being written up. In addition, members of the group have given papers at scientific meetings. The further structure of this report is as follows: section two contains brief accounts of research completed during the last six months, while section three describes the research projects intended for the grant's final period.

  11. Patients, friends, and relationship boundaries.

    PubMed Central

    Rourke, J. T.; Smith, L. F.; Brown, J. B.

    1993-01-01

    When patient and physician are close friends, both professional and personal relationships can suffer. Jointly exploring and setting explicit boundaries can help avoid conflict and maintain these valuable relationships. This is particularly important when the physician practises in a small community where such concurrent relationships are unavoidable. PMID:8292931

  12. The Double Absorbing Boundary method

    NASA Astrophysics Data System (ADS)

    Hagstrom, Thomas; Givoli, Dan; Rabinovich, Daniel; Bielak, Jacobo

    2014-02-01

    A new approach is devised for solving wave problems in unbounded domains. It has common features to each of two types of existing techniques: local high-order Absorbing Boundary Conditions (ABC) and Perfectly Matched Layers (PML). However, it is different from both and enjoys relative advantages with respect to both. The new method, called the Double Absorbing Boundary (DAB) method, is based on truncating the unbounded domain to produce a finite computational domain Ω, and on applying a local high-order ABC on two parallel artificial boundaries, which are a small distance apart, and thus form a thin non-reflecting layer. Auxiliary variables are defined on the two boundaries and inside the layer bounded by them, and participate in the numerical scheme. The DAB method is first introduced in general terms, using the 2D scalar time-dependent wave equation as a model. Then it is applied to the 1D Klein-Gordon equation, using finite difference discretization in space and time, and to the 2D wave equation in a wave guide, using finite element discretization in space and dissipative time stepping. The computational aspects of the method are discussed, and numerical experiments demonstrate its performance.

  13. Academic Advisors: The Boundary Spanners.

    ERIC Educational Resources Information Center

    Fitzgerald, Laurine E.

    Perspectives on the roles of academic advisors are considered. It is suggested that academic advisors are often "boundary spanners," those who participate in two or more aspects of the activities of the institution. Academic advisors' functions cut across multidisciplinary lines, affecting curricular decisions and curriculum development, career…

  14. Computing texture boundaries from images.

    PubMed

    Voorhees, H; Poggio, T

    1988-05-26

    Recent computational and psychological theories of human texture vision assert that texture discrimination is based on first-order differences in geometric and luminance attributes of texture elements, called 'textons'. Significant differences in the density, orientation, size, or contrast of line segments or other small features in an image have been shown to cause immediate perception of texture boundaries. However, the psychological theories, which are based on the perception of synthetic images composed of lines and symbols, neglect two important issues. First, how can textons be computed from grey-level images of natural scenes? And second, how, exactly, can texture boundaries be found? Our analysis of these two issues has led to an algorithm that is fully implemented and which successfully detects boundaries in natural images. We propose that blobs computed by a centre-surround operator are useful as texture elements, and that a simple non-parametric statistic can be used to compare local distributions of blob attributes to locate texture boundaries. Although designed for natural images, our computation agrees with some psychophysical findings, in particular, those of Adelson and Bergen (described in the preceding article), which cast doubt on the hypothesis that line segment crossings or termination points are textons. PMID:3374570

  15. Defining patient-nurse boundaries.

    PubMed

    Barrow, Rebecca; Mee, Steve; Buckley, Alison; Corless, Louise

    This series exploring how narratives can be used to reflect on practice has focused on patient narratives. This sixth article uses nurse narratives to explore professional boundaries between patients and nurses. These can be difficult to negotiate and can depend on individual circumstances: what may be appropriate in one situation may be unacceptable in another. PMID:27295800

  16. Science beyond the Classroom Boundaries

    ERIC Educational Resources Information Center

    Feasey, Rosemary; Bianchi, Lynne

    2011-01-01

    There have been many years of innovation in primary science education. Surprisingly, however, most of this has taken place within the confines of the classroom. What primary science has not yet done with universal success is step outside the classroom boundaries to use the school grounds for teaching and learning across all aspects of the science…

  17. The seismotectonics of plate boundaries

    NASA Technical Reports Server (NTRS)

    Berger, J.; Brune, J. N.; Goodkind, J.; Wyatt, F.; Agnew, D. C.; Beaumont, C.

    1981-01-01

    Research on the seismotectonics of plate boundaries is summarized. Instrumental development and an observational program designed to study various aspects of the seismotectonics of southern California and the northern Gulf of California are described. A unique superconducting gravimeter was further developed and supported under this program for deployment and operation at several sites. Work on Earth tides is also discussed.

  18. Postapocalypse stratigraphy: Some considerations and proposals

    NASA Astrophysics Data System (ADS)

    Prosh, E. C.; McCracken, A. D.

    1985-01-01

    An imminent nuclear apocalypse will be a geologically significant event characterized by widespread extinction and marked by a highly radioactive lower boundary layer. The concept of a fallout-enriched Cenozoic/postapocalypse boundary layer is significant in that such a horizon would constitute an ideal, global isochron that is both readily detectable and correlatable; the only other systemic boundary that appears to be analogous is the Cretaceous/Tertiary boundary. New terminology consistent with the established stratigraphic nomenclature is herein proposed for the major anticipated postapocalypse geochronologic units.

  19. Boundary Layers, Transitions and Separation

    NASA Technical Reports Server (NTRS)

    2010-01-01

    Effects of roughness in boundary layers have to be addressed. Until adverse pressure gradient effects are understood, roughness will not significantly drive design. Mechanisms responsible for separation not understood. Effects on Zero Pressure Gradient boundary layers (shear stress). Effects on separation in pressure gradient (prediction of separation). Effect on scalar transport (heat transfer) not understood. Model for skin friction needed in simulations - first grid point likely to be in buffer layer. Definition of roughness important for useful experiments. A lot of validation experiments will be needed. How to get to ks for roughness of engineering interest? - depends on wavelength height, etc. for engineering interest? Re-discovering the wheel should be avoided: existing knowledge (theoretical and experimental) should find its way into the engineering models. It is a task of the industry to filter out the existing information in the literature for results relevant to its application, being external or internal.

  20. Boundary Preserving Dense Local Regions.

    PubMed

    Kim, Jaechul; Grauman, Kristen

    2015-05-01

    We propose a dense local region detector to extract features suitable for image matching and object recognition tasks. Whereas traditional local interest operators rely on repeatable structures that often cross object boundaries (e.g., corners, scale-space blobs), our sampling strategy is driven by segmentation, and thus preserves object boundaries and shape. At the same time, whereas existing region-based representations are sensitive to segmentation parameters and object deformations, our novel approach to robustly sample dense sites and determine their connectivity offers better repeatability. In extensive experiments, we find that the proposed region detector provides significantly better repeatability and localization accuracy for object matching compared to an array of existing feature detectors. In addition, we show our regions lead to excellent results on two benchmark tasks that require good feature matching: weakly supervised foreground discovery and nearest neighbor-based object recognition. PMID:26353319

  1. Stability of compressible boundary layers

    NASA Technical Reports Server (NTRS)

    Nayfeh, Ali H.

    1989-01-01

    The stability of compressible 2-D and 3-D boundary layers is reviewed. The stability of 2-D compressible flows differs from that of incompressible flows in two important features: There is more than one mode of instability contributing to the growth of disturbances in supersonic laminar boundary layers and the most unstable first mode wave is 3-D. Whereas viscosity has a destabilizing effect on incompressible flows, it is stabilizing for high supersonic Mach numbers. Whereas cooling stabilizes first mode waves, it destabilizes second mode waves. However, second order waves can be stabilized by suction and favorable pressure gradients. The influence of the nonparallelism on the spatial growth rate of disturbances is evaluated. The growth rate depends on the flow variable as well as the distance from the body. Floquet theory is used to investigate the subharmonic secondary instability.

  2. Cloud boundaries during FIRE 2

    NASA Technical Reports Server (NTRS)

    Uttal, Taneil; Shaver, Scott M.; Clothiaux, Eugene E.; Ackerman, Thomas P.

    1993-01-01

    To our knowledge, previous observations of cloud boundaries have been limited to studies of cloud bases with ceilometers, cloud tops with satellites, and intermittent reports by aircraft pilots. Comprehensive studies that simultaneously record information of cloud top and cloud base, especially in multiple layer cases, have been difficult, and require the use of active remote sensors with range-gated information. In this study, we examined a 4-week period during which the NOAA Wave Propagation Laboratory (WPL) 8-mm radar and the Pennsylvania State University (PSU) 3-mm radar operated quasi-continuously, side by side. By quasi-continuously, we mean that both radars operated during all periods when cloud was present, during both daytime and nighttime hours. Using this data, we develop a summary of cloud boundaries for the month of November for a single location in the mid-continental United States.

  3. Free boundary ballooning mode representation

    SciTech Connect

    Zheng, L. J.

    2012-10-15

    A new type of ballooning mode invariance is found in this paper. Application of this invariance is shown to be able to reduce the two-dimensional problem of free boundary high n modes, such as the peeling-ballooning modes, to a one-dimensional problem. Here, n is toroidal mode number. In contrast to the conventional ballooning representation, which requires the translational invariance of the Fourier components of the perturbations, the new invariance reflects that the independent solutions of the high n mode equations are translationally invariant from one radial interval surrounding a single singular surface to the other intervals. The conventional ballooning mode invariance breaks down at the vicinity of plasma edge, since the Fourier components with rational surfaces in vacuum region are completely different from those with rational surfaces in plasma region. But, the new type of invariance remains valid. This overcomes the limitation of the conventional ballooning mode representation for studying free boundary modes.

  4. FLARING SOLAR HALE SECTOR BOUNDARIES

    SciTech Connect

    Svalgaard, L.; Hannah, I. G.; Hudson, H. S.

    2011-05-20

    The sector structure that organizes the magnetic field of the solar wind into large-scale domains has a clear pattern in the photospheric magnetic field as well. The rotation rate, 27-28.5 days, implies an effectively rigid rotation originating deeper in the solar interior than the sunspots. The photospheric magnetic field is known to be concentrated near that portion (the Hale boundary) in each solar hemisphere, where the change in magnetic sector polarity matches that between the leading and following sunspot polarities in active regions in the respective hemispheres. We report here that flares and microflares also concentrate at the Hale boundaries, implying that flux emergence and the creation of free magnetic energy in the corona also have a direct cause in the deep interior.

  5. Sensitivity to volcanic field boundary

    NASA Astrophysics Data System (ADS)

    Runge, Melody; Bebbington, Mark; Cronin, Shane; Lindsay, Jan; Rashad Moufti, Mohammed

    2016-04-01

    Volcanic hazard analyses are desirable where there is potential for future volcanic activity to affect a proximal population. This is frequently the case for volcanic fields (regions of distributed volcanism) where low eruption rates, fertile soil, and attractive landscapes draw populations to live close by. Forecasting future activity in volcanic fields almost invariably uses spatial or spatio-temporal point processes with model selection and development based on exploratory analyses of previous eruption data. For identifiability reasons, spatio-temporal processes, and practically also spatial processes, the definition of a spatial region is required to which volcanism is confined. However, due to the complex and predominantly unknown sub-surface processes driving volcanic eruptions, definition of a region based solely on geological information is currently impossible. Thus, the current approach is to fit a shape to the known previous eruption sites. The class of boundary shape is an unavoidable subjective decision taken by the forecaster that is often overlooked during subsequent analysis of results. This study shows the substantial effect that this choice may have on even the simplest exploratory methods for hazard forecasting, illustrated using four commonly used exploratory statistical methods and two very different regions: the Auckland Volcanic Field, New Zealand, and Harrat Rahat, Kingdom of Saudi Arabia. For Harrat Rahat, sensitivity of results to boundary definition is substantial. For the Auckland Volcanic Field, the range of options resulted in similar shapes, nevertheless, some of the statistical tests still showed substantial variation in results. This work highlights the fact that when carrying out any hazard analysis on volcanic fields, it is vital to specify how the volcanic field boundary has been defined, assess the sensitivity of boundary choice, and to carry these assumptions and related uncertainties through to estimates of future activity and

  6. Solitons induced by boundary conditions

    SciTech Connect

    Zhou, R.L.

    1987-01-01

    Although soliton phenomena have attracted wide attention since 1965, there are still not enough efforts paid to mixed-boundary - initial-value problems that are important in real physical cases. The main purpose of this thesis is to study carefully the various boundary-induced soliton under different initial conditions. The author states with three sets of nonlinear equations: KdV equations and Boussinesq equations (for water); two-fluid equations for cold-ion plasma. He was interested in four types of problems involved with water solitons: excitation by different time-dependent boundary conditions under different initial conditions; head-on and over-taking collisions; reflection at a wall and the excitation by pure initial conditions. For KdV equations, only cases one and four are conducted. The results from two fully nonlinear KdV and Boussinesq equations are compared, and agree extremely well. The Boussinesq equations permit solition head-on collisions and reflections, studied the first time. The results from take-over collision agree with KdV results. For the ion-acoustic plasma, a set of Boussinesq-type equations was derived from the standard two-fluid equations for the ion-acoustic plasma. It theoretically proves the essential nature of the solitary wave solutions of the cold-ion plasma. The ion acoustic solitons are also obtained by prescribing a potential phi/sub 0/ at one grid point.

  7. Boundary detection via dynamic programming

    NASA Astrophysics Data System (ADS)

    Udupa, Jayaram K.; Samarasekera, Supun; Barrett, William A.

    1992-09-01

    This paper reports a new method for detecting optimal boundaries in multidimensional scene data via dynamic programming (DP). In its current form the algorithm detects 2-D contours on slices and differs from other reported DP-based algorithms in an essential way in that it allows freedom in 2-D for finding optimal contour paths (as opposed to a single degree of freedom in the published methods). The method is being successfully used in segmenting object boundaries in a variety of medical applications including orbital volume from CT images (for craniofacial surgical planning), segmenting bone in MR images for kinematic analysis of the joints of the foot, segmenting the surface of the brain from the inner surface of the cranial vault, segmenting pituitary gland tumor for following the effect of a drug on the tumor, segmenting the boundaries of the heart in MR images, and segmenting the olfactory bulb for verifying hypotheses related to the size of this bulb in certain disease states.

  8. Jupiter's deep magnetotail boundary layer

    NASA Astrophysics Data System (ADS)

    Nicolaou, G.; McComas, D. J.; Bagenal, F.; Elliott, H. A.; Ebert, R. W.

    2015-06-01

    In 2007 the New Horizons (NH) spacecraft flew by Jupiter for a gravity assist en route to Pluto. After closest approach on day of year (DOY) 58, 2007, NH followed a tailward trajectory that provided a unique opportunity to explore the deep jovian magnetotail and the surrounding magnetosheath. After DOY 132, 16 magnetopause crossings were observed between 1654 and 2429 Jupiter radii (Rj) along the dusk flank tailward of the planet. In some cases the crossings were identified as rapid transitions from the magnetotail to the magnetosheath and vice versa. In other cases a boundary layer was observed just inside the magnetopause. Solar Wind Around Pluto (SWAP) is an instrument on board NH that obtained spectra of low energy ions during the flyby period. We use a forward model including the SWAP instrument response to derive plasma parameters (density, temperature and velocity) which best reproduce the observations. We also vary the plasma parameters in our model in order to fit the observations more accurately on occasions where the measurements exhibit significant variability. We compare the properties of the plasma in the boundary layer with those of the magnetosheath plasma derived in our earlier work. We attempt to estimate the magnetic field in the boundary layer assuming pressure balance between it and the magnetosheath. Finally, we investigate several possible scenarios to assess if magnetopause movement and structure could cause the variations seen in the data.

  9. Chicxulub Impact Crater and Yucatan Carbonate Platform - Stratigraphy and Petrography of PEMEX Borehole Cores

    NASA Astrophysics Data System (ADS)

    Gutierrez-Cirlos, A. G.; Perez-Drago, G.; Perez-Cruz, L.; Urrutia-Fucugauchi, J.

    2008-12-01

    Chicxulub impact crater is the best preserved of the three large multi-ring structures documented in the terrestrial record. Chicxulub, formed 65 Ma ago, is associated with the Cretaceous/Tertiary (K/T) boundary layer and the impact related to the organism extinctions and events marking the boundary. The crater is buried under Tertiary sediments in the Yucatan carbonate platform in the southern Gulf of Mexico. The structure was initially recognized from gravity and magnetic anomalies in the PEMEX exploration surveys of the northwestern Yucatan peninsula. The exploration program included eight deep boreholes completed from 1952 through the 1970s. The investigations showing Chicxulub as a large complex impact crater formed at the K/T boundary have relayed on the PEMEX decades-long exploration program. However, despite frequent use of PEMEX information and core samples, significant parts of the database and cores remain to be evaluated, analyzed and incorporated with results from recent efforts. Access to PEMEX Core Repository has permitted to study the cores and collect new samples from some of the boreholes. We analyzed cores from Yucatan-6, Chicxulub-1, Sacapuc-1, Ticul-1, Yucatan-1 and Yucatan-4 boreholes to make new detailed stratigraphic correlations and petrographic characterization, using information from PEMEX database and the recent studies. In C-1 cores, breccias show 4-8 cm clasts of fine grained altered melt dispersed in a medium to coarse grained matrix composed of pyroxene and feldspar with little macroscopic alteration. Clasts contain 0.2 to 0.1 cm fragments of silicate material (basement) that show variable degrees of digestion. Melt samples from C-1 N10 comes from interval 1,393-1,394 m, and show a fine-to-medium grained coherent microcrystalline groundmass. Melt and breccias in Y-6 extend from about 1,100 m to more than 1,400 m. Sequence is well sorted, with an apparent gradation in both the lithic and melt clasts. In this presentation we report on

  10. Boundary layer receptivity and control

    NASA Technical Reports Server (NTRS)

    Hill, D. C.

    1993-01-01

    Receptivity processes initiate natural instabilities in a boundary layer. The instabilities grow and eventually break down to turbulence. Consequently, receptivity questions are a critical element of the analysis of the transition process. Success in modeling the physics of receptivity processes thus has a direct bearing on technological issues of drag reduction. The means by which transitional flows can be controlled is also a major concern: questions of control are tied inevitably to those of receptivity. Adjoint systems provide a highly effective mathematical method for approaching many of the questions associated with both receptivity and control. The long term objective is to develop adjoint methods to handle increasingly complex receptivity questions, and to find systematic procedures for deducing effective control strategies. The most elementary receptivity problem is that in which a parallel boundary layer is forced by time-harmonic sources of various types. The characteristics of the response to such forcing form the building blocks for more complex receptivity mechanisms. The first objective of this year's research effort was to investigate how a parallel Blasius boundary layer responds to general direct forcing. Acoustic disturbances in the freestream can be scattered by flow non-uniformities to produce Tollmien-Schlichting waves. For example, scattering by surface roughness is known to provide an efficient receptivity path. The present effort is directed towards finding a solution by a simple adjoint analysis, because adjoint methods can be extended to more complex problems. In practice, flows are non-parallel and often three-dimensional. Compressibility may also be significant in some cases. Recent developments in the use of Parabolized Stability Equations (PSE) offer a promising possibility. By formulating and solving a set of adjoint parabolized equations, a method for mapping the efficiency with which external forcing excites the three

  11. Regional variations in seismic boundaries

    NASA Astrophysics Data System (ADS)

    Shumlyanska, Ludmila

    2010-05-01

    Dividing of the Earth into zones in the frame one-dimensional velocity model was proposed Jeffreys and Gutenberg is the first half of XX century. They recovered the following zones: A - the crust; B - zone in the depth interval 33-413 km, C - zone 413-984 km, D - zone 984-2898 km, E - 2898-4982 km, F - 4982-5121 km, G - 5121-6371 km (centre of the Earth). These zones differ in their seismic properties. Later, zone D was divided to the areas D' (984-2700 km) and D" (2700-2900 km). At present, this scheme is significantly modified and only the layer D" is in wide use. The more seismological studies are carried out, the more seismic boundaries appear. Boundaries at 410, 520, 670, and 2900 km, at which increase in the velocity of the seismic waves is particularly noticeable are considered as having global significance. Moreover, there are indications of the existence of geophysical boundaries at 800, 1200-1300, 1700, 1900-2000 km. Using 3D P-velocity model of the mantle based on Taylor approximation method for solving of the inverse kinematics multi-dimensional seismic task we have obtained seismic boundaries for the area covering 20-55° E × 40-55° N. Data on the time of first arrivals of P waves from earthquakes and nuclear explosions recorded at ISC stations during 1964-2002 were used as input to construct a 3-D model. The model has two a priori limits: 1) the velocity is a continuous function of spatial coordinates, 2) the function v(r)/r where r is a radius in the spherical coordinate system r, φ, λ decreases with depth. The first limitation is forced since velocity leaps can not be sustainably restored from the times of first arrival; the second one follows from the nature of the observed data. Results presented as horizontal sections of the actual velocity every 25 km in the depth interval 850-2850 km, and as the longitudinal and latitudinal sections of the discrepancy on the 1-D reference model, obtained as a result of solving of the inversion task at 1

  12. Characterization of grain boundaries in silicon

    NASA Technical Reports Server (NTRS)

    Cheng, L. J.; Shyu, C. M.; Stika, K. M.; Daud, T.; Crotty, G. T.

    1983-01-01

    Zero-bias conductance and capacitance measurements at various temperatures were used to study trapped charges and potential barrier height at the boundaries. Deep-level transient spectroscopy (DLTS) was applied to measure the density of states at the boundary. A study of photoconductivity of grain boundaries in p-type silicon demonstrated the applicability of the technique in the measurement of minority carrier recombination velocity at the grain boundary. Enhanced diffusion of phosphorus at grain boundaries in three cast polycrystalline photovoltaic materials was studied. Enhancements for the three were the same, indicating that the properties of boundaries are similar, although grown by different techniques. Grain boundaries capable of enhancing the diffusion were found always to have strong recombination activities; the phenomena could be related to dangling bonds at the boundaries. Evidence that incoherent second-order twins of (111)/(115) type are diffusion-active is presented.

  13. Logarithmic minimal models with Robin boundary conditions

    NASA Astrophysics Data System (ADS)

    Bourgine, Jean-Emile; Pearce, Paul A.; Tartaglia, Elena

    2016-06-01

    We consider general logarithmic minimal models LM≤ft( p,{{p}\\prime}\\right) , with p,{{p}\\prime} coprime, on a strip of N columns with the (r, s) Robin boundary conditions introduced by Pearce, Rasmussen and Tipunin. On the lattice, these models are Yang–Baxter integrable loop models that are described algebraically by the one-boundary Temperley–Lieb algebra. The (r, s) Robin boundary conditions are a class of integrable boundary conditions satisfying the boundary Yang–Baxter equations which allow loop segments to either reflect or terminate on the boundary. The associated conformal boundary conditions are organized into infinitely extended Kac tables labelled by the Kac labels r\\in {Z} and s\\in {N} . The Robin vacuum boundary condition, labelled by ≤ft(r,s-\\frac{1}{2}\\right)=≤ft(0,\\frac{1}{2}\\right) , is given as a linear combination of Neumann and Dirichlet boundary conditions. The general (r, s) Robin boundary conditions are constructed, using fusion, by acting on the Robin vacuum boundary with an (r, s)-type seam consisting of an r-type seam of width w columns and an s-type seam of width d  =  s  ‑  1 columns. The r-type seam admits an arbitrary boundary field which we fix to the special value ξ =-\\fracλ{2} where λ =\\frac≤ft( {{p}\\prime}-p\\right)π{{{p}\\prime}} is the crossing parameter. The s-type boundary introduces d defects into the bulk. We consider the commuting double-row transfer matrices and their associated quantum Hamiltonians and calculate analytically the boundary free energies of the (r, s) Robin boundary conditions. Using finite-size corrections and sequence extrapolation out to system sizes N+w+d≤slant 26 , the conformal spectrum of boundary operators is accessible by numerical diagonalization of the Hamiltonians. Fixing the parity of N for r\

  14. Nonequilibrium chemistry boundary layer integral matrix procedure

    NASA Technical Reports Server (NTRS)

    Tong, H.; Buckingham, A. C.; Morse, H. L.

    1973-01-01

    The development of an analytic procedure for the calculation of nonequilibrium boundary layer flows over surfaces of arbitrary catalycities is described. An existing equilibrium boundary layer integral matrix code was extended to include nonequilibrium chemistry while retaining all of the general boundary condition features built into the original code. For particular application to the pitch-plane of shuttle type vehicles, an approximate procedure was developed to estimate the nonequilibrium and nonisentropic state at the edge of the boundary layer.

  15. Mean Flow Boundary Conditions for Computational Aeroacoustics

    NASA Technical Reports Server (NTRS)

    Hixon, R.; Nallasamy, M.; Sawyer, S.; Dyson, R.

    2003-01-01

    In this work, a new type of boundary condition for time-accurate Computational Aeroacoustics solvers is described. This boundary condition is designed to complement the existing nonreflective boundary conditions while ensuring that the correct mean flow conditions are maintained throughout the flow calculation. Results are shown for a loaded 2D cascade, started with various initial conditions.

  16. 15 CFR 922.80 - Boundary.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... extent of the Sanctuary boundary is a geodetic line extending westward from Bodega Head approximately 6... extent near Bodega Head. The Sanctuary boundary includes Bolinas Lagoon, Estero de San Antonio (to the... Estero Road), as well as Bodega Bay, but not Bodega Harbor. Where the Sanctuary boundary crosses...

  17. 15 CFR 922.80 - Boundary.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... extent of the Sanctuary boundary is a geodetic line extending westward from Bodega Head approximately 6... extent near Bodega Head. The Sanctuary boundary includes Bolinas Lagoon, Estero de San Antonio (to the... Estero Road), as well as Bodega Bay, but not Bodega Harbor. Where the Sanctuary boundary crosses...

  18. Turbulent boundary layer of an airfoil

    NASA Technical Reports Server (NTRS)

    Fediaevsky, K

    1937-01-01

    A need has arisen for a new determination of the velocity profiles in the boundary layer. Assuming that the character of the velocity distribution depends to a large extent on the character of the shear distribution across the boundary layer, we shall consider the nature of the shear distribution for a boundary layer with a pressure gradient.

  19. Phase Boundaries in Algebraic Conformal QFT

    NASA Astrophysics Data System (ADS)

    Bischoff, Marcel; Kawahigashi, Yasuyuki; Longo, Roberto; Rehren, Karl-Henning

    2016-02-01

    We study the structure of local algebras in relativistic conformal quantum field theory with phase boundaries. Phase boundaries are instances of a more general notion of boundaries that give rise to a variety of algebraic structures. These can be formulated in a common framework originating in Algebraic QFT, with the principle of Einstein Causality playing a prominent role. We classify the phase boundary conditions by the centre of a certain universal construction, which produces a reducible representation in which all possible boundary conditions are realized. For a large class of models, the classification reproduces results obtained in a different approach by Fuchs et al. before.

  20. Boundary formation and maintenance in tissue development.

    PubMed

    Dahmann, Christian; Oates, Andrew C; Brand, Michael

    2011-01-01

    The formation and maintenance of boundaries between neighbouring groups of embryonic cells is vital for development because groups of cells with distinct functions must often be kept physically separated. Furthermore, because cells at the boundary often take on important signalling functions by acting as organizing centres, boundary shape and integrity can also control the outcome of many downstream patterning events. Recent experimental findings and theoretical descriptions have shed new light on classic questions about boundaries. In particular, in the past couple of years the role of forces acting in epithelial tissues to maintain boundaries has emerged as a new principle in understanding how early pattern is made into permanent anatomy. PMID:21164524