Science.gov

Sample records for crispr spacer matches

  1. Heterogeneous diversity of spacers within CRISPR

    NASA Astrophysics Data System (ADS)

    Deem, Michael; He, Jiankui

    2011-03-01

    Clustered regularly interspaced short palindromic repeats (CRISPR) in bacterial and archaeal DNA have recently been shown to be a new type of anti-viral immune system in these organisms. We here study the diversity of spacers in CRISPR under selective pressure. We propose a population dynamics model that explains the biological observation that the leader-proximal end of CRISPR is more diversified and the leader-distal end of CRISPR is more conserved. This result is shown to be in agreement with recent experiments. Our results show that the CRISPR spacer structure is influenced by and provides a record of the viral challenges that bacteria face. 1) J. He and M. W. Deem, Phys. Rev. Lett. 105 (2010) 128102

  2. Molecular recordings by directed CRISPR spacer acquisition.

    PubMed

    Shipman, Seth L; Nivala, Jeff; Macklis, Jeffrey D; Church, George M

    2016-07-29

    The ability to write a stable record of identified molecular events into a specific genomic locus would enable the examination of long cellular histories and have many applications, ranging from developmental biology to synthetic devices. We show that the type I-E CRISPR (clustered regularly interspaced short palindromic repeats)-Cas system of Escherichia coli can mediate acquisition of defined pieces of synthetic DNA. We harnessed this feature to generate records of specific DNA sequences into a population of bacterial genomes. We then applied directed evolution so as to alter the recognition of a protospacer adjacent motif by the Cas1-Cas2 complex, which enabled recording in two modes simultaneously. We used this system to reveal aspects of spacer acquisition, fundamental to the CRISPR-Cas adaptation process. These results lay the foundations of a multimodal intracellular recording device. PMID:27284167

  3. Pervasive generation of oppositely oriented spacers during CRISPR adaptation

    PubMed Central

    Shmakov, Sergey; Savitskaya, Ekaterina; Semenova, Ekaterina; Logacheva, Maria D.; Datsenko, Kirill A.; Severinov, Konstantin

    2014-01-01

    During the process of prokaryotic CRISPR adaptation, a copy of a segment of foreign deoxyribonucleic acid referred to as protospacer is added to the CRISPR cassette and becomes a spacer. When a protospacer contains a neighboring target interference motif, the specific small CRISPR ribonucleic acid (crRNA) transcribed from expanded CRISPR cassette can protect a prokaryotic cell from virus infection or plasmid transformation and conjugation. We show that in Escherichia coli, a vast majority of plasmid protospacers generate spacers integrated in CRISPR cassette in two opposing orientations, leading to frequent appearance of complementary spacer pairs in a population of cells that underwent CRISPR adaptation. When a protospacer contains a spacer acquisition motif AAG, spacer orientation that generates functional protective crRNA is strongly preferred. All other protospacers give rise to spacers oriented in both ways at comparable frequencies. This phenomenon increases the repertoire of available spacers and should make it more likely that a protective crRNA is formed as a result of CRISPR adaptation. PMID:24728991

  4. Anti-cas spacers in orphan CRISPR4 arrays prevent uptake of active CRISPR-Cas I-F systems.

    PubMed

    Almendros, Cristóbal; Guzmán, Noemí M; García-Martínez, Jesús; Mojica, Francisco J M

    2016-01-01

    Archaea and bacteria harbour clustered regularly interspaced short palindromic repeats (CRISPR) loci. These arrays encode RNA molecules (crRNA), each containing a sequence of a single repeat-intervening spacer. The crRNAs guide CRISPR-associated (Cas) proteins to cleave nucleic acids complementary to the crRNA spacer, thus interfering with targeted foreign elements. Notably, pre-existing spacers may trigger the acquisition of new spacers from the target molecule by means of a primed adaptation mechanism. Here, we show that naturally occurring orphan CRISPR arrays that contain spacers matching sequences of the cognate (absent) cas genes are able to elicit both primed adaptation and direct interference against genetic elements carrying those genes. Our findings show the existence of an anti-cas mechanism that prevents the transfer of a fully equipped CRISPR-Cas system. Hence, they suggest that CRISPR immunity may be undesired by particular prokaryotes, potentially because they could limit possibilities for gaining favourable sequences by lateral transfer. PMID:27573106

  5. CRISPR interference and priming varies with individual spacer sequences

    PubMed Central

    Xue, Chaoyou; Seetharam, Arun S.; Musharova, Olga; Severinov, Konstantin; J. Brouns, Stan J.; Severin, Andrew J.; Sashital, Dipali G.

    2015-01-01

    CRISPR–Cas (clustered regularly interspaced short palindromic repeats-CRISPR associated) systems allow bacteria to adapt to infection by acquiring ‘spacer’ sequences from invader DNA into genomic CRISPR loci. Cas proteins use RNAs derived from these loci to target cognate sequences for destruction through CRISPR interference. Mutations in the protospacer adjacent motif (PAM) and seed regions block interference but promote rapid ‘primed’ adaptation. Here, we use multiple spacer sequences to reexamine the PAM and seed sequence requirements for interference and priming in the Escherichia coli Type I-E CRISPR–Cas system. Surprisingly, CRISPR interference is far more tolerant of mutations in the seed and the PAM than previously reported, and this mutational tolerance, as well as priming activity, is highly dependent on spacer sequence. We identify a large number of functional PAMs that can promote interference, priming or both activities, depending on the associated spacer sequence. Functional PAMs are preferentially acquired during unprimed ‘naïve’ adaptation, leading to a rapid priming response following infection. Our results provide numerous insights into the importance of both spacer and target sequences for interference and priming, and reveal that priming is a major pathway for adaptation during initial infection. PMID:26586800

  6. Highly efficient primed spacer acquisition from targets destroyed by the Escherichia coli type I-E CRISPR-Cas interfering complex.

    PubMed

    Semenova, Ekaterina; Savitskaya, Ekaterina; Musharova, Olga; Strotskaya, Alexandra; Vorontsova, Daria; Datsenko, Kirill A; Logacheva, Maria D; Severinov, Konstantin

    2016-07-01

    Prokaryotic clustered regularly interspaced short palindromic repeat (CRISPR)-CRISPR associated (Cas) immunity relies on adaptive acquisition of spacers-short fragments of foreign DNA. For the type I-E CRISPR-Cas system from Escherichia coli, efficient "primed" adaptation requires Cas effector proteins and a CRISPR RNA (crRNA) whose spacer partially matches a segment (protospacer) in target DNA. Primed adaptation leads to selective acquisition of additional spacers from DNA molecules recognized by the effector-crRNA complex. When the crRNA spacer fully matches a protospacer, CRISPR interference-that is, target destruction without acquisition of additional spacers-is observed. We show here that when the rate of degradation of DNA with fully and partially matching crRNA targets is made equal, fully matching protospacers stimulate primed adaptation much more efficiently than partially matching ones. The result indicates that different functional outcomes of CRISPR-Cas response to two kinds of protospacers are not caused by different structures formed by the effector-crRNA complex but are due to the more rapid destruction of targets with fully matching protospacers. PMID:27325762

  7. Diversity in a Polymicrobial Community Revealed by Analysis of Viromes, Endolysins and CRISPR Spacers.

    PubMed

    Davison, Michelle; Treangen, Todd J; Koren, Sergey; Pop, Mihai; Bhaya, Devaki

    2016-01-01

    The polymicrobial biofilm communities in Mushroom and Octopus Spring in Yellowstone National Park (YNP) are well characterized, yet little is known about the phage populations. Dominant species, Synechococcus sp. JA-2-3B'a(2-13), Synechococcus sp. JA-3-3Ab, Chloroflexus sp. Y-400-fl, and Roseiflexus sp. RS-1, contain multiple CRISPR-Cas arrays, suggesting complex interactions with phage predators. To analyze phage populations from Octopus Spring biofilms, we sequenced a viral enriched fraction. To assemble and analyze phage metagenomic data, we developed a custom module, VIRITAS, implemented within the MetAMOS framework. This module bins contigs into groups based on tetranucleotide frequencies and CRISPR spacer-protospacer matching and ORF calling. Using this pipeline we were able to assemble phage sequences into contigs and bin them into three clusters that corroborated with their potential host range. The virome contained 52,348 predicted ORFs; some were clearly phage-like; 9319 ORFs had a recognizable Pfam domain while the rest were hypothetical. Of the recognized domains with CRISPR spacer matches, was the phage endolysin used by lytic phage to disrupt cells. Analysis of the endolysins present in the thermophilic cyanophage contigs revealed a subset of characterized endolysins as well as a Glyco_hydro_108 (PF05838) domain not previously associated with sequenced cyanophages. A search for CRISPR spacer matches to all identified phage endolysins demonstrated that a majority of endolysin domains were targets. This strategy provides a general way to link host and phage as endolysins are known to be widely distributed in bacteriophage. Endolysins can also provide information about host cell wall composition and have the additional potential to be used as targets for novel therapeutics. PMID:27611571

  8. Heterogeneous Diversity of Spacers within CRISPR (Clustered Regularly Interspaced Short Palindromic Repeats)

    NASA Astrophysics Data System (ADS)

    He, Jiankui; Deem, Michael W.

    2010-09-01

    Clustered regularly interspaced short palindromic repeats (CRISPR) in bacterial and archaeal DNA have recently been shown to be a new type of antiviral immune system in these organisms. We here study the diversity of spacers in CRISPR under selective pressure. We propose a population dynamics model that explains the biological observation that the leader-proximal end of CRISPR is more diversified and the leader-distal end of CRISPR is more conserved. This result is shown to be in agreement with recent experiments. Our results show that the CRISPR spacer structure is influenced by and provides a record of the viral challenges that bacteria face.

  9. Highly efficient primed spacer acquisition from targets destroyed by the Escherichia coli type I-E CRISPR-Cas interfering complex

    PubMed Central

    Semenova, Ekaterina; Savitskaya, Ekaterina; Musharova, Olga; Strotskaya, Alexandra; Vorontsova, Daria; Datsenko, Kirill A.; Logacheva, Maria D.; Severinov, Konstantin

    2016-01-01

    Prokaryotic clustered regularly interspaced short palindromic repeat (CRISPR)-CRISPR associated (Cas) immunity relies on adaptive acquisition of spacers—short fragments of foreign DNA. For the type I-E CRISPR-Cas system from Escherichia coli, efficient “primed” adaptation requires Cas effector proteins and a CRISPR RNA (crRNA) whose spacer partially matches a segment (protospacer) in target DNA. Primed adaptation leads to selective acquisition of additional spacers from DNA molecules recognized by the effector–crRNA complex. When the crRNA spacer fully matches a protospacer, CRISPR interference—that is, target destruction without acquisition of additional spacers—is observed. We show here that when the rate of degradation of DNA with fully and partially matching crRNA targets is made equal, fully matching protospacers stimulate primed adaptation much more efficiently than partially matching ones. The result indicates that different functional outcomes of CRISPR-Cas response to two kinds of protospacers are not caused by different structures formed by the effector–crRNA complex but are due to the more rapid destruction of targets with fully matching protospacers. PMID:27325762

  10. CRISPR Spacer Arrays for Detection of Viral Signatures from Acidic Hot Springs

    NASA Astrophysics Data System (ADS)

    Snyder, J. C.; Bateson, M. M.; Suciu, D.; Young, M. J.

    2010-04-01

    Viruses are the most abundant life-like entities on the planet Earth. Using CRISPR spacer sequences, we have developed a microarray-based approach to detecting viral signatures in the acidic hot springs of Yellowstone.

  11. Direct CRISPR spacer acquisition from RNA by a natural reverse transcriptase-Cas1 fusion protein.

    PubMed

    Silas, Sukrit; Mohr, Georg; Sidote, David J; Markham, Laura M; Sanchez-Amat, Antonio; Bhaya, Devaki; Lambowitz, Alan M; Fire, Andrew Z

    2016-02-26

    CRISPR systems mediate adaptive immunity in diverse prokaryotes. CRISPR-associated Cas1 and Cas2 proteins have been shown to enable adaptation to new threats in type I and II CRISPR systems by the acquisition of short segments of DNA (spacers) from invasive elements. In several type III CRISPR systems, Cas1 is naturally fused to a reverse transcriptase (RT). In the marine bacterium Marinomonas mediterranea (MMB-1), we showed that a RT-Cas1 fusion protein enables the acquisition of RNA spacers in vivo in a RT-dependent manner. In vitro, the MMB-1 RT-Cas1 and Cas2 proteins catalyze the ligation of RNA segments into the CRISPR array, which is followed by reverse transcription. These observations outline a host-mediated mechanism for reverse information flow from RNA to DNA. PMID:26917774

  12. The CRISPR RNA-guided surveillance complex in Escherichia coli accommodates extended RNA spacers

    PubMed Central

    Luo, Michelle L.; Jackson, Ryan N.; Denny, Steven R.; Tokmina-Lukaszewska, Monika; Maksimchuk, Kenneth R.; Lin, Wayne; Bothner, Brian; Wiedenheft, Blake; Beisel, Chase L.

    2016-01-01

    Bacteria and archaea acquire resistance to foreign genetic elements by integrating fragments of foreign DNA into CRISPR (clustered regularly interspaced short palindromic repeats) loci. In Escherichia coli, CRISPR-derived RNAs (crRNAs) assemble with Cas proteins into a multi-subunit surveillance complex called Cascade (CRISPR-associated complex for antiviral defense). Cascade recognizes DNA targets via protein-mediated recognition of a protospacer adjacent motif and complementary base pairing between the crRNA spacer and the DNA target. Previously determined structures of Cascade showed that the crRNA is stretched along an oligomeric protein assembly, leading us to ask how crRNA length impacts the assembly and function of this complex. We found that extending the spacer portion of the crRNA resulted in larger Cascade complexes with altered stoichiometry and preserved in vitro binding affinity for target DNA. Longer spacers also preserved the in vivo ability of Cascade to repress target gene expression and to recruit the Cas3 endonuclease for target degradation. Finally, longer spacers exhibited enhanced silencing at particular target locations and were sensitive to mismatches within the extended region. These findings demonstrate the flexibility of the Type I-E CRISPR machinery and suggest that spacer length can be modified to fine-tune Cascade activity. PMID:27174938

  13. High-throughput analysis of type I-E CRISPR/Cas spacer acquisition in E. coli

    PubMed Central

    Savitskaya, Ekaterina; Semenova, Ekaterina; Dedkov, Vladimir; Metlitskaya, Anastasia; Severinov, Konstantin

    2013-01-01

    In Escherichia coli, the acquisition of new CRISPR spacers is strongly stimulated by a priming interaction between a spacer in CRISPR RNA and a protospacer in foreign DNA. Priming also leads to a pronounced bias in DNA strand from which new spacers are selected. Here, ca. 200,000 spacers acquired during E. coli type I-E CRISPR/Cas-driven plasmid elimination were analyzed. Analysis of positions of plasmid protospacers from which newly acquired spacers have been derived is inconsistent with spacer acquisition machinery sliding along the target DNA as the primary mechanism responsible for strand bias during primed spacer acquisition. Most protospacers that served as donors of newly acquired spacers during primed spacer acquisition had an AAG protospacer adjacent motif, PAM. Yet, the introduction of multiple AAG sequences in the target DNA had no effect on the choice of protospacers used for adaptation, which again is inconsistent with the sliding mechanism. Despite a strong preference for an AAG PAM during CRISPR adaptation, the AAG (and CTT) triplets do not appear to be avoided in known E. coli phages. Likewise, PAM sequences are not avoided in Streptococcus thermophilus phages, indicating that CRISPR/Cas systems may not have been a strong factor in shaping host-virus interactions. PMID:23619643

  14. Detection and analysis of CRISPRs of Shigella.

    PubMed

    Guo, Xiangjiao; Wang, Yingfang; Duan, Guangcai; Xue, Zerun; Wang, Linlin; Wang, Pengfei; Qiu, Shaofu; Xi, Yuanlin; Yang, Haiyan

    2015-01-01

    The recently discovered CRISPRs (Clustered regularly interspaced short palindromic repeats) and Cas (CRISPR-associated) proteins are a novel genetic barrier that limits horizontal gene transfer in prokaryotes and the CRISPR loci provide a historical view of the exposure of prokaryotes to a variety of foreign genetic elements. The aim of study was to investigate the occurrence and distribution of the CRISPRs in Shigella. A collection of 61 strains of Shigella were screened for the existence of CRISPRs. Three CRISPR loci were identified among 61 shigella strains. CRISPR1/cas loci are detected in 49 strains of shigella. Yet, IS elements were detected in cas gene in some strains. In the remaining 12 Shigella flexneri strains, the CRISPR1/cas locus is deleted and only a cas3' pseudo gene and a repeat sequence are present. The presence of CRISPR2 is frequently accompanied by the emergence of CRISPR1. CRISPR3 loci were present in almost all strains (52/61). The length of CRISPR arrays varied from 1 to 9 spacers. Sequence analysis of the CRISPR arrays revealed that few spacers had matches in the GenBank databases. However, one spacer in CRISPR3 loci matches the cognate cas3 genes and no cas gene was present around CRISPR3 region. Analysis of CRISPR sequences show that CRISPR have little change which makes CRISPR poor genotyping markers. The present study is the first attempt to determine and analyze CRISPRs of shigella isolated from clinical patients. PMID:25199561

  15. Campylobacter jejuni acquire new host-derived CRISPR spacers when in association with bacteriophages harboring a CRISPR-like Cas4 protein

    PubMed Central

    Hooton, Steven P. T.; Connerton, Ian F.

    2015-01-01

    Campylobacter jejuni is a worldwide cause of human diarrhoeal disease. Clustered Repetitively Interspaced Palindromic Repeats (CRISPRs) and associated proteins allow Bacteria and Archaea to evade bacteriophage and plasmid infection. Type II CRISPR systems are found in association with combinations of genes encoding the CRISPR-associated Cas1, Cas2, Cas4 or Csn2, and Cas9 proteins. C. jejuni possesses a minimal subtype II-C CRISPR system containing cas1, cas2, and cas9 genes whilst cas4 is notably absent. Cas4 proteins possess 5′-3′ exonuclease activity to create recombinogenic-ends for spacer acquisition. Here we report a conserved Cas4-like protein in Campylobacter bacteriophages that creates a novel split arrangement between the bacteriophage and host that represents a new twist in the bacteriophage/host co-evolutionary arms race. The continuous association of bacteriophage and host in the carrier state life cycle of C. jejuni provided an opportunity to study spacer acquisition in this species. Remarkably all the spacer sequences observed were of host origin. We hypothesize that Campylobacter bacteriophages can use Cas4-like protein to activate spacer acquisition to use host DNA as an effective decoy to bacteriophage DNA. Bacteria that acquire self-spacers and escape phage infection must overcome CRISPR-mediated autoimmunity either by loss of the interference functions leaving them susceptible to foreign DNA incursion or tolerate changes in gene regulation. PMID:25601859

  16. Archaeal Viruses of the Sulfolobales: Isolation, Infection, and CRISPR Spacer Acquisition.

    PubMed

    Erdmann, Susanne; Garrett, Roger A

    2015-01-01

    Infection of archaea with phylogenetically diverse single viruses, performed in different laboratories, has failed to activate spacer acquisition into host CRISPR loci. The first successful uptake of archaeal de novo spacers was observed on infection of Sulfolobus solfataricus P2 with an environmental virus mixture isolated from Yellowstone National Park (Erdmann and Garrett, Mol Microbiol 85:1044-1056, 2012). Experimental studies of isolated genetic elements from this mixture revealed that SMV1 (S ulfolobus Monocauda Virus 1), a tailed spindle-shaped virus, can induce spacer acquisition in CRISPR loci of Sulfolobus species from a second coinfecting conjugative plasmid or virus (Erdmann and Garrett, Mol Microbiol 85:1044-1056, 2012; Erdmann et al. Mol Microbiol 91:900-917, 2014). Here we describe, firstly, the isolation of archaeal virus mixtures from terrestrial hot springs and the techniques used both to infect laboratory strains with these virus mixtures and to obtain purified virus particles. Secondly, we present the experimental conditions required for activating SMV1-induced spacer acquisition in two different Sulfolobus species. PMID:25981476

  17. Use of cellular CRISPR (clusters of regularly interspaced short palindromic repeats) spacer-based microarrays for detection of viruses in environmental samples.

    PubMed

    Snyder, Jamie C; Bateson, Mary M; Lavin, Matthew; Young, Mark J

    2010-11-01

    It is currently difficult to detect unknown viruses in any given environment. The recent discovery of CRISPR (clusters of regularly interspaced short palindromic repeats) loci within bacterial and archaeal cellular genomes may provide an alternative approach to detect new viruses. It has been shown that the spacer sequences between the direct repeat units of the CRISPR loci are often derived from viruses and likely function as guide sequences to protect the cell from viral infection. The spacer sequences within the CRISPR loci may therefore serve as a record of the viruses that have replicated within the cell. We have cataloged the CRISPR spacer sequences from cellular metagenomic data from high-temperature (>80°C), acidic (pH < 4) hot spring environments located in Yellowstone National Park (YNP). We designed a microarray platform utilizing these CRISPR spacer sequences as potential probes to detect viruses present in YNP hot spring environments. We show that this microarray approach can detect viral sequences directly from virus-enriched environmental samples, detecting new viruses which have not been previously characterized. We further demonstrated that this microarray approach can be used to examine temporal changes in viral populations within the environment. Our results demonstrate that CRISPR spacer sequence-based microarrays will be useful tools for detecting and monitoring viruses from diverse environmental samples. PMID:20851987

  18. Generation of a CRISPR database for Yersinia pseudotuberculosis complex and role of CRISPR-based immunity in conjugation.

    PubMed

    Koskela, Katja A; Mattinen, Laura; Kalin-Mänttäri, Laura; Vergnaud, Gilles; Gorgé, Olivier; Nikkari, Simo; Skurnik, Mikael

    2015-11-01

    The clustered regularly interspaced short palindromic repeat - CRISPR-associated genes (CRISPR-Cas) system is used by bacteria and archaea against invading conjugative plasmids or bacteriophages. Central to this immunity system are genomic CRISPR loci that contain fragments of invading DNA. These are maintained as spacers in the CRISPR loci between direct repeats and the spacer composition in any bacterium reflects its evolutionary history. We analysed the CRISPR locus sequences of 335 Yersinia pseudotuberculosis complex strains. Altogether 1902 different spacer sequences were identified and these were used to generate a database for the spacer sequences. Only ∼10% of the spacer sequences found matching sequences. In addition, surprisingly few spacers were shared by Yersinia pestis and Y. pseudotuberculosis strains. Interestingly, 32 different protospacers were present in the conjugative plasmid pYptb32953. The corresponding spacers were identified from 35 different Y. pseudotuberculosis strains indicating that these strains had encountered pYptb32953 earlier. In conjugation experiments, pYptb32953-specific spacers generally prevented conjugation with spacer-positive and spacer-free strains. However, some strains with one to four spacers were invaded by pYptb32953 and some spacer-free strains were fully resistant. Also some spacer-positive strains were intermediate resistant to conjugation. This suggests that one or more other defence systems are determining conjugation efficiency independent of the CRISPR-Cas system. PMID:25712141

  19. The Bacteriophage Carrier State of Campylobacter jejuni Features Changes in Host Non-coding RNAs and the Acquisition of New Host-derived CRISPR Spacer Sequences

    PubMed Central

    Hooton, Steven P. T.; Brathwaite, Kelly J.; Connerton, Ian F.

    2016-01-01

    Incorporation of self-derived CRISPR DNA protospacers in Campylobacter jejuni PT14 occurs in the presence of bacteriophages encoding a CRISPR-like Cas4 protein. This phenomenon was evident in carrier state infections where both bacteriophages and host are maintained for seemingly indefinite periods as stable populations following serial passage. Carrier state cultures of C. jejuni PT14 have greater aerotolerance in nutrient limited conditions, and may have arisen as an evolutionary response to selective pressures imposed during periods in the extra-intestinal environment. A consequence of this is that bacteriophage and host remain associated and able to survive transition periods where the chances of replicative success are greatly diminished. The majority of the bacteriophage population do not commit to lytic infection, and conversely the bacterial population tolerates low-level bacteriophage replication. We recently examined the effects of Campylobacter bacteriophage/C. jejuni PT14 CRISPR spacer acquisition using deep sequencing strategies of DNA and RNA-Seq to analyze carrier state cultures. This approach identified de novo spacer acquisition in C. jejuni PT14 associated with Class III Campylobacter phages CP8/CP30A but spacer acquisition was oriented toward the capture of host DNA. In the absence of bacteriophage predation the CRISPR spacers in uninfected C. jejuni PT14 cultures remain unchanged. A distinct preference was observed for incorporation of self-derived protospacers into the third spacer position of the C. jejuni PT14 CRISPR array, with the first and second spacers remaining fixed. RNA-Seq also revealed the variation in the synthesis of non-coding RNAs with the potential to bind bacteriophage genes and/or transcript sequences. PMID:27047470

  20. CRISPR Diversity in E. coli Isolates from Australian Animals, Humans and Environmental Waters.

    PubMed

    Sheludchenko, Maxim S; Huygens, Flavia; Stratton, Helen; Hargreaves, Megan

    2015-01-01

    Seventy four SNP genotypes and 54 E. coli genomes from kangaroo, Tasmanian devil, reptile, cattle, dog, horse, duck, bird, fish, rodent, human and environmental water sources were screened for the presence of the CRISPR 2.1 loci flanked by cas2 and iap genes. CRISPR 2.1 regions were found in 49% of the strains analysed. The majority of human E. coli isolates lacked the CRISPR 2.1 locus. We described 76 CRISPR 2.1 positive isolates originating from Australian animals and humans, which contained a total of 764 spacer sequences. CRISPR arrays demonstrated a long history of phage attacks especially in isolates from birds (up to 40 spacers). The most prevalent spacer (1.6%) was an ancient spacer found mainly in human, horse, duck, rodent, reptile and environmental water sources. The sequence of this spacer matched the intestinal P7 phage and the pO111 plasmid of E. coli. PMID:25946192

  1. CRISPR Diversity in E. coli Isolates from Australian Animals, Humans and Environmental Waters

    PubMed Central

    Sheludchenko, Maxim S.; Huygens, Flavia; Stratton, Helen; Hargreaves, Megan

    2015-01-01

    Seventy four SNP genotypes and 54 E. coli genomes from kangaroo, Tasmanian devil, reptile, cattle, dog, horse, duck, bird, fish, rodent, human and environmental water sources were screened for the presence of the CRISPR 2.1 loci flanked by cas2 and iap genes. CRISPR 2.1 regions were found in 49% of the strains analysed. The majority of human E. coli isolates lacked the CRISPR 2.1 locus. We described 76 CRISPR 2.1 positive isolates originating from Australian animals and humans, which contained a total of 764 spacer sequences. CRISPR arrays demonstrated a long history of phage attacks especially in isolates from birds (up to 40 spacers). The most prevalent spacer (1.6%) was an ancient spacer found mainly in human, horse, duck, rodent, reptile and environmental water sources. The sequence of this spacer matched the intestinal P7 phage and the pO111 plasmid of E. coli. PMID:25946192

  2. Lactobacillus buchneri Genotyping on the Basis of Clustered Regularly Interspaced Short Palindromic Repeat (CRISPR) Locus Diversity

    PubMed Central

    Briner, Alexandra E.

    2014-01-01

    Clustered regularly interspaced short palindromic repeats (CRISPR) in combination with associated sequences (cas) constitute the CRISPR-Cas immune system, which uptakes DNA from invasive genetic elements as novel “spacers” that provide a genetic record of immunization events. We investigated the potential of CRISPR-based genotyping of Lactobacillus buchneri, a species relevant for commercial silage, bioethanol, and vegetable fermentations. Upon investigating the occurrence and diversity of CRISPR-Cas systems in Lactobacillus buchneri genomes, we observed a ubiquitous occurrence of CRISPR arrays containing a 36-nucleotide (nt) type II-A CRISPR locus adjacent to four cas genes, including the universal cas1 and cas2 genes and the type II signature gene cas9. Comparative analysis of CRISPR spacer content in 26 L. buchneri pickle fermentation isolates associated with spoilage revealed 10 unique locus genotypes that contained between 9 and 29 variable spacers. We observed a set of conserved spacers at the ancestral end, reflecting a common origin, as well as leader-end polymorphisms, reflecting recent divergence. Some of these spacers showed perfect identity with phage sequences, and many spacers showed homology to Lactobacillus plasmid sequences. Following a comparative analysis of sequences immediately flanking protospacers that matched CRISPR spacers, we identified a novel putative protospacer-adjacent motif (PAM), 5′-AAAA-3′. Overall, these findings suggest that type II-A CRISPR-Cas systems are valuable for genotyping of L. buchneri. PMID:24271175

  3. Characterization and evolution of Salmonella CRISPR-Cas systems.

    PubMed

    Shariat, Nikki; Timme, Ruth E; Pettengill, James B; Barrangou, Rodolphe; Dudley, Edward G

    2015-02-01

    Prokaryotic CRISPR-Cas (clustered regularly interspaced short palindromic repeats and CRISPR-associated genes) systems provide adaptive immunity from invasive genetic elements and encompass three essential features: (i) cas genes, (ii) a CRISPR array composed of spacers and direct repeats and (iii) an AT-rich leader sequence upstream of the array. We performed in-depth sequence analysis of the CRISPR-Cas systems in >600 Salmonella, representing four clinically prevalent serovars. Each CRISPR-Cas feature is extremely conserved in the Salmonella, and the CRISPR1 locus is more highly conserved than CRISPR2. Array composition is serovar-specific, although no convincing evidence of recent spacer acquisition against exogenous nucleic acids exists. Only 12% of spacers match phage and plasmid sequences and self-targeting spacers are associated with direct repeat variants. High nucleotide identity (>99.9%) exists across the cas operon among isolates of a single serovar and in some cases this conservation extends across divergent serovars. These observations reflect historical CRISPR-Cas immune activity, showing that this locus has ceased undergoing adaptive events. Intriguingly, the high level of conservation across divergent serovars shows that the genetic integrity of these inactive loci is maintained over time, contrasting with the canonical view that inactive CRISPR loci degenerate over time. This thorough characterization of Salmonella CRISPR-Cas systems presents new insights into Salmonella CRISPR evolution, particularly with respect to cas gene conservation, leader sequences, organization of direct repeats and protospacer matches. Collectively, our data suggest that Salmonella CRISPR-Cas systems are no longer immunogenic; rather, their impressive conservation indicates they may have an alternative function in Salmonella. PMID:25479838

  4. Regulation of the Type I-F CRISPR-Cas system by CRP-cAMP and GalM controls spacer acquisition and interference

    PubMed Central

    Patterson, Adrian G.; Chang, James T.; Taylor, Corinda; Fineran, Peter C.

    2015-01-01

    The CRISPR-Cas prokaryotic ‘adaptive immune systems’ represent a sophisticated defence strategy providing bacteria and archaea with protection from invading genetic elements, such as bacteriophages or plasmids. Despite intensive research into their mechanism and application, how CRISPR-Cas systems are regulated is less clear, and nothing is known about the regulation of Type I-F systems. We used Pectobacterium atrosepticum, a Gram-negative phytopathogen, to study CRISPR-Cas regulation, since it contains a single Type I-F system. The CRP-cAMP complex activated the cas operon, increasing the expression of the adaptation genes cas1 and cas2–3 in addition to the genes encoding the Csy surveillance complex. Mutation of crp or cyaA (encoding adenylate cyclase) resulted in reductions in both primed spacer acquisition and interference. Furthermore, we identified a galactose mutarotase, GalM, which reduced cas operon expression in a CRP- and CyaA-dependent manner. We propose that the Type I-F system senses metabolic changes, such as sugar availability, and regulates cas genes to initiate an appropriate defence response. Indeed, elevated glucose levels reduced cas expression in a CRP- and CyaA-dependent manner. Taken together, these findings highlight that a metabolite-sensing regulatory pathway controls expression of the Type I-F CRISPR-Cas system to modulate levels of adaptation and interference. PMID:26007654

  5. Controlled current matching in small molecule organic tandem solar cells using doped spacer layers

    NASA Astrophysics Data System (ADS)

    Schueppel, Rico; Timmreck, Ronny; Allinger, Nikola; Mueller, Toni; Furno, Mauro; Uhrich, Christian; Leo, Karl; Riede, Moritz

    2010-02-01

    Current matching of the subcells is crucial to optimize the performance of tandem solar cells. Due to the thin film optics of organic solar cells, the position of the two subcells relative to the reflecting electrode becomes a very important issue. This is demonstrated for an indium tin oxide (ITO)/pin/pii/Al structure with thin intrinsic absorbing layers consisting of zinc-phthalocyanine and fullerene C60 and a metal-free lossless recombination contact between the subcells. By keeping the thickness of the absorbing layers constant and changing only the thickness of the inner p-doped transparent layer in 16 steps from 0to186nm, the distance of the ITO-sided subcell from the reflecting electrode (Al) is systematically varied. Thus, the p-doped layer works as an optical spacer between both subcells. The influence of its thickness on the thin film optics is shown in optical simulations and confirmed with current-voltage measurements. If both subcells are separated only by the recombination contact, they are positioned in the first interference maximum of the incident light and the currents of the individual subcells nearly matches. By increasing the spacer layer thickness, the ITO-sided subcell is moved to the first interference minimum, limiting the measured short circuit current density jsc of the tandem solar cell to about 1/2 of its initial value without spacer. At a spacer thickness of about 140nm, jsc recovers in the second interference maximum to nearly its original value. Within this series, an almost constant high fill factor of about 59% as well as a constant open circuit voltage of 1.06V is observed, showing that the Ohmic losses in the spacer are negligible. The power conversion efficiency of these devices reaches nearly 4% in the first and approximately 3.6% in the second interference maximum, respectively, in an outdoor test at 1sun. Furthermore, it is shown that for thicker absorber layers, an optimized current density cannot be reached in the first

  6. Metagenomic reconstructions of bacterial CRISPR loci constrain population histories.

    PubMed

    Sun, Christine L; Thomas, Brian C; Barrangou, Rodolphe; Banfield, Jillian F

    2016-04-01

    Bacterial CRISPR-Cas systems provide insight into recent population history because they rapidly incorporate, in a unidirectional manner, short fragments (spacers) from coexisting infective virus populations into host chromosomes. Immunity is achieved by sequence identity between transcripts of spacers and their targets. Here, we used metagenomics to study the stability and dynamics of the type I-E CRISPR-Cas locus of Leptospirillum group II bacteria in biofilms sampled over 5 years from an acid mine drainage (AMD) system. Despite recovery of 452,686 spacers from CRISPR amplicons and metagenomic data, rarefaction curves of spacers show no saturation. The vast repertoire of spacers is attributed to phage/plasmid population diversity and retention of old spacers, despite rapid evolution of the targeted phage/plasmid genome regions (proto-spacers). The oldest spacers (spacers found at the trailer end) are conserved for at least 5 years, and 12% of these retain perfect or near-perfect matches to proto-spacer targets. The majority of proto-spacer regions contain an AAG proto-spacer adjacent motif (PAM). Spacers throughout the locus target the same phage population (AMDV1), but there are blocks of consecutive spacers without AMDV1 target sequences. Results suggest long-term coexistence of Leptospirillum with AMDV1 and periods when AMDV1 was less dominant. Metagenomics can be applied to millions of cells in a single sample to provide an extremely large spacer inventory, allow identification of phage/plasmids and enable analysis of previous phage/plasmid exposure. Thus, this approach can provide insights into prior bacterial environment and genetic interplay between hosts and their viruses. PMID:26394009

  7. CRISPR distribution within the Escherichia coli species is not suggestive of immunity-associated diversifying selection.

    PubMed

    Touchon, Marie; Charpentier, Sophie; Clermont, Olivier; Rocha, Eduardo P C; Denamur, Erick; Branger, Catherine

    2011-05-01

    In order to get further insights into the role of the clustered, regularly interspaced, short palindromic repeats (CRISPRs) in Escherichia coli, we analyzed the CRISPR diversity in a collection of 290 strains, in the phylogenetic framework of the strains represented by multilocus sequence typing (MLST). The set included 263 natural E. coli isolates exposed to various environments and isolated over a 20-year period from humans and animals, as well as 27 fully sequenced strains. Our analyses confirm that there are two largely independent pairs of CRISPR loci (CRISPR1 and -2 and CRISPR3 and -4), each associated with a different type of cas genes (Ecoli and Ypest, respectively), but that each pair of CRISPRs has similar dynamics. Strikingly, the major phylogenetic group B2 is almost devoid of CRISPRs. The majority of genomes analyzed lack Ypest cas genes and contain CRISPR3 with spacers matching Ypest cas genes. The analysis of relatedness between strains in terms of spacer repertoire and the MLST tree shows a pattern where closely related strains (MLST phylogenetic distance of <0.005 corresponding to at least hundreds of thousands of years) often exhibit identical CRISPRs while more distantly related strains (MLST distance of >0.01) exhibit completely different CRISPRs. This suggests rare but radical turnover of spacers in CRISPRs rather than CRISPR gradual change. We found no link between the presence, size, or content of CRISPRs and the lifestyle of the strains. Our data suggest that, within the E. coli species, CRISPRs do not have the expected characteristics of a classical immune system. PMID:21421763

  8. Erwinia amylovora CRISPR elements provide new tools for evaluating strain diversity and for microbial source tracking.

    PubMed

    McGhee, Gayle C; Sundin, George W

    2012-01-01

    Clustered regularly interspaced short palindromic repeats (CRISPRs) comprise a family of short DNA repeat sequences that are separated by non repetitive spacer sequences and, in combination with a suite of Cas proteins, are thought to function as an adaptive immune system against invading DNA. The number of CRISPR arrays in a bacterial chromosome is variable, and the content of each array can differ in both repeat number and in the presence or absence of specific spacers. We utilized a comparative sequence analysis of CRISPR arrays of the plant pathogen Erwinia amylovora to uncover previously unknown genetic diversity in this species. A total of 85 E. amylovora strains varying in geographic isolation (North America, Europe, New Zealand, and the Middle East), host range, plasmid content, and streptomycin sensitivity/resistance were evaluated for CRISPR array number and spacer variability. From these strains, 588 unique spacers were identified in the three CRISPR arrays present in E. amylovora, and these arrays could be categorized into 20, 17, and 2 patterns types, respectively. Analysis of the relatedness of spacer content differentiated most apple and pear strains isolated in the eastern U.S. from western U.S. strains. In addition, we identified North American strains that shared CRISPR genotypes with strains isolated on other continents. E. amylovora strains from Rubus and Indian hawthorn contained mostly unique spacers compared to apple and pear strains, while strains from loquat shared 79% of spacers with apple and pear strains. Approximately 23% of the spacers matched known sequences, with 16% targeting plasmids and 5% targeting bacteriophage. The plasmid pEU30, isolated in E. amylovora strains from the western U.S., was targeted by 55 spacers. Lastly, we used spacer patterns and content to determine that streptomycin-resistant strains of E. amylovora from Michigan were low in diversity and matched corresponding streptomycin-sensitive strains from the

  9. Occurrence and activity of a type II CRISPR-Cas system in Lactobacillus gasseri.

    PubMed

    Sanozky-Dawes, Rosemary; Selle, Kurt; O'Flaherty, Sarah; Klaenhammer, Todd; Barrangou, Rodolphe

    2015-09-01

    Bacteria encode clustered regularly interspaced short palindromic repeats (CRISPRs) and CRISPR-associated genes (cas), which collectively form an RNA-guided adaptive immune system against invasive genetic elements. In silico surveys have revealed that lactic acid bacteria harbour a prolific and diverse set of CRISPR-Cas systems. Thus, the natural evolutionary role of CRISPR-Cas systems may be investigated in these ecologically, industrially, scientifically and medically important microbes. In this study, 17 Lactobacillus gasseri strains were investigated and 6 harboured a type II-A CRISPR-Cas system, with considerable diversity in array size and spacer content. Several of the spacers showed similarity to phage and plasmid sequences, which are typical targets of CRISPR-Cas immune systems. Aligning the protospacers facilitated inference of the protospacer adjacent motif sequence, determined to be 5'-NTAA-3' flanking the 3' end of the protospacer. The system in L. gasseri JV-V03 and NCK 1342 interfered with transforming plasmids containing sequences matching the most recently acquired CRISPR spacers in each strain. We report the distribution and function of a native type II-A CRISPR-Cas system in the commensal species L. gasseri. Collectively, these results open avenues for applications for bacteriophage protection and genome modification in L. gasseri, and contribute to the fundamental understanding of CRISPR-Cas systems in bacteria. PMID:26297561

  10. CRISPR Distribution within the Escherichia coli Species Is Not Suggestive of Immunity-Associated Diversifying Selection ▿ †

    PubMed Central

    Touchon, Marie; Charpentier, Sophie; Clermont, Olivier; Rocha, Eduardo P. C.; Denamur, Erick; Branger, Catherine

    2011-01-01

    In order to get further insights into the role of the clustered, regularly interspaced, short palindromic repeats (CRISPRs) in Escherichia coli, we analyzed the CRISPR diversity in a collection of 290 strains, in the phylogenetic framework of the strains represented by multilocus sequence typing (MLST). The set included 263 natural E. coli isolates exposed to various environments and isolated over a 20-year period from humans and animals, as well as 27 fully sequenced strains. Our analyses confirm that there are two largely independent pairs of CRISPR loci (CRISPR1 and -2 and CRISPR3 and -4), each associated with a different type of cas genes (Ecoli and Ypest, respectively), but that each pair of CRISPRs has similar dynamics. Strikingly, the major phylogenetic group B2 is almost devoid of CRISPRs. The majority of genomes analyzed lack Ypest cas genes and contain CRISPR3 with spacers matching Ypest cas genes. The analysis of relatedness between strains in terms of spacer repertoire and the MLST tree shows a pattern where closely related strains (MLST phylogenetic distance of <0.005 corresponding to at least hundreds of thousands of years) often exhibit identical CRISPRs while more distantly related strains (MLST distance of >0.01) exhibit completely different CRISPRs. This suggests rare but radical turnover of spacers in CRISPRs rather than CRISPR gradual change. We found no link between the presence, size, or content of CRISPRs and the lifestyle of the strains. Our data suggest that, within the E. coli species, CRISPRs do not have the expected characteristics of a classical immune system. PMID:21421763

  11. The Influence of Copy-Number of Targeted Extrachromosomal Genetic Elements on the Outcome of CRISPR-Cas Defense

    PubMed Central

    Severinov, Konstantin; Ispolatov, Iaroslav; Semenova, Ekaterina

    2016-01-01

    Prokaryotic type I CRISPR-Cas systems respond to the presence of mobile genetic elements such as plasmids and phages in two different ways. CRISPR interference efficiently destroys foreign DNA harboring protospacers fully matching CRISPR RNA spacers. In contrast, even a single mismatch between a spacer and a protospacer can render CRISPR interference ineffective but causes primed adaptation—efficient and specific acquisition of additional spacers from foreign DNA into the CRISPR array of the host. It has been proposed that the interference and primed adaptation pathways are mediated by structurally different complexes formed by the effector Cascade complex on matching and mismatched protospacers. Here, we present experimental evidence and present a simple mathematical model that shows that when plasmid copy number maintenance/phage genome replication is taken into account, the two apparently different outcomes of the CRISPR-Cas response can be accounted for by just one kind of effector complex on both targets. The results underscore the importance of consideration of targeted genome biology when considering consequences of CRISPR-Cas systems action.

  12. Diverse CRISPRs evolving in human microbiomes.

    PubMed

    Rho, Mina; Wu, Yu-Wei; Tang, Haixu; Doak, Thomas G; Ye, Yuzhen

    2012-01-01

    CRISPR (Clustered Regularly Interspaced Short Palindromic Repeats) loci, together with cas (CRISPR-associated) genes, form the CRISPR/Cas adaptive immune system, a primary defense strategy that eubacteria and archaea mobilize against foreign nucleic acids, including phages and conjugative plasmids. Short spacer sequences separated by the repeats are derived from foreign DNA and direct interference to future infections. The availability of hundreds of shotgun metagenomic datasets from the Human Microbiome Project (HMP) enables us to explore the distribution and diversity of known CRISPRs in human-associated microbial communities and to discover new CRISPRs. We propose a targeted assembly strategy to reconstruct CRISPR arrays, which whole-metagenome assemblies fail to identify. For each known CRISPR type (identified from reference genomes), we use its direct repeat consensus sequence to recruit reads from each HMP dataset and then assemble the recruited reads into CRISPR loci; the unique spacer sequences can then be extracted for analysis. We also identified novel CRISPRs or new CRISPR variants in contigs from whole-metagenome assemblies and used targeted assembly to more comprehensively identify these CRISPRs across samples. We observed that the distributions of CRISPRs (including 64 known and 86 novel ones) are largely body-site specific. We provide detailed analysis of several CRISPR loci, including novel CRISPRs. For example, known streptococcal CRISPRs were identified in most oral microbiomes, totaling ∼8,000 unique spacers: samples resampled from the same individual and oral site shared the most spacers; different oral sites from the same individual shared significantly fewer, while different individuals had almost no common spacers, indicating the impact of subtle niche differences on the evolution of CRISPR defenses. We further demonstrate potential applications of CRISPRs to the tracing of rare species and the virus exposure of individuals. This work

  13. Friendly Fire: Biological Functions and Consequences of Chromosomal Targeting by CRISPR-Cas Systems.

    PubMed

    Heussler, Gary E; O'Toole, George A

    2016-05-15

    Clustered regularly interspaced short palindromic repeat (CRISPR)-associated (Cas) systems in bacteria and archaea target foreign elements, such as bacteriophages and conjugative plasmids, through the incorporation of short sequences (termed spacers) from the foreign element into the CRISPR array, thereby allowing sequence-specific targeting of the invader. Thus, CRISPR-Cas systems are typically considered a microbial adaptive immune system. While many of these incorporated spacers match targets on bacteriophages and plasmids, a noticeable number are derived from chromosomal DNA. While usually lethal to the self-targeting bacteria, in certain circumstances, these self-targeting spacers can have profound effects in regard to microbial biology, including functions beyond adaptive immunity. In this minireview, we discuss recent studies that focus on the functions and consequences of CRISPR-Cas self-targeting, including reshaping of the host population, group behavior modification, and the potential applications of CRISPR-Cas self-targeting as a tool in microbial biotechnology. Understanding the effects of CRISPR-Cas self-targeting is vital to fully understanding the spectrum of function of these systems. PMID:26929301

  14. Characterization of bacteriophage communities and CRISPR profiles from dental plaque

    PubMed Central

    2014-01-01

    Background Dental plaque is home to a diverse and complex community of bacteria, but has generally been believed to be inhabited by relatively few viruses. We sampled the saliva and dental plaque from 4 healthy human subjects to determine whether plaque was populated by viral communities, and whether there were differences in viral communities specific to subject or sample type. Results We found that the plaque was inhabited by a community of bacteriophage whose membership was mostly subject-specific. There was a significant proportion of viral homologues shared between plaque and salivary viromes within each subject, suggesting that some oral viruses were present in both sites. We also characterized Clustered Regularly Interspaced Short Palindromic Repeats (CRISPRs) in oral streptococci, as their profiles provide clues to the viruses that oral bacteria may be able to counteract. While there were some CRISPR spacers specific to each sample type, many more were shared across sites and were highly subject specific. Many CRISPR spacers matched viruses present in plaque, suggesting that the evolution of CRISPR loci may have been specific to plaque-derived viruses. Conclusions Our findings of subject specificity to both plaque-derived viruses and CRISPR profiles suggest that human viral ecology may be highly personalized. PMID:24981669

  15. The Contribution of Genetic Recombination to CRISPR Array Evolution

    PubMed Central

    Kupczok, Anne; Landan, Giddy; Dagan, Tal

    2015-01-01

    CRISPR (clustered regularly interspaced short palindromic repeats) is a microbial immune system against foreign DNA. Recognition sequences (spacers) encoded within the CRISPR array mediate the immune reaction in a sequence-specific manner. The known mechanisms for the evolution of CRISPR arrays include spacer acquisition from foreign DNA elements at the time of invasion and array erosion through spacer deletion. Here, we consider the contribution of genetic recombination between homologous CRISPR arrays to the evolution of spacer repertoire. Acquisition of spacers from exogenic arrays via recombination may confer the recipient with immunity against unencountered antagonists. For this purpose, we develop a novel method for the detection of recombination in CRISPR arrays by modeling the spacer order in arrays from multiple strains from the same species. Because the evolutionary signal of spacer recombination may be similar to that of pervasive spacer deletions or independent spacer acquisition, our method entails a robustness analysis of the recombination inference by a statistical comparison to resampled and perturbed data sets. We analyze CRISPR data sets from four bacterial species: two Gammaproteobacteria species harboring CRISPR type I and two Streptococcus species harboring CRISPR type II loci. We find that CRISPR array evolution in Escherichia coli and Streptococcus agalactiae can be explained solely by vertical inheritance and differential spacer deletion. In Pseudomonas aeruginosa, we find an excess of single spacers potentially incorporated into the CRISPR locus during independent acquisition events. In Streptococcus thermophilus, evidence for spacer acquisition by recombination is present in 5 out of 70 strains. Genetic recombination has been proposed to accelerate adaptation by combining beneficial mutations that arose in independent lineages. However, for most species under study, we find that CRISPR evolution is shaped mainly by spacer acquisition and

  16. Functional Analysis of Porphyromonas gingivalis W83 CRISPR-Cas Systems

    PubMed Central

    Burmistrz, Michał; Dudek, Bartosz; Staniec, Dominika; Rodriguez Martinez, Jose Ignacio; Bochtler, Matthias; Potempa, Jan

    2015-01-01

    ABSTRACT The CRISPR-Cas (clustered regularly interspaced short palindromic repeats/CRISPR-associated genes) system provides prokaryotic cells with an adaptive and heritable immune response to foreign genetic elements, such as viruses, plasmids, and transposons. It is present in the majority of Archaea and almost half of species of Bacteria. Porphyromonas gingivalis is an important human pathogen that has been proven to be an etiological agent of periodontitis and has been linked to systemic conditions, such as rheumatoid arthritis and cardiovascular disease. At least 95% of clinical strains of P. gingivalis carry CRISPR arrays, suggesting that these arrays play an important function in vivo. Here we show that all four CRISPR arrays present in the P. gingivalis W83 genome are transcribed. For one of the arrays, we demonstrate in vivo activity against double-stranded DNA constructs containing protospacer sequences accompanied at the 3′ end by an NGG protospacer-adjacent motif (PAM). Most of the 44 spacers present in the genome of P. gingivalis W83 share no significant similarity with any known sequences, although 4 spacers are similar to sequences from bacteria found in the oral cavity and the gastrointestinal tract. Four spacers match genomic sequences of the host; however, none of these is flanked at its 3′ terminus by the appropriate PAM element. IMPORTANCE The CRISPR-Cas (clustered regularly interspaced short palindromic repeats/CRISPR-associated genes) system is a unique system that provides prokaryotic cells with an adaptive and heritable immunity. In this report, we show that the CRISPR-Cas system of P. gingivalis, an important human pathogen associated with periodontitis and possibly also other conditions, such as rheumatoid arthritis and cardiovascular disease, is active and provides protection from foreign genetic elements. Importantly, the data presented here may be useful for better understanding the communication between cells in larger bacterial

  17. CRISPR-Cas Adaptive Immune Systems of the Sulfolobales: Unravelling Their Complexity and Diversity

    PubMed Central

    Garrett, Roger A.; Shah, Shiraz A.; Erdmann, Susanne; Liu, Guannan; Mousaei, Marzieh; León-Sobrino, Carlos; Peng, Wenfang; Gudbergsdottir, Soley; Deng, Ling; Vestergaard, Gisle; Peng, Xu; She, Qunxin

    2015-01-01

    The Sulfolobales have provided good model organisms for studying CRISPR-Cas systems of the crenarchaeal kingdom of the archaea. These organisms are infected by a wide range of exceptional archaea-specific viruses and conjugative plasmids, and their CRISPR-Cas systems generally exhibit extensive structural and functional diversity. They carry large and multiple CRISPR loci and often multiple copies of diverse Type I and Type III interference modules as well as more homogeneous adaptation modules. These acidothermophilic organisms have recently provided seminal insights into both the adaptation process, the diverse modes of interference, and their modes of regulation. The functions of the adaptation and interference modules tend to be loosely coupled and the stringency of the crRNA-DNA sequence matching during DNA interference is relatively low, in contrast to some more streamlined CRISPR-Cas systems of bacteria. Despite this, there is evidence for a complex and differential regulation of expression of the diverse functional modules in response to viral infection. Recent work also supports critical roles for non-core Cas proteins, especially during Type III-directed interference, and this is consistent with these proteins tending to coevolve with core Cas proteins. Various novel aspects of CRISPR-Cas systems of the Sulfolobales are considered including an alternative spacer acquisition mechanism, reversible spacer acquisition, the formation and significance of antisense CRISPR RNAs, and a novel mechanism for avoidance of CRISPR-Cas defense. Finally, questions regarding the basis for the complexity, diversity, and apparent redundancy, of the intracellular CRISPR-Cas systems are discussed. PMID:25764276

  18. CRISPR provides acquired resistance against viruses in prokaryotes.

    PubMed

    Barrangou, Rodolphe; Fremaux, Christophe; Deveau, Hélène; Richards, Melissa; Boyaval, Patrick; Moineau, Sylvain; Romero, Dennis A; Horvath, Philippe

    2007-03-23

    Clustered regularly interspaced short palindromic repeats (CRISPR) are a distinctive feature of the genomes of most Bacteria and Archaea and are thought to be involved in resistance to bacteriophages. We found that, after viral challenge, bacteria integrated new spacers derived from phage genomic sequences. Removal or addition of particular spacers modified the phage-resistance phenotype of the cell. Thus, CRISPR, together with associated cas genes, provided resistance against phages, and resistance specificity is determined by spacer-phage sequence similarity. PMID:17379808

  19. Using CRISPRs as a metagenomic tool to identify microbial hosts of a diffuse flow hydrothermal vent viral assemblage.

    PubMed

    Anderson, Rika E; Brazelton, William J; Baross, John A

    2011-07-01

    Metagenomic analyses of viruses have revealed widespread diversity in the viriosphere, but it remains a challenge to identify specific hosts for a viral assemblage. To address this problem, we analyze the viral metagenome of a northeast Pacific hydrothermal vent with a comprehensive database of spacers derived from the clustered regularly interspaced short palindromic repeat (CRISPR) putative immune system. CRISPR spacer matches to the marine vent virome suggest that viruses infecting hosts from diverse taxonomic groups are present in this vent environment. Comparative virome analyses show that CRISPR spacers from vent isolates and from thermophiles in general have a higher percentage of matches to the vent virome than to other marine or terrestrial hot spring viromes. However, a high percentage of hits to spacers from mesophilic hosts, combined with a moderately high modeled alpha diversity, suggest that the marine vent virome is comprised of viruses that have the potential to infect diverse taxonomic groups of multiple thermal regimes in both the bacterial and the archaeal domains. PMID:21410492

  20. Occurrence and Diversity of CRISPR-Cas Systems in the Genus Bifidobacterium

    PubMed Central

    Briner, Alexandra E.; Lugli, Gabriele Andrea; Milani, Christian; Duranti, Sabrina; Turroni, Francesca; Gueimonde, Miguel; Margolles, Abelardo; van Sinderen, Douwe; Ventura, Marco; Barrangou, Rodolphe

    2015-01-01

    CRISPR-Cas systems constitute adaptive immune systems for antiviral defense in bacteria. We investigated the occurrence and diversity of CRISPR-Cas systems in 48 Bifidobacterium genomes to gain insights into the diversity and co-evolution of CRISPR-Cas systems within the genus and investigate CRISPR spacer content. We identified the elements necessary for the successful targeting and inference of foreign DNA in select Type II CRISPR-Cas systems, including the tracrRNA and target PAM sequence. Bifidobacterium species have a very high frequency of CRISPR-Cas occurrence (77%, 37 of 48). We found that many Bifidobacterium species have unusually large and diverse CRISPR-Cas systems that contain spacer sequences showing homology to foreign genetic elements like prophages. A large number of CRISPR spacers in bifidobacteria show perfect homology to prophage sequences harbored in the chromosomes of other species of Bifidobacterium, including some spacers that self-target the chromosome. A correlation was observed between strains that lacked CRISPR-Cas systems and the number of times prophages in that chromosome were targeted by other CRISPR spacers. The presence of prophage-targeting CRISPR spacers and prophage content may shed light on evolutionary processes and strain divergence. Finally, elements of Type II CRISPR-Cas systems, including the tracrRNA and crRNAs, set the stage for the development of genome editing and genetic engineering tools. PMID:26230606

  1. Self-targeting by CRISPR: gene regulation or autoimmunity?

    PubMed Central

    Stern, Adi; Keren, Leeat; Wurtzel, Omri; Amitai, Gil; Sorek, Rotem

    2010-01-01

    CRISPR/Cas is a recently discovered prokaryotic immune system, which is based on small RNAs (“spacers”) that restrict phage and plasmid infection. It has been hypothesized that CRISPRs can also regulate self gene expression by utilizing spacers that target self genes. By analyzing CRISPRs from 330 organisms we found that one in every 250 spacers is self targeting, and that such self-targeting occurs in 18% of all CRISPR-bearing organisms. However, complete lack of conservation across species, combined with abundance of degraded repeats near self-targeting spacers, suggests that self-targeting is a consequence of autoimmunity rather than gene regulation. We propose that accidental incorporation of self nucleic-acids by CRISPR can incur an autoimmune fitness cost, which may explain the abundance of degraded CRISPR systems across prokaryotes. PMID:20598393

  2. Characterization of CRISPR RNA transcription by exploiting stranded metatranscriptomic data.

    PubMed

    Ye, Yuzhen; Zhang, Quan

    2016-07-01

    CRISPR-Cas systems are bacterial adaptive immune systems, each typically composed of a locus of cas genes and a CRISPR array of spacers flanked by repeats. Processed transcripts of CRISPR arrays (crRNAs) play important roles in the interference process mediated by these systems, guiding targeted immunity. Here we developed computational approaches that allow us to characterize the expression of many CRISPRs in their natural environments, using community RNA-seq (metatranscriptomic) data. By exploiting public human gut metatranscriptomic data sets, we studied the expression of 56 repeat-sequence types of CRISPRs, revealing that most CRISPRs are transcribed in one direction (producing crRNAs). In rarer cases, including a type II system associated with Bacteroides fragilis, CRISPRs are transcribed in both directions. Type III CRISPR-Cas systems were found in the microbiomes, but metatranscriptomic reads were barely found for their CRISPRs. We observed individual-level variation of the crRNA transcription, and an even greater transcription of a CRISPR from the antisense strand than the crRNA strand in one sample. The orientations of CRISPR expression implicated by metatranscriptomic data are largely in agreement with prior predictions for CRISPRs, with exceptions. Our study shows the promise of exploiting community RNA-seq data for investigating the transcription of CRISPR-Cas systems. PMID:27190232

  3. Comparative Analysis of Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR) of Streptococcus thermophilus St-I and its Bacteriophage-Insensitive Mutants (BIM) Derivatives.

    PubMed

    Li, Wan; Bian, Xin; Evivie, Smith Etareri; Huo, Gui-Cheng

    2016-09-01

    The CRISPR-Cas (CRISPR together with CRISPR-associated proteins) modules are the adaptive immune system, acting as an adaptive and heritable immune system in bacteria and archaea. CRISPR-based immunity acts by integrating short virus sequences in the cell's CRISPR locus, allowing the cell to remember, recognize, and clear infections. In this study, the homology of CRISPRs sequence in BIMs (bacteriophage-insensitive mutants) of Streptococcus thermophilus St-I were analyzed. Secondary structures of the repeats and the PAMs (protospacer-associated motif) of each CRISPR locus were also predicted. Results showed that CRISPR1 has 27 repeat-spacer units, 5 of them had duplicates; CRISPR2 has one repeat-spacer unit; CRISPR3 has 28 repeat-spacer units. Only BIM1 had a new spacer acquisition in CRISPR3, while BIM2 and BIM3 had no new spacers' insertion, thus indicating that while most CRISPR1 were more active than CRISPR3, new spacer acquisition occurred just in CRSPR3 in some situations. These findings will help establish the foundation for the study of CRSPR-Cas systems in lactic acid bacteria. PMID:27378131

  4. Diversity of CRISPR-Cas-Mediated Mechanisms of Adaptive Immunity in Prokaryotes and Their Application in Biotechnology.

    PubMed

    Savitskaya, E E; Musharova, O S; Severinov, K V

    2016-07-01

    CRISPR-Cas systems of adaptive immunity in prokaryotes consist of CRISPR arrays (clusters of short repeated genomic DNA fragments separated by unique spacer sequences) and cas (CRISPR-associated) genes that provide cells with resistance against bacteriophages and plasmids containing protospacers, i.e. sequences complementary to CRISPR array spacers. CRISPR-Cas systems are responsible for two different cellular phenomena: CRISPR adaptation and CRISPR interference. CRISPR adaptation is cell genome modification by integration of new spacers that represents a unique case of Lamarckian inheritance. CRISPR interference involves specific recognition of protospacers in foreign DNA followed by introduction of breaks into this DNA and its destruction. According to the mechanisms of action, CRISPR-Cas systems have been subdivided into two classes, five types, and numerous subtypes. The development of techniques based on CRISPR interference mediated by the Type II system Cas9 protein has revolutionized the field of genome editing because it allows selective, efficient, and relatively simple introduction of directed breaks into target DNA loci. However, practical applications of CRISPR-Cas systems are not limited only to genome editing. In this review, we focus on the variety of CRISPR interference and CRISPR adaptation mechanisms and their prospective use in biotechnology. PMID:27449612

  5. Diversification of CRISPR within coexisting genotypes in a natural population of the bloom-forming cyanobacterium Microcystis aeruginosa.

    PubMed

    Kuno, Sotaro; Sako, Yoshihiko; Yoshida, Takashi

    2014-05-01

    The clustered regularly interspaced short palindromic repeat (CRISPR) confers adaptive immunity against phages via sequence fragments (spacers) derived from mobile genetic elements (MGEs), thus serving as a memory of past host-phage co-evolution. To understand co-evolutionary dynamics in natural settings, we examined CRISPR diversity in 94 isolates of Microcystis aeruginosa from a small eutrophic pond. Fifty-two isolates possessed the CRISPR and were classified into 22 different CRISPR-related genotypes, suggesting stable coexistence of multiple genotypes with different phage susceptibility. Seven CRISPR-related genotypes showed variation of spacers at the leader-end of the CRISPR, indicating active spacer addition from MGEs. An abundant phylotype (based on the internal transcribed spacer of the rRNA gene) contained different CRISPR spacer genotypes with the same CRISPR-associated cas2 gene. These data suggest that selective phage infection and possibly plasmid transfer may contribute to maintenance of multiple genotypes of M. aeruginosa and that rapid co-evolution within a host-phage combination may be driven by increased contact frequency. Forty-two isolates lacked detectable CRISPR loci. Relative abundance of the CRISPR-lacking genotypes in the population suggests that CRISPR loss may be selected for enhanced genetic exchange. PMID:24586036

  6. CRISPR Primer Designer: Design primers for knockout and chromosome imaging CRISPR-Cas system.

    PubMed

    Yan, Meng; Zhou, Shi-Rong; Xue, Hong-Wei

    2015-07-01

    The clustered regularly interspaced short palindromic repeats (CRISPR)-associated system enables biologists to edit genomes precisely and provides a powerful tool for perturbing endogenous gene regulation, modulation of epigenetic markers, and genome architecture. However, there are concerns about the specificity of the system, especially the usages of knocking out a gene. Previous designing tools either were mostly built-in websites or ran as command-line programs, and none of them ran locally and acquired a user-friendly interface. In addition, with the development of CRISPR-derived systems, such as chromosome imaging, there were still no tools helping users to generate specific end-user spacers. We herein present CRISPR Primer Designer for researchers to design primers for CRISPR applications. The program has a user-friendly interface, can analyze the BLAST results by using multiple parameters, score for each candidate spacer, and generate the primers when using a certain plasmid. In addition, CRISPR Primer Designer runs locally and can be used to search spacer clusters, and exports primers for the CRISPR-Cas system-based chromosome imaging system. PMID:25319067

  7. Spacer fluids

    SciTech Connect

    Wilson, W.N.; Bradshaw, R.D.; Wilton, B.S.; Carpenter, R.B.

    1992-05-19

    This patent describes a method for cementing a wellbore penetrating an earth formation into which a conduit extends, the wellbore having a space occupied by a drilling fluid. It comprises displacing the drilling fluid from the space with a spacer fluid comprising: sulfonated styrene-maleic anhydride copolymer, bentonite, welan gum, surfactant and a weighting agent; and displacing the spacer composition and filling the wellbore space with a settable cement composition.

  8. Crass: identification and reconstruction of CRISPR from unassembled metagenomic data.

    PubMed

    Skennerton, Connor T; Imelfort, Michael; Tyson, Gene W

    2013-05-01

    Clustered regularly interspaced short palindromic repeats (CRISPR) constitute a bacterial and archaeal adaptive immune system that protect against bacteriophage (phage). Analysis of CRISPR loci reveals the history of phage infections and provides a direct link between phage and their hosts. All current tools for CRISPR identification have been developed to analyse completed genomes and are not well suited to the analysis of metagenomic data sets, where CRISPR loci are difficult to assemble owing to their repetitive structure and population heterogeneity. Here, we introduce a new algorithm, Crass, which is designed to identify and reconstruct CRISPR loci from raw metagenomic data without the need for assembly or prior knowledge of CRISPR in the data set. CRISPR in assembled data are often fragmented across many contigs/scaffolds and do not fully represent the population heterogeneity of CRISPR loci. Crass identified substantially more CRISPR in metagenomes previously analysed using assembly-based approaches. Using Crass, we were able to detect CRISPR that contained spacers with sequence homology to phage in the system, which would not have been identified using other approaches. The increased sensitivity, specificity and speed of Crass will facilitate comprehensive analysis of CRISPRs in metagenomic data sets, increasing our understanding of phage-host interactions and co-evolution within microbial communities. PMID:23511966

  9. Adaptation in CRISPR-Cas Systems.

    PubMed

    Sternberg, Samuel H; Richter, Hagen; Charpentier, Emmanuelle; Qimron, Udi

    2016-03-17

    Clustered regularly interspaced short palindromic repeats (CRISPR) and CRISPR-associated (Cas) proteins constitute an adaptive immune system in prokaryotes. The system preserves memories of prior infections by integrating short segments of foreign DNA, termed spacers, into the CRISPR array in a process termed adaptation. During the past 3 years, significant progress has been made on the genetic requirements and molecular mechanisms of adaptation. Here we review these recent advances, with a focus on the experimental approaches that have been developed, the insights they generated, and a proposed mechanism for self- versus non-self-discrimination during the process of spacer selection. We further describe the regulation of adaptation and the protein players involved in this fascinating process that allows bacteria and archaea to harbor adaptive immunity. PMID:26949040

  10. CRISPR sabotage.

    PubMed

    van der Oost, John; Brouns, Stan J J

    2015-01-01

    The biological arms race generally involves the rapid co-evolution of anti-virus systems in host organisms and of anti-anti-virus systems in their viral parasites. The CRISPR-Cas system is an example of a prokaryotic immune system in which such co-evolution occurs, as was recently demonstrated by the characterization of a set of viral anti-CRISPR proteins. PMID:26553202

  11. Germ warfare in a microbial mat community: CRISPRs provide insights into the co-evolution of host and viral genomes.

    PubMed

    Heidelberg, John F; Nelson, William C; Schoenfeld, Thomas; Bhaya, Devaki

    2009-01-01

    CRISPR arrays and associated cas genes are widespread in bacteria and archaea and confer acquired resistance to viruses. To examine viral immunity in the context of naturally evolving microbial populations we analyzed genomic data from two thermophilic Synechococcus isolates (Syn OS-A and Syn OS-B') as well as a prokaryotic metagenome and viral metagenome derived from microbial mats in hotsprings at Yellowstone National Park. Two distinct CRISPR types, distinguished by the repeat sequence, are found in both the Syn OS-A and Syn OS-B' genomes. The genome of Syn OS-A contains a third CRISPR type with a distinct repeat sequence, which is not found in Syn OS-B', but appears to be shared with other microorganisms that inhabit the mat. The CRISPR repeats identified in the microbial metagenome are highly conserved, while the spacer sequences (hereafter referred to as "viritopes" to emphasize their critical role in viral immunity) were mostly unique and had no high identity matches when searched against GenBank. Searching the viritopes against the viral metagenome, however, yielded several matches with high similarity some of which were within a gene identified as a likely viral lysozyme/lysin protein. Analysis of viral metagenome sequences corresponding to this lysozyme/lysin protein revealed several mutations all of which translate into silent or conservative mutations which are unlikely to affect protein function, but may help the virus evade the host CRISPR resistance mechanism. These results demonstrate the varied challenges presented by a natural virus population, and support the notion that the CRISPR/viritope system must be able to adapt quickly to provide host immunity. The ability of metagenomics to track population-level variation in viritope sequences allows for a culture-independent method for evaluating the fast co-evolution of host and viral genomes and its consequence on the structuring of complex microbial communities. PMID:19132092

  12. Impact of AlN Spacer on Analog Performance of Lattice-Matched AlInN/AlN/GaN MOSHEMT

    NASA Astrophysics Data System (ADS)

    Jena, Kanjalochan; Swain, Raghunandan; Lenka, T. R.

    2016-04-01

    In this work, a detailed investigation of the impact of spacer layer thickness on analog performance of an AlInN/AlN/GaN metal oxide semiconductor high electron mobility transistor (MOSHEMT) is carried out. A thorough analysis of the key figure-of-merits such as threshold voltage (V th), two-dimensional electron gas sheet charge density (n s), drain current (I d), transconductance (g m), and gate leakage current are performed for various spacer thicknesses ranging from 0.5 nm to 1.8 nm. From the two-dimensional ATLAS device simulation results, it is observed that the performance of AlInN/AlN/GaN MOSHEMT is affected by the variation of spacer thickness. Also, we have developed mathematical expressions for the evaluation of V th , n s , I d , g m and gate leakage current for the proposed device. The model results and technology computer-aided design simulation results are verified and also found to be satisfactory. Improved sheet charge density and superior analog performance is observed due to the insertion of the AlN spacer. Suppression in the forward gate current is observed due to the insertion of the AlN spacer which made it possible to apply a high gate voltage in the transistor operation. From the fabrication point of view, it is also feasible to utilize the existing complementary metal-oxide-semiconductor process flows to fabricate the proposed device.

  13. Characterization of CRISPR RNA transcription by exploiting stranded metatranscriptomic data

    PubMed Central

    Ye, Yuzhen; Zhang, Quan

    2016-01-01

    CRISPR–Cas systems are bacterial adaptive immune systems, each typically composed of a locus of cas genes and a CRISPR array of spacers flanked by repeats. Processed transcripts of CRISPR arrays (crRNAs) play important roles in the interference process mediated by these systems, guiding targeted immunity. Here we developed computational approaches that allow us to characterize the expression of many CRISPRs in their natural environments, using community RNA-seq (metatranscriptomic) data. By exploiting public human gut metatranscriptomic data sets, we studied the expression of 56 repeat-sequence types of CRISPRs, revealing that most CRISPRs are transcribed in one direction (producing crRNAs). In rarer cases, including a type II system associated with Bacteroides fragilis, CRISPRs are transcribed in both directions. Type III CRISPR–Cas systems were found in the microbiomes, but metatranscriptomic reads were barely found for their CRISPRs. We observed individual-level variation of the crRNA transcription, and an even greater transcription of a CRISPR from the antisense strand than the crRNA strand in one sample. The orientations of CRISPR expression implicated by metatranscriptomic data are largely in agreement with prior predictions for CRISPRs, with exceptions. Our study shows the promise of exploiting community RNA-seq data for investigating the transcription of CRISPR–Cas systems. PMID:27190232

  14. CRISPR Critters and CRISPR Cracks.

    PubMed

    Charo, R Alta; Greely, Henry T

    2015-01-01

    This essay focuses on possible nonhuman applications of CRISPR/Cas9 that are likely to be widely overlooked because they are unexpected and, in some cases, perhaps even "frivolous." We look at five uses for "CRISPR Critters": wild de-extinction, domestic de-extinction, personal whim, art, and novel forms of disease prevention. We then discuss the current regulatory framework and its possible limitations in those contexts. We end with questions about some deeper issues raised by the increased human control over life on earth offered by genome editing. PMID:26632355

  15. Strong bias in the bacterial CRISPR elements that confer immunity to phage.

    PubMed

    Paez-Espino, David; Morovic, Wesley; Sun, Christine L; Thomas, Brian C; Ueda, Ken-ichi; Stahl, Buffy; Barrangou, Rodolphe; Banfield, Jillian F

    2013-01-01

    Clustered regularly interspaced short palindromic repeats (CRISPR)-Cas systems provide adaptive immunity against phage via spacer-encoded CRISPR RNAs that are complementary to invasive nucleic acids. Here, we challenge Streptococcus thermophilus with a bacteriophage, and used PCR-based metagenomics to monitor phage-derived spacers daily for 15 days in two experiments. Spacers that target the host chromosome are infrequent and strongly selected against, suggesting autoimmunity is lethal. In experiments that recover over half a million spacers, we observe early dominance by a few spacer sub-populations and rapid oscillations in sub-population abundances. In two CRISPR systems and in replicate experiments, a few spacers account for the majority of spacer sequences. Nearly all phage locations targeted by the acquired spacers have a proto-spacer adjacent motif (PAM), indicating PAMs are involved in spacer acquisition. We detect a strong and reproducible bias in the phage genome locations from which spacers derive. This may reflect selection for specific spacers based on location and effectiveness. PMID:23385575

  16. Coevolution of CRISPR bacteria and phage in 2 dimensions

    NASA Astrophysics Data System (ADS)

    Han, Pu; Deem, Michael

    2014-03-01

    CRISPR (cluster regularly interspaced short palindromic repeats) is a newly discovered adaptive, heritable immune system of prokaryotes. It can prevent infection of prokaryotes by phage. Most bacteria and almost all archae have CRISPR. The CRISPR system incorporates short nucleotide sequences from viruses. These incorporated sequences provide a historical record of the host and predator coevolution. We simulate the coevolution of bacteria and phage in 2 dimensions. Each phage has multiple proto-spacers that the bacteria can incorporate. Each bacterium can store multiple spacers in its CRISPR. Phages can escape recognition by the CRISPR system via point mutation or recombination. We will discuss the different evolutionary consequences of point mutation or recombination on the coevolution of bacteria and phage. We will also discuss an intriguing ``dynamic phase transition'' in the number of phage as a function of time and mutation rate. We will show that due to the arm race between phages and bacteria, the frequency of spacers and proto-spacers in a population can oscillate quite rapidly.

  17. CRISPR Content Correlates with the Pathogenic Potential of Escherichia coli

    PubMed Central

    García-Gutiérrez, Enriqueta; Almendros, Cristóbal; Mojica, Francisco J. M.; Guzmán, Noemí M.; García-Martínez, Jesús

    2015-01-01

    Guide RNA molecules (crRNA) produced from clustered regularly interspaced short palindromic repeat (CRISPR) arrays, altogether with effector proteins (Cas) encoded by cognate cas (CRISPR associated) genes, mount an interference mechanism (CRISPR-Cas) that limits acquisition of foreign DNA in Bacteria and Archaea. The specificity of this action is provided by the repeat intervening spacer carried in the crRNA, which upon hybridization with complementary sequences enables their degradation by a Cas endonuclease. Moreover, CRISPR arrays are dynamic landscapes that may gain new spacers from infecting elements or lose them for example during genome replication. Thus, the spacer content of a strain determines the diversity of sequences that can be targeted by the corresponding CRISPR-Cas system reflecting its functionality. Most Escherichia coli strains possess either type I-E or I-F CRISPR-Cas systems. To evaluate their impact on the pathogenicity of the species, we inferred the pathotype and pathogenic potential of 126 strains of this and other closely related species and analyzed their repeat content. Our results revealed a negative correlation between the number of I-E CRISPR units in this system and the presence of pathogenicity traits: the median number of repeats was 2.5-fold higher for commensal isolates (with 29.5 units, range 0–53) than for pathogenic ones (12.0, range 0–42). Moreover, the higher the number of virulence factors within a strain, the lower the repeat content. Additionally, pathogenic strains of distinct ecological niches (i.e., intestinal or extraintestinal) differ in repeat counts. Altogether, these findings support an evolutionary connection between CRISPR and pathogenicity in E. coli. PMID:26136211

  18. Crystal Structure of Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR)-associated Csn2 Protein Revealed Ca[superscript 2+]-dependent Double-stranded DNA Binding Activity

    SciTech Connect

    Nam, Ki Hyun; Kurinov, Igor; Ke, Ailong

    2012-05-22

    Clustered regularly interspaced short palindromic repeats (CRISPR) and their associated protein genes (cas genes) are widespread in bacteria and archaea. They form a line of RNA-based immunity to eradicate invading bacteriophages and malicious plasmids. A key molecular event during this process is the acquisition of new spacers into the CRISPR loci to guide the selective degradation of the matching foreign genetic elements. Csn2 is a Nmeni subtype-specific cas gene required for new spacer acquisition. Here we characterize the Enterococcus faecalis Csn2 protein as a double-stranded (ds-) DNA-binding protein and report its 2.7 {angstrom} tetrameric ring structure. The inner circle of the Csn2 tetrameric ring is {approx}26 {angstrom} wide and populated with conserved lysine residues poised for nonspecific interactions with ds-DNA. Each Csn2 protomer contains an {alpha}/{beta} domain and an {alpha}-helical domain; significant hinge motion was observed between these two domains. Ca{sup 2+} was located at strategic positions in the oligomerization interface. We further showed that removal of Ca{sup 2+} ions altered the oligomerization state of Csn2, which in turn severely decreased its affinity for ds-DNA. In summary, our results provided the first insight into the function of the Csn2 protein in CRISPR adaptation by revealing that it is a ds-DNA-binding protein functioning at the quaternary structure level and regulated by Ca{sup 2+} ions.

  19. CRISPR Immunological Memory Requires a Host Factor for Specificity.

    PubMed

    Nuñez, James K; Bai, Lawrence; Harrington, Lucas B; Hinder, Tracey L; Doudna, Jennifer A

    2016-06-16

    Bacteria and archaea employ adaptive immunity against foreign genetic elements using CRISPR-Cas systems. To generate immunological memory, the Cas1-Cas2 protein complex captures 30-40 base pair segments of foreign DNA and catalyzes their integration into the host genome as unique spacer sequences. Although spacers are inserted strictly at the A-T-rich leader end of CRISPR loci in vivo, the molecular mechanism of leader-specific spacer integration remains poorly understood. Here we show that the E. coli integration host factor (IHF) protein is required for spacer acquisition in vivo and for integration into linear DNA in vitro. IHF binds to the leader sequence and induces a sharp DNA bend, allowing the Cas1-Cas2 integrase to catalyze the first integration reaction at the leader-repeat border. Together, these results reveal that Cas1-Cas2-mediated spacer integration requires IHF-induced target DNA bending and explain the elusive role of CRISPR leader sequences during spacer acquisition. PMID:27211867

  20. Comparative analysis of CRISPR loci in different Listeria monocytogenes lineages.

    PubMed

    Di, Huiling; Ye, Lei; Yan, He; Meng, Hecheng; Yamasak, Shinji; Shi, Lei

    2014-11-21

    Listeria monocytogenes, an important food-borne pathogen, causes high mortality rate of listeriosis. Pan-genomic comparisons revealed the species genome of L. monocytogenes is highly stable but not completely clonal. The population structure of this species displays at least four evolutionary lineages (I-IV). Isolates of different lineages displayed distinct genetic, phenotypic and ecologic characteristics, which appear to affect their ability to be transmitted through foods and to cause human disease, as well as their ability to thrive in markedly phage-rich environments. CRISPR (clustered regularly interspaced short palindrome repeats), a recently described adaptive immunity system, not only confers defense against invading elements derived from bacteriophages or plasmids in many bacteria and archaeal, but also displays strains-level variations in almost any given endowed species. This work was aimed to investigate CRISPR diversity in L. monocytogenes strains of different lineages and estimated the potential practicability of the CRISPR-based approach to resolve this species' biodiversity. Only a third of strains contained all three CRISPR loci (here defined as LMa, LMb and LMc) at same time. Combined the strain-level variations in presence/absence of each CRISPR locus and its relative size and spacer arrangements, a total of 29 CRISPR genotypes and 11 groups were defined within a collection of 128 strains covering all serotypes. The CRISPR-based approach showed powerful ability to subtype the more commonly food-borne isolates of serotype 1/2a (lineage II) and serotypes 1/2b (lineage I), but limited by the absence of typical CRISPR structure in many lineage I isolates. Strikingly, we found a long associated cas1 gene as well as two self-targeting LMb spacers accidently homologous with endogenous genes in a fraction of serotype 1/2a isolations, demonstrated that CRISPR I B system might involve in bacterial physiology besides antiviral immunity. PMID:25445602

  1. Physical model of the immune response of bacteria against bacteriophage through the adaptive CRISPR-Cas immune system

    NASA Astrophysics Data System (ADS)

    Han, Pu; Niestemski, Liang Ren; Barrick, Jeffrey E.; Deem, Michael W.

    2013-04-01

    Bacteria and archaea have evolved an adaptive, heritable immune system that recognizes and protects against viruses or plasmids. This system, known as the CRISPR-Cas system, allows the host to recognize and incorporate short foreign DNA or RNA sequences, called ‘spacers’ into its CRISPR system. Spacers in the CRISPR system provide a record of the history of bacteria and phage coevolution. We use a physical model to study the dynamics of this coevolution as it evolves stochastically over time. We focus on the impact of mutation and recombination on bacteria and phage evolution and evasion. We discuss the effect of different spacer deletion mechanisms on the coevolutionary dynamics. We make predictions about bacteria and phage population growth, spacer diversity within the CRISPR locus, and spacer protection against the phage population.

  2. CRISPRs: Molecular Signatures Used for Pathogen Subtyping

    PubMed Central

    Dudley, Edward G.

    2014-01-01

    Rapid and accurate strain identification is paramount in the battle against microbial outbreaks, and several subtyping approaches have been developed. One such method uses clustered regular interspaced short palindromic repeats (CRISPRs), DNA repeat elements that are present in approximately half of all bacteria. Though their signature function is as an adaptive immune system against invading DNA such as bacteriophages and plasmids, CRISPRs also provide an excellent framework for pathogen tracking and evolutionary studies. Analysis of the spacer DNA sequences that reside between the repeats has been tremendously useful for bacterial subtyping during molecular epidemiological investigations. Subtyping, or strain identification, using CRISPRs has been employed in diverse Gram-positive and Gram-negative bacteria, including Mycobacterium tuberculosis, Salmonella enterica, and the plant pathogen Erwinia amylovora. This review discusses the several ways in which CRISPR sequences are exploited for subtyping. This includes the well-established spoligotyping methodologies that have been used for 2 decades to type Mycobacterium species, as well as in-depth consideration of newer, higher-throughput CRISPR-based protocols. PMID:24162568

  3. Comparative analysis of Cas6b processing and CRISPR RNA stability

    PubMed Central

    Richter, Hagen; Lange, Sita J.; Backofen, Rolf; Randau, Lennart

    2013-01-01

    The prokaryotic antiviral defense systems CRISPR (clustered regularly interspaced short palindromic repeats)/Cas (CRISPR-associated) employs short crRNAs (CRISPR RNAs) to target invading viral nucleic acids. A short spacer sequence of these crRNAs can be derived from a viral genome and recognizes a reoccurring attack of a virus via base complementarity. We analyzed the effect of spacer sequences on the maturation of crRNAs of the subtype I-B Methanococcus maripaludis C5 CRISPR cluster. The responsible endonuclease, termed Cas6b, bound non-hydrolyzable repeat RNA as a dimer and mature crRNA as a monomer. Comparative analysis of Cas6b processing of individual spacer-repeat-spacer RNA substrates and crRNA stability revealed the potential influence of spacer sequence and length on these parameters. Correlation of these observations with the variable abundance of crRNAs visualized by deep-sequencing analyses is discussed. Finally, insertion of spacer and repeat sequences with archaeal poly-T termination signals is suggested to be prevented in archaeal CRISPR/Cas systems. PMID:23392318

  4. Costs of CRISPR-Cas-mediated resistance in Streptococcus thermophilus

    PubMed Central

    Vale, Pedro F.; Lafforgue, Guillaume; Gatchitch, Francois; Gardan, Rozenn; Moineau, Sylvain; Gandon, Sylvain

    2015-01-01

    CRISPR-Cas is a form of adaptive sequence-specific immunity in microbes. This system offers unique opportunities for the study of coevolution between bacteria and their viral pathogens, bacteriophages. A full understanding of the coevolutionary dynamics of CRISPR-Cas requires knowing the magnitude of the cost of resisting infection. Here, using the gram-positive bacterium Streptococcus thermophilus and its associated virulent phage 2972, a well-established model system harbouring at least two type II functional CRISPR-Cas systems, we obtained different fitness measures based on growth assays in isolation or in pairwise competition. We measured the fitness cost associated with different components of this adaptive immune system: the cost of Cas protein expression, the constitutive cost of increasing immune memory through additional spacers, and the conditional costs of immunity during phage exposure. We found that Cas protein expression is particularly costly, as Cas-deficient mutants achieved higher competitive abilities than the wild-type strain with functional Cas proteins. Increasing immune memory by acquiring up to four phage-derived spacers was not associated with fitness costs. In addition, the activation of the CRISPR-Cas system during phage exposure induces significant but small fitness costs. Together these results suggest that the costs of the CRISPR-Cas system arise mainly due to the maintenance of the defence system. We discuss the implications of these results for the evolution of CRISPR-Cas-mediated immunity. PMID:26224708

  5. Phylogenetic Distribution of CRISPR-Cas Systems in Antibiotic-Resistant Pseudomonas aeruginosa

    PubMed Central

    van Belkum, Alex; Soriaga, Leah B.; LaFave, Matthew C.; Akella, Srividya; Veyrieras, Jean-Baptiste; Barbu, E. Magda; Shortridge, Dee; Blanc, Bernadette; Hannum, Gregory; Zambardi, Gilles; Miller, Kristofer; Enright, Mark C.; Mugnier, Nathalie; Brami, Daniel; Schicklin, Stéphane; Felderman, Martina; Schwartz, Ariel S.; Richardson, Toby H.; Peterson, Todd C.; Hubby, Bolyn

    2015-01-01

    ABSTRACT Pseudomonas aeruginosa is an antibiotic-refractory pathogen with a large genome and extensive genotypic diversity. Historically, P. aeruginosa has been a major model system for understanding the molecular mechanisms underlying type I clustered regularly interspaced short palindromic repeat (CRISPR) and CRISPR-associated protein (CRISPR-Cas)-based bacterial immune system function. However, little information on the phylogenetic distribution and potential role of these CRISPR-Cas systems in molding the P. aeruginosa accessory genome and antibiotic resistance elements is known. Computational approaches were used to identify and characterize CRISPR-Cas systems within 672 genomes, and in the process, we identified a previously unreported and putatively mobile type I-C P. aeruginosa CRISPR-Cas system. Furthermore, genomes harboring noninhibited type I-F and I-E CRISPR-Cas systems were on average ~300 kb smaller than those without a CRISPR-Cas system. In silico analysis demonstrated that the accessory genome (n = 22,036 genes) harbored the majority of identified CRISPR-Cas targets. We also assembled a global spacer library that aided the identification of difficult-to-characterize mobile genetic elements within next-generation sequencing (NGS) data and allowed CRISPR typing of a majority of P. aeruginosa strains. In summary, our analysis demonstrated that CRISPR-Cas systems play an important role in shaping the accessory genomes of globally distributed P. aeruginosa isolates. PMID:26604259

  6. CRISPR adaptation biases explain preference for acquisition of foreign DNA

    PubMed Central

    Yosef, Ido; Auster, Oren; Manor, Miriam; Amitai, Gil; Edgar, Rotem; Qimron, Udi; Sorek, Rotem

    2015-01-01

    In the process of CRISPR adaptation, short pieces of DNA (“spacers”) are acquired from foreign elements and integrated into the CRISPR array. It so far remained a mystery how spacers are preferentially acquired from the foreign DNA while the self chromosome is avoided. Here we show that spacer acquisition is replication-dependent, and that DNA breaks formed at stalled replication forks promote spacer acquisition. Chromosomal hotspots of spacer acquisition were confined by Chi sites, which are sequence octamers highly enriched on the bacterial chromosome, suggesting that these sites limit spacer acquisition from self DNA. We further show that the avoidance of “self” is mediated by the RecBCD dsDNA break repair complex. Our results suggest that in E. coli, acquisition of new spacers depends on RecBCD-mediated processing of dsDNA breaks occurring primarily at replication forks, and that the preference for foreign DNA is achieved through the higher density of Chi sites on the self chromosome, in combination with the higher number of forks on the foreign DNA. This model explains the strong preference to acquire spacers from both high copy plasmids and phages. PMID:25874675

  7. Spatiotemporal Control of Type III-A CRISPR-Cas Immunity: Coupling DNA Degradation with the Target RNA Recognition.

    PubMed

    Kazlauskiene, Migle; Tamulaitis, Gintautas; Kostiuk, Georgij; Venclovas, Česlovas; Siksnys, Virginijus

    2016-04-21

    Streptococcus thermophilus (St) type III-A CRISPR-Cas system restricts MS2 RNA phage and cuts RNA in vitro. However, the CRISPR array spacers match DNA phages, raising the question: does the St CRISPR-Cas system provide immunity by erasing phage mRNA or/and by eliminating invading DNA? We show that it does both. We find that (1) base-pairing between crRNA and target RNA activates single-stranded DNA (ssDNA) degradation by StCsm; (2) ssDNase activity is confined to the HD-domain of Cas10; (3) target RNA cleavage by the Csm3 RNase suppresses Cas10 DNase activity, ensuring temporal control of DNA degradation; and (4) base-pairing between crRNA 5'-handle and target RNA 3'-flanking sequence inhibits Cas10 ssDNase to prevent self-targeting. We propose that upon phage infection, crRNA-guided StCsm binding to the emerging transcript recruits Cas10 DNase to the actively transcribed phage DNA, resulting in degradation of both the transcript and phage DNA, but not the host DNA. PMID:27105119

  8. Holding a grudge: persisting anti-phage CRISPR immunity in multiple human gut microbiomes.

    PubMed

    Mick, Eran; Stern, Adi; Sorek, Rotem

    2013-05-01

    The CRISPR (clustered regularly interspaced short palindromic repeats)/Cas (CRISPR-associated) system of bacteria and archaea constitutes a mechanism of acquired adaptive immunity against phages, which is based on genome-encoded markers of previously infecting phage sequences ("spacers"). As a repository of phage sequences, these spacers make the system particularly suitable for elucidating phage-bacteria interactions in metagenomic studies. Recent metagenomic analyses of CRISPRs associated with the human microbiome intriguingly revealed conserved "memory spacers" shared by bacteria in multiple unrelated, geographically separated individuals. Here, we discuss possible avenues for explaining this phenomenon by integrating insights from CRISPR biology and phage-bacteria ecology, with a special focus on the human gut. We further explore the growing body of evidence for the role of CRISPR/Cas in regulating the interplay between bacteria and lysogenic phages, which may be intimately related to the presence of memory spacers and sheds new light on the multifaceted biological and ecological modes of action of CRISPR/Cas. PMID:23439321

  9. Imipenem represses CRISPR-Cas interference of DNA acquisition through H-NS stimulation in Klebsiella pneumoniae

    PubMed Central

    Lin, Tzu-Lung; Pan, Yi-Jiun; Hsieh, Pei-Fang; Hsu, Chun-Ru; Wu, Meng-Chuan; Wang, Jin-Town

    2016-01-01

    Analysis of the genome of Klebsiella pneumoniae NTUH-K2044 strain revealed the presence of two clustered regularly interspaced short palindromic repeats (CRISPR) arrays separated with CRISPR-associated (cas) genes. Carbapenem-resistant K. pneumoniae isolates were observed to be less likely to have CRISPR-Cas than sensitive strains (5/85 vs. 22/132). Removal of the transcriptional repressor, H-NS, was shown to prevent the transformation of plasmids carrying a spacer and putative proto-spacer adjacent motif (PAM). The CRISPR-Cas system also decreased pUC-4K plasmid stability, resulting in plasmid loss from the bacteria with acquisition of new spacers. Analysis of the acquired proto-spacers in pUC-4K indicated that 5′-TTN-3′ was the preferred PAM in K. pneumoniae. Treatment of cells by imipenem induced hns expression, thereby decreasing cas3 expression and consequently repressed CRISPR-Cas activity resulted in increase of plasmid stability. In conclusion, NTUH-K2044 CRISPR-Cas contributes to decrease of plasmid transformation and stability. Through repression of CRISPR-Cas activity by induced H-NS, bacteria might be more able to acquire DNA to confront the challenge of imipenem. PMID:27531594

  10. Imipenem represses CRISPR-Cas interference of DNA acquisition through H-NS stimulation in Klebsiella pneumoniae.

    PubMed

    Lin, Tzu-Lung; Pan, Yi-Jiun; Hsieh, Pei-Fang; Hsu, Chun-Ru; Wu, Meng-Chuan; Wang, Jin-Town

    2016-01-01

    Analysis of the genome of Klebsiella pneumoniae NTUH-K2044 strain revealed the presence of two clustered regularly interspaced short palindromic repeats (CRISPR) arrays separated with CRISPR-associated (cas) genes. Carbapenem-resistant K. pneumoniae isolates were observed to be less likely to have CRISPR-Cas than sensitive strains (5/85 vs. 22/132). Removal of the transcriptional repressor, H-NS, was shown to prevent the transformation of plasmids carrying a spacer and putative proto-spacer adjacent motif (PAM). The CRISPR-Cas system also decreased pUC-4K plasmid stability, resulting in plasmid loss from the bacteria with acquisition of new spacers. Analysis of the acquired proto-spacers in pUC-4K indicated that 5'-TTN-3' was the preferred PAM in K. pneumoniae. Treatment of cells by imipenem induced hns expression, thereby decreasing cas3 expression and consequently repressed CRISPR-Cas activity resulted in increase of plasmid stability. In conclusion, NTUH-K2044 CRISPR-Cas contributes to decrease of plasmid transformation and stability. Through repression of CRISPR-Cas activity by induced H-NS, bacteria might be more able to acquire DNA to confront the challenge of imipenem. PMID:27531594

  11. Mobile CRISPR/Cas-Mediated Bacteriophage Resistance in Lactococcus lactis

    PubMed Central

    Millen, Anne M.; Horvath, Philippe; Boyaval, Patrick; Romero, Dennis A.

    2012-01-01

    Lactococcus lactis is a biotechnological workhorse for food fermentations and potentially therapeutic products and is therefore widely consumed by humans. It is predominantly used as a starter microbe for fermented dairy products, and specialized strains have adapted from a plant environment through reductive evolution and horizontal gene transfer as evidenced by the association of adventitious traits with mobile elements. Specifically, L. lactis has armed itself with a myriad of plasmid-encoded bacteriophage defensive systems to protect against viral predation. This known arsenal had not included CRISPR/Cas (clustered regularly interspaced short palindromic repeats/CRISPR-associated proteins), which forms a remarkable microbial immunity system against invading DNA. Although CRISPR/Cas systems are common in the genomes of closely related lactic acid bacteria (LAB), none was identified within the eight published lactococcal genomes. Furthermore, a PCR-based search of the common LAB CRISPR/Cas systems (Types I and II) in 383 industrial L. lactis strains proved unsuccessful. Here we describe a novel, Type III, self-transmissible, plasmid-encoded, phage-interfering CRISPR/Cas discovered in L. lactis. The native CRISPR spacers confer resistance based on sequence identity to corresponding lactococcal phage. The interference is directed at phages problematic to the dairy industry, indicative of a responsive system. Moreover, targeting could be modified by engineering the spacer content. The 62.8-kb plasmid was shown to be conjugally transferrable to various strains. Its mobility should facilitate dissemination within microbial communities and provide a readily applicable system to naturally introduce CRISPR/Cas to industrially relevant strains for enhanced phage resistance and prevention against acquisition of undesirable genes. PMID:23240053

  12. Spatial Structure and Lamarckian Adaptation Explain Extreme Genetic Diversity at CRISPR Locus

    PubMed Central

    Haerter, Jan O.; Sneppen, Kim

    2012-01-01

    ABSTRACT Even within similar bacterial strains, it has been found that the clustered, regularly interspaced short palindromic repeat (CRISPR) shows a large variability of spacers. Modeling bacterial strains with different levels of immunity to infection by a single virulent phage, we find that coexistence in a well-mixed environment is possible only when these levels are distinctly different. When bacterial strains are similar, one subpopulation collapses. In the case of bacteria with various levels of CRISPR immunity to a range of phages, small differences in spacer composition will accordingly be suppressed under well-mixed conditions. Using a numerical model of populations spreading in space, we predict that it is the Lamarckian nature of CRISPR evolution that combines with spatial correlations to sustain the experimentally observed distribution of spacer diversity. PMID:22807565

  13. Spatial structure and Lamarckian adaptation explain extreme genetic diversity at CRISPR locus.

    PubMed

    Haerter, Jan O; Sneppen, Kim

    2012-01-01

    Even within similar bacterial strains, it has been found that the clustered, regularly interspaced short palindromic repeat (CRISPR) shows a large variability of spacers. Modeling bacterial strains with different levels of immunity to infection by a single virulent phage, we find that coexistence in a well-mixed environment is possible only when these levels are distinctly different. When bacterial strains are similar, one subpopulation collapses. In the case of bacteria with various levels of CRISPR immunity to a range of phages, small differences in spacer composition will accordingly be suppressed under well-mixed conditions. Using a numerical model of populations spreading in space, we predict that it is the Lamarckian nature of CRISPR evolution that combines with spatial correlations to sustain the experimentally observed distribution of spacer diversity. PMID:22807565

  14. Subtyping of the Legionella pneumophila "Ulm" outbreak strain using the CRISPR-Cas system.

    PubMed

    Lück, Christian; Brzuszkiewicz, Elzbieta; Rydzewski, Kerstin; Koshkolda, Tetyana; Sarnow, Katharina; Essig, Andreas; Heuner, Klaus

    2015-12-01

    In 2009/2010 an outbreak of Legionnaires' disease with 64 cases including four fatalities took place in the city of Ulm/Neu-Ulm in Germany. L. pneumophila serogroup 1, mAb type Knoxville, sequence type (ST) 62 was identified as the epidemic strain. This strain was isolated from eight patients and from a cooling tower in the city of Ulm. Based on whole genome sequencing data from one patient strain, we identified an Lvh type IV secretion system containing a CRISPR-Cas system. The CRISPR sequence contains 38 spacer DNA sequences. We used these variable DNA spacers to further subtype the outbreak strain as well as six epidemiologically unrelated strains of CRISPR-Cas positive ST62 strains isolated at various regions in Germany. The first 12 spacer DNAs of eight patient isolates and three environmental isolates from the suspected source of infection were analyzed and found to be identical. Spacer DNAs were identified in further six epidemiologically unrelated patient isolates of L. pneumophila of ST62 in addition to the 12 "core" spacers. The presence of new spacer DNAs at the 5' site downstream of the first repeat indicates that these CRISPR-Cas systems seem to be functional. PCR analysis revealed that not all L. pneumophila sg1 ST62 strains investigated exhibited a CRISPR-Cas system. In addition, we could demonstrate that the CRISPR-Cas system is localized on a genomic island (LpuGI-Lvh) which can be excised from the chromosome and therefore may be transferable horizontally to other L. pneumophila strains. PMID:26294350

  15. The Role of CRISPR-Cas Systems in Virulence of Pathogenic Bacteria

    PubMed Central

    Staals, Raymond H. J.; Endtz, Hubert P.; van Baarlen, Peter; van der Oost, John

    2014-01-01

    SUMMARY Clustered regularly interspaced short palindromic repeats (CRISPR) and CRISPR-associated (Cas) genes are present in many bacterial and archaeal genomes. Since the discovery of the typical CRISPR loci in the 1980s, well before their physiological role was revealed, their variable sequences have been used as a complementary typing tool in diagnostic, epidemiologic, and evolutionary analyses of prokaryotic strains. The discovery that CRISPR spacers are often identical to sequence fragments of mobile genetic elements was a major breakthrough that eventually led to the elucidation of CRISPR-Cas as an adaptive immunity system. Key elements of this unique prokaryotic defense system are small CRISPR RNAs that guide nucleases to complementary target nucleic acids of invading viruses and plasmids, generally followed by the degradation of the invader. In addition, several recent studies have pointed at direct links of CRISPR-Cas to regulation of a range of stress-related phenomena. An interesting example concerns a pathogenic bacterium that possesses a CRISPR-associated ribonucleoprotein complex that may play a dual role in defense and/or virulence. In this review, we describe recently reported cases of potential involvement of CRISPR-Cas systems in bacterial stress responses in general and bacterial virulence in particular. PMID:24600041

  16. Optimization of genome editing through CRISPR-Cas9 engineering.

    PubMed

    Zhang, Jian-Hua; Adikaram, Poorni; Pandey, Mritunjay; Genis, Allison; Simonds, William F

    2016-04-01

    CRISPR (Clustered Regularly-Interspaced Short Palindromic Repeats)-Cas9 (CRISPR associated protein 9) has rapidly become the most promising genome editing tool with great potential to revolutionize medicine. Through guidance of a 20 nucleotide RNA (gRNA), CRISPR-Cas9 finds and cuts target protospacer DNA precisely 3 base pairs upstream of a PAM (Protospacer Adjacent Motif). The broken DNA ends are repaired by either NHEJ (Non-Homologous End Joining) resulting in small indels, or by HDR (Homology Directed Repair) for precise gene or nucleotide replacement. Theoretically, CRISPR-Cas9 could be used to modify any genomic sequences, thereby providing a simple, easy, and cost effective means of genome wide gene editing. However, the off-target activity of CRISPR-Cas9 that cuts DNA sites with imperfect matches with gRNA have been of significant concern because clinical applications require 100% accuracy. Additionally, CRISPR-Cas9 has unpredictable efficiency among different DNA target sites and the PAM requirements greatly restrict its genome editing frequency. A large number of efforts have been made to address these impeding issues, but much more is needed to fully realize the medical potential of CRISPR-Cas9. In this article, we summarize the existing problems and current advances of the CRISPR-Cas9 technology and provide perspectives for the ultimate perfection of Cas9-mediated genome editing. PMID:27340770

  17. [Comparative genomics and evolutionary analysis of CRISPR loci in acetic acid bacteria].

    PubMed

    Kai, Xia; Xinle, Liang; Yudong, Li

    2015-12-01

    The clustered regularly interspaced short palindromic repeat (CRISPR) is a widespread adaptive immunity system that exists in most archaea and many bacteria against foreign DNA, such as phages, viruses and plasmids. In general, CRISPR system consists of direct repeat, leader, spacer and CRISPR-associated sequences. Acetic acid bacteria (AAB) play an important role in industrial fermentation of vinegar and bioelectrochemistry. To investigate the polymorphism and evolution pattern of CRISPR loci in acetic acid bacteria, bioinformatic analyses were performed on 48 species from three main genera (Acetobacter, Gluconacetobacter and Gluconobacter) with whole genome sequences available from the NCBI database. The results showed that the CRISPR system existed in 32 species of the 48 strains studied. Most of the CRISPR-Cas system in AAB belonged to type I CRISPR-Cas system (subtype E and C), but type II CRISPR-Cas system which contain cas9 gene was only found in the genus Acetobacter and Gluconacetobacter. The repeat sequences of some CRISPR were highly conserved among species from different genera, and the leader sequences of some CRISPR possessed conservative motif, which was associated with regulated promoters. Moreover, phylogenetic analysis of cas1 demonstrated that they were suitable for classification of species. The conservation of cas1 genes was associated with that of repeat sequences among different strains, suggesting they were subjected to similar functional constraints. Moreover, the number of spacer was positively correlated with the number of prophages and insertion sequences, indicating the acetic acid bacteria were continually invaded by new foreign DNA. The comparative analysis of CRISR loci in acetic acid bacteria provided the basis for investigating the molecular mechanism of different acetic acid tolerance and genome stability in acetic acid bacteria. PMID:26704949

  18. CRISPRstrand: predicting repeat orientations to determine the crRNA-encoding strand at CRISPR loci

    PubMed Central

    Alkhnbashi, Omer S.; Costa, Fabrizio; Shah, Shiraz A.; Garrett, Roger A.; Saunders, Sita J.; Backofen, Rolf

    2014-01-01

    Motivation: The discovery of CRISPR-Cas systems almost 20 years ago rapidly changed our perception of the bacterial and archaeal immune systems. CRISPR loci consist of several repetitive DNA sequences called repeats, inter-spaced by stretches of variable length sequences called spacers. This CRISPR array is transcribed and processed into multiple mature RNA species (crRNAs). A single crRNA is integrated into an interference complex, together with CRISPR-associated (Cas) proteins, to bind and degrade invading nucleic acids. Although existing bioinformatics tools can recognize CRISPR loci by their characteristic repeat-spacer architecture, they generally output CRISPR arrays of ambiguous orientation and thus do not determine the strand from which crRNAs are processed. Knowledge of the correct orientation is crucial for many tasks, including the classification of CRISPR conservation, the detection of leader regions, the identification of target sites (protospacers) on invading genetic elements and the characterization of protospacer-adjacent motifs. Results: We present a fast and accurate tool to determine the crRNA-encoding strand at CRISPR loci by predicting the correct orientation of repeats based on an advanced machine learning approach. Both the repeat sequence and mutation information were encoded and processed by an efficient graph kernel to learn higher-order correlations. The model was trained and tested on curated data comprising >4500 CRISPRs and yielded a remarkable performance of 0.95 AUC ROC (area under the curve of the receiver operator characteristic). In addition, we show that accurate orientation information greatly improved detection of conserved repeat sequence families and structure motifs. We integrated CRISPRstrand predictions into our CRISPRmap web server of CRISPR conservation and updated the latter to version 2.0. Availability: CRISPRmap and CRISPRstrand are available at http://rna.informatik.uni-freiburg.de/CRISPRmap. Contact: backofen

  19. Substrate generation for endonucleases of CRISPR/cas systems.

    PubMed

    Zoephel, Judith; Dwarakanath, Srivatsa; Richter, Hagen; Plagens, André; Randau, Lennart

    2012-01-01

    The interaction of viruses and their prokaryotic hosts shaped the evolution of bacterial and archaeal life. Prokaryotes developed several strategies to evade viral attacks that include restriction modification, abortive infection and CRISPR/Cas systems. These adaptive immune systems found in many Bacteria and most Archaea consist of clustered regularly interspaced short palindromic repeat (CRISPR) sequences and a number of CRISPR associated (Cas) genes (Fig. 1) (1-3). Different sets of Cas proteins and repeats define at least three major divergent types of CRISPR/Cas systems (4). The universal proteins Cas1 and Cas2 are proposed to be involved in the uptake of viral DNA that will generate a new spacer element between two repeats at the 5' terminus of an extending CRISPR cluster (5). The entire cluster is transcribed into a precursor-crRNA containing all spacer and repeat sequences and is subsequently processed by an enzyme of the diverse Cas6 family into smaller crRNAs (6-8). These crRNAs consist of the spacer sequence flanked by a 5' terminal (8 nucleotides) and a 3' terminal tag derived from the repeat sequence (9). A repeated infection of the virus can now be blocked as the new crRNA will be directed by a Cas protein complex (Cascade) to the viral DNA and identify it as such via base complementarity(10). Finally, for CRISPR/Cas type 1 systems, the nuclease Cas3 will destroy the detected invader DNA (11,12) . These processes define CRISPR/Cas as an adaptive immune system of prokaryotes and opened a fascinating research field for the study of the involved Cas proteins. The function of many Cas proteins is still elusive and the causes for the apparent diversity of the CRISPR/Cas systems remain to be illuminated. Potential activities of most Cas proteins were predicted via detailed computational analyses. A major fraction of Cas proteins are either shown or proposed to function as endonucleases (4). Here, we present methods to generate crRNAs and precursor-cRNAs for

  20. Stygiolobus Rod-Shaped Virus and the Interplay of Crenarchaeal Rudiviruses with the CRISPR Antiviral System▿ †

    PubMed Central

    Vestergaard, Gisle; Shah, Shiraz A.; Bize, Ariane; Reitberger, Werner; Reuter, Monika; Phan, Hien; Briegel, Ariane; Rachel, Reinhard; Garrett, Roger A.; Prangishvili, David

    2008-01-01

    A newly characterized archaeal rudivirus Stygiolobus rod-shaped virus (SRV), which infects a hyperthermophilic Stygiolobus species, was isolated from a hot spring in the Azores, Portugal. Its virions are rod-shaped, 702 (± 50) by 22 (± 3) nm in size, and nonenveloped and carry three tail fibers at each terminus. The linear double-stranded DNA genome contains 28,096 bp and an inverted terminal repeat of 1,030 bp. The SRV shows morphological and genomic similarities to the other characterized rudiviruses Sulfolobus rod-shaped virus 1 (SIRV1), SIRV2, and Acidianus rod-shaped virus 1, isolated from hot acidic springs of Iceland and Italy. The single major rudiviral structural protein is shown to generate long tubular structures in vitro of similar dimensions to those of the virion, and we estimate that the virion constitutes a single, superhelical, double-stranded DNA embedded into such a protein structure. Three additional minor conserved structural proteins are also identified. Ubiquitous rudiviral proteins with assigned functions include glycosyl transferases and a S-adenosylmethionine-dependent methyltransferase, as well as a Holliday junction resolvase, a transcriptionally coupled helicase and nuclease implicated in DNA replication. Analysis of matches between known crenarchaeal chromosomal CRISPR spacer sequences, implicated in a viral defense system, and rudiviral genomes revealed that about 10% of the 3,042 unique acidothermophile spacers yield significant matches to rudiviral genomes, with a bias to highly conserved protein genes, consistent with the widespread presence of rudiviruses in hot acidophilic environments. We propose that the 12-bp indels which are commonly found in conserved rudiviral protein genes may be generated as a reaction to the presence of the host CRISPR defense system. PMID:18723627

  1. Harnessing heterologous and endogenous CRISPR-Cas machineries for efficient markerless genome editing in Clostridium

    PubMed Central

    Pyne, Michael E.; Bruder, Mark R.; Moo-Young, Murray; Chung, Duane A.; Chou, C. Perry

    2016-01-01

    Application of CRISPR-Cas9 systems has revolutionized genome editing across all domains of life. Here we report implementation of the heterologous Type II CRISPR-Cas9 system in Clostridium pasteurianum for markerless genome editing. Since 74% of species harbor CRISPR-Cas loci in Clostridium, we also explored the prospect of co-opting host-encoded CRISPR-Cas machinery for genome editing. Motivation for this work was bolstered from the observation that plasmids expressing heterologous cas9 result in poor transformation of Clostridium. To address this barrier and establish proof-of-concept, we focus on characterization and exploitation of the C. pasteurianum Type I-B CRISPR-Cas system. In silico spacer analysis and in vivo interference assays revealed three protospacer adjacent motif (PAM) sequences required for site-specific nucleolytic attack. Introduction of a synthetic CRISPR array and cpaAIR gene deletion template yielded an editing efficiency of 100%. In contrast, the heterologous Type II CRISPR-Cas9 system generated only 25% of the total yield of edited cells, suggesting that native machinery provides a superior foundation for genome editing by precluding expression of cas9 in trans. To broaden our approach, we also identified putative PAM sequences in three key species of Clostridium. This is the first report of genome editing through harnessing native CRISPR-Cas machinery in Clostridium. PMID:27157668

  2. Harnessing heterologous and endogenous CRISPR-Cas machineries for efficient markerless genome editing in Clostridium.

    PubMed

    Pyne, Michael E; Bruder, Mark R; Moo-Young, Murray; Chung, Duane A; Chou, C Perry

    2016-01-01

    Application of CRISPR-Cas9 systems has revolutionized genome editing across all domains of life. Here we report implementation of the heterologous Type II CRISPR-Cas9 system in Clostridium pasteurianum for markerless genome editing. Since 74% of species harbor CRISPR-Cas loci in Clostridium, we also explored the prospect of co-opting host-encoded CRISPR-Cas machinery for genome editing. Motivation for this work was bolstered from the observation that plasmids expressing heterologous cas9 result in poor transformation of Clostridium. To address this barrier and establish proof-of-concept, we focus on characterization and exploitation of the C. pasteurianum Type I-B CRISPR-Cas system. In silico spacer analysis and in vivo interference assays revealed three protospacer adjacent motif (PAM) sequences required for site-specific nucleolytic attack. Introduction of a synthetic CRISPR array and cpaAIR gene deletion template yielded an editing efficiency of 100%. In contrast, the heterologous Type II CRISPR-Cas9 system generated only 25% of the total yield of edited cells, suggesting that native machinery provides a superior foundation for genome editing by precluding expression of cas9 in trans. To broaden our approach, we also identified putative PAM sequences in three key species of Clostridium. This is the first report of genome editing through harnessing native CRISPR-Cas machinery in Clostridium. PMID:27157668

  3. CRISPRing into the woods.

    PubMed

    Tsai, Chung-Jui; Xue, Liang-Jiao

    2015-10-01

    The CRISPR/Cas9 technology is a welcome breakthrough for genome editing, owing to its precision, efficiency, versatility and ease of adoption. We recently reported the first application of CRISPR/Cas9 for biallelic mutations in stably transformed Populus, extending the species range of this powerful technology to woody perennials. An underappreciated obstacle in genome editing of outcrossing species is the frequent occurrence of sequence polymorphisms that can render CRISPR/Cas9 unproductive. We discuss experimental evidence as well as genome-wide computational analysis to demonstrate the sensitivity of CRISPR/Cas9 to allelic heterozygosity, and highlight tools and strategies that can help deal with such sequence polymorphisms. With its specificity, CRISPR/Cas9 offers a less equivocal means than previous approaches for discerning functional redundancy of paralogous genes that are prevalent in plant genomes. Continuing improvements of the CRISPR/Cas9 system for multiplex genome engineering should facilitate these efforts. The paradigm shift brought about by CRISPR/Cas9 promises to accelerate not only basic research but also applied crop improvement progress. PMID:26357840

  4. Cas3-Derived Target DNA Degradation Fragments Fuel Primed CRISPR Adaptation.

    PubMed

    Künne, Tim; Kieper, Sebastian N; Bannenberg, Jasper W; Vogel, Anne I M; Miellet, Willem R; Klein, Misha; Depken, Martin; Suarez-Diez, Maria; Brouns, Stan J J

    2016-09-01

    Prokaryotes use a mechanism called priming to update their CRISPR immunological memory to rapidly counter revisiting, mutated viruses, and plasmids. Here we have determined how new spacers are produced and selected for integration into the CRISPR array during priming. We show that Cas3 couples CRISPR interference to adaptation by producing DNA breakdown products that fuel the spacer integration process in a two-step, PAM-associated manner. The helicase-nuclease Cas3 pre-processes target DNA into fragments of about 30-100 nt enriched for thymine-stretches in their 3' ends. The Cas1-2 complex further processes these fragments and integrates them sequence-specifically into CRISPR repeats by coupling of a 3' cytosine of the fragment. Our results highlight that the selection of PAM-compliant spacers during priming is enhanced by the combined sequence specificities of Cas3 and the Cas1-2 complex, leading to an increased propensity of integrating functional CTT-containing spacers. PMID:27546790

  5. Dynamics of CRISPR Loci in Microevolutionary Process of Yersinia pestis Strains

    PubMed Central

    Barros, Maria Paloma S.; França, Camila T.; Lins, Rosanny Holanda F. B.; Santos, Milena Danda V.; Silva, Ednaldo J.; Oliveira, Maria Betânia M.; Silveira-Filho, Vladimir M.; Rezende, Antônio M.; Balbino, Valdir Q.; Leal-Balbino, Tereza Cristina

    2014-01-01

    The potential use of CRISPR loci genotyping to elucidate population dynamics and microevolution of 146 Yersinia pestis strains from different biovars and locations was investigated in this work. The majority of strains from the Orientalis biovar presented specific spacer arrays, allowing for the establishment of a CRISPR signature for their respective isolates. Twenty-one new spacers were found in the Y. pestis strains from plague foci in Brazil. Ninety-three (64%) strains were grouped in the G1 genotype, whereas the others were distributed in 35 genotypes. This study allowed observing a microevolutionary process in a group of Y. pestis isolated from Brazil. We also identified specific genotypes of Y. pestis that were important for the establishment of the bacteria in plague foci in Brazil. The data have provided supporting evidence for the diversity and dynamics of CRISPR loci present in the genome of Y. pestis strains from plague foci in Brazil. PMID:25265542

  6. CRISPR Genome Editing

    Cancer.gov

    A research article about a technique for gene editing known as CRISPR-Cas9. The technique has made it much easier and faster for cancer researchers to study mutations and test new therapeutic targets.

  7. Structural plasticity and in vivo activity of Cas1 from the type I-F CRISPR-Cas system.

    PubMed

    Wilkinson, Max E; Nakatani, Yoshio; Staals, Raymond H J; Kieper, Sebastian N; Opel-Reading, Helen K; McKenzie, Rebecca E; Fineran, Peter C; Krause, Kurt L

    2016-04-15

    CRISPR-Cas systems are adaptive immune systems in prokaryotes that provide protection against viruses and other foreign DNA. In the adaptation stage, foreign DNA is integrated into CRISPR (clustered regularly interspaced short palindromic repeat) arrays as new spacers. These spacers are used in the interference stage to guide effector CRISPR associated (Cas) protein(s) to target complementary foreign invading DNA. Cas1 is the integrase enzyme that is central to the catalysis of spacer integration. There are many diverse types of CRISPR-Cas systems, including type I-F systems, which are typified by a unique Cas1-Cas2-3 adaptation complex. In the present study we characterize the Cas1 protein of the potato phytopathogen Pectobacterium atrosepticum, an important model organism for understanding spacer acquisition in type I-F CRISPR-Cas systems. We demonstrate by mutagenesis that Cas1 is essential for adaptation in vivo and requires a conserved aspartic acid residue. By X-ray crystallography, we show that although P. atrosepticum Cas1 adopts a fold conserved among other Cas1 proteins, it possesses remarkable asymmetry as a result of structural plasticity. In particular, we resolve for the first time a flexible, asymmetric loop that may be unique to type I-F Cas1 proteins, and we discuss the implications of these structural features for DNA binding and enzymatic activity. PMID:26929403

  8. Studying the features of 57 confirmed CRISPR loci in 29 strains of Escherichia coli.

    PubMed

    Rahmatabadi, Seyyed Soheil; Nezafat, Navid; Negahdaripour, Manica; Hajighahramani, Nasim; Morowvat, Mohammad Hossein; Ghasemi, Younes

    2016-06-01

    Clustered Regularly Interspaced Short Palindromic Repeats (CRISPRs) system is a novel type of innate defense system in prokaryotes for destruction of exogenous elements. To gain further insight into behavior and organization of the system, the extensive analysis of the available sequenced genomes is necessary. The dynamic nature of CRISPR loci is possibly valuable for typing and relative analyses of strains and microbial population. There are a few orderly bioinformatics investigations about the structure of CRISPR sequences in the Escherichia coli strains. In this study, 57 CRISPR loci were selected from 32 Escherichia coli strains to investigate their structural characteristics and potential functions using bioinformatics tools. Our results showed that most strains contained several loci that mainly included conserved direct repeats, while the spacers were highly variable. Moreover, RNA analysis of the sequences indicated that all loci could form stable RNA secondary structures and showed homology mostly with phages compared to plasmids. Only three strains included cas genes around their loci. PMID:26871258

  9. Repeat Size Determination by Two Molecular Rulers in the Type I-E CRISPR Array.

    PubMed

    Goren, Moran G; Doron, Shany; Globus, Rea; Amitai, Gil; Sorek, Rotem; Qimron, Udi

    2016-09-13

    Prokaryotic adaptive immune systems are composed of clustered regularly interspaced short palindromic repeats (CRISPR) and CRISPR-associated (Cas) proteins. These systems adapt to new threats by integrating short nucleic acids, termed spacers, into the CRISPR array. The functional motifs in the repeat and the mechanism by which a constant repeat size is maintained are still elusive. Here, through a series of mutations within the repeat of the CRISPR-Cas type I-E, we identify motifs that are crucial for adaptation and show that they serve as anchor sites for two molecular rulers determining the size of the new repeat. Adaptation products from various repeat mutants support a model in which two motifs in the repeat bind to two different sites in the adaptation complex that are 8 and 16 bp away from the active site. This model significantly extends our understanding of the adaptation process and broadens the scope of its applications. PMID:27626652

  10. The effect of Mycobacterium tuberculosis CRISPR-associated Cas2 (Rv2816c) on stress response genes expression, morphology and macrophage survival of Mycobacterium smegmatis.

    PubMed

    Huang, Qinqin; Luo, Hongping; Liu, Minqiang; Zeng, Jie; Abdalla, Abualgasim Elgaili; Duan, Xiangke; Li, Qiming; Xie, Jianping

    2016-06-01

    Clustered regularly interspaced short palindromic repeats (CRISPR) are present in the genome of 40% bacteria and 90% archaea. CRISPR and accompanying Cas proteins constitute an adaptive immune system against disruptive mobile genetic elements. Two CRISPRs and 9 genes encoding CRISPR-associated proteins have been found in the genome of Mycobacterium tuberculosis. The CRISPR-associated Cas2 is an endoribonuclease required for the acquisition of new spacers. In this study, Cas2 encoded by Rv2816c was expressed in Mycobacterium smegmatis lacking CRISPR-Cas system and its role in stress responses of M. smegmatis in vitro and within macrophages was studied. We found that Cas2 mediated M. smegmatis stress response changes were associated with the altered expression of sigma factors which involved in mycobacterial stress response and virulence. We also found that Cas2 decreased the survival of M. smegmatis within macrophages. This study provides new insights on the role of Cas2. PMID:26498723

  11. Bacterial CRISPR: accomplishments and prospects.

    PubMed

    Peters, Jason M; Silvis, Melanie R; Zhao, Dehua; Hawkins, John S; Gross, Carol A; Qi, Lei S

    2015-10-01

    In this review we briefly describe the development of CRISPR tools for genome editing and control of transcription in bacteria. We focus on the Type II CRISPR/Cas9 system, provide specific examples for use of the system, and highlight the advantages and disadvantages of CRISPR versus other techniques. We suggest potential strategies for combining CRISPR tools with high-throughput approaches to elucidate gene function in bacteria. PMID:26363124

  12. An Active Type I-E CRISPR-Cas System Identified in Streptomyces avermitilis

    PubMed Central

    Qiu, Yi; Wang, Shiwei; Chen, Zhi; Guo, Yajie; Song, Yuan

    2016-01-01

    CRISPR-Cas systems, the small RNA-dependent immune systems, are widely distributed in prokaryotes. However, only a small proportion of CRISPR-Cas systems have been identified to be active in bacteria. In this work, a naturally active type I-E CRISPR-Cas system was found in Streptomyces avermitilis. The system shares many common genetic features with the type I-E system of Escherichia coli, and meanwhile shows unique characteristics. It not only degrades plasmid DNA with target protospacers, but also acquires new spacers from the target plasmid DNA. The naive features of spacer acquisition in the type I-E system of S. avermitilis were investigated and a completely conserved PAM 5’-AAG-3’ was identified. Spacer acquisition displayed differential strand bias upstream and downstream of the priming spacer, and irregular integrations of new spacers were observed. In addition, introduction of this system into host conferred phage resistance to some extent. This study will give new insights into adaptation mechanism of the type I-E systems in vivo, and meanwhile provide theoretical foundation for applying this system on the genetic modification of S. avermitilis. PMID:26901661

  13. Crystal orientation dependence of band matching in all-B2-trilayer current-perpendicular-to-plane giant magnetoresistance pseudo spin-valves using Co{sub 2}Fe(Ge{sub 0.5}Ga{sub 0.5}) Heusler alloy and NiAl spacer

    SciTech Connect

    Chen, Jiamin; Hono, K.; Furubayashi, T.; Takahashi, Y. K.; Sasaki, T. T.

    2015-05-07

    We have experimentally investigated the crystal orientation dependence of band matching in current-perpendicular-to-plane giant magnetoresistance (CPP-GMR) pseudo-spin-valves using Co{sub 2}Fe(Ge{sub 0.5}Ga{sub 0.5}) (CFGG) Heusler alloy ferromagnetic layer and NiAl spacer. The high quality epitaxial CFGG/NiAl/CFGG all-B2-trilayers structure devices were fabricated on both MgO(001) and sapphire (112{sup ¯}0) single crystal substrates to create (001) and (110) crystal orientations. Same magneto-transport properties were observed from these two differently orientated devices indicating that there is no or little orientation dependence of band matching on MR output. We also found that all-B2-trilayer structure was free of lattice matching influence depending on the crystal orientation, which made it a good candidate for CPP-GMR device.

  14. CRISPR Recognition Tool (CRT): a tool for automatic detection ofclustered regularly interspaced palindromic repeats

    SciTech Connect

    Bland, Charles; Ramsey, Teresa L.; Sabree, Fareedah; Lowe,Micheal; Brown, Kyndall; Kyrpides, Nikos C.; Hugenholtz, Philip

    2007-05-01

    Clustered Regularly Interspaced Palindromic Repeats (CRISPRs) are a novel type of direct repeat found in a wide range of bacteria and archaea. CRISPRs are beginning to attract attention because of their proposed mechanism; that is, defending their hosts against invading extrachromosomal elements such as viruses. Existing repeat detection tools do a poor job of identifying CRISPRs due to the presence of unique spacer sequences separating the repeats. In this study, a new tool, CRT, is introduced that rapidly and accurately identifies CRISPRs in large DNA strings, such as genomes and metagenomes. CRT was compared to CRISPR detection tools, Patscan and Pilercr. In terms of correctness, CRT was shown to be very reliable, demonstrating significant improvements over Patscan for measures precision, recall and quality. When compared to Pilercr, CRT showed improved performance for recall and quality. In terms of speed, CRT also demonstrated superior performance, especially for genomes containing large numbers of repeats. In this paper a new tool was introduced for the automatic detection of CRISPR elements. This tool, CRT, was shown to be a significant improvement over the current techniques for CRISPR identification. CRT's approach to detecting repetitive sequences is straightforward. It uses a simple sequential scan of a DNA sequence and detects repeats directly without any major conversion or preprocessing of the input. This leads to a program that is easy to describe and understand; yet it is very accurate, fast and memory efficient, being O(n) in space and O(nm/l) in time.

  15. Cloning-free CRISPR

    PubMed Central

    Arbab, Mandana; Srinivasan, Sharanya; Hashimoto, Tatsunori; Geijsen, Niels; Sherwood, Richard I.

    2015-01-01

    Summary We present self-cloning CRISPR/Cas9 (scCRISPR), a technology that allows for CRISPR/Cas9-mediated genomic mutation and site-specific knockin transgene creation within several hours by circumventing the need to clone a site-specific single-guide RNA (sgRNA) or knockin homology construct for each target locus. We introduce a self-cleaving palindromic sgRNA plasmid and a short double-stranded DNA sequence encoding the desired locus-specific sgRNA into target cells, allowing them to produce a locus-specific sgRNA plasmid through homologous recombination. scCRISPR enables efficient generation of gene knockouts (∼88% mutation rate) at approximately one-sixth the cost of plasmid-based sgRNA construction with only 2 hr of preparation for each targeted site. Additionally, we demonstrate efficient site-specific knockin of GFP transgenes without any plasmid cloning or genome-integrated selection cassette in mouse and human embryonic stem cells (2%–4% knockin rate) through PCR-based addition of short homology arms. scCRISPR substantially lowers the bar on mouse and human transgenesis. PMID:26527385

  16. Self-Cloning CRISPR.

    PubMed

    Arbab, Mandana; Sherwood, Richard I

    2016-01-01

    CRISPR/Cas9-gene editing has emerged as a revolutionary technology to easily modify specific genomic loci by designing complementary sgRNA sequences and introducing these into cells along with Cas9. Self-cloning CRISPR/Cas9 (scCRISPR) uses a self-cleaving palindromic sgRNA plasmid (sgPal) that recombines with short PCR-amplified site-specific sgRNA sequences within the target cell by homologous recombination to circumvent the process of sgRNA plasmid construction. Through this mechanism, scCRISPR enables gene editing within 2 hr once sgRNA oligos are available, with high efficiency equivalent to conventional sgRNA targeting: >90% gene knockout in both mouse and human embryonic stem cells and cancer cell lines. Furthermore, using PCR-based addition of short homology arms, we achieve efficient site-specific knock-in of transgenes such as GFP without traditional plasmid cloning or genome-integrated selection cassette (2% to 4% knock-in rate). The methods in this paper describe the most rapid and efficient means of CRISPR gene editing. © 2016 by John Wiley & Sons, Inc. PMID:27532819

  17. The CRISPR-associated DNA-cleaving enzyme Cpf1 also processes precursor CRISPR RNA.

    PubMed

    Fonfara, Ines; Richter, Hagen; Bratovič, Majda; Le Rhun, Anaïs; Charpentier, Emmanuelle

    2016-04-28

    CRISPR-Cas systems that provide defence against mobile genetic elements in bacteria and archaea have evolved a variety of mechanisms to target and cleave RNA or DNA. The well-studied types I, II and III utilize a set of distinct CRISPR-associated (Cas) proteins for production of mature CRISPR RNAs (crRNAs) and interference with invading nucleic acids. In types I and III, Cas6 or Cas5d cleaves precursor crRNA (pre-crRNA) and the mature crRNAs then guide a complex of Cas proteins (Cascade-Cas3, type I; Csm or Cmr, type III) to target and cleave invading DNA or RNA. In type II systems, RNase III cleaves pre-crRNA base-paired with trans-activating crRNA (tracrRNA) in the presence of Cas9 (refs 13, 14). The mature tracrRNA-crRNA duplex then guides Cas9 to cleave target DNA. Here, we demonstrate a novel mechanism in CRISPR-Cas immunity. We show that type V-A Cpf1 from Francisella novicida is a dual-nuclease that is specific to crRNA biogenesis and target DNA interference. Cpf1 cleaves pre-crRNA upstream of a hairpin structure formed within the CRISPR repeats and thereby generates intermediate crRNAs that are processed further, leading to mature crRNAs. After recognition of a 5'-YTN-3' protospacer adjacent motif on the non-target DNA strand and subsequent probing for an eight-nucleotide seed sequence, Cpf1, guided by the single mature repeat-spacer crRNA, introduces double-stranded breaks in the target DNA to generate a 5' overhang. The RNase and DNase activities of Cpf1 require sequence- and structure-specific binding to the hairpin of crRNA repeats. Cpf1 uses distinct active domains for both nuclease reactions and cleaves nucleic acids in the presence of magnesium or calcium. This study uncovers a new family of enzymes with specific dual endoribonuclease and endonuclease activities, and demonstrates that type V-A constitutes the most minimalistic of the CRISPR-Cas systems so far described. PMID:27096362

  18. CRISPR1 analysis of naturalized surface water and fecal Escherichia coli suggests common origin.

    PubMed

    Tymensen, Lisa D

    2016-06-01

    Clustered regularly interspaced short palindromic repeats (CRISPRs) are part of an acquired bacterial immune system that functions as a barrier to exogenous genetic elements. Since naturalized Escherichia coli are likely to encounter different genetic elements in aquatic environments compared to enteric strains, we hypothesized that such differences would be reflected within the hypervariable CRISPR alleles of these two populations. Comparison of CRISPR1 alleles from naturalized and fecal phylogroup B1 E. coli strains revealed that the alleles could be categorized into four major distinct groups (designated G6-G9), and all four allele groups were found among naturalized strains and fecal strains. The distribution of CRIPSR G6 and G8 alleles was similar among strains of both ecotypes, while naturalized strains tended to have CRISPR G7 alleles rather than G9 alleles. Since CRISPR G7 alleles were not specific to naturalized strains, they, however, would not be useful as a marker for identifying naturalized strains. Notably, CRISPR alleles from naturalized and fecal strains also had similar spacer repertoires. This indicates a shared history of encounter with mobile genetic elements and suggests that the two populations were derived from common ancestors. PMID:27004771

  19. Evolutionary conservation of sequence and secondary structures inCRISPR repeats

    SciTech Connect

    Kunin, Victor; Sorek, Rotem; Hugenholtz, Philip

    2006-09-01

    Clustered Regularly Interspaced Palindromic Repeats (CRISPRs) are a novel class of direct repeats, separated by unique spacer sequences of similar length, that are present in {approx}40% of bacterial and all archaeal genomes analyzed to date. More than 40 gene families, called CRISPR-associated sequences (CAS), appear in conjunction with these repeats and are thought to be involved in the propagation and functioning of CRISPRs. It has been proposed that the CRISPR/CAS system samples, maintains a record of, and inactivates invasive DNA that the cell has encountered, and therefore constitutes a prokaryotic analog of an immune system. Here we analyze CRISPR repeats identified in 195 microbial genomes and show that they can be organized into multiple clusters based on sequence similarity. All individual repeats in any given cluster were inferred to form characteristic RNA secondary structure, ranging from non-existent to pronounced. Stable secondary structures included G:U base pairs and exhibited multiple compensatory base changes in the stem region, indicating evolutionary conservation and functional importance. We also show that the repeat-based classification corresponds to, and expands upon, a previously reported CAS gene-based classification including specific relationships between CRISPR and CAS subtypes.

  20. Regulated CRISPR Modules Exploit a Dual Defense Strategy of Restriction and Abortive Infection in a Model of Prokaryote-Phage Coevolution

    PubMed Central

    Kumar, M. Senthil; Plotkin, Joshua B.; Hannenhalli, Sridhar

    2015-01-01

    CRISPRs offer adaptive immunity in prokaryotes by acquiring genomic fragments from infecting phage and subsequently exploiting them for phage restriction via an RNAi-like mechanism. Here, we develop and analyze a dynamical model of CRISPR-mediated prokaryote-phage coevolution that incorporates classical CRISPR kinetics along with the recently discovered infection-induced activation and autoimmunity side effects. Our analyses reveal two striking characteristics of the CRISPR defense strategy: that both restriction and abortive infections operate during coevolution with phages, driving phages to much lower densities than possible with restriction alone, and that CRISPR maintenance is determined by a key dimensionless combination of parameters, which upper bounds the activation level of CRISPRs in uninfected populations. We contrast these qualitative observations with experimental data on CRISPR kinetics, which offer insight into the spacer deletion mechanism and the observed low CRISPR prevalence in clinical isolates. More generally, we exploit numerical simulations to delineate four regimes of CRISPR dynamics in terms of its host, kinetic, and regulatory parameters. PMID:26544847

  1. Essential requirements for the detection and degradation of invaders by the Haloferax volcanii CRISPR/Cas system I-B

    PubMed Central

    Maier, Lisa-Katharina; Lange, Sita J.; Stoll, Britta; Haas, Karina A.; Fischer, Susan; Fischer, Eike; Duchardt-Ferner, Elke; Wöhnert, Jens; Backofen, Rolf; Marchfelder, Anita

    2013-01-01

    To fend off foreign genetic elements, prokaryotes have developed several defense systems. The most recently discovered defense system, CRISPR/Cas, is sequence-specific, adaptive and heritable. The two central components of this system are the Cas proteins and the CRISPR RNA. The latter consists of repeat sequences that are interspersed with spacer sequences. The CRISPR locus is transcribed into a precursor RNA that is subsequently processed into short crRNAs. CRISPR/Cas systems have been identified in bacteria and archaea, and data show that many variations of this system exist. We analyzed the requirements for a successful defense reaction in the halophilic archaeon Haloferax volcanii. Haloferax encodes a CRISPR/Cas system of the I-B subtype, about which very little is known. Analysis of the mature crRNAs revealed that they contain a spacer as their central element, which is preceded by an eight-nucleotide-long 5′ handle that originates from the upstream repeat. The repeat sequences have the potential to fold into a minimal stem loop. Sequencing of the crRNA population indicated that not all of the spacers that are encoded by the three CRISPR loci are present in the same abundance. By challenging Haloferax with an invader plasmid, we demonstrated that the interaction of the crRNA with the invader DNA requires a 10-nucleotide-long seed sequence. In addition, we found that not all of the crRNAs from the three CRISPR loci are effective at triggering the degradation of invader plasmids. The interference does not seem to be influenced by the copy number of the invader plasmid. PMID:23594992

  2. Differential Distribution of Type II CRISPR-Cas Systems in Agricultural and Nonagricultural Campylobacter coli and Campylobacter jejuni Isolates Correlates with Lack of Shared Environments.

    PubMed

    Pearson, Bruce M; Louwen, Rogier; van Baarlen, Peter; van Vliet, Arnoud H M

    2015-09-01

    CRISPR (clustered regularly interspaced palindromic repeats)-Cas (CRISPR-associated) systems are sequence-specific adaptive defenses against phages and plasmids which are widespread in prokaryotes. Here we have studied whether phylogenetic relatedness or sharing of environmental niches affects the distribution and dissemination of Type II CRISPR-Cas systems, first in 132 bacterial genomes from 15 phylogenetic classes, ranging from Proteobacteria to Actinobacteria. There was clustering of distinct Type II CRISPR-Cas systems in phylogenetically distinct genera with varying G+C%, which share environmental niches. The distribution of CRISPR-Cas within a genus was studied using a large collection of genome sequences of the closely related Campylobacter species Campylobacter jejuni (N = 3,746) and Campylobacter coli (N = 486). The Cas gene cas9 and CRISPR-repeat are almost universally present in C. jejuni genomes (98.0% positive) but relatively rare in C. coli genomes (9.6% positive). Campylobacter jejuni and agricultural C. coli isolates share the C. jejuni CRISPR-Cas system, which is closely related to, but distinct from the C. coli CRISPR-Cas system found in C. coli isolates from nonagricultural sources. Analysis of the genomic position of CRISPR-Cas insertion suggests that the C. jejuni-type CRISPR-Cas has been transferred to agricultural C. coli. Conversely, the absence of the C. coli-type CRISPR-Cas in agricultural C. coli isolates may be due to these isolates not sharing the same environmental niche, and may be affected by farm hygiene and biosecurity practices in the agricultural sector. Finally, many CRISPR spacer alleles were linked with specific multilocus sequence types, suggesting that these can assist molecular epidemiology applications for C. jejuni and C. coli. PMID:26338188

  3. Differential Distribution of Type II CRISPR-Cas Systems in Agricultural and Nonagricultural Campylobacter coli and Campylobacter jejuni Isolates Correlates with Lack of Shared Environments

    PubMed Central

    Pearson, Bruce M.; Louwen, Rogier; van Baarlen, Peter; van Vliet, Arnoud H.M.

    2015-01-01

    CRISPR (clustered regularly interspaced palindromic repeats)-Cas (CRISPR-associated) systems are sequence-specific adaptive defenses against phages and plasmids which are widespread in prokaryotes. Here we have studied whether phylogenetic relatedness or sharing of environmental niches affects the distribution and dissemination of Type II CRISPR-Cas systems, first in 132 bacterial genomes from 15 phylogenetic classes, ranging from Proteobacteria to Actinobacteria. There was clustering of distinct Type II CRISPR-Cas systems in phylogenetically distinct genera with varying G+C%, which share environmental niches. The distribution of CRISPR-Cas within a genus was studied using a large collection of genome sequences of the closely related Campylobacter species Campylobacter jejuni (N = 3,746) and Campylobacter coli (N = 486). The Cas gene cas9 and CRISPR-repeat are almost universally present in C. jejuni genomes (98.0% positive) but relatively rare in C. coli genomes (9.6% positive). Campylobacter jejuni and agricultural C. coli isolates share the C. jejuni CRISPR-Cas system, which is closely related to, but distinct from the C. coli CRISPR-Cas system found in C. coli isolates from nonagricultural sources. Analysis of the genomic position of CRISPR-Cas insertion suggests that the C. jejuni-type CRISPR-Cas has been transferred to agricultural C. coli. Conversely, the absence of the C. coli-type CRISPR-Cas in agricultural C. coli isolates may be due to these isolates not sharing the same environmental niche, and may be affected by farm hygiene and biosecurity practices in the agricultural sector. Finally, many CRISPR spacer alleles were linked with specific multilocus sequence types, suggesting that these can assist molecular epidemiology applications for C. jejuni and C. coli. PMID:26338188

  4. CRISPR Typing and Subtyping for Improved Laboratory Surveillance of Salmonella Infections

    PubMed Central

    Fabre, Laëtitia; Zhang, Jian; Guigon, Ghislaine; Le Hello, Simon; Guibert, Véronique; Accou-Demartin, Marie; de Romans, Saïana; Lim, Catherine; Roux, Chrystelle; Passet, Virginie; Diancourt, Laure; Guibourdenche, Martine; Issenhuth-Jeanjean, Sylvie; Achtman, Mark; Brisse, Sylvain; Sola, Christophe; Weill, François-Xavier

    2012-01-01

    Laboratory surveillance systems for salmonellosis should ideally be based on the rapid serotyping and subtyping of isolates. However, current typing methods are limited in both speed and precision. Using 783 strains and isolates belonging to 130 serotypes, we show here that a new family of DNA repeats named CRISPR (clustered regularly interspaced short palindromic repeats) is highly polymorphic in Salmonella. We found that CRISPR polymorphism was strongly correlated with both serotype and multilocus sequence type. Furthermore, spacer microevolution discriminated between subtypes within prevalent serotypes, making it possible to carry out typing and subtyping in a single step. We developed a high-throughput subtyping assay for the most prevalent serotype, Typhimurium. An open web-accessible database was set up, providing a serotype/spacer dictionary and an international tool for strain tracking based on this innovative, powerful typing and subtyping tool. PMID:22623967

  5. Foreign DNA capture during CRISPR-Cas adaptive immunity.

    PubMed

    Nuñez, James K; Harrington, Lucas B; Kranzusch, Philip J; Engelman, Alan N; Doudna, Jennifer A

    2015-11-26

    Bacteria and archaea generate adaptive immunity against phages and plasmids by integrating foreign DNA of specific 30-40-base-pair lengths into clustered regularly interspaced short palindromic repeat (CRISPR) loci as spacer segments. The universally conserved Cas1-Cas2 integrase complex catalyses spacer acquisition using a direct nucleophilic integration mechanism similar to retroviral integrases and transposases. How the Cas1-Cas2 complex selects foreign DNA substrates for integration remains unknown. Here we present X-ray crystal structures of the Escherichia coli Cas1-Cas2 complex bound to cognate 33-nucleotide protospacer DNA substrates. The protein complex creates a curved binding surface spanning the length of the DNA and splays the ends of the protospacer to allow each terminal nucleophilic 3'-OH to enter a channel leading into the Cas1 active sites. Phosphodiester backbone interactions between the protospacer and the proteins explain the sequence-nonspecific substrate selection observed in vivo. Our results uncover the structural basis for foreign DNA capture and the mechanism by which Cas1-Cas2 functions as a molecular ruler to dictate the sequence architecture of CRISPR loci. PMID:26503043

  6. The Cas6e ribonuclease is not required for interference and adaptation by the E. coli type I-E CRISPR-Cas system

    PubMed Central

    Semenova, Ekaterina; Kuznedelov, Konstantin; Datsenko, Kirill A.; Boudry, Pierre M.; Savitskaya, Ekaterina E.; Medvedeva, Sofia; Beloglazova, Natalia; Logacheva, Maria; Yakunin, Alexander F.; Severinov, Konstantin

    2015-01-01

    CRISPR-Cas are small RNA-based adaptive prokaryotic immunity systems protecting cells from foreign DNA or RNA. Type I CRISPR-Cas systems are composed of a multiprotein complex (Cascade) that, when bound to CRISPR RNA (crRNA), can recognize double-stranded DNA targets and recruit the Cas3 nuclease to destroy target-containing DNA. In the Escherichia coli type I-E CRISPR-Cas system, crRNAs are generated upon transcription of CRISPR arrays consisting of multiple palindromic repeats and intervening spacers through the function of Cas6e endoribonuclease, which cleaves at specific positions of repeat sequences of the CRISPR array transcript. Cas6e is also a component of Cascade. Here, we show that when mature unit-sized crRNAs are provided in a Cas6e-independent manner by transcription termination, the CRISPR-Cas system can function without Cas6e. The results should allow facile interrogation of various targets by type I-E CRISPR-Cas system in E. coli using unit-sized crRNAs generated by transcription. PMID:26013814

  7. Development of a novel molecular detection method for clustered regularly interspaced short palindromic repeats (CRISPRs) in Taylorella organisms.

    PubMed

    Hara, Yasushi; Nakajima, Takuya; Akamatsu, Marie; Yahiro, Motoki; Kagawa, Shizuko; Petry, Sandrine; Matsuda, Motoo; Moore, John E

    2015-07-01

    Contagious equine metritis is a bacterial infectious disease of horses caused by Taylorella equigenitalis, a Gram-negative eubacterium. The disease has been described in several continents, including Europe, North America and Asia. A novel molecular method was developed to detect clustered regularly interspaced short palindromic repeats (CRISPRs), which were separated by non-repetitive unique spacer regions (NRUSRs) of similar length, in the Taylorella equigenitalis EQ59 strain using a primer pair, f-/r-TeCRISPR-ladder, by PCR amplification. In total, 31 Taylorella isolates (17 T. equigenitalis and 14 Taylorella asinigenitalis) were examined. The T. equigenitalis isolates came from thoroughbred and cold-blooded horses from nine countries during 1980-1996, whilst the T. asinigenitalis isolates all originated from donkey jacks in France and the USA during 1997-2006. PAGE fractionated all of the 13 CRISPRs separated by 12 NRUSRs in T. equigenitalis EQ59. Permutation examples of CRISPRs, which were separated by NRUSRs for small-sized ladders, consisting of two doublet bands were shown. Putative CRISPRs separated by NRUSRs were amplified with 14/17 (82.4 %) geographically disparate T. equigenitalis isolates using the newly designed primer pair. Approximately 82.4 % of the T. equigenitalis isolates had CRISPRs separated by NRUSRs. The CRISPR locus was also found in the French T. asinigenitalis strain MCE3. Putative CRISPRs separated by NRUSRs were detected similarly in 4/14 (28.6 %) T. asinigenitalis isolates. Overall, a more detailed understanding of the molecular biology of CRISPRs within Taylorella organisms may help elucidate the pathogenic virulence and transmission mechanisms associated with this important equine pathogen. PMID:25934548

  8. The Heroes of CRISPR.

    PubMed

    Lander, Eric S

    2016-01-14

    Three years ago, scientists reported that CRISPR technology can enable precise and efficient genome editing in living eukaryotic cells. Since then, the method has taken the scientific community by storm, with thousands of labs using it for applications from biomedicine to agriculture. Yet, the preceding 20-year journey--the discovery of a strange microbial repeat sequence; its recognition as an adaptive immune system; its biological characterization; and its repurposing for genome engineering--remains little known. This Perspective aims to fill in this backstory--the history of ideas and the stories of pioneers--and draw lessons about the remarkable ecosystem underlying scientific discovery. PMID:26771483

  9. Knowledge-based discovery for designing CRISPR-CAS systems against invading mobilomes in thermophiles.

    PubMed

    Chellapandi, P; Ranjani, J

    2015-09-01

    Clustered regularly interspaced short palindromic repeats (CRISPRs) are direct features of the prokaryotic genomes involved in resistance to their bacterial viruses and phages. Herein, we have identified CRISPR loci together with CRISPR-associated sequences (CAS) genes to reveal their immunity against genome invaders in the thermophilic archaea and bacteria. Genomic survey of this study implied that genomic distribution of CRISPR-CAS systems was varied from strain to strain, which was determined by the degree of invading mobiloms. Direct repeats found to be equal in some extent in many thermopiles, but their spacers were differed in each strain. Phylogenetic analyses of CAS superfamily revealed that genes cmr, csh, csx11, HD domain, devR were belonged to the subtypes of cas gene family. The members in cas gene family of thermophiles were functionally diverged within closely related genomes and may contribute to develop several defense strategies. Nevertheless, genome dynamics, geological variation and host defense mechanism were contributed to share their molecular functions across the thermophiles. A thermophilic archaean, Thermococcus gammotolerans and thermophilic bacteria, Petrotoga mobilis and Thermotoga lettingae have shown superoperons-like appearance to cluster cas genes, which were typically evolved for their defense pathways. A cmr operon was identified with a specific promoter in a thermophilic archaean, Caldivirga maquilingensis. Overall, we concluded that knowledge-based genomic survey and phylogeny-based functional assignment have suggested for designing a reliable genetic regulatory circuit naturally from CRISPR-CAS systems, acquired defense pathways, to thermophiles in future synthetic biology. PMID:26279704

  10. CRISPR-Cas: evolution of an RNA-based adaptive immunity system in prokaryotes.

    PubMed

    Koonin, Eugene V; Makarova, Kira S

    2013-05-01

    The CRISPR-Cas (clustered regularly interspaced short palindromic repeats, CRISPR-associated genes) is an adaptive immunity system in bacteria and archaea that functions via a distinct self-non-self recognition mechanism that is partially analogous to the mechanism of eukaryotic RNA interference (RNAi). The CRISPR-Cas system incorporates fragments of virus or plasmid DNA into the CRISPR repeat cassettes and employs the processed transcripts of these spacers as guide RNAs to cleave the cognate foreign DNA or RNA. The Cas proteins, however, are not homologous to the proteins involved in RNAi and comprise numerous, highly diverged families. The majority of the Cas proteins contain diverse variants of the RNA recognition motif (RRM), a widespread RNA-binding domain. Despite the fast evolution that is typical of the cas genes, the presence of diverse versions of the RRM in most Cas proteins provides for a simple scenario for the evolution of the three distinct types of CRISPR-cas systems. In addition to several proteins that are directly implicated in the immune response, the cas genes encode a variety of proteins that are homologous to prokaryotic toxins that typically possess nuclease activity. The predicted toxins associated with CRISPR-Cas systems include the essential Cas2 protein, proteins of COG1517 that, in addition to a ligand-binding domain and a helix-turn-helix domain, typically contain different nuclease domains and several other predicted nucleases. The tight association of the CRISPR-Cas immunity systems with predicted toxins that, upon activation, would induce dormancy or cell death suggests that adaptive immunity and dormancy/suicide response are functionally coupled. Such coupling could manifest in the persistence state being induced and potentially providing conditions for more effective action of the immune system or in cell death being triggered when immunity fails. PMID:23439366

  11. Genome editing assessment using CRISPR Genome Analyzer (CRISPR-GA)

    PubMed Central

    Güell, Marc; Yang, Luhan; Church, George M.

    2014-01-01

    Summary: Clustered regularly interspaced short palindromic repeats (CRISPR)-based technologies have revolutionized human genome engineering and opened countless possibilities to basic science, synthetic biology and gene therapy. Albeit the enormous potential of these tools, their performance is far from perfect. It is essential to perform a posterior careful analysis of the gene editing experiment. However, there are no computational tools for genome editing assessment yet, and current experimental tools lack sensitivity and flexibility. We present a platform to assess the quality of a genome editing experiment only with three mouse clicks. The method evaluates next-generation data to quantify and characterize insertions, deletions and homologous recombination. CRISPR Genome Analyzer provides a report for the locus selected, which includes a quantification of the edited site and the analysis of the different alterations detected. The platform maps the reads, estimates and locates insertions and deletions, computes the allele replacement efficiency and provides a report integrating all the information. Availability and implementation: CRISPR-GA Web is available at http://crispr-ga.net. Documentation on CRISPR-GA instructions can be found at http://crispr-ga.net/documentation.html Contact: mguell@genetics.med.harvard.edu PMID:24990609

  12. DNA motifs determining the accuracy of repeat duplication during CRISPR adaptation in Haloarcula hispanica

    PubMed Central

    Wang, Rui; Li, Ming; Gong, Luyao; Hu, Songnian; Xiang, Hua

    2016-01-01

    Clustered Regularly Interspaced Short Palindromic Repeats (CRISPRs) acquire new spacers to generate adaptive immunity in prokaryotes. During spacer integration, the leader-preceded repeat is always accurately duplicated, leading to speculations of a repeat-length ruler. Here in Haloarcula hispanica, we demonstrate that the accurate duplication of its 30-bp repeat requires two conserved mid-repeat motifs, AACCC and GTGGG. The AACCC motif was essential and needed to be ∼10 bp downstream from the leader-repeat junction site, where duplication consistently started. Interestingly, repeat duplication terminated sequence-independently and usually with a specific distance from the GTGGG motif, which seemingly served as an anchor site for a molecular ruler. Accordingly, altering the spacing between the two motifs led to an aberrant duplication size (29, 31, 32 or 33 bp). We propose the adaptation complex may recognize these mid-repeat elements to enable measuring the repeat DNA for spacer integration. PMID:27085805

  13. DNA motifs determining the accuracy of repeat duplication during CRISPR adaptation in Haloarcula hispanica.

    PubMed

    Wang, Rui; Li, Ming; Gong, Luyao; Hu, Songnian; Xiang, Hua

    2016-05-19

    Clustered Regularly Interspaced Short Palindromic Repeats (CRISPRs) acquire new spacers to generate adaptive immunity in prokaryotes. During spacer integration, the leader-preceded repeat is always accurately duplicated, leading to speculations of a repeat-length ruler. Here in Haloarcula hispanica, we demonstrate that the accurate duplication of its 30-bp repeat requires two conserved mid-repeat motifs, AACCC and GTGGG. The AACCC motif was essential and needed to be ∼10 bp downstream from the leader-repeat junction site, where duplication consistently started. Interestingly, repeat duplication terminated sequence-independently and usually with a specific distance from the GTGGG motif, which seemingly served as an anchor site for a molecular ruler. Accordingly, altering the spacing between the two motifs led to an aberrant duplication size (29, 31, 32 or 33 bp). We propose the adaptation complex may recognize these mid-repeat elements to enable measuring the repeat DNA for spacer integration. PMID:27085805

  14. Pseudo-chaotic oscillations in CRISPR-virus coevolution predicted by bifurcation analysis

    PubMed Central

    2014-01-01

    Background The CRISPR-Cas systems of adaptive antivirus immunity are present in most archaea and many bacteria, and provide resistance to specific viruses or plasmids by inserting fragments of foreign DNA into the host genome and then utilizing transcripts of these spacers to inactivate the cognate foreign genome. The recent development of powerful genome engineering tools on the basis of CRISPR-Cas has sharply increased the interest in the diversity and evolution of these systems. Comparative genomic data indicate that during evolution of prokaryotes CRISPR-Cas loci are lost and acquired via horizontal gene transfer at high rates. Mathematical modeling and initial experimental studies of CRISPR-carrying microbes and viruses reveal complex coevolutionary dynamics. Results We performed a bifurcation analysis of models of coevolution of viruses and microbial host that possess CRISPR-Cas hereditary adaptive immunity systems. The analyzed Malthusian and logistic models display complex, and in particular, quasi-chaotic oscillation regimes that have not been previously observed experimentally or in agent-based models of the CRISPR-mediated immunity. The key factors for the appearance of the quasi-chaotic oscillations are the non-linear dependence of the host immunity on the virus load and the partitioning of the hosts into the immune and susceptible populations, so that the system consists of three components. Conclusions Bifurcation analysis of CRISPR-host coevolution model predicts complex regimes including quasi-chaotic oscillations. The quasi-chaotic regimes of virus-host coevolution are likely to be biologically relevant given the evolutionary instability of the CRISPR-Cas loci revealed by comparative genomics. The results of this analysis might have implications beyond the CRISPR-Cas systems, i.e. could describe the behavior of any adaptive immunity system with a heritable component, be it genetic or epigenetic. These predictions are experimentally testable

  15. Covalent Modification of Bacteriophage T4 DNA Inhibits CRISPR-Cas9

    PubMed Central

    Bryson, Alexandra L.; Hwang, Young; Sherrill-Mix, Scott; Wu, Gary D.; Lewis, James D.; Black, Lindsay; Clark, Tyson A.

    2015-01-01

    ABSTRACT The genomic DNAs of tailed bacteriophages are commonly modified by the attachment of chemical groups. Some forms of DNA modification are known to protect phage DNA from cleavage by restriction enzymes, but others are of unknown function. Recently, the CRISPR-Cas nuclease complexes were shown to mediate bacterial adaptive immunity by RNA-guided target recognition, raising the question of whether phage DNA modifications may also block attack by CRISPR-Cas9. We investigated phage T4 as a model system, where cytosine is replaced with glucosyl-hydroxymethylcytosine (glc-HMC). We first quantified the extent and distribution of covalent modifications in T4 DNA by single-molecule DNA sequencing and enzymatic probing. We then designed CRISPR spacer sequences targeting T4 and found that wild-type T4 containing glc-HMC was insensitive to attack by CRISPR-Cas9 but mutants with unmodified cytosine were sensitive. Phage with HMC showed only intermediate sensitivity. While this work was in progress, another group reported examples of heavily engineered CRISRP-Cas9 complexes that could, in fact, overcome the effects of T4 DNA modification, indicating that modifications can inhibit but do not always fully block attack. PMID:26081634

  16. Analysis of the type II-A CRISPR-Cas system of Streptococcus agalactiae reveals distinctive features according to genetic lineages

    PubMed Central

    Lier, Clément; Baticle, Elodie; Horvath, Philippe; Haguenoer, Eve; Valentin, Anne-Sophie; Glaser, Philippe; Mereghetti, Laurent; Lanotte, Philippe

    2015-01-01

    CRISPR-Cas systems (clustered regularly interspaced short palindromic repeats/CRISPR-associated proteins) are found in 90% of archaea and about 40% of bacteria. In this original system, CRISPR arrays comprise short, almost unique sequences called spacers that are interspersed with conserved palindromic repeats. These systems play a role in adaptive immunity and participate to fight non-self DNA such as integrative and conjugative elements, plasmids, and phages. In Streptococcus agalactiae, a bacterium implicated in colonization and infections in humans since the 1960s, two CRISPR-Cas systems have been described. A type II-A system, characterized by proteins Cas9, Cas1, Cas2, and Csn2, is ubiquitous, and a type I–C system, with the Cas8c signature protein, is present in about 20% of the isolates. Unlike type I–C, which appears to be non-functional, type II-A appears fully functional. Here we studied type II-A CRISPR-cas loci from 126 human isolates of S. agalactiae belonging to different clonal complexes that represent the diversity of the species and that have been implicated in colonization or infection. The CRISPR-cas locus was analyzed both at spacer and repeat levels. Major distinctive features were identified according to the phylogenetic lineages previously defined by multilocus sequence typing, especially for the sequence type (ST) 17, which is considered hypervirulent. Among other idiosyncrasies, ST-17 shows a significantly lower number of spacers in comparison with other lineages. This characteristic could reflect the peculiar virulence or colonization specificities of this lineage. PMID:26124774

  17. Multiple mechanisms for CRISPR-Cas inhibition by anti-CRISPR proteins.

    PubMed

    Bondy-Denomy, Joseph; Garcia, Bianca; Strum, Scott; Du, Mingjian; Rollins, MaryClare F; Hidalgo-Reyes, Yurima; Wiedenheft, Blake; Maxwell, Karen L; Davidson, Alan R

    2015-10-01

    The battle for survival between bacteria and the viruses that infect them (phages) has led to the evolution of many bacterial defence systems and phage-encoded antagonists of these systems. Clustered regularly interspaced short palindromic repeats (CRISPR) and the CRISPR-associated (cas) genes comprise an adaptive immune system that is one of the most widespread means by which bacteria defend themselves against phages. We identified the first examples of proteins produced by phages that inhibit a CRISPR-Cas system. Here we performed biochemical and in vivo investigations of three of these anti-CRISPR proteins, and show that each inhibits CRISPR-Cas activity through a distinct mechanism. Two block the DNA-binding activity of the CRISPR-Cas complex, yet do this by interacting with different protein subunits, and using steric or non-steric modes of inhibition. The third anti-CRISPR protein operates by binding to the Cas3 helicase-nuclease and preventing its recruitment to the DNA-bound CRISPR-Cas complex. In vivo, this anti-CRISPR can convert the CRISPR-Cas system into a transcriptional repressor, providing the first example-to our knowledge-of modulation of CRISPR-Cas activity by a protein interactor. The diverse sequences and mechanisms of action of these anti-CRISPR proteins imply an independent evolution, and foreshadow the existence of other means by which proteins may alter CRISPR-Cas function. PMID:26416740

  18. Design of a CRISPR-Cas system to increase resistance of Bacillus subtilis to bacteriophage SPP1.

    PubMed

    Jakutyte-Giraitiene, Lina; Gasiunas, Giedrius

    2016-08-01

    Clustered regularly interspaced short palindromic repeats (CRISPR) together with CRISPR-associated (cas) genes form an adaptive prokaryotic immune system which provides acquired resistance against viruses and plasmids. Bacillus subtilis presently is the best-characterized laboratory model for Gram-positive bacteria and also widely used for industrial production of enzymes, vitamins and antibiotics. In this study, we show that type II-A CRISPR-Cas system from Streptococcus thermophilus can be transferred into B. subtilis and provides heterologous protection against phage infection. We engineered a heterologous host by cloning S. thermophilus Cas9 and a spacer targeting bacteriophage SPP1 into the chromosome of B. subtilis, which does not harbor its own CRISPR-Cas systems. We found that the heterologous CRISPR-Cas system is functionally active in B. subtilis and provides resistance against bacteriophage SPP1 infection. The high efficiency of the acquired immunity against phage could be useful in generation of biotechnologically important B. subtilis strains with engineered chromosomes. PMID:27255973

  19. Cas5d processes pre-crRNA and is a member of a larger family of CRISPR RNA endonucleases

    PubMed Central

    Garside, Erin L.; Schellenberg, Matthew J.; Gesner, Emily M.; Bonanno, Jeffrey B.; Sauder, J. Michael; Burley, Stephen K.; Almo, Steven C.; Mehta, Garima; MacMillan, Andrew M.

    2012-01-01

    Small RNAs derived from clustered, regularly interspaced, short palindromic repeat (CRISPR) loci in bacteria and archaea are involved in an adaptable and heritable gene-silencing pathway. Resistance to invasive genetic material is conferred by the incorporation of short DNA sequences derived from this material into the genome as CRISPR spacer elements separated by short repeat sequences. Processing of long primary transcripts (pre-crRNAs) containing these repeats by a CRISPR-associated (Cas) RNA endonuclease generates the mature effector RNAs that target foreign nucleic acid for degradation. Here we describe functional studies of a Cas5d ortholog, and high-resolution structural studies of a second Cas5d family member, demonstrating that Cas5d is a sequence-specific RNA endonuclease that cleaves CRISPR repeats and is thus responsible for processing of pre-crRNA. Analysis of the structural homology of Cas5d with the previously characterized Cse3 protein allows us to model the interaction of Cas5d with its RNA substrate and conclude that it is a member of a larger family of CRISPR RNA endonucleases. PMID:23006625

  20. Anti-spacer double patterning

    NASA Astrophysics Data System (ADS)

    Hyatt, Michael; Huang, Karen; DeVilliers, Anton; Slezak, Mark; Liu, Zhi

    2014-03-01

    With extreme UV not ready for HVM for the 20nm and 14nm nodes, double patterning options that extend the use of 193nm immersion lithography beyond the optical resolution limits, such as LELE (Litho-Etch-Litho-Etch) and SADP (Self Aligned Double Patterning), are being used for critical layers for these nodes. LELE requires very stringent overlay capability of the optical exposure tool. The spacer scheme of SADP starts with a conformal film of material around the mandrels and etched along the mandrel sidewalls to form patterns with doubled frequency. SADP, while having the advantage of being a self-aligned process, adds a number of process steps and strict control of the mandrel profile is required. In this paper, we will demonstrate a novel technique - ASDP (Anti-Spacer Double Patterning), which uses only spin-on materials to achieve self-aligned double patterning. After initial resist patterning, an Anti-Spacer Generator (ASG) material is coated on the resist pattern to create the developable spacer region. Another layer of material is then coated and processed to generate the second pattern in between the first resist pattern. We were able to define 37.5nm half pitch pattern features using this technique as well as sub-resolution features for an asymmetric pattern. In this paper we will review the capability of the process in terms of CD control and LWR (line width roughness) and discuss the limitations of the process.

  1. Predominance of Single Prophage Carrying a CRISPR/cas System in “Candidatus Liberibacter asiaticus” Strains in Southern China

    PubMed Central

    Zheng, Zheng; Bao, Minli; Wu, Fengnian; Chen, Jianchi; Deng, Xiaoling

    2016-01-01

    “Candidatus Liberibacter asiaticus” (CLas) is an uncultureable α-proteobacterium associated with citrus Huanglongbing (HLB, yellow shoot disease), a highly destructive disease affecting citrus production worldwide. HLB was observed in Guangdong Province of China over a hundred years ago and remains endemic there. Little is known about CLas biology due to its uncultureable nature. This study began with the genome sequence analysis of CLas Strain A4 from Guangdong in the prophage region. Within the two currently known prophage types, Type 1 (SC1-like) and Type 2 (SC2-like), A4 genome contained only a Type 2 prophage, CGdP2, namely. An analysis on CLas strains collected in Guangdong showed that Type 2 prophage dominated the bacterial population (82.6%, 71/86). An extended survey covering five provinces in southern China also revealed the predominance of single prophage (Type 1 or Type 2) in the CLas population (90.4%, 169/187). CLas strains with two and no prophage types accounted for 7.2% and 2.8%, respectively. In silico analyses on CGdP2 identified a CRISPR (clustered regularly interspaced short palindromic repeats)/cas (CRISPR-associated protein genes) system, consisting of four 22 bp repeats, three 23 bp spacers and 9 predicted cas. Similar CRISPR/cas systems were detected in all 10 published CLas prophages as well as 13 CLas field strains in southern China. Both Type 1 and Type 2 prophages shared almost identical sequences in spacer 1 and 3 but not spacer 2. Considering that the function of a CRISPR/cas system was to destroy invading DNA, it was hypothesized that a pre-established CLas prophage could use its CRISPR/cas system guided by spacer 1 and/or 3 to defeat the invasion of the other phage/prophage. This hypothesis explained the predominance of single prophage type in the CLas population in southern China. This is the first report of CRISPR/cas system in the “Ca. Liberibacter” genera. PMID:26741827

  2. Predominance of Single Prophage Carrying a CRISPR/cas System in "Candidatus Liberibacter asiaticus" Strains in Southern China.

    PubMed

    Zheng, Zheng; Bao, Minli; Wu, Fengnian; Chen, Jianchi; Deng, Xiaoling

    2016-01-01

    "Candidatus Liberibacter asiaticus" (CLas) is an uncultureable α-proteobacterium associated with citrus Huanglongbing (HLB, yellow shoot disease), a highly destructive disease affecting citrus production worldwide. HLB was observed in Guangdong Province of China over a hundred years ago and remains endemic there. Little is known about CLas biology due to its uncultureable nature. This study began with the genome sequence analysis of CLas Strain A4 from Guangdong in the prophage region. Within the two currently known prophage types, Type 1 (SC1-like) and Type 2 (SC2-like), A4 genome contained only a Type 2 prophage, CGdP2, namely. An analysis on CLas strains collected in Guangdong showed that Type 2 prophage dominated the bacterial population (82.6%, 71/86). An extended survey covering five provinces in southern China also revealed the predominance of single prophage (Type 1 or Type 2) in the CLas population (90.4%, 169/187). CLas strains with two and no prophage types accounted for 7.2% and 2.8%, respectively. In silico analyses on CGdP2 identified a CRISPR (clustered regularly interspaced short palindromic repeats)/cas (CRISPR-associated protein genes) system, consisting of four 22 bp repeats, three 23 bp spacers and 9 predicted cas. Similar CRISPR/cas systems were detected in all 10 published CLas prophages as well as 13 CLas field strains in southern China. Both Type 1 and Type 2 prophages shared almost identical sequences in spacer 1 and 3 but not spacer 2. Considering that the function of a CRISPR/cas system was to destroy invading DNA, it was hypothesized that a pre-established CLas prophage could use its CRISPR/cas system guided by spacer 1 and/or 3 to defeat the invasion of the other phage/prophage. This hypothesis explained the predominance of single prophage type in the CLas population in southern China. This is the first report of CRISPR/cas system in the "Ca. Liberibacter" genera. PMID:26741827

  3. Inactivation of CRISPR-Cas systems by anti-CRISPR proteins in diverse bacterial species.

    PubMed

    Pawluk, April; Staals, Raymond H J; Taylor, Corinda; Watson, Bridget N J; Saha, Senjuti; Fineran, Peter C; Maxwell, Karen L; Davidson, Alan R

    2016-01-01

    CRISPR-Cas systems provide sequence-specific adaptive immunity against foreign nucleic acids(1,2). They are present in approximately half of all sequenced prokaryotes(3) and are expected to constitute a major barrier to horizontal gene transfer. We previously described nine distinct families of proteins encoded in Pseudomonas phage genomes that inhibit CRISPR-Cas function(4,5). We have developed a bioinformatic approach that enabled us to discover additional anti-CRISPR proteins encoded in phages and other mobile genetic elements of diverse bacterial species. We show that five previously undiscovered families of anti-CRISPRs inhibit the type I-F CRISPR-Cas systems of both Pseudomonas aeruginosa and Pectobacterium atrosepticum, and a dual specificity anti-CRISPR inactivates both type I-F and I-E CRISPR-Cas systems. Mirroring the distribution of the CRISPR-Cas systems they inactivate, these anti-CRISPRs were found in species distributed broadly across the phylum Proteobacteria. Importantly, anti-CRISPRs originating from species with divergent type I-F CRISPR-Cas systems were able to inhibit the two systems we tested, highlighting their broad specificity. These results suggest that all type I-F CRISPR-Cas systems are vulnerable to inhibition by anti-CRISPRs. Given the widespread occurrence and promiscuous activity of the anti-CRISPRs described here, we propose that anti-CRISPRs play an influential role in facilitating the movement of DNA between prokaryotes by breaching the barrier imposed by CRISPR-Cas systems. PMID:27573108

  4. CRISPR/cas Loci of Type II Propionibacterium acnes Confer Immunity against Acquisition of Mobile Elements Present in Type I P. acnes

    PubMed Central

    Brüggemann, Holger; Lomholt, Hans B.; Tettelin, Hervé; Kilian, Mogens

    2012-01-01

    Propionibacterium acnes is a skin commensal that occasionally acts as an opportunistic pathogen. The population structure of this species shows three main lineages (I–III). While type I strains are mainly associated with sebaceous follicles of human skin and inflammatory acne, types II and III strains are more often associated with deep tissue infections. We investigated the occurrence and distribution of the clustered regularly interspaced short palindromic repeats (CRISPR) in P. acnes, assessed their immunological memory, and addressed the question if such a system could account for type-specific properties of the species. A collection of 108 clinical isolates covering all known phylotypes of P. acnes was screened for the existence of CRISPR/cas loci. We found that CRISPR loci are restricted to type II P. acnes strains. Sequence analyses of the CRISPR spacers revealed that the system confers immunity to P. acnes-specific phages and to two mobile genetic elements. These elements are found almost exclusively in type I P. acnes strains. Genome sequencing of a type I P. acnes isolate revealed that one element, 54 kb in size, encodes a putative secretion/tight adherence (TAD) system. Thus, CRISPR/cas loci in P. acnes recorded the exposure of type II strains to mobile genetic elements of type I strains. The CRISPR/cas locus is deleted in type I strains, which conceivably accounts for their ability to horizontally acquire fitness or virulence traits and might indicate that type I strains constitute a younger subpopulation of P. acnes. PMID:22479553

  5. Generator stator core vent duct spacer posts

    DOEpatents

    Griffith, John Wesley; Tong, Wei

    2003-06-24

    Generator stator cores are constructed by stacking many layers of magnetic laminations. Ventilation ducts may be inserted between these layers by inserting spacers into the core stack. The ventilation ducts allow for the passage of cooling gas through the core during operation. The spacers or spacer posts are positioned between groups of the magnetic laminations to define the ventilation ducts. The spacer posts are secured with longitudinal axes thereof substantially parallel to the core axis. With this structure, core tightness can be assured while maximizing ventilation duct cross section for gas flow and minimizing magnetic loss in the spacers.

  6. Spacer grid assembly and locking mechanism

    DOEpatents

    Snyder, Jr., Harold J.; Veca, Anthony R.; Donck, Harry A.

    1982-01-01

    A spacer grid assembly is disclosed for retaining a plurality of fuel rods in substantially parallel spaced relation, the spacer grids being formed with rhombic openings defining contact means for engaging from one to four fuel rods arranged in each opening, the spacer grids being of symmetric configuration with their rhombic openings being asymmetrically offset to permit inversion and relative rotation of the similar spacer grids for improved support of the fuel rods. An improved locking mechanism includes tie bars having chordal surfaces to facilitate their installation in slotted circular openings of the spacer grids, the tie rods being rotatable into locking engagement with the slotted openings.

  7. Progress of application and off-target effects of CRISPR/Cas9.

    PubMed

    Wu, Zheng; Feng, Gu

    2015-10-01

    The clustered regulatory interspaced short palindromic repeat/Cas9 (CRISPR/Cas9) system mediates genome editing and is revolutionizing genetic researches. Scientists are able to manipulate the gene of interest from any organism with CRISPR/Cas9. Compared with zinc finger nucleases (ZFNs) and transcription activator-like effector nucleases (TALENs) technologies, the CRISPR/Cas9 technology provides an easy and efficient approach to manipulate the genome. In this system, sgRNA (Single guide RNA), a short RNA matching the targeted DNA fragment, guides the CRISPR/Cas9 to interrogate the genome. Because sgRNA can tolerate certain mismatches to the DNA targets and thereby promote undesired off-target mutagenesis, the key limit of this technology is off-target effects. To eliminate the off-target effects, different strategies have been adopted. In this review, we summarize the application of CRISPR/Cas9 and different strategies for addressing off-target effects. PMID:26496752

  8. A CRISPR view of development

    PubMed Central

    Harrison, Melissa M.; Jenkins, Brian V.; O’Connor-Giles, Kate M.

    2014-01-01

    The CRISPR (clustered regularly interspaced short palindromic repeat)–Cas9 (CRISPR-associated nuclease 9) system is poised to transform developmental biology by providing a simple, efficient method to precisely manipulate the genome of virtually any developing organism. This RNA-guided nuclease (RGN)-based approach already has been effectively used to induce targeted mutations in multiple genes simultaneously, create conditional alleles, and generate endogenously tagged proteins. Illustrating the adaptability of RGNs, the genomes of >20 different plant and animal species as well as multiple cell lines and primary cells have been successfully modified. Here we review the current and potential uses of RGNs to investigate genome function during development. PMID:25184674

  9. Mechanical evaluation of unipolar hip spacer constructs.

    PubMed

    Kummer, Frederick J; Strauss, Eric; Wright, Kevin; Kubiak, Erik N; Di Cesare, Paul E

    2008-10-01

    The strengths of 3 hip spacer constructs--Steinmann pins, a short intramedullary nail (both cement-incorporated), and a Charnley prosthesis--were determined and compared with the strength of a commercially available hip spacer. The hip prosthesis construct was more than twice as strong as the other 2 constructs and was equivalent in strength to the commercial spacer. For spacer applications in which limited weight-bearing is anticipated, the hip prosthesis construct appears more efficacious, but its pros and cons should be compared with those of the commercial product. PMID:19081880

  10. WGE: a CRISPR database for genome engineering

    PubMed Central

    Hodgkins, Alex; Farne, Anna; Perera, Sajith; Grego, Tiago; Parry-Smith, David J.; Skarnes, William C.; Iyer, Vivek

    2015-01-01

    Summary: The rapid development of CRISPR-Cas9 mediated genome editing techniques has given rise to a number of online and stand-alone tools to find and score CRISPR sites for whole genomes. Here we describe the Wellcome Trust Sanger Institute Genome Editing database (WGE), which uses novel methods to compute, visualize and select optimal CRISPR sites in a genome browser environment. The WGE database currently stores single and paired CRISPR sites and pre-calculated off-target information for CRISPRs located in the mouse and human exomes. Scoring and display of off-target sites is simple, and intuitive, and filters can be applied to identify high-quality CRISPR sites rapidly. WGE also provides a tool for the design and display of gene targeting vectors in the same genome browser, along with gene models, protein translation and variation tracks. WGE is open, extensible and can be set up to compute and present CRISPR sites for any genome. Availability and implementation: The WGE database is freely available at www.sanger.ac.uk/htgt/wge Contact: vvi@sanger.ac.uk or skarnes@sanger.ac.uk Supplementary information: Supplementary data are available at Bioinformatics online. PMID:25979474

  11. CRISPR-Cas: Revolutionising genome engineering.

    PubMed

    Nicholson, Samantha Anne; Pepper, Michael Sean

    2016-09-01

    The ability to permanently alter or repair the human genome has been the subject of a number of science fiction films, but with the recent advent of several customisable sequence-specific endonuclease technologies, genome engineering looks set to become a clinical reality in the near future. This article discusses recent advancements in the technology called 'clustered regularly interspaced palindromic repeat (CRISPR)-associated genes' (CRISPR-Cas), the potential of CRISPR-Cas to revolutionise molecular medicine, and the ethical and regulatory hurdles facing its application. PMID:27601107

  12. CRMAGE: CRISPR Optimized MAGE Recombineering

    PubMed Central

    Ronda, Carlotta; Pedersen, Lasse Ebdrup; Sommer, Morten O. A.; Nielsen, Alex Toftgaard

    2016-01-01

    A bottleneck in metabolic engineering and systems biology approaches is the lack of efficient genome engineering technologies. Here, we combine CRISPR/Cas9 and λ Red recombineering based MAGE technology (CRMAGE) to create a highly efficient and fast method for genome engineering of Escherichia coli. Using CRMAGE, the recombineering efficiency was between 96.5% and 99.7% for gene recoding of three genomic targets, compared to between 0.68% and 5.4% using traditional recombineering. For modulation of protein synthesis (small insertion/RBS substitution) the efficiency was increased from 6% to 70%. CRMAGE can be multiplexed and enables introduction of at least two mutations in a single round of recombineering with similar efficiencies. PAM-independent loci were targeted using degenerate codons, thereby making it possible to modify any site in the genome. CRMAGE is based on two plasmids that are assembled by a USER-cloning approach enabling quick and cost efficient gRNA replacement. CRMAGE furthermore utilizes CRISPR/Cas9 for efficient plasmid curing, thereby enabling multiple engineering rounds per day. To facilitate the design process, a web-based tool was developed to predict both the λ Red oligos and the gRNAs. The CRMAGE platform enables highly efficient and fast genome editing and may open up promising prospective for automation of genome-scale engineering. PMID:26797514

  13. Gate Spacer Width Monitoring Study with Scatterometry Based on Spectroscopic Ellipsometry

    NASA Astrophysics Data System (ADS)

    Vachellerie, V.; Kremer, S.; Elazami, A.; Morin, P.; Julien, C.; Duca, D.; Guiheux, D.; Bicais, N.; Pokrant, S.

    2005-09-01

    Critical Dimension (CD) control of Gate Spacers is key to achieve in well controlled implantations and a tight distribution of Vt for transistors on semiconductors devices. Presently, historical methods for CD control (top-down low-voltage Scanning Electron Microscopy, Atomic Force Microscopy, Transmission Electron Microscopy or Electrical CD measurement) are facing limitations with regards to precision, matching, throughput or sample damage. So, with the reduction of design rules approaching the 65nm technology node, the need for a fast, precise and versatile "in-line" (at the process step) measurement of the spacer width and profile becomes critical, in order to shorten the spacer process development phase and the response time to production excursions. In this paper, we investigate the metrology performances and limitations (sensitivity, precision and accuracy) of Scatterometry (SCD) based on Spectroscopic Ellipsometry (SE) for this application using a KLA-TENCOR SpectraCD system. We show that it will be suitable for, at least, a simple oxide-nitride spacer configuration. We also explore its capability to measure more complex structures like the double-spacer configuration (LDD offset & S/D spacer). Finally, we show how additional information provided by Scatterometry helps in understanding process variations and how they correlate to end of line parametric test results.

  14. LISA telescope spacer design investigations

    NASA Astrophysics Data System (ADS)

    Sanjuan, Josep; Mueller, Guido; Livas, Jeffrey; Preston, Alix; Arsenovic, Petar; Castellucci, Kevin; Generie, Joseph; Howard, Joseph; Stebbins, Robin

    ) and materials such as Silicon Carbide (SiC) and Carbon Fiber Reinforced Plastic (CFRP) are considered to be used in the telescope spacer structure. We will describe our experimental efforts to understand and quantify the behavior of different materials and also discuss a first investigation of a specific on-axis SiC telescope spacer for LISA. This work is supported by NASA contract 00069955.

  15. CRISPR Outsourcing: Commissioning IHF for Site-Specific Integration of Foreign DNA at the CRISPR Array.

    PubMed

    Wei, Yunzhou; Terns, Michael P

    2016-06-16

    In this issue of Molecular Cell, Nuñez et al. (2016) report that site-specific integration of foreign DNA into CRISPR loci by the Cas1-Cas2 integrase complex is promoted by a host factor, IHF (integration host factor), that binds and bends CRISPR leader DNA. PMID:27315553

  16. RNA Interference in the Age of CRISPR: Will CRISPR Interfere with RNAi?

    PubMed

    Unniyampurath, Unnikrishnan; Pilankatta, Rajendra; Krishnan, Manoj N

    2016-01-01

    The recent emergence of multiple technologies for modifying gene structure has revolutionized mammalian biomedical research and enhanced the promises of gene therapy. Over the past decade, RNA interference (RNAi) based technologies widely dominated various research applications involving experimental modulation of gene expression at the post-transcriptional level. Recently, a new gene editing technology, Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR) and the CRISPR-associated protein 9 (Cas9) (CRISPR/Cas9) system, has received unprecedented acceptance in the scientific community for a variety of genetic applications. Unlike RNAi, the CRISPR/Cas9 system is bestowed with the ability to introduce heritable precision insertions and deletions in the eukaryotic genome. The combination of popularity and superior capabilities of CRISPR/Cas9 system raises the possibility that this technology may occupy the roles currently served by RNAi and may even make RNAi obsolete. We performed a comparative analysis of the technical aspects and applications of the CRISPR/Cas9 system and RNAi in mammalian systems, with the purpose of charting out a predictive picture on whether the CRISPR/Cas9 system will eclipse the existence and future of RNAi. The conclusion drawn from this analysis is that RNAi will still occupy specific domains of biomedical research and clinical applications, under the current state of development of these technologies. However, further improvements in CRISPR/Cas9 based technology may ultimately enable it to dominate RNAi in the long term. PMID:26927085

  17. CrisprGE: a central hub of CRISPR/Cas-based genome editing.

    PubMed

    Kaur, Karambir; Tandon, Himani; Gupta, Amit Kumar; Kumar, Manoj

    2015-01-01

    CRISPR system is a powerful defense mechanism in bacteria and archaea to provide immunity against viruses. Recently, this process found a new application in intended targeting of the genomes. CRISPR-mediated genome editing is performed by two main components namely single guide RNA and Cas9 protein. Despite the enormous data generated in this area, there is a dearth of high throughput resource. Therefore, we have developed CrisprGE, a central hub of CRISPR/Cas-based genome editing. Presently, this database holds a total of 4680 entries of 223 unique genes from 32 model and other organisms. It encompasses information about the organism, gene, target gene sequences, genetic modification, modifications length, genome editing efficiency, cell line, assay, etc. This depository is developed using the open source LAMP (Linux Apache MYSQL PHP) server. User-friendly browsing, searching facility is integrated for easy data retrieval. It also includes useful tools like BLAST CrisprGE, BLAST NTdb and CRISPR Mapper. Considering potential utilities of CRISPR in the vast area of biology and therapeutics, we foresee this platform as an assistance to accelerate research in the burgeoning field of genome engineering. PMID:26120138

  18. Structure and activity of the RNA-targeting Type III-B CRISPR-Cas complex of Thermus thermophilus

    PubMed Central

    Zhu, Yifan; Taylor, David W.; van Duijn, Esther; Barendregt, Arjan; Vlot, Marnix; Koehorst, Jasper J.; Sakamoto, Keiko; Masuda, Akiko; Dohmae, Naoshi; Schaap, Peter J.; Doudna, Jennifer A.; Heck, Albert J.R.; Yonekura, Koji; van der Oost, John; Shinkai, Akeo

    2014-01-01

    Summary The CRISPR-Cas system is a prokaryotic host defense system against genetic elements. The Type III-B CRISPR-Cas system of the bacterium Thermus thermophilus, the TtCmr complex, is composed of six different protein subunits (Cmr1-6) and one crRNA with a stoichiometry of Cmr112131445361:crRNA1. The TtCmr complex co-purifies with crRNA species of 40 and 46 nt, originating from a distinct subset of CRISPR loci and spacers. The TtCmr complex cleaves the target RNA at multiple sites with 6 nt intervals via a 5’ ruler mechanism. Electron microscopy revealed that the structure of TtCmr resembles a ‘sea worm’ and is composed of a Cmr2-3 heterodimer ‘tail’, a helical backbone of Cmr4 subunits capped by Cmr5 subunits, and a curled ‘head’ containing Cmr1 and Cmr6. Despite having a backbone of only four Cmr4 subunits and being both longer and narrower, the overall architecture of TtCmr resembles that of Type I Cascade complexes. PMID:24119403

  19. Identification, structural, and biochemical characterization of a group of large Csn2 proteins involved in CRISPR-mediated bacterial immunity.

    PubMed

    Lee, Kwang-Hoon; Lee, Seong-Gyu; Eun Lee, Kyung; Jeon, Hyesung; Robinson, Howard; Oh, Byung-Ha

    2012-11-01

    Many prokaryotic organisms acquire immunity against foreign genetic material by incorporating a short segment of foreign DNA called spacer into chromosomal loci, termed clustered regularly interspaced short palindromic repeats (CRISPRs). The encoded RNAs are processed into small fragments that guide the silencing of the invading genetic elements. The CRISPR-associated (Cas) proteins are the main executioners of these processes. Herein, we report the crystal structure of Stu0660 of Streptococcus thermophilus, a Cas protein involved in the acquisition of new spacers. By homotetramerization, Stu0660 forms a central channel which is decorated with basic amino acids and binds linear double-stranded DNA (dsDNA), but not circular dsDNA. Despite undetectably low sequence similarity, two N-terminal domains of Stu0660 are similar to the entire structure of an Enterococcus faecalis Csn2 protein, which also forms a homotetramer and binds dsDNA. Thus, this work identifies a previously unknown group of Stu0660-like Csn2 proteins (∼350 residues), which are larger than the known canonical Csn2 proteins (∼220 residues) by containing an extra C-terminal domain. The commonly present central channel in the two subgroups appears as a design to selectively interact with linear dsDNA. PMID:22753072

  20. Exploiting CRISPR/Cas systems for biotechnology

    PubMed Central

    Sampson, Timothy R.; Weiss, David S.

    2015-01-01

    The Cas9 endonuclease is the central component of the Type II CRISPR/Cas system, a prokaryotic adaptive restriction system against invading nucleic acids, such as those originating from bacteriophages and plasmids. Recently, this RNA-directed DNA endonuclease has been harnessed to target DNA sequences of interest. Here, we review the development of Cas9 as an important tool to not only edit the genomes of a number of different prokaryotic and eukaryotic species, but also as an efficient system for site-specific transcriptional repression or activation. Additionally, a specific Cas9 protein has been observed to target an RNA substrate, suggesting that Cas9 may have the ability to be programmed to target RNA as well. Cas proteins from other CRISPR/Cas subtypes may also be exploited in this regard. Thus, CRISPR/Cas systems represent an effective and versatile biotechnological tool, which will have significant impact on future advancements in genome engineering. PMID:24323919

  1. Deciphering and shaping bacterial diversity through CRISPR.

    PubMed

    Briner, Alexandra E; Barrangou, Rodolphe

    2016-06-01

    Phage and bacteria have engaged in a sustainable arms race, a seemingly endless conflict, since the beginning of time. CRISPR-Cas systems shape and generate environmental diversity through evolution of both predator and prey genomes. Indeed, the gain or loss of CRISPR-mediated immunity and genome maintenance can spark speciation in bacteria. Alternatively, turning CRISPR-Cas on the host by targeting chromosomal DNA has led to the development of next-generation smart antimicrobials and genetic screening and engineering technologies. Although the ability to target and cleave DNA in a sequence-specific manner is a powerful mechanism utilized by bacteria to fend off phage, plasmids, and potentially harmful nucleic acids, it is also a promising technology for programmable targeting of undesirable bacteria in microbiome consortia. PMID:27045713

  2. High-Throughput CRISPR Typing of Mycobacterium tuberculosis Complex and Salmonella enterica Serotype Typhimurium.

    PubMed

    Sola, Christophe; Abadia, Edgar; Le Hello, Simon; Weill, François-Xavier

    2015-01-01

    Spoligotyping was developed almost 18 years ago and still remains a popular first-lane genotyping technique to identify and subtype Mycobacterium tuberculosis complex (MTC) clinical isolates at a phylogeographic level. For other pathogens, such as Salmonella enterica, recent studies suggest that specifically designed spoligotyping techniques could be interesting for public health purposes. Spoligotyping was in its original format a reverse line-blot hybridization method using capture probes designed on "spacers" and attached to a membrane's surface and a PCR product obtained from clustered regularly interspaced short palindromic repeats (CRISPRs). Cowan et al. and Fabre et al. were the first to propose a high-throughput Spoligotyping method based on microbeads for MTC and S. enterica serotype Typhimurium, respectively. The main advantages of the high-throughput Spoligotyping techniques we describe here are their low cost, their robustness, and the existence (at least for MTC) of very large databases that allow comparisons between spoligotypes from anywhere. PMID:25981468

  3. High-Efficiency Multiplex Genome Editing of Streptomyces Species Using an Engineered CRISPR/Cas System

    PubMed Central

    2015-01-01

    Actinobacteria, particularly those of genus Streptomyces, remain invaluable hosts for the discovery and engineering of natural products and their cognate biosynthetic pathways. However, genetic manipulation of these bacteria is often labor and time intensive. Here, we present an engineered CRISPR/Cas system for rapid multiplex genome editing of Streptomyces strains, demonstrating targeted chromosomal deletions in three different Streptomyces species and of various sizes (ranging from 20 bp to 30 kb) with efficiency ranging from 70 to 100%. The designed pCRISPomyces plasmids are amenable to assembly of spacers and editing templates via Golden Gate assembly and isothermal assembly (or traditional digestion/ligation), respectively, allowing rapid plasmid construction to target any genomic locus of interest. As such, the pCRISPomyces system represents a powerful new tool for genome editing in Streptomyces. PMID:25458909

  4. Adverse impact of feed channel spacers on the performance of pressure retarded osmosis.

    PubMed

    Kim, Yu Chang; Elimelech, Menachem

    2012-04-17

    This article analyzes the influence of feed channel spacers on the performance of pressure retarded osmosis (PRO). Unlike forward osmosis (FO), an important feature of PRO is the application of hydraulic pressure on the high salinity (draw solution) side to retard the permeating flow for energy conversion. We report the first observation of membrane deformation under the action of the high hydraulic pressure on the feed channel spacer and the resulting impact on membrane performance. Because of this observation, reverse osmosis and FO tests that are commonly used for measuring membrane transport properties (water and salt permeability coefficients, A and B, respectively) and the structural parameter (S) can no longer be considered appropriate for use in PRO analysis. To accurately predict the water flux as a function of applied hydraulic pressure difference and the resulting power density in PRO, we introduced a new experimental protocol that accounts for membrane deformation in a spacer-filled channel to determine the membrane properties (A, B, and S). PRO performance model predictions based on these determined A, B, and S values closely matched experimental data over a range of draw solution concentrations (0.5 to 2 M NaCl). We also showed that at high pressures feed spacers block the permeation of water through the membrane area in contact with the spacer, a phenomenon that we term the shadow effect, thereby reducing overall water flux. The implications of the results for power generation by PRO are evaluated and discussed. PMID:22420537

  5. The ribosomal gene spacer region in archaebacteria

    NASA Technical Reports Server (NTRS)

    Achenbach-Richter, L.; Woese, C. R.

    1988-01-01

    Sequences for the spacer regions that separate the 16S and 23S ribosomal RNA genes have been determined for four more (strategically placed) archaebacteria. These confirm the general rule that methanogens and extreme halophiles have spacers that contain a single tRNAala gene, while tRNA genes are not found in the spacer region of the true extreme thermophiles. The present study also shows that the spacer regions from the sulfate reducing Archaeglobus and the extreme thermophile Thermococcus (both of which cluster phylogenetically with the methanogens and extreme halophiles) contain each a tRNAala gene. Thus, not only all methanogens and extreme halophiles show this characteristic, but all organisms on the "methanogen branch" of the archaebacterial tree appear to do so. The finding of a tRNA gene in the spacer region of the extreme thermophile Thermococcus celer is the first known phenotypic property that links this organism with its phylogenetic counterparts, the methanogens, rather than with its phenotypic counterparts, the sulfur-dependent extreme thermophiles.

  6. The combination of CRISPR-MVLST and PFGE provides increased discriminatory power for differentiating human clinical isolates of Salmonella enterica subsp. enterica serovar Enteritidis.

    PubMed

    Shariat, Nikki; DiMarzio, Michael J; Yin, Shuang; Dettinger, Lisa; Sandt, Carol H; Lute, James R; Barrangou, Rodolphe; Dudley, Edward G

    2013-05-01

    Salmonella enterica subsp. enterica serovar Enteritidis (S. Enteritidis) is a major cause of foodborne salmonellosis. Rapid, efficient and accurate methods for identification are required to track specific strains of S. Enteritidis during outbreaks of human salmonellosis. By exploiting the hypervariable nature of virulence genes and Clustered Regularly Interspaced Short Palindromic Repeats (CRISPRs), we previously developed a powerful sequence-based subtyping approach, designated CRISPR-MVLST. To substantiate the applicability of CRISPR-MVLST, we analyzed a broad set of S. Enteritidis isolates collected over a six-year period. Among 141 isolates we defined 22 Enteritidis Sequence Types (ESTs), the majority of which were novel. Notably, strains exhibiting the common PFGE pattern, JEGX01.0004 (characteristic of ∼40% of S. Enteritidis isolates in the United States), were separated into twelve distinct sequence types. Conversely, isolates of EST4, the most predominant EST we observed, comprised eight different PFGE patterns. Importantly, we showed that some genotypes that were previously associated with the food supply chain at the farm level have now been identified in clinical samples. CRISPR sequence data shows subtle but distinct differences among different alleles of S. Enteritidis, suggesting that evolution of these loci occurs vertically, as opposed to previously reported evolution by spacer acquisition in other bacteria. PMID:23498194

  7. Surveillance and Processing of Foreign DNA by the Escherichia coli CRISPR-Cas System.

    PubMed

    Redding, Sy; Sternberg, Samuel H; Marshall, Myles; Gibb, Bryan; Bhat, Prashant; Guegler, Chantal K; Wiedenheft, Blake; Doudna, Jennifer A; Greene, Eric C

    2015-11-01

    CRISPR-Cas adaptive immune systems protect bacteria and archaea against foreign genetic elements. In Escherichia coli, Cascade (CRISPR-associated complex for antiviral defense) is an RNA-guided surveillance complex that binds foreign DNA and recruits Cas3, a trans-acting nuclease helicase for target degradation. Here, we use single-molecule imaging to visualize Cascade and Cas3 binding to foreign DNA targets. Our analysis reveals two distinct pathways dictated by the presence or absence of a protospacer-adjacent motif (PAM). Binding to a protospacer flanked by a PAM recruits a nuclease-active Cas3 for degradation of short single-stranded regions of target DNA, whereas PAM mutations elicit an alternative pathway that recruits a nuclease-inactive Cas3 through a mechanism that is dependent on the Cas1 and Cas2 proteins. These findings explain how target recognition by Cascade can elicit distinct outcomes and support a model for acquisition of new spacer sequences through a mechanism involving processive, ATP-dependent Cas3 translocation along foreign DNA. PMID:26522594

  8. Virus-Host and CRISPR Dynamics in Archaea-Dominated Hypersaline Lake Tyrrell, Victoria, Australia

    DOE PAGESBeta

    Emerson, Joanne B.; Andrade, Karen; Thomas, Brian C.; Norman, Anders; Allen, Eric E.; Heidelberg, Karla B.; Banfield, Jillian F.

    2013-01-01

    The study of natural archaeal assemblages requires community context, namely, a concurrent assessment of the dynamics of archaeal, bacterial, and viral populations. Here, we use filter size-resolved metagenomic analyses to report the dynamics of 101 archaeal and bacterial OTUs and 140 viral populations across 17 samples collected over different timescales from 2007–2010 from Australian hypersaline Lake Tyrrell (LT). All samples were dominated by Archaea (75–95%). Archaeal, bacterial, and viral populations were found to be dynamic on timescales of months to years, and different viral assemblages were present in planktonic, relative to host-associated (active and provirus) size fractions. Analyses of clusteredmore » regularly interspaced short palindromic repeat (CRISPR) regions indicate that both rare and abundant viruses were targeted, primarily by lower abundance hosts. Although very few spacers had hits to the NCBI nr database or to the 140 LT viral populations, 21% had hits to unassembled LT viral concentrate reads. This suggests local adaptation to LT-specific viruses and/or undersampling of haloviral assemblages in public databases, along with successful CRISPR-mediated maintenance of viral populations at abundances low enough to preclude genomic assembly. This is the first metagenomic report evaluating widespread archaeal dynamics at the population level on short timescales in a hypersaline system.« less

  9. Virus-Host and CRISPR Dynamics in Archaea-Dominated Hypersaline Lake Tyrrell, Victoria, Australia

    PubMed Central

    Emerson, Joanne B.; Andrade, Karen; Thomas, Brian C.; Norman, Anders; Allen, Eric E.; Heidelberg, Karla B.; Banfield, Jillian F.

    2013-01-01

    The study of natural archaeal assemblages requires community context, namely, a concurrent assessment of the dynamics of archaeal, bacterial, and viral populations. Here, we use filter size-resolved metagenomic analyses to report the dynamics of 101 archaeal and bacterial OTUs and 140 viral populations across 17 samples collected over different timescales from 2007–2010 from Australian hypersaline Lake Tyrrell (LT). All samples were dominated by Archaea (75–95%). Archaeal, bacterial, and viral populations were found to be dynamic on timescales of months to years, and different viral assemblages were present in planktonic, relative to host-associated (active and provirus) size fractions. Analyses of clustered regularly interspaced short palindromic repeat (CRISPR) regions indicate that both rare and abundant viruses were targeted, primarily by lower abundance hosts. Although very few spacers had hits to the NCBI nr database or to the 140 LT viral populations, 21% had hits to unassembled LT viral concentrate reads. This suggests local adaptation to LT-specific viruses and/or undersampling of haloviral assemblages in public databases, along with successful CRISPR-mediated maintenance of viral populations at abundances low enough to preclude genomic assembly. This is the first metagenomic report evaluating widespread archaeal dynamics at the population level on short timescales in a hypersaline system. PMID:23853523

  10. Virus-host and CRISPR dynamics in Archaea-dominated hypersaline Lake Tyrrell, Victoria, Australia.

    PubMed

    Emerson, Joanne B; Andrade, Karen; Thomas, Brian C; Norman, Anders; Allen, Eric E; Heidelberg, Karla B; Banfield, Jillian F

    2013-01-01

    The study of natural archaeal assemblages requires community context, namely, a concurrent assessment of the dynamics of archaeal, bacterial, and viral populations. Here, we use filter size-resolved metagenomic analyses to report the dynamics of 101 archaeal and bacterial OTUs and 140 viral populations across 17 samples collected over different timescales from 2007-2010 from Australian hypersaline Lake Tyrrell (LT). All samples were dominated by Archaea (75-95%). Archaeal, bacterial, and viral populations were found to be dynamic on timescales of months to years, and different viral assemblages were present in planktonic, relative to host-associated (active and provirus) size fractions. Analyses of clustered regularly interspaced short palindromic repeat (CRISPR) regions indicate that both rare and abundant viruses were targeted, primarily by lower abundance hosts. Although very few spacers had hits to the NCBI nr database or to the 140 LT viral populations, 21% had hits to unassembled LT viral concentrate reads. This suggests local adaptation to LT-specific viruses and/or undersampling of haloviral assemblages in public databases, along with successful CRISPR-mediated maintenance of viral populations at abundances low enough to preclude genomic assembly. This is the first metagenomic report evaluating widespread archaeal dynamics at the population level on short timescales in a hypersaline system. PMID:23853523

  11. CRISPR-Cas9-assisted recombineering in Lactobacillus reuteri.

    PubMed

    Oh, Jee-Hwan; van Pijkeren, Jan-Peter

    2014-01-01

    Clustered regularly interspaced palindromic repeats (CRISPRs) and the CRISPR-associated (Cas) nuclease protect bacteria and archeae from foreign DNA by site-specific cleavage of incoming DNA. Type-II CRISPR-Cas systems, such as the Streptococcus pyogenes CRISPR-Cas9 system, can be adapted such that Cas9 can be guided to a user-defined site in the chromosome to introduce double-stranded breaks. Here we have developed and optimized CRISPR-Cas9 function in the lactic acid bacterium Lactobacillus reuteri ATCC PTA 6475. We established proof-of-concept showing that CRISPR-Cas9 selection combined with single-stranded DNA (ssDNA) recombineering is a realistic approach to identify at high efficiencies edited cells in a lactic acid bacterium. We show for three independent targets that subtle changes in the bacterial genome can be recovered at efficiencies ranging from 90 to 100%. By combining CRISPR-Cas9 and recombineering, we successfully applied codon saturation mutagenesis in the L. reuteri chromosome. Also, CRISPR-Cas9 selection is critical to identify low-efficiency events such as oligonucleotide-mediated chromosome deletions. This also means that CRISPR-Cas9 selection will allow identification of recombinant cells in bacteria with low recombineering efficiencies, eliminating the need for ssDNA recombineering optimization procedures. We envision that CRISPR-Cas genome editing has the potential to change the landscape of genome editing in lactic acid bacteria, and other Gram-positive bacteria. PMID:25074379

  12. Comparative genomics reveals diversified CRISPR-Cas systems of globally distributed Microcystis aeruginosa, a freshwater bloom-forming cyanobacterium

    PubMed Central

    Yang, Chen; Lin, Feibi; Li, Qi; Li, Tao; Zhao, Jindong

    2015-01-01

    Microcystis aeruginosa is one of the most common and dominant bloom-forming cyanobacteria in freshwater lakes around the world. Microcystis cells can produce toxic secondary metabolites, such as microcystins, which are harmful to human health. Two M. aeruginosa strains were isolated from two highly eutrophic lakes in China and their genomes were sequenced. Comparative genomic analysis was performed with the 12 other available M. aeruginosa genomes and closely related unicellular cyanobacterium. Each genome of M. aeruginosa containing at least one clustered regularly interspaced short palindromic repeat (CRISPR) locus and total 71 loci were identified, suggesting it is ubiquitous in M. aeruginosa genomes. In addition to the previously reported subtype I-D cas gene sets, three CAS subtypes I-A, III-A and III-B were identified and characterized in this study. Seven types of CRISPR direct repeat have close association with CAS subtype, confirming that different and specific secondary structures of CRISPR repeats are important for the recognition, binding and process of corresponding cas gene sets. Homology search of the CRISPR spacer sequences provides a history of not only resistance to bacteriophages and plasmids known to be associated with M. aeruginosa, but also the ability to target much more exogenous genetic material in the natural environment. These adaptive and heritable defense mechanisms play a vital role in keeping genomic stability and self-maintenance by restriction of horizontal gene transfer. Maintaining genomic stability and modulating genomic plasticity are both important evolutionary strategies for M. aeruginosa in adaptation and survival in various habitats. PMID:26029174

  13. Casposons: a new superfamily of self-synthesizing DNA transposons at the origin of prokaryotic CRISPR-Cas immunity

    PubMed Central

    2014-01-01

    Background Diverse transposable elements are abundant in genomes of cellular organisms from all three domains of life. Although transposons are often regarded as junk DNA, a growing body of evidence indicates that they are behind some of the major evolutionary innovations. With the growth in the number and diversity of sequenced genomes, previously unnoticed mobile elements continue to be discovered. Results We describe a new superfamily of archaeal and bacterial mobile elements which we denote casposons because they encode Cas1 endonuclease, a key enzyme of the CRISPR-Cas adaptive immunity systems of archaea and bacteria. The casposons share several features with self-synthesizing eukaryotic DNA transposons of the Polinton/Maverick class, including terminal inverted repeats and genes for B family DNA polymerases. However, unlike any other known mobile elements, the casposons are predicted to rely on Cas1 for integration and excision, via a mechanism similar to the integration of new spacers into CRISPR loci. We identify three distinct families of casposons that differ in their gene repertoires and evolutionary provenance of the DNA polymerases. Deep branching of the casposon-encoded endonuclease in the Cas1 phylogeny suggests that casposons played a pivotal role in the emergence of CRISPR-Cas immunity. Conclusions The casposons are a novel superfamily of mobile elements, the first family of putative self-synthesizing transposons discovered in prokaryotes. The likely contribution of capsosons to the evolution of CRISPR-Cas parallels the involvement of the RAG1 transposase in vertebrate immunoglobulin gene rearrangement, suggesting that recruitment of endonucleases from mobile elements as ready-made tools for genome manipulation is a general route of evolution of adaptive immunity. PMID:24884953

  14. CRISPR Screens to Discover Functional Noncoding Elements.

    PubMed

    Wright, Jason B; Sanjana, Neville E

    2016-09-01

    A major challenge in genomics is to identify functional elements in the noncoding genome. Recently, pooled clustered regularly interspersed palindromic repeat (CRISPR) mutagenesis screens of noncoding regions have emerged as a novel method for finding elements that impact gene expression and phenotype/disease-relevant biological processes. Here we review and compare different approaches for high-throughput dissection of noncoding elements. PMID:27423542

  15. Separator-spacer for electrochemical systems

    DOEpatents

    Grimes, Patrick G.; Einstein, Harry; Newby, Kenneth R.; Bellows, Richard J.

    1983-08-02

    An electrochemical cell construction features a novel co-extruded plastic electrode in an interleaved construction with a novel integral separator-spacer. Also featured is a leak and impact resistant construction for preventing the spill of corrosive materials in the event of rupture.

  16. Engineered CRISPR-Cas9 nucleases with altered PAM specificities.

    PubMed

    Kleinstiver, Benjamin P; Prew, Michelle S; Tsai, Shengdar Q; Topkar, Ved V; Nguyen, Nhu T; Zheng, Zongli; Gonzales, Andrew P W; Li, Zhuyun; Peterson, Randall T; Yeh, Jing-Ruey Joanna; Aryee, Martin J; Joung, J Keith

    2015-07-23

    Although CRISPR-Cas9 nucleases are widely used for genome editing, the range of sequences that Cas9 can recognize is constrained by the need for a specific protospacer adjacent motif (PAM). As a result, it can often be difficult to target double-stranded breaks (DSBs) with the precision that is necessary for various genome-editing applications. The ability to engineer Cas9 derivatives with purposefully altered PAM specificities would address this limitation. Here we show that the commonly used Streptococcus pyogenes Cas9 (SpCas9) can be modified to recognize alternative PAM sequences using structural information, bacterial selection-based directed evolution, and combinatorial design. These altered PAM specificity variants enable robust editing of endogenous gene sites in zebrafish and human cells not currently targetable by wild-type SpCas9, and their genome-wide specificities are comparable to wild-type SpCas9 as judged by GUIDE-seq analysis. In addition, we identify and characterize another SpCas9 variant that exhibits improved specificity in human cells, possessing better discrimination against off-target sites with non-canonical NAG and NGA PAMs and/or mismatched spacers. We also find that two smaller-size Cas9 orthologues, Streptococcus thermophilus Cas9 (St1Cas9) and Staphylococcus aureus Cas9 (SaCas9), function efficiently in the bacterial selection systems and in human cells, suggesting that our engineering strategies could be extended to Cas9s from other species. Our findings provide broadly useful SpCas9 variants and, more importantly, establish the feasibility of engineering a wide range of Cas9s with altered and improved PAM specificities. PMID:26098369

  17. Engineered CRISPR-Cas9 nucleases with altered PAM specificities

    PubMed Central

    Kleinstiver, Benjamin P.; Prew, Michelle S.; Tsai, Shengdar Q.; Topkar, Ved; Nguyen, Nhu T.; Zheng, Zongli; Gonzales, Andrew P.W.; Li, Zhuyun; Peterson, Randall T.; Yeh, Jing-Ruey Joanna; Aryee, Martin J.; Joung, J. Keith

    2015-01-01

    Although CRISPR-Cas9 nucleases are widely used for genome editing1, 2, the range of sequences that Cas9 can recognize is constrained by the need for a specific protospacer adjacent motif (PAM)3–6. As a result, it can often be difficult to target double-stranded breaks (DSBs) with the precision that is necessary for various genome editing applications. The ability to engineer Cas9 derivatives with purposefully altered PAM specificities would address this limitation. Here we show that the commonly used Streptococcus pyogenes Cas9 (SpCas9) can be modified to recognize alternative PAM sequences using structural information, bacterial selection-based directed evolution, and combinatorial design. These altered PAM specificity variants enable robust editing of endogenous gene sites in zebrafish and human cells not currently targetable by wild-type SpCas9, and their genome-wide specificities are comparable to wild-type SpCas9 as judged by GUIDE-Seq analysis7. In addition, we identified and characterized another SpCas9 variant that exhibits improved specificity in human cells, possessing better discrimination against off-target sites with non-canonical NAG and NGA PAMs and/or mismatched spacers. We also found that two smaller-size Cas9 orthologues, Streptococcus thermophilus Cas9 (St1Cas9) and Staphylococcus aureus Cas9 (SaCas9), function efficiently in the bacterial selection systems and in human cells, suggesting that our engineering strategies could be extended to Cas9s from other species. Our findings provide broadly useful SpCas9 variants and, more importantly, establish the feasibility of engineering a wide range of Cas9s with altered and improved PAM specificities. PMID:26098369

  18. CRISPR-Cas systems: Prokaryotes upgrade to adaptive immunity.

    PubMed

    Barrangou, Rodolphe; Marraffini, Luciano A

    2014-04-24

    Clustered regularly interspaced short palindromic repeats (CRISPR), and associated proteins (Cas) comprise the CRISPR-Cas system, which confers adaptive immunity against exogenic elements in many bacteria and most archaea. CRISPR-mediated immunization occurs through the uptake of DNA from invasive genetic elements such as plasmids and viruses, followed by its integration into CRISPR loci. These loci are subsequently transcribed and processed into small interfering RNAs that guide nucleases for specific cleavage of complementary sequences. Conceptually, CRISPR-Cas shares functional features with the mammalian adaptive immune system, while also exhibiting characteristics of Lamarckian evolution. Because immune markers spliced from exogenous agents are integrated iteratively in CRISPR loci, they constitute a genetic record of vaccination events and reflect environmental conditions and changes over time. Cas endonucleases, which can be reprogrammed by small guide RNAs have shown unprecedented potential and flexibility for genome editing and can be repurposed for numerous DNA targeting applications including transcriptional control. PMID:24766887

  19. CRISPR-Cas systems: prokaryotes upgrade to adaptive immunity

    PubMed Central

    Barrangou, Rodolphe; Marraffini, Luciano A.

    2014-01-01

    Summary Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR), and associated proteins (Cas) comprise the CRISPR-Cas system, which confers adaptive immunity against exogenic elements in many bacteria and most archaea. CRISPR-mediated immunization occurs through the uptake of DNA from invasive genetic elements such as plasmids and viruses, followed by its integration into CRISPR loci. These loci are subsequently transcribed and processed into small interfering RNAs that guide nucleases for specific cleavage of complementary sequences. Conceptually, CRISPR-Cas shares functional features with the mammalian adaptive immune system, while also exhibiting characteristics of Lamarckian evolution. Because immune markers spliced from exogenous agents are integrated iteratively in CRISPR loci, they constitute a genetic record of vaccination events and reflect environmental conditions and changes over time. Cas endonucleases, which can be reprogrammed by small guide RNAs have shown unprecedented potential and flexibility for genome editing, and can be repurposed for numerous DNA targeting applications including transcriptional control. PMID:24766887

  20. Practical Considerations for Using Pooled Lentiviral CRISPR Libraries.

    PubMed

    McDade, Joel R; Waxmonsky, Nicole C; Swanson, Lianna E; Fan, Melina

    2016-01-01

    CRISPR/Cas9 technology is ideally suited for genome-wide screening applications due to the ease of generating guide RNAs (gRNAs) and the versatility of Cas9 or Cas9 derivatives to knockout, repress, or activate expression of target genes. Several pooled lentiviral CRISPR libraries have been developed and are now publicly available, but while using CRISPR/Cas9 for genetic experiments has become widely adopted, genome-wide screening experiments remain technically challenging. This review covers the basics of CRISPR/Cas9, describes several publicly available CRISPR libraries, and provides a general protocol for conducting genome-wide screening experiments using CRISPR/Cas9. © 2016 by John Wiley & Sons, Inc. PMID:27366891

  1. CRISPRdigger: detecting CRISPRs with better direct repeat annotations

    PubMed Central

    Ge, Ruiquan; Mai, Guoqin; Wang, Pu; Zhou, Manli; Luo, Youxi; Cai, Yunpeng; Zhou, Fengfeng

    2016-01-01

    Clustered regularly interspaced short palindromic repeats (CRISPRs) are important genetic elements in many bacterial and archaeal genomes, and play a key role in prokaryote immune systems’ fight against invasive foreign elements. The CRISPR system has also been engineered to facilitate target gene editing in eukaryotic genomes. Using the common features of mis-annotated CRISPRs in prokaryotic genomes, this study proposed an accurate de novo CRISPR annotation program CRISPRdigger, which can take a partially assembled genome as its input. A comprehensive comparison with the three existing programs demonstrated that CRISPRdigger can recover more Direct Repeats (DRs) for CRISPRs and achieve a higher accuracy for a query genome. The program was implemented by Perl and all the parameters had default values, so that a user could annotate CRISPRs in a query genome by supplying only a genome sequence in the FASTA format. All the supplementary data are available at http://www.healthinformaticslab.org/supp/. PMID:27596864

  2. CRISPR Immunity Drives Rapid Phage Genome Evolution in Streptococcus thermophilus

    PubMed Central

    Paez-Espino, David; Sharon, Itai; Morovic, Wesley; Stahl, Buffy; Thomas, Brian C.

    2015-01-01

    ABSTRACT Many bacteria rely on CRISPR-Cas systems to provide adaptive immunity against phages, predation by which can shape the ecology and functioning of microbial communities. To characterize the impact of CRISPR immunization on phage genome evolution, we performed long-term bacterium-phage (Streptococcus thermophilus-phage 2972) coevolution experiments. We found that in this species, CRISPR immunity drives fixation of single nucleotide polymorphisms that accumulate exclusively in phage genome regions targeted by CRISPR. Mutation rates in phage genomes highly exceed those of the host. The presence of multiple phages increased phage persistence by enabling recombination-based formation of chimeric phage genomes in which sequences heavily targeted by CRISPR were replaced. Collectively, our results establish CRISPR-Cas adaptive immunity as a key driver of phage genome evolution under the conditions studied and highlight the importance of multiple coexisting phages for persistence in natural systems. PMID:25900652

  3. CRISPRdigger: detecting CRISPRs with better direct repeat annotations.

    PubMed

    Ge, Ruiquan; Mai, Guoqin; Wang, Pu; Zhou, Manli; Luo, Youxi; Cai, Yunpeng; Zhou, Fengfeng

    2016-01-01

    Clustered regularly interspaced short palindromic repeats (CRISPRs) are important genetic elements in many bacterial and archaeal genomes, and play a key role in prokaryote immune systems' fight against invasive foreign elements. The CRISPR system has also been engineered to facilitate target gene editing in eukaryotic genomes. Using the common features of mis-annotated CRISPRs in prokaryotic genomes, this study proposed an accurate de novo CRISPR annotation program CRISPRdigger, which can take a partially assembled genome as its input. A comprehensive comparison with the three existing programs demonstrated that CRISPRdigger can recover more Direct Repeats (DRs) for CRISPRs and achieve a higher accuracy for a query genome. The program was implemented by Perl and all the parameters had default values, so that a user could annotate CRISPRs in a query genome by supplying only a genome sequence in the FASTA format. All the supplementary data are available at http://www.healthinformaticslab.org/supp/. PMID:27596864

  4. Programming Native CRISPR Arrays for the Generation of Targeted Immunity

    PubMed Central

    Hynes, Alexander P.; Labrie, Simon J.

    2016-01-01

    ABSTRACT The adaptive immune system of prokaryotes, called CRISPR-Cas (clustered regularly interspaced short palindromic repeats and CRISPR-associated genes), results in specific cleavage of invading nucleic acid sequences recognized by the cell’s “memory” of past encounters. Here, we exploited the properties of native CRISPR-Cas systems to program the natural “memorization” process, efficiently generating immunity not only to a bacteriophage or plasmid but to any specifically chosen DNA sequence. PMID:27143383

  5. Persisting Viral Sequences Shape Microbial CRISPR-based Immunity

    PubMed Central

    Weinberger, Ariel D.; Sun, Christine L.; Pluciński, Mateusz M.; Denef, Vincent J.; Thomas, Brian C.; Horvath, Philippe; Barrangou, Rodolphe; Gilmore, Michael S.; Getz, Wayne M.; Banfield, Jillian F.

    2012-01-01

    Well-studied innate immune systems exist throughout bacteria and archaea, but a more recently discovered genomic locus may offer prokaryotes surprising immunological adaptability. Mediated by a cassette-like genomic locus termed Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR), the microbial adaptive immune system differs from its eukaryotic immune analogues by incorporating new immunities unidirectionally. CRISPR thus stores genomically recoverable timelines of virus-host coevolution in natural organisms refractory to laboratory cultivation. Here we combined a population genetic mathematical model of CRISPR-virus coevolution with six years of metagenomic sequencing to link the recoverable genomic dynamics of CRISPR loci to the unknown population dynamics of virus and host in natural communities. Metagenomic reconstructions in an acid-mine drainage system document CRISPR loci conserving ancestral immune elements to the base-pair across thousands of microbial generations. This ‘trailer-end conservation’ occurs despite rapid viral mutation and despite rapid prokaryotic genomic deletion. The trailer-ends of many reconstructed CRISPR loci are also largely identical across a population. ‘Trailer-end clonality’ occurs despite predictions of host immunological diversity due to negative frequency dependent selection (kill the winner dynamics). Statistical clustering and model simulations explain this lack of diversity by capturing rapid selective sweeps by highly immune CRISPR lineages. Potentially explaining ‘trailer-end conservation,’ we record the first example of a viral bloom overwhelming a CRISPR system. The polyclonal viruses bloom even though they share sequences previously targeted by host CRISPR loci. Simulations show how increasing random genomic deletions in CRISPR loci purges immunological controls on long-lived viral sequences, allowing polyclonal viruses to bloom and depressing host fitness. Our results thus link documented

  6. High-throughput gene targeting and phenotyping in zebrafish using CRISPR/Cas9

    PubMed Central

    Varshney, Gaurav K.; Pei, Wuhong; LaFave, Matthew C.; Idol, Jennifer; Xu, Lisha; Gallardo, Viviana; Carrington, Blake; Bishop, Kevin; Jones, MaryPat; Li, Mingyu; Harper, Ursula; Huang, Sunny C.; Prakash, Anupam; Chen, Wenbiao; Sood, Raman; Ledin, Johan; Burgess, Shawn M.

    2015-01-01

    The use of CRISPR/Cas9 as a genome-editing tool in various model organisms has radically changed targeted mutagenesis. Here, we present a high-throughput targeted mutagenesis pipeline using CRISPR/Cas9 technology in zebrafish that will make possible both saturation mutagenesis of the genome and large-scale phenotyping efforts. We describe a cloning-free single-guide RNA (sgRNA) synthesis, coupled with streamlined mutant identification methods utilizing fluorescent PCR and multiplexed, high-throughput sequencing. We report germline transmission data from 162 loci targeting 83 genes in the zebrafish genome, in which we obtained a 99% success rate for generating mutations and an average germline transmission rate of 28%. We verified 678 unique alleles from 58 genes by high-throughput sequencing. We demonstrate that our method can be used for efficient multiplexed gene targeting. We also demonstrate that phenotyping can be done in the F1 generation by inbreeding two injected founder fish, significantly reducing animal husbandry and time. This study compares germline transmission data from CRISPR/Cas9 with those of TALENs and ZFNs and shows that efficiency of CRISPR/Cas9 is sixfold more efficient than other techniques. We show that the majority of published “rules” for efficient sgRNA design do not effectively predict germline transmission rates in zebrafish, with the exception of a GG or GA dinucleotide genomic match at the 5′ end of the sgRNA. Finally, we show that predicted off-target mutagenesis is of low concern for in vivo genetic studies. PMID:26048245

  7. Tube support grid and spacer therefor

    DOEpatents

    Ringsmuth, Richard J.; Kaufman, Jay S.

    1986-01-01

    A tube support grid and spacers therefor provide radially inward preloading of heat exchange tubes to minimize stress upon base welds due to differential thermal expansion. The grid comprises a concentric series of rings and spacers with opposing concave sides for conforming to the tubes and V-shaped ends to provide resilient flexibility. The flexibility aids in assembly and in transmitting seismic vibrations from the tubes to a shroud. The tube support grid may be assembled in place to achieve the desired inwardly radial preloading of the heat exchange tubes. Tab and slot assembly further minimizes stresses in the system. The radii of the grid rings may be preselected to effect the desired radially inward preloading.

  8. Honeycomb spacer crush stength test results

    SciTech Connect

    Leader, D.R.

    1993-09-15

    This report discusses aluminum honeycomb spacers, which are used as an energy absorbent material in shipping packages for off site shipment of radioactive materials and which were ordered in two crush strengths, 1,000 psi and 2,000 psi for use in drop tests requested by the Packaging and Transportation group as part of the shipping container rectification process. Both the group as part of the shipping container rectification process. Both the vendor and the SRTC Materials Laboratory performed crush strength measurements on test samples made from the material used to fabricate the actual spacers. The measurements of crush strength made in the SRTC Materials Laboratory are within 100 psi of the measurements made by the manufacturer for all samples tested and all test measurements are within 10% of the specified crush strength, which is acceptable to the P&T group for the planned tests.

  9. Organization of spacer DNA in chromatin.

    PubMed Central

    Lohr, D; Van Holde, K E

    1979-01-01

    Detailed analysis of the DNA fragment patterns produced by DNase I digestion of yeast, HeLa, and chicken erythrocyte nuclei reveals surprising features of nucleosome phasing. First, the spacer regions in phased yeast chromatin must be of lengths (10m + 5) base pairs, where m = 0, 1, 2,....This feature is not seen in parallel studies of chicken erythrocyte chromatin. The 5-base pair increment in the yeast spacer imposes interesting restraints on the higher order structure of yeast chromatin. Second, we have been able to simulate the DNase I cutting patterns and get good agreement with the observed yeast patterns. Third, three different chromatins show a long range periodicity in the DNase I digest pattern, with a period half that of the staphylococcal nuclease repeat. These results suggest that the amount of chromatin observed in discrete extended-ladder bands is a minimum estimate of phasing and in fact phasing may be a more general feature. Images PMID:392519

  10. Improved nuclear fuel assembly grid spacer

    DOEpatents

    Marshall, John; Kaplan, Samuel

    1977-01-01

    An improved fuel assembly grid spacer and method of retaining the basic fuel rod support elements in position within the fuel assembly containment channel. The improvement involves attachment of the grids to the hexagonal channel and of forming the basic fuel rod support element into a grid structure, which provides a design which is insensitive to potential channel distortion (ballooning) at high fluence levels. In addition the improved method eliminates problems associated with component fabrication and assembly.

  11. Radiological evaluation of acetabular erosion after antibiotic-impregnated polymethylmethacrylate spacer (Spacer-G).

    PubMed

    García-Oltra, Ester; Bori, Guillem; Tomas, Xavier; Gallart, Xavier; Garcia, Sebastian; Soriano, Alex

    2013-06-01

    Different types of hip spacers have been described (hand-made, custom-molded or prefabricated) for treatment of a chronic hip infection. A potential disadvantage of monoblock prefabricated spacer is that it may cause acetabular bone loss. This study assesses the radiological acetabular erosion using an antibiotic-impregnated pre-fabricated polymethylmethacrylate Spacer-G. We retrospectively reviewed the radiographs of thirty five patients who were managed with Spacer-G to treat chronic hip infection. No acetabular erosion were observed in thirty two patients with a mean time from the first to second stage and from the first to the last radiograph of 5.09 and 3.77 months respectively. In three patients the time between the radiographs was more than one year and the second stage was not performed; two developed a protrusion acetabuli whereas the other one a destruction of the acetabular roof. Using a Spacer-G in chronic hip infection treatment for less than one year is not associated with radiological acetabular erosion if the patient is maintained at partial weight bearing. PMID:23142448

  12. CRISPR Detection From Short Reads Using Partial Overlap Graphs.

    PubMed

    Ben-Bassat, Ilan; Chor, Benny

    2016-06-01

    Clustered regularly interspaced short palindromic repeats (CRISPR) are structured regions in bacterial and archaeal genomes, which are part of an adaptive immune system against phages. CRISPRs are important for many microbial studies and are playing an essential role in current gene editing techniques. As such, they attract substantial research interest. The exponential growth in the amount of bacterial sequence data in recent years enables the exploration of CRISPR loci in more and more species. Most of the automated tools that detect CRISPR loci rely on fully assembled genomes. However, many assemblers do not handle repetitive regions successfully. The first tool to work directly on raw sequence data is Crass, which requires reads that are long enough to contain two copies of the same repeat. We present a method to identify CRISPR repeats from raw sequence data of short reads. The algorithm is based on an observation differentiating CRISPR repeats from other types of repeats, and it involves a series of partial constructions of the overlap graph. This enables us to avoid many of the difficulties that assemblers face, as we merely aim to identify the repeats that belong to CRISPR loci. A preliminary implementation of the algorithm shows good results and detects CRISPR repeats in cases where other existing tools fail to do so. PMID:27058690

  13. Physical mode of bacteria and virus coevolution

    NASA Astrophysics Data System (ADS)

    Han, Pu; Niestemski, Liang; Deem, Michael

    2013-03-01

    Single-cell hosts such as bacteria or archaea possess an adaptive, heritable immune system that protects them from viral invasion. This system, known as the CRISPR-Cas system, allows the host to recognize and incorporate short foreign DNA or RNA sequences from viruses or plasmids. The sequences form what are called ``spacers'' in the CRISPR. Spacers in the CRISPR loci provide a record of the host and predator coevolution history. We develop a physical model to study the dynamics of this coevolution due to immune pressure. Hosts and viruses reproduce, die, and evolve due to viral infection pressure, host immune pressure, and mutation. We will discuss the differing effects of point mutation and recombination on CRISPR evolution. We will also discuss the effect of different spacer deletion mechanisms. We will describe population structure of hosts and viruses, how spacer diversity depends on position within CRISPR, and match of the CRISPR spacers to the virus population.

  14. DNA fragment editing of genomes by CRISPR/Cas9.

    PubMed

    Jinhuan, Li; Jia, Shou; Qiang, Wu

    2015-10-01

    The clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated nuclease 9 (Cas9) system from bacteria and archaea emerged recently as a new powerful technology of genome editing in virtually any organism. Due to its simplicity and cost effectiveness, a revolutionary change of genetics has occurred. Here, we summarize the recent development of DNA fragment editing methods by CRISPR/Cas9 and describe targeted DNA fragment deletions, inversions, duplications, insertions, and translocations. The efficient method of DNA fragment editing provides a powerful tool for studying gene function, regulatory elements, tissue development, and disease progression. Finally, we discuss the prospects of CRISPR/Cas9 system and the potential applications of other types of CRISPR system. PMID:26496751

  15. The Structural Biology of CRISPR-Cas Systems

    PubMed Central

    Jiang, Fuguo; Doudna, Jennifer A.

    2015-01-01

    Prokaryotic CRISPR-Cas genomic loci encode RNA-mediated adaptive immune systems that bear some functional similarities with eukaryotic RNA interference. Acquired and heritable immunity against bacteriophage and plasmids begins with integration of ~30 base pair foreign DNA sequences into the host genome. CRISPR-derived transcripts assemble with CRISPR-associated (Cas) proteins to target complementary nucleic acids for degradation. Here we review recent advances in the structural biology of these targeting complexes, with a focus on structural studies of the multisubunit Type I CRISPR RNA-guided surveillance and the Cas9 DNA endonuclease found in Type II CRISPR-Cas systems. These complexes have distinct structures that are each capable of site-specific double-stranded DNA binding and local helix unwinding. PMID:25723899

  16. Advances in therapeutic CRISPR/Cas9 genome editing.

    PubMed

    Savić, Nataša; Schwank, Gerald

    2016-02-01

    Targeted nucleases are widely used as tools for genome editing. Two years ago the clustered regularly interspaced short palindromic repeat (CRISPR)-associated Cas9 nuclease was used for the first time, and since then has largely revolutionized the field. The tremendous success of the CRISPR/Cas9 genome editing tool is powered by the ease design principle of the guide RNA that targets Cas9 to the desired DNA locus, and by the high specificity and efficiency of CRISPR/Cas9-generated DNA breaks. Several studies recently used CRISPR/Cas9 to successfully modulate disease-causing alleles in vivo in animal models and ex vivo in somatic and induced pluripotent stem cells, raising hope for therapeutic genome editing in the clinics. In this review, we will summarize and discuss such preclinical CRISPR/Cas9 gene therapy reports. PMID:26470680

  17. A quick guide to CRISPR sgRNA design tools.

    PubMed

    Brazelton, Vincent A; Zarecor, Scott; Wright, David A; Wang, Yuan; Liu, Jie; Chen, Keting; Yang, Bing; Lawrence-Dill, Carolyn J

    2015-10-01

    Targeted genome editing is now possible in nearly any organism and is widely acknowledged as a biotech game-changer. Among available gene editing techniques, the CRISPR-Cas9 system is the current favorite because it has been shown to work in many species, does not necessarily result in the addition of foreign DNA at the target site, and follows a set of simple design rules for target selection. Use of the CRISPR-Cas9 system is facilitated by the availability of an array of CRISPR design tools that vary in design specifications and parameter choices, available genomes, graphical visualization, and downstream analysis functionality. To help researchers choose a tool that best suits their specific research needs, we review the functionality of various CRISPR design tools including our own, the CRISPR Genome Analysis Tool (CGAT; http://cropbioengineering.iastate.edu/cgat ). PMID:26745836

  18. Generalised Matching

    NASA Astrophysics Data System (ADS)

    Clifford, Raphael; Harrow, Aram W.; Popa, Alexandru; Sach, Benjamin

    Given a pattern p over an alphabet Σ p and a text t over an alphabet Σ t , we consider the problem of determining a mapping f from Σ p to {Σ}t+ such that t = f(p 1)f(p 2)...f(p m ). This class of problems, which was first introduced by Amir and Nor in 2004, is defined by different constraints on the mapping f. We give NP-Completeness results for a wide range of conditions. These include when f is either many-to-one or one-to-one, when Σ t is binary and when the range of f is limited to strings of constant length. We then introduce a related problem we term pattern matching with string classes which we show to be solvable efficiently. Finally, we discuss an optimisation variant of generalised matching and give a polynomial-time min (1,sqrt{k/OPT})-approximation algorithm for fixed k.

  19. CRISPR-ERA: a comprehensive design tool for CRISPR-mediated gene editing, repression and activation

    PubMed Central

    Liu, Honglei; Wei, Zheng; Dominguez, Antonia; Li, Yanda; Wang, Xiaowo; Qi, Lei S.

    2015-01-01

    Summary: The CRISPR/Cas9 system was recently developed as a powerful and flexible technology for targeted genome engineering, including genome editing (altering the genetic sequence) and gene regulation (without altering the genetic sequence). These applications require the design of single guide RNAs (sgRNAs) that are efficient and specific. However, this remains challenging, as it requires the consideration of many criteria. Several sgRNA design tools have been developed for gene editing, but currently there is no tool for the design of sgRNAs for gene regulation. With accumulating experimental data on the use of CRISPR/Cas9 for gene editing and regulation, we implement a comprehensive computational tool based on a set of sgRNA design rules summarized from these published reports. We report a genome-wide sgRNA design tool and provide an online website for predicting sgRNAs that are efficient and specific. We name the tool CRISPR-ERA, for clustered regularly interspaced short palindromic repeat-mediated editing, repression, and activation (ERA). Availability and implementation: http://CRISPR-ERA.stanford.edu. Contact: stanley.qi@stanford.edu or xwwang@tsinghua.edu.cn Supplementary information: Supplementary data are available at Bioinformatics online. PMID:26209430

  20. NEUTRONIC REACTOR SHIELD AND SPACER CONSTRUCTION

    DOEpatents

    Wigner, E.P.; Ohlinger, L.A.

    1958-11-18

    Reactors of the heterogeneous, graphite moderated, fluid cooled type and shielding and spacing plugs for the coolant channels thereof are reported. In this design, the coolant passages extend horizontally through the moderator structure, accommodating the fuel elements in abutting end-to-end relationship, and have access openings through the outer shield at one face of the reactor to facilitate loading of the fuel elements. In the outer ends of the channels which extend through the shields are provided spacers and shielding plugs designed to offer minimal reslstance to coolant fluid flow while preventing emanation of harmful radiation through the access openings when closed between loadings.

  1. Different genome stability proteins underpin primed and naïve adaptation in E. coli CRISPR-Cas immunity

    PubMed Central

    Ivančić-Baće, Ivana; Cass, Simon D; Wearne, Stephen J; Bolt, Edward L

    2015-01-01

    CRISPR-Cas is a prokaryotic immune system built from capture and integration of invader DNA into CRISPR (Clustered Regularly Interspaced Short Palindromic Repeats) loci, termed ‘Adaptation’, which is dependent on Cas1 and Cas2 proteins. In Escherichia coli, Cascade-Cas3 degrades invader DNA to effect immunity, termed ‘Interference’. Adaptation can interact with interference (‘primed’), or is independent of it (‘naïve’). We demonstrate that primed adaptation requires the RecG helicase and PriA protein to be present. Genetic analysis of mutant phenotypes suggests that RecG is needed to dissipate R-loops at blocked replication forks. Additionally, we identify that DNA polymerase I is important for both primed and naive adaptation, and that RecB is needed for naïve adaptation. Purified Cas1-Cas2 protein shows specificity for binding to and nicking forked DNA within single strand gaps, and collapsing forks into DNA duplexes. The data suggest that different genome stability systems interact with primed or naïve adaptation when responding to blocked or collapsed invader DNA replication. In this model, RecG and Cas3 proteins respond to invader DNA replication forks that are blocked by Cascade interference, enabling DNA capture. RecBCD targets DNA ends at collapsed forks, enabling DNA capture without interference. DNA polymerase I is proposed to fill DNA gaps during spacer integration. PMID:26578567

  2. Recent Progress in CRISPR/Cas9 Technology.

    PubMed

    Mei, Yue; Wang, Yan; Chen, Huiqian; Sun, Zhong Sheng; Ju, Xing-Da

    2016-02-20

    The clustered regularly interspaced short palindromic repeats (CRISPR)/Cas9 system, a simple and efficient tool for genome editing, has experienced rapid progress in its technology and applicability in the past two years. Here, we review the recent advances in CRISPR/Cas9 technology and the ways that have been adopted to expand our capacity for precise genome manipulation. First, we introduce the mechanism of CRISPR/Cas9, including its biochemical and structural implications. Second, we highlight the latest improvements in the CRISPR/Cas9 system, especially Cas9 protein modifications for customization. Third, we review its current applications, in which the versatile CRISPR/Cas9 system was employed to edit the genome, epigenome, or RNA of various organisms. Although CRISPR/Cas9 allows convenient genome editing accompanied by many benefits, we should not ignore the significant ethical and biosafety concerns that it raises. Finally, we discuss the prospective applications and challenges of several promising techniques adapted from CRISPR/Cas9. PMID:26924689

  3. Engineering Synthetic Gene Circuits in Living Cells with CRISPR Technology.

    PubMed

    Jusiak, Barbara; Cleto, Sara; Perez-Piñera, Pablo; Lu, Timothy K

    2016-07-01

    One of the goals of synthetic biology is to build regulatory circuits that control cell behavior, for both basic research purposes and biomedical applications. The ability to build transcriptional regulatory devices depends on the availability of programmable, sequence-specific, and effective synthetic transcription factors (TFs). The prokaryotic clustered regularly interspaced short palindromic repeat (CRISPR) system, recently harnessed for transcriptional regulation in various heterologous host cells, offers unprecedented ease in designing synthetic TFs. We review how CRISPR can be used to build synthetic gene circuits and discuss recent advances in CRISPR-mediated gene regulation that offer the potential to build increasingly complex, programmable, and efficient gene circuits in the future. PMID:26809780

  4. CRISPR-Based Methods for Caenorhabditis elegans Genome Engineering.

    PubMed

    Dickinson, Daniel J; Goldstein, Bob

    2016-03-01

    The advent of genome editing techniques based on the clustered regularly interspersed short palindromic repeats (CRISPR)-Cas9 system has revolutionized research in the biological sciences. CRISPR is quickly becoming an indispensible experimental tool for researchers using genetic model organisms, including the nematode Caenorhabditis elegans. Here, we provide an overview of CRISPR-based strategies for genome editing in C. elegans. We focus on practical considerations for successful genome editing, including a discussion of which strategies are best suited to producing different kinds of targeted genome modifications. PMID:26953268

  5. CRISPR-Cas9-guided Genome Engineering in C. elegans

    PubMed Central

    Kim, Hyun-Min; Colaiácovo, Monica P.

    2016-01-01

    The CRISPR (clustered regularly interspaced short palindromic repeats)-Cas (CRISPR-associated) system is successfully being used for efficient and targeted genome editing in various organisms including the nematode C. elegans. Recent studies developed various CRISPR-Cas9 approaches to enhance genome engineering via two major DNA double-strand break repair pathways: non-homologous end joining and homologous recombination. Here we describe a protocol for Cas9-mediated C. elegans genome editing together with single guide RNA (sgRNA) and repair template cloning and injection methods required for delivering Cas9, sgRNAs and repair template DNA into the C. elegans germline. PMID:27366893

  6. Genomic Amplifications Cause False Positives in CRISPR Screens.

    PubMed

    Sheel, Ankur; Xue, Wen

    2016-08-01

    In CRISPR-based screens for essential genes, Munoz and colleagues and Aguirre and colleagues show that gene-independent targeting of genomic amplifications in human cancer cell lines reduces proliferation or survival. The correlation between CRISPR target site copy number and lethality demonstrates the need for scrutiny and complementary approaches to rule out off-target effects and false positives in CRISPR screens. Cancer Discov; 6(8); 824-6. ©2016 AACR.See related article by Munoz et al., p. 900See related article by Aguirre et al., p. 914. PMID:27485003

  7. CRISPR-Based Methods for Caenorhabditis elegans Genome Engineering

    PubMed Central

    Dickinson, Daniel J.; Goldstein, Bob

    2016-01-01

    The advent of genome editing techniques based on the clustered regularly interspersed short palindromic repeats (CRISPR)–Cas9 system has revolutionized research in the biological sciences. CRISPR is quickly becoming an indispensible experimental tool for researchers using genetic model organisms, including the nematode Caenorhabditis elegans. Here, we provide an overview of CRISPR-based strategies for genome editing in C. elegans. We focus on practical considerations for successful genome editing, including a discussion of which strategies are best suited to producing different kinds of targeted genome modifications. PMID:26953268

  8. Exchange of Spacer Regions between Rrna Operons in Escherichia Coli

    PubMed Central

    Harvey, S.; Hill, C. W.

    1990-01-01

    The Escherichia coli rRNA operons each have one of two types of spacer separating the 16S and 23S coding regions. The spacers of four operons encode tRNA(Glu2) and the other three encode both tRNA(Ile) and tRNA(Ala 1 B). We have prepared a series of mutants in which the spacer region of a particular rrn operon has been replaced by the opposite type. Included among these were a mutant retaining only a single copy of the tRNA(Glu2) spacer (at rrnG) and another retaining only a single copy of the tRNA(Ile)-tRNA(Ala 1 B) spacer (at rrnA). While both mutants grew more slowly than controls, the mutant deficient in tRNA(Glu2) spacers was more severely affected. At a frequency of 6 X 10(-5), these mutants phenotypically reverted to faster growing types by increasing the copy number of the deficient spacer. In most of these phenotypic revertants, the deficient spacer type appeared in a rrn operon which previously contained the surplus type, bringing the ratio of spacer types closer to normal. In a few cases, these spacer changes were accompanied by an inversion of the chromosomal material between the donor and recipient rrn operons. Two examples of inversion of one-half of the E. coli chromosome between rrnG and rrnH were observed. The correlation of spacer change with inversion indicated that, in these particular cases, the change was due to an intrachromatid gene conversion event accompanied by a reciprocal crossover rather than reciprocal exchange between sister chromatids. PMID:2168847

  9. Improvement of inhaler efficacy by home-made spacer.

    PubMed

    Sritara, P; Janvitayanuchit, S

    1993-12-01

    The delivery of aerosol from a metered dose inhaler (MDI) was reported to be more efficient with a spacer. Hence, a home-made spacer modified from a 950 ml low cost plastic bottle, was compared with a MDI and with a 750 ml imported spacer (Nebuhaler). On three consecutive days, at the same time of day, 20 adult patients with chronic asthma inhaled two puffs of terbutaline sulphate (0.5 mg), delivered from MDI alone, MDI with a 750 ml Nebuhlaer and MDI with a home-made spacer. The following measurements were made: forced expiratory volume in one second (FEV1), forced vital capacity (FVC) and pulse rate. These measurements were carried out immediately before and at 5, 20, 60 min after inhalation of terbutaline. FEV1 was significantly increased (P < 0.05) at 5, 20 and 60 min after administration of terbutaline with MDI via either spacers than with MDI alone but no significant difference was observed between Nebuhaler and the home-made spacer. FVC and pulse rate showed no significant change with each method of administration. In conclusion, terbutaline delivered by MDI and home-made spacer was more effective in bronchodilatation than by MDI alone and was just as effective as MDI and Nebuhaler. The home-made spacer therefore offers a simple, inexpensive and more effective method for delivering aerosol drug. PMID:7798822

  10. Orthognathic model surgery with LEGO key-spacer.

    PubMed

    Tsang, Alfred Chee-Ching; Lee, Alfred Siu Hong; Li, Wai Keung

    2013-12-01

    A new technique of model surgery using LEGO plates as key-spacers is described. This technique requires less time to set up compared with the conventional plaster model method. It also retains the preoperative setup with the same set of models. Movement of the segments can be measured and examined in detail with LEGO key-spacers. PMID:24045189

  11. RNA-guided genome editing in plants using a CRISPR-Cas system.

    PubMed

    Xie, Kabin; Yang, Yinong

    2013-11-01

    Precise and straightforward methods to edit the plant genome are much needed for functional genomics and crop improvement. Recently, RNA-guided genome editing using bacterial Type II cluster regularly interspaced short palindromic repeats (CRISPR)-associated nuclease (Cas) is emerging as an efficient tool for genome editing in microbial and animal systems. Here, we report the genome editing and targeted gene mutation in plants via the CRISPR-Cas9 system. Three guide RNAs (gRNAs) with a 20-22-nt seed region were designed to pair with distinct rice genomic sites which are followed by the protospacer-adjacent motif (PAM). The engineered gRNAs were shown to direct the Cas9 nuclease for precise cleavage at the desired sites and introduce mutation (insertion or deletion) by error-prone non-homologous end joining DNA repairing. By analyzing the RNA-guided genome-editing events, the mutation efficiency at these target sites was estimated to be 3-8%. In addition, the off-target effect of an engineered gRNA-Cas9 was found on an imperfectly paired genomic site, but it had lower genome-editing efficiency than the perfectly matched site. Further analysis suggests that mismatch position between gRNA seed and target DNA is an important determinant of the gRNA-Cas9 targeting specificity, and specific gRNAs could be designed to target more than 90% of rice genes. Our results demonstrate that the CRISPR-Cas system can be exploited as a powerful tool for gene targeting and precise genome editing in plants. PMID:23956122

  12. Diversity of CRISPR systems in the euryarchaeal Pyrococcales

    PubMed Central

    Norais, Cédric; Moisan, Annick; Gaspin, Christine; Clouet-d'Orval, Béatrice

    2013-01-01

    Pyrococcales are members of the order Thermococcales, a group of hyperthermophilic euryarchaea that are frequently found in deep sea hydrothermal vents. Infectious genetic elements, such as plasmids and viruses, remain a threat even in this remote environment and these microorganisms have developed several ways to fight their genetic invaders. Among these are the recently discovered CRISPR systems. In this review, we have combined and condensed available information on genetic elements infecting the Thermococcales and on the multiple CRISPR systems found in the Pyrococcales to fight them. Their organization and mode of action will be presented with emphasis on the Type III-B system that is the only CRISPR system known to target RNA molecules in a process reminiscent of RNA interference. The intriguing case of Pyrococcus abyssi, which is among the rare strains to present a CRISPR system devoid of the universal cas1 and cas2 genes, is also discussed. PMID:23422322

  13. GENOME EDITING IN HUMAN CELLS USING CRISPR/CAS NUCLEASES

    PubMed Central

    Wyvekens, Nicolas; Tsai, Shengdar; Joung, J. Keith

    2016-01-01

    The clustered regularly interspaced short palindromic repeat (CRISPR)/CRISPR-associated (Cas) system has been broadly adopted for highly efficient genome editing in a variety of model organisms and human cell types. Unlike previous genome editing technologies such as Zinc Finger Nucleases (ZFNs) and Transcription Activator-Like Effector Nucleases (TALENs), the CRISPR/Cas technology does not require complex protein engineering and can be utilized by any researcher proficient in basic molecular biology and cell culture techniques. Here we describe protocols for design and cloning of vectors expressing single or multiplex gRNAs, for transient transfection of human cell lines, and for quantitation of mutation frequencies by T7 Endonuclease I assay. These protocols also include guidance for using two improvements that increase the specificity of CRISPR/Cas nucleases: truncated gRNAs and dimeric RNA-guided FokI nucleases. PMID:26423589

  14. Inducible in vivo genome editing with CRISPR/Cas9

    PubMed Central

    O'Rourke, Kevin P; Muley, Ashlesha; Kastenhuber, Edward R; Livshits, Geulah; Tschaharganeh, Darjus F; Socci, Nicholas D; Lowe, Scott W

    2015-01-01

    CRISPR/Cas9-based genome editing enables the rapid genetic manipulation of any genomic locus without the need for gene targeting by homologous recombination. Here we describe a conditional transgenic approach that allows temporal control of CRISPR/Cas9 activity for inducible genome editing in adult mice. We show that doxycycline-regulated Cas9 induction enables widespread gene disruption in multiple tissues and that limiting the duration of Cas9 expression or using a Cas9D10A (Cas9n) variant, can regulate the frequency and size of target gene modifications, respectively. Further, we show that the inducible CRISPR (iCRISPR) system can be used effectively to create biallelic mutation in multiple target loci and thus, provides a flexible and fast platform to study loss of function phenotypes in vivo. PMID:25690852

  15. Target specificity of the CRISPR-Cas9 system

    PubMed Central

    Wu, Xuebing; Kriz, Andrea J.; Sharp, Phillip A.

    2015-01-01

    The CRISPR-Cas9 system, naturally a defense mechanism in prokaryotes, has been repurposed as an RNA-guided DNA targeting platform. It has been widely used for genome editing and transcriptome modulation, and has shown great promise in correcting mutations in human genetic diseases. Off-target effects are a critical issue for all of these applications. Here we review the current status on the target specificity of the CRISPR-Cas9 system. PMID:25722925

  16. CRISPR transcriptional repression devices and layered circuits in mammalian cells

    PubMed Central

    Kiani, Samira; Beal, Jacob; Ebrahimkhani, Mohammad R; Huh, Jin; Hall, Richard N; Xie, Zhen; Li, Yinqing; Weiss, Ron

    2014-01-01

    A key obstacle to creating sophisticated genetic circuits has been the lack of scalable device libraries. Here we present a modular transcriptional repression architecture based on clustered regularly interspaced palindromic repeats (CRISPR) system and examine approaches for regulated expression of guide RNAs in human cells. Subsequently we demonstrate that CRISPR regulatory devices can be layered to create functional cascaded circuits, which provide a valuable toolbox for engineering purposes. PMID:24797424

  17. CRISPR transcriptional repression devices and layered circuits in mammalian cells.

    PubMed

    Kiani, Samira; Beal, Jacob; Ebrahimkhani, Mohammad R; Huh, Jin; Hall, Richard N; Xie, Zhen; Li, Yinqing; Weiss, Ron

    2014-07-01

    A key obstacle to creating sophisticated genetic circuits has been the lack of scalable device libraries. Here we present a modular transcriptional repression architecture based on clustered regularly interspaced palindromic repeats (CRISPR) system and examine approaches for regulated expression of guide RNAs in human cells. Subsequently we demonstrate that CRISPR regulatory devices can be layered to create functional cascaded circuits, which provide a valuable toolbox for engineering purposes. PMID:24797424

  18. An active immune defense with a minimal CRISPR (clustered regularly interspaced short palindromic repeats) RNA and without the Cas6 protein.

    PubMed

    Maier, Lisa-Katharina; Stachler, Aris-Edda; Saunders, Sita J; Backofen, Rolf; Marchfelder, Anita

    2015-02-13

    The prokaryotic immune system CRISPR-Cas (clustered regularly interspaced short palindromic repeats-CRISPR-associated) is a defense system that protects prokaryotes against foreign DNA. The short CRISPR RNAs (crRNAs) are central components of this immune system. In CRISPR-Cas systems type I and III, crRNAs are generated by the endonuclease Cas6. We developed a Cas6b-independent crRNA maturation pathway for the Haloferax type I-B system in vivo that expresses a functional crRNA, which we termed independently generated crRNA (icrRNA). The icrRNA is effective in triggering degradation of an invader plasmid carrying the matching protospacer sequence. The Cas6b-independent maturation of the icrRNA allowed mutation of the repeat sequence without interfering with signals important for Cas6b processing. We generated 23 variants of the icrRNA and analyzed them for activity in the interference reaction. icrRNAs with deletions or mutations of the 3' handle are still active in triggering an interference reaction. The complete 3' handle could be removed without loss of activity. However, manipulations of the 5' handle mostly led to loss of interference activity. Furthermore, we could show that in the presence of an icrRNA a strain without Cas6b (Δcas6b) is still active in interference. PMID:25512373

  19. An Active Immune Defense with a Minimal CRISPR (Clustered Regularly Interspaced Short Palindromic Repeats) RNA and without the Cas6 Protein*

    PubMed Central

    Maier, Lisa-Katharina; Stachler, Aris-Edda; Saunders, Sita J.; Backofen, Rolf; Marchfelder, Anita

    2015-01-01

    The prokaryotic immune system CRISPR-Cas (clustered regularly interspaced short palindromic repeats-CRISPR-associated) is a defense system that protects prokaryotes against foreign DNA. The short CRISPR RNAs (crRNAs) are central components of this immune system. In CRISPR-Cas systems type I and III, crRNAs are generated by the endonuclease Cas6. We developed a Cas6b-independent crRNA maturation pathway for the Haloferax type I-B system in vivo that expresses a functional crRNA, which we termed independently generated crRNA (icrRNA). The icrRNA is effective in triggering degradation of an invader plasmid carrying the matching protospacer sequence. The Cas6b-independent maturation of the icrRNA allowed mutation of the repeat sequence without interfering with signals important for Cas6b processing. We generated 23 variants of the icrRNA and analyzed them for activity in the interference reaction. icrRNAs with deletions or mutations of the 3′ handle are still active in triggering an interference reaction. The complete 3′ handle could be removed without loss of activity. However, manipulations of the 5′ handle mostly led to loss of interference activity. Furthermore, we could show that in the presence of an icrRNA a strain without Cas6b (Δcas6b) is still active in interference. PMID:25512373

  20. Inhalational drug delivery from seven different spacer devices.

    PubMed Central

    Barry, P. W.; O'Callaghan, C.

    1996-01-01

    BACKGROUND: A study was performed to determine in vitro the difference in drug output of seven currently available spacer devices when used with different inhaled medications. METHODS: A glass multistage liquid impinger (MSLI) was used to determine the amount of disodium cromoglycate (DSCG, 5 mg), salbutamol (100 micrograms), or budesonide (200 micrograms) obtained in various particle size ranges from metered dose inhalers (MDIs) actuated directly into the MSLI or via one of seven different spacer devices; the Fisonair, Nebuhaler, Volumatic, Inspirease, Aerochamber, Aerosol Cloud Enhancer, and Dynahaler. RESULTS: In particles smaller than 5 microns in diameter the dose of DSCG recovered from the Fisonair and Nebuhaler was 118% and 124%, respectively, of that recovered using the MDI alone. The dose recovered from the smaller volume spacers was 90% (Inspirease), 36% (Aerochamber), 33% (Aerosol Cloud Enhancer), and 21% (Dynahaler) of that from the MDI alone. The Volumatic increased the amount of salbutamol in particles smaller than 5 microns to 117% of that from the MDI, and the Inspirease and Aerochamber spacers decreased it by nearly 50%. The amount of budesonide in small particles recovered after use of the Nebuhaler, Inspirease, and the Aerochamber was 92%, 101%, and 78%, respectively, of that from the MDI alone. CONCLUSIONS: Under the test conditions used, large volume spacers such as the Fisonair, Nebuhaler, and Volumatic delivered significantly more DSCG and salbutamol than the smaller spacers tested. The differences between spacers were less for budesonide than the other medications studied. This study shows that there are significant differences in the amount of drug available for inhalation when different spacers are used as inhalational aids with different drugs. Spacer devices need to be fully evaluated for each drug prescribed for them. Images PMID:8795674

  1. Preclinical Evaluation of Bioabsorbable Polyglycolic Acid Spacer for Particle Therapy

    SciTech Connect

    Akasaka, Hiroaki; Sasaki, Ryohei; Miyawaki, Daisuke; Mukumoto, Naritoshi; Sulaiman, Nor Shazrina Binti; Nagata, Masaaki; Yamada, Shigeru; Murakami, Masao; Demizu, Yusuke; Fukumoto, Takumi

    2014-12-01

    Purpose: To evaluate the efficacy and safety of a polyglycolic acid (PGA) spacer through physical and animal experiments. Methods and Materials: The spacer was produced with surgical suture material made of PGA, forming a 3-dimensional nonwoven fabric. For evaluation or physical experiments, 150-MeV proton or 320-MeV carbon-ion beams were used to generate 60-mm width of spread-out Bragg peak. For animal experiments, the abdomens of C57BL/6 mice, with or without the inserted PGA spacers, were irradiated with 20 Gy of carbon-ion beam (290 MeV) using the spread-out Bragg peak. Body weight changes over time were scored, and radiation damage to the intestine was investigated using hematoxylin and eosin stain. Blood samples were also evaluated 24 days after the irradiation. Long-term thickness retention and safety were evaluated using crab-eating macaques. Results: No chemical or structural changes after 100 Gy of proton or carbon-ion irradiation were observed in the PGA spacer. Water equivalency of the PGA spacer was equal to the water thickness under wet condition. During 24 days' observation after 20 Gy of carbon-ion irradiation, the body weights of mice with the PGA spacer were relatively unchanged, whereas significant weight loss was observed in those mice without the PGA spacer (P<.05). In mice with the PGA spacer, villus and crypt structure were preserved after irradiation. No inflammatory reactions or liver or renal dysfunctions due to placement of the PGA spacer were observed. In the abdomen of crab-eating macaques, thickness of the PGA spacer was maintained 8 weeks after placement. Conclusions: The absorbable PGA spacer had water-equivalent, bio-compatible, and thickness-retaining properties. Although further evaluation is warranted in a clinical setting, the PGA spacer may be effective to stop proton or carbon-ion beams and to separate normal tissues from the radiation field.

  2. The Escherichia coli CRISPR system protects from λ lysogenization, lysogens, and prophage induction.

    PubMed

    Edgar, Rotem; Qimron, Udi

    2010-12-01

    We show that phage lysogenization, lysogens, and prophage induction are all targeted by CRISPR. The results demonstrate that genomic DNA is not immune to the CRISPR system, that the CRISPR system does not require noncytoplasmic elements, and that the system protects from phages entering and exiting the lysogenic cycle. PMID:20889749

  3. Recent Advances in Genome Editing Using CRISPR/Cas9

    PubMed Central

    Ding, Yuduan; Li, Hong; Chen, Ling-Ling; Xie, Kabin

    2016-01-01

    The CRISPR (clustered regularly interspaced short palindromic repeat)-Cas9 (CRISPR-associated nuclease 9) system is a versatile tool for genome engineering that uses a guide RNA (gRNA) to target Cas9 to a specific sequence. This simple RNA-guided genome-editing technology has become a revolutionary tool in biology and has many innovative applications in different fields. In this review, we briefly introduce the Cas9-mediated genome-editing method, summarize the recent advances in CRISPR/Cas9 technology, and discuss their implications for plant research. To date, targeted gene knockout using the Cas9/gRNA system has been established in many plant species, and the targeting efficiency and capacity of Cas9 has been improved by optimizing its expression and that of its gRNA. The CRISPR/Cas9 system can also be used for sequence-specific mutagenesis/integration and transcriptional control of target genes. We also discuss off-target effects and the constraint that the protospacer-adjacent motif (PAM) puts on CRISPR/Cas9 genome engineering. To address these problems, a number of bioinformatic tools are available to help design specific gRNAs, and new Cas9 variants and orthologs with high fidelity and alternative PAM specificities have been engineered. Owing to these recent efforts, the CRISPR/Cas9 system is becoming a revolutionary and flexible tool for genome engineering. Adoption of the CRISPR/Cas9 technology in plant research would enable the investigation of plant biology at an unprecedented depth and create innovative applications in precise crop breeding. PMID:27252719

  4. Potential pitfalls of CRISPR/Cas9-mediated genome editing.

    PubMed

    Peng, Rongxue; Lin, Guigao; Li, Jinming

    2016-04-01

    Recently, a novel technique named the clustered regularly interspaced short palindromic repeat (CRISPR)/CRISPR-associated protein (Cas)9 system has been rapidly developed. This genome editing tool has improved our ability tremendously with respect to exploring the pathogenesis of diseases and correcting disease mutations, as well as phenotypes. With a short guide RNA, Cas9 can be precisely directed to target sites, and functions as an endonuclease to efficiently produce breaks in DNA double strands. Over the past 30 years, CRISPR has evolved from the 'curious sequences of unknown biological function' into a promising genome editing tool. As a result of the incessant development in the CRISPR/Cas9 system, Cas9 co-expressed with custom guide RNAs has been successfully used in a variety of cells and organisms. This genome editing technology can also be applied to synthetic biology, functional genomic screening, transcriptional modulation and gene therapy. However, although CRISPR/Cas9 has a broad range of action in science, there are several aspects that affect its efficiency and specificity, including Cas9 activity, target site selection and short guide RNA design, delivery methods, off-target effects and the incidence of homology-directed repair. In the present review, we highlight the factors that affect the utilization of CRISPR/Cas9, as well as possible strategies for handling any problems. Addressing these issues will allow us to take better advantage of this technique. In addition, we also review the history and rapid development of the CRISPR/Cas system from the time of its initial discovery in 2012. PMID:26535798

  5. 14. TYPICAL WORK DECK SHOWING RING SPACERS, CABLE DRUMS AND ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    14. TYPICAL WORK DECK SHOWING RING SPACERS, CABLE DRUMS AND OTHER SPECIALIZED HARDWARE; VIEW TO SOUTH. - Cape Canaveral Air Station, Launch Complex 17, Facility 28416, East end of Lighthouse Road, Cape Canaveral, Brevard County, FL

  6. Spacer process and alignment assessment for SADP process

    NASA Astrophysics Data System (ADS)

    Lattard, L.; McCallum, M.; Morton, R.; Fujiwara, T.; Makino, K.; Tokui, A.; Takahashi, N.; Sasamoto, S.

    2012-03-01

    Self Aligned Double Patterning (SADP) is now widely accepted as a viable technology for the further extension of 193nm immersion lithography towards the 22nm /18nm technology nodes. SADP was primary introduced for the manufacturing of flash memory due to its 1D design geometry. However, SADP is now becoming a main stream technology for advanced technology nodes for logic product. SADP results in alignment marks with reduced image contrast after completion of spacer patterning. Consequently there is an elevated risk that the alignment performance of the cut lithography layer on the spacer [1] may be negatively impacted. Initial studies indicate that it may be necessary to consider new mark designs. In this paper, we will evaluate different types of SADP processes with the alignment system of the Nikon S620D and S621D immersion scanner. We will discuss the performances and the differences observed due to the SADP materials. Included in this study is an intensive characterization of the morphology of the spacer after SADP process. We will use for this a 3D-AFM from Insight, and characterize the spacer profile of the spacer. Using a standard AFM microscope, we can characterize the surface roughness in the inner and the outer part of the wafer. The self aligned spacer process results in asymmetric spacers. Two types of surface (inside and outside) of the spacer are formed. The impact of this asymmetry is also assessed. The roughness difference, between the two parts, will play an important roll in the alignment contrast.

  7. Nuclear reactor spacer grid and ductless core component

    DOEpatents

    Christiansen, David W.; Karnesky, Richard A.

    1989-01-01

    The invention relates to a nuclear reactor spacer grid member for use in a liquid cooled nuclear reactor and to a ductless core component employing a plurality of these spacer grid members. The spacer grid member is of the egg-shell type and is constructed so that the walls of the cell members of the grid member are formed of a single thickness of metal to avoid tolerance problems. Within each cell member is a hydraulic spring which laterally constrains the nuclear material bearing rod which passes through each cell member against a hardstop in response to coolant flow through the cell member. This hydraulic spring is also suitable for use in a water cooled nuclear reactor. A core component constructed of, among other components, a plurality of these spacer grid members, avoids the use of a full length duct by providing spacer sleeves about the sodium tubes passing through the spacer grid members at locations between the grid members, thereby maintaining a predetermined space between adjacent grid members.

  8. Sidewall spacer optimization for steep switching junctionless transistors

    NASA Astrophysics Data System (ADS)

    Gupta, Manish; Kranti, Abhinav

    2016-06-01

    In this work, we analyze the impact of a high permittivity (high-κ) sidewall spacer and gate dielectric on the occurrence of sub-60 mV/decade subthreshold swing (S-swing) in symmetrical junctionless (JL) double gate (DG) transistors. It is shown that steep S-swing values (≤10 mV/decade) can be achieved in JL devices with a combination of a high permittivity (high-κ) gate dielectric and a narrow low permittivity (low-κ) sidewall spacer. Implementation of a wider high-κ spacer will diminish the degree of impact ionization by the influence of the fringing component of the gate electric field, and will not be useful for steep off-to-on current transition. A wider spacer with low-κ and a narrow spacer with high-κ permittivity will be useful to limit the latching effect that can occur at lower temperatures (250 K). For high temperature operation, the decrease in the impact ionization rate can be compensated by designing a JL transistor with a thicker silicon film. The work demonstrates opportunities to enhance impact ionization at sub bandgap voltages, and proposes optimal guidelines for selecting a sidewall spacer to facilitate steep switching in JL transistors.

  9. CRISPR-mediated control of the bacterial initiation of replication.

    PubMed

    Wiktor, Jakub; Lesterlin, Christian; Sherratt, David J; Dekker, Cees

    2016-05-01

    Programmable control of the cell cycle has been shown to be a powerful tool in cell-biology studies. Here, we develop a novel system for controlling the bacterial cell cycle, based on binding of CRISPR/dCas9 to the origin-of-replication locus. Initiation of replication of bacterial chromosomes is accurately regulated by the DnaA protein, which promotes the unwinding of DNA at oriC We demonstrate that the binding of CRISPR/dCas9 to any position within origin or replication blocks the initiation of replication. Serial-dilution plating, single-cell fluorescence microscopy, and flow-cytometry experiments show that ongoing rounds of chromosome replication are finished upon CRISPR/dCas9 binding, but no new rounds are initiated. Upon arrest, cells stay metabolically active and accumulate cell mass. We find that elevating the temperature from 37 to 42°C releases the CRISR/dCas9 replication inhibition, and we use this feature to recover cells from the arrest. Our simple and robust method of controlling the bacterial cell cycle is a useful asset for synthetic biology and DNA-replication studies in particular. The inactivation of CRISPR/dCas9 binding at elevated temperatures may furthermore be of wide interest for CRISPR/Cas9 applications in genomic engineering. PMID:27036863

  10. Evolution of animal Piwi-interacting RNAs and prokaryotic CRISPRs.

    PubMed

    Kumar, M Senthil; Chen, Kevin C

    2012-07-01

    Piwi-interacting RNAs (piRNAs) and CRISPR RNAs (crRNAs) are two recently discovered classes of small noncoding RNA that are found in animals and prokaryotes, respectively. Both of these novel RNA species function as components of adaptive immune systems that protect their hosts from foreign nucleic acids-piRNAs repress transposable elements in animal germlines, whereas crRNAs protect their bacterial hosts from phage and plasmids. The piRNA and CRISPR systems are nonhomologous but rather have independently evolved into logically similar defense mechanisms based on the specificity of targeting via nucleic acid base complementarity. Here we review what is known about the piRNA and CRISPR systems with a focus on comparing their evolutionary properties. In particular, we highlight the importance of several factors on the pattern of piRNA and CRISPR evolution, including the population genetic environment, the role of alternate defense systems and the mechanisms of acquisition of new piRNAs and CRISPRs. PMID:22539610

  11. CRISPR-mediated control of the bacterial initiation of replication

    PubMed Central

    Wiktor, Jakub; Lesterlin, Christian; Sherratt, David J.; Dekker, Cees

    2016-01-01

    Programmable control of the cell cycle has been shown to be a powerful tool in cell-biology studies. Here, we develop a novel system for controlling the bacterial cell cycle, based on binding of CRISPR/dCas9 to the origin-of-replication locus. Initiation of replication of bacterial chromosomes is accurately regulated by the DnaA protein, which promotes the unwinding of DNA at oriC. We demonstrate that the binding of CRISPR/dCas9 to any position within origin or replication blocks the initiation of replication. Serial-dilution plating, single-cell fluorescence microscopy, and flow-cytometry experiments show that ongoing rounds of chromosome replication are finished upon CRISPR/dCas9 binding, but no new rounds are initiated. Upon arrest, cells stay metabolically active and accumulate cell mass. We find that elevating the temperature from 37 to 42°C releases the CRISR/dCas9 replication inhibition, and we use this feature to recover cells from the arrest. Our simple and robust method of controlling the bacterial cell cycle is a useful asset for synthetic biology and DNA-replication studies in particular. The inactivation of CRISPR/dCas9 binding at elevated temperatures may furthermore be of wide interest for CRISPR/Cas9 applications in genomic engineering. PMID:27036863

  12. Sequence determinants of improved CRISPR sgRNA design

    PubMed Central

    Xu, Han; Xiao, Tengfei; Chen, Chen-Hao; Li, Wei; Meyer, Clifford A.; Wu, Qiu; Wu, Di; Cong, Le; Zhang, Feng; Liu, Jun S.; Brown, Myles; Liu, X. Shirley

    2015-01-01

    The CRISPR/Cas9 system has revolutionized mammalian somatic cell genetics. Genome-wide functional screens using CRISPR/Cas9-mediated knockout or dCas9 fusion-mediated inhibition/activation (CRISPRi/a) are powerful techniques for discovering phenotype-associated gene function. We systematically assessed the DNA sequence features that contribute to single guide RNA (sgRNA) efficiency in CRISPR-based screens. Leveraging the information from multiple designs, we derived a new sequence model for predicting sgRNA efficiency in CRISPR/Cas9 knockout experiments. Our model confirmed known features and suggested new features including a preference for cytosine at the cleavage site. The model was experimentally validated for sgRNA-mediated mutation rate and protein knockout efficiency. Tested on independent data sets, the model achieved significant results in both positive and negative selection conditions and outperformed existing models. We also found that the sequence preference for CRISPRi/a is substantially different from that for CRISPR/Cas9 knockout and propose a new model for predicting sgRNA efficiency in CRISPRi/a experiments. These results facilitate the genome-wide design of improved sgRNA for both knockout and CRISPRi/a studies. PMID:26063738

  13. Production of genome-edited pluripotent stem cells and mice by CRISPR/Cas [Review].

    PubMed

    Horii, Takuro; Hatada, Izuho

    2016-03-31

    Clustered regularly at interspaced short palindromic repeats (CRISPR) and CRISPR-associated (Cas) nucleases, so-called CRISPR/Cas, was recently developed as an epoch-making genome engineering technology. This system only requires Cas9 nuclease and single-guide RNA complementary to a target locus. CRISPR/Cas enables the generation of knockout cells and animals in a single step. This system can also be used to generate multiple mutations and knockin in a single step, which is not possible using other methods. In this review, we provide an overview of genome editing by CRISPR/Cas in pluripotent stem cells and mice. PMID:26743444

  14. Autoclaved metal-on-cement spacer versus static spacer in two-stage revision in periprosthetic knee infection

    PubMed Central

    Chen, Yu-Pin; Wu, Cheng-Chun; Ho, Wei-Pin

    2016-01-01

    Background: Periprosthetic knee infection is troublesome for Orthopedic surgeons and a catastrophy for patients. Reported rates of periprosthetic joint infection following primary total knee arthroplasty (TKA) are 0.39–2%. Two stage revision arthroplasty, which has success rates exceeding 90%, has been the gold standard for treating subacute and chronic periprosthetic infection following TKA. Antibiotic spacers, a well established means of delivering local antibiotic therapy, maintain soft tissue tension during two stage revision arthroplasty. However, controversy remains around whether static or mobile antibiotic impregnated spacers are superior for treating infection following TKA. Various mobile spacers are available, including cement-on-cement, cement-on-polyethylene and metal-on-polyethylene. In this study, the efficacy of the modified metal-on-cement spacer, consisting of reinsertion of the autoclaved femoral component and implantation of antibiotic-loaded cement in the proximal tibia, is assessed. Materials and Methods: Records of 19 patients diagnosed as periprosthetic knee infection were reviewed in this retrospective study. Among these patients, 10 patients received first stage debridement with the autoclaved metal-on-cement spacer and 8 patients with the static spacer, who eventually underwent two-stage re-implantation, were listed in the final comparison. Patient demographics, infection eradication rates, average range of motion (ROM), surgical time and blood loss during the second-stage of the surgery, and Knee Society (KS) knee scores at last followup after revision total knee replacement were clinically evaluated. Results: At a minimum of 2-year followup after re-implantation, infection eradication rates, surgical times, blood loss during the second-stage of the surgery, and KS knee score after re-implantation were similar for the two groups. Patients receiving autoclaved metal-on-cement spacers had superior ROM after re-implantation compared to

  15. CRISPR-Cas9: A Revolutionary Tool for Cancer Modelling.

    PubMed

    Torres-Ruiz, Raul; Rodriguez-Perales, Sandra

    2015-01-01

    The cancer-modelling field is now experiencing a conversion with the recent emergence of the RNA-programmable CRISPR-Cas9 system, a flexible methodology to produce essentially any desired modification in the genome. Cancer is a multistep process that involves many genetic mutations and other genome rearrangements. Despite their importance, it is difficult to recapitulate the degree of genetic complexity found in patient tumors. The CRISPR-Cas9 system for genome editing has been proven as a robust technology that makes it possible to generate cellular and animal models that recapitulate those cooperative alterations rapidly and at low cost. In this review, we will discuss the innovative applications of the CRISPR-Cas9 system to generate new models, providing a new way to interrogate the development and progression of cancers. PMID:26389881

  16. Engineering the Caenorhabditis elegans genome with CRISPR/Cas9.

    PubMed

    Waaijers, Selma; Boxem, Mike

    2014-08-01

    The development in early 2013 of CRISPR/Cas9-based genome engineering promises to dramatically advance our ability to alter the genomes of model systems at will. A single, easily produced targeting RNA guides the Cas9 endonuclease to a specific DNA sequence where it creates a double strand break. Imprecise repair of the break can yield mutations, while homologous recombination with a repair template can be used to effect specific changes to the genome. The tremendous potential of this system led several groups to independently adapt it for use in Caenorhabditiselegans, where it was successfully used to generate mutations and to create tailored genome changes through homologous recombination. Here, we review the different approaches taken to adapt CRISPR/Cas9 for C. elegans, and provide practical guidelines for CRISPR/Cas9-based genome engineering. PMID:24685391

  17. CRISPR-Cas9: A Revolutionary Tool for Cancer Modelling

    PubMed Central

    Torres-Ruiz, Raul; Rodriguez-Perales, Sandra

    2015-01-01

    The cancer-modelling field is now experiencing a conversion with the recent emergence of the RNA-programmable CRISPR-Cas9 system, a flexible methodology to produce essentially any desired modification in the genome. Cancer is a multistep process that involves many genetic mutations and other genome rearrangements. Despite their importance, it is difficult to recapitulate the degree of genetic complexity found in patient tumors. The CRISPR-Cas9 system for genome editing has been proven as a robust technology that makes it possible to generate cellular and animal models that recapitulate those cooperative alterations rapidly and at low cost. In this review, we will discuss the innovative applications of the CRISPR-Cas9 system to generate new models, providing a new way to interrogate the development and progression of cancers. PMID:26389881

  18. CRISPR mediated somatic cell genome engineering in the chicken.

    PubMed

    Véron, Nadège; Qu, Zhengdong; Kipen, Phoebe A S; Hirst, Claire E; Marcelle, Christophe

    2015-11-01

    Gene-targeted knockout technologies are invaluable tools for understanding the functions of genes in vivo. CRISPR/Cas9 system of RNA-guided genome editing is revolutionizing genetics research in a wide spectrum of organisms. Here, we combined CRISPR with in vivo electroporation in the chicken embryo to efficiently target the transcription factor PAX7 in tissues of the developing embryo. This approach generated mosaic genetic mutations within a wild-type cellular background. This series of proof-of-principle experiments indicate that in vivo CRISPR-mediated cell genome engineering is an effective method to achieve gene loss-of-function in the tissues of the chicken embryo and it completes the growing genetic toolbox to study the molecular mechanisms regulating development in this important animal model. PMID:26277216

  19. CRISPR-Cas9-Guided Genome Engineering in C. elegans.

    PubMed

    Kim, Hyun-Min; Colaiácovo, Monica P

    2016-01-01

    The CRISPR (clustered regularly interspaced short palindromic repeats)-Cas (CRISPR-associated) system is successfully being used for efficient and targeted genome editing in various organisms, including the nematode C. elegans. Recent studies have developed various CRISPR-Cas9 approaches to enhance genome engineering via two major DNA double-strand break repair pathways: non-homologous end joining and homologous recombination. Here we describe a protocol for Cas9-mediated C. elegans genome editing together with single guide RNA (sgRNA) and repair template cloning, as well as injection methods required for delivering Cas9, sgRNAs, and repair template DNA into the C. elegans germline. © 2016 by John Wiley & Sons, Inc. PMID:27366893

  20. Conditional Control of CRISPR/Cas9 Function.

    PubMed

    Zhou, Wenyuan; Deiters, Alexander

    2016-04-25

    The recently discovered CRISPR/Cas9 endonuclease system, comprised of a guide RNA for the recognition of a DNA target and the Cas9 nuclease protein for binding and processing the target, has been extensively studied and has been widely applied in genome editing, synthetic biology, and transcriptional modulation in cells and animals. Toward more precise genomic modification and further expansion of the CRISPR/Cas9 system as a spatiotemporally controlled gene regulatory system, several approaches of conditional activation of Cas9 function using small molecules and light have recently been developed. These methods have led to improvements in the genome editing specificity of the CRISPR/Cas9 system and enabled its activation with temporal and spatial precision. PMID:26996256

  1. An updated evolutionary classification of CRISPR-Cas systems.

    PubMed

    Makarova, Kira S; Wolf, Yuri I; Alkhnbashi, Omer S; Costa, Fabrizio; Shah, Shiraz A; Saunders, Sita J; Barrangou, Rodolphe; Brouns, Stan J J; Charpentier, Emmanuelle; Haft, Daniel H; Horvath, Philippe; Moineau, Sylvain; Mojica, Francisco J M; Terns, Rebecca M; Terns, Michael P; White, Malcolm F; Yakunin, Alexander F; Garrett, Roger A; van der Oost, John; Backofen, Rolf; Koonin, Eugene V

    2015-11-01

    The evolution of CRISPR-cas loci, which encode adaptive immune systems in archaea and bacteria, involves rapid changes, in particular numerous rearrangements of the locus architecture and horizontal transfer of complete loci or individual modules. These dynamics complicate straightforward phylogenetic classification, but here we present an approach combining the analysis of signature protein families and features of the architecture of cas loci that unambiguously partitions most CRISPR-cas loci into distinct classes, types and subtypes. The new classification retains the overall structure of the previous version but is expanded to now encompass two classes, five types and 16 subtypes. The relative stability of the classification suggests that the most prevalent variants of CRISPR-Cas systems are already known. However, the existence of rare, currently unclassifiable variants implies that additional types and subtypes remain to be characterized. PMID:26411297

  2. I can see CRISPR now, even when phage are gone: a view on alternative CRISPR-Cas functions from the prokaryotic envelope

    PubMed Central

    Ratner, Hannah K.; Sampson, Timothy R.; Weiss, David S.

    2015-01-01

    Purpose CRISPR-Cas systems are prokaryotic immune systems against invading nucleic acids that adapt as new environmental threats arise. There are emerging examples of CRISPR-Cas functions in bacterial physiology beyond their role in adaptive immunity. This highlights the poorly understood, but potentially common, moonlighting functions of these abundant systems. We propose that these non-canonical CRISPR-Cas activities have evolved to respond to stresses at the cell envelope. Recent findings Here, we discuss recent literature describing the impact of the extracellular environment on the regulation of CRISPR-Cas systems, and the influence of CRISPR-Cas activity on bacterial physiology. The described non-canonical CRISPR-Cas functions allow the bacterial cell to respond to the extracellular environment, primarily through changes in envelope physiology. Summary This review discusses the expanding non-canonical functions of CRISPR-Cas systems, including their roles in virulence, focusing mainly on their relationship to the cell envelope. We first examine the effects of the extracellular environment on regulation of CRISPR-Cas components, and then discuss the impact of CRISPR-Cas systems on bacterial physiology, focusing on their roles in influencing interactions with the environment including host organisms. PMID:25887612

  3. Applications of CRISPR-Cas systems in neuroscience

    PubMed Central

    Heidenreich, Matthias; Zhang, Feng

    2016-01-01

    Genome editing tools, and in particular those based on CRISPR-Cas systems, are accelerating the pace of biological research and enabling targeted genetic interrogation in virtually any organism and cell type. These tools have opened the door to the development of new model systems for studying the complexity of the nervous system, including animal and stem cell-derived in vitro models. Precise and efficient gene editing using CRISPR-Cas systems has the potential to advance both basic and translational neuroscience research. PMID:26656253

  4. Mouse Genome Editing using CRISPR/Cas System

    PubMed Central

    Harms, Donald W; Quadros, Rolen M; Seruggia, Davide; Ohtsuka, Masato; Takahashi, Gou

    2015-01-01

    The availability of techniques to create desired genetic mutations has enabled the laboratory mouse as an extensively used model organism in biomedical research including human genetics. A new addition to this existing technical repertoire is the CRISPR/Cas system. Specifically, this system allows editing of the mouse genome much faster than the previously used techniques and more importantly multiple mutations can be created in a single experiment. Here we provide protocols for preparation of CRISPR/Cas reagents and microinjection into one cell mouse embryos to create knockout or knock-in mouse models. PMID:25271839

  5. Optical Control of CRISPR/Cas9 Gene Editing

    PubMed Central

    Hemphill, James; Borchardt, Erin K.; Brown, Kalyn; Asokan, Aravind; Deiters, Alexander

    2016-01-01

    The CRISPR/Cas9 system has emerged as an important tool in biomedical research for a wide range of applications, with significant potential for genome engineering and gene therapy. In order to achieve conditional control of the CRISPR/Cas9 system, a genetically encoded light-activated Cas9 was engineered through the site-specific installation of a caged lysine amino acid. Several potential lysine residues were identified as viable caging sites that can be modified to optically control Cas9 function, as demonstrated through optical activation and deactivation of both exogenous and endogenous gene function. PMID:25905628

  6. SSFinder: high throughput CRISPR-Cas target sites prediction tool.

    PubMed

    Upadhyay, Santosh Kumar; Sharma, Shailesh

    2014-01-01

    Clustered regularly interspaced short palindromic repeats (CRISPR) and CRISPR-associated protein (Cas) system facilitates targeted genome editing in organisms. Despite high demand of this system, finding a reliable tool for the determination of specific target sites in large genomic data remained challenging. Here, we report SSFinder, a python script to perform high throughput detection of specific target sites in large nucleotide datasets. The SSFinder is a user-friendly tool, compatible with Windows, Mac OS, and Linux operating systems, and freely available online. PMID:25089276

  7. CRISPathBrick: Modular Combinatorial Assembly of Type II-A CRISPR Arrays for dCas9-Mediated Multiplex Transcriptional Repression in E. coli.

    PubMed

    Cress, Brady F; Toparlak, Ö Duhan; Guleria, Sanjay; Lebovich, Matthew; Stieglitz, Jessica T; Englaender, Jacob A; Jones, J Andrew; Linhardt, Robert J; Koffas, Mattheos A G

    2015-09-18

    Programmable control over an addressable global regulator would enable simultaneous repression of multiple genes and would have tremendous impact on the field of synthetic biology. It has recently been established that CRISPR/Cas systems can be engineered to repress gene transcription at nearly any desired location in a sequence-specific manner, but there remain only a handful of applications described to date. In this work, we report development of a vector possessing a CRISPathBrick feature, enabling rapid modular assembly of natural type II-A CRISPR arrays capable of simultaneously repressing multiple target genes in Escherichia coli. Iterative incorporation of spacers into this CRISPathBrick feature facilitates the combinatorial construction of arrays, from a small number of DNA parts, which can be utilized to generate a suite of complex phenotypes corresponding to an encoded genetic program. We show that CRISPathBrick can be used to tune expression of plasmid-based genes and repress chromosomal targets in probiotic, virulent, and commonly engineered E. coli strains. Furthermore, we describe development of pCRISPReporter, a fluorescent reporter plasmid utilized to quantify dCas9-mediated repression from endogenous promoters. Finally, we demonstrate that dCas9-mediated repression can be harnessed to assess the effect of downregulating both novel and computationally predicted metabolic engineering targets, improving the yield of a heterologous phytochemical through repression of endogenous genes. These tools provide a platform for rapid evaluation of multiplex metabolic engineering interventions. PMID:25822415

  8. [Prostate-rectum spacers: optimization of prostate cancer irradiation].

    PubMed

    Zilli, T; Benz, E; Miralbell, R

    2014-06-01

    In the curative radiotherapy of localized prostate cancer, improvements in biochemical control observed with dose escalation have been counterbalanced by an increase in radiation-induced toxicity. The injection of biodegradable spacers between prostate and rectum represents a new frontier in the optimization of radiotherapy treatments for patients with localized disease. Transperineal injection of different types of spacers under transrectal ultrasound guidance allows creating a 7-to-20 mm additional space between the prostate and the anterior rectal wall lasting 3 to 12 months. Dosimetrically, a relative reduction in the rectal volume receiving at least 70 Gy (V70) in the order of 43% to 84% is observed with all types of spacers, regardless of the radiotherapy technique used. Preliminary clinical results show for all spacers a good tolerance and a possible reduction in the acute side effects rate. The aim of the present systematic review of the literature is to report on indications as well as dosimetric and clinical advantages of the different types of prostate-rectum spacers commercially available (hydrogel, hyaluronic acid, collagen, biodegradable balloon). PMID:24746454

  9. Impact of spacer thickness on biofouling in forward osmosis.

    PubMed

    Valladares Linares, R; Bucs, Sz S; Li, Z; AbuGhdeeb, M; Amy, G; Vrouwenvelder, J S

    2014-06-15

    Forward osmosis (FO) indirect desalination systems integrate wastewater recovery with seawater desalination. Niche applications for FO systems have been reported recently, due to the demonstrated advantages compared to conventional high-pressure membrane processes such as nanofiltration (NF) and reverse osmosis (RO). Among them, wastewater recovery has been identified to be particularly suitable for practical applications. However, biofouling in FO membranes has rarely been studied in applications involving wastewater effluents. Feed spacers separating the membrane sheets in cross-flow systems play an important role in biofilm formation. The objective of this study was to determine the influence of feed spacer thickness (28, 31 and 46 mil) on biofouling development and membrane performance in a FO system, using identical cross-flow cells in parallel studies. Flux development, biomass accumulation, fouling localization and composition were determined and analyzed. For all spacer thicknesses, operated at the same feed flow and the same run time, the same amount of biomass was found, while the flux reduction decreased with thicker spacers. These observations are in good agreement with biofouling studies for RO systems, considering the key differences between FO and RO. Our findings contradict previous cross-flow studies on particulate/colloidal fouling, where higher cross-flow velocities improved system performance. Thicker spacers reduced the impact of biofouling on FO membrane flux. PMID:24726992

  10. Space Station Long Spacer Element begins processing at KSC

    NASA Technical Reports Server (NTRS)

    1998-01-01

    The Long Spacer, a component of the International Space Station, arrives and is moved to its test stand in the northeast corner of the high bay in KSC's Space Station Processing Facility. The Long Spacer provides structural support for the outboard Photovoltaic Modules that supply power to the station. Now just a structure, the Long Spacer will have attached to it as part of processing a heat dissipation radiator and two Pump and Flow Control subassemblies that circulate ammonia to cool the solar array electronics. Also to be mounted are ammonia fluid lines as part of the cooling system and the cabling necessary for power and control of the station. The Long Spacer becomes an integral part of a station truss segment when it is mated with the Integrated Equipment Assembly, which stores the electrical power generated by the solar arrays for use by the station modules. The Long Spacer is being processed in preparation for STS-97, currently planned for launch aboard Discovery in April 1999.

  11. Gas-insulated substation spacer surface degradation analysis

    SciTech Connect

    Chu, F.Y.; Braun, J.M. )

    1990-06-01

    The objective of the project was to develop surface analysis techniques which can correlate the performance of spacers in SF{sub 6} insulated switchgear with changes in their dielectric and chemical characteristics after exposure to SF{sub 6} arcing byproducts and low energy flashovers. Critical material parameters responsible for spacer performance were investigated by optical and scanning electron microscopy, electron spectroscopy for chemical analysis, thermogravimetric analysis and electrical surface resistance measurements. Results related to arc byproduct resistance and tracking resistance of seven types of filled epoxy spacer materials are presented. Degradation mechanisms have been proposed to explain the differing material behaviour. The study shows that the interaction of certain types of filler and resin systems with the SF{sub 6} spark and the decomposed gas is responsible for the degradation in impulse withstand performance. A practical technique using surface electrical resistance to detect degraded spacer after exposure to large quantities of arc byproducts has been developed and the construction of a probe for spacer surface assessment was described. 15 refs., 28 figs., 8 tabs.

  12. Host Double Strand Break Repair Generates HIV-1 Strains Resistant to CRISPR/Cas9

    PubMed Central

    Yoder, Kristine E.; Bundschuh, Ralf

    2016-01-01

    CRISPR/Cas9 genome editing has been proposed as a therapeutic treatment for HIV-1 infection. CRISPR/Cas9 induced double strand breaks (DSBs) targeted to the integrated viral genome have been shown to decrease production of progeny virus. Unfortunately HIV-1 evolves rapidly and may readily produce CRISPR/Cas9 resistant strains. Here we used next-generation sequencing to characterize HIV-1 strains that developed resistance to six different CRISPR/Cas9 guide RNAs (gRNAs). Reverse transcriptase (RT) derived base substitution mutations were commonly found at sites encoding unpaired bases of RNA stem-loop structures. In addition to RT mutations, insertion and/or deletion (indel) mutations were common. Indels localized to the CRISPR/Cas9 cleavage site were major contributors to CRISPR gRNA resistance. While most indels at non-coding regions were a single base pair, 3 base pair indels were observed when a coding region of HIV-1 was targeted. The DSB repair event may preserve the HIV-1 reading frame, while destroying CRISPR gRNA homology. HIV-1 may be successfully edited by CRISPR/Cas9, but the virus remains competent for replication and resistant to further CRISPR/Cas9 targeting at that site. These observations strongly suggest that host DSB repair at CRISPR/Cas9 cleavage sites is a novel and important pathway that may contribute to HIV-1 therapeutic resistance. PMID:27404981

  13. Host Double Strand Break Repair Generates HIV-1 Strains Resistant to CRISPR/Cas9.

    PubMed

    Yoder, Kristine E; Bundschuh, Ralf

    2016-01-01

    CRISPR/Cas9 genome editing has been proposed as a therapeutic treatment for HIV-1 infection. CRISPR/Cas9 induced double strand breaks (DSBs) targeted to the integrated viral genome have been shown to decrease production of progeny virus. Unfortunately HIV-1 evolves rapidly and may readily produce CRISPR/Cas9 resistant strains. Here we used next-generation sequencing to characterize HIV-1 strains that developed resistance to six different CRISPR/Cas9 guide RNAs (gRNAs). Reverse transcriptase (RT) derived base substitution mutations were commonly found at sites encoding unpaired bases of RNA stem-loop structures. In addition to RT mutations, insertion and/or deletion (indel) mutations were common. Indels localized to the CRISPR/Cas9 cleavage site were major contributors to CRISPR gRNA resistance. While most indels at non-coding regions were a single base pair, 3 base pair indels were observed when a coding region of HIV-1 was targeted. The DSB repair event may preserve the HIV-1 reading frame, while destroying CRISPR gRNA homology. HIV-1 may be successfully edited by CRISPR/Cas9, but the virus remains competent for replication and resistant to further CRISPR/Cas9 targeting at that site. These observations strongly suggest that host DSB repair at CRISPR/Cas9 cleavage sites is a novel and important pathway that may contribute to HIV-1 therapeutic resistance. PMID:27404981

  14. Magnetic Coupling of Dissimilar ZnO-Co Granular Films Through a ZnO Spacer

    NASA Astrophysics Data System (ADS)

    Li, Xiaoli; Jia, Juan; Gao, Yan; Gehring, G. A.; Xu, Xiaohong

    2015-12-01

    An all-oxide granular film (GF) with a sandwich structure containing cobalt metal nanoparticles embedded in ZnO is fabricated by magnetron sputtering. Large and small Co particles can be obtained simultaneously in a sample by depositing nanostructured ZnO-Co layers at high and low temperatures, respectively. The two ZnO-Co layers couple with each other through a ZnO spacer layer, whose thickness tunes the strength of the coupling. Both the magnetic properties and the magnetoresistance (MR) of the samples depend on the sandwich structure. Magnetic interactions can be transferred through the polycrystalline pure ZnO spacer layer even when the layer is as thick as 40nm due to the long spin coherence length. An analysis of the data found that the spin coherence length was greater than ˜17nm at room temperature (RT) in a polycrystalline film with very small grains. Tuning the resistance of the ZnO-Co layer deposited at a low temperature by adding aluminum so that it more nearly matches the resistance of the ZnO-Co layer deposited at a high temperature, dramatically enhances the MR of the sandwich sample. This study illustrates the power of combining films containing different sizes of nanoparticles in order to optimize the MR and so make the ZnO-based films more suitable for applications in spintronics.

  15. Wheeze in childhood: is the spacer good enough?

    PubMed Central

    Rajkumar, Veena; Rajendra, Barathi; How, Choon How; Ang, Seng Bin

    2014-01-01

    Max was treated with SABA using an MDI and spacer with facemask and responded well to the initial treatment. You explained to the parents that nebulisers are neither required nor recommended in the treatment of wheezing in their child’s situation. You advised the parents on the proper technique of MDI use with spacer and facemask, as well as care of the equipment. You also gave them a clearly written action plan regarding the efficient management of the next episode of wheeze with MDI and spacer. You further explained the side effects of oral bronchodilators and nebulisers, and why you refrained from using them. Max was given a follow-up appointment to assess his progress, and his parents were advised on the situations when they should go to a doctor or the emergency department. PMID:25631964

  16. Spacer effect on nanostructures and self-assembly in organogels via some bolaform cholesteryl imide derivatives with different spacers

    PubMed Central

    2013-01-01

    In this paper, new bolaform cholesteryl imide derivatives with different spacers were designed and synthesized. Their gelation behaviors in 23 solvents were investigated, and some of them were found to be low molecular mass organic gelators. The experimental results indicated that these as-formed organogels can be regulated by changing the flexible/rigid segments in spacers and organic solvents. Suitable combination of flexible/rigid segments in molecular spacers in the present cholesteryl gelators is favorable for the gelation of organic solvents. Scanning electron microscopy and atomic force microscopy observations revealed that the gelator molecules self-assemble into different aggregates, from wrinkle and belt to fiber with the change of spacers and solvents. Spectral studies indicated that there existed different H-bond formations between imide groups and assembly modes, depending on the substituent spacers in molecular skeletons. The present work may give some insight into the design and character of new organogelators and soft materials with special molecular structures. PMID:24083361

  17. A mouse geneticist's practical guide to CRISPR applications.

    PubMed

    Singh, Priti; Schimenti, John C; Bolcun-Filas, Ewelina

    2015-01-01

    CRISPR/Cas9 system of RNA-guided genome editing is revolutionizing genetics research in a wide spectrum of organisms. Even for the laboratory mouse, a model that has thrived under the benefits of embryonic stem (ES) cell knockout capabilities for nearly three decades, CRISPR (Clustered Regularly Interspaced Short Palindromic Repeats)/Cas9 technology enables one to manipulate the genome with unprecedented simplicity and speed. It allows generation of null, conditional, precisely mutated, reporter, or tagged alleles in mice. Moreover, it holds promise for other applications beyond genome editing. The crux of this system is the efficient and targeted introduction of DNA breaks that are repaired by any of several pathways in a predictable but not entirely controllable manner. Thus, further optimizations and improvements are being developed. Here, we summarize current applications and provide a practical guide to use the CRISPR/Cas9 system for mouse mutagenesis, based on published reports and our own experiences. We discuss critical points and suggest technical improvements to increase efficiency of RNA-guided genome editing in mouse embryos and address practical problems such as mosaicism in founders, which complicates genotyping and phenotyping. We describe a next-generation sequencing strategy for simultaneous characterization of on- and off-target editing in mice derived from multiple CRISPR experiments. Additionally, we report evidence that elevated frequency of precise, homology-directed editing can be achieved by transient inhibition of the Ligase IV-dependent nonhomologous end-joining pathway in one-celled mouse embryos. PMID:25271304

  18. CRISPR/Cas9-targeted mutagenesis in Caenorhabditis elegans.

    PubMed

    Waaijers, Selma; Portegijs, Vincent; Kerver, Jana; Lemmens, Bennie B L G; Tijsterman, Marcel; van den Heuvel, Sander; Boxem, Mike

    2013-11-01

    The generation of genetic mutants in Caenorhabditis elegans has long relied on the selection of mutations in large-scale screens. Directed mutagenesis of specific loci in the genome would greatly speed up analysis of gene function. Here, we adapt the CRISPR/Cas9 system to generate mutations at specific sites in the C. elegans genome. PMID:23979586

  19. A Mouse Geneticist’s Practical Guide to CRISPR Applications

    PubMed Central

    Singh, Priti; Schimenti, John C.; Bolcun-Filas, Ewelina

    2015-01-01

    CRISPR/Cas9 system of RNA-guided genome editing is revolutionizing genetics research in a wide spectrum of organisms. Even for the laboratory mouse, a model that has thrived under the benefits of embryonic stem (ES) cell knockout capabilities for nearly three decades, CRISPR (Clustered Regularly Interspaced Short Palindromic Repeats)/Cas9 technology enables one to manipulate the genome with unprecedented simplicity and speed. It allows generation of null, conditional, precisely mutated, reporter, or tagged alleles in mice. Moreover, it holds promise for other applications beyond genome editing. The crux of this system is the efficient and targeted introduction of DNA breaks that are repaired by any of several pathways in a predictable but not entirely controllable manner. Thus, further optimizations and improvements are being developed. Here, we summarize current applications and provide a practical guide to use the CRISPR/Cas9 system for mouse mutagenesis, based on published reports and our own experiences. We discuss critical points and suggest technical improvements to increase efficiency of RNA-guided genome editing in mouse embryos and address practical problems such as mosaicism in founders, which complicates genotyping and phenotyping. We describe a next-generation sequencing strategy for simultaneous characterization of on- and off-target editing in mice derived from multiple CRISPR experiments. Additionally, we report evidence that elevated frequency of precise, homology-directed editing can be achieved by transient inhibition of the Ligase IV-dependent nonhomologous end-joining pathway in one-celled mouse embryos. PMID:25271304

  20. CRISPR-Based Technologies and the Future of Food Science.

    PubMed

    Selle, Kurt; Barrangou, Rodolphe

    2015-11-01

    The on-going CRISPR craze is focused on the use of Cas9-based technologies for genome editing applications in eukaryotes, with high potential for translational medicine and next-generation gene therapy. Nevertheless, CRISPR-Cas systems actually provide adaptive immunity in bacteria, and have much promise for various applications in food bacteria that include high-resolution typing of pathogens, vaccination of starter cultures against phages, and the genesis of programmable and specific antibiotics that can selectively modulate bacterial population composition. Indeed, the molecular machinery from these DNA-encoded, RNA-mediated, DNA-targeting systems can be harnessed in native hosts, or repurposed in engineered systems for a plethora of applications that can be implemented in all organisms relevant to the food chain, including agricultural crops trait-enhancement, livestock breeding, and fermentation-based manufacturing, and for the genesis of next-generation food products with enhanced quality and health-promoting functionalities. CRISPR-based applications are now poised to revolutionize many fields within food science, from farm to fork. In this review, we describe CRISPR-Cas systems and highlight their potential for the development of enhanced foods. PMID:26444151

  1. Targeted mutagenesis in chicken using CRISPR/Cas9 system.

    PubMed

    Oishi, Isao; Yoshii, Kyoko; Miyahara, Daichi; Kagami, Hiroshi; Tagami, Takahiro

    2016-01-01

    The CRISPR/Cas9 system is a simple and powerful tool for genome editing in various organisms including livestock animals. However, the system has not been applied to poultry because of the difficulty in accessing their zygotes. Here we report the implementation of CRISPR/Cas9-mediated gene targeting in chickens. Two egg white genes, ovalbumin and ovomucoid, were efficiently (>90%) mutagenized in cultured chicken primordial germ cells (PGCs) by transfection of circular plasmids encoding Cas9, a single guide RNA, and a gene encoding drug resistance, followed by transient antibiotic selection. We transplanted CRISPR-induced mutant-ovomucoid PGCs into recipient chicken embryos and established three germline chimeric roosters (G0). All of the roosters had donor-derived mutant-ovomucoid spermatozoa, and the two with a high transmission rate of donor-derived gametes produced heterozygous mutant ovomucoid chickens as about half of their donor-derived offspring in the next generation (G1). Furthermore, we generated ovomucoid homozygous mutant offspring (G2) by crossing the G1 mutant chickens. Taken together, these results demonstrate that the CRISPR/Cas9 system is a simple and effective gene-targeting method in chickens. PMID:27050479

  2. Simplified CRISPR-Cas genome editing for Saccharomyces cerevisiae.

    PubMed

    Generoso, Wesley Cardoso; Gottardi, Manuela; Oreb, Mislav; Boles, Eckhard

    2016-08-01

    CRISPR-Cas has become a powerful technique for genetic engineering of yeast. Here, we present an improved version by using only one single plasmid expressing Cas9 and one or two guide-RNAs. A high gene deletion efficiency was achieved even with simultaneous recombination cloning of the plasmid and deletion in industrial strains. PMID:27327211

  3. Targeted mutagenesis in chicken using CRISPR/Cas9 system

    PubMed Central

    Oishi, Isao; Yoshii, Kyoko; Miyahara, Daichi; Kagami, Hiroshi; Tagami, Takahiro

    2016-01-01

    The CRISPR/Cas9 system is a simple and powerful tool for genome editing in various organisms including livestock animals. However, the system has not been applied to poultry because of the difficulty in accessing their zygotes. Here we report the implementation of CRISPR/Cas9-mediated gene targeting in chickens. Two egg white genes, ovalbumin and ovomucoid, were efficiently (>90%) mutagenized in cultured chicken primordial germ cells (PGCs) by transfection of circular plasmids encoding Cas9, a single guide RNA, and a gene encoding drug resistance, followed by transient antibiotic selection. We transplanted CRISPR-induced mutant-ovomucoid PGCs into recipient chicken embryos and established three germline chimeric roosters (G0). All of the roosters had donor-derived mutant-ovomucoid spermatozoa, and the two with a high transmission rate of donor-derived gametes produced heterozygous mutant ovomucoid chickens as about half of their donor-derived offspring in the next generation (G1). Furthermore, we generated ovomucoid homozygous mutant offspring (G2) by crossing the G1 mutant chickens. Taken together, these results demonstrate that the CRISPR/Cas9 system is a simple and effective gene-targeting method in chickens. PMID:27050479

  4. CRISPR/Cas9 Based Genome Editing of Penicillium chrysogenum.

    PubMed

    Pohl, C; Kiel, J A K W; Driessen, A J M; Bovenberg, R A L; Nygård, Y

    2016-07-15

    CRISPR/Cas9 based systems have emerged as versatile platforms for precision genome editing in a wide range of organisms. Here we have developed powerful CRISPR/Cas9 tools for marker-based and marker-free genome modifications in Penicillium chrysogenum, a model filamentous fungus and industrially relevant cell factory. The developed CRISPR/Cas9 toolbox is highly flexible and allows editing of new targets with minimal cloning efforts. The Cas9 protein and the sgRNA can be either delivered during transformation, as preassembled CRISPR-Cas9 ribonucleoproteins (RNPs) or expressed from an AMA1 based plasmid within the cell. The direct delivery of the Cas9 protein with in vitro synthesized sgRNA to the cells allows for a transient method for genome engineering that may rapidly be applicable for other filamentous fungi. The expression of Cas9 from an AMA1 based vector was shown to be highly efficient for marker-free gene deletions. PMID:27072635

  5. CRISPR-Induced Distributed Immunity in Microbial Populations

    PubMed Central

    Young, Mark J.; Weitz, Joshua S.; Whitaker, Rachel J.

    2014-01-01

    In bacteria and archaea, viruses are the primary infectious agents, acting as virulent, often deadly pathogens. A form of adaptive immune defense known as CRISPR-Cas enables microbial cells to acquire immunity to viral pathogens by recognizing specific sequences encoded in viral genomes. The unique biology of this system results in evolutionary dynamics of host and viral diversity that cannot be fully explained by the traditional models used to describe microbe-virus coevolutionary dynamics. Here, we show how the CRISPR-mediated adaptive immune response of hosts to invading viruses facilitates the emergence of an evolutionary mode we call distributed immunity - the coexistence of multiple, equally-fit immune alleles among individuals in a microbial population. We use an eco-evolutionary modeling framework to quantify distributed immunity and demonstrate how it emerges and fluctuates in multi-strain communities of hosts and viruses as a consequence of CRISPR-induced coevolution under conditions of low viral mutation and high relative numbers of viral protospacers. We demonstrate that distributed immunity promotes sustained diversity and stability in host communities and decreased viral population density that can lead to viral extinction. We analyze sequence diversity of experimentally coevolving populations of Streptococcus thermophilus and their viruses where CRISPR-Cas is active, and find the rapid emergence of distributed immunity in the host population, demonstrating the importance of this emergent phenomenon in evolving microbial communities. PMID:25000306

  6. Duchenne muscular dystrophy: CRISPR/Cas9 treatment.

    PubMed

    Mendell, Jerry R; Rodino-Klapac, Louise R

    2016-05-01

    A novel approach to gene correction by genome editing shows great promise as a treatment for Duchenne muscular dystrophy (DMD). CRISPR/Cas9 delivered by adeno-associated virus to a mouse model for DMD demonstrated improvement in function and histology. PMID:26926391

  7. CRISPR-Cas9-Mediated Genome Editing in Leishmania donovani

    PubMed Central

    Zhang, Wen-Wei

    2015-01-01

    ABSTRACT The prokaryotic CRISPR (clustered regularly interspaced short palindromic repeat)-Cas9, an RNA-guided endonuclease, has been shown to mediate efficient genome editing in a wide variety of organisms. In the present study, the CRISPR-Cas9 system has been adapted to Leishmania donovani, a protozoan parasite that causes fatal human visceral leishmaniasis. We introduced the Cas9 nuclease into L. donovani and generated guide RNA (gRNA) expression vectors by using the L. donovani rRNA promoter and the hepatitis delta virus (HDV) ribozyme. It is demonstrated within that L. donovani mainly used homology-directed repair (HDR) and microhomology-mediated end joining (MMEJ) to repair the Cas9 nuclease-created double-strand DNA break (DSB). The nonhomologous end-joining (NHEJ) pathway appears to be absent in L. donovani. With this CRISPR-Cas9 system, it was possible to generate knockouts without selection by insertion of an oligonucleotide donor with stop codons and 25-nucleotide homology arms into the Cas9 cleavage site. Likewise, we disrupted and precisely tagged endogenous genes by inserting a bleomycin drug selection marker and GFP gene into the Cas9 cleavage site. With the use of Hammerhead and HDV ribozymes, a double-gRNA expression vector that further improved gene-targeting efficiency was developed, and it was used to make precise deletion of the 3-kb miltefosine transporter gene (LdMT). In addition, this study identified a novel single point mutation caused by CRISPR-Cas9 in LdMT (M381T) that led to miltefosine resistance, a concern for the only available oral antileishmanial drug. Together, these results demonstrate that the CRISPR-Cas9 system represents an effective genome engineering tool for L. donovani. PMID:26199327

  8. Evidence for the widespread distribution of CRISPR-Cas system in the Phylum Cyanobacteria

    PubMed Central

    Cai, Fei; Axen, Seth D.; Kerfeld, Cheryl A.

    2013-01-01

    Members of the phylum Cyanobacteria inhabit ecologically diverse environments. However, the CRISPR-Cas (clustered regularly interspaced short palindromic repeats, CRISPR associated genes), an extremely adaptable defense system, has not been surveyed in this phylum. We analyzed 126 cyanobacterial genomes and, surprisingly, found CRISPR-Cas in the majority except the marine subclade (Synechococcus and Prochlorococcus), in which cyanophages are a known force shaping their evolution. Multiple observations of CRISPR loci in the absence of cas1/cas2 genes may represent an early stage of losing a CRISPR-Cas locus. Our findings reveal the widespread distribution of their role in the phylum Cyanobacteria and provide a first step to systematically understanding CRISPR-Cas systems in cyanobacteria. PMID:23628889

  9. Germline Gene Editing in Chickens by Efficient CRISPR-Mediated Homologous Recombination in Primordial Germ Cells

    PubMed Central

    Dimitrov, Lazar; Pedersen, Darlene; Ching, Kathryn H.; Yi, Henry; Collarini, Ellen J.; Izquierdo, Shelley; van de Lavoir, Marie-Cecile; Leighton, Philip A.

    2016-01-01

    The CRISPR/Cas9 system has been applied in a large number of animal and plant species for genome editing. In chickens, CRISPR has been used to knockout genes in somatic tissues, but no CRISPR-mediated germline modification has yet been reported. Here we use CRISPR to target the chicken immunoglobulin heavy chain locus in primordial germ cells (PGCs) to produce transgenic progeny. Guide RNAs were co-transfected with a donor vector for homology-directed repair of the double-strand break, and clonal populations were selected. All of the resulting drug-resistant clones contained the correct targeting event. The targeted cells gave rise to healthy progeny containing the CRISPR-targeted locus. The results show that gene-edited chickens can be obtained by modifying PGCs in vitro with the CRISPR/Cas9 system, opening up many potential applications for efficient genetic modification in birds. PMID:27099923

  10. Germline Gene Editing in Chickens by Efficient CRISPR-Mediated Homologous Recombination in Primordial Germ Cells.

    PubMed

    Dimitrov, Lazar; Pedersen, Darlene; Ching, Kathryn H; Yi, Henry; Collarini, Ellen J; Izquierdo, Shelley; van de Lavoir, Marie-Cecile; Leighton, Philip A

    2016-01-01

    The CRISPR/Cas9 system has been applied in a large number of animal and plant species for genome editing. In chickens, CRISPR has been used to knockout genes in somatic tissues, but no CRISPR-mediated germline modification has yet been reported. Here we use CRISPR to target the chicken immunoglobulin heavy chain locus in primordial germ cells (PGCs) to produce transgenic progeny. Guide RNAs were co-transfected with a donor vector for homology-directed repair of the double-strand break, and clonal populations were selected. All of the resulting drug-resistant clones contained the correct targeting event. The targeted cells gave rise to healthy progeny containing the CRISPR-targeted locus. The results show that gene-edited chickens can be obtained by modifying PGCs in vitro with the CRISPR/Cas9 system, opening up many potential applications for efficient genetic modification in birds. PMID:27099923