Science.gov

Sample records for critical point symmetry

  1. Empirical signatures of quantum phase transitions and universal properties of critical point descriptions and dynamical symmetries

    SciTech Connect

    Casten, R. F.; Bonatsos, Dennis; McCutchan, E. A.

    2009-01-28

    Recently, a new signature for quantum phase transitional regions has been discussed. This signature, based on degeneracies of yrast and intrinsic excitations, can distinguish first and second order phase transitions, and is valid not only at or near the analytic critical points described by X(5) and E(5), but along the phase transitional line connecting them as well. In addition, a study of a number of recent analytic solutions to the Bohr Hamiltonian and of the dynamical symmetries of the IBA Hamiltonian has revealed a set of extremely simple and general analytic formulas that describe the energies of 0{sup +} states. For the case of flat-bottomed geometrical potentials, the formula depends solely on the number of relevant dimensions. For the IBA (large boson number limit) a single formula describes all three dynamical symmetries.

  2. Emergent Lorentz symmetry near fermionic quantum critical points in two and three dimensions

    NASA Astrophysics Data System (ADS)

    Roy, Bitan; Juričić, Vladimir; Herbut, Igor F.

    2016-04-01

    We study the renormalization group flow of the velocities in the field theory describing the coupling of the massless quasi-relativistic fermions to the bosons through the Yukawa coupling, as well as with both bosons and fermions coupled to a fluctuating U(1) gauge field in two and three spatial dimensions. Different versions of this theory describe quantum critical behavior of interacting Dirac fermions in various condensed-matter systems. We perform an analysis using one-loop ɛ-expansion about three spatial dimensions, which is the upper critical dimension in the problem. In two dimensions, we find that velocities of both charged fermions and bosons ultimately flow to the velocity of light, independently of the initial conditions, the number of fermionic and bosonic flavors, and the value of the couplings at the critical point. In three dimensions, due to the analyticity of the gauge field propagator, both the U(1) charge and the velocity of light flow, which leads to a richer behavior than in two dimensions. We show that all three velocities ultimately flow to a common terminal velocity, which is non-universal and different from the original velocity of light. Therefore, emergence of the Lorentz symmetry in the ultimate infrared regime seems to be a rather universal feature of this class of theories in both two and three dimensions.

  3. Critical Symmetry and Supersymmetry in Nuclei

    SciTech Connect

    Iachello, Francesco

    2006-04-26

    The role of dynamic symmetries and supersymmetries in nuclei is reviewed. The concept of critical symmetry, appropriate to describe bosonic systems (even-even nuclei) at the critical point of a phase transition, is introduced, and the symmetry, E(5), at the critical point of spherical to {gamma}-unstable shape phase transition, is discussed. The recently introduced concept of critical supersymmetry, appropriate to describe mixed systems of bosons and fermions (odd-even nuclei) at the critical point of a phase transition is presented. The case of a j=3/2 particle at the critical point of spherical to {gamma}-unstable transition, called E(5/4), is discussed.

  4. Lifetime measurements in 102Pd: Searching for empirical proof of the E(5) critical-point symmetry in nuclear structure

    NASA Astrophysics Data System (ADS)

    Konstantinopoulos, T.; Ashley, S. F.; Axiotis, M.; Spyrou, A.; Harissopulos, S.; Dewald, A.; Litzinger, J.; Möller, O.; Müller-Gatterman, C.; Petkov, P.; Napoli, D. R.; Marginean, N.; de Angelis, G.; Ur, C. A.; Bazzacco, D.; Farnea, E.; Lenzi, S. M.; Vlastou, R.; Balabanski, D.

    2016-01-01

    Lifetimes of yrast and nonyrast states of 102Pd populated via the 92Zr(13C, 3 n ) reaction are measured by means of the recoil distance Doppler-shift technique with a Cologne plunger coupled to a GASP spectrometer. The event-by-event data accumulated at 24 plunger distances in the range of 0.1 μ m to 9 mm are analyzed using the differential decay curve method. The resulting B (E 2 ) values of the γ transitions depopulating yrast-band members up to the Iπ=8+ state are found to deviate significantly from the corresponding predictions of the E(5) critical-point symmetry.

  5. Test of the critical point symmetry X(5) in neutron deficient osmium isotopes at A{approx_equal}180

    SciTech Connect

    Dewald, A.; Moeller, O.; Melon, B.; Pissulla, T.; Saha, B.; Heinze, S.; Jolie, J.; Zell, K. O.; Petkov, P.; Bazzacco, D.; Lunardi, S.; Ur, C. A.; Farnea, E.; Menegazzo, R.; De Angelis, G.; Tonev, D.; Napoli, D. R.; Marginean, N.; Martinez, T.; Axiotis, M.

    2006-04-26

    The energy spectra and relative transition rates of 176,178,180Os were found to be very similar to the values calculated in the framework of the critical point symmetry X(5). In order to enable more stringent tests, including also absolute transition probabilities, two coincidence RDDS lifetime measurements were performed at the Laboratori Nazionali di Legnaro with the GASP spectrometer using the 152,154Sm(29Si,5n)176,178Os reactions. The deduced transition quadrupole moments in 178Os agree well with the X(5) predictions. For 176Os only preliminary results were obtained so far. These preliminary data support an X(5) like structure also in the case of 176Os. The experimental data of both nuclei are compared to calculations in the framework of the interacting boson model (IBM) and of the general collective model (GCM)

  6. Relative Critical Points

    NASA Astrophysics Data System (ADS)

    Lewis, Debra

    2013-05-01

    Relative equilibria of Lagrangian and Hamiltonian systems with symmetry are critical points of appropriate scalar functions parametrized by the Lie algebra (or its dual) of the symmetry group. Setting aside the structures - symplectic, Poisson, or variational - generating dynamical systems from such functions highlights the common features of their construction and analysis, and supports the construction of analogous functions in non-Hamiltonian settings. If the symmetry group is nonabelian, the functions are invariant only with respect to the isotropy subgroup of the given parameter value. Replacing the parametrized family of functions with a single function on the product manifold and extending the action using the (co)adjoint action on the algebra or its dual yields a fully invariant function. An invariant map can be used to reverse the usual perspective: rather than selecting a parametrized family of functions and finding their critical points, conditions under which functions will be critical on specific orbits, typically distinguished by isotropy class, can be derived. This strategy is illustrated using several well-known mechanical systems - the Lagrange top, the double spherical pendulum, the free rigid body, and the Riemann ellipsoids - and generalizations of these systems.

  7. Parity-time symmetry broken by point-group symmetry

    SciTech Connect

    Fernández, Francisco M. Garcia, Javier

    2014-04-15

    We discuss a parity-time (PT) symmetric Hamiltonian with complex eigenvalues. It is based on the dimensionless Schrödinger equation for a particle in a square box with the PT-symmetric potential V(x, y) = iaxy. Perturbation theory clearly shows that some of the eigenvalues are complex for sufficiently small values of |a|. Point-group symmetry proves useful to guess if some of the eigenvalues may already be complex for all values of the coupling constant. We confirm those conclusions by means of an accurate numerical calculation based on the diagonalization method. On the other hand, the Schrödinger equation with the potential V(x, y) = iaxy{sup 2} exhibits real eigenvalues for sufficiently small values of |a|. Point group symmetry suggests that PT-symmetry may be broken in the former case and unbroken in the latter one.

  8. A holographic critical point

    SciTech Connect

    DeWolfe, Oliver; Rosen, Christopher; Gubser, Steven S.

    2011-04-15

    We numerically construct a family of five-dimensional black holes exhibiting a line of first-order phase transitions terminating at a critical point at finite chemical potential and temperature. These black holes are constructed so that the equation of state and baryon susceptibilities approximately match QCD lattice data at vanishing chemical potential. The critical end point in the particular model we consider has temperature 143 MeV and chemical potential 783 MeV. Critical exponents are calculated, with results that are consistent with mean-field scaling relations.

  9. Topological phases protected by point group symmetry

    NASA Astrophysics Data System (ADS)

    Huang, Sheng-Jie; Song, Hao; Hermele, Michael

    There has been remarkable progress in the theoretical understanding of symmetry protected topological (SPT) phases. However, most theories focus on internal, or on-site, symmetries, even though spatial symmetries are important in solids. In this talk, we classify bosonic SPT phases protected by crystalline point group symmetry, which we dub point group SPT (pgSPT) phases. Our approach is based on a procedure to reduce a d-dimensional pgSPT phase to lower-dimensional SPT phases protected by internal symmetry. For three-dimensional pgSPT phases, this approach allows us to gain insight into non-trivial properties at symmetry preserving surfaces. In particular, we obtain toy models for the surfaces of certain pgSPT phases at which there is a symmetry preserving Z2 topological order with anomalous symmetry fractionalization. We also discuss connections between bosonic pgSPT phases and electronic topological crystalline insulators. This research is supported by the U.S. Department of Energy (DOE), Office of Science, Basic Energy Sciences (BES) under Award # DE-SC0014415.

  10. Shape phase transitions and critical points

    SciTech Connect

    Alonso, C. E.; Arias, J. M.; Fortunato, L.; Vitturi, A.

    2009-05-04

    We investigate different aspects connected with shape phase transitions in nuclei and the possible occurrence of dynamical symmetries at the critical points. We discuss in particular the behaviour of the neighbour odd nuclei at the vicinity of the critical points in the even nuclei. We consider both the case of the transition from the vibrational behaviour to the gamma-unstable deformation (characterized within the collective Bohr hamiltonian by the E(5) critical point symmetry) and the case of the transition from the vibrational behaviour to the stable axial deformation (characterized by the X(5) symmetry). The odd particle is assumed to be moving in the three single particle orbitals j = 1/2,3/2,5/2, a set of orbitals that is known to lead to possible supersymmetric cases. The coupling of the odd particle to the Bohr hamiltonian does lead in fact in the former case at the critical point to the E(5/12) boson-fermion dynamical symmetry. An alternative approach to the two shape transitions is based on the Interacting Boson Fermion Model. In this case suitably parametrized boson-fermion hamiltonians can describe the evolution of the odd system along the shape transitions. At the critical points both energy spectra and electromagnetic transitions were found to display characteristic patterns similar to those displayed by the even nuclei at the corresponding critical point. The behaviour of the odd nuclei can therefore be seen as necessary complementary signatures of the occurrence of the phase transitions.

  11. Teaching Point-Group Symmetry with Three-Dimensional Models

    ERIC Educational Resources Information Center

    Flint, Edward B.

    2011-01-01

    Three tools for teaching symmetry in the context of an upper-level undergraduate or introductory graduate course on the chemical applications of group theory are presented. The first is a collection of objects that have the symmetries of all the low-symmetry and high-symmetry point groups and the point groups with rotational symmetries from 2-fold…

  12. Critical-point symmetries in boson-fermion systems: the case of shape transitions in odd nuclei in a multiorbit model.

    PubMed

    Alonso, C E; Arias, J M; Vitturi, A

    2007-02-01

    We investigate phase transitions in boson-fermion systems. We propose an analytically solvable model [E(5/12)] to describe odd nuclei at the critical point in the transition from the spherical to gamma-unstable behavior. In the model, a boson core described within the Bohr Hamiltonian interacts with an unpaired particle assumed to be moving in the three single-particle orbitals j=1/2, 3/2, 5/2. Energy spectra and electromagnetic transitions at the critical point compare well with the results obtained within the interacting boson-fermion model, with a boson-fermion Hamiltonian that describes the same physical situation. PMID:17358851

  13. Critical-Point Symmetries in Boson-Fermion Systems: The Case of Shape Transitions in Odd Nuclei in a Multiorbit Model

    SciTech Connect

    Alonso, C. E.; Arias, J. M.; Vitturi, A.

    2007-02-02

    We investigate phase transitions in boson-fermion systems. We propose an analytically solvable model [E(5/12)] to describe odd nuclei at the critical point in the transition from the spherical to {gamma}-unstable behavior. In the model, a boson core described within the Bohr Hamiltonian interacts with an unpaired particle assumed to be moving in the three single-particle orbitals j=1/2, 3/2, 5/2. Energy spectra and electromagnetic transitions at the critical point compare well with the results obtained within the interacting boson-fermion model, with a boson-fermion Hamiltonian that describes the same physical situation.

  14. Polyhedra with noncrystallographic symmetry as the orbits of crystallographic point symmetry groups

    NASA Astrophysics Data System (ADS)

    Ovsetsina, T. I.; Chuprunov, E. V.

    2015-11-01

    Polyhedra with noncrystallographic symmetry are analyzed as the orbits of crystallographic point symmetry groups on a set of smooth or structured ("hatched") planes. Polyhedra with symmetrically equivalent faces, obtained using crystallographic point groups but having noncrystallographic symmetry, and polyhedra, the symmetry group T of which is crystallographic but can be implemented only on the assumption of a noncrystallographic character of the internal structure of polyhedron, are studied. The results of the analysis for all 32 point symmetry groups are listed in table.

  15. Point interactions, metamaterials, and PT-symmetry

    NASA Astrophysics Data System (ADS)

    Mostafazadeh, Ali

    2016-05-01

    We express the boundary conditions for TE and TM waves at the interfaces of an infinite planar slab of homogeneous metamaterial as certain point interactions and use them to compute the transfer matrix of the system. This allows us to demonstrate the omnidirectional reflectionlessness of Veselago's slab for waves of arbitrary wavelength, reveal the translational and reflection symmetry of this slab, explore the laser threshold condition and coherent perfect absorption for active negative-index metamaterials, introduce a point interaction modeling phase-conjugation, determine the corresponding antilinear transfer matrix, and offer a simple proof of the equivalence of Veselago's slab with a pair of parallel phase-conjugating plates. We also study the connection between certain optical setups involving metamaterials and a class of PT-symmetric quantum systems defined on wedge-shape contours in the complex plane. This provides a physical interpretation for the latter.

  16. Rogue waves and NLSE Lie point symmetries

    NASA Astrophysics Data System (ADS)

    Lechuga, Antonio

    2015-04-01

    In past decades rogues waves have been reported to be the main cause of shipping incidents. The unexpectedness and sudden appearance can be seen as their trait more characteristic. Rogue wave damages are linked with this unexpectedness. Therefore many studies have been carried out to ascertain the possible mechanisms of generation of rogue waves. Since the pioneering work of Zakharov researchers have found the so called Nonlinear Schrödinger Equation as the source of solutions to different kinds of rogue waves, Akhmediev, Peregrine , Matveev and many others. Following the well-known Lie group theory many researchers found the Lie point symmetries of the NLSE. Invariants of this equation are the scaling transformations, Galilean transformations and phase transformations. There are different approaches, which mathematical treatment is outside the scope of this work, but at the end, in a travelling frame ,after preserving the Hamiltonian structure we get an ordinary differential equation that is the Duffing equation(well-known as a model of nonlinear oscillations). The next step is the qualitative analysis of this equation. Solutions of the Duffing equation for different coefficients can be put as Jacobi elliptic functions. In particular, in the case of the focusing NLSE, we are concerned with the instabilities, in the sense of Lyapunov, of the transition between some of the solutions. We thought that these instabilities could be the origin of some kind of rogue waves.

  17. Davies Critical Point and Tunneling

    NASA Astrophysics Data System (ADS)

    La, Hoseong

    2012-04-01

    From the point of view of tunneling, the physical meaning of the Davies critical point of a second-order phase transition in the black hole thermodynamics is clarified. At the critical point, the nonthermal contribution vanishes so that the black hole radiation is entirely thermal. It separates two phases: one with radiation enhanced by the nonthermal contribution, the other suppressed by the nonthermal contribution. We show this in both charged and rotating black holes. The phase transition is also analyzed in the cases in which emissions of charges and angular momenta are incorporated.

  18. Critical points of metal vapors

    SciTech Connect

    Khomkin, A. L. Shumikhin, A. S.

    2015-09-15

    A new method is proposed for calculating the parameters of critical points and binodals for the vapor–liquid (insulator–metal) phase transition in vapors of metals with multielectron valence shells. The method is based on a model developed earlier for the vapors of alkali metals, atomic hydrogen, and exciton gas, proceeding from the assumption that the cohesion determining the basic characteristics of metals under normal conditions is also responsible for their properties in the vicinity of the critical point. It is proposed to calculate the cohesion of multielectron atoms using well-known scaling relations for the binding energy, which are constructed for most metals in the periodic table by processing the results of many numerical calculations. The adopted model allows the parameters of critical points and binodals for the vapor–liquid phase transition in metal vapors to be calculated using published data on the properties of metals under normal conditions. The parameters of critical points have been calculated for a large number of metals and show satisfactory agreement with experimental data for alkali metals and with available estimates for all other metals. Binodals of metals have been calculated for the first time.

  19. Anticoherence of spin states with point-group symmetries

    NASA Astrophysics Data System (ADS)

    Baguette, D.; Damanet, F.; Giraud, O.; Martin, J.

    2015-11-01

    We investigate multiqubit permutation-symmetric states with maximal entropy of entanglement. Such states can be viewed as particular spin states, namely anticoherent spin states. Using the Majorana representation of spin states in terms of points on the unit sphere, we analyze the consequences of a point-group symmetry in their arrangement on the quantum properties of the corresponding state. We focus on the identification of anticoherent states (for which all reduced density matrices in the symmetric subspace are maximally mixed) associated with point-group-symmetric sets of points. We provide three different characterizations of anticoherence and establish a link between point symmetries, anticoherence, and classes of states equivalent through stochastic local operations with classical communication. We then investigate in detail the case of small numbers of qubits and construct infinite families of anticoherent states with point-group symmetry of their Majorana points, showing that anticoherent states do exist to arbitrary order.

  20. The Critical Point Facility (CPF)

    NASA Technical Reports Server (NTRS)

    1992-01-01

    The Critical Point Facility (CPF) is an ESA multiuser facility designed for microgravity research onboard Spacelab. It has been conceived and built to offer investigators opportunities to conduct research on critical point phenomena in microgravity. This facility provides the high precision and stability temperature standards required in this field of research. It has been primarily designed for the purpose of optical investigations of transparent fluids. During a Spacelab mission, the CPF automatically processes several thermostats sequentially, each thermostat corresponding to an experiment. The CPF is now integrated in Spacelab at Kennedy Space Center, in preparation for the International Microgravity Lab. mission. The CPF was designed to submit transparent fluids to an adequate, user defined thermal scenario, and to monitor their behavior by using thermal and optical means. Because they are strongly affected by gravity, a good understanding of critical phenomena in fluids can only be gained in low gravity conditions. Fluids at the critical point become compressed under their own weight. The role played by gravity in the formation of interfaces between distinct phases is not clearly understood.

  1. Three-dimensional photonic Dirac points stabilized by point group symmetry

    NASA Astrophysics Data System (ADS)

    Wang, HaiXiao; Xu, Lin; Chen, HuanYang; Jiang, Jian-Hua

    2016-06-01

    We discover a pair of stable three-dimensional (3D) Dirac points, a 3D photonic analog of graphene, in all-dielectric photonic crystals using structures commensurate with nanofabrication for visible-frequency photonic applications. The Dirac points carry nontrivial Z2 topology and emerge for a large range of material parameters in hollow cylinder hexagonal photonic crystals. From Kramers theorem and group theory, we find that only the C6 symmetry leads to point group symmetry stabilized Dirac points in 3D all-dielectric photonic crystals. The Dirac points are characterized using k ⃗.P ⃗ theory for photonic bands in combination with symmetry analysis. Breaking inversion symmetry splits the Dirac points into Weyl points. The physical properties and experimental consequences of Dirac points are also studied. The Dirac points are found to be robust against parameter tuning and weak disorders.

  2. Correlations in avalanche critical points.

    PubMed

    Cerruti, Benedetta; Vives, Eduard

    2009-07-01

    Avalanche dynamics and related power-law statistics are ubiquitous in nature, arising in phenomena such as earthquakes, forest fires, and solar flares. Very interestingly, an analogous behavior is associated with many condensed-matter systems, such as ferromagnets and martensites. Bearing it in mind, we study the prototypical random-field Ising model at T=0. We find a finite correlation between waiting intervals and the previous avalanche size. This correlation is not found in other models for avalanches but it is experimentally found in earthquakes and in forest fires. Our study suggests that this effect occurs in critical points that are at the end of a first-order discontinuity separating two regimes: one with high activity from another with low activity. PMID:19658651

  3. Kac-Moody symmetries of critical ground states

    NASA Astrophysics Data System (ADS)

    Kondev, Jané; Henley, Christopher L.

    1996-02-01

    The symmetries of critical ground states of two-dimensional lattice models are investigated. We show how mapping a critical ground state to a model of a rough interface can be used to identify the chiral symmetry algebra of the conformal field theory that describes its scaling limit. This is demonstrated in the case of the six-vertex model, the three-coloring model on the honeycomb lattice, and the four-coloring model on the square lattice. These models are critical and they are described in the continuum by conformal field theories whose symmetry algebras are the su(2) k=1 , su(3) k=1 , and the su(4) k=1 Kac-Moody algebra, respectively. Our approach is based on the Frenkel-Kac-Segal vertex operator construction of level-one Kac-Moody algebras.

  4. Beauty is Attractive: Moduli Trapping at Enhanced Symmetry Points

    SciTech Connect

    Kofman, L

    2004-02-27

    We study quantum effects on moduli dynamics arising from the production of particles which are light at points of enhanced symmetry in moduli space. The resulting forces trap the moduli at these points. Moduli trapping occurs in time-dependent quantum field theory, as well as in systems of moving D-branes, where it leads the branes to combine into stacks. Trapping also occurs in the presence of gravity, though the range over which the moduli can roll is limited by Hubble friction. We observe that a scalar field trapped on a steep potential can induce a stage of acceleration of the universe, which we call trapped inflation. Moduli trapping ameliorates the cosmological moduli problem and may affect vacuum selection. In particular, rolling moduli are most powerfully attracted to the points of greatest symmetry. Given suitable assumptions about the dynamics of the very early universe, this effect might help to explain why among the plethora of possible vacuum states of string theory, we appear to live in one with a large number of (spontaneously broken) symmetries.

  5. Symmetries and color symmetries of a family of tilings with a singular point.

    PubMed

    Evidente, Imogene F; Felix, Rene P; Loquias, Manuel Joseph C

    2015-11-01

    Tilings with a singular point are obtained by applying conformal maps on regular tilings of the Euclidean plane and their symmetries are determined. The resulting tilings are then symmetrically colored by applying the same conformal maps on colorings of regular tilings arising from sublattice colorings of the centers of the tiles. In addition, conditions are determined in order that the coloring of a tiling with singularity that is obtained in this manner is perfect. PMID:26522407

  6. Quantum Critical Spin-2 Chain with Emergent SU(3) Symmetry

    NASA Astrophysics Data System (ADS)

    Chen, Pochung; Xue, Zhi-Long; McCulloch, I. P.; Chung, Ming-Chiang; Huang, Chao-Chun; Yip, S.-K.

    2015-04-01

    We study the quantum critical phase of an SU(2) symmetric spin-2 chain obtained from spin-2 bosons in a one-dimensional lattice. We obtain the scaling of the finite-size energies and entanglement entropy by exact diagonalization and density-matrix renormalization group methods. From the numerical results of the energy spectra, central charge, and scaling dimension we identify the conformal field theory describing the whole critical phase to be the SU (3 )1 Wess-Zumino-Witten model. We find that, while the Hamiltonian is only SU(2) invariant, in this critical phase there is an emergent SU(3) symmetry in the thermodynamic limit.

  7. Viscosity of nitrogen near the critical point

    NASA Technical Reports Server (NTRS)

    Basu, R. S.; Sengers, J. V.

    1978-01-01

    The formulation of a quantitative description of the critical enhancement in the shear viscosity of fluids near the gas-liquid critical point is considered. The critical point is a point of marginal thermodynamic stability. In the vicinity of the critical point, large-scale density fluctuations are present in the fluid. The critical enhancement of the transport properties is related to the correlation length. The correlation length is related to the compressibility, thus providing consistency between the equations for the transport properties and the equation of state in the critical region. The critical region parameters for nitrogen are presented in a table. It is found that the critical viscosity enhancement observed by Zozulya and Blagoi (1974) for nitrogen is consistent with current theoretical predictions

  8. Fermion-induced quantum critical points: beyond Landau criterion

    NASA Astrophysics Data System (ADS)

    Yao, Hong; Li, Zi-Xiang; Jiang, Yi-Fan; Jian, Shao-Kai

    According to Landau criterion, phase transitions must be first-order when cubic terms of order parameters in the Landau-Ginzburg free energy are allowed by symmetry. Here, from both renormalization group analysis and sign-problem-free quantum Monte Carlo simulations, we show that second-order quantum phase transitions can occur at such putatively-first-order quantum phase transitions in strongly-interacting Dirac semimetals in two spatial dimensions. Such type of Landau-criterion-violating quantum critical points are induced by massless fermionic modes at the quantum phase transitions. We call them ``fermion-induced quantum critical points''. From Majorana-quantum-Monte-Carlo simulations and renormalization analysis, we find that the critical exponentials at the kekule valence-bond-solid transition of the Dirac fermions on the honeycomb lattice are highly-nonclassical. We also discuss experimental signatures of the kekule quantum critical point which may be realized in graphene-like systems.

  9. Point symmetry in x-ray shadow imaging systems

    SciTech Connect

    Aristov, V.V.; Shabel'nikov, L.G.

    1988-04-01

    General geometrical features have been examined to identify point-group symmetries in x-ray imaging systems. In a stereospecific system, the group is the b/w antisymmetry group 2/m'. In a computerized tomography system, the symmetry is described by the limiting Curie group /infinity//m/center dot/m, while for a tomosynthesis system (transaxial tomography), it is /infinity//m. The operations in these groups have been examined in the production of shadow images involving distributed attenuation coefficients, particularly for stereospecific images recorded with an MIR-3 x-ray microscope. Curie's principle is used to show that reconstructed paired images for two intersecting objects can be considered as the equivalent of stereoscopic pairs for computer-aided tomography, which is not so for transaxial tomography.

  10. Confinement of monopoles and scaling theory near unconventional critical points

    NASA Astrophysics Data System (ADS)

    Powell, Stephen

    2013-02-01

    Conventional ordering transitions, described by the Landau paradigm, are characterized by the symmetries broken at the critical point. Within the constrained manifold occurring at low temperatures in certain frustrated systems, unconventional transitions are possible that defy this type of description. While the critical point exists only in the limit where defects in the constraint are vanishingly rare, unconventional criticality can be observed throughout a broad region of the phase diagram. This work presents a formalism for incorporating the effects of such defects within the framework of scaling theory and the renormalization group, leading to universal results for the critical behavior. The theory is applied to two transitions occurring within a model of spin ice, and the results are confirmed using Monte Carlo simulations. Relevance to experiments, particularly in the spin-ice compounds, is discussed, along with implications for simulations of related transitions, such as the cubic dimer model and the O(3) sigma model with “hedgehog” suppression.

  11. Emergent Lorentz symmetry with vanishing velocity in a critical two-subband quantum wire.

    SciTech Connect

    Sitte, M.; Rosch, A.; Meyer, J. S.; Matveev, K. A.; Garst, M.; Materials Science Division; Univ. zu Koln; Ohio State Univ.

    2009-01-01

    We consider a quantum wire with two subbands of spin-polarized electrons in the presence of strong interactions. We focus on the quantum phase transition when the second subband starts to get filled as a function of gate voltage. Performing a one-loop renormalization group analysis of the effective Hamiltonian, we identify the critical fixed-point theory as a conformal field theory having an enhanced SU(2) symmetry and central charge 3/2. While the fixed point is Lorentz invariant, the effective 'speed of light' nevertheless vanishes at low energies due to marginally irrelevant operators leading to a diverging critical specific heat coefficient.

  12. Emergent Lorentz symmetry with vanishing velocity in a critical two-subband quantum wire.

    PubMed

    Sitte, M; Rosch, A; Meyer, J S; Matveev, K A; Garst, M

    2009-05-01

    We consider a quantum wire with two subbands of spin-polarized electrons in the presence of strong interactions. We focus on the quantum phase transition when the second subband starts to get filled as a function of gate voltage. Performing a one-loop renormalization group analysis of the effective Hamiltonian, we identify the critical fixed-point theory as a conformal field theory having an enhanced SU(2) symmetry and central charge 3/2. While the fixed point is Lorentz invariant, the effective "speed of light" nevertheless vanishes at low energies due to marginally irrelevant operators leading to a diverging critical specific heat coefficient. PMID:19518804

  13. Critical point analysis of phase envelope diagram

    SciTech Connect

    Soetikno, Darmadi; Siagian, Ucok W. R.; Kusdiantara, Rudy Puspita, Dila Sidarto, Kuntjoro A. Soewono, Edy; Gunawan, Agus Y.

    2014-03-24

    Phase diagram or phase envelope is a relation between temperature and pressure that shows the condition of equilibria between the different phases of chemical compounds, mixture of compounds, and solutions. Phase diagram is an important issue in chemical thermodynamics and hydrocarbon reservoir. It is very useful for process simulation, hydrocarbon reactor design, and petroleum engineering studies. It is constructed from the bubble line, dew line, and critical point. Bubble line and dew line are composed of bubble points and dew points, respectively. Bubble point is the first point at which the gas is formed when a liquid is heated. Meanwhile, dew point is the first point where the liquid is formed when the gas is cooled. Critical point is the point where all of the properties of gases and liquids are equal, such as temperature, pressure, amount of substance, and others. Critical point is very useful in fuel processing and dissolution of certain chemicals. Here in this paper, we will show the critical point analytically. Then, it will be compared with numerical calculations of Peng-Robinson equation by using Newton-Raphson method. As case studies, several hydrocarbon mixtures are simulated using by Matlab.

  14. Critical point analysis of phase envelope diagram

    NASA Astrophysics Data System (ADS)

    Soetikno, Darmadi; Kusdiantara, Rudy; Puspita, Dila; Sidarto, Kuntjoro A.; Siagian, Ucok W. R.; Soewono, Edy; Gunawan, Agus Y.

    2014-03-01

    Phase diagram or phase envelope is a relation between temperature and pressure that shows the condition of equilibria between the different phases of chemical compounds, mixture of compounds, and solutions. Phase diagram is an important issue in chemical thermodynamics and hydrocarbon reservoir. It is very useful for process simulation, hydrocarbon reactor design, and petroleum engineering studies. It is constructed from the bubble line, dew line, and critical point. Bubble line and dew line are composed of bubble points and dew points, respectively. Bubble point is the first point at which the gas is formed when a liquid is heated. Meanwhile, dew point is the first point where the liquid is formed when the gas is cooled. Critical point is the point where all of the properties of gases and liquids are equal, such as temperature, pressure, amount of substance, and others. Critical point is very useful in fuel processing and dissolution of certain chemicals. Here in this paper, we will show the critical point analytically. Then, it will be compared with numerical calculations of Peng-Robinson equation by using Newton-Raphson method. As case studies, several hydrocarbon mixtures are simulated using by Matlab.

  15. Critical points and number of master integrals

    NASA Astrophysics Data System (ADS)

    Lee, Roman N.; Pomeransky, Andrei A.

    2013-11-01

    We consider the question about the number of master integrals for a multiloop Feynman diagram. We show that, for a given set of denominators, this number is totally determined by the critical points of the polynomials entering either of the two representations: the parametric representation and the Baikov representation. In particular, for the parametric representation the corresponding polynomial is just the sum of Symanzik polynomials. The relevant topological invariant is the sum of the Milnor numbers of the proper critical points. We present a Mathematica package Mint to automatize the counting of the master integrals for the typical case, when all critical points are isolated.

  16. Chiral symmetry breaking in three-dimensional quantum electrodynamics as fixed point annihilation

    NASA Astrophysics Data System (ADS)

    Herbut, Igor F.

    2016-07-01

    Spontaneous chiral symmetry breaking in three-dimensional (d =3 ) quantum electrodynamics is understood as annihilation of an infrared-stable fixed point that describes the large-N conformal phase by another unstable fixed point at a critical number of fermions N =Nc. We discuss the root of universality of Nc in this picture, together with some features of the phase boundary in the (d ,N ) plane. In particular, it is shown that as d →4 , Nc→0 with a constant slope, our best estimate of which suggests that Nc=2.89 in d =3 .

  17. Broken vertex symmetry and finite zero-point entropy in the artificial square ice ground state

    NASA Astrophysics Data System (ADS)

    Gliga, Sebastian; Kákay, Attila; Heyderman, Laura J.; Hertel, Riccardo; Heinonen, Olle G.

    2015-08-01

    We study degeneracy and entropy in the ground state of artificial square ice. In theoretical models, individual nanomagnets are typically treated as single spins with only two degrees of freedom, leading to a twofold degenerate ground state with intensive entropy and thus no zero-point entropy. Here, we show that the internal degrees of freedom of the nanostructures can result, through edge bending of the magnetization and breaking of local magnetic symmetry at the vertices, in a transition to a highly degenerate ground state with finite zero-point entropy, similar to that of the pyrochlore spin ices. We find that these additional degrees of freedom have observable consequences in the resonant spectrum of the lattice, and predict the occurrence of edge "melting" above a critical temperature at which the magnetic symmetry is restored.

  18. Critical point wetting drop tower experiment

    NASA Technical Reports Server (NTRS)

    Kaukler, W. F.; Tcherneshoff, L. M.; Straits, S. R.

    1984-01-01

    Preliminary results for the Critical Point Wetting CPW Drop Tower Experiment are produced with immiscible systems. Much of the observed phenomena conformed to the anticipated behavior. More drops will be needed to test the CPW theory with these immiscible systems.

  19. Quantum Criticality in an Ising Chain: Experimental Evidence for Emergent E8 Symmetry

    NASA Astrophysics Data System (ADS)

    Coldea, R.; Tennant, D. A.; Wheeler, E. M.; Wawrzynska, E.; Prabhakaran, D.; Telling, M.; Habicht, K.; Smeibidl, P.; Kiefer, K.

    2010-01-01

    Quantum phase transitions take place between distinct phases of matter at zero temperature. Near the transition point, exotic quantum symmetries can emerge that govern the excitation spectrum of the system. A symmetry described by the E8 Lie group with a spectrum of eight particles was long predicted to appear near the critical point of an Ising chain. We realize this system experimentally by using strong transverse magnetic fields to tune the quasi-one-dimensional Ising ferromagnet CoNb2O6 (cobalt niobate) through its critical point. Spin excitations are observed to change character from pairs of kinks in the ordered phase to spin-flips in the paramagnetic phase. Just below the critical field, the spin dynamics shows a fine structure with two sharp modes at low energies, in a ratio that approaches the golden mean predicted for the first two meson particles of the E8 spectrum. Our results demonstrate the power of symmetry to describe complex quantum behaviors.

  20. Quantum criticality in an Ising chain: experimental evidence for emergent E8 symmetry.

    PubMed

    Coldea, R; Tennant, D A; Wheeler, E M; Wawrzynska, E; Prabhakaran, D; Telling, M; Habicht, K; Smeibidl, P; Kiefer, K

    2010-01-01

    Quantum phase transitions take place between distinct phases of matter at zero temperature. Near the transition point, exotic quantum symmetries can emerge that govern the excitation spectrum of the system. A symmetry described by the E8 Lie group with a spectrum of eight particles was long predicted to appear near the critical point of an Ising chain. We realize this system experimentally by using strong transverse magnetic fields to tune the quasi-one-dimensional Ising ferromagnet CoNb2O6 (cobalt niobate) through its critical point. Spin excitations are observed to change character from pairs of kinks in the ordered phase to spin-flips in the paramagnetic phase. Just below the critical field, the spin dynamics shows a fine structure with two sharp modes at low energies, in a ratio that approaches the golden mean predicted for the first two meson particles of the E8 spectrum. Our results demonstrate the power of symmetry to describe complex quantum behaviors. PMID:20056884

  1. Controlling superconductivity by tunable quantum critical points.

    PubMed

    Seo, S; Park, E; Bauer, E D; Ronning, F; Kim, J N; Shim, J-H; Thompson, J D; Park, Tuson

    2015-01-01

    The heavy fermion compound CeRhIn5 is a rare example where a quantum critical point, hidden by a dome of superconductivity, has been explicitly revealed and found to have a local nature. The lack of additional examples of local types of quantum critical points associated with superconductivity, however, has made it difficult to unravel the role of quantum fluctuations in forming Cooper pairs. Here, we show the precise control of superconductivity by tunable quantum critical points in CeRhIn5. Slight tin-substitution for indium in CeRhIn5 shifts its antiferromagnetic quantum critical point from 2.3 GPa to 1.3 GPa and induces a residual impurity scattering 300 times larger than that of pure CeRhIn5, which should be sufficient to preclude superconductivity. Nevertheless, superconductivity occurs at the quantum critical point of the tin-doped metal. These results underline that fluctuations from the antiferromagnetic quantum criticality promote unconventional superconductivity in CeRhIn5. PMID:25737108

  2. Critical behaviors near the (tri-)critical end point of QCD within the NJL model

    NASA Astrophysics Data System (ADS)

    Lu, Ya; Du, Yi-Lun; Cui, Zhu-Fang; Zong, Hong-Shi

    2015-10-01

    We investigate the dynamical chiral symmetry breaking and its restoration at finite density and temperature within the two-flavor Nambu-Jona-Lasinio model, and mainly focus on the critical behaviors near the critical end point (CEP) and tricritical point (TCP) of quantum chromodynamics. The multi-solution region of the Nambu and Wigner ones is determined in the phase diagram for the massive and massless current quark, respectively. We use the various susceptibilities to locate the CEP/TCP and then extract the critical exponents near them. Our calculations reveal that the various susceptibilities share the same critical behaviors for the physical current quark mass, while they show different features in the chiral limit.

  3. Effects of dissipation on a quantum critical point with disorder.

    PubMed

    Hoyos, José A; Kotabage, Chetan; Vojta, Thomas

    2007-12-01

    We study the effects of dissipation on a disordered quantum phase transition with O(N) order-parameter symmetry by applying a strong-disorder renormalization group to the Landau-Ginzburg-Wilson field theory of the problem. We find that Ohmic dissipation results in a nonperturbative infinite-randomness critical point with unconventional activated dynamical scaling while super-Ohmic damping leads to conventional behavior. We discuss applications to the superconductor-metal transition in nanowires and to the Hertz theory of the itinerant antiferromagnetic transition. PMID:18233349

  4. Evolution of fluctuations near QCD critical point

    SciTech Connect

    Stephanov, M. A.

    2010-03-01

    We propose to describe the time evolution of quasistationary fluctuations near QCD critical point by a system of stochastic Boltzmann-Langevin-Vlasov-type equations. We derive the equations and study the system analytically in the linearized regime. Known results for equilibrium stationary fluctuations as well as the critical scaling of diffusion coefficient are reproduced. We apply the approach to the long-standing question of the fate of the critical point fluctuations during the hadronic rescattering stage of the heavy-ion collision after chemical freeze-out. We find that if conserved particle number fluctuations survive the rescattering, so do, under a certain additional condition, the fluctuations of nonconserved quantities, such as mean transverse momentum. We derive a simple analytical formula for the magnitude of this memory effect.

  5. The Emergence of Dirac points in Photonic Crystals with Mirror Symmetry

    PubMed Central

    He, Wen-Yu; Chan, C. T.

    2015-01-01

    We show that Dirac points can emerge in photonic crystals possessing mirror symmetry when band gap closes. The mechanism of generating Dirac points is discussed in a two-dimensional photonic square lattice, in which four Dirac points split out naturally after the touching of two bands with different parity. The emergence of such nodal points, characterized by vortex structure in momentum space, is attributed to the unavoidable band crossing protected by mirror symmetry. The Dirac nodes can be unbuckled through breaking the mirror symmetry and a photonic analog of Chern insulator can be achieved through time reversal symmetry breaking. Breaking time reversal symmetry can lead to unidirectional helical edge states and breaking mirror symmetry can reduce the band gap to amplify the finite size effect, providing ways to engineer helical edge states. PMID:25640993

  6. Virtual and Printed 3D Models for Teaching Crystal Symmetry and Point Groups

    ERIC Educational Resources Information Center

    Casas, Lluís; Estop, Euge`nia

    2015-01-01

    Both, virtual and printed 3D crystal models can help students and teachers deal with chemical education topics such as symmetry and point groups. In the present paper, two freely downloadable tools (interactive PDF files and a mobile app) are presented as examples of the application of 3D design to study point-symmetry. The use of 3D printing to…

  7. Quantum criticality, kink confinement, and emergent symmetries in coupled Ising chains and ladders

    NASA Astrophysics Data System (ADS)

    Tennant, Alan

    2011-03-01

    In this talk I cover the physics in three of the central quantum phase transitions in 1D. First, the transverse Ising model which is realized in CoNb2O6. While this is perhaps the simplest textbook case of a quantum phase transition, a remarkable emergence of E8 symmetry arises close to the quantum critical point. This manifests itself in an octave of bound states. We observe these experimentally and in particular the interval of the first two resonances on this octave which are found to match the golden ratio 1.618... - just as predicted for the emergence of this extraordinary symmetry. I then plan to show with the example of the Heisenberg chain how we can probe the quantum critical volume experimentally and show the characteristic scaling behaviour in space and time. The third example is of a spin ladder CaCu2O3 which is near the long sought after Wess-Zumino-Novikov-Witten quantum critical point.

  8. Realizing All s o (N )1 Quantum Criticalities in Symmetry Protected Cluster Models

    NASA Astrophysics Data System (ADS)

    Lahtinen, Ville; Ardonne, Eddy

    2015-12-01

    We show that all s o (N )1 universality class quantum criticalities emerge when one-dimensional generalized cluster models are perturbed with Ising or Zeeman terms. Each critical point is described by a low-energy theory of N linearly dispersing fermions, whose spectrum we show to precisely match the prediction by s o (N )1 conformal field theory. Furthermore, by an explicit construction we show that all the cluster models are dual to nonlocally coupled transverse field Ising chains, with the universality of the s o (N )1 criticality manifesting itself as N of these chains becoming critical. This duality also reveals that the symmetry protection of cluster models arises from the underlying Ising symmetries and it enables the identification of local representations for the primary fields of the s o (N )1 conformal field theories. For the simplest and experimentally most realistic case that corresponds to the original one-dimensional cluster model with local three-spin interactions, our results show that the s u (2 )2≃s o (3 )1 Wess-Zumino-Witten model can emerge in a local, translationally invariant, and Jordan-Wigner solvable spin-1 /2 model.

  9. The effective QCD phase diagram and the critical end point

    NASA Astrophysics Data System (ADS)

    Ayala, Alejandro; Bashir, Adnan; Cobos-Martínez, J. J.; Hernández-Ortiz, Saúl; Raya, Alfredo

    2015-08-01

    We study the QCD phase diagram on the temperature T and quark chemical potential μ plane, modeling the strong interactions with the linear sigma model coupled to quarks. The phase transition line is found from the effective potential at finite T and μ taking into account the plasma screening effects. We find the location of the critical end point (CEP) to be (μCEP /Tc, TCEP /Tc) ∼ (1.2, 0.8), where Tc is the (pseudo)critical temperature for the crossover phase transition at vanishing μ. This location lies within the region found by lattice inspired calculations. The results show that in the linear sigma model, the CEP's location in the phase diagram is expectedly determined solely through chiral symmetry breaking. The same is likely to be true for all other models which do not exhibit confinement, provided the proper treatment of the plasma infrared properties for the description of chiral symmetry restoration is implemented. Similarly, we also expect these corrections to be substantially relevant in the QCD phase diagram.

  10. Hidden symmetry and protection of Dirac points on the honeycomb lattice

    PubMed Central

    Hou, Jing-Min; Chen, Wei

    2015-01-01

    The honeycomb lattice possesses a novel energy band structure, which is characterized by two distinct Dirac points in the Brillouin zone, dominating most of the physical properties of the honeycomb structure materials. However, up till now, the origin of the Dirac points is unclear yet. Here, we discover a hidden symmetry on the honeycomb lattice and prove that the existence of Dirac points is exactly protected by such hidden symmetry. Furthermore, the moving and merging of the Dirac points and a quantum phase transition, which have been theoretically predicted and experimentally observed on the honeycomb lattice, can also be perfectly explained by the parameter dependent evolution of the hidden symmetry. PMID:26639178

  11. Hidden symmetry and protection of Dirac points on the honeycomb lattice

    NASA Astrophysics Data System (ADS)

    Hou, Jing-Min; Chen, Wei

    2015-12-01

    The honeycomb lattice possesses a novel energy band structure, which is characterized by two distinct Dirac points in the Brillouin zone, dominating most of the physical properties of the honeycomb structure materials. However, up till now, the origin of the Dirac points is unclear yet. Here, we discover a hidden symmetry on the honeycomb lattice and prove that the existence of Dirac points is exactly protected by such hidden symmetry. Furthermore, the moving and merging of the Dirac points and a quantum phase transition, which have been theoretically predicted and experimentally observed on the honeycomb lattice, can also be perfectly explained by the parameter dependent evolution of the hidden symmetry.

  12. Dynamic trapping near a quantum critical point

    NASA Astrophysics Data System (ADS)

    Kolodrubetz, Michael; Katz, Emanuel; Polkovnikov, Anatoli

    2015-02-01

    The study of dynamics in closed quantum systems has been revitalized by the emergence of experimental systems that are well-isolated from their environment. In this paper, we consider the closed-system dynamics of an archetypal model: spins driven across a second-order quantum critical point, which are traditionally described by the Kibble-Zurek mechanism. Imbuing the driving field with Newtonian dynamics, we find that the full closed system exhibits a robust new phenomenon—dynamic critical trapping—in which the system is self-trapped near the critical point due to efficient absorption of field kinetic energy by heating the quantum spins. We quantify limits in which this phenomenon can be observed and generalize these results by developing a Kibble-Zurek scaling theory that incorporates the dynamic field. Our findings can potentially be interesting in the context of early universe physics, where the role of the driving field is played by the inflaton or a modulus field.

  13. Detecting quantum critical points using bipartite fluctuations.

    PubMed

    Rachel, Stephan; Laflorencie, Nicolas; Song, H Francis; Le Hur, Karyn

    2012-03-16

    We show that the concept of bipartite fluctuations F provides a very efficient tool to detect quantum phase transitions in strongly correlated systems. Using state-of-the-art numerical techniques complemented with analytical arguments, we investigate paradigmatic examples for both quantum spins and bosons. As compared to the von Neumann entanglement entropy, we observe that F allows us to find quantum critical points with much better accuracy in one dimension. We further demonstrate that F can be successfully applied to the detection of quantum criticality in higher dimensions with no prior knowledge of the universality class of the transition. Promising approaches to experimentally access fluctuations are discussed for quantum antiferromagnets and cold gases. PMID:22540493

  14. RHIC CRITICAL POINT SEARCH: ASSESSING STARs CAPABILITIES.

    SciTech Connect

    SORENSEN,P.

    2006-07-03

    In this report we discuss the capabilities and limitations of the STAR detector to search for signatures of the QCD critical point in a low energy scan at RHIC. We find that a RHIC low energy scan will cover a broad region of interest in the nuclear matter phase diagram and that the STAR detector--a detector designed to measure the quantities that will be of interest in this search--will provide new observables and improve on previous measurements in this energy range.

  15. QCD critical point in a quasiparticle model

    SciTech Connect

    Srivastava, P. K.; Tiwari, S. K.; Singh, C. P.

    2010-07-01

    Recent theoretical investigations have unveiled a rich structure in the quantum chromodynamics phase diagram, which consists of quark-gluon plasma and the hadronic phases but also supports the existence of a crossover transition ending at a critical end point (CEP). We find a too large variation in the determination of the coordinates of the CEP in the temperature (T) baryon chemical potential ({mu}{sub B}) plane; and, therefore, its identification in the current heavy-ion experiments becomes debatable. Here we use an equation of state for a deconfined quark-gluon plasma using a thermodynamically-consistent quasiparticle model involving noninteracting quarks and gluons having thermal masses. We further use a thermodynamically-consistent excluded-volume model for the hadron gas, which was recently proposed by us. Using these equations of state, a first-order deconfining phase transition is constructed using Gibbs's criteria. This leads to an interesting finding that the phase transition line ends at a critical end point (CEP) beyond which a crossover region exists. Using our thermal hadron gas model, we obtain a chemical freeze out curve, and we find that the CEP lies in close proximity to this curve as proposed by some authors. The coordinates of CEP are found to lie within the reach of Relativistic heavy-ion collider experiment.

  16. Physical mechanism of the (tri)critical point generation

    SciTech Connect

    Bugaev, K. A. Ivanytskyi, A. I.; Nikonov, E. G.; Petrov, V. K.; Sorin, A. S.; Zinovjev, G. M.

    2012-06-15

    We discuss some ideas resulting from a phenomenological relation recently declared between the tension of string connecting the static quark-antiquark pair and surface tension of corresponding cylindrical bag. This relation analysis leads to the temperature of vanishing surface tension coefficient of the QGP bags at zero baryonic charge density as T{sub {sigma}} = 152.9 {+-} 4.5 MeV. We develop the view point that this temperature value is not a fortuitous coincidence with the temperature of (partial) chiral symmetry restoration as seen in the lattice QCD simulations. Besides, we argue that T{sub {sigma}} defines the QCD (tri)critical endpoint temperature and claim that a negative value of surface tension coefficient recently discovered is not a sole result but is quite familiar for ordinary liquids at the supercritical temperatures.

  17. The Effect of Instructional Modality and Prior Knowledge on Learning Point Group Symmetry

    ERIC Educational Resources Information Center

    Nottis, Katharyn E. K.; Kastner, Margaret E.

    2005-01-01

    Many topics in chemistry are difficult for learners to understand, including symmetry. Reasons for this difficulty include its multi-level content, instructional methodologies utilized, and learner variables. This study examined the effect of initial instructional modality and prior knowledge on learning of point group symmetry. Forty-four…

  18. Dynamics and Thermodynamics beyond the critical point

    PubMed Central

    Gorelli, F. A.; Bryk, T.; Krisch, M.; Ruocco, G.; Santoro, M.; Scopigno, T.

    2013-01-01

    Sudden changes in the dynamical properties of a supercritical fluid model have been found as a function of pressure and temperature (T/Tc = 2–5 and P/Pc = 10–103), striving with the notion of a single phase beyond the critical point established by thermodynamics. The sound propagation in the Terahertz frequency region reveals a sharp dynamic crossover between the gas like and the liquid like regimes along several isotherms, which involves, at sufficiently low densities, the interplay between purely acoustic waves and heat waves. Such a crossover allows one to determine a dynamic line in the phase diagram which exhibits a very tight correlation with a number of thermodynamic observables, showing that the supercritical state is remarkably more complex than thought so far. PMID:23383373

  19. Two critical tests for the Critical Point earthquake

    NASA Astrophysics Data System (ADS)

    Tzanis, A.; Vallianatos, F.

    2003-04-01

    It has been credibly argued that the earthquake generation process is a critical phenomenon culminating with a large event that corresponds to some critical point. In this view, a great earthquake represents the end of a cycle on its associated fault network and the beginning of a new one. The dynamic organization of the fault network evolves as the cycle progresses and a great earthquake becomes more probable, thereby rendering possible the prediction of the cycle’s end by monitoring the approach of the fault network toward a critical state. This process may be described by a power-law time-to-failure scaling of the cumulative seismic release rate. Observational evidence has confirmed the power-law scaling in many cases and has empirically determined that the critical exponent in the power law is typically of the order n=0.3. There are also two theoretical predictions for the value of the critical exponent. Ben-Zion and Lyakhovsky (Pure appl. geophys., 159, 2385-2412, 2002) give n=1/3. Rundle et al. (Pure appl. geophys., 157, 2165-2182, 2000) show that the power-law activation associated with a spinodal instability is essentially identical to the power-law acceleration of Benioff strain observed prior to earthquakes; in this case n=0.25. More recently, the CP model has gained support from the development of more dependable models of regional seismicity with realistic fault geometry that show accelerating seismicity before large events. Essentially, these models involve stress transfer to the fault network during the cycle such, that the region of accelerating seismicity will scale with the size of the culminating event, as for instance in Bowman and King (Geophys. Res. Let., 38, 4039-4042, 2001). It is thus possible to understand the observed characteristics of distributed accelerating seismicity in terms of a simple process of increasing tectonic stress in a region already subjected to stress inhomogeneities at all scale lengths. Then, the region of

  20. Magnetic Rotation and Chirality and X(5) Critical Symmetry in Nucleus

    SciTech Connect

    Zhu, L. H.; Wu, X. G.; He, C. Y.; Hao, X.; Wang, L. L.; Zheng, Y.; Li, G. S.

    2010-05-12

    The magnetic and chiral rotation, the critical symmetry are fundamental problems in the study of nuclear structure. Here we report the recent results from the experiments on the magnetic and electric rotations in {sup 106}Ag, the chiral rotation in {sup 130}Cs and the evolution of X(5) symmetry in {sup 176}Os.

  1. Comparison of Stretching Force Constants in Symmetry Coordinates between Td and C3v Point Groups

    NASA Astrophysics Data System (ADS)

    Julian, Maureen M.

    1999-05-01

    In this paper we consider what happens to the force constants of a silicate moiety (SiO4) when the length of one of its bonds is changed. This situation exists in the molecule O3SiObrSiO3, where Obr is the bridging oxygen atom connecting the two SiO3 moieties. The problem is to present a set of force constants such that when the structure of the more symmetric molecule is perturbed, the relevant force constants are also perturbed. Algebraic expressions are derived for the stretching force constants of SiO4 (tetrahedral point group Td) and ObrSiO3 (point group C3v) in symmetry coordinates. This paper is addressed to students and researchers in applied group theory who wish to compare force constants between similar molecules. We assume the reader has some familarity with the group theoretical methods presented by Wilson et al. (Wilson, E. B. Jr.; Decius, J. C.; Cross, P. C. Molecular Vibrations; Dover: New York, 1980). We cannot apply Wilson's method for obtaining symmetry coordinates from internal coordinates directly, as we demonstrate. Instead we must start with the irreducible representations of the symmetries of the moiety with the higher symmetry and then reduce them to the representations of the symmetries of the moiety with the lower symmetry. The symmetry coordinates are calculated for each species in order to factor the secular equation. The matrix representations of the generators of these point groups are a function of the specific symmetry coordinates. Finally, the symmetry coordinates are applied to the force constant matrix and the algebraic results are compared.

  2. Turbulent scaling laws as solutions of the multi-point correlation equation using statistical symmetries

    NASA Astrophysics Data System (ADS)

    Oberlack, Martin; Rosteck, Andreas; Avsarkisov, Victor

    2013-11-01

    Text-book knowledge proclaims that Lie symmetries such as Galilean transformation lie at the heart of fluid dynamics. These important properties also carry over to the statistical description of turbulence, i.e. to the Reynolds stress transport equations and its generalization, the multi-point correlation equations (MPCE). Interesting enough, the MPCE admit a much larger set of symmetries, in fact infinite dimensional, subsequently named statistical symmetries. Most important, theses new symmetries have important consequences for our understanding of turbulent scaling laws. The symmetries form the essential foundation to construct exact solutions to the infinite set of MPCE, which in turn are identified as classical and new turbulent scaling laws. Examples on various classical and new shear flow scaling laws including higher order moments will be presented. Even new scaling have been forecasted from these symmetries and in turn validated by DNS. Turbulence modellers have implicitly recognized at least one of the statistical symmetries as this is the basis for the usual log-law which has been employed for calibrating essentially all engineering turbulence models. An obvious conclusion is to generally make turbulence models consistent with the new statistical symmetries.

  3. Symmetry, complexity and multicritical point of the two-dimensional spin glass

    NASA Astrophysics Data System (ADS)

    Maillard, Jean-Marie; Nemoto, Koji; Nishimori, Hidetoshi

    2003-09-01

    We analyse models of spin glasses on the two-dimensional square lattice by exploiting symmetry arguments. The replicated partition functions of the Ising and related spin glasses are shown to have many remarkable symmetry properties as functions of the edge Boltzmann factors. It is shown that the applications of homogeneous and Hadamard inverses to the edge Boltzmann matrix indicate reduced complexities when the elements of the matrix satisfy certain conditions, suggesting that the system has special simplicities under such conditions. Using these duality and symmetry arguments we present a conjecture on the exact location of the multicritical point in the phase diagram.

  4. Armchair graphene nanoribbons: PT-symmetry breaking and exceptional points without dissipation

    SciTech Connect

    Fagotti, Maurizio; Bonati, Claudio; Logoteta, Demetrio; Marconcini, Paolo; Macucci, Massimo

    2011-06-15

    We consider a single-layer graphene nanoribbon with armchair edges and with a longitudinally constant external potential, pointing out that it can be described by means of an effective non-Hermitian Hamiltonian. We show that this system has some features typical of dissipative systems, namely, the presence of exceptional points and of PT-symmetry breaking, although it is not dissipative.

  5. QCD diffraction: a critical phenomenon reflecting both confinement and chiral-symmetry breaking

    SciTech Connect

    White, A.R.

    1982-07-01

    Arguments are presented for studying soft diffractive physics at anti p-p colliders in terms of Critical Pomeron Reggeon Field Theory. It is emphasized that both confinement and chiral-symmetry breaking play a vital role in the occurrence of the Critical Pomeron in QCD. SU(3) is the unique strong-interaction gauge group giving the Critical Pomeron and the maximum number of quarks allowed by asymptotic freedom is required for criticality.

  6. Clusters and Fluctuations at Mean-Field Critical Points and Spinodals

    SciTech Connect

    Klein, W.; CNLS, Los Alamos National Laboratory, Los Alamos, New Mexico 87545 ; Gould, Harvey; Tobochnik, J.; Alexander, F. J.; Anghel, M.; Johnson, Gregory

    2000-08-07

    We show that the structure of the fluctuations close to spinodals and mean-field critical points is qualitatively different from the structure close to non-mean-field critical points. This difference has important implications for many areas including the formation of glasses in supercooled liquids. In particular, the divergence of the measured static structure function in near-mean-field systems close to the glass transition is suppressed relative to the mean-field prediction in systems for which a spatial symmetry is broken. (c) 2000 The American Physical Society.

  7. Influence of super-ohmic dissipation on a disordered quantum critical point.

    PubMed

    Vojta, Thomas; Hoyos, José A; Mohan, Priyanka; Narayanan, Rajesh

    2011-03-01

    We investigate the combined influence of quenched randomness and dissipation on a quantum critical point with O(N) order-parameter symmetry. Utilizing a strong-disorder renormalization group, we determine the critical behavior in one space dimension exactly. For super-ohmic dissipation, we find a Kosterlitz-Thouless type transition with conventional (power-law) dynamical scaling. The dynamical critical exponent depends on the spectral density of the dissipative baths. We also discuss the Griffiths singularities, and we determine observables. PMID:21339559

  8. Percolation systems away from the critical point

    NASA Astrophysics Data System (ADS)

    Dhar, Deepak

    2002-02-01

    This article reviews some effects of disorder in percolation systems away from the critical density pc. For densities below pc, the statistics of large clusters defines the animals problem. Its relation to the directed animals problem and the Lee--Yang edge singularity problem is described. Rare compact clusters give rise to Griffiths singularities in the free energy of diluted ferromagnets, and lead to a very slow relaxation of magnetization. In biased diffusion on percolation clusters, trapping in dead-end branches leads to asymptotic drift velocity becoming zero for strong bias, and very slow relaxation of velocity near the critical bias field.

  9. New Critical Point Induced By the Axial Anomaly in Dense QCD

    SciTech Connect

    Hatsuda, Tetsuo; Yamamoto, Naoki; Tachibana, Motoi; Baym, Gordon

    2006-09-22

    We study the interplay between chiral and diquark condensates within the framework of the Ginzburg-Landau free energy, and classify possible phase structures of two and three-flavor massless QCD. The QCD axial anomaly acts as an external field applied to the chiral condensate in a color superconductor and leads to a crossover between the broken chiral symmetry and the color superconducting phase, and, in particular, to a new critical point in the QCD phase diagram.

  10. Critical point wetting drop tower experiment

    NASA Technical Reports Server (NTRS)

    Kaukler, William F.

    1990-01-01

    The 100 m Drop Tower at NASA-Marshall was used to provide the step change in acceleration from 1.0 to 0.0005 g. An inter-fluid meniscus oscillates vertically within a cylindrical container when suddenly released from earth's gravity and taken into a microgravity environment. Oscillations damp out from energy dissipative mechanisms such as viscosity and interfacial friction. Damping of the oscillations by the later mechanism is affected by the nature of the interfacial junction between the fluid-fluid interface and the container wall. In earlier stages of the project, the meniscus shape which developed during microgravity conditions was applied to evaluations of wetting phenomena near the critical temperature. Variations in equilibrium contact angle against the container wall were expected to occur under critical wetting conditions. However, it became apparent that the meaningful phenomenon was the damping of interfacial oscillations. This latter concept makes up the bulk of this report. Perfluoromethyl cyclohexane and isopropanol in glass were the materials used for the experiment. The wetting condition of the fluids against the wall changes at the critical wetting transition temperature. This change in wetting causes a change in the damping characteristics of the interfacial excursions during oscillation and no measurable change in contact angle. The effect of contact line friction measured above and below the wetting transition temperature was to increase the period of vertical oscillation for the vapor-liquid interface when below the wetting transition temperature.

  11. Symmetry and asymmetry of ionospheric weather at magnetic conjugate points for two midlatitude observatories

    NASA Astrophysics Data System (ADS)

    Gulyaeva, T. L.; Arikan, F.; Stanislawska, I.; Poustovalova, L. V.

    2013-11-01

    Variations of the ionospheric weather W-index for two midlatitude observatories, namely, Grahamstown and Hermanus, and their conjugate counterpart locations in Africa are studied for a period from October 2010 to December 2011. The observatories are located in the longitude sector, which has consistent magnetic equator and geographic equator so that geomagnetic latitudes of the line of force are very close to the corresponding geographic latitudes providing opportunity to ignore the impact of the difference of the gravitational field and the geomagnetic field at the conjugate points on the ionosphere structure and dynamics. The ionosondes of Grahamstown and Hermanus provide data of the critical frequency (foF2), and Global Ionospheric Maps (GIM) provide the total electron content (TECgps) along the magnetic field line up to the conjugate point in the opposite hemisphere. The global model of the ionosphere, International Reference Ionosphere, extended to the plasmasphere altitude of 20,200 km (IRI-Plas) is used to deliver the F2 layer peak parameters from TECgps at the magnetic conjugate area. The evidence is obtained that the electron gas heated by day and cooled by night at the summer hemisphere as compared with the opposite features in the conjugate winter hemisphere testifies on a reversal of plasma fluxes along the magnetic field line by the solar terminator. The ionospheric weather W-index is derived from NmF2 (related with foF2) and TECgps data. It is found that symmetry of W-index behavior in the magnetic conjugate hemispheres is dominant for the equinoxes when plasma movement along the magnetic line of force is imposed on symmetrical background electron density and electron content. Asymmetry of the ionospheric storm effects is observed for solstices when the plasma diffuse down more slowly into the colder winter hemisphere than into the warmer summer hemisphere inducing either plasma increase (positive phase) or decrease (negative phase of W-index) in the

  12. The Effect of Instructional Modality and Prior Knowledge on Learning Point Group Symmetry

    NASA Astrophysics Data System (ADS)

    Nottis, Katharyn E. K.; Kastner, Margaret E.

    2005-03-01

    Many topics in chemistry are difficult for learners to understand, including symmetry. Reasons for this difficulty include its multi-level content, instructional methodologies utilized, and learner variables. This study examined the effect of initial instructional modality and prior knowledge on learning of point group symmetry. Forty-four students in a sophomore-level inorganic chemistry class at a small private university were divided by pre-selected lab groups into two groups, lecture and computer, for introductory information about point group symmetry. Both groups had low prior knowledge of symmetry elements although the lecture group had significantly higher knowledge than the computer group. After initial instruction, the lecture group scored significantly higher than the computer group on a point group assessment, even when prior knowledge was controlled. A second assessment, given after both groups had follow-up information from computer courseware, showed no significant difference between the groups. The computer group significantly improved between the two assessments, the lecture group did not. At the end-of-the semester post-test showed no significant difference between the two groups, although only 50% of the students in each group achieved mastery. Factors affecting the significant improvement of the low prior knowledge, computer group were examined and recommendations for future research provided.

  13. Pole distribution of PVI transcendents close to a critical point

    NASA Astrophysics Data System (ADS)

    Guzzetti, Davide

    2012-12-01

    The distribution of the poles of Painlevé VI transcendents associated to semi-simple Frobenius manifolds is determined close to a critical point. It is shown that the poles accumulate at the critical point, asymptotically along two rays. As an example, the Frobenius manifold given by the quantum cohomology of CP2 is considered. The general PVI is also considered.

  14. Infra-red fixed point structure characterising SUSY SU(5) symmetry breaking

    NASA Astrophysics Data System (ADS)

    Allanach, B. C.; Amelino-Camelia, G.; Philipsen, O.

    1997-02-01

    We analyze the one-loop renormalisation group equations for the parameters of the Higgs potential of a supersymmetric SU(5) model with first step of symmetry breaking involving an adjoint Higgs. In particular, we investigate the running of the parameters that decide the first step of symmetry breaking in an attempt to establish which symmetry-breaking scenarios would be most likely if the model is the effective low-energy description of some more fundamental theory. An infra-red fixed point is identified analytically. We show that it is located at the boundary between the region of Higgs parameter space corresponding to unbroken SU(5) and the region corresponding to the breaking of SU(5) to the Standard Model, and we elaborate on its implications. We also observe that certain forms of the Higgs potential discussed at tree level in the literature are not renormalisation group invariant.

  15. Singularity of the London Penetration Depth at Quantum Critical Points in Superconductors

    NASA Astrophysics Data System (ADS)

    Chowdhury, Debanjan; Swingle, Brian; Berg, Erez; Sachdev, Subir

    2013-10-01

    We present a general theory of the singularity in the London penetration depth at symmetry-breaking and topological quantum critical points within a superconducting phase. While the critical exponents and ratios of amplitudes on the two sides of the transition are universal, an overall sign depends upon the interplay between the critical theory and the underlying Fermi surface. We determine these features for critical points to spin density wave and nematic ordering, and for a topological transition between a superconductor with Z2 fractionalization and a conventional superconductor. We note implications for recent measurements of the London penetration depth in BaFe2(As1-xPx)2 [K. Hashimoto , Science 336, 1554 (2012)SCIEAS0036-807510.1126/science.1219821].

  16. Emergence of a Fermionic Finite-Temperature Critical Point in a Kondo Lattice

    NASA Astrophysics Data System (ADS)

    Chou, Po-Hao; Zhai, Liang-Jun; Chung, Chung-Hou; Mou, Chung-Yu; Lee, Ting-Kuo

    2016-04-01

    The underlying Dirac point is central to the profound physics manifested in a wide class of materials. However, it is often difficult to drive a system with Dirac points across the massless fermionic critical point. Here by exploiting screening of local moments under spin-orbit interactions in a Kondo lattice, we show that below the Kondo temperature, the Kondo lattice undergoes a topological transition from a strong topological insulator to a weak topological insulator at a finite temperature TD. At TD, massless Dirac points emerge and the Kondo lattice becomes a Dirac semimetal. Our analysis indicates that the emergent relativistic symmetry dictates nontrivial thermal responses over large parameter and temperature regimes. In particular, it yields critical scaling behaviors both in magnetic and transport responses near TD.

  17. Emergence of a Fermionic Finite-Temperature Critical Point in a Kondo Lattice.

    PubMed

    Chou, Po-Hao; Zhai, Liang-Jun; Chung, Chung-Hou; Mou, Chung-Yu; Lee, Ting-Kuo

    2016-04-29

    The underlying Dirac point is central to the profound physics manifested in a wide class of materials. However, it is often difficult to drive a system with Dirac points across the massless fermionic critical point. Here by exploiting screening of local moments under spin-orbit interactions in a Kondo lattice, we show that below the Kondo temperature, the Kondo lattice undergoes a topological transition from a strong topological insulator to a weak topological insulator at a finite temperature T_{D}. At T_{D}, massless Dirac points emerge and the Kondo lattice becomes a Dirac semimetal. Our analysis indicates that the emergent relativistic symmetry dictates nontrivial thermal responses over large parameter and temperature regimes. In particular, it yields critical scaling behaviors both in magnetic and transport responses near T_{D}. PMID:27176534

  18. Specular points and critical gimbal angles of ogival radomes

    NASA Astrophysics Data System (ADS)

    Rengarajan, Sembiam R.

    1988-07-01

    Results on critical gimbal angles of ogival radomes have been presented as a function of fineness ratios and source point locations. It is shown that, for a given source point and reflected ray direction, no more than two specular points generally exist on the radome inner surface. The critical gimbal angle, beyond which reflected rays contribute to geometrical optics fields, is obtained in terms of a turning-point effect. Critical gimbal angles computed are significantly different from previously published results which overlooked the turning-point effect. Special techniques to determine the contribution of specular points near the turning point are briefly discussed. The techniques proposed can be applied to rotationally symmetric geometries other than ogives.

  19. Confidence intervals for the symmetry point: an optimal cutpoint in continuous diagnostic tests.

    PubMed

    López-Ratón, Mónica; Cadarso-Suárez, Carmen; Molanes-López, Elisa M; Letón, Emilio

    2016-01-01

    Continuous diagnostic tests are often used for discriminating between healthy and diseased populations. For this reason, it is useful to select an appropriate discrimination threshold. There are several optimality criteria: the North-West corner, the Youden index, the concordance probability and the symmetry point, among others. In this paper, we focus on the symmetry point that maximizes simultaneously the two types of correct classifications. We construct confidence intervals for this optimal cutpoint and its associated specificity and sensitivity indexes using two approaches: one based on the generalized pivotal quantity and the other on empirical likelihood. We perform a simulation study to check the practical behaviour of both methods and illustrate their use by means of three real biomedical datasets on melanoma, prostate cancer and coronary artery disease. PMID:26756550

  20. Teaching Molecular Symmetry of Dihedral Point Groups by Drawing Useful 2D Projections

    ERIC Educational Resources Information Center

    Chen, Lan; Sun, Hongwei; Lai, Chengming

    2015-01-01

    There are two main difficulties in studying molecular symmetry of dihedral point groups. One is locating the C[subscript 2] axes perpendicular to the C[subscript n] axis, while the other is finding the s[subscript]d planes which pass through the C[subscript n] axis and bisect the angles formed by adjacent C[subscript 2] axes. In this paper, a…

  1. Constraints from conformal symmetry on the three point scalar correlator in inflation

    NASA Astrophysics Data System (ADS)

    Kundu, Nilay; Shukla, Ashish; Trivedi, Sandip P.

    2015-04-01

    Using symmetry considerations, we derive Ward identities which relate the three point function of scalar perturbations produced during inflation to the scalar four point function, in a particular limit. The derivation assumes approximate conformal invariance, and the conditions for the slow roll approximation, but is otherwise model independent. The Ward identities allow us to deduce that the three point function must be suppressed in general, being of the same order of magnitude as in the slow roll model. They also fix the three point function in terms of the four point function, upto one constant which we argue is generically suppressed. Our approach is based on analyzing the wave function of the universe, and the Ward identities arise by imposing the requirements of spatial and time reparametrization invariance on it.

  2. Cubic Polynomials with Rational Roots and Critical Points

    ERIC Educational Resources Information Center

    Gupta, Shiv K.; Szymanski, Waclaw

    2010-01-01

    If you want your students to graph a cubic polynomial, it is best to give them one with rational roots and critical points. In this paper, we describe completely all such cubics and explain how to generate them.

  3. a Mathematical Description of the Critical Point in Phase Transitions

    NASA Astrophysics Data System (ADS)

    Bilge, Ayse Humeyra; Pekcan, Onder

    2013-10-01

    Let y(x) be a smooth sigmoidal curve, y(n) be its nth derivative and {xm,i} and {xa,i}, i = 1,2,…, be the set of points where respectively the derivatives of odd and even order reach their extreme values. We argue that if the sigmoidal curve y(x) represents a phase transition, then the sequences {xm,i} and {xa,i} are both convergent and they have a common limit xc that we characterize as the critical point of the phase transition. In this study, we examine the logistic growth curve and the Susceptible-Infected-Removed (SIR) epidemic model as typical examples of symmetrical and asymmetrical transition curves. Numerical computations indicate that the critical point of the logistic growth curve that is symmetrical about the point (x0, y0) is always the point (x0, y0) but the critical point of the asymmetrical SIR model depends on the system parameters. We use the description of the sol-gel phase transition of polyacrylamide-sodium alginate (SA) composite (with low SA concentrations) in terms of the SIR epidemic model, to compare the location of the critical point as described above with the "gel point" determined by independent experiments. We show that the critical point tc is located in between the zero of the third derivative ta and the inflection point tm of the transition curve and as the strength of activation (measured by the parameter k/η of the SIR model) increases, the phase transition occurs earlier in time and the critical point, tc, moves toward ta.

  4. Meson condensation and critical point in dense quark matter

    SciTech Connect

    Schmitt, Andreas; Stetina, Stephan; Tachibana, Motoi

    2011-05-23

    The phase structure of dense QCD matter is studied based on the Ginzburg-Landau approach. In three flavor massless quark matter, one can show that a novel entanglement between chiral condensate and diquark condensate via the axial anomaly gives rise to a critical point at moderate density. We further investigate the effect of nonzero strange quark mass by taking into account a possible meson condensate. Then the fate of the critical point is discussed.

  5. Binary Colloidal Alloy Test-3 and 4: Critical Point

    NASA Technical Reports Server (NTRS)

    Weitz, David A.; Lu, Peter J.

    2007-01-01

    Binary Colloidal Alloy Test - 3 and 4: Critical Point (BCAT-3-4-CP) will determine phase separation rates and add needed points to the phase diagram of a model critical fluid system. Crewmembers photograph samples of polymer and colloidal particles (tiny nanoscale spheres suspended in liquid) that model liquid/gas phase changes. Results will help scientists develop fundamental physics concepts previously cloaked by the effects of gravity.

  6. Inherently unstable networks collapse to a critical point

    NASA Astrophysics Data System (ADS)

    Sheinman, M.; Sharma, A.; Alvarado, J.; Koenderink, G. H.; MacKintosh, F. C.

    2015-07-01

    Nonequilibrium systems that are driven or drive themselves towards a critical point have been studied for almost three decades. Here we present a minimalist example of such a system, motivated by experiments on collapsing active elastic networks. Our model of an unstable elastic network exhibits a collapse towards a critical point from any macroscopically connected initial configuration. Taking into account steric interactions within the network, the model qualitatively and quantitatively reproduces results of the experiments on collapsing active gels.

  7. Implementation of hazard analysis critical control point in jameed production.

    PubMed

    Al-Saed, A K; Al-Groum, R M; Al-Dabbas, M M

    2012-06-01

    The average of standard plate count and coliforms, Staphylococcus aureus and Salmonella counts for three home-made jameed samples, a traditional fermented dairy product, before applying hazard analysis critical control point system were 2.1 × 10(3), 8.9 × 10(1), 4 × 10(1) and less than 10 cfu/g, respectively. The developed hazard analysis critical control point plan resulted in identifying ten critical control points in the flow chart of jameed production. The critical control points included fresh milk receiving, pasteurization, addition of starter, water and salt, straining, personnel hygiene, drying and packaging. After applying hazard analysis critical control point system, there was significant improvement in the microbiological quality of the home-made jameed. The standard plate count was reduced to 3.1 × 10(2) cfu/g whereas coliform and Staphylococcus aureus counts were less than 10 cfu/g and Salmonella was not detected. Sensory evaluation results of color and flavor of sauce prepared from jameed showed a significant increase in the average scores given after hazard analysis critical control point application. PMID:22701056

  8. Program computes single-point failures in critical system designs

    NASA Technical Reports Server (NTRS)

    Brown, W. R.

    1967-01-01

    Computer program analyzes the designs of critical systems that will either prove the design is free of single-point failures or detect each member of the population of single-point failures inherent in a system design. This program should find application in the checkout of redundant circuits and digital systems.

  9. Chiral phonons at high-symmetry points in monolayer hexagonal lattices.

    PubMed

    Zhang, Lifa; Niu, Qian

    2015-09-11

    In monolayer hexagonal lattices, the intravalley and intervalley scattering of electrons can involve chiral phonons at Brillouin-zone center and corners, respectively. At these high-symmetry points, there is a threefold rotational symmetry endowing phonon eigenmodes with a quantized pseudoangular momentum, which includes orbital and spin parts. Conservation of pseudoangular momentum yields selection rules for intravalley and intervalley scattering of electrons by phonons. Concrete predictions of helicity-resolved optical phenomena are made on monolayer molybdenum disulfide. The chiral phonons at Brillouin-zone corners excited by polarized photons can be detected by a valley phonon Hall effect. The chiral phonons, together with phonon circular polarization, phonon pseudoangular momentum, selection rules, and valley phonon Hall effect will extend the basis for valley-based electronics and phononics applications in the future. PMID:26406841

  10. Chiral Phonons at High-Symmetry Points in Monolayer Hexagonal Lattices

    NASA Astrophysics Data System (ADS)

    Zhang, Lifa; Niu, Qian

    2015-09-01

    In monolayer hexagonal lattices, the intravalley and intervalley scattering of electrons can involve chiral phonons at Brillouin-zone center and corners, respectively. At these high-symmetry points, there is a threefold rotational symmetry endowing phonon eigenmodes with a quantized pseudoangular momentum, which includes orbital and spin parts. Conservation of pseudoangular momentum yields selection rules for intravalley and intervalley scattering of electrons by phonons. Concrete predictions of helicity-resolved optical phenomena are made on monolayer molybdenum disulfide. The chiral phonons at Brillouin-zone corners excited by polarized photons can be detected by a valley phonon Hall effect. The chiral phonons, together with phonon circular polarization, phonon pseudoangular momentum, selection rules, and valley phonon Hall effect will extend the basis for valley-based electronics and phononics applications in the future.

  11. Nonlinear excitations in the honeycomb lattice: Beyond the high-symmetry points of the band structure

    NASA Astrophysics Data System (ADS)

    Arévalo, Edward; Morales-Molina, Luis

    2016-05-01

    The interplay between nonlinearity and the band structure of pristine honeycomb lattices is systematically explored. For that purpose, a theory of collective excitations valid for the first Brillouin zone of the lattice is developed. Closed-form expressions of two-dimensional excitations are derived for Bloch wave numbers beyond the high-symmetry points of the band structure. A description of the regions of validity of different nonlinear excitations in the first-Brillouin zone is given. We find that the unbounded nature of these excitations in nonlinear honeycomb latices is a signature of the strong influence of the Dirac cones in other parts of the band structure.

  12. Classical dynamics of the Abelian Higgs model from the critical point and beyond

    NASA Astrophysics Data System (ADS)

    Katsimiga, G. C.; Diakonos, F. K.; Maintas, X. N.

    2015-09-01

    We present two different families of solutions of the U(1)-Higgs model in a (1 + 1) dimensional setting leading to a localization of the gauge field. First we consider a uniform background (the usual vacuum), which corresponds to the fully higgsed-superconducting phase. Then we study the case of a non-uniform background in the form of a domain wall which could be relevantly close to the critical point of the associated spontaneous symmetry breaking. For both cases we obtain approximate analytical nodeless and nodal solutions for the gauge field resulting as bound states of an effective Pöschl-Teller potential created by the scalar field. The two scenaria differ only in the scale of the characteristic localization length. Numerical simulations confirm the validity of the obtained analytical solutions. Additionally we demonstrate how a kink may be used as a mediator driving the dynamics from the critical point and beyond.

  13. QCD critical point sweep during black hole formation

    SciTech Connect

    Ohnishi, A.; Ueda, H.; Nakano, T. Z.; Ruggieri, M.; Sumiyoshi, K.

    2012-11-12

    We discuss the possibility to probe the QCD critical point during the prompt black hole formation. In black hole formation processes, temperature and baryon chemical potential become as high as T{approx} 90MeV and {mu}{sub B}{approx} 1300MeV. This high baryon chemical potential would allow nuclear matter to experience the QCD phase transition, and the temperature may be higher than the QCD critical point temperature. We compare the phase boundary in chiral effective models and the thermal environment obtained in the {nu} radiation hydrodynamical calculation of the gravitational collapse of a 40M{sub Circled-Dot-Operator} star leading to the black hole formation. This comparison suggests that quark matter is likely to be formed, and the QCD critical point may be swept.

  14. Liquid-liquid critical point: an analytical approach

    NASA Astrophysics Data System (ADS)

    Daanoun, A.

    2006-09-01

    Theoretical simulations and experimental studies have showed that many systems (like liquid metals) can exhibit two phase transitions: gas-liquid and liquid-liquid. Consequently the fluid phase of these systems presents two critical points, namely the usual gas-liquid (G-L) critical point and the liquid-liquid critical point that results from a phase transition between two liquids of different densities: a low density liquid (LDL) and a high density liquid (HDL). The van der Waals theory for simple fluids [Phys. Rev. E 50, 2913 (1994)] is based on taking a system with purely repulsive forces as a reference, is able to describe two stable first-order phase transitions between fluids of different densities. The particles in our system interact via a total pair potential, which splits into a repulsive VR and a density-dependent attractive VA part.

  15. Intact quasiparticles at an unconventional quantum critical point

    NASA Astrophysics Data System (ADS)

    Sutherland, M. L.; O'Farrell, E. C. T.; Toews, W. H.; Dunn, J.; Kuga, K.; Nakatsuji, S.; Machida, Y.; Izawa, K.; Hill, R. W.

    2015-07-01

    We report measurements of in-plane electrical and thermal transport properties in the limit T →0 near the unconventional quantum critical point in the heavy-fermion metal β -YbAlB4 . The high Kondo temperature TK≃200 K in this material allows us to probe transport extremely close to the critical point, at unusually small values of T /TK<5 ×10-4 . Here we find that the Wiedemann-Franz law is obeyed at the lowest temperatures, implying that the Landau quasiparticles remain intact in the critical region. At finite temperatures we observe a non-Fermi-liquid T -linear dependence of inelastic-scattering processes to energies lower than those previously accessed. These processes have a weaker temperature dependence than in comparable heavy fermion quantum critical systems, revealing a temperature scale of T ˜0.3 K which signals a sudden change in the character of the inelastic scattering.

  16. Scaling near the Quantum-Critical Point in the SO(5) Theory of the High-T{sub c} Superconductivity

    SciTech Connect

    Kopec, T. K.; Zaleski, T. A.

    2001-08-27

    We study the quantum-critical point scenario within the unified theory of superconductivity and antiferromagnetism based on the SO(5) symmetry. Closed-form expression for the quantum-critical scaling function for the dynamic spin susceptibility is obtained from the lattice SO(5) quantum nonlinear {sigma} -model in three dimensions, revealing that in the quantum-critical region the frequency scale for spin excitations is simply set by the absolute temperature. Implications for the non-Fermi liquid behavior of the normal-state resistivity due to spin fluctuations in the quantum-critical region are also presented.

  17. Dynamical net-proton fluctuations near a QCD critical point

    NASA Astrophysics Data System (ADS)

    Herold, Christoph; Nahrgang, Marlene; Yan, Yupeng; Kobdaj, Chinorat

    2016-02-01

    We investigate the evolution of the net-proton kurtosis and the kurtosis of the chiral order parameter near the critical point in the model of nonequilibrium chiral fluid dynamics. The order parameter is propagated explicitly and coupled to an expanding fluid of quarks and gluons in order to describe the dynamical situation in a heavy-ion collision. We study the critical region near the critical point on the crossover side. There are two sources of fluctuations: noncritical initial event-by-event fluctuations and critical fluctuations. These fluctuations can be distinguished by comparing a mean-field evolution of averaged thermodynamic quantities with the inclusion of fluctuations at the phase transition. We find that while the initial state fluctuations give rise to flat deviations from statistical fluctuations, critical fluctuations reveal a clear structure of the phase transition. The signals of the critical point in the net-proton and σ -field kurtosis are affected by the nonequilibrium dynamics and the inhomogeneity of the space-time evolution but they develop clearly.

  18. Thermal conductivity at a disordered quantum critical point

    NASA Astrophysics Data System (ADS)

    Hartnoll, Sean A.; Ramirez, David M.; Santos, Jorge E.

    2016-04-01

    Strongly disordered and strongly interacting quantum critical points are difficult to access with conventional field theoretic methods. They are, however, both experimentally important and theoretically interesting. In particular, they are expected to realize universal incoherent transport. Such disordered quantum critical theories have recently been constructed holographically by deforming a CFT by marginally relevant disorder. In this paper we find additional disordered fixed points via relevant disordered deformations of a holographic CFT. Using recently developed methods in holographic transport, we characterize the thermal conductivity in both sets of theories in 1+1 dimensions. The thermal conductivity is found to tend to a constant at low temperatures in one class of fixed points, and to scale as T 0.3 in the other. Furthermore, in all cases the thermal conductivity exhibits discrete scale invariance, with logarithmic in temperature oscillations superimposed on the low temperature scaling behavior. At no point do we use the replica trick.

  19. Critical point and sound waves in complex plasmas

    SciTech Connect

    Avinash, K.; Khrapak, S. A.; Morfill, G. E.

    2009-07-15

    An equation of state for particles in complex plasmas, which includes contributions from plasma background fields and interparticle interactions (electric repulsion and 'ion shadow' attraction), is obtained. Using this equation, experimental parameter regimes for the observation of liquid-vapor transitions and a critical point are examined. In addition, it is demonstrated that as in binary fluids, sound waves in complex plasmas do not exhibit critical behavior. Thus, criticality in complex plasmas may have more in common with binary fluids rather than ordinary fluids.

  20. Lie and Noether point symmetries of a class of quasilinear systems of second-order differential equations

    NASA Astrophysics Data System (ADS)

    Paliathanasis, Andronikos; Tsamparlis, Michael

    2016-09-01

    We study the Lie and Noether point symmetries of a class of systems of second-order differential equations with n independent and m dependent variables (n × m systems). We solve the symmetry conditions in a geometric way and determine the general form of the symmetry vector and of the Noetherian conservation laws. We prove that the point symmetries are generated by the collineations of two (pseudo)metrics, which are defined in the spaces of independent and dependent variables. We demonstrate the general results in two special cases (a) a system of m coupled Laplace equations and (b) the Klein-Gordon equation of a particle in the context of Generalized Uncertainty Principle. In the second case we determine the complete invariant group of point transformations, and we apply the Lie invariants in order to find invariant solutions of the wave function for a spin-0 particle in the two dimensional hyperbolic space.

  1. Spotlighting quantum critical points via quantum correlations at finite temperatures

    SciTech Connect

    Werlang, T.; Ribeiro, G. A. P.; Rigolin, Gustavo

    2011-06-15

    We extend the program initiated by T. Werlang et al. [Phys. Rev. Lett. 105, 095702 (2010)] in several directions. Firstly, we investigate how useful quantum correlations, such as entanglement and quantum discord, are in the detection of critical points of quantum phase transitions when the system is at finite temperatures. For that purpose we study several thermalized spin models in the thermodynamic limit, namely, the XXZ model, the XY model, and the Ising model, all of which with an external magnetic field. We compare the ability of quantum discord, entanglement, and some thermodynamic quantities to spotlight the quantum critical points for several different temperatures. Secondly, for some models we go beyond nearest neighbors and also study the behavior of entanglement and quantum discord for second nearest neighbors around the critical point at finite temperature. Finally, we furnish a more quantitative description of how good all these quantities are in spotlighting critical points of quantum phase transitions at finite T, bridging the gap between experimental data and those theoretical descriptions solely based on the unattainable absolute zero assumption.

  2. Second critical point in first order metal-insulator transitions.

    PubMed

    Kostadinov, Ivan Z; Patton, Bruce R

    2008-11-28

    For first order metal-insulator transitions we show that, together with the dc conductance zero, there is a second critical point where the dielectric constant becomes zero and further turns negative. At this point the metallic reflectivity sharply increases. The two points can be separated by a phase separation state in a 3D disordered system but may tend to merge in 2D. For illustration we evaluate the dielectric function in a simple effective medium approximation and show that at the second point it turns negative. We reproduce the experimental data on a typical Mott insulator such as MnO, demonstrating the presence of the two points clearly. We discuss other experiments for studies of the phase separation state and a similar phase separation in superconductors with insulating inclusions. PMID:19113498

  3. Finite-Temperature Spin Dynamics in a Perturbed Quantum Critical Ising Chain with an E8 Symmetry

    NASA Astrophysics Data System (ADS)

    Wu, Jianda; Kormos, Márton; Si, Qimiao

    2014-12-01

    A spectrum exhibiting E8 symmetry is expected to arise when a small longitudinal field is introduced in the transverse-field Ising chain at its quantum critical point. Evidence for this spectrum has recently come from neutron scattering measurements in cobalt niobate, a quasi-one-dimensional Ising ferromagnet. Unlike its zero-temperature counterpart, the finite-temperature dynamics of the model has not yet been determined. We study the dynamical spin structure factor of the model at low frequencies and nonzero temperatures, using the form factor method. Its frequency dependence is singular, but differs from the diffusion form. The temperature dependence of the nuclear magnetic resonance (NMR) relaxation rate has an activated form, whose prefactor we also determine. We propose NMR experiments as a means to further test the applicability of the E8 description for CoNb2O6 .

  4. Search for critical-point nuclei in terms of the sextic oscillator

    SciTech Connect

    Levai, G.; Arias, J. M.

    2010-04-15

    The spherical to deformed gamma-unstable shape transition in nuclei is discussed in terms of the sextic oscillator as a gamma-independent potential in the Bohr Hamiltonian. The wave functions, energy eigenvalues, and electric quadrupole and monopole transition rates are calculated in closed analytical form for the lowest-lying energy levels. It is shown that the locus of critical points for the spherical to deformed gamma-unstable shape phase transition corresponds to a parabola in the parameter space of the model. The ratios of energy eigenvalues and electromagnetic transition probabilities are constant along this parabola. It is thus possible to associate parameter-free benchmark values to the ratios of relevant observables at the critical point of the transition that can be compared to experimental data. In addition, systematic studies of the shape evolution in isotope chains can be performed within the model. As an application, the model parameters are fitted to the energy spectra of the chains of even-even Ru, Pd, and Cd isotopes and the electric quadrupole transition probabilities are calculated. It is found that {sup 104}Ru, {sup 102}Pd, and {sup 106,108}Cd nuclei, which are usually considered to be good candidates for the E(5) symmetry, lie rather close to the critical parabola that separates the spherical and deformed gamma-unstable domains. The isotope {sup 116}Cd is proposed as a new candidate for a similar critical-point nucleus.

  5. Natural orbitals renormalization group approach to the two-impurity Kondo critical point

    NASA Astrophysics Data System (ADS)

    He, Rong-Qiang; Dai, Jianhui; Lu, Zhong-Yi

    2015-04-01

    The problem of two magnetic impurities in a normal metal exposes the two opposite tendencies in the formation of a singlet ground state, driven respectively by the single-ion Kondo effect with conduction electrons to screen impurity spins or the Ruderman-Kittel-Kasuya-Yosida interaction between the two impurities to directly form impurity spin singlet. However, whether the competition between these two tendencies can lead to a quantum critical point has been debated over more than two decades. Here, we study this problem by applying the newly proposed natural orbitals renormalization group method to a lattice version of the two-impurity Kondo model with a direct exchange K between the two impurity spins. The method allows for unbiased access to the ground state wave functions and low-lying excitations for sufficiently large system sizes. We demonstrate the existence of a quantum critical point, characterized by the power-law divergence of impurity staggered susceptibility with critical exponent γ =0.60 (1 ) , on the antiferromagnetic side of K when the interimpurity distance R is even lattice spacing, while a crossover behavior is recovered when R is odd lattice spacing. These results have ultimately resolved the long-standing discrepancy between the numerical renormalization group and quantum Monte Carlo studies, confirming a link of this two-impurity Kondo critical point to a hidden particle-hole symmetry predicted by the local Fermi liquid theory.

  6. The search for an E(5) critical-point nucleus among the stable xenon isotopes

    NASA Astrophysics Data System (ADS)

    Peters, E. E.; Ross, T. J.; Chakraborty, A.; Crider, B. P.; Kumar, A.; Prados-Estévez, F. M.; Ashley, S. F.; McEllistrem, M. T.; Yates, S. W.

    2015-10-01

    A critical-point has been proposed to exist within the shape/phase transition of the U(5), spherical, and O(6), γ-soft rotor, limits of the IBM. The xenon isotopes exhibit such a transition and have, therefore, been proposed as a chain in which to search for the E(5) critical-point symmetry. The candidacy for an E(5) nucleus has been largely based on the decays of the excited 0+ states, which for some of the xenon isotopes were not yet known. Inelastic neutron scattering measurements at the University of Kentucky Accelerator Laboratory have been performed using highly enriched (>99.9%) 130Xe, 132Xe, 134Xe and 136Xe gases converted to solid xenon difluorides. From these measurements, new excited 0+ states and their decays were identified, level lifetimes were measured, and transition probabilities were determined. This new information allows definitive conclusions to be drawn about the occurrence of the E(5) symmetry within the stable xenon isotopes. This material is based upon work supported by the U.S. National Science Foundation under Grant No. PHY-1305801.

  7. Quantum-to-classical crossover near quantum critical point

    SciTech Connect

    Vasin, M.; Ryzhov, V.; Vinokur, V. M.

    2015-12-21

    A quantum phase transition (QPT) is an inherently dynamic phenomenon. However, while non-dissipative quantum dynamics is described in detail, the question, that is not thoroughly understood is how the omnipresent dissipative processes enter the critical dynamics near a quantum critical point (QCP). Here we report a general approach enabling inclusion of both adiabatic and dissipative processes into the critical dynamics on the same footing. We reveal three distinct critical modes, the adiabatic quantum mode (AQM), the dissipative classical mode [classical critical dynamics mode (CCDM)], and the dissipative quantum critical mode (DQCM). We find that as a result of the transition from the regime dominated by thermal fluctuations to that governed by the quantum ones, the system acquires effective dimension d+zΛ(T), where z is the dynamical exponent, and temperature-depending parameter Λ(T)ε[0, 1] decreases with the temperature such that Λ(T=0) = 1 and Λ(T →∞) = 0. Lastly, our findings lead to a unified picture of quantum critical phenomena including both dissipation- and dissipationless quantum dynamic effects and offer a quantitative description of the quantum-to-classical crossover.

  8. Quantum-to-classical crossover near quantum critical point

    DOE PAGESBeta

    Vasin, M.; Ryzhov, V.; Vinokur, V. M.

    2015-12-21

    A quantum phase transition (QPT) is an inherently dynamic phenomenon. However, while non-dissipative quantum dynamics is described in detail, the question, that is not thoroughly understood is how the omnipresent dissipative processes enter the critical dynamics near a quantum critical point (QCP). Here we report a general approach enabling inclusion of both adiabatic and dissipative processes into the critical dynamics on the same footing. We reveal three distinct critical modes, the adiabatic quantum mode (AQM), the dissipative classical mode [classical critical dynamics mode (CCDM)], and the dissipative quantum critical mode (DQCM). We find that as a result of the transitionmore » from the regime dominated by thermal fluctuations to that governed by the quantum ones, the system acquires effective dimension d+zΛ(T), where z is the dynamical exponent, and temperature-depending parameter Λ(T)ε[0, 1] decreases with the temperature such that Λ(T=0) = 1 and Λ(T →∞) = 0. Lastly, our findings lead to a unified picture of quantum critical phenomena including both dissipation- and dissipationless quantum dynamic effects and offer a quantitative description of the quantum-to-classical crossover.« less

  9. Quantum-to-classical crossover near quantum critical point

    NASA Astrophysics Data System (ADS)

    Vasin, M.; Ryzhov, V.; Vinokur, V. M.

    2015-12-01

    A quantum phase transition (QPT) is an inherently dynamic phenomenon. However, while non-dissipative quantum dynamics is described in detail, the question, that is not thoroughly understood is how the omnipresent dissipative processes enter the critical dynamics near a quantum critical point (QCP). Here we report a general approach enabling inclusion of both adiabatic and dissipative processes into the critical dynamics on the same footing. We reveal three distinct critical modes, the adiabatic quantum mode (AQM), the dissipative classical mode [classical critical dynamics mode (CCDM)], and the dissipative quantum critical mode (DQCM). We find that as a result of the transition from the regime dominated by thermal fluctuations to that governed by the quantum ones, the system acquires effective dimension d + zΛ(T), where z is the dynamical exponent, and temperature-depending parameter Λ(T) ∈ [0, 1] decreases with the temperature such that Λ(T = 0) = 1 and Λ(T → ∞) = 0. Our findings lead to a unified picture of quantum critical phenomena including both dissipation- and dissipationless quantum dynamic effects and offer a quantitative description of the quantum-to-classical crossover.

  10. Quantum-to-classical crossover near quantum critical point

    PubMed Central

    Vasin, M.; Ryzhov, V.; Vinokur, V. M.

    2015-01-01

    A quantum phase transition (QPT) is an inherently dynamic phenomenon. However, while non-dissipative quantum dynamics is described in detail, the question, that is not thoroughly understood is how the omnipresent dissipative processes enter the critical dynamics near a quantum critical point (QCP). Here we report a general approach enabling inclusion of both adiabatic and dissipative processes into the critical dynamics on the same footing. We reveal three distinct critical modes, the adiabatic quantum mode (AQM), the dissipative classical mode [classical critical dynamics mode (CCDM)], and the dissipative quantum critical mode (DQCM). We find that as a result of the transition from the regime dominated by thermal fluctuations to that governed by the quantum ones, the system acquires effective dimension d + zΛ(T), where z is the dynamical exponent, and temperature-depending parameter Λ(T) ∈ [0, 1] decreases with the temperature such that Λ(T = 0) = 1 and Λ(T → ∞) = 0. Our findings lead to a unified picture of quantum critical phenomena including both dissipation- and dissipationless quantum dynamic effects and offer a quantitative description of the quantum-to-classical crossover. PMID:26688102

  11. Acceptance dependence of fluctuation measures near the QCD critical point

    NASA Astrophysics Data System (ADS)

    Ling, Bo; Stephanov, Mikhail A.

    2016-03-01

    We argue that a crucial determinant of the acceptance dependence of fluctuation measures in heavy-ion collisions is the range of correlations in the momentum space, e.g., in rapidity, Δ ycorr . The value of Δ ycorr˜1 for critical thermal fluctuations is determined by the thermal rapidity spread of the particles at freeze-out, and has little to do with position space correlations, even near the critical point where the spatial correlation length ξ becomes as large as 2-3 fm (this is in contrast to the magnitudes of the cumulants, which are sensitive to ξ ). When the acceptance window is large, Δ y ≫Δ ycorr , the cumulants of a given particle multiplicity, κk, scale linearly with Δ y , or mean multiplicity in acceptance, , and cumulant ratios are acceptance independent. In the opposite regime, Δ y ≪Δ ycorr , the factorial cumulants, κ̂k, scale as (Δy ) k, or k. We demonstrate this general behavior quantitatively in a model for critical point fluctuations, which also shows that the dependence on transverse momentum acceptance is very significant. We conclude that the extension of rapidity coverage as proposed by the STAR Collaboration should significantly increase the magnitude of the critical point fluctuation signatures.

  12. Vapor pressure critical amplitudes from the normal boiling point

    NASA Astrophysics Data System (ADS)

    Velasco, S.; Román, F. L.; White, J. A.; Mulero, A.

    2007-04-01

    The authors propose a method to estimate the two first critical amplitudes for the vapor pressure of a fluid in terms only of the reduced pressure, Pbr=Pb/Pc, and temperature, Tbr=Tb/Tc, of the normal boiling point. The method is based on the fact that the product (1-Tr)Pr presents a maximum near the critical region. Based on a study of 43 fluids, the authors found that the reduced pressure and temperature of that maximum can be obtained from simple relations in terms of the parameter h ≡TbrlnPbr/(Tbr-1). These relations are checked against additional data for 1608 fluids.

  13. Instability of the Quantum-Critical Point of Itinerant Ferromagnets

    NASA Astrophysics Data System (ADS)

    Chubukov, Andrey V.; Pépin, Catherine; Rech, Jerome

    2004-04-01

    We study the stability of the quantum-critical point for itinerant ferromagnets commonly described by the Hertz-Millis-Moriya (HMM) theory. We argue that in D≤3 long-range spatial correlations associated with the Landau damping of the order parameter field generate a universal negative, nonanalytic |q|(D+1)/2 contribution to the static magnetic susceptibility χs(q,0), which makes HMM theory unstable. We argue that the actual transition is either towards incommensurate ordering, or first order. We also show that singular corrections are specific to the spin problem, while charge susceptibility remains analytic at criticality.

  14. Analytical description of odd-A nuclei near the critical point of the spherical to axially deformed shape transition

    SciTech Connect

    Zhang Yu; Pan Feng; Liu Yuxin; Hou Zhanfeng; Draayer, J. P.

    2010-09-15

    A coupling scheme for even-even nuclei with the X(5) critical point symmetry coupled to a single valence nucleon in a j orbit is proposed to approximately describe the critical point phenomena of spherical to axially deformed shape (phase) transition in odd-A nuclear systems. The corresponding scheme, which can be solved analytically, is called the X(5/(2j+1)) model. A special case with j=1/2 is analyzed in detail to show its level structure and transition patterns. It is further shown that {sup 189}Au and {sup 155}Tb may be possible X(5/(2j+1)) symmetry candidates with j=1/2 and j=3/2, respectively.

  15. Protecting clean critical points by local disorder correlations

    NASA Astrophysics Data System (ADS)

    Hoyos, J. A.; Laflorencie, Nicolas; Vieira, André.; Vojta, Thomas

    2011-03-01

    We show that a broad class of quantum critical points can be stable against locally correlated disorder even if they are unstable against uncorrelated disorder. Although this result seemingly contradicts the Harris criterion, it follows naturally from the absence of a random-mass term in the associated order-parameter field theory. We illustrate the general concept with explicit calculations for quantum spin-chain models. Instead of the infinite-randomness physics induced by uncorrelated disorder, we find that weak locally correlated disorder is irrelevant. For larger disorder, we find a line of critical points with unusual properties such as an increase of the entanglement entropy with the disorder strength. We also propose experimental realizations in the context of quantum magnetism and cold-atom physics. Financial support: Fapesp, CNPq, NSF, and Research Corporation.

  16. Gravity from entanglement close to a quantum critical point

    NASA Astrophysics Data System (ADS)

    Faulkner, Thomas

    2015-04-01

    Entanglement entropy (EE) in quantum many-body systems reveal interesting non-local aspects of the state or phase of the system. For example, topological order in gapped phases may be characterized in this way. We present calculations of entanglement close to a quantum critical point with relativistic invariance that reveal the existence of an emergent gravitational theory in one higher dimension. The gravitational theory encodes the entanglement of the quantum system in an efficient way. In this way calculations of EE, a usually notoriously difficult quantity to calculate, are reduced to a simple computation in classical gravity. The answer we find is in the spirit of the AdS/CFT duality but goes beyond it since our results apply to any relativistic quantum critical point and not just the known theories with classical gravity duals.

  17. Critical points of the anyon-Hubbard model

    NASA Astrophysics Data System (ADS)

    Arcila-Forero, J.; Franco, R.; Silva-Valencia, J.

    2016-07-01

    Anyons are particles with fractional statistics that exhibit a nontrivial change in the wave function under an exchange of particles. Anyons can be considered to be a general category of particles that interpolate between fermions and bosons. We determined the position of the critical points of the one-dimensional anyon-Hubbard model, which was mapped to a modified Bose-Hubbard model where the tunneling depends on the local density and the interchange angle. We studied the latter model by using the density-matrix renormalization-group method and observed that gapped (Mott insulator) and gapless (superfluid) phases characterized the phase diagram, regardless of the value of the statistical angle. The phase diagram for higher densities was calculated and showed that the Mott lobes increase (decrease) as a function of the statistical angle (global density). The position of the critical point separating the gapped and gapless phases was found using quantum information tools, namely the block von Neumann entropy. We also studied the evolution of the critical point with the global density and the statistical angle and showed that the anyon-Hubbard model with a statistical angle θ =π /4 is in the same universality class as the Bose-Hubbard model with two-body interactions.

  18. Turbulence close to the critical point of a fluid

    NASA Astrophysics Data System (ADS)

    Verhille, Gautier; Lachize, Cecile; Le Gal, Patrice

    2012-11-01

    Most of experiments in turbulence deal with liquid or gas. With classical fluids it is quite difficult to have both a high Reynolds number and a Mach number high enough to have compressible effects (Ma >~ 0 . 3). In water the sound speed is too large to permit compressible effects (c ~ 1500 m/s at room temperature and atmospheric pressure) and in air the viscosity is not so small (ν ~10-5 m2/s) so it is difficult to have high Reynolds number in a laboratory experiments. On the contrary, a fluid close to its critical point has a small kinematic viscosity, typically 20 times smaller than the water viscosity for SF6, and a small sound speed as the compressibility diverges, c ~ 70 m/s for SF6. Other properties of the fluid are diverging close to the critical point, as the correlation length of the density fluctuation and other goes to zero, as the thermal conductivity. We present here the first study of the modification of a turbulent flow close to the critical point. This flow is created in a rotor stator cavity, a one disk version of the ``french washing machine,'' in a pressurized and thermalized vessel filled up with SF6. Pressure and velocity measurements show an increase of the large scale dynamic whereas the inertial range does not seem to be affected.

  19. Ion exchange at the critical point of solution.

    PubMed

    Savoy, J D; Baird, J K; Lang, J R

    2016-03-11

    A mixture of isobutyric acid (IBA)+water has an upper critical point of solution at 26.7°C and an IBA concentration of 4.40M. We have determined the Langmuir isotherms for the hydroxide form of Amberlite IRN-78 resin in contact with mixtures of IBA+water at temperatures, 27.0, 29.0, 31.0 and 38.0°C, respectively. The Langmuir plot at 38.0°C forms a straight line. At the three lower temperatures, however, a peak in the Langmuir plot is observed for IBA concentrations in the vicinity of 4.40M. We regard this peak to be a critical effect not only because it is located close to 4.40M, but also because its height becomes more pronounced as the temperature of the isotherm approaches the critical temperature. For concentrations in the vicinity of the peak, the data indicate that the larger isobutyrate ion is rejected by the resin in favor of the smaller hydroxide ion. This reversal of the expected ion exchange reaction might be used to separate ions according to size. Using the Donnan theory of ion exchange equilibrium, we link the swelling pressure to the osmotic pressure. We show that the peak in the Langmuir plot is associated with a maximum in the "osmotic" energy. This maximum has its origin in the concentration derivative of the osmotic pressure, which goes to zero as the critical point is approached. PMID:26884137

  20. Critical Lines in Binary Mixtures of Components with Multiple Critical Points

    NASA Astrophysics Data System (ADS)

    Artemenko, Sergey; Lozovsky, Taras; Mazur, Victor

    The principal aim of this work is a comprehensive analysis of the fluid phase behavior of binary fluid mixtures via the van der Waals like equation of state (EoS) which has a multiplicity of critical points in metastable region. We test the modified van der Waals equation of state (MVDW) proposed by Skibinski et al. (2004) which displays a complex phase behavior including three critical points and identifies four fluid phases (gas, low density liquid (LDL), high density liquid (HDL), and very high density liquid (VHDL)). An improvement of repulsive part doesn't change a topological picture of phase behavior in the wide range of thermodynamic variables. The van der Waals attractive interaction and excluded volume for mixture are calculated from classical mixing rules. Critical lines in binary mixtures of type III of phase behavior in which the components exhibit polyamorphism are calculated and a continuity of fluid-fluid critical line at high pressure is observed.

  1. Universal thermodynamics at the liquid-vapor critical point.

    PubMed

    Sanchez, Isaac C; Boening, Kevin L

    2014-11-26

    For 68 fluids that include hydrogen bonding and quantum fluids, the fugacity coefficient that defines the residual chemical potential adopts a near universal value of 2/3 at the critical point. More precisely, the reciprocal of the fugacity coefficient equals 1.52 ± 0.02 and includes fluids as diverse as helium (1.50), dodecafluoropentane (1.50), and water (1.53). For 65 classical fluids, a dimensionless thermal pressure coefficient and internal pressure attain critical values of 1.88 ± 0.11 and 1.61 ± 0.11, respectively. From equations of state, values of these new critical constants have been calculated and agree favorably with experimental values. Specifically, for the critical fugacity coefficient, the following results were obtained for its reciprocal: van der Waals (1.44), lattice gas (1.43), scaled particle theory (1.46), and the Redlich-Kwong eq (1.50). The semiempirical Redlich-Kwong equation is also the most accurate for the thermal pressure coefficient (1.86) and internal pressure (1.53). Physical interpretations of these results are discussed as well as their implications for other critical phenomena. PMID:25369319

  2. Liquid-liquid critical point in supercooled silicon

    NASA Astrophysics Data System (ADS)

    Vasisht, Vishwas V.; Saw, Shibu; Sastry, Srikanth

    2011-07-01

    A novel liquid-liquid phase transition has been investigated for a wide variety of pure substances, including water, silica and silicon. From computer simulations using the Stillinger-Weber (SW) classical empirical potential, Sastry and Angell demonstrated a first order liquid-liquid transition in supercooled silicon at zero pressure, supported by subsequent experimental and simulation studies. Whether the line of such first order transitions will terminate at a critical point, expected to lie at negative pressures, is presently a matter of debate. Here we report evidence for a liquid-liquid critical point at negative pressures, from computer simulations using the SW potential. We identify Tc~1,120+/-12K, Pc~-0.60+/-0.15GPa as the critical temperature and pressure. We construct the phase diagram of supercooled silicon, which reveals the interconnection between thermodynamic anomalies and the phase behaviour of the system as suggested in previous works. We also observe a strong relationship between local geometry (quantified by the coordination number) and diffusivity, both of which change dramatically with decreasing temperature and pressure.

  3. Quenched and Annealed Critical Points in Polymer Pinning Models

    NASA Astrophysics Data System (ADS)

    Alexander, Kenneth S.; Zygouras, Nikos

    2009-11-01

    We consider a polymer with configuration modeled by the path of a Markov chain, interacting with a potential u + V n which the chain encounters when it visits a special state 0 at time n. The disorder ( V n ) is a fixed realization of an i.i.d. sequence. The polymer is pinned, i.e. the chain spends a positive fraction of its time at state 0, when u exceeds a critical value. We assume that for the Markov chain in the absence of the potential, the probability of an excursion from 0 of length n has the form {n^{-c}\\varphi(n)} with c ≥ 1 and φ slowly varying. Comparing to the corresponding annealed system, in which the V n are effectively replaced by a constant, it was shown in [1,4,13] that the quenched and annealed critical points differ at all temperatures for 3/2 < c < 2 and c > 2, but only at low temperatures for c < 3/2. For high temperatures and 3/2 < c < 2 we establish the exact order of the gap between critical points, as a function of temperature. For the borderline case c = 3/2 we show that the gap is positive provided {\\varphi(n) to 0} as n → ∞, and for c > 3/2 with arbitrary temperature we provide an alternate proof of the result in [4] that the gap is positive, and extend it to c = 2.

  4. Griffiths-Wheeler geometrical picture of critical phenomena: Experimental testing for liquid-liquid critical points

    NASA Astrophysics Data System (ADS)

    Troncoso, Jacobo; González-Salgado, Diego; Cerdeiriña, Claudio A.; Carballo, Enrique; Romaní, Luis

    2005-02-01

    An experimental approach to the verification of specific relations between thermodynamic properties as predicted from the Griffiths-Wheeler theory of critical phenomena in multicomponent systems is developed for the particular case of ordinary liquid-liquid critical points of binary mixtures. Densities ρ(T) , isobaric heat capacities per unit volume Cp(T) , and previously reported values of the slope of the critical line (dT/dp)c for five critical mixtures are used to check the thermodynamic consistency of Cp and ρ near the critical point. An appropriate treatment of ρ(T) data is found to provide the key solution to this issue. In addition, various alternative treatments for Cp(T) data provide values for both the critical exponent α and the ratio between the critical amplitudes of the heat capacity A+/A- that are in agreement with their widely accepted counterparts, whereas two-scale-factor universality is successfully verified in one of the systems studied.

  5. Thermodynamic consistency near the liquid-liquid critical point

    NASA Astrophysics Data System (ADS)

    Losada-Pérez, Patricia; Pérez-Sánchez, Germán; Cerdeiriña, Claudio A.; Troncoso, Jacobo; Romaní, Luis

    2009-01-01

    The thermodynamic consistency of the isobaric heat capacity per unit volume at constant composition Cp,x and the density ρ near the liquid-liquid critical point is studied in detail. To this end, Cp,x(T), ρ(T ), and the slope of the critical line (dT /dp)c for five binary mixtures composed by 1-nitropropane and an alkane were analyzed. Both Cp,x(T) and ρ(T ) data were measured along various quasicritical isopleths with a view to evaluate the effect of the uncertainty in the critical composition value on the corresponding critical amplitudes. By adopting the traditionally employed strategies for data treatment, consistency within 0.01 K MPa-1 (or 8%) is attained, thereby largely improving the majority of previous results. From temperature range shrinking fits and fits in which higher-order terms in the theoretical expressions for Cp,x(T) and ρ(T ) are included, we conclude that discrepancies come mainly from inherent difficulties in determining the critical anomaly of ρ accurately: specifically, to get full consistency, higher-order terms in ρ(T ) are needed; however, the various contributions at play cannot be separated unambiguously. As a consequence, the use of Cp,x(T) and (dT /dp)c for predicting the behavior of ρ(T ) at near criticality appears to be the best choice at the actual experimental resolution levels. Furthermore, the reasonably good thermodynamic consistency being encountered confirms that previous arguments appealing to the inadequacy of the theoretical expression relating Cp,x and ρ for describing data in the experimentally accessible region must be fairly rejected.

  6. Simple description of odd-A nuclei around the critical point of the spherical to axially deformed shape phase transition

    SciTech Connect

    Zhang Yu; Pan Feng; Liu Yuxin; Luo Yanan; Draayer, J. P.

    2011-09-15

    An analytically solvable model, X(3/2j+1), is proposed to describe odd-A nuclei near the X(3) critical point. The model is constructed based on a collective core described by the X(3) critical point symmetry coupled to a spin-j particle. A detailed analysis of the spectral patterns for cases j=1/2 and j=3/2 is provided to illustrate dynamical features of the model. By comparing theory with experimental data and results of other models, it is found that the X(3/2j+1) model can be taken as a simple yet very effective scheme to describe those odd-A nuclei with an even-even core at the critical point of the spherical to axially deformed shape phase transition.

  7. Critical point drying and cleaning for MEMS technology

    NASA Astrophysics Data System (ADS)

    Jafri, Ijaz H.; Busta, Heinz; Walsh, Steven T.

    1999-08-01

    A critical step in surface micromachining of microelectromechanical systems (MEMS) is the process that releases, cleans, and dries the flexible structures that are crucial to MEMS functionality. Standard release methods employed today can leave residue particles and can cause sticking because of surface tension. Aggressive design requirements, liquid processing, packaging, handling, transportation, and device operation etc., can contribute to device failure due to stiction. The use of supercritical carbon dioxide has been proven in various industries to achieve ultra-clean surfaces. Recent critical research studies by academia, research laboratories and industry have shown that supercritical carbon dioxide can be successfully used to alleviate the stiction problem and provide a clean and dry surface. The absence of surface tension in the supercritical phase of a fluid provides an excellent means to overcome stiction. The advantages of supercritical carbon dioxide include its relatively low critical temperature and pressure, its high diffusivity, low surface tension, and environmentally friendly (non-ozone depleting, non- hazardous). This paper reviews the stiction problem for MEMS, and the application of critical point drying for MEMS technology.

  8. Measurement of Critical Adsorption of Nitrogen near Its Liquid-vapor Critical Point

    NASA Technical Reports Server (NTRS)

    Chan, Moses

    2003-01-01

    The density profile of a critical fluid near a solid surface is expected to show an universal shape. This is known as critical adsorption. The measurement of this effect, especially close to the critical point, is often obscured by gravity. We were able to separate the gravitational effect from critical adsorption by using two capacitors, one with a large gap and one with a small gap of approximately 2 m. Within the uncertainty in the measurement, our data, which ranges between 10(exp -3) to 2 x 10(exp -6) in reduced temperatures, is consistent with the predicted power law dependence. This work is carried out in collaboration with Rafael Garcia, Sarah Scheidemantel and Klaus Knorr. It is funded by NASA's office of Biological and Physical Researchunder.

  9. Determining End Points for Critical Limb Ischemia Interventions.

    PubMed

    Cooper, Kyle J; Peña, Constantino; Benenati, James

    2016-06-01

    Critical limb ischemia is a condition that has increased in prevalence and carries a high degree of morbidity. Although endovascular therapy for treatment of patients with critical limb ischemia has undergone significant advances with improved outcomes over the past decade, these patients often have multilevel disease, and it may take weeks or months for ulceration healing. For this reason, the acceptable therapeutic end points during and immediately following revascularization remain somewhat obscure. There are multiple tools available to guide the treating vascular specialist in this regard. Establishment of in-line flow to the foot and the angiosome containing the ulceration, appearance of a "wound blush," restoration of pulses, and bleeding at the ulcer site are basic tenets intraprocedurally. Postprocedural noninvasive testing including the ankle-brachial and toe-brachial indices, segmental pressure measurements, pulse volume recordings, transcutaneous oxygen tension, skin perfusion pressures (SPPs), and toe pressures all play a role in determining the likelihood of clinical improvement. Newer technologies such as two-dimensional (2D) perfusion angiography, fluorescence angiography, and tissue oxygen saturation mapping may allow better real-time assessment of flow restoration. In combination with close clinical follow-up and wound care, these tools provide treating physicians with a better grasp of the necessary end points to optimize patients for clinical improvement. PMID:27423992

  10. Heat capacity and magnetization of CoNb2O6 near quantum critical point

    NASA Astrophysics Data System (ADS)

    Liang, Tian; Koohpayeh, Seyed; Krizan, Jason; Dutton, Sian; McQueen, Tyrel; Cava, Robert; Phuan Ong, N.

    2012-02-01

    CoNb2O6 is a quasi-1D quantum magnet in which magnetic Co^2+ ions are ferromagnetically arranged into nearly isolated chains along the c axis with the magnetic moment confined in the ac-plane. By applying transverse magnetic field along b-axis, quantum phase transition from magnetically ordered phase to paramagnetic phase occurs. Evidence for emergent E8 symmetry was recently obtained by neutron scattering near the quantum critical point (QCP) in an applied transverse magnetic field of 5.5 T We will report on experiments to investigate the behavior of the heat capacity and torque magnetization in the vicinity of the QCP and discuss their implications.

  11. Experimental consequences of quantum critical points at high temperatures

    NASA Astrophysics Data System (ADS)

    Freitas, D. C.; Rodière, P.; Núñez, M.; Garbarino, G.; Sulpice, A.; Marcus, J.; Gay, F.; Continentino, M. A.; Núñez-Regueiro, M.

    2015-11-01

    We study the C r1 -xR ex phase diagram finding that its phase transition temperature towards an antiferromagnetic order TN follows a quantum [(xc-x ) /xc ] ψ law, with ψ =1 /2 , from the quantum critical point (QCP) at xc=0.25 up to TN≈600 K . We compare this system to others in order to understand why this elemental material is affected by the QCP up to such unusually high temperatures. We determine a general criterion for the crossover, as a function of an external parameter such as concentration, from the region controlled solely by thermal fluctuations to that where quantum effects become observable. The properties of materials with low coherence lengths will thus be altered far away from the QCP.

  12. Shear Thinning Near the Critical Point of Xenon

    NASA Technical Reports Server (NTRS)

    Zimmerli, Gregory A.; Berg, Robert F.; Moldover, Michael R.; Yao, Minwu

    2008-01-01

    We measured shear thinning, a viscosity decrease ordinarily associated with complex liquids, near the critical point of xenon. The data span a wide range of reduced shear rate: 10(exp -3) < gamma-dot tau < 700, where gamma-dot tau is the shear rate scaled by the relaxation time tau of critical fluctuations. The measurements had a temperature resolution of 0.01 mK and were conducted in microgravity aboard the Space Shuttle Columbia to avoid the density stratification caused by Earth's gravity. The viscometer measured the drag on a delicate nickel screen as it oscillated in the xenon at amplitudes 3 mu,m < chi (sub 0) >430 mu, and frequencies 1 Hz < omega/2 pi < 5 Hz. To separate shear thinning from other nonlinearities, we computed the ratio of the viscous force on the screen at gamma-dot tau to the force at gamma-dot tau approximates 0: C(sub gamma) is identical with F(chi(sub 0), omega tau, gamma-dot tau )/F)(chi(sub 0, omega tau, 0). At low frequencies, (omega tau)(exp 2) < gamma-dot tau, C(sub gamma) depends only on gamma-dot tau, as predicted by dynamic critical scaling. At high frequencies, (omega tau)(exp 2) > gamma-dot tau, C(sub gamma) depends also on both x(sub 0) and omega. The data were compared with numerical calculations based on the Carreau-Yasuda relation for complex fluids: eta(gamma-dot)/eta(0)=[1+A(sub gamma)|gamma-dot tau|](exp - chi(sub eta)/3+chi(sub eta)), where chi(sub eta) =0.069 is the critical exponent for viscosity and mode-coupling theory predicts A(sub gamma) =0.121. For xenon we find A(sub gamma) =0.137 +/- 0.029, in agreement with the mode coupling value. Remarkably, the xenon data close to the critical temperature T(sub c) were independent of the cooling rate (both above and below T(sub c) and these data were symmetric about T(sub c) to within a temperature scale factor. The scale factors for the magnitude of the oscillator s response differed from those for the oscillator's phase; this suggests that the surface tension of the two

  13. Influence of intermolecular forces at critical-point wedge filling

    NASA Astrophysics Data System (ADS)

    Malijevský, Alexandr; Parry, Andrew O.

    2016-04-01

    We use microscopic density functional theory to study filling transitions in systems with long-ranged wall-fluid and short-ranged fluid-fluid forces occurring in a right-angle wedge. By changing the strength of the wall-fluid interaction we can induce both wetting and filling transitions over a wide range of temperatures and study the order of these transitions. At low temperatures we find that both wetting and filling transitions are first order in keeping with predictions of simple local effective Hamiltonian models. However close to the bulk critical point the filling transition is observed to be continuous even though the wetting transition remains first order and the wetting binding potential still exhibits a small activation barrier. The critical singularities for adsorption for the continuous filling transitions depend on whether retarded or nonretarded wall-fluid forces are present and are in excellent agreement with predictions of effective Hamiltonian theory even though the change in the order of the transition was not anticipated.

  14. Entropy excess in strongly correlated Fermi systems near a quantum critical point

    SciTech Connect

    Clark, J.W.; Zverev, M.V.; Khodel, V.A.

    2012-12-15

    A system of interacting, identical fermions described by standard Landau Fermi-liquid (FL) theory can experience a rearrangement of its Fermi surface if the correlations grow sufficiently strong, as occurs at a quantum critical point where the effective mass diverges. As yet, this phenomenon defies full understanding, but salient aspects of the non-Fermi-liquid (NFL) behavior observed beyond the quantum critical point are still accessible within the general framework of the Landau quasiparticle picture. Self-consistent solutions of the coupled Landau equations for the quasiparticle momentum distribution n(p) and quasiparticle energy spectrum {epsilon}(p) are shown to exist in two distinct classes, depending on coupling strength and on whether the quasiparticle interaction is regular or singular at zero momentum transfer. One class of solutions maintains the idempotency condition n{sup 2}(p)=n(p) of standard FL theory at zero temperature T while adding pockets to the Fermi surface. The other solutions are characterized by a swelling of the Fermi surface and a flattening of the spectrum {epsilon}(p) over a range of momenta in which the quasiparticle occupancies lie between 0 and 1 even at T=0. The latter, non-idempotent solution is revealed by analysis of a Poincare mapping associated with the fundamental Landau equation connecting n(p) and {epsilon}(p) and validated by solution of a variational condition that yields the symmetry-preserving ground state. Significantly, this extraordinary solution carries the burden of a large temperature-dependent excess entropy down to very low temperatures, threatening violation of the Nernst Theorem. It is argued that certain low-temperature phase transitions, notably those involving Cooper-pair formation, offer effective mechanisms for shedding the entropy excess. Available measurements in heavy-fermion compounds provide concrete support for such a scenario. - Highlights: Black-Right-Pointing-Pointer Extension of Landau

  15. On the motion of two point vortex pairs with glide-reflective symmetry in a periodic strip

    NASA Astrophysics Data System (ADS)

    Basu, Saikat; Stremler, Mark A.

    2015-10-01

    The motion of four point vortices with zero net circulation in a potential flow contained within a two-dimensional, singly periodic domain (i.e., a periodic strip) is determined under the assumption of a spatial symmetry that is preserved by the dynamics. This symmetry is inspired by the patterns observed in two-pair (2P) vortex wakes, in which four neighboring vortices appear as two pairs with a glide-reflective symmetry: the arrangement of each pair is related to the other by a reflection about the wake centerline and a half-period translation along the wake centerline. Under the assumed constraints, the problem can be reduced to an integrable Hamiltonian system. Vortex motions are classified using a bifurcation analysis of the phase space topology as determined by level curves of the Hamiltonian. Unlike the well-known von Kármán point vortex model, in which a singly periodic system of two point vortices with glide-reflective symmetry is always in relative equilibrium, this four-point-vortex system exhibits a rich variety of relative motions for almost all possible initial conditions. Five distinct classes of relative vortex motion are identified, encompassing a total of 12 different types of motion, suggesting that experimental wakes with four vortices formed per shedding cycle may exhibit behaviors not yet explored in the literature. A finite number of initial conditions do correspond to relative equilibria, in which case the vortex configuration propagates downstream with invariant size and shape. Some of these relative equilibria are neutrally stable to perturbations that preserve the system constraints, while others are unstable, leading to large deviations from the equilibrium configuration.

  16. Theory of the nematic quantum critical point in a nodal superconductor

    NASA Astrophysics Data System (ADS)

    Kim, Eun-Ah

    2008-03-01

    In the last several years, experimental evidence has accumulated in a variety of highly correlated electronic systems of new quantum phases which (for purely electronic reasons) spontaneously break the rotational (point group) symmetry of the underlying crystal. Such electron ``nematic'' phases have been seen in quantum Hall systems[1], in the metamagnetic metal Sr3Ru2O7[2], and more recently in magnetic neutron scattering studies of the high temperature superconductor, YBCO[3]. In the case of a high Tc superconductor, the quantum dynamics of nematic order parameter naturally couples strongly to quasiparticle (qp) excitations. In this talk, I will discuss our recent results on the effects of the coupling between quantum critical nematic fluctuations and the nodal qp's of a d-wave superconductor in the vicinity of a putative quantum critical point inside the superconducting phase. We solve a model system with N flavors of quasiparticles in the large N limit[4]. To leading order in 1/N, quantum fluctuations enhance the dispersion anisotropy of the nodal excitations, and cause strong scattering which critically broadens the quasiparticle peaks in the spectral function, except in the vicinity of ``the tips of the banana,'' where the qp's remain sharp. We will discuss the possible implications of our results to ARPES and STM experiments. [1] M.P. Lilly, K.B. Cooper, J.P. Eisenstein, L.N. Pfeiffer, and K.W. West, PRL 83, 824 (1999). [2] R. A. Borzi and S. A. Grigera and J. Farrell and R. S. Perry and S. J. S. Lister and S. L. Lee and D. A. Tennant and Y. Maeno and A. P. Mackenzie, Science 315, 214 (2007). [3] V. Hinkov, D. Haug, B. Fauqu'e, P. Bourges, Y. Sidis, A. Ivanov, C. Bernhard, C. T. Lin, B. Keimer, unpublished. [4] E.-A. Kim, M. Lawler, P. Oreto, E. Fradkin, S. Kivelson, cond-mat/0705.4099.

  17. Stochastic Approximation of Dynamical Exponent at Quantum Critical Point

    NASA Astrophysics Data System (ADS)

    Suwa, Hidemaro; Yasuda, Shinya; Todo, Synge

    We have developed a unified finite-size scaling method for quantum phase transitions that requires no prior knowledge of the dynamical exponent z. During a quantum Monte Carlo simulation, the temperature is automatically tuned by the Robbins-Monro stochastic approximation method, being proportional to the lowest gap of the finite-size system. The dynamical exponent is estimated in a straightforward way from the system-size dependence of the temperature. As a demonstration of our novel method, the two-dimensional S = 1 / 2 quantum XY model, or equivalently the hard-core boson system, in uniform and staggered magnetic fields is investigated in the combination of the world-line quantum Monte Carlo worm algorithm. In the absence of a uniform magnetic field, we obtain the fully consistent result with the Lorentz invariance at the quantum critical point, z = 1 . Under a finite uniform magnetic field, on the other hand, the dynamical exponent becomes two, and the mean-field universality with effective dimension (2+2) governs the quantum phase transition. We will discuss also the system with random magnetic fields, or the dirty boson system, bearing a non-trivial dynamical exponent.Reference: S. Yasuda, H. Suwa, and S. Todo Phys. Rev. B 92, 104411 (2015); arXiv:1506.04837

  18. Rapid microbiological methods with hazard analysis critical control point.

    PubMed

    Griffiths, M W

    1997-01-01

    The proactive approach to ensuring food safety termed hazard analysis critical control point (HACCP) was introduced in the 1960s by the Pillsbury Company, in collaboration with the U.S. Army Natick Laboratories and National Aeronautics and Space Administration, to help guarantee that astronauts would not be incapacitated by the trauma of foodborne illness during space flights. The approach has subsequently been adopted as the standard food safety management system world-wide and is seen as forming the basis for harmonization of food inspection regulations necessitated by trade agreements such as General Agreement on Tariffs and Trade and North American Free Trade Agreement as the move toward globalization of trade in food products gains momentum. The new U.S. Department of Agriculture Mega-Reg requires mandatory introduction of HACCP, and the Food Safety Enhancement Program of Agriculture and Agri-food Canada, as well as the "due diligence" legislation of the European Union, is centered on HACCP principles. PMID:9419852

  19. Avoided ferromagnetic quantum critical point in CeRuPO

    NASA Astrophysics Data System (ADS)

    Lengyel, E.; Macovei, M. E.; Jesche, A.; Krellner, C.; Geibel, C.; Nicklas, M.

    2015-01-01

    CeRuPO is a rare example of a ferromagnetic (FM) Kondo-lattice system. External pressure suppresses the ordering temperature to zero at about pc≈3 GPa. Our ac-susceptibility and electrical-resistivity investigations evidence that the type of magnetic ordering changes from FM to antiferromagnetic (AFM) at about p*≈0.87 GPa . Studies in applied magnetic fields suggest that ferromagnetic and antiferromagnetic correlations compete for the ground state at p >p* , but finally the AFM correlations win. The change in the magnetic ground-state properties is closely related to the pressure evolution of the crystalline-electric-field level scheme and the magnetic Ruderman-Kittel-Kasuya-Yosida exchange interaction. The Néel temperature disappears abruptly in a first-order-like fashion at pc, hinting at the absence of a quantum critical point. This is consistent with the low-temperature transport properties exhibiting Landau-Fermi-liquid behavior in the whole investigated pressure range up to 7.5 GPa.

  20. Critical point of the solar wind by radio sounding data

    NASA Technical Reports Server (NTRS)

    Lotova, N. A.; Oraevsky, V. N.; Pisarenko, Ya. V.; Vladimirskii, K. V.

    1995-01-01

    Results of the close-to-Sun plasmas sounding at the transonic region of the solar wind, where the sub-to supersonic flow transition proceeds (at 10 to 40 solar radii from the Sun), are presented. Natural sources of two types were used, water vapour maser sources at 1.35 cm and guasars at 2.9 m wavelength. scattering observations cover the period of 1986 to 1993, Russian Academy of Sciences telescopes RT-22 and DCR-1000 were used, IPS index and scattering angle being the immediate results of observations. Extensive studies of the scintillation index and scattering angle radial profiles reveal a remarkable structural detail, 'transonic region forrunner'-narrow region of diminished scattering close to the internal border of the extended transonic region with its characteristic enhanced scattering. Comparisons of the scattering and plasma velocity profiles let it possible to determine the critical point positions by the comparatively simple scattering observations. This new possibility widely improves the process of the basic data accumulation in the fundamental problem of the solar wind acceleration mechanism.

  1. Stochastic approximation of dynamical exponent at quantum critical point

    NASA Astrophysics Data System (ADS)

    Yasuda, Shinya; Suwa, Hidemaro; Todo, Synge

    2015-09-01

    We have developed a unified finite-size scaling method for quantum phase transitions that requires no prior knowledge of the dynamical exponent z . During a quantum Monte Carlo simulation, the temperature is automatically tuned by the Robbins-Monro stochastic approximation method, being proportional to the lowest gap of the finite-size system. The dynamical exponent is estimated in a straightforward way from the system-size dependence of the temperature. As a demonstration of our novel method, the two-dimensional S =1 /2 quantum X Y model in uniform and staggered magnetic fields is investigated in the combination of the world-line quantum Monte Carlo worm algorithm. In the absence of a uniform magnetic field, we obtain the fully consistent result with the Lorentz invariance at the quantum critical point, z =1 , i.e., the three-dimensional classical X Y universality class. Under a finite uniform magnetic field, on the other hand, the dynamical exponent becomes two, and the mean-field universality with effective dimension (2 +2 ) governs the quantum phase transition.

  2. 21 CFR 120.8 - Hazard Analysis and Critical Control Point (HACCP) plan.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 2 2011-04-01 2011-04-01 false Hazard Analysis and Critical Control Point (HACCP... SERVICES (CONTINUED) FOOD FOR HUMAN CONSUMPTION HAZARD ANALYSIS AND CRITICAL CONTROL POINT (HACCP) SYSTEMS General Provisions § 120.8 Hazard Analysis and Critical Control Point (HACCP) plan. (a) HACCP plan....

  3. On the use of Abelian point group symmetry in density-fitted local MP2 using various types of virtual orbitals

    SciTech Connect

    Köppl, Christoph; Werner, Hans-Joachim

    2015-04-28

    Electron correlation methods based on symmetry-adapted canonical Hartree-Fock orbitals can be speeded up significantly in the well known group theoretical manner, using the fact that integrals vanish unless the integrand is totally symmetric. In contrast to this, local electron correlation methods cannot benefit from such simplifications, since the localized molecular orbitals (LMOs) generally do not transform according to irreducible representations of the underlying point group symmetry. Instead, groups of LMOs become symmetry-equivalent and this can be exploited to accelerate local calculations. We describe an implementation of such a symmetry treatment for density-fitted local Møller-Plesset perturbation theory, using various types of virtual orbitals: Projected atomic orbitals, orbital specific virtuals, and pair natural orbitals. The savings by the symmetry treatment are demonstrated by calculations for several large molecules having different point group symmetries. Benchmarks for the parallel execution efficiency of our method are also presented.

  4. The effect of disorder on the critical points in the vortex phase diagram of YBCO

    SciTech Connect

    Crabtree, G. W.; Kwok, W. K.; Paulius, L. M.; Petrean, A. M.; Olsson, R. J.; Karapetrov, G.; Tobos, V.; Moulton, W. G.

    2000-01-19

    The effect of line disorder induced by heavy ion irradiation and of point disorder induced by proton and electron irradiation on the upper and lower critical points in the vortex phase diagram of YBCO is presented. The authors find that dilute line disorder induces a Bose glass transition at low fields which is replaced at the lower critical point by first order melting at higher fields. Strong pinning point defects raise the lower critical point, while weak pinning point defects have little or no effect on the lower critical point. The upper critical point is lowered by point disorder, but raised by line disorder. First order melting is suppressed by point disorder in two ways, by lowering of the upper critical point only for weak point pins, or by merging of the upper and lower critical points for strong point pins. The differing responses of the upper and lower critical points to line and point disorder can be understood in a picture of transverse and longitudinal spatial fluctuations.

  5. Entropy excess in strongly correlated Fermi systems near a quantum critical point

    NASA Astrophysics Data System (ADS)

    Clark, J. W.; Zverev, M. V.; Khodel, V. A.

    2012-12-01

    A system of interacting, identical fermions described by standard Landau Fermi-liquid (FL) theory can experience a rearrangement of its Fermi surface if the correlations grow sufficiently strong, as occurs at a quantum critical point where the effective mass diverges. As yet, this phenomenon defies full understanding, but salient aspects of the non-Fermi-liquid (NFL) behavior observed beyond the quantum critical point are still accessible within the general framework of the Landau quasiparticle picture. Self-consistent solutions of the coupled Landau equations for the quasiparticle momentum distribution n(p) and quasiparticle energy spectrum ɛ(p) are shown to exist in two distinct classes, depending on coupling strength and on whether the quasiparticle interaction is regular or singular at zero momentum transfer. One class of solutions maintains the idempotency condition n2(p)=n(p) of standard FL theory at zero temperature T while adding pockets to the Fermi surface. The other solutions are characterized by a swelling of the Fermi surface and a flattening of the spectrum ɛ(p) over a range of momenta in which the quasiparticle occupancies lie between 0 and 1 even at T=0. The latter, non-idempotent solution is revealed by analysis of a Poincaré mapping associated with the fundamental Landau equation connecting n(p) and ɛ(p) and validated by solution of a variational condition that yields the symmetry-preserving ground state. Significantly, this extraordinary solution carries the burden of a large temperature-dependent excess entropy down to very low temperatures, threatening violation of the Nernst Theorem. It is argued that certain low-temperature phase transitions, notably those involving Cooper-pair formation, offer effective mechanisms for shedding the entropy excess. Available measurements in heavy-fermion compounds provide concrete support for such a scenario.

  6. Analysis of hygienic critical control points in boar semen production.

    PubMed

    Schulze, M; Ammon, C; Rüdiger, K; Jung, M; Grobbel, M

    2015-02-01

    The present study addresses the microbiological results of a quality control audit in artificial insemination (AI) boar studs in Germany and Austria. The raw and processed semen of 344 boars in 24 AI boar studs were analyzed. Bacteria were found in 26% (88 of 344) of the extended ejaculates and 66.7% (18 of 24) of the boar studs. The bacterial species found in the AI dose were not cultured from the respective raw semen in 95.5% (84 of 88) of the positive samples. These data, together with the fact that in most cases all the samples from one stud were contaminated with identical bacteria (species and resistance profile), indicate contamination during processing. Microbiological investigations of the equipment and the laboratory environment during semen processing in 21 AI boar studs revealed nine hygienic critical control points (HCCP), which were addressed after the first audit. On the basis of the analysis of the contamination rates of the ejaculate samples, improvements in the hygiene status were already present in the second audit (P = 0.0343, F-test). Significant differences were observed for heating cabinets (improvement, P = 0.0388) and manual operating elements (improvement, P = 0.0002). The odds ratio of finding contaminated ejaculates in the first and second audit was 1.68 (with the 95% confidence interval ranging from 1.04 to 2.69). Furthermore, an overall good hygienic status was shown for extenders, the inner face of dilution tank lids, dyes, and ultrapure water treatment plants. Among the nine HCCP considered, the most heavily contaminated samples, as assessed by the median scores throughout all the studs, were found in the sinks and/or drains. High numbers (>10(3) colony-forming units/cm(2)) of bacteria were found in the heating cabinets, ejaculate transfer, manual operating elements, and laboratory surfaces. In conclusion, the present study emphasizes the need for both training of the laboratory staff in monitoring HCCP in routine semen

  7. Conservation laws and associated Lie point symmetries admitted by the transient heat conduction problem for heat transfer in straight fins

    NASA Astrophysics Data System (ADS)

    Ndlovu, Partner; Moitsheki, Rasselo

    2013-08-01

    Some new conservation laws for the transient heat conduction problem for heat transfer in a straight fin are constructed. The thermal conductivity is given by a power law in one case and by a linear function of temperature in the other. Conservation laws are derived using the direct method when thermal conductivity is given by the power law and the multiplier method when thermal conductivity is given as a linear function of temperature. The heat transfer coefficient is assumed to be given by the power law function of temperature. Furthermore, we determine the Lie point symmetries associated with the conserved vectors for the model with power law thermal conductivity.

  8. Fourfold symmetry in the ab-plane of the upper critical field for the high-T{sub c} cuprates

    SciTech Connect

    Noji, T.; Koike, Y.; Nishizaki, T.; Kobayashi, N.

    1996-11-01

    The authors have found clear anisotropy in the ab plane with fourfold symmetry of the resistive superconducting transition under magnetic fields for single-crystal Pb{sub 2}Sr{sub 2}Y{sub 0.62}Ca{sub 0.38}Cu{sub 3}O{sub 8}, which is regarded as anisotropy of the upper critical field Hc{sub 2}. This is not only qualitatively but also quantitatively similar to that formerly observed in La{sub 1.86}Sr{sub 0.14}CuO{sub 4}. The observed fourfold symmetry is explained as being mainly due to the anisotropy of the superconducting energy gap owing to d{sub x{sup 2}{minus}y{sup 2}} pairing. H{sub c2}, one of the bulk properties, supports d{sub x{sup 2}{minus}y{sup 2}} pairing in the high-T{sub c} superconductivity.

  9. Anomalous parity-time-symmetry transition away from an exceptional point

    NASA Astrophysics Data System (ADS)

    Ge, Li

    2016-07-01

    Parity-time (PT ) symmetric systems have two distinguished phases, e.g., one with real-energy eigenvalues and the other with complex-conjugate eigenvalues. To enter one phase from the other, it is believed that the system must pass through an exceptional point, which is a non-Hermitian degenerate point with coalesced eigenvalues and eigenvectors. Here we reveal an anomalous PT transition that takes place away from an exceptional point in a nonlinear system: as the nonlinearity increases, the original linear system evolves along two distinct PT -symmetric trajectories, each of which can have an exceptional point. However, the two trajectories collide and vanish away from these exceptional points, after which the system is left with a PT -broken phase. We first illustrate this phenomenon using a coupled-mode theory and then exemplify it using paraxial wave propagation in a transverse periodic potential.

  10. Critical-point analysis of the liquid-vapor interfacial surface tension

    NASA Technical Reports Server (NTRS)

    Salvino, R. E.

    1990-01-01

    The interfacial surface tension of the liquid-vapor system is analyzed near the critical point in a manner similar to bulk thermodynamic critical-point analyses. This is accomplished by a critical-point analysis of the single-phase hard-wall surface tension. Both a Landau expansion and a scaling theory equation of state are investigated. Some general exponent relations are derived and, in addition, some thermodynamically defined correlation lengths are discussed.

  11. Quantum critical points of j =3/2 Dirac electrons in antiperovskite topological crystalline insulators

    NASA Astrophysics Data System (ADS)

    Isobe, Hiroki; Fu, Liang

    2016-06-01

    We study the effect of the long-range Coulomb interaction in j =3 /2 Dirac electrons in cubic crystals with the Oh symmetry, which serves as an effective model for antiperovskite topological crystalline insulators. The renormalization group analysis reveals three fixed points that are Lorentz invariant, rotationally invariant, and Oh invariant. Among them, the Lorentz- and Oh-invariant fixed points are stable in the low-energy limit, while the rotationally invariant fixed point is unstable. The existence of a stable Oh-invariant fixed point of Dirac fermions with finite velocity anisotropy presents an interesting counterexample to emergent Lorentz invariance in solids.

  12. Generating symmetry-adapted bases for non-Abelian point groups to be used in vibronic coupling Hamiltonians

    NASA Astrophysics Data System (ADS)

    Robertson, Christopher; Worth, Graham A.

    2015-10-01

    The vibronic coupling Hamiltonian is a standard model used to describe the potential energy surfaces of systems in which non-adiabatic coupling is a key feature. This includes Jahn-Teller and Renner-Teller systems. The model approximates diabatic potential energy functions as polynomials expanded about a point of high symmetry. One must ensure the model Hamiltonian belongs to the totally symmetric irreducible representation of this point group. Here, a simple approach is presented to generate functions that form a basis for totally symmetric irreducible representations of non-Abelian groups and apply it to D∞h (2D) and O (3D). For the O group, the use of a well known basis-generating operator is also required. The functions generated for D∞h are then used to construct a ten state, four coordinate model of acetylene. The calculated absorption spectrum is compared to the experimental spectrum to serve as a validation of the approach.

  13. Self-organized criticality as Witten-type topological field theory with spontaneously broken Becchi-Rouet-Stora-Tyutin symmetry

    SciTech Connect

    Ovchinnikov, Igor V.

    2011-05-15

    Here, a scenario is proposed, according to which a generic self-organized critical (SOC) system can be looked upon as a Witten-type topological field theory (W-TFT) with spontaneously broken Becchi-Rouet-Stora-Tyutin (BRST) symmetry. One of the conditions for the SOC is the slow driving noise, which unambiguously suggests Stratonovich interpretation of the corresponding stochastic differential equation (SDE). This, in turn, necessitates the use of Parisi-Sourlas-Wu stochastic quantization procedure, which straightforwardly leads to a model with BRST-exact action, i.e., to a W-TFT. In the parameter space of the SDE, there must exist full-dimensional regions where the BRST symmetry is spontaneously broken by instantons, which in the context of SOC are essentially avalanches. In these regions, the avalanche-type SOC dynamics is liberated from overwise a rightful dynamics-less W-TFT, and a Goldstone mode of Fadeev-Popov ghosts exists. Goldstinos represent moduli of instantons (avalanches) and being gapless are responsible for the critical avalanche distribution in the low-energy, long-wavelength limit. The above arguments are robust against moderate variations of the SDE's parameters and the criticality is 'self-tuned'. The proposition of this paper suggests that the machinery of W-TFTs may find its applications in many different areas of modern science studying various physical realizations of SOC. It also suggests that there may in principle exist a connection between some SOC's and the concept of topological quantum computing.

  14. The critical current of point symmetric Josephson tunnel junctions

    NASA Astrophysics Data System (ADS)

    Monaco, Roberto

    2016-06-01

    The physics of Josephson tunnel junctions drastically depends on their geometrical configurations. The shape of the junction determines the specific form of the magnetic-field dependence of its Josephson current. Here we address the magnetic diffraction patterns of specially shaped planar Josephson tunnel junctions in the presence of an in-plane magnetic field of arbitrary orientations. We focus on a wide ensemble of junctions whose shape is invariant under point reflection. We analyze the implications of this type of isometry and derive the threshold curves of junctions whose shape is the union or the relative complement of two point symmetric plane figures.

  15. Universal Entanglement Entropy in 2D Conformal Quantum Critical Points

    SciTech Connect

    Hsu, Benjamin; Mulligan, Michael; Fradkin, Eduardo; Kim, Eun-Ah

    2008-12-05

    We study the scaling behavior of the entanglement entropy of two dimensional conformal quantum critical systems, i.e. systems with scale invariant wave functions. They include two-dimensional generalized quantum dimer models on bipartite lattices and quantum loop models, as well as the quantum Lifshitz model and related gauge theories. We show that, under quite general conditions, the entanglement entropy of a large and simply connected sub-system of an infinite system with a smooth boundary has a universal finite contribution, as well as scale-invariant terms for special geometries. The universal finite contribution to the entanglement entropy is computable in terms of the properties of the conformal structure of the wave function of these quantum critical systems. The calculation of the universal term reduces to a problem in boundary conformal field theory.

  16. Connection between in-plane upper critical field Hc 2 and gap symmetry in layered d -wave superconductors

    NASA Astrophysics Data System (ADS)

    Wang, Jing-Rong; Liu, Guo-Zhu; Zhang, Chang-Jin

    2016-07-01

    Angle-resolved upper critical field Hc 2 provides an efficient tool to probe the gap symmetry of unconventional superconductors. We revisit the behavior of in-plane Hc 2 in d -wave superconductors by considering both the orbital effect and Pauli paramagnetic effect. After carrying out systematic analysis, we show that the maxima of Hc 2 could be along either nodal or antinodal directions of a d -wave superconducting gap, depending on the specific values of a number of tuning parameters. This behavior is in contrast to the common belief that the maxima of in-plane Hc 2 are along the direction where the superconducting gap takes its maximal value. Therefore, identifying the precise d -wave gap symmetry through fitting experiments results of angle-resolved Hc 2 with model calculations at a fixed temperature, as widely used in previous studies, is difficult and practically unreliable. However, our extensive analysis of angle-resolved Hc 2 show that there is a critical temperature T*: in-plane Hc 2 exhibits its maxima along nodal directions at T symmetry is to measure Hc 2 at a number of different temperatures, and examine whether there is a π /4 shift in its angular dependence at certain T*. We further show that Landau level mixing does not change this general feature. However, in the presence of Fulde-Ferrell-Larkin-Ovchinnikov state, the angular dependence of Hc 2 becomes quite complicated, which makes it more difficult to determine the gap symmetry by measuring Hc 2. Our results indicate that some previous studies on the gap symmetry of CeCu2Si2 are unreliable and need to be reexamined, and also provide a candidate solution to an experimental discrepancy in the angle-resolved Hc 2 in CeCoIn5.

  17. Alternative solvable description of the E(5) critical point symmetry in the interacting boson model

    NASA Astrophysics Data System (ADS)

    Pan, Feng; Zhang, Yu; Xu, Hao-Cheng; Dai, Lian-Rong; Draayer, J. P.

    2015-03-01

    A solvable extended Hamiltonian that includes multipair interactions among s and d bosons up to infinite order within the framework of the interacting boson model (IBM) is proposed to gain a better description of E(5) model results for finite-N systems. Numerical fits to low-lying energy levels and reduced E 2 transition rates within this extended version of the theory are presented for various N values. The fits show that the extended Hamiltonian within the IBM provides a better description of the E(5) model results for small-N cases, while the results of the model in the large-N cases are close to those of the E (5 )-β2 n type models studied previously.

  18. Gravity Dual to a Quantum Critical Point with Spontaneous Symmetry Breaking

    SciTech Connect

    Gubser, Steven S.; Rocha, Fabio D.

    2009-02-13

    We consider zero-temperature solutions to the Abelian Higgs model coupled to gravity with a negative cosmological constant. With appropriate choices of parameters, the geometry contains two copies of anti-de Sitter space, one describing conformal invariance in the ultraviolet, and one in the infrared. The effective speed of signal propagation is smaller in the infrared. Green's functions and associated transport coefficients can have unusual power-law scaling in the infrared. We provide an example in which the real part of the conductivity scales approximately as {omega}{sup 3.5} for small {omega}.

  19. Importance of subleading corrections for the Mott critical point

    NASA Astrophysics Data System (ADS)

    Tremblay, A.-M. S.; Semon, Patrick

    2013-03-01

    The interaction-induced metal-insulator transition should be in the Ising universality class. Experiments on layered organic superconductors suggest instead that the observed critical endpoint of the first-order Mott transition in d = 2 does not belong to any of the known universality classes for thermal phase transitions. In particular, it is found that δ = 2 . Given the quantum nature of the two phases involved in the transition, we use dynamical mean-field theory and a cluster generalization to investigate whether the new exponents could arise as transient quantum behavior preceding the asymptotic critical behavior. In the cluster calculation, a canonical transformation that minimizes the sign problem in continuous-time quantum Monte Carlo calculations allows previously unattainable precision. Our results show that there are important subleading corrections in the mean-field regime that can lead to an apparent exponent δ = 2 . Experiments on optical lattices could verify our predictions for double occupancy. P. Sémon and A.-M.S. Tremblay, Phys. Rev. B 85, 201101(R)/1-5 (2012). Supported by NSERC, Canada Research Chair, CIFAR, CFI, MELS, Calcul Quebec, Compute/Calcul Canada

  20. Statistics of Critical Points of Gaussian Fields on Large-Dimensional Spaces

    SciTech Connect

    Bray, Alan J.; Dean, David S.

    2007-04-13

    We calculate the average number of critical points of a Gaussian field on a high-dimensional space as a function of their energy and their index. Our results give a complete picture of the organization of critical points and are of relevance to glassy and disordered systems and landscape scenarios coming from the anthropic approach to string theory.

  1. 21 CFR 120.8 - Hazard Analysis and Critical Control Point (HACCP) plan.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ...) plan. 120.8 Section 120.8 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR HUMAN CONSUMPTION HAZARD ANALYSIS AND CRITICAL CONTROL POINT (HACCP) SYSTEMS... the critical control points; (4) List the procedures, and the frequency with which they are to...

  2. 21 CFR 120.8 - Hazard Analysis and Critical Control Point (HACCP) plan.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ...) plan. 120.8 Section 120.8 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR HUMAN CONSUMPTION HAZARD ANALYSIS AND CRITICAL CONTROL POINT (HACCP) SYSTEMS... the critical control points; (4) List the procedures, and the frequency with which they are to...

  3. 21 CFR 120.8 - Hazard Analysis and Critical Control Point (HACCP) plan.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 2 2010-04-01 2010-04-01 false Hazard Analysis and Critical Control Point (HACCP) plan. 120.8 Section 120.8 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR HUMAN CONSUMPTION HAZARD ANALYSIS AND CRITICAL CONTROL POINT (HACCP)...

  4. Near-critical point phenomena in fluids (19-IML-1)

    NASA Technical Reports Server (NTRS)

    Beysens, D.

    1992-01-01

    Understanding the effects of gravity is essential if the behavior of fluids is to be predicted in spacecraft and orbital stations, and, more generally, to give a better understanding of the hydrodynamics in these systems. An understanding is sought of the behavior of fluids in space. What should emerge from the International Microgravity Lab (IML-1) mission is a better understanding of the kinetics of growth in off-critical conditions, in both liquid mixtures and pure fluids. This complex phenomenon is the object of intensive study in physics and materials sciences area. It is also expected that the IML-1 flight will procure key results to provide a better understanding of how a pure fluid can be homogenized without gravity induced convections, and to what extent the 'Piston Effect' is effective in thermalizing the compressible fluids.

  5. Hydrogen bond breaking in aqueous solutions near the critical point

    USGS Publications Warehouse

    Mayanovic, Robert A.; Anderson, Alan J.; Bassett, William A.; Chou, I.-Ming

    2001-01-01

    The nature of water-anion bonding is examined using X-ray absorption fine structure spectroscopy on a 1mZnBr2/6m NaBr aqueous solution, to near critical conditions. Analyses show that upon heating the solution from 25??C to 500??C, a 63% reduction of waters occurs in the solvation shell of ZnBr42-, which is the predominant complex at all pressure-temperature conditions investigated. A similar reduction in the hydration shell of waters in the Br- aqua ion was found. Our results indicate that the water-anion and water-water bond breaking mechanisms occurring at high temperatures are essentially the same. This is consistent with the hydration waters being weakly hydrogen bonded to halide anions in electrolyte solutions. ?? 2001 Elsevier Science B.V.

  6. Rotational symmetry breaking in the topological superconductor SrxBi2Se3 probed by upper-critical field experiments

    PubMed Central

    Pan, Y.; Nikitin, A. M.; Araizi, G. K.; Huang, Y. K.; Matsushita, Y.; Naka, T.; de Visser, A.

    2016-01-01

    Recently it was demonstrated that Sr intercalation provides a new route to induce superconductivity in the topological insulator Bi2Se3. Topological superconductors are predicted to be unconventional with an odd-parity pairing symmetry. An adequate probe to test for unconventional superconductivity is the upper critical field, Bc2. For a standard BCS layered superconductor Bc2 shows an anisotropy when the magnetic field is applied parallel and perpendicular to the layers, but is isotropic when the field is rotated in the plane of the layers. Here we report measurements of the upper critical field of superconducting SrxBi2Se3 crystals (Tc = 3.0 K). Surprisingly, field-angle dependent magnetotransport measurements reveal a large anisotropy of Bc2 when the magnet field is rotated in the basal plane. The large two-fold anisotropy, while six-fold is anticipated, cannot be explained with the Ginzburg-Landau anisotropic effective mass model or flux flow induced by the Lorentz force. The rotational symmetry breaking of Bc2 indicates unconventional superconductivity with odd-parity spin-triplet Cooper pairs (Δ4-pairing) recently proposed for rhombohedral topological superconductors, or might have a structural nature, such as self-organized stripe ordering of Sr atoms. PMID:27350295

  7. Rotational symmetry breaking in the topological superconductor SrxBi2Se3 probed by upper-critical field experiments.

    PubMed

    Pan, Y; Nikitin, A M; Araizi, G K; Huang, Y K; Matsushita, Y; Naka, T; de Visser, A

    2016-01-01

    Recently it was demonstrated that Sr intercalation provides a new route to induce superconductivity in the topological insulator Bi2Se3. Topological superconductors are predicted to be unconventional with an odd-parity pairing symmetry. An adequate probe to test for unconventional superconductivity is the upper critical field, Bc2. For a standard BCS layered superconductor Bc2 shows an anisotropy when the magnetic field is applied parallel and perpendicular to the layers, but is isotropic when the field is rotated in the plane of the layers. Here we report measurements of the upper critical field of superconducting SrxBi2Se3 crystals (Tc = 3.0 K). Surprisingly, field-angle dependent magnetotransport measurements reveal a large anisotropy of Bc2 when the magnet field is rotated in the basal plane. The large two-fold anisotropy, while six-fold is anticipated, cannot be explained with the Ginzburg-Landau anisotropic effective mass model or flux flow induced by the Lorentz force. The rotational symmetry breaking of Bc2 indicates unconventional superconductivity with odd-parity spin-triplet Cooper pairs (Δ4-pairing) recently proposed for rhombohedral topological superconductors, or might have a structural nature, such as self-organized stripe ordering of Sr atoms. PMID:27350295

  8. Variational principles, Lie point symmetries, and similarity solutions of the vector Maxwell equations in non-linear optics

    NASA Astrophysics Data System (ADS)

    Webb, Garry; Sørensen, Mads Peter; Brio, Moysey; Zakharian, Aramis R.; Moloney, Jerome V.

    2004-04-01

    The vector Maxwell equations of non-linear optics coupled to a single Lorentz oscillator and with instantaneous Kerr non-linearity are investigated by using Lie symmetry group methods. Lagrangian and Hamiltonian formulations of the equations are obtained. The aim of the analysis is to explore the properties of Maxwell’s equations in non-linear optics, without resorting to the commonly used non-linear Schrödinger (NLS) equation approximation in which a high frequency carrier wave is modulated on long length and time scales due to non-linear sideband wave interactions. This is important in femto-second pulse propagation in which the NLS approximation is expected to break down. The canonical Hamiltonian description of the equations involves the solution of a polynomial equation for the electric field E, in terms of the canonical variables, with possible multiple real roots for E. In order to circumvent this problem, non-canonical Poisson bracket formulations of the equations are obtained in which the electric field is one of the non-canonical variables. Noether’s theorem, and the Lie point symmetries admitted by the equations are used to obtain four conservation laws, including the electromagnetic momentum and energy conservation laws, corresponding to the space and time translation invariance symmetries. The symmetries are used to obtain classical similarity solutions of the equations. The traveling wave similarity solutions for the case of a cubic Kerr non-linearity, are shown to reduce to a single ordinary differential equation for the variable y= E2, where E is the electric field intensity. The differential equation has solutions y= y( ξ), where ξ= z- st is the traveling wave variable and s is the velocity of the wave. These solutions exhibit new phenomena not obtainable by the NLS approximation. The characteristics of the solutions depends on the values of the wave velocity s and the energy integration constant ɛ. Both smooth periodic traveling waves and

  9. Entanglement, quantum phase transition and fixed-point bifurcation in the N-atom Jaynes Cummings model with an additional symmetry breaking term

    NASA Astrophysics Data System (ADS)

    Chagas, E. A.; Furuya, K.

    2008-08-01

    In the present work we analyze the quantum phase transition (QPT) in the N-atom Jaynes-Cummings model (NJCM) with an additional symmetry breaking interaction term in the Hamiltonian. We show that depending on the type of symmetry breaking term added the transition order can change or not and also the fixed point associated to the classical analogue of the Hamiltonian can bifurcate or not. We present two examples of symmetry broken Hamiltonians and discuss based on them, the interconnection between the transition order, appearance of bifurcation and the behavior of the entanglement.

  10. Schwinger boson mean field theories of spin liquid states on a honeycomb lattice: Projective symmetry group analysis and critical field theory

    NASA Astrophysics Data System (ADS)

    Wang, Fa

    2010-07-01

    Motivated by the recent numerical evidence [Z. Meng, T. Lang, S. Wessel, F. Assaad, and A. Muramatsu, Nature (London) 464, 847 (2010)10.1038/nature08942] of a short-range resonating valence bond state in the honeycomb lattice Hubbard model, we consider Schwinger boson mean field theories of possible spin liquid states on honeycomb lattice. From general stability considerations the possible spin liquids will have gapped spinons coupled to Z2 gauge field. We apply the projective symmetry group method to classify possible Z2 spin liquid states within this formalism on honeycomb lattice. It is found that there are only two relevant Z2 states, differed by the value of gauge flux, zero or π , in the elementary hexagon. The zero-flux state is a promising candidate for the observed spin liquid and continuous phase transition into commensurate Néel order. We also derive the critical field theory for this transition, which is the well-studied O(4) invariant theory [A. V. Chubukov, T. Senthil, and S. Sachdev, Phys. Rev. Lett. 72, 2089 (1994)10.1103/PhysRevLett.72.2089; A. V. Chubukov, S. Sachdev, and T. Senthil, Nucl. Phys. B 426, 601 (1994)10.1016/0550-3213(94)90023-X; S. V. Isakov, T. Senthil, and Y. B. Kim, Phys. Rev. B 72, 174417 (2005)10.1103/PhysRevB.72.174417], and has an irrelevant coupling between Higgs and boson fields with cubic power of spatial derivatives as required by lattice symmetry. This is in sharp contrast to the conventional theory [S. Sachdev and N. Read, Int. J. Mod. Phys. B 5, 219 (1991)10.1142/S0217979291000158], where such transition generically leads to incommensurate magnetic order. In this scenario the Z2 spin liquid could be close to a tricritical point. Soft boson modes will exist at seven different wave vectors. This will show up as low-frequency dynamical spin susceptibility peaks not only at the Γ point (the Néel order wave vector) but also at Brillouin-zone-edge center M points and twelve other points. Some simple properties of the

  11. Critical points in the management of pseudohypoaldosteronism type 1.

    PubMed

    Güran, Tülay; Değirmenci, Serpil; Bulut, İpek K; Say, Aysun; Riepe, Felix G; Güran, Ömer

    2011-01-01

    Pseudohypoaldosteronism type 1 (PHA-1, MIM #264350) is caused by defective transepithelial sodium transport. Affected patients develop life-threatening neonatal-onset salt loss, hyperkalemia, acidosis, and elevated aldosterone levels due to end-organ resistance to aldosterone. In this report, we present a patient diagnosed as PHA-1 who had clinical and laboratory findings compatible with the diagnosis and had genetically proven autosomal recessive PHA-1. The patient received high doses of sodium supplementation and potassium-lowering therapies; however, several difficulties were encountered in the management of this case. The aim of this presentation was to point out the potential pitfalls in the treatment of such patients in the clinical practice and to recommend solutions. PMID:21750640

  12. Whole wafer critical point drying of MEMS devices

    NASA Astrophysics Data System (ADS)

    Resnick, Paul J.; Clews, Peggy J.

    2001-10-01

    Stiction induced by capillary forces during the post-release drying step of MEMS fabrication can substantially limit the functional yield of complex devices. Supercritical CO2 drying provides a method to remove liquid from the device surface without creating a liquid/vapor interface, thereby mitigating stiction. We show that a continuous stirred-tank reactor (CSTR) model can be applied as a method to estimate the volume of liquid CO2 required to effectively displace the post release solvent. The CSTR model predicts that about 8 volume exchanges is sufficient to effectively displace the methanol to a concentration below the saturation point. Experimental data indicate that about 10 exchanges are adequate for repeatable drying of complex devices, which is in reasonable agreement to the model prediction. In addition to drying devices without inducing stiction, the process must be inherently non-contaminating. Data indicate that the majority of contaminants deposited during the drying process can be attributed to contaminants originating in the post-release solvent, rather than the supercritical CO2 process.

  13. Frequency-Dependent Viscosity of Xenon Near the Critical Point

    NASA Technical Reports Server (NTRS)

    Berg, Robert F.; Moldover, Michael R.; Zimmerli, Gregory A.

    1999-01-01

    We used a novel, overdamped oscillator aboard the Space Shuttle to measure the viscosity eta of xenon near its critical density rho(sub c), and temperature T(sub c). In microgravity, useful data were obtained within 0.1 mK of T(sub c), corresponding to a reduced temperature t = (T -T(sub c))/T(sub c) = 3 x 10(exp -7). The data extend two decades closer to T(sub c) than the best ground measurements, and they directly reveal the expected power-law behavior eta proportional to t(sup -(nu)z(sub eta)). Here nu is the correlation length exponent, and our result for the small viscosity exponent is z(sub eta) = 0.0690 +/- 0.0006. (All uncertainties are one standard uncertainty.) Our value for z(sub eta) depends only weakly on the form of the viscosity crossover function, and it agrees with the value 0.067 +/- 0.002 obtained from a recent two-loop perturbation expansion. The measurements spanned the frequency range 2 Hz less than or equal to f less than or equal to 12 Hz and revealed viscoelasticity when t less than or equal to 10(exp -1), further from T(sub c) than predicted. The viscoelasticity scales as Af(tau), where tau is the fluctuation-decay time. The fitted value of the viscoelastic time-scale parameter A is 2.0 +/- 0.3 times the result of a one-loop perturbation calculation. Near T(sub c), the xenon's calculated time constant for thermal diffusion exceeded days. Nevertheless, the viscosity results were independent of the xenon's temperature history, indicating that the density was kept near rho(sub c), by judicious choices of the temperature vs. time program. Deliberately bad choices led to large density inhomogeneities. At t greater than 10(exp -5), the xenon approached equilibrium much faster than expected, suggesting that convection driven by microgravity and by electric fields slowly stirred the sample.

  14. Mirror and Point Symmetries in a Ballistic Jet from a Binary System

    NASA Astrophysics Data System (ADS)

    Raga, A. C.; Esquivel, A.; Velázquez, P. F.; Cantó, J.; Haro-Corzo, S.; Riera, A.; Rodríguez-González, A.

    2009-12-01

    Models of accretion disks around a star in a binary system predict that the disk will have a retrograde precession with a period a factor of ~10 times the orbital period. If the star+disk system ejects a bipolar outflow, this outflow will be subject to the effects of both the orbital motion and the precession. We present an analytic, ballistic model and a three-dimensional gasdynamical simulation of a bipolar outflow from a source in a circular orbit, and with a precessing outflow axis. We find that this combination results in a jet/counterjet system with a small spatial scale, reflection-symmetric spiral (resulting from the orbital motion) and a larger-scale, point-symmetric spiral (resulting from the longer period precession). These results provide interesting possibilities for modeling specific Herbig-Haro jets and bipolar planetary nebulae.

  15. Transport properties of gases and binary liquids near the critical point

    NASA Technical Reports Server (NTRS)

    Sengers, J. V.

    1972-01-01

    A status report is presented on the anomalies observed in the behavior of transport properties near the critical point of gases and binary liquids. The shear viscosity exhibits a weak singularity near the critical point. An analysis is made of the experimental data for those transport properties, thermal conductivity and thermal diffusivity near the gas-liquid critical point and binary diffusion coefficient near the critical mixing point, that determine the critical slowing down of the thermodynamic fluctuations in the order parameter. The asymptotic behavior of the thermal conductivity appears to be closely related to the asymptotic behavior of the correlation length. The experimental data for the thermal conductivity and diffusivity are shown to be in substantial agreement with current theoretical predictions.

  16. The critical behavior of the refractive index near liquid-liquid critical points.

    PubMed

    Losada-Pérez, Patricia; Glorieux, Christ; Thoen, Jan

    2012-04-14

    The nature of the critical behavior in the refractive index n is revisited in the framework of the complete scaling formulation. A comparison is made with the critical behavior of n as derived from the Lorentz-Lorenz equation. Analogue anomalies to those predicted for the dielectric constant ε, namely, a leading |t|(2β) singularity in the coexistence-curve diameter in the two-phase region and a |t|(1-α) along the critical isopleth in the one phase region, are expected in both cases. However, significant differences as regards the amplitudes of both singularities are obtained from the two approaches. Analysis of some literature data along coexistence in the two-phase region and along the critical isopleth in the one-phase region provide evidence of an intrinsic effect, independent of the density, in the critical anomalies of n. This effect is governed by the shift of the critical temperature with an electric field, which is supposed to take smaller values at optical frequencies than at low frequencies in the Hz to MHz range. PMID:22502528

  17. New advances in the hydrodynamic description of the QCD critical point in heavy-ion collisions

    NASA Astrophysics Data System (ADS)

    Nahrgang, Marlene

    2013-04-01

    Hydrodynamics has been very successful in explaining a variety of data from heavy-ion collision experiments. An essential ingredient is the equation of state, which allows for the study of the impact of different descriptions of the QCD medium and of the phase transition on the evolution of the bulk matter. At the critical point the correlation length of fluctuations of the order parameter diverges in thermodynamic systems. At the same time the relaxation times become infinite at the critical point, which in dynamic systems weakens critical phenomena. In order to provide solid predictions for event-by-event fluctuations of observables extensions of previous studies to dynamic systems are crucial to guide the search for the discovery of the critical point in heavy-ion collision experiments, like the beam energy scan at RHIC, BNL. A hydrodynamic description of the expanding matter, which takes further restrictions of the system like its inhomogeneity and finite size into account, is especially suitable because the order parameter oscillates slowly at the critical point and can thus be described as a collective variable within a hydrodynamic setup. First models, which propagate the fluctuations of the order parameter explicitly by a coupling to a hydrodynamically expanding heat bath, are able to see dynamic effects like critical slowing down at the critical point and supercooling at the first order phase transition. Latest results show that for the first order phase transition this leads to the phenomenon of domain formation. At the critical point the enhancement of event-by-event fluctuations can be observed. These explicitly dynamic models are thus a promising approach to a realistic description of the QCD critical point in heavy-ion collisions. In this talk I will review recent advances in our understanding of the phase transition obtained within hydrodynamic models and outline possible approaches to future contributions to the search for the QCD critical point.

  18. Thermoacoustic wave propagation and reflection near the liquid-gas critical point.

    PubMed

    Zhang, P; Shen, B

    2009-06-01

    We study the thermoacoustic wave propagation and reflection near the liquid-gas critical point. Specifically, we perform a numerical investigation of the acoustic responses in a near-critical fluid to thermal perturbations based on the same setup of a recent ultrasensitive interferometry measurement in CO2 [Y. Miura, Phys. Rev. E 74, 010101(R) (2006)]. The numerical results agree well with the experimental data. Different features regarding the reflection pattern of thermoacoustic waves near the critical point under pulse perturbations are revealed by the proper inclusion of the critically diverging bulk viscosity. PMID:19658455

  19. Using higher moments of fluctuations and their ratios in the search for the QCD critical point

    SciTech Connect

    Athanasiou, Christiana; Rajagopal, Krishna; Stephanov, Misha

    2010-10-01

    The QCD critical point can be found in heavy-ion collision experiments via the nonmonotonic behavior of many fluctuation observables as a function of the collision energy. The event-by-event fluctuations of various particle multiplicities are enhanced in those collisions that freeze-out near the critical point. Higher, non-Gaussian, moments of the event-by-event distributions of such observables are particularly sensitive to critical fluctuations, since their magnitude depends on the critical correlation length to a high power. We present quantitative estimates of the contribution of critical fluctuations to the third and fourth moments of the pion, proton and net proton multiplicities, as well as estimates of various measures of pion-proton correlations, all as a function of the same five nonuniversal parameters, one of which is the correlation length that parametrizes proximity to the critical point. We show how to use nontrivial but parameter-independent ratios among these more than a dozen fluctuation observables to discover the critical point. We also construct ratios that, if the critical point is found, can be used to overconstrain the values of the nonuniversal parameters.

  20. Breaking axi-symmetry in stenotic flow lowers the critical transition Reynolds number

    NASA Astrophysics Data System (ADS)

    Samuelsson, J.; Tammisola, O.; Juniper, M. P.

    2015-10-01

    Flow through a sinuous stenosis with varying degrees of non-axisymmetric shape variations and at Reynolds number ranging from 250 to 750 is investigated using direct numerical simulation (DNS) and global linear stability analysis. At low Reynolds numbers (Re < 390), the flow is always steady and symmetric for an axisymmetric geometry. Two steady state solutions are obtained when the Reynolds number is increased: a symmetric steady state and an eccentric, non-axisymmetric steady state. Either one can be obtained in the DNS depending on the initial condition. A linear global stability analysis around the symmetric and non-axisymmetric steady state reveals that both flows are linearly stable for the same Reynolds number, showing that the first bifurcation from symmetry to antisymmetry is subcritical. When the Reynolds number is increased further, the symmetric state becomes linearly unstable to an eigenmode, which drives the flow towards the non-axisymmetric state. The symmetric state remains steady up to Re = 713, while the non-axisymmetric state displays regimes of periodic oscillations for Re ≥ 417 and intermittency for Re ≳ 525. Further, an offset of the stenosis throat is introduced through the eccentricity parameter E. When eccentricity is increased from zero to only 0.3% of the pipe diameter, the bifurcation Reynolds number decreases by more than 50%, showing that it is highly sensitive to non-axisymmetric shape variations. Based on the resulting bifurcation map and its dependency on E, we resolve the discrepancies between previous experimental and computational studies. We also present excellent agreement between our numerical results and previous experimental results.

  1. An Introduction to Critical Points for Biophysicists; Observations of Compositional Heterogeneity in Lipid Membranes

    PubMed Central

    Honerkamp-Smith, Aurelia R.; Veatch, Sarah L.; Keller, Sarah L.

    2011-01-01

    Scaling laws associated with critical points have the power to greatly simplify our description of complex biophysical systems. For the general reader, we first review basic concepts and equations associated with critical phenomena for the general reader. We then apply these concepts to the specific biophysical system of lipid membranes. We recently reported that lipid membranes can contain composition fluctuations that behave in a manner consistent with the two-dimensional Ising universality class. Near the membrane’s critical point, these fluctuations are micron-sized, clearly observable by fluorescence microscopy. At higher temperatures, above the critical point, we expect to find submicron fluctuations. In separate work, we have reported that plasma membranes isolated directly from cells exhibit the same Ising behavior as model membranes do. We review other models describing submicron lateral inhomogeneity in membranes, including microemulsions, nanodomains, and mean field critical fluctuations, and we describe experimental tests that may distinguish these models. PMID:18930706

  2. Fermionic quantum critical point of spinless fermions on a honeycomb lattice

    NASA Astrophysics Data System (ADS)

    Wang, Lei; Corboz, Philippe; Troyer, Matthias

    2014-10-01

    Spinless fermions on a honeycomb lattice provide a minimal realization of lattice Dirac fermions. Repulsive interactions between nearest neighbors drive a quantum phase transition from a Dirac semimetal to a charge-density-wave state through a fermionic quantum critical point, where the coupling of the Ising order parameter to the Dirac fermions at low energy drastically affects the quantum critical behavior. Encouraged by a recent discovery (Huffman and Chandrasekharan 2014 Phys. Rev. B 89 111101) of the absence of the fermion sign problem in this model, we study the fermionic quantum critical point using the continuous-time quantum Monte Carlo method with a worm-sampling technique. We estimate the transition point V/t=1.356(1) with the critical exponents ν =0.80(3) and η =0.302(7). Compatible results for the transition point are also obtained with infinite projected entangled-pair states.

  3. Phase diagram and critical end point in nonlocal PNJL models with wavefunction renormalization

    SciTech Connect

    Contrera, Gustavo A.; Orsaria, Milva G.; Scoccola, Norberto N.

    2010-11-12

    We study the chiral phase transition at finite temperature and chemical potential considering a non-local chiral quark model which includes wave-function renormalization and coupling to the Polyakov loop. In particular, we determine the position of the Critical End Point as well as the value of the associated critical exponents for different model parameterizations.

  4. Use of point-of-care ultrasound by a critical care retrieval team.

    PubMed

    Mazur, Stefan M; Pearce, Andrew; Alfred, Sam; Sharley, Peter

    2007-12-01

    Point-of-care ultrasound in the prehospital and retrieval environments has now become possible owing to decreased size and weight, and increasing robustness of some ultrasound machines. This report describes the initial experience of point-of-care ultrasound by an Australian critical care retrieval service using a portable ultrasound machine. PMID:18021108

  5. A [Cu3(μ3-O)]–pyrazolate metallacycle with terminal nitrate ligands exhibiting point group symmetry 3

    PubMed Central

    Mathivathanan, Logesh; Cruz, Raquel; Raptis, Raphael G.

    2016-01-01

    The trinuclear triangular cuprate anion of the title compound, tris­[bis­(tri­phenyl­phospho­ranyl­idene)ammonium] tris­(μ2-4-chloro­pyrazolato-κ2 N:N′)-μ3-oxido-tris­[(nitrato-κ2 O,O′)cuprate(II)] nitrate monohydrate, (C36H30P2N)[Cu3(C3H2ClN2)3(NO3)3O]NO3·H2O, has point group symmetry 3., with the μ3-O atom located on the threefold rotation axis. The distorted square-pyramidal coordination sphere of the CuII atom is completed by two N atoms of trans-bridging pyrazolate groups and a chelating nitrate anion. The complex anion is slightly bent, with the nitrate and pyrazolate groups occupying positions above and below the Cu3 plane, respectively. In the crystal, weak O—H⋯O and C—H⋯O hydrogen bonds, as well as π–π inter­actions, are present. PMID:27375872

  6. A [Cu3(μ3-O)]-pyrazolate metallacycle with terminal nitrate ligands exhibiting point group symmetry 3.

    PubMed

    Mathivathanan, Logesh; Cruz, Raquel; Raptis, Raphael G

    2016-04-01

    The trinuclear triangular cuprate anion of the title compound, tris-[bis-(tri-phenyl-phospho-ranyl-idene)ammonium] tris-(μ2-4-chloro-pyrazolato-κ(2) N:N')-μ3-oxido-tris-[(nitrato-κ(2) O,O')cuprate(II)] nitrate monohydrate, (C36H30P2N)[Cu3(C3H2ClN2)3(NO3)3O]NO3·H2O, has point group symmetry 3., with the μ3-O atom located on the threefold rotation axis. The distorted square-pyramidal coordination sphere of the Cu(II) atom is completed by two N atoms of trans-bridging pyrazolate groups and a chelating nitrate anion. The complex anion is slightly bent, with the nitrate and pyrazolate groups occupying positions above and below the Cu3 plane, respectively. In the crystal, weak O-H⋯O and C-H⋯O hydrogen bonds, as well as π-π inter-actions, are present. PMID:27375872

  7. Molecular dynamics simulation of a binary mixture near the lower critical point

    NASA Astrophysics Data System (ADS)

    Pousaneh, Faezeh; Edholm, Olle; Maciołek, Anna

    2016-07-01

    2,6-lutidine molecules mix with water at high and low temperatures but in a wide intermediate temperature range a 2,6-lutidine/water mixture exhibits a miscibility gap. We constructed and validated an atomistic model for 2,6-lutidine and performed molecular dynamics simulations of 2,6-lutidine/water mixture at different temperatures. We determined the part of demixing curve with the lower critical point. The lower critical point extracted from our data is located close to the experimental one. The estimates for critical exponents obtained from our simulations are in a good agreement with the values corresponding to the 3D Ising universality class.

  8. Self-organization of plants in a dryland ecosystem: Symmetry breaking and critical cluster size.

    PubMed

    Meyra, Ariel G; Zarragoicoechea, Guillermo J; Kuz, Victor A

    2015-05-01

    Periodical patterns of vegetation in an arid or semiarid ecosystem are described using statistical mechanics and Monte Carlo numerical simulation technique. Plants are characterized by the area that each individual occupies and a facilitation-competition pairwise interaction. Assuming that external resources (precipitation, solar radiation, nutrients, etc.) are available to the ecosystem, it is possible to obtain the persistent configurations of plants compatible with an equitable distribution of resources maximizing the Shannon entropy. Variation of vegetation patterns with density, critical cluster size, and facilitation distance are predicted. Morphological changes of clusters are shown to be a function of the external resources. As a final remark, it is proposed that an early warning of desertification could be detected from the coefficient of variation of the mean cluster size together with the distribution of cluster sizes. PMID:26066215

  9. Self-organization of plants in a dryland ecosystem: Symmetry breaking and critical cluster size

    NASA Astrophysics Data System (ADS)

    Meyra, Ariel G.; Zarragoicoechea, Guillermo J.; Kuz, Victor A.

    2015-05-01

    Periodical patterns of vegetation in an arid or semiarid ecosystem are described using statistical mechanics and Monte Carlo numerical simulation technique. Plants are characterized by the area that each individual occupies and a facilitation-competition pairwise interaction. Assuming that external resources (precipitation, solar radiation, nutrients, etc.) are available to the ecosystem, it is possible to obtain the persistent configurations of plants compatible with an equitable distribution of resources maximizing the Shannon entropy. Variation of vegetation patterns with density, critical cluster size, and facilitation distance are predicted. Morphological changes of clusters are shown to be a function of the external resources. As a final remark, it is proposed that an early warning of desertification could be detected from the coefficient of variation of the mean cluster size together with the distribution of cluster sizes.

  10. Thermal Ising transitions in the vicinity of two-dimensional quantum critical points

    NASA Astrophysics Data System (ADS)

    Hesselmann, S.; Wessel, S.

    2016-04-01

    The scaling of the transition temperature into an ordered phase close to a quantum critical point as well as the order parameter fluctuations inside the quantum critical region provide valuable information about universal properties of the underlying quantum critical point. Here, we employ quantum Monte Carlo simulations to examine these relations in detail for two-dimensional quantum systems that exhibit a finite-temperature Ising-transition line in the vicinity of a quantum critical point that belongs to the universality class of either (i) the three-dimensional Ising model for the case of the quantum Ising model in a transverse magnetic field on the square lattice or (ii) the chiral Ising transition for the case of a half-filled system of spinless fermions on the honeycomb lattice with nearest-neighbor repulsion. While the first case allows large-scale simulations to assess the scaling predictions to a high precision in terms of the known values for the critical exponents at the quantum critical point, for the later case, we extract values of the critical exponents ν and η , related to the order parameter fluctuations, which we discuss in relation to other recent estimates from ground-state quantum Monte Carlo calculations as well as analytical approaches.

  11. Electric field induced critical points and polarization rotations in relaxor ferroelectrics

    NASA Astrophysics Data System (ADS)

    Kutnjak, Zdravko; Blinc, Robert; Ishibashi, Y.

    2007-09-01

    The giant electromechanical response in ferroelectric relaxors such as Pb(Mg1/3Nb2/3)O3-PbTiO3 (PMN-PT) is of great importance for a number of ultrasonic and medical applications as well as in telecommunications. On the basis of the dielectric, heat capacity, and piezoelectric investigations on PMN-PT crystals of various PT compositions and bias fields, we have recently shown the existence of a line of critical points for the paraelectric to ferroelectric transformations in the composition-temperature-electric field (x-T-E) phase diagram. Here, we show the piezobehavior in more detail and present a theoretical evaluation of the Widom line and the critical line. This line effectively terminates a surface of first order transitions. Above this line, supercritical evolution has been observed. On approaching the critical point, both the enthalpy cost to induce the intermediate monoclinic states and thus the barrier for polarization rotations decrease significantly. The maximum of the piezoelectric response is not at E=0 , but at the critical field values. It is shown that the critical fluctuations in the proximity of the critical points are directly responsible for the observed enhancement of the electromechanical response in the PMN-PT system. In view of the large electric field dependence of the dielectric constant near the critical point, these systems may also be important as electric field tunable elements.

  12. Degenerate optomechanical parametric oscillators: Cooling in the vicinity of a critical point

    NASA Astrophysics Data System (ADS)

    Degenfeld-Schonburg, Peter; Abdi, Mehdi; Hartmann, Michael J.; Navarrete-Benlloch, Carlos

    2016-02-01

    Degenerate optomechanical parametric oscillators are optical resonators in which a mechanical degree of freedom is coupled to a cavity mode that is nonlinearly amplified via parametric down-conversion of an external pumping laser. Below a critical pumping power the down-converted field is purely quantum mechanical, making the theoretical description of such systems very challenging. Here we introduce a theoretical approach that is capable of describing this regime, even at the critical point itself. We find that the down-converted field can induce significant mechanical cooling and identify the process responsible of this as a cooling-by-heating mechanism. Moreover, we show that, contrary to naive expectations and semiclassical predictions, cooling is not optimal at the critical point, where the photon number is largest. Our approach opens the possibility of analyzing further hybrid dissipative quantum systems in the vicinity of critical points.

  13. An Assessment of Thermodynamic Models for HFC Refrigerant Mixtures Through the Critical-Point Calculation

    NASA Astrophysics Data System (ADS)

    Akasaka, Ryo

    2008-08-01

    An assessment of thermodynamic models for HFC refrigerant mixtures based on Helmholtz energy equations of state was made through critical-point calculations for ternary and quaternary mixtures. The calculations were performed using critical-point criteria expressed in terms of the Helmholtz free energy. For three ternary mixtures: difluoromethane (R-32) + pentafluoroethane (R-125) + 1,1,1,2-tetrafluoroethane (R-134a), R-125 + R-134a + 1,1,1-trifluoroethane (R-143a), and carbon dioxide (CO2) + R-32 + R-134a, and one quaternary mixture, R-32 + R-125 + R-134a + R-143a, calculated critical points were compared with experimental values, and the capability of the mixture models for representing the critical behavior was discussed.

  14. Polynomial Graphs and Symmetry

    ERIC Educational Resources Information Center

    Goehle, Geoff; Kobayashi, Mitsuo

    2013-01-01

    Most quadratic functions are not even, but every parabola has symmetry with respect to some vertical line. Similarly, every cubic has rotational symmetry with respect to some point, though most cubics are not odd. We show that every polynomial has at most one point of symmetry and give conditions under which the polynomial has rotational or…

  15. A physical model study of the travel times and reflection points of SH-waves reflected from transversely isotropic media with tilted symmetry axes

    NASA Astrophysics Data System (ADS)

    Sun, Li-Chung; Chang, Young-Fo; Chang, Chih-Hsiung; Chung, Chia-Lung

    2012-05-01

    In reflection seismology, detailed knowledge of how seismic waves propagate in anisotropic media is important for locating reservoirs accurately. The SH-wave possesses a pure mode polarization which does not convert to P- and SV-waves when reflecting from a horizontal interface, and vice versa. The simplicity of the SH-wave thus provides an easy way to view the details of SH-wave propagation in anisotropic media. In this study, we attempt to inspect the theoretical reflection moveouts of SH-waves reflected from transversely isotropic (TI) layers with tilted symmetry axes and to verify the reflection point, which could be shifted away from the common midpoint (CMP), by numerical calculations and physical modelling. In travel time-offset analyses, the moveout curves of SH-waves reflected from horizontal TI media (TIM) with different tilted angles of symmetry axes are computed by the TI modified hyperbolic equation and Fermat's principle, respectively. It turns out that both the computed moveout curves are similar and fit well to the observed physical data. The reflection points of SH-waves for a CMP gather computed by Fermat's principle show that they are close to the CMP for TIM with the vertical and horizontal symmetry axes, but they shift away from the CMP for the other tilted angles of symmetry axes. The shifts of the reflection points of the SH-waves from the CMP were verified by physical modelling.

  16. Theoretical Analysis of Thermodynamic Measurements near a Liquid-Gas Critical Point

    NASA Technical Reports Server (NTRS)

    Barmatz, M.; Zhong, Fang; Hahn, Inseob

    2003-01-01

    Over the years, many ground-based studies have been performed near liquid-gas critical points to elucidate the expected divergences in thermodynamic quantities. The unambiguous interpretation of these studies very near the critical point is hindered by a gravity-induced density stratification. However, these ground-based measurements can give insight into the crossover behavior between the asymptotic critical region near the transition and the mean field region farther away. We have completed a detailed analysis of heat capacity, susceptibility and coexistence curve measurements near the He-3 liquid-gas critical point using the minimal-subtraction renormalization (MSR) scheme within the phi(exp 4) model. This MSR scheme, using only two adjustable parameters, provides a reasonable global fit to all of these experimental measurements in the gravity-free region out to a reduced temperature of |t| approx. 2x10(exp -2). Recently this approach has also been applied to the earlier microgravity measurements of Haupt and Straub in SF(sub 6) with surprising results. The conclusions drawn from the MSR analyses will be presented. Measurements in the gravity-affected region closer to the He-3 critical point have also been analyzed using the recent crossover parametric model (CPM) of the equation-of-state. The results of fitting heat capacity measurements to the CPM model along the He-3 critical isochore in the gravity-affected region will also be presented.

  17. Critical point of a rotating Bose-Einstein condensates in optical lattice

    NASA Astrophysics Data System (ADS)

    El-Badry, Azza M.; Soliman, Shemi S. M.; Hassan, Ahmed S.

    2016-06-01

    In this paper, we have considered the critical point (critical atoms' number and the corresponding critical temperature) of rotating condensate bosons trapped in optical lattices. Our system is formed by loading three dimensional harmonically trapped boson atoms into a 1D (axial direction) or 2D (radial direction) optical lattice. The system subjected to rotating with angular velocity Ω around to the axial direction z-axis. We employ the semiclassical approximation to calculate the critical point. Effects of the optical lattice depth, direction (axial or radial) and the rotation rate on the critical point are investigated using the semiclassical approximation. The calculated results showed that the temperature dependence of the critical point is changed in an optical lattice and depends crucially on the rotation rate. The effect of the finite size for one-dimensional optical lattice case, as required by experiment, is discussed. The outcome results furnish useful qualitatively theoretical results for the future Bose-Einstein condensation experiments in such traps.

  18. Strong enhancement of s -wave superconductivity near a quantum critical point of Ca3Ir4Sn13

    DOE PAGESBeta

    Biswas, P. K.; Guguchia, Z.; Khasanov, R.; Chinotti, M.; Li, L.; Wang, Kefeng; Petrovic, C.; Morenzoni, E.

    2015-11-11

    We repormore » t microscopic studies by muon spin rotation/relaxation as a function of pressure of the Ca3Ir4Sn13 and Sr3Ir4Sn13 system displaying superconductivity and a structural phase transition associated with the formation of a charge density wave (CDW). Our findings show a strong enhancement of the superfluid density and a dramatic increase of the pairing strength above a pressure of ≈ 1.6 GPa giving direct evidence of the presence of a quantum critical point separating a superconducting phase coexisting with CDW from a pure superconducting phase. The superconducting order parameter in both phases has the same s-wave symmetry. In spite of the conventional phonon-mediated BCS character of the weakly correlated (Ca1-xSrx)3Ir4Sn13 system the dependence of the effective superfluid density on the critical temperature puts this compound in the “Uemura” plot close to unconventional superconductors. This system exemplifies that conventional BCS superconductors in the presence of competing orders or multi-band structure can also display characteristics of unconventional superconductors.« less

  19. CETF Space Station payload pointing system design and analysis feasibility study. [Critical Evaluation Task Force

    NASA Technical Reports Server (NTRS)

    Smagala, Tom; Mcglew, Dave

    1988-01-01

    The expected pointing performance of an attached payload coupled to the Critical Evaluation Task Force Space Station via a payload pointing system (PPS) is determined. The PPS is a 3-axis gimbal which provides the capability for maintaining inertial pointing of a payload in the presence of disturbances associated with the Space Station environment. A system where the axes of rotation were offset from the payload center of mass (CM) by 10 in. in the Z axis was studied as well as a system having the payload CM offset by only 1 inch. There is a significant improvement in pointing performance when going from the 10 in. to the 1 in. gimbal offset.

  20. Entanglement entropy of 2D conformal quantum critical points: hearing the shape of a quantum drum.

    PubMed

    Fradkin, Eduardo; Moore, Joel E

    2006-08-01

    The entanglement entropy of a pure quantum state of a bipartite system A union or logical sumB is defined as the von Neumann entropy of the reduced density matrix obtained by tracing over one of the two parts. In one dimension, the entanglement of critical ground states diverges logarithmically in the subsystem size, with a universal coefficient that for conformally invariant critical points is related to the central charge of the conformal field theory. We find that the entanglement entropy of a standard class of z=2 conformal quantum critical points in two spatial dimensions, in addition to a nonuniversal "area law" contribution linear in the size of the AB boundary, generically has a universal logarithmically divergent correction, which is completely determined by the geometry of the partition and by the central charge of the field theory that describes the critical wave function. PMID:17026083

  1. Determination of liquid-liquid critical point composition using 90∘ laser light scattering

    NASA Astrophysics Data System (ADS)

    Williamson, J. Charles; Brown, Allison M.; Helvie, Elise N.; Dean, Kevin M.

    2016-04-01

    Despite over a century of characterization efforts, liquid-liquid critical point compositions are difficult to identify with good accuracy. Reported values vary up to 10% for even well-studied systems. Here, a technique is presented for high-precision determination of the critical composition of a partially miscible binary liquid system. Ninety-degree laser light-scattering intensities from single-phase samples are analyzed using an equation derived from nonclassical power laws and the pseudospinodal approximation. Results are reported for four liquid-liquid systems (aniline + hexane, isobutyric acid + water, methanol + cyclohexane, and methanol + carbon disulfide). Compared to other methods, the 90∘ light-scattering approach has a strong dependence on composition near the critical point, is less affected by temperature fluctuations, and is insensitive to the presence of trace impurities in the samples. Critical compositions found with 90∘ light scattering are precise to the parts-per-thousand level and show long-term reproducibility.

  2. Critical Two-Point Function of the 4-Dimensional Weakly Self-Avoiding Walk

    NASA Astrophysics Data System (ADS)

    Bauerschmidt, Roland; Brydges, David C.; Slade, Gordon

    2015-08-01

    We prove decay of the critical two-point function for the continuous-time weakly self-avoiding walk on , in the upper critical dimension d = 4. This is a statement that the critical exponent exists and is equal to zero. Results of this nature have been proved previously for dimensions using the lace expansion, but the lace expansion does not apply when d = 4. The proof is based on a rigorous renormalisation group analysis of an exact representation of the continuous-time weakly self-avoiding walk as a supersymmetric field theory. Much of the analysis applies more widely and has been carried out in a previous paper, where an asymptotic formula for the susceptibility is obtained. Here, we show how observables can be incorporated into the analysis to obtain a pointwise asymptotic formula for the critical two-point function. This involves perturbative calculations similar to those familiar in the physics literature, but with error terms controlled rigorously.

  3. Communication: Analytic continuation of the virial series through the critical point using parametric approximants

    SciTech Connect

    Barlow, Nathaniel S.; Schultz, Andrew J. Kofke, David A.; Weinstein, Steven J.

    2015-08-21

    The mathematical structure imposed by the thermodynamic critical point motivates an approximant that synthesizes two theoretically sound equations of state: the parametric and the virial. The former is constructed to describe the critical region, incorporating all scaling laws; the latter is an expansion about zero density, developed from molecular considerations. The approximant is shown to yield an equation of state capable of accurately describing properties over a large portion of the thermodynamic parameter space, far greater than that covered by each treatment alone.

  4. Gallocyanin-chromalum for improved scanning electron microscopy of whole nuclei without critical point drying.

    PubMed

    Welter, D A; Schöler, J; Rosenquist, T H

    1978-11-01

    Bone marrow nuclei fixed with modified Carnoy's, then stained with gallocyanin chromalum followed by air drying showed no difference in morphology when compared by means of scanning electron microscopy with similar nuclei prepared by critical point drying. Glutaraldehyde at pH 4.0 and 7.1, mercury-containing Zenker's fluid, and chromalum alone, all of which are considered to be nuclear protein cross-linking fixatives, failed to preserve the nuclear morphology as well as gallocyanin-chromalum or critical point prepared bone marro nuclei. PMID:89717

  5. Universal free-energy distribution in the critical point of a random Ising ferromagnet.

    PubMed

    Dotsenko, Victor; Holovatch, Yurij

    2014-11-01

    We discuss the non-self-averaging phenomena in the critical point of weakly disordered Ising ferromagnet. In terms of the renormalized replica Ginzburg-Landau Hamiltonian in dimensions D<4, we derive an explicit expression for the probability distribution function (PDF) of the critical free-energy fluctuations. In particular, using known fixed-point values for the renormalized coupling parameters, we obtain the universal curve for such PDF in the dimension D=3. It is demonstrated that this function is strongly asymmetric: its left tail is much slower than the right one. PMID:25493758

  6. The critical points of alloys of iron and cobalt during rapid heating

    NASA Technical Reports Server (NTRS)

    Gridnev, V. N.; Oshkaderov, S. P.

    1980-01-01

    The influence of the rate of heating on the position of the critical points of iron-cobalt alloys was studied. It is shown that when an alloy with 8% Co by weight is heated at the rate of 7000 deg/sec, a shift in the temperature of phase conversion of almost 30 deg occurs. When an alloy with 15% Co by weight is heated at the same rate, the conversion temperature is shifted by approximately 20 deg. For an alloy with 15% Co by weight, for which under ordinary conditions of heating the points of phase conversion and magnetic randomization (the Curie point) coincide, it was possible to show that for high rates of heating, a separation with respect to temperature occurs which clearly confirms the fact of the shift in the critical points of phase conversion.

  7. Symmetry constraints on the elastoresistivity tensor

    NASA Astrophysics Data System (ADS)

    Shapiro, M. C.; Hlobil, Patrik; Hristov, A. T.; Maharaj, Akash V.; Fisher, I. R.

    2015-12-01

    The elastoresistivity tensor mi j ,k l characterizes changes in a material's resistivity due to strain. As a fourth-rank tensor, elastoresistivity can be a uniquely useful probe of the symmetries and character of the electronic state of a solid. We present a symmetry analysis of mi j ,k l (both in the presence and absence of a magnetic field) based on the crystalline point group, focusing for pedagogic purposes on the D4 h point group (of relevance to several materials of current interest). We also discuss the relation between mi j ,k l and various thermodynamic susceptibilities, particularly where they are sensitive to critical fluctuations proximate to a critical point at which a point-group symmetry is spontaneously broken.

  8. The Quenched Critical Point for Self-Avoiding Walk on Random Conductors

    NASA Astrophysics Data System (ADS)

    Chino, Yuki; Sakai, Akira

    2016-05-01

    Following similar analysis to that in Lacoin (Probab Theory Relat Fields 159: 777-808, 2014), we can show that the quenched critical point for self-avoiding walk on random conductors on Z^d is almost surely a constant, which does not depend on the location of the reference point. We provide upper and lower bounds which are valid for all d≥ 1.

  9. Two-scale-factor universality near the critical point of fluids

    NASA Technical Reports Server (NTRS)

    Sengers, J. V.; Moldover, M. R.

    1978-01-01

    Thermodynamic data from interferometric density profile studies and light-scattering experiments near the critical isochore of Xe, CO2 and SF6 provide a basis for examining the hypothesized two-scale-factor universality for the correlation function of fluids near the gas-liquid critical point. For the investigation, three-scale-factor universality is assumed, with Ising-like critical exponent values obtained through the renormalization group technique. The two thermodynamic scale factors are found from the density profiles, while the scale factor for the correlation length is obtained from the light-scattering data.

  10. Euler Strut: A Mechanical Analogy for Dynamics in the Vicinity of a Critical Point

    ERIC Educational Resources Information Center

    Bobnar, Jaka; Susman, Katarina; Parsegian, V. Adrian; Rand, Peter R.; Cepic, Mojca; Podgornik, Rudolf

    2011-01-01

    An anchored elastic filament (Euler strut) under an external point load applied to its free end is a simple model for a second-order phase transition. In the static case, a load greater than the critical load causes a Euler buckling instability, leading to a change in the filament's shape. The analysis of filament dynamics with an external point…

  11. The application of the nonsmooth critical point theory to the stationary electrorheological fluids

    NASA Astrophysics Data System (ADS)

    Qian, Chenyin

    2016-06-01

    In this paper, we prove the existence of variational solutions to systems modeling electrorheological fluids in the stationary case. Our method of proof is based on the nonsmooth critical point theory for locally Lipschitz functional and the properties of the generalized Lebesgue-Sobolev space.

  12. Critical-Point Description of the Transition from Vibrational to Rotational Regimes in the Pairing Phase

    SciTech Connect

    Clark, R.M.; Macchiavelli, A.O.; Fortunato, L.; Kruecken, R.

    2006-01-27

    An approximate solution at the critical point of the pairing transition from harmonic vibration to deformed rotation in gauge space is found by analytic solution of the collective pairing Hamiltonian. The eigenvalues are expressed in terms of the zeros of Bessel functions of integer order. The results are compared to the pairing bands based on the Pb isotopes.

  13. Towards sustaining women through critical transition points in scientific careers: a workshop summary.

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This invited editorial summarizes and comments on discussions from a workshop entitled “From Doctorate to Dean or Director: Sustaining Women through Critical Transition Points in Science, Engineering, and Medicine” held by the Committee on Women in Science, Engineering, and Medicine of the National ...

  14. Improved Criteria for Acceptable Yield Point Elongation in Surface Critical Steels

    SciTech Connect

    Dr. David Matlock; Dr. John Speer

    2007-05-30

    Yield point elongation (YPE) is considered undesirable in surface critical applications where steel is formed since "strain lines" or Luders bands are created during forming. This project will examine in detail the formation of luders bands in industrially relevant strain states including the influence of substrate properties and coatings on Luders appearance. Mechanical testing and surface profilometry were the primary methods of investigation.

  15. Molecular dynamics simulation of a binary mixture near the lower critical point.

    PubMed

    Pousaneh, Faezeh; Edholm, Olle; Maciołek, Anna

    2016-07-01

    2,6-lutidine molecules mix with water at high and low temperatures but in a wide intermediate temperature range a 2,6-lutidine/water mixture exhibits a miscibility gap. We constructed and validated an atomistic model for 2,6-lutidine and performed molecular dynamics simulations of 2,6-lutidine/water mixture at different temperatures. We determined the part of demixing curve with the lower critical point. The lower critical point extracted from our data is located close to the experimental one. The estimates for critical exponents obtained from our simulations are in a good agreement with the values corresponding to the 3D Ising universality class. PMID:27394111

  16. Magnetic-field control of quantum critical points of valence transition.

    PubMed

    Watanabe, Shinji; Tsuruta, Atsushi; Miyake, Kazumasa; Flouquet, Jacques

    2008-06-13

    We study the mechanism of how critical end points of first-order valence transitions are controlled by a magnetic field. We show that the critical temperature is suppressed to be a quantum critical point (QCP) by a magnetic field, and unexpectedly, the QCP exhibits nonmonotonic field dependence in the ground-state phase diagram, giving rise to the emergence of metamagnetism even in the intermediate valence-crossover regime. The driving force of the field-induced QCP is clarified to be cooperative phenomena of the Zeeman and Kondo effects, which create a distinct energy scale from the Kondo temperature. This mechanism explains the peculiar magnetic response in CeIrIn(5) and the metamagnetic transition in YbXCu(4) for X=In as well as the sharp contrast between X=Ag and Cd. PMID:18643524

  17. The critical adsorption point of self-avoiding walks: a finite-size scaling approach.

    PubMed

    Luo, Meng-Bo

    2008-01-28

    The critical adsorption of self-avoiding polymer chain in a simple cubic lattice onto a flat surface is studied with Monte Carlo simulations. The dependence of number of surface contacts M on chain length N and polymer-surface interaction epsilon is investigated by a finite-size scaling approach. We estimate the critical adsorption point epsilon(c)=0.291+/-0.002 and the exponent phi=0.54+/-0.01. The asymptotic behaviors M proportional variant N for epsilon>epsilon(c) and M proportional variant N(0) for epsiloncritical adsorption point by using Binder's cumulant method as well as configurational properties. PMID:18248005

  18. Second-order magnetic critical points at finite magnetic fields: Revisiting Arrott plots

    NASA Astrophysics Data System (ADS)

    Bustingorry, S.; Pomiro, F.; Aurelio, G.; Curiale, J.

    2016-06-01

    The so-called Arrott plot, which consists in plotting H /M against M2, with H the applied magnetic field and M the magnetization, is used to extract valuable information in second-order magnetic phase transitions. Besides, it is widely accepted that a negative slope in the Arrott plot is indicative of a first-order magnetic transition. This is known as the Banerjee criterion. In consequence, the zero-field transition temperature T* is reported as the characteristic first-order transition temperature. By carefully analyzing the mean-field Landau model used for studying first-order magnetic transitions, we show in this work that T* corresponds in fact to a triple point where three first-order lines meet. More importantly, this analysis reveals the existence of two symmetrical second-order critical points at finite magnetic field (Tc,±Hc) . We then show that a modified Arrott plot can be used to obtain information about these second-order critical points. To support this idea we analyze experimental data on La2 /3Ca1 /3MnO3 and discuss an estimate for the location of the triple point and the second-order critical points.

  19. Functional renormalization group analysis of the soft mode at the QCD critical point

    NASA Astrophysics Data System (ADS)

    Yokota, Takeru; Kunihiro, Teiji; Morita, Kenji

    2016-07-01

    We make an intensive investigation of the soft mode at the quantum chromodynamics (QCD) critical point on the basis of the functional renormalization group (FRG) method in the local potential approximation. We calculate the spectral functions ρ_{σ, π}(ω, p) in the scalar (σ) and pseudoscalar (π) channels beyond the random phase approximation in the quark-meson model. At finite baryon chemical potential μ with a finite quark mass, the baryon-number fluctuation is coupled to the scalar channel and the spectral function in the σ channel has a support not only in the time-like (ω > p) but also in the space-like (ω < p) regions, which correspond to the mesonic and the particle-hole phonon excitations, respectively. We find that the energy of the peak position of the latter becomes vanishingly small with the height being enhanced as the system approaches the QCD critical point, which is a manifestation of the fact that the phonon mode is the soft mode associated with the second-order transition at the QCD critical point, as has been suggested by some authors. Moreover, our extensive calculation of the spectral function in the (ω, p) plane enables us to see that the mesonic and phonon modes have the respective definite dispersion relations ω_{σ.ph}(p), and it turns out that ω_{σ}(p) crosses the light-cone line into the space-like region, and then eventually merges into the phonon mode as the system approaches the critical point more closely. This implies that the sigma-mesonic mode also becomes soft at the critical point. We also provide numerical stability conditions that are necessary for obtaining the accurate effective potential from the flow equation.

  20. Equation of state and critical point behavior of hard-core double-Yukawa fluids.

    PubMed

    Montes, J; Robles, M; López de Haro, M

    2016-02-28

    A theoretical study on the equation of state and the critical point behavior of hard-core double-Yukawa fluids is presented. Thermodynamic perturbation theory, restricted to first order in the inverse temperature and having the hard-sphere fluid as the reference system, is used to derive a relatively simple analytical equation of state of hard-core multi-Yukawa fluids. Using such an equation of state, the compressibility factor and phase behavior of six representative hard-core double-Yukawa fluids are examined and compared with available simulation results. The effect of varying the parameters of the hard-core double-Yukawa intermolecular potential on the location of the critical point is also analyzed using different perspectives. The relevance of this analysis for fluids whose molecules interact with realistic potentials is also pointed out. PMID:26931708

  1. A Model for Hydrogen Thermal Conductivity and Viscosity Including the Critical Point

    NASA Technical Reports Server (NTRS)

    Wagner, Howard A.; Tunc, Gokturk; Bayazitoglu, Yildiz

    2001-01-01

    In order to conduct a thermal analysis of heat transfer to liquid hydrogen near the critical point, an accurate understanding of the thermal transport properties is required. A review of the available literature on hydrogen transport properties identified a lack of useful equations to predict the thermal conductivity and viscosity of liquid hydrogen. The tables published by the National Bureau of Standards were used to perform a series of curve fits to generate the needed correlation equations. These equations give the thermal conductivity and viscosity of hydrogen below 100 K. They agree with the published NBS tables, with less than a 1.5 percent error for temperatures below 100 K and pressures from the triple point to 1000 KPa. These equations also capture the divergence in the thermal conductivity at the critical point

  2. Metal-insulator quantum critical point beneath the high Tc superconducting dome

    PubMed Central

    Sebastian, Suchitra E.; Harrison, N.; Altarawneh, M. M.; Mielke, C. H.; Liang, Ruixing; Bonn, D. A.; Lonzarich, G. G.; Hardy, W. N.

    2010-01-01

    An enduring question in correlated systems concerns whether superconductivity is favored at a quantum critical point (QCP) characterized by a divergent quasiparticle effective mass. Despite such a scenario being widely postulated in high Tc cuprates and invoked to explain non-Fermi liquid transport signatures, experimental evidence is lacking for a critical divergence under the superconducting dome. We use ultrastrong magnetic fields to measure quantum oscillations in underdoped YBa2Cu3O6+x, revealing a dramatic doping-dependent upturn in quasiparticle effective mass at a critical metal-insulator transition beneath the superconducting dome. Given the location of this QCP under a plateau in Tc in addition to a postulated QCP at optimal doping, we discuss the intriguing possibility of two intersecting superconducting subdomes, each centered at a critical Fermi surface instability. PMID:20304800

  3. Fluctuations, phase separation, and wetting films near liquid-gas critical point

    NASA Astrophysics Data System (ADS)

    Oprisan, Ana

    Gravity on Earth limits the study of the properties of pure fluids near critical point because they become stratified under their own weight. Near the critical point, all thermodynamic properties diverge and the heating and cooling cause instabilities of the convective flow as a consequence of the expansibility divergence. In order to study boiling, fluctuation and phase separation processes near the critical point of pure fluids without the influence of the Earth's gravity, a number of experiments were performed in the weightlessness of Mir space station. The experimental setup called ALICE II instrument was designed to suppress sedimentation and buoyancy-driven flow. Another set of experiments were carried out on Earth using a carefully density matched system of deuterated methanolcycloxexane to observe critical fluctuations directly. The set of experiments performed on board of Mir space station studied boiling and wetting film dynamics during evaporation near the critical point of two pure fluids (sulfur hexafluoride and carbon dioxide) using a defocused grid method. The specially designed cell containing the pure fluid was heated and, as a result, a low contrast line appeared on the wetting film that corresponded to a sharp change in the thickness of the film. A large mechanical response was observed in response to the cell heating and we present quantitative results about the receding contact lines. It is found that the vapor recoil force is responsible for the receding contact line. Local density fluctuations were observed by illuminating a cylindrical cell filled with the pure fluid near its liquid-gas critical point and recorded using a microscope and a video recorder. Microscopic fluctuations were analyzed both in sulfur hexafluoride and in a binary mixture of methanol cycloxexane. Using image processing techniques, we were able to estimate the properties of the fluid from the recorded images showing fluctuations of the transmitted and scattered light. We

  4. Emergent Non-Fermi-Liquid at the Quantum Critical Point of a Topological Phase Transition in Two Dimensions

    NASA Astrophysics Data System (ADS)

    Isobe, Hiroki; Yang, Bohm-Jung; Chubukov, Andrey; Schmalian, Jörg; Nagaosa, Naoto

    2016-02-01

    We study the effects of Coulomb interaction between 2D Weyl fermions with anisotropic dispersion which displays relativistic dynamics along one direction and nonrelativistic dynamics along the other. Such a dispersion can be realized in phosphorene under electric field or strain, in TiO2 /VO2 superlattices, and, more generally, at the quantum critical point between a nodal semimetal and an insulator in systems with a chiral symmetry. Using the one-loop renormalization group approach in combination with the large-N expansion, we find that the system displays interaction-driven non-Fermi liquid behavior in a wide range of intermediate frequencies and marginal Fermi liquid behavior at the smallest frequencies. In the non-Fermi liquid regime, the quasiparticle residue Z at energy E scales as Z ∝Ea with a >0 , and the parameters of the fermionic dispersion acquire anomalous dimensions. In the marginal Fermi-liquid regime, Z ∝(|log E |)-b with universal b =3 /2 .

  5. Finite-temperature spin dynamics near the quantum critical point of transverse field Ising chain with a small longitudinal field

    NASA Astrophysics Data System (ADS)

    Kormos, Márton; Wu, Jianda; Si, Qimiao

    2014-03-01

    When the transverse-field Ising chain at its quantum critical point is subjected to a small longitudinal field, the perturbed conformal field theory led to a field theory with an exotic E8 symmetry. Recent neutron scattering experiments have provided evidence for the lightest two particles in this E8 model in the quasi-1D Ising ferromagnet CoNb2O6. While the zero temperature dynamic of the model is well known, its finite-temperature counterpart has not yet been systematically studied. We study the low-frequency dynamical spin structure factor at finite temperatures using the form-factor method. We show that the dominant contribution to the spin dynamics comes from the channel between two lightest particles, and demonstrate how the spin dynamics differ from a diffusion form. Using these results, we determine the temperature dependence of the NMR relaxation rate. We suggest that, for CoNb2O6, measurements of the NMR relaxation rate provide a means to further test the applicability of the E8 model.

  6. Emergent Non-Fermi-Liquid at the Quantum Critical Point of a Topological Phase Transition in Two Dimensions.

    PubMed

    Isobe, Hiroki; Yang, Bohm-Jung; Chubukov, Andrey; Schmalian, Jörg; Nagaosa, Naoto

    2016-02-19

    We study the effects of Coulomb interaction between 2D Weyl fermions with anisotropic dispersion which displays relativistic dynamics along one direction and nonrelativistic dynamics along the other. Such a dispersion can be realized in phosphorene under electric field or strain, in TiO_{2}/VO_{2} superlattices, and, more generally, at the quantum critical point between a nodal semimetal and an insulator in systems with a chiral symmetry. Using the one-loop renormalization group approach in combination with the large-N expansion, we find that the system displays interaction-driven non-Fermi liquid behavior in a wide range of intermediate frequencies and marginal Fermi liquid behavior at the smallest frequencies. In the non-Fermi liquid regime, the quasiparticle residue Z at energy E scales as Z∝E^{a} with a>0, and the parameters of the fermionic dispersion acquire anomalous dimensions. In the marginal Fermi-liquid regime, Z∝(|logE|)^{-b} with universal b=3/2. PMID:26943551

  7. Fluctuation-induced heat release from temperature-quenched nuclear spins near a quantum critical point.

    PubMed

    Kim, Y H; Kaur, N; Atkins, B M; Dalal, N S; Takano, Y

    2009-12-11

    At a quantum critical point (QCP)--a zero-temperature singularity in which a line of continuous phase transition terminates--quantum fluctuations diverge in space and time, leading to exotic phenomena that can be observed at nonzero temperatures. Using a quantum antiferromagnet, we present calorimetric evidence that nuclear spins frozen in a high-temperature nonequilibrium state by temperature quenching are annealed by quantum fluctuations near the QCP. This phenomenon, with readily detectable heat release from the nuclear spins as they are annealed, serves as an excellent marker of a quantum critical region around the QCP and provides a probe of the dynamics of the divergent quantum fluctuations. PMID:20366226

  8. Communication: Analytic continuation of the virial series through the critical point using parametric approximants.

    PubMed

    Barlow, Nathaniel S; Schultz, Andrew J; Weinstein, Steven J; Kofke, David A

    2015-08-21

    The mathematical structure imposed by the thermodynamic critical point motivates an approximant that synthesizes two theoretically sound equations of state: the parametric and the virial. The former is constructed to describe the critical region, incorporating all scaling laws; the latter is an expansion about zero density, developed from molecular considerations. The approximant is shown to yield an equation of state capable of accurately describing properties over a large portion of the thermodynamic parameter space, far greater than that covered by each treatment alone. PMID:26298108

  9. Probing Wnt Receptor Turnover: A Critical Regulatory Point of Wnt Pathway.

    PubMed

    Jiang, Xiaomo; Cong, Feng

    2016-01-01

    Wnt pathways are critical for embryonic development and adult tissue homeostasis in all multicellular animals. Many regulatory mechanisms exist to control proper signaling output. Recent studies suggest that cell surface Wnt receptor level is controlled by ubiquitination, and serve as a critical regulatory point of Wnt pathway activity as it determines the responsiveness of cells to Wnt signal. Here, we describe flow cytometry, cell surface protein biotinylation, and immunofluorescence pulse-chase methods to probe the surface expression, ubiquitination, and internalization of the Wnt receptors FZD and LRP6. PMID:27590150

  10. Intrinsic low pass filtering improves signal-to-noise ratio in critical-point flexure biosensors

    SciTech Connect

    Jain, Ankit; Alam, Muhammad Ashraful

    2014-08-25

    A flexure biosensor consists of a suspended beam and a fixed bottom electrode. The adsorption of the target biomolecules on the beam changes its stiffness and results in change of beam's deflection. It is now well established that the sensitivity of sensor is maximized close to the pull-in instability point, where effective stiffness of the beam vanishes. The question: “Do the signal-to-noise ratio (SNR) and the limit-of-detection (LOD) also improve close to the instability point?”, however remains unanswered. In this article, we systematically analyze the noise response to evaluate SNR and establish LOD of critical-point flexure sensors. We find that a flexure sensor acts like an effective low pass filter close to the instability point due to its relatively small resonance frequency, and rejects high frequency noise, leading to improved SNR and LOD. We believe that our conclusions should establish the uniqueness and the technological relevance of critical-point biosensors.

  11. Higher-order time-symmetry-breaking phase transition due to meeting of an exceptional point and a Fano resonance

    NASA Astrophysics Data System (ADS)

    Tanaka, Satoshi; Garmon, Savannah; Kanki, Kazuki; Petrosky, Tomio

    2016-08-01

    We have theoretically investigated the time-symmetry-breaking phase-transition process for two discrete states coupled with a one-dimensional continuum by solving the nonlinear eigenvalue problem for the effective Hamiltonian associated with the discrete spectrum. We obtain the effective Hamiltonian with use of the Feshbach-Brillouin-Wigner projection method. Strong energy dependence of the self-energy appearing in the effective Hamiltonian plays a key role in the time-symmetry-breaking phase transition: As a result of competition in the decay process between the Van Hove singularity and the Fano resonance, the phase transition becomes a higher-order transition when both the two discrete states are located near the continuum threshold.

  12. Athermal domain-wall creep near a ferroelectric quantum critical point.

    PubMed

    Kagawa, Fumitaka; Minami, Nao; Horiuchi, Sachio; Tokura, Yoshinori

    2016-01-01

    Ferroelectric domain walls are typically stationary because of the presence of a pinning potential. Nevertheless, thermally activated, irreversible creep motion can occur under a moderate electric field, thereby underlying rewritable and non-volatile memory applications. Conversely, as the temperature decreases, the occurrence of creep motion becomes less likely and eventually impossible under realistic electric-field magnitudes. Here we show that such frozen ferroelectric domain walls recover their mobility under the influence of quantum fluctuations. Nonlinear permittivity and polarization-retention measurements of an organic charge-transfer complex reveal that ferroelectric domain-wall creep occurs via an athermal process when the system is tuned close to a pressure-driven ferroelectric quantum critical point. Despite the heavy masses of material building blocks such as molecules, the estimated effective mass of the domain wall is comparable to the proton mass, indicating the realization of a ferroelectric domain wall with a quantum-particle nature near the quantum critical point. PMID:26880041

  13. Doping-Induced Quantum Critical Point in an Itinerant Antiferromagnet TiAu

    NASA Astrophysics Data System (ADS)

    Santiago, Jessica; Svanidze, Eteri; Besara, Tiglet; Siegrist, Theo; Morosan, Emilia

    The recently discovered itinerant magnet TiAu is the first antiferromagnet composed of non-magnetic constituents. The spin density wave ground state develops below TN ~36 K, about an order of magnitude smaller than in Cr. Achieving a quantum critical point in this material would provide a better understanding of weak itinerant antiferromagnets, while giving long sought-after insights into the effects of spin fluctuations in itinerant electron systems. While the application of pressure increases the ordering temperature TN, partial substitution of Ti provides an alternative avenue towards achieving a quantum critical point. The non-Fermi liquid behavior accompanies the quantum phase transition, as evidenced by the divergent specific heat coefficient and linear temperature dependence of the resistivity. The transition is accompanied by enhanced electron-electron correlations as well as strong spin-fluctuations, providing an experimental avenue for the verification of the self-consistent theory of spin fluctuations.

  14. Athermal domain-wall creep near a ferroelectric quantum critical point

    PubMed Central

    Kagawa, Fumitaka; Minami, Nao; Horiuchi, Sachio; Tokura, Yoshinori

    2016-01-01

    Ferroelectric domain walls are typically stationary because of the presence of a pinning potential. Nevertheless, thermally activated, irreversible creep motion can occur under a moderate electric field, thereby underlying rewritable and non-volatile memory applications. Conversely, as the temperature decreases, the occurrence of creep motion becomes less likely and eventually impossible under realistic electric-field magnitudes. Here we show that such frozen ferroelectric domain walls recover their mobility under the influence of quantum fluctuations. Nonlinear permittivity and polarization-retention measurements of an organic charge-transfer complex reveal that ferroelectric domain-wall creep occurs via an athermal process when the system is tuned close to a pressure-driven ferroelectric quantum critical point. Despite the heavy masses of material building blocks such as molecules, the estimated effective mass of the domain wall is comparable to the proton mass, indicating the realization of a ferroelectric domain wall with a quantum-particle nature near the quantum critical point. PMID:26880041

  15. Nanoporous Materials Can Tune the Critical Point of a Pure Substance

    SciTech Connect

    Braun, Efrem; Chen, Joseph J.; Schnell, Sondre K.; Lin, Li-Chiang; Reimer, Jeffrey A.; Smit, Berend

    2015-09-30

    Molecular simulations and NMR relaxometry experiments demonstrate that pure benzene or xylene confined in isoreticular metal–organic frameworks (IRMOFs) exhibit true vapor–liquid phase equilibria where the effective critical point may be reduced by tuning the structure of the MOF. Our results are consistent with vapor and liquid phases extending over many MOF unit cells. These results are counterintuitive since the MOF pore diameters are approximately the same length scale as the adsorbate molecules. Lastly, as applications of these materials in catalysis, separations, and gas storage rely on the ability to tune the properties of adsorbed molecules, we anticipate that the ability to systematically control the critical point, thereby preparing spatially inhomogeneous local adsorbate densities, could add a new design tool for MOF applications.

  16. Nanoporous Materials Can Tune the Critical Point of a Pure Substance

    DOE PAGESBeta

    Braun, Efrem; Chen, Joseph J.; Schnell, Sondre K.; Lin, Li-Chiang; Reimer, Jeffrey A.; Smit, Berend

    2015-09-30

    Molecular simulations and NMR relaxometry experiments demonstrate that pure benzene or xylene confined in isoreticular metal–organic frameworks (IRMOFs) exhibit true vapor–liquid phase equilibria where the effective critical point may be reduced by tuning the structure of the MOF. Our results are consistent with vapor and liquid phases extending over many MOF unit cells. These results are counterintuitive since the MOF pore diameters are approximately the same length scale as the adsorbate molecules. Lastly, as applications of these materials in catalysis, separations, and gas storage rely on the ability to tune the properties of adsorbed molecules, we anticipate that the abilitymore » to systematically control the critical point, thereby preparing spatially inhomogeneous local adsorbate densities, could add a new design tool for MOF applications.« less

  17. Non-linear regime of the Generalized Minimal Massive Gravity in critical points

    NASA Astrophysics Data System (ADS)

    Setare, M. R.; Adami, H.

    2016-03-01

    The Generalized Minimal Massive Gravity (GMMG) theory is realized by adding the CS deformation term, the higher derivative deformation term, and an extra term to pure Einstein gravity with a negative cosmological constant. In the present paper we obtain exact solutions to the GMMG field equations in the non-linear regime of the model. GMMG model about AdS_3 space is conjectured to be dual to a 2-dimensional CFT. We study the theory in critical points corresponding to the central charges c_-=0 or c_+=0, in the non-linear regime. We show that AdS_3 wave solutions are present, and have logarithmic form in critical points. Then we study the AdS_3 non-linear deformation solution. Furthermore we obtain logarithmic deformation of extremal BTZ black hole. After that using Abbott-Deser-Tekin method we calculate the energy and angular momentum of these types of black hole solutions.

  18. Geometric mechanism for antimonotonicity in scalar maps with two critical points

    SciTech Connect

    Dawson, S.P. ); Grebogi, C. ); Kocak, H. )

    1993-09-01

    Concurrent creation and destruction of periodic orbits---antimonotonicity---for one-parameter scalar maps with at least two critical points are investigated. It is observed that if, for a parameter value, two critical points lie in an interval that is a chaotic attractor, then, generically, as the parameter is varied through any neighborhood of such a value, periodic orbits should be created and destroyed infinitely often. A general mechanism for this complicated dynamics for one-dimensional multimodal maps is proposed similar to the one of contact-making and contact-breaking homoclinic tangencies in two-dimensional dissipative maps. This subtle phenomenon is demonstrated in a detailed numerical study of a specific one-dimensional cubic map.

  19. Athermal domain-wall creep near a ferroelectric quantum critical point

    NASA Astrophysics Data System (ADS)

    Kagawa, Fumitaka; Minami, Nao; Horiuchi, Sachio; Tokura, Yoshinori

    2016-02-01

    Ferroelectric domain walls are typically stationary because of the presence of a pinning potential. Nevertheless, thermally activated, irreversible creep motion can occur under a moderate electric field, thereby underlying rewritable and non-volatile memory applications. Conversely, as the temperature decreases, the occurrence of creep motion becomes less likely and eventually impossible under realistic electric-field magnitudes. Here we show that such frozen ferroelectric domain walls recover their mobility under the influence of quantum fluctuations. Nonlinear permittivity and polarization-retention measurements of an organic charge-transfer complex reveal that ferroelectric domain-wall creep occurs via an athermal process when the system is tuned close to a pressure-driven ferroelectric quantum critical point. Despite the heavy masses of material building blocks such as molecules, the estimated effective mass of the domain wall is comparable to the proton mass, indicating the realization of a ferroelectric domain wall with a quantum-particle nature near the quantum critical point.

  20. Weak phase stiffness and nature of the quantum critical point in underdoped cuprates

    DOE PAGESBeta

    Yildirim, Yucel; Ku, Wei

    2015-11-02

    We demonstrate that the zero-temperature superconducting phase diagram of underdoped cuprates can be quantitatively understood in the strong binding limit, using only the experimental spectral function of the “normal” pseudogap phase without any free parameter. In the prototypical (La1–xSrx)2CuO4, a kinetics-driven d-wave superconductivity is obtained above the critical doping δc ~ 5.2%, below which complete loss of superfluidity results from local quantum fluctuation involving local p-wave pairs. Near the critical doping, an enormous mass enhancement of the local pairs is found responsible for the observed rapid decrease of phase stiffness. Lastly, a striking mass divergence is predicted at δc thatmore » dictates the occurrence of the observed quantum critical point and the abrupt suppression of the Nernst effects in the nearby region.« less

  1. Magnetocaloric effect and magnetic cooling near a field-induced quantum-critical point

    PubMed Central

    Wolf, Bernd; Tsui, Yeekin; Jaiswal-Nagar, Deepshikha; Tutsch, Ulrich; Honecker, Andreas; Remović-Langer, Katarina; Hofmann, Georg; Prokofiev, Andrey; Assmus, Wolf; Donath, Guido; Lang, Michael

    2011-01-01

    The presence of a quantum-critical point (QCP) can significantly affect the thermodynamic properties of a material at finite temperatures T. This is reflected, e.g., in the entropy landscape S(T,r) in the vicinity of a QCP, yielding particularly strong variations for varying the tuning parameter r such as pressure or magnetic field B. Here we report on the determination of the critical enhancement of ∂S/∂B near a B-induced QCP via absolute measurements of the magnetocaloric effect (MCE), (∂T/∂B)S and demonstrate that the accumulation of entropy around the QCP can be used for efficient low-temperature magnetic cooling. Our proof of principle is based on measurements and theoretical calculations of the MCE and the cooling performance for a Cu2+-containing coordination polymer, which is a very good realization of a spin-½ antiferromagnetic Heisenberg chain—one of the simplest quantum-critical systems.

  2. Casimir effect mechanism of pairing between fermions in the vicinity of a magnetic quantum critical point

    NASA Astrophysics Data System (ADS)

    Kharkov, Yaroslav; Oleg P Sushkov Team

    We consider two spin 1 / 2 fermions in a two-dimensional magnetic system that is close to the O (3) magnetic quantum critical point (QCP) which separates magnetically ordered and disordered phases. Focusing on the disordered phase in the vicinity of the QCP, we demonstrate that the criticality results in a strong long range attraction between the fermions, with potential V (r) ~ - 1 /rα , α ~ 0 . 75 , where r is separation between the fermions. The mechanism of the enhanced attraction is similar to Casimir effect and corresponds to multi-magnon exchange processes between the fermions. While we consider a model system, the problem is originally motivated by recent experimental establishment of magnetic QCP in hole doped cuprates under the superconducting dome at doping of about 10%. We suggest the mechanism of magnetic critical enhancement of pairing in cuprates.

  3. Ising nematic quantum critical point in a metal: a Monte Carlo study

    NASA Astrophysics Data System (ADS)

    Lederer, Samuel

    The Ising nematic quantum critical point (QCP) associated with the zero temperature transition from a symmetric to a nematic metal is an exemplar of metallic quantum criticality. We have carried out a minus sign-free quantum Monte Carlo study of this QCP for a two dimensional lattice model with sizes up to 24 × 24 sites. The system remains non-superconducting down to the lowest accessible temperatures. The results exhibit critical scaling behavior over the accessible ranges of temperature, (imaginary) time, and distance. This scaling behavior has remarkable similarities with recently measured properties of the Fe-based superconductors proximate to their putative nematic QCP. With Yoni Schattner, Steven A. Kivelson, and Erez Berg.

  4. Weak phase stiffness and nature of the quantum critical point in underdoped cuprates

    SciTech Connect

    Yildirim, Yucel; Ku, Wei

    2015-11-02

    We demonstrate that the zero-temperature superconducting phase diagram of underdoped cuprates can be quantitatively understood in the strong binding limit, using only the experimental spectral function of the “normal” pseudogap phase without any free parameter. In the prototypical (La1–xSrx)2CuO4, a kinetics-driven d-wave superconductivity is obtained above the critical doping δc ~ 5.2%, below which complete loss of superfluidity results from local quantum fluctuation involving local p-wave pairs. Near the critical doping, an enormous mass enhancement of the local pairs is found responsible for the observed rapid decrease of phase stiffness. Lastly, a striking mass divergence is predicted at δc that dictates the occurrence of the observed quantum critical point and the abrupt suppression of the Nernst effects in the nearby region.

  5. Pre-Yield Non-Affine Fluctuations and A Hidden Critical Point in Strained Crystals

    PubMed Central

    Das, Tamoghna; Ganguly, Saswati; Sengupta, Surajit; Rao, Madan

    2015-01-01

    A crystalline solid exhibits thermally induced localised non-affine droplets in the absence of external stress. Here we show that upon an imposed shear, the size of these droplets grow until they percolate at a critical strain, well below the value at which the solid begins to yield. This critical point does not manifest in most thermodynamic or mechanical properties, but is hidden and reveals itself in the onset of inhomogeneities in elastic moduli, marked changes in the appearance and local properties of non-affine droplets and a sudden enhancement in defect pair concentration. Slow relaxation of stress and an-elasticity appear as observable dynamical consequences of this hidden criticality. Our results may be directly verified in colloidal crystals with video microscopy techniques but are expected to have more general validity. PMID:26039380

  6. A Molecular Dynamics Simulation of the Density Fluctuation in the Diatomic Fluids around the Critical Points

    NASA Astrophysics Data System (ADS)

    Ikawa, Shohei; Tokumasu, Takashi; Tsuboi, Nobuyuki; Tsuda, Shinichi

    2014-03-01

    In this study, we investigated the principle of corresponding state on the density fluctuation around the critical points of non-polar diatomic fluids. We performed the Molecular Dynamics (MD) simulation for the extraction of the fluctuation structure around the critical points of 2-Center-Lennard-Jones (2CLJ) fluids, which have anisotropy depending on the molecular elongations. We estimated the fluctuation structure by two methods. One is the evaluation of the dispersion of the number of molecules at a certain domain, and the other is the calculation of static structure factor. As a result, in 2CLJ fluids that have shorter molecular elongations comparatively, the principle of corresponding state is satisfied because of the small differences in the fluctuation structure extracted in the present two methods. In addition, paying attention to the time variation of the density fluctuation, we confirmed that the characteristic frequency of the fluctuation is clearly lower around the critical point compared with the other conditions. Hereafter, we are going to calculate a dynamic structure factor, further investigating the principle of corresponding state of density fluctuation.

  7. Estimating the Critical Point of Crowding in the Emergency Department for the Warning System

    NASA Astrophysics Data System (ADS)

    Chang, Y.; Pan, C.; Tseng, C.; Wen, J.

    2011-12-01

    The purpose of this study is to deduce a function from the admissions/discharge rate of patient flow to estimate a "Critical Point" that provides a reference for warning systems in regards to crowding in the emergency department (ED) of a hospital or medical clinic. In this study, a model of "Input-Throughput-Output" was used in our established mathematical function to evaluate the critical point. The function is defined as dPin/dt=dwait/dt+Cp×B+ dPout/dt where Pin= number of registered patients, Pwait= number of waiting patients, Cp= retention rate per bed (calculated for the critical point), B= number of licensed beds in the treatment area, and Pout= number of patients discharged from the treatment area. Using the average Cp of ED crowding, we could start the warning system at an appropriate time and then plan for necessary emergency response to facilitate the patient process more smoothly. It was concluded that ED crowding could be quantified using the average value of Cp and the value could be used as a reference for medical staff to give optimal emergency medical treatment to patients. Therefore, additional practical work should be launched to collect more precise quantitative data.

  8. Measurements of the Coexistence Curve near the Liquid-Gas Critical Point

    NASA Technical Reports Server (NTRS)

    Hahn, Inseob

    2003-01-01

    The shape of the liquid-gas coexistence curve of He-3 very near the critical point (-2x10(exp -6) < t < -5x10(exp -3) was measured using the quasi-static thermogram method. The study was performed in Earth s gravitational field using two different height calorimetry cells, both originally designed for simultaneous measurements of the isochoric heat capacity, isothermal compressibility, and PVT. The heights of two cells were 0.5 mm and 4.8 cm. The uncertainty in measuring the phase transition temperature was typically +/-2 micro-K. The measured coexistence curve near the critical point was strongly affected by the gravitational field. Away from the critical point, the coexistence curve obtained using this technique was also consistent with the earlier work using the local density measurements of Pittman et al. The recent crossover parametric model of the equation-of-state are used to analyze the height-dependent measured coexistence curves. Data analyses have indicated that microgravity will permit measurements within two additional decades in reduced temperatures beyond the best gravity-free data obtained in Earth-bound experiments.

  9. Overlapping Modularity at the Critical Point of k-Clique Percolation

    NASA Astrophysics Data System (ADS)

    Tóth, Bálint; Vicsek, Tamás; Palla, Gergely

    2013-05-01

    One of the most remarkable social phenomena is the formation of communities in social networks corresponding to families, friendship circles, work teams, etc. Since people usually belong to several different communities at the same time, the induced overlaps result in an extremely complicated web of the communities themselves. Thus, uncovering the intricate community structure of social networks is a non-trivial task with great potential for practical applications, gaining a notable interest in the recent years. The Clique Percolation Method (CPM) is one of the earliest overlapping community finding methods, which was already used in the analysis of several different social networks. In this approach the communities correspond to k-clique percolation clusters, and the general heuristic for setting the parameters of the method is to tune the system just below the critical point of k-clique percolation. However, this rule is based on simple physical principles and its validity was never subject to quantitative analysis. Here we examine the quality of the partitioning in the vicinity of the critical point using recently introduced overlapping modularity measures. According to our results on real social and other networks, the overlapping modularities show a maximum close to the critical point, justifying the original criteria for the optimal parameter settings.

  10. Unconventional Superconductivity in the Vicinity of the Local Quantum Critical Point

    NASA Astrophysics Data System (ADS)

    Si, Qimiao; Pixley, Jedediah; Deng, Lili; Ingersent, Kevin

    2015-03-01

    Unconventional superconductivity and its relationship with quantum criticality remains a central question in strongly correlated electron systems. In the case of heavy fermion metals, the existence of antiferromagnetic quantum critical points (QCPs) is well established. Theoretical work has identified the existence of a local QCP where the Kondo effect is driven critical concomitant with the vanishing of the magnetic order parameter. Experiments on the heavy fermion compound CeRhIn5 and other materials have provided strong evidence that such a QCP drives unconventional superconductivity. With this in mind we solve the periodic Anderson model using a cluster extended dynamical mean field theory. We show that the Kondo energy scale is continuously suppressed at the antiferromagnetic QCP, and we determine the scaling form of the order parameter susceptibility and find remarkable agreement with well-established experiments in the related heavy fermion system CeCu6-xAux. Most importantly, we find that the singlet pairing susceptibility is strongly enhanced at the QCP, which points towards a new pairing mechanism associated with both magnetic and local critical fluctuations.