Sample records for crop production costs

  1. Biofuel Crops Expansion: Evaluating the Impact on the Agricultural Water Scarcity Costs and Hydropower Production with Hydro Economic Modeling

    NASA Astrophysics Data System (ADS)

    Marques, G.

    2015-12-01

    Biofuels such as ethanol from sugar cane remain an important element to help mitigate the impacts of fossil fuels on the atmosphere. However, meeting fuel demands with biofuels requires technological advancement for water productivity and scale of production. This may translate into increased water demands for biofuel crops and potential for conflicts with incumbent crops and other water uses including domestic, hydropower generation and environmental. It is therefore important to evaluate the effects of increased biofuel production on the verge of water scarcity costs and hydropower production. The present research applies a hydro-economic optimization model to compare different scenarios of irrigated biofuel and hydropower production, and estimates the potential tradeoffs. A case study from the Araguari watershed in Brazil is provided. These results should be useful to (i) identify improved water allocation among competing economic demands, (ii) support water management and operations decisions in watersheds where biofuels are expected to increase, and (iii) identify the impact of bio fuel production in the water availability and economic value. Under optimized conditions, adoption of sugar cane for biofuel production heavily relies on the opportunity costs of other crops and hydropower generation. Areas with a lower value crop groups seem more suitable to adopt sugar cane for biofuel when the price of ethanol is sufficiently high and the opportunity costs of hydropower productions are not conflicting. The approach also highlights the potential for insights in water management from studying regional versus larger scales bundled systems involving water use, food production and power generation.

  2. Marginal cost curves for water footprint reduction in irrigated agriculture: a policy and decision making guide for efficient water use in crop production

    NASA Astrophysics Data System (ADS)

    Chukalla, Abebe; Krol, Maarten; Hoekstra, Arjen

    2016-04-01

    Reducing water footprints (WF) in irrigated crop production is an essential element in water management, particularly in water-scarce areas. To achieve this, policy and decision making need to be supported with information on marginal cost curves that rank measures to reduce the WF according to their cost-effectiveness and enable the estimation of the cost associated with a certain WF reduction target, e.g. towards a certain reasonable WF benchmark. This paper aims to develop marginal cost curves (MCC) for WF reduction. The AquaCrop model is used to explore the effect of different measures on evapotranspiration and crop yield and thus WF that is used as input in the MCC. Measures relate to three dimensions of management practices: irrigation techniques (furrow, sprinkler, drip and subsurface drip); irrigation strategies (full and deficit irrigation); and mulching practices (no mulching, organic and synthetic mulching). A WF benchmark per crop is calculated as resulting from the best-available production technology. The marginal cost curve is plotted using the ratios of the marginal cost to WF reduction of the measures as ordinate, ranking with marginal costs rise with the increase of the reduction effort. For each measure, the marginal cost to reduce WF is estimated by comparing the associated WF and net present value (NPV) to the reference case (furrow irrigation, full irrigation, no mulching). The NPV for each measure is based on its capital costs, operation and maintenances costs (O&M) and revenues. A range of cases is considered, including: different crops, soil types and different environments. Key words: marginal cost curve, water footprint benchmark, soil water balance, crop growth, AquaCrop

  3. Integrated crop/livestock systems reduce late-fall livestock feeding costs

    USDA-ARS?s Scientific Manuscript database

    Feed costs during the late-fall and winter periods represent the greatest cost to cow-calf production in the northern Great Plains. Integration of crop and livestock enterprises may improve sustainability through synergisms among enterprises reducing waste and improving productivity, and providing b...

  4. Crop and non-crop productivity in a traditional maize agroecosystem of the highland of Mexico

    PubMed Central

    2009-01-01

    Background In Mexico, the traditional maize cultivation system has resisted intensification attempts for many decades in some areas, even in some well-connected regions of the temperate highlands. We suggest that this is due to economics. Methods The total useful biomass of several fields in Nanacamilpa, Tlaxcala, are evaluated for productivity and costs. Results Maize grain production is low (1.5 t ha-1) and does not cover costs. However, maize stover demands a relatively high price. If it included, a profit is possible (about 110 US $ ha-1). We show that non-crop production (weeds for food and forage) potentially has a higher value than the crop. It is only partially used, as there are constraints on animal husbandry, but it diversifies production and plays a role as a back-up system in case of crop failure. Conclusion The diversified system described is economically rational under current conditions and labor costs. It is also stable, low-input and ecologically benign, and should be recognized as an important example of integrated agriculture, though some improvements could be investigated. PMID:19943939

  5. Improving Crop Productions Using the Irrigation & Crop Production Model Under Drought

    NASA Astrophysics Data System (ADS)

    Shin, Y.; Lee, T.; Lee, S. H.; Kim, J.; Jang, W.; Park, S.

    2017-12-01

    We aimed to improve crop productions by providing optimal irrigation water amounts (IWAs) for various soils and crops using the Irrigation & Crop Production (ICP) model under various hydro-climatic regions. We selected the Little Washita (LW 13/21) and Bangdong-ri sites in Oklahoma (United States of America) and Chuncheon (Republic of Korea) for the synthetic studies. Our results showed that the ICP model performed well for improving crop productions by providing optimal IWAs during the study period (2000 to 2016). Crop productions were significantly affected by the solar radiation and precipitation, but the maximum and minimum temperature showed less impact on crop productions. When we considerd that the weather variables cannot be adjusted by artifical activities, irrigation might be the only solution for improving crop productions under drought. Also, the presence of shallow ground water (SGW) table depths higlhy influences on crop production. Although certainties exist in the synthetic studies, our results showed the robustness of the ICP model for improving crop productions under the drought condition. Thus, the ICP model can contribute to efficient water management plans under drought in regions at where water availability is limited.

  6. Geosensors to Support Crop Production: Current Applications and User Requirements

    PubMed Central

    Thessler, Sirpa; Kooistra, Lammert; Teye, Frederick; Huitu, Hanna; Bregt, Arnold K.

    2011-01-01

    Sensor technology, which benefits from high temporal measuring resolution, real-time data transfer and high spatial resolution of sensor data that shows in-field variations, has the potential to provide added value for crop production. The present paper explores how sensors and sensor networks have been utilised in the crop production process and what their added-value and the main bottlenecks are from the perspective of users. The focus is on sensor based applications and on requirements that users pose for them. Literature and two use cases were reviewed and applications were classified according to the crop production process: sensing of growth conditions, fertilising, irrigation, plant protection, harvesting and fleet control. The potential of sensor technology was widely acknowledged along the crop production chain. Users of the sensors require easy-to-use and reliable applications that are actionable in crop production at reasonable costs. The challenges are to develop sensor technology, data interoperability and management tools as well as data and measurement services in a way that requirements can be met, and potential benefits and added value can be realized in the farms in terms of higher yields, improved quality of yields, decreased input costs and production risks, and less work time and load. PMID:22163978

  7. Rehabilitating acid soils for increasing crop productivity through low-cost liming material.

    PubMed

    Bhat, Javid Ahmad; Kundu, Manik Chandra; Hazra, Gora Chand; Santra, Gour Hari; Mandal, Biswapati

    2010-09-15

    Productivity of red and lateritic soils is low because of their acidity and deficiencies in few essential nutrients viz., nitrogen, phosphorus, calcium, zinc, boron, molybdenum etc. We compared the effectiveness of basic slag, a low-cost liming material, with that of calcite as an ameliorant for these soils using mustard followed by rice as test crops. Experiments were conducted with three levels of each of basic slag and calcite along with a control on farmers' fields at 14 different locations. Influence of farmyard manure (FYM) and poultry manure (PM) on the effectiveness of the slag was also tested. On an average, basic slag performed better than calcite in increasing yields of both mustard and rice and left over higher amounts of available Ca, Si and Zn in residual soils. The slag also improved N, P, K and Ca nutrition of mustard and Si and Zn nutrition of rice with a favorable benefit:cost (B:C) ratio over the calcite (4.82 vs. 1.44). Effectiveness of the basic slag improved when it was applied in combination with FYM or PM (B:C, 5.83 and 6.27). Basic slag can, therefore, be advocated for use in the acidic red and lateritic soils for economically improving their productivity. Copyright 2010 Elsevier B.V. All rights reserved.

  8. Large-scale alcohol production from corn, grain sorghum, and crop residues

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Turhollow, A.F. Jr.

    1982-01-01

    The potential impacts that large-scale alcohol production from corn, grain sorghum, and crop residues may have on US agriculture in the year 2000 are investigated. A one-land-group interregional linear-programming model is used. The objective function is to minimize the cost of production in the agricultural sector, given specified crop demands and constrained resources. The impacts that levels of alcohol production, ranging from zero to 12 billion gallons, have at two projected levels of crop demands, two grain-to-alcohol conversion and two milling methods, wet and dry, rates are considered. The impacts that large-scale fuel alcohol production has on US agriculture aremore » small. The major impacts that occur are the substitution of milling by-products, DDG, gluten feed, and gluten meal, for soybean meal in livestock feed rations. Production of 12 billion gallons of alcohol is estimated to be equivalent to an 18 percent increase in crop exports. Improving the grain-to-alcohol conversion rate from 2.6 to 3.0 gallons per bushels reduces the overall cost of agricultural production by $989 billion when 12 billion gallons of alcohol are produced.« less

  9. Economic feasibility analysis of conventional and dedicated energy crop production

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nelson, R.G.; Langemeier, M.R.; Krehbiel, L.R.

    Economic feasibilities (net return per acre) associated with conventional agricultural crop production versus that of dedicated bioenergy crop (herbaceous energy crops) were investigated for northeastern Kansas. Conventional agricultural crops examined were corn, soybeans, wheat, sorghum and alfalfa and dedicated herbaceous energy crops included big bluestem/indiangrass, switchgrass, eastern gamagrass, brome, fescue and cane hay. Costs, prices and government program information from public and private sources were used to project the net return per acre over a six-year period beginning in 1997. Three soil productivity levels (low, average and high), which had a direct effect on the net return per acre, weremore » used to model differences in expected yield. In all three soil productivity cases, big bluestem/indiangrass, switchgrass and brome hay provided a higher net return per acre versus conventional crops grown on both program and non-program acres. Eastern gamagrass, fescue hay and cane hay had returns that were similar or less than returns provided by conventional crops.« less

  10. Preliminary process engineering evaluation of ethanol production from vegetative crops

    NASA Astrophysics Data System (ADS)

    Moreira, A. R.; Linden, J. C.; Smith, D. H.; Villet, R. H.

    1982-12-01

    Vegetative crops show good potential as feedstock for ethanol production via cellulose hydrolysis and yeast fermentation. The low levels of lignin encountered in young plant tissues show an inverse relationship with the high cellulose digestibility during hydrolysis with cellulose enzymes. Ensiled sorghum species and brown midrib mutants of sorghum exhibit high glucose yields after enzyme hydrolysis as well. Vegetative crop materials as candidate feedstocks for ethanol manufacture should continue to be studied. The species studied so far are high value cash crops and result in relatively high costs for the final ethanol product. Unconventional crops, such as pigweed, kochia, and Russian thistle, which can use water efficiently and grow on relatively arid land under conditions not ideal for food production, should be carefully evaluated with regard to their cultivation requirements, photosynthesis rates, and cellulose digestibility. Such crops should result in more favorable process economics for alcohol production.

  11. Managing manure nutrients through multi-crop forage production.

    PubMed

    Newton, G L; Bernard, J K; Hubbard, R K; Allison, J R; Lowrance, R R; Gascho, G J; Gates, R N; Vellidis, G

    2003-06-01

    Concentrated sources of dairy manure represent significant water pollution potential. The southern United States may be more vulnerable to water quality problems than some other regions because of climate, typical farm size, and cropping practices. Dairy manure can be an effective source of plant nutrients and large quantities of nutrients can be recycled through forage production, especially when multi-cropping systems are utilized. Linking forage production with manure utilization is an environmentally sound approach for addressing both of these problems. Review of two triple-crop systems revealed greater N and P recoveries for a corn silage-bermudagrass hay-rye haylage system, whereas forage yields and quality were greater for a corn silage-corn silage-rye haylage system, when manure was applied at rates to supply N. Nutrient uptake was lower than application during the autumn-winter period, and bermudagrass utilized more of the remaining excess than a second crop of corn silage. Economic comparison of these systems suggests that the added value of the two corn silage crop system was not enough to off-set its increased production cost. Therefore, the system that included bermudagrass demonstrated both environmental and economic advantages. Review of the N and P uptake and calculated crop value of various single, double, and triple crop forage systems indicated that the per hectare economic value as well as the N and P uptakes tended to follow DM yields, and grasses tended to out-perform broadleaf forages. Taken across all systems, systems that included bermudagrass tended to have some of the highest economic values and uptakes of N and P. Manure applied at rates to supply N results in application of excess P, and production will not supply adequate quantities of forage to meet the herd's needs. Systems that lower manure application and supply supplemental N to produce all necessary forage under manure application will likely be less economically attractive due

  12. Feeding nine billion: the challenge to sustainable crop production.

    PubMed

    Gregory, Peter J; George, Timothy S

    2011-11-01

    In the recent past there was a widespread working assumption in many countries that problems of food production had been solved, and that food security was largely a matter of distribution and access to be achieved principally by open markets. The events of 2008 challenged these assumptions, and made public a much wider debate about the costs of current food production practices to the environment and whether these could be sustained. As in the past 50 years, it is anticipated that future increases in crop production will be achieved largely by increasing yields per unit area rather than by increasing the area of cropped land. However, as yields have increased, so the ratio of photosynthetic energy captured to energy expended in crop production has decreased. This poses a considerable challenge: how to increase yield while simultaneously reducing energy consumption (allied to greenhouse gas emissions) and utilizing resources such as water and phosphate more efficiently. Given the timeframe in which the increased production has to be realized, most of the increase will need to come from crop genotypes that are being bred now, together with known agronomic and management practices that are currently under-developed.

  13. Quantifying the Impact of Tropospheric Ozone on Crops Productivity at regional scale using JULES-crop

    NASA Astrophysics Data System (ADS)

    Leung, F.

    2016-12-01

    Tropospheric ozone (O3) is the third most important anthropogenic greenhouse gas. It is causing significant crop production losses. Currently, O3 concentrations are projected to increase globally, which could have a significant impact on food security. The Joint UK Land Environment Simulator modified to include crops (JULES-crop) is used here to quantify the impacts of tropospheric O3 on crop production at the regional scale until 2100. We evaluate JULES-crop against the Soybean Free-Air-Concentration-Enrichment (SoyFACE) experiment in Illinois, USA. Experimental data from SoyFACE and various literature sources is used to calibrate the parameters for soybean and ozone damage parameters in soybean in JULES-crop. The calibrated model is then applied for a transient factorial set of JULES-crop simulations over 1960-2005. Simulated yield changes are attributed to individual environmental drivers, CO2, O3 and climate change, across regions and for different crops. A mixed scenario of RCP 2.6 and RCP 8.5 climatology and ozone are simulated to explore the implication of policy. The overall findings are that regions with high ozone concentration such as China and India suffer the most from ozone damage, soybean is more sensitive to O3 than other crops. JULES-crop predicts CO2 fertilisation would increase the productivity of vegetation. This effect, however, is masked by the negative impacts of tropospheric O3. Using data from FAO and JULES-crop estimated that ozone damage cost around 55.4 Billion USD per year on soybean. Irrigation improves the simulation of rice only, and it increases the relative ozone damage because drought can reduce the ozone from entering the plant stomata. RCP 8.5 scenario results in a high yield for all crops mainly due to the CO2 fertilisation effect. Mixed climate scenarios simulations suggest that RCP 8.5 CO2 concentration and RCP 2.6 O3 concentration result in the highest yield. Further works such as more crop FACE-O3 experiments and more Crop

  14. Performance of the CELSS Antarctic Analog Project (CAAP) crop production system

    NASA Astrophysics Data System (ADS)

    Bubenheim, D. L.; Schlick, G.; Wilson, D.; Bates, M.

    Regenerative life support systems potentially offer a level of self-sufficiency and a decrease in logistics and associated costs in support of space exploration and habitation missions. Current state-of-the-art in plant-based, regenerative life support requires resources in excess of allocation proposed for candidate mission scenarios. Feasibility thresholds have been identified for candidate exploration missions. The goal of this paper is to review recent advances in performance achieved in the CELSS Antarctic Analog Project (CAAP) in light of the likely resource constraints. A prototype CAAP crop production chamber has been constructed and operated at the Ames Research Center. The chamber includes a number of unique hardware and software components focused on attempts to increase production efficiency, increase energy efficiency, and control the flow of energy and mass through the system. Both single crop, batch production and continuous cultivation of mixed crops production studies have been completed. The crop productivity as well as engineering performance of the chamber are described. For each scenario, energy required and partitioned for lighting, cooling, pumping, fans, etc. is quantified. Crop production and the resulting lighting efficiency and energy conversion efficiencies are presented. In the mixed-crop scenario, with 27 different crops under cultivation, 17 m2 of crop area provided a mean of 515g edible biomass per day (85% of the approximate 620 g required for one person). Enhanced engineering and crop production performance achieved with the CAAP chamber, compared with current state-of-the-art, places plant-based life support systems at the threshold of feasibility.

  15. Production cost analysis of Euphorbia lathyris. Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mendel, D.A.

    1979-08-01

    The purpose of this study is to estimate costs of production for Euphorbia lathyris (hereafter referred to as Euphorbia) in commercial-scale quantities. Selection of five US locations for analysis was based on assumed climatic and cultivation requirements. The five areas are: nonirrigated areas (Southeast Kansas and Central Oklahoma, Northeast Louisiana and Central Mississippi, Southern Illinois), and irrigated areas: (San Joaquin Valley and the Imperial Valley, California and Yuma, Arizona). Cost estimates are tailored to reflect each region's requirements and capabilities. Variable costs for inputs such as cultivation, planting, fertilization, pesticide application, and harvesting include material costs, equipment ownership, operating costs,more » and labor. Fixed costs include land, management, and transportation of the plant material to a conversion facility. Euphorbia crop production costs, on the average, range between $215 per acre in nonirrigated areas to $500 per acre in irrigated areas. Extraction costs for conversion of Euphorbia plant material to oil are estimated at $33.76 per barrel of oil, assuming a plant capacity of 3000 dry ST/D. Estimated Euphorbia crop production costs are competitive with those of corn. Alfalfa production costs per acre are less than those of Euphorbia in the Kansas/Oklahoma and Southern Illinois site, but greater in the irrigated regions. This disparity is accounted for largely by differences in productivity and irrigation requirements.« less

  16. Global income and production impacts of using GM crop technology 1996-2013.

    PubMed

    Brookes, Graham; Barfoot, Peter

    2015-01-01

    This paper provides an economic assessment of the value of using genetically modified (GM) crop technology in agriculture at the farm level. It follows and updates earlier annual studies which examined economic impacts on yields, key costs of production, direct farm income and effects, and impacts on the production base of the 4 main crops of soybeans, corn, cotton and canola. The commercialisation of GM crops has continued to occur at a rapid rate since the mid 1990s, with important changes in both the overall level of adoption and impact occurring in 2013. This annual updated analysis shows that there continues to be very significant net economic benefits at the farm level amounting to $20.5 billion in 2013 and $133.4 billion for the 18 years period (in nominal terms). These economic gains have been divided roughly 50% each to farmers in developed and developing countries. About 70% of the gains have derived from yield and production gains with the remaining 30% coming from cost savings. The technology have also made important contributions to increasing global production levels of the 4 main crops, having added 138 million tonnes and 273 million tonnes respectively, to the global production of soybeans and maize since the introduction of the technology in the mid 1990s.

  17. Performance of the CELSS Antarctic Analog Project (CAAP) crop production system.

    PubMed

    Bubenheim, D L; Schlick, G; Wilson, D; Bates, M

    2003-01-01

    Regenerative life support systems potentially offer a level of self-sufficiency and a decrease in logistics and associated costs in support of space exploration and habitation missions. Current state-of-the-art in plant-based, regenerative life support requires resources in excess of allocation proposed for candidate mission scenarios. Feasibility thresholds have been identified for candidate exploration missions. The goal of this paper is to review recent advances in performance achieved in the CELSS Antarctic Analog Project (CAAP) in light of the likely resource constraints. A prototype CAAP crop production chamber has been constructed and operated at the Ames Research Center. The chamber includes a number of unique hardware and software components focused on attempts to increase production efficiency, increase energy efficiency, and control the flow of energy and mass through the system. Both single crop, batch production and continuous cultivation of mixed crops production studies have been completed. The crop productivity as well as engineering performance of the chamber are described. For each scenario, energy required and partitioned for lighting, cooling, pumping, fans, etc. is quantified. Crop production and the resulting lighting efficiency and energy conversion efficiencies are presented. In the mixed-crop scenario, with 27 different crops under cultivation, 17 m2 of crop area provided a mean of 515 g edible biomass per day (85% of the approximate 620 g required for one person). Enhanced engineering and crop production performance achieved with the CAAP chamber, compared with current state-of-the-art, places plant-based life support systems at the threshold of feasibility. c2002 Published by Elsevier Science Ltd on behalf of COSPAR.

  18. Performance of the CELSS Antarctic Analog Project (CAAP) crop production system

    NASA Technical Reports Server (NTRS)

    Bubenheim, D. L.; Schlick, G.; Wilson, D.; Bates, M.

    2003-01-01

    Regenerative life support systems potentially offer a level of self-sufficiency and a decrease in logistics and associated costs in support of space exploration and habitation missions. Current state-of-the-art in plant-based, regenerative life support requires resources in excess of allocation proposed for candidate mission scenarios. Feasibility thresholds have been identified for candidate exploration missions. The goal of this paper is to review recent advances in performance achieved in the CELSS Antarctic Analog Project (CAAP) in light of the likely resource constraints. A prototype CAAP crop production chamber has been constructed and operated at the Ames Research Center. The chamber includes a number of unique hardware and software components focused on attempts to increase production efficiency, increase energy efficiency, and control the flow of energy and mass through the system. Both single crop, batch production and continuous cultivation of mixed crops production studies have been completed. The crop productivity as well as engineering performance of the chamber are described. For each scenario, energy required and partitioned for lighting, cooling, pumping, fans, etc. is quantified. Crop production and the resulting lighting efficiency and energy conversion efficiencies are presented. In the mixed-crop scenario, with 27 different crops under cultivation, 17 m2 of crop area provided a mean of 515 g edible biomass per day (85% of the approximate 620 g required for one person). Enhanced engineering and crop production performance achieved with the CAAP chamber, compared with current state-of-the-art, places plant-based life support systems at the threshold of feasibility. c2002 Published by Elsevier Science Ltd on behalf of COSPAR.

  19. Global income and production impacts of using GM crop technology 1996-2014.

    PubMed

    Brookes, Graham; Barfoot, Peter

    2016-01-02

    This paper provides an economic assessment of the value of using genetically modified (GM) crop technology in agriculture at the farm level. It follows and updates earlier annual studies which examined economic impacts on yields, key costs of production, direct farm income and effects, and impacts on the production base of the 4 main crops of soybeans, corn, cotton and canola. The commercialisation of GM crops has continued to occur at a rapid rate since the mid 1990s, with important changes in both the overall level of adoption and impact occurring in 2014. This annual updated analysis shows that there continues to be very significant net economic benefits at the farm level amounting to $17.7 billion in 2014 and $150.3 billion for the 19-year period 1996-2014 (in nominal terms). These economic gains have been divided roughly 50% each to farmers in developed and developing countries. About 65% of the gains have derived from yield and production gains with the remaining 35% coming from cost savings. The technology has also made important contributions to increasing global production levels of the 4 main crops, having, for example, added 158 million tonnes and 322 million tonnes respectively, to the global production of soybeans and maize since the introduction of the technology in the mid 1990s.

  20. National Variation in Crop Yield Production Functions

    NASA Astrophysics Data System (ADS)

    Devineni, N.; Rising, J. A.

    2017-12-01

    A new multilevel model for yield prediction at the county scale using regional climate covariates is presented in this paper. A new crop specific water deficit index, growing degree days, extreme degree days, and time-trend as an approximation of technology improvements are used as predictors to estimate annual crop yields for each county from 1949 to 2009. Every county in the United States is allowed to have unique parameters describing how these weather predictors are related to yield outcomes. County-specific parameters are further modeled as varying according to climatic characteristics, allowing the prediction of parameters in regions where crops are not currently grown and into the future. The structural relationships between crop yield and regional climate as well as trends are estimated simultaneously. All counties are modeled in a single multilevel model with partial pooling to automatically group and reduce estimation uncertainties. The model captures up to 60% of the variability in crop yields after removing the effect of technology, does well in out of sample predictions and is useful in relating the climate responses to local bioclimatic factors. We apply the predicted growing models in a cost-benefit analysis to identify the most economically productive crop in each county.

  1. Embodied crop calories in animal products

    NASA Astrophysics Data System (ADS)

    Pradhan, Prajal; Lüdeke, Matthias K. B.; Reusser, Dominik E.; Kropp, Jürgen P.

    2013-12-01

    Increases in animal products consumption and the associated environmental consequences have been a matter of scientific debate for decades. Consequences of such increases include rises in greenhouse gas emissions, growth of consumptive water use, and perturbation of global nutrients cycles. These consequences vary spatially depending on livestock types, their densities and their production system. In this letter, we investigate the spatial distribution of embodied crop calories in animal products. On a global scale, about 40% of the global crop calories are used as livestock feed (we refer to this ratio as crop balance for livestock) and about 4 kcal of crop products are used to generate 1 kcal of animal products (embodied crop calories of around 4). However, these values vary greatly around the world. In some regions, more than 100% of the crops produced is required to feed livestock requiring national or international trade to meet the deficit in livestock feed. Embodied crop calories vary between less than 1 for 20% of the livestock raising areas worldwide and greater than 10 for another 20% of the regions. Low values of embodied crop calories are related to production systems for ruminants based on fodder and forage, while large values are usually associated with production systems for non-ruminants fed on crop products. Additionally, we project the future feed demand considering three scenarios: (a) population growth, (b) population growth and changes in human dietary patterns and (c) changes in population, dietary patterns and feed conversion efficiency. When considering dietary changes, we project the global feed demand to be almost doubled (1.8-2.3 times) by 2050 compared to 2000, which would force us to produce almost equal or even more crops to raise our livestock than to directly nourish ourselves in the future. Feed demand is expected to increase over proportionally in Africa, South-Eastern Asia and Southern Asia, putting additional stress on these

  2. Global income and production impacts of using GM crop technology 1996–2014

    PubMed Central

    Brookes, Graham; Barfoot, Peter

    2016-01-01

    ABSTRACT This paper provides an economic assessment of the value of using genetically modified (GM) crop technology in agriculture at the farm level. It follows and updates earlier annual studies which examined economic impacts on yields, key costs of production, direct farm income and effects, and impacts on the production base of the 4 main crops of soybeans, corn, cotton and canola. The commercialisation of GM crops has continued to occur at a rapid rate since the mid 1990s, with important changes in both the overall level of adoption and impact occurring in 2014. This annual updated analysis shows that there continues to be very significant net economic benefits at the farm level amounting to $17.7 billion in 2014 and $150.3 billion for the 19-year period 1996–2014 (in nominal terms). These economic gains have been divided roughly 50% each to farmers in developed and developing countries. About 65% of the gains have derived from yield and production gains with the remaining 35% coming from cost savings. The technology has also made important contributions to increasing global production levels of the 4 main crops, having, for example, added 158 million tonnes and 322 million tonnes respectively, to the global production of soybeans and maize since the introduction of the technology in the mid 1990s. PMID:27116697

  3. Global income and production impacts of using GM crop technology 1996–2013

    PubMed Central

    Brookes, Graham; Barfoot, Peter

    2015-01-01

    abstract This paper provides an economic assessment of the value of using genetically modified (GM) crop technology in agriculture at the farm level. It follows and updates earlier annual studies which examined economic impacts on yields, key costs of production, direct farm income and effects, and impacts on the production base of the 4 main crops of soybeans, corn, cotton and canola. The commercialisation of GM crops has continued to occur at a rapid rate since the mid 1990s, with important changes in both the overall level of adoption and impact occurring in 2013. This annual updated analysis shows that there continues to be very significant net economic benefits at the farm level amounting to $20.5 billion in 2013 and $133.4 billion for the 18 years period (in nominal terms). These economic gains have been divided roughly 50% each to farmers in developed and developing countries. About 70% of the gains have derived from yield and production gains with the remaining 30% coming from cost savings. The technology have also made important contributions to increasing global production levels of the 4 main crops, having added 138 million tonnes and 273 million tonnes respectively, to the global production of soybeans and maize since the introduction of the technology in the mid 1990s. PMID:25738324

  4. Farm income and production impacts of using GM crop technology 1996–2015

    PubMed Central

    Brookes, Graham

    2017-01-01

    ABSTRACT This paper provides an assessment of the value of using genetically modified (GM) crop technology in agriculture at the farm level. It follows and updates earlier annual studies which examined impacts on yields, key variable costs of production, direct farm (gross) income and impacts on the production base of the 4 main crops of soybeans, corn, cotton and canola. The commercialisation of GM crops has occurred at a rapid rate since the mid 1990s, with important changes in both the overall level of adoption and impact occurring in 2015. This annual updated analysis shows that there continues to be very significant net economic benefits at the farm level amounting to $15.4 billion in 2015 and $167.8 billion for the 20 year period 1996–2015 (in nominal terms). These gains have been divided 49% to farmers in developed countries and 51% to farmers in developing countries. About 72% of the gains have derived from yield and production gains with the remaining 28% coming from cost savings. The technology has also made important contributions to increasing global production levels of the 4 main crops, having, for example, added 180 million tonnes and 358 million tonnes respectively, to the global production of soybeans and maize since the introduction of the technology in the mid 1990s. PMID:28481684

  5. Connecting Groundwater, Crop Price, and Crop Production Variability in India

    NASA Astrophysics Data System (ADS)

    Pollack, A.; Lobell, D. B.; Jain, M.

    2015-12-01

    Farmers in India rely on groundwater resources for irrigation and production of staple crops that provide over half of the calories consumed domestically each year. While this has been a productive strategy in increasing agricultural production and maintaining high yields, groundwater resources are depleting at a quicker rate than natural resources can replace. This issue gains relevance as climate variability concurrently adds to yearly fluctuations in farmer demand for irrigation each year, which can create high risk for farmers that depend on consistent yields, but do not have access to dwindling water resources. This study investigates variability in groundwater levels from 2005 to 2013 in relation to crop prices and production by analyzing district-level datasets made available through India's government. Through this analysis, we show the impact of groundwater variability on price variability, crop yield, and production during these years. By examining this nine-year timescale, we extend our analysis to forthcoming years to demonstrate the increasing importance of groundwater resources in irrigation, and suggest strategies to reduce the impact of groundwater shortages on crop production and prices.

  6. Performance of the CELSS Antarctic Analog Project (CAAP) Crop Production System

    NASA Technical Reports Server (NTRS)

    Bubenheim, David L.; Flynn, Michael T.; Bates, Maynard; Schlick, Greg; Kliss, Mark (Technical Monitor)

    1998-01-01

    Regenerative life support systems potentially offer a level of self-sufficiency and a concomitant decrease in logistics and associated costs in support of space exploration and habitation missions. Current state-of-the-art in plant based, regenerative life support requires resources in excess of resource allocations proposed for candidate mission scenarios. Feasibility thresholds have been identified for candidate exploration missions. The goal of this paper is to review recent advances in performance achieved in the CELSS Antarctic Analog Project (CAAP) in light of likely resource constraints. A prototype CAAP crop production chamber has been constructed and operated at the Ames Research Center. The chamber includes a number of unique hardware and software components focused on attempts to increase production efficiency, increase energy efficiency, and control the flow of energy and mass through the system to achieve enhanced performance efficiency. Both single crop, batch production, and continuous cultivation of mixed crops Product ion scenarios have been completed. The crop productivity as well as engineering performance of the chamber will be described. For each scenario, energy required and partitioned for lighting, cooling, pumps, fans, etc. is quantified. Crop production and the resulting lighting efficiency and energy conversion efficiencies are presented. In the mixed-crop scenario, with up to 25 different crops under cultivation, 17 sq m of crop area provided a mean of 515 g edible biomass per day (83% of the approximately 620 g required for one person). Lighting efficiency (moles on photons kWh-1) approached 4 and the conversion efficiency of light energy to biomass was greatly enhanced compared with conventional growing systems. Engineering and biological performance achieved place plant-based life support systems at the threshold of feasibility.

  7. Genetic Engineering and Crop Production.

    ERIC Educational Resources Information Center

    Jones, Helen C.; Frost, S.

    1991-01-01

    With a spotlight upon current agricultural difficulties and environmental dilemmas, this paper considers both the extant and potential applications of genetic engineering with respect to crop production. The nonagricultural factors most likely to sway the impact of this emergent technology upon future crop production are illustrated. (JJK)

  8. Recycling crop residues for use in recirculating hydroponic crop production

    NASA Technical Reports Server (NTRS)

    Mackowiak, C. L.; Garland, J. L.; Sager, J. C.

    1996-01-01

    As part of bioregenerative life support feasibility testing by NASA, crop residues are being used to resupply elemental nutrients to recirculating hydroponic crop production systems. Methods for recovering nutrients from crop residues have evolved from water soaking (leaching) to rapid aerobic bioreactor processing. Leaching residues recovered the majority of elements but it also recovered significant amounts of soluble organics. The high organic content of leachates was detrimental to plant growth. Aerobic bioreactor processing reduced the organic content ten-fold, which reduced or eliminated phytotoxic effects. Wheat and potato production studies were successful using effluents from reactors having with 8- to 1-day retention times. Aerobic bioreactor effluents supplied at least half of the crops elemental mass needs in these studies. Descriptions of leachate and effluent mineral content, biomass productivity, microbial activity, and nutrient budgets for potato and wheat are presented.

  9. An Analysis of the Impact of Heat Waves in Labor and Crop Productivity in the Agricultural Sector in California

    NASA Astrophysics Data System (ADS)

    Castillo, F.; Wehner, M. F.; Gilless, J. K.

    2017-12-01

    California agriculture is an important economic activity for the state. California leads the nation in farms sales since 1950. In addition, agricultural employment in California reached approximately 410,000. Production of many fruits and vegetables is labor intensive and labor costs represent anywhere from 20% to 40% of total production costs. In additon, agricutlural production growth has been the highest for labor intensive crops such as berries (all types) and nuts. Given the importance of the agricultural sector and the labor component whithin it, the analysis of the impact of climate change on the agricultural sector of California becomes imperative. Heat waves are a weather related extreme that impact labor productivity, specially outdoor labor producitivity. We use crop production function analysis that incorporates socio economic variables such as crop prices, total acreage, production levels and harvest timiline with climate related variables such as an estimated Heat Index (HI) to analize the impact of heat waves on crop production via an impact on labor productivity for selected crops in the Central and Imperial Valleys in California. The analysis finds that the impact of heat waves varies by the degree of labor intensity of the crop and the relative intensity of the heat wave.

  10. The California Biomass Crop Adoption Model estimates biofuel feedstock crop production across diverse agro-ecological zones within the state, under different future climates

    NASA Astrophysics Data System (ADS)

    Kaffka, S.; Jenner, M.; Bucaram, S.; George, N.

    2012-12-01

    Both regulators and businesses need realistic estimates for the potential production of biomass feedstocks for biofuels and bioproducts. This includes the need to understand how climate change will affect mid-tem and longer-term crop performance and relative advantage. The California Biomass Crop Adoption Model is a partial mathematical programming optimization model that estimates the profit level needed for new crop adoption, and the crop(s) displaced when a biomass feedstock crop is added to the state's diverse set of cropping systems, in diverse regions of the state. Both yield and crop price, as elements of profit, can be varied. Crop adoption is tested against current farmer preferences derived from analysis of 10 years crop production data for all crops produced in California, collected by the California Department of Pesticide Regulation. Analysis of this extensive data set resulted in 45 distinctive, representative farming systems distributed across the state's diverse agro-ecological regions. Estimated yields and water use are derived from field trials combined with crop simulation, reported elsewhere. Crop simulation is carried out under different weather and climate assumptions. Besides crop adoption and displacement, crop resource use is also accounted, derived from partial budgets used for each crop's cost of production. Systematically increasing biofuel crop price identified areas of the state where different types of crops were most likely to be adopted. Oilseed crops like canola that can be used for biodiesel production had the greatest potential to be grown in the Sacramento Valley and other northern regions, while sugar beets (for ethanol) had the greatest potential in the northern San Joaquin Valley region, and sweet sorghum in the southern San Joaquin Valley. Up to approximately 10% of existing annual cropland in California was available for new crop adoption. New crops are adopted if the entire cropping system becomes more profitable. In

  11. A Novel Approach for Forecasting Crop Production and Yield Using Remotely Sensed Satellite Images

    NASA Astrophysics Data System (ADS)

    Singh, R. K.; Budde, M. E.; Senay, G. B.; Rowland, J.

    2017-12-01

    Forecasting crop production in advance of crop harvest plays a significant role in drought impact management, improved food security, stabilizing food grain market prices, and poverty reduction. This becomes essential, particularly in Sub-Saharan Africa, where agriculture is a critical source of livelihoods, but lacks good quality agricultural statistical data. With increasing availability of low cost satellite data, faster computing power, and development of modeling algorithms, remotely sensed images are becoming a common source for deriving information for agricultural, drought, and water management. Many researchers have shown that the Normalized Difference Vegetation Index (NDVI), based on red and near-infrared reflectance, can be effectively used for estimating crop production and yield. Similarly, crop production and yield have been closely related to evapotranspiration (ET) also as there are strong linkages between production/yield and transpiration based on plant physiology. Thus, we combined NDVI and ET information from remotely sensed images for estimating total production and crop yield prior to crop harvest for Niger and Burkina Faso in West Africa. We identified the optimum time (dekads 23-29) for cumulating NDVI and ET and developed a new algorithm for estimating crop production and yield. We used the crop data from 2003 to 2008 to calibrate our model and the data from 2009 to 2013 for validation. Our results showed that total crop production can be estimated within 5% of actual production (R2 = 0.98) about 30-45 days before end of the harvest season. This novel approach can be operationalized to provide a valuable tool to decision makers for better drought impact management in drought-prone regions of the world.

  12. Biogas crops grown in energy crop rotations: Linking chemical composition and methane production characteristics.

    PubMed

    Herrmann, Christiane; Idler, Christine; Heiermann, Monika

    2016-04-01

    Methane production characteristics and chemical composition of 405 silages from 43 different crop species were examined using uniform laboratory methods, with the aim to characterise a wide range of crop feedstocks from energy crop rotations and to identify main parameters that influence biomass quality for biogas production. Methane formation was analysed from chopped and over 90 days ensiled crop biomass in batch anaerobic digestion tests without further pre-treatment. Lignin content of crop biomass was found to be the most significant explanatory variable for specific methane yields while the methane content and methane production rates were mainly affected by the content of nitrogen-free extracts and neutral detergent fibre, respectively. The accumulation of butyric acid and alcohols during the ensiling process had significant impact on specific methane yields and methane contents of crop silages. It is proposed that products of silage fermentation should be considered when evaluating crop silages for biogas production. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.

  13. Water savings of redistributing global crop production

    NASA Astrophysics Data System (ADS)

    Davis, Kyle; Seveso, Antonio; Rulli, Maria Cristina; D'Odorico, Paolo

    2016-04-01

    Human demand for crop production is expected to increase substantially in the coming decades as a result of population growth, richer diets and biofuel use. For food production to keep pace, unprecedented amounts of resources - water, fertilizers, energy - will be required. This has led to calls for 'sustainable intensification' in which yields are increased on existing croplands while seeking to minimize impacts on water and other agricultural resources. Recent studies have quantified aspects of this, showing that there is a large potential to improve crop yields and increase harvest frequencies to better meet human demand. Though promising, both solutions would necessitate large additional inputs of water and fertilizer in order to be achieved under current technologies. However, the question of whether the current distribution of crops is, in fact, the best for realizing maximized production has not been considered to date. To this end, we ask: Is it possible to minimize water demand by simply growing crops where soil and climate conditions are best suited? Here we use maps of agro-ecological suitability - a measure of physical and chemical soil fertility - for 15 major food crops to identify differences between current crop distributions and where they can most suitably be planted. By redistributing crops across currently cultivated lands, we determine what distribution of crops would maintain current calorie production and agricultural value while minimizing the water demand of crop production. In doing this, our study provides a novel tool for policy makers and managers to integrate food security, environmental sustainability, and rural livelihoods by improving the use of freshwater resources without compromising crop calorie production or rural livelihoods.

  14. Marginal cost curves for water footprint reduction in irrigated agriculture: guiding a cost-effective reduction of crop water consumption to a permit or benchmark level

    NASA Astrophysics Data System (ADS)

    Chukalla, Abebe D.; Krol, Maarten S.; Hoekstra, Arjen Y.

    2017-07-01

    Reducing the water footprint (WF) of the process of growing irrigated crops is an indispensable element in water management, particularly in water-scarce areas. To achieve this, information on marginal cost curves (MCCs) that rank management packages according to their cost-effectiveness to reduce the WF need to support the decision making. MCCs enable the estimation of the cost associated with a certain WF reduction target, e.g. towards a given WF permit (expressed in m3  ha-1 per season) or to a certain WF benchmark (expressed in m3  t-1 of crop). This paper aims to develop MCCs for WF reduction for a range of selected cases. AquaCrop, a soil-water-balance and crop-growth model, is used to estimate the effect of different management packages on evapotranspiration and crop yield and thus the WF of crop production. A management package is defined as a specific combination of management practices: irrigation technique (furrow, sprinkler, drip or subsurface drip); irrigation strategy (full or deficit irrigation); and mulching practice (no, organic or synthetic mulching). The annual average cost for each management package is estimated as the annualized capital cost plus the annual costs of maintenance and operations (i.e. costs of water, energy and labour). Different cases are considered, including three crops (maize, tomato and potato); four types of environment (humid in UK, sub-humid in Italy, semi-arid in Spain and arid in Israel); three hydrologic years (wet, normal and dry years) and three soil types (loam, silty clay loam and sandy loam). For each crop, alternative WF reduction pathways were developed, after which the most cost-effective pathway was selected to develop the MCC for WF reduction. When aiming at WF reduction one can best improve the irrigation strategy first, next the mulching practice and finally the irrigation technique. Moving from a full to deficit irrigation strategy is found to be a no-regret measure: it reduces the WF by

  15. Sugarcane and other crops as fuel feedstocks

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Irvine, J.E.

    1980-07-01

    The use of sugarcane as a feedstock for fuel alcohol production in Brazil, and in Zimbabwe Rhodesia and Panama stimulated tremendous interest in the potential of agricultural crops for renewable energy sources. The cost of the feedstock is important. Corn, the current major agricultural feedstock in US fuel alcohol production, costs 60 to 80% of the selling price of the alcohol produced from it. Production costs for sugarcane and sugarbeets are higher than for corn. Sugarcane and sugarbeets, yield more fermentable carbohydrates per acre than any other crop. Sugarcane has the distinct advantage of containing a large amount of fibermore » in the harvested portion. The feedstock cost of sugarcane can be reduced by producing more cane per acre. Sweet sorghum has been discussed as a fuel crop. Cassana, the tapioca source, is thought to be a fuel crop of major potential. Feedstock cost can also be reduced through management decisions that reduce costly practices. Cultivation and fertilizer costs can be reduced. The operating cost of the processing plant is affected by the choice of crops grown for feedstock, both by their cost and by availability. (DP)« less

  16. Optimization of Southeastern Forest Biomass Crop Production: A Watershed Scale Evaluation of the Sustainability and Productivity of Dedicated Energy Crop and Woody Biomass Operations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chescheir, George M.; Nettles, Jami E,; Youssef, Mohamed

    Growing switchgrass (Panicum virgatum L.) as an intercrop in managed loblolly pine (Pinus taeda L.) plantations has emerged as a potential source of bioenergy feedstock. Utilizing land resources between pine trees to produce an energy crop can potentially reduce the demand for land resources used to produce food; however, converting conventionally managed forest land to this new intercropping system constitutes changes in land use and associated management practices, which may affect the environmental and economic sustainability of the land. The overall objective of this project is to evaluate the environmental effects of large-scale forest bioenergy crop production and utilize thesemore » results to optimize cropping systems in a manner that protects the important ecosystem services provided by forests while contributing to the development of a sustainable and economically-viable biomass industry in the southeastern United States. Specific objectives are to: Quantify the hydrology of different energy crop production systems in watershed scale experiments on different landscapes in the southeast. Quantify the nutrient dynamics of energy crop production systems in watershed scale experiments to determine the impact of these systems on water quality. Evaluate the impacts of energy crop production on soil structure, fertility, and organic matter. Evaluate the response of flora and fauna populations and habitat quality to energy crop production systems. Develop watershed and regional scale models to evaluate the environmental sustainability and productivity of energy crop and woody biomass operations. Quantify the production systems in terms of bioenergy crop yield versus the energy and economic costs of production. Develop and evaluate best management practice guidelines to ensure the environmental sustainability of energy crop production systems. Watershed and plot scale studies formed the core of this research platform. Matched-watershed studies were established

  17. Opportunities for Energy Crop Production Based on Subfield Scale Distribution of Profitability

    DOE PAGES

    Bonner, Ian J.; Cafferty, Kara G.; Muth, Jr., David J.; ...

    2014-10-01

    Incorporation of dedicated herbaceous energy crops into row crop landscapes is a promising means to supply an expanding biofuel industry while increasing biomass yields, benefiting soil and water quality, and increasing biodiversity. Despite these positive traits energy crops remain largely unaccepted due to concerns over their practicality and cost of implementation. This paper presents a case study on Hardin County, Iowa to demonstrate how subfield decision making can be used to target candidate areas for conversion to energy crop production. The strategy presented integrates switchgrass (Panicum virgatum L.) into subfield landscape positions where corn (Zea mays L.) grain is modeledmore » to operate at a net economic loss. The results of this analysis show that switchgrass integration has the potential to increase sustainable biomass production from 48 to 99% (depending on the rigor of conservation practices applied to corn stover collection) while also improving field level profitability. Candidate land area is highly sensitive to grain price (0.18 to 0.26 US$ kg-1) and dependent on the acceptable net profit for corn production (ranging from 0 to -1,000 US$ ha-1). This work presents the case that switchgrass can be economically implemented into row crop production landscapes when management decisions are applied at a subfield scale and compete against areas of the field operating at a negative net profit.« less

  18. Impacts on Water Management and Crop Production of Regional Cropping System Adaptation to Climate Change

    NASA Astrophysics Data System (ADS)

    Zhong, H.; Sun, L.; Tian, Z.; Liang, Z.; Fischer, G.

    2014-12-01

    China is one of the most populous and fast developing countries, also faces a great pressure on grain production and food security. Multi-cropping system is widely applied in China to fully utilize agro-climatic resources and increase land productivity. As the heat resource keep improving under climate warming, multi-cropping system will also shifting northward, and benefit crop production. But water shortage in North China Plain will constrain the adoption of new multi-cropping system. Effectiveness of multi-cropping system adaptation to climate change will greatly depend on future hydrological change and agriculture water management. So it is necessary to quantitatively express the water demand of different multi-cropping systems under climate change. In this paper, we proposed an integrated climate-cropping system-crops adaptation framework, and specifically focused on: 1) precipitation and hydrological change under future climate change in China; 2) the best multi-cropping system and correspondent crop rotation sequence, and water demand under future agro-climatic resources; 3) attainable crop production with water constraint; and 4) future water management. In order to obtain climate projection and precipitation distribution, global climate change scenario from HADCAM3 is downscaled with regional climate model (PRECIS), historical climate data (1960-1990) was interpolated from more than 700 meteorological observation stations. The regional Agro-ecological Zone (AEZ) model is applied to simulate the best multi-cropping system and crop rotation sequence under projected climate change scenario. Finally, we use the site process-based DSSAT model to estimate attainable crop production and the water deficiency. Our findings indicate that annual land productivity may increase and China can gain benefit from climate change if multi-cropping system would be adopted. This study provides a macro-scale view of agriculture adaptation, and gives suggestions to national

  19. Relay cropping as a sustainable approach: problems and opportunities for sustainable crop production.

    PubMed

    Tanveer, Mohsin; Anjum, Shakeel Ahmad; Hussain, Saddam; Cerdà, Artemi; Ashraf, Umair

    2017-03-01

    Climate change, soil degradation, and depletion of natural resources are becoming the most prominent challenges for crop productivity and environmental sustainability in modern agriculture. In the scenario of conventional farming system, limited chances are available to cope with these issues. Relay cropping is a method of multiple cropping where one crop is seeded into standing second crop well before harvesting of second crop. Relay cropping may solve a number of conflicts such as inefficient use of available resources, controversies in sowing time, fertilizer application, and soil degradation. Relay cropping is a complex suite of different resource-efficient technologies, which possesses the capability to improve soil quality, to increase net return, to increase land equivalent ratio, and to control the weeds and pest infestation. The current review emphasized relay cropping as a tool for crop diversification and environmental sustainability with special focus on soil. Briefly, benefits, constraints, and opportunities of relay cropping keeping the goals of higher crop productivity and sustainability have also been discussed in this review. The research and knowledge gap in relay cropping was also highlighted in order to guide the further studies in future.

  20. A stable dynamic cohort analysis of installing cost-effective rollover protective structures (CROPS).

    PubMed

    Owusu-Edusei, K; Biddle, E A

    2007-04-01

    Cost-effective rollover protective structures (CROPS) are less costly model-specific rollover protective structure (ROPS) retrofits that are being developed and evaluated with the hope of increasing adoption and eventually preventing or mitigating injuries due to tractor overturns. A dynamic cohort of the estimated retrofittable non-ROPS tractors (accounting for attrition due to aging) was tracked over a 20-year period to determine the expected costs, as well as the expected number of fatal and non-fatal injuries resulting from tractor overturns. Two alternatives were tracked: No-ROPS and Install-CROPS. For a starting cohort size of 1,065,164 (an estimate for the year 2004), the Install-CROPS option prevented an estimated total of 878 (192 fatal and 686 non-fatal) injuries over the 20-year period. Expected costs were $513 million (cost of installing CROPS on all the non-ROPS tractors plus cost of the associated injuries) and $284 million (cost of injuries resulting from the No-ROPS option) over the same time period. Thus, the net cost per injury prevented was $260,820. When the cost of intervention ($1000 for purchasing, shipping, and installation of existing ROPS retrofit) was used in the analysis, the cost-effectiveness ratio was $927,000 per injury prevented over the 20-year period. Thus, installing CROPS instead of existing ROPS retrofits improved the cost-effectiveness ratio substantially, with a 72% reduction in the net cost per injury prevented.

  1. Application of water footprint combined with a unified virtual crop pattern to evaluate crop water productivity in grain production in China.

    PubMed

    Wang, Y B; Wu, P T; Engel, B A; Sun, S K

    2014-11-01

    Water shortages are detrimental to China's grain production while food production consumes a great deal of water causing water crises and ecological impacts. Increasing crop water productivity (CWP) is critical, so China is devoting significant resources to develop water-saving agricultural systems based on crop planning and agricultural water conservation planning. A comprehensive CWP index is necessary for such planning. Existing indices such as water use efficiency (WUE) and irrigation efficiency (IE) have limitations and are not suitable for the comprehensive evaluation of CWP. The water footprint (WF) index, calculated using effective precipitation and local water use, has advantages for CWP evaluation. Due to regional differences in crop patterns making the CWP difficult to compare directly across different regions, a unified virtual crop pattern is needed to calculate the WF. This project calculated and compared the WF of each grain crop and the integrated WFs of grain products with actual and virtual crop patterns in different regions of China for 2010. The results showed that there were significant differences for the WF among different crops in the same area or among different areas for the same crop. Rice had the highest WF at 1.39 m(3)/kg, while corn had the lowest at 0.91 m(3)/kg among the main grain crops. The WF of grain products was 1.25 m(3)/kg in China. Crop patterns had an important impact on WF of grain products because significant differences in WF were found between actual and virtual crop patterns in each region. The CWP level can be determined based on the WF of a virtual crop pattern, thereby helping optimize spatial distribution of crops and develop agricultural water savings to increase CWP. Copyright © 2014 Elsevier B.V. All rights reserved.

  2. Can increased leaf photosynthesis be converted into higher crop mass production? A simulation study for rice using the crop model GECROS

    PubMed Central

    Struik, Paul C.

    2017-01-01

    Abstract Various genetic engineering routes to enhance C3 leaf photosynthesis have been proposed to improve crop productivity. However, their potential contribution to crop productivity needs to be assessed under realistic field conditions. Using 31 year weather data, we ran the crop model GECROS for rice in tropical, subtropical, and temperate environments, to evaluate the following routes: (1) improving mesophyll conductance (gm); (2) improving Rubisco specificity (Sc/o); (3) improving both gm and Sc/o; (4) introducing C4 biochemistry; (5) introducing C4 Kranz anatomy that effectively minimizes CO2 leakage; (6) engineering the complete C4 mechanism; (7) engineering cyanobacterial bicarbonate transporters; (8) engineering a more elaborate cyanobacterial CO2-concentrating mechanism (CCM) with the carboxysome in the chloroplast; and (9) a mechanism that combines the low ATP cost of the cyanobacterial CCM and the high photosynthetic capacity per unit leaf nitrogen. All routes improved crop mass production, but benefits from Routes 1, 2, and 7 were ≤10%. Benefits were higher in the presence than in the absence of drought, and under the present climate than for the climate predicted for 2050. Simulated crop mass differences resulted not only from the increased canopy photosynthesis competence but also from changes in traits such as light interception and crop senescence. The route combinations gave larger effects than the sum of the effects of the single routes, but only Route 9 could bring an advantage of ≥50% under any environmental conditions. To supercharge crop productivity, exploring a combination of routes in improving the CCM, photosynthetic capacity, and quantum efficiency is required. PMID:28379522

  3. Economic impact of GM crops: the global income and production effects 1996-2012.

    PubMed

    Brookes, Graham; Barfoot, Peter

    2014-01-01

    A key part of any assessment of the global value of crop biotechnology in agriculture is an examination of its economic impact at the farm level. This paper follows earlier annual studies which examined economic impacts on yields, key costs of production, direct farm income and effects, and impacts on the production base of the four main crops of soybeans, corn, cotton and canola. The commercialization of genetically modified (GM) crops has continued to occur at a rapid rate, with important changes in both the overall level of adoption and impact occurring in 2012. This annual updated analysis shows that there have been very significant net economic benefits at the farm level amounting to $18.8 billion in 2012 and $116.6 billion for the 17-year period (in nominal terms). These economic gains have been divided roughly 50% each to farmers in developed and developing countries. GM technology have also made important contributions to increasing global production levels of the four main crops, having added 122 million tonnes and 230 million tonnes respectively, to the global production of soybeans and maize since the introduction of the technology in the mid-1990s.

  4. Reducing N2O and NO emissions while sustaining crop productivity in a Chinese vegetable-cereal double cropping system.

    PubMed

    Yao, Zhisheng; Yan, Guangxuan; Zheng, Xunhua; Wang, Rui; Liu, Chunyan; Butterbach-Bahl, Klaus

    2017-12-01

    High nitrogen (N) inputs in Chinese vegetable and cereal productions played key roles in increasing crop yields. However, emissions of the potent greenhouse gas nitrous oxide (N 2 O) and atmospheric pollutant nitric oxide (NO) increased too. For lowering the environmental costs of crop production, it is essential to optimize N strategies to maintain high crop productivity, while reducing the associated N losses. We performed a 2 year-round field study regarding the effect of different combinations of poultry manure and chemical N fertilizers on crop yields, N use efficiency (NUE) and N 2 O and NO fluxes from a Welsh onion-winter wheat system in the North China Plain. Annual N 2 O and NO emissions averaged 1.14-3.82 kg N ha -1 yr -1 (or 5.54-13.06 g N kg -1 N uptake) and 0.57-1.87 kg N ha -1 yr -1 (or 2.78-6.38 g N kg -1 N uptake) over all treatments, respectively. Both N 2 O and NO emissions increased linearly with increasing total N inputs, and the mean annual direct emission factors (EF d ) were 0.39% for N 2 O and 0.19% for NO. Interestingly, the EF d for chemical N fertilizers (N 2 O: 0.42-0.48%; NO: 0.07-0.11%) was significantly lower than for manure N (N 2 O: 1.35%; NO: 0.76%). Besides, a negative power relationship between yield-scaled N 2 O, NO or N 2 O + NO emissions and NUE was observed, suggesting that improving NUE in crop production is crucial for increasing crop yields while decreasing nitrogenous gas release. Compared to the current farmers' fertilization rate, alternative practices with reduced chemical N fertilizers increased NUE and decreased annual N 2 O + NO emissions substantially, while crop yields remained unaffected. As a result, annual yield-scaled N 2 O + NO emissions were reduced by > 20%. Our study shows that a reduction of current application rates of chemical N fertilizers by 30-50% does not affect crop productivity, while at the same time N 2 O and NO emissions would be reduced significantly. Copyright © 2017 Elsevier Ltd. All rights

  5. The green, blue and grey water footprint of crops and derived crop products

    NASA Astrophysics Data System (ADS)

    Mekonnen, M. M.; Hoekstra, A. Y.

    2011-01-01

    This study quantifies the green, blue and grey water footprint of global crop production in a spatially-explicit way for the period 1996-2005. The assessment is global and improves upon earlier research by taking a high-resolution approach, estimating the water footprint of 126 crops at a 5 by 5 arc min grid. We have used a grid-based dynamic water balance model to calculate crop water use over time, with a time step of one day. The model takes into account the daily soil water balance and climatic conditions for each grid cell. In addition, the water pollution associated with the use of nitrogen fertilizer in crop production is estimated for each grid cell. The crop evapotranspiration of additional 20 minor crops is calculated with the CROPWAT model. In addition, we have calculated the water footprint of more than two hundred derived crop products, including various flours, beverages, fibres and biofuels. We have used the water footprint assessment framework as in the guideline of the water footprint network. Considering the water footprints of primary crops, we see that global average water footprint per ton of crop increases from sugar crops (roughly 200 m3 ton-1), vegetables (300 m3 ton-1), roots and tubers (400 m3 ton-1), fruits (1000 m3 ton-1), cereals} (1600 m3 ton-1), oil crops (2400 m3 ton-1) to pulses (4000 m3 ton-1). The water footprint varies, however, across different crops per crop category and per production region as well. Besides, if one considers the water footprint per kcal, the picture changes as well. When considered per ton of product, commodities with relatively large water footprints are: coffee, tea, cocoa, tobacco, spices, nuts, rubber and fibres. The analysis of water footprints of different biofuels shows that bio-ethanol has a lower water footprint (in m3 GJ-1) than biodiesel, which supports earlier analyses. The crop used matters significantly as well: the global average water footprint of bio-ethanol based on sugar beet amounts to 51

  6. The green, blue and grey water footprint of crops and derived crop products

    NASA Astrophysics Data System (ADS)

    Mekonnen, M. M.; Hoekstra, A. Y.

    2011-05-01

    This study quantifies the green, blue and grey water footprint of global crop production in a spatially-explicit way for the period 1996-2005. The assessment improves upon earlier research by taking a high-resolution approach, estimating the water footprint of 126 crops at a 5 by 5 arc minute grid. We have used a grid-based dynamic water balance model to calculate crop water use over time, with a time step of one day. The model takes into account the daily soil water balance and climatic conditions for each grid cell. In addition, the water pollution associated with the use of nitrogen fertilizer in crop production is estimated for each grid cell. The crop evapotranspiration of additional 20 minor crops is calculated with the CROPWAT model. In addition, we have calculated the water footprint of more than two hundred derived crop products, including various flours, beverages, fibres and biofuels. We have used the water footprint assessment framework as in the guideline of the Water Footprint Network. Considering the water footprints of primary crops, we see that the global average water footprint per ton of crop increases from sugar crops (roughly 200 m3 ton-1), vegetables (300 m3 ton-1), roots and tubers (400 m3 ton-1), fruits (1000 m3 ton-1), cereals (1600 m3 ton-1), oil crops (2400 m3 ton-1) to pulses (4000 m3 ton-1). The water footprint varies, however, across different crops per crop category and per production region as well. Besides, if one considers the water footprint per kcal, the picture changes as well. When considered per ton of product, commodities with relatively large water footprints are: coffee, tea, cocoa, tobacco, spices, nuts, rubber and fibres. The analysis of water footprints of different biofuels shows that bio-ethanol has a lower water footprint (in m3 GJ-1) than biodiesel, which supports earlier analyses. The crop used matters significantly as well: the global average water footprint of bio-ethanol based on sugar beet amounts to 51 m3 GJ-1

  7. Releasing young hardwood crop trees-use of a chain saw costs less than herbicides

    Treesearch

    Gary W. Miller; Gary W. Miller

    1984-01-01

    A crown-touching release of 12-year-old black cherry and yellow-poplar crop trees on a good site required removing an average of 14 trees for every crop tree. An average of 80 crop trees per acre was left free-to-grow with an average growing space of 4.7 feet on all sides of the crown. Basal spraying cost $0.80 per crop tree, stem injecting cost $0.61 per crop tree,...

  8. Assessing the agricultural costs of climate change: Combining results from crop and economic models

    NASA Astrophysics Data System (ADS)

    Howitt, R. E.

    2016-12-01

    Any perturbation to a resource system used by humans elicits both technical and behavioral changes. For agricultural production, economic criteria and their associated models are usually good predictors of human behavior in agricultural production. Estimation of the agricultural costs of climate change requires careful downscaling of global climate models to the level of agricultural regions. Plant growth models for the dominant crops are required to accurately show the full range of trade-offs and adaptation mechanisms needed to minimize the cost of climate change. Faced with the shifts in the fundamental resource base of agriculture, human behavior can either exacerbate or offset the impact of climate change on agriculture. In addition, agriculture can be an important source of increased carbon sequestration. However the effectiveness and timing of this sequestration depends on agricultural practices and farmer behavior. Plant growth models and economic models have been shown to interact in two broad fashions. First there is the direct embedding of a parametric representation plant growth simulations in the economic model production function. A second and more general approach is to have plant growth and crop process models interact with economic models as they are simulated. The development of more general wrapper programs that transfer information between models rapidly and efficiently will encourage this approach. However, this method does introduce complications in terms of matching up disparate scales both in time and space between models. Another characteristic behavioral response of agricultural production is the distinction between the intensive margin which considers the quantity of resource, for example fertilizer, used for a given crop, and the extensive margin of adjustment that measures how farmers will adjust their crop proportions in response to climate change. Ideally economic models will measure the response to both these margins of adjustment

  9. Projected climate change threatens pollinators and crop production in Brazil

    PubMed Central

    Costa, Wilian França; Cordeiro, Guaraci Duran; Imperatriz-Fonseca, Vera Lucia; Saraiva, Antonio Mauro; Biesmeijer, Jacobus; Garibaldi, Lucas Alejandro

    2017-01-01

    Animal pollination can impact food security since many crops depend on pollinators to produce fruits and seeds. However, the effects of projected climate change on crop pollinators and therefore on crop production are still unclear, especially for wild pollinators and aggregate community responses. Using species distributional modeling, we assessed the effects of climate change on the geographic distribution of 95 pollinator species of 13 Brazilian crops, and we estimated their relative impacts on crop production. We described these effects at the municipality level, and we assessed the crops that were grown, the gross production volume of these crops, the total crop production value, and the number of inhabitants. Overall, considering all crop species, we found that the projected climate change will reduce the probability of pollinator occurrence by almost 0.13 by 2050. Our models predict that almost 90% of the municipalities analyzed will face species loss. Decreases in the pollinator occurrence probability varied from 0.08 (persimmon) to 0.25 (tomato) and will potentially affect 9% (mandarin) to 100% (sunflower) of the municipalities that produce each crop. Municipalities in central and southern Brazil will potentially face relatively large impacts on crop production due to pollinator loss. In contrast, some municipalities in northern Brazil, particularly in the northwestern Amazon, could potentially benefit from climate change because pollinators of some crops may increase. The decline in the probability of pollinator occurrence is found in a large number of municipalities with the lowest GDP and will also likely affect some places where crop production is high (20% to 90% of the GDP) and where the number of inhabitants is also high (more than 6 million people). Our study highlights key municipalities where crops are economically important and where pollinators will potentially face the worst conditions due to climate change. However, pollinators may be able to

  10. Projected climate change threatens pollinators and crop production in Brazil.

    PubMed

    Giannini, Tereza Cristina; Costa, Wilian França; Cordeiro, Guaraci Duran; Imperatriz-Fonseca, Vera Lucia; Saraiva, Antonio Mauro; Biesmeijer, Jacobus; Garibaldi, Lucas Alejandro

    2017-01-01

    Animal pollination can impact food security since many crops depend on pollinators to produce fruits and seeds. However, the effects of projected climate change on crop pollinators and therefore on crop production are still unclear, especially for wild pollinators and aggregate community responses. Using species distributional modeling, we assessed the effects of climate change on the geographic distribution of 95 pollinator species of 13 Brazilian crops, and we estimated their relative impacts on crop production. We described these effects at the municipality level, and we assessed the crops that were grown, the gross production volume of these crops, the total crop production value, and the number of inhabitants. Overall, considering all crop species, we found that the projected climate change will reduce the probability of pollinator occurrence by almost 0.13 by 2050. Our models predict that almost 90% of the municipalities analyzed will face species loss. Decreases in the pollinator occurrence probability varied from 0.08 (persimmon) to 0.25 (tomato) and will potentially affect 9% (mandarin) to 100% (sunflower) of the municipalities that produce each crop. Municipalities in central and southern Brazil will potentially face relatively large impacts on crop production due to pollinator loss. In contrast, some municipalities in northern Brazil, particularly in the northwestern Amazon, could potentially benefit from climate change because pollinators of some crops may increase. The decline in the probability of pollinator occurrence is found in a large number of municipalities with the lowest GDP and will also likely affect some places where crop production is high (20% to 90% of the GDP) and where the number of inhabitants is also high (more than 6 million people). Our study highlights key municipalities where crops are economically important and where pollinators will potentially face the worst conditions due to climate change. However, pollinators may be able to

  11. [Ecological cost of grain production in gully area of Loess Plateau].

    PubMed

    Li, Xiao; Xie, Yong-sheng; Zhang, Ying-long; Li, Wen-zhuo

    2010-12-01

    Economic and ecological methods were applied to investigate the ecological cost of grain production in the gully area of Loess Plateau. In the study area in 2008, the ecological loss due to grain production was 7.2% of the total crop output, and the ecological cost reached 2.42 yuan x kg(-1) for wheat and 2.12 yuan x kg(-1) for corn. However, the per unit sales were 1.70 yuan x kg(-1) for wheat and 1.28 yuan x kg(-1) for corn. The combination of high production cost and low income affected the sustainable development of local ecological economy. The analysis of grey relationships among various factors affecting the ecological cost of grain production indicated that yield, sown area, and agricultural mechanical cost were the important factors affecting the ecological cost of grain production, while chemical fertilizer cost and organic fertilizer cost had less impact on the ecological cost of grain production. Under current production conditions, the ecological cost of grain production in the area could be reduced by raising the level of scientific and technological inputs, expanding the scale of family agricultural production, and improving the grain yield.

  12. Forecasting wheat and barley crop production in arid and semi-arid regions using remotely sensed primary productivity and crop phenology: A case study in Iraq.

    PubMed

    Qader, Sarchil Hama; Dash, Jadunandan; Atkinson, Peter M

    2018-02-01

    Crop production and yield estimation using remotely sensed data have been studied widely, but such information is generally scarce in arid and semi-arid regions. In these regions, inter-annual variation in climatic factors (such as rainfall) combined with anthropogenic factors (such as civil war) pose major risks to food security. Thus, an operational crop production estimation and forecasting system is required to help decision-makers to make early estimates of potential food availability. Data from NASA's MODIS with official crop statistics were combined to develop an empirical regression-based model to forecast winter wheat and barley production in Iraq. The study explores remotely sensed indices representing crop productivity over the crop growing season to find the optimal correlation with crop production. The potential of three different remotely sensed indices, and information related to the phenology of crops, for forecasting crop production at the governorate level was tested and their results were validated using the leave-one-year-out approach. Despite testing several methodological approaches, and extensive spatio-temporal analysis, this paper depicts the difficulty in estimating crop yield on an annual base using current satellite low-resolution data. However, more precise estimates of crop production were possible. The result of the current research implies that the date of the maximum vegetation index (VI) offered the most accurate forecast of crop production with an average R 2 =0.70 compared to the date of MODIS EVI (Avg R 2 =0.68) and a NPP (Avg R 2 =0.66). When winter wheat and barley production were forecasted using NDVI, EVI and NPP and compared to official statistics, the relative error ranged from -20 to 20%, -45 to 28% and -48 to 22%, respectively. The research indicated that remotely sensed indices could characterize and forecast crop production more accurately than simple cropping area, which was treated as a null model against which to

  13. Could Crop Height Impact the Wind Resource at Agriculturally Productive Wind Farm Sites?

    NASA Astrophysics Data System (ADS)

    Vanderwende, B. J.; Lundquist, J. K.

    2013-12-01

    The agriculture-intensive United States Midwest and Great Plains regions feature some of the best wind resources in the nation. Collocation of cropland and wind turbines introduces complex meteorological interactions that could affect both agriculture and wind power production. Crop management practices may modify the wind resource through alterations of land-surface properties. In this study, we used the Weather Research and Forecasting (WRF) model to estimate the impact of crop height variations on the wind resource in the presence of a large turbine array. We parameterized a hypothetical array of 121 1.8 MW turbines at the site of the 2011 Crop/Wind-energy Experiment field campaign using the WRF wind farm parameterization. We estimated the impact of crop choices on power production by altering the aerodynamic roughness length in a region approximately 65 times larger than that occupied by the turbine array. Roughness lengths of 10 cm and 25 cm represent a mature soy crop and a mature corn crop respectively. Results suggest that the presence of the mature corn crop reduces hub-height wind speeds and increases rotor-layer wind shear, even in the presence of a large wind farm which itself modifies the flow. During the night, the influence of the surface was dependent on the boundary layer stability, with strong stability inhibiting the surface drag from modifying the wind resource aloft. Further investigation is required to determine the optimal size, shape, and crop height of the roughness modification to maximize the economic benefit and minimize the cost of such crop management practices.

  14. Productivity and nutrient cycling in bioenergy cropping systems

    NASA Astrophysics Data System (ADS)

    Heggenstaller, Andrew Howard

    One of the greatest obstacles confronting large-scale biomass production for energy applications is the development of cropping systems that balance the need for increased productive capacity with the maintenance of other critical ecosystem functions including nutrient cycling and retention. To address questions of productivity and nutrient dynamics in bioenergy cropping systems, we conducted two sets of field experiments during 2005-2007, investigating annual and perennial cropping systems designed to generate biomass energy feedstocks. In the first experiment we evaluated productivity and crop and soil nutrient dynamics in three prototypical bioenergy double-crop systems, and in a conventionally managed sole-crop corn system. Double-cropping systems included fall-seeded forage triticale (x Triticosecale Wittmack), succeeded by one of three summer-adapted crops: corn (Zea mays L.), sorghum-sudangrass [Sorghum bicolor (L.) Moench], or sunn hemp (Crotalaria juncea L.). Total dry matter production was greater for triticale/corn and triticale/sorghum-sudangrass compared to sole-crop corn. Functional growth analysis revealed that photosynthetic duration was more important than photosynthetic efficiency in determining biomass productivity of sole-crop corn and double-crop triticale/corn, and that greater yield in the tiritcale/corn system was the outcome of photosynthesis occurring over an extended duration. Increased growth duration in double-crop systems was also associated with reductions in potentially leachable soil nitrogen relative to sole-crop corn. However, nutrient removal in harvested biomass was also greater in the double-crop systems, indicating that over the long-term, double-cropping would mandate increased fertilizer inputs. In a second experiment we assessed the effects of N fertilization on biomass and nutrient partitioning between aboveground and belowground crop components, and on carbon storage by four perennial, warm-season grasses: big bluestem

  15. Putting mechanisms into crop production models

    USDA-ARS?s Scientific Manuscript database

    Crop simulation models dynamically predict processes of carbon, nitrogen, and water balance on daily or hourly time-steps to the point of predicting yield and production at crop maturity. A brief history of these models is reviewed, and their level of mechanism for assimilation and respiration, ran...

  16. Use of Cover Crops in Hardwood Production

    Treesearch

    Randy Rentz

    2005-01-01

    Cover crops are as essential a practice in hardwood production as in pine production or any other nursery operation. Without proper cover crop rotation in a nursery plan, we open ourselves up to an array of problems: more diseases, wrong pH, more weeds, reduced fertility, and less downward percolation of soil moisture due, in part, to compaction....

  17. Crop and livestock enterprise integration: Effects of annual crops used for fall forage production on livestock productivity

    USDA-ARS?s Scientific Manuscript database

    Diversification of farm enterprises is important to maintain sustainable production systems. Systems that integrate crops and livestock may prove beneficial to each enterprise. Our objectives were to determine the effects of annual crops grazed in the fall and early-winter period on cow and calf gro...

  18. Diverse effects of crop distribution and climate change on crop production in the agro-pastoral transitional zone of China

    NASA Astrophysics Data System (ADS)

    Qiao, Jianmin; Yu, Deyong; Wang, Qianfeng; Liu, Yupeng

    2018-06-01

    Both crop distribution and climate change are important drivers for crop production and can affect food security, which is an important requirement for sustainable development. However, their effects on crop production are confounded and warrant detailed investigation. As a key area for food production that is sensitive to climate change, the agro-pastoral transitional zone (APTZ) plays a significant role in regional food security. To investigate the respective effects of crop distribution and climate change on crop production, the well-established GIS-based Environmental Policy Integrated Climate (EPIC) model was adopted with different scenario designs in this study. From 1980 to 2010, the crop distribution for wheat, maize, and rice witnessed a dramatic change due to agricultural policy adjustments and ecological engineering-related construction in the APTZ. At the same time, notable climate change was observed. The simulation results indicated that the climate change had a positive impact on the crop production of wheat, maize, and rice, while the crop distribution change led to an increase in the production of maize and rice, but a decrease in the wheat production. Comparatively, crop distribution change had a larger impact on wheat (-1.71 × 106 t) and maize (8.53 × 106 t) production, whereas climate change exerted a greater effect on rice production (0.58 × 106 t), during the period from 1980 to 2010 in the APTZ. This study is helpful to understand the mechanism of the effects of crop distribution and climate change on crop production, and aid policy makers in reducing the threat of future food insecurity.

  19. Diverse effects of crop distribution and climate change on crop production in the agro-pastoral transitional zone of China

    NASA Astrophysics Data System (ADS)

    Qiao, Jianmin; Yu, Deyong; Wang, Qianfeng; Liu, Yupeng

    2017-07-01

    Both crop distribution and climate change are important drivers for crop production and can affect food security, which is an important requirement for sustainable development. However, their effects on crop production are confounded and warrant detailed investigation. As a key area for food production that is sensitive to climate change, the agro-pastoral transitional zone (APTZ) plays a significant role in regional food security. To investigate the respective effects of crop distribution and climate change on crop production, the well-established GIS-based Environmental Policy Integrated Climate (EPIC) model was adopted with different scenario designs in this study. From 1980 to 2010, the crop distribution for wheat, maize, and rice witnessed a dramatic change due to agricultural policy adjustments and ecological engineering-related construction in the APTZ. At the same time, notable climate change was observed. The simulation results indicated that the climate change had a positive impact on the crop production of wheat, maize, and rice, while the crop distribution change led to an increase in the production of maize and rice, but a decrease in the wheat production. Comparatively, crop distribution change had a larger impact on wheat (-1.71 × 106 t) and maize (8.53 × 106 t) production, whereas climate change exerted a greater effect on rice production (0.58 × 106 t), during the period from 1980 to 2010 in the APTZ. This study is helpful to understand the mechanism of the effects of crop distribution and climate change on crop production, and aid policy makers in reducing the threat of future food insecurity.

  20. Crop and cattle production responses to tillage and cover crop management in an integrated crop-livestock system in the southeastern USA

    USDA-ARS?s Scientific Manuscript database

    Integrated crop-livestock systems can help achieve greater environmental quality from disparate crop and livestock systems by recycling nutrients and taking advantage of synergies between systems. We investigated crop and animal production responses in integrated crop-livestock systems with two typ...

  1. Food and nutritional security requires adequate protein as well as energy, delivered from whole-year crop production.

    PubMed

    Coles, Graeme D; Wratten, Stephen D; Porter, John R

    2016-01-01

    Human food security requires the production of sufficient quantities of both high-quality protein and dietary energy. In a series of case-studies from New Zealand, we show that while production of food ingredients from crops on arable land can meet human dietary energy requirements effectively, requirements for high-quality protein are met more efficiently by animal production from such land. We present a model that can be used to assess dietary energy and quality-corrected protein production from various crop and crop/animal production systems, and demonstrate its utility. We extend our analysis with an accompanying economic analysis of commercially-available, pre-prepared or simply-cooked foods that can be produced from our case-study crop and animal products. We calculate the per-person, per-day cost of both quality-corrected protein and dietary energy as provided in the processed foods. We conclude that mixed dairy/cropping systems provide the greatest quantity of high-quality protein per unit price to the consumer, have the highest food energy production and can support the dietary requirements of the highest number of people, when assessed as all-year-round production systems. Global food and nutritional security will largely be an outcome of national or regional agroeconomies addressing their own food needs. We hope that our model will be used for similar analyses of food production systems in other countries, agroecological zones and economies.

  2. Eastern cottonwood and black willow biomass crop production in the Lower Mississippi Alluvial Valley under four planting densities

    Treesearch

    Ray A. Souter; Emile S Gardiner; Theodor D. Leininger; Dana Mitchell; Robert B. Rummer

    2015-01-01

    "Wood is an obvious alternative energy source": Johnson and others (2007) declare the potential of short-rotation intensively-managed woody crop systems to produce biomass for energy. While obvious as an energy source, costs of production need to be measured to assess the economic viability of selected tree species as woody perennial energy crops

  3. Sustainable biochar effects for low carbon crop production: A 5-crop season field experiment on a low fertility soil from Central China

    NASA Astrophysics Data System (ADS)

    Liu, X.

    2014-12-01

    Biochar's effects on improving soil fertility, enhancing crop productivity and reducing greenhouse gases (GHGs) emission from croplands had been well addressed in numerous short-term experiments with biochar soil amendment (BSA) mostly in a single crop season / cropping year. However, the persistence of these effects, after a single biochar application, has not yet been well known due to limited long-term field studies so far. Large scale BSA in agriculture is often commented on the high cost due to large amount of biochar in a single application. Here, we try to show the persistence of biochar effects on soil fertility and crop productivity improvement as well as GHGs emission reduction, using data from a field experiment with BSA for 5 crop seasons in central North China. A single amendment of biochar was performed at rates of 0 (C0), 20 (C20) and 40 t ha-1 (C40) before sowing of the first crop season. Emissions of CO2, CH4 and N2O were monitored with static closed chamber method throughout the crop growing season for the 1st, 2nd and 5th cropping. Crop yield was measured and topsoil samples were collected at harvest of each crop season. BSA altered most of the soil physic-chemical properties with a significant increase over control in soil organic carbon (SOC) and available potassium (K) content. The increase in SOC and available K was consistent over the 5 crop seasons after BSA. Despite a significant yield increase in the first maize season, enhancement of crop yield was not consistent over crop seasons without corresponding to the changes in soil nutrient availability. BSA did not change seasonal total CO2 efflux but greatly reduced N2O emissions throughout the five seasons. This supported a stable nature of biochar carbon in soil, which played a consistent role in reducing N2O emission, which showed inter-annual variation with changes in temperature and soil moisture conditions. The biochar effect was much more consistent under C40 than under C20 and with

  4. Production cost analysis of Euphorbia lathyris. Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mendel, D.A.; Schooley, F.A.; Dickenson, R.L.

    1979-08-01

    The purpose of SRI's study was to estimate the costs of producing Euphorbia in commercial quantities in five regions of the United States, which include both irrigated and nonirrigated areas. The study assumed that a uniform crop yield could be achieved in the five regions by varying the quantities of production inputs. Therefore, the production costs estimates, which are based on fourth quarter 1978 dollars, include both fixed and variable costs for each region. Doane's Machinery Custom Rates for 1978 were used to estimate all variable costs except materials, which were estimated separately. Custom rates are determined by members ofmore » the Doane Countywide Farm Panel, a group of farmers specifically selected to represent the various sizes and types of commercial farms found throughout the country. The rates reported are the most recent rates the panel members had either paid, charged, or known for certain a second party had paid or charged. Custom rates for any particular operation include equipment operating costs (fuel, lubrication, and repairs), equipment ownership costs (depreciation, taxes, interest), as well as a labor charge for the operator. Custom rates are regionally specific and thereby assist the accuracy of this analysis. Fixed costs include land, management, and transportation of the plant material to a conversion facility. When appropriate, fixed costs were regionally specific. Changes in total production costs over future time periods were not addressed. The total estimated production costs of Euphorbia in each region were compared with production costs for corn and alfalfa in the same regions. Finally, the effects on yield and costs of changes in the production inputs were estimated.« less

  5. Methane production through anaerobic digestion of various energy crops grown in sustainable crop rotations.

    PubMed

    Amon, Thomas; Amon, Barbara; Kryvoruchko, Vitaliy; Machmüller, Andrea; Hopfner-Sixt, Katharina; Bodiroza, Vitomir; Hrbek, Regina; Friedel, Jürgen; Pötsch, Erich; Wagentristl, Helmut; Schreiner, Matthias; Zollitsch, Werner

    2007-12-01

    Biogas production is of major importance for the sustainable use of agrarian biomass as renewable energy source. Economic biogas production depends on high biogas yields. The project aimed at optimising anaerobic digestion of energy crops. The following aspects were investigated: suitability of different crop species and varieties, optimum time of harvesting, specific methane yield and methane yield per hectare. The experiments covered 7 maize, 2 winter wheat, 2 triticale varieties, 1 winter rye, and 2 sunflower varieties and 6 variants with permanent grassland. In the course of the vegetation period, biomass yield and biomass composition were measured. Anaerobic digestion was carried out in eudiometer batch digesters. The highest methane yields of 7500-10200 m(N)(3)ha(-1) were achieved from maize varieties with FAO numbers (value for the maturity of the maize) of 300 to 600 harvested at "wax ripeness". Methane yields of cereals ranged from 3200 to 4500 m(N)(3)ha(-1). Cereals should be harvested at "grain in the milk stage" to "grain in the dough stage". With sunflowers, methane yields between 2600 and 4550 m(N)(3)ha(-1) were achieved. There were distinct differences between the investigated sunflower varieties. Alpine grassland can yield 2700-3500 m(N)(3)CH(4)ha(-1). The methane energy value model (MEVM) was developed for the different energy crops. It estimates the specific methane yield from the nutrient composition of the energy crops. Energy crops for biogas production need to be grown in sustainable crop rotations. The paper outlines possibilities for optimising methane yield from versatile crop rotations that integrate the production of food, feed, raw materials and energy. These integrated crop rotations are highly efficient and can provide up to 320 million t COE which is 96% of the total energy demand of the road traffic of the EU-25 (the 25 Member States of the European Union).

  6. Effect of Mixed Systems on Crop Productivity

    NASA Astrophysics Data System (ADS)

    Senturklu, Songul; Landblom, Douglas; Cihacek, Larry; Brevik, Eric

    2017-04-01

    The goals of this non-irrigated research has been to determine the effect of mixed systems integration on crop, soil, and beef cattle production in the northern Great Plains region of the United States. Over a 5-year period, growing spring wheat (HRSW-C) continuously year after year was compared to a 5-year crop rotation that included spring wheat (HRSW-R), cover crop (dual crop consisting of winter triticale/hairy vetch seeded in the fall and harvested for hay followed by a 7-species cover crop that was seeded in June after hay harvest), forage corn, field pea/barley, and sunflower. Control 5-year HRSW yield was 2690 kg/ha compared to 2757 kg/ha for HRSW grown in rotation. Available soil nitrogen (N) is often the most important limitation for crop production. Expensive fertilizer inputs were reduced in this study due to the mixed system's complementarity in which the rotation system that included beef cattle grazing sustained N availability and increased nutrient cycling, which had a positive effect on all crops grown in the rotation. Growing HRSW continuously requires less intensive management and in this research was 14.5% less profitable. Whereas, when crop management increased and complementing crops were grown in rotation to produce crops and provide feed for grazing livestock, soil nutrient cycling improved. Increased nutrient cycling increased crop rotation yields and yearling beef cattle steers that grazing annual forages in the rotation gain more body weight than similar steers grazing NGP native range. Results of this long-term research will be presented in a PICO format for participant discussion.

  7. Calorie increase and water savings of redistributing global crop production

    NASA Astrophysics Data System (ADS)

    Davis, K. F.; Seveso, A.; Rulli, M. C.; D'Odorico, P.

    2015-12-01

    Human demand for crop production is expected to increase substantially in the coming decades as a result of population growth, richer diets and biofuel use. In order for food production to keep pace, unprecedented amounts of resources - water, fertilizers, energy - will be required. This has led to calls for 'sustainable intensification' in which yields are increased on existing croplands while seeking to minimize impacts on water and other agricultural resources. Recent studies have quantified aspects of this, showing that there is a large potential to improve crop yields and increase harvest frequencies to better meet human demand. Though promising, both solutions would necessitate large additional inputs of water and fertilizer in order to be achieved under current technologies. However, the question of whether the current distribution of crops is, in fact, the best for realizing maximized production has not been considered to date. To this end, we ask: Is it possible to increase calorie production and minimize water demand by simply growing crops where soil and climate conditions are best suited? Here we use maps of agro-ecological suitability - a measure of physical and chemical soil fertility - for 15 major food crops to identify differences between current crop distributions and where they can most suitably be planted. By redistributing crops across currently cultivated lands, we determine the potential improvement in calorie production as well as the associated change in water demand. We also consider what distribution of crops would maintain current calorie production while minimizing crop water demand. In doing all of this, our study provides a novel tool for improving crop calorie production without necessarily increasing resource demands.

  8. Modeling perceptions of climatic risk in crop production.

    PubMed

    Reinmuth, Evelyn; Parker, Phillip; Aurbacher, Joachim; Högy, Petra; Dabbert, Stephan

    2017-01-01

    In agricultural production, land-use decisions are components of economic planning that result in the strategic allocation of fields. Climate variability represents an uncertainty factor in crop production. Considering yield impact, climatic influence is perceived during and evaluated at the end of crop production cycles. In practice, this information is then incorporated into planning for the upcoming season. This process contributes to attitudes toward climate-induced risk in crop production. In the literature, however, the subjective valuation of risk is modeled as a risk attitude toward variations in (monetary) outcomes. Consequently, climatic influence may be obscured by political and market influences so that risk perceptions during the production process are neglected. We present a utility concept that allows the inclusion of annual risk scores based on mid-season risk perceptions that are incorporated into field-planning decisions. This approach is exemplified and implemented for winter wheat production in the Kraichgau, a region in Southwest Germany, using the integrated bio-economic simulation model FarmActor and empirical data from the region. Survey results indicate that a profitability threshold for this crop, the level of "still-good yield" (sgy), is 69 dt ha-1 (regional mean Kraichgau sample) for a given season. This threshold governs the monitoring process and risk estimators. We tested the modeled estimators against simulation results using ten projected future weather time series for winter wheat production. The mid-season estimators generally proved to be effective. This approach can be used to improve the modeling of planning decisions by providing a more comprehensive evaluation of field-crop response to climatic changes from an economic risk point of view. The methodology further provides economic insight in an agrometeorological context where prices for crops or inputs are lacking, but farmer attitudes toward risk should still be included in

  9. Modeling perceptions of climatic risk in crop production

    PubMed Central

    Parker, Phillip; Aurbacher, Joachim; Högy, Petra; Dabbert, Stephan

    2017-01-01

    In agricultural production, land-use decisions are components of economic planning that result in the strategic allocation of fields. Climate variability represents an uncertainty factor in crop production. Considering yield impact, climatic influence is perceived during and evaluated at the end of crop production cycles. In practice, this information is then incorporated into planning for the upcoming season. This process contributes to attitudes toward climate-induced risk in crop production. In the literature, however, the subjective valuation of risk is modeled as a risk attitude toward variations in (monetary) outcomes. Consequently, climatic influence may be obscured by political and market influences so that risk perceptions during the production process are neglected. We present a utility concept that allows the inclusion of annual risk scores based on mid-season risk perceptions that are incorporated into field-planning decisions. This approach is exemplified and implemented for winter wheat production in the Kraichgau, a region in Southwest Germany, using the integrated bio-economic simulation model FarmActor and empirical data from the region. Survey results indicate that a profitability threshold for this crop, the level of “still-good yield” (sgy), is 69 dt ha-1 (regional mean Kraichgau sample) for a given season. This threshold governs the monitoring process and risk estimators. We tested the modeled estimators against simulation results using ten projected future weather time series for winter wheat production. The mid-season estimators generally proved to be effective. This approach can be used to improve the modeling of planning decisions by providing a more comprehensive evaluation of field-crop response to climatic changes from an economic risk point of view. The methodology further provides economic insight in an agrometeorological context where prices for crops or inputs are lacking, but farmer attitudes toward risk should still be included

  10. Biomass production on marginal lands - catalogue of bioenergy crops

    NASA Astrophysics Data System (ADS)

    Baumgarten, Wibke; Ivanina, Vadym; Hanzhenko, Oleksandr

    2017-04-01

    Marginal lands are the poorest type of land, with various limitations for traditional agriculture. However, they can be used for biomass production for bioenergy based on perennial plants or trees. The main advantage of biomass as an energy source compared to fossil fuels is the positive influence on the global carbon dioxide balance in the atmosphere. During combustion of biofuels, less carbon dioxide is emitted than is absorbed by plants during photosynthesis. Besides, 20 to 30 times less sulphur oxide and 3 to 4 times less ash is formed as compared with coal. Growing bioenergy crops creates additional workplaces in rural areas. Soil and climatic conditions of most European regions are suitable for growing perennial energy crops that are capable of rapid transforming solar energy into energy-intensive biomass. Selcted plants are not demanding for soil fertility, do not require a significant amount of fertilizers and pesticides and can be cultivated, therefore, also on unproductive lands of Europe. They prevent soil erosion, contribute to the preservation and improvement of agroecosystems and provide low-cost biomass. A catalogue of potential bioenergy plants was developed within the EU H2020 project SEEMLA including woody and perennial crops that are allowed to be grown in the territory of the EU and Ukraine. The catalogue lists high-productive woody and perennial crops that are not demanding to the conditions of growing and can guarantee stable high yields of high-energy-capacity biomass on marginal lands of various categories of marginality. Biomass of perennials plants and trees is composed of cellulose, hemicellulose and lignin, which are directly used to produce solid biofuels. Thanks to the well-developed root system of trees and perennial plants, they are better adapted to poor soils and do not require careful maintenance. Therefore, they can be grown on marginal lands. Particular C4 bioenergy crops are well adapted to a lack of moisture and high

  11. Accounting for soil biotic effects on soil health and crop productivity in the design of crop rotations.

    PubMed

    Dias, Teresa; Dukes, Angela; Antunes, Pedro M

    2015-02-01

    There is an urgent need for novel agronomic improvements capable of boosting crop yields while alleviating environmental impacts. One such approach is the use of optimized crop rotations. However, a set of measurements that can serve as guiding principles for the design of crop rotations is lacking. Crop rotations take advantage of niche complementarity, enabling the optimization of nutrient use and the reduction of pests and specialist pathogen loads. However, despite the recognized importance of plant-soil microbial interactions and feedbacks for crop yield and soil health, this is ignored in the selection and management of crops for rotation systems. We review the literature and propose criteria for the design of crop rotations focusing on the roles of soil biota and feedback on crop productivity and soil health. We consider that identifying specific key organisms or consortia capable of influencing plant productivity is more important as a predictor of soil health and crop productivity than assessing the overall soil microbial diversity per se. As such, we propose that setting up soil feedback studies and applying genetic sequencing tools towards the development of soil biotic community databases has a strong potential to enable the establishment of improved soil health indicators for optimized crop rotations. © 2014 Society of Chemical Industry.

  12. Diversifying crop rotations with pulses enhances system productivity

    PubMed Central

    Gan, Yantai; Hamel, Chantal; O’Donovan, John T.; Cutforth, Herb; Zentner, Robert P.; Campbell, Con A.; Niu, Yining; Poppy, Lee

    2015-01-01

    Agriculture in rainfed dry areas is often challenged by inadequate water and nutrient supplies. Summerfallowing has been used to conserve rainwater and promote the release of nitrogen via the N mineralization of soil organic matter. However, summerfallowing leaves land without any crops planted for one entire growing season, creating lost production opportunity. Additionally, summerfallowing has serious environmental consequences. It is unknown whether alternative systems can be developed to retain the beneficial features of summerfallowing with little or no environmental impact. Here, we show that diversifying cropping systems with pulse crops can enhance soil water conservation, improve soil N availability, and increase system productivity. A 3-yr cropping sequence study, repeated for five cycles in Saskatchewan from 2005 to 2011, shows that both pulse- and summerfallow-based systems enhances soil N availability, but the pulse system employs biological fixation of atmospheric N2, whereas the summerfallow-system relies on ‘mining’ soil N with depleting soil organic matter. In a 3-yr cropping cycle, the pulse system increased total grain production by 35.5%, improved protein yield by 50.9%, and enhanced fertilizer-N use efficiency by 33.0% over the summerfallow system. Diversifying cropping systems with pulses can serve as an effective alternative to summerfallowing in rainfed dry areas. PMID:26424172

  13. An Application of the Phosphorus Consistent Rule for Environmentally Acceptable Cost-Efficient Management of Broiler Litter in Crop Production

    NASA Technical Reports Server (NTRS)

    Paudel, Krishna P.; Limaye, Ashutosh; Adhikari, Murali; Martin, Neil R., Jr.

    2004-01-01

    We calculated the profitability of using broiler litter as a source of plant nutrients using the phosphorus consistent litter application rule. The cost saving by using litter is 37% over the use of chemical fertilizer-only option to meet the nutrient needs of major crops grown in Alabama. In the optimal solution, only a few routes of all the possible routes developed were used for inter- and intra- county litter hauling. If litter is not adopted as the sole source of crop nutrients, the best environmental policy may be to pair the phosphorus consistent rule with taxes, marketable permits, and subsidies.flaws

  14. Attributing Crop Production in the United States Using Artificial Neural Network

    NASA Astrophysics Data System (ADS)

    Ma, Y.; Zhang, Z.; Pan, B.

    2017-12-01

    Crop production plays key role in supporting life, economy and shaping environment. It is on one hand influenced by natural factors including precipitation, temperature, energy, and on the other hand shaped by the investment of fertilizers, pesticides and human power. Successful attributing of crop production to different factors can help optimize resources and improve productivity. Based on the meteorological records from National Center for Environmental Prediction and state-wise crop production related data provided by the United States Department of Agriculture Economic Research Service, an artificial neural network was constructed to connect crop production with precipitation and temperature anormlies, capital input, labor input, energy input, pesticide consumption and fertilizer consumption. Sensitivity analysis were carried out to attribute their specific influence on crop production for each grid. Results confirmed that the listed factors can generally determine the crop production. Different state response differently to the pertubation of predictands. Their spatial distribution is visulized and discussed.

  15. Productivity and carbon dioxide exchange of leguminous crops: estimates from flux tower measurements

    USGS Publications Warehouse

    Gilmanov, Tagir G.; Baker, John M.; Bernacchi, Carl J.; Billesbach, David P.; Burba, George G.; Castro, Saulo; Chen, Jiquan; Eugster, Werner; Fischer, Marc L.; Gamon, John A.; Gebremedhin, Maheteme T.; Glenn, Aaron J.; Griffis, Timothy J.; Hatfield, Jerry L.; Heuer, Mark W.; Howard, Daniel M.; Leclerc, Monique Y.; Loescher, Henry W.; Marloie, Oliver; Meyers, Tilden P.; Olioso, Albert; Phillips, Rebecca L.; Prueger, John H.; Skinner, R. Howard; Suyker, Andrew E.; Tenuta, Mario; Wylie, Bruce K.

    2014-01-01

    Net CO2 exchange data of legume crops at 17 flux tower sites in North America and three sites in Europe representing 29 site-years of measurements were partitioned into gross photosynthesis and ecosystem respiration by using the nonrectangular hyperbolic light-response function method. The analyses produced net CO2 exchange data and new ecosystem-scale ecophysiological parameter estimates for legume crops determined at diurnal and weekly time steps. Dynamics and annual totals of gross photosynthesis, ecosystem respiration, and net ecosystem production were calculated by gap filling with multivariate nonlinear regression. Comparison with the data from grain crops obtained with the same method demonstrated that CO2 exchange rates and ecophysiological parameters of legumes were lower than those of maize (Zea mays L.) but higher than for wheat (Triticum aestivum L.) crops. Year-round annual legume crops demonstrated a broad range of net ecosystem production, from sinks of 760 g CO2 m–2 yr–1 to sources of –2100 g CO2 m–2 yr–1, with an average of –330 g CO2 m–2 yr–1, indicating overall moderate CO2–source activity related to a shorter period of photosynthetic uptake and metabolic costs of N2 fixation. Perennial legumes (alfalfa, Medicago sativa L.) were strong sinks for atmospheric CO2, with an average net ecosystem production of 980 (range 550–1200) g CO2 m–2 yr–1.

  16. Past and future weather-induced risk in crop production

    NASA Astrophysics Data System (ADS)

    Elliott, J. W.; Glotter, M.; Russo, T. A.; Sahoo, S.; Foster, I.; Benton, T.; Mueller, C.

    2016-12-01

    Drought-induced agricultural loss is one of the most costly impacts of extreme weather and may harm more people than any other consequence of climate change. Improvements in farming practices have dramatically increased crop productivity, but yields today are still tightly linked to climate variation. We report here on a number of recent studies evaluating extreme event risk and impacts under historical and near future conditions, including studies conducted as part of the Agricultural Modeling Intercomparison and Improvement Project (AgMIP), the Inter-Sectoral Impacts Model Intercomparison Project (ISI-MIP) and the UK-US Taskforce on Extreme Weather and Global Food System Resilience.

  17. Water footprint of crop production for different crop structures in the Hebei southern plain, North China

    NASA Astrophysics Data System (ADS)

    Chu, Yingmin; Shen, Yanjun; Yuan, Zaijian

    2017-06-01

    The North China Plain (NCP) has a serious shortage of freshwater resources, and crop production consumes approximately 75 % of the region's water. To estimate water consumption of different crops and crop structures in the NCP, the Hebei southern plain (HSP) was selected as a study area, as it is a typical region of groundwater overdraft in the NCP. In this study, the water footprint (WF) of crop production, comprised of green, blue and grey water footprints, and its annual variation were analyzed. The results demonstrated the following: (1) the WF from the production of main crops was 41.8 km3 in 2012. Winter wheat, summer maize and vegetables were the top water-consuming crops in the HSP. The water footprint intensity (WFI) of cotton was the largest, and for vegetables, it was the smallest; (2) the total WF, WFblue, WFgreen and WFgrey for 13 years (2000-2012) of crop production were 604.8, 288.5, 141.3 and 175.0 km3, respectively, with an annual downtrend from 2000 to 2012; (3) winter wheat, summer maize and vegetables consumed the most groundwater, and their blue water footprint (WFblue) accounted for 74.2 % of the total WFblue in the HSP; (4) the crop structure scenarios analysis indicated that, with approximately 20 % of arable land cultivated with winter wheat-summer maize in rotation, 38.99 % spring maize, 10 % vegetables and 10 % fruiters, a sustainable utilization of groundwater resources can be promoted, and a sufficient supply of food, including vegetables and fruits, can be ensured in the HSP.

  18. Climate Change Impacts on Crop Production in Nigeria

    NASA Astrophysics Data System (ADS)

    Mereu, V.; Gallo, A.; Carboni, G.; Spano, D.

    2011-12-01

    The agricultural sector in Nigeria is particularly important for the country's food security, natural resources, and growth agenda. The cultivable areas comprise more than 70% of the total area; however, the cultivated area is about the 35% of the total area. The most important components in the food basket of the nation are cereals and tubers, which include rice, maize, corn, millet, sorghum, yam, and cassava. These crops represent about 80% of the total agricultural product in Nigeria (from NPAFS). The major crops grown in the country can be divided into food crops (produced for consumption) and export products. Despite the importance of the export crops, the primary policy of agriculture is to make Nigeria self-sufficient in its food and fiber requirements. The projected impacts of future climate change on agriculture and water resources are expected to be adverse and extensive in these area. This implies the need for actions and measures to adapt to climate change impacts, and especially as they affect agriculture, the primary sector for Nigerian economy. In the framework of the Project Climate Risk Analysis in Nigeria (founded by World Bank Contract n.7157826), a study was made to assess the potential impact of climate change on the main crops that characterize Nigerian agriculture. The DSSAT-CSM (Decision Support System for Agrotechnology Transfer - Cropping System Model) software, version 4.5 was used for the analysis. Crop simulation models included in DSSAT are tools that simulate physiological processes of crop growth, development and production by combining genetic crop characteristics and environmental (soil and weather) conditions. For each selected crop, the models were calibrated to evaluate climate change impacts on crop production. The climate data used for the analysis are derived by the Regional Circulation Model COSMO-CLM, from 1971 to 2065, at 8 km of spatial resolution. The RCM model output was "perturbed" with 10 Global Climate Models to have

  19. Precision Farming and Precision Pest Management: The Power of New Crop Production Technologies

    PubMed Central

    Strickland, R. Mack; Ess, Daniel R.; Parsons, Samuel D.

    1998-01-01

    The use of new technologies including Geographic Information Systems (GIS), the Global Positioning System (GPS), Variable Rate Technology (VRT), and Remote Sensing (RS) is gaining acceptance in the present high-technology, precision agricultural industry. GIS provides the ability to link multiple data values for the same geo-referenced location, and provides the user with a graphical visualization of such data. When GIS is coupled with GPS and RS, management decisions can be applied in a more precise "micro-managed" manner by using VRT techniques. Such technology holds the potential to reduce agricultural crop production costs as well as crop and environmental damage. PMID:19274236

  20. Winter Crop Mapping for Improving Crop Production Estimates in Argentina Using Moderation Resolution Satellite Imagery

    NASA Astrophysics Data System (ADS)

    Humber, M. L.; Copati, E.; Sanchez, A.; Sahajpal, R.; Puricelli, E.; Becker-Reshef, I.

    2017-12-01

    Accurate crop production data is fundamental for reducing uncertainly and volatility in the domestic and international agricultural markets. The Agricultural Estimates Department of the Buenos Aires Grain Exchange has worked since 2000 on the estimation of different crop production data. With this information, the Grain Exchange helps different actors of the agricultural chain, such as producers, traders, seed companies, market analyst, policy makers, into their day to day decision making. Since 2015/16 season, the Grain Exchange has worked on the development of a new earth observations-based method to identify winter crop planted area at a regional scale with the aim of improving crop production estimates. The objective of this new methodology is to create a reliable winter crop mask at moderate spatial resolution using Landsat-8 imagery by exploiting bi-temporal differences in the phenological stages of winter crops as compared to other landcover types. In collaboration with the University of Maryland, the map has been validated by photointerpretation of a stratified statistically random sample of independent ground truth data in the four largest producing provinces of Argentina: Buenos Aires, Cordoba, La Pampa, and Santa Fe. In situ measurements were also used to further investigate conditions in the Buenos Aires province. Preliminary results indicate that while there are some avenues for improvement, overall the classification accuracy of the cropland and non-cropland classes are sufficient to improve downstream production estimates. Continuing research will focus on improving the methodology for winter crop mapping exercises on a yearly basis as well as improving the sampling methodology to optimize collection of validation data in the future.

  1. Advances in shrub-willow crops for bioenergy, renewable products, and environmental benefits

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Volk, Timothy A.; Heavey, Justin P.; Eisenbies, Mark H.

    Short-rotation coppice systems like shrub willow are projected to be an important source of biomass in the United States for the production of bioenergy, biofuels, and renewable bio-based products, with the potential for auxiliary environmental benefits and multifunctional systems. Almost three decades of research has focused on the development of shrub willow crops for biomass and ecosystem services. The current expansion of willow in New York State (about 500 ha) for the production of renewable power and heat has been possible because of incentive programs offered by the federal government, commitments by end users, the development of reliable harvesting systems,more » and extension services offered to growers. Improvements in the economics of the system are expected as willow production expands further, which should help lower establishment costs, enhance crop management options and increase efficiencies in harvesting and logistics. As a result, deploying willow in multifunctional value-added systems provides opportunities for both potential producers and end users to learn about the system and the quality of the biomass feedstock, which in turn will help overcome barriers to expansion.« less

  2. Advances in shrub-willow crops for bioenergy, renewable products, and environmental benefits

    DOE PAGES

    Volk, Timothy A.; Heavey, Justin P.; Eisenbies, Mark H.

    2016-05-02

    Short-rotation coppice systems like shrub willow are projected to be an important source of biomass in the United States for the production of bioenergy, biofuels, and renewable bio-based products, with the potential for auxiliary environmental benefits and multifunctional systems. Almost three decades of research has focused on the development of shrub willow crops for biomass and ecosystem services. The current expansion of willow in New York State (about 500 ha) for the production of renewable power and heat has been possible because of incentive programs offered by the federal government, commitments by end users, the development of reliable harvesting systems,more » and extension services offered to growers. Improvements in the economics of the system are expected as willow production expands further, which should help lower establishment costs, enhance crop management options and increase efficiencies in harvesting and logistics. As a result, deploying willow in multifunctional value-added systems provides opportunities for both potential producers and end users to learn about the system and the quality of the biomass feedstock, which in turn will help overcome barriers to expansion.« less

  3. Production versus environmental impact trade-offs for Swiss cropping systems: a model-based approach

    NASA Astrophysics Data System (ADS)

    Necpalova, Magdalena; Lee, Juhwan; Six, Johan

    2017-04-01

    There is a growing need to improve sustainability of agricultural systems. The key focus remains on optimizing current production systems in order to deliver food security at low environmental costs. It is therefore essential to identify and evaluate agricultural management practices for their potential to maintain or increase productivity and mitigate climate change and N pollution. Previous research on Swiss cropping systems has been concentrated on increasing crop productivity and soil fertility. Thus, relatively little is known about management effects on net soil greenhouse gas (GHG) emissions and environmental N losses in the long-term. The aim of this study was to extrapolate findings from Swiss long-term field experiments and to evaluate the system-level sustainability of a wide range of cropping systems under conditions beyond field experimentation by comparing their crop productivity and impacts on soil carbon, net soil GHG emissions, NO3 leaching and soil N balance over 30 years. The DayCent model was previously parameterized for common Swiss crops and crop-specific management practices and evaluated for productivity, soil carbon dynamics and N2O emissions from Swiss cropping systems. Based on a prediction uncertainty criterion for crop productivity and soil carbon (rRMSE<0.3), in total 39 cropping systems were selected. Each system was evaluated under soil and climate conditions representative of Therwil, Frick, Reckenholz and Changins sites with four replications. Soil inputs were sampled from normal probability distributions defined by available site-specific data using the Latin hypercube sampling method. Net soil GHG emissions were derived from changes in soil carbon, N2O emissions and CH4 oxidation and the annual net global warming potential (GWP) was calculated using IPCC (2014). For statistical analyses, the systems were grouped into the following categories: (a) farming system: organic (ORG), integrated (IN) and mineral (MIN); (b) tillage

  4. Multi-year double cropping biochar field trials in Nepal: Finding the optimal biochar dose through agronomic trials and cost-benefit analysis.

    PubMed

    Pandit, Naba Raj; Mulder, Jan; Hale, Sarah E; Zimmerman, Andrew R; Pandit, Bishnu Hari; Cornelissen, Gerard

    2018-05-15

    Poor water and nutrient retention are the major soil fertility limitations in the low productivity agricultural soils of Nepal. The addition of biochar to these soils is one way these hindrances can be overcome. In the present study, six different biochar doses (control, 5 t ha -1 , 10 t ha -1 , 15 t ha -1 , 25 t ha -1 and 40 t ha -1 ) were applied to a moderately acidic silty loam soil from Rasuwa, Nepal and the effects on soil physicochemical properties and maize and mustard yield over three years (i.e., six cropping seasons), were investigated. Biochar addition did not show significant effects on maize and mustard grain yield in the first year, however significant positive effects (p < 0.01) were observed during the second and third years. During the second year, maize grain yield significantly increased by 50%, 47% and 93% and mustard grain yield by 96%, 128% and 134% at 15 t ha -1 , 25 t ha -1 and 40 t ha -1 of biochar respectively. A similar significant increase in yield of both crops was observed in the third year. Yields for both maize and mustard correlated significantly (p < 0.001) with plant available P, K + , pH, total OC%, CEC, base saturation, and increased as a function of biochar addition. On the basis of the measured crop yields for the various biochar doses, a cost-benefit analysis was carried out, and gross margin was calculated to optimize biochar dose for local farming practice. Total costs included financial cost (farm input, labor and biochar production cost), health cost and methane emission cost during biochar production. Health costs were a minor factor (<2% of total biochar preparation cost), whereas methane emission costs were significant (up to 30% of biochar cost, depending on the C price). Total income comprised sale of crops and carbon sequestration credits. The cost-benefit analysis showed that the optimal biochar application dose was 15 t ha -1 for all C price scenarios, increasing gross

  5. Envisioning a metropolitan foodshed: potential environmental consequences of increasing food-crop production around Chicago

    NASA Astrophysics Data System (ADS)

    Bowen, E. E.; Martin, P. A.; Schuble, T. J.

    2009-12-01

    Nationwide, cities are increasingly developing policies aimed at greater sustainability, particularly focusing on reducing environmental impact. Such policies commonly emphasize more efficiently using energy to decrease the greenhouse gas (GHG) footprint of the city. However, most plans ignore the food system as a factor in regional energy use and GHG emissions. Yet, the food system in the United States accounts for ~20% of per capita greenhouse gas emissions. Local, sustainable food production is cited as one strategy for mitigating GHG emissions of large metropolitan areas. “Sustainable” for regional agriculture is often identified as small-scale, diversified food crop production using best practices management. Localized food production (termed “foodshed”) using sustainable agriculture could mitigate climate change in multiple ways: (1) energy and therefore CO2-intensive portions of the conventional food system might be replaced by local, lower-input food production resulting in carbon offsets; (2) increased regional carbon storage might result from well-managed food crop production vs. commodity crop production; and (3) averted N2O emissions might result from closing nutrient cycles on agricultural lands following changes in management practices. The broader implications for environmental impact of widespread conversion to sustainable food crop agriculture, however, remain largely unknown. We examine the Chicago metropolitan region to quantify the impact of increased local food production on regional energy efficiency and GHG emissions. Geospatial analysis is used to quantify the resource potential for establishing a Chicago metropolitan foodshed. A regional foodshed is defined by minimizing cost through transportation mode (road, rail, or water) and maximizing the production potential of different soil types. Simple biogeochemical modeling is used to predict changes in N2O emissions and nutrient flows following changes in land management practices

  6. Tracking historical increases in nitrogen-driven crop production possibilities

    NASA Astrophysics Data System (ADS)

    Mueller, N. D.; Lassaletta, L.; Billen, G.; Garnier, J.; Gerber, J. S.

    2015-12-01

    The environmental costs of nitrogen use have prompted a focus on improving the efficiency of nitrogen use in the global food system, the primary source of nitrogen pollution. Typical approaches to improving agricultural nitrogen use efficiency include more targeted field-level use (timing, placement, and rate) and modification of the crop mix. However, global efficiency gains can also be achieved by improving the spatial allocation of nitrogen between regions or countries, due to consistent diminishing returns at high nitrogen use. This concept is examined by constructing a tradeoff frontier (or production possibilities frontier) describing global crop protein yield as a function of applied nitrogen from all sources, given optimal spatial allocation. Yearly variation in country-level input-output nitrogen budgets are utilized to parameterize country-specific hyperbolic yield-response models. Response functions are further characterized for three ~15-year eras beginning in 1961, and series of calculations uses these curves to simulate optimal spatial allocation in each era and determine the frontier. The analyses reveal that excess nitrogen (in recent years) could be reduced by ~40% given optimal spatial allocation. Over time, we find that gains in yield potential and in-country nitrogen use efficiency have led to increases in the global nitrogen production possibilities frontier. However, this promising shift has been accompanied by an actual spatial distribution of nitrogen use that has become less optimal, in an absolute sense, relative to the frontier. We conclude that examination of global production possibilities is a promising approach to understanding production constraints and efficiency opportunities in the global food system.

  7. Spatial optimization of cropping pattern for sustainable food and biofuel production with minimal downstream pollution.

    PubMed

    Femeena, P V; Sudheer, K P; Cibin, R; Chaubey, I

    2018-04-15

    Biofuel has emerged as a substantial source of energy in many countries. In order to avoid the 'food versus fuel competition', arising from grain-based ethanol production, the United States has passed regulations that require second generation or cellulosic biofeedstocks to be used for majority of the biofuel production by 2022. Agricultural residue, such as corn stover, is currently the largest source of cellulosic feedstock. However, increased harvesting of crops residue may lead to increased application of fertilizers in order to recover the soil nutrients lost from the residue removal. Alternatively, introduction of less-fertilizer intensive perennial grasses such as switchgrass (Panicum virgatum L.) and Miscanthus (Miscanthus x giganteus Greef et Deu.) can be a viable source for biofuel production. Even though these grasses are shown to reduce nutrient loads to a great extent, high production cost have constrained their wide adoptability to be used as a viable feedstock. Nonetheless, there is an opportunity to optimize feedstock production to meet bioenergy demand while improving water quality. This study presents a multi-objective simulation optimization framework using Soil and Water Assessment Tool (SWAT) and Multi Algorithm Genetically Adaptive Method (AMALGAM) to develop optimal cropping pattern with minimum nutrient delivery and minimum biomass production cost. Computational time required for optimization was significantly reduced by loose coupling SWAT with an external in-stream solute transport model. Optimization was constrained by food security and biofuel production targets that ensured not more than 10% reduction in grain yield and at least 100 million gallons of ethanol production. A case study was carried out in St. Joseph River Watershed that covers 280,000 ha area in the Midwest U.S. Results of the study indicated that introduction of corn stover removal and perennial grass production reduce nitrate and total phosphorus loads without

  8. Sustainable crop intensification through surface water irrigation in Bangladesh? A geospatial assessment of landscape-scale production potential.

    PubMed

    Krupnik, Timothy J; Schulthess, Urs; Ahmed, Zia Uddin; McDonald, Andrew J

    2017-01-01

    Changing dietary preferences and population growth in South Asia have resulted in increasing demand for wheat and maize, along side high and sustained demand for rice. In the highly productive northwestern Indo-Gangetic Plains of South Asia, farmers utilize groundwater irrigation to assure that at least two of these crops are sequenced on the same field within the same year. Such double cropping has had a significant and positive influence on regional agricultural productivity. But in the risk-prone and food insecure lower Eastern Indo-Gangetic Plains (EIGP), cropping is less intensive. During the dryer winter months, arable land is frequently fallowed or devoted to lower yielding rainfed legumes. Seeing opportunity to boost cereals production, particularly for rice, donors and land use policy makers have consequently reprioritized agricultural development investments in this impoverished region. Tapping groundwater for irrigation and intensified double cropping, however, is unlikely to be economically viable or environmentally sound in the EIGP. Constraints include saline shallow water tables and the prohibitively high installation and energetic extraction costs from deeper freshwater aquifers. The network of largely underutilized rivers and natural canals in the EIGP could conversely be tapped to provide less energetically and economically costly surface water irrigation (SWI). This approach is now championed by the Government of Bangladesh, which has requested USD 500 million from donors to implement land and water use policies to facilitate SWI and double cropping. Precise geospatial assessment of where freshwater flows are most prominent, or where viable fallow or low production intensity cropland is most common, however remains lacking. In response, we used remotely sensed data to identify agricultural land, detect the temporal availability of freshwater in rivers and canals, and assess crop production intensity over a three-year study period in a 33,750

  9. Biochemical production of bioenergy from agricultural crops and residue in Iran.

    PubMed

    Karimi Alavijeh, Masih; Yaghmaei, Soheila

    2016-06-01

    The present study assessed the potential for biochemical conversion of energy stored in agricultural waste and residue in Iran. The current status of agricultural residue as a source of bioenergy globally and in Iran was investigated. The total number of publications in this field from 2000 to 2014 was about 4294. Iran ranked 21st with approximately 54 published studies. A total of 87 projects have been devised globally to produce second-generation biofuel through biochemical pathways. There are currently no second-generation biorefineries in Iran and agricultural residue has no significant application. The present study determined the amount and types of sustainable agricultural residue and oil-rich crops and their provincial distribution. Wheat, barley, rice, corn, potatoes, alfalfa, sugarcane, sugar beets, apples, grapes, dates, cotton, soybeans, rapeseed, sesame seeds, olives, sunflowers, safflowers, almonds, walnuts and hazelnuts have the greatest potential as agronomic and horticultural crops to produce bioenergy in Iran. A total of 11.33million tonnes (Mt) of agricultural biomass could be collected for production of bioethanol (3.84gigaliters (Gl)), biobutanol (1.07Gl), biogas (3.15billion cubic meters (BCM)), and biohydrogen (0.90BCM). Additionally, about 0.35Gl of biodiesel could be obtained using only 35% of total Iranian oilseed. The potential production capacity of conventional biofuel blends in Iran, environmental and socio-economic impacts including well-to-wheel greenhouse gas (GHG) emissions, and the social cost of carbon dioxide reduction are discussed. The cost of emissions could decrease up to 55.83% by utilizing E85 instead of gasoline. The possible application of gaseous biofuel in Iran to produce valuable chemicals and provide required energy for crop cultivation is also studied. The energy recovered from biogas produced by wheat residue could provide energy input for 115.62 and 393.12 thousand hectares of irrigated and rain-fed wheat

  10. Yield and Economic Responses of Peanut to Crop Rotation Sequence

    USDA-ARS?s Scientific Manuscript database

    Proper crop rotation is essential to maintaining high peanut yield and quality. However, the economic considerations of maintaining or altering crop rotation sequences must incorporate the commodity prices, production costs, and yield responses of all crops in, or potentially in, the crop rotation ...

  11. Methanol and the productivity of tropical crops

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ferguson, T.U.

    1995-12-31

    Studies are being conducted in Trinidad and Tobago, St. Lucia and St. Kitts/Nevis to determine the effect of aqueous solutions of methanol on the growth and yield of a wide range of vegetable, field and perennial crops. The paper presents a summary of results to data for ten of the crops studied. Six of these crops, lettuce, sweet pepper, tomato, mango and breadfruit, have shown significant increases in growth or yield with methanol application, while others such as pigeon pea, rice, banana and cocoa have shown more limited responses. There appears to be some potential for the use of methanolmore » in tropical crop production but further studies are required before this apparent potential can be harnessed.« less

  12. Could Crop Height Affect the Wind Resource at Agriculturally Productive Wind Farm Sites?

    NASA Astrophysics Data System (ADS)

    Vanderwende, Brian; Lundquist, Julie K.

    2016-03-01

    The collocation of cropland and wind turbines in the US Midwest region introduces complex meteorological interactions that could influence both agriculture and wind-power production. Crop management practices may affect the wind resource through alterations of land-surface properties. We use the weather research and forecasting (WRF) model to estimate the impact of crop height variations on the wind resource in the presence of a large turbine array. A hypothetical wind farm consisting of 121 1.8-MW turbines is represented using the WRF model wind-farm parametrization. We represent the impact of selecting soybeans rather than maize by altering the aerodynamic roughness length in a region approximately 65 times larger than that occupied by the turbine array. Roughness lengths of 0.1 and 0.25 m represent the mature soy crop and a mature maize crop, respectively. In all but the most stable atmospheric conditions, statistically significant hub-height wind-speed increases and rotor-layer wind-shear reductions result from switching from maize to soybeans. Based on simulations for the entire month of August 2013, wind-farm energy output increases by 14 %, which would yield a significant monetary gain. Further investigation is required to determine the optimal size, shape, and crop height of the roughness modification to maximize the economic benefit and minimize the cost of such crop-management practices. These considerations must be balanced by other influences on crop choice such as soil requirements and commodity prices.

  13. Could crop height affect the wind resource at agriculturally productive wind farm sites?

    DOE PAGES

    Vanderwende, Brian; Lundquist, Julie K.

    2015-11-07

    The collocation of cropland and wind turbines in the US Midwest region introduces complex meteorological interactions that could influence both agriculture and wind-power production. Crop management practices may affect the wind resource through alterations of land-surface properties. We use the weather research and forecasting (WRF) model to estimate the impact of crop height variations on the wind resource in the presence of a large turbine array. A hypothetical wind farm consisting of 121 1.8-MW turbines is represented using the WRF model wind-farm parametrization. We represent the impact of selecting soybeans rather than maize by altering the aerodynamic roughness length inmore » a region approximately 65 times larger than that occupied by the turbine array. Roughness lengths of 0.1 and 0.25 m represent the mature soy crop and a mature maize crop, respectively. In all but the most stable atmospheric conditions, statistically significant hub-height wind-speed increases and rotor-layer wind-shear reductions result from switching from maize to soybeans. Based on simulations for the entire month of August 2013, wind-farm energy output increases by 14 %, which would yield a significant monetary gain. Further investigation is required to determine the optimal size, shape, and crop height of the roughness modification to maximize the economic benefit and minimize the cost of such crop-management practices. As a result, these considerations must be balanced by other influences on crop choice such as soil requirements and commodity prices.« less

  14. Could crop height affect the wind resource at agriculturally productive wind farm sites?

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vanderwende, Brian; Lundquist, Julie K.

    The collocation of cropland and wind turbines in the US Midwest region introduces complex meteorological interactions that could influence both agriculture and wind-power production. Crop management practices may affect the wind resource through alterations of land-surface properties. We use the weather research and forecasting (WRF) model to estimate the impact of crop height variations on the wind resource in the presence of a large turbine array. A hypothetical wind farm consisting of 121 1.8-MW turbines is represented using the WRF model wind-farm parametrization. We represent the impact of selecting soybeans rather than maize by altering the aerodynamic roughness length inmore » a region approximately 65 times larger than that occupied by the turbine array. Roughness lengths of 0.1 and 0.25 m represent the mature soy crop and a mature maize crop, respectively. In all but the most stable atmospheric conditions, statistically significant hub-height wind-speed increases and rotor-layer wind-shear reductions result from switching from maize to soybeans. Based on simulations for the entire month of August 2013, wind-farm energy output increases by 14 %, which would yield a significant monetary gain. Further investigation is required to determine the optimal size, shape, and crop height of the roughness modification to maximize the economic benefit and minimize the cost of such crop-management practices. As a result, these considerations must be balanced by other influences on crop choice such as soil requirements and commodity prices.« less

  15. Deriving vulnerability indicators for crop production regions in Indonesia

    NASA Astrophysics Data System (ADS)

    Perdinan; Atmaja, Tri; Sehabuddin, Ujang; Sugiarto, Yon; Febrianti, Lina; Farysca Adi, Ryco

    2017-01-01

    Food supply is considered as one of the most vulnerable to the effects of climate change. Higher temperature and changes in rainfall patterns and intensity may adversely impact crop production, which will eventually affect the food supply. Consequently, adaptation strategies should be devised to minimize the potential adverse impacts and maximize its potential benefits. The adaptation strategies should be devised by considering factors contributed to causing vulnerability following the concept of food supply chain, starting from production to consumption. This study focuses on identifying the contributed factors to vulnerability of crop production regions in Indonesia. The contributed factors were identified by defining indicators for each component of the food supply chain using an example of crop production centers in Indonesia, the West Java Province. The identification considers existing issues of the food supply chain, covering aspects of production, post-harvest and storage, distribution, and consumption, based on the field surveys conducted in Indramayu district of the West Java, the main grower of paddy production, and Garut district of the West Java, the main grower of corn production. The selection of the vulnerability indicators was also considered the data availability for the study area. The analysis proposed a list of indicators classified into production, post-harvest and storage, distribution and consumption that are proposed to assess the regional vulnerability of crop production regions in Indonesia. This result is expected to contribute in understanding the process of devising climate change adaptation intended for enhancing food supply resilience to climate change.

  16. Hierarchical Satellite-based Approach to Global Monitoring of Crop Condition and Food Production

    NASA Astrophysics Data System (ADS)

    Zheng, Y.; Wu, B.; Gommes, R.; Zhang, M.; Zhang, N.; Zeng, H.; Zou, W.; Yan, N.

    2014-12-01

    The assessment of global food security goes beyond the mere estimate of crop production: It needs to take into account the spatial and temporal patterns of food availability, as well as physical and economic access. Accurate and timely information is essential to both food producers and consumers. Taking advantage of multiple new remote sensing data sources, especially from Chinese satellites, such as FY-2/3A, HJ-1 CCD, CropWatch has expanded the scope of its international analyses through the development of new indicators and an upgraded operational methodology. The new monitoring approach adopts a hierarchical system covering four spatial levels of detail: global (sixty-five Monitoring and Reporting Units, MRU), seven major production zones (MPZ), thirty-one key countries (including China) and "sub- countries." The thirty-one countries encompass more that 80% of both global exports and production of four major crops (maize, rice, soybean and wheat). The methodology resorts to climatic and remote sensing indicators at different scales, using the integrated information to assess global, regional, and national (as well as sub-national) crop environmental condition, crop condition, drought, production, and agricultural trends. The climatic indicators for rainfall, temperature, photosynthetically active radiation (PAR) as well as potential biomass are first analysed at global scale to describe overall crop growing conditions. At MPZ scale, the key indicators pay more attention to crops and include Vegetation health index (VHI), Vegetation condition index (VCI), Cropped arable land fraction (CALF) as well as Cropping intensity (CI). Together, they characterise agricultural patterns, farming intensity and stress. CropWatch carries out detailed crop condition analyses for thirty one individual countries at the national scale with a comprehensive array of variables and indicators. The Normalized difference vegetation index (NDVI), cropped areas and crop condition are

  17. Crop diversity effects on productivity and economic returns under dryland agriculture

    USDA-ARS?s Scientific Manuscript database

    Increasing crop diversity has been identified as a method to improve agronomic performance of cropping systems and increase provision of ecosystem services. However, there is a need to understand the economic performance of more diverse cropping systems. Crop productivity and economic net returns we...

  18. Crop and varietal diversification of rainfed rice based cropping systems for higher productivity and profitability in Eastern India

    PubMed Central

    Panda, B. B.; Raja, R.; Singh, Teekam; Tripathi, R.; Shahid, M.; Nayak, A. K.

    2017-01-01

    Rice-rice system and rice fallows are no longer productive in Southeast Asia. Crop and varietal diversification of the rice based cropping systems may improve the productivity and profitability of the systems. Diversification is also a viable option to mitigate the risk of climate change. In Eastern India, farmers cultivate rice during rainy season (June–September) and land leftovers fallow after rice harvest in the post-rainy season (November–May) due to lack of sufficient rainfall or irrigation amenities. However, in lowland areas, sufficient residual soil moistures are available in rice fallow in the post-rainy season (November–March), which can be utilized for raising second crops in the region. Implementation of suitable crop/varietal diversification is thus very much vital to achieve this objective. To assess the yield performance of rice varieties under timely and late sown conditions and to evaluate the performance of dry season crops following them, three different duration rice cultivars were transplanted in July and August. In dry season several non-rice crops were sown in rice fallow to constitute a cropping system. The results revealed that tiller occurrence, biomass accumulation, dry matter remobilization, crop growth rate, and ultimately yield were significantly decreased under late transplanting. On an average, around 30% yield reduction obtained under late sowing may be due to low temperature stress and high rainfall at reproductive stages of the crop. Dry season crops following short duration rice cultivars performed better in terms of grain yield. In the dry season, toria was profitable when sown earlier and if sowing was delayed greengram was suitable. Highest system productivity and profitability under timely sown rice may be due to higher dry matter remobilization from source to sink. A significant correlation was observed between biomass production and grain yield. We infer that late transplanting decrease the tiller occurrence and

  19. Crop and varietal diversification of rainfed rice based cropping systems for higher productivity and profitability in Eastern India.

    PubMed

    Lal, B; Gautam, Priyanka; Panda, B B; Raja, R; Singh, Teekam; Tripathi, R; Shahid, M; Nayak, A K

    2017-01-01

    Rice-rice system and rice fallows are no longer productive in Southeast Asia. Crop and varietal diversification of the rice based cropping systems may improve the productivity and profitability of the systems. Diversification is also a viable option to mitigate the risk of climate change. In Eastern India, farmers cultivate rice during rainy season (June-September) and land leftovers fallow after rice harvest in the post-rainy season (November-May) due to lack of sufficient rainfall or irrigation amenities. However, in lowland areas, sufficient residual soil moistures are available in rice fallow in the post-rainy season (November-March), which can be utilized for raising second crops in the region. Implementation of suitable crop/varietal diversification is thus very much vital to achieve this objective. To assess the yield performance of rice varieties under timely and late sown conditions and to evaluate the performance of dry season crops following them, three different duration rice cultivars were transplanted in July and August. In dry season several non-rice crops were sown in rice fallow to constitute a cropping system. The results revealed that tiller occurrence, biomass accumulation, dry matter remobilization, crop growth rate, and ultimately yield were significantly decreased under late transplanting. On an average, around 30% yield reduction obtained under late sowing may be due to low temperature stress and high rainfall at reproductive stages of the crop. Dry season crops following short duration rice cultivars performed better in terms of grain yield. In the dry season, toria was profitable when sown earlier and if sowing was delayed greengram was suitable. Highest system productivity and profitability under timely sown rice may be due to higher dry matter remobilization from source to sink. A significant correlation was observed between biomass production and grain yield. We infer that late transplanting decrease the tiller occurrence and assimilate

  20. Matching Crew Diet and Crop Food Production in BIO-Plex

    NASA Technical Reports Server (NTRS)

    Jones, Harry; Kwauk, Xianmin; Mead, Susan C. (Technical Monitor)

    2000-01-01

    This paper matches the BIO-Plex crop food production to the crew diet requirements. The expected average calorie requirement for BIO-Plex is 2,975 Calories per crewmember per day, for a randomly selected crew with a typical level of physical activity. The range of 2,550 to 3,400 Calories will cover about two-thirds of all crews. The exact calorie requirement will depend on the gender composition, individual weights, exercise, and work effort of the selected crew. The expected average crewmember calorie requirement can be met by 430 grams of carbohydrate, 100 grams of fat, and 90 grams of protein per crewmember per day, for a total of 620 grams. Some fat can replaced by carbohydrate. Each crewmember requires only 2 grams of vitamins and minerals per day. Only unusually restricted diets may lack essential nutrients. The Advanced Life Support (ALS) consensus is that BIO-Plex should grow wheat, potato, and soybean, and maybe sweet potato or peanut, and maybe lettuce and tomato. The BIO-Plex Biomass Production System food production and the external food supply must be matched to the crew diet requirement for calories and nutritional balance. The crop production and external supply specifications can each be varied as long as their sum matches the required diet specification. We have wide flexibility in choosing the crops and resupply. We can easily grow one-half the crew calories in one BIO-Plex Biomass Production Chamber (BPC) if we grow only the most productive crops (wheat, potato, and sweet potato) and it we achieve nominal crop productivity. If we assume higher productivity we can grow a wider variety of crops. If we grow one-half of the crew calories, externally supplied foods can easily provide the other half of the calories and balance the diet. We can not grow 95 percent of the crew calories in two BPCs at nominal productivity while growing a balanced diet. We produce maximum calories by growing wheat, potato, and peanut.

  1. Determining the potential productivity of food crops in controlled environments

    NASA Technical Reports Server (NTRS)

    Bugbee, Bruce

    1992-01-01

    The quest to determine the maximum potential productivity of food crops is greatly benefitted by crop growth models. Many models have been developed to analyze and predict crop growth in the field, but it is difficult to predict biological responses to stress conditions. Crop growth models for the optimal environments of a Controlled Environment Life Support System (CELSS) can be highly predictive. This paper discusses the application of a crop growth model to CELSS; the model is used to evaluate factors limiting growth. The model separately evaluates the following four physiological processes: absorption of PPF by photosynthetic tissue, carbon fixation (photosynthesis), carbon use (respiration), and carbon partitioning (harvest index). These constituent processes determine potentially achievable productivity. An analysis of each process suggests that low harvest index is the factor most limiting to yield. PPF absorption by plant canopies and respiration efficiency are also of major importance. Research concerning productivity in a CELSS should emphasize: (1) the development of gas exchange techniques to continuously monitor plant growth rates and (2) environmental techniques to reduce plant height in communities.

  2. Improving the monitoring of crop productivity using spaceborne solar-induced fluorescence.

    PubMed

    Guan, Kaiyu; Berry, Joseph A; Zhang, Yongguang; Joiner, Joanna; Guanter, Luis; Badgley, Grayson; Lobell, David B

    2016-02-01

    Large-scale monitoring of crop growth and yield has important value for forecasting food production and prices and ensuring regional food security. A newly emerging satellite retrieval, solar-induced fluorescence (SIF) of chlorophyll, provides for the first time a direct measurement related to plant photosynthetic activity (i.e. electron transport rate). Here, we provide a framework to link SIF retrievals and crop yield, accounting for stoichiometry, photosynthetic pathways, and respiration losses. We apply this framework to estimate United States crop productivity for 2007-2012, where we use the spaceborne SIF retrievals from the Global Ozone Monitoring Experiment-2 satellite, benchmarked with county-level crop yield statistics, and compare it with various traditional crop monitoring approaches. We find that a SIF-based approach accounting for photosynthetic pathways (i.e. C3 and C4 crops) provides the best measure of crop productivity among these approaches, despite the fact that SIF sensors are not yet optimized for terrestrial applications. We further show that SIF provides the ability to infer the impacts of environmental stresses on autotrophic respiration and carbon-use-efficiency, with a substantial sensitivity of both to high temperatures. These results indicate new opportunities for improved mechanistic understanding of crop yield responses to climate variability and change. © 2015 John Wiley & Sons Ltd.

  3. Improving the Monitoring of Crop Productivity Using Spaceborne Solar-Induced Fluorescence

    NASA Technical Reports Server (NTRS)

    Guan, Kaiyu; Berry, Joseph A.; Zhang, Yongguang; Joiner, Joanna; Guanter, Luis; Badgley, Grayson; Lobell, David B.

    2015-01-01

    Large-scale monitoring of crop growth and yield has important value for forecasting food production and prices and ensuring regional food security. A newly emerging satellite retrieval, solar-induced fluorescence (SIF) of chlorophyll, provides for the first time a direct measurement related to plant photosynthetic activity (i.e. electron transport rate). Here, we provide a framework to link SIF retrievals and crop yield, accounting for stoichiometry, photosynthetic pathways, and respiration losses. We apply this framework to estimate United States crop productivity for 2007-2012, where we use the spaceborne SIF retrievals from the Global Ozone Monitoring Experiment-2 satellite, benchmarked with county-level crop yield statistics, and compare it with various traditional crop monitoring approaches. We find that a SIF-based approach accounting for photosynthetic pathways (i.e. C3 and C4 crops) provides the best measure of crop productivity among these approaches, despite the fact that SIF sensors are not yet optimized for terrestrial applications. We further show that SIF provides the ability to infer the impacts of environmental stresses on autotrophic respiration and carbon-use-efficiency, with a substantial sensitivity of both to high temperatures. These results indicate new opportunities for improved mechanistic understanding of crop yield responses to climate variability and change.

  4. Crop water productivity and irrigation management

    USDA-ARS?s Scientific Manuscript database

    Modern irrigation systems offer large increases in crop water productivity compared with rainfed or gravity irrigation, but require different management approaches to achieve this. Flood, sprinkler, low-energy precision application, LEPA, and subsurface drip irrigation methods vary widely in water a...

  5. Greenhouse tomato limited cluster production systems: crop management practices affect yield

    NASA Technical Reports Server (NTRS)

    Logendra, L. S.; Gianfagna, T. J.; Specca, D. R.; Janes, H. W.

    2001-01-01

    Limited-cluster production systems may be a useful strategy to increase crop production and profitability for the greenhouse tomato (Lycopersicon esculentum Mill). In this study, using an ebb-and-flood hydroponics system, we modified plant architecture and spacing and determined the effects on fruit yield and harvest index at two light levels. Single-cluster plants pruned to allow two leaves above the cluster had 25% higher fruit yields than did plants pruned directly above the cluster; this was due to an increase in fruit weight, not fruit number. Both fruit yield and harvest index were greater for all single-cluster plants at the higher light level because of increases in both fruit weight and fruit number. Fruit yield for two-cluster plants was 30% to 40% higher than for single-cluster plants, and there was little difference in the dates or length of the harvest period. Fruit yield for three-cluster plants was not significantly different from that of two-cluster plants; moreover, the harvest period was delayed by 5 days. Plant density (5.5, 7.4, 9.2 plants/m2) affected fruit yield/plant, but not fruit yield/unit area. Given the higher costs for materials and labor associated with higher plant densities, a two-cluster crop at 5.5 plants/m2 with two leaves above the cluster was the best of the production system strategies tested.

  6. SOIL ECOLOGY AS KEY TO SUSTAINABLE CROP PRODUCTION.

    PubMed

    De Deyn, G B

    2015-01-01

    Sustainable production of food, feed and fiberwarrants sustainable soil management and crop protection. The tools available to achieve this are both in the realm of the plants and of the soil, with a key role for plant-soil interactions. At the plant level we have vast knowledge of variation within plant species with respect to pests and diseases, based on which we can breed for resistance. However, given that systems evolve this resistance is bound to be temporarily, hence also other strategies are needed. Here I plea for an integrative approach for sustainable production using ecological principles. Ecology, the study of how organisms interact with their environment, teaches us that diversity promotes productivity and yield stability. These effects are thought to be governed through resource use complementarity and reduced build-up of pests and diseases both above- and belowground. In recent years especially the role of soil biotic interactions has revealed new insights in how plant diversity and productivity are related to soil biodiversity and the functions soil biota govern. In our grassland biodiversity studies we found that root feeders can promote plant diversity and succession without reducing plant community productivity, this illustrates the role of diversity to maintain productivity. Also diversity within species offers scope for sustainable production, for example through awareness of differences between plant genotypes in chemical defense compounds that can attract natural enemies of pests aboveground- and belowground thereby providing plant protection. Plant breeding can also benefit from using complementarity between plant species in the selection for new varieties, as our work demonstrated that when growing in species mixtures plant species adapt to each other over time such that their resource acquisition traits become more complementing. Finally, in a recent meta-analysis we show that earthworms can stimulate crop yield with on average 25%, but

  7. Long-term impacts of cropping systems and landscape positions on grain crop production on claypan soils

    USDA-ARS?s Scientific Manuscript database

    Sustainable grain crop production on vulnerable claypan soils requires improved knowledge of long-term impacts of conservation cropping systems (CS) with reduced inputs. Therefore, effects of CS and landscape positions (LP) on corn (Zea mays L.), soybean [Glycine max (L.) Merr.], and wheat (Triticum...

  8. Grain production versus resource and environmental costs: towards increasing sustainability of nutrient use in China.

    PubMed

    Jiao, Xiaoqiang; Lyu, Yang; Wu, Xiaobin; Li, Haigang; Cheng, Lingyun; Zhang, Chaochun; Yuan, Lixing; Jiang, Rongfeng; Jiang, Baiwen; Rengel, Zed; Zhang, Fusuo; Davies, William J; Shen, Jianbo

    2016-09-01

    Over the past five decades, Chinese grain production has increased 4-fold, from 110 Mt in 1961 to 557 Mt in 2014, with less than 9% of the world's arable land feeding 22% of the world's population, indicating a substantial contribution to global food security. However, compared with developed economies, such as the USA and the European Union, more than half of the increased crop production in China can be attributed to a rapid increase in the consumption of chemicals, particularly fertilizers. Excessive fertilization has caused low nutrient use efficiency and high environmental costs in grain production. We analysed the key requirements underpinning increased sustainability of crop production in China, as follows: (i) enhance nutrient use efficiency and reduce nutrient losses by fertilizing roots not soil to maximize root/rhizosphere efficiency with innovative root zone nutrient management; (ii) improve crop productivity and resource use efficiency by matching the best agronomic management practices with crop improvement; and (iii) promote technology transfer of the root zone nutrient management to achieve the target of high yields and high efficiency with low environmental risks on a broad scale. Coordinating grain production and environmental protection by increasing the sustainability of nutrient use will be a key step in achieving sustainable crop production in Chinese agriculture. © The Author 2016. Published by Oxford University Press on behalf of the Society for Experimental Biology. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  9. Farm-scale costs and returns for second generation bioenergy cropping systems in the US Corn Belt

    NASA Astrophysics Data System (ADS)

    Manatt, Robert K.; Hallam, Arne; Schulte, Lisa A.; Heaton, Emily A.; Gunther, Theo; Hall, Richard B.; Moore, Ken J.

    2013-09-01

    While grain crops are meeting much of the initial need for biofuels in the US, cellulosic or second generation (2G) materials are mandated to provide a growing portion of biofuel feedstocks. We sought to inform development of a 2G crop portfolio by assessing the profitability of novel cropping systems that potentially mitigate the negative effects of grain-based biofuel crops on food supply and environmental quality. We analyzed farm-gate costs and returns of five systems from an ongoing experiment in central Iowa, USA. The continuous corn cropping system was most profitable under current market conditions, followed by a corn-soybean rotation that incorporated triticale as a 2G cover crop every third year, and a corn-switchgrass system. A novel triticale-hybrid aspen intercropping system had the highest yields over the long term, but could only surpass the profitability of the continuous corn system when biomass prices exceeded foreseeable market values. A triticale/sorghum double cropping system was deemed unviable. We perceive three ways 2G crops could become more cost competitive with grain crops: by (1) boosting yields through substantially greater investment in research and development, (2) increasing demand through substantially greater and sustained investment in new markets, and (3) developing new schemes to compensate farmers for environmental benefits associated with 2G crops.

  10. Water Footprint of crop productions: A review.

    PubMed

    Lovarelli, Daniela; Bacenetti, Jacopo; Fiala, Marco

    2016-04-01

    Water Footprint is an indicator recently developed with the goal of quantifying the virtual content of water in products and/or services. It can also be used to identify the worldwide virtual water trade. Water Footprint is composed of three parts (green, blue and grey waters) that make the assessment complete in accordance with the Water Footprint Network and with the recent ISO14046. The importance of Water Footprint is linked to the need of taking consciousness about water content in products and services and of the achievable changes in productions, diets and market trades. In this study, a literature review has been completed on Water Footprint of agricultural productions. In particular, the focus was paid on crops for the production of food and bioenergy. From the review, the development of the Water Footprint concept emerged: in early studies the main goal was to assess products' water trade on a global scale, while in the subsequent years, the goal was the rigorous quantification of the three components for specific crops and in specific geographical areas. In the most recent assessments, similarities about the methodology and the employed tools emerged. For 96 scientific articles on Water Footprint indicator of agricultural productions, this literature review reports the main results and analyses weaknesses and strengths. Seventy-eight percent of studies aimed to quantify Water Footprint, while the remaining 22% analysed methodology, uncertainty, future trends and comparisons with other footprints. It emerged that most studies that quantified Water Footprint concerned cereals (33%), among which maize and wheat were the most investigated crops. In 46% of studies all the three components were assessed, while in 18% no indication about the subdivision was given; in the remaining 37%, only blue or green and blue components were quantified. Copyright © 2016 Elsevier B.V. All rights reserved.

  11. Biotechnology Towards Energy Crops.

    PubMed

    Margaritopoulou, Theoni; Roka, Loukia; Alexopoulou, Efi; Christou, Myrsini; Rigas, Stamatis; Haralampidis, Kosmas; Milioni, Dimitra

    2016-03-01

    New crops are gradually establishing along with cultivation systems to reduce reliance on depleting fossil fuel reserves and sustain better adaptation to climate change. These biological assets could be efficiently exploited as bioenergy feedstocks. Bioenergy crops are versatile renewable sources with the potential to alternatively contribute on a daily basis towards the coverage of modern society's energy demands. Biotechnology may facilitate the breeding of elite energy crop genotypes, better suited for bio-processing and subsequent use that will improve efficiency, further reduce costs, and enhance the environmental benefits of biofuels. Innovative molecular techniques may improve a broad range of important features including biomass yield, product quality and resistance to biotic factors like pests or microbial diseases or environmental cues such as drought, salinity, freezing injury or heat shock. The current review intends to assess the capacity of biotechnological applications to develop a beneficial bioenergy pipeline extending from feedstock development to sustainable biofuel production and provide examples of the current state of the art on future energy crops.

  12. The limits of crop productivity

    NASA Technical Reports Server (NTRS)

    Bugbee, Bruce; Monje, Oscar

    1992-01-01

    The component processes that govern yield limits in food crops are reviewed and how each process can be individually measured is described. The processes considered include absorption of photosynthetic radiation by green tissue, carbon-fixation efficiency in photosynthesis, carbon use efficiency in respiration, biomass allocation to edible products, and efficiency of photosynthesis and respiration. The factors limiting yields in optimal environments are considered.

  13. Quantifying blue and green virtual water contents in global crop production as well as potential production losses without irrigation

    NASA Astrophysics Data System (ADS)

    Siebert, Stefan; Döll, Petra

    2010-04-01

    SummaryCrop production requires large amounts of green and blue water. We developed the new global crop water model GCWM to compute consumptive water use (evapotranspiration) and virtual water content (evapotranspiration per harvested biomass) of crops at a spatial resolution of 5' by 5', distinguishing 26 crop classes, and blue versus green water. GCWM is based on the global land use data set MIRCA2000 that provides monthly growing areas for 26 crop classes under rainfed and irrigated conditions for the period 1998-2002 and represents multi-cropping. By computing daily soil water balances, GCWM determines evapotranspiration of blue and green water for each crop and grid cell. Cell-specific crop production under both rainfed and irrigated conditions is computed by downscaling average crop yields reported for 402 national and sub-national statistical units, relating rainfed and irrigated crop yields reported in census statistics to simulated ratios of actual to potential crop evapotranspiration for rainfed crops. By restricting water use of irrigated crops to green water only, the potential production loss without any irrigation was computed. For the period 1998-2002, the global value of total crop water use was 6685 km 3 yr -1, of which blue water use was 1180 km 3 yr -1, green water use of irrigated crops was 919 km 3 yr -1 and green water use of rainfed crops was 4586 km 3 yr -1. Total crop water use was largest for rice (941 km 3 yr -1), wheat (858 km 3 yr -1) and maize (722 km 3 yr -1). The largest amounts of blue water were used for rice (307 km 3 yr -1) and wheat (208 km 3 yr -1). Blue water use as percentage of total crop water use was highest for date palms (85%), cotton (39%), citrus fruits (33%), rice (33%) and sugar beets (32%), while for cassava, oil palm and cocoa, almost no blue water was used. Average crop yield of irrigated cereals was 442 Mg km -2 while average yield of rainfed cereals was only 266 Mg km -2. Average virtual water content of cereal

  14. Recent decline in crop water productivity in the United States: a call to grow "more crop per drop"

    NASA Astrophysics Data System (ADS)

    Marshall, M. T.; Tu, K. P.; Thenkabail, P.; Brown, J. F.

    2016-12-01

    Irrigation for agriculture accounts for approximately 80 to 90% of U.S. consumptive water use. Recent declines in freshwater supply for irrigated agriculture in the western U.S. is particularly alarming, because climate change, water withdrawals from growing and competing sectors, and water pollution, are projected to put further strain on this vital sector. Innovative water management strategies are being proposed to combat this eminent water crisis and include: developing water markets, improving crop water productivity (CWP: "more crop per drop"), and coordinating the use of surface and groundwater supplies. The increase in CWP through crop type or variety selection is particularly lucrative, because it aims to increase the marketable yield of a crop, while reducing the cost of consumptive water use. Here we estimated CWP from 2000-2015 for the Contiguous United States over the primary growing season (mid May - late October) using a recently developed and validated light-use efficiency model for estimating crop yield and the transpiration component of the Priestley-Taylor Jet Propulsion Laboratory evapotranspiration model. The models were parameterized with daily DAYMET 1 km meteorological and 7-day EROS Moderate Resolution Imaging Spectroradiometer 250 m vegetation data. An analysis will be performed on CWP and its components to characterize the magnitude, direction, and persistence of trends. CWP estimates and trends will be overlaid with the U.S. Department of Agriculture's Cropland Data Layer to rank major crops by water use versus marketable yield and to characterize intervention hotspots, respectively. County-level data on surface and ground water withdrawals for irrigated agriculture available through the U.S. Geological Survey will be used to further scrutinize emerging patterns. It is anticipated that over much of the irrigated areas of the western U.S. that persistent and decreasing trends in CWP for major water users (e.g. alfalfa) due to temperature

  15. Increasing Cropping System Diversity Balances Productivity, Profitability and Environmental Health

    PubMed Central

    Davis, Adam S.; Hill, Jason D.; Chase, Craig A.; Johanns, Ann M.; Liebman, Matt

    2012-01-01

    Balancing productivity, profitability, and environmental health is a key challenge for agricultural sustainability. Most crop production systems in the United States are characterized by low species and management diversity, high use of fossil energy and agrichemicals, and large negative impacts on the environment. We hypothesized that cropping system diversification would promote ecosystem services that would supplement, and eventually displace, synthetic external inputs used to maintain crop productivity. To test this, we conducted a field study from 2003–2011 in Iowa that included three contrasting systems varying in length of crop sequence and inputs. We compared a conventionally managed 2-yr rotation (maize-soybean) that received fertilizers and herbicides at rates comparable to those used on nearby farms with two more diverse cropping systems: a 3-yr rotation (maize-soybean-small grain + red clover) and a 4-yr rotation (maize-soybean-small grain + alfalfa-alfalfa) managed with lower synthetic N fertilizer and herbicide inputs and periodic applications of cattle manure. Grain yields, mass of harvested products, and profit in the more diverse systems were similar to, or greater than, those in the conventional system, despite reductions of agrichemical inputs. Weeds were suppressed effectively in all systems, but freshwater toxicity of the more diverse systems was two orders of magnitude lower than in the conventional system. Results of our study indicate that more diverse cropping systems can use small amounts of synthetic agrichemical inputs as powerful tools with which to tune, rather than drive, agroecosystem performance, while meeting or exceeding the performance of less diverse systems. PMID:23071739

  16. Increasing cropping system diversity balances productivity, profitability and environmental health.

    PubMed

    Davis, Adam S; Hill, Jason D; Chase, Craig A; Johanns, Ann M; Liebman, Matt

    2012-01-01

    Balancing productivity, profitability, and environmental health is a key challenge for agricultural sustainability. Most crop production systems in the United States are characterized by low species and management diversity, high use of fossil energy and agrichemicals, and large negative impacts on the environment. We hypothesized that cropping system diversification would promote ecosystem services that would supplement, and eventually displace, synthetic external inputs used to maintain crop productivity. To test this, we conducted a field study from 2003-2011 in Iowa that included three contrasting systems varying in length of crop sequence and inputs. We compared a conventionally managed 2-yr rotation (maize-soybean) that received fertilizers and herbicides at rates comparable to those used on nearby farms with two more diverse cropping systems: a 3-yr rotation (maize-soybean-small grain + red clover) and a 4-yr rotation (maize-soybean-small grain + alfalfa-alfalfa) managed with lower synthetic N fertilizer and herbicide inputs and periodic applications of cattle manure. Grain yields, mass of harvested products, and profit in the more diverse systems were similar to, or greater than, those in the conventional system, despite reductions of agrichemical inputs. Weeds were suppressed effectively in all systems, but freshwater toxicity of the more diverse systems was two orders of magnitude lower than in the conventional system. Results of our study indicate that more diverse cropping systems can use small amounts of synthetic agrichemical inputs as powerful tools with which to tune, rather than drive, agroecosystem performance, while meeting or exceeding the performance of less diverse systems.

  17. Increased food production and reduced water use through optimized crop distribution

    NASA Astrophysics Data System (ADS)

    Davis, Kyle Frankel; Rulli, Maria Cristina; Seveso, Antonio; D'Odorico, Paolo

    2017-12-01

    Growing demand for agricultural commodities for food, fuel and other uses is expected to be met through an intensification of production on lands that are currently under cultivation. Intensification typically entails investments in modern technology — such as irrigation or fertilizers — and increases in cropping frequency in regions suitable for multiple growing seasons. Here we combine a process-based crop water model with maps of spatially interpolated yields for 14 major food crops to identify potential differences in food production and water use between current and optimized crop distributions. We find that the current distribution of crops around the world neither attains maximum production nor minimum water use. We identify possible alternative configurations of the agricultural landscape that, by reshaping the global distribution of crops within current rainfed and irrigated croplands based on total water consumption, would feed an additional 825 million people while reducing the consumptive use of rainwater and irrigation water by 14% and 12%, respectively. Such an optimization process does not entail a loss of crop diversity, cropland expansion or impacts on nutrient and feed availability. It also does not necessarily invoke massive investments in modern technology that in many regions would require a switch from smallholder farming to large-scale commercial agriculture with important impacts on rural livelihoods.

  18. Phytoremediation of sewage sludge and use of its leachate for crop production.

    PubMed

    Xu, Tianfen; Xie, Fangwen; Wei, Zebin; Zeng, Shucai; Wu, Qi-Tang

    2015-01-01

    The land application of sewage sludge has the potential risk of transferring heavy metals to soil or groundwater. The agricultural reuse of sludge leachate could be a cost-effective way to decrease metal contamination. Sludge leachate collected during the phytoremediation of sludge by co-cropping with Sedum alfredii and Zea mays was used for irrigating vegetables in a field experiment. Results indicate that the concentrations of Cu, Zn, Pb, and Cd in sludge leachates complied with the National Standards for agricultural irrigation water in China. For the vegetable crop Ipomoea aquatica, nutrients obtained only from the sludge leachate were not sufficient to support growth. For the second crop, Brassica parachinensis, no differences in biomass were observed between the treatment with leachate plus a half dose of inorganic fertilizer and the treatment with a full dose of inorganic fertilizers. The concentrations of heavy metals in I. aquatica and B. parachinensis were not significantly affected by the application of sludge leachates. Compared with initial values, there were no significant differences in Zn, Cd, Cu, and Pb concentrations in soil following treatment with sludge leachate. This study indicates that on range lands, sludge phytoremediation can be conducted at the upper level, and the generated sludge leachate can be safely and easily used in crop production at the lower level.

  19. Impact of seasonal forecast use on agricultural income in a system with varying crop costs and returns: an empirically-grounded simulation

    NASA Astrophysics Data System (ADS)

    Gunda, T.; Bazuin, J. T.; Nay, J.; Yeung, K. L.

    2017-03-01

    Access to seasonal climate forecasts can benefit farmers by allowing them to make more informed decisions about their farming practices. However, it is unclear whether farmers realize these benefits when crop choices available to farmers have different and variable costs and returns; multiple countries have programs that incentivize production of certain crops while other crops are subject to market fluctuations. We hypothesize that the benefits of forecasts on farmer livelihoods will be moderated by the combined impact of differing crop economics and changing climate. Drawing upon methods and insights from both physical and social sciences, we develop a model of farmer decision-making to evaluate this hypothesis. The model dynamics are explored using empirical data from Sri Lanka; primary sources include survey and interview information as well as game-based experiments conducted with farmers in the field. Our simulations show that a farmer using seasonal forecasts has more diversified crop selections, which drive increases in average agricultural income. Increases in income are particularly notable under a drier climate scenario, when a farmer using seasonal forecasts is more likely to plant onions, a crop with higher possible returns. Our results indicate that, when water resources are scarce (i.e. drier climate scenario), farmer incomes could become stratified, potentially compounding existing disparities in farmers’ financial and technical abilities to use forecasts to inform their crop selections. This analysis highlights that while programs that promote production of certain crops may ensure food security in the short-term, the long-term implications of these dynamics need careful evaluation.

  20. Global consumptive water use for crop production: The importance of green water and virtual water

    NASA Astrophysics Data System (ADS)

    Liu, Junguo; Zehnder, Alexander J. B.; Yang, Hong

    2009-05-01

    Over the last 4 decades the use of blue water has received increasing attention in water resources research, but little attention has been paid to the quantification of green water in food production and food trade. In this paper, we estimate both the blue and green water components of consumptive water use (CWU) for a wide range of agricultural crops, including seven cereal crops, cassava, cotton, groundnuts, potatoes, pulses, rapeseed, soybeans, sugar beets, sugarcane, and sunflower, with a spatial resolution of 30 arc min on the land surface. The results show that the global CWU of these crops amounted to 3823 km3 a-1 for the period 1998-2002. More than 80% of this amount was from green water. Around 94% of the world crop-related virtual water trade has its origin in green water, which generally constitutes a low-opportunity cost of green water as opposed to blue water. High levels of net virtual water import (NVWI) generally occur in countries with low CWU on a per capita basis, where a virtual water strategy is an attractive water management option to compensate for domestic water shortage for food production. NVWI is constrained by income; low-income countries generally have a low level of NVWI. Strengthening low-income countries economically will allow them to develop a virtual water strategy to mitigate malnutrition of their people.

  1. Type of fitness cost influences the rate of evolution of resistance to transgenic Bt crops.

    PubMed

    Hackett, Sean C; Bonsall, Michael B

    2016-10-01

    The evolution of resistance to pesticides by insect pests is a significant challenge for sustainable agriculture. For transgenic crops expressing Bacillus thuringiensis (Bt), crystalline (Cry) toxins resistance evolution may be delayed by the high-dose/refuge strategy in which a non-toxic refuge is planted to promote the survival of susceptible insects. The high-dose/refuge strategy may interact with fitness costs associated with resistance alleles to further delay resistance. However, while a diverse range of fitness costs are reported in the field, they are typically represented as a fixed reduction in survival or viability which is insensitive to ecological conditions such as competition. Furthermore, the potential dynamic consequences of restricting susceptible insects to a refuge which represents only a fraction of the available space have rarely been considered.We present a generalized discrete time model which utilizes dynamic programming methods to derive the optimal management decisions for the control of a theoretical insect pest population exposed to Bt crops. We consider three genotypes (susceptible homozygotes, resistant homozygotes and heterozygotes) and implement fitness costs of resistance to Bt toxins as either a decrease in the relative competitive ability of resistant insects or as a penalty on fecundity. Model analysis is repeated and contrasted for two types of density dependence: uniform density dependence which operates equally across the landscape and heterogeneous density dependence where the intensity of competition scales inversely with patch size and is determined separately for the refuge and Bt crop.When the planting of Bt is decided optimally, fitness costs to fecundity allow for the planting of larger areas of Bt crops than equivalent fitness costs that reduce the competitive ability of resistant insects.Heterogeneous competition only influenced model predictions when the proportional area of Bt planted in each season was decided

  2. Quantifying the link between crop production and mined groundwater irrigation in China.

    PubMed

    Grogan, Danielle S; Zhang, Fan; Prusevich, Alexander; Lammers, Richard B; Wisser, Dominik; Glidden, Stanley; Li, Changsheng; Frolking, Steve

    2015-04-01

    In response to increasing demand for food, Chinese agriculture has both expanded and intensified over the past several decades. Irrigation has played a key role in increasing crop production, and groundwater is now an important source of irrigation water. Groundwater abstraction in excess of recharge (which we use here to estimate groundwater mining) has resulted in declining groundwater levels and could eventually restrict groundwater availability. In this study we used a hydrological model, WBMplus, in conjunction with a process based crop growth model, DNDC, to evaluate Chinese agriculture's recent dependence upon mined groundwater, and to quantify mined groundwater-dependent crop production across a domain that includes variation in climate, crop choice, and management practices. This methodology allowed for the direct attribution of crop production to irrigation water from rivers and reservoirs, shallow (renewable) groundwater, and mined groundwater. Simulating 20 years of weather variability and circa year 2000 crop areas, we found that mined groundwater fulfilled 20%-49% of gross irrigation water demand, assuming all demand was met. Mined groundwater accounted for 15%-27% of national total crop production. There was high spatial variability across China in irrigation water demand and crop production derived from mined groundwater. We find that climate variability and mined groundwater demand do not operate independently; rather, years in which irrigation water demand is high due to the relatively hot and dry climate also experience limited surface water supplies and therefore have less surface water with which to meet that high irrigation water demand. Copyright © 2014 Elsevier B.V. All rights reserved.

  3. Molecular Breeding to Create Optimized Crops: From Genetic Manipulation to Potential Applications in Plant Factories.

    PubMed

    Hiwasa-Tanase, Kyoko; Ezura, Hiroshi

    2016-01-01

    Crop cultivation in controlled environment plant factories offers great potential to stabilize the yield and quality of agricultural products. However, many crops are currently unsuited to these environments, particularly closed cultivation systems, due to space limitations, low light intensity, high implementation costs, and high energy requirements. A major barrier to closed system cultivation is the high running cost, which necessitates the use of high-margin crops for economic viability. High-value crops include those with enhanced nutritional value or containing additional functional components for pharmaceutical production or with the aim of providing health benefits. In addition, it is important to develop cultivars equipped with growth parameters that are suitable for closed cultivation. Small plant size is of particular importance due to the limited cultivation space. Other advantageous traits are short production cycle, the ability to grow under low light, and high nutriculture availability. Cost-effectiveness is improved from the use of cultivars that are specifically optimized for closed system cultivation. This review describes the features of closed cultivation systems and the potential application of molecular breeding to create crops that are optimized for cost-effectiveness and productivity in closed cultivation systems.

  4. Molecular Breeding to Create Optimized Crops: From Genetic Manipulation to Potential Applications in Plant Factories

    PubMed Central

    Hiwasa-Tanase, Kyoko; Ezura, Hiroshi

    2016-01-01

    Crop cultivation in controlled environment plant factories offers great potential to stabilize the yield and quality of agricultural products. However, many crops are currently unsuited to these environments, particularly closed cultivation systems, due to space limitations, low light intensity, high implementation costs, and high energy requirements. A major barrier to closed system cultivation is the high running cost, which necessitates the use of high-margin crops for economic viability. High-value crops include those with enhanced nutritional value or containing additional functional components for pharmaceutical production or with the aim of providing health benefits. In addition, it is important to develop cultivars equipped with growth parameters that are suitable for closed cultivation. Small plant size is of particular importance due to the limited cultivation space. Other advantageous traits are short production cycle, the ability to grow under low light, and high nutriculture availability. Cost-effectiveness is improved from the use of cultivars that are specifically optimized for closed system cultivation. This review describes the features of closed cultivation systems and the potential application of molecular breeding to create crops that are optimized for cost-effectiveness and productivity in closed cultivation systems. PMID:27200016

  5. Particulate matter air pollution may offset ozone damage to global crop production

    NASA Astrophysics Data System (ADS)

    Schiferl, Luke D.; Heald, Colette L.

    2018-04-01

    Ensuring global food security requires a comprehensive understanding of environmental pressures on food production, including the impacts of air quality. Surface ozone damages plants and decreases crop production; this effect has been extensively studied. In contrast, the presence of particulate matter (PM) in the atmosphere can be beneficial to crops given that enhanced light scattering leads to a more even and efficient distribution of photons which can outweigh total incoming radiation loss. This study quantifies the impacts of ozone and PM on the global production of maize, rice, and wheat in 2010 and 2050. We show that accounting for the growing season of these crops is an important factor in determining their air pollution exposure. We find that the effect of PM can offset much, if not all, of the reduction in yield associated with ozone damage. Assuming maximum sensitivity to PM, the current (2010) global net impact of air quality on crop production varies by crop (+5.6, -3.7, and +4.5 % for maize, wheat, and rice, respectively). Future emissions scenarios indicate that attempts to improve air quality can result in a net negative effect on crop production in areas dominated by the PM effect. However, we caution that the uncertainty in this assessment is large, due to the uncertainty associated with crop response to changes in diffuse radiation; this highlights that a more detailed physiological study of this response for common cultivars is crucial.

  6. Innovations in LED lighting for reduced-ESM crop production in space

    NASA Astrophysics Data System (ADS)

    Massa, Gioia; Mitchell, Cary; Bourget, C. Michael; Morrow, Robert

    In controlled-environment crop production such as will be practiced at the lunar outpost and Mars base, the single most energy-demanding aspect is electric lighting for plant growth, including energy costs for energizing lamps as well as for removing excess heat. For a variety of reasons, sunlight may not be a viable option as the main source of crop lighting off-Earth and traditional electric lamps for crop lighting have numerous drawbacks for use in a space environment. A collaborative research venture between the Advanced Life Support Crops Group at Purdue University and the Orbital Technologies Corporation (ORBITEC) has led to the development of efficient, reconfigurable LED lighting technologies for crop growth in an ALSS. The light sources use printed-circuit red and blue LEDs, which are individually tunable for a range of photosynthetic photon fluxes and photomorphogenic plant responses. Initial lighting arrays have LEDs that can be energized from the bottom upward when deployed in a vertical, intracanopy configuration, allowing the illumination to be tailored for stand height throughout the cropping cycle. Preliminary testing with the planophile crop cowpea (Vigna unguiculata L. Walp, breeding line IT87D-941-1), resulted in optimizing internal reflectance of growth compartments by lining walls, floor, and a movable ceiling with white Poly film, as well as by determining optimal planting density and plant positioning. Additionally, these light strips, called "lightsicles", can be configured into an overhead plane of light engines. When intracanopy and overhead-LED-lit cowpea crop production was compared, cowpea plants grown with intracanopy lighting had much greater understory leaf retention and produced more dry biomass per kilowatt-hour of lighting energy than did overhead-lit plants. The efficiency of light capture is reduced in overhead-lit scenarios due to mutual shading of lower leaves by upper leaves in closed canopies leading to premature abscission

  7. Fuel from Tobacco and Arundo Donax: Synthetic Crop for Direct Drop-in Biofuel Production through Re-routing the Photorespiration Intermediates and Engineering Terpenoid Pathways

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    PETRO Project: Biofuels offer renewable alternatives to petroleum-based fuels that reduce net greenhouse gas emissions to nearly zero. However, traditional biofuels production is limited not only by the small amount of solar energy that plants convert through photosynthesis into biological materials, but also by inefficient processes for converting these biological materials into fuels. Farm-ready, non-food crops are needed that produce fuels or fuel-like precursors at significantly lower costs with significantly higher productivity. To make biofuels cost-competitive with petroleum-based fuels, biofuels production costs must be cut in half.

  8. Assimilation of LAI time-series in crop production models

    NASA Astrophysics Data System (ADS)

    Kooistra, Lammert; Rijk, Bert; Nannes, Louis

    2014-05-01

    Agriculture is worldwide a large consumer of freshwater, nutrients and land. Spatial explicit agricultural management activities (e.g., fertilization, irrigation) could significantly improve efficiency in resource use. In previous studies and operational applications, remote sensing has shown to be a powerful method for spatio-temporal monitoring of actual crop status. As a next step, yield forecasting by assimilating remote sensing based plant variables in crop production models would improve agricultural decision support both at the farm and field level. In this study we investigated the potential of remote sensing based Leaf Area Index (LAI) time-series assimilated in the crop production model LINTUL to improve yield forecasting at field level. The effect of assimilation method and amount of assimilated observations was evaluated. The LINTUL-3 crop production model was calibrated and validated for a potato crop on two experimental fields in the south of the Netherlands. A range of data sources (e.g., in-situ soil moisture and weather sensors, destructive crop measurements) was used for calibration of the model for the experimental field in 2010. LAI from cropscan field radiometer measurements and actual LAI measured with the LAI-2000 instrument were used as input for the LAI time-series. The LAI time-series were assimilated in the LINTUL model and validated for a second experimental field on which potatoes were grown in 2011. Yield in 2011 was simulated with an R2 of 0.82 when compared with field measured yield. Furthermore, we analysed the potential of assimilation of LAI into the LINTUL-3 model through the 'updating' assimilation technique. The deviation between measured and simulated yield decreased from 9371 kg/ha to 8729 kg/ha when assimilating weekly LAI measurements in the LINTUL model over the season of 2011. LINTUL-3 furthermore shows the main growth reducing factors, which are useful for farm decision support. The combination of crop models and sensor

  9. Economic impact of GM crops

    PubMed Central

    Brookes, Graham; Barfoot, Peter

    2014-01-01

    A key part of any assessment of the global value of crop biotechnology in agriculture is an examination of its economic impact at the farm level. This paper follows earlier annual studies which examined economic impacts on yields, key costs of production, direct farm income and effects, and impacts on the production base of the four main crops of soybeans, corn, cotton and canola. The commercialization of genetically modified (GM) crops has continued to occur at a rapid rate, with important changes in both the overall level of adoption and impact occurring in 2012. This annual updated analysis shows that there have been very significant net economic benefits at the farm level amounting to $18.8 billion in 2012 and $116.6 billion for the 17-year period (in nominal terms). These economic gains have been divided roughly 50% each to farmers in developed and developing countries. GM technology have also made important contributions to increasing global production levels of the four main crops, having added 122 million tonnes and 230 million tonnes respectively, to the global production of soybeans and maize since the introduction of the technology in the mid-1990s. PMID:24637520

  10. A national research & development strategy for biomass crop feedstocks

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wright, L.L.; Cushman, J.H.

    Planning was initiated in 1996 with the objective of reevaluating current biomass feedstock research and development strategies to: (1) assure that by 2005, one or more commercial lignocellulosic to ethanol projects will be able to acquire a dependable supply of biomass crop feedstocks; (2) assure that recently initiated demonstrations of crops to electricity will be successful and; (3) assure that the research base needed to support future biomass industry expansion is being developed. Multiple trends and analyses indicate that biomass energy research and development strategies must take into account the fact that competition for land will define the upper limitsmore » of available biomass energy crop supplies and will largely dictate the price of those supplies. Only crop production and utilization strategies which contribute profit to the farmer or landowner and to energy producers will be used commercially for biomass energy production. Strategies for developing biomass {open_quotes}energy{close_quotes} crop supplies must take into consideration all of the methods by which biomass crops will enter biomass energy markets. The lignocellulosic materials derived from crops can be available as primary residues or crop by-products; secondary residues or processing by-products; co-products (at both the crop production and processing stages); or, as dedicated energy crops. Basic research and development (R&D) leading to yield improvement continues to be recommended as a major long-term focus for dedicated energy crops. Many additional near term topics need attention, some of which are also applicable to by-products and co-products. Switchgrass R&D should be expanded and developed with greater collaboration of USDA and state extension groups. Woody crop research should continue with significant cost-share from industries developing the crops for other commercial products. Co-product options need more investigation.« less

  11. Yield and Economic Responses of Peanut to Crop Rotation Sequence

    USDA-ARS?s Scientific Manuscript database

    National Peanut Research Laboratory, Dawson, GA 39842. Proper crop rotation is essential to maintaining high peanut yield and quality. However, the economic considerations of maintaining or altering crop rotation sequences must incorporate the commodity prices, production costs, and yield responses...

  12. Exploring the direct impacts of particulate matter and surface ozone on global crop production

    NASA Astrophysics Data System (ADS)

    Schiferl, L. D.; Heald, C. L.

    2016-12-01

    The current era of rising food demand to feed an increasing population along with expansion of industrialization throughout the globe has been accompanied by deteriorating air quality and an enhancement in agricultural activity. Both air quality and the food supply are vitally important to sustaining human enterprise, and understanding the effects air quality may have on agricultural production is critical. Particulate matter (PM) in the atmosphere decreases the total photosynthetically available radiation (PAR) available to crops through the scattering and absorption of radiation while also increasing the diffuse fraction (DF) of this PAR. Since plants respond positively to a higher DF through the more even distribution of photons to all leaves, the net effect of PM on crop production depends on the magnitudes of these values and the response mechanisms of a specific crop. In contrast, atmospheric ozone always acts to decrease crop production through its phytotoxic properties. While the relationships between ozone and crop production have been readily studied, the effects of PM on crop production and their relative importance compared to ozone is much more uncertain. This study uses the GEOS-Chem chemical transport model linked to the RRTMG radiative transfer model and the DSSAT crop model to explore the impacts of PM and ozone on the globally distributed production of maize, rice, wheat and soybeans. First, we examine how air quality differentially affects total seasonal production by crop and region. Second, we investigate the dependence of simulated production on air quality over different timescales and under varying cloud conditions.

  13. AGPase: its role in crop productivity with emphasis on heat tolerance in cereals.

    PubMed

    Saripalli, Gautam; Gupta, Pushpendra Kumar

    2015-10-01

    AGPase, a key enzyme of starch biosynthetic pathway, has a significant role in crop productivity. Thermotolerant variants of AGPase in cereals may be used for developing cultivars, which may enhance productivity under heat stress. Improvement of crop productivity has always been the major goal of plant breeders to meet the global demand for food. However, crop productivity itself is influenced in a large measure by a number of abiotic stresses including heat, which causes major losses in crop productivity. In cereals, crop productivity in terms of grain yield mainly depends upon the seed starch content so that starch biosynthesis and the enzymes involved in this process have been a major area of investigation for plant physiologists and plant breeders alike. Considerable work has been done on AGPase and its role in crop productivity, particularly under heat stress, because this enzyme is one of the major enzymes, which catalyses the rate-limiting first committed key enzymatic step of starch biosynthesis. Keeping the above in view, this review focuses on the basic features of AGPase including its structure, regulatory mechanisms involving allosteric regulators, its sub-cellular localization and its genetics. Major emphasis, however, has been laid on the genetics of AGPases and its manipulation for developing high yielding cultivars that will have comparable productivity under heat stress. Some important thermotolerant variants of AGPase, which mainly involve specific amino acid substitutions, have been highlighted, and the prospects of using these thermotolerant variants of AGPase in developing cultivars for heat prone areas have been discussed. The review also includes a brief account on transgenics for AGPase, which have been developed for basic studies and crop improvement.

  14. Economic assessment of conventional and conservation tillage practices in different wheat-based cropping systems of Punjab, Pakistan.

    PubMed

    Shahzad, Muhammad; Hussain, Mubshar; Farooq, Muhammad; Farooq, Shahid; Jabran, Khawar; Nawaz, Ahmad

    2017-11-01

    Wheat productivity and profitability is low under conventional tillage systems as they increase the production cost, soil compaction, and the weed infestation. Conservation tillage could be a pragmatic option to sustain the wheat productivity and enhance the profitability on long term basis. This study was aimed to evaluate the economics of different wheat-based cropping systems viz. fallow-wheat, rice-wheat, cotton-wheat, mung bean-wheat, and sorghum-wheat, with zero tillage, conventional tillage, deep tillage, bed sowing (60/30 cm beds and four rows), and bed sowing (90/45 cm beds and six rows). Results indicated that the bed sown wheat had the maximum production cost than other tillage systems. Although both bed sowing treatments incurred the highest production cost, they generated the highest net benefits and benefit: cost ratio (BCR). Rice-wheat cropping system with bed sown wheat (90/45 cm beds with six rows) had the highest net income (4129.7 US$ ha -1 ), BCR (2.87), and marginal rate of return compared with rest of the cropping systems. In contrast, fallow-wheat cropping system incurred the lowest input cost, but had the least economic return. In crux, rice-wheat cropping system with bed sown wheat (90/45 cm beds with six rows) was the best option for getting the higher economic returns. Moreover, double cropping systems within a year are more profitable than sole planting of wheat under all tillage practices.

  15. Towards the production of salt-tolerant crops.

    PubMed

    Barkla, B J; Vera-Estrella, R; Pantoja, O

    1999-01-01

    Crop production is affected by numerous environmental factors, with soil salinity and drought having the most detrimental effects. Attempts to improve yield under stress conditions by plant breeding have been unsuccessful, primarily due to the multigenic origin of the adaptive responses. The transfer of genes through genetic engineering of crop plants appears more feasible. Important adaptive mechanisms targeted for potential gene transfer would be the tonoplast Na+/H+ antiport, compatible solute synthesis and, regulation of water channel activity and expression, mechanisms involved in cellular osmoregulation. In this review we discuss recent advances in our understanding of these adaptive mechanisms.

  16. Product line cost estimation: a standard cost approach.

    PubMed

    Cooper, J C; Suver, J D

    1988-04-01

    Product line managers often must make decisions based on inaccurate cost information. A method is needed to determine costs more accurately. By using a standard costing model, product line managers can better estimate the cost of intermediate and end products, and hence better estimate the costs of the product line.

  17. 7 CFR 205.602 - Nonsynthetic substances prohibited for use in organic crop production.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 7 Agriculture 3 2012-01-01 2012-01-01 false Nonsynthetic substances prohibited for use in organic... AGRICULTURE (CONTINUED) ORGANIC FOODS PRODUCTION ACT PROVISIONS NATIONAL ORGANIC PROGRAM Administrative The... organic crop production. The following nonsynthetic substances may not be used in organic crop production...

  18. 7 CFR 205.602 - Nonsynthetic substances prohibited for use in organic crop production.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 3 2010-01-01 2010-01-01 false Nonsynthetic substances prohibited for use in organic... AGRICULTURE (CONTINUED) ORGANIC FOODS PRODUCTION ACT PROVISIONS NATIONAL ORGANIC PROGRAM Administrative The... organic crop production. The following nonsynthetic substances may not be used in organic crop production...

  19. 7 CFR 205.602 - Nonsynthetic substances prohibited for use in organic crop production.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 7 Agriculture 3 2013-01-01 2013-01-01 false Nonsynthetic substances prohibited for use in organic... AGRICULTURE (CONTINUED) ORGANIC FOODS PRODUCTION ACT PROVISIONS NATIONAL ORGANIC PROGRAM Administrative The... organic crop production. The following nonsynthetic substances may not be used in organic crop production...

  20. 7 CFR 205.602 - Nonsynthetic substances prohibited for use in organic crop production.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 7 Agriculture 3 2014-01-01 2014-01-01 false Nonsynthetic substances prohibited for use in organic... AGRICULTURE (CONTINUED) ORGANIC FOODS PRODUCTION ACT PROVISIONS NATIONAL ORGANIC PROGRAM Administrative The... organic crop production. The following nonsynthetic substances may not be used in organic crop production...

  1. 7 CFR 205.602 - Nonsynthetic substances prohibited for use in organic crop production.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 7 Agriculture 3 2011-01-01 2011-01-01 false Nonsynthetic substances prohibited for use in organic... AGRICULTURE (CONTINUED) ORGANIC FOODS PRODUCTION ACT PROVISIONS NATIONAL ORGANIC PROGRAM Administrative The... organic crop production. The following nonsynthetic substances may not be used in organic crop production...

  2. Cover crops support ecological intensification of arable cropping systems

    NASA Astrophysics Data System (ADS)

    Wittwer, Raphaël A.; Dorn, Brigitte; Jossi, Werner; van der Heijden, Marcel G. A.

    2017-02-01

    A major challenge for agriculture is to enhance productivity with minimum impact on the environment. Several studies indicate that cover crops could replace anthropogenic inputs and enhance crop productivity. However, so far, it is unclear if cover crop effects vary between different cropping systems, and direct comparisons among major arable production systems are rare. Here we compared the short-term effects of various cover crops on crop yield, nitrogen uptake, and weed infestation in four arable production systems (conventional cropping with intensive tillage and no-tillage; organic cropping with intensive tillage and reduced tillage). We hypothesized that cover cropping effects increase with decreasing management intensity. Our study demonstrated that cover crop effects on crop yield were highest in the organic system with reduced tillage (+24%), intermediate in the organic system with tillage (+13%) and in the conventional system with no tillage (+8%) and lowest in the conventional system with tillage (+2%). Our results indicate that cover crops are essential to maintaining a certain yield level when soil tillage intensity is reduced (e.g. under conservation agriculture), or when production is converted to organic agriculture. Thus, the inclusion of cover crops provides additional opportunities to increase the yield of lower intensity production systems and contribute to ecological intensification.

  3. Simulating changes in cropping practices in conventional and glyphosate-resistant maize. II. Weed impacts on crop production and biodiversity.

    PubMed

    Colbach, Nathalie; Darmency, Henri; Fernier, Alice; Granger, Sylvie; Le Corre, Valérie; Messéan, Antoine

    2017-05-01

    Overreliance on the same herbicide mode of action leads to the spread of resistant weeds, which cancels the advantages of herbicide-tolerant (HT) crops. Here, the objective was to quantify, with simulations, the impact of glyphosate-resistant (GR) weeds on crop production and weed-related wild biodiversity in HT maize-based cropping systems differing in terms of management practices. We (1) simulated current conventional and probable HT cropping systems in two European regions, Aquitaine and Catalonia, with the weed dynamics model FLORSYS; (2) quantified how much the presence of GR weeds contributed to weed impacts on crop production and biodiversity; (3) determined the effect of cultural practices on the impact of GR weeds and (4) identified which species traits most influence weed-impact indicators. The simulation study showed that during the analysed 28 years, the advent of glyphosate resistance had little effect on plant biodiversity. Glyphosate-susceptible populations and species were replaced by GR ones. Including GR weeds only affected functional biodiversity (food offer for birds, bees and carabids) and weed harmfulness when weed effect was initially low; when weed effect was initially high, including GR weeds had little effect. The GR effect also depended on cultural practices, e.g. GR weeds were most detrimental for species equitability when maize was sown late. Species traits most harmful for crop production and most beneficial for biodiversity were identified, using RLQ analyses. None of the species presenting these traits belonged to a family for which glyphosate resistance was reported. An advice table was built; the effects of cultural practices on crop production and biodiversity were synthesized, explained, quantified and ranked, and the optimal choices for each management technique were identified.

  4. Plastid biotechnology for crop production: present status and future perspectives

    PubMed Central

    Daniell, Henry

    2012-01-01

    The world population is expected to reach an estimated 9.2 billion by 2050. Therefore, food production globally has to increase by 70% in order to feed the world, while total arable land, which has reached its maximal utilization, may even decrease. Moreover, climate change adds yet another challenge to global food security. In order to feed the world in 2050, biotechnological advances in modern agriculture are essential. Plant genetic engineering, which has created a new wave of global crop production after the first green revolution, will continue to play an important role in modern agriculture to meet these challenges. Plastid genetic engineering, with several unique advantages including transgene containment, has made significant progress in the last two decades in various biotechnology applications including development of crops with high levels of resistance to insects, bacterial, fungal and viral diseases, different types of herbicides, drought, salt and cold tolerance, cytoplasmic male sterility, metabolic engineering, phytoremediation of toxic metals and production of many vaccine antigens, biopharmaceuticals and biofuels. However, useful traits should be engineered via chloroplast genomes of several major crops. This review provides insight into the current state of the art of plastid engineering in relation to agricultural production, especially for engineering agronomic traits. Understanding the bottleneck of this technology and challenges for improvement of major crops in a changing climate are discussed. PMID:21437683

  5. Bio-based and biodegradable plastics for use in crop production.

    PubMed

    Riggi, Ezio; Santagata, Gabriella; Malinconico, Mario

    2011-01-01

    The production and management of crops uses plastics for many applications (e.g., low tunnels, high tunnels, greenhouses, mulching, silage bags, hay bales, pheromone traps, coatings of fertilizers or pesticides or hormones or seeds, and nursery pots and containers for growing transplants). All these applications have led some authors to adopt the term "plasticulture" when discussing the use of plastic materials in agriculture and related industries. Unfortunately, the sustainability of this use of plastics is low, and renewability and degradability have become key words in the debate over sustainable production and utilization of plastic. Recently, researchers and the plastics industry have made strong efforts (i) to identify new biopolymers and natural additives from renewable sources that can be used in plastics production and (ii) to enhance the degradability (biological or physical) of the new ecologically sustainable materials. In the present review, we describe the main research results, current applications, patents that have been applied for in the last two decades, and future perspectives on sustainable use of plastics to support crop production. The article presents some promising patents on bio-based and biodegradable plastics for use in crop production.

  6. Developing a global crop model for maize, wheat, and soybean production

    NASA Astrophysics Data System (ADS)

    Deryng, D.; Ramankutty, N.; Sacks, W. J.

    2008-12-01

    Recently, the world food supply has faced a crisis due to increasing food prices driven by rising food demand, increasing fuel prices, poor harvests due to climate factors, and the use of crops such as maize and soybean to produce biofuel. In order to assess the future of global food availability, there is a need for understanding the factors underlying food production. Farmer management practices along with climatic conditions are the main elements directly influencing crop yield. As a consequence, estimations of future world food production require the use of a global crop model that simulates reasonably the effect of both climate and management practices on yield. Only a few global crop models have been developed to date, and currently none of them represent management factors adequately, principally due to the lack of spatially explicit datasets at the global scale. In this study, we present a global crop model designed for maize, wheat, and soybean production that incorporates planting and harvest decisions, along with irrigation options based on newly available data. The crop model is built on a simple water-balance algorithm based on the Penman- Monteith equation combined with a light use efficiency approach that calculates biomass production under non-nutrient-limiting conditions. We used a world crop calendar dataset to develop statistical relationships between climate variables and planting dates for different regions of the world. Development stages are defined based on total growing degree days required to reach the beginning of each phase. Irrigation options are considered in regions where water stress occurs and irrigation infrastructures exist. We use a global dataset on irrigated areas for each crop type. The quantity of water applied is then calculated in order to avoid water stress but with an upper threshold derived from total irrigation withdrawal quantity estimated by the global water use model WaterGAP 2. Our analysis will present the model

  7. Estimating crop net primary production using inventory data and MODIS-derived parameters

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bandaru, Varaprasad; West, Tristram O.; Ricciuto, Daniel M.

    2013-06-03

    National estimates of spatially-resolved cropland net primary production (NPP) are needed for diagnostic and prognostic modeling of carbon sources, sinks, and net carbon flux. Cropland NPP estimates that correspond with existing cropland cover maps are needed to drive biogeochemical models at the local scale and over national and continental extents. Existing satellite-based NPP products tend to underestimate NPP on croplands. A new Agricultural Inventory-based Light Use Efficiency (AgI-LUE) framework was developed to estimate individual crop biophysical parameters for use in estimating crop-specific NPP. The method is documented here and evaluated for corn and soybean crops in Iowa and Illinois inmore » years 2006 and 2007. The method includes a crop-specific enhanced vegetation index (EVI) from the Moderate Resolution Imaging Spectroradiometer (MODIS), shortwave radiation data estimated using Mountain Climate Simulator (MTCLIM) algorithm and crop-specific LUE per county. The combined aforementioned variables were used to generate spatially-resolved, crop-specific NPP that correspond to the Cropland Data Layer (CDL) land cover product. The modeling framework represented well the gradient of NPP across Iowa and Illinois, and also well represented the difference in NPP between years 2006 and 2007. Average corn and soybean NPP from AgI-LUE was 980 g C m-2 yr-1 and 420 g C m-2 yr-1, respectively. This was 2.4 and 1.1 times higher, respectively, for corn and soybean compared to the MOD17A3 NPP product. Estimated gross primary productivity (GPP) derived from AgI-LUE were in close agreement with eddy flux tower estimates. The combination of new inputs and improved datasets enabled the development of spatially explicit and reliable NPP estimates for individual crops over large regional extents.« less

  8. Effects of Cover Crops on Pratylenchus penetrans and the Nematode Community in Carrot Production

    PubMed Central

    Grabau, Zane J.; Zar Maung, Zin Thu; Noyes, D. Corey; Baas, Dean G.; Werling, Benjamin P.; Brainard, Daniel C.; Melakeberhan, Haddish

    2017-01-01

    Cover cropping is a common practice in U.S. Midwest carrot production for soil conservation, and may affect soil ecology and plant-parasitic nematodes—to which carrots are very susceptible. This study assessed the impact of cover crops—oats (Avena sativa), radish (Raphanus sativus) cv. Defender, rape (Brassica napus) cv. Dwarf Essex, and a mixture of oats and radish—on plant-parasitic nematodes and soil ecology based on the nematode community in Michigan carrot production systems. Research was conducted at two field sites where cover crops were grown in Fall 2014 preceding Summer 2015 carrot production. At Site 1, root-lesion (Pratylenchus penetrans) and stunt (Tylenchorhynchus sp.) nematodes were present at low population densities (less than 25 nematodes/100 cm3 soil), but were not significantly affected (P > 0.05) by cover crops. At Site 2, P. penetrans population densities were increased (P ≤ 0.05) by ‘Defender’ radish compared to other cover crops or fallow control during cover crop growth and midseason carrot production. At both sites, there were few short-term impacts of cover cropping on soil ecology based on the nematode community. At Site 1, only at carrot harvest, radish-oats mixture and ‘Dwarf Essex’ rape alone enriched the soil food web based on the enrichment index (P ≤ 0.05) while rape and radish increased structure index values. At Site 2, bacterivore abundance was increased by oats or radish cover crops compared to control, but only during carrot production. In general, cover crops did not affect the nematode community until nearly a year after cover crop growth suggesting that changes in the soil community following cover cropping may be gradual. PMID:28512383

  9. Assessing energy efficiencies, economy, and global warming potential (GWP) effects of major crop production systems in Iran: a case study in East Azerbaijan province.

    PubMed

    Mohammadzadeh, Arash; Mahdavi Damghani, Abdolmajid; Vafabakhsh, Javad; Deihimfard, Reza

    2017-07-01

    Efficient use of energy in farming systems is one of the most important implications for decreasing greenhouse gas (GHG) emissions and mitigating global warming (GW). This paper describes the energy use patterns, analyze the economics, and report global warming potential effects of major crop production systems in East Azerbaijan province, Iran. For this purpose, 110 farmers whose main activity was major crop production in the region, including wheat, barley, carrot, tomato, onion, potato, alfalfa, corn silage, canola, and saffron, were surveyed. Some other data was obtained from the Ministry of Agriculture Jihad of Iran. Results showed that, in terms of total energy input, onion (87,556 Mj ha -1 ) and potato (80,869 Mj ha -1 ) production systems were more energy-intensive than other crops. Among the studied crops, the highest values of net return (6563.8 $ ha -1 ) and benefit/cost ratio (1.95) were related to carrot and corn silage production systems, respectively. Studies have also shown that onion and saffron production systems emit the highest (5332.6 kg CO2eq ha -1 ) and lowest (646.24 kg CO 2 eq ha -1 ) CO 2 eq. emission, respectively. When it was averaged across crops, diesel fuel accounted for the greatest GHG contribution with 43% of the total, followed by electric power (28%) and nitrogen fertilizer (21%). In the present study, eco-efficiency was calculated as a ratio of the gross production value and global warming potential effect for the studied crops. Out of all the studied crops, the highest values of eco-efficiency were calculated to be 8.65 $ kg CO 2 eq -1 for the saffron production system followed by the carrot (3.65 $ kg CO 2 eq -1 ) production. Generally, from the aspect of energy balance and use efficiency, the alfalfa production system was the best; however, from an economical point of view, the carrot production system was better than the other crops.

  10. Development of an agricultural biotechnology crop product: testing from discovery to commercialization.

    PubMed

    Privalle, Laura S; Chen, Jingwen; Clapper, Gina; Hunst, Penny; Spiegelhalter, Frank; Zhong, Cathy X

    2012-10-17

    "Genetically modified" (GM) or "biotech" crops have been the most rapidly adopted agricultural technology in recent years. The development of a GM crop encompasses trait identification, gene isolation, plant cell transformation, plant regeneration, efficacy evaluation, commercial event identification, safety evaluation, and finally commercial authorization. This is a lengthy, complex, and resource-intensive process. Crops produced through biotechnology are the most highly studied food or food component consumed. Before commercialization, these products are shown to be as safe as conventional crops with respect to feed, food, and the environment. This paper describes this global process and the various analytical tests that must accompany the product during the course of development, throughout its market life, and beyond.

  11. Cover crop biomass harvest for bioenergy: implications for crop productivity

    USDA-ARS?s Scientific Manuscript database

    Winter cover crops, such as rye (Secale cereale), are usually used in conservation agriculture systems in the Southeast. Typically, the cover crop is terminated two to three weeks before planting the summer crop, with the cover biomass left on the soil surface as a mulch. However, these cover crops ...

  12. Photo-fermentative hydrogen production from crop residue: A mini review.

    PubMed

    Zhang, Quanguo; Wang, Yi; Zhang, Zhiping; Lee, Duu-Jong; Zhou, Xuehua; Jing, Yanyan; Ge, Xumeng; Jiang, Danping; Hu, Jianjun; He, Chao

    2017-04-01

    Photofermentative hydrogen production from crop residues, if feasible, can lead to complete conversion of organic substances to hydrogen (and carbon dioxide). This mini review lists the studies on photofermentative hydrogen production using crop residues as feedstock. Pretreatment methods, substrate structure, mechanism of photosynthetic bacteria growth and metabolism were discussed. Photofermentative hydrogen production from pure culture, consortia and mutants, and the geometry, light sources, mass transfer resistances and the operational strategies of the photo-bioreactor were herein reviewed. Future studies of regulation mechanism of photosynthetic bacteria, such as highly-efficient strain breeding and gene reconstruction, and development of new-generation photo-bioreactor were suggested. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. Metagenome-Wide Association Study and Machine Learning Prediction of Bulk Soil Microbiome and Crop Productivity

    PubMed Central

    Chang, Hao-Xun; Haudenshield, James S.; Bowen, Charles R.; Hartman, Glen L.

    2017-01-01

    Areas within an agricultural field in the same season often differ in crop productivity despite having the same cropping history, crop genotype, and management practices. One hypothesis is that abiotic or biotic factors in the soils differ between areas resulting in these productivity differences. In this study, bulk soil samples collected from a high and a low productivity area from within six agronomic fields in Illinois were quantified for abiotic and biotic characteristics. Extracted DNA from these bulk soil samples were shotgun sequenced. While logistic regression analyses resulted in no significant association between crop productivity and the 26 soil characteristics, principal coordinate analysis and constrained correspondence analysis showed crop productivity explained a major proportion of the taxa variance in the bulk soil microbiome. Metagenome-wide association studies (MWAS) identified more Bradyrhizodium and Gammaproteobacteria in higher productivity areas and more Actinobacteria, Ascomycota, Planctomycetales, and Streptophyta in lower productivity areas. Machine learning using a random forest method successfully predicted productivity based on the microbiome composition with the best accuracy of 0.79 at the order level. Our study showed that crop productivity differences were associated with bulk soil microbiome composition and highlighted several nitrogen utility-related taxa. We demonstrated the merit of MWAS and machine learning for the first time in a plant-microbiome study. PMID:28421041

  14. Effects of a Possible Pollinator Crisis on Food Crop Production in Brazil

    PubMed Central

    Nunes, Cássio A.; Santos, Natália B.; D`Amico, Ana R.; Fernandes, G. Wilson; Quesada, Maurício; Braga, Rodrigo F.; Neves, Ana Carolina O.

    2016-01-01

    Animal pollinators contribute to human food production and security thereby ensuring an important component of human well-being. The recent decline of these agents in Europe and North America has aroused the concern of a potential global pollinator crisis. In order to prioritize efforts for pollinator conservation, we evaluated the extent to which food production depends on animal pollinators in Brazil—one of the world’s agriculture leaders—by comparing cultivated area, produced volume and yield value of major food crops that are pollinator dependent with those that are pollinator non-dependent. In addition, we valued the ecosystem service of pollination based on the degree of pollinator dependence of each crop and the consequence of a decline in food production to the Brazilian Gross Domestic Product and Brazilian food security. A total of 68% of the 53 major food crops in Brazil depend to some degree on animals for pollination. Pollinator non-dependent crops produce a greater volume of food, mainly because of the high production of sugarcane, but the cultivated area and monetary value of pollinator dependent crops are higher (59% of total cultivated area and 68% of monetary value). The loss of pollination services for 29 of the major food crops would reduce production by 16.55–51 million tons, which would amount to 4.86–14.56 billion dollars/year, and reduce the agricultural contribution to the Brazilian GDP by 6.46%– 19.36%. These impacts would be largely absorbed by family farmers, which represent 74.4% of the agricultural labor force in Brazil. The main effects of a pollinator crisis in Brazil would be felt by the poorer and more rural classes due to their lower income and direct or exclusive dependence on this ecosystem service. PMID:27902787

  15. Effects of a Possible Pollinator Crisis on Food Crop Production in Brazil.

    PubMed

    Novais, Samuel M A; Nunes, Cássio A; Santos, Natália B; D Amico, Ana R; Fernandes, G Wilson; Quesada, Maurício; Braga, Rodrigo F; Neves, Ana Carolina O

    2016-01-01

    Animal pollinators contribute to human food production and security thereby ensuring an important component of human well-being. The recent decline of these agents in Europe and North America has aroused the concern of a potential global pollinator crisis. In order to prioritize efforts for pollinator conservation, we evaluated the extent to which food production depends on animal pollinators in Brazil-one of the world's agriculture leaders-by comparing cultivated area, produced volume and yield value of major food crops that are pollinator dependent with those that are pollinator non-dependent. In addition, we valued the ecosystem service of pollination based on the degree of pollinator dependence of each crop and the consequence of a decline in food production to the Brazilian Gross Domestic Product and Brazilian food security. A total of 68% of the 53 major food crops in Brazil depend to some degree on animals for pollination. Pollinator non-dependent crops produce a greater volume of food, mainly because of the high production of sugarcane, but the cultivated area and monetary value of pollinator dependent crops are higher (59% of total cultivated area and 68% of monetary value). The loss of pollination services for 29 of the major food crops would reduce production by 16.55-51 million tons, which would amount to 4.86-14.56 billion dollars/year, and reduce the agricultural contribution to the Brazilian GDP by 6.46%- 19.36%. These impacts would be largely absorbed by family farmers, which represent 74.4% of the agricultural labor force in Brazil. The main effects of a pollinator crisis in Brazil would be felt by the poorer and more rural classes due to their lower income and direct or exclusive dependence on this ecosystem service.

  16. Multi crop model climate risk country-level management design: case study on the Tanzanian maize production system

    NASA Astrophysics Data System (ADS)

    Chavez, E.

    2015-12-01

    Future climate projections indicate that a very serious consequence of post-industrial anthropogenic global warming is the likelihood of the greater frequency and intensity of extreme hydrometeorological events such as heat waves, droughts, storms, and floods. The design of national and international policies targeted at building more resilient and environmentally sustainable food systems needs to rely on access to robust and reliable data which is largely absent. In this context, the improvement of the modelling of current and future agricultural production losses using the unifying language of risk is paramount. In this study, we use a methodology that allows the integration of the current understanding of the various interacting systems of climate, agro-environment, crops, and the economy to determine short to long-term risk estimates of crop production loss, in different environmental, climate, and adaptation scenarios. This methodology is applied to Tanzania to assess optimum risk reduction and maize production increase paths in different climate scenarios. The simulations carried out use inputs from three different crop models (DSSAT, APSIM, WRSI) run in different technological scenarios and thus allowing to estimate crop model-driven risk exposure estimation bias. The results obtained also allow distinguishing different region-specific optimum climate risk reduction policies subject to historical as well as RCP2.5 and RCP8.5 climate scenarios. The region-specific risk profiles obtained provide a simple framework to determine cost-effective risk management policies for Tanzania and allow to optimally combine investments in risk reduction and risk transfer.

  17. Influence of extreme weather disasters on global crop production.

    PubMed

    Lesk, Corey; Rowhani, Pedram; Ramankutty, Navin

    2016-01-07

    In recent years, several extreme weather disasters have partially or completely damaged regional crop production. While detailed regional accounts of the effects of extreme weather disasters exist, the global scale effects of droughts, floods and extreme temperature on crop production are yet to be quantified. Here we estimate for the first time, to our knowledge, national cereal production losses across the globe resulting from reported extreme weather disasters during 1964-2007. We show that droughts and extreme heat significantly reduced national cereal production by 9-10%, whereas our analysis could not identify an effect from floods and extreme cold in the national data. Analysing the underlying processes, we find that production losses due to droughts were associated with a reduction in both harvested area and yields, whereas extreme heat mainly decreased cereal yields. Furthermore, the results highlight ~7% greater production damage from more recent droughts and 8-11% more damage in developed countries than in developing ones. Our findings may help to guide agricultural priorities in international disaster risk reduction and adaptation efforts.

  18. The value of versatile alley cropping in the Southeast US: A Monte Carlo simulation

    Treesearch

    Michael A. Cary; Gregory E. Frey; D. Evan Mercer

    2014-01-01

    Alley cropping offers a potential alternative to traditional land management practices. However, its implementation in the United States is extremely limited and general awareness and knowledge of alley cropping is lacking. While alley cropping does have a few barriers to entry, the cost of maintaining hedgerow products and foregone returns from primary crops...

  19. Smart investments in sustainable food production: revisiting mixed crop-livestock systems.

    PubMed

    Herrero, M; Thornton, P K; Notenbaert, A M; Wood, S; Msangi, S; Freeman, H A; Bossio, D; Dixon, J; Peters, M; van de Steeg, J; Lynam, J; Parthasarathy Rao, P; Macmillan, S; Gerard, B; McDermott, J; Seré, C; Rosegrant, M

    2010-02-12

    Farmers in mixed crop-livestock systems produce about half of the world's food. In small holdings around the world, livestock are reared mostly on grass, browse, and nonfood biomass from maize, millet, rice, and sorghum crops and in their turn supply manure and traction for future crops. Animals act as insurance against hard times and supply farmers with a source of regular income from sales of milk, eggs, and other products. Thus, faced with population growth and climate change, small-holder farmers should be the first target for policies to intensify production by carefully managed inputs of fertilizer, water, and feed to minimize waste and environmental impact, supported by improved access to markets, new varieties, and technologies.

  20. Challenges Facing Crop Production And (Some) Potential Solutions

    NASA Astrophysics Data System (ADS)

    Schnable, P. S.

    2017-12-01

    To overcome some of the myriad challenges facing sustainable crop production we are seeking to develop statistical models that will predict crop performance in diverse agronomic environments. Crop phenotypes such as yield and drought tolerance are controlled by genotype, environment (considered broadly) and their interaction (GxE). As a consequence of the next generation sequencing revolution genotyping data are now available for a wide diversity of accessions in each of the major crops. The necessary volumes of phenotypic data, however, remain limiting and our understanding of molecular basis of GxE is minimal. To address this limitation, we are collaborating with engineers to construct new sensors and robots to automatically collect large volumes of phenotypic data. Two types of high-throughput, high-resolution, field-based phenotyping systems and new sensors will be described. Some of these technologies will be introduced within the context of the Genomes to Fields Initiative. Progress towards developing predictive models will be briefly summarized. An administrative structure that fosters transdisciplinary collaborations will be briefly described.

  1. Metagenome-wide association study and machine learning prediction of bulk soil microbiome and crop productivity

    USDA-ARS?s Scientific Manuscript database

    Areas within an agricultural field in the same season often differ in crop productivity despite having the same cropping history, crop genotype, and management practices. One hypothesis is that abiotic or biotic factors in the soils differ between areas resulting in these productivity differences. I...

  2. Projective analysis of staple food crop productivity in adaptation to future climate change in China

    NASA Astrophysics Data System (ADS)

    Zhang, Qing; Zhang, Wen; Li, Tingting; Sun, Wenjuan; Yu, Yongqiang; Wang, Guocheng

    2017-08-01

    Climate change continually affects our capabilities to feed the increasing population. Rising temperatures have the potential to shorten the crop growth duration and therefore reduce crop yields. In the past decades, China has successfully improved crop cultivars to stabilize, and even lengthen, the crop growth duration to make use of increasing heat resources. However, because of the complex cropping systems in the different regions of China, the possibility and the effectiveness of regulating crop growth duration to reduce the negative impacts of future climate change remain questionable. Here, we performed a projective analysis of the staple food crop productivity in double-rice, wheat-rice, wheat-maize, single-rice, and single-maize cropping systems in China using modeling approaches. The results indicated that from the present to the 2040s, the warming climate would shorten the growth duration of the current rice, wheat, and maize cultivars by 2-24, 11-13, and 9-29 days, respectively. The most significant shortening of the crop growth duration would be in Northeast China, where single-rice and single-maize cropping dominates the croplands. The shortened crop growth duration would consequently reduce crop productivity. The most significant decreases would be 27-31, 6-20, and 7-22% for the late crop in the double-rice rotation, wheat in the winter wheat-rice rotation, and single maize, respectively. However, our projection analysis also showed that the negative effects of the warming climate could be compensated for by stabilizing the growth duration of the crops via improvement in crop cultivars. In this case, the productivity of rice, wheat, and maize in the 2040s would increase by 4-16, 31-38, and 11-12%, respectively. Our modeling results implied that the possibility of securing future food production exists by adopting proper adaptation options in China.

  3. Projective analysis of staple food crop productivity in adaptation to future climate change in China.

    PubMed

    Zhang, Qing; Zhang, Wen; Li, Tingting; Sun, Wenjuan; Yu, Yongqiang; Wang, Guocheng

    2017-08-01

    Climate change continually affects our capabilities to feed the increasing population. Rising temperatures have the potential to shorten the crop growth duration and therefore reduce crop yields. In the past decades, China has successfully improved crop cultivars to stabilize, and even lengthen, the crop growth duration to make use of increasing heat resources. However, because of the complex cropping systems in the different regions of China, the possibility and the effectiveness of regulating crop growth duration to reduce the negative impacts of future climate change remain questionable. Here, we performed a projective analysis of the staple food crop productivity in double-rice, wheat-rice, wheat-maize, single-rice, and single-maize cropping systems in China using modeling approaches. The results indicated that from the present to the 2040s, the warming climate would shorten the growth duration of the current rice, wheat, and maize cultivars by 2-24, 11-13, and 9-29 days, respectively. The most significant shortening of the crop growth duration would be in Northeast China, where single-rice and single-maize cropping dominates the croplands. The shortened crop growth duration would consequently reduce crop productivity. The most significant decreases would be 27-31, 6-20, and 7-22% for the late crop in the double-rice rotation, wheat in the winter wheat-rice rotation, and single maize, respectively. However, our projection analysis also showed that the negative effects of the warming climate could be compensated for by stabilizing the growth duration of the crops via improvement in crop cultivars. In this case, the productivity of rice, wheat, and maize in the 2040s would increase by 4-16, 31-38, and 11-12%, respectively. Our modeling results implied that the possibility of securing future food production exists by adopting proper adaptation options in China.

  4. Increased Productivity of a Cover Crop Mixture Is Not Associated with Enhanced Agroecosystem Services

    PubMed Central

    Smith, Richard G.; Atwood, Lesley W.; Warren, Nicholas D.

    2014-01-01

    Cover crops provide a variety of important agroecological services within cropping systems. Typically these crops are grown as monocultures or simple graminoid-legume bicultures; however, ecological theory and empirical evidence suggest that agroecosystem services could be enhanced by growing cover crops in species-rich mixtures. We examined cover crop productivity, weed suppression, stability, and carryover effects to a subsequent cash crop in an experiment involving a five-species annual cover crop mixture and the component species grown as monocultures in SE New Hampshire, USA in 2011 and 2012. The mean land equivalent ratio (LER) for the mixture exceeded 1.0 in both years, indicating that the mixture over-yielded relative to the monocultures. Despite the apparent over-yielding in the mixture, we observed no enhancement in weed suppression, biomass stability, or productivity of a subsequent oat (Avena sativa L.) cash crop when compared to the best monoculture component crop. These data are some of the first to include application of the LER to an analysis of a cover crop mixture and contribute to the growing literature on the agroecological effects of cover crop diversity in cropping systems. PMID:24847902

  5. Replacing fallow by cover crops: economic sustainability

    NASA Astrophysics Data System (ADS)

    Gabriel, José Luis; Garrido, Alberto; Quemada, Miguel

    2013-04-01

    Replacing fallow by cover crops in intensive fertilized systems has been demonstrated as an efficient tool for reducing nitrate leaching. However, despite the evident environmental services provided and the range of agronomic benefits documented in the literature, farmers' adoption of this new technology is still limited because they are either unwilling or unable, although adoption reluctance is frequently rooted in low economic profitability, low water se efficiency or poor knowledge. Economic analyses permit a comparison between the profit that farmers obtain from agricultural products and the cost of adopting specific agricultural techniques. The goal of this study was to evaluate the economic impact of replacing the usual winter fallow with cover crops (barley (Hordeum vulgare L., cv. Vanessa), vetch (Vicia villosa L., cv. Vereda) and rapeseed (Brassica napus L., cv. Licapo)) in irrigated maize systems and variable Mediterranean weather conditions using stochastic Monte-Carlo simulations of key farms' financial performance indicators. The three scenarios studied for each cover crop were: i) just leaving the cover crop residue in the ground, ii) leaving the cover crop residue but reduce following maize fertilization according to the N available from the previous cover crop and iii) selling the cover crop residue for animal feeding. All the scenarios were compared with respect to a typical maize-fallow rotation. With observed data from six different years and in various field trials, looking for different weather conditions, probability distribution functions of maize yield, cover crop biomass production and N fertilizer saving was fitted. Based in statistical sources maize grain price, different forage prices and the cost of fertilizer were fitted to probability distribution functions too. As result, introducing a cover crop involved extra costs with respect to fallow as the initial investment, because new seed, herbicide or extra field operations. Additional

  6. Veggies in Space: Salad Crop Production on the ISS

    NASA Technical Reports Server (NTRS)

    Massa, Gioia

    2016-01-01

    NASA is currently testing Veggie, a low mass, low energy, salad crop production system on the International Space Station (ISS). Veggie grows crops with LED lights using ISS cabin air and passive watering that has presented challenges in microgravity. Initial tests included red romaine lettuce and zinnia, with testing of Chinese cabbage, and tomatoes planned. A goal is to add supplemental salad foods to the astronaut diet as we prepare for a future journey to Mars.

  7. Selection and Characterization of Vegetable Crop Cultivars for use in Advanced Life Support Systems

    NASA Technical Reports Server (NTRS)

    Langhans, Robert W.

    1997-01-01

    Cultivar evaluation for controlled environments is a lengthy and multifaceted activity. The chapters of this thesis cover eight steps preparatory to yield trials, and the final step of cultivar selection after data are collected. The steps are as follows: 1. Examination of the literature on the crop and crop cultivars to assess the state of knowledge. 2. Selection of standard cultivars with which to explore crop response to major growth factors and determine set points for screening and, later, production. 3. Determination of practical growing techniques for the crop in controlled environments. 4. Design of experiments for determination of crop responses to the major growth factors, with particular emphasis on photoperiod, daily light integral and air temperature. 5. Developing a way of measuring yield appropriate to the crop type by sampling through the harvest period and calculating a productivity function. 6. Narrowing down the pool of cultivars and breeding lines according to a set of criteria and breeding history. 7. Determination of environmental set points for cultivar evaluation through calculating production cost as a function of set points and size of target facility. 8. Design of screening and yield trial experiments emphasizing efficient use of space. 9. Final evaluation of cultivars after data collection, in terms of production cost and value to the consumer. For each of the steps, relevant issues are addressed. In selecting standards to determine set points for screening, set points that optimize cost of production for the standards may not be applicable to all cultivars. Production of uniform and equivalent- sized seedlings is considered as a means of countering possible differences in seed vigor. Issues of spacing and re-spacing are also discussed.

  8. Introduction to Crop Production. Unit A-7.

    ERIC Educational Resources Information Center

    Luft, Vernon D.; Backlund, Paul

    This document is a teacher's guide for a unit in vocational agriculture for college freshmen. It is intended to be used for 20 hours of instruction as an introductory course on the crop industry. It provides a broad background of the industry, including production, marketing, processing, and transportation, with emphasis on identifying major crops…

  9. Potato Production as Affected by Crop Parameters and Meteoro Logical Elements

    NASA Astrophysics Data System (ADS)

    Pereira, André B.; Villa Nova, Nilson A.; Pereira, Antonio R.

    Meteorological elements directly influence crop potential productivity, regulating its transpiration, photosynthesis, and respiration processes in such a way as to control the growth and development of the plants throughout their physiological mechanisms at a given site. The interaction of the meteorological factors with crop responses is complex and has been the target of attention of many researchers from all over the world. There is currently a great deal of interest in estimating crop productivity as a function of climate by means of different crop weather models in order to help growers choose planting locations and timing to produce high yields with good tuber quality under site-specific atmospheric conditions. In this manuscript an agrometeorological model based on maximum carbon dioxide assimilation rates for C3 plants, fraction of photosynthetically active radiation, air temperature, photoperiod duration, and crop parameters is assessed as to its performance under tropical conditions. Crop parameters include leaf areaand harvest indexes, dry matter content of potato tubers, and crop cycles to estimate potato potential yields. Productivity obtained with the cultivar Itararé, grown with adequate soil water supply conditions at four different sites in the State of São Paulo (Itararé, Piracicaba, TatuÍ, and São Manuel), Brazil, were used to test the model. The results showed thatthe agrometeorological model tested under the climatic conditions of the State of São Paulo in general underestimated irrigated potato yield by less than 10%.This justifies the recommendation to test the performance of the model in study in other climaticregions for different crops and genotypes under optimal irrigationconditions in further scientific investigations. We reached the conclusion that the agrometeorological model taking into account information on leaf area index, photoperiod duration, photosynthetically active radiation and air temperature is feasible to estimate

  10. Soil and water quality implications of production of herbaceous and woody energy crops

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tolbert, V.R.; Lindberg, J.E.; Green, T.H.

    1997-10-01

    Field-scale studies in three physiographic regions of the Tennessee Valley in the Southeastern US are being used to address the environmental effects of producing biomass energy crops on former agricultural lands. Comparison of erosion, surface water quality and quantity, and subsurface movement of water and nutrients from woody crops, switchgrass and agricultural crops began with crop establishment in 1994. Nutrient cycling, soil physical changes, and productivity of the different crops are also being monitored at the three sites.

  11. Mixed crop-livestock systems: an economic and environmental-friendly way of farming?

    PubMed

    Ryschawy, J; Choisis, N; Choisis, J P; Joannon, A; Gibon, A

    2012-10-01

    Intensification and specialisation of agriculture in developed countries enabled productivity to be improved but had detrimental impacts on the environment and threatened the economic viability of a huge number of farms. The combination of livestock and crops, which was very common in the past, is assumed to be a viable alternative to specialised livestock or cropping systems. Mixed crop-livestock systems can improve nutrient cycling while reducing chemical inputs and generate economies of scope at farm level. Most assumptions underlying these views are based on theoretical and experimental evidence. Very few assessments of their environmental and economic advantages have nevertheless been undertaken in real-world farming conditions. In this paper, we present a comparative assessment of the environmental and economic performances of mixed crop-livestock farms v. specialised farms among the farm population of the French 'Coteaux de Gascogne'. In this hilly region, half of the farms currently use a mixed crop-livestock system including beef cattle and cash crops, the remaining farms being specialised in either crops or cattle. Data were collected through an exhaustive survey of farms located in our study area. The economic performances of farming systems were assessed on 48 farms on the basis of (i) overall gross margin, (ii) production costs and (iii) analysis of the sensitivity of gross margins to fluctuations in the price of inputs and outputs. The environmental dimension was analysed through (i) characterisation of farmers' crop management practices, (ii) analysis of farm land use diversity and (iii) nitrogen farm-gate balance. Local mixed crop-livestock farms did not have significantly higher overall gross margins than specialised farms but were less sensitive than dairy and crop farms to fluctuations in the price of inputs and outputs considered. Mixed crop-livestock farms had lower costs than crop farms, while beef farms had the lowest costs as they are grass

  12. Future Food Production System Development Pulling From Space Biology Crop Growth Testing in Veggie

    NASA Technical Reports Server (NTRS)

    Massa, Gioia; Romeyn, Matt; Fritsche, Ralph

    2017-01-01

    Preliminary crop testing using Veggie indicates the environmental conditions provided by the ISS are generally suitable for food crop production. When plant samples were returned to Earth for analysis, their levels of nutrients were comparable to Earth-grown ground controls. Veggie-grown produce food safety microbiology analysis indicated that space-grown crops are safe to consume. Produce sanitizing wipes were used on-orbit to further reduce risk of foodborne illness. Validation growth tests indicated abiotic challenges of insufficient or excess fluid delivery, potentially reduced air flow leading to excess water, elevated CO2 leading to physiological responses, and microorganisms that became opportunistic pathogens. As NASA works to develop future space food production, several areas of research to define these systems pull from the Veggie technology validation tests. Research into effective, reusable water delivery and water recovery methods for future food production systems arises from abiotic challenges observed. Additionally, impacts of elevated CO2 and refinement of fertilizer and light recipes for crops needs to be assessed. Biotic pulls include methods or technologies to effectively sanitize produce with few consumables and low inputs; work to understand the phytomicrobiome and potentially use it to protect crops or enhance growth; selection of crops with high harvest index and desirable flavors for supplemental nutrition; crops that provide psychosocial benefits, and custom space crop development. Planning for future food production in a deep space gateway or a deep space transit vehicle requires methods of handling and storing seeds, and ensuring space seeds are free of contaminants and long-lived. Space food production systems may require mechanization and autonomous operation, with preliminary testing initiated to identify operations and capabilities that are candidates for automation. Food production design is also pulling from Veggie logistics

  13. Future Food Production System Development Pulling from Space Biology Crop Growth Testing in Veggie

    NASA Technical Reports Server (NTRS)

    Massa, G. D.; Romeyn, M. W.; Fritsche, R. F.

    2017-01-01

    Preliminary crop testing using Veggie indicates the environmental conditions provided by the ISS are generally suitable for food crop production. When plant samples were returned to Earth for analysis, their levels of nutrients were comparable to Earth-grown ground controls. Veggie-grown produce food safety microbiology analysis indicated that space-grown crops are safe to consume. Produce sanitizing wipes were used on-orbit to further reduce risk of foodborne illness. Validation growth tests indicated abiotic challenges of insufficient or excess fluid delivery, potentially reduced air flow leading to excess water, elevated CO2 leading to physiological responses, and microorganisms that became opportunistic pathogens. As NASA works to develop future space food production, several areas of research to define these systems pull from the Veggie technology validation tests. Research into effective, reusable water delivery and water recovery methods for future food production systems arises from abiotic challenges observed. Additionally, impacts of elevated CO2 and refinement of fertilizer and light recipes for crops needs to be assessed. Biotic pulls include methods or technologies to effectively sanitize produce with few consumables and low inputs; work to understand the phytomicrobiome and potentially use it to protect crops or enhance growth; selection of crops with high harvest index and desirable flavors for supplemental nutrition; crops that provide psychosocial benefits, and custom space crop development. Planning for future food production in a deep space gateway or a deep space transit vehicle requires methods of handling and storing seeds, and ensuring space seeds are free of contaminants and long-lived. Space food production systems may require mechanization and autonomous operation, with preliminary testing initiated to identify operations and capabilities that are candidates for automation. Food production design is also pulling from Veggie logistics

  14. Substituting energy crops with organic wastes and agro-industrial residues for biogas production.

    PubMed

    Schievano, Andrea; D'Imporzano, Giuliana; Adani, Fabrizio

    2009-06-01

    In this study, industrial and agro-industrial by-products and residues (BRs), animal manures (AMs), and various types of organic wastes (OWs) were analyzed to evaluate their suitability as substitutes for energy crops (ECs) in biogas production. A comparison between the costs of the volume of biogas that can be produced from each substrate was presented with respect to the prices of the substrates in the Italian market. Furthermore, four different feeding mixtures were compared with a mixture of EC and swine manure (Mixture A) used in a full-scale plant in Italy. Swine manure is always included as a basic substrate in the feeding mixtures, because many of the Italian biogas plants are connected to farms. When EC were partially substituted with BR (Mixture B), the cost (0.28 euro Nm(-3)) of the volume of biogas of Mixture A dropped to 0.18 euro Nm(-3). Furthermore, when the organic fraction of municipal solid waste (OFMSW) and olive oil sludge (OS) were used as possible solutions (Mixtures C and D), the costs of the volume of biogas were -0.20 and 0.11euroNm(-3), respectively. The negative price signifies that operators earn money for treating the waste. For the fifth mix (Mixture E) of the OFMSW with a high solid substrate, such as glycerin from biodiesel production, the resulting cost of the volume of biogas produced was -0.09 euro Nm(-3). By comparing these figures, it is evident that the biogas plants at farm level are good candidates for treating organic residues of both municipalities and the agro-industrial sector in a cost-effective way, and in providing territorially diffused electric and thermal power. This may represent a potential development for agrarian economy.

  15. Bioregenerative food system cost based on optimized menus for advanced life support

    NASA Technical Reports Server (NTRS)

    Waters, Geoffrey C R.; Olabi, Ammar; Hunter, Jean B.; Dixon, Mike A.; Lasseur, Christophe

    2002-01-01

    Optimized menus for a bioregenerative life support system have been developed based on measures of crop productivity, food item acceptability, menu diversity, and nutritional requirements of crew. Crop-specific biomass requirements were calculated from menu recipe demands while accounting for food processing and preparation losses. Under the assumption of staggered planting, the optimized menu demanded a total crop production area of 453 m2 for six crew. Cost of the bioregenerative food system is estimated at 439 kg per menu cycle or 7.3 kg ESM crew-1 day-1, including agricultural waste processing costs. On average, about 60% (263.6 kg ESM) of the food system cost is tied up in equipment, 26% (114.2 kg ESM) in labor, and 14% (61.5 kg ESM) in power and cooling. This number is high compared to the STS and ISS (nonregenerative) systems but reductions in ESM may be achieved through intensive crop productivity improvements, reductions in equipment masses associated with crop production, and planning of production, processing, and preparation to minimize the requirement for crew labor.

  16. A Low-Cost Approach to Automatically Obtain Accurate 3D Models of Woody Crops.

    PubMed

    Bengochea-Guevara, José M; Andújar, Dionisio; Sanchez-Sardana, Francisco L; Cantuña, Karla; Ribeiro, Angela

    2017-12-24

    Crop monitoring is an essential practice within the field of precision agriculture since it is based on observing, measuring and properly responding to inter- and intra-field variability. In particular, "on ground crop inspection" potentially allows early detection of certain crop problems or precision treatment to be carried out simultaneously with pest detection. "On ground monitoring" is also of great interest for woody crops. This paper explores the development of a low-cost crop monitoring system that can automatically create accurate 3D models (clouds of coloured points) of woody crop rows. The system consists of a mobile platform that allows the easy acquisition of information in the field at an average speed of 3 km/h. The platform, among others, integrates an RGB-D sensor that provides RGB information as well as an array with the distances to the objects closest to the sensor. The RGB-D information plus the geographical positions of relevant points, such as the starting and the ending points of the row, allow the generation of a 3D reconstruction of a woody crop row in which all the points of the cloud have a geographical location as well as the RGB colour values. The proposed approach for the automatic 3D reconstruction is not limited by the size of the sampled space and includes a method for the removal of the drift that appears in the reconstruction of large crop rows.

  17. A Low-Cost Approach to Automatically Obtain Accurate 3D Models of Woody Crops

    PubMed Central

    Andújar, Dionisio; Sanchez-Sardana, Francisco L.; Cantuña, Karla

    2017-01-01

    Crop monitoring is an essential practice within the field of precision agriculture since it is based on observing, measuring and properly responding to inter- and intra-field variability. In particular, “on ground crop inspection” potentially allows early detection of certain crop problems or precision treatment to be carried out simultaneously with pest detection. “On ground monitoring” is also of great interest for woody crops. This paper explores the development of a low-cost crop monitoring system that can automatically create accurate 3D models (clouds of coloured points) of woody crop rows. The system consists of a mobile platform that allows the easy acquisition of information in the field at an average speed of 3 km/h. The platform, among others, integrates an RGB-D sensor that provides RGB information as well as an array with the distances to the objects closest to the sensor. The RGB-D information plus the geographical positions of relevant points, such as the starting and the ending points of the row, allow the generation of a 3D reconstruction of a woody crop row in which all the points of the cloud have a geographical location as well as the RGB colour values. The proposed approach for the automatic 3D reconstruction is not limited by the size of the sampled space and includes a method for the removal of the drift that appears in the reconstruction of large crop rows. PMID:29295536

  18. Global Simulation of Bioenergy Crop Productivity: Analytical Framework and Case Study for Switchgrass

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kang, Shujiang; Kline, Keith L; Nair, S. Surendran

    A global energy crop productivity model that provides geospatially explicit quantitative details on biomass potential and factors affecting sustainability would be useful, but does not exist now. This study describes a modeling platform capable of meeting many challenges associated with global-scale agro-ecosystem modeling. We designed an analytical framework for bioenergy crops consisting of six major components: (i) standardized natural resources datasets, (ii) global field-trial data and crop management practices, (iii) simulation units and management scenarios, (iv) model calibration and validation, (v) high-performance computing (HPC) simulation, and (vi) simulation output processing and analysis. The HPC-Environmental Policy Integrated Climate (HPC-EPIC) model simulatedmore » a perennial bioenergy crop, switchgrass (Panicum virgatum L.), estimating feedstock production potentials and effects across the globe. This modeling platform can assess soil C sequestration, net greenhouse gas (GHG) emissions, nonpoint source pollution (e.g., nutrient and pesticide loss), and energy exchange with the atmosphere. It can be expanded to include additional bioenergy crops (e.g., miscanthus, energy cane, and agave) and food crops under different management scenarios. The platform and switchgrass field-trial dataset are available to support global analysis of biomass feedstock production potential and corresponding metrics of sustainability.« less

  19. Towards an integrated species and habitat management of crop pollination.

    PubMed

    Garibaldi, Lucas A; Requier, Fabrice; Rollin, Orianne; Andersson, Georg Ks

    2017-06-01

    Pollination deficits are widespread in current agriculture, so improving management for crop pollination is critical. Here we review the two most common management approaches to enhance crop pollination, species and habitat management, by providing referenced lists of successful examples. We pinpoint that these approaches have been studied in isolation from each other, with little discussion on potential synergies and trade-offs between them. The potential costs of species management (e.g., loss of biodiversity due to biological invasion), as well as the potential benefits to managed pollinator species from habitat restoration, are rarely quantified. An integrative approach to crop pollination should be implemented, accounting for the cost and benefits (including those beyond crop production) and interactions of species and habitat management. Copyright © 2017 Elsevier Inc. All rights reserved.

  20. Regional crop gross primary production and yield estimation using fused Landsat-MODIS data

    NASA Astrophysics Data System (ADS)

    He, M.; Kimball, J. S.; Maneta, M. P.; Maxwell, B. D.; Moreno, A.

    2017-12-01

    Accurate crop yield assessments using satellite-based remote sensing are of interest for the design of regional policies that promote agricultural resiliency and food security. However, the application of current vegetation productivity algorithms derived from global satellite observations are generally too coarse to capture cropland heterogeneity. Merging information from sensors with reciprocal spatial and temporal resolution can improve the accuracy of these retrievals. In this study, we estimate annual crop yields for seven important crop types -alfalfa, barley, corn, durum wheat, peas, spring wheat and winter wheat over Montana, United States (U.S.) from 2008 to 2015. Yields are estimated as the product of gross primary production (GPP) and a crop-specific harvest index (HI) at 30 m spatial resolution. To calculate GPP we used a modified form of the MOD17 LUE algorithm driven by a 30 m 8-day fused NDVI dataset constructed by blending Landsat (5 or 7) and MODIS Terra reflectance data. The fused 30-m NDVI record shows good consistency with the original Landsat and MODIS data, but provides better spatiotemporal information on cropland vegetation growth. The resulting GPP estimates capture characteristic cropland patterns and seasonal variations, while the estimated annual 30 m crop yield results correspond favorably with county-level crop yield data (r=0.96, p<0.05). The estimated crop yield performance was generally lower, but still favorable in relation to field-scale crop yield surveys (r=0.42, p<0.01). Our methods and results are suitable for operational applications at regional scales.

  1. Molecular, Genetic and Agronomic Approaches to Utilizing Pulses as Cover Crops and Green Manure into Cropping Systems

    PubMed Central

    Tani, Eleni; Abraham, Eleni; Chachalis, Demosthenis; Travlos, Ilias

    2017-01-01

    Cover crops constitute one of the most promising agronomic practices towards a more sustainable agriculture. Their beneficial effects on main crops, soil and environment are many and various, while risks and disadvantages may also appear. Several legumes show a high potential but further research is required in order to suggest the optimal legume cover crops for each case in terms of their productivity and ability to suppress weeds. The additional cost associated with cover crops should also be addressed and in this context the use of grain legumes such as cowpea, faba bean and pea could be of high interest. Some of the aspects of these grain legumes as far as their use as cover crops, their genetic diversity and their breeding using conventional and molecular approaches are discussed in the present review. The specific species seem to have a high potential for use as cover crops, especially if their noticeable genetic diversity is exploited and their breeding focuses on several desirable traits. PMID:28587254

  2. A Guide to Energy Savings - For the Field Crops Producer.

    ERIC Educational Resources Information Center

    Schienbein, Allen

    This booklet gives a brief overview of energy use in field crop production and gives examples of cutting costs of fertilizer use, irrigation, grain drying, tobacco drying, forate production, and tractor and truck use. Recordkeeping is also discussed. (BB)

  3. Past and future climate patterns affecting temperate, sub-tropical and tropical horticultural crop production

    USDA-ARS?s Scientific Manuscript database

    Perennial horticultural crop production will be impacted by climate change effects on temperature, water availability, solar radiation, air pollution, and carbon dioxide. Horticultural crop value is derived from both the quantity and the quality of the harvested product; both of which are affected ...

  4. Increasing cropping system diversity balances productivity, profitability and environmental health

    USDA-ARS?s Scientific Manuscript database

    Balancing productivity, profitability, and environmental health is a key challenge for agricultural sustainability. Most crop production systems in the United States are characterized by low species and management diversity, high use of fossil energy and agrichemicals, and can have large negative im...

  5. Monitoring Crop Productivity over the U.S. Corn Belt using an Improved Light Use Efficiency Model

    NASA Astrophysics Data System (ADS)

    Wu, X.; Xiao, X.; Zhang, Y.; Qin, Y.; Doughty, R.

    2017-12-01

    Large-scale monitoring of crop yield is of great significance for forecasting food production and prices and ensuring food security. Satellite data that provide temporally and spatially continuous information that by themselves or in combination with other data or models, raises possibilities to monitor and understand agricultural productivity regionally. In this study, we first used an improved light use efficiency model-Vegetation Photosynthesis Model (VPM) to simulate the gross primary production (GPP). Model evaluation showed that the simulated GPP (GPPVPM) could well captured the spatio-temporal variation of GPP derived from FLUXNET sites. Then we applied the GPPVPM to further monitor crop productivity for corn and soybean over the U.S. Corn Belt and benchmarked with county-level crop yield statistics. We found VPM-based approach provides pretty good estimates (R2 = 0.88, slope = 1.03). We further showed the impacts of climate extremes on the crop productivity and carbon use efficiency. The study indicates the great potential of VPM in estimating crop yield and in understanding of crop yield responses to climate variability and change.

  6. Crop diversification and livelihoods of smallholder farmers in Zimbabwe: adaptive management for environmental change.

    PubMed

    Makate, Clifton; Wang, Rongchang; Makate, Marshall; Mango, Nelson

    2016-01-01

    This paper demonstrates how crop diversification impacts on two outcomes of climate smart agriculture; increased productivity (legume and cereal crop productivity) and enhanced resilience (household income, food security, and nutrition) in rural Zimbabwe. Using data from over 500 smallholder farmers, we jointly estimate crop diversification and each of the outcome variables within a conditional (recursive) mixed process framework that corrects for selectivity bias arising due to the voluntary nature of crop diversification. We find that crop diversification depends on the land size, farming experience, asset wealth, location, access to agricultural extension services, information on output prices, low transportation costs and general information access. Our results also indicate that an increase in the rate of adoption improves crop productivity, income, food security and nutrition at household level. Overall, our results are indicative of the importance of crop diversification as a viable climate smart agriculture practice that significantly enhances crop productivity and consequently resilience in rural smallholder farming systems. We, therefore, recommend wider adoption of diversified cropping systems notably those currently less diversified for greater adaptation to the ever-changing climate.

  7. Tillage as a tool to manage crop residue: impact on sugar beet production.

    NASA Astrophysics Data System (ADS)

    Hiel, Marie-Pierre; Chélin, Marie; Degrune, Florine; Parvin, Nargish; Bodson, Bernard

    2015-04-01

    Crop residues and plant cover represent a pool of organic matter that can be used either to restore organic matter in soils, and therefore maintain soil fertility, or that can be valorized outside of the field (e.g. energy production). However, it is crucial that the exportation of residues is not done to the detriment of the system sustainability. Three long term experiments have been settled in the loamy region in Belgium. All of them are designed to study the effect of residues management by several tillage systems (conventional plowing versus reduced tillage) on the whole soil-water-plant system. SOLRESIDUS is a field experiment where we study the impact of crop residue management while in SOLCOUVERT and SOLCOUVERT-BIS, we study the impact of cover crop management. SOLRESIDUS was started in 2008. In this field, four contrasted crop residues managements are tested in order to contrast as much as possible the responses from the soil-water plant system. Two practices characterize the four modalities: soil tillage (ploughing at 25 cm depth or reduce tillage at 10 cm max) and residue management (exportation or restitution). SOLCOUVERT and SOLCOUVERT-BIS were started in 2012 and 2013 respectively. In those fields cover crop management is also diverse: destruction of the cover crop by winter ploughing, spring ploughing, strip tillage (with a chemical destruction if needed) or shallow tillage (with a decompaction before cover crop sowing). Although although the overall project aims at studying the impact of management on the whole soil-water-plant system, here we will only present the results concerning crop production (sugar beet) in SOLCOUVERT experiments. The presented data will include germination rate, crop development (biomass quantification and BBCH stages) weeds population, disease occurrence, pest occurrences, nitrogen uptake by plants, quality and quantity of harvested products.

  8. An original experiment to determine impact of catch crop introduction in a crop rotation on N2O production fate

    NASA Astrophysics Data System (ADS)

    Tallec, Tiphaine; Le Dantec, Valérie; Zawilski, Bartosz; Brut, Aurore; Boussac, Marion; Ferlicoq, Morgan; Ceschia, Eric

    2015-04-01

    The raise in N2O concentration from the preindustrial era (280 ppb) to nowadays (324 ppb) is estimated to account for approximately 6% of the predicted global warming (IPCC 2014). Worldwide, soils are considered to be the dominant source of N2O, releasing an estimated 9.5 Tg N2O-N y-1 (65% of global N2O emissions), of which 36.8% are estimated to originate from agricultural soils (IPCC 2001). Most N2O originating from agricultural soils is a by- or end-product of nitrification or denitrification. The fate of N2O produced by microbiological processes in the subsoil is controlled by biotic (crop species, occurring soil organic matter, human pressure via mineral and organic nitrogen fertilisation) and abiotic (environmental conditions such as temperature, soil moisture, pH, etc.) factors. In cropland, contrary to forest and grassland, long bare soil periods can occurred between winter and summer crops with a high level of mineral (fertilizer) and organic (residues) nitrogen remaining in the soil, causing important emissions of carbon and nitrogen induced by microbial activities. Introduction of catch crop has been identified as an important mitigation option to reduce environmental impact of crops mainly thanks to their ability to increase CO2 fixation, to decrease mineral nitrogen lixiviation and also reduce the potential fate of N2O production. Uncertainty also remains about the impact of released mineral nitrogen coming from crushed catch crop on N2O production if summer crop seedling and mineral nitrogen release are not well synchronized. To verify those assumptions, a unique paired-plot experiment was carried in the south-west of France from September 2013 to august 2014 to test impact of management change on N2O budget and production dynamic. A crop plot was divided into two subplots, one receiving a catch crop (mustard), the other one remaining conventionally managed (bare-soil during winter). This set-up allowed avoiding climate effect. Each subplot was

  9. Using a Decision Support System to Optimize Production of Agricultural Crop Residue Biofeedstock

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Reed L. Hoskinson; Ronald C. Rope; Raymond K. Fink

    2007-04-01

    For several years the Idaho National Laboratory (INL) has been developing a Decision Support System for Agriculture (DSS4Ag) which determines the economically optimum recipe of various fertilizers to apply at each site in a field to produce a crop, based on the existing soil fertility at each site, as well as historic production information and current prices of fertilizers and the forecast market price of the crop at harvest, for growing a crop such as wheat, potatoes, corn, or cotton. In support of the growing interest in agricultural crop residues as a bioenergy feedstock, we have extended the capability ofmore » the DSS4Ag to develop a variable-rate fertilizer recipe for the simultaneous economically optimum production of both grain and straw, and have been conducting field research to test this new DSS4Ag. In this paper we report the results of two years of field research testing and enhancing the DSS4Ag’s ability to economically optimize the fertilization for the simultaneous production of both grain and its straw, where the straw is an agricultural crop residue that can be used as a biofeedstock.« less

  10. The components of crop productivity: measuring and modeling plant metabolism

    NASA Technical Reports Server (NTRS)

    Bugbee, B.

    1995-01-01

    Several investigators in the CELSS program have demonstrated that crop plants can be remarkably productive in optimal environments where plants are limited only by incident radiation. Radiation use efficiencies of 0.4 to 0.7 g biomass per mol of incident photons have been measured for crops in several laboratories. Some early published values for radiation use efficiency (1 g mol-1) were inflated due to the effect of side lighting. Sealed chambers are the basic research module for crop studies for space. Such chambers allow the measurement of radiation and CO2 fluxes, thus providing values for three determinants of plant growth: radiation absorption, photosynthetic efficiency (quantum yield), and respiration efficiency (carbon use efficiency). Continuous measurement of each of these parameters over the plant life cycle has provided a blueprint for daily growth rates, and is the basis for modeling crop productivity based on component metabolic processes. Much of what has been interpreted as low photosynthetic efficiency is really the result of reduced leaf expansion and poor radiation absorption. Measurements and models of short-term (minutes to hours) and long-term (days to weeks) plant metabolic rates have enormously improved our understanding of plant environment interactions in ground-based growth chambers and are critical to understanding plant responses to the space environment.

  11. Productivity, absorbed photosynthetically active radiation, and light use efficiency in crops: implications for remote sensing of crop primary production.

    PubMed

    Gitelson, Anatoly A; Peng, Yi; Arkebauer, Timothy J; Suyker, Andrew E

    2015-04-01

    Vegetation productivity metrics such as gross primary production (GPP) at the canopy scale are greatly affected by the efficiency of using absorbed radiation for photosynthesis, or light use efficiency (LUE). Thus, close investigation of the relationships between canopy GPP and photosynthetically active radiation absorbed by vegetation is the basis for quantification of LUE. We used multiyear observations over irrigated and rainfed contrasting C3 (soybean) and C4 (maize) crops having different physiology, leaf structure, and canopy architecture to establish the relationships between canopy GPP and radiation absorbed by vegetation and quantify LUE. Although multiple LUE definitions are reported in the literature, we used a definition of efficiency of light use by photosynthetically active "green" vegetation (LUE(green)) based on radiation absorbed by "green" photosynthetically active vegetation on a daily basis. We quantified, irreversible slowly changing seasonal (constitutive) and rapidly day-to-day changing (facultative) LUE(green), as well as sensitivity of LUE(green) to the magnitude of incident radiation and drought events. Large (2-3-fold) variation of daily LUE(green) over the course of a growing season that is governed by crop physiological and phenological status was observed. The day-to-day variations of LUE(green) oscillated with magnitude 10-15% around the seasonal LUE(green) trend and appeared to be closely related to day-to-day variations of magnitude and composition of incident radiation. Our results show the high variability of LUE(green) between C3 and C4 crop species (1.43 g C/MJ vs. 2.24 g C/MJ, respectively), as well as within single crop species (i.e., maize or soybean). This implies that assuming LUE(green) as a constant value in GPP models is not warranted for the crops studied, and brings unpredictable uncertainties of remote GPP estimation, which should be accounted for in LUE models. The uncertainty of GPP estimation due to facultative and

  12. Ozone phytotoxicity evaluation and prediction of crops production in tropical regions

    NASA Astrophysics Data System (ADS)

    Mohammed, Nurul Izma; Ramli, Nor Azam; Yahya, Ahmad Shukri

    2013-04-01

    Increasing ozone concentration in the atmosphere can threaten food security due to its effects on crop production. Since the 1980s, ozone has been believed to be the most damaging air pollutant to crops. In Malaysia, there is no index to indicate the reduction of crops due to the exposure of ozone. Therefore, this study aimed to identify the accumulated exposure over a threshold of X ppb (AOTX) indexes in assessing crop reduction in Malaysia. In European countries, crop response to ozone exposure is mostly expressed as AOT40. This study was designed to evaluate and predict crop reduction in tropical regions and in particular, the Malaysian climate, by adopting the AOT40 index method and modifying it based on Malaysian air quality and crop data. Nine AOTX indexes (AOT0, AOT5, AOT10, AOT15, AOT20, AOT25, AOT30, AOT40, and AOT50) were analyzed, crop responses tested and reduction in crops predicted. The results showed that the AOT50 resulted in the highest reduction in crops and the highest R2 value between the AOT50 and the crops reduction from the linear regression analysis. Hence, this study suggests that the AOT50 index is the most suitable index to estimate the potential ozone impact on crops in tropical regions. The result showed that the critical level for AOT50 index if the estimated crop reduction is 5% was 1336 ppb h. Additionally, the results indicated that the AOT40 index in Malaysia gave a minimum percentage of 6% crop reduction; as contrasted with the European guideline of 5% (due to differences in the climate e.g., average amount of sunshine).

  13. 7 CFR 457.128 - Guaranteed production plan of fresh market tomato crop insurance provisions.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 6 2010-01-01 2010-01-01 false Guaranteed production plan of fresh market tomato crop insurance provisions. 457.128 Section 457.128 Agriculture Regulations of the Department of Agriculture (Continued) FEDERAL CROP INSURANCE CORPORATION, DEPARTMENT OF AGRICULTURE COMMON CROP INSURANCE REGULATIONS...

  14. Crop Production Handbook for Peace Corps Volunteers. Appropriate Technologies for Development. Reprint R-6.

    ERIC Educational Resources Information Center

    1982

    This manual, prepared for use by Peace Corps volunteers, provides background information and practical knowledge about crop production. The manual is designed to convey insights into basic crop production, principles, and practices. Primary emphasis is given to providing explanations and illustrations of soil, plant, and water relationships as…

  15. Crop water production functions for grain sorghum and winter wheat

    USDA-ARS?s Scientific Manuscript database

    Productivity of water-limited cropping systems can be reduced by untimely distribution of water as well as cold and heat stress. The objective was to develop relationships among weather parameters, water use, and grain productivity to produce functions forecasting grain yields of grain sorghum and w...

  16. Breeding and Domesticating Crops Adapted to Drought and Salinity: A New Paradigm for Increasing Food Production

    PubMed Central

    Fita, Ana; Rodríguez-Burruezo, Adrián; Boscaiu, Monica; Prohens, Jaime; Vicente, Oscar

    2015-01-01

    World population is expected to reach 9.2 × 109 people by 2050. Feeding them will require a boost in crop productivity using innovative approaches. Current agricultural production is very dependent on large amounts of inputs and water availability is a major limiting factor. In addition, the loss of genetic diversity and the threat of climate change make a change of paradigm in plant breeding and agricultural practices necessary. Average yields in all major crops are only a small fraction of record yields, and drought and soil salinity are the main factors responsible for yield reduction. Therefore there is the need to enhance crop productivity by improving crop adaptation. Here we review the present situation and propose the development of crops tolerant to drought and salt stress for addressing the challenge of dramatically increasing food production in the near future. The success in the development of crops adapted to drought and salt depends on the efficient and combined use of genetic engineering and traditional breeding tools. Moreover, we propose the domestication of new halophilic crops to create a ‘saline agriculture’ which will not compete in terms of resources with conventional agriculture. PMID:26617620

  17. Pretreatment of Whole-Crop Harvested, Ensiled Maize for Ethanol Production

    NASA Astrophysics Data System (ADS)

    Thomsen, M. H.; Holm-Nielsen, J. B.; Oleskowicz-Popiel, P.; Thomsen, A. B.

    To have all-year-round available feedstock, whole-crop maize is harvested premature, when it still contains enough moisture for the anaerobic ensiling process. Silage preparation is a well-known procedure for preserving plant material. At first, this method was applied to obtain high-quality animal feed. However, it was found that such ensiled crops are very suitable for bioenergy production. Maize silage, which consists of hardly degradable lignocellulosic material, hemicellulosic material, and starch, was evaluated for its potential as a feedstock in the production of bioethanol. It was pretreated at low severity (185 °C, 15 min) giving very high glucan (˜100%) and hemicellulose recoveries (<80%)—as well as very high ethanol yield in simultaneous saccharification and fermentation experiments (98% of the theoretical production based on available glucan in the medium). The theoretical ethanol production of maize silage pretreated at 185 °C for 15 min without oxygen or catalyst was 392 kg ethanol per ton of dry maize silage.

  18. Nitrogen use efficiency and crop production: Patterns of regional variation in the United States, 1987-2012.

    PubMed

    Swaney, Dennis P; Howarth, Robert W; Hong, Bongghi

    2018-04-17

    National-level summaries of crop production and nutrient use efficiency, important for international comparisons, only partially elucidate agricultural dynamics within a country. Agricultural production and associated environmental impacts in large countries vary significantly because of regional differences in crops, climate, resource use and production practices. Here, we review patterns of regional crop production, nitrogen use efficiency (NUE), and major inputs of nitrogen to US crops over 1987-2012, based on the Farm Resource Regions developed by the Economic Research Service (USDA-ERS). Across the US, NUE generally decreased over time over the period studied, mainly due to increased use in mineral N fertilizer above crop N requirements. The Heartland region dominates production of major crops and thus tends to drive national patterns, showing linear response of crop production to nitrogen inputs broadly consistent with an earlier analysis of global patterns of country-scale data by Lassaletta et al. (2014). Most other regions show similar responses, but the Eastern Uplands region shows a negative response to nitrogen inputs, and the Southern Seaboard shows no significant relationship. The regional differences appear as two branches in the response of aggregate production to N inputs on a cropland area basis, but not on a total area basis, suggesting that the type of scaling used is critical under changing cropland area. Nitrogen use efficiency (NUE) is positively associated with fertilizer as a percentage of N inputs in four regions, and all regions considered together. NUE is positively associated with crop N fixation in all regions except Northern Great Plains. It is negatively associated with manure (livestock excretion); in the US, manure is still treated largely as a waste to be managed rather than a nutrient resource. This significant regional variation in patterns of crop production and NUE vs N inputs, has implications for environmental quality and

  19. Risk of water scarcity and water policy implications for crop production in the Ebro Basin in Spain

    NASA Astrophysics Data System (ADS)

    Quiroga, S.; Fernández-Haddad, Z.; Iglesias, A.

    2010-08-01

    The increasing pressure on water systems in the Mediterranean enhances existing water conflicts and threatens water supply for agriculture. In this context, one of the main priorities for agricultural research and public policy is the adaptation of crop yields to water pressures. This paper focuses on the evaluation of hydrological risk and water policy implications for food production. Our methodological approach includes four steps. For the first step, we estimate the impacts of rainfall and irrigation water on crop yields. However, this study is not limited to general crop production functions since it also considers the linkages between those economic and biophysical aspects which may have an important effect on crop productivity. We use statistical models of yield response to address how hydrological variables affect the yield of the main Mediterranean crops in the Ebro River Basin. In the second step, this study takes into consideration the effects of those interactions and analyzes gross value added sensitivity to crop production changes. We then use Montecarlo simulations to characterize crop yield risk to water variability. Finally we evaluate some policy scenarios with irrigated area adjustments that could cope in a context of increased water scarcity. A substantial decrease in irrigated land, of up to 30% of total, results in only moderate losses of crop productivity. The response is crop and region specific and may serve to prioritise adaptation strategies.

  20. Crop residues as soil amendments and feedstock for bioethanol production.

    PubMed

    Lal, R

    2008-01-01

    Traditional solid fuels account for more than 90% of the energy supply for 3 billion people in developing countries. However, liquid biofuels (e.g., ethanol) are perceived as an important alternative to fossil fuel. Global crop residue production is estimated at about 4 billion Mg for all crops and 3 billion Mg per annum for lignocellulosic residues of cereals. One Mg of corn stover can produce 280L of ethanol, compared with 400L from 1Mg of corn grains; 1Mg of biomass is also equivalent to 18.5GJ of energy. Thus, 3 billion Mg of residues are equivalent to 840 billion L of ethanol or 56x10(9)GJ of energy. However, removal of crop residues exacerbates soil degradation, increases net emission of CO2, and aggravates food insecurity. Increasing the SOC pool by 1 Mg C ha(-1)yr(-1) through residue retention on soil can increase world food grain production by 24-40 million Mg yr(-1), and root/tuber production by 6-11 million Mg yr(-1). Thus, identifying alternate sources of biofuel feedstock (e.g., biofuel plantations, animal waste, municipal sold waste) is a high priority. Establishing biofuel plantations on agriculturally marginal or degraded lands can off-set 3.5-4 Pg Cyr(-1).

  1. Enhancing Soil Productivity Using a Multi-Crop Rotation and Beef Cattle Grazing

    NASA Astrophysics Data System (ADS)

    Şentürklü, Songül; Landblom, Douglas; Cihacek, Larry; Brevik, Eric

    2016-04-01

    Agricultural production systems that include complimentary plant, soil and animal interaction contribute to sustainability. In sustainable livestock systems integrated with crop production, the soil resource is impacted positively. The goal of this research was to maximize beef cattle and crop economic yield, while improving the soil resource by increasing soil organic matter (SOM) and subsequently seasonal soil nitrogen fertility over a 5-year period (2011-2015). Each experimental crop field used in the study was 1.74 ha. Small-seeded crops were planted using a JD 1590 No-Till drill. Corn (C) and sunflowers (SF) were planted using a JD 7000 No-Till planter. The cropping sequence used in the study was SF, hard red spring wheat (HRSW), fall seeded winter triticale-hairy vetch (T-HV), spring harvested for hay/mid-June seeded 7-species cover crop (CC; SF, Everleaf Oat, Flex Winter Pea, HV, Winfred Forage Rape, Ethiopian Cabbage, Hunter Leaf Turnip), C (85-day var.), and field pea-barley intercrop (PBY). The HRSW and SF were harvested as cash crops and the PBY, C, and CC were harvested by grazing cattle. In the system, yearling beef steers grazed PBY and unharvested C before feedlot entry, and after weaning, gestating cows grazed CC. Seasonal soil nitrogen fertility was measured at 0-15, 15-30, and 30-61 cm depths approximately every two weeks from June to October, 2014. The regression illustrating the relationship between SOM and average seasonal available mineral nitrogen shows that for each percentage increase in SOM there is a corresponding N increase of 1.47 kg/ha. Nitrogen fertilizer applications for the 5-year period of the study were variable; however, the overall trend was for reduced fertilizer requirement as SOM increased. At the same time, grain, oilseed, and annual forage crop yields increased year over year (2011-2015) except for the 2014 crop year, when above average precipitation delayed seeding and early frost killed the C and SF crops prematurely

  2. Replacing fallow with continuous cropping reduces crop water productivity of semiarid wheat

    USDA-ARS?s Scientific Manuscript database

    Water supply frequently limits crop yield in semiarid cropping systems; water deficits can restrict yields in drought-affected subhumid regions. In semiarid wheat (Triticum aestivumL.)-based cropping systems, replacing an uncropped fallow period with a crop can increase precipitation use efficiency ...

  3. Alternative scenarios of bioenergy crop production in an agricultural landscape and implications for bird communities.

    PubMed

    Blank, Peter J; Williams, Carol L; Sample, David W; Meehan, Timothy D; Turner, Monica G

    2016-01-01

    Increased demand and government mandates for bioenergy crops in the United States could require a large allocation of agricultural land to bioenergy feedstock production and substantially alter current landscape patterns. Incorporating bioenergy landscape design into land-use decision making could help maximize benefits and minimize trade-offs among alternative land uses. We developed spatially explicit landscape scenarios of increased bioenergy crop production in an 80-km radius agricultural landscape centered on a potential biomass-processing energy facility and evaluated the consequences of each scenario for bird communities. Our scenarios included conversion of existing annual row crops to perennial bioenergy grasslands and conversion of existing grasslands to annual bioenergy row crops. The scenarios explored combinations of four biomass crop types (three potential grassland crops along a gradient of plant diversity and one annual row crop [corn]), three land conversion percentages to bioenergy crops (10%, 20%, or 30% of row crops or grasslands), and three spatial configurations of biomass crop fields (random, clustered near similar field types, or centered on the processing plant), yielding 36 scenarios. For each scenario, we predicted the impact on four bird community metrics: species richness, total bird density, species of greatest conservation need (SGCN) density, and SGCN hotspots (SGCN birds/ha ≥ 2). Bird community metrics consistently increased with conversion of row crops to bioenergy grasslands and consistently decreased with conversion of grasslands to bioenergy row crops. Spatial arrangement of bioenergy fields had strong effects on the bird community and in some cases was more influential than the amount converted to bioenergy crops. Clustering grasslands had a stronger positive influence on the bird community than locating grasslands near the central plant or at random. Expansion of bioenergy grasslands onto marginal agricultural lands will

  4. Ruminant Grazing of Cover Crops: Effects on Soil Properties and Agricultural Production

    ERIC Educational Resources Information Center

    Poffenbarger, Hanna

    2010-01-01

    Integrating livestock into a cropping system by allowing ruminant animals to graze cover crops may yield economic and environmental benefits. The effects of grazing on soil physical properties, soil organic matter, nitrogen cycling and agricultural production are presented in this literature review. The review found that grazing cover crops…

  5. Efficiency assessment of using satellite data for crop area estimation in Ukraine

    NASA Astrophysics Data System (ADS)

    Gallego, Francisco Javier; Kussul, Nataliia; Skakun, Sergii; Kravchenko, Oleksii; Shelestov, Andrii; Kussul, Olga

    2014-06-01

    The knowledge of the crop area is a key element for the estimation of the total crop production of a country and, therefore, the management of agricultural commodities markets. Satellite data and derived products can be effectively used for stratification purposes and a-posteriori correction of area estimates from ground observations. This paper presents the main results and conclusions of the study conducted in 2010 to explore feasibility and efficiency of crop area estimation in Ukraine assisted by optical satellite remote sensing images. The study was carried out on three oblasts in Ukraine with a total area of 78,500 km2. The efficiency of using images acquired by several satellite sensors (MODIS, Landsat-5/TM, AWiFS, LISS-III, and RapidEye) combined with a field survey on a stratified sample of square segments for crop area estimation in Ukraine is assessed. The main criteria used for efficiency analysis are as follows: (i) relative efficiency that shows how much time the error of area estimates can be reduced with satellite images, and (ii) cost-efficiency that shows how much time the costs of ground surveys for crop area estimation can be reduced with satellite images. These criteria are applied to each satellite image type separately, i.e., no integration of images acquired by different sensors is made, to select the optimal dataset. The study found that only MODIS and Landsat-5/TM reached cost-efficiency thresholds while AWiFS, LISS-III, and RapidEye images, due to its high price, were not cost-efficient for crop area estimation in Ukraine at oblast level.

  6. Agricultural field reclamation utilizing native grass crop production

    Treesearch

    J. Cure

    2013-01-01

    Developing a method of agricultural field reclamation to native grasses in the Lower San Pedro Watershed could prove to be a valuable tool for educational and practical purposes. Agricultural field reclamation utilizing native grass crop production will address water table depletion, soil degradation and the economic viability of the communities within the watershed....

  7. Best management practices: Managing cropping systems for soil protection and bioenergy production

    USDA-ARS?s Scientific Manuscript database

    Interest in renewable alternatives to fossil fuels has increased. Crop residue such as corn stover or wheat straw can be used for bioenergy including a substitution for natural gas or coal. Harvesting crop residue needs to be managed to protect the soil and future soil productivity. The amount of bi...

  8. Soil quality impacts of perennial bioenergy crops on marginally-productive lands

    USDA-ARS?s Scientific Manuscript database

    Dedicated perennial energy crops grown on marginally-productive croplands can provide a sustainable supply of bioenergy feedstock while improving soil quality and enhancing ecosystem services. Because marginally-productive croplands typically are at higher risk of degradation, growing highly produc...

  9. Effect of organic waste compost on the crop productivity and soil quality

    NASA Astrophysics Data System (ADS)

    Astover, Alar; Toomsoo, Avo; Teesalu, Triin; Rossner, Helis; Kriipsalu, Mait

    2017-04-01

    Sustainable use of fertilizers is important for maintaining balanced nutrient cycling in agro-ecosystem, soil quality and crop productivity. Considering the high costs and energy demand of mineral fertilizers, it is increasingly important to use more alternative nutrient sources such composts. Nutrient release from organic fertilizers is slower compared to mineral fertilizers and thus their effects need to be evaluated over longer time periods. There is lack of knowledge on the residual effects of organic fertilizers, especially in Nordic climatic conditions. Residual effect of organic fertilizers is in most cases studied with animal manures, but even rare are studies with non-manure based composts. The aim of current study was to evaluate first year direct effect and residual effect of waste compost on the crop productivity and selected soil parameters. Crop rotation field experiment to reveal direct effect of compost to the spring barley yield and residual effect to potato and spring wheat yield was conducted in Tartu, Estonia on pseodopodzolic soil with low humus concentration (<2%). Compost was produced from source separated food and green waste, and category III animal by-products; and composted in aerated covered static piles for 6 weeks and after that matured in open windows for minimum six months. Compost was applied to soil with ploughing in autumn before spring barley growing season (in years 2012-2014). Compost was applied in three norms according to total N (200, 275 and 350 kg/ha). In addition there was unfertilized control plot and all experimental variants were in three replication with plot size 50 m2. First year effect of compost increased barley yield by 40-50%, first year residual effect resulted in increase of potato yield by 19-30% and second year residual effect to wheat yield was in range from 8 to 17%. First year residual effect to the potato yield was significant (F=8.9; p<0.001). All compost norms resulted significant yield increase

  10. Dirty air costs growers $500 million in crop losses

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tintori, K.A.

    Air pollution damage to ornamental plants and crops, already costing the nation more than $500 million in losses yearly, is steadily increasing. California is one of the hardest hit areas with an annual loss of about $125 million. In metropolitan areas of Southern California, photochemical smog has made it impossible to raise orchids and growers have had to relocate in remote rural areas. Smog damage is now reported in 27 states, the District of Columbia, Canada and Mexico. The pollutants most easy to identify are five toxic gases: sulfur dioxide, ozone, peroxyacetyl nitrate, ethylene, and fluorides. The symptoms of eachmore » type of pollutant injury are described. 2 figures, 1 table.« less

  11. Simultaneous improvement in productivity, water use, and albedo through crop structural modification.

    PubMed

    Drewry, Darren T; Kumar, Praveen; Long, Stephen P

    2014-06-01

    Spanning 15% of the global ice-free terrestrial surface, agricultural lands provide an immense and near-term opportunity to address climate change, food, and water security challenges. Through the computationally informed breeding of canopy structural traits away from those of modern cultivars, we show that solutions exist that increase productivity and water use efficiency, while increasing land-surface reflectivity to offset greenhouse gas warming. Plants have evolved to maximize capture of radiation in the upper leaves, thus shading competitors. While important for survival in the wild, this is suboptimal in monoculture crop fields for maximizing productivity and other biogeophysical services. Crop progenitors evolved over the last 25 million years in an atmosphere with less than half the [CO2] projected for 2050. By altering leaf photosynthetic rates, rising [CO2] and temperature may also alter the optimal canopy form. Here using soybean, the world's most important protein crop, as an example we show by applying optimization routines to a micrometeorological leaf canopy model linked to a steady-state model of photosynthesis, that significant gains in production, water use, and reflectivity are possible with no additional demand on resources. By modifying total canopy leaf area, its vertical profile and angular distribution, and shortwave radiation reflectivity, all traits available in most major crop germplasm collections, increases in productivity (7%) are possible with no change in water use or albedo. Alternatively, improvements in water use (13%) or albedo (34%) can likewise be made with no loss of productivity, under Corn Belt climate conditions. © 2014 California Institute of Technology. Government sponsorship acknowledged.

  12. Crop and livestock enterprise integration: Livestock impacts on forage, stover, and grain production

    USDA-ARS?s Scientific Manuscript database

    Enterprise diversity is the key to ensure productive and sustainable agriculture for the future. Integration of crops and livestock enterprises is one way to improve agricultural sustainability, and take advantage of beneficial enterprise synergistic effects. Our objectives were to develop cropping ...

  13. Nitrous oxide emissions in cover crop-based corn production systems

    NASA Astrophysics Data System (ADS)

    Davis, Brian Wesley

    Nitrous oxide (N2O) is a potent greenhouse gas; the majority of N2O emissions are the result of agricultural management, particularly the application of N fertilizers to soils. The relationship of N2O emissions to varying sources of N (manures, mineral fertilizers, and cover crops) has not been well-evaluated. Here we discussed a novel methodology for estimating precipitation-induced pulses of N2O using flux measurements; results indicated that short-term intensive time-series sampling methods can adequately describe the magnitude of these pulses. We also evaluated the annual N2O emissions from corn-cover crop (Zea mays; cereal rye [Secale cereale], hairy vetch [Vicia villosa ], or biculture) production systems when fertilized with multiple rates of subsurface banded poultry litter, as compared with tillage incorporation or mineral fertilizer. N2O emissions increased exponentially with total N rate; tillage decreased emissions following cover crops with legume components, while the effect of mineral fertilizer was mixed across cover crops.

  14. Putting mechanisms into crop production models.

    PubMed

    Boote, Kenneth J; Jones, James W; White, Jeffrey W; Asseng, Senthold; Lizaso, Jon I

    2013-09-01

    Crop growth models dynamically simulate processes of C, N and water balance on daily or hourly time-steps to predict crop growth and development and at season-end, final yield. Their ability to integrate effects of genetics, environment and crop management have led to applications ranging from understanding gene function to predicting potential impacts of climate change. The history of crop models is reviewed briefly, and their level of mechanistic detail for assimilation and respiration, ranging from hourly leaf-to-canopy assimilation to daily radiation-use efficiency is discussed. Crop models have improved steadily over the past 30-40 years, but much work remains. Improvements are needed for the prediction of transpiration response to elevated CO₂ and high temperature effects on phenology and reproductive fertility, and simulation of root growth and nutrient uptake under stressful edaphic conditions. Mechanistic improvements are needed to better connect crop growth to genetics and to soil fertility, soil waterlogging and pest damage. Because crop models integrate multiple processes and consider impacts of environment and management, they have excellent potential for linking research from genomics and allied disciplines to crop responses at the field scale, thus providing a valuable tool for deciphering genotype by environment by management effects. © 2013 John Wiley & Sons Ltd.

  15. Monitoring crop gross primary productivity using Landsat data (Invited)

    NASA Astrophysics Data System (ADS)

    Gitelson, A. A.; Peng, Y.; Keydan, G. P.; Masek, J.; Rundquist, D. C.; Verma, S. B.; Suyker, A. E.

    2009-12-01

    There is a growing interest in monitoring the gross primary productivity (GPP) of crops due mostly to their carbon sequestration potential. We presented a new technique for GPP estimation in irrigated and rainfed maize and soybeans based on the close and consistent relationship between GPP and crop chlorophyll content, and entirely on remotely sensed data. A recently proposed Green Chlorophyll Index (Green CI), which employs the green and the NIR spectral bands, was used to retrieve daytime GPP from Landsat ETM+ data. Due to its high spatial resolution (i.e., 30x30m/pixel), this satellite system is particularly appropriate for detecting not only between but also within field GPP variability during the growing season. The Green CI obtained using atmospherically corrected Landsat ETM+ data was found to be linearly related with crop GPP explaining about 90% of GPP variation. Green CI constitutes an accurate surrogate measure for GPP estimation. For comparison purposes, other vegetation indices were also tested. These results open new possibilities for analyzing the spatio-temporal variation of the GPP of crops using the extensive archive of Landsat imagery acquired since the early 1980s.

  16. Meeting the demand for crop production: the challenge of yield decline in crops grown in short rotations.

    PubMed

    Bennett, Amanda J; Bending, Gary D; Chandler, David; Hilton, Sally; Mills, Peter

    2012-02-01

    There is a trend world-wide to grow crops in short rotation or in monoculture, particularly in conventional agriculture. This practice is becoming more prevalent due to a range of factors including economic market trends, technological advances, government incentives, and retailer and consumer demands. Land-use intensity will have to increase further in future in order to meet the demands of growing crops for both bioenergy and food production, and long rotations may not be considered viable or practical. However, evidence indicates that crops grown in short rotations or monoculture often suffer from yield decline compared to those grown in longer rotations or for the first time. Numerous factors have been hypothesised as contributing to yield decline, including biotic factors such as plant pathogens, deleterious rhizosphere microorganisms, mycorrhizas acting as pathogens, and allelopathy or autotoxicity of the crop, as well as abiotic factors such as land management practices and nutrient availability. In many cases, soil microorganisms have been implicated either directly or indirectly in yield decline. Although individual factors may be responsible for yield decline in some cases, it is more likely that combinations of factors interact to cause the problem. However, evidence confirming the precise role of these various factors is often lacking in field studies due to the complex nature of cropping systems and the numerous interactions that take place within them. Despite long-term knowledge of the yield-decline phenomenon, there are few tools to counteract it apart from reverting to longer crop rotations or break crops. Alternative cropping and management practices such as double-cropping or inter-cropping, tillage and organic amendments may prove valuable for combating some of the negative effects seen when crops are grown in short rotation. Plant breeding continues to be important, although this does require a specific breeding target to be identified. This

  17. Production cost methods and data

    NASA Technical Reports Server (NTRS)

    Jeffe, R. E.; Fujita, T.

    1975-01-01

    The general gas cost equation for utility financing is presented. Modifications and assumptions made in order to apply the cost equation to hydrogen production are described. Cost data are given for various methods of hydrogen production. The cost matrix procedure is briefly discussed.

  18. Epi-fingerprinting and epi-interventions for improved crop production and food quality

    PubMed Central

    Rodríguez López, Carlos M.; Wilkinson, Mike J.

    2015-01-01

    Increasing crop production at a time of rapid climate change represents the greatest challenge facing contemporary agricultural research. Our understanding of the genetic control of yield derives from controlled field experiments designed to minimize environmental variance. In spite of these efforts there is substantial residual variability among plants attributable to Genotype × Environment interactions. Recent advances in the field of epigenetics have revealed a plethora of gene control mechanisms that could account for much of this unassigned variation. These systems act as a regulatory interface between the perception of the environment and associated alterations in gene expression. Direct intervention of epigenetic control systems hold the enticing promise of creating new sources of variability that could enhance crop performance. Equally, understanding the relationship between various epigenetic states and responses of the crop to specific aspects of the growing environment (epigenetic fingerprinting) could allow for a more tailored approach to plant agronomy. In this review, we explore the many ways in which epigenetic interventions and epigenetic fingerprinting can be deployed for the improvement of crop production and quality. PMID:26097484

  19. Processed eucalyptus trees as a substrate component for greenhouse crop production

    USDA-ARS?s Scientific Manuscript database

    Fast growing eucalyptus species are selected for commercial plantings worldwide and are harvested for a variety of uses. Eucalyptus plantings in south Florida are harvested for landscape mulch production, yet this material may have potential as a container substrate for horticulture crop production....

  20. Linking environment-productivity trade-offs and correlated uncertainties: Greenhouse gas emissions and crop productivity in paddy rice production systems.

    PubMed

    Hayashi, Kiyotada; Nagumo, Yoshifumi; Domoto, Akiko

    2016-11-15

    In comparative life cycle assessments of agricultural production systems, analyses of both the trade-offs between environmental impacts and crop productivity and of the uncertainties specific to agriculture such as fluctuations in greenhouse gas (GHG) emissions and crop yields are crucial. However, these two issues are usually analyzed separately. In this paper, we present a framework to link trade-off and uncertainty analyses; correlated uncertainties are integrated into environment-productivity trade-off analyses. We compared three rice production systems in Japan: a system using a pelletized, nitrogen-concentrated organic fertilizer made from poultry manure using closed-air composting techniques (high-N system), a system using a conventional organic fertilizer made from poultry manure using open-air composting techniques (low-N system), and a system using a chemical compound fertilizer (conventional system). We focused on two important sources of uncertainties in paddy rice cultivation-methane emissions from paddy fields and crop yields. We found trade-offs between the conventional and high-N systems and the low-N system and the existence of positively correlated uncertainties in the conventional and high-N systems. We concluded that our framework is effective in recommending the high-N system compared with the low-N system, although the performance of the former is almost the same as the conventional system. Copyright © 2016 Elsevier B.V. All rights reserved.

  1. Biocrude crop production in arid lands. [Calotropis procera, Chrysothamus paniculatus, Euphorbia lathyris, Grindelia camporum

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McLaughlin, S.P.; Kingsolver, B.E.; Hoffmann, J.J.

    1983-01-01

    Published and unpublished estimates of land and water requirements and energy yield were used to prepare energy budgets for 4 potential biocrude (liquid fuel) crops in the SW USA: the perennials Calotropis procera and Chrysothamnus paniculatus and the annuals Euphorbia lathyris and Grindelia camporum. Estimated annual costs are examined and discussed for an operation processing 300,000 t/yr. The cheapest energy was produced by C. paniculatus, although it required the largest land area. The paper emphasizes that selecting for biocrude content (biomass quality) of plants may be at the expense of productivity (quantity) since the 2 have been shown to bemore » inversely related in many cases. 8 references.« less

  2. Bioethanol production from tuber crops using fermentation technology: a review

    NASA Astrophysics Data System (ADS)

    Thatoi, Hrudayanath; Dash, Preeti Krishna; Mohapatra, Sonali; Swain, Manas Ranjan

    2016-05-01

    Bioethanol, an alcohol produced by fermentation of plant biomass containing starch and sugars by micro-organisms, considered as a dominant form of fuel for future. Production of this renewable fuel, especially from starchy materials such as tuber crops, holds a remarkable potential to meet the future energy demand because of its high production and comparitively less demand for use as food and fodder. This review focuses on the world bioethanol production scenario from various tuber crops, namely cassava, sweet potato, potato, yam, aroids, sugar beet, etc., fermentation techniques and micro-organisms used in fermentation process along with its future prospects. The advances in metabolic pathway engineering and genetic engineering techniques have led to the development of micro-organisms capable of efficiently converting biomass sugars into ethanol. Several biotechnological tools that are also available for the improvement of microorganisms to meet the harsh environments typically met with certain industrial fermentation process are also discussed.

  3. Managing cover crops: an economic perspective

    USDA-ARS?s Scientific Manuscript database

    Common reasons given by producers as to why they do not adopt cover crops are related to economics: time, labor, and cost required for planting and managing cover crops. While many of the agronomic benefits of cover crops directly relate to economics, there are costs associated with adopting the pra...

  4. Effect of manure vs. fertilizer inputs on productivity of forage crop models.

    PubMed

    Annicchiarico, Giovanni; Caternolo, Giovanni; Rossi, Emanuela; Martiniello, Pasquale

    2011-06-01

    Manure produced by livestock activity is a dangerous product capable of causing serious environmental pollution. Agronomic management practices on the use of manure may transform the target from a waste to a resource product. Experiments performed on comparison of manure with standard chemical fertilizers (CF) were studied under a double cropping per year regime (alfalfa, model I; Italian ryegrass-corn, model II; barley-seed sorghum, model III; and horse-bean-silage sorghum, model IV). The total amount of manure applied in the annual forage crops of the model II, III and IV was 158, 140 and 80 m3 ha(-1), respectively. The manure applied to soil by broadcast and injection procedure provides an amount of nitrogen equal to that supplied by CF. The effect of manure applications on animal feeding production and biochemical soil characteristics was related to the models. The weather condition and manures and CF showed small interaction among treatments. The number of MFU ha(-1) of biomass crop gross product produced in autumn and spring sowing models under manure applications was 11,769, 20,525, 11,342, 21,397 in models I through IV, respectively. The reduction of MFU ha(-1) under CF ranges from 10.7% to 13.2% those of the manure models. The effect of manure on organic carbon and total nitrogen of topsoil, compared to model I, stressed the parameters as CF whose amount was higher in models II and III than model IV. In term of percentage the organic carbon and total nitrogen of model I and treatment with manure was reduced by about 18.5 and 21.9% in model II and model III and 8.8 and 6.3% in model IV, respectively. Manure management may substitute CF without reducing gross production and sustainability of cropping systems, thus allowing the opportunity to recycle the waste product for animal forage feeding.

  5. Understanding the Impact of Extreme Temperature on Crop Production in Karnataka in India

    NASA Astrophysics Data System (ADS)

    Mahato, S.; Murari, K. K.; Jayaraman, T.

    2017-12-01

    The impact of extreme temperature on crop yield is seldom explored in work around climate change impact on agriculture. Further, these studies are restricted mainly to crops such as wheat and maize. Since different agro-climatic zones bear different crops and cropping patterns, it is important to explore the nature of the impact of changes in climate variables in agricultural systems under differential conditions. The study explores the effects of temperature rise on the major crops paddy, jowar, ragi and tur in the state of Karnataka of southern India. The choice of the unit of study to understand impact of climate variability on crop yields is largely restricted to availability of data for the unit. While, previous studies have dealt with this issue by replacing yield with NDVI at finer resolution, the use of an index in place of yield data has its limitations and may not reflect the true estimates. For this study, the unit considered is taluk, i.e. sub-district level. The crop yield for taluk is obtained between the year the 1995 to 2011 by aggregating point yield data from crop cutting experiments for each year across the taluks. The long term temperature data shows significantly increasing trend that ranges between 0.6 to 0.75 C across Karnataka. Further, the analysis suggests a warming trend in seasonal average temperature for Kharif and Rabi seasons across districts. The study also found that many districts exhibit the tendency of occurrence of extreme temperature days, which is of particular concern in terms of crop yield, since exposure of crops to extreme temperature has negative consequences for crop production and productivity. Using growing degree days GDD, extreme degree days EDD and total season rainfall as predictor variables, the fixed effect model shows that EDD is a more influential parameter as compared to GDD and rainfall. Also it has a statistically significant negative effect in most cases. Further, quantile regression was used to evaluate

  6. Carbon budget over 12 years in a production crop under temperate climate

    NASA Astrophysics Data System (ADS)

    Buysse, Pauline; Bodson, Bernard; Debacq, Alain; De Ligne, Anne; Heinesch, Bernard; Manise, Tanguy; Moureaux, Christine; Aubinet, Marc

    2017-04-01

    Carbon dioxide (CO2) exchanges between crops and the atmosphere are influenced by both climatic and crop management drivers. The investigated crop, situated at the Lonzée Terrestrial Observatory (LTO, candidate ICOS site) in Belgium and managed for more than 70 years using conventional farming practices, was monitored over three complete sugar beet (or maize)/winter wheat/potato/winter wheat rotation cycles from 2004 to 2016. Continuous eddy-covariance measurements and regular biomass samplings were performed in order to obtain the daily and seasonal Net Ecosystem Exchange (NEE), Gross Primary Productivity, Total Ecosystem Respiration, Net Primary Productivity, and Net Biome Production (NBP). Meteorological data and crop management practices were also recorded. The main objectives were to analyze the CO2 flux responses to climatic drivers and to establish the C budget of the cropland. Crop type significantly influenced the measured CO2 fluxes. In addition to crop season duration, which had an obvious impact on cumulated NEE values for each crop type, the CO2 flux response to photosynthetic photon flux density, vapor pressure deficit and temperature differed between crop types, while no significant response to soil water content was observed in any of them. Besides, a significant positive relationship between crop residue amount and ecosystem respiration was observed. Over the 12 years, NEE was negative (-4.34 ± 0.21 kg C m-2) but NBP was positive (1.05 ± 0.30 kg C m-2), i.e. as soon as all lateral carbon fluxes - dominated by carbon exportation - are included in the budget, the site behaves as a carbon source. Intercrops were seen to play a major role in the carbon budget, being mostly due to the long time period it represented (59 % of the 12 year time period). An in-depth analysis of intercrop periods and, more specifically, growing cover crops (mustard in the case of our study), is developed in a companion poster (ref. abstract EGU2017-12216, session SSS9

  7. An integrated model for assessing both crop productivity and agricultural water resources at a large scale

    NASA Astrophysics Data System (ADS)

    Okada, M.; Sakurai, G.; Iizumi, T.; Yokozawa, M.

    2012-12-01

    Agricultural production utilizes regional resources (e.g. river water and ground water) as well as local resources (e.g. temperature, rainfall, solar energy). Future climate changes and increasing demand due to population increases and economic developments would intensively affect the availability of water resources for agricultural production. While many studies assessed the impacts of climate change on agriculture, there are few studies that dynamically account for changes in water resources and crop production. This study proposes an integrated model for assessing both crop productivity and agricultural water resources at a large scale. Also, the irrigation management to subseasonal variability in weather and crop response varies for each region and each crop. To deal with such variations, we used the Markov Chain Monte Carlo technique to quantify regional-specific parameters associated with crop growth and irrigation water estimations. We coupled a large-scale crop model (Sakurai et al. 2012), with a global water resources model, H08 (Hanasaki et al. 2008). The integrated model was consisting of five sub-models for the following processes: land surface, crop growth, river routing, reservoir operation, and anthropogenic water withdrawal. The land surface sub-model was based on a watershed hydrology model, SWAT (Neitsch et al. 2009). Surface and subsurface runoffs simulated by the land surface sub-model were input to the river routing sub-model of the H08 model. A part of regional water resources available for agriculture, simulated by the H08 model, was input as irrigation water to the land surface sub-model. The timing and amount of irrigation water was simulated at a daily step. The integrated model reproduced the observed streamflow in an individual watershed. Additionally, the model accurately reproduced the trends and interannual variations of crop yields. To demonstrate the usefulness of the integrated model, we compared two types of impact assessment of

  8. Improvements in crop water productivity increase water sustainability and food security—a global analysis

    NASA Astrophysics Data System (ADS)

    Brauman, Kate A.; Siebert, Stefan; Foley, Jonathan A.

    2013-06-01

    Irrigation consumes more water than any other human activity, and thus the challenges of water sustainability and food security are closely linked. To evaluate how water resources are used for food production, we examined global patterns of water productivity—food produced (kcal) per unit of water (l) consumed. We document considerable variability in crop water productivity globally, not only across different climatic zones but also within climatic zones. The least water productive systems are disproportionate freshwater consumers. On precipitation-limited croplands, we found that ˜40% of water consumption goes to production of just 20% of food calories. Because in many cases crop water productivity is well below optimal levels, in many cases farmers have substantial opportunities to improve water productivity. To demonstrate the potential impact of management interventions, we calculated that raising crop water productivity in precipitation-limited regions to the 20th percentile of productivity would increase annual production on rainfed cropland by enough to provide food for an estimated 110 million people, and water consumption on irrigated cropland would be reduced enough to meet the annual domestic water demands of nearly 1.4 billion people.

  9. Effect of climate change on crop production patterns with implications to transport flows and inland waterways.

    DOT National Transportation Integrated Search

    2011-12-01

    This project analyzed the demand for transportation capacity and changes in transportation flows on : inland waterways due to shifts in crop production patterns induced by climate change. Shifts in the crop : production mix have been observed in rece...

  10. Regional disparities in the beneficial effects of rising CO2 concentrations on crop water productivity

    NASA Astrophysics Data System (ADS)

    Deryng, Delphine; Elliott, Joshua; Folberth, Christian; Müller, Christoph; Pugh, Thomas A. M.; Boote, Kenneth J.; Conway, Declan; Ruane, Alex C.; Gerten, Dieter; Jones, James W.; Khabarov, Nikolay; Olin, Stefan; Schaphoff, Sibyll; Schmid, Erwin; Yang, Hong; Rosenzweig, Cynthia

    2016-08-01

    Rising atmospheric CO2 concentrations ([CO2]) are expected to enhance photosynthesis and reduce crop water use. However, there is high uncertainty about the global implications of these effects for future crop production and agricultural water requirements under climate change. Here we combine results from networks of field experiments and global crop models to present a spatially explicit global perspective on crop water productivity (CWP, the ratio of crop yield to evapotranspiration) for wheat, maize, rice and soybean under elevated [CO2] and associated climate change projected for a high-end greenhouse gas emissions scenario. We find CO2 effects increase global CWP by 10[047]%-27[737]% (median[interquartile range] across the model ensemble) by the 2080s depending on crop types, with particularly large increases in arid regions (by up to 48[25;56]% for rainfed wheat). If realized in the fields, the effects of elevated [CO2] could considerably mitigate global yield losses whilst reducing agricultural consumptive water use (4-17%). We identify regional disparities driven by differences in growing conditions across agro-ecosystems that could have implications for increasing food production without compromising water security. Finally, our results demonstrate the need to expand field experiments and encourage greater consistency in modelling the effects of rising [CO2] across crop and hydrological modelling communities.

  11. Regional Disparities in the Beneficial Effects of Rising CO2 Emissions on Crop Water Productivity

    NASA Technical Reports Server (NTRS)

    Deryng, Delphine; Elliott, Joshua; Folberth, Christian; Meuller, Christoph; Pugh, Thomas A. M.; Boote, Kenneth J.; Conway, Declan; Ruane, Alex C.; Gerten, Dieter; Jones, James W.; hide

    2016-01-01

    Rising atmospheric carbon dioxide concentrations are expected to enhance photosynthesis and reduce crop water use. However, there is high uncertainty about the global implications of these effects for future crop production and agricultural water requirements under climate change. Here we combine results from networks of field experiments and global crop models to present a spatially explicit global perspective on crop water productivity (CWP, the ratio of crop yield to evapotranspiration) for wheat, maize, rice and soybean under elevated carbon dioxide and associated climate change projected for a high-end greenhouse gas emissions scenario. We find carbon dioxide effects increase global CWP by 10[0;47]%-27[7;37]% (median[interquartile range] across the model ensemble) by the 2080s depending on crop types, with particularly large increases in arid regions (by up to 48[25;56]% for rain fed wheat). If realized in the fields, the effects of elevated carbon dioxide could considerably mitigate global yield losses whilst reducing agricultural consumptive water use (4-17%). We identify regional disparities driven by differences in growing conditions across agro-ecosystems that could have implications for increasing food production without compromising water security. Finally, our results demonstrate the need to expand field experiments and encourage greater consistency in modeling the effects of rising carbon dioxide across crop and hydrological modeling communities.

  12. Detecting the elusive cost of parasites on fig seed production

    NASA Astrophysics Data System (ADS)

    Segar, Simon T.; Mardiastuti, Ani; Wheeler, Philip M.; Cook, James M.

    2018-07-01

    Mutualisms provide essential ecosystem functions such as pollination and contribute considerably to global biodiversity. However, they are also exploited by parasites that remove resources and thus impose costs on one or both of the mutualistic partners. The fig/pollinator interaction is a classic obligate mutualism; it is pantropical and involves >750 Ficus species and their host-specific pollinating wasps (family Agaonidae). Figs also host parasites of the mutualism that should consume pollinators or seeds, depending on their larval ecology. We collected data from a large crop of figs on Ficus glandifera var. brachysyce in a Sulawesi rainforest with an unusually high number of Eukoebelea sp. parasites. We found that these parasites have a significant negative correlation with fig seed production as well as with pollinator offspring production. Eukoebelea wasps form the basal genus in subfamily Sycophaginae (Chalcidoidea) and their larval biology is considered unknown. Our analysis suggests that they feed as flower gallers and impose direct costs on the fig tree, but a strategy including the consumption of pollinator larvae cannot be ruled out. We also present baseline data on the composition of the fig wasp community associated with F. glandifera var brachysyce and light trap catch data.

  13. 7 CFR 205.601 - Synthetic substances allowed for use in organic crop production.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 7 Agriculture 3 2011-01-01 2011-01-01 false Synthetic substances allowed for use in organic crop... (CONTINUED) ORGANIC FOODS PRODUCTION ACT PROVISIONS NATIONAL ORGANIC PROGRAM Administrative The National List of Allowed and Prohibited Substances § 205.601 Synthetic substances allowed for use in organic crop...

  14. 7 CFR 205.601 - Synthetic substances allowed for use in organic crop production.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 7 Agriculture 3 2014-01-01 2014-01-01 false Synthetic substances allowed for use in organic crop... (CONTINUED) ORGANIC FOODS PRODUCTION ACT PROVISIONS NATIONAL ORGANIC PROGRAM Administrative The National List of Allowed and Prohibited Substances § 205.601 Synthetic substances allowed for use in organic crop...

  15. 7 CFR 205.601 - Synthetic substances allowed for use in organic crop production.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 7 Agriculture 3 2013-01-01 2013-01-01 false Synthetic substances allowed for use in organic crop... (CONTINUED) ORGANIC FOODS PRODUCTION ACT PROVISIONS NATIONAL ORGANIC PROGRAM Administrative The National List of Allowed and Prohibited Substances § 205.601 Synthetic substances allowed for use in organic crop...

  16. 7 CFR 205.601 - Synthetic substances allowed for use in organic crop production.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 7 Agriculture 3 2012-01-01 2012-01-01 false Synthetic substances allowed for use in organic crop... (CONTINUED) ORGANIC FOODS PRODUCTION ACT PROVISIONS NATIONAL ORGANIC PROGRAM Administrative The National List of Allowed and Prohibited Substances § 205.601 Synthetic substances allowed for use in organic crop...

  17. Soybean crop-water production functions in a humid region across years and soils determined with APEX model

    Treesearch

    Bangbang Zhang; Gary Feng; Lajpat R. Ahuja; Xiangbin Kong; Ying Ouyang; Ardeshir Adeli; Johnie N. Jenkins

    2018-01-01

    Crop production as a function of water use or water applied, called the crop water production function (CWPF), is a useful tool for irrigation planning, design and management. However, these functions are not only crop and variety specific they also vary with soil types and climatic conditions (locations). Derivation of multi-year average CWPFs through field...

  18. Titanium as a Beneficial Element for Crop Production

    PubMed Central

    Lyu, Shiheng; Wei, Xiangying; Chen, Jianjun; Wang, Cun; Wang, Xiaoming; Pan, Dongming

    2017-01-01

    Titanium (Ti) is considered a beneficial element for plant growth. Ti applied via roots or leaves at low concentrations has been documented to improve crop performance through stimulating the activity of certain enzymes, enhancing chlorophyll content and photosynthesis, promoting nutrient uptake, strengthening stress tolerance, and improving crop yield and quality. Commercial fertilizers containing Ti, such as Tytanit and Mg-Titanit, have been used as biostimulants for improving crop production; however, mechanisms underlying the beneficial effects still remain unclear. In this article, we propose that the beneficial roles Ti plays in plants lie in its interaction with other nutrient elements primarily iron (Fe). Fe and Ti have synergistic and antagonistic relationships. When plants experience Fe deficiency, Ti helps induce the expression of genes related to Fe acquisition, thereby enhancing Fe uptake and utilization and subsequently improving plant growth. Plants may have proteins that either specifically or nonspecifically bind with Ti. When Ti concentration is high in plants, Ti competes with Fe for ligands or proteins. The competition could be severe, resulting in Ti phytotoxicity. As a result, the beneficial effects of Ti become more pronounced during the time when plants experience low or deficient Fe supply. PMID:28487709

  19. Delivery of crop pollination services is an insufficient argument for wild pollinator conservation

    PubMed Central

    Kleijn, David; Winfree, Rachael; Bartomeus, Ignasi; Carvalheiro, Luísa G; Henry, Mickaël; Isaacs, Rufus; Klein, Alexandra-Maria; Kremen, Claire; M'Gonigle, Leithen K; Rader, Romina; Ricketts, Taylor H; Williams, Neal M; Lee Adamson, Nancy; Ascher, John S; Báldi, András; Batáry, Péter; Benjamin, Faye; Biesmeijer, Jacobus C; Blitzer, Eleanor J; Bommarco, Riccardo; Brand, Mariëtte R; Bretagnolle, Vincent; Button, Lindsey; Cariveau, Daniel P; Chifflet, Rémy; Colville, Jonathan F; Danforth, Bryan N; Elle, Elizabeth; Garratt, Michael P.D.; Herzog, Felix; Holzschuh, Andrea; Howlett, Brad G; Jauker, Frank; Jha, Shalene; Knop, Eva; Krewenka, Kristin M; Le Féon, Violette; Mandelik, Yael; May, Emily A; Park, Mia G; Pisanty, Gideon; Reemer, Menno; Riedinger, Verena; Rollin, Orianne; Rundlöf, Maj; Sardiñas, Hillary S; Scheper, Jeroen; Sciligo, Amber R; Smith, Henrik G; Steffan-Dewenter, Ingolf; Thorp, Robbin; Tscharntke, Teja; Verhulst, Jort; Viana, Blandina F; Vaissière, Bernard E; Veldtman, Ruan; Westphal, Catrin; Potts, Simon G

    2015-01-01

    There is compelling evidence that more diverse ecosystems deliver greater benefits to people, and these ecosystem services have become a key argument for biodiversity conservation. However, it is unclear how much biodiversity is needed to deliver ecosystem services in a cost-effective way. Here we show that, while the contribution of wild bees to crop production is significant, service delivery is restricted to a limited subset of all known bee species. Across crops, years and biogeographical regions, crop-visiting wild bee communities are dominated by a small number of common species, and threatened species are rarely observed on crops. Dominant crop pollinators persist under agricultural expansion and many are easily enhanced by simple conservation measures, suggesting that cost-effective management strategies to promote crop pollination should target a different set of species than management strategies to promote threatened bees. Conserving the biological diversity of bees therefore requires more than just ecosystem-service-based arguments. PMID:26079893

  20. Delivery of crop pollination services is an insufficient argument for wild pollinator conservation.

    PubMed

    Kleijn, David; Winfree, Rachael; Bartomeus, Ignasi; Carvalheiro, Luísa G; Henry, Mickaël; Isaacs, Rufus; Klein, Alexandra-Maria; Kremen, Claire; M'Gonigle, Leithen K; Rader, Romina; Ricketts, Taylor H; Williams, Neal M; Lee Adamson, Nancy; Ascher, John S; Báldi, András; Batáry, Péter; Benjamin, Faye; Biesmeijer, Jacobus C; Blitzer, Eleanor J; Bommarco, Riccardo; Brand, Mariëtte R; Bretagnolle, Vincent; Button, Lindsey; Cariveau, Daniel P; Chifflet, Rémy; Colville, Jonathan F; Danforth, Bryan N; Elle, Elizabeth; Garratt, Michael P D; Herzog, Felix; Holzschuh, Andrea; Howlett, Brad G; Jauker, Frank; Jha, Shalene; Knop, Eva; Krewenka, Kristin M; Le Féon, Violette; Mandelik, Yael; May, Emily A; Park, Mia G; Pisanty, Gideon; Reemer, Menno; Riedinger, Verena; Rollin, Orianne; Rundlöf, Maj; Sardiñas, Hillary S; Scheper, Jeroen; Sciligo, Amber R; Smith, Henrik G; Steffan-Dewenter, Ingolf; Thorp, Robbin; Tscharntke, Teja; Verhulst, Jort; Viana, Blandina F; Vaissière, Bernard E; Veldtman, Ruan; Ward, Kimiora L; Westphal, Catrin; Potts, Simon G

    2015-06-16

    There is compelling evidence that more diverse ecosystems deliver greater benefits to people, and these ecosystem services have become a key argument for biodiversity conservation. However, it is unclear how much biodiversity is needed to deliver ecosystem services in a cost-effective way. Here we show that, while the contribution of wild bees to crop production is significant, service delivery is restricted to a limited subset of all known bee species. Across crops, years and biogeographical regions, crop-visiting wild bee communities are dominated by a small number of common species, and threatened species are rarely observed on crops. Dominant crop pollinators persist under agricultural expansion and many are easily enhanced by simple conservation measures, suggesting that cost-effective management strategies to promote crop pollination should target a different set of species than management strategies to promote threatened bees. Conserving the biological diversity of bees therefore requires more than just ecosystem-service-based arguments.

  1. Energy crops on landfills: functional, environmental, and costs analysis of different landfill configurations.

    PubMed

    Pivato, Alberto; Garbo, Francesco; Moretto, Marco; Lavagnolo, Maria Cristina

    2018-02-09

    The cultivation of energy crops on landfills represents an important challenge for the near future, as the possibility to use devalued sites for energy production is very attractive. In this study, four scenarios have been assessed and compared with respect to a reference case defined for northern Italy. The scenarios were defined taking into consideration current energy crops issues. In particular, the first three scenarios were based on energy maximisation, phytotreatment ability, and environmental impact, respectively. The fourth scenario was a combination of these characteristics emphasised by the previous scenarios. A multi-criteria analysis, based on economic, energetic, and environmental aspects, was performed. From the analysis, the best scenario resulted to be the fourth, with its ability to pursue several objectives simultaneously and obtain the best score relatively to both environmental and energetic criteria. On the contrary, the economic criterion emerges as weak, as all the considered scenarios showed some limits from this point of view. Important indications for future designs can be derived. The decrease of leachate production due to the presence of energy crops on the top cover, which enhances evapotranspiration, represents a favourable but critical aspect in the definition of the results.

  2. Using cover crops and cropping systems for nitrogen management

    USDA-ARS?s Scientific Manuscript database

    The reasons for using cover crops and optimized cropping sequences to manage nitrogen (N) are to maximize economic returns, improve soil quality and productivity, and minimize losses of N that might adversely impact environmental quality. Cover crops and cropping systems’ effects on N management are...

  3. 7 CFR 205.601 - Synthetic substances allowed for use in organic crop production.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... or soil. (2) Boric acid—structural pest control, no direct contact with organic food or crops. (3... 7 Agriculture 3 2010-01-01 2010-01-01 false Synthetic substances allowed for use in organic crop... (CONTINUED) ORGANIC FOODS PRODUCTION ACT PROVISIONS NATIONAL ORGANIC PROGRAM Administrative The National List...

  4. Improving crop productivity and resource use efficiency to ensure food security and environmental quality in China.

    PubMed

    Fan, Mingsheng; Shen, Jianbo; Yuan, Lixing; Jiang, Rongfeng; Chen, Xinping; Davies, William J; Zhang, Fusuo

    2012-01-01

    In recent years, agricultural growth in China has accelerated remarkably, but most of this growth has been driven by increased yield per unit area rather than by expansion of the cultivated area. Looking towards 2030, to meet the demand for grain and to feed a growing population on the available arable land, it is suggested that annual crop production should be increased to around 580 Mt and that yield should increase by at least 2% annually. Crop production will become more difficult with climate change, resource scarcity (e.g. land, water, energy, and nutrients) and environmental degradation (e.g. declining soil quality, increased greenhouse gas emissions, and surface water eutrophication). To pursue the fastest and most practical route to improved yield, the near-term strategy is application and extension of existing agricultural technologies. This would lead to substantial improvement in crop and soil management practices, which are currently suboptimal. Two pivotal components are required if we are to follow new trajectories. First, the disciplines of soil management and agronomy need to be given increased emphasis in research and teaching, as part of a grand food security challenge. Second, continued genetic improvement in crop varieties will be vital. However, our view is that the biggest gains from improved technology will come most immediately from combinations of improved crops and improved agronomical practices. The objectives of this paper are to summarize the historical trend of crop production in China and to examine the main constraints to the further increase of crop productivity. The paper provides a perspective on the challenge faced by science and technology in agriculture which must be met both in terms of increased crop productivity but also in increased resource use efficiency and the protection of environmental quality.

  5. Valuing productivity costs in a changing macroeconomic environment: the estimation of colorectal cancer productivity costs using the friction cost approach.

    PubMed

    Hanly, Paul; Koopmanschap, Marc; Sharp, Linda

    2016-06-01

    The friction cost approach (FCA) has been proposed as an alternative to the human capital approach for productivity cost valuation. However, FCA estimates are context dependent and influenced by extant macroeconomic conditions. We applied the FCA to estimate colorectal cancer labor productivity costs and assessed the impact of a changing macroeconomic environment on these estimates. Data from colorectal cancer survivors (n = 159) derived from a postal survey undertaken in Ireland March 2010 to January 2011 were combined with national wage data, population-level survival data, and occupation-specific friction periods to calculate temporary and permanent disability, and premature mortality costs using the FCA. The effects of changing labor market conditions between 2006 and 2013 on the friction period were modeled in scenario analyses. Costs were valued in 2008 euros. In the base-case, the total FCA per-person productivity cost for incident colorectal cancer patients of working age at diagnosis was €8543. In scenario 1 (a 2.2 % increase in unemployment), the fall in the friction period caused total productivity costs to decrease by up to 18 % compared to base-case estimates. In scenario 2 (a 9.2 % increase in unemployment), the largest decrease in productivity cost was up to 65 %. Adjusting for the vacancy rate reduced the effect of unemployment on the cost results. The friction period used in calculating labor productivity costs greatly affects the derived estimates; this friction period requires reassessment following changes in labor market conditions. The influence of changes in macroeconomic conditions on FCA-derived cost estimates may be substantial.

  6. Government regulation and public opposition create high additional costs for field trials with GM crops in Switzerland.

    PubMed

    Bernauer, Thomas; Tribaldos, Theresa; Luginbühl, Carolin; Winzeler, Michael

    2011-12-01

    Field trials with GM crops are not only plant science experiments. They are also social experiments concerning the implications of government imposed regulatory constraints and public opposition for scientific activity. We assess these implications by estimating additional costs due to government regulation and public opposition in a recent set of field trials in Switzerland. We find that for every Euro spent on research, an additional 78 cents were spent on security, an additional 31 cents on biosafety, and an additional 17 cents on government regulatory supervision. Hence the total additional spending due to government regulation and public opposition was around 1.26 Euros for every Euro spent on the research per se. These estimates are conservative; they do not include additional costs that are hard to monetize (e.g. stakeholder information and dialogue activities, involvement of various government agencies). We conclude that further field experiments with GM crops in Switzerland are unlikely unless protected sites are set up to reduce these additional costs.

  7. The Impact of Insects on Second-Year Cone Crops in Red Pine Seed-Production Areas

    Treesearch

    William J. Mattson

    1968-01-01

    Second-year cone crops in red pine seed-production areas have been severely damaged by five species of insects. Control of the two most destructive pests could increase present seed yields in most areas by at least 50 percent. Some seed-production areas may not produce harvestable seed crops until cone-insect populations are suppressed.

  8. A Spatial Allocation Procedure to Downscale Regional Crop Production Estimates from an Integrated Assessment Model

    NASA Astrophysics Data System (ADS)

    Moulds, S.; Djordjevic, S.; Savic, D.

    2017-12-01

    The Global Change Assessment Model (GCAM), an integrated assessment model, provides insight into the interactions and feedbacks between physical and human systems. The land system component of GCAM, which simulates land use activities and the production of major crops, produces output at the subregional level which must be spatially downscaled in order to use with gridded impact assessment models. However, existing downscaling routines typically consider cropland as a homogeneous class and do not provide information about land use intensity or specific management practices such as irrigation and multiple cropping. This paper presents a spatial allocation procedure to downscale crop production data from GCAM to a spatial grid, producing a time series of maps which show the spatial distribution of specific crops (e.g. rice, wheat, maize) at four input levels (subsistence, low input rainfed, high input rainfed and high input irrigated). The model algorithm is constrained by available cropland at each time point and therefore implicitly balances extensification and intensification processes in order to meet global food demand. It utilises a stochastic approach such that an increase in production of a particular crop is more likely to occur in grid cells with a high biophysical suitability and neighbourhood influence, while a fall in production will occur more often in cells with lower suitability. User-supplied rules define the order in which specific crops are downscaled as well as allowable transitions. A regional case study demonstrates the ability of the model to reproduce historical trends in India by comparing the model output with district-level agricultural inventory data. Lastly, the model is used to predict the spatial distribution of crops globally under various GCAM scenarios.

  9. Evaluating a satellite-based seasonal evapotranspiration product and identifying its relationship with other satellite-derived products and crop yield: A case study for Ethiopia

    USGS Publications Warehouse

    Tadesse, Tsegaye; Senay, Gabriel B.; Berhan, Getachew; Regassa, Teshome; Beyene, Shimelis

    2015-01-01

    Satellite-derived evapotranspiration anomalies and normalized difference vegetation index (NDVI) products from Moderate Resolution Imaging Spectroradiometer (MODIS) data are currently used for African agricultural drought monitoring and food security status assessment. In this study, a process to evaluate satellite-derived evapotranspiration (ETa) products with a geospatial statistical exploratory technique that uses NDVI, satellite-derived rainfall estimate (RFE), and crop yield data has been developed. The main goal of this study was to evaluate the ETa using the NDVI and RFE, and identify a relationship between the ETa and Ethiopia’s cereal crop (i.e., teff, sorghum, corn/maize, barley, and wheat) yields during the main rainy season. Since crop production is one of the main factors affecting food security, the evaluation of remote sensing-based seasonal ETa was done to identify the appropriateness of this tool as a proxy for monitoring vegetation condition in drought vulnerable and food insecure areas to support decision makers. The results of this study showed that the comparison between seasonal ETa and RFE produced strong correlation (R2 > 0.99) for all 41 crop growing zones in Ethiopia. The results of the spatial regression analyses of seasonal ETa and NDVI using Ordinary Least Squares and Geographically Weighted Regression showed relatively weak yearly spatial relationships (R2 < 0.7) for all cropping zones. However, for each individual crop zones, the correlation between NDVI and ETa ranged between 0.3 and 0.84 for about 44% of the cropping zones. Similarly, for each individual crop zones, the correlation (R2) between the seasonal ETa anomaly and de-trended cereal crop yield was between 0.4 and 0.82 for 76% (31 out of 41) of the crop growing zones. The preliminary results indicated that the ETa products have a good predictive potential for these 31 identified zones in Ethiopia. Decision makers may potentially use ETa products for monitoring cereal

  10. Evaluating a satellite-based seasonal evapotranspiration product and identifying its relationship with other satellite-derived products and crop yield: A case study for Ethiopia

    NASA Astrophysics Data System (ADS)

    Tadesse, Tsegaye; Senay, Gabriel B.; Berhan, Getachew; Regassa, Teshome; Beyene, Shimelis

    2015-08-01

    Satellite-derived evapotranspiration anomalies and normalized difference vegetation index (NDVI) products from Moderate Resolution Imaging Spectroradiometer (MODIS) data are currently used for African agricultural drought monitoring and food security status assessment. In this study, a process to evaluate satellite-derived evapotranspiration (ETa) products with a geospatial statistical exploratory technique that uses NDVI, satellite-derived rainfall estimate (RFE), and crop yield data has been developed. The main goal of this study was to evaluate the ETa using the NDVI and RFE, and identify a relationship between the ETa and Ethiopia's cereal crop (i.e., teff, sorghum, corn/maize, barley, and wheat) yields during the main rainy season. Since crop production is one of the main factors affecting food security, the evaluation of remote sensing-based seasonal ETa was done to identify the appropriateness of this tool as a proxy for monitoring vegetation condition in drought vulnerable and food insecure areas to support decision makers. The results of this study showed that the comparison between seasonal ETa and RFE produced strong correlation (R2 > 0.99) for all 41 crop growing zones in Ethiopia. The results of the spatial regression analyses of seasonal ETa and NDVI using Ordinary Least Squares and Geographically Weighted Regression showed relatively weak yearly spatial relationships (R2 < 0.7) for all cropping zones. However, for each individual crop zones, the correlation between NDVI and ETa ranged between 0.3 and 0.84 for about 44% of the cropping zones. Similarly, for each individual crop zones, the correlation (R2) between the seasonal ETa anomaly and de-trended cereal crop yield was between 0.4 and 0.82 for 76% (31 out of 41) of the crop growing zones. The preliminary results indicated that the ETa products have a good predictive potential for these 31 identified zones in Ethiopia. Decision makers may potentially use ETa products for monitoring cereal crop

  11. Evaluation of crop production, trade, and consumption from the perspective of water resources: a case study of the Hetao irrigation district, China, for 1960-2010.

    PubMed

    Liu, Jing; Sun, Shikun; Wu, Pute; Wang, Yubao; Zhao, Xining

    2015-02-01

    The integration of water footprints and virtual water flows allows the mapping of the links between production, trade, and consumption and could potentially help to alleviate water scarcity and improve water management. We evaluated the water footprints and virtual water flows of crop production, consumption, and trade and their influencing factors in the Hetao irrigation district in China for 1960-2010. The water footprint of crop production and the export of virtual water fluctuated but tended to increase during this period and were influenced mainly by agricultural factors such as crop yield, irrigation efficiency, and area sown. The water footprint of crop consumption and the import of virtual water increased during 1960-1979 and decreased during 1980-2010 and were influenced by socio-economic factors such as total population, the retail-price index, and the proportion of the population in urban areas. Most of the water footprint of production was exported to other areas, which added to the pressure on local water systems. The import of virtual water led to a saving of water for the Hetao irrigation district, while its share of the water footprint of consumption has decreased significantly since 1977. An increase in irrigation efficiency can alleviate water scarcity, and its application should be coupled with measures that constrain the continued expansion of agriculture. Full-cost pricing of irrigation water was an effective policy tool for its management. Re-shaping regional water-production and water-trade nexuses by changing crop structures could provide alternative opportunities for addressing the problems of local water scarcity, but the trade-offs involved should first be assessed. Copyright © 2014 Elsevier B.V. All rights reserved.

  12. Management of Lignite Fly Ash for Improving Soil Fertility and Crop Productivity

    NASA Astrophysics Data System (ADS)

    Ram, Lal C.; Srivastava, Nishant K.; Jha, Sangeet K.; Sinha, Awadhesh K.; Masto, Reginald E.; Selvi, Vetrivel A.

    2007-09-01

    Lignite fly ash (LFA), being alkaline and endowed with excellent pozzolanic properties, a silt loam texture, and plant nutrients, has the potential to improve soil quality and productivity. Long-term field trials with groundnut, maize, and sun hemp were carried out to study the effect of LFA on growth and yield. Before crop I was sown, LFA was applied at various doses with and without press mud (an organic waste from the sugar industry, used as an amendment and source of nutrients). LFA with and without press mud was also applied before crops III and V were cultivated. Chemical fertilizer, along with gypsum, humic acid, and biofertilizer, was applied in all treatments, including the control. With one-time and repeat applications of LFA (with and without press mud), yield increased significantly (7.0-89.0%) in relation to the control crop. The press mud enhanced the yield (3.0-15.0%) with different LFA applications. The highest yield LFA dose was 200 t/ha for one-time and repeat applications, the maximum yield being with crop III (combination treatment). One-time and repeat application of LFA (alone and in combination with press mud) improved soil quality and the nutrient content of the produce. The highest dose of LFA (200 t/ha) with and without press mud showed the best residual effects (eco-friendly increases in the yield of succeeding crops). Some increase in trace- and heavy-metal contents and in the level of γ-emitters in soil and crop produce, but well within permissible limits, was observed. Thus, LFA can be used on a large scale to boost soil fertility and productivity with no adverse effects on the soil or crops, which may solve the problem of bulk disposal of fly ash in an eco-friendly manner.

  13. Androgenesis in recalcitrant solanaceous crops.

    PubMed

    Seguí-Simarro, José M; Corral-Martínez, Patricia; Parra-Vega, Verónica; González-García, Beatriz

    2011-05-01

    Tomato, eggplant, and pepper are three solanaceous crops of outstanding importance worldwide. For hybrid seed production in these species, a fast and cheap method to obtain pure (homozygous) lines is a priority. Traditionally, pure lines are produced by classical inbreeding and selection techniques, which are time consuming (several years) and costly. Alternatively, it has become possible to accelerate the production of homozygous lines through a biotechnological approach: the induction of androgenesis to generate doubled haploid (homozygous) plants. This biotechnological in vitro tool reduces the process to only one generation, which implies important time and costs savings. These facts make androgenic doubled haploids the choice in a number of important crops where the methodology is well set up. Unfortunately, recalcitrant solanaceous crops such as tomato, eggplant, and pepper are still far from an efficient and reliable technology to be applied on a routine basis to different genotypes in breeding programs. In eggplant and pepper, only anther cultures are known to work relatively well. Unfortunately, a more efficient and promising technique, the culture of isolated microspores, is not sufficiently developed yet. In tomato, none of these methods is available nowadays. However, recent advances in the knowledge of embryo development are filling the gaps and opening new ways to achieve the final goal of an efficient protocol in these three recalcitrant species. In this review, we outline the state of the art on androgenic induction in tomato, eggplant, and pepper, and postulate new experimental ways in order to overcome current limitations.

  14. A Demonstration Project in New York and Virginia: Retrofitting Cost-Effective Roll-over Protective Structures (CROPS) on Tractors.

    PubMed

    Hard, D L; McKenzie, E A; Cantis, D; May, J; Sorensen, J; Bayes, B; Madden, E; Wyckoff, S; Stone, B; Maass, J

    2015-07-01

    The NIOSH cost-effective roll-over protective structure (CROPS) demonstration project sought to determine whether three prototype roll-over protective structures (ROPS) designed to be retrofitted on Ford 8N, Ford 3000, Ford 4000, and Massey Ferguson 135 tractors could be installed in the field and whether they would be acceptable by the intended end users (farmers). There were a total of 50 CROPS. demonstrators (25 in New York and 25 in Virginia), with 45 observers attending the New York CROPS demonstrations and 36 observers attending the Virginia CROPS demonstrations, for a total of 70 participants in New York and 61 in Virginia. The oldest retrofitted tractors were 77 to 62 years old, while the newest retrofitted tractors were 40 to 37 years old. The most frequently retrofitted tractor in the CROPS demonstration project was a Ford 3000 series tractor (n = 19; 38%), followed by Ford 4000 (n = 11; 22%), Massey Ferguson 135 (n = 11; 22%), and Ford 8N (n = 9; 18%). A major issue of CROPS retrofitting was the rear wheel fenders. The effort involved in disassembling the fenders (removing the old bolts was often faster by cutting them with a torch), modifying the fender mounting brackets, and then reinstalling the fenders with the CROPS generally required the most time. In addition, various other semi-permanent equipment attachments, such as front-end loaders, required additional time and effort to fit with the CROPS. Demonstrators were asked to rank the reasons why they had not retrofitted their tractors with ROPS until they had enrolled in the CROPS demonstration program. ROPS "cost too much" was ranked as the primary reason for participants in both states (80% for New York and 88% for Virginia). The second highest ranked reasons were "ROPS wasn't available" for Virginia (80%) and "hassle to find ROPS" for New York (69%). The third highest ranked reasons were "not enough time to find ROPS" for New York (67%) and "hassle to find ROPS" for Virginia (79%). All

  15. Impact of crop residue management on crop production and soil chemistry after seven years of crop rotation in temperate climate, loamy soils.

    PubMed

    Hiel, Marie-Pierre; Barbieux, Sophie; Pierreux, Jérôme; Olivier, Claire; Lobet, Guillaume; Roisin, Christian; Garré, Sarah; Colinet, Gilles; Bodson, Bernard; Dumont, Benjamin

    2018-01-01

    Society is increasingly demanding a more sustainable management of agro-ecosystems in a context of climate change and an ever growing global population. The fate of crop residues is one of the important management aspects under debate, since it represents an unneglectable quantity of organic matter which can be kept in or removed from the agro-ecosystem. The topic of residue management is not new, but the need for global conclusion on the impact of crop residue management on the agro-ecosystem linked to local pedo-climatic conditions has become apparent with an increasing amount of studies showing a diversity of conclusions. This study specifically focusses on temperate climate and loamy soil using a seven-year data set. Between 2008 and 2016, we compared four contrasting residue management strategies differing in the amount of crop residues returned to the soil (incorporation vs. exportation of residues) and in the type of tillage (reduced tillage (10 cm depth) vs. conventional tillage (ploughing at 25 cm depth)) in a field experiment. We assessed the impact of the crop residue management on crop production (three crops-winter wheat, faba bean and maize-cultivated over six cropping seasons), soil organic carbon content, nitrate ([Formula: see text]), phosphorus (P) and potassium (K) soil content and uptake by the crops. The main differences came primarily from the tillage practice and less from the restitution or removal of residues. All years and crops combined, conventional tillage resulted in a yield advantage of 3.4% as compared to reduced tillage, which can be partly explained by a lower germination rate observed under reduced tillage, especially during drier years. On average, only small differences were observed for total organic carbon (TOC) content of the soil, but reduced tillage resulted in a very clear stratification of TOC and also of P and K content as compared to conventional tillage. We observed no effect of residue management on the [Formula: see

  16. Agricultural sectoral demand and crop productivity response across the world

    NASA Astrophysics Data System (ADS)

    Johnston, M.; Ray, D. K.; Cassidy, E. S.; Foley, J. A.

    2013-12-01

    With an increasing and increasingly affluent population, humans will need to roughly double agricultural production by 2050. Continued yield growth forms the foundation of all future strategies aiming to increase agricultural production while slowing or eliminating cropland expansion. However, a recent analysis by one of our co-authors has shown that yield trends in many important maize, wheat and rice growing regions have begun stagnating or declining from the highs seen during the green revolution (Ray et al. 2013). Additional research by our group has shown that nearly 50% of new agricultural production since the 1960s has gone not to direct human consumption, but instead to animal feed and other industrial uses. Our analysis for GLP looks at the convergence of these two trends by examining time series utilization data for 16 of the biggest crops to determine how demand from different sectors has shaped our land-use and intensification strategies around the world. Before rushing headlong into the next agricultural doubling, it would be prudent to first consult our recent agricultural history to better understand what was driving past changes in production. Using newly developed time series dataset - a fusion of cropland maps with historic agricultural census data gathered from around the world - we can examine yield and harvested area trends over the last half century for 16 top crops. We combine this data with utilization rates from the FAO Food Balance Sheet to see how demand from different sectors - food, feed, and other - has influenced long-term growth trends from the green revolution forward. We will show how intensification trends over time and across regions have grown or contracted depending on what is driving the change in production capacity. Ray DK, Mueller ND, West PC, Foley JA (2013) Yield Trends Are Insufficient to Double Global Crop Production by 2050. PLoS ONE 8(6): e66428. doi:10.1371/journal.pone.0066428

  17. Interannual variability of crop water footprint

    NASA Astrophysics Data System (ADS)

    Tuninetti, M.; Tamea, S.; Laio, F.; Ridolfi, L.

    2016-12-01

    The crop water footprint, CWF, is a useful tool to investigate the water-food nexus, since it measures the water requirement for crop production. Heterogeneous spatial patterns of climatic conditions and agricultural practices have inspired a flourishing literature on the geographic assessment of CWF, mostly referred to a fixed (time-averaged) period. However, given that both climatic conditions and crop yield may vary substantially over time, also the CWF temporal dynamics need to be addressed. As other studies have done, we base the CWF variability on yield, while keeping the crop evapotranspiration constant over time. As a new contribution, we prove the feasibility of this approach by comparing these CWF estimates with the results obtained with a full model considering variations of crop evapotranspiration: overall, the estimates compare well showing high coefficients of determination that read 0.98 for wheat, 0.97 for rice, 0.97 for maize, and 0.91 for soybean. From this comparison, we derive also the precision of the method, which is around ±10% that is higher than the precision of the model used to evaluate the crop evapotranspiration (i.e., ±30%). Over the period between 1961 and 2013, the CWF of the most cultivated grains has sharply decreased on a global basis (i.e., -68% for wheat, -62% for rice, -66% for maize, and -52% for soybean), mainly driven by enhanced yield values. The higher water use efficiency in crop production implies a reduced virtual displacement of embedded water per ton of traded crop and as a result, the temporal variability of virtual water trade is different if considering constant or time-varying CWF. The proposed yield-based approach to estimate the CWF variability implies low computational costs and requires limited input data, thus, it represents a promising tool for time-dependent water footprint assessments.

  18. The Use of Cover Crops as Climate-Smart Management in Midwest Cropping Systems

    NASA Astrophysics Data System (ADS)

    Basche, A.; Miguez, F.; Archontoulis, S.; Kaspar, T.

    2014-12-01

    The observed trends in the Midwestern United States of increasing rainfall variability will likely continue into the future. Events such as individual days of heavy rain as well as seasons of floods and droughts have large impacts on agricultural productivity and the natural resource base that underpins it. Such events lead to increased soil erosion, decreased water quality and reduced corn and soybean yields. Winter cover crops offer the potential to buffer many of these impacts because they essentially double the time for a living plant to protect and improve the soil. However, at present, cover crops are infrequently utilized in the Midwest (representing 1-2% of row cropped land cover) in particular due to producer concerns over higher costs and management, limited time and winter growing conditions as well as the potential harm to corn yields. In order to expand their use, there is a need to quantify how cover crops impact Midwest cropping systems in the long term and namely to understand how to optimize the benefits of cover crops while minimizing their impacts on cash crops. We are working with APSIM, a cropping systems platform, to specifically quantify the long term future impacts of cover crop incorporation in corn-based cropping systems. In general, our regional analysis showed only minor changes to corn and soybean yields (<1% differences) when a cover crop was or was not included in the simulation. Further, a "bad spring" scenario (where every third year had an abnormally wet/cold spring and cover crop termination and planting cash crop were within one day) did not result in any major changes to cash crop yields. Through simulations we estimate an average increase of 4-9% organic matter improvement in the topsoil and an average decrease in soil erosion of 14-32% depending on cover crop planting date and growth. Our work is part of the Climate and Corn-based Cropping Systems Coordinated Agriculture Project (CSCAP), a collaboration of eleven Midwestern

  19. Hot spots of crop production changes at 1.5°C and 2°C

    NASA Astrophysics Data System (ADS)

    Schleussner, C. F.; Deryng, D.; Mueller, C.; Elliott, J. W.; Saeed, F.; Folberth, C.; Liu, W.; Wang, X.; Pugh, T.

    2017-12-01

    Studying changes in global and regional crop production is central for assessing the benefits of limiting global average temperature below 1.5ºC versus 2ºC. Projections of future climatic impacts on crop production are commonly focussed on focussing on mean changes. However, substantial risks are posed by extreme weather events such as heat waves and droughts that are of great relevance for imminent policy relevant questions such as price shocks or food security. Preliminary research on the benefits of keeping global average temperature increase below 1.5ºC versus 2ºC above pre-industrial levels has indicated that changes in extreme weather event occurrences will be more pronounced than changes in the mean climate. Here we will present results of crop yield projections for a set of global gridded crop models (GGCMs) for four major staple crops at 1.5°C and 2°C warming above pre-industrial levels using climate forcing data from the Half a degree Additional warming, Prognosis and Projected Impacts (HAPPI) project. We will assess changes in crop production on the global and regional level, and identify hot spots of change. The unique multi-ensemble setup allows to identify changes in extreme yield losses with multi-year to multi-decadal return periods, and thus elucidate the consequences for global and regional food security.

  20. Trade in the US and Mexico helps reduce environmental costs of agriculture

    NASA Astrophysics Data System (ADS)

    Martinez-Melendez, Luz A.; Bennett, Elena M.

    2016-05-01

    Increasing international crop trade has enlarged global shares of cropland, water and fertilizers used to grow crops for export. Crop trade can reduce the environmental burden on importing countries, which benefit from embedded environmental resources in imported crops, and from avoided environmental impacts of production in their territory. International trade can also reduce the universal environmental impact of food production if crops are grown where they are produced in the most environmentally efficient way. We compared production efficiencies for the same crops in the US and Mexico to determine whether current crop trade between these two countries provides an overall benefit to the environment. Our economic and environmental accounting for the key traded crops from 2010 to 2014 shows that exports to Mexico are just 3% (∼16 thousand Gg) of the total production of these crops in the US, and exports to US represent roughly 0.13% (∼46 Gg) of Mexican total production of the same crops. Yields were higher in US than Mexico for all crops except wheat. Use of nitrogen fertilizer was higher in US than in Mexico for all crops except corn. Current trade reduces some, but not all, environmental costs of agriculture. A counterfactual trade scenario showed that an overall annual reduction in cultivated land (∼371 thousand ha), water use (∼923 million m3), fertilizer use (∼122 Gg; ∼68 Gg nitrogen) and pollution (∼681 tonnes of N2O emissions to the atmosphere and ∼511 tonnes of leached nitrogen) can be achieved by changing the composition of food products traded. In this case, corn, soybeans and rice should be grown in the US, while wheat, sorghum and barley should be grown in Mexico. Assigning greater economic weight to the environmental costs of agriculture might improve the balance of trade to be more universally beneficial, environmentally.

  1. Effect of Manure vs. Fertilizer Inputs on Productivity of Forage Crop Models

    PubMed Central

    Annicchiarico, Giovanni; Caternolo, Giovanni; Rossi, Emanuela; Martiniello, Pasquale

    2011-01-01

    Manure produced by livestock activity is a dangerous product capable of causing serious environmental pollution. Agronomic management practices on the use of manure may transform the target from a waste to a resource product. Experiments performed on comparison of manure with standard chemical fertilizers (CF) were studied under a double cropping per year regime (alfalfa, model I; Italian ryegrass-corn, model II; barley-seed sorghum, model III; and horse-bean-silage sorghum, model IV). The total amount of manure applied in the annual forage crops of the model II, III and IV was 158, 140 and 80 m3 ha−1, respectively. The manure applied to soil by broadcast and injection procedure provides an amount of nitrogen equal to that supplied by CF. The effect of manure applications on animal feeding production and biochemical soil characteristics was related to the models. The weather condition and manures and CF showed small interaction among treatments. The number of MFU ha−1 of biomass crop gross product produced in autumn and spring sowing models under manure applications was 11,769, 20,525, 11,342, 21,397 in models I through IV, respectively. The reduction of MFU ha−1 under CF ranges from 10.7% to 13.2% those of the manure models. The effect of manure on organic carbon and total nitrogen of topsoil, compared to model I, stressed the parameters as CF whose amount was higher in models II and III than model IV. In term of percentage the organic carbon and total nitrogen of model I and treatment with manure was reduced by about 18.5 and 21.9% in model II and model III and 8.8 and 6.3% in model IV, respectively. Manure management may substitute CF without reducing gross production and sustainability of cropping systems, thus allowing the opportunity to recycle the waste product for animal forage feeding. PMID:21776208

  2. Opportunistic Market-Driven Regional Shifts of Cropping Practices Reduce Food Production Capacity of China

    NASA Astrophysics Data System (ADS)

    Yuan, Wenping; Liu, Shuguang; Liu, Wei; Zhao, Shuqing; Dong, Wenjie; Tao, Fulu; Chen, Min; Lin, Hui

    2018-04-01

    China is facing the challenge of feeding a growing population with the declining cropland and increasing shortage of water resources under the changing climate. This study identified that the opportunistic profit-driven shifts of planting areas and crop species composition have strongly reduced the food production capacity of China. First, the regional cultivation patterns of major crops in China have substantially shifted during the past five decades. Southeast and South China, the regions with abundant water resources and fewer natural disasters, have lost large planting areas of cropland in order to pursue industry and commerce. Meanwhile, Northeast and Northwest China, the regions with low water resources and frequent natural disasters, have witnessed increases in planting areas. These macroshifts have reduced the national food production by 1.02% per year. The lost grain production would have been enough to feed 13 million people. Second, the spatial shifts have been accompanied by major changes in crop species composition, with substantial increases in planting area and production of maize, due to its low water consumption and high economic returns. Consequently, the stockpile of maize in China has accounted for more than half of global stockpile, and the stock to use ratio of maize in China has exceeded the reliable level. Market-driven regional shifts of cropping practices have resulted in larger irrigation requirements and aggravated environmental stresses. Our results highlighted the need for Chinese food policies to consider the spatial shifts in cultivation, and the planting crop compositions limited by regional water resources and climate change.

  3. Comparing the cost-effectiveness of water conservation policies in a depleting aquifer:A dynamic analysis of the Kansas High Plains

    USDA-ARS?s Scientific Manuscript database

    This research analyzes two groundwater conservation policies in the Kansas High Plains located within the Ogallala aquifer: 1) cost-share assistance to increase irrigation efficiency; and 2) incentive payments to convert irrigated crop production to dryland crop production. To compare the cost-effec...

  4. Economic Benefits of Improved Information on Worldwide Crop Production: An Optimal Decision Model of Production and Distribution with Application to Wheat, Corn, and Soybeans

    NASA Technical Reports Server (NTRS)

    Andrews, J.

    1977-01-01

    An optimal decision model of crop production, trade, and storage was developed for use in estimating the economic consequences of improved forecasts and estimates of worldwide crop production. The model extends earlier distribution benefits models to include production effects as well. Application to improved information systems meeting the goals set in the large area crop inventory experiment (LACIE) indicates annual benefits to the United States of $200 to $250 million for wheat, $50 to $100 million for corn, and $6 to $11 million for soybeans, using conservative assumptions on expected LANDSAT system performance.

  5. A probabilistic model framework for evaluating year-to-year variation in crop productivity

    NASA Astrophysics Data System (ADS)

    Yokozawa, M.; Iizumi, T.; Tao, F.

    2008-12-01

    Most models describing the relation between crop productivity and weather condition have so far been focused on mean changes of crop yield. For keeping stable food supply against abnormal weather as well as climate change, evaluating the year-to-year variations in crop productivity rather than the mean changes is more essential. We here propose a new framework of probabilistic model based on Bayesian inference and Monte Carlo simulation. As an example, we firstly introduce a model on paddy rice production in Japan. It is called PRYSBI (Process- based Regional rice Yield Simulator with Bayesian Inference; Iizumi et al., 2008). The model structure is the same as that of SIMRIW, which was developed and used widely in Japan. The model includes three sub- models describing phenological development, biomass accumulation and maturing of rice crop. These processes are formulated to include response nature of rice plant to weather condition. This model inherently was developed to predict rice growth and yield at plot paddy scale. We applied it to evaluate the large scale rice production with keeping the same model structure. Alternatively, we assumed the parameters as stochastic variables. In order to let the model catch up actual yield at larger scale, model parameters were determined based on agricultural statistical data of each prefecture of Japan together with weather data averaged over the region. The posterior probability distribution functions (PDFs) of parameters included in the model were obtained using Bayesian inference. The MCMC (Markov Chain Monte Carlo) algorithm was conducted to numerically solve the Bayesian theorem. For evaluating the year-to-year changes in rice growth/yield under this framework, we firstly iterate simulations with set of parameter values sampled from the estimated posterior PDF of each parameter and then take the ensemble mean weighted with the posterior PDFs. We will also present another example for maize productivity in China. The

  6. Recycle of Inorganic Nutrients for Hydroponic Crop Production Following Incineration of Inedible Biomass

    NASA Technical Reports Server (NTRS)

    Bubenheim, David L.; Wignarajah, Kanapathipillai; Kliss, Mark H. (Technical Monitor)

    1996-01-01

    Recovery of resources from waste streams is essential for future implementation and reliance on a regenerative life support system. The major waste streams of concern are from human activities and plant wastes. Carbon, water and inorganics are the primary desired raw materials of interest. The goal of resource recovery is maintenance of product quality to insure support of reliable and predictable levels of life support function performance by the crop plant component. Further, these systems must be maintained over extended periods of time, requiring maintenance of nutrient solutions to avoid toxicity and deficiencies. Today, reagent grade nutrients are used to make nutrient solutions for hydroponic culture and these solutions are frequently changed during the life cycle or sometimes managed for only one crop life cycle. The focus of this study was to determine the suitability of the ash product following incineration of inedible biomass as a source of inorganic nutrients for hydroponic crop production. Inedible wheat biomass was incinerated and ash quality characterized. The incinerator ash was dissolved in adequate nitric acid to establish a consistent nitrogen concentration in all nutrient solution treatments. Four experimental nutrient treatments were included: control, ash only, ash supplemented to match control, and ash only quality formulated with reagent grade chemicals. When nutrient solutions are formulated using only ash following-incineration of inedible biomass, a balance in solution is established representing elemental retention following incineration and nutrient proportions present in the original biomass. The resulting solution is not identical to the control. This imbalance resulted in suppression of crop growth. When the ash is supplemented with nutrients to establish the same balance as in the control, growth is identical to the control. The ash appears to carry no phytotoxic materials. Growth in solution formulated with reagent grade chemicals

  7. The net return from animal activity in agro-ecosystems: trading off benefits from ecosystem services against costs from crop damage.

    PubMed

    Luck, Gary W

    2013-01-01

    Animals provide benefits to agriculture through the provision of ecosystem services, but also inflict costs such as damaging crops. These benefits and costs are mostly examined independently, rather than comparing the trade-offs of animal activity in the same system and quantifying the net return from beneficial minus detrimental activities. Here, I examine the net return associated with the activity of seed-eating birds in almond orchards by quantifying the economic costs and benefits of bird consumption of almonds. Pre-harvest, the consumption of harvestable almonds by birds cost growers AUD$57.50 ha (-1) when averaged across the entire plantation. Post-harvest, the same bird species provide an ecosystem service by removing mummified nuts from trees that growers otherwise need to remove to reduce threats from fungal infection or insect pest infestations. The value of this ecosystem service ranged from AUD$82.50 ha (-1)-$332.50 ha (-1) based on the replacement costs of mechanical or manual removal of mummified nuts, respectively. Hence, bird consumption of almonds yielded a positive net return of AUD$25-$275 ha (-1) averaged across the entire plantation. However, bird activity varied spatially resulting in positive net returns occurring primarily at the edges of crops where activity was higher, compared to negative net returns in crop interiors. Moreover, partial mummy nut removal by birds meant that bird activity may only reduce costs to growers rather than replace these costs completely. Similar cost-benefit trade-offs exist across nature, and quantifying net returns can better inform land management decisions such as when to control pests or promote ecosystem service provision.

  8. The net return from animal activity in agro-ecosystems: trading off benefits from ecosystem services against costs from crop damage

    PubMed Central

    Luck, Gary W

    2014-01-01

    Animals provide benefits to agriculture through the provision of ecosystem services, but also inflict costs such as damaging crops. These benefits and costs are mostly examined independently, rather than comparing the trade-offs of animal activity in the same system and quantifying the net return from beneficial minus detrimental activities. Here, I examine the net return associated with the activity of seed-eating birds in almond orchards by quantifying the economic costs and benefits of bird consumption of almonds. Pre-harvest, the consumption of harvestable almonds by birds cost growers AUD$57.50 ha -1 when averaged across the entire plantation. Post-harvest, the same bird species provide an ecosystem service by removing mummified nuts from trees that growers otherwise need to remove to reduce threats from fungal infection or insect pest infestations. The value of this ecosystem service ranged from AUD$82.50 ha -1–$332.50 ha -1 based on the replacement costs of mechanical or manual removal of mummified nuts, respectively. Hence, bird consumption of almonds yielded a positive net return of AUD$25–$275 ha -1 averaged across the entire plantation. However, bird activity varied spatially resulting in positive net returns occurring primarily at the edges of crops where activity was higher, compared to negative net returns in crop interiors. Moreover, partial mummy nut removal by birds meant that bird activity may only reduce costs to growers rather than replace these costs completely. Similar cost-benefit trade-offs exist across nature, and quantifying net returns can better inform land management decisions such as when to control pests or promote ecosystem service provision. PMID:25285202

  9. Potential negative consequences of geoengineering on crop production: A study of Indian groundnut.

    PubMed

    Yang, Huiyi; Dobbie, Steven; Ramirez-Villegas, Julian; Feng, Kuishuang; Challinor, Andrew J; Chen, Bing; Gao, Yao; Lee, Lindsay; Yin, Yan; Sun, Laixiang; Watson, James; Koehler, Ann-Kristin; Fan, Tingting; Ghosh, Sat

    2016-11-28

    Geoengineering has been proposed to stabilize global temperature, but its impacts on crop production and stability are not fully understood. A few case studies suggest that certain crops are likely to benefit from solar dimming geoengineering, yet we show that geoengineering is projected to have detrimental effects for groundnut. Using an ensemble of crop-climate model simulations, we illustrate that groundnut yields in India undergo a statistically significant decrease of up to 20% as a result of solar dimming geoengineering relative to RCP4.5. It is somewhat reassuring, however, to find that after a sustained period of 50 years of geoengineering crop yields return to the nongeoengineered values within a few years once the intervention is ceased.

  10. Potential negative consequences of geoengineering on crop production: A study of Indian groundnut

    NASA Astrophysics Data System (ADS)

    Yang, Huiyi; Dobbie, Steven; Ramirez-Villegas, Julian; Feng, Kuishuang; Challinor, Andrew J.; Chen, Bing; Gao, Yao; Lee, Lindsay; Yin, Yan; Sun, Laixiang; Watson, James; Koehler, Ann-Kristin; Fan, Tingting; Ghosh, Sat

    2016-11-01

    Geoengineering has been proposed to stabilize global temperature, but its impacts on crop production and stability are not fully understood. A few case studies suggest that certain crops are likely to benefit from solar dimming geoengineering, yet we show that geoengineering is projected to have detrimental effects for groundnut. Using an ensemble of crop-climate model simulations, we illustrate that groundnut yields in India undergo a statistically significant decrease of up to 20% as a result of solar dimming geoengineering relative to RCP4.5. It is somewhat reassuring, however, to find that after a sustained period of 50 years of geoengineering crop yields return to the nongeoengineered values within a few years once the intervention is ceased.

  11. Maximizing root/rhizosphere efficiency to improve crop productivity and nutrient use efficiency in intensive agriculture of China.

    PubMed

    Shen, Jianbo; Li, Chunjian; Mi, Guohua; Li, Long; Yuan, Lixing; Jiang, Rongfeng; Zhang, Fusuo

    2013-03-01

    Root and rhizosphere research has been conducted for many decades, but the underlying strategy of root/rhizosphere processes and management in intensive cropping systems remain largely to be determined. Improved grain production to meet the food demand of an increasing population has been highly dependent on chemical fertilizer input based on the traditionally assumed notion of 'high input, high output', which results in overuse of fertilizers but ignores the biological potential of roots or rhizosphere for efficient mobilization and acquisition of soil nutrients. Root exploration in soil nutrient resources and root-induced rhizosphere processes plays an important role in controlling nutrient transformation, efficient nutrient acquisition and use, and thus crop productivity. The efficiency of root/rhizosphere in terms of improved nutrient mobilization, acquisition, and use can be fully exploited by: (1) manipulating root growth (i.e. root development and size, root system architecture, and distribution); (2) regulating rhizosphere processes (i.e. rhizosphere acidification, organic anion and acid phosphatase exudation, localized application of nutrients, rhizosphere interactions, and use of efficient crop genotypes); and (3) optimizing root zone management to synchronize root growth and soil nutrient supply with demand of nutrients in cropping systems. Experiments have shown that root/rhizosphere management is an effective approach to increase both nutrient use efficiency and crop productivity for sustainable crop production. The objectives of this paper are to summarize the principles of root/rhizosphere management and provide an overview of some successful case studies on how to exploit the biological potential of root system and rhizosphere processes to improve crop productivity and nutrient use efficiency.

  12. Genetically Engineered Materials for Biofuels Production

    NASA Astrophysics Data System (ADS)

    Raab, Michael

    2012-02-01

    Agrivida, Inc., is an agricultural biotechnology company developing industrial crop feedstocks for the fuel and chemical industries. Agrivida's crops have improved processing traits that enable efficient, low cost conversion of the crops' cellulosic components into fermentable sugars. Currently, pretreatment and enzymatic conversion of the major cell wall components, cellulose and hemicellulose, into fermentable sugars is the most expensive processing step that prevents widespread adoption of biomass in biofuels processes. To lower production costs we are consolidating pretreatment and enzyme production within the crop. In this strategy, transgenic plants express engineered cell wall degrading enzymes in an inactive form, which can be reactivated after harvest. We have engineered protein elements that disrupt enzyme activity during normal plant growth. Upon exposure to specific processing conditions, the engineered enzymes are converted into their active forms. This mechanism significantly lowers pretreatment costs and enzyme loadings (>75% reduction) below those currently available to the industry.

  13. Research advances in major cereal crops for adaptation to abiotic stresses

    PubMed Central

    Maiti, RK; Satya, Pratik

    2014-01-01

    With devastating increase in population there is a great necessity to increase crop productivity of staple crops but the productivity is greatly affected by various abiotic stress factors such as drought, salinity. An attempt has been made a brief account on abiotic stress resistance of major cereal crops viz. In spite of good successes obtained on physiological and use molecular biology, the benefits of this high cost technology are beyond the reach of developing countries. This review discusses several morphological, anatomical, physiological, biochemical and molecular mechanisms of major cereal crops related to the adaptation of these crop to abiotic stress factors. It discusses the effect of abiotic stresses on physiological processes such as flowering, grain filling and maturation and plant metabolisms viz. photosynthesis, enzyme activity, mineral nutrition, and respiration. Though significant progress has been attained on the physiological, biochemical basis of resistance to abiotic stress factors, very little progress has been achieved to increase productivity under sustainable agriculture. Therefore, there is a great necessity of inter-disciplinary research to address this issue and to evolve efficient technology and its transfer to the farmers’ fields. PMID:25523172

  14. Research advances in major cereal crops for adaptation to abiotic stresses.

    PubMed

    Maiti, R K; Satya, Pratik

    2014-01-01

    With devastating increase in population there is a great necessity to increase crop productivity of staple crops but the productivity is greatly affected by various abiotic stress factors such as drought, salinity. An attempt has been made a brief account on abiotic stress resistance of major cereal crops viz. In spite of good successes obtained on physiological and use molecular biology, the benefits of this high cost technology are beyond the reach of developing countries. This review discusses several morphological, anatomical, physiological, biochemical and molecular mechanisms of major cereal crops related to the adaptation of these crop to abiotic stress factors. It discusses the effect of abiotic stresses on physiological processes such as flowering, grain filling and maturation and plant metabolisms viz. photosynthesis, enzyme activity, mineral nutrition, and respiration. Though significant progress has been attained on the physiological, biochemical basis of resistance to abiotic stress factors, very little progress has been achieved to increase productivity under sustainable agriculture. Therefore, there is a great necessity of inter-disciplinary research to address this issue and to evolve efficient technology and its transfer to the farmers' fields.

  15. Energy product options for Eucalyptus species grown as short rotation woody crops

    Treesearch

    Donald Rockwood; Alan W. Rudie; Sally A. Ralph; J.Y. Zhu; Jerrold E. Winandy

    2008-01-01

    Eucalyptus species are native to Australia but grown extensively worldwide as short rotation hardwoods for a variety of products and as ornamentals. We describe their general importance with specific emphasis on existing and emerging markets as energy products and the potential to maximize their productivity as short rotation woody crops. Using experience in Florida...

  16. Recycling of inorganic nutrients for hydroponic crop production following incineration of inedible biomass.

    PubMed

    Bubenheim, D L; Wignarajah, K

    1997-01-01

    The goal of resource recovery in a regenerative life support system is maintenance of product quality to sure support of reliable and predictable levels of life support function performance by the crop plant component. Further, these systems must be maintained over extended periods of time, requiring maintenance of nutrient solutions to avoid toxicity and deficiencies. The focus of this study was to determine the suitability of the ash product following incineration of inedible biomass as a source of inorganic nutrients for hydroponic crop production. Inedible wheat biomass was incinerated and ash quality characterized. The incinerator ash was dissolved in adequate nitric acid to establish a consistent nitrogen concentration is all nutrient solution treatments. Four experimental nutrient treatments were included: control, ash only, ash supplemented to match the control treatment, and ash only quality formulated with reagent grade chemicals. When nutrient solutions were formulated using only ash following incineration of inedible biomass, a balance in solution is established representing elemental retention following incineration and nutrient proportions present in the original biomass. The resulting solution is not identical to the control. This imbalance resulted in a suppression of crop growth. When the ash is supplemented with reagent grade chemicals to establish the same balance as in the control--growth is identical to the control. The ash appears to carry no phytotoxic materials. Growth in solution formulated with reagent grade chemicals but matching the quality of the ash only treatment resulted in similar growth to that of the ash only treatment. The ash product resulting from incineration of inedible biomass appears to be a suitable form for recycle of inorganic nutrients to crop production.

  17. Impact of nowcasting on the production and processing of agricultural crops. [in the US

    NASA Technical Reports Server (NTRS)

    Dancer, W. S.; Tibbitts, T. W.

    1973-01-01

    The value was studied of improved weather information and weather forecasting to farmers, growers, and agricultural processing industries in the United States. The study was undertaken to identify the production and processing operations that could be improved with accurate and timely information on changing weather patterns. Estimates were then made of the potential savings that could be realized with accurate information about the prevailing weather and short term forecasts for up to 12 hours. This weather information has been termed nowcasting. The growing, marketing, and processing operations of the twenty most valuable crops in the United States were studied to determine those operations that are sensitive to short-term weather forecasting. Agricultural extension specialists, research scientists, growers, and representatives of processing industries were consulted and interviewed. The value of the crops included in this survey and their production levels are given. The total value for crops surveyed exceeds 24 billion dollars and represents more than 92 percent of total U.S. crop value.

  18. Improving ecophysiological simulation models to predict the impact of elevated atmospheric CO2 concentration on crop productivity

    PubMed Central

    Yin, Xinyou

    2013-01-01

    Background Process-based ecophysiological crop models are pivotal in assessing responses of crop productivity and designing strategies of adaptation to climate change. Most existing crop models generally over-estimate the effect of elevated atmospheric [CO2], despite decades of experimental research on crop growth response to [CO2]. Analysis A review of the literature indicates that the quantitative relationships for a number of traits, once expressed as a function of internal plant nitrogen status, are altered little by the elevated [CO2]. A model incorporating these nitrogen-based functional relationships and mechanisms simulated photosynthetic acclimation to elevated [CO2], thereby reducing the chance of over-estimating crop response to [CO2]. Robust crop models to have small parameterization requirements and yet generate phenotypic plasticity under changing environmental conditions need to capture the carbon–nitrogen interactions during crop growth. Conclusions The performance of the improved models depends little on the type of the experimental facilities used to obtain data for parameterization, and allows accurate projections of the impact of elevated [CO2] and other climatic variables on crop productivity. PMID:23388883

  19. Using membrane transporters to improve crops for sustainable food production

    USDA-ARS?s Scientific Manuscript database

    With the global population predicted to grow by at least 25% by 2050, the need for sustainable production of nutritious foods is critical for human and environmental well-being. Recent advances show that specialized plant membrane transporters can be utilized to enhance yields of staple crops, incre...

  20. Incineration of biomass and utilization of product gas as a CO_2 source for crop production in closed systems: gas quality and phytotoxicity

    NASA Astrophysics Data System (ADS)

    Bubenheim, D. L.; Patterson, M.; Wignarajah, K.; Flynn, M.

    1997-01-01

    This study addressed the recycle of carbon from inedible biomass to CO_2 for utilization in crop production. Earlier work identified incineration as an attractive approach to resource recovery from solid wastes because the products are well segregated. Given the effective separation of carbon into the gaseous product stream from the incinerator in the form of CO_2 we captured the gaseous stream produced during incineration of wheat inedible biomass and utilized it as the CO_2 source for crop production. Injection rate was based on maintenance of CO_2 concentration in the growing environment. The crop grown in the closed system was lettuce. Carbon was primarily in the form of CO_2 in the incinerator product gas with less than 8% of carbon compounds appearing as CO. Nitrogen oxides and organic compounds such as toluene, xylene, and benzene were present in the product gas at lower concentrations (<4 mumol mol^-1) sulfur containing compounds were below the detection limits. Direct utilization of the gaseous product of the incinerator as the CO_2 source was toxic to lettuce grown in a closed chamber. Net photosynthetic rates of the crop was suppressed more than 50% and visual injury symptoms were visible within 3 days of the introduction of the incinerator gas. Even the removal of the incinerator gas after two days of crop exposure and replacement with pure CO_2 did not eliminate the toxic effects. Both organic and inorganic components of the incinerator gas are candidates for the toxin.

  1. Incineration of biomass and utilization of product gas as a CO2 source for crop production in closed systems: gas quality and phytotoxicity.

    PubMed

    Bubenheim, D L; Patterson, M; Wignarajah, K; Flynn, M

    1997-01-01

    This study addressed the recycle of carbon from inedible biomass to CO2 for utilization in crop production. Earlier work identified incineration as an attractive approach to resource recovery from solid wastes because the products are well segregated. Given the effective separation of carbon into the gaseous product stream from the incinerator in the form of CO2 we captured the gaseous stream produced during incineration of wheat inedible biomass and utilized it as the CO2 source for crop production. Injection rate was based on maintenance of CO2 concentration in the growing environment. The crop grown in the closed system was lettuce. Carbon was primarily in the form of CO2 in the incinerator product gas with less than 8% of carbon compounds appearing as CO. Nitrogen oxides and organic compounds such as toluene, xylene, and benzene were present in the product gas at lower concentrations (< 4 micromol mol-1); sulfur containing compounds were below the detection limits. Direct utilization of the gaseous product of the incinerator as the CO2 source was toxic to lettuce grown in a closed chamber. Net photosynthetic rates of the crop was suppressed more than 50% and visual injury symptoms were visible within 3 days of the introduction of the incinerator gas. Even the removal of the incinerator gas alter two days of crop exposure and replacement with pure CO2 did not eliminate the toxic effects. Both organic and inorganic components of the incinerator gas are candidates for the toxin.

  2. Incineration of biomass and utilization of product gas as a CO2 source for crop production in closed systems: gas quality and phytotoxicity

    NASA Astrophysics Data System (ADS)

    1997-01-01

    This study addressed the recycle of carbon from inedible biomass to CO2 for utilization in crop production. Earlier work identified incineration as an attractive approach to resource recovery from solid wastes because the products are well segregated. Given the effective separation of carbon into the gaseous product stream from the incinerator in the form of CO2 we captured the gaseous stream produced during incineration of wheat inedible biomass and utilized it as the CO2 source for crop production. Injection rate was based on maintenance of CO2 concentration in the growing environment. The crop grown in the closed system was lettuce. Carbon was primarily in the form of CO2 in the incinerator product gas with less than 8% of carbon compounds appearing as CO. Nitrogen oxides and organic compounds such as toluene, xylene, and benzene were present in the product gas at lower concentrations (<4 μmol mol-1) sulfur containing compounds were below the detection limits. Direct utilization of the gaseous product of the incinerator as the CO2 source was toxic to lettuce grown in a closed chamber. Net photosynthetic rates of the crop was suppressed more than 50% and visual injury symptoms were visible within 3 days of the introduction of the incinerator gas. Even the removal of the incinerator gas after two days of crop exposure and replacement with pure CO2 did not eliminate the toxic effects. Both organic and inorganic components of the incinerator gas are candidates for the toxin.

  3. Climate driven crop planting date in the ACME Land Model (ALM): Impacts on productivity and yield

    NASA Astrophysics Data System (ADS)

    Drewniak, B.

    2017-12-01

    Climate is one of the key drivers of crop suitability and productivity in a region. The influence of climate and weather on the growing season determine the amount of time crops spend in each growth phase, which in turn impacts productivity and, more importantly, yields. Planting date can have a strong influence on yields with earlier planting generally resulting in higher yields, a sensitivity that is also present in some crop models. Furthermore, planting date is already changing and may continue, especially if longer growing seasons caused by future climate change drive early (or late) planting decisions. Crop models need an accurate method to predict plant date to allow these models to: 1) capture changes in crop management to adapt to climate change, 2) accurately model the timing of crop phenology, and 3) improve crop simulated influences on carbon, nutrient, energy, and water cycles. Previous studies have used climate as a predictor for planting date. Climate as a plant date predictor has more advantages than fixed plant dates. For example, crop expansion and other changes in land use (e.g., due to changing temperature conditions), can be accommodated without additional model inputs. As such, a new methodology to implement a predictive planting date based on climate inputs is added to the Accelerated Climate Model for Energy (ACME) Land Model (ALM). The model considers two main sources of climate data important for planting: precipitation and temperature. This method expands the current temperature threshold planting trigger and improves the estimated plant date in ALM. Furthermore, the precipitation metric for planting, which synchronizes the crop growing season with the wettest months, allows tropical crops to be introduced to the model. This presentation will demonstrate how the improved model enhances the ability of ALM to capture planting date compared with observations. More importantly, the impact of changing the planting date and introducing tropical

  4. Conservation tillage issues: cover crop-based organic rotational no-till grain production in the mid-atlantic region

    USDA-ARS?s Scientific Manuscript database

    Organic producers in the mid-Atlantic region are interested in reducing tillage, labor, and time requirements for grain production. Cover crop-based organic rotational no-till grain production is one approach to accomplishing these goals. Advancements in a system for planting crops into a mat of cov...

  5. USDA Foreign Agricultural Service overview for operational monitoring of current crop conditions and production forecasts.

    NASA Astrophysics Data System (ADS)

    Crutchfield, J.

    2016-12-01

    The presentation will discuss the current status of the International Production Assessment Division of the USDA ForeignAgricultural Service for operational monitoring and forecasting of current crop conditions, and anticipated productionchanges to produce monthly, multi-source consensus reports on global crop conditions including the use of Earthobservations (EO) from satellite and in situ sources.United States Department of Agriculture (USDA) Foreign Agricultural Service (FAS) International Production AssessmentDivision (IPAD) deals exclusively with global crop production forecasting and agricultural analysis in support of the USDAWorld Agricultural Outlook Board (WAOB) lockup process and contributions to the World Agricultural Supply DemandEstimates (WASE) report. Analysts are responsible for discrete regions or countries and conduct in-depth long-termresearch into national agricultural statistics, farming systems, climatic, environmental, and economic factors affectingcrop production. IPAD analysts become highly valued cross-commodity specialists over time, and are routinely soughtout for specialized analyses to support governmental studies. IPAD is responsible for grain, oilseed, and cotton analysison a global basis. IPAD is unique in the tools it uses to analyze crop conditions around the world, including customweather analysis software and databases, satellite imagery and value-added image interpretation products. It alsoincorporates all traditional agricultural intelligence resources into its forecasting program, to make the fullest use ofavailable information in its operational commodity forecasts and analysis. International travel and training play animportant role in learning about foreign agricultural production systems and in developing analyst knowledge andcapabilities.

  6. Increasing crop production in Russia and Ukraine—regional and global impacts from intensification and recultivation

    NASA Astrophysics Data System (ADS)

    Deppermann, Andre; Balkovič, Juraj; Bundle, Sophie-Charlotte; Di Fulvio, Fulvio; Havlik, Petr; Leclère, David; Lesiv, Myroslava; Prishchepov, Alexander V.; Schepaschenko, Dmitry

    2018-02-01

    Russia and Ukraine are countries with relatively large untapped agricultural potentials, both in terms of abandoned agricultural land and substantial yield gaps. Here we present a comprehensive assessment of Russian and Ukrainian crop production potentials and we analyze possible impacts of their future utilization, on a regional as well as global scale. To this end, the total amount of available abandoned land and potential yields in Russia and Ukraine are estimated and explicitly implemented in an economic agricultural sector model. We find that cereal (barley, corn, and wheat) production in Russia and Ukraine could increase by up to 64% in 2030 to 267 million tons, compared to a baseline scenario. Oilseeds (rapeseed, soybean, and sunflower) production could increase by 84% to 50 million tons, respectively. In comparison to the baseline, common net exports of Ukraine and Russia could increase by up to 86.3 million tons of cereals and 18.9 million tons of oilseeds in 2030, representing 4% and 3.6% of the global production of these crops, respectively. Furthermore, we find that production potentials due to intensification are ten times larger than potentials due to recultivation of abandoned land. Consequently, we also find stronger impacts from intensification at the global scale. A utilization of crop production potentials in Russia and Ukraine could globally save up to 21 million hectares of cropland and reduce average global crop prices by more than 3%.

  7. Product costing program for wood component manufacturers

    Treesearch

    Adrienn Andersch; Urs Buehlmann; Jeff Palmer; Janice K Wiedenbeck; Steve Lawser

    2013-01-01

    Accurate and timely product costing information is critically important for companies in planning the optimal utilization of company resources. While an overestimation of product costs can lead to loss of potential business and market share, underestimation of product costs can result in financial losses to the company. This article introduces a product costing program...

  8. Can leguminous cover crops partially replace nitrogen fertilization in Mississippi delta cotton production

    USDA-ARS?s Scientific Manuscript database

    Petroleum prices impacts cotton (Gossypium hirsutum L.) N fertilization cost. A 3-year field study was conducted on a Dundee silt loam to assess the interactions of leguminous cover crops [none, Austrian winter field pea (Pisum sativum L.) or hairy vetch (Vicia villosa Roth] and N fertilization rate...

  9. Cost analysis in laccase production.

    PubMed

    Osma, Johann F; Toca-Herrera, José L; Rodríguez-Couto, Susana

    2011-11-01

    In this paper the cost of producing the enzyme laccase by the white-rot fungus Trametes pubescens under both submerged (SmF) and solid-state fermentation (SSF) conditions was studied. The fungus was cultured using more than 45 culture medium compositions. The cost of production was estimated by analyzing the cost of the culture medium, the cost of equipment and the operating costs. The cost of the culture medium represented, in all cases, the highest contribution to the total cost, while, the cost of equipment was significantly low, representing less than 2% of the total costs. The cultivation under SSF conditions presented a final cost 50-fold lower than the one obtained when culturing under SmF conditions at flask scale. In addition, the laccase production under SSF conditions in tray bioreactors reduced the final cost 4-fold compared to the one obtained under SSF conditions at flask scale, obtaining a final price of 0.04 cent €/U. Copyright © 2011 Elsevier Ltd. All rights reserved.

  10. Livestock and feed water productivity in the mixed crop-livestock system.

    PubMed

    Bekele, M; Mengistu, A; Tamir, B

    2017-10-01

    Recently with limited information from intensified grain-based farming systems in developed countries, livestock production is challenged as being huge consumer of freshwater. The smallholder mixed crop-livestock (MCL) system which is predominant in developing countries like Ethiopia, is maintained with considerable contributions of crop residues (CR) to livestock feeding. Inclusion of CR is expected to reduce the water requirement for feed production resulting improvement in livestock water productivity (LWP). This study was conducted to determine feed water productivity (FWP) and LWP in the MCL system. A multistage sampling procedure was followed to select farmers from different wealth status. Wealth status dictated by ownership of key farm resources such as size of cropland and livestock influenced the magnitude of livestock outputs, FWP and LWP. Significant difference in feed collected, freshwater evapotranspired, livestock outputs and water productivity (WP) were observed between wealth groups, where wealthier are relatively more advantaged. Water productivity of CR and grazing land (GL) analyzed separately showed contrasting differences where better-off gained more on CR, whereas vice versa on GL. These counterbalancing of variations may justify the non-significant difference in total FWP between wealth groups. Despite observed differences, low WP on GL indicates the need of interventions at all levels. The variation in WP of CR is attributed to availability of production factors which restrained the capacity of poor farmers most. A linear relationship between the proportion of CR in livestock feed and FWP was evident, but the relationship with LWP was not likely linear. As CR are inherently low in digestibility and nutritive values which have an effect on feed conversion into valuable livestock products and services, increasing share of CR beyond an optimum level is not a viable option to bring improvements in livestock productivity as expressed in terms of

  11. Virtual water flows and water-footprint of agricultural crop production, import and export: A case study for Israel.

    PubMed

    Shtull-Trauring, E; Bernstein, N

    2018-05-01

    Agriculture is the largest global consumer of freshwater. As the volume of international trade continues to rise, so does the understanding that trade of water-intensive crops from areas with high precipitation, to arid regions can help mitigate water scarcity, highlighting the importance of crop water accounting. Virtual-Water, or Water-Footprint [WF] of agricultural crops, is a powerful indicator for assessing the extent of water use by plants, contamination of water bodies by agricultural practices and trade between countries, which underlies any international trade of crops. Most available studies of virtual-water flows by import/export of agricultural commodities were based on global databases, which are considered to be of limited accuracy. The present study analyzes the WF of crop production, import, and export on a country level, using Israel as a case study, comparing data from two high-resolution local databases and two global datasets. Results for local datasets demonstrate a WF of ~1200Million Cubic Meters [MCM]/year) for total crop production, ~1000MCM/year for import and ~250MCM/year for export. Fruits and vegetables comprise ~80% of Export WF (~200MCM/year), ~50% of crop production and only ~20% of the imports. Economic Water Productivity [EWP] ($/m 3 ) for fruits and vegetables is 1.5 higher compared to other crops. Moreover, the results based on local and global datasets varied significantly, demonstrating the importance of developing high-resolution local datasets based on local crop coefficients. Performing high resolution WF analysis can help in developing agricultural policies that include support for low WF/high EWP and limit high WF/low EWP crop export, where water availability is limited. Copyright © 2017 Elsevier B.V. All rights reserved.

  12. Fertilizer consumption and energy input for 16 crops in the United States

    USGS Publications Warehouse

    Amenumey, Sheila E.; Capel, Paul D.

    2014-01-01

    Fertilizer use by U.S. agriculture has increased over the past few decades. The production and transportation of fertilizers (nitrogen, N; phosphorus, P; potassium, K) are energy intensive. In general, about a third of the total energy input to crop production goes to the production of fertilizers, one-third to mechanization, and one-third to other inputs including labor, transportation, pesticides, and electricity. For some crops, fertilizer is the largest proportion of total energy inputs. Energy required for the production and transportation of fertilizers, as a percentage of total energy input, was determined for 16 crops in the U.S. to be: 19–60% for seven grains, 10–41% for two oilseeds, 25% for potatoes, 12–30% for three vegetables, 2–23% for two fruits, and 3% for dry beans. The harvested-area weighted-average of the fraction of crop fertilizer energy to the total input energy was 28%. The current sources of fertilizers for U.S. agriculture are dependent on imports, availability of natural gas, or limited mineral resources. Given these dependencies plus the high energy costs for fertilizers, an integrated approach for their efficient and sustainable use is needed that will simultaneously maintain or increase crop yields and food quality while decreasing adverse impacts on the environment.

  13. Life-cycle phosphorus management of the crop production-consumption system in China, 1980-2012.

    PubMed

    Wu, Huijun; Yuan, Zengwei; Gao, Liangmin; Zhang, Ling; Zhang, Yongliang

    2015-01-01

    Phosphorus (P) is an essential resource for agriculture and also a pollutant capable of causing eutrophication. The possibility of a future P scarcity and the requirement to improve the environment quality necessitate P management to increase the efficiency of P use. This study applied a substance flow analysis (SFA) to implement a P management procedure in a crop production-consumption (PMCPC) system model. This model determined the life-cycle P use efficiency (PUE) of the crop production-consumption system in China during 1980-2012. The system includes six subsystems: fertilizer manufacturing, crop cultivation, crop processing, livestock breeding, rural consumption, and urban consumption. Based on this model, the P flows and PUEs of the subsystems were identified and quantified using data from official statistical databases, published literature, questionnaires, and interviews. The results showed that the total PUE of the crop production-consumption system in China was low, notably from 1980 to 2005, and increased from 7.23% in 1980 to 20.13% in 2012. Except for fertilizer manufacturing, the PUEs of the six subsystems were also low. The PUEs in the urban consumption subsystem and the crop cultivation subsystem were less than 40%. The PUEs of other subsystems, such as the rural consumption subsystem and the livestock breeding subsystem, were also low and even decreased during these years. Measures aimed to improve P management practices in China have been proposed such as balancing fertilization, disposing livestock excrement, adjusting livestock feed, changing the diet of residents, and raising the waste disposal level, etc. This study also discussed several limitations related with the model and data. Conducting additional related studies on other regions and combining the analysis of risks with opportunities may be necessary to develop effective management strategies. Copyright © 2014 Elsevier B.V. All rights reserved.

  14. Contribution of pod borer pests to soybean crop production (case in Pondidaha, Konawe District, Southeast Sulawesi)

    NASA Astrophysics Data System (ADS)

    Rahayu, M.; Bande, LOS; Hasan, A.; Yuswana, A.; Rinambo, F.

    2018-02-01

    Soybean (Glycine max L.) is one of the most important crops which production continues to be improved in all areas of soybean cultivation centers in an effort to maintain the availability of soybean foods, including Southeast Sulawesi. The purpose of this study was to analyze the contribution of pod borer pests to soybean crop production. Methods of direct observation were made on observed variables, including species and population of pest pod borer, intensity, and crop production. The result that found four types of pod borer pests are Nezara viridula, Riptortus linearis, Etiella zinckenella, and Leptocorisa acuta, each with a different population and contribution to the intensity of pod damage. The result of path analysis showed that directly population of N. viridula (61.14) and E. zinckenella (66.44) gave positive contribution in increasing pod damage, by 0.332 and 0.502 respectively, while the negative contribution was shown by population of R. linearis and L. acuta. Damage of the pod causes increased production of low soybean is only about 0.202, therefore required appropriate control techniques to control pod borer pests populations in soybean crops.

  15. Global regulatory framework for production and marketing of crops biofortified with vitamins and minerals.

    PubMed

    Mejia, Luis A; Dary, Omar; Boukerdenna, Hala

    2017-02-01

    Biofortification of crops is being introduced in several countries as a strategy to reduce micronutrient deficiencies. Biofortified products, with increased contents of micronutrients, are currently produced by conventional plant breeding, genetic modification, or nutrient-enhanced fertilization. Corn, rice, wheat, beans, pearl millet, sweet potato, and cassava have been biofortified with increased contents of provitamin A carotenoids, iron, or zinc. However, regulatory considerations are rare or nonexistent. The objective of this paper is to review the regulatory framework for production and marketing of biofortified crops in countries that have adopted this strategy. The information was identified using Internet search engines and websites of health and nutrition organizations and nongovernmental organizations and by consulting scientists and government authorities. Thus far, biofortified products introduced in Latin America, Africa, and Asia have been produced only by conventional breeding. Cultivars using other techniques are still under testing. The production and marketing of these products have been conducted without regulatory framework and under limited government control or regulatory guidance. Nevertheless, some countries have integrated biofortified crops into their nutrition agendas. Although improvements by conventional breeding have not been subject to regulations, when biofortification becomes expanded by including other techniques, an appropriate regulatory framework will be necessary. © 2016 New York Academy of Sciences.

  16. [Carbon footprints of major staple grain crops production in three provinces of Northeast China during 2004-2013.

    PubMed

    Huang, Xiao Min; Chen, Chang Qing; Chen, Ming Zhou; Song, Zhen Wei; Deng, Ai Xing; Zhang, Jun; Zheng, Cheng Yan; Zhang, Wei Jian

    2016-10-01

    Northeast China is one of the most important farming regions in China, due to its great contribution to national food security. Crop production is a main source of carbon emission. To assess the differences in carbon footprints of major grain crop production will benefit the achievement of low carbon agriculture. Therefore, this study calculated the regional carbon foot prints of rice (Oryza sativa), maize (Zea mays) and soybean (Glycine max) production in Northeast China du-ring 2004-2013 using the provincial statistical data, including crop yield, sown area and production inputs. The results showed that the highest area-scale carbon footprint was found in rice production, with the average value of (2463±56) kg CE·hm -2 , while the second was found in maize production during 2004-2013. The sharpest rise occurred in maize production, from 1164 kg CE·hm -2 in 2004 to 1768 kg CE·hm -2 in 2013, with the average rate of 67 kg CE·hm -2 ·a -1 . The application of chemical fertilizer contributed to the carbon footprint largely, accounting for 45%, 90% and 83% for rice, maize and soybean, respectively. Moreover, the contribution of electricity for irrigation in rice production ranged from 29% to 42%, which was larger than that in maize and soybean production. The carbon footprints were significantly different among the three provinces of Northeast China. The highest yield-scaled carbon footprints for three crops were found in Jilin Province, while the lowest area-scaled carbon footprints found in Heilongjiang Province. Given to the large transfer of rural labor from agricultural to non-agricultural sections and the development of mechanization, diesel and other mechanical inputs would increase rapidly in the future. Therefore, improving ferti-lizer utilization, mechanical and irrigation efficiencies in crop production would be the main approaches to promoting low-carbon agriculture in Northeast China.

  17. Impact of crop residue management on crop production and soil chemistry after seven years of crop rotation in temperate climate, loamy soils

    PubMed Central

    Hiel, Marie-Pierre; Barbieux, Sophie; Pierreux, Jérôme; Olivier, Claire; Lobet, Guillaume; Roisin, Christian; Garré, Sarah; Colinet, Gilles; Bodson, Bernard

    2018-01-01

    Society is increasingly demanding a more sustainable management of agro-ecosystems in a context of climate change and an ever growing global population. The fate of crop residues is one of the important management aspects under debate, since it represents an unneglectable quantity of organic matter which can be kept in or removed from the agro-ecosystem. The topic of residue management is not new, but the need for global conclusion on the impact of crop residue management on the agro-ecosystem linked to local pedo-climatic conditions has become apparent with an increasing amount of studies showing a diversity of conclusions. This study specifically focusses on temperate climate and loamy soil using a seven-year data set. Between 2008 and 2016, we compared four contrasting residue management strategies differing in the amount of crop residues returned to the soil (incorporation vs. exportation of residues) and in the type of tillage (reduced tillage (10 cm depth) vs. conventional tillage (ploughing at 25 cm depth)) in a field experiment. We assessed the impact of the crop residue management on crop production (three crops—winter wheat, faba bean and maize—cultivated over six cropping seasons), soil organic carbon content, nitrate (\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{upgreek} \\usepackage{mathrsfs} \\setlength{\\oddsidemargin}{-69pt} \\begin{document} }{}${\\mathrm{NO}}_{3}^{-}$\\end{document}NO3−), phosphorus (P) and potassium (K) soil content and uptake by the crops. The main differences came primarily from the tillage practice and less from the restitution or removal of residues. All years and crops combined, conventional tillage resulted in a yield advantage of 3.4% as compared to reduced tillage, which can be partly explained by a lower germination rate observed under reduced tillage, especially during drier years. On average, only small

  18. Crops, Nitrogen, Water: Are Legumes Friend, Foe, or Misunderstood Ally?

    PubMed

    Adams, Mark A; Buchmann, Nina; Sprent, Janet; Buckley, Thomas N; Turnbull, Tarryn L

    2018-06-01

    Biological nitrogen fixation (BNF) by crop legumes reduces demand for industrial nitrogen fixation (INF). Nonetheless, rates of BNF in agriculture remain low, with strong negative feedback to BNF from reactive soil nitrogen (N) and drought. We show that breeding for yield has resulted in strong relationships between photosynthesis and leaf N in non-leguminous crops, whereas grain legumes show strong relations between leaf N and water use efficiency (WUE). We contrast these understandings with other studies that draw attention to the water costs of grain legume crops, and their potential for polluting the biosphere with N. We propose that breeding grain legumes for reduced stomatal conductance can increase WUE without compromising production or BNF. Legume crops remain a better bet than relying on INF. Copyright © 2018 Elsevier Ltd. All rights reserved.

  19. Products from Jojoba: a promising new crop for arid lands

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1975-01-01

    This publication reviews the scientific background of the seed oil of Simmondsia chinensis and presents some conclusions by the Committee on Possibilities of Growing Jojoba as a Commercial Crop. The shrub grows wild over an extensive arid area in the Sonoran Desert that covers parts of Arizona, California and Mexico. The seeds contain about 50% by weight of an unsaturated liquid wax which resembles the oil from the sperm whale (now an endangered species) in chemical composition and physical behaviour. The wax is readily extractable in large quantities, mature plants in the USA yielding as much as 12 lb seedmore » (dry weight). The natural life span appears to exceed 100 years and may be twice this length. The plant can develop without any additional water in an area with an annual rainfall of 8 in-, although it is most prevalent when the rainfall is 15 to 18 inches. Chemical tests have shown that the wax can duplicate sperm oil performance as a high-pressure lubricant and it has industrial advantages over sperm oil. One product with an immediate market-potential is hydrogenated jojoba oil which could be a substitute for carnabuba wax. It is estimated that 17 Indian reservations in California and 9 in Arizona could grow jojoba as a viable industry. The crop could increase the productivity of arid lands not suitable for conventional crops and recommendations are made on continuing and expanding governmental support for development and research. 11 references.« less

  20. Double cropping opportunities for biomass crops in the North Central USA

    USDA-ARS?s Scientific Manuscript database

    Increased biomass crop production is essential for the development of sustainablae bioenergy and bio-product industries that will strengthen rural economies and increase employment in sectors ranging from farming to feedstock transportation to plant construction and operation. Double cropping, a far...

  1. Economic incentives to capture ecosystem services through increased temporal intensification of crop production

    USDA-ARS?s Scientific Manuscript database

    Land resources are becoming progressively more constrained with increasing demands for food, feed, fiber, and now fuel production. Developing strategies to intensify crop production without increasing the negative impacts on water, soil, and air resources are critical. Much of the best agricultural ...

  2. Reproduction of Meloidogyne incognita on Winter Cover Crops Used in Cotton Production

    PubMed Central

    Timper, Patricia; Davis, Richard F.; Tillman, P. Glynn

    2006-01-01

    Substantial reproduction of Meloidogyne incognita on winter cover crops may lead to damaging populations in a subsequent cotton (Gossypium hirsutum) crop. The amount of population increase during the winter depends on soil temperature and the host status of the cover crop. Our objectives were to quantify M. incognita race 3 reproduction on rye (Secale cereale) and several leguminous cover crops and to determine if these cover crops increase population densities of M. incognita and subsequent damage to cotton. The cover crops tested were ‘Bigbee’ berseem clover (Trifolium alexandrinum), ‘Paradana’ balansa clover (T. balansae), ‘AU Sunrise’ and ‘Dixie’ crimson clover (T. incarnatum), ‘Cherokee’ red clover (T. pratense), common and ‘AU Early Cover’ hairy vetch (Vicia villosa), ‘Cahaba White’ vetch (V. sativa), and ‘Wrens Abruzzi’ rye. In the greenhouse tests, egg production was greatest on berseem clover, Dixie crimson clover, AU Early Cover hairy vetch, and common hairy vetch; intermediate on Balansa clover and AU Sunrise crimson clover; and least on rye, Cahaba White vetch, and Cherokee red clover. In both 2002 and 2003 field tests, enough heat units were accumulated between 1 January and 20 May for the nematode to complete two generations. Both AU Early Cover and common hairy vetch led to greater root galling than fallow in the subsequent cotton crop; they also supported high reproduction of M. incognita in the greenhouse. Rye and Cahaba White vetch did not increase root galling on cotton and were relatively poor hosts for M. incognita. Only those legumes that increased populations of M. incognita reduced cotton yield. In the southern US, M. incognita can complete one to two generations on a susceptible winter cover crop, so cover crops that support high nematode reproduction may lead to damage and yield losses in the following cotton crop. Planting rye or Meloidogyne-resistant legumes as winter cover crops will lower the risk of

  3. Reproduction of Meloidogyne incognita on Winter Cover Crops Used in Cotton Production.

    PubMed

    Timper, Patricia; Davis, Richard F; Tillman, P Glynn

    2006-03-01

    Substantial reproduction of Meloidogyne incognita on winter cover crops may lead to damaging populations in a subsequent cotton (Gossypium hirsutum) crop. The amount of population increase during the winter depends on soil temperature and the host status of the cover crop. Our objectives were to quantify M. incognita race 3 reproduction on rye (Secale cereale) and several leguminous cover crops and to determine if these cover crops increase population densities of M. incognita and subsequent damage to cotton. The cover crops tested were 'Bigbee' berseem clover (Trifolium alexandrinum), 'Paradana' balansa clover (T. balansae), 'AU Sunrise' and 'Dixie' crimson clover (T. incarnatum), 'Cherokee' red clover (T. pratense), common and 'AU Early Cover' hairy vetch (Vicia villosa), 'Cahaba White' vetch (V. sativa), and 'Wrens Abruzzi' rye. In the greenhouse tests, egg production was greatest on berseem clover, Dixie crimson clover, AU Early Cover hairy vetch, and common hairy vetch; intermediate on Balansa clover and AU Sunrise crimson clover; and least on rye, Cahaba White vetch, and Cherokee red clover. In both 2002 and 2003 field tests, enough heat units were accumulated between 1 January and 20 May for the nematode to complete two generations. Both AU Early Cover and common hairy vetch led to greater root galling than fallow in the subsequent cotton crop; they also supported high reproduction of M. incognita in the greenhouse. Rye and Cahaba White vetch did not increase root galling on cotton and were relatively poor hosts for M. incognita. Only those legumes that increased populations of M. incognita reduced cotton yield. In the southern US, M. incognita can complete one to two generations on a susceptible winter cover crop, so cover crops that support high nematode reproduction may lead to damage and yield losses in the following cotton crop. Planting rye or Meloidogyne-resistant legumes as winter cover crops will lower the risk of increased nematode populations

  4. [Productivity costs of rheumatoid arthritis in Germany. Cost composition and prediction of main cost components].

    PubMed

    Merkesdal, S; Huelsemann, J L; Mittendorf, T; Zeh, S; Zeidler, H; Ruof, J

    2006-10-01

    Identification of predictors for the productivity cost components: (1) sick leave, and (2) work disability in gainfully employed and (3) impaired household productivity in unemployed patients with rheumatoid arthritis (RA) from the societal perspective. Investigation of productivity costs was linked to a multicenter, randomized, controlled trial evaluating the effectiveness of clinical quality management in 338 patients with RA. The productivity losses were assessed according to the German Guidelines on Health Economic Evaluation. By means of multivariate logistic regression analyses, predictors of sick leave, work disability (employed patients, n=96), and for days confined to bed in unemployed patient (n=242) were determined. Mean annual costs of 970 EUR arose per person taking into consideration all patients (453 EUR sick leave, 63 EUR work disability, 454 EUR impaired productivity of unemployed patients). Disease activity, disease severity, and impaired physical function were global predictors for all of the cost components investigated. Sick leave costs were predicted by prior sick leave periods and the vocational status blue collar worker, work disability costs by sociodemographic variables (marital status, schooling), and the productivity costs of unemployed patients by impaired mental health and impaired physical functions. Interventions such as reduction in disease progression and control of disease activity, early vocational rehabilitation measures and vocational retraining in patients at risk of quitting working life, and self-management programs to learn coping strategies might decrease future RA-related productivity costs.

  5. Integrating Plant Science and Crop Modeling: Assessment of the Impact of Climate Change on Soybean and Maize Production.

    PubMed

    Fodor, Nándor; Challinor, Andrew; Droutsas, Ioannis; Ramirez-Villegas, Julian; Zabel, Florian; Koehler, Ann-Kristin; Foyer, Christine H

    2017-11-01

    Increasing global CO2 emissions have profound consequences for plant biology, not least because of direct influences on carbon gain. However, much remains uncertain regarding how our major crops will respond to a future high CO2 world. Crop model inter-comparison studies have identified large uncertainties and biases associated with climate change. The need to quantify uncertainty has drawn the fields of plant molecular physiology, crop breeding and biology, and climate change modeling closer together. Comparing data from different models that have been used to assess the potential climate change impacts on soybean and maize production, future yield losses have been predicted for both major crops. When CO2 fertilization effects are taken into account significant yield gains are predicted for soybean, together with a shift in global production from the Southern to the Northern hemisphere. Maize production is also forecast to shift northwards. However, unless plant breeders are able to produce new hybrids with improved traits, the forecasted yield losses for maize will only be mitigated by agro-management adaptations. In addition, the increasing demands of a growing world population will require larger areas of marginal land to be used for maize and soybean production. We summarize the outputs of crop models, together with mitigation options for decreasing the negative impacts of climate on the global maize and soybean production, providing an overview of projected land-use change as a major determining factor for future global crop production. © The Author 2017. Published by Oxford University Press on behalf of Japanese Society of Plant Physiologists.

  6. Spatial Optimization of Cropping Pattern in an Agricultural Watershed for Food and Biofuel Production with Minimum Downstream Pollution

    NASA Astrophysics Data System (ADS)

    Pv, F.; Sudheer, K.; Chaubey, I.; RAJ, C.; Her, Y.

    2013-05-01

    Biofuel is considered to be a viable alternative to meet the increasing fuel demand, and therefore many countries are promoting agricultural activities that help increase production of raw material for biofuel production. Mostly, the biofuel is produced from grain based crops such as Corn, and it apparently create a shortage in food grains. Consequently, there have been regulations to limit the ethanol production from grains, and to use cellulosic crops as raw material for biofuel production. However, cultivation of such cellulosic crops may have different effects on water quality in the watershed. Corn stover, one of the potential cellulosic materials, when removed from the agricultural field for biofuel production, causes a decrease in the organic nutrients in the field. This results in increased use of pesticides and fertilizers which in turn affect the downstream water quality due to leaching of the chemicals. On the contrary, planting less fertilizer-intensive cellulosic crops, like Switch Grass and Miscanthus, is expected to reduce the pollutant loadings from the watershed. Therefore, an ecologically viable land use scenario would be a mixed cropping of grain crops and cellulosic crops, that meet the demand for food and biofuel without compromising on the downstream water quality. Such cropping pattern can be arrived through a simulation-optimization framework. Mathematical models can be employed to evaluate various management scenarios related to crop production and to assess its impact on water quality. Soil and Water Assessment Tool (SWAT) model is one of the most widely used models in this context. SWAT can simulate the water and nutrient cycles, and also quantify the long-term impacts of land management practices, in a watershed. This model can therefore help take decisions regarding the type of cropping and management practices to be adopted in the watershed such that the water quality in the rivers is maintained at acceptable level. In this study, it

  7. Energy Product Options for Eucalyptus Species Grown as Short Rotation Woody Crops

    PubMed Central

    Rockwood, Donald L.; Rudie, Alan W.; Ralph, Sally A.; Zhu, J.Y.; Winandy, Jerrold E.

    2008-01-01

    Eucalyptus species are native to Australia but grown extensively worldwide as short rotation hardwoods for a variety of products and as ornamentals. We describe their general importance with specific emphasis on existing and emerging markets as energy products and the potential to maximize their productivity as short rotation woody crops. Using experience in Florida USA and similar locations, we document their current energy applications and assess their productivity as short-term and likely long-term energy and related products. PMID:19325808

  8. Direct and indirect impacts of crop-livestock organization on mixed crop-livestock systems sustainability: a model-based study.

    PubMed

    Sneessens, I; Veysset, P; Benoit, M; Lamadon, A; Brunschwig, G

    2016-11-01

    Crop-livestock production is claimed more sustainable than specialized production systems. However, the presence of controversial studies suggests that there must be conditions of mixing crop and livestock productions to allow for higher sustainable performances. Whereas previous studies focused on the impact of crop-livestock interactions on performances, we posit here that crop-livestock organization is a key determinant of farming system sustainability. Crop-livestock organization refers to the percentage of the agricultural area that is dedicated to each production. Our objective is to investigate if crop-livestock organization has both a direct and an indirect impact on mixed crop-livestock (MC-L) sustainability. In that objective, we build a whole-farm model parametrized on representative French sheep and crop farming systems in plain areas (Vienne, France). This model permits simulating contrasted MC-L systems and their subsequent sustainability through the following indicators of performance: farm income, production, N balance, greenhouse gas (GHG) emissions (/kg product) and MJ consumption (/kg product). Two MC-L systems were simulated with contrasted crop-livestock organizations (MC20-L80: 20% of crops; MC80-L20: 80% of crops). A first scenario - constraining no crop-livestock interactions in both MC-L systems - permits highlighting that crop-livestock organization has a significant direct impact on performances that implies trade-offs between objectives of sustainability. Indeed, the MC80-L20 system is showing higher performances for farm income (+44%), livestock production (+18%) and crop GHG emissions (-14%) whereas the MC20-L80 system has a better N balance (-53%) and a lower livestock MJ consumption (-9%). A second scenario - allowing for crop-livestock interactions in both MC20-L80 and MC80-L20 systems - stated that crop-livestock organization has a significant indirect impact on performances. Indeed, even if crop-livestock interactions permit

  9. Proximate composition of CELSS crops grown in NASA's Biomass Production Chamber.

    PubMed

    Wheeler, R M; Mackowiak, C L; Sager, J C; Knott, W M; Berry, W L

    1996-01-01

    Edible biomass from four crops of wheat (Triticum aestivum L.), four crops of lettuce (Lactuca sativa L.), four crops of potato (Solanum tuberosum L.), and three crops of soybean (Glycine max (L.) Merr.) grown in NASA's CELSS Biomass Production Chamber were analyzed for proximate composition. All plants were grown using recirculating nutrient (hydroponic) film culture with pH and electrical conductivity automatically controlled. Temperature and humidity were controlled to near optimal levels for each species and atmospheric carbon dioxide partial pressures were maintained near 100 Pa during the light cycles. Soybean seed contained the highest percentage of protein and fat, potato tubers and wheat seed contained the highest levels of carbohydrate, and lettuce leaves contained the highest level of ash. Analyses showed values close to data published for field-grown plants with several exceptions: In comparison with field-grown plants, wheat seed had higher protein levels; soybean seed had higher ash and crude fiber levels; and potato tubers and lettuce leaves had higher protein and ash levels. The higher ash and protein levels may have been a result of the continuous supply of nutrients (e.g., potassium and nitrogen) to the plants by the recirculating hydroponic culture.

  10. Proximate composition of CELSS crops grown in NASA's Biomass Production Chamber

    NASA Technical Reports Server (NTRS)

    Wheeler, R. M.; Mackowiak, C. L.; Sager, J. C.; Knott, W. M.; Berry, W. L.

    1996-01-01

    Edible biomass from four crops of wheat (Triticum aestivum L.), four crops of lettuce (Lactuca sativa L.), four crops of potato (Solanum tuberosum L.), and three crops of soybean (Glycine max (L.) Merr.) grown in NASA's CELSS Biomass Production Chamber were analyzed for proximate composition. All plants were grown using recirculating nutrient (hydroponic) film culture with pH and electrical conductivity automatically controlled. Temperature and humidity were controlled to near optimal levels for each species and atmospheric carbon dioxide partial pressures were maintained near 100 Pa during the light cycles. Soybean seed contained the highest percentage of protein and fat, potato tubers and wheat seed contained the highest levels of carbohydrate, and lettuce leaves contained the highest level of ash. Analyses showed values close to data published for field-grown plants with several exceptions: In comparison with field-grown plants, wheat seed had higher protein levels; soybean seed had higher ash and crude fiber levels; and potato tubers and lettuce leaves had higher protein and ash levels. The higher ash and protein levels may have been a result of the continuous supply of nutrients (e.g., potassium and nitrogen) to the plants by the recirculating hydroponic culture.

  11. Proximate composition of CELSS crops grown in NASA's Biomass Production Chamber

    NASA Astrophysics Data System (ADS)

    Wheeler, R. M.; Mackowiak, C. L.; Sager, J. C.; Knott, W. M.; Berry, W. L.

    Edible biomass from four crops of wheat (Triticum aestivum L.), four crops of lettuce (Lactuca sativa L.), four crops of potato (Solanum tuberosum L.), and three crops of soybean (Glycine max (L.) Merr.) grown in NASA's CELSS Biomass Production Chamber were analyzed for proximate composition. All plants were grown using recirculating nutrient (hydroponic) film culture with pH and electrical conductivity automatically controlled. Temperature and humidity were controlled to near optimal levels for each species and atmospheric carbon dioxide partial pressures were maintained near 100 Pa during the light cycles. Soybean seed contained the highest percentage of protein and fat, potato tubers and wheat seed contained the highest levels of carbohydrate, and lettuce leaves contained the highest level of ash. Analyses showed values close to data published for field-grown plants with several exceptions: In comparison with field-grown plants, wheat seed had higher protein levels; soybean seed had higher ash and crude fiber levels; and potato tubers and lettuce leaves had higher protein and ash levels. The higher ash and protein levels may have been a result of the continuous supply of nutrients (e.g., potassium and nitrogen) to the plants by the recirculating hydroponic culture.

  12. 78 FR 49724 - Notice To Reopen Comment Period for Federal Crop Insurance Program Delivery Cost Survey and...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-08-15

    ... insurance program. Copies of the AIP interview scripts and survey questions may be obtained by contacting... Comment Period for Federal Crop Insurance Program Delivery Cost Survey and Interviews ACTION: Notice to reopen comment period to request comments on the script for interviews of Approved Insurance Providers...

  13. Cover crop, soil amendments, and variety effects on organic rice production in Texas

    USDA-ARS?s Scientific Manuscript database

    The major challenges in organic rice production include nutrient improvement, weed management, and variety selection. In this study, we tested the effects of two soil amendments on organic production in southcentral USA. The 2011-12 winter cover crops were established successfully with full coverage...

  14. Crop water production functions of grain sorghum and winter wheat in Kansas and Texas

    USDA-ARS?s Scientific Manuscript database

    Productivity of water-limited cropping systems can be reduced by untimely distribution of water as well as cold and heat stress. Our study objective was to develop relationships among weather variables, water use, and grain productivity to produce production functions for forecasting grain yields of...

  15. Ecosystem-Service Tradeoffs Associated with Switching from Annual to Perennial Energy Crops in Riparian Zones of the US Midwest

    PubMed Central

    Meehan, Timothy D.; Gratton, Claudio; Diehl, Erica; Hunt, Natalie D.; Mooney, Daniel F.; Ventura, Stephen J.; Barham, Bradford L.; Jackson, Randall D.

    2013-01-01

    Integration of energy crops into agricultural landscapes could promote sustainability if they are placed in ways that foster multiple ecosystem services and mitigate ecosystem disservices from existing crops. We conducted a modeling study to investigate how replacing annual energy crops with perennial energy crops along Wisconsin waterways could affect a variety of provisioning and regulating ecosystem services. We found that a switch from continuous corn production to perennial-grass production decreased annual income provisioning by 75%, although it increased annual energy provisioning by 33%, decreased annual phosphorous loading to surface water by 29%, increased below-ground carbon sequestration by 30%, decreased annual nitrous oxide emissions by 84%, increased an index of pollinator abundance by an average of 11%, and increased an index of biocontrol potential by an average of 6%. We expressed the tradeoffs between income provisioning and other ecosystem services as benefit-cost ratios. Benefit-cost ratios averaged 12.06 GJ of additional net energy, 0.84 kg of avoided phosphorus pollution, 18.97 Mg of sequestered carbon, and 1.99 kg of avoided nitrous oxide emissions for every $1,000 reduction in income. These ratios varied spatially, from 2- to 70-fold depending on the ecosystem service. Benefit-cost ratios for different ecosystem services were generally correlated within watersheds, suggesting the presence of hotspots – watersheds where increases in multiple ecosystem services would come at lower-than-average opportunity costs. When assessing the monetary value of ecosystem services relative to existing conservation programs and environmental markets, the overall value of enhanced services associated with adoption of perennial energy crops was far lower than the opportunity cost. However, when we monitized services using estimates for the social costs of pollution, the value of enhanced services far exceeded the opportunity cost. This disparity between

  16. Ecosystem-service tradeoffs associated with switching from annual to perennial energy crops in riparian zones of the US Midwest.

    PubMed

    Meehan, Timothy D; Gratton, Claudio; Diehl, Erica; Hunt, Natalie D; Mooney, Daniel F; Ventura, Stephen J; Barham, Bradford L; Jackson, Randall D

    2013-01-01

    Integration of energy crops into agricultural landscapes could promote sustainability if they are placed in ways that foster multiple ecosystem services and mitigate ecosystem disservices from existing crops. We conducted a modeling study to investigate how replacing annual energy crops with perennial energy crops along Wisconsin waterways could affect a variety of provisioning and regulating ecosystem services. We found that a switch from continuous corn production to perennial-grass production decreased annual income provisioning by 75%, although it increased annual energy provisioning by 33%, decreased annual phosphorous loading to surface water by 29%, increased below-ground carbon sequestration by 30%, decreased annual nitrous oxide emissions by 84%, increased an index of pollinator abundance by an average of 11%, and increased an index of biocontrol potential by an average of 6%. We expressed the tradeoffs between income provisioning and other ecosystem services as benefit-cost ratios. Benefit-cost ratios averaged 12.06 GJ of additional net energy, 0.84 kg of avoided phosphorus pollution, 18.97 Mg of sequestered carbon, and 1.99 kg of avoided nitrous oxide emissions for every $1,000 reduction in income. These ratios varied spatially, from 2- to 70-fold depending on the ecosystem service. Benefit-cost ratios for different ecosystem services were generally correlated within watersheds, suggesting the presence of hotspots--watersheds where increases in multiple ecosystem services would come at lower-than-average opportunity costs. When assessing the monetary value of ecosystem services relative to existing conservation programs and environmental markets, the overall value of enhanced services associated with adoption of perennial energy crops was far lower than the opportunity cost. However, when we monitized services using estimates for the social costs of pollution, the value of enhanced services far exceeded the opportunity cost. This disparity between

  17. Benefits of supplementing an industrial waste anaerobic digester with energy crops for increased biogas production.

    PubMed

    Nges, Ivo Achu; Escobar, Federico; Fu, Xinmei; Björnsson, Lovisa

    2012-01-01

    Currently, there is increasing competition for waste as feedstock for the growing number of biogas plants. This has led to fluctuation in feedstock supply and biogas plants being operated below maximum capacity. The feasibility of supplementing a protein/lipid-rich industrial waste (pig manure, slaughterhouse waste, food processing and poultry waste) mesophilic anaerobic digester with carbohydrate-rich energy crops (hemp, maize and triticale) was therefore studied in laboratory scale batch and continuous stirred tank reactors (CSTR) with a view to scale-up to a commercial biogas process. Co-digesting industrial waste and crops led to significant improvement in methane yield per ton of feedstock and carbon-to-nitrogen ratio as compared to digestion of the industrial waste alone. Biogas production from crops in combination with industrial waste also avoids the need for micronutrients normally required in crop digestion. The batch co-digestion methane yields were used to predict co-digestion methane yield in full scale operation. This was done based on the ratio of methane yields observed for laboratory batch and CSTR experiments compared to full scale CSTR digestion of industrial waste. The economy of crop-based biogas production is limited under Swedish conditions; therefore, adding crops to existing industrial waste digestion could be a viable alternative to ensure a constant/reliable supply of feedstock to the anaerobic digester. Copyright © 2011 Elsevier Ltd. All rights reserved.

  18. Crop growth and production responses to commercial humic products in U.S. Midwestern rainfed conditions

    USDA-ARS?s Scientific Manuscript database

    Humic products (humic and/or fulvic acids) have been in use for over 100 years, yet published research is scant on crop responses to humics under differing soil and weather conditions. We initiated field research experiments on corn (Zea mays L.) in Iowa in 2009 and have since expanded to multiple U...

  19. Management of herbicide resistance in wheat cropping systems: learning from the Australian experience.

    PubMed

    Walsh, Michael J; Powles, Stephen B

    2014-09-01

    Herbicide resistance continues to escalate in weed populations infesting global wheat (Triticum aestivum L.) crops, threatening grain production and thereby food supply. Conservation wheat production systems are reliant on the use of efficient herbicides providing low-cost, selective weed control in intensive cropping systems. The resistance-driven loss of herbicide resources combined with limited potential for new herbicide molecules means greater emphasis must be placed on preserving existing herbicides. For more than two decades, since the initial recognition of the dramatic consequences of herbicide resistance, the challenge of introducing additional weed control strategies into herbicide-based weed management programmes has been formidable. Throughout this period, herbicide resistance has expanded unabated across the world's wheat production regions. However, in Australia, where herbicide resources have become desperately depleted, the adoption of harvest weed seed control is evidence, at last, of a successful approach to sustainable weed management in wheat production systems. Growers routinely including strategies to target weed seeds during crop harvest, as part of herbicide-based weed management programmes, are now realising significant weed control and crop production benefits. When combined with an attitude of zero weed tolerance, there is evidence of a sustainable weed control future for wheat production systems. The hard-learned lessons of Australian growers can now be viewed by global wheat producers as an example of how to stop the continual loss of herbicide resources in productive cropping systems. © 2013 Society of Chemical Industry.

  20. Connecting Biochemical Photosynthesis Models with Crop Models to Support Crop Improvement

    PubMed Central

    Wu, Alex; Song, Youhong; van Oosterom, Erik J.; Hammer, Graeme L.

    2016-01-01

    The next advance in field crop productivity will likely need to come from improving crop use efficiency of resources (e.g., light, water, and nitrogen), aspects of which are closely linked with overall crop photosynthetic efficiency. Progress in genetic manipulation of photosynthesis is confounded by uncertainties of consequences at crop level because of difficulties connecting across scales. Crop growth and development simulation models that integrate across biological levels of organization and use a gene-to-phenotype modeling approach may present a way forward. There has been a long history of development of crop models capable of simulating dynamics of crop physiological attributes. Many crop models incorporate canopy photosynthesis (source) as a key driver for crop growth, while others derive crop growth from the balance between source- and sink-limitations. Modeling leaf photosynthesis has progressed from empirical modeling via light response curves to a more mechanistic basis, having clearer links to the underlying biochemical processes of photosynthesis. Cross-scale modeling that connects models at the biochemical and crop levels and utilizes developments in upscaling leaf-level models to canopy models has the potential to bridge the gap between photosynthetic manipulation at the biochemical level and its consequences on crop productivity. Here we review approaches to this emerging cross-scale modeling framework and reinforce the need for connections across levels of modeling. Further, we propose strategies for connecting biochemical models of photosynthesis into the cross-scale modeling framework to support crop improvement through photosynthetic manipulation. PMID:27790232

  1. Connecting Biochemical Photosynthesis Models with Crop Models to Support Crop Improvement.

    PubMed

    Wu, Alex; Song, Youhong; van Oosterom, Erik J; Hammer, Graeme L

    2016-01-01

    The next advance in field crop productivity will likely need to come from improving crop use efficiency of resources (e.g., light, water, and nitrogen), aspects of which are closely linked with overall crop photosynthetic efficiency. Progress in genetic manipulation of photosynthesis is confounded by uncertainties of consequences at crop level because of difficulties connecting across scales. Crop growth and development simulation models that integrate across biological levels of organization and use a gene-to-phenotype modeling approach may present a way forward. There has been a long history of development of crop models capable of simulating dynamics of crop physiological attributes. Many crop models incorporate canopy photosynthesis (source) as a key driver for crop growth, while others derive crop growth from the balance between source- and sink-limitations. Modeling leaf photosynthesis has progressed from empirical modeling via light response curves to a more mechanistic basis, having clearer links to the underlying biochemical processes of photosynthesis. Cross-scale modeling that connects models at the biochemical and crop levels and utilizes developments in upscaling leaf-level models to canopy models has the potential to bridge the gap between photosynthetic manipulation at the biochemical level and its consequences on crop productivity. Here we review approaches to this emerging cross-scale modeling framework and reinforce the need for connections across levels of modeling. Further, we propose strategies for connecting biochemical models of photosynthesis into the cross-scale modeling framework to support crop improvement through photosynthetic manipulation.

  2. Soil Modification by Native Shrubs Boosts Crop Productivity in Sudano-Sahelian Agroforestry System

    NASA Astrophysics Data System (ADS)

    Bogie, N. A.; Bayala, R.; Diedhiou, I.; Ghezzehei, T. A.; Dick, R.

    2014-12-01

    A changing climate along with human and animal population pressure can have a devastating effect on crop yields and food security in the Sudano-Sahel. Agricultural solutions to address soil degradation and crop water stress are needed to combat this increasingly difficult situation. Significant differences in crop success have been observed in peanut and millet grown in association with two native evergreen shrubs Piliostigma reticulatum, and Guiera senegalensis at the sites of Nioro du Rip and Keur Matar, respectively.We investigate how farmers can increase crop productivity by capitalizing on the evolutionary adaptation of native shrubs to the harsh Sudano-Sahelian environment as well as the physical mechanisms at work in the system that can lead to more robust yields. Soil moisture and water potential data were collected during a dry season millet irrigation experiment where stress was imposed in the intercropped system. Despite lower soil moisture content, crops grown in association with shrubs have increased biomass production and a faster development cycle. Hydraulic redistribution is thought to exist in this system and we found diurnal fluctuations in water potential within the intercropped system that increased in magnitude of to 0.4 Mpa per day as the soil dried below 1.0 Mpa during the stress treatment. An isotopic tracer study investigating hydraulic redistribution was carried out by injecting labeled water into shrub roots and sampling shrubs and nearby crops for isotopic analysis of plant water. These findings build on work that was completed in 2004 at the site, but point to lower overall magnitude of diurnal soil water potential fluctuations in dry soils. Using even the limited resources that farmers possess, this agroforestry technique can be expanded over wide swaths of the Sahel.

  3. Biomass production of 12 winter cereal cover crop cultivars and their effect on subsequent no-till corn yield

    USDA-ARS?s Scientific Manuscript database

    Cover crops can improve the sustainability and resilience of corn and soybean production systems. However, there have been isolated reports of corn yield reductions following winter rye cover crops. Although there are many possible causes of corn yield reductions following winter cereal cover crops,...

  4. An optimal staggered harvesting strategy for herbaceous biomass energy crops

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bhat, M.G.; English, B.C.

    1993-12-31

    Biofuel research over the past two decades indicates lignocellulosic crops are a reliable source of feedstock for alternative energy. However, under the current technology of producing, harvesting and converting biomass crops, the cost of biofuel is not competitive with conventional biofuel. Cost of harvesting biomass feedstock is a single largest component of feedstock cost so there is a cost advantage in designing a biomass harvesting system. Traditional farmer-initiated harvesting operation causes over investment. This study develops a least-cost, time-distributed (staggered) harvesting system for example switch grass, that calls for an effective coordination between farmers, processing plant and a single third-partymore » custom harvester. A linear programming model explicitly accounts for the trade-off between yield loss and benefit of reduced machinery overhead cost, associated with the staggered harvesting system. Total cost of producing and harvesting switch grass will decline by 17.94 percent from conventional non-staggered to proposed staggered harvesting strategy. Harvesting machinery cost alone experiences a significant reduction of 39.68 percent from moving from former to latter. The net return to farmers is estimated to increase by 160.40 percent. Per tonne and per hectare costs of feedstock production will decline by 17.94 percent and 24.78 percent, respectively. These results clearly lend support to the view that the traditional system of single period harvesting calls for over investment on agricultural machinery which escalates the feedstock cost. This social loss to the society in the form of escalated harvesting cost can be avoided if there is a proper coordination among farmers, processing plant and custom harvesters as to when and how biomass crop needs to be planted and harvested. Such an institutional arrangement benefits producers, processing plant and, in turn, end users of biofuels.« less

  5. Hyperspectral versus multispectral crop-productivity modeling and type discrimination for the HyspIRI mission

    USGS Publications Warehouse

    Mariotto, Isabella; Thenkabail, Prasad S.; Huete, Alfredo; Slonecker, E. Terrence; Platonov, Alexander

    2013-01-01

    Precise monitoring of agricultural crop biomass and yield quantities is critical for crop production management and prediction. The goal of this study was to compare hyperspectral narrowband (HNB) versus multispectral broadband (MBB) reflectance data in studying irrigated cropland characteristics of five leading world crops (cotton, wheat, maize, rice, and alfalfa) with the objectives of: 1. Modeling crop productivity, and 2. Discriminating crop types. HNB data were obtained from Hyperion hyperspectral imager and field ASD spectroradiometer, and MBB data were obtained from five broadband sensors: Landsat-7 Enhanced Thematic Mapper Plus (ETM +), Advanced Land Imager (ALI), Indian Remote Sensing (IRS), IKONOS, and QuickBird. A large collection of field spectral and biophysical variables were gathered for the 5 crops in Central Asia throughout the growing seasons of 2006 and 2007. Overall, the HNB and hyperspectral vegetation index (HVI) crop biophysical models explained about 25% greater variability when compared with corresponding MBB models. Typically, 3 to 7 HNBs, in multiple linear regression models of a given crop variable, explained more than 93% of variability in crop models. The evaluation of λ1 (400–2500 nm) versus λ2 (400–2500 nm) plots of various crop biophysical variables showed that the best two-band normalized difference HVIs involved HNBs centered at: (i) 742 nm and 1175 nm (HVI742-1175), (ii) 1296 nm and 1054 nm (HVI1296-1054), (iii) 1225 nm and 697 nm (HVI1225-697), and (iv) 702 nm and 1104 nm (HVI702-1104). Among the most frequently occurring HNBs in various crop biophysical models, 74% were located in the 1051–2331 nm spectral range, followed by 10% in the moisture sensitive 970 nm, 6% in the red and red-edge (630–752 nm), and the remaining 10% distributed between blue (400–500 nm), green (501–600 nm), and NIR (760–900 nm).Discriminant models, used for discriminating 3 or 4 or 5 crop types, showed

  6. Global crop production forecasting: An analysis of the data system problems and their solutions

    NASA Technical Reports Server (NTRS)

    Neiers, J.; Graf, H.

    1978-01-01

    Data related problems in the acquisition and use of satellite data necessary for operational forecasting of global crop production are considered for the purpose of establishing a measurable baseline. For data acquisition the world was divided into 37 crop regions in 22 countries. These regions represent approximately 95 percent of the total world production of the selected crops of interest, i.e., wheat, corn, soybeans, and rice. Targets were assigned to each region. Limited time periods during which data could be taken (windows) were assigned to each target. Each target was assigned to a cloud region. The DSDS was used to measure the success of obtaining data for each target during the specified windows for the regional cloud conditions and the specific alternatives being analyzed. The results of this study suggest several approaches for an operational system that will perform satisfactorily with two LANDSAT type satellites.

  7. 7 CFR 1437.12 - Crop definition.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ...) Crop acreage intended for the production of seed may be considered a separate crop from other intended...; (2) There is no possibility of other commercial uses of production from the same crop without regard... to the production of commercial seed and not conducive to the production of any other intended use of...

  8. Integrated Modeling of Crop Growth and Water Resource Management to Project Climate Change Impacts on Crop Production and Irrigation Water Supply and Demand in African Nations

    NASA Astrophysics Data System (ADS)

    Dale, A. L.; Boehlert, B.; Reisenauer, M.; Strzepek, K. M.; Solomon, S.

    2017-12-01

    Climate change poses substantial risks to African agriculture. These risks are exacerbated by concurrent risks to water resources, with water demand for irrigation comprising 80 to 90% of water withdrawals across the continent. Process-based crop growth models are able to estimate both crop demand for irrigation water and crop yields, and are therefore well-suited to analyses of climate change impacts at the food-water nexus. Unfortunately, impact assessments based on these models generally focus on either yields or water demand, rarely both. For this work, we coupled a crop model to a water resource management model in order to predict national trends in the impact of climate change on crop production, irrigation water demand, and the availability of water for irrigation across Africa. The crop model FAO AquaCrop-OS was run at 2ox2o resolution for 17 different climate futures from the CMIP5 archive, nine for Representative Concentration Pathway (RCP) 4.5 and eight for RCP8.5. Percent changes in annual rainfed and irrigated crop production and temporal shifts in monthly irrigation water demand were estimated for the years 2030, 2050, 2070, and 2090 for maize, sorghum, rice, wheat, cotton, sugarcane, fruits & vegetables, roots & tubers, and legumes & soybeans. AquaCrop was then coupled to a water management model (WEAP) in order to project changes in the ability of seven major river basins (the Congo, Niger, Nile, Senegal, Upper Orange, Volta, and Zambezi) to meet irrigation water demand out to 2050 in both average and dry years in the face of both climate change and irrigation expansion. Spatial and temporal trends were identified and interpreted through the lens of potential risk management strategies. Uncertainty in model estimates is reported and discussed.

  9. Vector production in an academic environment: a tool to assess production costs.

    PubMed

    Boeke, Aaron; Doumas, Patrick; Reeves, Lilith; McClurg, Kyle; Bischof, Daniela; Sego, Lina; Auberry, Alisha; Tatikonda, Mohan; Cornetta, Kenneth

    2013-02-01

    Generating gene and cell therapy products under good manufacturing practices is a complex process. When determining the cost of these products, researchers must consider the large number of supplies used for manufacturing and the personnel and facility costs to generate vector and maintain a cleanroom facility. To facilitate cost estimates, the Indiana University Vector Production Facility teamed with the Indiana University Kelley School of Business to develop a costing tool that, in turn, provides pricing. The tool is designed in Microsoft Excel and is customizable to meet the needs of other core facilities. It is available from the National Gene Vector Biorepository. The tool allows cost determinations using three different costing methods and was developed in an effort to meet the A21 circular requirements for U.S. core facilities performing work for federally funded projects. The costing tool analysis reveals that the cost of vector production does not have a linear relationship with batch size. For example, increasing the production from 9 to18 liters of a retroviral vector product increases total costs a modest 1.2-fold rather than doubling in total cost. The analysis discussed in this article will help core facilities and investigators plan a cost-effective strategy for gene and cell therapy production.

  10. Vector Production in an Academic Environment: A Tool to Assess Production Costs

    PubMed Central

    Boeke, Aaron; Doumas, Patrick; Reeves, Lilith; McClurg, Kyle; Bischof, Daniela; Sego, Lina; Auberry, Alisha; Tatikonda, Mohan

    2013-01-01

    Abstract Generating gene and cell therapy products under good manufacturing practices is a complex process. When determining the cost of these products, researchers must consider the large number of supplies used for manufacturing and the personnel and facility costs to generate vector and maintain a cleanroom facility. To facilitate cost estimates, the Indiana University Vector Production Facility teamed with the Indiana University Kelley School of Business to develop a costing tool that, in turn, provides pricing. The tool is designed in Microsoft Excel and is customizable to meet the needs of other core facilities. It is available from the National Gene Vector Biorepository. The tool allows cost determinations using three different costing methods and was developed in an effort to meet the A21 circular requirements for U.S. core facilities performing work for federally funded projects. The costing tool analysis reveals that the cost of vector production does not have a linear relationship with batch size. For example, increasing the production from 9 to18 liters of a retroviral vector product increases total costs a modest 1.2-fold rather than doubling in total cost. The analysis discussed in this article will help core facilities and investigators plan a cost-effective strategy for gene and cell therapy production. PMID:23360377

  11. Geophysical Global Modeling for Extreme Crop Production Using Photosynthesis Models Coupled to Ocean SST Dipoles

    NASA Astrophysics Data System (ADS)

    Kaneko, D.

    2016-12-01

    Climate change appears to have manifested itself along with abnormal meteorological disasters. Instability caused by drought and flood disasters is producing poor harvests because of poor photosynthesis and pollination. Fluctuations of extreme phenomena are increasing rapidly because amplitudes of change are much greater than average trends. A fundamental cause of these phenomena derives from increased stored energy inside ocean waters. Geophysical and biochemical modeling of crop production can elucidate complex mechanisms under seasonal climate anomalies. The models have progressed through their combination with global climate reanalysis, environmental satellite data, and harvest data on the ground. This study examined adaptation of crop production to advancing abnormal phenomena related to global climate change. Global environmental surface conditions, i.e., vegetation, surface air temperature, and sea surface temperature observed by satellites, enable global modeling of crop production and monitoring. Basic streams of the concepts of modeling rely upon continental energy flow and carbon circulation among crop vegetation, land surface atmosphere combining energy advection from ocean surface anomalies. Global environmental surface conditions, e.g., vegetation, surface air temperature, and sea surface temperature observed by satellites, enable global modeling of crop production and monitoring. The method of validating the modeling relies upon carbon partitioning in biomass and grains through carbon flow by photosynthesis using carbon dioxide unit in photosynthesis. Results of computations done for this study show global distributions of actual evaporation, stomata opening, and photosynthesis, presenting mechanisms related to advection effects from SST anomalies in the Pacific, Atlantic, and Indian oceans on global and continental croplands. For North America, climate effects appear clearly in severe atmospheric phenomena, which have caused drought and forest fires

  12. A blended approach to analyze staple and high-value crops using remote sensing with radiative transfer and crop models.

    NASA Astrophysics Data System (ADS)

    Davitt, A. W. D.; Winter, J.; McDonald, K. C.; Escobar, V. M.; Steiner, N.

    2017-12-01

    The monitoring of staple and high-value crops is important for maintaining food security. The recent launch of numerous remote sensing satellites has created the ability to monitor vast amounts of crop lands, continuously and in a timely manner. This monitoring provides users with a wealth of information on various crop types over different regions of the world. However, a challenge still remains on how to best quantify and interpret the crop and surface characteristics that are measured by visible, near-infrared, and active and passive microwave radar. Currently, two NASA funded projects are examining the ability to monitor different types of crops in California with different remote sensing platforms. The goal of both projects is to develop a cost-effective monitoring tool for use by vineyard and crop managers. The first project is designed to examine the capability to monitor vineyard water management and soil moisture in Sonoma County using Soil Moisture Active Passive (SMAP), Sentinel-1A and -2, and Landsat-8. The combined mission products create thorough and robust measurements of surface and vineyard characteristics that can potentially improve the ability to monitor vineyard health. Incorporating the Michigan Microwave Canopy Scattering (MIMICS), a radiative transfer model, enables us to better understand surface and vineyard features that influence radar measurements from Sentinel-1A. The second project is a blended approach to analyze corn, rice, and wheat growth using Sentinel-1A products with Decision Support System for Agrotechnology Transfer (DSSAT) and MIMICS models. This project aims to characterize the crop structures that influence Sentinel-1A radar measurements. Preliminary results have revealed the corn, rice, and wheat structures that influence radar measurements during a growing season. The potential of this monitoring tool can be used for maintaining food security. This includes supporting sustainable irrigation practices, identifying crop

  13. Grassland-Cropping Rotations: An Avenue for Agricultural Diversification to Reconcile High Production with Environmental Quality

    NASA Astrophysics Data System (ADS)

    Lemaire, Gilles; Gastal, François; Franzluebbers, Alan; Chabbi, Abad

    2015-11-01

    A need to increase agricultural production across the world to ensure continued food security appears to be at odds with the urgency to reduce the negative environmental impacts of intensive agriculture. Around the world, intensification has been associated with massive simplification and uniformity at all levels of organization, i.e., field, farm, landscape, and region. Therefore, we postulate that negative environmental impacts of modern agriculture are due more to production simplification than to inherent characteristics of agricultural productivity. Thus by enhancing diversity within agricultural systems, it should be possible to reconcile high quantity and quality of food production with environmental quality. Intensification of livestock and cropping systems separately within different specialized regions inevitably leads to unacceptable environmental impacts because of the overly uniform land use system in intensive cereal areas and excessive N-P loads in intensive animal areas. The capacity of grassland ecosystems to couple C and N cycles through microbial-soil-plant interactions as a way for mitigating the environmental impacts of intensive arable cropping system was analyzed in different management options: grazing, cutting, and ley duration, in order to minimize trade-offs between production and the environment. We suggest that integrated crop-livestock systems are an appropriate strategy to enhance diversity. Sod-based rotations can temporally and spatially capture the benefits of leys for minimizing environmental impacts, while still maintaining periods and areas of intensive cropping. Long-term experimental results illustrate the potential of such systems to sequester C in soil and to reduce and control N emissions to the atmosphere and hydrosphere.

  14. Grassland-Cropping Rotations: An Avenue for Agricultural Diversification to Reconcile High Production with Environmental Quality.

    PubMed

    Lemaire, Gilles; Gastal, François; Franzluebbers, Alan; Chabbi, Abad

    2015-11-01

    A need to increase agricultural production across the world to ensure continued food security appears to be at odds with the urgency to reduce the negative environmental impacts of intensive agriculture. Around the world, intensification has been associated with massive simplification and uniformity at all levels of organization, i.e., field, farm, landscape, and region. Therefore, we postulate that negative environmental impacts of modern agriculture are due more to production simplification than to inherent characteristics of agricultural productivity. Thus by enhancing diversity within agricultural systems, it should be possible to reconcile high quantity and quality of food production with environmental quality. Intensification of livestock and cropping systems separately within different specialized regions inevitably leads to unacceptable environmental impacts because of the overly uniform land use system in intensive cereal areas and excessive N-P loads in intensive animal areas. The capacity of grassland ecosystems to couple C and N cycles through microbial-soil-plant interactions as a way for mitigating the environmental impacts of intensive arable cropping system was analyzed in different management options: grazing, cutting, and ley duration, in order to minimize trade-offs between production and the environment. We suggest that integrated crop-livestock systems are an appropriate strategy to enhance diversity. Sod-based rotations can temporally and spatially capture the benefits of leys for minimizing environmental impacts, while still maintaining periods and areas of intensive cropping. Long-term experimental results illustrate the potential of such systems to sequester C in soil and to reduce and control N emissions to the atmosphere and hydrosphere.

  15. Evaluation of preservation methods for improving biogas production and enzymatic conversion yields of annual crops

    PubMed Central

    2011-01-01

    Background The use of energy crops and agricultural residues is expected to increase to fulfil the legislative demands of bio-based components in transport fuels. Ensiling methods, adapted from the feed sector, are suitable storage methods to preserve fresh crops throughout the year for, for example, biogas production. Various preservation methods, namely ensiling with and without acid addition for whole crop maize, fibre hemp and faba bean were investigated. For the drier fibre hemp, alkaline urea treatment was studied as well. These treatments were also explored as mild pretreatment methods to improve the disassembly and hydrolysis of these lignocellulosic substrates. Results The investigated storage treatments increased the availability of the substrates for biogas production from hemp and in most cases from whole maize but not from faba bean. Ensiling of hemp, without or with addition of formic acid, increased methane production by more than 50% compared to fresh hemp. Ensiling resulted in substantially increased methane yields also from maize, and the use of formic acid in ensiling of maize further enhanced methane yields by 16%, as compared with fresh maize. Ensiled faba bean, in contrast, yielded somewhat less methane than the fresh material. Acidic additives preserved and even increased the amount of the valuable water-soluble carbohydrates during storage, which affected most significantly the enzymatic hydrolysis yield of maize. However, preservation without additives decreased the enzymatic hydrolysis yield especially in maize, due to its high content of soluble sugars that were already converted to acids during storage. Urea-based preservation significantly increased the enzymatic hydrolysability of hemp. Hemp, preserved with urea, produced the highest carbohydrate increase of 46% in enzymatic hydrolysis as compared to the fresh material. Alkaline pretreatment conditions of hemp improved also the methane yields. Conclusions The results of the present

  16. How can we improve crop genotypes to increase stress resilience and productivity in a future climate? A new crop screening method based on productivity and resistance to abiotic stress

    PubMed Central

    Thiry, Arnauld A.; Chavez Dulanto, Perla N.; Reynolds, Matthew P.; Davies, William J.

    2016-01-01

    The need to accelerate the selection of crop genotypes that are both resistant to and productive under abiotic stress is enhanced by global warming and the increase in demand for food by a growing world population. In this paper, we propose a new method for evaluation of wheat genotypes in terms of their resilience to stress and their production capacity. The method quantifies the components of a new index related to yield under abiotic stress based on previously developed stress indices, namely the stress susceptibility index, the stress tolerance index, the mean production index, the geometric mean production index, and the tolerance index, which were created originally to evaluate drought adaptation. The method, based on a scoring scale, offers simple and easy visualization and identification of resilient, productive and/or contrasting genotypes according to grain yield. This new selection method could help breeders and researchers by defining clear and strong criteria to identify genotypes with high resilience and high productivity and provide a clear visualization of contrasts in terms of grain yield production under stress. It is also expected that this methodology will reduce the time required for first selection and the number of first-selected genotypes for further evaluation by breeders and provide a basis for appropriate comparisons of genotypes that would help reveal the biology behind high stress productivity of crops. PMID:27677299

  17. Assessing Climate Risk on Agricultural Production: Insights Using Retrospective Analysis of Crop Insurance and Climatic Trends

    NASA Astrophysics Data System (ADS)

    Reyes, J. J.; Elias, E.; Eischens, A.; Shilts, M.; Rango, A.; Steele, R.

    2017-12-01

    The collaborative synthesis of existing datasets, such as long-term climate observations and farmers' crop insurance payments, can increase their overall collective value and societal application. The U.S. Department of Agriculture (USDA) Climate Hubs were created to develop and deliver science-based information and technologies to agricultural and natural resource managers to enable climate-informed decision-making. As part of this mission, Hubs work across USDA and other climate service agencies to synthesize existing information. The USDA Risk Management Agency (RMA) is responsible for overseeing the Federal crop insurance program which currently insures over $100 billion in crops annually. RMA hosts data describing the cause for loss (e.g. drought, wind, irrigation failure) and indemnity amount (i.e. total cost of loss) at multiple spatio-temporal scales (i.e. state, county, year, month). The objective of this paper is to link climate information with indemnities, and their associated cause of loss, to assess climate risk on agricultural production and provide regionally-relevant information to stakeholders to promote resilient working landscapes. We performed a retrospective trend analysis at the state-level for the American Southwest (SW). First, we assessed indemnity-only trends by cause of loss and crop type at varying temporal scales. Historical monthly weather data (i.e. precipitation and temperature) and long-term drought indices (e.g. Palmer Drought Severity Index) were then linked with indemnities and grouped by different causes of loss. Climatological ranks were used to integrate historical comparative intensity of acute and long-term climatic events. Heat and drought as causes of loss were most correlated with temperature and drought indicators, respectively. Across all SW states increasing indemnities were correlated with warmer conditions. Multiple statistical trend analyses suggest a framework is necessary to appropriately measure the biophysical

  18. Assessment of physical and chemical indicators of sandy soil quality for sustainable crop production

    NASA Astrophysics Data System (ADS)

    Lipiec, Jerzy; Usowicz, Boguslaw

    2017-04-01

    Sandy soils are used in agriculture in many regions of the world. The share of sandy soils in Poland is about 55%. The aim of this study was to assess spatial variability of soil physical and chemical properties affecting soil quality and crop yields in the scale of field (40 x 600 m) during three years of different weather conditions. The experimental field was located on the post glacial and acidified sandy deposits of low productivity (Szaniawy, Podlasie Region, Poland). Physical soil quality indicators included: content of sand, silt, clay and water, bulk density and those chemical: organic carbon, cation exchange capacity, acidity (pH). Measurements of the most soil properties were done at spring and summer each year in topsoil and subsoil layer in 150 points. Crop yields were evaluated in places close to measuring points of the soil properties. Basic statistics including mean, standard deviation, skewness, kurtosis minimal, maximal and correlations between the soil properties and crop yields were calculated. Analysis of spatial dependence and distribution for each property was performed using geostatistical methods. Mathematical functions were fitted to the experimentally derived semivariograms that were used for mapping the soil properties and crop yield by kriging. The results showed that the largest variations had clay content (CV 67%) and the lowest: sand content (5%). The crop yield was most negatively correlated with sand content and most positively with soil water content and cation exchange capacity. In general the exponential semivariogram models fairly good matched to empirical data. The range of semivariogram models of the measured indicators varied from 14 m to 250 m indicate high and moderate spatial variability. The values of the nugget-to-sill+nugget ratios showed that most of the soil properties and crop yields exhibited strong and moderate spatial dependency. The kriging maps allowed identification of low yielding sub-field areas that

  19. Impact of the Gulf of California SST on simulating precipitation and crop productivity in the Southwestern United States

    NASA Astrophysics Data System (ADS)

    Kim, S.; Kim, J.; Prasad, A. K.; Stack, D. H.; El-Askary, H. M.; Kafatos, M.

    2012-12-01

    Like other ecosystems, agricultural productivity is substantially affected by climate factors. Therefore, accurate climatic data (i.e. precipitation, temperature, and radiation) is crucial to simulating crop yields. In order to understand and anticipate climate change and its impacts on agricultural productivity in the Southwestern United States, the WRF regional climate model (RCM) and the Agricultural Production Systems sIMulator (APSIM) were employed for simulating crop production. 19 years of WRF RCM output show that there is a strong dry bias during the warm season, especially in Arizona. Consequently, the APSIM crop model indicates very low crop yields in this region. We suspect that the coarse resolution of reanalysis data could not resolve the relatively warm Sea Surface Temperature (SST) in the Gulf of California (GC), causing the SST to be up to 10 degrees lower than the climatology. In the Southwestern United States, a significant amount of precipitation is associated with North American Monsoon (NAM). During the monsoon season, the low-level moisture is advected to the Southwestern United States via the GC, which is known to be the dominant moisture source. Thus, high-resolution SST data in the GC is required for RCM simulations to accurately represent a reasonable amount of precipitation in the region, allowing reliable evaluation of the impacts on regional ecosystems.and evaluate impacts on regional ecosystems. To evaluate the influence of SST on agriculture in the Southwestern U.S., two sets of numerical simulations were constructed: a control, using unresolved SST of GC, and daily updated SST data from the MODIS satellite sensor. The meteorological drivers from each of the 6 year RCM runs were provided as input to the APSIM model to determine the crop yield. Analyses of the simulated crop production, and the interannual variation of the meteorological drivers, demonstrate the influence of SST on crop yields in the Southwestern United States.

  20. Productivity costs in economic evaluations: past, present, future.

    PubMed

    Krol, Marieke; Brouwer, Werner; Rutten, Frans

    2013-07-01

    Productivity costs occur when the productivity of individuals is affected by illness, treatment, disability or premature death. The objective of this paper was to review past and current developments related to the inclusion, identification, measurement and valuation of productivity costs in economic evaluations. The main debates in the theory and practice of economic evaluations of health technologies described in this review have centred on the questions of whether and how to include productivity costs, especially productivity costs related to paid work. The past few decades have seen important progress in this area. There are important sources of productivity costs other than absenteeism (e.g. presenteeism and multiplier effects in co-workers), but their exact influence on costs remains unclear. Different measurement instruments have been developed over the years, but which instrument provides the most accurate estimates has not been established. Several valuation approaches have been proposed. While empirical research suggests that productivity costs are best included in the cost side of the cost-effectiveness ratio, the jury is still out regarding whether the human capital approach or the friction cost approach is the most appropriate valuation method to do so. Despite the progress and the substantial amount of scientific research, a consensus has not been reached on either the inclusion of productivity costs in economic evaluations or the methods used to produce productivity cost estimates. Such a lack of consensus has likely contributed to ignoring productivity costs in actual economic evaluations and is reflected in variations in national health economic guidelines. Further research is needed to lessen the controversy regarding the estimation of health-related productivity costs. More standardization would increase the comparability and credibility of economic evaluations taking a societal perspective.

  1. Water-Energy Nexus: the case of biogas production from energy crops evaluated by Water Footprint and LCA methods

    NASA Astrophysics Data System (ADS)

    Pacetti, Tommaso; Caporali, Enrica; Federici, Giorgio

    2015-04-01

    This study analyzes the production of biogas from aerobic digestion of energy crops. The production of biogas is an important case study because its spread, similar to other sources of bioenergy, creates questions about the environmental effects, the competition in the food market as well as the progressive change of land use. In particular is hereby analyzed the nexus between bioenergy production and water, which plays a key role because water resources are often the limiting factor in energy production from energy crops. The environmental performances of biogas production were analyzed through Water Footprint (WF) and Life cycle assessment (LCA): the integration of LCA and WF represents an attempt of taking advantage of their complementary strengths in environmental assessment, trying to give a comprehensive analysis of bioenergy production sustainability. Eighteen scenarios were considered, trying to figure out the performances of different combinations of locations (north, center, south Italy), crops (maize, sorghum, wheat) and treatments (anaerobic digestion with water dilution or manure co-digestion). WF assessment shows that cultivation phase is the most impacting on water resource use along the entire system life cycle. In particular, water requirements for crop growth shows that sorghum is the more water saver crop (in terms of consumptive water use to produce the amount of crop needed to produce 1 GJ of biogas energy content). Moreover WF investigates the kind of water use and shows that wheat, despite being the most intensive water user, exploits more green water than the other crops.WF was evaluated with respect to water stress indicators for the Italian territory, underlining the higher criticalities associated with water use in southern Italy and identifying consumptive blue water use, in this area, as the main hotspot. Therefore biogas production from energy crops in southern Italy is unsustainable from a water management perspective. At a basin

  2. Prospects for dedicated energy crop production and attitudes towards agricultural straw use: The case of livestock farmers

    PubMed Central

    Wilson, P.; Glithero, N.J.; Ramsden, S.J.

    2014-01-01

    Second generation biofuels utilising agricultural by-products (e.g. straw), or dedicated energy crops (DECs) produced on ‘marginal’ land, have been called for. A structured telephone survey of 263 livestock farmers, predominantly located in the west or ‘marginal’ upland areas of England captured data on attitudes towards straw use and DECs. Combined with farm physical and business data, the survey results show that 7.2% and 6.3% of farmers would respectively consider growing SRC and miscanthus, producing respective maximum potential English crop areas of 54,603 ha and 43,859 ha. If higher market prices for straw occurred, most livestock farmers would continue to buy straw. Reasons for not being willing to consider growing DECs include concerns over land quality, committing land for a long time period, lack of appropriate machinery, profitability, and time to financial return; a range of moral, land quality, production conflict and lack of crop knowledge factors were also cited. Results demonstrate limited potential for the production of DECs on livestock farms in England. Changes in policy support to address farmer concerns with respect to DECs will be required to incentivise farmers to increase energy crop production. Policy support for DEC production must be cognisant of farm-level economic, tenancy and personal objectives. PMID:25844008

  3. The economic and environmental cost of delayed GM crop adoption: The case of Australia's GM canola moratorium.

    PubMed

    Biden, Scott; Smyth, Stuart J; Hudson, David

    2018-01-02

    Incorporating socio-economic considerations (SECs) into national biosafety regulations regarding genetically modified (GM) crops have opportunity costs. Australia approved the cultivation of GM canola through a science-based risk assessment in 2003, but allowed state moratoria to be instituted based on potential trade impacts over the period 2004 to 2008 and 2010 in the main canola growing states. This analysis constructs a counterfactual assessment using Canadian GM canola adoption data to create an S-Curve of adoption in Australia to measure the environmental and economic opportunity costs of Australia's SEC-based moratoria between 2004 and 2014. The environmental impacts are measured through the amount of chemical active ingredients applied during pest management, the Environmental Impact Quotient indicator, and greenhouse gas emissions. The economic impacts are measured through the variable costs of the weed control programs, yield and the contribution margin. The environmental opportunity costs from delaying the adoption of GM canola in Australia include an additional 6.5 million kilograms of active ingredients applied to canola land; a 14.3% increase in environmental impact to farmers, consumers and the ecology; 8.7 million litres of diesel fuel burned; and an additional 24.2 million kilograms of greenhouse gas (GHG) and compound emissions released. The economic opportunity costs of the SEC-based moratoria resulted in foregone output of 1.1 million metric tonnes of canola and a net economic loss to canola farmers' of AU$485.6 million. The paper provides some of the first quantified, post-adoption evidence on the opportunity cost and environmental impacts of incorporating SECs into GM crop regulation.

  4. Effects of soil and water conservation on crop productivity: Evidences from Anjenie watershed, Ethiopia

    NASA Astrophysics Data System (ADS)

    Adgo, Enyew; Teshome, Akalu

    2014-05-01

    Widespread soil and water conservation activities have been implemented in many parts of eastern Africa to control soil erosion by water and improve land productivity for the last few decades. Following the 1974 severe drought, soil and water conservation became more important to Ethiopia and the approach shifted to watershed based land management initiatives since the 1980s. To capture long-term impacts of these initiatives, a study was conducted in Anjenie Watershed of Ethiopia, assessing fanya juu terraces and grass strips constructed in a pilot project in 1984, and which are still functional nearly 30 years later. Data were collected from government records, field observations and questionnaire surveys administered to 60 farmers. Half of the respondents had terraced farms in the watershed former project area (with terrace technology) and the rest were outside the terraced area. The crops assessed were teff, barley and maize. Cost-benefit analyses were used to determine the economic benefits with and without terraces, including gross and net profit values, returns on labour, water productivity and impacts on poverty. The results indicated that soil and water conservation had improved crop productivity. The average yield on terraced fields was 0.95 t ha-1 for teff (control 0.49), 1.86 t ha-1 for barley (control 0.61), and 1.73 t ha-1 for maize (control 0.77). The net benefit was significantly higher on terraced fields, recording US 20.9 (US -112 control) for teff, US 185 (US -41 control) for barley and US -34.5 (US - 101 control) ha-1 yr-1 for maize. The returns on family labour were 2.33 for barley, 1.01 for teff, and 0.739 US per person-day for maize grown on terraced plots, compared to US 0.44, 0.27 and 0.16 per person-day for plots without terraces, respectively. Using a discount rate of 10%, the average net present value (NPV) of barley production with terrace was found to be about US 1542 over a period of 50 years. In addition, the average financial

  5. Genetically Engineered Crops and Certified Organic Agriculture for Improving Nutrition Security in Africa and South Asia.

    PubMed

    Pray, Carl; Ledermann, Samuel

    2016-01-01

    In Africa and South Asia, where nutrition insecurity is severe, two of the most prominent production technologies are genetically modified (GM) crops and certified organic agriculture. We analyze the potential impact pathways from agricultural production to nutrition. Our review of data and the literature reveals increasing farm-level income from cash crop production as the main pathway by which organic agriculture and GM agriculture improve nutrition. Potential secondary pathways include reduced prices of important food crops like maize due to GM maize production and increased food production using organic technology. Potential tertiary pathways are improvements in health due to reduced insecticide use. Challenges to the technologies achieving their impact include the politics of GM agriculture and the certification costs of organic agriculture. Given the importance of agricultural production in addressing nutrition security, accentuated by the post-2015 sustainable development agenda, the chapter concludes by stressing the importance of private and public sector research in improving the productivity and adoption of both GM and organic crops. In addition, the chapter reminds readers that increased farm income and productivity require complementary investments in health, education, food access and women's empowerment to actually improve nutrition security. © 2016 S. Karger AG, Basel.

  6. A bioenergy feedstock/vegetable double-cropping system

    USDA-ARS?s Scientific Manuscript database

    Certain warm-season vegetable crops may lend themselves to bioenergy double-cropping systems, which involve growing a winter annual bioenergy feedstock crop followed by a summer annual crop. The objective of the study was to compare crop productivity and weed communities in different pumpkin product...

  7. Optimization based trade-off analysis of biodiesel crop production for managing a German agricultural catchment

    USDA-ARS?s Scientific Manuscript database

    In agricultural production, the existence of multiple trade-offs among several conflicting objectives, such as food production, water quantity, water quality, biodiversity and ecosystem services, is well known. However, quantification of the trade-offs among objectives in bioenergy crop production i...

  8. Crop production and economic loss due to wind erosion in hot arid ecosystem of India

    NASA Astrophysics Data System (ADS)

    Santra, Priyabrata; Moharana, P. C.; Kumar, Mahesh; Soni, M. L.; Pandey, C. B.; Chaudhari, S. K.; Sikka, A. K.

    2017-10-01

    Wind erosion is a severe land degradation process in hot arid western India and affects the agricultural production system. It affects crop yield directly by damaging the crops through abrasion, burial, dust deposition etc. and indirectly by reducing soil fertility. In this study, an attempt was made to quantify the indirect impact of wind erosion process on crop production loss and associated economic loss in hot arid ecosystem of India. It has been observed that soil loss due to wind erosion varies from minimum 1.3 t ha-1 to maximum 83.3 t ha-1 as per the severity. Yield loss due to wind erosion was found maximum for groundnut (Arachis hypogea) (5-331 kg ha-1 yr-1), whereas minimum for moth bean (Vigna aconitifolia) (1-93 kg ha-1 yr-1). For pearl millet (Pennisetum glaucum), which covers a major portion of arable lands in western Rajasthan, the yield loss was found 3-195 kg ha-1 yr-1. Economic loss was found higher for groundnut and clusterbean (Cyamopsis tetragonoloba) than rest crops, which are about

  9. Coupling sensing to crop models for closed-loop plant production in advanced life support systems

    NASA Astrophysics Data System (ADS)

    Cavazzoni, James; Ling, Peter P.

    1999-01-01

    We present a conceptual framework for coupling sensing to crop models for closed-loop analysis of plant production for NASA's program in advanced life support. Crop status may be monitored through non-destructive observations, while models may be independently applied to crop production planning and decision support. To achieve coupling, environmental variables and observations are linked to mode inputs and outputs, and monitoring results compared with model predictions of plant growth and development. The information thus provided may be useful in diagnosing problems with the plant growth system, or as a feedback to the model for evaluation of plant scheduling and potential yield. In this paper, we demonstrate this coupling using machine vision sensing of canopy height and top projected canopy area, and the CROPGRO crop growth model. Model simulations and scenarios are used for illustration. We also compare model predictions of the machine vision variables with data from soybean experiments conducted at New Jersey Agriculture Experiment Station Horticulture Greenhouse Facility, Rutgers University. Model simulations produce reasonable agreement with the available data, supporting our illustration.

  10. Comparison of GHG fluxes from conventional and energy crop production from adjacent fields in the UK, using novel technologies

    NASA Astrophysics Data System (ADS)

    Keane, James Benjamin; Ineson, Phil; Toet, Sylvia; Stockdale, James; Vallack, Harry; Blei, Emanuel; Bentley, Mark; Howarth, Steve

    2016-04-01

    With combustion of fossil fuels driving anthropogenic climate change, allied to a diminishing global reserve of these resources it is vital for alternative sources of energy production to be investigated. One alternative is biomass; ethanol fermented from corn (Zea mays) or sugar cane (Saccharum spp.) has long been used as a petroleum substitute, and oilseed rape (OSR, Brassica napus) is the principal feedstock for biodiesel production in Germany, the third biggest producer of this fuel globally. Diverting food crops into energy production would seem counter-productive, given there exists genuine concern regarding our ability to meet future global food demand, thus attention has turned to utilising lignocellulosic material: woody tissue and non-food crop by-products such as corn stover. For this reason species such as the perennial grass Miscanthus (Miscanthus x giganteus) are being cultivated for energy production, and these are referred to as second generation energy crops. They are attractive since they do not deplete food supplies, have high yields, require less fertiliser input than annual arable crops, and can be grown on marginal agricultural land. To assess the effectiveness of a crop for bioenergy production, it is vital that accurate quantification of greenhouse gas (GHG) fluxes is obtained for their cultivation in the field. We will present data from a series of studies investigating the GHG fluxes from the energy crops OSR and Miscanthus under various nutrient additions in a comparison with conventional arable cropping at the same site in the United Kingdom (UK). A combination of methods were employed to measure fluxes of CO2, CH4 and N2O from both soil and vegetation, at various temporal and spatial scales. Conventional manual chambers were deployed on a monthly regime to quantify soil GHG fluxes, and were supplemented with automated soil flux chambers measuring soil respiration at an hourly frequency. Additionally, two novel automated chamber systems

  11. Genetically modified crops and small-scale farmers: main opportunities and challenges.

    PubMed

    Azadi, Hossein; Samiee, Atry; Mahmoudi, Hossein; Jouzi, Zeynab; Khachak, Parisa Rafiaani; De Maeyer, Philippe; Witlox, Frank

    2016-01-01

    Although some important features of genetically modified (GM) crops such as insect resistance, herbicide tolerance, and drought tolerance might seem to be beneficial for small-scale farmers, the adoption of GM technology by smallholders is still slight. Identifying pros and cons of using this technology is important to understand the impacts of GM crops on these farmers. This article reviews the main opportunities and challenges of GM crops for small-scale farmers in developing countries. The most significant advantages of GM crops include being independent to farm size, environment protection, improvement of occupational health issues, and the potential of bio-fortified crops to reduce malnutrition. Challenges faced by small-scale farmers for adoption of GM crops comprise availability and accessibility of GM crop seeds, seed dissemination and price, and the lack of adequate information. In addition, R&D and production costs in using GM crops make it difficult for these farmers to adopt the use of these crops. Moreover, intellectual property right regulations may deprive resource poor farmers from the advantages of GM technology. Finally, concerns on socio-economic and environment safety issues are also addressed in this paper.

  12. Cover crop, N-rate impacts on corn yield and soil N

    USDA-ARS?s Scientific Manuscript database

    Nitrogen fertilizer is a significant input expense for producers, as conversion of stable nitrogen into plant available reactive forms such as NH4 or NO3 is energy intensive and costly. These reactive forms of nitrogen (Nr), critical for crop production, can escape from agricultural systems into sur...

  13. Recycling of Na in advanced life support: strategies based on crop production systems.

    PubMed

    Guntur, S V; Mackowiak, C; Wheeler, R M

    1999-01-01

    Sodium is an essential dietary requirement in human nutrition, but seldom holds much importance as a nutritional element for crop plants. In Advanced Life Support (ALS) systems, recycling of gases, nutrients, and water loops is required to improve system closure. If plants are to play a significant role in recycling of human wastes, Na will need to accumulate in edible tissues for return to the crew diet. If crops fail to accumulate the incoming Na into edible tissues, Na could become a threat to the hydroponic food production system by increasing the nutrient solution salinity. Vegetable crops of Chenopodiaceae such as spinach, table beet, and chard may have a high potential to supply Na to the human diet, as Na can substitute for K to a large extent in metabolic processes of these crops. Various strategies are outlined that include both genetic and environmental management aspects to optimize the Na recovery from waste streams and their resupply through the human diet in ALS.

  14. Potential negative consequences of geoengineering on crop production: A study of Indian groundnut

    PubMed Central

    Dobbie, Steven; Ramirez‐Villegas, Julian; Feng, Kuishuang; Challinor, Andrew J.; Chen, Bing; Gao, Yao; Lee, Lindsay; Yin, Yan; Sun, Laixiang; Watson, James; Koehler, Ann‐Kristin; Fan, Tingting; Ghosh, Sat

    2016-01-01

    Abstract Geoengineering has been proposed to stabilize global temperature, but its impacts on crop production and stability are not fully understood. A few case studies suggest that certain crops are likely to benefit from solar dimming geoengineering, yet we show that geoengineering is projected to have detrimental effects for groundnut. Using an ensemble of crop‐climate model simulations, we illustrate that groundnut yields in India undergo a statistically significant decrease of up to 20% as a result of solar dimming geoengineering relative to RCP4.5. It is somewhat reassuring, however, to find that after a sustained period of 50 years of geoengineering crop yields return to the nongeoengineered values within a few years once the intervention is ceased. PMID:28190903

  15. Benefits of supplementing an industrial waste anaerobic digester with energy crops for increased biogas production

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nges, Ivo Achu, E-mail: Nges.Ivo_Achu@biotek.lu.se; Escobar, Federico; Fu Xinmei

    2012-01-15

    Highlights: Black-Right-Pointing-Pointer This study demonstrates the feasibility of co-digestion food industrial waste with energy crops. Black-Right-Pointing-Pointer Laboratory batch co-digestion led to improved methane yield and carbon to nitrogen ratio as compared to mono-digestion of industrial waste. Black-Right-Pointing-Pointer Co-digestion was also seen as a means of degrading energy crops with nutrients addition as crops are poor in nutrients. Black-Right-Pointing-Pointer Batch co-digestion methane yields were used to predict co-digestion methane yield in full scale operation. Black-Right-Pointing-Pointer It was concluded that co-digestion led an over all economically viable process and ensured a constant supply of feedstock. - Abstract: Currently, there is increasing competitionmore » for waste as feedstock for the growing number of biogas plants. This has led to fluctuation in feedstock supply and biogas plants being operated below maximum capacity. The feasibility of supplementing a protein/lipid-rich industrial waste (pig manure, slaughterhouse waste, food processing and poultry waste) mesophilic anaerobic digester with carbohydrate-rich energy crops (hemp, maize and triticale) was therefore studied in laboratory scale batch and continuous stirred tank reactors (CSTR) with a view to scale-up to a commercial biogas process. Co-digesting industrial waste and crops led to significant improvement in methane yield per ton of feedstock and carbon-to-nitrogen ratio as compared to digestion of the industrial waste alone. Biogas production from crops in combination with industrial waste also avoids the need for micronutrients normally required in crop digestion. The batch co-digestion methane yields were used to predict co-digestion methane yield in full scale operation. This was done based on the ratio of methane yields observed for laboratory batch and CSTR experiments compared to full scale CSTR digestion of industrial waste. The economy of crop

  16. Biomass fuel from woody crops for electric power generation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Perlack, R.D.; Wright, L.L.; Huston, M.A.

    1995-06-22

    This report discusses the biologic, environmental, economic, and operational issues associated with growing wood crops in managed plantations. Information on plantation productivity, environmental issues and impacts, and costs is drawn from DOE`s Biofuels Feedstock Development as well as commercial operations in the US and elsewhere. The particular experiences of three countries--Brazil, the Philippines, and Hawaii (US)--are discussed in considerable detail.

  17. Field pennycress: A new oilseed crop for the production of biofuels, lubricants, and high-quality proteins

    USDA-ARS?s Scientific Manuscript database

    Field pennycress (Thlaspi arvense L.) has numerous positive attributes that make it a very promising industrial oilseed crop. Its short growing season makes it suitable as an off-season crop between corn and soybean production in most of the upper Midwestern U.S. Fall planting of pennycress may also...

  18. Can reducing tillage and increasing crop diversity benefit grain and forage production?

    USDA-ARS?s Scientific Manuscript database

    Benefits of reduced tillage and diverse rotation cropping systems include reversing soil C loss, mitigating greenhouse gas production, and improving soil health. However, adoption of these strategies is lagging, particularly in the upper Midwest, due to a perception that reduced tillage reduces cro...

  19. Enzymatic saccharification of dilute acid pretreated saline crops for fermentable sugar production

    USDA-ARS?s Scientific Manuscript database

    Four saline crops [athel (Tamarix aphylla L), eucalyptus (Eucalyptus camaldulensis), Jose Tall Wheatgrass (Agropyron elongatum), and Creeping Wild Ryegrass (Leymus triticoides)] that are used in farms for salt uptake from soil and drainage irrigation water have the potential for fuel ethanol product...

  20. Enzymatic saccharization of dilute acid pretreated saline crops for fermentable sugar production

    USDA-ARS?s Scientific Manuscript database

    Four saline crops [athel (Tamarix aphylla L), eucalyptus (Eucalyptus camaldulensis), Jose Tall Wheatgrass (Agropyron elongatum), and Creeping Wild Ryegrass (Leymus triticoides)] that are used in farms for salt uptake from soil and drainage irrigation water have the potential for fuel ethanol product...

  1. Microbial Diversity-Based Novel Crop Protection Products

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pioneer Hi-Bred International Inc.; DuPont Experimental Station; Yalpani, Ronald Flannagan, Rafael Herrmann, James Presnail, Tamas Torok, and Nasser

    Extremophilic microorganisms are adapted to survive in ecological niches with high temperatures, extremes of pH, high salt concentrations, high pressure, radiation, etc. Extremophiles produce unique biocatalysts and natural products that function under extreme conditions comparab le to those prevailing in various industrial processes. Therefore, there is burgeoning interest in bioprospecting for extremophiles with potential immediate use in agriculture, the food, chemical, and pharm aceutical industries, and environmental biotechnology. Over the years, several thousand extremophilic bacteria, archaea, and filamentous fungi were collected at extreme environmental sites in the USA, the Chernobyl Exclusion Zone surrounding the faeild nuclear power plant in Ukraine,more » in and around Lake Baikal in Siberia, and at geothermal sites on the Kamchatka peninsula in Russia. These organisms were cultured under proprietary conditions, and the cell- free supernatants were screened for biological activities against plant pathogenic fungi and major crop damaging insects. Promising peptide lead molecules were isolated, characterized, and sequenced. Relatively high hit rates characterized the tested fermentation broths. Of the 26,000 samples screened, over thousand contained biological activity of interest. A fair number of microorganisms expressed broad- spectrum antifungal or insecticidal activity. Two- dozen broadly antifungal peptides (AFPs) are alr eady patent protected, and many more tens are under further investigation. Tapping the gene pool of extremophilic microorganisms to provide novel ways of crop protection proved a successful strategy.« less

  2. Crop area estimation based on remotely-sensed data with an accurate but costly subsample

    NASA Technical Reports Server (NTRS)

    Gunst, R. F.

    1983-01-01

    Alternatives to sampling-theory stratified and regression estimators of crop production and timber biomass were examined. An alternative estimator which is viewed as especially promising is the errors-in-variable regression estimator. Investigations established the need for caution with this estimator when the ratio of two error variances is not precisely known.

  3. Reducing pesticide use while preserving crop productivity and profitability on arable farms.

    PubMed

    Lechenet, Martin; Dessaint, Fabrice; Py, Guillaume; Makowski, David; Munier-Jolain, Nicolas

    2017-03-01

    Achieving sustainable crop production while feeding an increasing world population is one of the most ambitious challenges of this century 1 . Meeting this challenge will necessarily imply a drastic reduction of adverse environmental effects arising from agricultural activities 2 . The reduction of pesticide use is one of the critical drivers to preserve the environment and human health. Pesticide use could be reduced through the adoption of new production strategies 3-5 ; however, whether substantial reductions of pesticide use are possible without impacting crop productivity and profitability is debatable 6-17 . Here, we demonstrated that low pesticide use rarely decreases productivity and profitability in arable farms. We analysed the potential conflicts between pesticide use and productivity or profitability with data from 946 non-organic arable commercial farms showing contrasting levels of pesticide use and covering a wide range of production situations in France. We failed to detect any conflict between low pesticide use and both high productivity and high profitability in 77% of the farms. We estimated that total pesticide use could be reduced by 42% without any negative effects on both productivity and profitability in 59% of farms from our national network. This corresponded to an average reduction of 37, 47 and 60% of herbicide, fungicide and insecticide use, respectively. The potential for reducing pesticide use appeared higher in farms with currently high pesticide use than in farms with low pesticide use. Our results demonstrate that pesticide reduction is already accessible to farmers in most production situations. This would imply profound changes in market organization and trade balance.

  4. Plant Productivity and Characterization of Zeoponic Substrates after Three Successive Crops of Radish (Raphanus sativus L.)

    NASA Technical Reports Server (NTRS)

    Gruener, J. E.; Ming, Douglas W.; Galindo, C., Jr.; Henderson, K. E.; Golden, D. C.

    2007-01-01

    The National Aeronautics and Space Administration (NASA) has developed a zeolite-based synthetic substrate, termed zeoponics. The zeoponic substrate (consisting of NH4(-) and K-exchanged clinoptilolite, synthetic apatite, and dolomite) provides all of the plant-essential nutrients through mineral dissolution and ion exchange, with only the addition of water. Previous studies have shown high productivity of wheat in zeoponic substrates; however, no experiments have been conducted on other crops. The objective of this study was to determine the productivity and nutrient uptake of radish (Raphanus sativus L.) grown in zeoponic substrates with three successive crops in the same substrate. Radish was chosen because of its sensitivities to NH4(+). Average fresh weights of edible roots were similar for radish grown in zeoponic substrates watered with deionized H2O (10.97 g/plant) and in potting mix control substrate irrigated with nutrient solution (10.92 g/plant). Average fresh weight production of edible roots for radish grown in same zeoponic substrate increased in yield over time with the lowest yield in the first crop (7.10 g/plant) and highest in the third crop (13.90 g/plant). The Ca plant tissue levels in radishes (1.8-2.9 wt. %) grown in zeoponic substrates are lower than the suggested sufficient range of 3.0-4.5 wt. % Ca; however, the Ca level is highest (2.9 wt. %) in radishes grown in the third crop in the same zeoponic substrates. The higher radish yield in the third crop was attributed to a reduction in an NH4(-) induced Ca deficiency that has been previously described for wheat grown in zeoponic substrates. The P levels in plant tissues of radish grown in the zeoponic substrates ranged from 0.94-1.15 wt. %; which is slightly higher than the sufficient levels of 0.3-0.7 wt. %. With the exception of Ca and P, other macronutrient and micronutrient levels in radish grown in zeoponic substrates were well within the recommended sufficient ranges. After three

  5. Switchgrass nitrogen response and estimated production costs on diverse sites

    USDA-ARS?s Scientific Manuscript database

    Switchgrass (Panicum virgatum L.) has been the principal perennial herbaceous crop investigated for bioenergy production in North America given its high production potential, relatively low input requirements, and potential suitability for use on marginal lands. Few large trials have determined swit...

  6. Managing soil microbial communities in grain production systems through cropping practices

    NASA Astrophysics Data System (ADS)

    Gupta, Vadakattu

    2013-04-01

    Cropping practices can significantly influence the composition and activity of soil microbial communities with consequences to plant growth and production. Plant type can affect functional capacity of different groups of biota in the soil surrounding their roots, rhizosphere, influencing plant nutrition, beneficial symbioses, pests and diseases and overall plant health and crop production. The interaction between different players in the rhizosphere is due to the plethora of carbon and nutritional compounds, root-specific chemical signals and growth regulators that originate from the plant and are modulated by the physico-chemical properties of soils. A number of plant and environmental factors and management practices can influence the quantity and quality of rhizodeposition and in turn affect the composition of rhizosphere biota communities, microbe-fauna interactions and biological processes. Some of the examples of rhizosphere interactions that are currently considered important are: proliferation of plant and variety specific genera or groups of microbiota, induction of genes involved in symbiosis and virulence, promoter activity in biocontrol agents and genes correlated with root adhesion and border cell quality and quantity. The observation of variety-based differences in rhizodeposition and associated changes in rhizosphere microbial diversity and function suggests the possibility for the development of varieties with specific root-microbe interactions targeted for soil type and environment i.e. designer rhizospheres. Spatial location of microorganisms in the heterogeneous field soil matrix can have significant impacts on biological processes. Therefore, for rhizosphere research to be effective in variable seasonal climate and soil conditions, it must be evaluated in the field and within a farming systems context. With the current focus on security of food to feed the growing global populations through sustainable agricultural production systems there is a

  7. Cover crops as a gateway to greater conservation in Iowa?: Integrating crop models, field trials, economics and farmer perspectives regarding soil resilience in light of climate change

    NASA Astrophysics Data System (ADS)

    Roesch-McNally, G. E.; Basche, A.; Tyndall, J.; Arbuckle, J. G.; Miguez, F.; Bowman, T.

    2014-12-01

    Scientists predict a number of climate changes for the US Midwest with expected declines in crop productivity as well as eco-hydrological impacts. More frequent extreme rain events particularly in the spring may well increase saturated soils thus complicating agronomic interests and also exacerbate watershed scale impairments (e.g., sediment, nutrient loss). In order to build more resilient production systems in light of climate change, farmers will increasingly need to implement conservation practices (singularly or more likely in combination) that enable farmers to manage profitable businesses yet mitigate consequential environmental impacts that have both in-field and off-farm implications. Cover crops are empirically known to promote many aspects of soil and water health yet even the most aggressive recent estimates show that only 1-2% of the total acreage in Iowa have been planted to cover crops. In order to better understand why farmers are reluctant to adopt cover crops across Iowa we combined agronomic and financial data from long-term field trials, working farm trials and model simulations so as to present comprehensive data-driven information to farmers in focus group discussions in order to understand existing barriers, perceived benefits and responses to the information presented. Four focus groups (n=29) were conducted across Iowa in four geographic regions. Focus group discussions help explore the nuance of farmers' responses to modeling outputs and their real-life agronomic realities, thus shedding light on the social and psychological barriers with cover crop utilization. Among the key insights gained, comprehensive data-driven research can influence farmer perspectives on potential cover crop impacts to cash crop yields, experienced costs are potentially quite variable, and having field/farm benefits articulated in economic terms are extremely important when farmers weigh the opportunity costs associated with adopting new practices. Our work

  8. Technology targeting for sustainable intensification of crop production in the Delta region of Bangladesh

    NASA Astrophysics Data System (ADS)

    Schulthess, U.; Krupnik, T. J.; Ahmed, Z. U.; McDonald, A. J.

    2015-04-01

    Remote sensing data are nowadays being acquired within short intervals and made available at a low cost or for free. This opens up opportunities for new remote sensing applications, such as the characterization of entire regions to identify most suitable areas for technology targeting. Increasing population growth and changing dietary habits in South Asia call for higher cereal production to ensure future food security. In the Delta area of Bangladesh, surface water is considered to be available in quantities large enough to support intensification by adding an irrigated dry season crop. Fuel-efficient, low lift axial flow pumps have shown to be suitable to carry water to fields that are within a buffer of four hundred meters of the rivers. However, information on how and where to target surface water irrigation efforts is currently lacking. We describe the opportunities and constraints encountered in developing a procedure to identify cropland for which axial flow pumps could be successfully deployed upon in a 43'000 km2 area. First, we isolated cropland and waterways using Landsat 5 and 7 scenes using image segmentation followed by classification with the random forest algorithm. Based on Landsat 7 and 8 scenes, we extracted maximum dry season enhanced vegetation index (EVI) values, which we classified into fallow, low-, and high-intensity cropland for the last three years. Last, we investigated the potential for surface water irrigation on fallow and low-intensity land by applying a cropping risk matrix to address the twin threats of soil and water salinity. Our analysis indicates that there are at least 20,000 ha of fallow land under the low-risk category, while more than 100,000 ha of low-intensity cropland can be brought into intensified production. This information will aid in technology targeting for the efficient deployment of surface water irrigation as a tool for intensification.

  9. A process model to estimate biodiesel production costs.

    PubMed

    Haas, Michael J; McAloon, Andrew J; Yee, Winnie C; Foglia, Thomas A

    2006-03-01

    'Biodiesel' is the name given to a renewable diesel fuel that is produced from fats and oils. It consists of the simple alkyl esters of fatty acids, most typically the methyl esters. We have developed a computer model to estimate the capital and operating costs of a moderately-sized industrial biodiesel production facility. The major process operations in the plant were continuous-process vegetable oil transesterification, and ester and glycerol recovery. The model was designed using contemporary process simulation software, and current reagent, equipment and supply costs, following current production practices. Crude, degummed soybean oil was specified as the feedstock. Annual production capacity of the plant was set at 37,854,118 l (10 x 10(6)gal). Facility construction costs were calculated to be US dollar 11.3 million. The largest contributors to the equipment cost, accounting for nearly one third of expenditures, were storage tanks to contain a 25 day capacity of feedstock and product. At a value of US dollar 0.52/kg (dollar 0.236/lb) for feedstock soybean oil, a biodiesel production cost of US dollar 0.53/l (dollar 2.00/gal) was predicted. The single greatest contributor to this value was the cost of the oil feedstock, which accounted for 88% of total estimated production costs. An analysis of the dependence of production costs on the cost of the feedstock indicated a direct linear relationship between the two, with a change of US dollar 0.020/l (dollar 0.075/gal) in product cost per US dollar 0.022/kg (dollar 0.01/lb) change in oil cost. Process economics included the recovery of coproduct glycerol generated during biodiesel production, and its sale into the commercial glycerol market as an 80% w/w aqueous solution, which reduced production costs by approximately 6%. The production cost of biodiesel was found to vary inversely and linearly with variations in the market value of glycerol, increasing by US dollar 0.0022/l (dollar 0.0085/gal) for every US

  10. Assessing uncertainties in crop and pasture ensemble model simulations of productivity and N2 O emissions.

    PubMed

    Ehrhardt, Fiona; Soussana, Jean-François; Bellocchi, Gianni; Grace, Peter; McAuliffe, Russel; Recous, Sylvie; Sándor, Renáta; Smith, Pete; Snow, Val; de Antoni Migliorati, Massimiliano; Basso, Bruno; Bhatia, Arti; Brilli, Lorenzo; Doltra, Jordi; Dorich, Christopher D; Doro, Luca; Fitton, Nuala; Giacomini, Sandro J; Grant, Brian; Harrison, Matthew T; Jones, Stephanie K; Kirschbaum, Miko U F; Klumpp, Katja; Laville, Patricia; Léonard, Joël; Liebig, Mark; Lieffering, Mark; Martin, Raphaël; Massad, Raia S; Meier, Elizabeth; Merbold, Lutz; Moore, Andrew D; Myrgiotis, Vasileios; Newton, Paul; Pattey, Elizabeth; Rolinski, Susanne; Sharp, Joanna; Smith, Ward N; Wu, Lianhai; Zhang, Qing

    2018-02-01

    Simulation models are extensively used to predict agricultural productivity and greenhouse gas emissions. However, the uncertainties of (reduced) model ensemble simulations have not been assessed systematically for variables affecting food security and climate change mitigation, within multi-species agricultural contexts. We report an international model comparison and benchmarking exercise, showing the potential of multi-model ensembles to predict productivity and nitrous oxide (N 2 O) emissions for wheat, maize, rice and temperate grasslands. Using a multi-stage modelling protocol, from blind simulations (stage 1) to partial (stages 2-4) and full calibration (stage 5), 24 process-based biogeochemical models were assessed individually or as an ensemble against long-term experimental data from four temperate grassland and five arable crop rotation sites spanning four continents. Comparisons were performed by reference to the experimental uncertainties of observed yields and N 2 O emissions. Results showed that across sites and crop/grassland types, 23%-40% of the uncalibrated individual models were within two standard deviations (SD) of observed yields, while 42 (rice) to 96% (grasslands) of the models were within 1 SD of observed N 2 O emissions. At stage 1, ensembles formed by the three lowest prediction model errors predicted both yields and N 2 O emissions within experimental uncertainties for 44% and 33% of the crop and grassland growth cycles, respectively. Partial model calibration (stages 2-4) markedly reduced prediction errors of the full model ensemble E-median for crop grain yields (from 36% at stage 1 down to 4% on average) and grassland productivity (from 44% to 27%) and to a lesser and more variable extent for N 2 O emissions. Yield-scaled N 2 O emissions (N 2 O emissions divided by crop yields) were ranked accurately by three-model ensembles across crop species and field sites. The potential of using process-based model ensembles to predict jointly

  11. Elevating crop disease resistance with cloned genes

    PubMed Central

    Jones, Jonathan D. G.; Witek, Kamil; Verweij, Walter; Jupe, Florian; Cooke, David; Dorling, Stephen; Tomlinson, Laurence; Smoker, Matthew; Perkins, Sara; Foster, Simon

    2014-01-01

    Essentially all plant species exhibit heritable genetic variation for resistance to a variety of plant diseases caused by fungi, bacteria, oomycetes or viruses. Disease losses in crop monocultures are already significant, and would be greater but for applications of disease-controlling agrichemicals. For sustainable intensification of crop production, we argue that disease control should as far as possible be achieved using genetics rather than using costly recurrent chemical sprays. The latter imply CO2 emissions from diesel fuel and potential soil compaction from tractor journeys. Great progress has been made in the past 25 years in our understanding of the molecular basis of plant disease resistance mechanisms, and of how pathogens circumvent them. These insights can inform more sophisticated approaches to elevating disease resistance in crops that help us tip the evolutionary balance in favour of the crop and away from the pathogen. We illustrate this theme with an account of a genetically modified (GM) blight-resistant potato trial in Norwich, using the Rpi-vnt1.1 gene isolated from a wild relative of potato, Solanum venturii, and introduced by GM methods into the potato variety Desiree. PMID:24535396

  12. Hotspots of inefficiency: Mapping the difference between crop production and food calorie delivery

    NASA Astrophysics Data System (ADS)

    Cassidy, E. S.; Foley, J. A.

    2012-12-01

    Meeting growing demands for food calories will be a substantial challenge. One place to search for solutions is in how we allocate the world's crops, and finding ways to feed more people with current crop production. Currently, a substantial proportion of crop calories are used as animal feed, and only a small fraction of those feed calories ultimately contribute to human diets. Countries like the United States and China, which together produce over a third of the world's meat, eggs and dairy, lose a substantial portion of calories and protein to the feed-to-animal conversion process. This study looks at global croplands that have a large difference between calories grown, and the food calories available for consumption. These hotspots have the potential to feed more people, while reducing environmental impacts of agriculture.;

  13. Production costs and operative margins in electric energy generation from biogas. Full-scale case studies in Italy.

    PubMed

    Riva, C; Schievano, A; D'Imporzano, G; Adani, F

    2014-08-01

    The purpose of this study was to observe the economic sustainability of three different biogas full scale plants, fed with different organic matrices: energy crops (EC), manure, agro-industrial (Plants B and C) and organic fraction of municipal solid waste (OFMSW) (Plant A). The plants were observed for one year and total annual biomass feeding, biomass composition and biomass cost (€ Mg(-1)), initial investment cost and plant electric power production were registered. The unit costs of biogas and electric energy (€ Sm(-3)biogas, € kWh(-1)EE) were differently distributed, depending on the type of feed and plant. Plant A showed high management/maintenance cost for OFMSW treatment (0.155 € Sm(-3)biogas, 45% of total cost), Plant B suffered high cost for EC supply (0.130 € Sm(-3)biogas, 49% of total cost) and Plant C showed higher impact on the total costs because of the depreciation charge (0.146 € Sm(-3)biogas, 41% of total costs). The breakeven point for the tariff of electric energy, calculated for the different cases, resulted in the range 120-170 € MWh(-1)EE, depending on fed materials and plant scale. EC had great impact on biomass supply costs and should be reduced, in favor of organic waste and residues; plant scale still heavily influences the production costs. The EU States should drive incentives in dependence of these factors, to further develop this still promising sector. Copyright © 2014 Elsevier Ltd. All rights reserved.

  14. Management of mine spoil for crop productivity with lignite fly ash and biological amendments.

    PubMed

    Ram, L C; Srivastava, N K; Tripathi, R C; Jha, S K; Sinha, A K; Singh, G; Manoharan, V

    2006-04-01

    Long-term field trials using lignite fly ash (LFA) were carried out in rice crops during the period 1996-2000 at Mine I, Neyveli Lignite Corporation, Tamil Nadu. LFA, being alkaline and endowed with an excellent pozzolanic nature, silt loam texture, and plant nutrients, has the potential to improve the texture, fertility, and crop productivity of mine spoil. The rice crops were the first, third, fifth, and sixth crops in rotation. The other crops, such as green gram (second) and sun hemp (fourth), were grown as green manure. For experimental trials, LFA was applied at various dosages (0, 5, 10, 20, 50, 100, and 200 t/ha), with and without press mud (10 t/ha), before cultivation of the first crop. Repeat applications of LFA were made at the same dosages in treatments of up to 50 t/ha (with and without press mud) before cultivation of the third and fifth crops. Press mud, a lightweight organic waste product from the sugar industry, was used as an organic amendment and source of plant nutrients. Also, a recommended dosage of chemical fertilizer, along with gypsum, humic acid, and biofertilizer as supplementing agents, was applied in all the treatments, including control. With one-time and repeat applications of LFA, from 5 to 20 t/ha (with and without press mud), the crop yield (grain and straw) increased significantly (p < 0.05), in the range from 3.0 to 42.0% over the corresponding control. The maximum yield was obtained with repeat applications of 20 t/ha of LFA with press mud in the third crop. The press mud enhanced the yield in the range of 1.5-10.2% with various dosages of LFA. The optimum dosage of LFA was 20 t/ha for both one-time and repeat applications. Repeat applications of LFA at lower dosages of up to 20 t/ha were more effective in increasing the yield than the corresponding one-time applications of up to 20 t/ha and repeat applications at 50 t/ha. One-time and repeat applications of LFA of up to 20 t/ha (with and without press mud), apart from

  15. Estimating productivity costs using the friction cost approach in practice: a systematic review.

    PubMed

    Kigozi, Jesse; Jowett, Sue; Lewis, Martyn; Barton, Pelham; Coast, Joanna

    2016-01-01

    The choice of the most appropriate approach to valuing productivity loss has received much debate in the literature. The friction cost approach has been proposed as a more appropriate alternative to the human capital approach when valuing productivity loss, although its application remains limited. This study reviews application of the friction cost approach in health economic studies and examines how its use varies in practice across different country settings. A systematic review was performed to identify economic evaluation studies that have estimated productivity costs using the friction cost approach and published in English from 1996 to 2013. A standard template was developed and used to extract information from studies meeting the inclusion criteria. The search yielded 46 studies from 12 countries. Of these, 28 were from the Netherlands. Thirty-five studies reported the length of friction period used, with only 16 stating explicitly the source of the friction period. Nine studies reported the elasticity correction factor used. The reported friction cost approach methods used to derive productivity costs varied in quality across studies from different countries. Few health economic studies have estimated productivity costs using the friction cost approach. The estimation and reporting of productivity costs using this method appears to differ in quality by country. The review reveals gaps and lack of clarity in reporting of methods for friction cost evaluation. Generating reporting guidelines and country-specific parameters for the friction cost approach is recommended if increased application and accuracy of the method is to be realized.

  16. Conservation cropping systems: Increasing water use efficiency and lowering production costs

    USDA-ARS?s Scientific Manuscript database

    As of the 2007 Census of Agriculture, irrigated acres were only found on 4.4% of agricultural operations in Alabama. To increase irrigated acres, the Alabama Legislature passed the Irrigation Incentives Bill in 2012 to provide a state income tax credit of 20 percent of the costs of the purchase and ...

  17. Effects of climate change on suitable rice cropping areas, cropping systems and crop water requirements in southern China

    DOE PAGES

    Ye, Qing; Yang, Xiaoguang; Dai, Shuwei; ...

    2015-06-05

    Here, we discuss that rice is one of the main crops grown in southern China. Global climate change has significantly altered the local water availability and temperature regime for rice production. In this study, we explored the influence of climate change on suitable rice cropping areas, rice cropping systems and crop water requirements (CWRs) during the growing season for historical (from 1951 to 2010) and future (from 2011 to 2100) time periods. The results indicated that the land areas suitable for rice cropping systems shifted northward and westward from 1951 to 2100 but with different amplitudes.

  18. Atmospheric inversion of surface carbon flux with consideration of the spatial distribution of US crop production and consumption

    DOE PAGES

    Chen, J. M.; Fung, J. W.; Mo, G.; ...

    2015-01-19

    In order to improve quantification of the spatial distribution of carbon sinks and sources in the conterminous US, we conduct a nested global atmospheric inversion with detailed spatial information on crop production and consumption. County-level cropland net primary productivity, harvested biomass, soil carbon change, and human and livestock consumption data over the conterminous US are used for this purpose. Time-dependent Bayesian synthesis inversions are conducted based on CO₂ observations at 210 stations to infer CO₂ fluxes globally at monthly time steps with a nested focus on 30 regions in North America. Prior land surface carbon fluxes are first generated usingmore » a biospheric model, and the inversions are constrained using prior fluxes with and without adjustments for crop production and consumption over the 2002–2007 period. After these adjustments, the inverted regional carbon sink in the US Midwest increases from 0.25 ± 0.03 to 0.42 ± 0.13 Pg C yr⁻¹, whereas the large sink in the US southeast forest region is weakened from 0.41 ± 0.12 to 0.29 ± 0.12 Pg C yr⁻¹. These adjustments also reduce the inverted sink in the west region from 0.066 ± 0.04 to 0.040 ± 0.02 Pg C yr⁻¹ because of high crop consumption and respiration by humans and livestock. The general pattern of sink increases in crop production areas and sink decreases (or source increases) in crop consumption areas highlights the importance of considering the lateral carbon transfer in crop products in atmospheric inverse modeling, which provides a reliable atmospheric perspective of the overall carbon balance at the continental scale but is unreliable for separating fluxes from different ecosystems.« less

  19. Launch Vehicle Production and Operations Cost Metrics

    NASA Technical Reports Server (NTRS)

    Watson, Michael D.; Neeley, James R.; Blackburn, Ruby F.

    2014-01-01

    Traditionally, launch vehicle cost has been evaluated based on $/Kg to orbit. This metric is calculated based on assumptions not typically met by a specific mission. These assumptions include the specified orbit whether Low Earth Orbit (LEO), Geostationary Earth Orbit (GEO), or both. The metric also assumes the payload utilizes the full lift mass of the launch vehicle, which is rarely true even with secondary payloads.1,2,3 Other approaches for cost metrics have been evaluated including unit cost of the launch vehicle and an approach to consider the full program production and operations costs.4 Unit cost considers the variable cost of the vehicle and the definition of variable costs are discussed. The full program production and operation costs include both the variable costs and the manufacturing base. This metric also distinguishes operations costs from production costs, including pre-flight operational testing. Operations costs also consider the costs of flight operations, including control center operation and maintenance. Each of these 3 cost metrics show different sensitivities to various aspects of launch vehicle cost drivers. The comparison of these metrics provides the strengths and weaknesses of each yielding an assessment useful for cost metric selection for launch vehicle programs.

  20. Genomics Opportunities, New Crops and New Products

    USDA-ARS?s Scientific Manuscript database

    This chapter describes use of molecular markers and transgenics in development of new cultivars in a survey obtained from public and private sector breeders. It also reviews traits in Rosaceae crops for which markers are currently available for use in developing new crops. The surprising results a...

  1. Production of polyhydroxybutyrate in switchgrass, a value-added co-product in an important lignocellulosic biomass crop.

    PubMed

    Somleva, Maria N; Snell, Kristi D; Beaulieu, Julie J; Peoples, Oliver P; Garrison, Bradley R; Patterson, Nii A

    2008-09-01

    Polyhydroxyalkanoate bio-based plastics made from renewable resources can reduce petroleum consumption and decrease plastic waste disposal issues as they are inherently biodegradable in soil, compost and marine environments. In this paper, the successful engineering of the biomass crop switchgrass (Panicum virgatum L.) for the synthesis of polyhydroxybutyrate (PHB) is reported. Polymer production was monitored in more than 400 primary transformants grown under in vitro and glasshouse conditions. Plants containing up to 3.72% dry weight of PHB in leaf tissues and 1.23% dry weight of PHB in whole tillers were obtained. Results from the analysis of the polymer distribution at the cellular and whole plant levels are presented, and target areas for the improvement of PHB production are highlighted. Polymer accumulation was also analysed in the T(1) generation obtained from controlled crosses of transgenic plants. This study presents the first successful expression of a functional multigene pathway in switchgrass, and demonstrates that this high-yielding biomass crop is amenable to the complex metabolic engineering strategies necessary to produce high-value biomaterials with lignocellulose-derived biofuels.

  2. A comprehensive assessment of the correlations between field crop yields and commonly used MODIS products

    NASA Astrophysics Data System (ADS)

    Johnson, David M.

    2016-10-01

    An exploratory assessment was undertaken to determine the correlation strength and optimal timing of several commonly used Moderate Resolution Imaging Spectroradiometer (MODIS) composited imagery products against crop yields for 10 globally significant agricultural commodities. The crops analyzed included barley, canola, corn, cotton, potatoes, rice, sorghum, soybeans, sugarbeets, and wheat. The MODIS data investigated included the Normalized Difference Vegetation Index (NDVI), Fraction of Photosynthetically Active Radiation (FPAR), Leaf Area Index (LAI), and Gross Primary Production (GPP), in addition to daytime Land Surface Temperature (DLST) and nighttime LST (NLST). The imagery utilized all had 8-day time intervals, but NDVI had a 250 m spatial resolution while the other products were 1000 m. These MODIS datasets were also assessed from both the Terra and Aqua satellites, with their differing overpass times, to document any differences. A follow-on analysis, using the Terra 250 m NDVI data as a benchmark, looked at the yield prediction utility of NDVI at two spatial scales (250 m vs. 1000 m), two time precisions (8-day vs. 16-day), and also assessed the Enhanced Vegetation Index (EVI, at 250 m, 16-day). The analyses spanned the major farming areas of the United States (US) from the summers of 2008-2013 and used annual county-level average crop yield data from the US Department of Agriculture as a basis. All crops, except rice, showed at least some positive correlations to each of the vegetation related indices in the middle of the growing season, with NDVI performing slightly better than FPAR. LAI was somewhat less strongly correlated and GPP weak overall. Conversely, some of the crops, particularly canola, corn, and soybeans, also showed negative correlations to DLST mid-summer. NLST, however, was never correlated to crop yield, regardless of the crop or seasonal timing. Differences between the Terra and Aqua results were found to be minimal. The 1000 m

  3. Tillage and cover cropping effects on soil properties and crop production in Illinois

    USDA-ARS?s Scientific Manuscript database

    Cover crops (CCs) have been heralded for their potential to improve soil properties, retain nutrients in the field, and increase subsequent crop yields yet support for these claims within the state of Illinois remains limited. We assessed the effects of integrating five sets of CCs into a corn-soybe...

  4. Flexible Strategies for Coping with Rainfall Variability: Seasonal Adjustments in Cropped Area in the Ganges Basin

    PubMed Central

    Siderius, Christian; Biemans, Hester; van Walsum, Paul E. V.; van Ierland, Ekko C.; Kabat, Pavel; Hellegers, Petra J. G. J.

    2016-01-01

    One of the main manifestations of climate change will be increased rainfall variability. How to deal with this in agriculture will be a major societal challenge. In this paper we explore flexibility in land use, through deliberate seasonal adjustments in cropped area, as a specific strategy for coping with rainfall variability. Such adjustments are not incorporated in hydro-meteorological crop models commonly used for food security analyses. Our paper contributes to the literature by making a comprehensive model assessment of inter-annual variability in crop production, including both variations in crop yield and cropped area. The Ganges basin is used as a case study. First, we assessed the contribution of cropped area variability to overall variability in rice and wheat production by applying hierarchical partitioning on time-series of agricultural statistics. We then introduced cropped area as an endogenous decision variable in a hydro-economic optimization model (WaterWise), coupled to a hydrology-vegetation model (LPJmL), and analyzed to what extent its performance in the estimation of inter-annual variability in crop production improved. From the statistics, we found that in the period 1999–2009 seasonal adjustment in cropped area can explain almost 50% of variability in wheat production and 40% of variability in rice production in the Indian part of the Ganges basin. Our improved model was well capable of mimicking existing variability at different spatial aggregation levels, especially for wheat. The value of flexibility, i.e. the foregone costs of choosing not to crop in years when water is scarce, was quantified at 4% of gross margin of wheat in the Indian part of the Ganges basin and as high as 34% of gross margin of wheat in the drought-prone state of Rajasthan. We argue that flexibility in land use is an important coping strategy to rainfall variability in water stressed regions. PMID:26934389

  5. Optimizing edible fungal growth and biodegradation of inedible crop residues using various cropping methods.

    PubMed

    Nyochembeng, Leopold M; Beyl, Caula A; Pacumbaba, R P

    2008-09-01

    Long-term manned space flights to Mars require the development of an advanced life support (ALS) ecosystem including efficient food crop production, processing and recycling waste products thereof. Using edible white rot fungi (EWRF) to achieve effective biomass transformation in ALS requires optimal and rapid biodegradative activity on lignocellulosic wastes. We investigated the mycelial growth of Lentinula edodes and Pleurotus ostreatus on processed residues of various crops under various cropping patterns. In single cropping, mycelial growth and fruiting in all strains were significantly repressed on sweet potato and basil. However, growth of the strains was improved when sweet potato and basil residues were paired with rice or wheat straw. Oyster mushroom (Pleurotus) strains were better than shiitake (L. edodes) strains under single, paired, and mixed cropping patterns. Mixed cropping further eliminated the inherent inhibitory effect of sweet potato, basil, or lettuce on fungal growth. Co-cropping fungal species had a synergistic effect on rate of fungal growth, substrate colonization, and fruiting. Use of efficient cropping methods may enhance fungal growth, fruiting, biodegradation of crop residues, and efficiency of biomass recycling.

  6. Integrated crop-livestock systems and cover crop grazing in the Northern Great Plains

    USDA-ARS?s Scientific Manuscript database

    Integrating crops and livestock has been identified as an approach to sustainably intensify agricultural systems, increasing production while reducing the need for external inputs, building soil health, and increasing economic returns. Cover crops and grazing these cover crops are a natural fit with...

  7. Selected examples of dispersal of arthropods associated with agricultural crop and animal production

    NASA Technical Reports Server (NTRS)

    Henneberry, T. J.

    1979-01-01

    The economic importance of arthropods in agricultural production systems and the possibilities of using dispersal behavior to develop and manipulate control are examined. Examples of long and short distance dispersal of economic insect pests and beneficial species from cool season host reservoirs and overwintering sites are presented. Significant dispersal of these species often occurring during crop and animal production is discussed.

  8. Production of biomass/energy crops on phosphatic clay soils in central Florida

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stricker, J.A.; Prine, G.M.; Woodard, K.R.

    1993-12-31

    Phosphatic clay is a byproduct of phosphate mining. Presently more than 40,470 ha have been created, most in central Florida, and about 810 ha are being added each year. Phosphatic clays have high fertility and high water holding capacity, reducing fertilization costs and producing high yields without irrigation. Based on 10 years of research, scientists have selected tall annual-regenerating perennial C-4 grasses as having the greatest potential for biomass production in Florida. The purpose of this work was to determine the feasibility of growing these tall perennial grasses for biomass on phosphatic clay. Elephantgrass, sugarcane and energycane, and erianthus weremore » planted in duplicate replications on phosphatic clay soil in late August, 1986. yield was measured by one harvest in December or January each year for four years. Nitrogen fertilization included 112 kg ha{sup {minus}1} the first year followed by 134 kg ha{sup {minus}1} for the next three years. Nitrogen is the only supplemental nutrient needed to grow all tall grass crops on phosphatic clay. The average annual oven dry matter yield over the 4-yr period was 36.3 Mg ha{sup {minus}1} for PI 300086 elephantgrass, 45.2 for N51 elephantgrass, 42.5 for L79-1002 energycane, 49.0 for US72-1153 energycane, 49.7 for US78-1009 sugarcane, 52.2 for US56-9 sugarcane, 56.2 for CP72-1210 sugarcane, and 48.8 for 1K-7647 erianthus. More recent work has utilized domestic sewage sludge as a nitrogen source for the tall grasses. Preliminary sugar yields of selected sugarcane accessions & sweet sorghum were 4.7 Mg ha{sup {minus}1} for CP72-1210, 12.5 for US67-2022, 3.4 for US78-1009 and 1.3 Mg ha{sup {minus}1} for sweet sorghum. The high yields of the tall grasses grown on phosphatic clay with low inputs indicate a great potential for these crops as a source of renewable energy. A sustainable cropping system may be maintained by utilizing municipal sewage sludge as a nitrogen source with tall grasses on phosphatic

  9. Legacy Phosphorus Effect and Need to Re-calibrate Soil Test P Methods for Organic Crop Production.

    NASA Astrophysics Data System (ADS)

    Dao, Thanh H.; Schomberg, Harry H.; Cavigelli, Michel A.

    2015-04-01

    Phosphorus (P) is a required nutrient for the normal development and growth of plants and supplemental P is needed in most cultivated soils. Large inputs of cover crop residues and nutrient-rich animal manure are added to supply needed nutrients to promote the optimal production of organic grain crops and forages. The effects of crop rotations and tillage management of the near-surface zone on labile phosphorus (P) forms were studied in soil under conventional and organic crop management systems in the mid-Atlantic region of the U.S. after 18 years due to the increased interest in these alternative systems. Soil nutrient surpluses likely caused by low grain yields resulted in large pools of exchangeable phosphate-P and equally large pools of enzyme-labile organic P (Po) in soils under organic management. In addition, the difference in the P loading rates between the conventional and organic treatments as guided by routine soil test recommendations suggested that overestimating plant P requirements contributed to soil P surpluses because routine soil testing procedures did not account for the presence and size of the soil enzyme-labile Po pool. The effect of large P additions is long-lasting as they continued to contribute to elevated soil total bioactive P concentrations 12 or more years later. Consequently, accurate estimates of crop P requirements, P turnover in soil, and real-time plant and soil sensing systems are critical considerations to optimally manage manure-derived nutrients in organic crop production.

  10. Estimating yield gaps at the cropping system level.

    PubMed

    Guilpart, Nicolas; Grassini, Patricio; Sadras, Victor O; Timsina, Jagadish; Cassman, Kenneth G

    2017-05-01

    Yield gap analyses of individual crops have been used to estimate opportunities for increasing crop production at local to global scales, thus providing information crucial to food security. However, increases in crop production can also be achieved by improving cropping system yield through modification of spatial and temporal arrangement of individual crops. In this paper we define the cropping system yield potential as the output from the combination of crops that gives the highest energy yield per unit of land and time, and the cropping system yield gap as the difference between actual energy yield of an existing cropping system and the cropping system yield potential. Then, we provide a framework to identify alternative cropping systems which can be evaluated against the current ones. A proof-of-concept is provided with irrigated rice-maize systems at four locations in Bangladesh that represent a range of climatic conditions in that country. The proposed framework identified (i) realistic alternative cropping systems at each location, and (ii) two locations where expected improvements in crop production from changes in cropping intensity (number of crops per year) were 43% to 64% higher than from improving the management of individual crops within the current cropping systems. The proposed framework provides a tool to help assess food production capacity of new systems ( e.g. with increased cropping intensity) arising from climate change, and assess resource requirements (water and N) and associated environmental footprint per unit of land and production of these new systems. By expanding yield gap analysis from individual crops to the cropping system level and applying it to new systems, this framework could also be helpful to bridge the gap between yield gap analysis and cropping/farming system design.

  11. Cover crops for Alabama

    USDA-ARS?s Scientific Manuscript database

    Cover crops are grown to benefit the following crop as well as to improve the soil, but they are normally not intended for harvest. Selecting the right cover crops for farming operations can improve yields, soil and water conservation and quality, and economic productivity. Properly managed cover ...

  12. Assessing changes to South African maize production areas in 2055 using empirical and process-based crop models

    NASA Astrophysics Data System (ADS)

    Estes, L.; Bradley, B.; Oppenheimer, M.; Beukes, H.; Schulze, R. E.; Tadross, M.

    2010-12-01

    Rising temperatures and altered precipitation patterns associated with climate change pose a significant threat to crop production, particularly in developing countries. In South Africa, a semi-arid country with a diverse agricultural sector, anthropogenic climate change is likely to affect staple crops and decrease food security. Here, we focus on maize production, South Africa’s most widely grown crop and one with high socio-economic value. We build on previous coarser-scaled studies by working at a finer spatial resolution and by employing two different modeling approaches: the process-based DSSAT Cropping System Model (CSM, version 4.5), and an empirical distribution model (Maxent). For climate projections, we use an ensemble of 10 general circulation models (GCMs) run under both high and low CO2 emissions scenarios (SRES A2 and B1). The models were down-scaled to historical climate records for 5838 quinary-scale catchments covering South Africa (mean area = 164.8 km2), using a technique based on self-organizing maps (SOMs) that generates precipitation patterns more consistent with observed gradients than those produced by the parent GCMs. Soil hydrological and mechanical properties were derived from textural and compositional data linked to a map of 26422 land forms (mean area = 46 km2), while organic carbon from 3377 soil profiles was mapped using regression kriging with 8 spatial predictors. CSM was run using typical management parameters for the several major dryland maize production regions, and with projected CO2 values. The Maxent distribution model was trained using maize locations identified using annual phenology derived from satellite images coupled with airborne crop sampling observations. Temperature and precipitation projections were based on GCM output, with an additional 10% increase in precipitation to simulate higher water-use efficiency under future CO2 concentrations. The two modeling approaches provide spatially explicit projections of

  13. Using membrane transporters to improve crops for sustainable food production

    PubMed Central

    Schroeder, Julian I.; Delhaize, Emmanuel; Frommer, Wolf B.; Guerinot, Mary Lou; Harrison, Maria J.; Herrera-Estrella, Luis; Horie, Tomoaki; Kochian, Leon V.; Munns, Rana; Nishizawa, Naoko K.; Tsay, Yi-Fang; Sanders, Dale

    2013-01-01

    With the global population predicted to grow by at least 25 per cent by 2050, the need for sustainable production of nutritious foods is critical for human and environmental health. Recent advances show that specialized plant membrane transporters can be used to enhance yields of staple crops, increase nutrient content and increase resistance to key stresses, including salinity, pathogens and aluminium toxicity, which in turn could expand available arable land. PMID:23636397

  14. Cost Accounting: Production and Equipment Services.

    ERIC Educational Resources Information Center

    Schmid, William T.

    Cost accounting for audiovisual productions should include direct costs, and, in some cases, the media administrator may have to calculate a per-hour surcharge for general operating overhead as well. Such procedures enable the administrator to determine cost effectiveness, to control cost overruns, and to generate more staff efficiency. Cost…

  15. High yielding tropical energy crops for bioenergy production: Effects of plant components, harvest years and locations on biomass composition.

    PubMed

    Surendra, K C; Ogoshi, Richard; Zaleski, Halina M; Hashimoto, Andrew G; Khanal, Samir Kumar

    2018-03-01

    The composition of lignocellulosic feedstock, which depends on crop type, crop management, locations and plant parts, significantly affects the conversion efficiency of biomass into biofuels and biobased products. Thus, this study examined the composition of different parts of two high yielding tropical energy crops, Energycane and Napier grass, collected across three locations and years. Significantly higher fiber content was found in the leaves of Energycane than stems, while fiber content was significantly higher in the stems than the leaves of Napier grass. Similarly, fiber content was higher in Napier grass than Energycane. Due to significant differences in biomass composition between the plant parts within a crop type, neither biological conversion, including anaerobic digestion, nor thermochemical pretreatment alone is likely to efficiently convert biomass components into biofuels and biobased products. However, combination of anaerobic digestion with thermochemical conversion technologies could efficiently utilize biomass components in generating biofuels and biobased products. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. Future crop production threatened by extreme heat

    NASA Astrophysics Data System (ADS)

    Siebert, Stefan; Ewert, Frank

    2014-04-01

    Heat is considered to be a major stress limiting crop growth and yields. While important findings on the impact of heat on crop yield have been made based on experiments in controlled environments, little is known about the effects under field conditions at larger scales. The study of Deryng et al (2014 Global crop yield response to extreme heat stress under multiple climate change futures Environ. Res. Lett. 9 034011), analysing the impact of heat stress on maize, spring wheat and soya bean under climate change, represents an important contribution to this emerging research field. Uncertainties in the occurrence of heat stress under field conditions, plant responses to heat and appropriate adaptation measures still need further investigation.

  17. High-fidelity detection of crop biomass quantitative trait loci from low-cost imaging in the field

    USDA-ARS?s Scientific Manuscript database

    Field-based, rapid, and non-destructive techniques for assessing plant productivity can accelerate the discovery of genotype-to-phenotype relationships needed to improve next-generation biomass grass crops. The use of hemispherical imaging and light attenuation modeling was evaluated against destruc...

  18. Crop water productivity under increasing irrigation capacities in Romania. A spatially-explicit assessment of winter wheat and maize cropping systems in the southern lowlands of the country

    NASA Astrophysics Data System (ADS)

    Dogaru, Diana

    2016-04-01

    Improved water use efficiency in agriculture is a key issue in terms of sustainable management and consumption of water resources in the context of peoples' increasing food demands and preferences, economic growth and agricultural adaptation options to climate variability and change. Crop Water Productivity (CWP), defined as the ratio of yield (or value of harvested crop) to actual evapotranspiration or as the ratio of yield (or value of harvested crop) to volume of supplied irrigation water (Molden et al., 1998), is a useful indicator in the evaluation of water use efficiency and ultimately of cropland management, particularly in the case of regions affected by or prone to drought and where irrigation application is essential for achieving expected productions. The present study investigates the productivity of water in winter wheat and maize cropping systems in the Romanian Plain (49 594 sq. km), an important agricultural region in the southern part of the country which is increasingly affected by drought and dry spells (Sandu and Mateescu, 2014). The scope of the analysis is to assess the gains and losses in CWP for the two crops, by considering increased irrigated cropland and improved fertilization, these being the most common measures potentially and already implemented by the farmers. In order to capture the effects of such measures on agricultural water use, the GIS-based EPIC crop-growth model (GEPIC) (Williams et al., 1989; Liu, 2009) was employed to simulate yields, seasonal evapotranspiration from crops and volume of irrigation water in the Romanian Plain for the 2002 - 2013 interval with focus on 2007 and 2010, two representative years for dry and wet periods, respectively. The GEPIC model operates on a daily time step, while the geospatial input datasets for this analysis (e.g. climate data, soil classes and soil parameters, land use) were harmonized at 1km resolution grid cell. The sources of the spatial data are mainly the national profile agencies

  19. Productivity costs in patients with refractory chronic rhinosinusitis.

    PubMed

    Rudmik, Luke; Smith, Timothy L; Schlosser, Rodney J; Hwang, Peter H; Mace, Jess C; Soler, Zachary M

    2014-09-01

    Disease-specific reductions in patient productivity can lead to substantial economic losses to society. The purpose of this study was to: 1) define the annual productivity cost for a patient with refractory chronic rhinosinusitis (CRS) and 2) evaluate the relationship between degree of productivity cost and CRS-specific characteristics. Prospective, multi-institutional, observational cohort study. The human capital approach was used to define productivity costs. Annual absenteeism, presenteeism, and lost leisure time was quantified to define annual lost productive time (LPT). LPT was monetized using the annual daily wage rates obtained from the 2012 U.S. National Census and the 2013 U.S. Department of Labor statistics. A total of 55 patients with refractory CRS were enrolled. The mean work days lost related to absenteeism and presenteeism were 24.6 and 38.8 days per year, respectively. A total of 21.2 household days were lost per year related to daily sinus care requirements. The overall annual productivity cost was $10,077.07 per patient with refractory CRS. Productivity costs increased with worsening disease-specific QoL (r = 0.440; p = 0.001). Results from this study have demonstrated that the annual productivity cost associated with refractory CRS is $10,077.07 per patient. This substantial cost to society provides a strong incentive to optimize current treatment protocols and continue evaluating novel clinical interventions to reduce this cost. © 2014 The American Laryngological, Rhinological and Otological Society, Inc.

  20. Productivity Costs in Patients with Refractory Chronic Rhinosinusitis

    PubMed Central

    Rudmik, Luke; Smith, Timothy L.; Schlosser, Rodney J.; Hwang, Peter H.; Mace, Jess C.; Soler, Zachary M.

    2014-01-01

    Objective Disease-specific reductions in patient productivity can lead to substantial economic losses to society. The purpose of this study was to: 1) define the annual productivity cost for a patient with refractory chronic rhinosinusitis (CRS) and 2) evaluate the relationship between degree of productivity cost and CRS-specific characteristics. Study Design Prospective, multi-institutional, observational cohort study. Methods The human capital approach was used to define productivity costs. Annual absenteeism, presenteeism, and lost leisure time was quantified to define annual lost productive time (LPT). LPT was monetized using the annual daily wage rates obtained from the 2012 US National Census and the 2013 US Department of Labor statistics. Results A total of 55 patients with refractory CRS were enrolled. The mean work days lost related to absenteeism and presenteeism was 24.6 and 38.8 days per year, respectively. A total of 21.2 household days were lost per year related to daily sinus care requirements. The overall annual productivity cost was $10,077.07 per patient with refractory CRS. Productivity costs increased with worsening disease-specific QoL (r=0.440; p=0.001). Conclusion Results from this study have demonstrated that the annual productivity cost associated with refractory CRS is $10,077.07 per patient. This substantial cost to society provides a strong incentive to optimize current treatment protocols and continue evaluating novel clinical interventions to reduce this cost. PMID:24619604

  1. Predicting Production Costs for Advanced Aerospace Vehicles

    NASA Technical Reports Server (NTRS)

    Bao, Han P.; Samareh, J. A.; Weston, R. P.

    2002-01-01

    For early design concepts, the conventional approach to cost is normally some kind of parametric weight-based cost model. There is now ample evidence that this approach can be misleading and inaccurate. By the nature of its development, a parametric cost model requires historical data and is valid only if the new design is analogous to those for which the model was derived. Advanced aerospace vehicles have no historical production data and are nowhere near the vehicles of the past. Using an existing weight-based cost model would only lead to errors and distortions of the true production cost. This paper outlines the development of a process-based cost model in which the physical elements of the vehicle are soared according to a first-order dynamics model. This theoretical cost model, first advocated by early work at MIT, has been expanded to cover the basic structures of an advanced aerospace vehicle. Elemental costs based on the geometry of the design can be summed up to provide an overall estimation of the total production cost for a design configuration. This capability to directly link any design configuration to realistic cost estimation is a key requirement for high payoff MDO problems. Another important consideration in this paper is the handling of part or product complexity. Here the concept of cost modulus is introduced to take into account variability due to different materials, sizes, shapes, precision of fabrication, and equipment requirements. The most important implication of the development of the proposed process-based cost model is that different design configurations can now be quickly related to their cost estimates in a seamless calculation process easily implemented on any spreadsheet tool.

  2. Meteorological risks and impacts on crop production systems in Belgium

    NASA Astrophysics Data System (ADS)

    Gobin, Anne

    2013-04-01

    Extreme weather events such as droughts, heat stress, rain storms and floods can have devastating effects on cropping systems. The perspective of rising risk-exposure is exacerbated further by projected increases of extreme events with climate change. More limits to aid received for agricultural damage and an overall reduction of direct income support to farmers further impacts farmers' resilience. Based on insurance claims, potatoes and rapeseed are the most vulnerable crops, followed by cereals and sugar beets. Damages due to adverse meteorological events are strongly dependent on crop type, crop stage and soil type. Current knowledge gaps exist in the response of arable crops to the occurrence of extreme events. The degree of temporal overlap between extreme weather events and the sensitive periods of the farming calendar requires a modelling approach to capture the mixture of non-linear interactions between the crop and its environment. The regional crop model REGCROP (Gobin, 2010) enabled to examine the likely frequency and magnitude of drought, heat stress and waterlogging in relation to the cropping season and crop sensitive stages of six arable crops: winter wheat, winter barley, winter rapeseed, potato, sugar beet and maize. Since crop development is driven by thermal time, crops matured earlier during the warmer 1988-2008 period than during the 1947-1987 period. Drought and heat stress, in particular during the sensitive crop stages, occur at different times in the cropping season and significantly differ between two climatic periods, 1947-1987 and 1988-2008. Soil moisture deficit increases towards harvesting, such that earlier maturing winter crops may avoid drought stress that occurs in late spring and summer. This is reflected in a decrease both in magnitude and frequency of soil moisture deficit around the sensitive stages during the 1988-2008 period when atmospheric drought may be compensated for with soil moisture. The risk of drought spells during

  3. Cytoplasmic male sterility (CMS) in hybrid breeding in field crops.

    PubMed

    Bohra, Abhishek; Jha, Uday C; Adhimoolam, Premkumar; Bisht, Deepak; Singh, Narendra P

    2016-05-01

    A comprehensive understanding of CMS/Rf system enabled by modern omics tools and technologies considerably improves our ability to harness hybrid technology for enhancing the productivity of field crops. Harnessing hybrid vigor or heterosis is a promising approach to tackle the current challenge of sustaining enhanced yield gains of field crops. In the context, cytoplasmic male sterility (CMS) owing to its heritable nature to manifest non-functional male gametophyte remains a cost-effective system to promote efficient hybrid seed production. The phenomenon of CMS stems from a complex interplay between maternally-inherited (mitochondrion) and bi-parental (nucleus) genomic elements. In recent years, attempts aimed to comprehend the sterility-inducing factors (orfs) and corresponding fertility determinants (Rf) in plants have greatly increased our access to candidate genomic segments and the cloned genes. To this end, novel insights obtained by applying state-of-the-art omics platforms have substantially enriched our understanding of cytoplasmic-nuclear communication. Concomitantly, molecular tools including DNA markers have been implicated in crop hybrid breeding in order to greatly expedite the progress. Here, we review the status of diverse sterility-inducing cytoplasms and associated Rf factors reported across different field crops along with exploring opportunities for integrating modern omics tools with CMS-based hybrid breeding.

  4. Farmers' Perception of Integrated Soil Fertility and Nutrient Management for Sustainable Crop Production: A Study of Rural Areas in Bangladesh

    ERIC Educational Resources Information Center

    Farouque, Md. Golam; Takeya, Hiroyuki

    2007-01-01

    This study aimed to determine farmers' perception of integrated soil fertility and nutrient management for sustainable crop production. Integrated soil fertility (ISF) and nutrient management (NM) is an advanced approach to maintain soil fertility and to enhance crop productivity. A total number of 120 farmers from eight villages in four districts…

  5. Analyzing key constraints to biogas production from crop residues and manure in the EU-A spatially explicit model.

    PubMed

    Einarsson, Rasmus; Persson, U Martin

    2017-01-01

    This paper presents a spatially explicit method for making regional estimates of the potential for biogas production from crop residues and manure, accounting for key technical, biochemical, environmental and economic constraints. Methods for making such estimates are important as biofuels from agricultural residues are receiving increasing policy support from the EU and major biogas producers, such as Germany and Italy, in response to concerns over unintended negative environmental and social impacts of conventional biofuels. This analysis comprises a spatially explicit estimate of crop residue and manure production for the EU at 250 m resolution, and a biogas production model accounting for local constraints such as the sustainable removal of residues, transportation of substrates, and the substrates' biochemical suitability for anaerobic digestion. In our base scenario, the EU biogas production potential from crop residues and manure is about 0.7 EJ/year, nearly double the current EU production of biogas from agricultural substrates, most of which does not come from residues or manure. An extensive sensitivity analysis of the model shows that the potential could easily be 50% higher or lower, depending on the stringency of economic, technical and biochemical constraints. We find that the potential is particularly sensitive to constraints on the substrate mixtures' carbon-to-nitrogen ratio and dry matter concentration. Hence, the potential to produce biogas from crop residues and manure in the EU depends to large extent on the possibility to overcome the challenges associated with these substrates, either by complementing them with suitable co-substrates (e.g. household waste and energy crops), or through further development of biogas technology (e.g. pretreatment of substrates and recirculation of effluent).

  6. Analyzing key constraints to biogas production from crop residues and manure in the EU—A spatially explicit model

    PubMed Central

    Persson, U. Martin

    2017-01-01

    This paper presents a spatially explicit method for making regional estimates of the potential for biogas production from crop residues and manure, accounting for key technical, biochemical, environmental and economic constraints. Methods for making such estimates are important as biofuels from agricultural residues are receiving increasing policy support from the EU and major biogas producers, such as Germany and Italy, in response to concerns over unintended negative environmental and social impacts of conventional biofuels. This analysis comprises a spatially explicit estimate of crop residue and manure production for the EU at 250 m resolution, and a biogas production model accounting for local constraints such as the sustainable removal of residues, transportation of substrates, and the substrates’ biochemical suitability for anaerobic digestion. In our base scenario, the EU biogas production potential from crop residues and manure is about 0.7 EJ/year, nearly double the current EU production of biogas from agricultural substrates, most of which does not come from residues or manure. An extensive sensitivity analysis of the model shows that the potential could easily be 50% higher or lower, depending on the stringency of economic, technical and biochemical constraints. We find that the potential is particularly sensitive to constraints on the substrate mixtures’ carbon-to-nitrogen ratio and dry matter concentration. Hence, the potential to produce biogas from crop residues and manure in the EU depends to large extent on the possibility to overcome the challenges associated with these substrates, either by complementing them with suitable co-substrates (e.g. household waste and energy crops), or through further development of biogas technology (e.g. pretreatment of substrates and recirculation of effluent). PMID:28141827

  7. Water-food-energy nexus index: analysis of water-energy-food nexus of crop's production system applying the indicators approach

    NASA Astrophysics Data System (ADS)

    El-Gafy, Inas

    2017-10-01

    Analysis the water-food-energy nexus is the first step to assess the decision maker in developing and evaluating national strategies that take into account the nexus. The main objective of the current research is providing a method for the decision makers to analysis the water-food-energy nexus of the crop production system at the national level and carrying out a quantitative assessment of it. Through the proposed method, indicators considering the water and energy consumption, mass productivity, and economic productivity were suggested. Based on these indicators a water-food-energy nexus index (WFENI) was performed. The study showed that the calculated WFENI of the Egyptian summer crops have scores that range from 0.21 to 0.79. Comparing to onion (the highest scoring WFENI,i.e., the best score), rice has the lowest WFENI among the summer food crops. Analysis of the water-food-energy nexus of forty-two Egyptian crops in year 2010 was caried out (energy consumed for irrigation represent 7.4% of the total energy footprint). WFENI can be applied to developed strategies for the optimal cropping pattern that minimizing the water and energy consumption and maximizing their productivity. It can be applied as a holistic tool to evaluate the progress in the water and agricultural national strategies. Moreover, WFENI could be applied yearly to evaluate the performance of the water-food-energy nexus managmant.

  8. A novel integrated cropping system for efficient grain production, improved soil quality, and enhanced beneficial arthropod communities

    USDA-ARS?s Scientific Manuscript database

    The solar corridor crop system (SCCS) is designed for improved crop productivity by using broad strips (corridors or skip rows) that promote highly efficient use of solar radiation and ambient carbon dioxide by C-4 plants including corn. Field trials in 2013 and 2014 showed that yields of selected c...

  9. Tradeoffs between water requirements and yield stability in annual vs. perennial crops

    NASA Astrophysics Data System (ADS)

    Vico, Giulia; Brunsell, Nathaniel A.

    2018-02-01

    Population growth and changes in climate and diets will likely further increase the pressure on agriculture and water resources globally. Currently, staple crops are obtained from annuals plants. A shift towards perennial crops may enhance many ecosystem services, but at the cost of higher water requirements and lower yields. It is still unclear when the advantages of perennial crops overcome their disadvantages and perennial crops are thus a sustainable solution. Here we combine a probabilistic description of the soil water balance and crop development with an extensive dataset of traits of congeneric annuals and perennials to identify the conditions for which perennial crops are more viable than annual ones with reference to yield, yield stability, and effective use of water. We show that the larger and more developed roots of perennial crops allow a better exploitation of soil water resources and a reduction of yield variability with respect to annual species, but their yields remain lower when considering grain crops. Furthermore, perennial crops have higher and more variable irrigation requirements and lower water productivity. These results are important to understand the potential consequences for yield, its stability, and water resource use of a shift from annual to perennial crops and, more generally, if perennial crops may be more resilient than annual crops in the face of climatic fluctuations.

  10. Rice production in relation to soil quality under different rice-based cropping systems

    NASA Astrophysics Data System (ADS)

    Tran Ba, Linh; Sleutel, Steven; Nguyen Van, Qui; Thi, Guong Vo; Le Van, Khoa; Cornelis, Wim

    2016-04-01

    Soil quality of shallow paddy soils may be improved by introducing upland crops and thus a more diverse crop cultivation pattern. Yet, the causal relationship between crop performance and enhanced soil traits in rice-upland crop rotations remains elusive. The objectives of this study were to (i) find correlations among soil properties under different rice-upland crop systems and link selected soil properties to rice growth and yield, (ii) present appropriate values of soil parameters for sustainable rice productivity in heavy clay soil, (iii) evaluate the effect of rotating rice with upland crops on rice yield and economic benefit in a long-term experiment. A rice-upland crop rotational field experiment in the Vietnamese Mekong delta was conducted for 10 years using a randomized complete block design with four treatments and four replications. Treatments were: (i) rice-rice-rice (control - conventional system as farmers' practice), (ii) rice-maize-rice, (iii) rice-mung bean-rice, and (iv) rice-mung bean-maize. Soil and plant sampling were performed after harvest of the rice crop at the end of the final winter-spring cropping season (i.e. year 10). Results show differences in rice growth and yield, and economic benefit as an effect of the crop rotation system. These differences were linked with changes in bulk density, soil porosity, soil aggregate stability index, soil penetration resistance, soil macro-porosity, soil organic carbon, acid hydrolysable soil C and soil nutrient elements, especially at soil depth of 20-30 cm. This is evidenced by the strong correlation (P < 0.01) between rice plant parameters, rice yield and soil properties such as bulk density, porosity, penetration resistance, soil organic carbon and Chydrolysable. It turned out that good rice root growth and rice yield corresponded to bulk density values lower than 1.3 Mg m-3, soil porosity higher than 50%, penetration resistance below 1.0 MPa, and soil organic carbon above 25 g kg-1. The optimal

  11. Atmospheric inversion of the surface carbon flux with consideration of the spatial distributions of US crop production and consumption

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, J. M.; Fung, J. W.; Mo, G.

    2015-01-01

    In order to improve quantification of the spatial distribution of carbon sinks and sources in the conterminous USA, we conduct a nested global atmospheric inversion with consideration of the spatial information of crop production and consumption. Spatially distributed 5 county-level cropland net primary productivity, harvested biomass, soil carbon change, and human and livestock consumption data over the conterminous USA are used for this purpose. Time-dependent Bayesian synthesis inversions are conducted based on CO₂ observations at 210 stations to infer CO₂ fluxes globally at monthly time steps with a nested focus on 30 regions in North America. Prior land surface carbonmore » 10 fluxes are first generated using a biospheric model, and the inversions are constrained using prior fluxes with and without adjustments for crop production and consumption over the 2002–2007 period. After these adjustments, the inverted regional carbon sink in the US Midwest increases from 0.25 ± 0.03 Pg C yr⁻¹ to 0.42 ± 0.13 Pg C yr⁻¹, whereas the large sink in the US Southeast forest region is weakened from 0.41±0.12 Pg C yr⁻¹ 15 to 0.29 ±0.12 Pg C yr⁻¹. These adjustments also reduce the inverted sink in the West region from 0.066 ± 0.04 Pg C yr⁻¹ to 0.040 ± 0.02 Pg C yr⁻1 because of high crop consumption and respiration by humans and livestock. The general pattern of sink increase in crop production areas and sink decreases (or source increases) in crop consumption areas highlights the importance of considering the lateral carbon transfer in crop 20 products in atmospheric inverse modeling, which provides an atmospheric perspective of the overall carbon balance of a region.« less

  12. Maintaining environmental quality while expanding biomass production: Sub-regional U.S. policy simulations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Egbendewe-Mondzozo, Aklesso; Swinton, S.; Izaurralde, Roberto C.

    2013-03-01

    This paper evaluates environmental policy effects on ligno-cellulosic biomass production and environ- mental outcomes using an integrated bioeconomic optimization model. The environmental policy integrated climate (EPIC) model is used to simulate crop yields and environmental indicators in current and future potential bioenergy cropping systems based on weather, topographic and soil data. The crop yield and environmental outcome parameters from EPIC are combined with biomass transport costs and economic parameters in a representative farmer profit-maximizing mathematical optimization model. The model is used to predict the impact of alternative policies on biomass production and environmental outcomes. We find that without environmental policy,more » rising biomass prices initially trigger production of annual crop residues, resulting in increased greenhouse gas emissions, soil erosion, and nutrient losses to surface and ground water. At higher biomass prices, perennial bioenergy crops replace annual crop residues as biomass sources, resulting in lower environmental impacts. Simulations of three environmental policies namely a carbon price, a no-till area subsidy, and a fertilizer tax reveal that only the carbon price policy systematically mitigates environmental impacts. The fertilizer tax is ineffectual and too costly to farmers. The no-till subsidy is effective only at low biomass prices and is too costly to government.« less

  13. The influence of crop production and socioeconomic factors on seasonal household dietary diversity in Burkina Faso.

    PubMed

    Somé, Jérôme W; Jones, Andrew D

    2018-01-01

    Households in low-income settings are vulnerable to seasonal changes in dietary diversity because of fluctuations in food availability and access. We assessed seasonal differences in household dietary diversity in Burkina Faso, and determined the extent to which household socioeconomic status and crop production diversity modify changes in dietary diversity across seasons, using data from the nationally representative 2014 Burkina Faso Continuous Multisectoral Survey (EMC). A household dietary diversity score based on nine food groups was created from household food consumption data collected during four rounds of the 2014 EMC. Plot-level crop production data, and data on household assets and education were used to create variables on crop diversity and household socioeconomic status, respectively. Analyses included data for 10,790 households for which food consumption data were available for at least one round. Accounting for repeated measurements and controlling for the complex survey design and confounding covariates using a weighted multi-level model, household dietary diversity was significantly higher during both lean seasons periods, and higher still during the harvest season as compared to the post-harvest season (mean: post-harvest: 4.76 (SE 0.04); beginning of lean: 5.13 (SE 0.05); end of lean: 5.21 (SE 0.05); harvest: 5.72 (SE 0.04)), but was not different between the beginning and the end of lean season. Seasonal differences in household dietary diversity were greater among households with higher food expenditures, greater crop production, and greater monetary value of crops sale (P<0.05). Seasonal changes in household dietary diversity in Burkina Faso may reflect nutritional differences among agricultural households, and may be modified both by households' socioeconomic status and agricultural characteristics.

  14. Modeling and control for closed environment plant production systems

    NASA Technical Reports Server (NTRS)

    Fleisher, David H.; Ting, K. C.; Janes, H. W. (Principal Investigator)

    2002-01-01

    A computer program was developed to study multiple crop production and control in controlled environment plant production systems. The program simulates crop growth and development under nominal and off-nominal environments. Time-series crop models for wheat (Triticum aestivum), soybean (Glycine max), and white potato (Solanum tuberosum) are integrated with a model-based predictive controller. The controller evaluates and compensates for effects of environmental disturbances on crop production scheduling. The crop models consist of a set of nonlinear polynomial equations, six for each crop, developed using multivariate polynomial regression (MPR). Simulated data from DSSAT crop models, previously modified for crop production in controlled environments with hydroponics under elevated atmospheric carbon dioxide concentration, were used for the MPR fitting. The model-based predictive controller adjusts light intensity, air temperature, and carbon dioxide concentration set points in response to environmental perturbations. Control signals are determined from minimization of a cost function, which is based on the weighted control effort and squared-error between the system response and desired reference signal.

  15. Crop Production under Drought and Heat Stress: Plant Responses and Management Options

    PubMed Central

    Fahad, Shah; Bajwa, Ali A.; Nazir, Usman; Anjum, Shakeel A.; Farooq, Ayesha; Zohaib, Ali; Sadia, Sehrish; Nasim, Wajid; Adkins, Steve; Saud, Shah; Ihsan, Muhammad Z.; Alharby, Hesham; Wu, Chao; Wang, Depeng; Huang, Jianliang

    2017-01-01

    Abiotic stresses are one of the major constraints to crop production and food security worldwide. The situation has aggravated due to the drastic and rapid changes in global climate. Heat and drought are undoubtedly the two most important stresses having huge impact on growth and productivity of the crops. It is very important to understand the physiological, biochemical, and ecological interventions related to these stresses for better management. A wide range of plant responses to these stresses could be generalized into morphological, physiological, and biochemical responses. Interestingly, this review provides a detailed account of plant responses to heat and drought stresses with special focus on highlighting the commonalities and differences. Crop growth and yields are negatively affected by sub-optimal water supply and abnormal temperatures due to physical damages, physiological disruptions, and biochemical changes. Both these stresses have multi-lateral impacts and therefore, complex in mechanistic action. A better understanding of plant responses to these stresses has pragmatic implication for remedies and management. A comprehensive account of conventional as well as modern approaches to deal with heat and drought stresses have also been presented here. A side-by-side critical discussion on salient responses and management strategies for these two important abiotic stresses provides a unique insight into the phenomena. A holistic approach taking into account the different management options to deal with heat and drought stress simultaneously could be a win-win approach in future. PMID:28706531

  16. Urban food crop production capacity and competition with the urban forest

    Treesearch

    Jeffrey J Richardson; L. Monika Moskal

    2016-01-01

    The sourcing of food plays a significant role in assessing the sustainability of a city, but it is unclear how much food a city can produce within its city limits. In this study, we propose a method for estimating the maximum food crop production capacity of a city and demonstrate the method in Seattle, WA USA by taking into account land use, the light environment, and...

  17. Irrigation and Maize Cultivation Erode Plant Diversity Within Crops in Mediterranean Dry Cereal Agro-Ecosystems.

    PubMed

    Fagúndez, Jaime; Olea, Pedro P; Tejedo, Pablo; Mateo-Tomás, Patricia; Gómez, David

    2016-07-01

    The intensification of agriculture has increased production at the cost of environment and biodiversity worldwide. To increase crop yield in dry cereal systems, vast farmland areas of high conservation value are being converted into irrigation, especially in Mediterranean countries. We analyze the effect of irrigation-driven changes on the farm biota by comparing species diversity, community composition, and species traits of arable plants within crop fields from two contrasting farming systems (dry and irrigated) in Spain. We sampled plant species within 80 fields of dry wheat, irrigated wheat, and maize (only cultivated under irrigation). Wheat crops held higher landscape and per field species richness, and beta diversity than maize. Within the same type of crop, irrigated wheat hosted lower plant diversity than dry wheat at both field and landscape scales. Floristic composition differed between crop types, with higher frequencies of perennials, cosmopolitan, exotic, wind-pollinated and C4 species in maize. Our results suggest that irrigation projects, that transform large areas of dry cereal agro-ecosystems into irrigated crop systems dominated by maize, erode plant diversity. An adequate planning on the type and proportion of crops used in the irrigated agro-ecosystems is needed in order to balance agriculture production and biodiversity conservation.

  18. Production cost of a real microalgae production plant and strategies to reduce it.

    PubMed

    Acién, F G; Fernández, J M; Magán, J J; Molina, E

    2012-01-01

    The cost analysis of a real facility for the production of high value microalgae biomass is presented. The facility is based on ten 3 m3 tubular photobioreactors operated in continuous mode for 2 years, data of Scenedesmus almeriensis productivity but also of nutrients and power consumption from this facility being used. The yield of the facility was close to maximum expected for the location of Almería, the annual production capacity being 3.8 t/year (90 t/ha·year) and the photosynthetic efficiency being 3.6%. The production cost was 69 €/kg. Economic analysis shows that labor and depreciation are the major factors contributing to this cost. Simplification of the technology and scale-up to a production capacity of 200 t/year allows to reduce the production cost up to 12.6 €/kg. Moreover, to reduce the microalgae production cost to approaches the energy or commodities markets it is necessary to reduce the photobioreactor cost (by simplifying its design or materials used), use waste water and flue gases, and reduce the power consumption and labor required for the production step. It can be concluded that although it has been reported that production of biofuels from microalgae is relatively close to being economically feasible, data here reported demonstrated that to achieve it by using the current production technologies, it is necessary to substantially reduce their costs and to operate them near their optimum values. Copyright © 2012 Elsevier Inc. All rights reserved.

  19. Long-term observations of crop water use with eddy covariance stations and coupling with crop simulation models

    USDA-ARS?s Scientific Manuscript database

    Understanding crop water use is critical to being able to determine crop water requirements and when water is limiting crop productivity. There have been many different techniques used to quantify crop water use and the eddy covariance approach is one method that has the capacity to measure crop wat...

  20. A Low-Cost Indigenous Intervention which has Revolutionized the Drilling Technology and Changed the Life of Millions of Farmers in the State of Uttar Pradesh, India

    NASA Astrophysics Data System (ADS)

    Chaurasia, Pratik Ranjan; Subhash

    2018-06-01

    An unknown indigenous driller combined the percussion and circulation drilling principles, resulting in the development of low cost, low weight manual boring set in the year 1990-1991/1991-1992, which revolutionized the shallow well drilling technology and made possible to drill about 4.5 million shallow bore wells in the State. This has changed the landscape of irrigated agriculture, changing the life of millions of small and marginal farmers and contributed a lot in increasing crop production and crop productivity. The developed drilling equipment locally known as "Pressure Boring Set" is manually operated, low cost and can be transported on bicycles. Drilling cost is also less. This low cost and simple technology made it possible to drill large number of shallow bore wells in comparatively short time span and less cost, consequently enhancing the rate of increase in irrigated area and in turn crop production and productivity. Cost of the boring set is also low, as compared to traditional sand pump hand boring set and suitable for alluvial areas.

  1. A Low-Cost Indigenous Intervention which has Revolutionized the Drilling Technology and Changed the Life of Millions of Farmers in the State of Uttar Pradesh, India

    NASA Astrophysics Data System (ADS)

    Chaurasia, Pratik Ranjan; Subhash

    2018-02-01

    An unknown indigenous driller combined the percussion and circulation drilling principles, resulting in the development of low cost, low weight manual boring set in the year 1990-1991/1991-1992, which revolutionized the shallow well drilling technology and made possible to drill about 4.5 million shallow bore wells in the State. This has changed the landscape of irrigated agriculture, changing the life of millions of small and marginal farmers and contributed a lot in increasing crop production and crop productivity. The developed drilling equipment locally known as "Pressure Boring Set" is manually operated, low cost and can be transported on bicycles. Drilling cost is also less. This low cost and simple technology made it possible to drill large number of shallow bore wells in comparatively short time span and less cost, consequently enhancing the rate of increase in irrigated area and in turn crop production and productivity. Cost of the boring set is also low, as compared to traditional sand pump hand boring set and suitable for alluvial areas.

  2. Improved Environmental Life Cycle Assessment of Crop Production at the Catchment Scale via a Process-Based Nitrogen Simulation Model.

    PubMed

    Liao, Wenjie; van der Werf, Hayo M G; Salmon-Monviola, Jordy

    2015-09-15

    One of the major challenges in environmental life cycle assessment (LCA) of crop production is the nonlinearity between nitrogen (N) fertilizer inputs and on-site N emissions resulting from complex biogeochemical processes. A few studies have addressed this nonlinearity by combining process-based N simulation models with LCA, but none accounted for nitrate (NO3(-)) flows across fields. In this study, we present a new method, TNT2-LCA, that couples the topography-based simulation of nitrogen transfer and transformation (TNT2) model with LCA, and compare the new method with a current LCA method based on a French life cycle inventory database. Application of the two methods to a case study of crop production in a catchment in France showed that, compared to the current method, TNT2-LCA allows delineation of more appropriate temporal limits when developing data for on-site N emissions associated with specific crops in this catchment. It also improves estimates of NO3(-) emissions by better consideration of agricultural practices, soil-climatic conditions, and spatial interactions of NO3(-) flows across fields, and by providing predicted crop yield. The new method presented in this study provides improved LCA of crop production at the catchment scale.

  3. Transgenics in crops

    NASA Technical Reports Server (NTRS)

    Li, Y.; Wu, Y. H.; McAvoy, R.; Duan, H.

    2001-01-01

    With rapid world population growth and declining availability of fresh water and arable land, a new technology is urgently needed to enhance agricultural productivity. Recent discoveries in the field of crop transgenics clearly demonstrate the great potential of this technology for increasing food production and improving food quality while preserving the environment for future generations. In this review, we briefly discuss some of the recent achievements in crop improvement that have been made using gene transfer technology.

  4. Crop physiology calibration in the CLM

    DOE PAGES

    Bilionis, I.; Drewniak, B. A.; Constantinescu, E. M.

    2015-04-15

    Farming is using more of the land surface, as population increases and agriculture is increasingly applied for non-nutritional purposes such as biofuel production. This agricultural expansion exerts an increasing impact on the terrestrial carbon cycle. In order to understand the impact of such processes, the Community Land Model (CLM) has been augmented with a CLM-Crop extension that simulates the development of three crop types: maize, soybean, and spring wheat. The CLM-Crop model is a complex system that relies on a suite of parametric inputs that govern plant growth under a given atmospheric forcing and available resources. CLM-Crop development used measurementsmore » of gross primary productivity (GPP) and net ecosystem exchange (NEE) from AmeriFlux sites to choose parameter values that optimize crop productivity in the model. In this paper, we calibrate these parameters for one crop type, soybean, in order to provide a faithful projection in terms of both plant development and net carbon exchange. Calibration is performed in a Bayesian framework by developing a scalable and adaptive scheme based on sequential Monte Carlo (SMC). The model showed significant improvement of crop productivity with the new calibrated parameters. We demonstrate that the calibrated parameters are applicable across alternative years and different sites.« less

  5. Crop physiology calibration in the CLM

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bilionis, I.; Drewniak, B. A.; Constantinescu, E. M.

    Farming is using more of the land surface, as population increases and agriculture is increasingly applied for non-nutritional purposes such as biofuel production. This agricultural expansion exerts an increasing impact on the terrestrial carbon cycle. In order to understand the impact of such processes, the Community Land Model (CLM) has been augmented with a CLM-Crop extension that simulates the development of three crop types: maize, soybean, and spring wheat. The CLM-Crop model is a complex system that relies on a suite of parametric inputs that govern plant growth under a given atmospheric forcing and available resources. CLM-Crop development used measurementsmore » of gross primary productivity (GPP) and net ecosystem exchange (NEE) from AmeriFlux sites to choose parameter values that optimize crop productivity in the model. In this paper, we calibrate these parameters for one crop type, soybean, in order to provide a faithful projection in terms of both plant development and net carbon exchange. Calibration is performed in a Bayesian framework by developing a scalable and adaptive scheme based on sequential Monte Carlo (SMC). The model showed significant improvement of crop productivity with the new calibrated parameters. We demonstrate that the calibrated parameters are applicable across alternative years and different sites.« less

  6. GEOGLAM Crop Monitor Assessment Tool: Developing Monthly Crop Condition Assessments

    NASA Astrophysics Data System (ADS)

    McGaughey, K.; Becker Reshef, I.; Barker, B.; Humber, M. L.; Nordling, J.; Justice, C. O.; Deshayes, M.

    2014-12-01

    The Group on Earth Observations (GEO) developed the Global Agricultural Monitoring initiative (GEOGLAM) to improve existing agricultural information through a network of international partnerships, data sharing, and operational research. This presentation will discuss the Crop Monitor component of GEOGLAM, which provides the Agricultural Market Information System (AMIS) with an international, multi-source, and transparent consensus assessment of crop growing conditions, status, and agro-climatic conditions likely to impact global production. This activity covers the four primary crop types (wheat, maize, rice, and soybean) within the main agricultural producing regions of the AMIS countries. These assessments have been produced operationally since September 2013 and are published in the AMIS Market Monitor Bulletin. The Crop Monitor reports provide cartographic and textual summaries of crop conditions as of the 28th of each month, according to crop type. This presentation will focus on the building of international networks, data collection, and data dissemination.

  7. Uncertainty analysis of an irrigation scheduling model for water management in crop production

    USDA-ARS?s Scientific Manuscript database

    Irrigation scheduling tools are critical to allow producers to manage water resources for crop production in an accurate and timely manner. To be useful, these tools need to be accurate, complete, and relatively reliable. The current work presents the uncertainty analysis and its results for the Mis...

  8. Cover crops do not increase C sequestration in production crops: evidence from 12 years of continuous measurements

    NASA Astrophysics Data System (ADS)

    Buysse, Pauline; Bodson, Bernard; Debacq, Alain; De Ligne, Anne; Heinesch, Bernard; Manise, Tanguy; Moureaux, Christine; Aubinet, Marc

    2017-04-01

    The numerous reports on carbon (C) loss from cropland soils have recently raised awareness on the climate change mitigation potential of these ecosystems, and on the necessity to improve C sequestration in these soils. Among the multiple solutions that are proposed, several field measurement and modelling studies reported that growing cover crops over fall and winter time could appear as an efficient solution. However, while the large majority of these studies are based on SOC stock inventories and very few information exists from the CO2 flux dynamics perspective. In the present work, we use the results from long-term (12 years) eddy-covariance measurements performed at the Lonzée Terrestrial Observatory (LTO, candidate ICOS site, Belgium) and focus on six intercrop periods managed with (3) and without (3) cover crops after winter wheat main crops, in order to compare their response to environmental factors and to investigate the impact of cover crops on Net Ecosystem Exchange (NEE). Our results showed that cumulated NEE was not significantly affected by the presence of cover crops. Indeed, while larger CO2 assimilation occurred during cover crop growth, this carbon gain was later lost by larger respiration rates due to larger crop residue amounts brought to the soil. As modelled by a Q10-like relationship, significantly larger R10 values were indeed observed during the three intercrop periods cultivated with cover crops. These CO2 flux-based results therefore tend to moderate the generally acknowledged positive impact of cover crops on net C sequestration by croplands. Our results indicate that the effect of growing cover crops on C sequestration could be less important than announced, at least at certain sites.

  9. Plant-based assessment of inherent soil productivity and contributions to China's cereal crop yield increase since 1980.

    PubMed

    Fan, Mingsheng; Lal, Rattan; Cao, Jian; Qiao, Lei; Su, Yansen; Jiang, Rongfeng; Zhang, Fusuo

    2013-01-01

    China's food production has increased 6-fold during the past half-century, thanks to increased yields resulting from the management intensification, accomplished through greater inputs of fertilizer, water, new crop strains, and other Green Revolution's technologies. Yet, changes in underlying quality of soils and their effects on yield increase remain to be determined. Here, we provide a first attempt to quantify historical changes in inherent soil productivity and their contributions to the increase in yield. The assessment was conducted based on data-set derived from 7410 on-farm trials, 8 long-term experiments and an inventory of soil organic matter concentrations of arable land. Results show that even without organic and inorganic fertilizer addition crop yield from on-farm trials conducted in the 2000s was significantly higher compared with those in the 1980s - the increase ranged from 0.73 to 1.76 Mg/ha for China's major irrigated cereal-based cropping systems. The increase in on-farm yield in control plot since 1980s was due primarily to the enhancement of soil-related factors, and reflected inherent soil productivity improvement. The latter led to higher and stable yield with adoption of improved management practices, and contributed 43% to the increase in yield for wheat and 22% for maize in the north China, and, 31%, 35% and 22% for early and late rice in south China and for single rice crop in the Yangtze River Basin since 1980. Thus, without an improvement in inherent soil productivity, the 'Agricultural Miracle in China' would not have happened. A comprehensive strategy of inherent soil productivity improvement in China, accomplished through combining engineering-based measures with biological-approaches, may be an important lesson for the developing world. We propose that advancing food security in 21st century for both China and other parts of world will depend on continuously improving inherent soil productivity.

  10. Soil Functional Zone Management: A Vehicle for Enhancing Production and Soil Ecosystem Services in Row-Crop Agroecosystems.

    PubMed

    Williams, Alwyn; Kane, Daniel A; Ewing, Patrick M; Atwood, Lesley W; Jilling, Andrea; Li, Meng; Lou, Yi; Davis, Adam S; Grandy, A Stuart; Huerd, Sheri C; Hunter, Mitchell C; Koide, Roger T; Mortensen, David A; Smith, Richard G; Snapp, Sieglinde S; Spokas, Kurt A; Yannarell, Anthony C; Jordan, Nicholas R

    2016-01-01

    There is increasing global demand for food, bioenergy feedstocks and a wide variety of bio-based products. In response, agriculture has advanced production, but is increasingly depleting soil regulating and supporting ecosystem services. New production systems have emerged, such as no-tillage, that can enhance soil services but may limit yields. Moving forward, agricultural systems must reduce trade-offs between production and soil services. Soil functional zone management (SFZM) is a novel strategy for developing sustainable production systems that attempts to integrate the benefits of conventional, intensive agriculture, and no-tillage. SFZM creates distinct functional zones within crop row and inter-row spaces. By incorporating decimeter-scale spatial and temporal heterogeneity, SFZM attempts to foster greater soil biodiversity and integrate complementary soil processes at the sub-field level. Such integration maximizes soil services by creating zones of 'active turnover', optimized for crop growth and yield (provisioning services); and adjacent zones of 'soil building', that promote soil structure development, carbon storage, and moisture regulation (regulating and supporting services). These zones allow SFZM to secure existing agricultural productivity while avoiding or minimizing trade-offs with soil ecosystem services. Moreover, the specific properties of SFZM may enable sustainable increases in provisioning services via temporal intensification (expanding the portion of the year during which harvestable crops are grown). We present a conceptual model of 'virtuous cycles', illustrating how increases in crop yields within SFZM systems could create self-reinforcing feedback processes with desirable effects, including mitigation of trade-offs between yield maximization and soil ecosystem services. Through the creation of functionally distinct but interacting zones, SFZM may provide a vehicle for optimizing the delivery of multiple goods and services in

  11. Soil Functional Zone Management: A Vehicle for Enhancing Production and Soil Ecosystem Services in Row-Crop Agroecosystems

    PubMed Central

    Williams, Alwyn; Kane, Daniel A.; Ewing, Patrick M.; Atwood, Lesley W.; Jilling, Andrea; Li, Meng; Lou, Yi; Davis, Adam S.; Grandy, A. Stuart; Huerd, Sheri C.; Hunter, Mitchell C.; Koide, Roger T.; Mortensen, David A.; Smith, Richard G.; Snapp, Sieglinde S.; Spokas, Kurt A.; Yannarell, Anthony C.; Jordan, Nicholas R.

    2016-01-01

    There is increasing global demand for food, bioenergy feedstocks and a wide variety of bio-based products. In response, agriculture has advanced production, but is increasingly depleting soil regulating and supporting ecosystem services. New production systems have emerged, such as no-tillage, that can enhance soil services but may limit yields. Moving forward, agricultural systems must reduce trade-offs between production and soil services. Soil functional zone management (SFZM) is a novel strategy for developing sustainable production systems that attempts to integrate the benefits of conventional, intensive agriculture, and no-tillage. SFZM creates distinct functional zones within crop row and inter-row spaces. By incorporating decimeter-scale spatial and temporal heterogeneity, SFZM attempts to foster greater soil biodiversity and integrate complementary soil processes at the sub-field level. Such integration maximizes soil services by creating zones of ‘active turnover’, optimized for crop growth and yield (provisioning services); and adjacent zones of ‘soil building’, that promote soil structure development, carbon storage, and moisture regulation (regulating and supporting services). These zones allow SFZM to secure existing agricultural productivity while avoiding or minimizing trade-offs with soil ecosystem services. Moreover, the specific properties of SFZM may enable sustainable increases in provisioning services via temporal intensification (expanding the portion of the year during which harvestable crops are grown). We present a conceptual model of ‘virtuous cycles’, illustrating how increases in crop yields within SFZM systems could create self-reinforcing feedback processes with desirable effects, including mitigation of trade-offs between yield maximization and soil ecosystem services. Through the creation of functionally distinct but interacting zones, SFZM may provide a vehicle for optimizing the delivery of multiple goods and services

  12. Dedicated Industrial Oilseed Crops as Metabolic Engineering Platforms for Sustainable Industrial Feedstock Production

    PubMed Central

    Zhu, Li-Hua; Krens, Frans; Smith, Mark A.; Li, Xueyuan; Qi, Weicong; van Loo, Eibertus N.; Iven, Tim; Feussner, Ivo; Nazarenus, Tara J.; Huai, Dongxin; Taylor, David C.; Zhou, Xue-Rong; Green, Allan G.; Shockey, Jay; Klasson, K. Thomas; Mullen, Robert T.; Huang, Bangquan; Dyer, John M.; Cahoon, Edgar B.

    2016-01-01

    Feedstocks for industrial applications ranging from polymers to lubricants are largely derived from petroleum, a non-renewable resource. Vegetable oils with fatty acid structures and storage forms tailored for specific industrial uses offer renewable and potentially sustainable sources of petrochemical-type functionalities. A wide array of industrial vegetable oils can be generated through biotechnology, but will likely require non-commodity oilseed platforms dedicated to specialty oil production for commercial acceptance. Here we show the feasibility of three Brassicaceae oilseeds crambe, camelina, and carinata, none of which are widely cultivated for food use, as hosts for complex metabolic engineering of wax esters for lubricant applications. Lines producing wax esters >20% of total seed oil were generated for each crop and further improved for high temperature oxidative stability by down-regulation of fatty acid polyunsaturation. Field cultivation of optimized wax ester-producing crambe demonstrated commercial utility of these engineered crops and a path for sustainable production of other industrial oils in dedicated specialty oilseeds. PMID:26916792

  13. Dedicated Industrial Oilseed Crops as Metabolic Engineering Platforms for Sustainable Industrial Feedstock Production.

    PubMed

    Zhu, Li-Hua; Krens, Frans; Smith, Mark A; Li, Xueyuan; Qi, Weicong; van Loo, Eibertus N; Iven, Tim; Feussner, Ivo; Nazarenus, Tara J; Huai, Dongxin; Taylor, David C; Zhou, Xue-Rong; Green, Allan G; Shockey, Jay; Klasson, K Thomas; Mullen, Robert T; Huang, Bangquan; Dyer, John M; Cahoon, Edgar B

    2016-02-26

    Feedstocks for industrial applications ranging from polymers to lubricants are largely derived from petroleum, a non-renewable resource. Vegetable oils with fatty acid structures and storage forms tailored for specific industrial uses offer renewable and potentially sustainable sources of petrochemical-type functionalities. A wide array of industrial vegetable oils can be generated through biotechnology, but will likely require non-commodity oilseed platforms dedicated to specialty oil production for commercial acceptance. Here we show the feasibility of three Brassicaceae oilseeds crambe, camelina, and carinata, none of which are widely cultivated for food use, as hosts for complex metabolic engineering of wax esters for lubricant applications. Lines producing wax esters >20% of total seed oil were generated for each crop and further improved for high temperature oxidative stability by down-regulation of fatty acid polyunsaturation. Field cultivation of optimized wax ester-producing crambe demonstrated commercial utility of these engineered crops and a path for sustainable production of other industrial oils in dedicated specialty oilseeds.

  14. Examining the production costs of antiretroviral drugs.

    PubMed

    Pinheiro, Eloan; Vasan, Ashwin; Kim, Jim Yong; Lee, Evan; Guimier, Jean Marc; Perriens, Joseph

    2006-08-22

    To present direct manufacturing costs and price calculations of individual antiretroviral drugs, enabling those responsible for their procurement to have a better understanding of the cost structure of their production, and to indicate the prices at which these antiretroviral drugs could be offered in developing country markets. Direct manufacturing costs and factory prices for selected first and second-line antiretroviral drugs were calculated based on cost structure data from a state-owned company in Brazil. Prices for the active pharmaceutical ingredients (API) were taken from a recent survey by the World Health Organization (WHO). The calculated prices for antiretroviral drugs are compared with quoted prices offered by privately-owned, for-profit manufacturers. The API represents the largest component of direct manufacturing costs (55-99%), while other inputs, such as salaries, equipment costs, and scale of production, have a minimal impact. The calculated prices for most of the antiretroviral drugs studied fall within the lower quartile of the range of quoted prices in developing country markets. The exceptions are those drugs, primarily for second-line therapy, for which the API is either under patent, in short supply, or in limited use in developing countries (e.g. abacavir, lopinavir/ritonavir, nelfinavir, saquinavir). The availability of data on the cost of antiretroviral drug production and calculation of factory prices under a sustainable business model provide benchmarks that bulk purchasers of antiretroviral drugs could use to negotiate lower prices. While truly significant price decreases for antiretroviral drugs will depend largely on the future evolution of API prices, the present study demonstrates that for several antiretroviral drugs price reduction is currently possible. Whether or not these reductions materialize will depend on the magnitude of indirect cost and profit added by each supplier over the direct production costs. The ability to

  15. Wheat forecast economics effect study. [value of improved information on crop inventories, production, imports and exports

    NASA Technical Reports Server (NTRS)

    Mehra, R. K.; Rouhani, R.; Jones, S.; Schick, I.

    1980-01-01

    A model to assess the value of improved information regarding the inventories, productions, exports, and imports of crop on a worldwide basis is discussed. A previously proposed model is interpreted in a stochastic control setting and the underlying assumptions of the model are revealed. In solving the stochastic optimization problem, the Markov programming approach is much more powerful and exact as compared to the dynamic programming-simulation approach of the original model. The convergence of a dual variable Markov programming algorithm is shown to be fast and efficient. A computer program for the general model of multicountry-multiperiod is developed. As an example, the case of one country-two periods is treated and the results are presented in detail. A comparison with the original model results reveals certain interesting aspects of the algorithms and the dependence of the value of information on the incremental cost function.

  16. Network Candidate Genes in Breeding for Drought Tolerant Crops

    PubMed Central

    Krannich, Christoph Tim; Maletzki, Lisa; Kurowsky, Christina; Horn, Renate

    2015-01-01

    Climate change leading to increased periods of low water availability as well as increasing demands for food in the coming years makes breeding for drought tolerant crops a high priority. Plants have developed diverse strategies and mechanisms to survive drought stress. However, most of these represent drought escape or avoidance strategies like early flowering or low stomatal conductance that are not applicable in breeding for crops with high yields under drought conditions. Even though a great deal of research is ongoing, especially in cereals, in this regard, not all mechanisms involved in drought tolerance are yet understood. The identification of candidate genes for drought tolerance that have a high potential to be used for breeding drought tolerant crops represents a challenge. Breeding for drought tolerant crops has to focus on acceptable yields under water-limited conditions and not on survival. However, as more and more knowledge about the complex networks and the cross talk during drought is available, more options are revealed. In addition, it has to be considered that conditioning a crop for drought tolerance might require the production of metabolites and might cost the plants energy and resources that cannot be used in terms of yield. Recent research indicates that yield penalty exists and efficient breeding for drought tolerant crops with acceptable yields under well-watered and drought conditions might require uncoupling yield penalty from drought tolerance. PMID:26193269

  17. Network Candidate Genes in Breeding for Drought Tolerant Crops.

    PubMed

    Krannich, Christoph Tim; Maletzki, Lisa; Kurowsky, Christina; Horn, Renate

    2015-07-17

    Climate change leading to increased periods of low water availability as well as increasing demands for food in the coming years makes breeding for drought tolerant crops a high priority. Plants have developed diverse strategies and mechanisms to survive drought stress. However, most of these represent drought escape or avoidance strategies like early flowering or low stomatal conductance that are not applicable in breeding for crops with high yields under drought conditions. Even though a great deal of research is ongoing, especially in cereals, in this regard, not all mechanisms involved in drought tolerance are yet understood. The identification of candidate genes for drought tolerance that have a high potential to be used for breeding drought tolerant crops represents a challenge. Breeding for drought tolerant crops has to focus on acceptable yields under water-limited conditions and not on survival. However, as more and more knowledge about the complex networks and the cross talk during drought is available, more options are revealed. In addition, it has to be considered that conditioning a crop for drought tolerance might require the production of metabolites and might cost the plants energy and resources that cannot be used in terms of yield. Recent research indicates that yield penalty exists and efficient breeding for drought tolerant crops with acceptable yields under well-watered and drought conditions might require uncoupling yield penalty from drought tolerance.

  18. Evolution of crop production under a pseudo-space environment using model plants, Lotus japonicus

    NASA Astrophysics Data System (ADS)

    Tomita-Yokotani, Kaori; Motohashi, Kyohei; Omi, Naomi; Sato, Seigo; Aoki, Toshio; Hashimoto, Hirofumi; Yamashita, Masamichi

    Habitation in outer space is one of our challenges. We have been studying space agriculture and/or spacecraft agriculture to provide food and oxygen for the habitation area in the space environment. However, careful investigation should be made concerning the results of exotic environmental effects on the endogenous production of biologically active substances in indi-vidual cultivated plants in a space environment. We have already reported that the production of functional substances in cultivated plants as crops are affected by gravity. The amounts of the main physiological substances in these plants grown under terrestrial control were different from that grown in a pseudo-microgravity. These results suggested that the nutrition would be changed in the plants/crops grown in the space environment when human beings eat in space. This estimation required us to investigate each of the useful components produced by each plant grown in the space environment. These estimations involved several study fields, includ-ing nutrition, plant physiology, etc. On the other hand, the analysis of model plant genomes has recently been remarkably advanced. Lotus japonicus, a leguminous plant, is also one of the model plant. The leguminosae is a large family in the plant vegetable kingdom and almost the entire genome sequence of Lotus japonicus has been determined. Nitrogen fixation would be possible even in a space environment. We are trying to determine the best conditions and evolution for crop production using the model plants.

  19. The effects of straw or straw-derived gasification biochar applications on soil quality and crop productivity: A farm case study.

    PubMed

    Hansen, Veronika; Müller-Stöver, Dorette; Imparato, Valentina; Krogh, Paul Henning; Jensen, Lars Stoumann; Dolmer, Anders; Hauggaard-Nielsen, Henrik

    2017-01-15

    Thermal gasification of straw is a highly efficient technology that produces bioenergy and gasification biochar that can be used as a soil amendment, thereby returning non-renewable nutrients and stable carbon, and securing soil quality and crop productivity. A Danish on-farm field study investigated the impact of traditional straw incorporation vs. straw removal for thermal gasification bioenergy production and the application of straw gasification biochar (GB) on soil quality and crop production. Two rates of GB were applied over three successive years in which the field was cropped with winter wheat (Triticum aestivum L.), winter oilseed rape (Brassica napus L.) and winter wheat, respectively, to assess the potential effects on the soil carbon pool, soil microorganisms, earthworms, soil chemical properties and crop yields. The application of GB did not increase the soil organic carbon content significantly and had no effect on crop yields. The application of straw and GB had a positive effect on the populations of bacteria and protists, but no effect on earthworms. The high rate of GB increased soil exchangeable potassium content and soil pH indicating its potassium bioavailability and liming properties. These results suggest, that recycling GB into agricultural soils has the potential to be developed into a system combining bioenergy generation from agricultural residues and crop production, while maintaining soil quality. However, future studies should be undertaken to assess its long-term effects and to identify the optimum balance between straw removal and biochar application rate. Copyright © 2016. Published by Elsevier Ltd.

  20. GMO foods and crops: Africa's choice.

    PubMed

    Paarlberg, Robert

    2010-11-30

    There is a scientific consensus, even in Europe, that the GMO foods and crops currently on the market have brought no documented new risks either to human health or to the environment. Europe has decided to stifle the use of this new technology, not because of the presence of risks, but because of the absence so far of direct benefits to most Europeans. Farmers in Europe are few in number, and they are highly productive even without GMOs. In Africa, by contrast, 60% of all citizens are still farmers and they are not yet highly productive. For Africa, the choice to stifle new technology with European-style regulations carries a much higher cost. Copyright © 2010 Elsevier B.V. All rights reserved.

  1. 3D Participatory Sensing with Low-Cost Mobile Devices for Crop Height Assessment--A Comparison with Terrestrial Laser Scanning Data.

    PubMed

    Marx, Sabrina; Hämmerle, Martin; Klonner, Carolin; Höfle, Bernhard

    2016-01-01

    The integration of local agricultural knowledge deepens the understanding of complex phenomena such as the association between climate variability, crop yields and undernutrition. Participatory Sensing (PS) is a concept which enables laymen to easily gather geodata with standard low-cost mobile devices, offering new and efficient opportunities for agricultural monitoring. This study presents a methodological approach for crop height assessment based on PS. In-field crop height variations of a maize field in Heidelberg, Germany, are gathered with smartphones and handheld GPS devices by 19 participants. The comparison of crop height values measured by the participants to reference data based on terrestrial laser scanning (TLS) results in R2 = 0.63 for the handheld GPS devices and R2 = 0.24 for the smartphone-based approach. RMSE for the comparison between crop height models (CHM) derived from PS and TLS data is 10.45 cm (GPS devices) and 14.69 cm (smartphones). Furthermore, the results indicate that incorporating participants' cognitive abilities in the data collection process potentially improves the quality data captured with the PS approach. The proposed PS methods serve as a fundament to collect agricultural parameters on field-level by incorporating local people. Combined with other methods such as remote sensing, PS opens new perspectives to support agricultural development.

  2. Low cost solar silicon production

    NASA Astrophysics Data System (ADS)

    Mede, Matt

    2009-08-01

    The worldwide demand for solar grade silicon reached an all time high between 2007 and 2008. Although growth in the solar industry is slowing due to the current economic downturn, demand is expected to rebound in 2011 based on current cost models. However, demand will increase even more than currently anticipated if costs are reduced. This situation creates an opportunity for new and innovative approaches to the production of photovoltaic grade silicon, especially methods which can demonstrate cost reductions over currently utilized processes.

  3. Investment risk in bioenergy crops

    DOE PAGES

    Skevas, Theodoros; Swinton, Scott M.; Tanner, Sophia; ...

    2015-11-18

    Here, perennial, cellulosic bioenergy crops represent a risky investment. The potential for adoption of these crops depends not only on mean net returns, but also on the associated probability distributions and on the risk preferences of farmers. Using 6-year observed crop yield data from highly productive and marginally productive sites in the southern Great Lakes region and assuming risk neutrality, we calculate expected breakeven biomass yields and prices compared to corn ( Zea mays L.) as a benchmark. Next we develop Monte Carlo budget simulations based on stochastic crop prices and yields. The crop yield simulations decompose yield risk intomore » three components: crop establishment survival, time to maturity, and mature yield variability. Results reveal that corn with harvest of grain and 38% of stover (as cellulosic bioenergy feedstock) is both the most profitable and the least risky investment option. It dominates all perennial systems considered across a wide range of farmer risk preferences. Although not currently attractive for profit-oriented farmers who are risk neutral or risk averse, perennial bioenergy crops.« less

  4. Investment risk in bioenergy crops

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Skevas, Theodoros; Swinton, Scott M.; Tanner, Sophia

    Here, perennial, cellulosic bioenergy crops represent a risky investment. The potential for adoption of these crops depends not only on mean net returns, but also on the associated probability distributions and on the risk preferences of farmers. Using 6-year observed crop yield data from highly productive and marginally productive sites in the southern Great Lakes region and assuming risk neutrality, we calculate expected breakeven biomass yields and prices compared to corn ( Zea mays L.) as a benchmark. Next we develop Monte Carlo budget simulations based on stochastic crop prices and yields. The crop yield simulations decompose yield risk intomore » three components: crop establishment survival, time to maturity, and mature yield variability. Results reveal that corn with harvest of grain and 38% of stover (as cellulosic bioenergy feedstock) is both the most profitable and the least risky investment option. It dominates all perennial systems considered across a wide range of farmer risk preferences. Although not currently attractive for profit-oriented farmers who are risk neutral or risk averse, perennial bioenergy crops.« less

  5. Remote sensing of perennial crop stand duration and pre-crop identification

    USDA-ARS?s Scientific Manuscript database

    Field to field variability in soil erosion and off-site transport of nutrients and pesticides in western Oregon in any single year is primarily driven by the question of whether individual fields were disturbed for planting of new crop stands or remained in production of established perennial crops...

  6. Relevance of Indian Summer Monsoon and its Tropical Indo-Pacific Climate Drivers for the Kharif Crop Production

    NASA Astrophysics Data System (ADS)

    Amat, Hemadri Bhusan; Karumuri, Ashok

    2017-12-01

    While the Indian agriculture has earlier been dependent on the Indian summer monsoon rainfall (ISMR), a multifold increase in irrigation and storage facilities raise a question whether the ISMR is still as relevant. We revisit this question using the latest observational climate datasets as well as the crop production data and find that the ISMR is still relevant for the Kharif crop production (KCP). In addition, in the recent changes in the tropical Indo-Pacific driver evolutions and frequency, particularly more frequent occurrence of the ENSO Modokis in place of the canonical ENSOs, we carry out a correlation analysis to estimate the impact of the various Indo-Pacific climate drivers on the rainfall of individual Indian states for the period 1998-2013, for which crop production data for the most productive Indian states, namely West Bengal, Odisha, United Andhra Pradesh (UAP), Haryana, Punjab, Karnataka, Kerala, Madhya Pradesh, Bihar and Uttar Pradesh are available. The results suggest that the KCP of the respective states are significantly correlated with the summer monsoon rainfall at the 95-99% confidence levels. Importantly, we find that the NINO 3.4 and ENSO Modoki indices have a statistically significant correlation with the KCP of most of the Indian states, particularly in states such as UAP and Karnataka, through induction of anomalous local convergence/divergence, well beyond the equatorial Indian Ocean. The KCP of districts in UAP also has a significant response to all the climate drivers, having implication for prediction of local crop yield.

  7. Alternatives to Crop Insurance for Mitigating Hydrologic Risk in the Upper Mississippi River Basin

    NASA Astrophysics Data System (ADS)

    Baker, J. M.; Griffis, T. J.; Gorski, G.; Wood, J. D.

    2015-12-01

    Corn and soybean production in the Upper Mississippi River Basin can be limited by either excess or shortage of water, often in the same year within the same watershed. Most producers indemnify themselves against these hazards through the Federal crop insurance program, which is heavily subsidized, thus discouraging expenditures on other forms of risk mitigation. The cost is not trivial, amounting to more than 60 billion USD over the past 15 years. Examination of long-term precipitation and streamflow records at the 8-digit scale suggests that inter-annual hydrologic variability in the region is increasing, particularly in an area stretching from NW IL through much of IA and southern MN. Analysis of crop insurance statistics shows that these same watersheds exhibit the highest frequency of coincident claims for yield losses to both excess water and drought within the same year. An emphasis on development of water management strategies to increase landscape storage and subsequent reuse through supplemental irrigation in this region could reduce the cost of the crop insurance program and stabilize yield. However, we also note that analysis of yield data from USDA-NASS shows that interannual yield variability at the watershed scale is much more muted than the indemnity data suggest, indicating that adverse selection is probably a factor in the crop insurance marketplace. Consequently, we propose that hydrologic mitigation practices may be most cost-effective if they are carefully targeted, using topographic, soil, and meteorological data, in combination with more site-specificity in crop insurance data.

  8. Food Crops Response to Climate Change

    NASA Astrophysics Data System (ADS)

    Butler, E.; Huybers, P.

    2009-12-01

    Projections of future climate show a warming world and heterogeneous changes in precipitation. Generally, warming temperatures indicate a decrease in crop yields where they are currently grown. However, warmer climate will also open up new areas at high latitudes for crop production. Thus, there is a question whether the warmer climate with decreased yields but potentially increased growing area will produce a net increase or decrease of overall food crop production. We explore this question through a multiple linear regression model linking temperature and precipitation to crop yield. Prior studies have emphasised temporal regression which indicate uniformly decreased yields, but neglect the potentially increased area opened up for crop production. This study provides a compliment to the prior work by exploring this spatial variation. We explore this subject with a multiple linear regression model from temperature, precipitation and crop yield data over the United States. The United States was chosen as the training region for the model because there are good crop data available over the same time frame as climate data and presumably the yield from crops in the United States is optimized with respect to potential yield. We study corn, soybeans, sorghum, hard red winter wheat and soft red winter wheat using monthly averages of temperature and precipitation from NCEP reanalysis and yearly yield data from the National Agriculture Statistics Service for 1948-2008. The use of monthly averaged temperature and precipitation, which neglect extreme events that can have a significant impact on crops limits this study as does the exclusive use of United States agricultural data. The GFDL 2.1 model under a 720ppm CO2 scenario provides temperature and precipitation fields for 2040-2100 which are used to explore how the spatial regions available for crop production will change under these new conditions.

  9. A minimal cost micropropagation protocol for Dianthus caryophyllus L.-- a commercially significant venture.

    PubMed

    Pant, Manu

    2016-03-01

    In tissue culture, high production cost of the products restricts their reach. Though tissue culture is a major strength in floriculture it is marred by pricing issues. Hence, we developed a complete regeneration low cost micropropagation protocol for an economically important floriculture crop, carnation (Dianthus caryophyllus L.). Successful regeneration of carnation from nodal explants on cost-efficient medium indicates that psyllium husk, sugar and RO water can effectively replace the conventional medium comprising agar, sucrose and distilled water. The protocol can contribute to increased carnation production at comparatively reduced cost, and there by encourage wide scale adoption by the common growers.

  10. Plant tolerance to high temperature in a changing environment: scientific fundamentals and production of heat stress-tolerant crops

    PubMed Central

    Bita, Craita E.; Gerats, Tom

    2013-01-01

    Global warming is predicted to have a general negative effect on plant growth due to the damaging effect of high temperatures on plant development. The increasing threat of climatological extremes including very high temperatures might lead to catastrophic loss of crop productivity and result in wide spread famine. In this review, we assess the impact of global climate change on the agricultural crop production. There is a differential effect of climate change both in terms of geographic location and the crops that will likely show the most extreme reductions in yield as a result of expected extreme fluctuations in temperature and global warming in general. High temperature stress has a wide range of effects on plants in terms of physiology, biochemistry and gene regulation pathways. However, strategies exist to crop improvement for heat stress tolerance. In this review, we present recent advances of research on all these levels of investigation and focus on potential leads that may help to understand more fully the mechanisms that make plants tolerant or susceptible to heat stress. Finally, we review possible procedures and methods which could lead to the generation of new varieties with sustainable yield production, in a world likely to be challenged both by increasing population, higher average temperatures and larger temperature fluctuations. PMID:23914193

  11. Plant tolerance to high temperature in a changing environment: scientific fundamentals and production of heat stress-tolerant crops.

    PubMed

    Bita, Craita E; Gerats, Tom

    2013-01-01

    Global warming is predicted to have a general negative effect on plant growth due to the damaging effect of high temperatures on plant development. The increasing threat of climatological extremes including very high temperatures might lead to catastrophic loss of crop productivity and result in wide spread famine. In this review, we assess the impact of global climate change on the agricultural crop production. There is a differential effect of climate change both in terms of geographic location and the crops that will likely show the most extreme reductions in yield as a result of expected extreme fluctuations in temperature and global warming in general. High temperature stress has a wide range of effects on plants in terms of physiology, biochemistry and gene regulation pathways. However, strategies exist to crop improvement for heat stress tolerance. In this review, we present recent advances of research on all these levels of investigation and focus on potential leads that may help to understand more fully the mechanisms that make plants tolerant or susceptible to heat stress. Finally, we review possible procedures and methods which could lead to the generation of new varieties with sustainable yield production, in a world likely to be challenged both by increasing population, higher average temperatures and larger temperature fluctuations.

  12. The social costs of dangerous products: an empirical investigation.

    PubMed

    Shapiro, Sidney; Ruttenberg, Ruth; Leigh, Paul

    2009-01-01

    Defective consumer products impose significant costs on consumers and third parties when they cause fatalities and injuries. This Article develops a novel approach to measuring the true extent of such costs, which may not be accurately captured under current methods of estimating the cost of dangerous products. Current analysis rests on a narrowly defined set of costs, excluding certain types of costs. The cost-of-injury estimates utilized in this Article address this omission by quantifying and incorporating these costs to provide a more complete picture of the true impact of defective consumer products. The new estimates help to gauge the true value of the civil liability system.

  13. Importance of pollinators in changing landscapes for world crops

    PubMed Central

    Klein, Alexandra-Maria; Vaissière, Bernard E; Cane, James H; Steffan-Dewenter, Ingolf; Cunningham, Saul A; Kremen, Claire; Tscharntke, Teja

    2006-01-01

    The extent of our reliance on animal pollination for world crop production for human food has not previously been evaluated and the previous estimates for countries or continents have seldom used primary data. In this review, we expand the previous estimates using novel primary data from 200 countries and found that fruit, vegetable or seed production from 87 of the leading global food crops is dependent upon animal pollination, while 28 crops do not rely upon animal pollination. However, global production volumes give a contrasting perspective, since 60% of global production comes from crops that do not depend on animal pollination, 35% from crops that depend on pollinators, and 5% are unevaluated. Using all crops traded on the world market and setting aside crops that are solely passively self-pollinated, wind-pollinated or parthenocarpic, we then evaluated the level of dependence on animal-mediated pollination for crops that are directly consumed by humans. We found that pollinators are essential for 13 crops, production is highly pollinator dependent for 30, moderately for 27, slightly for 21, unimportant for 7, and is of unknown significance for the remaining 9. We further evaluated whether local and landscape-wide management for natural pollination services could help to sustain crop diversity and production. Case studies for nine crops on four continents revealed that agricultural intensification jeopardizes wild bee communities and their stabilizing effect on pollination services at the landscape scale. PMID:17164193

  14. Importance of pollinators in changing landscapes for world crops.

    PubMed

    Klein, Alexandra-Maria; Vaissière, Bernard E; Cane, James H; Steffan-Dewenter, Ingolf; Cunningham, Saul A; Kremen, Claire; Tscharntke, Teja

    2007-02-07

    The extent of our reliance on animal pollination for world crop production for human food has not previously been evaluated and the previous estimates for countries or continents have seldom used primary data. In this review, we expand the previous estimates using novel primary data from 200 countries and found that fruit, vegetable or seed production from 87 of the leading global food crops is dependent upon animal pollination, while 28 crops do not rely upon animal pollination. However, global production volumes give a contrasting perspective, since 60% of global production comes from crops that do not depend on animal pollination, 35% from crops that depend on pollinators, and 5% are unevaluated. Using all crops traded on the world market and setting aside crops that are solely passively self-pollinated, wind-pollinated or parthenocarpic, we then evaluated the level of dependence on animal-mediated pollination for crops that are directly consumed by humans. We found that pollinators are essential for 13 crops, production is highly pollinator dependent for 30, moderately for 27, slightly for 21, unimportant for 7, and is of unknown significance for the remaining 9. We further evaluated whether local and landscape-wide management for natural pollination services could help to sustain crop diversity and production. Case studies for nine crops on four continents revealed that agricultural intensification jeopardizes wild bee communities and their stabilizing effect on pollination services at the landscape scale.

  15. Estimating millet production for famine early warning: An application of crop simulation modelling using satellite and ground-based data in Burkina Faso

    USGS Publications Warehouse

    Thornton, P. K.; Bowen, W. T.; Ravelo, A.C.; Wilkens, P. W.; Farmer, G.; Brock, J.; Brink, J. E.

    1997-01-01

    Early warning of impending poor crop harvests in highly variable environments can allow policy makers the time they need to take appropriate action to ameliorate the effects of regional food shortages on vulnerable rural and urban populations. Crop production estimates for the current season can be obtained using crop simulation models and remotely sensed estimates of rainfall in real time, embedded in a geographic information system that allows simple analysis of simulation results. A prototype yield estimation system was developed for the thirty provinces of Burkina Faso. It is based on CERES-Millet, a crop simulation model of the growth and development of millet (Pennisetum spp.). The prototype was used to estimate millet production in contrasting seasons and to derive production anomaly estimates for the 1986 season. Provincial yields simulated halfway through the growing season were generally within 15% of their final (end-of-season) values. Although more work is required to produce an operational early warning system of reasonable credibility, the methodology has considerable potential for providing timely estimates of regional production of the major food crops in countries of sub-Saharan Africa.

  16. Weather based risks and insurances for crop production in Belgium

    NASA Astrophysics Data System (ADS)

    Gobin, Anne

    2014-05-01

    Extreme weather events such as late frosts, droughts, heat waves and rain storms can have devastating effects on cropping systems. Damages due to extreme events are strongly dependent on crop type, crop stage, soil type and soil conditions. The perspective of rising risk-exposure is exacerbated further by limited aid received for agricultural damage, an overall reduction of direct income support to farmers and projected intensification of weather extremes with climate change. According to both the agriculture and finance sectors, a risk assessment of extreme weather events and their impact on cropping systems is needed. The impact of extreme weather events particularly during the sensitive periods of the farming calendar requires a modelling approach to capture the mixture of non-linear interactions between the crop, its environment and the occurrence of the meteorological event. The risk of soil moisture deficit increases towards harvesting, such that drought stress occurs in spring and summer. Conversely, waterlogging occurs mostly during early spring and autumn. Risks of temperature stress appear during winter and spring for chilling and during summer for heat. Since crop development is driven by thermal time and photoperiod, the regional crop model REGCROP (Gobin, 2010) enabled to examine the likely frequency, magnitude and impacts of frost, drought, heat stress and waterlogging in relation to the cropping season and crop sensitive stages. The risk profiles were subsequently confronted with yields, yield losses and insurance claims for different crops. Physically based crop models such as REGCROP assist in understanding the links between different factors causing crop damage as demonstrated for cropping systems in Belgium. Extreme weather events have already precipitated contraction of insurance coverage in some markets (e.g. hail insurance), and the process can be expected to continue if the losses or damages from such events increase in the future. Climate

  17. The Implications of Growing Bioenergy Crops on Water Resources, Carbon and Nitrogen Dynamics

    NASA Astrophysics Data System (ADS)

    Jain, A. K.; Song, Y.; Kheshgi, H. S.

    2016-12-01

    What is the potential for the crops Corn, Miscanthus and switchgrass to meet future energy demands in the U.S.A., and would they mitigate climate change by offsetting fossil fuel greenhouse gas (GHG) emissions? The large-scale cultivation of these bioenergy crops itself could also drive climate change through changes in albedo, evapotranspiration (ET), and GHG emissions. Whether these climate effects will mitigate or exacerbate climate change in the short- and long-term is uncertain. This uncertainty stems from our incomplete understanding of the effects of expanded bioenergy crop production on terrestrial water and energy balance, carbon and nitrogen dynamics, and their interactions. This study aims to understand the implications of growing large-scale bioenergy crops on water resources, carbon and nitrogen dynamics in the United States using a data-modeling framework (ISAM) that we developed. Our study indicates that both Miscanthus and Cave-in-Rock switchgrass can attain high and stable yield over parts of the Midwest, however, this high production is attained at the cost of increased soil water loss as compared to current natural vegetation. Alamo switchgrass can attain high and stable yield in the southern US without significant influence on soil water quantity.

  18. Production and energetic use of biogas from energy crops and wastes in Germany.

    PubMed

    Weiland, Peter

    2003-01-01

    The production of biogas for reducing fossil CO2 emissions is one of the key strategic issues of the German government and has resulted in the development of new process techniques and new technologies for the energetic use of biogas. Progress has been made in cultivating energy crops for biogas production, in using new reactor systems for anaerobic digestion, and in applying more efficient technologies for combined heat and power production. Recently, integration of fuel cells within the anaerobic digestion process was started, and new technologies for biogas upgrading and conversion to hydrogen were tested. This article describes the trends in Germany for achieving more efficient energy production.

  19. Pharmacy component of a hospital end-product cost-accounting system.

    PubMed

    Smith, J E; Sheaffer, S L; Meyer, G E; Giorgilli, F

    1988-04-01

    Determination of pharmacy department standard costs for providing drug products to patients at Thomas Jefferson University Hospital in Philadelphia is described. The hospital is implementing a cost-accounting system (CAS) that uses software developed at the New England Medical Center, Boston. The pharmacy identified nine categories of intermediate products on the basis of labor consumption. Standard labor times for each product category are based on measurement or estimation of time for each task in the preparation and distribution of a dose. Variable-labor standard time was determined by adjusting the cumulative time for the tasks to account for nonproductive time and nonroutine activities, and a variable-labor standard cost for each category was calculated. The standard cost per dose included the costs of labor and supplies (variable and fixed) and equipment; this standard cost plus the acquisition cost of a drug line item is the total intermediate product cost. Because the CAS is based on the hospital's patient charges, clinical pharmacy services are excluded. Intermediate products that substantially affect end-product costs (costs per patient case) will be identified for inclusion in CAS reports. The CAS will give a more accurate picture of resource consumption, enabling managers to focus their efforts to improve efficiency and productivity and reduce supply use; it could also improve the accuracy of the budgeting process. The CAS will support hospital administration decisions about marketing end products and department managers' decisions about controlling intermediate-product costs.

  20. Strategic system development toward biofuel, desertification, and crop production monitoring in continental scales using satellite-based photosynthesis models

    NASA Astrophysics Data System (ADS)

    Kaneko, Daijiro

    2013-10-01

    The author regards fundamental root functions as underpinning photosynthesis activities by vegetation and as affecting environmental issues, grain production, and desertification. This paper describes the present development of monitoring and near real-time forecasting of environmental projects and crop production by approaching established operational monitoring step-by-step. The author has been developing a thematic monitoring structure (named RSEM system) which stands on satellite-based photosynthesis models over several continents for operational supports in environmental fields mentioned above. Validation methods stand not on FLUXNET but on carbon partitioning validation (CPV). The models demand continuing parameterization. The entire frame system has been built using Reanalysis meteorological data, but model accuracy remains insufficient except for that of paddy rice. The author shall accomplish the system that incorporates global environmental forces. Regarding crop production applications, industrialization in developing countries achieved through direct investment by economically developed nations raises their income, resulting in increased food demand. Last year, China began to import rice as it had in the past with grains of maize, wheat, and soybeans. Important agro-potential countries make efforts to cultivate new crop lands in South America, Africa, and Eastern Europe. Trends toward less food sustainability and stability are continuing, with exacerbation by rapid social and climate changes. Operational monitoring of carbon sequestration by herbaceous and bore plants converges with efforts at bio-energy, crop production monitoring, and socio-environmental projects such as CDM A/R, combating desertification, and bio-diversity.

  1. Meteorological fluctuations define long-term crop yield patterns in conventional and organic production systems

    USDA-ARS?s Scientific Manuscript database

    Periodic variability in meteorological patterns presents significant challenges to crop production consistency and yield stability. Meteorological influences on corn and soybean grain yields were analyzed over an 18-year period at a long-term experiment in Beltsville, Maryland, U.S.A., comparing c...

  2. Meta-analysis as a tool to study crop productivity response to poultry litter application

    USDA-ARS?s Scientific Manuscript database

    Extensive research on the use of poultry litter (PL) under different agricultural practices in the USA has shown both negative and positive effects on crop productivity (either yield or aboveground biomass). However, these experimental results are substantially dependent on the experimental set-up, ...

  3. The Controlled Ecological Life Support System Antarctic Analog Project: Prototype Crop Production and Water Treatment System Performance

    NASA Technical Reports Server (NTRS)

    Bubenheim, David L.; Flynn, Michael T.; Bates, Maynard; Schlick, Greg; Kliss, Mark (Technical Monitor)

    1997-01-01

    The Controlled Ecological Life Support System (CELSS) Antarctic Analog Project (CAAP), is a joint endeavor between the National Science Foundation, Office of Polar Programs (NSF-OPP) and the NASA. The fundamental objective is to develop, deploy, and operate a testbed of advanced life support technologies at the Amundsen-Scott South Pole Station that enable the objectives of both the NSF and NASA. The functions of food production, water purification, and waste treatment, recycle and reduction provided by CAAP will improve the quality of life for the South Pole inhabitants, reduce logistics dependence, enhance safety and minimize environmental impacts associated with human presence on the polar plateau. Because of the analogous technical, scientific, and mission features with Planetary missions such as a mission to Mars, CAAP provides NASA with a method for validating technologies and overall approaches to supporting humans. Prototype systems for sewage treatment, water recycle and crop production are being evaluated at Ames Research Center. The product water from sewage treatment using a Wiped-Film Rotating Disk is suitable for input to the crop production system. The crop production system has provided an enhanced level of performance compared with projected performance for plant-based life support: an approximate 50% increase in productivity per unit area, more than a 65% decrease in power for plant lighting, and more than a 75% decrease in the total power requirement to produce an equivalent mass of edible biomass.

  4. How changes of climate extremes affect summer and winter crop yields and water productivity in the southeast USA

    NASA Astrophysics Data System (ADS)

    Tian, D.; Cammarano, D.

    2017-12-01

    Modeling changes of crop production at regional scale is important to make adaptation measures for sustainably food supply under global change. In this study, we explore how changing climate extremes in the 20th and 21st century affect maize (summer crop) and wheat (winter crop) yields in an agriculturally important region: the southeast United States. We analyze historical (1950-1999) and projected (2006-2055) precipitation and temperature extremes by calculating the changes of 18 climate extreme indices using the statistically downscaled CMIP5 data from 10 general circulation models (GCMs). To evaluate how these climate extremes affect maize and wheat yields, historical baseline and projected maize and wheat yields under RCP4.5 and RCP8.5 scenarios are simulated using the DSSAT-CERES maize and wheat models driven by the same downscaled GCMs data. All of the changes are examined at 110 locations over the study region. The results show that most of the precipitation extreme indices do not have notable change; mean precipitation, precipitation intensity, and maximum 1-day precipitation are generally increased; the number of rainy days is decreased. The temperature extreme indices mostly showed increased values on mean temperature, number of high temperature days, diurnal temperature range, consecutive high temperature days, maximum daily maximum temperature, and minimum daily minimum temperature; the number of low temperature days and number of consecutive low temperature days are decreased. The conditional probabilistic relationships between changes in crop yields and changes in extreme indices suggested different responses of crop yields to climate extremes during sowing to anthesis and anthesis to maturity periods. Wheat yields and crop water productivity for wheat are increased due to an increased CO2 concentration and minimum temperature; evapotranspiration, maize yields, and crop water productivity for wheat are decreased owing to the increased temperature

  5. Long-term cropping systems study

    USDA-ARS?s Scientific Manuscript database

    This long-term study has been conducted on the Agronomy Farm at ARDC since the early 1970’s. In the beginning, the objectives were mainly related to crop production as affected by different cropping systems. The cropping systems included in the study are Continuous Corn, Soybean, and Sorghum; 2-year...

  6. Could Crop Roughness Impact the Wind Resource at Agriculturally Productive Wind Farm Sites?

    NASA Astrophysics Data System (ADS)

    Vanderwende, B. J.; Lundquist, J. K.

    2014-12-01

    The high concentration of both large-scale agriculture and wind power production in the United States Midwest region raises new questions concerning the interaction of the two activities. For instance, it is known from internal boundary layer theory that changes in the roughness of the land-surface resulting from crop choices could modify the momentum field aloft. Upward propagation of such an effect might impact the properties of the winds encountered by modern turbines, which typically span a layer from about 40 to 120 meters above the surface. As direct observation of such interaction would require impractical interference in the planting schedules of farmers, we use numerical modeling to quantify the magnitude of crop-roughness effects. To simulate a collocated farm and turbine array, we use version 3.4.1 of the Weather Research and Forecasting model (WRF). The hypothetical farm is inserted near the real location of the 2013 Crop Wind Energy Experiment (CWEX). Reanalyses provide representative initial and boundary conditions. A month-long period spanning August 2013 is used to evaluate the differences in flows above corn (maize) and soybean crops at the mature, reproductive stage. Simulations are performed comparing the flow above each surface regime, both in the absence and presence of a wind farm, which consists of a parameterized 11x11 array of 1.8 MW Vestas V90 turbines. Appreciable differences in rotor-layer wind speeds emerge. The use of soybeans results in an increase in wind speeds and a corresponding reduction in rotor-layer shear when compared to corn. Despite the turbulent nature of flow within a wind farm, high stability reduces the impact of crop roughness on the flow aloft, particularly in the upper portion of the rotor disk. We use these results to estimate the economic impact of crop selection on wind power producers.

  7. Atmospheric Inversion of the Global Surface Carbon Flux with Consideration of the Spatial Distributions of US Crop Production and Consumption

    NASA Astrophysics Data System (ADS)

    Fung, Jonathan Winston

    Carbon dioxide is taken up by crops during production and released back to the atmosphere at different geographical locations through respiration of consumed crop commodities. In this study, spatially distributed county-level US cropland net primary productivity, harvested biomass, changes in soil carbon, and human and livestock consumption data were integrated into the prior terrestrial biosphere flux generated by the Boreal Ecosystem Productivity Simulator (BEPS). A global time-dependent Bayesian synthesis inversion with a nested focus on North America was carried out based on CO2 observations at 210 stations. Overall, the inverted annual North American CO2 sink weakened by 6.5% over the period from 2002 to 2007 compared to simulations disregarding US crop statistical data. The US Midwest is found to be the major sink of 0.36±0.13 PgC yr-1 whereas the large sink in the US Southeast forests weakened to 0.16±0.12 PgC yr-1 partly due to local CO2 sources from crop consumption.

  8. Understanding and engineering beneficial plant–microbe interactions: plant growth promotion in energy crops

    PubMed Central

    Farrar, Kerrie; Bryant, David; Cope-Selby, Naomi

    2014-01-01

    Plant production systems globally must be optimized to produce stable high yields from limited land under changing and variable climates. Demands for food, animal feed, and feedstocks for bioenergy and biorefining applications, are increasing with population growth, urbanization and affluence. Low-input, sustainable, alternatives to petrochemical-derived fertilizers and pesticides are required to reduce input costs and maintain or increase yields, with potential biological solutions having an important role to play. In contrast to crops that have been bred for food, many bioenergy crops are largely undomesticated, and so there is an opportunity to harness beneficial plant–microbe relationships which may have been inadvertently lost through intensive crop breeding. Plant–microbe interactions span a wide range of relationships in which one or both of the organisms may have a beneficial, neutral or negative effect on the other partner. A relatively small number of beneficial plant–microbe interactions are well understood and already exploited; however, others remain understudied and represent an untapped reservoir for optimizing plant production. There may be near-term applications for bacterial strains as microbial biopesticides and biofertilizers to increase biomass yield from energy crops grown on land unsuitable for food production. Longer term aims involve the design of synthetic genetic circuits within and between the host and microbes to optimize plant production. A highly exciting prospect is that endosymbionts comprise a unique resource of reduced complexity microbial genomes with adaptive traits of great interest for a wide variety of applications. PMID:25431199

  9. Optimizing root system architecture in biofuel crops for sustainable energy production and soil carbon sequestration.

    PubMed

    To, Jennifer Pc; Zhu, Jinming; Benfey, Philip N; Elich, Tedd

    2010-09-08

    Root system architecture (RSA) describes the dynamic spatial configuration of different types and ages of roots in a plant, which allows adaptation to different environments. Modifications in RSA enhance agronomic traits in crops and have been implicated in soil organic carbon content. Together, these fundamental properties of RSA contribute to the net carbon balance and overall sustainability of biofuels. In this article, we will review recent data supporting carbon sequestration by biofuel crops, highlight current progress in studying RSA, and discuss future opportunities for optimizing RSA for biofuel production and soil carbon sequestration.

  10. Rice crop risk map in Babahoyo canton (Ecuador)

    NASA Astrophysics Data System (ADS)

    Valverde Arias, Omar; Tarquis, Ana; Garrido, Alberto

    2016-04-01

    It is widely known that extreme climatic phenomena occur with more intensity and frequency. This fact has put more pressure over farming, making agricultural and livestock production riskier. In order to reduce hazards and economic loses that could jeopardize farmer's incomes and even its business continuity, it is very important to implement agriculture risk management plans by governments and institutions. One of the main strategies is transfer risk by agriculture insurance. Agriculture insurance based in indexes has a significant growth in the last decade. And consist in a comparison between measured index values with a defined threshold that triggers damage losses. However, based index insurance could not be based on an isolated measurement. It is necessary to be integrated in a complete monitoring system that uses many sources of information and tools. For example, index influence areas, crop production risk maps, crop yields, claim statistics, and so on. Crop production risk is related with yield variation of crops and livestock, due to weather, pests, diseases, and other factors that affect both the quantity and quality of commodities produced. This is the risk which farmers invest more time managing, and it is completely under their control. The aim of this study is generate a crop risk map of rice that can provide risk manager important information about the status of crop facing production risks. Then, based on this information, it will be possible to make best decisions to deal with production risk. The rice crop risk map was generated qualifying a 1:25000 scale soil and climatic map of Babahoyo canton, which is located in coast region of Ecuador, where rice is one of the main crops. The methodology to obtain crop risk map starts by establishing rice crop requirements and indentifying the risks associated with this crop. A second step is to evaluate soil and climatic conditions of the study area related to optimal crop requirements. Based on it, we can

  11. Estimating the cost of production stoppage

    NASA Technical Reports Server (NTRS)

    Delionback, L. M.

    1979-01-01

    Estimation model considers learning curve quantities, and time of break to forecast losses due to break in production schedule. Major parameters capable of predicting costs are number of units made prior to production sequence, length of production break, and slope of learning curve produced prior to break.

  12. The effect of total carbon on microscopic soil properties and implications for crop production

    USDA-ARS?s Scientific Manuscript database

    Soil structure is a dynamic property affected by physical, chemical, and microbiological processes. Addition of organic matter to soils and the use of different management practices have been reported to impact soil structure and crop production. Moderation in soil temperature and increases in mic...

  13. Genotypic diversity effects on biomass production in native perennial bioenergy cropping systems

    DOE PAGES

    Morris, Geoffrey P.; Hu, Zhenbin; Grabowski, Paul P.; ...

    2015-10-03

    The perennial grass species that are being developed as biomass feedstock crops harbor extensive genotypic diversity, but the effects of this diversity on biomass production are not well understood. We investigated the effects of genotypic diversity in switchgrass (Panicum virgatum) and big bluestem (Andropogon gerardii) on perennial biomass cropping systems in two experiments conducted over 2008–2014 at a 5.4-ha fertile field site in northeastern Illinois, USA. We varied levels of switchgrass and big bluestem genotypic diversity using various local and nonlocal cultivars – under low or high species diversity, with or without nitrogen inputs – and quantified establishment, biomass yield,more » and biomass composition. In one experiment (‘agronomic trial’), we compared three switchgrass cultivars in monoculture to a switchgrass cultivar mixture and three different species mixtures, with or without N fertilization. In another experiment (‘diversity gradient’), we varied diversity levels in switchgrass and big bluestem (1, 2, 4, or 6 cultivars per plot), with one or two species per plot. In both experiments, cultivar mixtures produced yields equivalent to or greater than the best cultivars. In the agronomic trial, the three switchgrass mixture showed the highest production overall, though not significantly different than best cultivar monoculture. In the diversity gradient, genotypic mixtures had one-third higher biomass production than the average monoculture, and none of the monocultures were significantly higher yielding than the average mixture. Year-to-year variation in yields was lowest in the three-cultivar switchgrass mixtures and Cave-In-Rock (the southern Illinois cultivar) and also reduced in the mixture of switchgrass and big bluestem relative to the species monocultures. The effects of genotypic diversity on biomass composition were modest relative to the differences among species and genotypes. Our findings suggest that local genotypes

  14. Genotypic diversity effects on biomass production in native perennial bioenergy cropping systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Morris, Geoffrey P.; Hu, Zhenbin; Grabowski, Paul P.

    The perennial grass species that are being developed as biomass feedstock crops harbor extensive genotypic diversity, but the effects of this diversity on biomass production are not well understood. We investigated the effects of genotypic diversity in switchgrass (Panicum virgatum) and big bluestem (Andropogon gerardii) on perennial biomass cropping systems in two experiments conducted over 2008–2014 at a 5.4-ha fertile field site in northeastern Illinois, USA. We varied levels of switchgrass and big bluestem genotypic diversity using various local and nonlocal cultivars – under low or high species diversity, with or without nitrogen inputs – and quantified establishment, biomass yield,more » and biomass composition. In one experiment (‘agronomic trial’), we compared three switchgrass cultivars in monoculture to a switchgrass cultivar mixture and three different species mixtures, with or without N fertilization. In another experiment (‘diversity gradient’), we varied diversity levels in switchgrass and big bluestem (1, 2, 4, or 6 cultivars per plot), with one or two species per plot. In both experiments, cultivar mixtures produced yields equivalent to or greater than the best cultivars. In the agronomic trial, the three switchgrass mixture showed the highest production overall, though not significantly different than best cultivar monoculture. In the diversity gradient, genotypic mixtures had one-third higher biomass production than the average monoculture, and none of the monocultures were significantly higher yielding than the average mixture. Year-to-year variation in yields was lowest in the three-cultivar switchgrass mixtures and Cave-In-Rock (the southern Illinois cultivar) and also reduced in the mixture of switchgrass and big bluestem relative to the species monocultures. The effects of genotypic diversity on biomass composition were modest relative to the differences among species and genotypes. Our findings suggest that local genotypes

  15. Research in biomass production and utilization: Systems simulation and analysis

    NASA Astrophysics Data System (ADS)

    Bennett, Albert Stewart

    There is considerable public interest in developing a sustainable biobased economy that favors support of family farms and rural communities and also promotes the development of biorenewable energy resources. This study focuses on a number of questions related to the development and exploration of new pathways that can potentially move us toward a more sustainable biobased economy. These include issues related to biomass fuels for drying grain, economies-of-scale, new biomass harvest systems, sugar-to-ethanol crop alternatives for the Upper Midwest U.S., biomass transportation, post-harvest biomass processing and double cropping production scenarios designed to maximize biomass feedstock production. The first section of this study considers post-harvest drying of shelled corn grain both at farm-scale and at larger community-scaled installations. Currently, drying of shelled corn requires large amounts of fossil fuel energy. To address future energy concerns, this study evaluates the potential use of combined heat and power systems that use the combustion of corn stover to produce steam for drying and to generate electricity for fans, augers, and control components. Because of the large capital requirements for solid fuel boilers and steam turbines/engines, both farm-scale and larger grain elevator-scaled systems benefit by sharing boiler and power infrastructure with other processes. The second and third sections evaluate sweet sorghum as a possible "sugarcane-like" crop that can be grown in the Upper Midwest. Various harvest systems are considered including a prototype mobile juice harvester, a hypothetical one-pass unit that separates grain heads from chopped stalks and traditional forage/silage harvesters. Also evaluated were post-harvest transportation, storage and processing costs and their influence on the possible use of sweet sorghum as a supplemental feedstock for existing dry-grind ethanol plants located in the Upper Midwest. Results show that the concept

  16. Operational seasonal forecasting of crop performance.

    PubMed

    Stone, Roger C; Meinke, Holger

    2005-11-29

    Integrated, interdisciplinary crop performance forecasting systems, linked with appropriate decision and discussion support tools, could substantially improve operational decision making in agricultural management. Recent developments in connecting numerical weather prediction models and general circulation models with quantitative crop growth models offer the potential for development of integrated systems that incorporate components of long-term climate change. However, operational seasonal forecasting systems have little or no value unless they are able to change key management decisions. Changed decision making through incorporation of seasonal forecasting ultimately has to demonstrate improved long-term performance of the cropping enterprise. Simulation analyses conducted on specific production scenarios are especially useful in improving decisions, particularly if this is done in conjunction with development of decision-support systems and associated facilitated discussion groups. Improved management of the overall crop production system requires an interdisciplinary approach, where climate scientists, agricultural scientists and extension specialists are intimately linked with crop production managers in the development of targeted seasonal forecast systems. The same principle applies in developing improved operational management systems for commodity trading organizations, milling companies and agricultural marketing organizations. Application of seasonal forecast systems across the whole value chain in agricultural production offers considerable benefits in improving overall operational management of agricultural production.

  17. Operational seasonal forecasting of crop performance

    PubMed Central

    Stone, Roger C; Meinke, Holger

    2005-01-01

    Integrated, interdisciplinary crop performance forecasting systems, linked with appropriate decision and discussion support tools, could substantially improve operational decision making in agricultural management. Recent developments in connecting numerical weather prediction models and general circulation models with quantitative crop growth models offer the potential for development of integrated systems that incorporate components of long-term climate change. However, operational seasonal forecasting systems have little or no value unless they are able to change key management decisions. Changed decision making through incorporation of seasonal forecasting ultimately has to demonstrate improved long-term performance of the cropping enterprise. Simulation analyses conducted on specific production scenarios are especially useful in improving decisions, particularly if this is done in conjunction with development of decision-support systems and associated facilitated discussion groups. Improved management of the overall crop production system requires an interdisciplinary approach, where climate scientists, agricultural scientists and extension specialists are intimately linked with crop production managers in the development of targeted seasonal forecast systems. The same principle applies in developing improved operational management systems for commodity trading organizations, milling companies and agricultural marketing organizations. Application of seasonal forecast systems across the whole value chain in agricultural production offers considerable benefits in improving overall operational management of agricultural production. PMID:16433097

  18. 3D Participatory Sensing with Low-Cost Mobile Devices for Crop Height Assessment – A Comparison with Terrestrial Laser Scanning Data

    PubMed Central

    Marx, Sabrina; Hämmerle, Martin; Klonner, Carolin; Höfle, Bernhard

    2016-01-01

    The integration of local agricultural knowledge deepens the understanding of complex phenomena such as the association between climate variability, crop yields and undernutrition. Participatory Sensing (PS) is a concept which enables laymen to easily gather geodata with standard low-cost mobile devices, offering new and efficient opportunities for agricultural monitoring. This study presents a methodological approach for crop height assessment based on PS. In-field crop height variations of a maize field in Heidelberg, Germany, are gathered with smartphones and handheld GPS devices by 19 participants. The comparison of crop height values measured by the participants to reference data based on terrestrial laser scanning (TLS) results in R2 = 0.63 for the handheld GPS devices and R2 = 0.24 for the smartphone-based approach. RMSE for the comparison between crop height models (CHM) derived from PS and TLS data is 10.45 cm (GPS devices) and 14.69 cm (smartphones). Furthermore, the results indicate that incorporating participants’ cognitive abilities in the data collection process potentially improves the quality data captured with the PS approach. The proposed PS methods serve as a fundament to collect agricultural parameters on field-level by incorporating local people. Combined with other methods such as remote sensing, PS opens new perspectives to support agricultural development. PMID:27073917

  19. Crop responses to climatic variation

    PubMed Central

    Porter, John R; Semenov, Mikhail A

    2005-01-01

    The yield and quality of food crops is central to the well being of humans and is directly affected by climate and weather. Initial studies of climate change on crops focussed on effects of increased carbon dioxide (CO2) level and/or global mean temperature and/or rainfall and nutrition on crop production. However, crops can respond nonlinearly to changes in their growing conditions, exhibit threshold responses and are subject to combinations of stress factors that affect their growth, development and yield. Thus, climate variability and changes in the frequency of extreme events are important for yield, its stability and quality. In this context, threshold temperatures for crop processes are found not to differ greatly for different crops and are important to define for the major food crops, to assist climate modellers predict the occurrence of crop critical temperatures and their temporal resolution. This paper demonstrates the impacts of climate variability for crop production in a number of crops. Increasing temperature and precipitation variability increases the risks to yield, as shown via computer simulation and experimental studies. The issue of food quality has not been given sufficient importance when assessing the impact of climate change for food and this is addressed. Using simulation models of wheat, the concentration of grain protein is shown to respond to changes in the mean and variability of temperature and precipitation events. The paper concludes with discussion of adaptation possibilities for crops in response to drought and argues that characters that enable better exploration of the soil and slower leaf canopy expansion could lead to crop higher transpiration efficiency. PMID:16433091

  20. Predicting optimum crop designs using crop models and seasonal climate forecasts.

    PubMed

    Rodriguez, D; de Voil, P; Hudson, D; Brown, J N; Hayman, P; Marrou, H; Meinke, H

    2018-02-02

    Expected increases in food demand and the need to limit the incorporation of new lands into agriculture to curtail emissions, highlight the urgency to bridge productivity gaps, increase farmers profits and manage risks in dryland cropping. A way to bridge those gaps is to identify optimum combination of genetics (G), and agronomic managements (M) i.e. crop designs (GxM), for the prevailing and expected growing environment (E). Our understanding of crop stress physiology indicates that in hindsight, those optimum crop designs should be known, while the main problem is to predict relevant attributes of the E, at the time of sowing, so that optimum GxM combinations could be informed. Here we test our capacity to inform that "hindsight", by linking a tested crop model (APSIM) with a skillful seasonal climate forecasting system, to answer "What is the value of the skill in seasonal climate forecasting, to inform crop designs?" Results showed that the GCM POAMA-2 was reliable and skillful, and that when linked with APSIM, optimum crop designs could be informed. We conclude that reliable and skillful GCMs that are easily interfaced with crop simulation models, can be used to inform optimum crop designs, increase farmers profits and reduce risks.

  1. Soil water infiltration affected by topsoil thickness in row crop and switchgrass production systems

    USDA-ARS?s Scientific Manuscript database

    Conversion of annual grain crop systems to biofuel production systems can restore soil hydrologic function; however, information on these effects is limited. Hence, the objective of this study was to evaluate the influence of topsoil thickness on water infiltration in claypan soils for grain and swi...

  2. Cellulosic Biofuel Production with Winter Cover Crops: Yield and Nitrogen Implications

    USDA-ARS?s Scientific Manuscript database

    Interest in renewable energy sources derived from plant biomass is increasing. Growing cover crops after harvest of the primary crop has been proposed as a solution to producing cellulosic biomass on existing crop-producing land without reducing food-harvest potential. Growing cover crops is a recom...

  3. Integrated crop management practices for maximizing grain yield of double-season rice crop.

    PubMed

    Wang, Depeng; Huang, Jianliang; Nie, Lixiao; Wang, Fei; Ling, Xiaoxia; Cui, Kehui; Li, Yong; Peng, Shaobing

    2017-01-12

    Information on maximum grain yield and its attributes are limited for double-season rice crop grown under the subtropical environment. This study was conducted to examine key characteristics associated with high yielding double-season rice crop through a comparison between an integrated crop management (ICM) and farmers' practice (FP). Field experiments were conducted in the early and late seasons in the subtropical environment of Wuxue County, Hubei Province, China in 2013 and 2014. On average, grain yield in ICM was 13.5% higher than that in FP. A maximum grain yield of 9.40 and 10.53 t ha -1 was achieved under ICM in the early- and late-season rice, respectively. Yield improvement of double-season rice with ICM was achieved with the combined effects of increased plant density and optimized nutrient management. Yield gain of ICM resulted from a combination of increases in sink size due to more panicle number per unit area and biomass production, further supported by the increased leaf area index, leaf area duration, radiation use efficiency, crop growth rate, and total nitrogen uptake compared with FP. Further enhancement in the yield potential of double-season rice should focus on increasing crop growth rate and biomass production through improved and integrated crop management practices.

  4. Loss of photosynthetic efficiency in the shade. An Achilles heel for the dense modern stands of our most productive C4 crops?

    PubMed Central

    Pignon, Charles P.; Jaiswal, Deepak; McGrath, Justin M.

    2017-01-01

    Abstract The wild progenitors of major C4 crops grew as individuals subjected to little shading. Today they are grown in dense stands where most leaves are shaded. Do they maintain photosynthetic efficiency in these low light conditions produced by modern cultivation? The apparent maximum quantum yield of CO2 assimilation (ΦCO2max,app), a key determinant of light-limited photosynthesis, has not been systematically studied in field stands of C4 crops. ΦCO2max,app was derived from the initial slope of the response of leaf CO2 uptake (A) to photon flux (Q). Leaf fractional light absorptance (α) was measured to determine the absolute maximum quantum yield of CO2 assimilation on an absorbed light basis (ΦCO2max,abs). Light response curves were determined on sun and shade leaves of 49 field plants of Miscanthus × giganteus and Zea mays following canopy closure. ΦCO2max,app and ΦCO2max,abs declined significantly by 15–27% (P<0.05) with canopy depth. Experimentally, leaf age was shown unlikely to cause this loss. Modeling canopy CO2 assimilation over diurnal courses suggested that the observed decline in ΦCO2max,app with canopy depth costs 10% of potential carbon gain. Overcoming this limitation could substantially increase the productivity of major C4 crops. PMID:28110277

  5. Single-tube hydroponics as a novel idea for small-scale production of crop seed in a plant incubator.

    PubMed

    Kuroda, Masaharu; Ikenaga, Sachiko

    2015-01-01

    We present a novel protocol for small-scale production of crop seed in a plant incubator termed "Single-tube hydroponics." Our protocol minimizes the materials and methods for cultivation whereby a large number of independent plants can be cultured in a limited space. This study may aid in the improvement of crop seed components, especially in the cultivation of transgenic plants.

  6. Prioritizing Crop Management to Increase Nitrogen Use Efficiency in Australian Sugarcane Crops.

    PubMed

    Thorburn, Peter J; Biggs, Jody S; Palmer, Jeda; Meier, Elizabeth A; Verburg, Kirsten; Skocaj, Danielle M

    2017-01-01

    Sugarcane production relies on the application of large amounts of nitrogen (N) fertilizer. However, application of N in excess of crop needs can lead to loss of N to the environment, which can negatively impact ecosystems. This is of particular concern in Australia where the majority of sugarcane is grown within catchments that drain directly into the World Heritage listed Great Barrier Reef Marine Park. Multiple factors that impact crop yield and N inputs of sugarcane production systems can affect N use efficiency (NUE), yet the efficacy many of these factors have not been examined in detail. We undertook an extensive simulation analysis of NUE in Australian sugarcane production systems to investigate (1) the impacts of climate on factors determining NUE, (2) the range and drivers of NUE, and (3) regional variation in sugarcane N requirements. We found that the interactions between climate, soils, and management produced a wide range of simulated NUE, ranging from ∼0.3 Mg cane (kg N) -1 , where yields were low (i.e., <50 Mg ha -1 ) and N inputs were high, to >5 Mg cane (kg N) -1 in plant crops where yields were high and N inputs low. Of the management practices simulated (N fertilizer rate, timing, and splitting; fallow management; tillage intensity; and in-field traffic management), the only practice that significantly influenced NUE in ratoon crops was N fertilizer application rate. N rate also influenced NUE in plant crops together with the management of the preceding fallow. In addition, there is regional variation in N fertilizer requirement that could make N fertilizer recommendations more specific. While our results show that complex interrelationships exist between climate, crop growth, N fertilizer rates and N losses to the environment, they highlight the priority that should be placed on optimizing N application rate and fallow management to improve NUE in Australian sugarcane production systems. New initiatives in seasonal climate forecasting

  7. Prioritizing Crop Management to Increase Nitrogen Use Efficiency in Australian Sugarcane Crops

    PubMed Central

    Thorburn, Peter J.; Biggs, Jody S.; Palmer, Jeda; Meier, Elizabeth A.; Verburg, Kirsten; Skocaj, Danielle M.

    2017-01-01

    Sugarcane production relies on the application of large amounts of nitrogen (N) fertilizer. However, application of N in excess of crop needs can lead to loss of N to the environment, which can negatively impact ecosystems. This is of particular concern in Australia where the majority of sugarcane is grown within catchments that drain directly into the World Heritage listed Great Barrier Reef Marine Park. Multiple factors that impact crop yield and N inputs of sugarcane production systems can affect N use efficiency (NUE), yet the efficacy many of these factors have not been examined in detail. We undertook an extensive simulation analysis of NUE in Australian sugarcane production systems to investigate (1) the impacts of climate on factors determining NUE, (2) the range and drivers of NUE, and (3) regional variation in sugarcane N requirements. We found that the interactions between climate, soils, and management produced a wide range of simulated NUE, ranging from ∼0.3 Mg cane (kg N)-1, where yields were low (i.e., <50 Mg ha-1) and N inputs were high, to >5 Mg cane (kg N)-1 in plant crops where yields were high and N inputs low. Of the management practices simulated (N fertilizer rate, timing, and splitting; fallow management; tillage intensity; and in-field traffic management), the only practice that significantly influenced NUE in ratoon crops was N fertilizer application rate. N rate also influenced NUE in plant crops together with the management of the preceding fallow. In addition, there is regional variation in N fertilizer requirement that could make N fertilizer recommendations more specific. While our results show that complex interrelationships exist between climate, crop growth, N fertilizer rates and N losses to the environment, they highlight the priority that should be placed on optimizing N application rate and fallow management to improve NUE in Australian sugarcane production systems. New initiatives in seasonal climate forecasting, decisions

  8. Asia’s Indigenous Horticultural Crops: An Introduction

    USDA-ARS?s Scientific Manuscript database

    Crop diversity is an urgent issue today in horticulture, which is faced with an erosion of crop variability as monoculture systems dominate crop production throughout the world, particularly in Europe and North America. At the same time there is great interest in indigenous horticultural crops aroun...

  9. Integrated modelling of crop production and nitrate leaching with the Daisy model.

    PubMed

    Manevski, Kiril; Børgesen, Christen D; Li, Xiaoxin; Andersen, Mathias N; Abrahamsen, Per; Hu, Chunsheng; Hansen, Søren

    2016-01-01

    An integrated modelling strategy was designed and applied to the Soil-Vegetation-Atmosphere Transfer model Daisy for simulation of crop production and nitrate leaching under pedo-climatic and agronomic environment different than that of model original parameterisation. The points of significance and caution in the strategy are: •Model preparation should include field data in detail due to the high complexity of the soil and the crop processes simulated with process-based model, and should reflect the study objectives. Inclusion of interactions between parameters in a sensitivity analysis results in better account for impacts on outputs of measured variables.•Model evaluation on several independent data sets increases robustness, at least on coarser time scales such as month or year. It produces a valuable platform for adaptation of the model to new crops or for the improvement of the existing parameters set. On daily time scale, validation for highly dynamic variables such as soil water transport remains challenging. •Model application is demonstrated with relevance for scientists and regional managers. The integrated modelling strategy is applicable for other process-based models similar to Daisy. It is envisaged that the strategy establishes model capability as a useful research/decision-making, and it increases knowledge transferability, reproducibility and traceability.

  10. Production costs and animal welfare for four stylized hog production systems.

    PubMed

    Seibert, Lacey; Norwood, F Bailey

    2011-01-01

    Nonhuman animal welfare is arguably the most contentious issue facing the hog industry. Animal advocacy groups influence the regulation of hog farms and induce some consumers to demand more humane pork products. Hog producers are understandably reluctant to improve animal well being unless the premium they extract exceeds the corresponding increase in cost. To better understand the relationship between animal welfare and production costs under different farm systems, this study investigates 4 stylized hog production systems. The results show that increasing animal welfare for all hogs in the United States will increase retail pork prices by a maximum of 2% for a small welfare increase and 5% for a large welfare increase. The cost of banning gestation crates measured by this study is lower than the consumer willingness-to-pay from other studies.

  11. Soil Carbon Changes in Transitional Grain Crop Production Systems in South Dakota

    NASA Astrophysics Data System (ADS)

    Woodard, H. J.

    2004-12-01

    Corn-C (Zea Mays L.), soybean-S (Glycine max L.) and spring wheat-W (Triticum aestivum L.) crops were seeded as a component of either a C-S, S-W, or C-S-W crop rotation on silt-loam textured soils ranging from 3.0-5.0% organic matter. Conservation tillage(chisel plow-field cultivator) was applied to half of the plots. The other plots were direct seeded as a no-till (zero-tillage) treatment. Grain yield and surface crop residues were weighed from each treatment plot. Crop residue (stover and straw) was removed from half of the plots. After four years, soil samples were removed at various increments of depth and soil organic carbon (C) and nitrogen (N) was measured. The ranking of crop residue weights occurred by the order corn>>soybean>wheat. Surface residue accumulation was also greatest with residue treatments that were returned to the plots, those rotations in which maize was a component, and those without tillage. Mean soil organic carbon levels in the 0-7.5cm depth decreased from 3.41% to 3.19% (- 0.22%) with conventional tillage (chisel plow/field cultivator) as compared to a decrease from 3.19% to 3.05% (-0.14%) in plots without tillage over a four year period. Organic carbon in the 0-7.5cm depth decreased from 3.21% to 3.01% (- 0.20%) after residue removed as compared to a decrease from 3.39% to 3.23% (-0.17%) in plots without tillage applied after four years. The soil C:N ratio (0-7.5cm) decreased from 10.63 to 10.37 (-0.26 (unitless)) in the tilled plots over a four-year period. Soil C:N ratio at the 0-7.5cm depth decreased from 10.72 to 10.04 (-0.68) in the no-till plots over a four year period. Differences in the soil C:N ratio comparing residue removed and residue returned were similar (-0.51 vs. -0.43 respectively). These soils are highly buffered for organic carbon changes. Many cropping cycles are required to determine how soil carbon storage is significantly impacted by production systems.

  12. Regional crop yield forecasting: a probabilistic approach

    NASA Astrophysics Data System (ADS)

    de Wit, A.; van Diepen, K.; Boogaard, H.

    2009-04-01

    Information on the outlook on yield and production of crops over large regions is essential for government services dealing with import and export of food crops, for agencies with a role in food relief, for international organizations with a mandate in monitoring the world food production and trade, and for commodity traders. Process-based mechanistic crop models are an important tool for providing such information, because they can integrate the effect of crop management, weather and soil on crop growth. When properly integrated in a yield forecasting system, the aggregated model output can be used to predict crop yield and production at regional, national and continental scales. Nevertheless, given the scales at which these models operate, the results are subject to large uncertainties due to poorly known weather conditions and crop management. Current yield forecasting systems are generally deterministic in nature and provide no information about the uncertainty bounds on their output. To improve on this situation we present an ensemble-based approach where uncertainty bounds can be derived from the dispersion of results in the ensemble. The probabilistic information provided by this ensemble-based system can be used to quantify uncertainties (risk) on regional crop yield forecasts and can therefore be an important support to quantitative risk analysis in a decision making process.

  13. 7 CFR 457.129 - Fresh market sweet corn crop insurance provisions.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 7 Agriculture 6 2014-01-01 2014-01-01 false Fresh market sweet corn crop insurance provisions. 457... sweet corn crop insurance provisions. The fresh market sweet corn crop insurance provisions for the 2008... Reinsured Policies Fresh Market Sweet Corn Crop Provisions 1. Definitions Allowable cost. The dollar amount...

  14. 7 CFR 457.129 - Fresh market sweet corn crop insurance provisions.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 7 Agriculture 6 2013-01-01 2013-01-01 false Fresh market sweet corn crop insurance provisions. 457... sweet corn crop insurance provisions. The fresh market sweet corn crop insurance provisions for the 2008... Reinsured Policies Fresh Market Sweet Corn Crop Provisions 1. Definitions Allowable cost. The dollar amount...

  15. 7 CFR 457.129 - Fresh market sweet corn crop insurance provisions.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 7 Agriculture 6 2012-01-01 2012-01-01 false Fresh market sweet corn crop insurance provisions. 457... sweet corn crop insurance provisions. The fresh market sweet corn crop insurance provisions for the 2008... Reinsured Policies Fresh Market Sweet Corn Crop Provisions 1. Definitions Allowable cost. The dollar amount...

  16. Hardwood cover crops:can they enhance loblolly pine seedling production

    Treesearch

    Paul P. Kormanik; Shi-Jean S. Sung; T.L. Kormanik; Stanley J. Zarnoch

    1995-01-01

    It has been extremely difficult to obtain more than two loblolly pine (Pinus taeda L.) crops following even effective soil fumigation with methyl bromide in southern forest tree nurseries. The traditional agronomic cover crops such as sorghum and sudex, unless followed by fumigation, do not normally produce satisfactory loblolly pine seedling crops. Various species...

  17. Relationships between primary production and crop yields in semi-arid and arid irrigated agro-ecosystems

    NASA Astrophysics Data System (ADS)

    Jaafar, H. H.; Ahmad, F. A.

    2015-04-01

    In semi-arid areas within the MENA region, food security problems are the main problematic imposed. Remote sensing can be a promising too early diagnose food shortages and further prevent the population from famine risks. This study is aimed at examining the possibility of forecasting yield before harvest from remotely sensed MODIS-derived Enhanced Vegetation Index (EVI), Net photosynthesis (net PSN), and Gross Primary Production (GPP) in semi-arid and arid irrigated agro-ecosystems within the conflict affected country of Syria. Relationships between summer yield and remotely sensed indices were derived and analyzed. Simple regression spatially-based models were developed to predict summer crop production. The validation of these models was tested during conflict years. A significant correlation (p<0.05) was found between summer crop yield and EVI, GPP and net PSN. Results indicate the efficiency of remotely sensed-based models in predicting summer yield, mostly for cotton yields and vegetables. Cumulative summer EVI-based model can predict summer crop yield during crisis period, with deviation less than 20% where vegetables are the major yield. This approach prompts to an early assessment of food shortages and lead to a real time management and decision making, especially in periods of crisis such as wars and drought.

  18. 48 CFR 31.205-25 - Manufacturing and production engineering costs.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... production engineering costs. 31.205-25 Section 31.205-25 Federal Acquisition Regulations System FEDERAL... Commercial Organizations 31.205-25 Manufacturing and production engineering costs. (a) The costs of manufacturing and production engineering effort as described in (1) through (4) below are all allowable: (1...

  19. 48 CFR 31.205-25 - Manufacturing and production engineering costs.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... production engineering costs. 31.205-25 Section 31.205-25 Federal Acquisition Regulations System FEDERAL... Commercial Organizations 31.205-25 Manufacturing and production engineering costs. (a) The costs of manufacturing and production engineering effort as described in (1) through (4) below are all allowable: (1...

  20. 48 CFR 31.205-25 - Manufacturing and production engineering costs.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... production engineering costs. 31.205-25 Section 31.205-25 Federal Acquisition Regulations System FEDERAL... Commercial Organizations 31.205-25 Manufacturing and production engineering costs. (a) The costs of manufacturing and production engineering effort as described in (1) through (4) below are all allowable: (1...