Science.gov

Sample records for cropping system part

  1. Crop Rotation in Row Crop Production Systems

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Crop rotation is a system of growing different kinds of crops in recurrent succession on the same land. Thus, in the strictest sense, crop rotation is more than just changing crops from year to year based on current economic situations. Rather, it is a long-term plan for soil and farm management. Cr...

  2. Surface runoff from manured cropping systems assessed by the paired-watershed method, part 1: P, N, and sediment transport

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Transport of P, N, and sediment via runoff from crop fields can contribute to degradation of surface waters. We established a paired-watershed study in central Wisconsin to evaluate surface runoff losses of nutrients, sediment, and pathogens from different manure/crop/tillage management systems for ...

  3. Senior Research Connects Students with a Living Laboratory As Part of an Integrated Crop and Livestock System

    NASA Astrophysics Data System (ADS)

    Senturklu, Songul; Landblom, Douglas; Brevik, Eric C.

    2015-04-01

    Soil, water, soil microbes, and solar energy are the main sources that sustain life on this planet. Without them working in concert, neither plants nor animals would survive. Considering the efficiency of animal production targets, soil must be protected and improved. Therefore, through our sustainable integrated crop and livestock research, we are studying animal and soil interactions from the soil to the plate. Integrating beef cattle systems into a diverse cropping system is providing a living laboratory for education beyond the traditional classroom setting. To establish the living learning laboratory at the Dickinson Research Extension Center, a five-crop rotation was established that included adapted cool and warm season grasses and broadleaf crops. The crop rotation is: sunflower > hard red spring wheat > fall seeded winter triticale-hairy vetch (hay)/spring seeded 7-species cover crop > Corn (85-95 day varieties) > field pea-barley intercrop. Sunflower and spring wheat are harvested for cash crop income in the rotation. Livestock integration occurs when yearling steers that had previously grazed perennial pastures until mid-August graze field pea-barley and subsequently unharvested corn. Average grazing days for field pea-barley and unharvested corn is 30 and 70 days, respectively. At the end of the grazing period, the yearling steers average 499-544 kg and are moved to a feedlot and fed an additional 75 days until slaughter. Maximizing grazing days and extending the grazing season through integration with the cropping system reduces custom feeding costs and enhances animal profit. Beef cows do not require high quality feed after their calves have been weaned. Therefore, gestating beef cows are an ideal animal to graze cover crops and crop aftermath (residue) after yearling steer grazing and farming operations have been completed. Extending the grazing season for beef cows by grazing cover crops and residues reduces winter feed cost, which is one of the

  4. Senior Research Connects Students with a Living Laboratory As Part of an Integrated Crop and Livestock System

    NASA Astrophysics Data System (ADS)

    Senturklu, Songul; Landblom, Douglas; Brevik, Eric C.

    2015-04-01

    Soil, water, soil microbes, and solar energy are the main sources that sustain life on this planet. Without them working in concert, neither plants nor animals would survive. Considering the efficiency of animal production targets, soil must be protected and improved. Therefore, through our sustainable integrated crop and livestock research, we are studying animal and soil interactions from the soil to the plate. Integrating beef cattle systems into a diverse cropping system is providing a living laboratory for education beyond the traditional classroom setting. To establish the living learning laboratory at the Dickinson Research Extension Center, a five-crop rotation was established that included adapted cool and warm season grasses and broadleaf crops. The crop rotation is: sunflower > hard red spring wheat > fall seeded winter triticale-hairy vetch (hay)/spring seeded 7-species cover crop > Corn (85-95 day varieties) > field pea-barley intercrop. Sunflower and spring wheat are harvested for cash crop income in the rotation. Livestock integration occurs when yearling steers that had previously grazed perennial pastures until mid-August graze field pea-barley and subsequently unharvested corn. Average grazing days for field pea-barley and unharvested corn is 30 and 70 days, respectively. At the end of the grazing period, the yearling steers average 499-544 kg and are moved to a feedlot and fed an additional 75 days until slaughter. Maximizing grazing days and extending the grazing season through integration with the cropping system reduces custom feeding costs and enhances animal profit. Beef cows do not require high quality feed after their calves have been weaned. Therefore, gestating beef cows are an ideal animal to graze cover crops and crop aftermath (residue) after yearling steer grazing and farming operations have been completed. Extending the grazing season for beef cows by grazing cover crops and residues reduces winter feed cost, which is one of the

  5. A decision support system (GesCoN) for managing fertigation in open field vegetable crops. Part I-methodological approach and description of the software.

    PubMed

    Elia, Antonio; Conversa, Giulia

    2015-01-01

    Reduced water availability and environmental pollution caused by nitrogen (N) losses have increased the need for rational management of irrigation and N fertilization in horticultural systems. Decision support systems (DSS) could be powerful tools to assist farmers to improve irrigation and N fertilization efficiency. Currently, fertilization by drip irrigation system (fertigation) is used for many vegetable crops around the world. The paper illustrates the theoretical basis, the methodological approach and the structure of a DSS called GesCoN for fertigation management in open field vegetable crops. The DSS is based on daily water and N balance, considering the water lost by evapotranspiration (ET) and the N content in the aerial part of the crop (N uptake) as subtraction and the availability of water and N in the wet soil volume most effected by roots as the positive part. For the water balance, reference ET can be estimated using the Penman-Monteith (PM) or the Priestley-Taylor and Hargreaves models, specifically calibrated under local conditions. Both single or dual Kc approach can be used to calculate crop ET. Rain runoff and deep percolation are considered to calculate the effective rainfall. The soil volume most affected by the roots, the wet soil under emitters and their interactions are modeled. Crop growth is modeled by a non-linear logistic function on the basis of thermal time, but the model takes into account thermal and water stresses and allows an in-season calibration through a dynamic adaptation of the growth rate to the specific genetic and environmental conditions. N crop demand is related to DM accumulation by the N critical curve. N mineralization from soil organic matter is daily estimated. The DSS helps users to evaluate the daily amount of water and N fertilizer that has to be applied in order to fulfill the water and N-crop requirements to achieve the maximum potential yield, while reducing the risk of nitrate outflows. PMID:26042128

  6. A decision support system (GesCoN) for managing fertigation in open field vegetable crops. Part I—methodological approach and description of the software

    PubMed Central

    Elia, Antonio; Conversa, Giulia

    2015-01-01

    Reduced water availability and environmental pollution caused by nitrogen (N) losses have increased the need for rational management of irrigation and N fertilization in horticultural systems. Decision support systems (DSS) could be powerful tools to assist farmers to improve irrigation and N fertilization efficiency. Currently, fertilization by drip irrigation system (fertigation) is used for many vegetable crops around the world. The paper illustrates the theoretical basis, the methodological approach and the structure of a DSS called GesCoN for fertigation management in open field vegetable crops. The DSS is based on daily water and N balance, considering the water lost by evapotranspiration (ET) and the N content in the aerial part of the crop (N uptake) as subtraction and the availability of water and N in the wet soil volume most effected by roots as the positive part. For the water balance, reference ET can be estimated using the Penman–Monteith (PM) or the Priestley–Taylor and Hargreaves models, specifically calibrated under local conditions. Both single or dual Kc approach can be used to calculate crop ET. Rain runoff and deep percolation are considered to calculate the effective rainfall. The soil volume most affected by the roots, the wet soil under emitters and their interactions are modeled. Crop growth is modeled by a non-linear logistic function on the basis of thermal time, but the model takes into account thermal and water stresses and allows an in-season calibration through a dynamic adaptation of the growth rate to the specific genetic and environmental conditions. N crop demand is related to DM accumulation by the N critical curve. N mineralization from soil organic matter is daily estimated. The DSS helps users to evaluate the daily amount of water and N fertilizer that has to be applied in order to fulfill the water and N-crop requirements to achieve the maximum potential yield, while reducing the risk of nitrate outflows. PMID:26042128

  7. Crop Sequence Economics in Dynamic Cropping Systems

    Technology Transfer Automated Retrieval System (TEKTRAN)

    No-till production systems allow more intensified and diversified production in the northern Great Plains; however, this has increased the need for information on improving economic returns through crop sequence selection. Field research was conducted 6 km southwest of Mandan ND to determine the inf...

  8. Simulating Stochastic Crop Management in Cropping Systems

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Introduction -- Crop simulation models are uniquely suitable for examining long term crop responses to environmental variability due to changes in climate or other factors. Long-term studies typically emphasize variability related to weather conditions; certain weather-dependent cropping practices m...

  9. Alternative cropping systems for sugarcane

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Planting cover crops during the fallow period prior to planting sugarcane has the potential to influence not only the following sugarcane crop, but the economics of the production system as a whole. Research was conducted at the USDA, ARS, Sugarcane Research Unit at Houma, LA to determine the impac...

  10. Economics of Rainfed Cropping Systems: Northeast Thailand

    NASA Astrophysics Data System (ADS)

    Johnson, Sam H., III; Charoenwatana, Terd

    1981-06-01

    Using a computer model to simulate effective rainfall, it is shown that a flexible rainfed cropping system based on a legume crop planted before rice has a greater expected return than present subsistent rainfed cropping systems. Combining a legume crop intercropped with cassava or kenaf further increases the expected returns yet maintains the stability of the new system. Further research is required to bring the farmer's yields up to match experiment station results and to facilitate effective transfer policies.

  11. The Use of Cover Crops as Climate-Smart Management in Midwest Cropping Systems

    NASA Astrophysics Data System (ADS)

    Basche, A.; Miguez, F.; Archontoulis, S.; Kaspar, T.

    2014-12-01

    The observed trends in the Midwestern United States of increasing rainfall variability will likely continue into the future. Events such as individual days of heavy rain as well as seasons of floods and droughts have large impacts on agricultural productivity and the natural resource base that underpins it. Such events lead to increased soil erosion, decreased water quality and reduced corn and soybean yields. Winter cover crops offer the potential to buffer many of these impacts because they essentially double the time for a living plant to protect and improve the soil. However, at present, cover crops are infrequently utilized in the Midwest (representing 1-2% of row cropped land cover) in particular due to producer concerns over higher costs and management, limited time and winter growing conditions as well as the potential harm to corn yields. In order to expand their use, there is a need to quantify how cover crops impact Midwest cropping systems in the long term and namely to understand how to optimize the benefits of cover crops while minimizing their impacts on cash crops. We are working with APSIM, a cropping systems platform, to specifically quantify the long term future impacts of cover crop incorporation in corn-based cropping systems. In general, our regional analysis showed only minor changes to corn and soybean yields (<1% differences) when a cover crop was or was not included in the simulation. Further, a "bad spring" scenario (where every third year had an abnormally wet/cold spring and cover crop termination and planting cash crop were within one day) did not result in any major changes to cash crop yields. Through simulations we estimate an average increase of 4-9% organic matter improvement in the topsoil and an average decrease in soil erosion of 14-32% depending on cover crop planting date and growth. Our work is part of the Climate and Corn-based Cropping Systems Coordinated Agriculture Project (CSCAP), a collaboration of eleven Midwestern

  12. An operational fluorescence system for crop assessment

    NASA Astrophysics Data System (ADS)

    Belzile, Charles; Belanger, Marie-Christine; Viau, Alain A.; Chamberland, Martin; Roy, Simon

    2004-03-01

    The development of precision farming requires new tools for plant nutritional stress monitoring. An operational fluorescence system has been designed for vegetation status mapping and stress detection at plant and field scale. The instrument gives relative values of fluorescence at different wavelengths induced by the two-excitation sources. Lightinduced fluorescence has demonstrated successful crop health monitoring and plant nutritional stress detection capabilities. The spectral response of the plants has first been measured with an hyperspectral imager using laser-induced fluorescence. A tabletop imaging fluorometer based on flash lamp technology has also been designed to study the spatial distribution of fluorescence on plant leaves. For field based non-imaging system, LED technology is used as light source to induce fluorescence of the plant. The operational fluorescence system is based on ultraviolet and blue LED to induce fluorescence. Four narrow fluorescence bands centered on 440, 520, 690 and 740nm are detected. The instrument design includes a modular approach for light source and detector. It can accommodate as many as four different light sources and six bands of fluorescence detection. As part of the design for field application, the instrument is compatible with a mobile platform equipped with a GPS and data acquisition system. The current system developed by Telops/GAAP is configured for potato crops fluorescence measurement but can easily be adapted for other crops. This new instrument offers an effective and affordable solution for precision farming.

  13. Modelling rainfall interception by vegetation of variable density using an adapted analytical model. Part 2. Model validation for a tropical upland mixed cropping system

    NASA Astrophysics Data System (ADS)

    van Dijk, A. I. J. M.; Bruijnzeel, L. A.

    2001-07-01

    To improve the description of rainfall partitioning by a vegetation canopy that changes in time a number of adaptations to the revised analytical model for rainfall interception by sparse canopies [J. Hydrol., 170 (1995) 79] was proposed in the first of two papers. The current paper presents an application of this adapted analytical model to simulate throughfall, stemflow and interception as measured in a mixed agricultural cropping system involving cassava, maize and rice during two seasons of growth and serial harvesting in upland West Java, Indonesia. Measured interception losses were 18 and 8% during the two measuring periods, while stemflow fractions were estimated at 2 and 4%, respectively. The main reasons for these discrepancies were differences in vegetation density and composition, as well as differences in the exposure of the two sites used in the two respective years. Functions describing the development of the leaf area index of each of the component crops in time were developed. Leaf area index (ranging between 0.7 and 3.8) was related to canopy cover fraction (0.41-0.94). Using average values and time series of the respective parameters, interception losses were modelled using both the revised analytical model and the presently adapted version. The results indicate that the proposed model adaptations substantially improve the performance of the analytical model and provide a more solid base for parameterisation of the analytical model in vegetation of variable density.

  14. Cropping system effects on soil quality

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Cropping systems can affect a range of soil properties depending on the specific crop rotation, nutrient amendments, and tillage practices employed. A soil quality index can be use to interpret changes in soil properties and assess improvement or degradation of soil quality. We evaluated a range of ...

  15. Using cover crops and cropping systems for nitrogen management

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The reasons for using cover crops and optimized cropping sequences to manage nitrogen (N) are to maximize economic returns, improve soil quality and productivity, and minimize losses of N that might adversely impact environmental quality. Cover crops and cropping systems’ effects on N management are...

  16. Comparing cropping system productivity of fixed rotations and a flexible fallow system using Aqua-Crop

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In the Central High Plains, the predominant crop rotation is winter wheat (Triticum aestivum L.)-fallow. Producers are looking to add diversity and intensity to their cropping systems and improve water use efficiency by adding summer crops, however, the elimination of summer fallow may increase the ...

  17. Sustainability of Switchgrass Cropping Systems

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Switchgrass (Panicum virgatum L.) is a perennial C4 grass that is native to the eastern two thirds of temperate North America. It has been used for conservation purposes and as a pasture grass since the 1940’s. It is currently being developed as a cellulosic biomass energy crop because it can produ...

  18. Dynamic crop sequencing in Western Australian cropping systems

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In the last decade in Western Australia crop sequences have become increasingly dominated by wheat. Wheat may now be grown in sequence with a wide range of crops and pastures that may influence the yield of the subsequent wheat crop by suppressing weeds, disease, or increasing the supply of nitroge...

  19. Composition of Cereal Crop Residue in Dryland Cropping Systems

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Cereal crops and cultivars vary in their composition, and also in their decomposition and contribution to soil organic matter. Large quantities of cereal crop residue that decompose slowly present an obstacle to the adoption of minimum till or no-till seeding, conversely lower quantities of crop re...

  20. The Crop Growth Model in the Wind Erosion Prediction System

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The primary purpose of the crop growth submodel (CROP) in the Wind Erosion Prediction System (WEPS) is to obtain realistic estimates of plant growth so that the influence of vegetative cover on wind erosion can be properly evaluated. Most crop growth models focus on estimating final crop yield. CROP...

  1. A bioenergy feedstock/vegetable double-cropping system

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Certain warm-season vegetable crops may lend themselves to bioenergy double-cropping systems, which involve growing a winter annual bioenergy feedstock crop followed by a summer annual crop. The objective of the study was to compare crop productivity and weed communities in different pumpkin product...

  2. Soil Quality and the Solar Corridor Crop System

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The solar corridor crop system (SCCS) is designed for improved crop productivity based on highly efficient use of solar radiation by integrating row crops with drilled or solid-seeded crops in broad strips (corridors) that also facilitate establishment of cover crops for year-round soil cover. The S...

  3. Soil quality and the solar corridor crop system

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The solar corridor crop system (SCCS) is designed for improved crop productivity based on highly efficient use of solar radiation by integrating row crops with drilled or solid-seeded crops in broad strips (corridors) that also facilitate establishment of cover crops for year-round soil cover. The S...

  4. Effects of climate change on suitable rice cropping areas, cropping systems and crop water requirements in southern China

    DOE PAGESBeta

    Ye, Qing; Yang, Xiaoguang; Dai, Shuwei; Chen, Guangsheng; Li, Yong; Zhang, Caixia

    2015-06-05

    Here, we discuss that rice is one of the main crops grown in southern China. Global climate change has significantly altered the local water availability and temperature regime for rice production. In this study, we explored the influence of climate change on suitable rice cropping areas, rice cropping systems and crop water requirements (CWRs) during the growing season for historical (from 1951 to 2010) and future (from 2011 to 2100) time periods. The results indicated that the land areas suitable for rice cropping systems shifted northward and westward from 1951 to 2100 but with different amplitudes.

  5. Nitrogen, Tillage, and Crop Rotation Effects on Nitrous Oxide Emissions from Irrigated Cropping Systems

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This study evaluated the effects of irrigated crop management practices on nitrous oxide (N2O) emissions. Emissions were monitored from several irrigated cropping systems receiving N fertilizer rates ranging from 0 to 246 kg N ha-1 during the 2005 and 2006 growing seasons. Cropping systems includ...

  6. Sorbent-Bed Crop-Drying System

    NASA Technical Reports Server (NTRS)

    Roberts, Barry C.

    1992-01-01

    Proposed aeration system helps reduce spoilage of stored grain or other crop stored in bulk. Air circulates through bin, sorbent bed, and heat exchanger. Outside air cools circulating air in heat exchanger. Sensors measure temperature and humidity, and adjust dampers to obtain requisite temperature and humidity. Suitable for grain bins and shipping barges.

  7. Alternative Dryland Cropping Systems to Wheat Fallow

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Winter wheat-summer fallow (W-F) in the Central Great Plains of the U.S.A. is not a long-term sustainable dryland system due to a high potential for erosion and associated soil degradation. Utilizing no-till and more intensive cropping we have developed several alternative rotations to wheat fallow....

  8. Unique cropping systems for Louisiana sugarcane

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A Louisiana sugarcane field is typically replanted every four years due to declining yields, and, although, it is a costly process, it is both necessary and an opportunity to maximize the financial return during the next four year cropping cycle. Fallow planting systems (FPS) during the fallow perio...

  9. Crop Simulation Models and Decision Support Systems

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The first computer simulation models for agricultural systems were developed in the 1970s. These early models simulated potential production for major crops as a function of weather conditions, especially temperature and solar radiation. At a later stage, the water component was added to be able to ...

  10. Environmental sustainability of cellulosic energy cropping systems

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The environmental sustainability of bioenergy production depends on both direct and indirect effects of the production systems to produce bioenergy feedstocks. This chapter evaluates what is known about the environmental sustainability of cellulosic bioenergy crop production for the types of produc...

  11. Impacts on Water Management and Crop Production of Regional Cropping System Adaptation to Climate Change

    NASA Astrophysics Data System (ADS)

    Zhong, H.; Sun, L.; Tian, Z.; Liang, Z.; Fischer, G.

    2014-12-01

    China is one of the most populous and fast developing countries, also faces a great pressure on grain production and food security. Multi-cropping system is widely applied in China to fully utilize agro-climatic resources and increase land productivity. As the heat resource keep improving under climate warming, multi-cropping system will also shifting northward, and benefit crop production. But water shortage in North China Plain will constrain the adoption of new multi-cropping system. Effectiveness of multi-cropping system adaptation to climate change will greatly depend on future hydrological change and agriculture water management. So it is necessary to quantitatively express the water demand of different multi-cropping systems under climate change. In this paper, we proposed an integrated climate-cropping system-crops adaptation framework, and specifically focused on: 1) precipitation and hydrological change under future climate change in China; 2) the best multi-cropping system and correspondent crop rotation sequence, and water demand under future agro-climatic resources; 3) attainable crop production with water constraint; and 4) future water management. In order to obtain climate projection and precipitation distribution, global climate change scenario from HADCAM3 is downscaled with regional climate model (PRECIS), historical climate data (1960-1990) was interpolated from more than 700 meteorological observation stations. The regional Agro-ecological Zone (AEZ) model is applied to simulate the best multi-cropping system and crop rotation sequence under projected climate change scenario. Finally, we use the site process-based DSSAT model to estimate attainable crop production and the water deficiency. Our findings indicate that annual land productivity may increase and China can gain benefit from climate change if multi-cropping system would be adopted. This study provides a macro-scale view of agriculture adaptation, and gives suggestions to national

  12. A Centralized Regional Database for Winter Cover Crops in Annual Cropping Systems

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Winter cover crops have the potential to reduce erosion, minimize losses of nitrogen and phosphorus, and increase soil carbon in annual cropping systems in the Midwest. Public support, however, for incentives to farmers to adopt cover crops is minimal. Therefore, development of location-specific rec...

  13. The perspective crops for the bioregenerative human life support systems

    NASA Astrophysics Data System (ADS)

    Polonskiy, Vadim; Polonskaya, Janna

    The perspective crops for the bioregenerative human life support systems V.I. Polonskiy, J.E. Polonskaya aKrasnoyarsk State Agrarian University, 660049, Krasnoyarsk, Russia In the nearest future the space missions will be too long. In this case it is necessary to provide the crew by vitamins, antioxidants, and water-soluble dietary fibers. These compounds will be produced by higher plants. There was not enough attention at present to increasing content of micronutrients in edible parts of crops candidates for CELSS. We suggested to add the new crops to this list. 1. Barley -is the best crop for including to food crops (wheat, rice, soybean). Many of the health effects of barley are connected to dietary fibers beta-glucan of barley grains. Bar-ley is the only seed from cereals including wheat with content of all eight tocopherols (vitamin E, important antioxidant). Barley grains contain much greater amounts of phenolic compounds (potential antioxidant activities) than other cereal grains. Considerable focus is on supplement-ing wheat-based breads with barley to introduce the inherent nutritional advantages of barley flour, currently only 20We have selected and tested during 5 generations two high productive barley lines -1-K-O and 25-K-O. Our investigations (special breeding program for improving grain quality of barley) are in progress. 2. Volatile crops. Young leaves and shoots of these crops are edible and have a piquant taste. A lot of organic volatile compounds, oils, vitamins, antioxidants are in their biomass. These micronutrients are useful for good appetite and health of the crew. We have investigated 11 species: basil (Ocimum basilicum), hyssop (Hyssopus officinalis), marjoram (Origanum majorana), sweet-Mary (Melissa officinalis), common thyme (Thymus vulgaris), creeping thyme (Thymus serpyllum), summer savory (Satureja hortensis), catnip (Nepeta cataria), rue (Ruta graveolens), coriander (Coriandrum Ativum), sulfurwort (Levisticum officinale). These

  14. Acquisition history simulation for evaluation of Landsat-based crop inventory systems

    NASA Technical Reports Server (NTRS)

    Smith, J. H.; Malin, J. T.; Lin, C. C.; Dvorin, M.

    1982-01-01

    This paper describes the development and evaluation of a simulation procedure which produces patterns of Landsat data loss attributable to cloud patterns that are characteristic of a crop region. This simulation procedure is part of a simulation system under development which evaluates the performance of crop inventory system components over a number of years and under a variety of conditions.

  15. ENERGY AND CARBON BUDGETS IN TRANSITIONAL CROPPING SYSTEMS IN MINNESOTA

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Energy and carbon budgets were constructed for a wide range of cropping systems during the transition from conventional cropping practices. Cropping system treatments included factorial combinations of: conventional and organic systems (CNV and ORG), conventional tillage and strip tillage (CT and ST...

  16. Tragedies and Crops: Understanding Natural Selection To Improve Cropping Systems.

    PubMed

    Anten, Niels P R; Vermeulen, Peter J

    2016-06-01

    Plant communities with traits that would maximize community performance can be invaded by plants that invest extra in acquiring resources at the expense of others, lowering the overall community performance, a so-called tragedy of the commons (TOC). By contrast, maximum community performance is usually the objective in agriculture. We first give an overview of the occurrence of TOCs in plants, and explore the extent to which past crop breeding has led to trait values that go against an unwanted TOC. We then show how linking evolutionary game theory (EGT) with mechanistic knowledge of the physiological processes that drive trait expression and the ecological aspects of biotic interactions in agro-ecosystems might contribute to increasing crop yields and resource-use efficiency. PMID:27012675

  17. Crop and cattle production responses to tillage and cover crop management in an integrated crop-livestock system in the southeastern USA

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Integrated crop-livestock systems can help achieve greater environmental quality from disparate crop and livestock systems by recycling nutrients and taking advantage of synergies between systems. We investigated crop and animal production responses in integrated crop-livestock systems with two typ...

  18. Plants for space plantations. [crops for closed life support systems

    NASA Technical Reports Server (NTRS)

    Nikishanova, T. I.

    1978-01-01

    Criteria for selection of candidate crops for closed life support systems are presented and discussed, and desired characteristics of candidate higher plant crops are given. Carbohydrate crops, which are most suitable, grown worldwide are listed and discussed. The sweet potato, ipomoea batatas Poir., is shown to meet the criteria to the greatest degree, and the criteria are recommended as suitable for initial evaluation of candidate higher plant crops for such systems.

  19. Covariance structures in conventional and organic cropping systems

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A long-term split-plot experiment with four replicates in a randomized complete block design, was comprised of 16 treatment combinations of cropping systems (conventional and organic, crop rotations (2-Yr and 4-Yr; all phases of each crop rotation were present in each of 8 years), tillage (conventio...

  20. Modelling the crop: from system dynamics to systems biology.

    PubMed

    Yin, Xinyou; Struik, Paul C

    2010-05-01

    There is strong interplant competition in a crop stand for various limiting resources, resulting in complex compensation and regulation mechanisms along the developmental cascade of the whole crop. Despite decades-long use of principles in system dynamics (e.g. feedback control), current crop models often contain many empirical elements, and model parameters may have little biological meaning. Building on the experience in designing the relatively new model GECROS, we believe models can be made less empirical by employing existing physiological understanding and mathematical tools. In view of the potential added value of robust crop modelling to classical quantitative genetics, model input parameters are increasingly considered to represent 'genetic coefficients'. The advent of functional genomics and systems biology enables the elucidation of the molecular genetic basis of these coefficients. A number of case studies, in which the effects of quantitative trait loci or genes have been incorporated into existing ecophysiological models, have shown the promise of using models in analysing genotype-phenotype relationships of some crop traits. For further progress, crop models must be upgraded based on understanding at lower organizational levels for complicated phenomena such as sink formation in response to environmental cues, sink feedback on source activity, and photosynthetic acclimation to the prevailing environment. Within this context, the recently proposed 'crop systems biology', which combines modern genomics, traditional physiology and biochemistry, and advanced modelling, is believed ultimately to realize the expected roles of in silico modelling in narrowing genotype-phenotype gaps. This review summarizes recent findings and our opinions on perspectives for modelling genotype x environment interactions at crop level. PMID:20051352

  1. Nutrient management studies in biofuel cropping systems

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Research was conducted to determine the effect of nutrient management practices on biofuel crop production, and to evaluate long term effects of biofuel crop production on selected chemical, physical and microbiological properties. Experimental plots for research on biofuel crop production were esta...

  2. Topography Mediates the Influence of Cover Crops on Soil Nitrate Levels in Row Crop Agricultural Systems.

    PubMed

    Ladoni, Moslem; Kravchenko, Alexandra N; Robertson, G Phillip

    2015-01-01

    Supplying adequate amounts of soil N for plant growth during the growing season and across large agricultural fields is a challenge for conservational agricultural systems with cover crops. Knowledge about cover crop effects on N comes mostly from small, flat research plots and performance of cover crops across topographically diverse agricultural land is poorly understood. Our objective was to assess effects of both leguminous (red clover) and non-leguminous (winter rye) cover crops on potentially mineralizable N (PMN) and [Formula: see text] levels across a topographically diverse landscape. We studied conventional, low-input, and organic managements in corn-soybean-wheat rotation. The rotations of low-input and organic managements included rye and red clover cover crops. The managements were implemented in twenty large undulating fields in Southwest Michigan starting from 2006. The data collection and analysis were conducted during three growing seasons of 2011, 2012 and 2013. Observational micro-plots with and without cover crops were laid within each field on three contrasting topographical positions of depression, slope and summit. Soil samples were collected 4-5 times during each growing season and analyzed for [Formula: see text] and PMN. The results showed that all three managements were similar in their temporal and spatial distributions of NO3-N. Red clover cover crop increased [Formula: see text] by 35% on depression, 20% on slope and 32% on summit positions. Rye cover crop had a significant 15% negative effect on [Formula: see text] in topographical depressions but not in slope and summit positions. The magnitude of the cover crop effects on soil mineral nitrogen across topographically diverse fields was associated with the amount of cover crop growth and residue production. The results emphasize the potential environmental and economic benefits that can be generated by implementing site-specific topography-driven cover crop management in row-crop

  3. Topography Mediates the Influence of Cover Crops on Soil Nitrate Levels in Row Crop Agricultural Systems

    PubMed Central

    Ladoni, Moslem; Kravchenko, Alexandra N.; Robertson, G. Phillip

    2015-01-01

    Supplying adequate amounts of soil N for plant growth during the growing season and across large agricultural fields is a challenge for conservational agricultural systems with cover crops. Knowledge about cover crop effects on N comes mostly from small, flat research plots and performance of cover crops across topographically diverse agricultural land is poorly understood. Our objective was to assess effects of both leguminous (red clover) and non-leguminous (winter rye) cover crops on potentially mineralizable N (PMN) and NO3--N levels across a topographically diverse landscape. We studied conventional, low-input, and organic managements in corn-soybean-wheat rotation. The rotations of low-input and organic managements included rye and red clover cover crops. The managements were implemented in twenty large undulating fields in Southwest Michigan starting from 2006. The data collection and analysis were conducted during three growing seasons of 2011, 2012 and 2013. Observational micro-plots with and without cover crops were laid within each field on three contrasting topographical positions of depression, slope and summit. Soil samples were collected 4–5 times during each growing season and analyzed for NO3--N and PMN. The results showed that all three managements were similar in their temporal and spatial distributions of NO3—N. Red clover cover crop increased NO3--N by 35% on depression, 20% on slope and 32% on summit positions. Rye cover crop had a significant 15% negative effect on NO3--N in topographical depressions but not in slope and summit positions. The magnitude of the cover crop effects on soil mineral nitrogen across topographically diverse fields was associated with the amount of cover crop growth and residue production. The results emphasize the potential environmental and economic benefits that can be generated by implementing site-specific topography-driven cover crop management in row-crop agricultural systems. PMID:26600462

  4. Crop productivity and economics during the transition to alternative cropping systems

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Increasing economic pressures and continued environmental concerns in agricultural production have heightened the need for more sustainable cropping systems. Research is needed to identify systems that simultaneously improve the economic and social viability of farms and rural communities while prot...

  5. Crop rotations that include legumes and reduced tillage improve the energy efficiency of crop production systems

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Modern crop production requires large inputs of energy and these inputs represent a substantial cost. Management practices such as crop rotation and choice of tillage practice influence the energy balance for a production system. Legumes support bacteria that are capable of fixing nitrogen (N). This...

  6. Crop rotations that include legumes and reduced tillage improve the energy efficiency of crop production systems

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Text: Modern crop production requires large inputs of energy and these inputs represent a substantial cost. Management practices such as crop rotation and choice of tillage practice influence the energy balance for a production system. Legumes support bacteria that are capable of fixing nitrogen (N)...

  7. Adverse weather impacts on arable cropping systems

    NASA Astrophysics Data System (ADS)

    Gobin, Anne

    2016-04-01

    Damages due to extreme or adverse weather strongly depend on crop type, crop stage, soil conditions and management. The impact is largest during the sensitive periods of the farming calendar, and requires a modelling approach to capture the interactions between the crop, its environment and the occurrence of the meteorological event. The hypothesis is that extreme and adverse weather events can be quantified and subsequently incorporated in current crop models. Since crop development is driven by thermal time and photoperiod, a regional crop model was used to examine the likely frequency, magnitude and impacts of frost, drought, heat stress and waterlogging in relation to the cropping season and crop sensitive stages. Risk profiles and associated return levels were obtained by fitting generalized extreme value distributions to block maxima for air humidity, water balance and temperature variables. The risk profiles were subsequently confronted with yields and yield losses for the major arable crops in Belgium, notably winter wheat, winter barley, winter oilseed rape, sugar beet, potato and maize at the field (farm records) to regional scale (statistics). The average daily vapour pressure deficit (VPD) and reference evapotranspiration (ET0) during the growing season is significantly lower (p < 0.001) and has a higher variability before 1988 than after 1988. Distribution patterns of VPD and ET0 have relevant impacts on crop yields. The response to rising temperatures depends on the crop's capability to condition its microenvironment. Crops short of water close their stomata, lose their evaporative cooling potential and ultimately become susceptible to heat stress. Effects of heat stress therefore have to be combined with moisture availability such as the precipitation deficit or the soil water balance. Risks of combined heat and moisture deficit stress appear during the summer. These risks are subsequently related to crop damage. The methodology of defining

  8. Divesting in crop diversity: trade-offs of modern cropping systems

    NASA Astrophysics Data System (ADS)

    Engstrom, P.

    2013-12-01

    Since the advent of the Green Revolution in the 1960's, agriculture has experienced great advances in yield, seed genetics and management. This focus on increased yields and production came at the cost of many marginal, traditional crops because they could no longer compete with the bountiful harvests of massive mono-culture food systems. In the modern agricultural world, three staple crops are responsible for 46% of global agricultural production on 33% of global harvested area. Further, seventeen crops account for 73% of global crop production and use 58% of global harvested area. How has the distribution of individual crops today changed from before the Green Revolution began, and what are the broader implications of these changes for our food systems?

  9. Global crop production forecasting data system analysis

    NASA Technical Reports Server (NTRS)

    Castruccio, P. A. (Principal Investigator); Loats, H. L.; Lloyd, D. G.

    1978-01-01

    The author has identified the following significant results. Findings led to the development of a theory of radiometric discrimination employing the mathematical framework of the theory of discrimination between scintillating radar targets. The theory indicated that the functions which drive accuracy of discrimination are the contrast ratio between targets, and the number of samples, or pixels, observed. Theoretical results led to three primary consequences, as regards the data system: (1) agricultural targets must be imaged at correctly chosen times, when the relative evolution of the crop's development is such as to maximize their contrast; (2) under these favorable conditions, the number of observed pixels can be significantly reduced with respect to wall-to-wall measurements; and (3) remotely sensed radiometric data must be suitably mixed with other auxiliary data, derived from external sources.

  10. Cover crops and crop residue management under no-till systems improve soils and environmental quality

    NASA Astrophysics Data System (ADS)

    Kumar, Sandeep; Wegner, Brianna; Vahyala, Ibrahim; Osborne, Shannon; Schumacher, Thomas; Lehman, Michael

    2015-04-01

    Crop residue harvest is a common practice in the Midwestern USA for the ethanol production. However, excessive removal of crop residues from the soil surface contributes to the degradation of important soil quality indicators such as soil organic carbon (SOC). Addition of a cover crop may help to mitigate these negative effects. The present study was set up to assess the impacts of corn (Zea mays L.) residue removal and cover crops on various soil quality indicators and surface greenhouse gas (GHG) fluxes. The study was being conducted on plots located at the North Central Agricultural Research Laboratory (NCARL) in Brookings, South Dakota, USA. Three plots of a corn and soybean (Glycine max (L.) Merr.) rotation under a no-till (NT) system are being monitored for soils and surface gas fluxes. Each plot has three residue removal (high residue removal, HRR; medium residue removal, MRR; and low residue removal, LRR) treatments and two cover crops (cover crops and no cover crops) treatments. Both corn and soybean are represented every year. Gas flux measurements were taken weekly using a closed static chamber method. Data show that residue removal significantly impacted soil quality indicators while more time was needed for an affect from cover crop treatments to be noticed. The LRR treatment resulted in higher SOC concentrations, increased aggregate stability, and increased microbial activity. The LRR treatment also increased soil organic matter (SOM) and particulate organic matter (POM) concentrations. Cover crops used in HRR (high corn residue removal) improved SOC (27 g kg-1) by 6% compared to that without cover crops (25.4 g kg-1). Cover crops significantly impacted POM concentration directly after the residue removal treatments were applied in 2012. CO2 fluxes were observed to increase as temperature increased, while N2O fluxes increased as soil moisture increased. CH4 fluxes were responsive to both increases in temperature and moisture. On average, soils under

  11. Designer crops: optimal root system architecture for nutrient acquisition.

    PubMed

    Kong, Xiangpei; Zhang, Maolin; De Smet, Ive; Ding, Zhaojun

    2014-12-01

    Plant root systems are highly plastic in response to environmental stimuli. Improved nutrient acquisition can increase fertilizer use efficiency and is critical for crop production. Recent analyses of field-grown crops highlighted the importance of root system architecture (RSA) in nutrient acquisition. This indicated that it is feasible in practice to exploit genotypes or mutations giving rise to optimal RSA for crop design in the future, especially with respect to plant breeding for infertile soils. PMID:25450041

  12. Bioenergy cropping systems for food, feed, fuel, and soil

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Crop production can meet multiple needs including food, livestock feed, and bioenergy or biofuels. Cropping systems can be developed to focus on meeting any one of these needs, or they can be developed to simultaneously meet multiple needs. In any case, these systems must also protect the soil resou...

  13. No-till bioenergy cropping systems effect on soil aeration

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Bioenergy cropping systems have been proposed as a way to enhance United States energy security. However, research on soil quality, such as the effects of maize stover harvesting on soil aeration and the relationships to soil structure and water, associated with bioenergy cropping systems has been l...

  14. Greenhouse gas emissions from traditional and biofuels cropping systems

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Cropping systems can have a tremendous effect on the greenhouse gas emissions from soils. The objectives of this study were to compare greenhouse gas emissions from traditional (continuous corn or corn/soybean rotation) and biomass (miscanthus, sorghum, switchgrass) cropping systems. Biomass croppin...

  15. Soil carbon levels in irrigated Western Corn Belt cropping systems

    Technology Transfer Automated Retrieval System (TEKTRAN)

    An irrigated monoculture corn, monoculture soybean, and soybean-corn cropping systems study was initiated in 1991 on a uniform site in the Platte Valley near Shelton, Nebraska. The objective was to determine the long-term effects of these cropping systems on soil organic carbon levels. Four corn hyb...

  16. The Role of Crop Systems Simulation in Agriculture and Environment

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Over the past 30 to 40 years, simulation of crop systems has advanced from a neophyte science with inadequate computing power into a robust and increasingly accepted science supported by improved software, languages, development tools, and computer capabilities. Crop system simulators contain mathe...

  17. Modeling nitrous oxide emissions from bioenergy cropping systems using DAYCENT

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Nitrous oxide (N2O) is the largest greenhouse gas source from crop systems and quantifying it for the U.S. Greenhouse Gas Inventory is important. The objective of this study was to validate the ability of DAYCENT to simulate N2O emissions from bioenergy cropping systems. From weather, soil-texture c...

  18. Perun: The System For Seasonal Crop Yield Forecasting Based On The Crop Model and Weather Generator

    NASA Astrophysics Data System (ADS)

    Dubrovsky, M.; Zalud, Z.; Trnka, M.; Haberle, J.; Pesice, P.

    The main purpose of the computer system PERUN, which is now being developed, is the probabilistic seasonal crop yield forecasting. The crop yields (winter wheat and spring barley in the first step) are simulated by crop model WOFOST. The input daily weather series consist of observed data, which are available in the date of forecast issuance, and synthetic data, which follow up with the observed data till the end of the crop model simulation. The synthetic weather series are generated by stochastic generator Met&Roll conditionally on the seasonal weather forecast. The probabilis- tic forecast is based on multiple crop model runs. To provide the six daily weather characteristics required for crop model simulation (precipitation, solar radiation, max- imum and minimum temperatures, air humidity, wind speed), the previous WGEN- like four-variate version of Met&Roll generator was supplemented by a new module. This module adds wind speed and air humidity (necessary to calculate evapotranspi- ration) using the nearest neighbours resampling from the observed data. Because of the problems with availability and/or accuracy of wind and humidity data, the source code of the WOFOST model was modified and allows now to switch between Penman and Makkink methods of calculating the evapotranspiration (the daily values of wind speed and humidity are not required in the Makkink method). The contribution will address following items: 1) Structure of the PERUN system: components and their inputs and outputs. Modifications to WOFOST crop model and Met&Roll generator will be discussed. 2) Validation of the WOFOST crop model. The accuracy obtained using the Penman and Makkink methods will be compared. 3) Demonstration of the forecast accuracy in dependence on the date of issuance. Acknowledgement: The system PERUN is being developed within the frame of project QC1316 sponsored by the Czech National Agency for Agricultural Research (NAZV).

  19. Using dual-purpose crops in sheep-grazing systems.

    PubMed

    Dove, Hugh; Kirkegaard, John

    2014-05-01

    The utilisation of dual-purpose crops, especially wheat and canola grown for forage and grain production in sheep-grazing systems, is reviewed. When sown early and grazed in winter before stem elongation, later-maturing wheat and canola crops can be grazed with little impact on grain yield. Recent research has sought to develop crop- and grazing-management strategies for dual-purpose crops. Aspects examined have been grazing effects on crop growth, recovery and yield development along with an understanding of the grazing value of the crop fodder, its implications for animal nutrition and grazing management to maximise live-weight gain. By alleviating the winter 'feed gap', the increase in winter stocking rate afforded by grazing crops allows crop and livestock production to be increased simultaneously on the same farm. Integration of dual-purpose wheat with canola on mixed farms provides further systems advantages related to widened operational windows, weed and disease control and risk management. Dual-purpose crops are an innovation that has potential to assist in addressing the global food-security challenge. PMID:24323974

  20. Crop pest management with an aerial imaging system

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Remote sensing along with Global Positioning Systems, Geographic Information Systems, and variable rate technology has been developed, which scientists can implement to help farmers maximize the economic and environmental benefits of crop pest management through precision agriculture. Airborne remo...

  1. Integrating Sunflower Oil Seed Crops into Florida Horticultural Production Systems

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Locally produced biodiesel feedstock plant oil creates a unique possibility to integrate multiple-goal oriented cover crops into Florida horticultural production systems. Typically, cover crops are planted to improve soil fertility and the natural suppression of soilborne pests at times when fields...

  2. Nitrous Oxide Emissions from Irrigated Cropping Systems in Colorado

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Little information is available on the effects of irrigated crop management practices on nitrous oxide (N2O) emissions. Nitrous oxide emissions were monitored from irrigated cropping systems receiving N fertilizer rates ranging from 0 to 246 kg N ha-1 during the 2005 and 2006 growing seasons. Cro...

  3. Regenerative Life Support Systems Test Bed performance - Lettuce crop characterization

    NASA Technical Reports Server (NTRS)

    Barta, Daniel J.; Edeen, Marybeth A.; Eckhardt, Bradley D.

    1992-01-01

    System performance in terms of human life support requirements was evaluated for two crops of lettuce (Lactuca sative cv. Waldmann's Green) grown in the Regenerative Life Support Systems Test Bed. Each crop, grown in separate pots under identical environmental and cultural conditions, was irrigated with half-strength Hoagland's nutrient solution, with the frequency of irrigation being increased as the crop aged over the 30-day crop tests. Averaging over both crop tests, the test bed met the requirements of 2.1 person-days of oxygen production, 2.4 person-days of CO2 removal, and 129 person-days of potential potable water production. Gains in the mass of water and O2 produced and CO2 removed could be achieved by optimizing environmental conditions to increase plant growth rate and by optimizing cultural management methods.

  4. The Potato Systems Planner: Integrating Cropping System Impacts on Crop Yield and Quality, Soil Biology, Nutrient Cycling, Diseases, and Economics

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Finding and developing profitable cropping systems is a high priority for the potato industry. Consequently, an interdisciplinary team of ARS scientists from the New England Plant, Soil, & Water Laboratory evaluated 14 different rotations for their impacts on crop yield and quality, nutrient availa...

  5. Crop candidates for the bioregenerative life support systems in China

    NASA Astrophysics Data System (ADS)

    Chunxiao, Xu; Hong, Liu

    The use of plants for life support applications in space is appealing because of the multiple life support functions by the plants. Research on crops that were grown in the life support system to provide food and oxygen, remove carbon dioxide was begun from 1960. To select possible crops for research on the bioregenerative life support systems in China, criteria for the selection of potential crops were made, and selection of crops was carried out based on these criteria. The results showed that 14 crops including 4 food crops (wheat, rice, soybean and peanut) and 7 vegetables (Chinese cabbage, lettuce, radish, carrot, tomato, squash and pepper) won higher scores. Wheat ( Triticum aestivum L.), rice ( Oryza sativa L.), soybean ( Glycine max L.) and peanut ( Arachis hypogaea L.) are main food crops in China. Chinese cabbage ( Brassica campestris L. ssp. chinensis var. communis), lettuce ( Lactuca sativa L. var. longifolia Lam.), radish ( Raphanus sativus L.), carrot ( Daucus carota L. var. sativa DC.), tomato ( Lycopersicon escalentum L.), squash ( Cucurbita moschata Duch.) and pepper ( Capsicum frutescens L. var. longum Bailey) are 7 vegetables preferred by Chinese. Furthermore, coriander ( Coriandum sativum L.), welsh onion ( Allium fistulosum L. var. giganteum Makino) and garlic ( Allium sativum L.) were selected as condiments to improve the taste of space crew. To each crop species, several cultivars were selected for further research according to their agronomic characteristics.

  6. Integrating soil solarization into crop production systems

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Soil solarization remains one of but a handful of nonchemical soil disinfestation methods suitable for high-value crops such as cut-flowers, strawberry and fresh market tomato and pepper. Recognition of soil solarization within the context of an integrated pest management (IPM) approach is paramoun...

  7. Diversifying crop rotations with pulses enhances system productivity

    PubMed Central

    Gan, Yantai; Hamel, Chantal; O’Donovan, John T.; Cutforth, Herb; Zentner, Robert P.; Campbell, Con A.; Niu, Yining; Poppy, Lee

    2015-01-01

    Agriculture in rainfed dry areas is often challenged by inadequate water and nutrient supplies. Summerfallowing has been used to conserve rainwater and promote the release of nitrogen via the N mineralization of soil organic matter. However, summerfallowing leaves land without any crops planted for one entire growing season, creating lost production opportunity. Additionally, summerfallowing has serious environmental consequences. It is unknown whether alternative systems can be developed to retain the beneficial features of summerfallowing with little or no environmental impact. Here, we show that diversifying cropping systems with pulse crops can enhance soil water conservation, improve soil N availability, and increase system productivity. A 3-yr cropping sequence study, repeated for five cycles in Saskatchewan from 2005 to 2011, shows that both pulse- and summerfallow-based systems enhances soil N availability, but the pulse system employs biological fixation of atmospheric N2, whereas the summerfallow-system relies on ‘mining’ soil N with depleting soil organic matter. In a 3-yr cropping cycle, the pulse system increased total grain production by 35.5%, improved protein yield by 50.9%, and enhanced fertilizer-N use efficiency by 33.0% over the summerfallow system. Diversifying cropping systems with pulses can serve as an effective alternative to summerfallowing in rainfed dry areas. PMID:26424172

  8. Diversifying crop rotations with pulses enhances system productivity.

    PubMed

    Gan, Yantai; Hamel, Chantal; O'Donovan, John T; Cutforth, Herb; Zentner, Robert P; Campbell, Con A; Niu, Yining; Poppy, Lee

    2015-01-01

    Agriculture in rainfed dry areas is often challenged by inadequate water and nutrient supplies. Summerfallowing has been used to conserve rainwater and promote the release of nitrogen via the N mineralization of soil organic matter. However, summerfallowing leaves land without any crops planted for one entire growing season, creating lost production opportunity. Additionally, summerfallowing has serious environmental consequences. It is unknown whether alternative systems can be developed to retain the beneficial features of summerfallowing with little or no environmental impact. Here, we show that diversifying cropping systems with pulse crops can enhance soil water conservation, improve soil N availability, and increase system productivity. A 3-yr cropping sequence study, repeated for five cycles in Saskatchewan from 2005 to 2011, shows that both pulse- and summerfallow-based systems enhances soil N availability, but the pulse system employs biological fixation of atmospheric N2, whereas the summerfallow-system relies on 'mining' soil N with depleting soil organic matter. In a 3-yr cropping cycle, the pulse system increased total grain production by 35.5%, improved protein yield by 50.9%, and enhanced fertilizer-N use efficiency by 33.0% over the summerfallow system. Diversifying cropping systems with pulses can serve as an effective alternative to summerfallowing in rainfed dry areas. PMID:26424172

  9. Meteorological risks and impacts on crop production systems in Belgium

    NASA Astrophysics Data System (ADS)

    Gobin, Anne

    2013-04-01

    Extreme weather events such as droughts, heat stress, rain storms and floods can have devastating effects on cropping systems. The perspective of rising risk-exposure is exacerbated further by projected increases of extreme events with climate change. More limits to aid received for agricultural damage and an overall reduction of direct income support to farmers further impacts farmers' resilience. Based on insurance claims, potatoes and rapeseed are the most vulnerable crops, followed by cereals and sugar beets. Damages due to adverse meteorological events are strongly dependent on crop type, crop stage and soil type. Current knowledge gaps exist in the response of arable crops to the occurrence of extreme events. The degree of temporal overlap between extreme weather events and the sensitive periods of the farming calendar requires a modelling approach to capture the mixture of non-linear interactions between the crop and its environment. The regional crop model REGCROP (Gobin, 2010) enabled to examine the likely frequency and magnitude of drought, heat stress and waterlogging in relation to the cropping season and crop sensitive stages of six arable crops: winter wheat, winter barley, winter rapeseed, potato, sugar beet and maize. Since crop development is driven by thermal time, crops matured earlier during the warmer 1988-2008 period than during the 1947-1987 period. Drought and heat stress, in particular during the sensitive crop stages, occur at different times in the cropping season and significantly differ between two climatic periods, 1947-1987 and 1988-2008. Soil moisture deficit increases towards harvesting, such that earlier maturing winter crops may avoid drought stress that occurs in late spring and summer. This is reflected in a decrease both in magnitude and frequency of soil moisture deficit around the sensitive stages during the 1988-2008 period when atmospheric drought may be compensated for with soil moisture. The risk of drought spells during

  10. Long-Term Crop Residue Dynamics in No-Till Cropping Systems Under Semi-Arid Conditions

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The presence of crop residue is an important component of dryland cropping systems management in the semiarid environment where soil erosion by wind is a major soil degradation process. Residue also affects precipitation capture and runoff. Long-term residue quantity dynamics of different cropping s...

  11. Productivity and nutrient cycling in bioenergy cropping systems

    NASA Astrophysics Data System (ADS)

    Heggenstaller, Andrew Howard

    One of the greatest obstacles confronting large-scale biomass production for energy applications is the development of cropping systems that balance the need for increased productive capacity with the maintenance of other critical ecosystem functions including nutrient cycling and retention. To address questions of productivity and nutrient dynamics in bioenergy cropping systems, we conducted two sets of field experiments during 2005-2007, investigating annual and perennial cropping systems designed to generate biomass energy feedstocks. In the first experiment we evaluated productivity and crop and soil nutrient dynamics in three prototypical bioenergy double-crop systems, and in a conventionally managed sole-crop corn system. Double-cropping systems included fall-seeded forage triticale (x Triticosecale Wittmack), succeeded by one of three summer-adapted crops: corn (Zea mays L.), sorghum-sudangrass [Sorghum bicolor (L.) Moench], or sunn hemp (Crotalaria juncea L.). Total dry matter production was greater for triticale/corn and triticale/sorghum-sudangrass compared to sole-crop corn. Functional growth analysis revealed that photosynthetic duration was more important than photosynthetic efficiency in determining biomass productivity of sole-crop corn and double-crop triticale/corn, and that greater yield in the tiritcale/corn system was the outcome of photosynthesis occurring over an extended duration. Increased growth duration in double-crop systems was also associated with reductions in potentially leachable soil nitrogen relative to sole-crop corn. However, nutrient removal in harvested biomass was also greater in the double-crop systems, indicating that over the long-term, double-cropping would mandate increased fertilizer inputs. In a second experiment we assessed the effects of N fertilization on biomass and nutrient partitioning between aboveground and belowground crop components, and on carbon storage by four perennial, warm-season grasses: big bluestem

  12. Improving potato cropping systems: longer-term effects on diseases and yield

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The development of effective cropping systems can provide the structural basis for enhanced crop production and sustainability through the conservation, maintenance, and replenishment of various soil resources. In 2004, field trials evaluating potato cropping systems focused on different specific cr...

  13. Grazing winter cover crops in a cotton-cover crop conservation tillage system

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Grazing of winter annual cover crops with cattle offers a way to offset costs and increase farm revenue in conservation tillage systems. However, cattle may create problems due to soil treading and reduction in surface residues needed to reduce soil erosion. Optimizing production efficiencies may re...

  14. United States benefits of improved worldwide wheat crop information from a LANDSAT system

    NASA Technical Reports Server (NTRS)

    Heiss, K. P.; Sand, F.; Seidel, A.; Warner, D.; Sheflin, N.; Bhattacharyya, R.; Andrews, J.

    1975-01-01

    The value of worldwide information improvements on wheat crops, promised by LANDSAT, is measured in the context of world wheat markets. These benefits are based on current LANDSAT technical goals and assume that information is made available to all (United States and other countries) at the same time. A detailed empirical sample demonstration of the effect of improved information is given; the history of wheat commodity prices for 1971-72 is reconstructed and the price changes from improved vs. historical information are compared. The improved crop forecasting from a LANDSAT system assumed include wheat crop estimates of 90 percent accuracy for each major wheat producing region. Accurate, objective worldwide wheat crop information using space systems may have a very stabilizing influence on world commodity markets, in part making possible the establishment of long-term, stable trade relationships.

  15. Regulation of plant root system architecture: implications for crop advancement.

    PubMed

    Rogers, Eric D; Benfey, Philip N

    2015-04-01

    Root system architecture (RSA) plays a major role in plant fitness, crop performance, and grain yield yet only recently has this role been appreciated. RSA describes the spatial arrangement of root tissue within the soil and is therefore crucial to nutrient and water uptake. Recent studies have identified many of the genetic and environmental factors influencing root growth that contribute to RSA. Some of the identified genes have the potential to limit crop loss caused by environmental extremes and are currently being used to confer drought tolerance. It is hypothesized that manipulating these and other genes that influence RSA will be pivotal for future crop advancements worldwide. PMID:25448235

  16. A Crop Simulation System for Integrating Remote Sensing and Climate Information to Reduce Model Uncertainty in Crop Yield Assessments

    NASA Astrophysics Data System (ADS)

    Ines, A. M.; Honda, K.; Yui, A.

    2012-12-01

    Uncertainties in crop yield assessments are caused by many factors, including an imperfect model, model parameters and modeling assumptions, as well as errors in data inputs, e.g. climate. Here, we present a crop simulation system that aims to reduce uncertainty in crop yield assessment due to model and data uncertainties. The system uses DSSAT-CSM as the core crop simulation model. The simulation strategy is two-folds: i) crop model parameter estimation and ii) simulation and prediction mode. In i) a noisy Monte Carlo genetic algorithm (NMCGA) is used to estimate crop, soil and management parameters and their uncertainties, where field and remote sensing data can be used in the process. In ii) simulations can be done in an incremental way, where climate data until the current day is used as inputs to the crop model while the climate inputs for rest of the simulation period are generated by a stochastic weather generator based on climatological or climate forecasts information. Also, in the prediction mode, an ensemble Kalman filter (EnKF) can be used to update crop model state variables, e.g., leaf area index (LAI) and soil moisture from remote sensing and field sensors, this can be used in tandem with the climate merging mechanism within the crop simulation system. A case study on wheat modeling in Hokkaido, Japan will be presented. Model uncertainty assessment and implications of the crop simulation system for crop assessment will be discussed.

  17. Increasing Cropping System Diversity Balances Productivity, Profitability and Environmental Health

    PubMed Central

    Davis, Adam S.; Hill, Jason D.; Chase, Craig A.; Johanns, Ann M.; Liebman, Matt

    2012-01-01

    Balancing productivity, profitability, and environmental health is a key challenge for agricultural sustainability. Most crop production systems in the United States are characterized by low species and management diversity, high use of fossil energy and agrichemicals, and large negative impacts on the environment. We hypothesized that cropping system diversification would promote ecosystem services that would supplement, and eventually displace, synthetic external inputs used to maintain crop productivity. To test this, we conducted a field study from 2003–2011 in Iowa that included three contrasting systems varying in length of crop sequence and inputs. We compared a conventionally managed 2-yr rotation (maize-soybean) that received fertilizers and herbicides at rates comparable to those used on nearby farms with two more diverse cropping systems: a 3-yr rotation (maize-soybean-small grain + red clover) and a 4-yr rotation (maize-soybean-small grain + alfalfa-alfalfa) managed with lower synthetic N fertilizer and herbicide inputs and periodic applications of cattle manure. Grain yields, mass of harvested products, and profit in the more diverse systems were similar to, or greater than, those in the conventional system, despite reductions of agrichemical inputs. Weeds were suppressed effectively in all systems, but freshwater toxicity of the more diverse systems was two orders of magnitude lower than in the conventional system. Results of our study indicate that more diverse cropping systems can use small amounts of synthetic agrichemical inputs as powerful tools with which to tune, rather than drive, agroecosystem performance, while meeting or exceeding the performance of less diverse systems. PMID:23071739

  18. Surprising yields with no-till cropping systems

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Producers using no-till systems have found that crop yields often exceed their expectation based on nutrient and water supply. For example, corn yields 7% higher in a no-till system in central South Dakota than in a tilled system in eastern South Dakota. This is surprising because rainfall is 5 in...

  19. Nitrogen, tillage, and crop rotation effects on nitrous oxide emissions from irrigated cropping systems.

    PubMed

    Halvorson, Ardell D; Del Grosso, Stephen J; Reule, Curtis A

    2008-01-01

    We evaluated the effects of irrigated crop management practices on nitrous oxide (N(2)O) emissions from soil. Emissions were monitored from several irrigated cropping systems receiving N fertilizer rates ranging from 0 to 246 kg N ha(-1) during the 2005 and 2006 growing seasons. Cropping systems included conventional-till (CT) continuous corn (Zea mays L.), no-till (NT) continuous corn, NT corn-dry bean (Phaseolus vulgaris L.) (NT-CDb), and NT corn-barley (Hordeum distichon L.) (NT-CB). In 2005, half the N was subsurface band applied as urea-ammonium nitrate (UAN) at planting to all corn plots, with the rest of the N applied surface broadcast as a polymer-coated urea (PCU) in mid-June. The entire N rate was applied as UAN at barley and dry bean planting in the NT-CB and NT-CDb plots in 2005. All plots were in corn in 2006, with PCU being applied at half the N rate at corn emergence and a second N application as dry urea in mid-June followed by irrigation, both banded on the soil surface in the corn row. Nitrous oxide fluxes were measured during the growing season using static, vented chambers (1-3 times wk(-1)) and a gas chromatograph analyzer. Linear increases in N(2)O emissions were observed with increasing N-fertilizer rate, but emission amounts varied with growing season. Growing season N(2)O emissions were greater from the NT-CDb system during the corn phase of the rotation than from the other cropping systems. Crop rotation and N rate had more effect than tillage system on N(2)O emissions. Nitrous oxide emissions from N application ranged from 0.30 to 0.75% of N applied. Spikes in N(2)O emissions after N fertilizer application were greater with UAN and urea than with PCU fertilizer. The PCU showed potential for reducing N(2)O emissions from irrigated cropping systems. PMID:18574163

  20. Effects of Potato-Cotton Cropping Systems and Nematicides on Plant-Parasitic Nematodes and Crop Yields

    PubMed Central

    Crow, W. T.; Weingartner, D. P.; Dickson, D. W.

    2000-01-01

    Belonolaimus longicaudatus has been reported as damaging both potato (Solanum tuberosum) and cotton (Gossypium hirsutum). These crops are not normally grown in cropping systems together in areas where the soil is infested with B. longicaudatus. During the 1990s cotton was grown in a potato production region that was a suitable habitat for B. longicaudatus. It was not known how integrating the production of these two crops by rotation or double-cropping would affect the population densities of B. longicaudatus, other plant-parasitic nematodes common in the region, or crop yields. A 3-year field study evaluated the viability of both crops in monocropping, rotation, and double-cropping systems. Viability was evaluated using effects on population densities of plant-parasitic nematodes and yields. Rotation of cotton with potato was found to decrease population densities of B. longicaudatus and Meloidogyne incognita in comparison with continuous potato. Population densities of B. longicaudatus following double-cropping were greater than following continuous cotton. Yields of both potato and cotton in rotation were equivalent to either crop in monocropping. Yields of both crops were lower following double-cropping when nematicides were not used. PMID:19270980

  1. Developing trap cropping systems for effective organic management of key insect pests of cucurbit crops (IPM)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Trap cropping is a behaviorally-based pest management approach that functions by planting highly attractive plants next to a higher value crop so as to attract the pest to the trap crop plants, thus preventing or making less likely the arrival of the pest to the main crop (= cash crop). In 2012, a s...

  2. A decision support system (GesCoN) for managing fertigation in vegetable crops. Part II—model calibration and validation under different environmental growing conditions on field grown tomato

    PubMed Central

    Conversa, Giulia; Bonasia, Anna; Di Gioia, Francesco; Elia, Antonio

    2015-01-01

    The GesCoN model was evaluated for its capability to simulate growth, nitrogen uptake, and productivity of open field tomato grown under different environmental and cultural conditions. Five datasets collected from experimental trials carried out in Foggia (IT) were used for calibration and 13 datasets collected from trials conducted in Foggia, Perugia (IT), and Florida (USA) were used for validation. The goodness of fitting was performed by comparing the observed and simulated shoot dry weight (SDW) and N crop uptake during crop seasons, total dry weight (TDW), N uptake and fresh yield (TFY). In SDW model calibration, the relative RMSE values fell within the good 10–15% range, percent BIAS (PBIAS) ranged between −11.5 and 7.4%. The Nash-Sutcliffe efficiency (NSE) was very close to the optimal value 1. In the N uptake calibration RRMSE and PBIAS were very low (7%, and −1.78, respectively) and NSE close to 1. The validation of SDW (RRMSE = 16.7%; NSE = 0.96) and N uptake (RRMSE = 16.8%; NSE = 0.96) showed the good accuracy of GesCoN. A model under- or overestimation of the SDW and N uptake occurred when higher or a lower N rates and/or a more or less efficient system were used compared to the calibration trial. The in-season adjustment, using the “SDWcheck” procedure, greatly improved model simulations both in the calibration and in the validation phases. The TFY prediction was quite good except in Florida, where a large overestimation (+16%) was linked to a different harvest index (0.53) compared to the cultivars used for model calibration and validation in Italian areas. The soil water content at the 10–30 cm depth appears to be well-simulated by the software, and the GesCoN proved to be able to adaptively control potential yield and DW accumulation under limited N soil availability scenarios and consequently to modify fertilizer application. The DSSwell simulate SDW accumulation and N uptake of different tomato genotypes grown under Mediterranean and

  3. A decision support system (GesCoN) for managing fertigation in vegetable crops. Part II-model calibration and validation under different environmental growing conditions on field grown tomato.

    PubMed

    Conversa, Giulia; Bonasia, Anna; Di Gioia, Francesco; Elia, Antonio

    2015-01-01

    The GesCoN model was evaluated for its capability to simulate growth, nitrogen uptake, and productivity of open field tomato grown under different environmental and cultural conditions. Five datasets collected from experimental trials carried out in Foggia (IT) were used for calibration and 13 datasets collected from trials conducted in Foggia, Perugia (IT), and Florida (USA) were used for validation. The goodness of fitting was performed by comparing the observed and simulated shoot dry weight (SDW) and N crop uptake during crop seasons, total dry weight (TDW), N uptake and fresh yield (TFY). In SDW model calibration, the relative RMSE values fell within the good 10-15% range, percent BIAS (PBIAS) ranged between -11.5 and 7.4%. The Nash-Sutcliffe efficiency (NSE) was very close to the optimal value 1. In the N uptake calibration RRMSE and PBIAS were very low (7%, and -1.78, respectively) and NSE close to 1. The validation of SDW (RRMSE = 16.7%; NSE = 0.96) and N uptake (RRMSE = 16.8%; NSE = 0.96) showed the good accuracy of GesCoN. A model under- or overestimation of the SDW and N uptake occurred when higher or a lower N rates and/or a more or less efficient system were used compared to the calibration trial. The in-season adjustment, using the "SDWcheck" procedure, greatly improved model simulations both in the calibration and in the validation phases. The TFY prediction was quite good except in Florida, where a large overestimation (+16%) was linked to a different harvest index (0.53) compared to the cultivars used for model calibration and validation in Italian areas. The soil water content at the 10-30 cm depth appears to be well-simulated by the software, and the GesCoN proved to be able to adaptively control potential yield and DW accumulation under limited N soil availability scenarios and consequently to modify fertilizer application. The DSSwell simulate SDW accumulation and N uptake of different tomato genotypes grown under Mediterranean and subtropical

  4. Soil sustainability as measured by carbon sequestration using carbon isotopes from crop-livestock management systems

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Soil Organic Carbon (SOC) is an integral part of maintaining and measuring soil sustainability. This study was undertaken to document and better understand the relationships between two livestock-crop-forage systems and the sequestration of SOC with regards to soil sustainability and was conducted o...

  5. The Potato Systems Planner: Cropping System Impacts on Profitability, Income Variability, and Economic Risk

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Potato (Solanum tuberosum L.) producers recognize the benefits of crop rotation; however, the economics of producing a high value crop, such as potato, create incentives for continuous potato production. Our USDA-ARS interdisciplinary team evaluated cropping systems of potato in two and three year ...

  6. A Comparative Analysis of Global Cropping Systems Models and Maps

    NASA Astrophysics Data System (ADS)

    Anderson, W. B.; You, L.; Wood, S.; Wood-Sichra, U.; Wu, W.

    2013-12-01

    Agricultural practices have dramatically altered the land cover of the Earth, but the spatial extent and intensity of these practices is often difficult to catalogue. Cropland accounts for nearly 15 million km2 of the Earth's land cover - amounting to 12% of the Earth's ice-free land surface - yet information on the distribution and performance of specific crops is often available only through national or sub-national statistics. While remote sensing products offer spatially disaggregated information, those currently available on a global scale are ill-suited for many applications due to the limited separation of crop types within the area classified as cropland. Recently, however, there have been multiple independent efforts to incorporate the detailed information available from statistical surveys with supplemental spatial information to produce a spatially explicit global dataset specific to individual cropss for the year 2000. While these datasets provide analysts and decision makers with improved information on global cropping systems, the final global cropping maps differ from one another substantially. This study aims to explore and quantify systematic similarities and differences between four major global cropping systems products: the monthly irrigated and rainfed crop areas around the year 2000 (MIRAC2000) dataset, the spatial production allocation model (SPAM), the global agro-ecological zone (GAEZ) dataset, and the dataset developed by Monfreda et al., 2008. The analysis explores not only the final cropping systems maps but also the interdependencies of each product, methodological differences and modeling assumptions, which will provide users with information vital for discerning between datasets in selecting a product appropriate for each intended application.

  7. DayCent modelling of Swiss cropping systems

    NASA Astrophysics Data System (ADS)

    Necpalova, Magdalena; Lee, Juhwan; Büchi, Lucie; Mäder, Paul; Mayer, Jochen; Charles, Raphael; van der Heijden, Marcel; Six, Johan

    2016-04-01

    There is a growing need to identify and evaluate sustainable greenhouse gas (GHG) mitigation options, their bio-economic feasibility in the agricultural sector, and support implementation of agricultural GHG mitigation activities that are an integral part of climate change strategies. In recent years, several ecosystem biogeochemical process-based models and comprehensive decision making tools integrated with these models have been developed. The DayCent model simulates all major ecosystem processes that affect soil C and N dynamics, including plant production, water flow, heat transport, SOC decomposition, N mineralization and immobilization, nitrification, denitrification, and methane oxidation. However, if the model is to be reliably used for identification of GHG mitigation options and climate change strategies across the EU agricultural regions, it requires site- and region-specific calibration and evaluation. Here, we calibrated and validated the model to Swiss climate and soil conditions and management options using available long-term experimental data. Data on crop productivity, soil organic carbon and N2O emissions were derived from four field sites located in Thervil (1977-2013), Frick (2003-2013), Changins (1971-2013), and Reckenholz (2009-2013) that have evaluated the effects of agricultural input systems (specifically, organic, biodynamic, and conventional with and without manure additions) and soil management options (various tillage practices and cover cropping). The preliminary results show that the DayCent model was able to reproduce 76% of variability in the crop productivity (n = 1 316) and 75% variability in measured soil organic carbon (n = 402) across all long-term trials. Model calibration was evaluated against independent proportions of the data. The uncertainty in model predictions induced by model structure and uncertainty in the measured data still needs to be further evaluated using the Monte Carlo approach. The calibrated model will be

  8. Soil surface carbon dioxide efflux of bioenergy cropping systems

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Bioenergy cropping systems have been proposed as a way to enhance United States energy security. However, research on greenhouse gas emissions from such systems is needed to ensure environmental sustainability in the field. Since soil aeration properties are dynamic, high-resolution data are needed ...

  9. Economic implications of alternative potato cropping systems in Maine

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Sustainable cropping systems and management practices are needed to improve agricultural viability and rural economic vitality in Maine and the surrounding region. Research is being conducted to 1) identify the constraints to potato system sustainability and 2) develop practices and management strat...

  10. WEBGIS based CropWatch online agriculture monitoring system

    NASA Astrophysics Data System (ADS)

    Zhang, X.; Wu, B.; Zeng, H.; Zhang, M.; Yan, N.

    2015-12-01

    CropWatch, which was developed by the Institute of Remote Sensing and Digital Earth (RADI), Chinese Academy of Sciences (CAS), has achieved breakthrough results in the integration of methods, independence of the assessments and support to emergency response by periodically releasing global agricultural information. Taking advantages of the multi-source remote sensing data and the openness of the data sharing policies, CropWatch group reported their monitoring results by publishing four bulletins one year. In order to better analysis and generate the bulletin and provide an alternative way to access agricultural monitoring indicators and results in CropWatch, The CropWatch online system based on the WEBGIS techniques has been developed. Figure 1 shows the CropWatch online system structure and the system UI in Clustering mode. Data visualization is sorted into three different modes: Vector mode, Raster mode and Clustering mode. Vector mode provides the statistic value for all the indicators over each monitoring units which allows users to compare current situation with historical values (average, maximum, etc.). Users can compare the profiles of each indicator over the current growing season with the historical data in a chart by selecting the region of interest (ROI). Raster mode provides pixel based anomaly of CropWatch indicators globally. In this mode, users are able to zoom in to the regions where the notable anomaly was identified from statistic values in vector mode. Data from remote sensing image series at high temporal and low spatial resolution provide key information in agriculture monitoring. Clustering mode provides integrated information on different classes in maps, the corresponding profiles for each class and the percentage of area of each class to the total area of all classes. The time series data is categorized into limited types by the ISODATA algorithm. For each clustering type, pixels on the map, profiles, and percentage legend are all linked

  11. Toward cropping systems that enhance productivity and sustainability

    PubMed Central

    Cook, R. James

    2006-01-01

    The defining features of any cropping system are (i) the crop rotation and (ii) the kind or intensity of tillage. The trend worldwide starting in the late 20th century has been (i) to specialize competitively in the production of two, three, a single, or closely related crops such as different market classes of wheat and barley, and (ii) to use direct seeding, also known as no-till, to cut costs and save soil, time, and fuel. The availability of glyphosate- and insect-resistant varieties of soybeans, corn, cotton, and canola has helped greatly to address weed and insect pest pressures favored by direct seeding these crops. However, little has been done through genetics and breeding to address diseases caused by residue- and soil-inhabiting pathogens that remain major obstacles to wider adoption of these potentially more productive and sustainable systems. Instead, the gains have been due largely to innovations in management, including enhancement of root defense by antibiotic-producing rhizosphere-inhabiting bacteria inhibitory to root pathogens. Historically, new varieties have facilitated wider adoption of new management, and changes in management have facilitated wider adoption of new varieties. Although actual yields may be lower in direct-seed compared with conventional cropping systems, largely due to diseases, the yield potential is higher because of more available water and increases in soil organic matter. Achieving the full production potential of these more-sustainable cropping systems must now await the development of varieties adapted to or resistant to the hazards shown to account for the yield depressions associated with direct seeding. PMID:17130454

  12. Nitrogen input effectiveness on carbon sequestration in rainfed cropping system

    NASA Astrophysics Data System (ADS)

    Novara, Agata; Gristina, Luciano; Poma, Ignazio

    2016-04-01

    The combined effect of total N and C/N ratio had a large influence on the decomposition rate and consequently on potential soil organic carbon sequestration. The aim of the work was to evaluate Carbon sequestration potentiality under three mineral N fertilization levels in interaction with two cropping systems characterized by addition of N input due to leguminous species in the rotation. The study was carried out in the semiarid Mediterranean environment in a 18years long-term experiment. Is well know that in the semiarid environment the excess of N fertilization reduces biomass yield and the consequent C input. On the contrary, both N and C input determine high difference in C/N input ratio and faster organic matter mineralization. Results showed no influence of N fertilization on SOC sequestration and a reduction of SOC stock due to crop rotation due to lower C input. Crop residue quality of durum wheat-pea crop rotation characterized by a faster decomposition rate could explain the lower ability of crop rotation to sequester C in the semiarid environment.

  13. International crop information system for germplasm data management.

    PubMed

    Portugal, Arllet; Balachandra, Ranjan; Metz, Thomas; Bruskiewich, Richard; McLaren, Graham

    2007-01-01

    Passport and phenotypic data on germplasm and breeding lines are available from worldwide sources in various electronic formats. These data can be collated into a single database format to enable strategic interrogation to make the best use of data for effective germplasm use and enhancement. The International Crop Information System (http://www.icis.cgiar.org) is an open-source project under development by a global community of crop researchers and includes applications designed to achieve the storage and interrogation of pedigree and phenotypic data. PMID:18287707

  14. Increasing cropping system diversity balances productivity, profitability and environmental health

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Balancing productivity, profitability, and environmental health is a key challenge for agricultural sustainability. Most crop production systems in the United States are characterized by low species and management diversity, high use of fossil energy and agrichemicals, and can have large negative im...

  15. Current and future management strategies in intensive crop production systems

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The root-knot nematode Control and Management Strategy chapter addresses the current and future developments in Meloidogyne spp. control in intensive crop production systems. Discussed are current nematode management strategies such as the use of cultural practices, host plant resistance, applicati...

  16. Nitrogen dynamics in integrated crop-livestock systems

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Agriculture has been utterly transformed by the availability of manufactured fertilizers that are inexpensive and easy to transport and handle. Fertilizers severed the need for livestock and poultry manure in crop production. Improved transport systems have allowed farmers to utilize distant markets...

  17. Broiler litter fertilization and cropping system impacts on soil properties

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A 3-year study was conducted at the Mississippi Agricultural and Forestry Experiment Station, Verona, MS, in a Catalpa silty clay loam soil (Fine, smectitic, thermic Fluvaquentic Hapludolls) to evaluate soil chemical, physical, and biological changes resulting from cropping systems along with broile...

  18. Delayed tillage and cover crop effects in potato systems

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Delayed tillage and the inclusion of cover crops can substantially reduce erosion in intensively tilled potato systems. Both of these practices can potentially impact potato (Solanum tuberosum L.)yield and quality via changes in soil temperature and soil water status, and suppression or enhancement...

  19. Weed resistance challenges and management under herbicide resistant cropping systems

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Over the last six decades, herbicides have been the mainstay of weed management in cropping systems around the world, especially in the Western Hemisphere. A direct consequence of intensive use of herbicides is the development of resistance in weed populations. The extreme popularity of transgenic g...

  20. Effect of Conservation Systems and Irrigation on Potential Bioenergy Crops

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Renewable energy production in the United States should increase due to economic, environmental, and national security concerns. In the Southeastern US, annual cellulosic crops could be integrated in rotation systems to produce biofuels. An experiment conducted in South Central Alabama evaluated thr...

  1. Incorporating Grasslands into Cropping Systems: What are the Keys?

    Technology Transfer Automated Retrieval System (TEKTRAN)

    American agriculture in the 20th century has been shaped by social/political, economic, environmental and technological drivers. During this time, American agricultural systems became increasingly specialized and input driven resulting in agricultural production being dominated by ‘commodity crop p...

  2. COVER CROP SYSTEMS AFFECT WEED COMMUNITIES IN A CALIFORNIA VINEYARD

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Vineyard weed communities were examined under four dormant season cover crop systems representative of those used in the north-coastal grape-growing region of California: no-till annuals (rose clover, soft brome, zorro fescue; ANoT), no-till perennials (blue wildrye, California brome, meadow barley,...

  3. Nutrient Use Efficiency in Bioenergy Cropping Systems: Critical Research Questions

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Current U.S. plans for energy security rely on converting large areas of cropland from food to biofuel production. Additionally, lands currently considered too marginal for intensive food production may be considered suitable for biofuels production; predominant cropping systems may shift to more va...

  4. Heavy metals in the soil-crop system

    NASA Astrophysics Data System (ADS)

    Il'in, V. B.

    2007-09-01

    Data on the bulk contents of heavy metals in polluted soils are not quite suitable to judge the ecological situation in an agrocenosis. According to the results of model experiments with artificial contamination of soil, the flux of zinc and lead from the starting point (from a medium loamy leached chernozem) to the final point (wheat grains) sharply decreases. It is possible to obtain an ecologically pure (uncontaminated) grain yield even on a strongly contaminated soil due to the buffering capacity of the latter and due to the self-protective capacity of agricultural crops. The ecological potential of the soil-crop system is formed mostly at the expense of the buffering capacity of soil to heavy metals; the barrier function of plants is less significant. It is argued that the existing ecological standards based on the total contents of heavy metals in soil are of little use for predicting the quality of crops.

  5. Cover crops in vegetable production systems

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Current vegetable production systems require an intensive amount Current vegetable production systems require an intensive amount of work and inputs, and if not properly managed could have detrimental effects on soil and the environment. Practices such as intensive tillage, increased herbicide use, ...

  6. Long-term impacts of cropping systems and landscape positions on grain crop production on claypan soils

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Sustainable grain crop production on vulnerable claypan soils requires improved knowledge of long-term impacts of conservation cropping systems (CS) with reduced inputs. Therefore, effects of CS and landscape positions (LP) on corn (Zea mays L.), soybean [Glycine max (L.) Merr.], and wheat (Triticum...

  7. Long-term impacts of cropping systems and landscape positions on claypan-soil grain crop production

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Sustainable grain crop production on vulnerable claypan soils requires improved knowledge of long-term impacts of conservation cropping systems (CS) with reduced inputs. Therefore, effects of CS and landscape positions (LP) on corn (Zea mays L.), soybean [Glycine max (L.) Merr.], and wheat (Triticum...

  8. Residue and soil carbon sequestration in relation to crop yield as affected by irrigation, tillage, cropping system and nitrogen fertilization

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Information on management practices is needed to increase surface residue and soil C sequestration to obtain farm C credit. The effects of irrigation, tillage, cropping system, and N fertilization were evaluated on the amount of crop biomass (stems and leaves) returned to the soil, surface residue C...

  9. Long-term impacts of cropping systems and landscape positions on clay-pan soil grain crop production

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Sustainable grain crop production on vulnerable claypan soils requires improved knowledge of long-term impacts of conservation cropping systems (CS) with reduced inputs. Therefore, effects of CS and landscape positions (LP) on corn (Zea mays L.), soybean [Glycine max (L.) Merr.], and wheat (Triticum...

  10. Identifying Constraints to Potato Cropping System Sustainability

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Potato yield in the Northeast U.S. has remained constant for over 50 years, despite increased inputs of pesticides, nutrients, and water. Consequently, a key question is: What is limiting potato system sustainability? We established Status Quo, Soil Conserving, Soil Improving, and Disease Suppressiv...

  11. Climate change: Cropping system changes and adaptations

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Climate change impacts the life of every person; however, there is little comprehensive understanding of the direct and indirect effects of climate change on agriculture. Since our food, feed, fiber, and fruit is derived from agricultural systems, understanding the effects of changing temperature, p...

  12. Modeling the growth dynamics of four candidate crops for Controlled Ecological Life Support Systems (CELSS)

    NASA Technical Reports Server (NTRS)

    Volk, Tyler

    1987-01-01

    The production of food for human life support for advanced space missions will require the management of many different crops. The research to design these food production capabilities along with the waste management to recycle human metabolic wastes and inedible plant components are parts of Controlled Ecological Life Support Systems (CELSS). Since complete operating CELSS were not yet built, a useful adjunct to the research developing the various pieces of a CELSS are system simulation models that can examine what is currently known about the possible assembly of subsystems into a full CELSS. The growth dynamics of four crops (wheat, soybeans, potatoes, and lettuce) are examined for their general similarities and differences within the context of their important effects upon the dynamics of the gases, liquids, and solids in the CELSS. Data for the four crops currently under active research in the CELSS program using high-production hydroponics are presented. Two differential equations are developed and applied to the general characteristics of each crop growth pattern. Model parameters are determined by closely approximating each crop's data.

  13. Soil organic carbon assessments in cropping systems using isotopic techniques

    NASA Astrophysics Data System (ADS)

    Martín De Dios Herrero, Juan; Cruz Colazo, Juan; Guzman, María Laura; Saenz, Claudio; Sager, Ricardo; Sakadevan, Karuppan

    2016-04-01

    Introduction of improved farming practices are important to address the challenges of agricultural production, food security, climate change and resource use efficiency. The integration of livestock with crops provides many benefits including: (1) resource conservation, (2) ecosystem services, (3) soil quality improvements, and (4) risk reduction through diversification of enterprises. Integrated crop livestock systems (ICLS) with the combination of no-tillage and pastures are useful practices to enhance soil organic carbon (SOC) compared with continuous cropping systems (CCS). In this study, the SOC and its fractions in two cropping systems namely (1) ICLS, and (2) CCS were evaluated in Southern Santa Fe Province in Argentina, and the use of delta carbon-13 technique and soil physical fractionation were evaluated to identify sources of SOC in these systems. Two farms inside the same soil cartographic unit and landscape position in the region were compared. The ICLS farm produces lucerne (Medicago sativa Merrill) and oat (Avena sativa L.) grazed by cattle alternatively with grain summer crops sequence of soybean (Glicine max L.) and corn (Zea mays L.), and the farm under continuous cropping system (CCS) produces soybean and corn in a continuous sequence. The soil in the area is predominantly a Typic Hapludoll. Soil samples from 0-5 and 0-20 cm depths (n=4) after the harvest of grain crops were collected in each system and analyzed for total organic carbon (SOC, 0-2000 μm), particulate organic carbon (POC, 50-100 μm) and mineral organic carbon (MOC, <50 μm). Delta carbon-13 was determined by isotopic ratio mass spectrometry. In addition, a site with natural vegetation (reference site, REF) was also sampled for delta carbon-13 determination. ANOVA and Tukey statistical analysis were carried out for all data. The SOC was higher in ICLS than in CCS at both depths (20.8 vs 17.7 g kg-1 for 0-5 cm and 16.1 vs 12.7 g kg-1 at 0-20 cm, respectively, P<0.05). MOC was

  14. The use of seasonal forecasts in a crop failure early warning system for West Africa

    NASA Astrophysics Data System (ADS)

    Nicklin, K. J.; Challinor, A.; Tompkins, A.

    2011-12-01

    is assessed along with the extent to which forecasts can be improved by bias correction of the rainfall data. Two forms of bias correction are applied: a novel method of spatially bias correcting daily data, and statistical bias correction of the frequency and intensity distribution. Results are presented using both observed yields and the control run as the reference for verification. The potential for current dynamic seasonal forecasts to form part of an operational system giving timely and accurate warnings of crop failure is discussed. Traore S.B. et al., 2006. A Review of Agrometeorological Monitoring Tools and Methods Used in the West African Sahel. In: Motha R.P. et al., Strengthening Operational Agrometeorological Services at the National Level. Technical Bulletin WAOB-2006-1 and AGM-9, WMO/TD No. 1277. Pages 209-220. www.wamis.org/agm/pubs/agm9/WMO-TD1277.pdf Challinor A.J. et al., 2004. Design and optimisation of a large-area process based model for annual crops. Agric. For. Meteorol. 124, 99-120.

  15. Cover cropping and no-tillage improve soil health in arid irrigated cropping systems

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The impact on soil health of long-term no-tillage (NT) and cover cropping (CC) practices, alone and in combination, was measured and compared with standard tillage (ST) with and without cover crops (NO) in irrigated row crops after 15 years of management in the San Joaquin Valley, CA. Soil aggregat...

  16. Soil moisture mapping in an alley cropping system in Quebec, Canada

    NASA Astrophysics Data System (ADS)

    Hallema, D. W.; Rousseau, A. N.; Gumiere, S. J.

    2012-12-01

    Alley cropping is an agroforestry practice whereby trees are planted in rows, thus creating alleyways within which companion crops are grown. The alley cropping systems as we call them may not only influence the local thermal energy balance by changes in airflow and solar irradiance, but also affect water uptake in plant roots and evapotranspiration. However, our understanding of the soil water balance and regulating mechanisms in alley cropping systems is very limited compared to what we know about the more common monoculture farming. Root systems of the trees are known to interact with soil water dynamics, in that they tend to grow in the direction of soil layers with a water content corresponding to a pF between 2-2.4, and conversely, water flows in the direction of decreasing hydraulic head, which, close to the root system, is in the direction of the roots when the trees absorb water by applying a suction gradient. As such, the trees in alley cropping systems either improve the resilience to drought by retaining more water in the upper soil layers, or they compete with the crops for water. With the eye on the future environmental conditions that may result from a shift in the local climate in southern Quebec, Canada, our objective is to characterize and evaluate the influence of alley cropping systems on soil water dynamics under various climate conditions. In order to evaluate the interaction between root system and soil water dynamics, we adopt an approach divided into three steps: (i) a field campaign where we monitor soil water patterns on an alley cropping site during the growing season; (ii) simulation of these soil water patterns with the HYDRUS model for two-dimensional movement of water; and (iii) the evolution of these patterns for a given scenario of climate change. Our submission focuses on the field campaign in which we used forty-five frequency domain reflectometers (FDR) along a 25-m transect perpendicular to the tree rows in order to monitor

  17. Root system architecture: insights from Arabidopsis and cereal crops

    PubMed Central

    Smith, Stephanie; De Smet, Ive

    2012-01-01

    Roots are important to plants for a wide variety of processes, including nutrient and water uptake, anchoring and mechanical support, storage functions, and as the major interface between the plant and various biotic and abiotic factors in the soil environment. Understanding the development and architecture of roots holds potential for the exploitation and manipulation of root characteristics to both increase food plant yield and optimize agricultural land use. This theme issue highlights the importance of investigating specific aspects of root architecture in both the model plant Arabidopsis thaliana and (cereal) crops, presents novel insights into elements that are currently hardly addressed and provides new tools and technologies to study various aspects of root system architecture. This introduction gives a broad overview of the importance of the root system and provides a snapshot of the molecular control mechanisms associated with root branching and responses to the environment in A. thaliana and cereal crops. PMID:22527386

  18. Tillage and Multiple Cropping Systems and Population Dynamics of Phytoparasitic Nematodes

    PubMed Central

    Gallaher, R. N.; Dickson, D. W.; Corella, J. F.; Hewlett, T. E.

    1988-01-01

    The effect of two cropping and tillage systems on the population dynamics of four nematode species was evaluated on a loamy sand. Hairy vetch succeeded by corn or grain sorghum was seeded in split plots randomized within whole plots of no-tillage versus conventional tillage over four growing seasons (1980-83). The vetch-corn cropping system increased the density of Meloidogyne incognita 2.9 x more than the vetch-grain sorghum cropping system. In contrast, the vetch-grain sorghum cropping system increased the density of Criconemella ornata 0.7 x more than the vetch-corn cropping system. Meloidogyne incognita and C. ornata were affected more by these cropping systems than were Pratylenchus brachyurus or Paratrichodorus minor. Multiple cropping systems, vetch varieties, and crop host preference affected nematode population densities, whereas tillage treatments, conventional or no-tillage, had little effect on them. PMID:19290311

  19. Evaluation of Long-Term Impacts of Tillage and Cropping Systems in Alabama, USA

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Development of sustainable agriculture production systems depends on the use of reliable crop rotations and tillage systems. Understanding the interaction between different cropping and tillage systems as they affect crop yields over the long-term is essential for determining the best alternatives ...

  20. Development of an airborne remote sensing system for crop pest management: System integration and verification

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Remote sensing along with Global Positioning Systems, Geographic Information Systems, and variable rate technology has been developed, which scientists can implement to help farmers maximize the economic and environmental benefits of crop pest management through precision agriculture. Airborne remo...

  1. Crop water productivity under increasing irrigation capacities in Romania. A spatially-explicit assessment of winter wheat and maize cropping systems in the southern lowlands of the country

    NASA Astrophysics Data System (ADS)

    Dogaru, Diana

    2016-04-01

    Improved water use efficiency in agriculture is a key issue in terms of sustainable management and consumption of water resources in the context of peoples' increasing food demands and preferences, economic growth and agricultural adaptation options to climate variability and change. Crop Water Productivity (CWP), defined as the ratio of yield (or value of harvested crop) to actual evapotranspiration or as the ratio of yield (or value of harvested crop) to volume of supplied irrigation water (Molden et al., 1998), is a useful indicator in the evaluation of water use efficiency and ultimately of cropland management, particularly in the case of regions affected by or prone to drought and where irrigation application is essential for achieving expected productions. The present study investigates the productivity of water in winter wheat and maize cropping systems in the Romanian Plain (49 594 sq. km), an important agricultural region in the southern part of the country which is increasingly affected by drought and dry spells (Sandu and Mateescu, 2014). The scope of the analysis is to assess the gains and losses in CWP for the two crops, by considering increased irrigated cropland and improved fertilization, these being the most common measures potentially and already implemented by the farmers. In order to capture the effects of such measures on agricultural water use, the GIS-based EPIC crop-growth model (GEPIC) (Williams et al., 1989; Liu, 2009) was employed to simulate yields, seasonal evapotranspiration from crops and volume of irrigation water in the Romanian Plain for the 2002 - 2013 interval with focus on 2007 and 2010, two representative years for dry and wet periods, respectively. The GEPIC model operates on a daily time step, while the geospatial input datasets for this analysis (e.g. climate data, soil classes and soil parameters, land use) were harmonized at 1km resolution grid cell. The sources of the spatial data are mainly the national profile agencies

  2. Effects of genetically modified herbicide-tolerant cropping systems on weed seedbanks in two years of following crops.

    PubMed

    Firbank, L G; Rothery, P; May, M J; Clark, S J; Scott, R J; Stuart, R C; Boffey, C W H; Brooks, D R; Champion, G T; Haughton, A J; Hawes, C; Heard, M S; Dewar, A M; Perry, J N; Squire, G R

    2006-03-22

    The Farm Scale Evaluations (FSEs) showed that genetically modified herbicide-tolerant (GMHT) cropping systems could influence farmland biodiversity because of their effects on weed biomass and seed production. Recently published results for winter oilseed rape showed that a switch to GMHT crops significantly affected weed seedbanks for at least 2 years after the crops were sown, potentially causing longer-term effects on other taxa. Here, we seek evidence for similar medium-term effects on weed seedbanks following spring-sown GMHT crops, using newly available data from the FSEs. Weed seedbanks following GMHT maize were significantly higher than following conventional varieties for both the first and second years, while by contrast, seedbanks following GMHT spring oilseed rape were significantly lower over this period. Seedbanks following GMHT beet were smaller than following conventional crops in the first year after the crops had been sown, but this difference was much reduced by the second year for reasons that are not clear. These new data provide important empirical evidence for longer-term effects of GMHT cropping on farmland biodiversity. PMID:17148348

  3. The Crop Disease and Pest Warning and Prediction System

    NASA Astrophysics Data System (ADS)

    Luo, Juhua; Huang, Wenjiang; Wang, Jihua; Wei, Chaoling

    The aim of this study was to establish the warning and prediction system for crop diseases and pests based on SuperMap IS. NET geographic information system (GIS), which was developed by Supermap company. In this system, the author used GIS and remote sensing (RS) technology. The system could transform data information into a geographical information map to show the occurrence degree and distribution on various diseases and pests. This paper described mainly warning flow, database design and the main functions of the system. Finally, the system realized successfully the warning of the wheat stripe rust in Xifeng region of Qingyang city in Gansu province in 2002, and the prediction result was satisfactory. It indicated that we could classify and predict diseases and pests, and select right time and technology to control the diseases and pests by this GIS system.

  4. Crop Burning in the North and Northwestern Parts in India and Its Impact on Air Quality and Aerosol Parameters

    NASA Astrophysics Data System (ADS)

    Chauhan, A.

    2015-12-01

    Crop burning in the North and Northwestern parts of India started sometime in 1986 when the farmers started using mechanized forming. During October-November and April-May crop residues are burnt which is a serious health threat to people living in the areas and also it impacts climate of the northern parts of India including Himalayan region. Detailed analysis of satellite data, MODIS, AIRS and OMI AURA have been carried out to study aerosol and meteorological parameters near the source of biomass burning and also at far region. During crop burning period, pronounced changes in the aerosol and meteorological parameters are observed at different pressure levels. The emissions from the crop burning are spread in the Indo-Gangetic plains from west-east, over the Himalayan region and over the central parts of India depending upon the wind direction and wind speed. The air quality changes anomalously affecting the visibility and aerosol parameters. The emissions from crop burning mixes with the local emissions (vehicular and industrial sources) affecting the trace gas concentrations and aerosol optical parameters as a result dense haze fog and smog are observed during burning period. Long range transport of emissions from crop burning over India and its various climatic and health consequences will be presented.

  5. ECONOMIC OPPORTUNITIES FOR REDUCING NET GLOBAL WARMING POTENTIAL IN IRRIGATED CROPPING SYSTEMS IN NORTHEASTERN COLORADO

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A cropping systems field study initiated in 1999 was used in this analysis to evaluate the economic feasibility of achieving reductions in net global warming potential through changes in cropping system management. Crop yield and management information collected from 2000-2005 were used to estimate ...

  6. Statistical modeling of yield and variance instability in conventional and organic cropping systems

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Cropping systems research was undertaken to address declining crop diversity and verify competitiveness of alternatives to the predominant conventional cropping system in the northern Corn Belt. To understand and capitalize on temporal yield variability within corn and soybean fields, we quantified ...

  7. Soil C and N fractions in cropping systems integrated with livestock

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Integration of livestock in cropping systems of the southeastern USA could increase farm income diversity and improve nutrient cycling dynamics to increase resource efficiency. A long-term pasture was terminated and planted to cropping systems with and without cattle grazing of cover crops to deter...

  8. Crop diversification, tillage, and management system influences on spring wheat yield and soil water use

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Depleted soil quality, decreased water availability, and increased weed competition constrain spring wheat production in the northern Great Plains. Integrated crop management systems are necessary for improved crop productivity. We conducted a field experiment from 2004-2010 comparing productivity...

  9. Development of an unmanned agricultural robotics system for measuring crop conditions for precision aerial application

    Technology Transfer Automated Retrieval System (TEKTRAN)

    An Unmanned Agricultural Robotics System (UARS) is acquired, rebuilt with desired hardware, and operated in both classrooms and field. The UARS includes crop height sensor, crop canopy analyzer, normalized difference vegetative index (NDVI) sensor, multispectral camera, and hyperspectral radiometer...

  10. Radiation preservation of foods of plant origin. Part 1. Potatoes and other tuber crops

    SciTech Connect

    Thomas, P.

    1984-01-01

    In Part 1 of a planned series of articles on preservation of foods of plant origin by gamma irradiation, the current state of research on the technological, nutritional, and biochemical aspects of sprout inhibition of potatoes and other tuber crops are reviewed. These include varietal responses, dose effects, time of irradiation, pre- and postirradiation storage, and handling requirements; postirradiation changes in carbohydrates, ascorbic acid, amino acids, and other nutrients; respiration; biochemical mechanisms involved in sprout inhibition; wound healing and microbial infection during storage; formation of wound and light-induced glycoalkaloids and identification of irradiated potatoes. The culinary and processing qualities with particular reference to darkening of boiled and processed potatoes are discussed. The prospects of irradiation on an industrial scale as an alternative to chemical sprout inhibitors or mechanical refrigeration are considered.

  11. Water use in a winter camelina – soybean double crop system

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Double-cropping winter camelina (Camelina sativa) followed by soybean (Glycine max) may increase land-use efficiency by producing food and biofuel in a single season and is a viable cropping system for the northern Corn Belt. However, regional success of double-cropping, especially under dryland con...

  12. Efficacy of fluensulfone in a tomato-cucumber double cropping system

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Vegetable crops in the southeastern U.S. are commonly grown on plastic mulch with two crop cycles produced on a single mulch application. Field trials were conducted in 2013 and 2014 in two locations to evaluate the efficacy of fluensulfone when applied through a drip system to the second crop in a...

  13. SOIL WATER USE AND GRAIN YIELD OF THREE DRYLAND CROPS UNDER DIFFERING TILLAGE SYSTEMS

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Combining the use of drought-adapted and early maturing crops with reduced tillage practices in dryland cropping systems can increase soil water storage, water-use efficiency and crop yields. The objective of this study was to evaluate soil water use by cowpeas (Vigna unguiculata), grain sorghum [So...

  14. Analyzing Water Management and Production Trade-Offs Using Crop Systems Models

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Water management decisions for agricultural cropping systems may be affected by multiple factors, including crop water needs, water availability, water delivery mechanisms, and water rights. A robust tool for improvement of on-farm water management must therefore provide information on crop water r...

  15. The effect of cover cropping systems and nitrogen fertilization on sorghum grain characteristics

    Technology Transfer Automated Retrieval System (TEKTRAN)

    No-till farming has become an increasing popular cropping practice, due to increased water and soil conservation. Recently, cover cropping has been added to the system to aid in weed prevention and also increase soil fertility. The objective of this study was to determine the effect of cropping sy...

  16. An Ultrasonic System for Weed Detection in Cereal Crops

    PubMed Central

    Andújar, Dionisio; Weis, Martin; Gerhards, Roland

    2012-01-01

    Site-specific weed management requires sensing of the actual weed infestation levels in agricultural fields to adapt the management accordingly. However, sophisticated sensor systems are not yet in wider practical use, since they are not easily available for the farmers and their handling as well as the management practice requires additional efforts. A new sensor-based weed detection method is presented in this paper and its applicability to cereal crops is evaluated. An ultrasonic distance sensor for the determination of plant heights was used for weed detection. It was hypothesised that the weed infested zones have a higher amount of biomass than non-infested areas and that this can be determined by plant height measurements. Ultrasonic distance measurements were taken in a winter wheat field infested by grass weeds and broad-leaved weeds. A total of 80 and 40 circular-shaped samples of different weed densities and compositions were assessed at two different dates. The sensor was pointed directly to the ground for height determination. In the following, weeds were counted and then removed from the sample locations. Grass weeds and broad-leaved weeds were separately removed. Differences between weed infested and weed-free measurements were determined. Dry-matter of weeds and crop was assessed and evaluated together with the sensor measurements. RGB images were taken prior and after weed removal to determine the coverage percentages of weeds and crop per sampling point. Image processing steps included EGI (excess green index) computation and thresholding to separate plants and background. The relationship between ultrasonic readings and the corresponding coverage of the crop and weeds were assessed using multiple regression analysis. Results revealed a height difference between infested and non-infested sample locations. Density and biomass of weeds present in the sample influenced the ultrasonic readings. The possibilities of weed group discrimination were

  17. Use of fall-grown oats in dairy cropping systems

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Recently, there has been new (or renewed) interest in alternative forage crops, double-cropping, and cover crops to meet a variety of different management objectives; however, the use of cereal-grain forages figures prominently in many of these management considerations. Work by the USDA-ARS and UW ...

  18. Crop Growth Modeling in the Wind Erosion Prediction System

    Technology Transfer Automated Retrieval System (TEKTRAN)

    On land used for the production of food and fiber, the amount of growing crop and crop residue remaining on the field during no growth periods often determine whether the field is susceptible to the erosion of the soil by wind. The crop growth sub-model component of the Wind Erosion Prediction Syste...

  19. Wireless computer vision system for crop stress detection

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Knowledge of soil water deficits, crop water stress, and biotic stress from disease or insects is important for optimal irrigation scheduling and water management. Crop spectral reflectances provide a means to quantify visible and near infrared thermal crop stress, but in-situ measurements can be cu...

  20. Bio-fuel Cropping Systems Effects on Soil Quality

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Research was conducted to determine the effect of nutrient management practices on bio-fuel crop production, and to evaluate long term effects of bio-fuel crop production on selected chemical, physical and microbiological properties. Experimental plots for research on bio-fuel crops production were ...

  1. Integrated Crop/Livestock Systems Research: Practical research considerations

    Technology Transfer Automated Retrieval System (TEKTRAN)

    There are many reasons for the paucity of integrated crop/livestock research and associated publications. Integrated/crop livestock experiments that involve adequate treatments and replications, as perceived by both crop and animal scientists, require large acreages, many animals, considerable labor...

  2. Emissions of N2O from peat soils under different cropping systems

    NASA Astrophysics Data System (ADS)

    Norberg, Lisbet; Berglund, Örjan; Berglund, Kerstin

    2016-04-01

    Drainage of peatlands for agriculture use leads to an increase in nitrogen turnover rate causing emissions of N2O to the atmosphere. Agriculture contributes to a substantial part of the anthropogenic emissions of N2O therefore mitigation options for the farmers are important. Here we present a field study with the aim to investigate if the choice of cropping system can mitigate the emission of N2O from cultivated organic soils. The sites used in the study represent fen peat soils with a range of different soil properties located in different parts of southern Sweden. All sites are on active farms with good drainage. N2O emissions from the soil under two different crops grown on the same field, with the same soil type, drainage intensity and weather conditions, are compared by gas sampling. The crops included are oat, barley, carrot, potato and grassland. Three or four sampling occasions during the growing season in 2010 were carried out with static chambers. The N2O emission is calculated from the linear increase of gas concentration in the chamber headspace during the incubation time of 40 minutes. Parallel to the gas sampling soil temperature and soil moisture are measured and some soil properties determined. The result from the gas sampling and measurements show no significant difference in seasonal average N2O emission between the compared crops at any site. There are significant differences in N2O emissions between the compared crops at some of the single sampling occasions but the result vary and no crop can be pointed out as a mitigation option. The seasonal average N2O emissions varies from 16±17 to 1319±1971 μg N2O/m2/h with peaks up to 3317 μg N2O/m2/h. The N2O emission rate from peat soils are determined by other factors than the type of crops grown on the field. The emission rates vary during the season and especially between sites. Although all sites are fen peat soil the soil properties are different, e.g. carbon content varies between 27-43% and

  3. Arbuscular Mycorrhizal Fungal Associations in Biofuel Cropping Systems

    NASA Astrophysics Data System (ADS)

    Murray, K.

    2012-12-01

    Arbuscular mycorrhizal fungi (AMF) are soil microorganisms that play an important role in delivering nutrients to plant roots via mutualistic symbiotic relationships. AMF root colonization was compared between four different biofuel cropping systems in an effort to learn more about the factors that control colonization. The four biofuel systems sampled were corn, switchgrass, prairie, and fertilized prairie. We hypothesized that prairie systems would have the highest levels of AMF colonization and that fertilization would result in lower AMF colonization rates. Roots were sampled from each system in early June and mid-July. Soil P and pH were also measured. In contrast to our hypothesis, corn systems had 70-80% colonization and the unfertilized prairie system had ~35% (P=0.001) in June. In July, all systems saw an increase in colonization rate, but corn roots still had significantly more AMF colonization than unfertilized prairie (P=0.001). AMF colonization in the unfertilized prairie system increased ~55% from June to July. In contrast to previous work, AMF colonization rates were highest in systems with the greatest availability on P and N (corn systems). These results indicate that seasonal differences in root growth were more influential to AMF root colonization than soil nutrient availability.

  4. Environmental assessment of two different crop systems in terms of biomethane potential production.

    PubMed

    Bacenetti, Jacopo; Fusi, Alessandra; Negri, Marco; Guidetti, Riccardo; Fiala, Marco

    2014-01-01

    The interest in renewable energy sources has gained great importance in Europe due to the need to reduce fossil energy consumption and greenhouse gas emissions, as required by the Renewable Energy Directive (RED) of the European Parliament. The production of energy from energy crops appears to be consistent with RED. The environmental impact related to this kind of energy primarily originates from crop cultivation. This research aimed to evaluate the environmental impact of different crop systems for biomass production: single and double crop. The environmental performances of maize and maize plus wheat were assessed from a life cycle perspective. Two alternative scenarios considering different yields, crop management, and climatic conditions, were also addressed. One normal cubic metre of potential methane was chosen as a functional unit. Methane potential production data were obtained through lab experimental tests. For both of the crop systems, the factors that have the greatest influence on the overall environmental burden are: fertilizer emissions, diesel fuel emissions, diesel fuel production, and pesticide production. Notwithstanding the greater level of methane potential production, the double crop system appears to have the worse environmental performance with respect to its single crop counterpart. This result is due to the bigger quantity of inputs needed for the double crop system. Therefore, the greater amount of biomass (silage) obtained through the double crop system is less than proportional to the environmental burden that results from the bigger quantity of inputs requested for double crop. PMID:23994820

  5. Assessment of Carbon Sequestration in German Alley Cropping Systems

    NASA Astrophysics Data System (ADS)

    Tsonkova, P. B.; Quinkenstein, A.; Böhm, C.; Freese, D.

    2012-04-01

    Alley cropping systems (ACS) are agroforestry practices in which perennial trees or shrubs are grown in wide rows and arable crops are cultivated in the alleys between the tree rows. Recently, ACS which integrate stripes of short rotation coppices into conventional agricultural sites have gained interest in Germany. These systems can be used for simultaneous production of crops and woody biomass which enables farmers to diversify the provision of market goods. Adding trees into the agricultural landscape creates additional benefits for the farmer and society also known as ecosystem services. An ecosystem service provided by land use systems is carbon sequestration. The literature indicates that ACS are able to store more carbon compared to agriculture and their implementation may lead to greater benefits for the environment and society. Moreover, carbon sequestration in ACS could be included in carbon trading schemes and farmers rewarded additionally for the provision of this ecosystem service. However, methods are required which are easy to use and provide reliable information regarding change in carbon sequestration with change of the land use practice. In this context, our aim was to develop a methodology to assess carbon sequestration benefit provided by ACS in Germany. Therefore, the change of carbon in both soil and biomass had to be considered. To predict the change in soil carbon our methodology combined the 2006 IPCC Guidelines for National Greenhouse Gas Inventories and the soil organic carbon balance recommended by the Association of German Agricultural Investigation and Research Centers (VDLUFA). To reflect the change in biomass carbon average annual yields were adopted. The results showed that ACS established on agricultural sites can increase the carbon stored because in the new soil-plant system carbon content is higher compared to agriculture. ACS have been recommended as suitable land use systems for marginal sites, such as post-mining areas. In

  6. Behavior of atrazine in limited irrigation cropping systems in colorado: prior use is important.

    PubMed

    Shaner, Dale L; Wiles, Lori; Hansen, Neil

    2009-01-01

    Glyphosate-resistant (GR) corn may be a major component of new cropping systems to optimize the use of limited irrigation water supply while sustaining production. Because atrazine is an important tool for residual weed control in GR corn, we examined atrazine binding to soil, dissipation, movement, and early season weed control in limited and full irrigation cropping systems. These systems included continuous corn under conventional tillage and full irrigation (CCC-FI) and under no-tillage and deficit irrigation (CCC-DI), a sunflower-wheat-corn rotation under no-tillage and deficit irrigation (SWC-DI), and a wheat-fallow-wheat-corn rotation under no tillage and natural precipitation (WFWC-NP). Crop rotation and herbicide use history influenced atrazine behavior more than amount or type of irrigation. Atrazine dissipated more rapidly in the top 30 cm of soil in the CCC-FI and CCC-DI plots (half-life [T(1/2)] = 3-12 d), which had received previous applications of the herbicide, compared with the SWC-DI and WFWC-NP plots, which had no history of atrazine use (T(1/2) = 15-22 d). Laboratory assays indicated that the different rates of degradation were at least partly due to differences in microbial degradation in the soil. Atrazine moved the most in the top 30 cm in the SWC-DI and WFWC-NP plots. This greater movement is probably due to the slower rate of atrazine degradation. Studies of the behavior of pre-emergence herbicides in new limited irrigation cropping systems must consider all characteristics of the systems, not just amount and timing of irrigation. PMID:19643751

  7. Microbial Community Composition and Functionality As Affected by An Integrated Crop-Livestock System Compared to Continuous Cotton

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Water availability is a primary limiting factor facing agricultural systems in most semi-arid regions across the world. This study is part of a larger long-term project to develop and evaluate integrated crop and livestocksystems in order to reduce dependence on underground water sources by optimizi...

  8. Benefits of an improved wheat crop information system

    NASA Technical Reports Server (NTRS)

    Kinne, I. L.

    1976-01-01

    The ECON work and the results of the independent reviews are summarized. Attempts are made to put this information into layman's terms and to present the benefits that can realistically be expected from a LANDSAT-type remote sensing system. Further the mechanisms by which these benefits can be expected to accrue are presented. The benefits are given including the nature of expected information improvements, how and why they can lead to benefits to society, and the estimated magnitude of the expected benefits. A brief description is presented of the ECON models, how they work, their results, and a summary of the pertinent aspects of each review. The ECON analyses show that substantial benefits will accrue from implementation of an improved wheat crop information system based on remote sensing.

  9. Climate Change Impacts for the Conterminous USA: An Integrated Assessment Part 5. Irrigated Agriculture and National Grain Crop Production

    SciTech Connect

    Thomson, Allison M.; Rosenberg, Norman J.; Izaurralde, Roberto C.; Brown, Robert A.

    2005-04-01

    Over the next century global warming will lead to changes in weather patterns, affecting many aspects of our environment. In the United States, the one sector of the economy most likely to be directly impacted by the changes in climate is agriculture. We have examined potential changes in dryland agriculture (Part 2) and in water resources necessary for crop production (Part 3). Here we assess to what extent, under a set of climate change scenarios, water supplies will be sufficient to meet the irrigation requirement of major grain crops in the U.S. In addition, we assess the overall impacts of changes in water supply on national grain production. We applied 12 climate change scenarios based on the predictions of General Circulation Models to a water resources model and a crop growth simulator for the conterminous United States. We calculate national production in current crop growing regions by applying irrigation where it is necessary and water is available. Irrigation declines under all climate change scenarios employed in this study. In certain regions and scenarios, precipitation declines so much that water supplies are too limited; in other regions it plentiful enough that little value is derived from irrigation. Total crop production is greater when irrigation is applied, but corn and soybean production declines under most scenarios. Winter wheat production responds significantly to elevated atmospheric CO2 and appears likely to increase under climate change.

  10. RZWQM2 Simulations of Alternative Cropping Systems With and Without Summer Crops in the Central Great Plains

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Integration and synthesis of data accruing from complex alternative crop rotation experiments across locations and climates is a challenge to agriculturists. System simulation models are potential tools to address this challenge. In this study, we simulated three long-term (1991 to 2008) dryland c...

  11. Microbial community structure and abundance in the rhizosphere and bulk soil of a tomato cropping system that includes cover crops

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In this report we use Terminal Restriction Fragment Length Polymorphisms (TRFLP) in a tomato production system to “finger printing” the soil microbial community structure with Phylum specific primer sets. Factors influencing the soil microbes are a cover crop of Hairy Vetch (Vicia villosa) or Rye (...

  12. Carbon sequestration in maize and grass dominant cropping systems in Flanders

    NASA Astrophysics Data System (ADS)

    Van De Vreken, Philippe; Gobin, Anne; Merckx, Roel

    2014-05-01

    differences could also be demonstrated for the carbon fractions of soils with different cropping histories. Each fraction of a GM-topsoil contained significantly more C4-SOC as compared to a SM-topsoil (with or without a second annual crop) with the sizes of the fractions being equal. The more labile POM- en DOC-fractions accounted for the biggest part of the maize C4-SOC detected in the bulk sample, whereas the silt and clay associated SOC and chemically resistant SOC consisted mainly out of old grass C3-SOC. For the deeper soil layers no significant differences could be demonstrated between GM and SM, neither for the total SOC stock nor for the C4-SOC stock. Our results suggest that the soils with maize cropping systems in Flanders are near carbon saturation, such that crop residue management does not influence the total amount, but rather the quality of the carbon sequestered. Stolbovoy, V., Montanarella, L., Filippi, N., Jones, A., Gallego, J., and Grassi, G. (2007). Soil sampling protocol to certify the changes of organic carbon stock in mineral soil of the European Union. Version 2. EUR 21576 EN/2. Office for Official Publications of the European Communities, Luxembourg. 56p. Zimmermann, M., Leifeld, J., Schmidt, M.W.I., Smith, P., and Fuhrer, J. (2007). Measured soil organic matter fractions can be related to pools in the RothC model. European Journal of Soil Science, 58: 658-667.

  13. Effects of different applications of sewage sludge on crops of a cultivated site located in the East part of Romania

    NASA Astrophysics Data System (ADS)

    Balan, A.; Duering, R.; Felix-Henningsen, P.; Raus, L.; Ailincai, C.; Jitareanu, G.

    2009-04-01

    Investigations were carried out in order to determine the effects of sewage sludge application on soil and plants. In the course, plots with an area of 100 sq.m were treated with different fertilization systems (mineral fertilization, organic fertilization, and mineral and organic fertilization). The organic component consisted of sewage sludge in different amounts with a maximum of 30 tons dry substance per ha. Furthermore three tillage systems were installed (conventional tillage system, minimal tillage system and no-tillage system). The content in heavy metals was affect by both fertilization and tillage systems. Winter wheat and rape where sewage sludge was applied, showed a clear increase of Zn and Cd compared to the untreated plots, both in plants and seeds. The increases of applied sewage sludge increased also the contents in both Zn and Cd in plants and seeds of these crops. The effect of the tillage systems on the contents of these heavy metals, shows different results. A higher content of Cd in crops occurred in the no-tillage system and a higher content in Zn was found in crops of the minimal tillage system. A lesser content of Cd and Zn occurred generally in crops of the conventional tillage system. The results of this one-year experiment up to now show no significant negative effects for the food chain according to the present laws and regulations in Romania.

  14. Nitrogen, Tillage, and Crop Rotation Effects On Carbon Dioxide and Methane Fluxes from Irrigated Cropping Systems

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Long-term effects of tillage intensity, N fertilization, and crop rotation on carbon dioxide (CO2) and methane (CH4) flux from semiarid irrigated soils are poorly understood. We evaluated effects of: a) tillage intensity [no-till (NT) and moldboard plow tillage (CT)] in a continuous corn rotation; b...

  15. Sustainable cropping systems using cover crops, native species field borders and riparian buffers for environmental quality

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This presentation will focus on the application of sustainable management practices for no-till cultivation using cover crops, native species field borders, and fast growing woody species integrated in vegetative strips and riparian buffers. An ongoing field project at the Bradford Research and Exte...

  16. An overview of crop growing condition monitoring in China agriculture remote sensing monitoring system

    NASA Astrophysics Data System (ADS)

    Huang, Qing; Zhou, Qing-bo; Zhang, Li

    2009-07-01

    China is a large agricultural country. To understand the agricultural production condition timely and accurately is related to government decision-making, agricultural production management and the general public concern. China Agriculture Remote Sensing Monitoring System (CHARMS) can monitor crop acreage changes, crop growing condition, agriculture disaster (drought, floods, frost damage, pest etc.) and predict crop yield etc. quickly and timely. The basic principles, methods and regular operation of crop growing condition monitoring in CHARMS are introduced in detail in the paper. CHARMS can monitor crop growing condition of wheat, corn, cotton, soybean and paddy rice with MODIS data. An improved NDVI difference model was used in crop growing condition monitoring in CHARMS. Firstly, MODIS data of every day were received and processed, and the max NDVI values of every fifteen days of main crop were generated, then, in order to assessment a certain crop growing condition in certain period (every fifteen days, mostly), the system compare the remote sensing index data (NDVI) of a certain period with the data of the period in the history (last five year, mostly), the difference between NDVI can indicate the spatial difference of crop growing condition at a certain period. Moreover, Meteorological data of temperature, precipitation and sunshine etc. as well as the field investigation data of 200 network counties were used to modify the models parameters. Last, crop growing condition was assessment at four different scales of counties, provinces, main producing areas and nation and spatial distribution maps of crop growing condition were also created.

  17. Effects of a custom cover crop residue manager in a no-till cotton system

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Cover crops are an important part of no-till conservation agriculture, and these crops must produce optimum biomass amounts to effectively protect the soil surface from erosion and runoff, conserve soil water, and provide a physical barrier against weeds. Because of the large amount of residue produ...

  18. Spatiotemporal simulation of changes in rice cropping systems in the Mekong Delta, Vietnam

    NASA Astrophysics Data System (ADS)

    Chen, Cheng-Ru; Chen, Chi-Farn; Son, Nguyen-Thanh

    2015-04-01

    With the dramatic development of agro-economics, population growth, and climate change, the rice cropping systems in the Vietnamese Mekong Delta (VMD) have been undergoing a major change. Information on rice cropping practices and changes in cropping systems is critical for policymakers to devise successful strategies to ensure food security and rice grain exports for the country. The primary objective of this research is to map rice cropping systems and predict future dynamics of rice cropping systems using MODIS time-series data from 2002 to 2012. A phenology-based classification approach was applied for the classification and assessment of rice cropping systems. Then, the Cellular Automata-Markov (CA-Markov) model was used to simulate future changes in rice-cropping activities. To obtain precise prediction, a calibration of CA-Markov were implemented by using a series of rice crop maps. The comparisons between the classification maps and the ground reference data indicated satisfactory results with overall accuracies above 81%, and Kappa coefficients above 0.75, respectively. The simulated maps of rice cropping systems for 2010-2012 were extrapolated by CA-Markov model based on the trend of rice cropping systems during 2002-2009. The comparison between the predicted scenarios and the classification maps for 2010-2012 presents a reasonably close agreement. In summary, the CA-Markov model with a long-term calibration confirmed the validity of the approach for dynamic modeling of changes in rice cropping systems in the study region. The results obtained from this study demonstrate that the approach produced satisfactory results in terms of accuracy, quantitative forecast, and spatial pattern changes. Thus, projections of future changes would provide useful information for the agricultural policymakers in respect to formulating effective management strategies of rice cropping practices in VMD.

  19. Black oat cover crop management in watermelon production systems

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Black oats (Avena strigosa Schreb.) were sown as a cover crop near Weslaco, Texas (Lat. 26 deg N) in Fall 2010. The cover crop was allowed to senesce naturally and was planted to watermelons in both the spring and in the fall of 2011. Watermelon transplants planted in the spring into mowed black o...

  20. Nutsedge-vegetable crop interactions in mulched systems

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Due to the lack of effective control, purple nutsedge and yellow nutsedge are considered the most troublesome weeds of vegetable crops in the Southeast US. It is important to evaluate whether nutsedge control is necessary for economical vegetable crop production. There are several compelling reason...

  1. Managing Soil Properties through Dryland Cropping System Intensities

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Modification of soil functioning/quality parameters (i.e., organic matter content) is important to improve the capacity of soil as a water storage-reservoir for crop production in dryland. A long-term dryland cropping research study was established at the USDA-ARS farm near Lubbock, Texas in 2003, ...

  2. Blue light requirements for crop plants used in bioregenerative life support systems.

    PubMed

    Yorio, N C; Wheeler, R M; Goins, G D; Sanwo-Lewandowski, M M; Mackowiak, C L; Brown, C S; Sager, J C; Stutte, G W

    1998-01-01

    As part of NASA's Advanced Life Support Program, the Breadboard Project at Kennedy Space Center is investigating the feasibility of using crop plants in bioregenerative life support systems (BLSS) for long-duration space missions. Several types of electric lamps have been tested to provide radiant energy for plants in a BLSS. These lamps vary greatly in terms of spectral quality resulting in differences in growth and morphology of the plants tested. Broad spectrum or "white" light sources (e.g., metal halide and fluorescent lamps) provide an adequate spectrum for normal growth and morphology; however, they are not as electrically efficient as are low-pressure sodium (LPS) or high-pressure sodium (HPS) lamps. Although LPS and HPS, as well as the newly tested red light-emitting diodes (LEDs), have good photosynthetically active radiation (PAR) efficiencies, they are deficient in blue light. Results with several of the crops tested for BLSS (wheat, potato, soybean, lettuce, and radish) have shown a minimum amount of blue light (approximately 30 micromoles m-2 s-1) is necessary for normal growth and development. For example, the lack of sufficient blue light in these lamps has resulted in increased stem elongation and significant reductions in photosynthesis and yield. To avoid problems with blue-deficient lamps and maximize yield, sufficient intensity of HPS or blue light supplementation with red LEDs or LPS lamps is required to meet spectral requirements of crops for BLSS. PMID:11541667

  3. A crop population perspective on maize seed systems in Mexico.

    PubMed

    Dyer, George A; Taylor, J Edward

    2008-01-15

    Improvement of local germplasm through artificial selection is regarded as the main force behind maize evolution and diversity in Mexico, the crop's center of origin. This perspective neglects the larger social context of maize evolution. Using a theoretical approach and Mexico-wide data, we show that farmer-led evolution of maize is largely driven by a technological diffusion and appropriation process that selectively integrates nonlocal germplasm into local seed stocks. Our approach construes farmer practices as events in the life history of seed to build a demographic model. The model shows how random and systematic differences in management combine to structure maize seed populations into subpopulations that can spread or become extinct, in some cases independently of visible agronomic advantages. The process involves continuous population bottlenecks that can lead to diversity loss. Nonlocal germplasm thus might play a critical role in maintaining diversity in individual localities. Empirical estimates show that introduction of nonlocal seed in Central and Southeastern Mexico is rarer than previously thought; prompt replacement further prevents new seed from spreading. Yet introduced seed perceived as valuable diffuses rapidly, contributing variation in the form of type diversity or through introgression into local seed. Maize seed dynamics and evolution are thus part of a complex social process driven by farmers' desire to appropriate the value in maize farming, not always achieved by preserving or improving local seed stocks. PMID:18184814

  4. Management and tillage system influence forage barley productivity and water use in dryland cropping systems

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Annual cereal forages are resilient in low water use, high water use efficiency (WUE), and weed control compared with grain crops in dryland farming systems. The combined influence of tillage and management systems on annual cereal forage productivity and water use, however, has not been well docume...

  5. How efficiently do corn- and soybean-based cropping systems use water? A systems modeling analysis.

    PubMed

    Dietzel, Ranae; Liebman, Matt; Ewing, Robert; Helmers, Matt; Horton, Robert; Jarchow, Meghann; Archontoulis, Sotirios

    2016-02-01

    Agricultural systems are being challenged to decrease water use and increase production while climate becomes more variable and the world's population grows. Low water use efficiency is traditionally characterized by high water use relative to low grain production and usually occurs under dry conditions. However, when a cropping system fails to take advantage of available water during wet conditions, this is also an inefficiency and is often detrimental to the environment. Here, we provide a systems-level definition of water use efficiency (sWUE) that addresses both production and environmental quality goals through incorporating all major system water losses (evapotranspiration, drainage, and runoff). We extensively calibrated and tested the Agricultural Production Systems sIMulator (APSIM) using 6 years of continuous crop and soil measurements in corn- and soybean-based cropping systems in central Iowa, USA. We then used the model to determine water use, loss, and grain production in each system and calculated sWUE in years that experienced drought, flood, or historically average precipitation. Systems water use efficiency was found to be greatest during years with average precipitation. Simulation analysis using 28 years of historical precipitation data, plus the same dataset with ± 15% variation in daily precipitation, showed that in this region, 430 mm of seasonal (planting to harvesting) rainfall resulted in the optimum sWUE for corn, and 317 mm for soybean. Above these precipitation levels, the corn and soybean yields did not increase further, but the water loss from the system via runoff and drainage increased substantially, leading to a high likelihood of soil, nutrient, and pesticide movement from the field to waterways. As the Midwestern United States is predicted to experience more frequent drought and flood, inefficiency of cropping systems water use will also increase. This work provides a framework to concurrently evaluate production and

  6. A quality assessment of the MARS crop yield forecasting system for the European Union

    NASA Astrophysics Data System (ADS)

    van der Velde, Marijn; Bareuth, Bettina

    2015-04-01

    Timely information on crop production forecasts can become of increasing importance as commodity markets are more and more interconnected. Impacts across large crop production areas due to (e.g.) extreme weather and pest outbreaks can create ripple effects that may affect food prices and availability elsewhere. The MARS Unit (Monitoring Agricultural ResourceS), DG Joint Research Centre, European Commission, has been providing forecasts of European crop production levels since 1993. The operational crop production forecasting is carried out with the MARS Crop Yield Forecasting System (M-CYFS). The M-CYFS is used to monitor crop growth development, evaluate short-term effects of anomalous meteorological events, and provide monthly forecasts of crop yield at national and European Union level. The crop production forecasts are published in the so-called MARS bulletins. Forecasting crop yield over large areas in the operational context requires quality benchmarks. Here we present an analysis of the accuracy and skill of past crop yield forecasts of the main crops (e.g. soft wheat, grain maize), throughout the growing season, and specifically for the final forecast before harvest. Two simple benchmarks to assess the skill of the forecasts were defined as comparing the forecasts to 1) a forecast equal to the average yield and 2) a forecast using a linear trend established through the crop yield time-series. These reveal a variability in performance as a function of crop and Member State. In terms of production, the yield forecasts of 67% of the EU-28 soft wheat production and 80% of the EU-28 maize production have been forecast superior to both benchmarks during the 1993-2013 period. In a changing and increasingly variable climate crop yield forecasts can become increasingly valuable - provided they are used wisely. We end our presentation by discussing research activities that could contribute to this goal.

  7. Longer-term potato cropping system effects on soilborne diseases and tuber yield

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In field trials established in 2004, different 3-yr potato cropping systems focused on specific crop management goals of (SC) soil conservation, (SI) soil improvement, and (DS) disease-suppression were evaluated for their effects on soilborne diseases and tuber yield. These systems were compared to ...

  8. Behavior of Atrazine In Limited Irrigation Cropping Systems in Colorado: Prior Use Is Important

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The Irrigation Water Optimization Project was begun in 2005 at Colorado State University to develop cropping systems to optimize use of limited irrigation water supply while sustaining production. Corn is a major component of many of these cropping systems and atrazine is used to provide residual w...

  9. Challenges and opportunities for mitigating nitrous oxide emissions from fertilized cropping systems

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Nitrous oxide (N2O) represents in many cases the largest single component of the greenhouse gas (GHG) budget of individual cropping systems and for the U.S. agricultural sector as a whole. Reducing N2O emissions from cropping systems remains a research frontier largely because of biophysical factors...

  10. Evaluation of Learning Group Approaches for Fostering Integrated Cropping Systems Management

    ERIC Educational Resources Information Center

    Blissett, Hana; Simmons, Steve; Jordan, Nicholas; Nelson, Kristen

    2004-01-01

    Cropping systems management requires integration of multiple forms of knowledge, practice, and learning by farmers, extension educators, and researchers. We evaluated the outcomes of participation in collaborative learning groups organized to address cropping systems and, specifically, challenges of integrated weed management. Groups were…

  11. Comparison of simulated and observed N2O gas emission rates from bioenergy cropping systems

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Nitrous oxide is the largest greenhouse gas source from crop systems. DAYCENT was used to compare N2O emissions from the following 3 bioenergy cropping systems: switchgrass, reed canarygrass, and a rotation of 3 yr corn, 1 yr soybeans, and 4 yr alfalfa. Although DAYCENT did not always capture the ob...

  12. Early changes due to sorghum biofuel cropping systems in soil microbial communities and metabolic functioning

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Evaluation of biofuel production cropping systems should address not only energy yields but also the impacts on soil attributes are important for long-term sustainability. In this study, forage sorghum (Sorghum bicolor L. Moench) cropping systems were initiated on a low organic matter soil (< 0.9%)...

  13. APEX Simulations of Productivity for 9 Cropping Systems over 19 Years in 3 Claypan Landscape Positions

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Prior research has shown that conventional corn-soybean cropping systems are economically riskier in the claypan MLRA, caused by variable rain and limited water holding capacity above the low-permeability claypan. These observations prompted research into alternative cropping systems that offer more...

  14. Soil profile organic carbon as affected by tillage and cropping systems

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Reports on the long-term effects of tillage and cropping systems on soil organic carbon (SOC) sequestration in the entire rooting profile are limited. A long-term experiment with three cropping systems [continuous corn (CC), continuous soybean (CSB), and soybean-corn (SB-C)] in six primary tillage s...

  15. A low-cost microcontroller-based system to monitor crop temperature and water status

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A prototype microcontroller-based system was developed to automate the measurement and recording of soil-moisture status and canopy-, air-, and soil-temperature levels in cropped fields. Measurements of these conditions within the cropping system are often used to assess plant stress, and can assis...

  16. Early Changes Due to Sorghum Biofuel Cropping Systems in Soil Microbial Communities and Metabolic Functioning

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Evaluation of biofuel production cropping systems needs to address not only energy yields but also the impacts on soil attributes important for long-term sustainability. In this study, forage sorghum (Sorghum bicolor L. Moench) cropping systems were initiated on a low organic matter soil (<0.9%) wi...

  17. Trade-Offs between Economic and Environmental Impacts of Introducing Legumes into Cropping Systems

    PubMed Central

    Reckling, Moritz; Bergkvist, Göran; Watson, Christine A.; Stoddard, Frederick L.; Zander, Peter M.; Walker, Robin L.; Pristeri, Aurelio; Toncea, Ion; Bachinger, Johann

    2016-01-01

    Europe's agriculture is highly specialized, dependent on external inputs and responsible for negative environmental impacts. Legume crops are grown on less than 2% of the arable land and more than 70% of the demand for protein feed supplement is imported from overseas. The integration of legumes into cropping systems has the potential to contribute to the transition to a more resource-efficient agriculture and reduce the current protein deficit. Legume crops influence the production of other crops in the rotation making it difficult to evaluate the overall agronomic effects of legumes in cropping systems. A novel assessment framework was developed and applied in five case study regions across Europe with the objective of evaluating trade-offs between economic and environmental effects of integrating legumes into cropping systems. Legumes resulted in positive and negative impacts when integrated into various cropping systems across the case studies. On average, cropping systems with legumes reduced nitrous oxide emissions by 18 and 33% and N fertilizer use by 24 and 38% in arable and forage systems, respectively, compared to systems without legumes. Nitrate leaching was similar with and without legumes in arable systems and reduced by 22% in forage systems. However, grain legumes reduced gross margins in 3 of 5 regions. Forage legumes increased gross margins in 3 of 3 regions. Among the cropping systems with legumes, systems could be identified that had both relatively high economic returns and positive environmental impacts. Thus, increasing the cultivation of legumes could lead to economic competitive cropping systems and positive environmental impacts, but achieving this aim requires the development of novel management strategies informed by the involvement of advisors and farmers. PMID:27242870

  18. Trade-Offs between Economic and Environmental Impacts of Introducing Legumes into Cropping Systems.

    PubMed

    Reckling, Moritz; Bergkvist, Göran; Watson, Christine A; Stoddard, Frederick L; Zander, Peter M; Walker, Robin L; Pristeri, Aurelio; Toncea, Ion; Bachinger, Johann

    2016-01-01

    Europe's agriculture is highly specialized, dependent on external inputs and responsible for negative environmental impacts. Legume crops are grown on less than 2% of the arable land and more than 70% of the demand for protein feed supplement is imported from overseas. The integration of legumes into cropping systems has the potential to contribute to the transition to a more resource-efficient agriculture and reduce the current protein deficit. Legume crops influence the production of other crops in the rotation making it difficult to evaluate the overall agronomic effects of legumes in cropping systems. A novel assessment framework was developed and applied in five case study regions across Europe with the objective of evaluating trade-offs between economic and environmental effects of integrating legumes into cropping systems. Legumes resulted in positive and negative impacts when integrated into various cropping systems across the case studies. On average, cropping systems with legumes reduced nitrous oxide emissions by 18 and 33% and N fertilizer use by 24 and 38% in arable and forage systems, respectively, compared to systems without legumes. Nitrate leaching was similar with and without legumes in arable systems and reduced by 22% in forage systems. However, grain legumes reduced gross margins in 3 of 5 regions. Forage legumes increased gross margins in 3 of 3 regions. Among the cropping systems with legumes, systems could be identified that had both relatively high economic returns and positive environmental impacts. Thus, increasing the cultivation of legumes could lead to economic competitive cropping systems and positive environmental impacts, but achieving this aim requires the development of novel management strategies informed by the involvement of advisors and farmers. PMID:27242870

  19. [Effects of crop rotation and bio-organic manure on soil microbial characteristics of Chrysanthemum cropping system].

    PubMed

    Xiao, Xin; Zhu, Wei; Du, Chao; Shi, Ya-dong; Wang, Jian-fei

    2015-06-01

    We conducted a field experiment to evaluate the effects of rotation system and bio-organic manure on soil microbial characteristics of Chrysanthemum cropping system. Taking Chrysanthemum morifolium Ramat and wheat as experimental plants, treatments under Chrysanthemum continuous cropping system (M1), conventional Chrysanthemum-wheat rotation system (M2), and Chrysanthemum-wheat rotation system receiving bio-organic manure application of 200 kg · 667 m(-2) (M3) were designed. Soil chemical properties, soil microbial biomass carbon (MBC) and nitrogen (MBN), and the amounts of different types of soil microorganisms were determined. Results showed that compared with M1, treatments of M2 and M3 significantly increased soil pH, organic matter, available N, P, and K, MBC, MBN, and the amounts of bacteria, fungi and actinomycetes, but decreased the ratio of MBC/MBN, and the relative percentage of fungi in the total amount of microorganisms. Treatment of M3 had the highest contents of soil organic matter, available N, available P, available K, MBC, MBN, and the amounts of bacteria, fungi and actinomycetes, with the values being 15.62 g · kg(-1), 64.75 mg · kg(-1), 83.26 mg · kg(-1), 96.72 mg · kg(-1), 217.40 mg · kg(-1), 38.41 mg · kg(-1), 22.31 x 10(6) cfu · g(-1), 56.36 x 10(3) cfu · g(-1), 15.90 x 10(5) cfu · g(-1), respectively. We concluded that rational crop rotation and bio-organic manure application could weaken soil acidification, improve soil fertility and microbial community structure, increase the efficiency of nutrition supply, and have a positive effect on reducing the obstacles of continuous cropping. PMID:26572032

  20. Radiation preservation of foods of plant origin. Part 2. Onions and other bulb crops.

    PubMed

    Thomas, P

    1984-01-01

    The various factors contributing to post harvest losses in onions and other bulb crops are briefly outlined in terms of the current storage methods. The present status of research on sprout inhibition by irradiation is reviewed in detail with respect to dose requirements, effect of time interval between harvest and irradiation, and the influence of environment on sprouting during storage. Biochemical mechanisms of sprout inhibition, metabolic and compositional changes (particularly sugars, anthocyanins, flavor and lachrymatory principles), and the culinary and processing qualities of irradiated onions are discussed. The future prospects for the commercial irradiation for sprout inhibition of bulb crops are considered. PMID:6386340

  1. Radiation preservation of foods of plant origin. Part 2. Onions and other bulb crops

    SciTech Connect

    Thomas, P.

    1984-01-01

    The various factors contributing to post harvest losses in onions and other bulb crops are briefly outlined in terms of the current storage methods. The present status of research on sprout inhibition by irradiation is reviewed in detail with respect to dose requirements, effect of time interval between harvest and irradiation, and the influence of environment on sprouting during storage. Biochemical mechanisms of sprout inhibition, metabolic and compositional changes (particularly sugars, anthocyanins, flavor and lachrymatory principles), and the culinary and processing qualities of irradiated onions are discussed. The future prospects for the commercial irradiation for sprout inhibition of bulb crops are considered.

  2. Cropping systems and control of soil erosion in a Mediterranean environment

    NASA Astrophysics Data System (ADS)

    Cosentino, Salvatore; Copani, Venera; Testa, Giorgio; Scalici, Giovanni

    2013-04-01

    The research has been carried out over the years 1996-2010 in an area of the internal hill of Sicily region (Enna, c.da Geracello, 550 m a. s. l. 37° 23' N. Lat, 14° 21' E. Long) in the center of Mediterranean Sea, mainly devoted to durum wheat cultivation, using the experimental plots, established in 1996 on a slope of 26-28%, equipped to determine surface runoff and soil losses. The establishment consists of twelve plots, having 40 m length and 8 m width. In order to study the effect of different field crop systems in controlling soil erosion in slopes subjected to water erosion, the following systems were studied: permanent crops, tilled annual crops, no-tilled annual crops, set-aside. The used crops were: durum wheat, faba bean, rapeseed, subterranean clover, Italian ryegrass, alfalfa, sweetvetch, moon trefoil, barley, sweet sorghum, sunflower. The results pointed out that the cropping systems with perennial crops allowed to keep low the soil loss, while annual crop rotation determined a high amount of soil loss. Sod seeding showed promising results also for annual crop rotations.

  3. Can subsurface drip irrigation (SDI) be a competitive irrigation system in the Great Plains region for commodity crops

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Subsurface drip irrigation (SDI) as with all microirrigation systems is typically only used on crops with greater value. In the U.S. Great Plains region, the typical irrigated crops are the cereal and oil seed crops and cotton. These crops have less economic revenue than typical microirrigated cro...

  4. Crop water productivity under increasing irrigation capacities in Romania. A spatially-explicit assessment of winter wheat and maize cropping systems in the southern lowlands of the country

    NASA Astrophysics Data System (ADS)

    Dogaru, Diana

    2016-04-01

    Improved water use efficiency in agriculture is a key issue in terms of sustainable management and consumption of water resources in the context of peoples' increasing food demands and preferences, economic growth and agricultural adaptation options to climate variability and change. Crop Water Productivity (CWP), defined as the ratio of yield (or value of harvested crop) to actual evapotranspiration or as the ratio of yield (or value of harvested crop) to volume of supplied irrigation water (Molden et al., 1998), is a useful indicator in the evaluation of water use efficiency and ultimately of cropland management, particularly in the case of regions affected by or prone to drought and where irrigation application is essential for achieving expected productions. The present study investigates the productivity of water in winter wheat and maize cropping systems in the Romanian Plain (49 594 sq. km), an important agricultural region in the southern part of the country which is increasingly affected by drought and dry spells (Sandu and Mateescu, 2014). The scope of the analysis is to assess the gains and losses in CWP for the two crops, by considering increased irrigated cropland and improved fertilization, these being the most common measures potentially and already implemented by the farmers. In order to capture the effects of such measures on agricultural water use, the GIS-based EPIC crop-growth model (GEPIC) (Williams et al., 1989; Liu, 2009) was employed to simulate yields, seasonal evapotranspiration from crops and volume of irrigation water in the Romanian Plain for the 2002 - 2013 interval with focus on 2007 and 2010, two representative years for dry and wet periods, respectively. The GEPIC model operates on a daily time step, while the geospatial input datasets for this analysis (e.g. climate data, soil classes and soil parameters, land use) were harmonized at 1km resolution grid cell. The sources of the spatial data are mainly the national profile agencies

  5. Pressure Control System Design for a Closed Crop Growth Chamber

    NASA Technical Reports Server (NTRS)

    Tsai, K.; Blackwell, C.; Harper, Lynn D. (Technical Monitor)

    1994-01-01

    The Controlled Ecological Life Support System (CELSS) is an area of active research at NASA. CELSS is a plant-based bioregenerative life support system for long term manned space flights where resupply is costly or impractical. The plants in a CELSS will function to convert the carbon dioxide (exhaled by the crew) into oxygen, purify non-potable water into potable quality water, and provide food for the crew. Prior to implementing a CELSS life support system, one must have knowledge on growing plants in a closed chamber under low gravity. This information will come from research to be conducted on the CELSS Test Facility that will operate on the Space Station Freedom. Currently a ground-based CELSS Test Facility is being built at NASA Ames Research Center. It is called the EDU (Engineering Development Unit). This system will allow researchers to identify issues that may cause difficulties in the development of the CELSS Test Facility and aid in the development of new needed technologies. The EDU consists of a 1 m2 crop growth chamber that is surrounded by a containment enclosure. The containment enclosure isolates the system so there is very little mass and thermal exchange with the ambient. The leakage rate is on the order of 1 % of the enclosure's volume per day (with 0.2S psi pressure difference). The thermal leakage is less than 0.5% of the electrical power supplied to the system per degree Celsius difference from the surrounding. The pressure in the containment enclosure is regulated at 62.5 Pa below the ambient by an active controller. The goal is to maintain this set point for a variety of conditions, such as a range of operating temperatures, heat load variations that occur when the lights are turned on and off, and fluctuations in ambient pressure. In addition certain transition tracking performance is required. This paper illustrates the application of some advanced systems control methods to the task of synthesizing the EDU's pressure control system.

  6. Assessing Nutritional Diversity of Cropping Systems in African Villages

    PubMed Central

    DeClerck, Fabrice; Diru, Willy; Fanzo, Jessica; Gaynor, Kaitlyn; Lambrecht, Isabel; Mudiope, Joseph; Mutuo, Patrick K.; Nkhoma, Phelire; Siriri, David; Sullivan, Clare; Palm, Cheryl A.

    2011-01-01

    Background In Sub-Saharan Africa, 40% of children under five years in age are chronically undernourished. As new investments and attention galvanize action on African agriculture to reduce hunger, there is an urgent need for metrics that monitor agricultural progress beyond calories produced per capita and address nutritional diversity essential for human health. In this study we demonstrate how an ecological tool, functional diversity (FD), has potential to address this need and provide new insights on nutritional diversity of cropping systems in rural Africa. Methods and Findings Data on edible plant species diversity, food security and diet diversity were collected for 170 farms in three rural settings in Sub-Saharan Africa. Nutritional FD metrics were calculated based on farm species composition and species nutritional composition. Iron and vitamin A deficiency were determined from blood samples of 90 adult women. Nutritional FD metrics summarized the diversity of nutrients provided by the farm and showed variability between farms and villages. Regression of nutritional FD against species richness and expected FD enabled identification of key species that add nutrient diversity to the system and assessed the degree of redundancy for nutrient traits. Nutritional FD analysis demonstrated that depending on the original composition of species on farm or village, adding or removing individual species can have radically different outcomes for nutritional diversity. While correlations between nutritional FD, food and nutrition indicators were not significant at household level, associations between these variables were observed at village level. Conclusion This study provides novel metrics to address nutritional diversity in farming systems and examples of how these metrics can help guide agricultural interventions towards adequate nutrient diversity. New hypotheses on the link between agro-diversity, food security and human nutrition are generated and strategies for

  7. A National Crop Progress Monitoring and Decision Support System Based on NASA Earth Science Results

    NASA Astrophysics Data System (ADS)

    di, L.; Yang, Z.

    2009-12-01

    Timely and accurate information on weekly crop progress and development is essential to a dynamic agricultural industry in the U. S. and the world. By law, the National Agricultural Statistics Service (NASS) of the U. S. Department of Agriculture’s (USDA) is responsible for monitoring and assessing U.S. agricultural production. Currently NASS compiles and issues weekly state and national crop progress and development reports based on reports from knowledgeable state and county agricultural officials and farmers. Such survey-based reports are subjectively estimated for an entire county, lack spatial coverage, and are labor intensive. There has been limited use of remote sensing data to assess crop conditions. NASS produces weekly 1-km resolution un-calibrated AVHRR-based NDVI static images to represent national vegetation conditions but there is no quantitative crop progress information. This presentation discusses the early result for developing a National Crop Progress Monitoring and Decision Support System. The system will overcome the shortcomings of the existing systems by integrating NASA satellite and model-based land surface and weather products, NASS’ wealth of internal crop progress and condition data and Cropland Data Layers (CDL), and the Farm Service Agency’s (FSA) Common Land Units (CLU). The system, using service-oriented architecture and web service technologies, will automatically produce and disseminate quantitative national crop progress maps and associated decision support data at 250-m resolution, as well as summary reports to support NASS and worldwide users in their decision-making. It will provide overall and specific crop progress for individual crops from the state level down to CLU field level to meet different users’ needs on all known croplands. This will greatly enhance the effectiveness and accuracy of the NASS aggregated crop condition data and charts of and provides objective and scientific evidence and guidance for the

  8. Assessing the Impact of Climate Change on Columbia River Basin Agriculture through Integrated Crop Systems, Hydrologic, and Water Management Modeling

    NASA Astrophysics Data System (ADS)

    Rajagopalan, K.; Chinnayakanahalli, K.; Adam, J. C.; Barber, M. E.; Yorgey, G.; Stockle, C.; Nelson, R.; Brady, M.; Dinesh, S.; Malek, K.; Kruger, C.; Yoder, J.; Marsh, T.

    2011-12-01

    The Columbia River Basin (CRB) in the Pacific Northwest covers parts of US and Canada with a total drainage area of about 670,000 square kilometers. The water resources of the CRB are managed to satisfy multiple objectives including agricultural withdrawal, which is the largest consumptive user of Columbia River water with 14,000 square kilometers of irrigated area in the CRB. Agriculture is an important component of the economy in the region, with an annual value over $5 billion in Washington State alone. The availability of surface water for irrigation in the basin is expected to be negatively impacted by climate change. Previous climate change studies in the CRB region suggest a likelihood of increasing temperatures and a shift in precipitation patterns, with precipitation higher in the winter and lower in the summer. Warming further exacerbates summer water availability in many CRB tributaries as they shift from snowmelt-dominant towards rain-dominant hydrologic regimes. The goal of this research is to study the impacts of climate change on CRB water availability and agricultural production in the expectation that curtailment will occur more frequently in an altered climate. Towards this goal it is essential that we understand the interactions between crop-growth dynamics, climate dynamics, the hydrologic cycle, water management, and agricultural economy. To study these interactions at the regional scale, we use the newly developed crop-hydrology model VIC-CropSyst, which integrates a crop growth model CropSyst with the hydrologic model, Variable Infiltration Capacity (VIC). Simulation of future climate by VIC-CropSyst captures the socio-economic aspects of this system through economic analysis of the impacts of climate change on crop patterns. This integrated framework (submitted as a separate paper) is linked to a reservoir operations simulations model, Colsim. ColSim is modified to explicitly account for agricultural withdrawals. Washington State water

  9. NITROGEN FERTILIZATION EFFECTS ON NITROUS OXIDE EMISSIONS FROM IRRIGATED CROPPING SYSTEMS

    Technology Transfer Automated Retrieval System (TEKTRAN)

    We evaluated the effects of N fertilization and irrigated crop management practices on nitrous oxide (N2O) emissions. Emissions were monitored from several irrigated cropping systems receiving N fertilizer rates (0, 67, 134, and 246 kg N/ha) during the 2006 growing season and N rates of 0 and 246 ...

  10. MODELING GREENHOUSE GAS EMISSIONS FROM BIOENERGY CROPPING SYSTEMS IN PENNSYLVANIA USING DAYCENT

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Reducing the net global warming potential (GWP) of energy use is a major factor driving interest in biofuels. Bioenergy cropping systems vary in contribution to the GWP due to the crop yield and resulting quantity of fossil fuels displaced, quantity and quality of C added to the soil, feedstock conv...

  11. Development of early and late blight under different cropping systems and irrigation management

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Crop and soil management may influence development and control of early and late blight; however, their effects are not well documented. From 2006-2008, we evaluated the effects of cropping system and irrigation on incidence and severity of early and late blight of potato, and on microclimatic param...

  12. Simulating Alternative Dryland Rotational Cropping Systems in the Central Great Plains with RZWQM2

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Long-term crop rotation effects on crop water use and yield have been investigated in the Central Great Plains since the 1990s. System models are needed to synthesize these long-term results for making management decisions and for transferring localized data to other conditions. The objectives of th...

  13. Yields in stripper header vs conventional header in dryland cropping systems

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Differences in crop residue quality can impact the amount of soil water storage in semi-arid no-till systems of the West Central Great Plains. Using a stripper header as opposed to a conventional-reel type header to harvest small grains impacts the quality of the crop residue left in the field. Pr...

  14. Potential to develop crops to contribute to food security conservation, and sustainable systems

    Technology Transfer Automated Retrieval System (TEKTRAN)

    As estimated, agricultural productivity needs to be increased by 70 percent or more by 2050 in order to meet the world’s food demand as global population increases. In the last few decades, improving agronomic traits in crops and efficiency in crop system management are two of the key components tha...

  15. Assimilating Leaf Area Index Estimates from Remote Sensing into the Simulations of a Cropping Systems Model

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Spatial extrapolation of cropping systems models for regional crop growth and water use assessment and farm-level precision management has been limited by the vast model input requirements and the model sensitivity to parameter uncertainty. Remote sensing has been proposed as a viable source of spat...

  16. The effect of cropping systems and irrigation management on development of potato early blight

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Crop and soil management may modify canopy and belowground microclimate. However, their effects on potential development and control of early blight are not well documented. Crop management systems [Status Quo (SQ), Soil Conserving (SC), Soil Improving (SI), Disease Suppressive (DS), and Continuou...

  17. Spring wheat production and associated pests in conventional and diversified cropping systems in north central Montana

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Producers in the northern Plains are diversifying and intensifying traditional wheat-based cropping systems by reducing summer fallow and including legume and oilseed crops. This study examined the influence of diversification and intensification on spring wheat yield and quality, and associated ins...

  18. The Myth of Coexistence: Why Transgenic Crops Are Not Compatible With Agroecologically Based Systems of Production

    ERIC Educational Resources Information Center

    Altieri, Miguel

    2005-01-01

    The coexistence of genetically modified (GM) crops and non-GM crops is a myth because the movement of transgenes beyond their intended destinations is a certainty, and this leads to genetic contamination of organic farms and other systems. It is unlikely that transgenes can be retracted once they have escaped, thus the damage to the purity of…

  19. Grazing winter rye cover crop in a cotton no-till system: yield and economics

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Winter cover crop adoption in conservation management systems continues to be limited in the US but could be encouraged if establishment costs could be offset. A 4-yr field experiment was conducted near Watkinsville, Georgia in which a rye (Secale cereale L.) cover crop was either grazed by catt...

  20. Greenhouse Gas Mitigation Economics for Irrigated Cropping Systems in Northeastern Colorado

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Recent soil and crop management technologies have potential for mitigating greenhouse gas emissions. However, these management strategies must be profitable if they are to be adopted by producers. The economic feasibility of reducing net greenhouse gas emissions in irrigated cropping systems was eva...

  1. Development of an integration sensor and instrumentation system for measuring crop conditions

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Precision agriculture requires reliable technology to acquire accurate information on crop conditions. Based on this information, the amount of fertilizers and pesticides for the site-specific crop management can be optimized. A ground-based integrated sensor and instrumentation system was developed...

  2. Utilizing cover crop mulches to reduce tillage in organic systems in the southeastern USA

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Organic sytems in the southeast offer unique challenges and solutions due to regional soil and climate characterized by highly weather soil types, high precipitation, and the capacity to grow cover crops in the winter. Recently high-residue cover crops and conservation tillage systems have increased...

  3. Utilizing Cover Crop Mulches to Reduce TIllage in Organic Systems in the Southeast

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Cover crop roller-crimper trials have been conducted across the southeastern U.S. during the past decade. Regional climatic conditions make the system particularly attractive but also pose their own challenges. Winter annual cover crops productivity can exceed 8 Mg ha-1 (dry weight) for rye (Secale ...

  4. The effects of combined cover crop termination and planting in a cotton no-till system

    Technology Transfer Automated Retrieval System (TEKTRAN)

    One method to save resources while positively impacting the environment is combining agricultural field operations. In no-till systems, cover crop termination and cash crop planting can be performed simultaneously utilizing a tractor as a single power source. A no-till field experiment merging cover...

  5. Agronomic & entomological results from 7 years of dryland cropping systems research at Briggsdale, Colorado

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Dryland crop production in the semi-arid Great Plains is limited by both the quantity and timing of precipitation. Sustainable dryland cropping systems maximize precipitation use efficiency by managing precipitation capture, storage, and use. Pest management approaches are also critical for efficie...

  6. Greenhouse gas mitigation potential of dryland cropping systems in the U.S. Great Plains

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The U.S. Great Plains contain significant expanses of agricultural land dedicated to dryland cropping. Dryland cropping systems in the region that sequester soil organic carbon (SOC) and minimize nitrous oxide (N2O) emissions can serve to reduce the greenhouse gas (GHG) balance of U.S. agriculture....

  7. TILLAGE AND ROTATION EFFECTS ON LUPIN IN DOUBLE-CROPPING SYSTEMS IN THE SOUTHEASTERN USA

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Successful introduction of a new crop into a region requires that basic crop management parameters be determined and provided to producers through an information extension system. White lupin (Lupinus albus L.) was cultivated in the southeastern USA from 1930-1950 on up to 1 million ha, primarily a...

  8. Fertilizer induced losses of nitrous oxide gas from Montana dryland cropping systems

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Nitrogen fertilization to crops contributes a significant portion of soil nitrous oxide (N2O) emission, a greenhouse gas responsible for global warming. This information is, however, lacking in the dryland cropping system in the northern Great Plains. Soil N2O and methane (CH4) fluxes from May to No...

  9. SOIL ORGANIC CARBON AND NITROGEN FRACTIONS IN TEMPERATE ALLEY CROPPING SYSTEMS

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Alley cropping may promote greater sequestration of soil organic carbon. The objective of this study was to examine spatial variability of soil organic C and N fractions relative to tree rows in established alley cropping systems in north central Missouri. Soils were collected to a depth of 30 cm fr...

  10. Climate change impacts on dryland cropping systems in the central Great Plains, USA

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Agricultural systems models are essential tools to assess potential climate change (CC) impacts on crop production and help guide policy decisions. In this study, impacts of GCM projected CC on dryland crop rotations of wheat-fallow (WF), wheat-corn-fallow (WCF), and wheat-corn-millet (WCM) at Akro...

  11. A Crop Simulation Model for Prediction of Yield and Fate of Nitrogen in Irrigated Potato Rotation Cropping System

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Simulation models are valuable tools to evaluate the soil processes, crop growth and production under varied agroclimatic and management conditions. In this study, an upgraded potato crop growth simulation model (CSPotato) was integrated with a multi-year, multi-crop simulation model (CropSystVB)....

  12. Effect of intercropping period management on runoff and erosion in a maize cropping system.

    PubMed

    Laloy, Eric; Bielders, C L

    2010-01-01

    The management of winter cover crops is likely to influence their performance in reducing runoff and erosion during the intercropping period that precedes spring crops but also during the subsequent spring crop. This study investigated the impact of two dates of destruction and burial of a rye (Secale cereale L.) and ryegrass (Lolium multiflorum Lam.) cover crop on runoff and erosion, focusing on a continuous silage maize (Zea mays L.) cropping system. Thirty erosion plots with various intercrop management options were monitored for 3 yr at two sites. During the intercropping period, cover crops reduced runoff and erosion by more than 94% compared with untilled, post-maize harvest plots. Rough tillage after maize harvest proved equally effective as a late sown cover crop. There was no effect of cover crop destruction and burial dates on runoff and erosion during the intercropping period, probably because rough tillage for cover crop burial compensates for the lack of soil cover. During two of the monitored maize seasons, it was observed that plots that had been covered during the previous intercropping period lost 40 to 90% less soil compared with maize plots that had been left bare during the intercropping period. The burial of an aboveground cover crop biomass in excess of 1.5 t ha(-1) was a necessary, yet not always sufficient, condition to induce a residual effect. Because of the possible beneficial residual effect of cover crop burial on erosion reduction, the sowing of a cover crop should be preferred over rough tillage after maize harvest. PMID:20400595

  13. Noah-MP-Crop: Enhancing cropland representation in the community land surface modeling system

    NASA Astrophysics Data System (ADS)

    Liu, X.; Chen, F.; Barlage, M. J.; Zhou, G.; Niyogi, D.

    2015-12-01

    Croplands are important in land-atmosphere interactions and in modifying local and regional weather and climate. Despite their importance, croplands are poorly represented in the current version of the coupled Weather Research and Forecasting (WRF)/ Noah land-surface modeling system, resulting in significant surface temperature and humidity biases across agriculture- dominated regions of the United States. This study aims to improve the WRF weather forecasting and regional climate simulations during the crop growing season by enhancing the representation of cropland in the Noah-MP land model. We introduced dynamic crop growth parameterization into Noah-MP and evaluated the enhanced model (Noah-MP-Crop) at both the field and regional scales with multiple crop biomass datasets, surface fluxes and soil moisture/temperature observations. We also integrated a detailed cropland cover map into WRF, enabling the model to simulate corn and soybean field across the U.S. Great Plains. Results show marked improvement in the Noah-MP-Crop performance in simulating leaf area index (LAI), crop biomass, soil temperature, and surface fluxes. Enhanced cropland representation is not only crucial for improving weather forecasting but can also help assess potential impacts of weather variability on regional hydrometeorology and crop yields. In addition to its applications to WRF, Noah-MP-Crop can be applied in high-spatial-resolution regional crop yield modeling and drought assessments

  14. Nematode Numbers and Crop Yield in a Fenamiphos-Treated Sweet Corn-Sweet Potato-Vetch Cropping System

    PubMed Central

    Johnson, A. W.; Dowler, C. C.; Glaze, N. C.; Chalfant, R. B.; Golden, A. M.

    1992-01-01

    Nematode population densities and yield of sweet corn and sweet potato as affected by the nematicide fenamiphos, in a sweet corn-sweet potato-vetch cropping system, were determined in a 5-year test (1981-85). Sweet potato was the best host of Meloidogyne incognita of these three crops. Fenamiphos 15G (6.7 kg a.i./ha) incorporated broadcast in the top 15 cm of the soil layer before planting of each crop increased (P ≤ 0.05) yields of sweet corn in 1981 and 1982 and sweet potato number 1 grade in 1982 and 1983. Yield of sweet corn and numbers of M. incognita second-stage juveniles (J2) in the soil each month were negatively correlated from planting (r = - 0.47) to harvest (r = -0.61) in 1982. Yield of number 1 sweet potato was inversely related to numbers of J2 in the soil in July-October 1982 and July-September 1983. Yield of cracked storage roots was positively related to the numbers of J2 in the soil on one or more sampling dates in all years except 1985. Some factor(s), such as microbial degradation, resistant M. incognita development, or environment, reduced the effect of fenamiphos. PMID:19283032

  15. Nematode numbers and crop yield in a fenamiphos-treated sweet corn-sweet potato-vetch cropping system.

    PubMed

    Johnson, A W; Dowler, C C; Glaze, N C; Chalfant, R B; Golden, A M

    1992-12-01

    Nematode population densities and yield of sweet corn and sweet potato as affected by the nematicide fenamiphos, in a sweet corn-sweet potato-vetch cropping system, were determined in a 5-year test (1981-85). Sweet potato was the best host of Meloidogyne incognita of these three crops. Fenamiphos 15G (6.7 kg a.i./ha) incorporated broadcast in the top 15 cm of the soil layer before planting of each crop increased (P

  16. Core sampling system spare parts assessment

    SciTech Connect

    Walter, E.J.

    1995-04-04

    Soon, there will be 4 independent core sampling systems obtaining samples from the underground tanks. It is desirable that these systems be available for sampling during the next 2 years. This assessment was prepared to evaluate the adequacy of the spare parts identified for the core sampling system and to provide recommendations that may remediate overages or inadequacies of spare parts.

  17. Influence of crop rotation, intermediate crops, and organic fertilizers on the soil enzymatic activity and humus content in organic farming systems

    NASA Astrophysics Data System (ADS)

    Marcinkeviciene, A.; Boguzas, V.; Balnyte, S.; Pupaliene, R.; Velicka, R.

    2013-02-01

    The influence of crop rotation systems with different portions of nitrogen-fixing crops, intermediate crops, and organic fertilizers on the enzymatic activity and humus content of soils in organic farming was studied. The highest activity of the urease and invertase enzymes was determined in the soil under the crop rotation with 43% nitrogen-fixing crops and with perennial grasses applied twice per rotation. The application of manure and the growing of intermediate crops for green fertilizers did not provide any significant increase in the content of humus. The activity of urease slightly correlated with the humus content ( r = 0.30 at the significance level of 0.05 and r = 0.39 at the significance level of 0.01).

  18. Two intelligent spraying systems developed for tree crop production

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Precision pesticide application technologies are needed to achieve efficient and effective spray deposition on target areas and minimize off-target losses. Two variable-rate intelligent sprayers were developed as an introduction of new generation sprayers for tree crop applications. The first spraye...

  19. Irrigation capacity impact on limited irrigation management and cropping systems

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Irrigation capacity in corn production is an increasingly important issue in the semi-arid Great Plains as irrigation well outputs decrease to the point where fully meeting crop water needs is not possible. Strategies need to be developed that will maximize yields under reduced water application amo...

  20. Southeast Growers Can use Furrow Diking to Stabilize Cropping Systems

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Water availability has a large bearing on crop fate. In 2 years of research at NPRL, research with furrow dikes has shown positive results with peanut, cotton, and corn. The equipment necessary for furrow diking is not expensive and can be attached to common cultivation equipment or planters. Fur...

  1. Surprising yields with no-till cropping systems

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Producers using no-till practices have observed that crop yields can greatly exceed expectations based on nutrient and water supply. For example, Ralph Holzwarth, who farms near Gettysburg, SD, has averaged 150 bu/ac of corn on his farm for the past 6 years. We were surprised with this yield, as c...

  2. Irrigation Capacity Impact on limited irrigation management and cropping systems

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Irrigation capacity in corn production is an increasingly important issue in the semi-arid Great Plains as irrigation well outputs decrease to the point where fully meeting crop water needs is not possible. Strategies need to be developed that will maximize yields under reduced water application amo...

  3. Runoff losses from corn silage-manure cropping systems

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Transport of P, N, and sediment via runoff from crop fields, especially where manure has been applied, can contribute to eutrophication and degradation of surface waters. We established a paired-watershed field site in central Wisconsin to evaluate surface runoff losses of nutrients and sediment fro...

  4. Environmental benefits of growing perennial legumes in cropping systems

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Alfalfa offers several environmental benefits to farmers and society. Reduced nitrate leaching due to slower water flow and excellent nitrate removal are valuable in farm fields and at remediation sites. Improved N supply to following crops reduces energy use, economic costs, and greenhouse gas emis...

  5. Integrating insect-resistant GM Crops in pest management systems

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In 2006, GM cotton and maize with insect resistance were grown on 12.1 and 20.1 million hectares in 9 and 13 countries, respectively. These insect resistant GM crops produce various Cry toxins from Bacillus thuringiensis (Bt) and provide highly selective and effective control of lepidopteran and col...

  6. Consideration in selecting crops for the human-rated life support system: a Linear Programming model

    NASA Technical Reports Server (NTRS)

    Wheeler, E. F.; Kossowski, J.; Goto, E.; Langhans, R. W.; White, G.; Albright, L. D.; Wilcox, D.; Henninger, D. L. (Principal Investigator)

    1996-01-01

    A Linear Programming model has been constructed which aids in selecting appropriate crops for CELSS (Controlled Environment Life Support System) food production. A team of Controlled Environment Agriculture (CEA) faculty, staff, graduate students and invited experts representing more than a dozen disciplines, provided a wide range of expertise in developing the model and the crop production program. The model incorporates nutritional content and controlled-environment based production yields of carefully chosen crops into a framework where a crop mix can be constructed to suit the astronauts' needs. The crew's nutritional requirements can be adequately satisfied with only a few crops (assuming vitamin mineral supplements are provided) but this will not be satisfactory from a culinary standpoint. This model is flexible enough that taste and variety driven food choices can be built into the model.

  7. An optimal control strategy for crop growth in advanced life support systems.

    PubMed

    Fleisher, D H; Baruh, H

    2001-01-01

    A feedback control method for regulating crop growth in advanced life support systems is presented. Two models for crop growth are considered, one developed by the agricultural industry and used by the Ames Research Center, and a mechanistic model, termed the Energy Cascade model. Proportional and pointwise-optimal control laws are applied to both models using wheat as the crop and light intensity as the control input. The control is particularly sensitive to errors in measurement of crop dry mass. However, it is shown that the proposed approach is a potentially viable way of controlling crop growth as it compensates for model errors and problems associated with applying the desired control input due to environmental disturbances. Grant numbers: NGT5-50229. PMID:11725784

  8. Evaluating legume species as alternative trap crops to chickpea for management of Helicoverpa spp. (Lepidoptera: Noctuidae) in central Queensland cotton cropping systems.

    PubMed

    Grundy, P R; Sequeira, R V; Short, K S

    2004-12-01

    Mounting levels of insecticide resistance within Australian Helicoverpa spp. populations have resulted in the adoption of non-chemical IPM control practices such as trap cropping with chickpea, Cicer arietinum (L.). However, a new leaf blight disease affecting chickpea in Australia has the potential to limit its use as a trap crop. Therefore this paper evaluates the potential of a variety of winter-active legume crops for use as an alternative spring trap crop to chickpea as part of an effort to improve the area-wide management strategy for Helicoverpa spp. in central Queensland's cotton production region. The densities of Helicoverpa eggs and larvae were compared over three seasons on replicated plantings of chickpea, Cicer arietinum (L.), field pea Pisum sativum (L), vetch, Vicia sativa (L.) and faba bean, Vicia faba (L.). Of these treatments, field pea was found to harbour the highest densities of eggs. A partial life table study of the fate of eggs oviposited on field pea and chickpea suggested that large proportions of the eggs laid on field pea suffered mortality due to dislodgment from the plants after oviposition. Plantings of field pea as a replacement trap crop for chickpea under commercial conditions confirmed the high level of attractiveness of this crop to ovipositing moths. The use of field pea as a trap crop as part of an area-wide management programme for Helicoverpa spp. is discussed. PMID:15541187

  9. Residual phosphorus and zinc influence wheat productivity under rice-wheat cropping system.

    PubMed

    Amanullah; Inamullah

    2016-01-01

    Continuous cropping of rice (Oryza sativa L.) and wheat (Triticum aestivum L.) deplete soil fertility and crop productivity. One strategy to increase crop productivity under rice-wheat system is balanced application of crop nutrients. Field experiment was conducted to assess the impact of phosphorus (0, 40, 80, 120 kg P ha(-1)) and zinc (0, 5, 10, 15 kg Zn ha(-1)) on the productivity of rice genotypes (fine and coarse) and their residual effects on the grain yield (GY) and its components (YC) of the succeeding wheat crop under rice-wheat cropping system (RWCS) in North Western Pakistan during 2011-12 and 2012-13. After rice harvest in both years, wheat variety "Siren-2010" was grown on the same layout but no additional P, K and Zn was applied to wheat crop in each year. The GY and YC of wheat significantly increased in the treatments receiving the higher P levels (120 > 80 > 40 > 0 kg P ha(-1)) and Zn (15 > 10 > 5 > 0 kg Zn ha(-1)) in the previous rice crop. The residual soil P and Zn contents after rice harvest, GY and YC of wheat increased significantly under low yielding fine genotype (B-385) as compared to the high yielding coarse genotypes (F-Malakand and Pukhraj). The residual soil P and Zn, GY and of wheat increased significantly in the second year as compared with the first year of experiment. These results confirmed strong carry over effects of both P and Zn applied to the previous rice crop on the subsequent wheat crop under RWCS. PMID:27026947

  10. [Continuous remediation of heavy metal contaminated soil by co-cropping system enhanced with chelator].

    PubMed

    Wei, Ze-Bin; Guo, Xiao-Fang; Wu, Qi-Tang; Long, Xin-Xian

    2014-11-01

    In order to elucidate the continuous effectiveness of co-cropping system coupling with chelator enhancement in remediating heavy metal contaminated soils and its environmental risk towards underground water, soil lysimeter (0.9 m x 0.9 m x 0.9 m) experiments were conducted using a paddy soil affected by Pb and Zn mining in Lechang district of Guangdong Province, 7 successive crops were conducted for about 2.5 years. The treatments included mono-crop of Sedum alfredii Hance (Zn and Cd hyperaccumulator), mono-crop of corn (Zea mays, cv. Yunshi-5, a low-accumulating cultivar), co-crop of S. alfredii and corn, and co-crop + MC (Mixture of Chelators, comprised of citric acid, monosodium glutamate waste liquid, EDTA and KCI with molar ratio of 10: 1:2:3 at the concentration of 5 mmol x kg(-1) soil). The changes of heavy metal concentrations in plants, soil and underground water were monitored. Results showed that the co-cropping system was suitable only in spring-summer seasons and significantly increased Zn and Cd phytoextraction. In autumn-winter seasons, the growth of S. alfredii and its phytoextraction of Zn and Cd were reduced by co-cropping and MC application. In total, the mono-crops of S. alfredii recorded a highest phytoextraction of Zn and Cd. However, the greatest reduction of soil Zn, Cd and Pb was observed with the co-crop + MC treatment, the reduction rates were 28%, 50%, and 22%, respectively, relative to the initial soil metal content. The reduction of this treatment was mainly attributed to the downwards leaching of metals to the subsoil caused by MC application. The continuous monitoring of leachates during 2. 5 year's experiment also revealed that the addition of MC increased heavy metal concentrations in the leaching water, but they did not significantly exceed the III grade limits of the underground water standard of China. PMID:25639110

  11. Nitrogen source effects on nitrous oxide emissions from irrigated cropping systems in Colorado. American Chemical Society Symposium Series

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Nitrogen (N) fertilization is essential in most irrigated cropping systems to optimize crop yields and economic returns. Application of inorganic N fertilizers to these cropping systems generally results in increased nitrous oxide (N2O-N) emissions. Nitrous oxide emissions resulting from the appli...

  12. Soil carbon and nitrogen sequestration as affected by long-term tillage, cropping system, and nitrogen fertilizer sources

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Poultry litter application in no-tilled intensive cropping system could increase soil C and N sequestration compared with conventional management practices. We evaluated the 10-year effects of tillage, cropping systems, and N sources on crop residue (stems + leaves) production and soil organic C (SO...

  13. Accumulation of contaminants of emerging concern in food crops-part 2: Plant distribution.

    PubMed

    Hyland, Katherine C; Blaine, Andrea C; Higgins, Christopher P

    2015-10-01

    Arid agricultural regions often turn to using treated wastewater (reclaimed water) to irrigate food crops. Concerns arise, however, when considering the potential for persistent contaminants of emerging concern to accumulate into plants intended for human consumption. The present study examined the accumulation of a suite of 9 contaminants of emerging concern into 2 representative food crops, lettuce and strawberry, following uptake via the roots and subsequent distribution to other plant tissues. Calculating accumulation metrics (concentration factors) allowed for comparison of the compartmental affinity of each chemical for each plant tissue compartment. The root concentration factor was found to exhibit a positive linear correlation with the pH-adjusted octanol-water partition coefficient (DOW ) for the target contaminants of emerging concern. Coupled with the concentration-dependent accumulation observed in the roots, this result implies that accumulation of these contaminants of emerging concern into plant roots is driven by passive partitioning. Of the contaminants of emerging concern examined, nonionizable contaminants, such as triclocarban, carbamazepine, and organophosphate flame retardants displayed the greatest potential for translocation from the roots to above-ground plant compartments. In particular, the organophosphate flame retardants displayed increasing affinity for shoots and fruits with decreasing size/octanol-water partition coefficient (KOW ). Cationic diphenhydramine and anionic sulfamethoxazole, once transported to the shoots of the strawberry plant, demonstrated the greatest potential of the contaminants examined to be then carried to the edible fruit portion. PMID:25988579

  14. Modeling nitrogen and water management effects in a wheat-maize double-cropping system.

    PubMed

    Fang, Q; Ma, L; Yu, Q; Malone, R W; Saseendran, S A; Ahuja, L R

    2008-01-01

    Excessive N and water use in agriculture causes environmental degradation and can potentially jeopardize the sustainability of the system. A field study was conducted from 2000 to 2002 to study the effects of four N treatments (0, 100, 200, and 300 kg N ha(-1) per crop) on a wheat (Triticum aestivum L.) and maize (Zea mays L.) double cropping system under 70 +/- 15% field capacity in the North China Plain (NCP). The root zone water quality model (RZWQM), with the crop estimation through resource and environment synthesis (CERES) plant growth modules incorporated, was evaluated for its simulation of crop production, soil water, and N leaching in the double cropping system. Soil water content, biomass, and grain yield were better simulated with normalized root mean square errors (NRMSE, RMSE divided by mean observed value) from 0.11 to 0.15 than soil NO(3)-N and plant N uptake that had NRMSE from 0.19 to 0.43 across these treatments. The long-term simulation with historical weather data showed that, at 200 kg N ha(-1) per crop application rate, auto-irrigation triggered at 50% of the field capacity and recharged to 60% field capacity in the 0- to 50-cm soil profile were adequate for obtaining acceptable yield levels in this intensified double cropping system. Results also showed potential savings of more than 30% of the current N application rates per crop from 300 to 200 kg N ha(-1), which could reduce about 60% of the N leaching without compromising crop yields. PMID:18948476

  15. Crop monitoring & yield forecasting system based on Synthetic Aperture Radar (SAR) and process-based crop growth model: Development and validation in South and South East Asian Countries

    NASA Astrophysics Data System (ADS)

    Setiyono, T. D.

    2014-12-01

    Accurate and timely information on rice crop growth and yield helps governments and other stakeholders adapting their economic policies and enables relief organizations to better anticipate and coordinate relief efforts in the wake of a natural catastrophe. Such delivery of rice growth and yield information is made possible by regular earth observation using space-born Synthetic Aperture Radar (SAR) technology combined with crop modeling approach to estimate yield. Radar-based remote sensing is capable of observing rice vegetation growth irrespective of cloud coverage, an important feature given that in incidences of flooding the sky is often cloud-covered. The system allows rapid damage assessment over the area of interest. Rice yield monitoring is based on a crop growth simulation and SAR-derived key information, particularly start of season and leaf growth rate. Results from pilot study sites in South and South East Asian countries suggest that incorporation of SAR data into crop model improves yield estimation for actual yields. Remote-sensing data assimilation into crop model effectively capture responses of rice crops to environmental conditions over large spatial coverage, which otherwise is practically impossible to achieve. Such improvement of actual yield estimates offers practical application such as in a crop insurance program. Process-based crop simulation model is used in the system to ensure climate information is adequately captured and to enable mid-season yield forecast.

  16. Crop water use efficiency following biochar application on maize cropping systems on sandy soils of tropical semiarid eastern Indonesia

    NASA Astrophysics Data System (ADS)

    Sukartono, S.; Utomo, W.

    2012-04-01

    A field study was conducted to evaluate the effect of biochar on crop water use efficiency under three consecutive maize cropping system on sandy loam of Lombok, eastern Indonesia from December 2010 to October 2011.The treatments tested were: coconut shell- biochar (CSB), cattle dung-biochar (CDB), cattle manure applied at only early first crop (CM1) and cattle manure applied at every planting time (CM2) and no organic amendment as the control. Evaluation after the end of third maize, the application of organic amendments (biochar and cattle manure) slightly altered the pore size distribution resulting changes in water retention and the available water capacity. The available water capacity was relatively comparable between biochar treated soils (0.206 cm3 cm-3) and soil treated with cattle manure applied at every planting time (0.220 cm3 cm-3). Water use efficiency (WUE) of maize under biochars were 9.44 kg/mm (CSB) and 9.24 kg/mm (CDB) while WUE for CM1 and CM2 were 8.54 and 9.97 kg/mm respectively, and control was 8.08 kg/mm. Thus, biochars as well as cattle manure applied at every planting time improved water use efficiency by 16.83% and 23.39 respectively compared to control. Overall, this study confirms that biochar and cattle manure are both valuable amendments for improving water use efficiency and to sustain maize production in the sandy loam soils of semiarid North Lombok, eastern Indonesia. However, unlike bicohar, in order to maintain its posivtive effect, cattle manure should be applied at every planting time, and this make cattle manure application is more costly. Keywords: Biochar, organic management, catle manure, water retention, maize yield

  17. Performance of the CELSS Antarctic Analog Project (CAAP) crop production system

    NASA Technical Reports Server (NTRS)

    Bubenheim, D. L.; Schlick, G.; Wilson, D.; Bates, M.

    2003-01-01

    Regenerative life support systems potentially offer a level of self-sufficiency and a decrease in logistics and associated costs in support of space exploration and habitation missions. Current state-of-the-art in plant-based, regenerative life support requires resources in excess of allocation proposed for candidate mission scenarios. Feasibility thresholds have been identified for candidate exploration missions. The goal of this paper is to review recent advances in performance achieved in the CELSS Antarctic Analog Project (CAAP) in light of the likely resource constraints. A prototype CAAP crop production chamber has been constructed and operated at the Ames Research Center. The chamber includes a number of unique hardware and software components focused on attempts to increase production efficiency, increase energy efficiency, and control the flow of energy and mass through the system. Both single crop, batch production and continuous cultivation of mixed crops production studies have been completed. The crop productivity as well as engineering performance of the chamber are described. For each scenario, energy required and partitioned for lighting, cooling, pumping, fans, etc. is quantified. Crop production and the resulting lighting efficiency and energy conversion efficiencies are presented. In the mixed-crop scenario, with 27 different crops under cultivation, 17 m2 of crop area provided a mean of 515 g edible biomass per day (85% of the approximate 620 g required for one person). Enhanced engineering and crop production performance achieved with the CAAP chamber, compared with current state-of-the-art, places plant-based life support systems at the threshold of feasibility. c2002 Published by Elsevier Science Ltd on behalf of COSPAR.

  18. Performance of the CELSS Antarctic Analog Project (CAAP) crop production system.

    PubMed

    Bubenheim, D L; Schlick, G; Wilson, D; Bates, M

    2003-01-01

    Regenerative life support systems potentially offer a level of self-sufficiency and a decrease in logistics and associated costs in support of space exploration and habitation missions. Current state-of-the-art in plant-based, regenerative life support requires resources in excess of allocation proposed for candidate mission scenarios. Feasibility thresholds have been identified for candidate exploration missions. The goal of this paper is to review recent advances in performance achieved in the CELSS Antarctic Analog Project (CAAP) in light of the likely resource constraints. A prototype CAAP crop production chamber has been constructed and operated at the Ames Research Center. The chamber includes a number of unique hardware and software components focused on attempts to increase production efficiency, increase energy efficiency, and control the flow of energy and mass through the system. Both single crop, batch production and continuous cultivation of mixed crops production studies have been completed. The crop productivity as well as engineering performance of the chamber are described. For each scenario, energy required and partitioned for lighting, cooling, pumping, fans, etc. is quantified. Crop production and the resulting lighting efficiency and energy conversion efficiencies are presented. In the mixed-crop scenario, with 27 different crops under cultivation, 17 m2 of crop area provided a mean of 515 g edible biomass per day (85% of the approximate 620 g required for one person). Enhanced engineering and crop production performance achieved with the CAAP chamber, compared with current state-of-the-art, places plant-based life support systems at the threshold of feasibility. PMID:12580191

  19. Analytical steady-state solutions for water-limited cropping systems using saline irrigation water

    NASA Astrophysics Data System (ADS)

    Skaggs, T. H.; Anderson, R. G.; Corwin, D. L.; Suarez, D. L.

    2014-12-01

    Due to the diminishing availability of good quality water for irrigation, it is increasingly important that irrigation and salinity management tools be able to target submaximal crop yields and support the use of marginal quality waters. In this work, we present a steady-state irrigated systems modeling framework that accounts for reduced plant water uptake due to root zone salinity. Two explicit, closed-form analytical solutions for the root zone solute concentration profile are obtained, corresponding to two alternative functional forms of the uptake reduction function. The solutions express a general relationship between irrigation water salinity, irrigation rate, crop salt tolerance, crop transpiration, and (using standard approximations) crop yield. Example applications are illustrated, including the calculation of irrigation requirements for obtaining targeted submaximal yields, and the generation of crop-water production functions for varying irrigation waters, irrigation rates, and crops. Model predictions are shown to be mostly consistent with existing models and available experimental data. Yet the new solutions possess advantages over available alternatives, including: (i) the solutions were derived from a complete physical-mathematical description of the system, rather than based on an ad hoc formulation; (ii) the analytical solutions are explicit and can be evaluated without iterative techniques; (iii) the solutions permit consideration of two common functional forms of salinity induced reductions in crop water uptake, rather than being tied to one particular representation; and (iv) the utilized modeling framework is compatible with leading transient-state numerical models.

  20. Monitoring rice cropping systems using China environment satellite data in Poyang Lake region

    NASA Astrophysics Data System (ADS)

    Li, Peng; Jiang, Luguang; Feng, Zhiming

    Threshold method was utilized to discriminate rice cropping systems based on the noticeable variation of Normalized Difference Vegetation Index (NDVI) during key growth stages in Poyang Lake Region, China. This area is dominated by double- and single rice cropping systems which tend to change due to the frequent ecosystem management policies. We used a new satellite data from the CCD camera sensor with 30 m spatial resolution onboard the China Environmental Satellite HJ-1A and B. The HJ -1A/B with a better temporal resolution of four days provides more data options for effective and timely agriculture monitoring. The result showed that there is evident difference of NDVI between single and late rice during mid October when they are in different growth stages. The areas of single and late rice in 2011 were 2988.6 km2 and 3105.9 km2, respectively. Paddy field distribution map and local paddy rice calendar are requisite to move the threshold method into other multiple rice cropping regions. The study suggests that the China Environmental Satellite HJ-1A/B have the potential to rice cropping system in the double to triple rice cropping systems area. With many advantages of HJ-1A/B, like, finer spatial and temporal resolution, bigger imaging swath, it may make rice cropping system monitoring more feasible and operational.

  1. The International Rice Information System. A platform for meta-analysis of rice crop data.

    PubMed

    McLaren, Christopher Graham; Bruskiewich, Richard M; Portugal, Arllet M; Cosico, Alexander B

    2005-10-01

    Ambiguous germplasm identification; difficulty in tracing pedigree information; and lack of integration between genetic resources, characterization, breeding, evaluation, and utilization data are constraints in developing knowledge-intensive crop improvement programs. To address these constraints, the International Crop Information System (www.icis.cgiar.org), a database system for the management and integration of global information on genetic resources and crop improvement for any crop, was developed by genetic resource specialists, crop scientists, and information technicians associated with the Consultative Group for International Agricultural Research and collaborative partners. The International Rice Information System (www.iris.irri.org) is the rice (Oryza species) implementation of the International Crop Information System. New components are now being added to the International Rice Information System to handle the diversity of rice functional genomics data including genomic sequence data, molecular genetic data, expression data, and proteomic information. Users access information in the database through stand-alone programs and Web interfaces, which offer specialized applications and customized views to researchers with different interests. PMID:16219924

  2. Crop yield network and its response to changes in climate system

    NASA Astrophysics Data System (ADS)

    Yokozawa, M.

    2013-12-01

    Crop failure (reduction in crop yield) due to extreme weather and climate change could lead to unstable food supply, reflecting the recent globalization in world agricultural production. Specifically, in several major production countries producing large amount of main cereal crops, wheat, maize, soybean and rice, abrupt crop failures in wide area are significantly serious for world food supply system. We examined the simultaneous changes in crop yield in USA, China and Brazil, in terms of the changes in climate system such as El Nino, La nina and so on. In this study, we defined a crop yield networks, which represent the correlation between yearly changes in crop yields and climate resources during the crop growing season in two regions. The climate resources during the crop growing season represents here the average temperature and the accumulated precipitation during the crop growing season of a target crop. As climate data, we used a reanalysis climate data JRA-25 (Japan Meteorological Agency). The yearly changes in crop yields are based on a gridded crop productivity database with a resolution of 1.125 degree in latitude/longitude (Iizumi et al. 2013). It is constructed from the agriculture statistics issued by local administrative bureau in each country, which covers the period during 1982 to 2006 (25 years). For the regions being lack of data, the data was interpolated referring to NPP values estimated by satellite data. Crop yield network is constructed as follows: (1) let DY(i,y) be negative difference in crop yield of year y from the trend yield at grid i; (2) define the correlation of the differences Cij(y) = DY(i, y) DY(j, y); (3) if Cij(y) > Q, then grids i and j are mutually linked for a threshold value Q. Links between grids make a crop yield network. It is here noted that only negative differences are taken into account because we focused on the lean year cases (i.e. yields of both grids were lower than those in the long-term trend). The arrays of

  3. Seasonal Soil Nitrogen Mineralization within an Integrated Crop and Livestock System in Western North Dakota, USA

    NASA Astrophysics Data System (ADS)

    Landblom, Douglas; Senturklu, Songul; Cihacek, Larry; Pfenning, Lauren; Brevik, Eric C.

    2015-04-01

    Protecting natural resources while maintaining or maximizing crop yield potential is of utmost importance for sustainable crop and livestock production systems. Since soil organic matter and its decomposition by soil organisms is at the very foundation of healthy productive soils, systems research at the North Dakota State University Dickinson Research Extension Center is evaluating seasonal soil nitrogen fertility within an integrated crop and livestock production system. The 5-year diverse crop rotation is: sunflower (SF) - hard red spring wheat (HRSW) - fall seeded winter triticale-hairy vetch (THV; spring harvested for hay)/spring seeded 7-species cover crop (CC) - Corn (C) (85-90 day var.) - field pea-barley intercrop (PBY). The HRSW and SF are harvested as cash crops and the PBY, C, and CC are harvested by grazing cattle. In the system, yearling beef steers graze the PBY and C before feedlot entry and after weaning, gestating beef cows graze the CC. Since rotation establishment, four crop years have been harvested from the crop rotation. All crops have been seeded using a JD 1590 no-till drill except C and SF. Corn and SF were planted using a JD 7000 no-till planter. The HRSW, PBY, and CC were seeded at a soil depth of 3.8 cm and a row width of 19.1 cm. Seed placement for the C and SF crops was at a soil depth of 5.1 cm and the row spacing was 0.762 m. The plant population goal/ha for C, SF, and wheat was 7,689, 50,587, and 7,244 p/ha, respectively. During the 3rd cropping year, soil bulk density was measured and during the 4th cropping year, seasonal nitrogen fertility was monitored throughout the growing season from June to October. Seasonal nitrate nitrogen (NO3-N), ammonium nitrogen (NH4-N), total season mineral nitrogen (NO3-N + NH4-N), cropping system NO3-N, and bulk density were measured in 3 replicated non-fertilized field plot areas within each 10.6 ha triple replicated crop fields. Within each plot area, 6 - 20.3 cm x 0.61 m aluminum irrigation

  4. A porous stainless steel membrane system for extraterrestrial crop production

    NASA Technical Reports Server (NTRS)

    Koontz, H. V.; Prince, R. P.; Berry, W. L.; Knott, W. M. (Principal Investigator)

    1990-01-01

    A system was developed in which nutrient flow to plant roots is controlled by a thin (0.98 or 1.18 mm) porous (0.2 or 0.5 microns) stainless steel sheet membrane. The flow of nutrient solution through the membrane is controlled by adjusting the relative negative pressure on the nutrient solution side of the membrane. Thus, the nutrient solution is contained by the membrane and cannot escape from the compartment even under microgravity conditions if the appropriate pressure gradient across the membrane is maintained. Plant roots grow directly on the top surface of the membrane and pull the nutrient solution through this membrane interface. The volume of nutrient solution required by this system for plant growth is relatively small, since the plenum, which contains the nutrient solution in contact with the membrane, needs only to be of sufficient size to provide for uniform flow to all parts of the membrane. Solution not passing through the membrane to the root zone is recirculated through a reservoir where pH and nutrient levels are controlled. The size of the solution reservoir depends on the sophistication of the replenishment system. The roots on the surface of the membrane are covered with a polyethylene film (white on top, black on bottom) to maintain a high relative humidity and also limit light to prevent algal growth. Seeds are sown directly on the stainless steel membrane under the holes in the polyethylene film that allow a pathway for the shoots.

  5. Census Parcels Cropping System Classification from Multitemporal Remote Imagery: A Proposed Universal Methodology

    PubMed Central

    García-Torres, Luis; Caballero-Novella, Juan J.; Gómez-Candón, David; Peña, José Manuel

    2015-01-01

    A procedure named CROPCLASS was developed to semi-automate census parcel crop assessment in any agricultural area using multitemporal remote images. For each area, CROPCLASS consists of a) a definition of census parcels through vector files in all of the images; b) the extraction of spectral bands (SB) and key vegetation index (VI) average values for each parcel and image; c) the conformation of a matrix data (MD) of the extracted information; d) the classification of MD decision trees (DT) and Structured Query Language (SQL) crop predictive model definition also based on preliminary land-use ground-truth work in a reduced number of parcels; and e) the implementation of predictive models to classify unidentified parcels land uses. The software named CROPCLASS-2.0 was developed to semi-automatically perform the described procedure in an economically feasible manner. The CROPCLASS methodology was validated using seven GeoEye-1 satellite images that were taken over the LaVentilla area (Southern Spain) from April to October 2010 at 3- to 4-week intervals. The studied region was visited every 3 weeks, identifying 12 crops and others land uses in 311 parcels. The DT training models for each cropping system were assessed at a 95% to 100% overall accuracy (OA) for each crop within its corresponding cropping systems. The DT training models that were used to directly identify the individual crops were assessed with 80.7% OA, with a user accuracy of approximately 80% or higher for most crops. Generally, the DT model accuracy was similar using the seven images that were taken at approximately one-month intervals or a set of three images that were taken during early spring, summer and autumn, or set of two images that were taken at about 2 to 3 months interval. The classification of the unidentified parcels for the individual crops was achieved with an OA of 79.5%. PMID:25689830

  6. Organic fertilization for soil improvement in a vegetable cropping system

    NASA Astrophysics Data System (ADS)

    Verhaeghe, Micheline; De Rocker, Erwin; De Reycke, Luc

    2016-04-01

    Vegetable Research Centre East-Flanders Karreweg 6, 9770 Kruishoutem, Belgium A long term trial for soil improvement by organic fertilization was carried out in Kruishoutem from 2001 till 2010 in a vegetable rotation (carrots - leek - lettuce (2/year) - cauliflower (2/year) - leek - carrots - lettuce (2/year) - cauliflower (2/year) - leek and spinach). The trial compared yearly applications of 30 m²/ha of three types of compost (green compost, vfg-compost and spent mushroom compost) with an untreated object which did not receive any organic fertilization during the trial timescale. The organic fertilization was applied shortly before the cropping season. Looking at the soil quality, effects of organic fertilization manifest rather slow. The first four years after the beginning of the trial, no increase in carbon content of the soil is detectable yet. Although, mineralization of the soil has increased. The effect on the mineralization is mainly visible in crops with a lower N uptake (e.g. carrots) leading to a higher nitrate residue after harvest. Effects on soil structure and compaction occur rather slowly although, during the first two cropping seasons compost applications increase the water retention capacity of the soil. Compost increases the pH of the soil from the first year on till the end of the trial in 2010. Thus, organic fertilization impedes acidification in light sandy soils. Also soil fertility benefits from compost by an increase in K-, Ca- and Mg- content in the soil from the second year on. After 10 years of organic fertilization, yield and quality of spinach were increased significantly (p<0.05) compared to the untreated object. Also leek (2002 and 2009) and lettuce (2003 and 2007) benefit from organic fertilization.

  7. PARTS: (Plasma Accelerated Reusable Transport System)

    NASA Astrophysics Data System (ADS)

    Aherne, Michael; Davis, Phil; England, Matt; Gustavsson, Jake; Pankow, Steve; Sampaio, Chere; Savella, Phil

    2002-01-01

    The Plasma Accelerated Reusable Transport System (PARTS) is an unmanned cargo shuttle intended to ferry large payloads to and from Martian orbit using a highly efficient VAriable Specific Impulse Magnetoplasma Rocket (VASIMR). The design of PARTS focuses on balancing cost and minimizing transit time for a chosen payload consisting of vehicles, satellites, and other components provided by interested parties.

  8. Effectiveness of Perennial Vegetation Strips in Reducing Runoff in Annual Crop Production Systems

    NASA Astrophysics Data System (ADS)

    Hernandez-Santana, V.; Zhou, X.; Helmers, M.; Asbjornsen, H.; Kolka, R. K.

    2010-12-01

    In many parts of the world, unprecedented high crop yields have been attained by conversion of native perennial grasslands to intensively managed annual cropping systems. However, these achievements have often been accompanied by significant environmental impacts with far-reaching social and economic costs. Perhaps nowhere is this situation revealed more acutely than in the Midwestern US, where landscape-scale transformation of native tallgrass prairie to rowcrop corn and soybeans has dramatically altered the hydrologic cycle, increased nutrient and sediment loss, and diminished ecosystem services. The objective of this study was to assess the potential for reducing negative impacts of rowcrop agriculture on water quality and flow by incorporating native prairie vegetation in strategic locations within conventional rowcrop agriculture. Specifically, we tested the hypothesis that small amounts of prairie vegetation strategically located in agricultural landscapes would lead to disproportionate benefits by reducing runoff and nutrient and sediment loss. The study was conducted at the Neal Smith National Wildlife Refuge (Iowa), and consisted of a fully balanced, replicated, incomplete block design whereby twelve small experimental catchments (0.43 - 3.19 ha) received four treatments consisting of varying proportions (0%, 10%, and 20%) of prairie vegetation located in different watershed positions (downslope “toe” vs. contour strips). Pre- treatment data were collected in 2005, treatments installed in 2006, and post-treatment responses monitored annually (April-October) thereafter. Volume and rate of surface runoff were measured with an H-Flume installed in each catchment, and automated ISCO samplers used to collect event-based runoff samples that were analyzed for sediment, nitrate (N), and phosphorus (P) concentration. A total of 102 rainfall events were registered during the study period (April-October, 2008 and 2009), accounting for a total rainfall amount of

  9. Crop produciton and soil carbon: Using satellites to quantify cropping systems

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Utilization of remote sensing data from satellite platforms for multiple purposes was a hallmark of Paul Doraiswamy’s career. These efforts entailed the application of various satellite systems, e.g., Landsat, MODIS, AVRIS, to various areas around the world to quantify different components of croppi...

  10. Weed-crop competition relationships differ between organic and conventional cropping systems

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Organic farmers have identified weed management to be a top research priority and production constraint, as the efficacy of organic weed management is often more variable than conventional herbicide-based methods. The Rodale Institute Farming Systems Trial (FST) provides a unique 27-year history of ...