Science.gov

Sample records for cross bridges contribute

  1. The contributions of filaments and cross-bridges to sarcomere compliance in skeletal muscle

    PubMed Central

    Brunello, Elisabetta; Caremani, Marco; Melli, Luca; Linari, Marco; Fernandez-Martinez, Manuel; Narayanan, Theyencheri; Irving, Malcolm; Piazzesi, Gabriella; Lombardi, Vincenzo; Reconditi, Massimo

    2014-01-01

    Force generation in the muscle sarcomere is driven by the head domain of the myosin molecule extending from the thick filament to form cross-bridges with the actin-containing thin filament. Following attachment, a structural working stroke in the head pulls the thin filament towards the centre of the sarcomere, producing, under unloaded conditions, a filament sliding of ∼11 nm. The mechanism of force generation by the myosin head depends on the relationship between cross-bridge force and movement, which is determined by compliances of the cross-bridge (Ccb) and filaments. By measuring the force dependence of the spacing of the high-order myosin- and actin-based X-ray reflections from sartorius muscles of Rana esculenta we find a combined filament compliance (Cf) of 13.1 ± 1.2 nm MPa−1, close to recent estimates from single fibre mechanics (12.8 ± 0.5 nm MPa−1). Ccb calculated using these estimates is 0.37 ± 0.12 nm pN−1, a value fully accounted for by the compliance of the myosin head domain, 0.38 ± 0.06 nm pN−1, obtained from the intensity changes of the 14.5 nm myosin-based X-ray reflection in response to 3 kHz oscillations imposed on single muscle fibres in rigor. Thus, a significant contribution to Ccb from the myosin tail that joins the head to the thick filament is excluded. The low Ccb value indicates that the myosin head generates isometric force by a small sub-step of the 11 nm stroke that drives filament sliding at low load. The implications of these results for the mechanism of force generation by myosins have general relevance for cardiac and non-muscle myosins as well as for skeletal muscle. PMID:25015916

  2. Cooperative cross-bridge activation of thin filaments contributes to the Frank-Starling mechanism in cardiac muscle.

    PubMed

    Smith, L; Tainter, C; Regnier, M; Martyn, D A

    2009-05-01

    Myosin cross-bridges play an important role in the regulation of thin-filament activation in cardiac muscle. To test the hypothesis that sarcomere length (SL) modulation of thin-filament activation by strong-binding cross-bridges underlies the Frank-Starling mechanism, we inhibited force and strong cross-bridge binding to intermediate levels with sodium vanadate (Vi). Force and stiffness varied proportionately with [Ca(2+)] and [Vi]. Increasing [Vi] (decreased force) reduced the pCa(50) of force-[Ca(2+)] relations at 2.3 and 2.0 microm SL, with little effect on slope (n(H)). When maximum force was inhibited to approximately 40%, the effects of SL on force were diminished at lower [Ca(2+)], whereas at higher [Ca(2+)] (pCa < 5.6) the relative influence of SL on force increased. In contrast, force inhibition to approximately 20% significantly reduced the sensitivity of force-[Ca(2+)] relations to changes in both SL and myofilament lattice spacing. Strong cross-bridge binding cooperatively induced changes in cardiac troponin C structure, as measured by dichroism of 5' iodoacetamido-tetramethylrhodamine-labeled cardiac troponin C. This apparent cooperativity was reduced at shorter SL. These data emphasize that SL and/or myofilament lattice spacing modulation of the cross-bridge component of cardiac thin-filament activation contributes to the Frank-Starling mechanism. PMID:19413974

  3. LOOKING WNW, CHEVROLET AVENUE BRIDGE CROSSING FLINT RIVER. BRIDGE CONNECTED ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    LOOKING WNW, CHEVROLET AVENUE BRIDGE CROSSING FLINT RIVER. BRIDGE CONNECTED NORTH AND SOUTH PORTIONS OF FACTORY COMPLEX. DANIEL LUTEN DESIGNED THE BRIDGE, AND ILLINOIS BRIDGE COMPANY BUILT IT IN 1918. THE BRIDGE WAS THE SITE OF THE BATTLE OF RUNNING BULLS IN THE 1936-1937 GM SIT DOWN STRIKE. - Delphi Flint West, 300 Chevrolet Avenue, Flint, Genesee County, MI

  4. Passive tension and stiffness of vertebrate skeletal and insect flight muscles: the contribution of weak cross-bridges and elastic filaments.

    PubMed Central

    Granzier, H L; Wang, K

    1993-01-01

    Tension and dynamic stiffness of passive rabbit psoas, rabbit semitendinosus, and waterbug indirect flight muscles were investigated to study the contribution of weak-binding cross-bridges and elastic filaments (titin and minititin) to the passive mechanical behavior of these muscles. Experimentally, a functional dissection of the relative contribution of actomyosin cross-bridges and titin and minititin was achieved by 1) comparing mechanically skinned muscle fibers before and after selective removal of actin filaments with a noncalcium-requiring gelsolin fragment (FX-45), and 2) studying passive tension and stiffness as a function of sarcomere length, ionic strength, temperature, and the inhibitory effect of a carboxyl-terminal fragment of smooth muscle caldesmon. Our data show that weak bridges exist in both rabbit skeletal muscle and insect flight muscle at physiological ionic strength and room temperature. In rabbit psoas fibers, weak bridge stiffness appears to vary with both thin-thick filament overlap and with the magnitude of passive tension. Plots of passive tension versus passive stiffness are multiphasic and strikingly similar for these three muscles of distinct sarcomere proportions and elastic proteins. The tension-stiffness plot appears to be a powerful tool in discerning changes in the mechanical behavior of the elastic filaments. The stress-strain and stiffness-strain curves of all three muscles can be merged into one, by normalizing strain rate and strain amplitude of the extensible segment of titin and minititin, further supporting the segmental extension model of resting tension development. Images FIGURE 1 FIGURE 2 FIGURE 3 FIGURE 4 PMID:8298040

  5. OUTERBRIDGE CROSSING BRIDGE LINED UP WITH MANHATTAN SKYLINE IN MIDDLE ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    OUTERBRIDGE CROSSING BRIDGE LINED UP WITH MANHATTAN SKYLINE IN MIDDLE OF HORIZON, VERRAZANO NARROWS BRIDGE TO THE RIGHT - Outerbridge Crossing Bridge, Spanning Arthur Kill from New Jersey to Staten Island, Staten Island (subdivision), Richmond County, NY

  6. Bridge over Troubled Water: Guidance Crosses

    ERIC Educational Resources Information Center

    Amundson, Norm

    2008-01-01

    This article is based on a keynote presentation at an international conference where the focus was cross-over career guidance. Simon and Garfunkel's popular song, "Bridge over troubled water", was used as a metaphor for exploring the cross-over theme. Some of the concepts under consideration included the working alliance, the importance of a…

  7. 33 CFR 118.90 - Bridges crossing channel obliquely.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 33 Navigation and Navigable Waters 1 2014-07-01 2014-07-01 false Bridges crossing channel obliquely. 118.90 Section 118.90 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY BRIDGES BRIDGE LIGHTING AND OTHER SIGNALS § 118.90 Bridges crossing channel obliquely....

  8. 33 CFR 118.90 - Bridges crossing channel obliquely.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 1 2010-07-01 2010-07-01 false Bridges crossing channel obliquely. 118.90 Section 118.90 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY BRIDGES BRIDGE LIGHTING AND OTHER SIGNALS § 118.90 Bridges crossing channel obliquely....

  9. 33 CFR 118.90 - Bridges crossing channel obliquely.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 33 Navigation and Navigable Waters 1 2011-07-01 2011-07-01 false Bridges crossing channel obliquely. 118.90 Section 118.90 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY BRIDGES BRIDGE LIGHTING AND OTHER SIGNALS § 118.90 Bridges crossing channel obliquely....

  10. 33 CFR 118.90 - Bridges crossing channel obliquely.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 33 Navigation and Navigable Waters 1 2012-07-01 2012-07-01 false Bridges crossing channel obliquely. 118.90 Section 118.90 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY BRIDGES BRIDGE LIGHTING AND OTHER SIGNALS § 118.90 Bridges crossing channel obliquely....

  11. 33 CFR 118.90 - Bridges crossing channel obliquely.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 33 Navigation and Navigable Waters 1 2013-07-01 2013-07-01 false Bridges crossing channel obliquely. 118.90 Section 118.90 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY BRIDGES BRIDGE LIGHTING AND OTHER SIGNALS § 118.90 Bridges crossing channel obliquely....

  12. Contributions of Diesel Truck Emissions to Indoor Elemental Carbon Concentrations in Home Proximate to Ambassador Bridge

    EPA Science Inventory

    Ambassador Bridge, connecting Detroit, Michigan and Windsor, Ontario, is the busiest international commercial vehicle crossing in North America, with a large percentage of heavy duty diesel trucks. This study seeks to examine the contribution of diesel truck traffic across Ambass...

  13. Aerial view of the entire bridge crossing the Tennessee River ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Aerial view of the entire bridge crossing the Tennessee River looking up river. The swing bridge, when open, permits river navigational traffic to ply the river. Construction of a replacement bridge, to be located 93.27 feet down river, has now started. - Bridgeport Swing Span Bridge, Spanning Tennessee River, Bridgeport, Jackson County, AL

  14. NEW JERSEY APPROACH TO OUTERBRIDGE CROSSING BRIDGE, NOTE DISTANT HORIZON ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    NEW JERSEY APPROACH TO OUTERBRIDGE CROSSING BRIDGE, NOTE DISTANT HORIZON NEW YORK SKYLINE AND ALMOST IN THE MIDDLE OF THE HORIZON THE TWIN TOWERS OF THE VERRAZANO-NARROWS BRIDGE - Outerbridge Crossing Bridge, Spanning Arthur Kill from New Jersey to Staten Island, Staten Island (subdivision), Richmond County, NY

  15. 21. View northwest under bridge showing steel girders, cross beams, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    21. View northwest under bridge showing steel girders, cross beams, bracing, and walkway of west approach span. - Yellow Mill Bridge, Spanning Yellow Mill Channel at Stratford Avenue, Bridgeport, Fairfield County, CT

  16. 20. View southwest under bridge showing steel girder, cross beams, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    20. View southwest under bridge showing steel girder, cross beams, and bracing of bascule leaves. - Yellow Mill Bridge, Spanning Yellow Mill Channel at Stratford Avenue, Bridgeport, Fairfield County, CT

  17. View of Steel Flume Bridge #2 crossing over wash. Looking ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    View of Steel Flume Bridge #2 crossing over wash. Looking downstream, southwest - Childs-Irving Hydroelectric Project, Childs System, Flume Bridge No. 2, Forest Service Road 708/502, Camp Verde, Yavapai County, AZ

  18. View of Steel Flume Bridge #3 crossing over Sally May ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    View of Steel Flume Bridge #3 crossing over Sally May Wash. Looking northwest - Childs-Irving Hydroelectric Project, Childs System, Flume Bridge No. 3, Forest Service Road 708/502, Camp Verde, Yavapai County, AZ

  19. 2. GENERAL VIEW OF MOVEABLE BRIDGES CROSSING THE SOUTH BRANCH ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    2. GENERAL VIEW OF MOVEABLE BRIDGES CROSSING THE SOUTH BRANCH OF THE CHICAGO RIVER, LOOKING SOUTH FROM THE SEARS TOWER - Chicago River Bascule Bridges, Spanning Chicago River & its north & south branches, Chicago, Cook County, IL

  20. Limestone and bronze "Mississippi River Crossing" Bridge plaque located at ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Limestone and bronze "Mississippi River Crossing" Bridge plaque located at North corner of Administration Building site - Huey P. Long Bridge, Administration Building, 5100 Jefferson Highway, Jefferson, Jefferson Parish, LA

  1. Bridge No. 1655, Tenth Potomac Crossing, which now carries the ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Bridge No. 1655, Tenth Potomac Crossing, which now carries the Western Maryland Scenic Railroad. I-68 viaduct at left through Cumberland; WV 28 bridge into Ridgeley, West Virginia in foreground. - Western Maryland Railway, Cumberland Extension, Pearre to North Branch, from WM milepost 125 to 160, Pearre, Washington County, MD

  2. GENERAL VIEW OF BRIDGE CROSSING OF TUMALO FEED CANAL, TWIN ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    GENERAL VIEW OF BRIDGE CROSSING OF TUMALO FEED CANAL, TWIN FLUME'S OUTLET ROCK FOOTING ON RIGHT CANAL BANK. LOOKING WEST - Tumalo Irrigation District, Tumalo Project, West of Deschutes River, Tumalo, Deschutes County, OR

  3. ANOTHER DETAIL OF THE BRIDGE UNDERSIDE, IBEAM AND WOODEN CROSS ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    ANOTHER DETAIL OF THE BRIDGE UNDERSIDE, I-BEAM AND WOODEN CROSS BEAM CONSTRUCTION. 69 - Burlington Northern Santa Fe Railroad, Cajon Subdivision, Structure No. 66.4, Between Cajon Summit and Keenbrook, Devore, San Bernardino County, CA

  4. DETAIL OF UNDERSIDE OF BRIDGE SHOWING IBEAMS, WOODEN CROSS BEAMS, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    DETAIL OF UNDERSIDE OF BRIDGE SHOWING I-BEAMS, WOODEN CROSS BEAMS, AND PART OF WING WALL. 68 - Burlington Northern Santa Fe Railroad, Cajon Subdivision, Structure No. 66.4, Between Cajon Summit and Keenbrook, Devore, San Bernardino County, CA

  5. A general elevation view of the entire railroad bridge crossing ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    A general elevation view of the entire railroad bridge crossing the Tennessee River with the center/pivot pier of the 364' - 0-1/2' swing bridge positioned in the center of the river. With the bridge in the open position, navigational river traffic can continue down river by going through a 145-foot horizontal opening on each side of the pivot pier, provided the opening provides the necessary clearance required. Note: The two (2) middle supports on the center/pivot round pier. - Bridgeport Swing Span Bridge, Spanning Tennessee River, Bridgeport, Jackson County, AL

  6. 57. View of road bridge crossing lined canal from south ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    57. View of road bridge crossing lined canal from south side of lined canal, looking northeast. Photo by Brian C. Morris, Puget Power, 1989. - Puget Sound Power & Light Company, White River Hydroelectric Project, 600 North River Avenue, Dieringer, Pierce County, WA

  7. 33. General view of flume from vehicular bridge crossing the ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    33. General view of flume from vehicular bridge crossing the flume, just west of lumber storage shed, looking west. Photo by Brian C. Morris, Puget Power, 1989. - Puget Sound Power & Light Company, White River Hydroelectric Project, 600 North River Avenue, Dieringer, Pierce County, WA

  8. South elevation of Bridge No. 1655, Tenth Potomac Crossing, with ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    South elevation of Bridge No. 1655, Tenth Potomac Crossing, with Ridgely, West Virginia (left) and Cumberland, Maryland (right) in background, looking northwest. - Western Maryland Railway, Cumberland Extension, Pearre to North Branch, from WM milepost 125 to 160, Pearre, Washington County, MD

  9. Bridge No. 1625, Eighth Potomac Crossing, looking east towards West ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Bridge No. 1625, Eighth Potomac Crossing, looking east towards West Virginia and the west portal of Tunnel No. 1624, Welton Tunnel, beneath the Greater Cumberland Regional Airport. - Western Maryland Railway, Cumberland Extension, Pearre to North Branch, from WM milepost 125 to 160, Pearre, Washington County, MD

  10. Equilibrium muscle cross-bridge behavior. Theoretical considerations.

    PubMed Central

    Schoenberg, M

    1985-01-01

    We have developed a model for the equilibrium attachment and detachment of myosin cross-bridges to actin that takes into account the possibility that a given cross-bridge can bind to one of a number of actin monomers, as seems likely, rather than to a site on only a single actin monomer, as is often assumed. The behavior of this multiple site model in response to constant velocity, as well as instantaneous stretches, was studied and the influence of system parameters on the force response explored. It was found that in the multiple site model the detachment rate constant has considerably greater influence on the mechanical response than the attachment rate constant. It is shown that one can obtain information about the detachment rate constants either by examining the relationship between the apparent stiffness and duration of stretch for constant velocity stretches or by examining the force-decay rate constants following an instantaneous stretch. The main effect of the attachment rate constant is to scale the mechanical response by influencing the number of attached cross-bridges. The significance of the modeling for the interpretation of experimental results is discussed. PMID:4041539

  11. 1. NORTH APPROACH TO SE 14TH STREET BRIDGE CROSSING THE ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    1. NORTH APPROACH TO SE 14TH STREET BRIDGE CROSSING THE DES MOINES RIVER, LOOKING SOUTH. - Southeast Fourteenth Street Bridge, Spanning Des Moines River at U.S. Highway 65/69, Des Moines, Polk County, IA

  12. Optimal cross-sectional sampling for river modelling with bridges: An information theory-based method

    NASA Astrophysics Data System (ADS)

    Ridolfi, E.; Alfonso, L.; Di Baldassarre, G.; Napolitano, F.

    2016-06-01

    The description of river topography has a crucial role in accurate one-dimensional (1D) hydraulic modelling. Specifically, cross-sectional data define the riverbed elevation, the flood-prone area, and thus, the hydraulic behavior of the river. Here, the problem of the optimal cross-sectional spacing is solved through an information theory-based concept. The optimal subset of locations is the one with the maximum information content and the minimum amount of redundancy. The original contribution is the introduction of a methodology to sample river cross sections in the presence of bridges. The approach is tested on the Grosseto River (IT) and is compared to existing guidelines. The results show that the information theory-based approach can support traditional methods to estimate rivers' cross-sectional spacing.

  13. Propylene cross-bridged macrocyclic bifunctional chelator: a new design for facile bioconjugation and robust (64)Cu complex stability.

    PubMed

    Pandya, Darpan N; Bhatt, Nikunj; An, Gwang Il; Ha, Yeong Su; Soni, Nisarg; Lee, Hochun; Lee, Yong Jin; Kim, Jung Young; Lee, Woonghee; Ahn, Heesu; Yoo, Jeongsoo

    2014-09-11

    The first macrocyclic bifunctional chelator incorporating propylene cross-bridge was efficiently synthesized from cyclam in seven steps. After the introduction of an extra functional group for facile conjugation onto the propylene cross-bridge, the two carboxylic acid pendants could contribute to strong coordination of Cu(II) ions, leading to a robust Cu complex. The cyclic RGD peptide conjugate of PCB-TE2A-NCS was prepared and successfully radiolabeled with (64)Cu ion. The radiolabeled peptide conjugate was evaluated in vivo through a biodistribution study and animal PET imaging to demonstrate high tumor uptake with low background. PMID:25137619

  14. Contributions of diesel truck emissions to indoor elemental carbon concentrations in homes in proximity to Ambassador Bridge

    NASA Astrophysics Data System (ADS)

    Baxter, Lisa K.; Barzyk, Timothy M.; Vette, Alan F.; Croghan, Carry; Williams, Ronald W.

    Ambassador Bridge, connecting Detroit, Michigan and Windsor, Ontario, is the busiest international commercial vehicle crossing in North America, with a large percentage of heavy duty diesel trucks. This study seeks to examine the contribution of diesel truck traffic across Ambassador Bridge to indoor exposure patterns of elemental carbon (EC), a common surrogate for diesel exhaust particles, in homes in close proximity to the bridge. We also aim to understand the relative importance of home ventilation characteristics and wind speed. Measurements were collected as part of the Detroit Exposure and Aerosol Research Study (DEARS). Residential indoor and outdoor EC measurements were collected over five consecutive 24 h periods in both the summer and winter at 16 homes in close proximity to Ambassador Bridge. Ambient concentrations and meteorological data were collected at a central-site monitor, and home air exchange rates were estimated using a perfluorocarbon tracer. The contributions of ambient concentrations and Ambassador Bridge, and potential effect modification by wind speed and home ventilation status were quantified with regression analyses. Both ambient concentrations and the percentage of time a home was downwind from the bridge were associated with an increase in indoor concentrations. Ambient concentrations significantly contributed to indoor concentrations regardless of wind speed category but were a greater influence in home experiencing calm winds. The effect of the percent of time downwind variable on indoor levels was only significant in homes where the ventilation status was high. The distance a home was from the bridge tollbooth complex was not significantly associated with indoor concentrations. We conclude that diesel traffic emissions related to Ambassador Bridge may have an impact on indoor EC exposures. Given that people spend the majority of their time indoors, it is important to evaluate the impact of traffic-related pollution in the home

  15. The cross-bridge spring: can cool muscles store elastic energy?

    PubMed

    George, N T; Irving, T C; Williams, C D; Daniel, T L

    2013-06-01

    Muscles not only generate force. They may act as springs, providing energy storage to drive locomotion. Although extensible myofilaments are implicated as sites of energy storage, we show that intramuscular temperature gradients may enable molecular motors (cross-bridges) to store elastic strain energy. By using time-resolved small-angle x-ray diffraction paired with in situ measurements of mechanical energy exchange in flight muscles of Manduca sexta, we produced high-speed movies of x-ray equatorial reflections, indicating cross-bridge association with myofilaments. A temperature gradient within the flight muscle leads to lower cross-bridge cycling in the cooler regions. Those cross-bridges could elastically return energy at the extrema of muscle lengthening and shortening, helping drive cyclic wing motions. These results suggest that cross-bridges can perform functions other than contraction, acting as molecular links for elastic energy storage. PMID:23618763

  16. CONTRIBUTION FROM DEICING SALT TO CHEMICAL COMPOSITION OF SALT SUPPLYED TO AREA UNDER THE BRIDGES

    NASA Astrophysics Data System (ADS)

    Takebe, Masamichi; Ohya, Makoto; Hirose, Nozomu; Ochibe, Keishi; Aso, Toshihiko

    Salt is known to accelerate the corrosion of weathering steel bridges. The origin of salt around girders is valuable information in terms of the maintenance for anti-corrosion of steel bridges. Salt around girders generally originates from sea-salt and deicing salt. Since salt of both origin increases in winter, contribution of deicing salt is hard to be estimated only from fluctuation of total abundance of salt around the bridge. In this study, abundance of Mg2+ as well as that of Cl- in salt sampled under bridges is analyzed. As a result, this study revealed that the supply of deicing salt declines Mg2+/Cl- ratio of salt on the girder. In addition, examination of Mg2+/Cl- ratio of salt sampled under the examined bridge near sea revealed that the fluctuation of quantity of air-born salt under the bridge is ascribed to the fluctuation of supply of sea salt.

  17. Two Salt Bridges Differentially Contribute to the Maintenance of Cystic Fibrosis Transmembrane Conductance Regulator (CFTR) Channel Function*

    PubMed Central

    Cui, Guiying; Freeman, Cody S.; Knotts, Taylor; Prince, Chengyu Z.; Kuang, Christopher; McCarty, Nael A.

    2013-01-01

    Previous studies have identified two salt bridges in human CFTR chloride ion channels, Arg352-Asp993 and Arg347-Asp924, that are required for normal channel function. In the present study, we determined how the two salt bridges cooperate to maintain the open pore architecture of CFTR. Our data suggest that Arg347 not only interacts with Asp924 but also interacts with Asp993. The tripartite interaction Arg347-Asp924-Asp993 mainly contributes to maintaining a stable s2 open subconductance state. The Arg352-Asp993 salt bridge, in contrast, is involved in stabilizing both the s2 and full (f) open conductance states, with the main contribution being to the f state. The s1 subconductance state does not require either salt bridge. In confirmation of the role of Arg352 and Asp993, channels bearing cysteines at these sites could be latched into a full open state using the bifunctional cross-linker 1,2-ethanediyl bismethanethiosulfonate, but only when applied in the open state. Channels remained latched open even after washout of ATP. The results suggest that these interacting residues contribute differently to stabilizing the open pore in different phases of the gating cycle. PMID:23709221

  18. Two salt bridges differentially contribute to the maintenance of cystic fibrosis transmembrane conductance regulator (CFTR) channel function.

    PubMed

    Cui, Guiying; Freeman, Cody S; Knotts, Taylor; Prince, Chengyu Z; Kuang, Christopher; McCarty, Nael A

    2013-07-12

    Previous studies have identified two salt bridges in human CFTR chloride ion channels, Arg(352)-Asp(993) and Arg(347)-Asp(924), that are required for normal channel function. In the present study, we determined how the two salt bridges cooperate to maintain the open pore architecture of CFTR. Our data suggest that Arg(347) not only interacts with Asp(924) but also interacts with Asp(993). The tripartite interaction Arg(347)-Asp(924)-Asp(993) mainly contributes to maintaining a stable s2 open subconductance state. The Arg(352)-Asp(993) salt bridge, in contrast, is involved in stabilizing both the s2 and full (f) open conductance states, with the main contribution being to the f state. The s1 subconductance state does not require either salt bridge. In confirmation of the role of Arg(352) and Asp(993), channels bearing cysteines at these sites could be latched into a full open state using the bifunctional cross-linker 1,2-ethanediyl bismethanethiosulfonate, but only when applied in the open state. Channels remained latched open even after washout of ATP. The results suggest that these interacting residues contribute differently to stabilizing the open pore in different phases of the gating cycle. PMID:23709221

  19. Comb/serpentine/cross-bridge test structure for fabrication process evaluation

    NASA Technical Reports Server (NTRS)

    Sayah, Hoshyar R.; Buehler, Martin G.

    1988-01-01

    The comb/serpentine/cross-bridge structure was developed to monitor and evaluate same layer shorts and step coverage problems (open and high-resistance wire over steps) for integrated circuit fabrication processes. The cross-bridge provides local measurements of wire sheet resistance and wirewidth. These local parametric measurements are used in the analysis of the serpentine wire, which identifies step coverage problems. The comb/serpentine/cross-bridge structure was fabricated with 3 microns CMOS/bulk p-well process and tested using a computer-controlled parametric test system.

  20. High ionic strength depresses muscle contractility by decreasing both force per cross-bridge and the number of strongly attached cross-bridges.

    PubMed

    Wang, Li; Bahadir, Anzel; Kawai, Masataka

    2015-06-01

    An increase in ionic strength (IS) lowers Ca(2+) activated tension in muscle fibres, however, its molecular mechanism is not well understood. In this study, we used single rabbit psoas fibres to perform sinusoidal analyses. During Ca(2+) activation, the effects of ligands (ATP, Pi, and ADP) at IS ranging 150-300 mM were studied on three rate constants to characterize elementary steps of the cross-bridge cycle. The IS effects were studied because a change in IS modifies the inter- and intra-molecular interactions, hence they may shed light on the molecular mechanisms of force generation. Both the ATP binding affinity (K1) and the ADP binding affinity (K 0) increased to 2-3x, and the Pi binding affinity (K5) decreased to 1/2, when IS was raised from 150 to 300 mM. The effect on ATP/ADP can be explained by stereospecific and hydrophobic interaction, and the effect on Pi can be explained by the electrostatic interaction with myosin. The increase in IS increased cross-bridge detachment steps (k2 and k-4), indicating that electrostatic repulsion promotes these steps. However, IS did not affect attachment steps (k-2 and k4). Consequently, the equilibrium constant of the detachment step (K2) increased by ~100%, and the force generation step (K4) decreased by ~30%. These effects together diminished the number of force-generating cross-bridges by 11%. Force/cross-bridge (T56) decreased by 26%, which correlates well with a decrease in the Debye length that limits the ionic atmosphere where ionic interactions take place. We conclude that the major effect of IS is a decrease in force/cross-bridge, but a decrease in the number of force generating cross-bridge also takes place. The stiffness during rigor induction did not change with IS, demonstrating that in-series compliance is not much affected by IS. PMID:25836331

  1. Crossing Bridges That Connect the Arts, Cognitive Development, and the Brain

    ERIC Educational Resources Information Center

    Peterson, Rita

    2005-01-01

    Crossing high bridges offers the opportunity to ponder views from a distance: to see connections between places at the ground level or ideas that are familiar, and to capture an overview of places or ideas that are yet to be explored. The purpose of this essay is to explore the figural bridges that connect the arts with cognitive development and…

  2. Bridge No. 1363, First B&O Crossing, detail of skewed through ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Bridge No. 1363, First B&O Crossing, detail of skewed through truss, looking west. - Western Maryland Railway, Cumberland Extension, Pearre to North Branch, from WM milepost 125 to 160, Pearre, Washington County, MD

  3. Skewed west portal of Bridge No. 1363, First B&O Crossing, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Skewed west portal of Bridge No. 1363, First B&O Crossing, looking east. - Western Maryland Railway, Cumberland Extension, Pearre to North Branch, from WM milepost 125 to 160, Pearre, Washington County, MD

  4. 13. I95 bridge crossing corridor with Providence Station in background. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    13. I-95 bridge crossing corridor with Providence Station in background. Providence, Providence County, RI. sec. 4116, mp 185.15. - Northeast Railroad Corridor, Amtrak route between CT & MA state lines, Providence, Providence County, RI

  5. Nonlinear Cross-Bridge Elasticity and Post-Power-Stroke Events in Fast Skeletal Muscle Actomyosin

    PubMed Central

    Persson, Malin; Bengtsson, Elina; ten Siethoff, Lasse; Månsson, Alf

    2013-01-01

    Generation of force and movement by actomyosin cross-bridges is the molecular basis of muscle contraction, but generally accepted ideas about cross-bridge properties have recently been questioned. Of the utmost significance, evidence for nonlinear cross-bridge elasticity has been presented. We here investigate how this and other newly discovered or postulated phenomena would modify cross-bridge operation, with focus on post-power-stroke events. First, as an experimental basis, we present evidence for a hyperbolic [MgATP]-velocity relationship of heavy-meromyosin-propelled actin filaments in the in vitro motility assay using fast rabbit skeletal muscle myosin (28–29°C). As the hyperbolic [MgATP]-velocity relationship was not consistent with interhead cooperativity, we developed a cross-bridge model with independent myosin heads and strain-dependent interstate transition rates. The model, implemented with inclusion of MgATP-independent detachment from the rigor state, as suggested by previous single-molecule mechanics experiments, accounts well for the [MgATP]-velocity relationship if nonlinear cross-bridge elasticity is assumed, but not if linear cross-bridge elasticity is assumed. In addition, a better fit is obtained with load-independent than with load-dependent MgATP-induced detachment rate. We discuss our results in relation to previous data showing a nonhyperbolic [MgATP]-velocity relationship when actin filaments are propelled by myosin subfragment 1 or full-length myosin. We also consider the implications of our results for characterization of the cross-bridge elasticity in the filament lattice of muscle. PMID:24138863

  6. Thick-to-Thin Filament Surface Distance Modulates Cross-Bridge Kinetics in Drosophila Flight Muscle

    SciTech Connect

    Tanner, Bertrand C.W.; Farman, Gerrie P.; Irving, Thomas C.; Maughan, David W.; Palmer, Bradley M.; Miller, Mark S.

    2012-09-19

    The demembranated (skinned) muscle fiber preparation is widely used to investigate muscle contraction because the intracellular ionic conditions can be precisely controlled. However, plasma membrane removal results in a loss of osmotic regulation, causing abnormal hydration of the myofilament lattice and its proteins. We investigated the structural and functional consequences of varied myofilament lattice spacing and protein hydration on cross-bridge rates of force development and detachment in Drosophila melanogaster indirect flight muscle, using x-ray diffraction to compare the lattice spacing of dissected, osmotically compressed skinned fibers to native muscle fibers in living flies. Osmolytes of different sizes and exclusion properties (Dextran T-500 and T-10) were used to differentially alter lattice spacing and protein hydration. At in vivo lattice spacing, cross-bridge attachment time (t{sub on}) increased with higher osmotic pressures, consistent with a reduced cross-bridge detachment rate as myofilament protein hydration decreased. In contrast, in the swollen lattice, t{sub on} decreased with higher osmotic pressures. These divergent responses were reconciled using a structural model that predicts t{sub on} varies inversely with thick-to-thin filament surface distance, suggesting that cross-bridge rates of force development and detachment are modulated more by myofilament lattice geometry than protein hydration. Generalizing these findings, our results suggest that cross-bridge cycling rates slow as thick-to-thin filament surface distance decreases with sarcomere lengthening, and likewise, cross-bridge cycling rates increase during sarcomere shortening. Together, these structural changes may provide a mechanism for altering cross-bridge performance throughout a contraction-relaxation cycle.

  7. Probing cross-bridge angular transitions using multiple extrinsic reporter groups

    SciTech Connect

    Ajtai, K.; Ringler, A.; Burghardt, T.P. )

    1992-01-14

    {sup 15}N- and {sup 2}H-substituted maleimido- TEMPO spin label (({sup 15}N, {sup 2}H)MTSL) and the fluorescent label 1,5-IAEDANS were used to specifically modify sulfhydryl 1 of myosin to study the orientation of myosin cross-bridges in skeletal muscle fibers. The electron paramagnetic resonance (EPR) spectrum from muscle fibers decorated with labeled myosin subfragment 1 (({sup 15}N, {sup 2}H)MTSL-S1) or the fluorescence polarization spectrum from fibers directly labeled with 1,5-IAEDANS was measured from fibers in various physiological conditions. The EPR spectra from fibers with the fiber axis oriented at 90{degree} to the Zeeman field show a clear spectral shift from the rigor spectrum when the myosin cross-bridge binds MgADP. The EPR data from ({sup 15}N,{sup 2}H)MTSL-S1 decorating fibers are combined with the fluorescence polarization data from the 1,5-IAEDANS-labeled fibers to map the global angular transition of the labeled cross-bridges due to nucleotide binding by an analytical method described in the accompanying paper. The authors find that the spin and fluorescent probes are quantitatively consistent in the finding that the actin-bound cross-bridge rotates through a large angle upon binding MgADP. They also find that, if the shape of the cross-bridge is described as an ellipsoid with two equivalent minor axes, then cross-bridge rotation takes place mainly about an axis parallel to the major axis of the ellipsoid. This type of rotation may imitate the rotational motion of cross-bridges during force generation.

  8. Bridge No. 1396, Fourth Potomac and Second B&O Crossing, with ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Bridge No. 1396, Fourth Potomac and Second B&O Crossing, with B&O Potomac Crossing (built ca. 1914 as part of B&O's Magnolia Cutoff) in background, looking east. - Western Maryland Railway, Cumberland Extension, Pearre to North Branch, from WM milepost 125 to 160, Pearre, Washington County, MD

  9. High Ionic Strength Depresses Muscle Contractility by Decreasing both Force per Cross-bridge and the Number of Strongly Attached Cross-bridges

    PubMed Central

    Wang, Li; Bahadir, Anzel; Kawai, Masataka

    2015-01-01

    An increase in ionic strength (IS) lowers Ca2+ activated tension in muscle fibres, however, its molecular mechanism is not well understood. In this study, we used single rabbit psoas fibres to perform sinusoidal analyses. During Ca2+ activation, the effects of ligands (ATP, Pi, and ADP) at IS ranging 150 mM – 300 mM were studied on three rate constants to characterize elementary steps of the cross-bridge cycle. The IS effects were studied because a change in IS modifies the inter- and intra-molecular interactions, hence they may shed light on the molecular mechanisms of force generation. Both the ATP binding affinity (K1) and the ADP binding affinity (K0) increased to 2-3x, and the Pi binding affinity (K5) decreased to 1/2, when IS was raised from 150 mM to 300 mM. The effect on ATP/ADP can be explained by stereospecific and hydrophobic interaction, and the effect on Pi can be explained by the electrostatic interaction with myosin. The increase in IS increased cross-bridge detachment steps (k2 and k−4), indicating that electrostatic repulsion promotes these steps. However, IS did not affect attachment steps (k−2 and k4). Consequently, the equilibrium constant of the detachment step (K2) increased by ~100%, and the force generation step (K4) decreased by ~30%. These effects together diminished the number of force-generating cross-bridges by 11%. Force/cross-bridge (T56) decreased by 26%, which correlates well with a decrease in the Debye length that limits the ionic atmosphere where ionic interactions take place. We conclude that the major effect of IS is a decrease in force/cross-bridge, but a decrease in the number of force generating cross-bridge also takes place. The stiffness during rigor induction did not change with IS, demonstrating that in-series compliance is not much affected by IS. PMID:25836331

  10. Cross-Bridge Group Ensembles Describing Cooperativity in Thermodynamically Consistent Way

    PubMed Central

    Kalda, Mari; Peterson, Pearu; Vendelin, Marko

    2015-01-01

    The aim of this work is to incorporate cooperativity into Huxley-type cross-bridge model in thermodynamically consistent way. While the Huxley-type models assume that cross-bridges act independently from each other, we take into account that each cross-bridge is influenced by its neighbors and cooperativity is induced by tropomyosin movement. For that, we introduce ensembles of cross-bridge groups connected by elastic tropomyosin. By taking into account that the mechanical displacement of tropomyosin induces free energy change of the cross-bridge group ensemble, we develop the formalism for thermodynamically consistent description of the cooperativity in muscle contraction. An example model was composed to test the approach. The model parameters were found by optimization from the linear relation between oxygen consumption and stress-strain area as well as experimentally measured stress dynamics of rat trabecula. We have found a good agreement between the optimized model solution and experimental data. Simulations also showed that it is possible to study cooperativity with the approach developed in this work. PMID:26361396

  11. Observing cycling of a few cross-bridges during isometric contraction of skeletal muscle

    PubMed Central

    Mettikolla, P.; Calander, N.; Luchowski, R.; Gryczynski, I.; Gryczynski, Z.; Borejdo, J.

    2010-01-01

    During muscle contraction a myosin cross-bridge imparts periodic force impulses to actin. It is possible to visualize those impulses by observing a few molecules of actin or myosin. We have followed the time course of orientation change of a few actin molecules during isometric contraction by measuring parallel polarized intensity of its fluorescence. The orientation of actin reflects local bending of a thin filament and is different when a cross-bridge binds to, or is detached from, F-actin. The changes in orientation were characterized by periods of activity during which myosin cross-bridges interacted normally with actin, interspersed with periods of inactivity during which actin and myosin were unable to interact. The periods of activity lasted on average 1.2 ± 0.4 s and were separated on average by 2.3 ± 1.0 s. During active period, actin orientation oscillated between the two extreme values with the ON and OFF times of 0.4±0.2 and 0.7±0.4 s, respectively. When the contraction was induced by a low concentration of ATP both active and inactive times were longer and approximately equal. These results imply that cross-bridges interact with actin in bursts and suggest that during active period, on average 36% of cross-bridges are involved in force generation. PMID:20517927

  12. Time-resolved measurements of phosphate release by cycling cross-bridges in portal vein smooth muscle.

    PubMed

    He, Z H; Ferenczi, M A; Brune, M; Trentham, D R; Webb, M R; Somlyo, A P; Somlyo, A V

    1998-12-01

    The rate of release of inorganic phosphate (Pi) from cycling cross-bridges in rabbit portal-anterior mesenteric vein smooth muscle was determined by following the fluorescence of the Pi-reporter, MDCC-PBP (Brune, M., J. L. Hunter, S. A. Howell, S. R. Martin, T. L. Hazlett, J. E. T. Corrie, and M. R. Webb. 1998. Biochemistry. 37:10370-10380). Cross-bridge cycling was initiated by photolytic release of ATP from caged-ATP in Triton-permeabilized smooth muscles in rigor. When the regulatory myosin light chains (MLC20) had been thiophosphorylated, the rate of Pi release was biphasic with an initial rate of 80 microM s-1 and amplitude 108 microM, decreasing to 13.7 microM s-1. These rates correspond to fast and slow turnovers of 1.8 s-1 and 0.3 s-1, assuming 84% thiophosphorylation of 52 microM myosin heads. Activation by Ca2+-dependent phosphorylation subsequent to ATP release resulted in slower Pi release, paralleling the rate of contraction that was also slower than after thiophosphorylation, and was also biphasic: 51 microM s-1 and 13.2 microM s-1. These rates suggest that the activity of myosin light chain kinase and phosphatase ("pseudo-ATPase") contributes <20% of the ATP usage during cross-bridge cycling. The extracellular "ecto-nucleotidase" activity was reduced eightfold by permeabilization, conditions in which the ecto-ADPase was 17% of the ecto-ATPase. Nevertheless, the remaining ecto-ATPase activity reduced the precision of the estimate of cross-bridge ATPase. We conclude that the transition from fast to slow ATPase rates reflects the properties and forces directly acting on cross-bridges, rather than the result of a time-dependent decrease in activation (MLC20 phosphorylation) occurring in intact smooth muscle. The mechanisms of slowing may include the effect of positive strain on cross-bridges, inhibition of the cycling rate by high affinity Mg-ADP binding, and associated state hydrolysis. PMID:9826623

  13. Cross-spectral recognition method of bridge deck aerodynamic admittance function

    NASA Astrophysics Data System (ADS)

    Zhao, Lin; Ge, Yaojun

    2015-12-01

    This study proposes a new identification algorithm about the admittance function, which can estimate the full set of six aerodynamic admittance functions considering cross power spectral density functions about the forces and the turbulence components. The method was first numerically validated through Monte Carlo simulations, and then adopted to estimate the aerodynamic admittance of a streamlined bridge deck. The identification method was further validated through a comparison between the numerical calculation and wind tunnel tests on a moving bridge section.

  14. Crossing the Water: Spiritual Growth in "Bridge to Terabithia" and "Lizzie Bright and the Buckminster Boy"

    ERIC Educational Resources Information Center

    Thomas, Trudelle

    2011-01-01

    The author analyses two award-winning juvenile novels, "Bridge to Terabithia" by Katherine Paterson and "Lizzie Bright and the Buckminster Boy" by Gary Schmidt. Each novel portrays a deep friendship between a boy and girl who cross a stream (or river) into a world that includes fantasy, play, closeness to nature and animals, and a sense of the…

  15. Backwater and discharge at highway crossings with multiple bridges in Louisiana and Mississippi

    USGS Publications Warehouse

    Colson, B.E.; Schneider, V.R.

    1983-01-01

    Data were collected for nine floods in Mississippi and Louisiana at eight stream crossings having two to six separate bridge openings. Discharge through each bridge, water surface profiles, valley cross sections, and bridge geometry were measured. The multiple openings were divided into equivalent single-opening cases by apportioning interior embankments in direct proportion to the area of openings on either side. Using existing procedures for computer discharge, the bias in computed discharge was 2 percent with a root mean square error of 18 percent. Backwater was computed by two current U.S. Geological Survey methods that use the average flow path in the friction loss term for the approach. One method gave a root mean square error of 0.34 ft. with a bias of -0.25 ft., suggesting that the method underestimates backwater. The other method gave a root mean square error of 0.39 ft with a bias of -0.03 ft. The results indicate that the method developed for single-opening highway crossings can be applied to the multiple bridge crossings. (USGS)

  16. Bridge No. 1628, Sixth C&O Canal Crossing, looking northeast, with ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Bridge No. 1628, Sixth C&O Canal Crossing, looking northeast, with corner of Roberts and Candoc streets in South Cumberland, Maryland, in background. - Western Maryland Railway, Cumberland Extension, Pearre to North Branch, from WM milepost 125 to 160, Pearre, Washington County, MD

  17. Force generation and work production by covalently cross-linked actin-myosin cross-bridges in rabbit muscle fibers.

    PubMed

    Bershitsky, S Y; Tsaturyan, A K

    1995-09-01

    To separate a fraction of the myosin cross-bridges that are attached to the thin filaments and that participate in the mechanical responses, muscle fibers were cross-linked with 1-(3-dimethylaminopropyl)-3-ethylcarbodiimide and then immersed in high-salt relaxing solution (HSRS) of 0.6 M ionic strength for detaching the unlinked myosin heads. The mechanical properties and force-generating ability of the cross-linked cross-bridges were tested with step length changes (L-steps) and temperature jumps (T-jumps) from 6-10 degrees C to 30-40 degrees C. After partial cross-linking, when instantaneous stiffness in HSRS was 25-40% of that in rigor, the mechanical behavior of the fibers was similar to that during active contraction. The kinetics of the T-jump-induced tension transients as well as the rate of the fast phase of tension recovery after length steps were close to those in unlinked fibers during activation. Under feedback force control, the T-jump initiated fiber shortening by up to 4 nm/half-sarcomere. Work produced by a cross-linked myosin head after the T-jump was up to 30 x 10(-21) J. When the extent of cross-linking was increased and fiber stiffness in HSRS approached that in rigor, the fibers lost their viscoelastic properties and ability to generate force with a rise in temperature. PMID:8519956

  18. Helix-coil melting in rigor and activated cross-bridges of skeletal muscle.

    PubMed

    Harrington, W F; Ueno, H; Davis, J S

    1988-01-01

    The studies described in this paper focus on the structural stability of the S-2 segment of the myosin cross-bridge in rigor, relaxed and activated muscle. Enzyme-probe observations of myofibrils of rabbit psoas muscle in rigor reveal that the alpha-helical LMM/HMM hinge domain of S-2 undergoes substantial local melting near physiological temperatures when the S-2 portion of the cross-bridge is detached from the thick filament surface. This process is strongly suppressed under ionic conditions where the cross-bridge is bound to the filament backbone. Activation of glycerinated fiber bundles results in a dramatic increase (approximately 100 fold compared to rigor and relaxed fibers) in the rate of chymotryptic cleavage in the hinge domain consistent with an increase in local melting at several sites encompassing this region. Comparative plots of the apparent rate-constant for cleavage within the S-2 hinge and the isometric force generated by active fibers versus [MgATP] give similar profiles suggesting a close coupling between this conformational transition and contractile force. This interpretation appears to be in accord with recent laser T-jump experiments of rigor ("bridges up") and activated psoas muscle fibers which also suggest coupling between melting in S-2 and force generation. PMID:3044019

  19. Contribution of Disulfide Bridges to the Thermostability of a Type A Feruloyl Esterase from Aspergillus usamii

    PubMed Central

    Li, Jian-Fang; He, Yao; Zhu, Tian-Di; Wu, Min-Chen

    2015-01-01

    The contribution of disulfide bridges to the thermostability of a type A feruloyl esterase (AuFaeA) from Aspergillus usamii E001 was studied by introducing an extra disulfide bridge or eliminating a native one from the enzyme. MODIP and DbD, two computational tools that can predict the possible disulfide bridges in proteins for thermostability improvement, and molecular dynamics (MD) simulations were used to design the extra disulfide bridge. One residue pair A126-N152 was chosen, and the respective amino acid residues were mutated to cysteine. The wild-type AuFaeA and its variants were expressed in Pichia pastoris GS115. The temperature optimum of the recombinant (re-) AuFaeAA126C-N152C was increased by 6°C compared to that of re-AuFaeA. The thermal inactivation half-lives of re-AuFaeAA126C-N152C at 55 and 60°C were 188 and 40 min, which were 12.5- and 10-folds longer than those of re-AuFaeA. The catalytic efficiency (kcat/Km) of re-AuFaeAA126C-N152C was similar to that of re-AuFaeA. Additionally, after elimination of each native disulfide bridge in AuFaeA, a great decrease in expression level and at least 10°C decrease in thermal stability of recombinant AuEaeA variants were also observed. PMID:25969986

  20. Measurement of bridge scour at the SR-32 crossing of the Sacramento River at Hamilton City, California, 1987-92

    USGS Publications Warehouse

    Blodgett, J.C.; Harris, Carroll D.

    1993-01-01

    A study of the State Route 32 crossing of the Sacramento River near Hamilton City, California, is being made to determine those channel and bridge factors that contribute to scour at the site. Three types of scour data have been measured-channel bed (natural) scour, constriction (general) scour, and local (bridge-pier induced) scour. During the years 1979-93, a maximum of 3.4 ft of channel bed scour, with a mean of 1.4 ft, has been measured. Constriction scour, which may include channel bed scour, has been measured at the site nine times during the years 1987-92. The calculated amount of constriction scour ranged from 0.2 to 3.0 ft, assuming the reference is the mean bed elevation. Local scour was measured four times at the site in 1991 and 1992 and ranged from -2.1 (fill) to 11.6 ft , with the calculated amounts dependent on the bed reference elevation and method of computation used. Surveys of the channel bed near the bridge piers indicate the horizontal location of lowest bed elevation (maximum depth of scour) may vary at least 17 ft between different surveys at the same pier and most frequently is located downstream from the upstream face of the pier.

  1. Rad54 oligomers translocate and cross-bridge double-stranded DNA to stimulate synapsis

    PubMed Central

    Bianco, Piero R.; Bradfield, Justin J.; Castanza, Lauren R.; Donnelly, Andrea N.

    2007-01-01

    Rad54 is a key component of the eukaryotic recombination machinery. Its presence in DNA strand exchange reactions in vitro results in a significant stimulation in the overall reaction rate. Using untagged Rad54, we show that this stimulation can be attributed to enhancement of the formation of a key reaction intermediate known as DNA networks. Using a novel, single DNA molecule, dual-optical tweezers approach we show how Rad54 stimulates DNA network formation. We discovered that Rad54 oligomers possess a unique ability to cross-bridge or bind dsDNA molecules positioned in close proximity. Further, Rad54 oligomers rapidly translocate dsDNA while simultaneously inducing topological loops in the DNA at the locus of the oligomer. The combination of the cross-bridging and dsDNA translocation activities of Rad54 stimulates the formation of DNA networks, leading to rapid and efficient DNA strand exchange by Rad51. PMID:17949748

  2. Cross-bridged Macrocyclic Chelators for Stable Complexation of Copper Radionuclides for PET Imaging

    PubMed Central

    Anderson, Carolyn J.; Wadas, Thaddeus J.; Wong, Edward H.; Weisman, Gary R.

    2015-01-01

    Copper-64 (t1/2 = 12.7 h, β+: 17.4%, Eβ+max = 656 keV; β−: 39%, Eβ-max = 573 keV) has emerged as an important non-standard positron-emitting radionuclide for PET imaging of diseased tissues. A significant challenge of working with copper radionuclides is that they must be delivered to the living system as a stable complex that is attached to a biological targeting molecule for effective imaging and therapy. Significant research has been devoted to the development of ligands that can stably chelate 64Cu, in particular, the cross-bridged macrocyclic chelators. This review describes the coordination chemistry and biological behavior of 64Cu-labeled cross-bridged complexes. PMID:18043536

  3. Synthesis of a Cross-Bridged Cyclam Derivative for Peptide Conjugation and 64Cu Radiolabeling

    PubMed Central

    Boswell, C. Andrew; Regino, Celeste A. S.; Baidoo, Kwamena E.; Wong, Karen J.; Bumb, Ambika; Xu, Heng; Milenic, Diane E.; Kelley, James A.; Lai, Christopher C.; Brechbiel, Martin W.

    2008-01-01

    The increased use of copper radioisotopes in radiopharmaceutical applications has created a need for bifunctional chelators (BFCs) that form stable radiocopper complexes and allow covalent attachment to biological molecules. Previous studies have established that 4,11-bis-(carbo-tert-butoxymethyl)-1,4,8,11-tetraazabicyclo[6.6.2]hexadecane (H2CB-TE2A), a member of the ethylene “cross-bridged” cyclam (CB-cyclam) class of bicyclic tetraaza macrocycles, forms highly kinetically stable complexes with Cu(II) and is less susceptible to in vivo transchelation than its non-bridged analog, 1,4,8,11-tetraazacyclotetradecane-1,4,8,11-tetraacetic acid (TETA). Herein, we report a convenient synthesis of a novel cross-bridged BFC that is structurally analogous to CB-TE2A in that it possesses two coordinating acetate arms, but in addition possesses a third orthogonally-protected arm for conjugation to peptides and other targeting agents. Application of this strategy to cross-bridged chelators may also enable the development of even further improved agents for 64Cu-mediated diagnostic positron emission tomography (PET) imaging as well as for targeted radiotherapeutic applications. PMID:18597510

  4. Regulation of muscle force in the absence of actin-myosin-based cross-bridge interaction.

    PubMed

    Leonard, T R; Herzog, W

    2010-07-01

    For the past half century, the sliding filament-based cross-bridge theory has been the cornerstone of our understanding of how muscles contract. According to this theory, active force can only occur if there is overlap between the contractile filaments, actin and myosin. Otherwise, forces are thought to be caused by passive structural elements and are assumed to vary solely because of the length of the muscle. We observed increases in muscle force by a factor of 3 to 4 above the purely passive forces for activated and stretched myofibrils in the absence of actin-myosin overlap. We show that this dramatic increase in force is crucially dependent on the presence of the structural protein titin, cannot be explained with calcium activation, and is regulated by actin-myosin-based cross-bridge forces before stretching. We conclude from these observations that titin is a strong regulator of muscle force and propose that this regulation is based on cross-bridge force-dependent titin-actin interactions. These results suggest a mechanism for stability of sarcomeres on the "inherently unstable" descending limb of the force-length relationship, and they further provide an explanation for the protection of muscles against stretch-induced muscle injuries. PMID:20357181

  5. Kinetic and thermodynamic studies of the cross-bridge cycle in rabbit psoas muscle fibers.

    PubMed Central

    Zhao, Y; Kawai, M

    1994-01-01

    The effect of temperature on elementary steps of the cross-bridge cycle was investigated with sinusoidal analysis technique in skinned rabbit psoas fibers. We studied the effect of MgATP on exponential process (C) to characterize the MgATP binding step and cross-bridge detachment step at six different temperatures in the range 5-30 degrees C. Similarly, we studied the effect of MgADP on exponential process (C) to characterize the MgADP binding step. We also studied the effect of phosphate (Pi) on exponential process (B) to characterize the force generation step and Pi-release step. From the results of these studies, we deduced the temperature dependence of the kinetic constants of the elementary steps and their thermodynamic properties. We found that the MgADP association constant (K0) and the MgATP association constant (K1) significantly decreased when the temperature was increased from 5 to 20 degrees C, implying that nucleotide binding became weaker at higher temperatures. K0 and K1 did not change much in the 20-30 degree C range. The association constant of Pi to cross-bridges (K5) did not change much with temperature. We found that Q10 for the cross-bridge detachment step (k2) was 2.6, and for its reversal step (k-2) was 3.0. We found that Q10 for the force generation step (Pi-isomerization step, k4) was 6.8, and its reversal step (k-4) was 1.6. The equilibrium constant of the detachment step (K2) was not affected much by temperature, whereas the equilibrium constant of the force generation step (K4) increased significantly with temperature increase. Thus, the force generation step consists of an endothermic reaction. The rate constant of the rate-limiting step (k6) did not change much with temperature, whereas the ATP hydrolysis rate increased significantly with temperature increase. We found that the force generation step accompanies a large entropy increase and a small free energy change; hence, this step is an entropy-driven reaction. These observations

  6. Split-cross-bridge resistor for testing for proper fabrication of integrated circuits

    NASA Technical Reports Server (NTRS)

    Buehler, M. G. (Inventor)

    1985-01-01

    An electrical testing structure and method is described whereby a test structure is fabricated on a large scale integrated circuit wafer along with the circuit components and has a van der Pauw cross resistor in conjunction with a bridge resistor and a split bridge resistor, the latter having two channels each a line width wide, corresponding to the line width of the wafer circuit components, and with the two channels separated by a space equal to the line spacing of the wafer circuit components. The testing structure has associated voltage and current contact pads arranged in a two by four array for conveniently passing currents through the test structure and measuring voltages at appropriate points to calculate the sheet resistance, line width, line spacing, and line pitch of the circuit components on the wafer electrically.

  7. Carbodiimide cross-linking of amniotic membranes in the presence of amino acid bridges.

    PubMed

    Lai, Jui-Yang

    2015-06-01

    The purpose of this study was to investigate the carbodiimide cross-linking of amniotic membrane (AM) in the presence of amino acid bridges. The biological tissues were treated with glycine, lysine, or glutamic acid and chemically cross-linked to examine the role of amino acid types in collagenous biomaterial processing. Results of zeta potential measurements showed that the use of uncharged, positively and negatively charged amino acids dictates the charge state of membrane surface. Tensile strength and water content measurements demonstrated that the addition of lysine molecules to the cross-linking system can increase the cross-linking efficiency and dehydration degree while the introduction of glutamic acid in the AM samples decreases the number of cross-links per unit mass of chemically modified tissue collagen. The differences in the cross-linking density further determined the thermal and biological stability by differential scanning calorimetry and in vitro degradation tests. As demonstrated in matrix permeability studies, the improved formation of covalent cross-linkages imposed by lysine facilitated construction of stronger cross-linking structures. In contrast, the added glycine molecules were insufficient to enhance the resistances of the proteinaceous matrices to thermal denaturation and enzymatic degradation. The cytocompatibility of these biological tissue membranes was evaluated by using human corneal epithelial cell cultures. Results of cell viability, metabolic activity, and pro-inflammatory gene expression level showed that the AM materials cross-linked with carbodiimide in the presence of different types of amino acids are well tolerated without evidence of detrimental effect on cell growth. In addition, the amino acid treated and carbodiimide cross-linked AM implants had good biocompatibility in the anterior chamber of the rabbit eye model. Our findings suggest that amino acid type is a very important engineering parameter to mediate

  8. No Bridge Too High: Infants Decide Whether to Cross Based on the Probability of Falling not the Severity of the Potential Fall

    ERIC Educational Resources Information Center

    Kretch, Kari S.; Adolph, Karen E.

    2013-01-01

    Do infants, like adults, consider both the probability of falling and the severity of a potential fall when deciding whether to cross a bridge? Crawling and walking infants were encouraged to cross bridges varying in width over a small drop-off, a large drop-off, or no drop-off. Bridge width affects the probability of falling, whereas drop-off…

  9. Detachment of low-force bridges contributes to the rapid tension transients of skinned rabbit skeletal muscle fibres.

    PubMed Central

    Seow, C Y; Shroff, S G; Ford, L E

    1997-01-01

    under the reference condition. BDM therefore appeared to augment the fastest component of the tension transient under the reference condition. 5. The results suggest that BDM detains cross-bridges in low-force, attached states. Since these bridges are attached, they contribute to sarcomere stiffness. Since they are detained, relaxation or reversal of their immediate responses is probably due to bridge detachment rather than to their undergoing the power stroke. The observation that a portion of the test response matched the fastest component of the reference response when the amplitude of the fastest component was increased suggests that a part of the normal rapid, transient tension recovery following a release step is due to detachment of low-force bridges moved to negative-force positions by the step. PMID:9175000

  10. Orientation of cross-bridges in skeletal muscle measured with a hydrophobic probe.

    PubMed

    Xiao, M; Borejdo, J

    1997-05-01

    Cis-parinaric acid (PA) binds to a hydrophobic pocket formed between the heavy chain of myosin subfragment-1 (S1) and the 41-residue N-terminal of essential light chain 1 (A1). The binding is strong (Ka = 5.6 x 10(7) M-1) and rigid (polarization = 0.334). PA does not bind to myofibrils in which A1 has been extracted or replaced with alkali light chain 2 (A2). As in the case of S1 labeled with other probes, polarization of fluorescence of S1-PA added to myofibrils depended on fractional saturation of actin filament with S1, i.e., on whether the filaments were fully or partially saturated with myosin heads. Because fluorescence quantum yield of PA is enhanced manyfold upon binding, and because PA binds weakly to myofibrillar structures other then A1, the dye is a convenient probe of cross-bridge orientation in native muscle fibers. The polarization of a fiber irrigated with PA was equal to the polarization of S1-PA added to fibers at nonsaturating concentration. Cross-linking of S1 added to fibers at nonsaturating concentration showed that each S1 bound to two actin monomers of a thin filament. These results suggest that in rigor rabbit psoas muscle fiber each myosin cross-bridge binds to two actins. PMID:9129830

  11. Working with Immigrant Students in Schools: The Role of School Counselors in Building Cross-Cultural Bridges

    ERIC Educational Resources Information Center

    Goh, Michael; Wahl, Kay Herting; McDonald, Julie Koch; Brissett, Annette A.; Yoon, Eunju

    2007-01-01

    School counselors are poised to play a significant role within comprehensive school counseling programs in addressing the needs of immigrant children in schools. The authors describe how school counselors can have a positive impact on the adjustment of immigrant students by building cross-cultural bridges through the use of cross-cultural…

  12. Insights into length-dependent regulation of cardiac cross-bridge cycling kinetics in human myocardium.

    PubMed

    Milani-Nejad, Nima; Chung, Jae-Hoon; Canan, Benjamin D; Davis, Jonathan P; Fedorov, Vadim V; Higgins, Robert S D; Kilic, Ahmet; Mohler, Peter J; Janssen, Paul M L

    2016-07-01

    Cross-bridge cycling kinetics play an essential role in the heart's ability to contract and relax. The rate of tension redevelopment (ktr) slows down as a muscle length is increased in intact human myocardium. We set out to determine the effect of rapid length step changes and protein kinase A (PKA) and protein kinase C-βII (PKC-βII) inhibitors on the ktr in ultra-thin non-failing and failing human right ventricular trabeculae. After stabilizing the muscle either at L90 (90% of optimal length) or at Lopt (optimal length), we rapidly changed the length to either Lopt or L90 and measured ktr. We report that length-dependent changes in ktr occur very rapidly (in the order of seconds or faster) in both non-failing and failing muscles and that the length at which a muscle had been stabilized prior to the length change does not significantly affect ktr. In addition, at L90 and at Lopt, PKA and PKC-βII inhibitors did not significantly change ktr. Our results reveal that length-dependent regulation of cross-bridge cycling kinetics predominantly occurs rapidly and involves the intrinsic properties of the myofilament rather than post-translational modifications that are known to occur in the cardiac muscle as a result of a change in muscle/sarcomere length. PMID:26854725

  13. Strain-dependent cross-bridge cycle for muscle. II. Steady-state behavior.

    PubMed Central

    Smith, D A; Geeves, M A

    1995-01-01

    Quantitative predictions of steady-state muscle properties from the strain-dependent cross-bridge for muscle are presented. With a stiffness of 5.4 x 10(-4) N/m per head, a throw distance of 11 nm, and three allowed actin sites/head, isometric properties and their dependence on phosphate and nucleotide levels are well described if the tension-generating step occurs before phosphate release. At very low ATP levels, rigorlike states with negative strain are predicted. The rate-limiting step for cycling and ATP consumption is strain-blocked ADP release for isometric and slowly shortening muscle. Under rapid shortening, ATP hydrolysis on detached heads is the rate-limiting step, and the ratio of bound ATP to bound ADP.Pi increases by a factor of 7. At large positive strains, bound heads must be forcibly detached from actin to account for tension in rapid extension, but forced detachment in shortening has no effect without destroying isometric attached states. Strain-blocked phosphate release as proposed produces modest inhibition of the ATPase rate under rapid shortening, sufficient to give a maximum for one actin site per helix turn. Alternative cross-bridge models are discussed in the light of these predictions. PMID:8527668

  14. Using optical tweezers to relate the chemical and mechanical cross-bridge cycles.

    PubMed Central

    Steffen, Walter; Sleep, John

    2004-01-01

    In most current models of muscle contraction there are two translational steps, the working stroke, whereby an attached myosin cross-bridge moves relative to the actin filament, and the repriming step, in which the cross-bridge returns to its original orientation. The development of single molecule methods has allowed a more detailed investigation of the relationship of these mechanical steps to the underlying biochemistry. In the normal adenosine triphosphate cycle, myosin.adenosine diphosphate.phosphate (M.ADP.Pi) binds to actin and moves it by ca. 5 nm on average before the formation of the end product, the rigor actomyosin state. All the other product-like intermediate states tested were found to give no net movement indicating that M.ADP.Pi alone binds in a pre-force state.Myosin states with bound, unhydrolysed nucleoside triphosphates also give no net movement, indicating that these must also bind in a post-force conformation and that the repriming, post- to pre-transition during the forward cycle must take place while the myosin is dissociated from actin. These observations fit in well with the structural model in which the working stroke is aligned to the opening of the switch 2 element of the ATPase site. PMID:15647161

  15. Cardiac Myosin Binding Protein C Phosphorylation Affects Cross-Bridge Cycle's Elementary Steps in a Site-Specific Manner

    PubMed Central

    Wang, Li; Sadayappan, Sakthivel; Kawai, Masakata

    2014-01-01

    Based on our recent finding that cardiac myosin binding protein C (cMyBP-C) phosphorylation affects muscle contractility in a site-specific manner, we further studied the force per cross-bridge and the kinetic constants of the elementary steps in the six-state cross-bridge model in cMyBP-C mutated transgenic mice for better understanding of the influence of cMyBP-C phosphorylation on contractile functions. Papillary muscle fibres were dissected from cMyBP-C mutated mice of ADA (Ala273-Asp282-Ala302), DAD (Asp273-Ala282-Asp302), SAS (Ser273-Ala282-Ser302), and t/t (cMyBP-C null) genotypes, and the results were compared to transgenic mice expressing wide-type (WT) cMyBP-C. Sinusoidal analyses were performed with serial concentrations of ATP, phosphate (Pi), and ADP. Both t/t and DAD mutants significantly reduced active tension, force per cross-bridge, apparent rate constant (2πc), and the rate constant of cross-bridge detachment. In contrast to the weakened ATP binding and enhanced Pi and ADP release steps in t/t mice, DAD mice showed a decreased ADP release without affecting the ATP binding and the Pi release. ADA showed decreased ADP release, and slightly increased ATP binding and cross-bridge detachment steps, whereas SAS diminished the ATP binding step and accelerated the ADP release step. t/t has the broadest effects with changes in most elementary steps of the cross-bridge cycle, DAD mimics t/t to a large extent, and ADA and SAS predominantly affect the nucleotide binding steps. We conclude that the reduced tension production in DAD and t/t is the result of reduced force per cross-bridge, instead of the less number of strongly attached cross-bridges. We further conclude that cMyBP-C is an allosteric activator of myosin to increase cross-bridge force, and its phosphorylation status modulates the force, which is regulated by variety of protein kinases. PMID:25420047

  16. Mechanical regulation of cardiac muscle by coupling calcium kinetics with cross-bridge cycling: a dynamic model.

    PubMed

    Landesberg, A; Sideman, S

    1994-08-01

    This study describes the regulation of mechanical activity in the intact cardiac muscle, the effects of the free calcium transients and the mechanical constraints, and emphasizes the central role of the troponin complex in regulating muscle activity. A "loose coupling" between calcium binding to troponin and cross-bridge cycling is stipulated, allowing the existence of cross bridges in the strong conformation without having bound calcium on the neighboring troponin. The model includes two feedback mechanisms: 1) a positive feedback, or cooperativity, in which the cycling cross bridges affect the affinity of troponin for calcium, and 2) a negative mechanical feedback, where the filament-sliding velocity affects cross-bridge cycling. The model simulates the reported experimental force-length and force-velocity relationships at different levels of activation. The dependence of the shortening velocity on calcium concentration, sarcomere length, internal load, and rate of cross-bridge cycling is described analytically in agreement with reported data. Furthermore, the model provides an analytic solution for Hill's equation of the force-velocity relationship and for the phenomena of unloaded shortening velocity and force deficit. The model-calculated changes in free calcium in various mechanical conditions are in good agreement with the available experimental results. PMID:8067434

  17. Increased Titin Compliance Reduced Length-Dependent Contraction and Slowed Cross-Bridge Kinetics in Skinned Myocardial Strips from Rbm (20ΔRRM) Mice.

    PubMed

    Pulcastro, Hannah C; Awinda, Peter O; Methawasin, Mei; Granzier, Henk; Dong, Wenji; Tanner, Bertrand C W

    2016-01-01

    Titin is a giant protein spanning from the Z-disk to the M-band of the cardiac sarcomere. In the I-band titin acts as a molecular spring, contributing to passive mechanical characteristics of the myocardium throughout a heartbeat. RNA Binding Motif Protein 20 (RBM20) is required for normal titin splicing, and its absence or altered function leads to greater expression of a very large, more compliant N2BA titin isoform in Rbm20 homozygous mice (Rbm20 (ΔRRM) ) compared to wild-type mice (WT) that almost exclusively express the stiffer N2B titin isoform. Prior studies using Rbm20 (ΔRRM) animals have shown that increased titin compliance compromises muscle ultrastructure and attenuates the Frank-Starling relationship. Although previous computational simulations of muscle contraction suggested that increasing compliance of the sarcomere slows the rate of tension development and prolongs cross-bridge attachment, none of the reported effects of Rbm20 (ΔRRM) on myocardial function have been attributed to changes in cross-bridge cycling kinetics. To test the relationship between increased sarcomere compliance and cross-bridge kinetics, we used stochastic length-perturbation analysis in Ca(2+)-activated, skinned papillary muscle strips from Rbm20 (ΔRRM) and WT mice. We found increasing titin compliance depressed maximal tension, decreased Ca(2+)-sensitivity of the tension-pCa relationship, and slowed myosin detachment rate in myocardium from Rbm20 (ΔRRM) vs. WT mice. As sarcomere length increased from 1.9 to 2.2 μm, length-dependent activation of contraction was eliminated in the Rbm20 (ΔRRM) myocardium, even though myosin MgADP release rate decreased ~20% to prolong strong cross-bridge binding at longer sarcomere length. These data suggest that increasing N2BA expression may alter cardiac performance in a length-dependent manner, showing greater deficits in tension production and slower cross-bridge kinetics at longer sarcomere length. This study also supports the

  18. Increased Titin Compliance Reduced Length-Dependent Contraction and Slowed Cross-Bridge Kinetics in Skinned Myocardial Strips from Rbm20ΔRRM Mice

    PubMed Central

    Pulcastro, Hannah C.; Awinda, Peter O.; Methawasin, Mei; Granzier, Henk; Dong, Wenji; Tanner, Bertrand C. W.

    2016-01-01

    Titin is a giant protein spanning from the Z-disk to the M-band of the cardiac sarcomere. In the I-band titin acts as a molecular spring, contributing to passive mechanical characteristics of the myocardium throughout a heartbeat. RNA Binding Motif Protein 20 (RBM20) is required for normal titin splicing, and its absence or altered function leads to greater expression of a very large, more compliant N2BA titin isoform in Rbm20 homozygous mice (Rbm20ΔRRM) compared to wild-type mice (WT) that almost exclusively express the stiffer N2B titin isoform. Prior studies using Rbm20ΔRRM animals have shown that increased titin compliance compromises muscle ultrastructure and attenuates the Frank-Starling relationship. Although previous computational simulations of muscle contraction suggested that increasing compliance of the sarcomere slows the rate of tension development and prolongs cross-bridge attachment, none of the reported effects of Rbm20ΔRRM on myocardial function have been attributed to changes in cross-bridge cycling kinetics. To test the relationship between increased sarcomere compliance and cross-bridge kinetics, we used stochastic length-perturbation analysis in Ca2+-activated, skinned papillary muscle strips from Rbm20ΔRRM and WT mice. We found increasing titin compliance depressed maximal tension, decreased Ca2+-sensitivity of the tension-pCa relationship, and slowed myosin detachment rate in myocardium from Rbm20ΔRRM vs. WT mice. As sarcomere length increased from 1.9 to 2.2 μm, length-dependent activation of contraction was eliminated in the Rbm20ΔRRM myocardium, even though myosin MgADP release rate decreased ~20% to prolong strong cross-bridge binding at longer sarcomere length. These data suggest that increasing N2BA expression may alter cardiac performance in a length-dependent manner, showing greater deficits in tension production and slower cross-bridge kinetics at longer sarcomere length. This study also supports the idea that passive

  19. Measuring myosin cross-bridge attachment time in activated muscle fibers using stochastic vs. sinusoidal length perturbation analysis

    PubMed Central

    Wang, Yuan; Maughan, David W.; Palmer, Bradley M.

    2011-01-01

    The average time myosin cross bridges remain bound to actin (ton) can be measured by sinusoidal length perturbations (sinusoidal analysis) of striated muscle fibers using recently developed analytic methods. This approach allows measurements of ton in preparations possessing a physiologically relevant myofilament lattice. In this study, we developed an approach to measure ton in 5–10% of the time required for sinusoidal analysis by using stochastic length perturbations (white noise analysis). To compare these methods, we measured the influence of MgATP concentration ([MgATP]) on ton in demembranated myocardial strips from mice, sampling muscle behavior from 0.125 to 200 Hz with a 20-s burst of white noise vs. a 300-s series of sinusoids. Both methods detected a similar >300% increase in ton as [MgATP] decreased from 5 to 0.25 mM, differing by only 3–14% at any [MgATP]. Additional experiments with Drosophila indirect flight muscle fibers demonstrated that faster cross-bridge cycling kinetics permit further reducing of the perturbation time required to measure ton. This reduced sampling time allowed strain-dependent measurements of ton in flight muscle fibers by combining 10-s bursts of white noise during periods of linear shortening and lengthening. Analyses revealed longer ton values during shortening and shorter ton values during lengthening. This asymmetry may provide a mechanism that contributes to oscillatory energy transfer between the flight muscles and thoracic cuticle to power flight. This study demonstrates that white noise analysis can detect underlying molecular processes associated with dynamic muscle contraction comparable to sinusoidal analysis, but in a fraction of the time. PMID:21233339

  20. Level II scour analysis for Bridge 42 (BETHTH00860042) on Town Highway 86, crossing Gilead Brook, Bethel, Vermont

    USGS Publications Warehouse

    Ayotte, Joseph D.; Song, Donald L.

    1996-01-01

    Total scour at a highway crossing is comprised of three components: 1) long-term streambed degradation; 2) contraction scour (due to accelerated flow caused by a reduction in flow area at a bridge) and; 3) local scour (caused by accelerated flow around piers and abutments). Total scour is the sum of the three components. Equations are available to compute depths for contraction and local scour and a summary of the results of these computations follows. Contraction scour for all modelled flows ranged from 0 to 1.9 ft. The worst-case contraction scour occurred at the incipient-overtopping discharge and the 100-year discharge. Abutment scour ranged from 8.6 to 15.7 ft. The worst-case abutment scour occurred at the 500-year discharge. Additional information on scour depths and depths to armoring are included in the section titled “Scour Results”. Scoured-streambed elevations, based on the calculated scour depths, are presented in tables 1 and 2. A cross-section of the scour computed at the bridge is presented in figure 8. Scour depths were calculated assuming an infinite depth of erosive material and a homogeneous particle-size distribution. It is generally accepted that the Froehlich equation (abutment scour) gives “excessively conservative estimates of scour depths” (Richardson and others, 1995, p. 47). Many factors, including historical performance during flood events, the geomorphic assessment, scour protection, and the results of the hydraulic analyses, must be considered to properly assess the validity of abutment scour results. Therefore, scour depths adopted by VTAOT may differ from the computed values documented herein, based on the consideration of additional contributing factors and engineering judgement.

  1. Level II scour analysis for Bridge 42 (BRIDTH00040042) on Town Highway 04, crossing Dailey Hollow Brook, Bridgewater, Vermont

    USGS Publications Warehouse

    Olson, Scott A.; Weber, Matthew A.

    1996-01-01

    This report provides the results of a detailed Level II analysis of scour potential at structure BRIDTH00040042 on town highway 4 crossing Dailey Hollow Brook, Bridgewater, Vermont (figures 1–8). A Level II study is a basic engineering analysis of the site, including a quantitative analysis of stream stability and scour (U.S. Department of Transportation, 1993). A Level I study is included in Appendix E of this report. A Level I study provides a qualitative geomorphic characterization of the study site. Information on the bridge available from VTAOT files was compiled prior to conducting Level I and Level II analyses and can be found in Appendix D. The site is in the Green Mountain physiographic division of central Vermont in the town of Bridgewater. The 2.20-mi2 drainage area is in a predominantly rural and forested basin. In the vicinity of the study site, the overbanks are covered by shrubs and trees except for the upstream right overbank where there is a house. Dailey Hollow Brook enters Dailey Hollow Branch at the downstream face of the bridge. In the study area, Dailey Hollow Brook has an incised, sinuous channel with a slope of approximately 0.035 ft/ft. The channel top width and channel depth upstream of the bridge is 19 ft and 3 ft, respectively. Downstream of the bridge and the confluence the channel top width and channel depth is 39 ft and 2 ft respectively. The predominant channel bed material is cobble and gravel (D50 is 64.7 mm or 0.212 ft). The geomorphic assessment at the time of the Level I and Level II site visit on November 1, 1994, indicated that the reach was stable. The town highway 4 crossing of Dailey Hollow Brook is a 25-ft-long, one-lane bridge consisting of one 23-foot concrete span (Vermont Agency of Transportation, written communication, August 25, 1994). The bridge is supported by vertical, concrete abutments with wingwalls. Type-2 stone fill (less than 36 inches) exists along all four wingwalls, the downstream right road approach

  2. COOH-terminal truncation of flightin decreases myofilament lattice organization, cross-bridge binding, and power output in Drosophila indirect flight muscle

    SciTech Connect

    Tanner, Bertrand C.W.; Miller, Mark S.; Miller, Becky M.; Lekkas, Panagiotis; Irving, Thomas C.; Maughan, David W.; Vigoreaux, Jim O.

    2011-08-26

    The indirect flight muscle (IFM) of insects is characterized by a near crystalline myofilament lattice structure that likely evolved to achieve high power output. In Drosophila IFM, the myosin rod binding protein flightin plays a crucial role in thick filament organization and sarcomere integrity. Here we investigate the extent to which the COOH terminus of flightin contributes to IFM structure and mechanical performance using transgenic Drosophila expressing a truncated flightin lacking the 44 COOH-terminal amino acids (fln{sup {Delta}C44}). Electron microscopy and X-ray diffraction measurements show decreased myofilament lattice order in the fln{sup {Delta}C44} line compared with control, a transgenic flightin-null rescued line (fln{sup +}). fln{sup {Delta}C44} fibers produced roughly 1/3 the oscillatory work and power of fln{sup +}, with reduced frequencies of maximum work (123 Hz vs. 154 Hz) and power (139 Hz vs. 187 Hz) output, indicating slower myosin cycling kinetics. These reductions in work and power stem from a slower rate of cross-bridge recruitment and decreased cross-bridge binding in fln{sup {Delta}C44} fibers, although the mean duration of cross-bridge attachment was not different between both lines. The decreases in lattice order and myosin kinetics resulted in fln{sup {Delta}C44} flies being unable to beat their wings. These results indicate that the COOH terminus of flightin is necessary for normal myofilament lattice organization, thereby facilitating the cross-bridge binding required to achieve high power output for flight.

  3. Faster cross-bridge detachment and increased tension cost in human hypertrophic cardiomyopathy with the R403Q MYH7 mutation

    PubMed Central

    Witjas-Paalberends, E Rosalie; Ferrara, Claudia; Scellini, Beatrice; Piroddi, Nicoletta; Montag, Judith; Tesi, Chiara; Stienen, Ger J M; Michels, Michelle; Ho, Carolyn Y; Kraft, Theresia; Poggesi, Corrado; van der Velden, Jolanda

    2014-01-01

    The first mutation associated with hypertrophic cardiomyopathy (HCM) is the R403Q mutation in the gene encoding β-myosin heavy chain (β-MyHC). R403Q locates in the globular head of myosin (S1), responsible for interaction with actin, and thus motor function of myosin. Increased cross-bridge relaxation kinetics caused by the R403Q mutation might underlie increased energetic cost of tension generation; however, direct evidence is absent. Here we studied to what extent cross-bridge kinetics and energetics are related in single cardiac myofibrils and multicellular cardiac muscle strips of three HCM patients with the R403Q mutation and nine sarcomere mutation-negative HCM patients (HCMsmn). Expression of R403Q was on average 41 ± 4% of total MYH7 mRNA. Cross-bridge slow relaxation kinetics in single R403Q myofibrils was significantly higher (P < 0.0001) than in HCMsmn myofibrils (0.47 ± 0.02 and 0.30 ± 0.02 s−1, respectively). Moreover, compared to HCMsmn, tension cost was significantly higher in the muscle strips of the three R403Q patients (2.93 ± 0.25 and 1.78 ± 0.10 μmol l–1 s−1 kN−1 m−2, respectively) which showed a positive linear correlation with relaxation kinetics in the corresponding myofibril preparations. This correlation suggests that faster cross-bridge relaxation kinetics results in an increase in energetic cost of tension generation in human HCM with the R403Q mutation compared to HCMsmn. Therefore, increased tension cost might contribute to HCM disease in patients carrying the R403Q mutation. PMID:24928957

  4. Level II scour analysis for Bridge 46 (BRIDTH00050046) on Town Highway 05, crossing North Branch Ottauquechee River, Bridgewater, Vermont

    USGS Publications Warehouse

    Olson, Scott A.; Song, Donald L.

    1996-01-01

    bridge consisting of a 34-ft steel-beam span, supported by vertical abutments with no wingwalls (Vermont Agency of Transportation, written communication, August 25, 1994). The left abutment is stone; the right abutment is log cribwork with type-2 stone fill (less than 36 inches diameter) along its base. Type-2 stone fill has also been placed on the upstream and downstream sides of the road embankments, except the upstream left which has type-3 (less than 48 inches diameter). The channel is skewed approximately 60 degrees; the opening-skew-to-roadway is 30 degrees. Additional details describing conditions at the site are included in the Level II Summary, Appendix D, and Appendix E. Scour depths and rock rip-rap sizes were computed using the general guidelines described in Hydraulic Engineering Circular 18 (Richardson and others, 1993). Total scour at a highway crossing is comprised of three components: 1) long-term degradation; 2) contraction scour (due to accelerated flow caused by a reduction in flow area at a bridge) and; 3) local scour (caused by accelerated flow around piers and abutments). Total scour is the sum of the three components. Equations are available to compute depths for contraction and local scour and a summary of these computed results follow. Contraction scour for all modelled flows was 0.0 ft. Abutment scour ranged from 5.7 ft to 7.7 ft. with the worst-case abutment scour occurring at the 500-year discharge. Additional information on scour depths and depths to armoring are included in the section titled “Scour Results”. Scoured-streambed elevations, based on the calculated depths, are presented in tables 1 and 2. A cross-section of the computed scour at the bridge is presented in figure 8. Scour depths were calculated assuming an infinite depth of erosive material and a homogeneous particle-size distribution. It is generally accepted that the Froehlich equation (abutment scour) gives “excessively conservative estimates of scour depths

  5. Flow-velocity and depth data during peak discharge events at selected bridge crossings in North Carolina, 1964-98

    USGS Publications Warehouse

    Pope, Benjamin F.

    2000-01-01

    Flow-velocity and depth data were collected from July 1996 through December 1998 during peak discharge events at 21 bridge crossings that are adjacent to U.S. Geological Survey streamgaging stations in North Carolina. These data were collected during measurements of peak discharges that had recurrence intervals ranging from less than 2 years to about 100 years. The velocity and depth data can be used to evaluate predicted flow velocities and scour depths that are computed as part of scour analyses at the selected bridge crossings.

  6. An amateur's contribution to the design of Telford's Menai Suspension Bridge: a commentary on Gilbert (1826) 'On the mathematical theory of suspension bridges'.

    PubMed

    Calladine, C R

    2015-04-13

    Davies Gilbert's work on the catenary is notable on two counts. First, it influenced Thomas Telford in formulating his final design for the Menai Strait suspension bridge (1826); and second, it established for the first time the form of the 'catenary of equal strength'. The classical catenary is a uniform flexible chain or cable hanging freely under gravity between supports. The 'catenary of equal strength' is the form of a cable whose cross-sectional area is made proportional to the tension at each point, so that the tensile stress is uniform throughout. In this paper I provide a sketch of the lives and achievements of Gilbert and Telford, and of their interaction over the Menai Bridge. There follows a commentary on Gilbert's 1826 paper, and on his two related publications; and a brief sketch of the earlier history of the catenary. I then describe the development of the suspension bridge up to the present time. Finally, I discuss relations between mathematical analysts and practical engineers. This commentary was written to celebrate the 350th anniversary of the journal Philosophical Transactions of the Royal Society. PMID:25750153

  7. Fluctuations in polarized fluorescence: evidence that muscle cross bridges rotate repetitively during contraction.

    PubMed Central

    Borejdo, J; Putnam, S; Morales, M F

    1979-01-01

    Particular thiols of the myosin subfragment 1 moieties of single glycerinated muscle fibers are covalently labeled with rhodamine. By using appropriate solutions such fibers can be relaxed, be in rigor, or develop active isometric tension. The rhodamine is excited by polarized 514.5-nm laser light; the greater than 580-nm fluorescence is resolved into orthogonal components and the intensity of each is measured by a computer-interfaced photon counting system. Fluctuations over-and-above noise appear in steady-state activity but not in relaxation or rigor and not when the fluorophore is actin-attached instead of myosin-attached. Fluctuations also appear in ratios of polarized intensities--quantities sensitive to fluorophore attitude but not to fluorophore number. The fluctuations are dominated by low (approximately 2 Hz) frequencies similar to separately measured ATPase frequencies. The fluctuations are ascribed to repetitive motion of the cross bridges to which the rhodamine is attached. Images PMID:160564

  8. Columbia River monitoring: Summary of chemical monitoring along cross sections at Vernita Bridge and Richland

    SciTech Connect

    Dirkes, R.L.; Patton, G.W.; Tiller, B.L.

    1993-05-01

    This report presents the results of the chemical monitoring performed by the Surface Environmental Surveillance Project (SESP) along cross sections of the Columbia River established at Vernita Bridge and the Richland Pumphouse. Potential Hanford-origin chemical constituents of interest were selected based on their presence in ground water near the river, past surveillance efforts that have documented their entry into the river, and reviews of special study reports, CERCIA remedial investigation/feasibility study (RI/FS) documentation, RCRA facility investigation/corrective measure (FI/CW) study plans, and preliminary risk assessments. Results presented in this report include volatile organic compounds, metals, and anions. The data were generated as part of the routine Columbia River monitoring program currently conducted as part of the SESP.

  9. Bridging refugee youth and children's services: a case study of cross-service training.

    PubMed

    Morland, Lyn; Duncan, Julianne; Hoebing, Joyce; Kirschke, Juanita; Schmidt, Laura

    2005-01-01

    Bridging Refugee Youth and Children's Services(BRYCS), a public-private partnership between the federal Office of Refugee Resettlement, Lutheran Immigration and Refugee Service, and the United States Conference of Catholic Bishops, provides national technical assistance to public child welfare. After a series of "community conversations," BRYCS identified a lack of knowledge among child welfare staff about newcomer refugees, negative stereotypes, and a fear of child protective services among refugees. BRYCS initiated a number of technical assistance initiatives, including a pilot cross-service training project in St. Louis to strengthen collaboration between child welfare and refugee-serving agencies. This article details the lessons learned from this training and recommends changes in policy and practice. PMID:16435662

  10. Synthesis and Evaluation of New Generation Cross-Bridged Bifunctional Chelator for (64)Cu Radiotracers.

    PubMed

    Dale, Ajit V; An, Gwang Il; Pandya, Darpan N; Ha, Yeong Su; Bhatt, Nikunj; Soni, Nisarg; Lee, Hochun; Ahn, Heesu; Sarkar, Swarbhanu; Lee, Woonghee; Huynh, Phuong Tu; Kim, Jung Young; Gwon, Mi-Ri; Kim, Sung Hong; Park, Jae Gyu; Yoon, Young-Ran; Yoo, Jeongsoo

    2015-09-01

    Bifunctional chelators have been successfully used to construct (64)Cu-labeled radiopharmaceuticals. Previously reported chelators with cross-bridged cyclam backbones have various essential features such as high stability of the copper(II) complex, high efficiency of radiolabeling at room temperature, and good biological inertness of the radiolabeled complex, along with rapid body clearance. Here, we report a new generation propylene-cross-bridged chelator with hybrid acetate/phosphonate pendant groups (PCB-TE1A1P) developed with the aim of combining these key properties in a single chelator. The PCB-TE1A1P was synthesized from cyclam with good overall yield. The Cu(II) complex of our chelator showed good robustness in kinetic stability evaluation experiments, such as acidic decomplexation and cyclic voltammetry studies. The Cu(II) complex of PCB-TE1A1P remained intact under highly acidic conditions (12 M HCl, 90 °C) for 8 d and showed quasi-reversible reduction/oxidation peaks at -0.77 V in electrochemical studies. PCB-TE1A1P was successfully radiolabeled with (64)Cu ions in an acetate buffer at 60 °C within 60 min. The electrophoresis study revealed that the (64)Cu-PCB-TE1A1P complex has net negative charge in aqueous solution. The biodistribution and in vivo stability study profiles of (64)Cu-PCB-TE1A1P indicated that the radioactive complex was stable under physiological conditions and cleared rapidly from the body. A whole body positron emission tomography (PET) imaging study further confirmed high in vivo stability and fast clearance of the complex in mouse models. In conclusion, PCB-TE1A1P has good potential as a bifunctional chelator for (64)Cu-based radiopharmaceuticals, especially those involving peptides. PMID:26286436

  11. Three-dimensional disorder of dipolar probes in a helical array. Application to muscle cross-bridges.

    PubMed Central

    Mendelson, R A; Wilson, M G

    1982-01-01

    Fluorescence polarization and EPR experiments on azimuthally randomized helices bearing extrinsic (dipolar) probes yield information about the axial orientation and order of the probes. If the orientation of the probe on the structure bearing it is known and disorder is absent, the orientation of the structure may be ascertained. For cases where less probe orientation information is available and/or disorder is present, the available structural information is correspondingly reduced. Here we examine the available data on probes attached to cross-bridges in muscle fibers: four plausible cases of three-dimensional cross-bridge disorders are numerically modeled muscle in states of rigor and relaxation. In rigor, where the reported probe disorder is small (Thomas and Cooke, 1980), it was found that the cross-bridge disorder was also small. On the other hand, for the relaxed state where the probes are found to be completely disordered, the cross-bridges may have a considerable amount of order. This possibility is in concert with the results of x-ray diffraction, in which the presence of well-developed myosin-based layer lines indicates considerable order in relaxed muscle. PMID:6288134

  12. Theoretical and experimental studies on cross-bridge migration during cell disaggregation.

    PubMed Central

    Tozeren, A; Sung, K L; Chien, S

    1989-01-01

    A micromanipulation method is used to determine the adhesive energy density (gamma) between pairs of cytotoxic T cells (F1) and their target cells (JY: HLA-A2-B7-DR4,W6). gamma is defined as the energy per unit area that must be supplied to reduce the region of contact between a conjugated cell pair. Our analysis of the data indicates that the force applied by the micropipette on the cell is not uniformly distributed throughout the contact region as we had previously assumed (Sung, K. L. P., L. A. Sung, M. Crimmins, S. J. Burakoff, and S. Chien. 1986. Science (Wash. DC). 234: 1405-1408), but acts only at the edges of the contact region. We show that gamma is not constant during peeling but increases with decreasing contact area of the conjugated cell pairs F1-JY, F1-F1, and JY-JY in contrast to the constancy of gamma for typical engineering adhesives. This finding supports the notion that the cross-linking protein molecules slide towards the conjugated area across the leading edge of the separation while remaining attached to both cells. Our mathematical analysis shows that the elastic energy stored in the cross-links by the membrane tensions balances the diffusive forces that act against cross-bridge migration. The binding affinity between F1-JY is found to be approximately 15-20 times larger than the corresponding affinity for F1-F1. The number of binding sites of F1 for attachment to JY is approximately the same for binding F1 to another F1 and vary between 10(5) and 10(6). Images FIGURE 1 PMID:2784694

  13. Level II scour analysis for Bridge 24 (WODSTH00190024) on Town Highway 19, crossing North Bridgewater Brook, Woodstock, Vermont

    USGS Publications Warehouse

    Olson, Scott A.; Song, Donald L.

    1996-01-01

    Contraction scour for all modelled flows ranged from 0.0 to 0.8 ft. Abutment scour ranged from 6.6 to 14.9 ft. with the worst-case scenario occurring at the 500-year discharge. Additional information on scour depths and depths to armoring are included in the section titled “Scour Results”. Scoured-streambed elevations, based on the calculated scour depths, are presented in tables 1 and 2. A cross-section of the scour computed at the bridge is presented in figure 8. Scour depths were calculated assuming an infinite depth of erosive material and a homogeneous particle-size distribution. It is generally accepted that the Froehlich equation (abutment scour) gives “excessively conservative estimates of scour depths” (Richardson and others, 1993, p. 48). Many factors, including historical performance during flood events, the geomorphic assessment, scour protection measures, and the results of the hydraulic analyses, must be considered to properly assess the validity of abutment scour results. Therefore, scour depths adopted by VTAOT may differ from the computed values documented herein, based on the consideration of additional contributing factors and experienced engineering judgement.

  14. Level II scour analysis for Bridge 35 (BETHTH00190035) on Town Highway 19, crossing Gilead Brook, Bethel, Vermont

    USGS Publications Warehouse

    Olson, Scott A.; Song, Donald L.

    1996-01-01

    abutments with wingwalls. The channel is skewed approximately 5 degrees to the opening while the opening-skew-to-roadway is 10 degrees. The scour protection measures at the site included type-1 stone fill (less than 12 inches diameter) at the downstream wingwalls, left abutment, and upstream right road embankment; type-2 stone fill (less than 36 inches diameter) is at the upstream right wingwall. Additional details describing conditions at the site are included in the Level II Summary and Appendices D and E. Scour depths and rock rip-rap sizes were computed using the general guidelines described in Hydraulic Engineering Circular 18 (Richardson and others, 1993). Total scour at a highway crossing is comprised of three components: 1) long-term streambed degradation; 2) contraction scour (due to accelerated flow caused by a reduction in flow area at a bridge) and; 3) local scour (caused by accelerated flow around piers and abutments). Total scour is the sum of the three components. Equations are available to compute depths for contraction and local scour and a summary of the results of these computations follows. Contraction scour for all modelled flows ranged from 0.1 to 2.1 ft. with the worst-case scenario occurring at the 500-year discharge. Abutment scour ranged from 3.9 to 9.5 ft. The worst-case abutment scour also occurred at the 500-year discharge. Additional information on scour depths and depths to armoring are included in the section titled “Scour Results”. Scoured-streambed elevations, based on the calculated scour depths, are presented in tables 1 and 2. A cross-section of the scour computed at the bridge is presented in figure 8. Scour depths were calculated assuming an infinite depth of erosive material and a homogeneous particle-size distribution. It is generally accepted that the Froehlich equation (abutment scour) gives “excessively conservative estimates of scour depths” (Richardson and others, 1993, p. 48). Many factors, including historical

  15. Level II scour analysis for Bridge 25 (BRNATH00290034) on Town Highway 29, crossing Locust Creek, Barnard, Vermont

    USGS Publications Warehouse

    Ivanoff, Michael A.; Weber, Matthew A.

    1996-01-01

    The Town Highway 29 crossing of Locust Creek is a 37-ft-long, one-lane bridge consisting of one 32-foot concrete span (Vermont Agency of Transportation, written communication, August 23, 1994). The bridge is supported by vertical, concrete abutments with wingwalls. The channel is skewed approximately 25 degrees to the opening while the opening-skew-to-roadway is 25 degrees. There was no observable scour protection measure at the site. Additional details describing conditions at the site are included in the Level II Summary and Appendices D and E.

  16. Age-related slowing of myosin actin cross-bridge kinetics is sex specific and predicts decrements in whole skeletal muscle performance in humans

    PubMed Central

    Bedrin, Nicholas G.; Callahan, Damien M.; Previs, Michael J.; Jennings, Mark E.; Ades, Philip A.; Maughan, David W.; Palmer, Bradley M.; Toth, Michael J.

    2013-01-01

    We hypothesize that age-related skeletal muscle dysfunction and physical disability may be partially explained by alterations in the function of the myosin molecule. To test this hypothesis, skeletal muscle function at the whole muscle, single fiber, and molecular levels was measured in young (21–35 yr) and older (65–75 yr) male and female volunteers with similar physical activity levels. After adjusting for muscle size, older adults had similar knee extensor isometric torque values compared with young, but had lower isokinetic power, most notably in women. At the single-fiber and molecular levels, aging was associated with increased isometric tension, slowed myosin actin cross-bridge kinetics (longer myosin attachment times and reduced rates of myosin force production), greater myofilament lattice stiffness, and reduced phosphorylation of the fast myosin regulatory light chain; however, the age effect was driven primarily by women (i.e., age-by-sex interaction effects). In myosin heavy chain IIA fibers, single-fiber isometric tension and molecular level mechanical and kinetic indexes were correlated with whole muscle isokinetic power output. Collectively, considering that contractile dysfunction scales up through various anatomical levels, our results suggest a potential sex-specific molecular mechanism, reduced cross-bridge kinetics, contributes to the reduced physical capacity with aging in women. Thus these results support our hypothesis that age-related alterations in the myosin molecule contribute to skeletal muscle dysfunction and physical disability and indicate that this effect is stronger in women. PMID:23887900

  17. Dynamics of cross-bridge cycling, ATP hydrolysis, force generation, and deformation in cardiac muscle.

    PubMed

    Tewari, Shivendra G; Bugenhagen, Scott M; Palmer, Bradley M; Beard, Daniel A

    2016-07-01

    Despite extensive study over the past six decades the coupling of chemical reaction and mechanical processes in muscle dynamics is not well understood. We lack a theoretical description of how chemical processes (metabolite binding, ATP hydrolysis) influence and are influenced by mechanical processes (deformation and force generation). To address this need, a mathematical model of the muscle cross-bridge (XB) cycle based on Huxley's sliding filament theory is developed that explicitly accounts for the chemical transformation events and the influence of strain on state transitions. The model is identified based on elastic and viscous moduli data from mouse and rat myocardial strips over a range of perturbation frequencies, and MgATP and inorganic phosphate (Pi) concentrations. Simulations of the identified model reproduce the observed effects of MgATP and MgADP on the rate of force development. Furthermore, simulations reveal that the rate of force re-development measured in slack-restretch experiments is not directly proportional to the rate of XB cycling. For these experiments, the model predicts that the observed increase in the rate of force generation with increased Pi concentration is due to inhibition of cycle turnover by Pi. Finally, the model captures the observed phenomena of force yielding suggesting that it is a result of rapid detachment of stretched attached myosin heads. PMID:25681584

  18. Level II scour analysis for Bridge 30 (BRIDTH00330030) on Town Highway 33, crossing Dailey Hollow Branch, Bridgewater, Vermont

    USGS Publications Warehouse

    Olson, Scott A.; Song, Donald L.

    1996-01-01

    using the general guidelines described in Hydraulic Engineering Circular 18 (Richardson and others, 1993). Total scour at a highway crossing is comprised of three components: 1) long-term streambed degradation; 2) contraction scour (due to accelerated flow caused by a reduction in flow area at a bridge) and; 3) local scour (caused by accelerated flow around piers and abutments). Total scour is the sum of the three components. Equations are available to compute depths for contraction and local scour and a summary of the results of these computations follows. Contraction scour for all modelled flows ranged from 0.5 to 3.1 ft. The worst-case contraction scour occurred at the incipient-roadway-overtopping discharge, which is between the 100- and 500-year discharge. Abutment scour ranged from 6.9 to 14.6 ft. with the worst-case scenario also occurring at the incipient-roadway-overtopping discharge. Additional information on scour depths and depths to armoring are included in the section titled “Scour Results”. Scoured-streambed elevations, based on the calculated scour depths, are presented in tables 1 and 2. A cross-section of the scour computed at the bridge is presented in figure 8. Scour depths were calculated assuming an infinite depth of erosive material and a homogeneous particle-size distribution. It is generally accepted that the Froehlich equation (abutment scour) gives “excessively conservative estimates of scour depths” (Richardson and others, 1993, p. 48). Many factors, including historical performance during flood events, the geomorphic assessment, scour protection measures, and the results of the hydraulic analyses, must be considered to properly assess the validity of abutment scour results. Therefore, scour depths adopted by VTAOT may differ from the computed values documented herein, based on the consideration of additional contributing factors and experienced engineering judgement.

  19. Exchange of ATP for ADP on high-force cross-bridges of skinned rabbit muscle fibers.

    PubMed Central

    Seow, C Y; Ford, L E

    1997-01-01

    The contractile properties of rabbit skinned muscle fibers were studied at 1-2 degrees C in different concentrations of MgATP and MgADP. Double-reciprocal plots of maximum velocity against MgATP concentration at different MgADP concentrations all extrapolated to the same value. This finding suggests that MgATP and MgADP compete for the same site on the cross-bridge, and that the exchange of MgATP for MgADP occurs without a detectable step intervening. The K(m) for ATP was 0.32 mM. The K(i) for MgADP was 0.33 mM. Control experiments suggested that the tortuosity of diffusion paths within the fibers reduced the radial diffusion coefficients for reactants about sixfold. Increasing MgADP from 0.18 to 2 mM at 5 mM ATP or lowering MgATP from 10 to 2 mM at 0.18 mM MgADP, respectively, increased isometric force by 25% and 23%, increased stiffness by 10% and 20%, and decreased maximum velocity by 35% and 31%. Two mechanisms appeared to be responsible. One detained bridges in high-force states, where they recovered from a length step with a slower time course. The other increased the fraction of attached bridges without altering the kinetics of their responses, possibly by an increased activation resulting from cooperative effects of the detained, high-force bridges. The rigor bridge was more effective than the ADP-bound bridge in increasing the number of attached bridges with unaltered kinetics. PMID:9168047

  20. Repeated multibeam echosounder hydrographic surveys of 15 selected bridge crossings along the Missouri River from Niobrara to Rulo, Nebraska, during the flood of 2011

    USGS Publications Warehouse

    Dietsch, Benjamin J.; Densmore, Brenda K.; Strauch, Kellan R.

    2014-01-01

    In 2011, unprecedented flooding in the Missouri River prompted transportation agencies to increase the frequency of monitoring riverbed elevations near bridges that cross the Missouri River. Hydrographic surveys were completed in cooperation with the Nebraska Department of Roads, using a multibeam echosounder at 15 highway bridges spanning the Missouri River from Niobrara to Rulo, Nebraska during and after the extreme 2011 flood. Evidence of bed elevation change near bridge piers was documented. The greatest amount of bed elevation change during the 2011 flood documented for this study occurred at the Burt County Missouri River Bridge at Decatur, Nebraska, where scour of about 45 feet, from before flooding, occurred between a bridge abutment and pier. Of the remaining sites, highway bridges where bed elevation change near piers appeared to have exceeded 10 feet include the Abraham Lincoln Memorial Bridge at Blair, Nebr., Bellevue Bridge at Bellevue, Nebr., and Nebraska City Bridge at Nebraska City, Nebr. Hydrographic surveys at 14 of the 15 sites were completed in mid-July and again in early October or late-November 2011. Near three of the bridges, the bed elevation of locations surveyed in July increased by more than 10 feet, on average, by late October or early November 2011. Bed elevations increased between 1 and 10 feet, on average, near six bridges. Near the remaining four bridges, bed elevations decreased between 1 and 4 feet, on average, from July to late October or early November.

  1. Catalytic oxidation of water and alcohols by a robust iron(iii) complex bearing a cross-bridged cyclam ligand.

    PubMed

    Tan, Peng; Kwong, Hoi-Ki; Lau, Tai-Chu

    2015-08-01

    An iron(iii) complex bearing a cross-bridged cyclam ligand (4,11-dimethyl-1,4,8,11-tetraazabicyclo[6.6.2]hexadecane) is an efficient catalyst for the oxidation of both water and alcohols using sodium periodate as the oxidant. In catalytic water oxidation a maximum turnover number (TON) of 1030 is achieved, while in catalytic alcohol oxidation >95% conversions and yields can be obtained. PMID:26126521

  2. Calcium sensitivity of the cross-bridge cycle of Myo1c, the adaptation motor in the inner ear

    PubMed Central

    Adamek, Nancy; Coluccio, Lynne M.; Geeves, Michael A.

    2008-01-01

    The class I myosin Myo1c is a mediator of adaptation of mechanoelectrical transduction in the stereocilia of the inner ear. Adaptation, which is strongly affected by Ca2+, permits hair cells under prolonged stimuli to remain sensitive to new stimuli. Using a Myo1c fragment (motor domain and one IQ domain with associated calmodulin), with biochemical and kinetic properties similar to those of the native molecule, we have performed a thorough analysis of the biochemical cross-bridge cycle. We show that, although the steady-state ATPase activity shows little calcium sensitivity, individual molecular events of the cross-bridge cycle are calcium-sensitive. Of significance is a 7-fold inhibition of the ATP hydrolysis step and a 10-fold acceleration of ADP release in calcium. These changes result in an acceleration of detachment of the cross-bridge and a lengthening of the lifetime of the detached M–ATP state. These data support a model in which slipping adaptation, which reduces tip-link tension and allows the transduction channels to close after an excitatory stimulus, is mediated by Myo1c and modulated by the calcium transient. PMID:18391215

  3. Altered cross-bridge characteristics following haemodynamic overload in rabbit hearts expressing V3 myosin.

    PubMed

    Peterson, J N; Nassar, R; Anderson, P A; Alpert, N R

    2001-10-15

    1. Our goal in this study was to evaluate the effect of haemodynamic overload on cross-bridge (XBr) kinetics in the rabbit heart independently of myosin heavy chain (MHC) isoforms, which are known to modulate kinetics in small mammals. We applied a myothermal-mechanical protocol to isometrically contracting papillary muscles from two rabbit heart populations: (1) surgically induced right ventricular pressure overload (PO), and (2) sustained treatment with propylthiouracil (PTU). Both treatments resulted in a 100 % V3 MHC profile. 2. XBr force-time integral (FTI), evaluated during the peak of the twitch from muscle FTI and tension-dependent heat, was greater in the PO hearts (0.80 +/- 0.10 versus 0.45 +/- 0.05 pN s, means +/- S.E.M., P = 0.01). 3. Within the framework of a two-state XBr model, the PO XBr developed more force while attached (5.8 +/- 0.9 versus 2.7 +/- 0.3 pN), with a lower cycling rate (0.89 +/- 0.10 versus 1.50 +/- 0.14 s(-1)) and duty cycle (0.14 +/- 0.03 versus 0.24 +/- 0.02). 4. Only the ventricular isoforms of myosin light chain 1 and 2 and cardiac troponin I (cTnI) were expressed, with no difference in cTnI phosphorylation between the PO and PTU samples. The troponin T (TnT) isoform compositions in the PO and PTU samples were significantly different (P = 0.001), with TnT2 comprising 2.29 +/- 0.03 % in PO hearts versus 0.98 +/- 0.01 % in PTU hearts of total TnT. 5. This study demonstrates that MHC does not mediate dramatic alterations in XBr function induced by haemodynamic overload. Our findings support the likelihood that differences among other thick and thin filament proteins underlie these XBr alterations. PMID:11600690

  4. Sign Languages: Contribution to Neurolinguistics from Cross-Modal Research

    PubMed Central

    Malaia, Evie; Wilbur, Ronnie

    2010-01-01

    Using sign language research as an example, we argue that both the cross-linguistic descriptive approach to data, advocated by Evans and Levinson (2009), as well as abstract (‘formal’) analyses are necessary steps towards the development of “neurolinguistic primitives” for investigating how human languages are instantiated in the brain. PMID:20953339

  5. Rhamnogalacturonan-II cross-linking of plant pectins via boron bridges occurs during polysaccharide synthesis and/or secretion

    PubMed Central

    Chormova, Dimitra; Messenger, David J; Fry, Stephen C

    2014-01-01

    Rhamnogalacturonan-II (RG-II), a domain of plant cell wall pectins, is able to cross-link with other RG-II domains through borate diester bridges. Although it is known to affect mechanical properties of the cell wall, the biochemical requirements and lifecycle of this cross-linking remain unclear. We developed a PAGE methodology to allow separation of monomeric and dimeric RG-II and used this to study the dynamics of cross-linking in vitro and in vivo. Rosa cells grown in medium with no added boron contained no RG-II dimers, although these re-appeared after addition of boron to the medium. However, other Rosa cultures which were unable to synthesize new polysaccharides did not show dimer formation. We conclude that RG-II normally becomes cross-linked intraprotoplasmically or during secretion, but not post-secretion. PMID:24603547

  6. Effect of Ca2+ on weak cross-bridge interaction with actin in the presence of adenosine 5'-[gamma-thio]triphosphate).

    PubMed Central

    Kraft, T; Yu, L C; Kuhn, H J; Brenner, B

    1992-01-01

    In the presence of the nucleotide analog adenosine 5'-[gamma-thio]triphosphate (ATP[gamma S]), effects of Ca2+ on stiffness and equatorial x-ray diffraction patterns of single skinned fibers of the rabbit psoas muscle were studied. It is shown that cross-bridges in the presence of ATP[gamma S] have properties of the weak-binding states of the ATP hydrolysis cycle. Raising the Ca2+ concentration up to pCa 4.5 has little effect on actin affinity of cross-bridges in the presence of ATP[gamma S]. However, the rate constants for cross-bridge dissociation and reassociation from and to actin are reduced by about 2 orders of magnitude. In addition, nucleotide affinity of the cross-bridge is much smaller at high Ca2+ concentrations. Implications for interpretation of fiber stiffness recorded during isotonic shortening and the rising phase of a tetanus are discussed. PMID:1454820

  7. Level II scour analysis for Bridge 9 (BARRUSO3020009) on U.S. Route 302, crossing Jail Branch, Barre, Vermont

    USGS Publications Warehouse

    Olson, Scott A.; Ivanoff, Michael A.

    1997-01-01

    skew-to-roadway. There is evidence of channel scour along the right bank from 190 feet upstream of the bridge and extending through the bridge along the right abutment. Under the bridge, the scour depth is approximately 0.5 feet below the mean thalweg depth. Scour protection measures at the site include type-3 stone fill (less than 48 inches diameter) along the right bank extending from the bridge to 192 feet upstream. Type-2 stone fill (less than 36 inches diameter) is along the right abutment and the right downstream bank to 205 feet downtream of the bridge. Additional details describing conditions at the site are included in the Level II Summary and Appendices D and E. Scour depths and rock rip-rap sizes were computed using the general guidelines described in Hydraulic Engineering Circular 18 (Richardson and others, 1995). Total scour at a highway crossing is comprised of three components: 1) long-term streambed degradation; 2) contraction scour (due to accelerated flow caused by a reduction in flow area at a bridge) and; 3) local scour (caused by accelerated flow around piers and abutments). Total scour is the sum of the three components. Equations are available to compute depths for contraction and local scour and a summary of the results of these computations follows. Contraction scour for all modelled flows ranged from 0.2 to 0.5 ft. The worst-case contraction scour occurred at the 500-year discharge. Abutment scour ranged from 4.3 to 7.5 ft. The worst-case abutment scour occurred at the 500-year discharge. Computed scour for the 100-year event does not go below the abutment footings. Additional information on scour depths and depths to armoring are included in the section titled “Scour Results”. Scoured-streambed elevations, based on the calculated scour depths, are presented in tables 1 and 2. A cross-section of the scour computed at the bridge is presented in figure 8. Scour depths were calculated assuming an infinite depth of erosive material and a

  8. A cross-bridge based model of force depression: Can a single modification address both transient and steady-state behaviors?

    PubMed

    Corr, David T; Herzog, Walter

    2016-03-21

    Force depression (FD), the reduction of isometric force following active shortening, is a phenomenon of skeletal muscle that has received significant attention in biomechanical and physiological literature, yet the mechanisms underlying FD remain unknown. Recent experiments identified a slower rate of force redevelopment with increasing amounts of steady-state FD, suggesting that FD may be caused, at least in part, by a decrease in cross-bridge binding rate (Corr and Herzog, 2005; Koppes et al., 2014). Herein, we develop a cross-bridge based model of FD in which the binding rate function, f, decreases with the mechanical work performed during shortening. This modification incorporates a direct relationship between steady-state FD and muscle mechanical work (Corr and Herzog, 2005; Herzog et al., 2000; Kosterina et al., 2008), and is consistent with a proposed mechanism attributing FD to stress-induced inhibition of cross-bridge attachments (Herzog, 1998; Maréchal and Plaghki, 1979). Thus, for an increase in mechanical work, the model should predict a slower force redevelopment (decreased attachment rate) to a more depressed steady-state force (fewer attached cross-bridges), and a reduction in contractile element stiffness (Ford et al., 1981). We hypothesized that since this modification affects the cross-bridge kinetics, a corresponding model would be able to account for both transient and steady-state FD behaviors. Comparisons to prior experiments (Corr and Herzog, 2005; Herzog et al., 2000; Kosterina et al., 2008) show that both steady-state and transient aspects of FD, as well as the relationship of FD with respect to speed and amplitude of shortening, are well captured by this model. Thus, this relatively simple cross-bridge based model of FD lends support to a mechanism involving the inhibition of cross-bridge binding, and indicates that cross-bridge kinetics may play a critical role in FD. PMID:26928777

  9. Altered cross-bridge characteristics following haemodynamic overload in rabbit hearts expressing V3 myosin

    PubMed Central

    Peterson, Jon N; Nassar, Rashid; Anderson, Page A W; Alpert, Norman R

    2001-01-01

    Our goal in this study was to evaluate the effect of haemodynamic overload on cross-bridge (XBr) kinetics in the rabbit heart independently of myosin heavy chain (MHC) isoforms, which are known to modulate kinetics in small mammals. We applied a myothermal-mechanical protocol to isometrically contracting papillary muscles from two rabbit heart populations: (1) surgically induced right ventricular pressure overload (PO), and (2) sustained treatment with propylthiouracil (PTU). Both treatments resulted in a 100 % V3 MHC profile.XBr force–time integral (FTI), evaluated during the peak of the twitch from muscle FTI and tension-dependent heat, was greater in the PO hearts (0.80 ± 0.10 versus 0.45 ± 0.05 pN s, means ±s.e.m.., P = 0.01).Within the framework of a two-state XBr model, the PO XBr developed more force while attached (5.8 ± 0.9 versus 2.7 ± 0.3 pN), with a lower cycling rate (0.89 ± 0.10 versus 1.50 ± 0.14 s−1) and duty cycle (0.14 ± 0.03 versus 0.24 ± 0.02).Only the ventricular isoforms of myosin light chain 1 and 2 and cardiac troponin I (cTnI) were expressed, with no difference in cTnI phosphorylation between the PO and PTU samples. The troponin T (TnT) isoform compositions in the PO and PTU samples were significantly different (P = 0.001), with TnT2 comprising 2.29 ± 0.03 % in PO hearts versus 0.98 ± 0.01 % in PTU hearts of total TnT.This study demonstrates that MHC does not mediate dramatic alterations in XBr function induced by haemodynamic overload. Our findings support the likelihood that differences among other thick and thin filament proteins underlie these XBr alterations. PMID:11600690

  10. Level II scour analysis for bridge 2 (WODFTH00010002) on Town Highway 1, crossing Hell Hollow Brook, Woodford, Vermont

    USGS Publications Warehouse

    Burns, Ronda L.; Degnan, James R.

    1998-01-01

    This report provides the results of a detailed Level II analysis of scour potential at structure WODFTH00010002 on Town Highway 1 crossing Hell Hollow Brook, Woodford, Vermont (figures 1-8). A Level II study is a basic engineering analysis of the site, including a quantitative analysis of stream stability and scour (FHWA, 1993). Results of a Level I scour investigation also are included in appendix E of this report. A Level I investigation provides a qualitative geomorphic characterization of the study site. Information on the bridge, gleaned from Vermont Agency of Transportation (VTAOT) files, was compiled prior to conducting Level I and Level II analyses and is found in appendix D.

  11. Level II scour analysis for Bridge 37, (BRNETH00740037) on Town Highway 74, crossing South Peacham Brook, Barnet, Vermont

    USGS Publications Warehouse

    Burns, Ronda L.; Severance, Timothy

    1997-01-01

    Contraction scour for all modelled flows ranged from 15.8 to 22.5 ft. The worst-case contraction scour occurred at the 500-year discharge. Abutment scour ranged from 6.7 to 11.1 ft. The worst-case abutment scour also occurred at the 500-year discharge. Additional information on scour depths and depths to armoring are included in the section titled “Scour Results”. Scoured-streambed elevations, based on the calculated scour depths, are presented in Tables 1 and 2. A cross-section of the scour computed at the bridge is prese

  12. Level II scour analysis for Bridge 39 (PEACTH00620039) on Town Highway 62, crossing South Peacham Brook, Peacham, Vermont

    USGS Publications Warehouse

    Burns, Ronda L.; Degnan, James R.

    1997-01-01

    Contraction scour for all modelled flows ranged from 1.0 to 1.6 ft. The worst-case contraction scour occurred at the 100-year discharge. Abutment scour ranged from 5.9 to 7.4 ft. The worst-case abutment scour occurred at the incipient roadway-overtopping discharge, which is less than the 100-year discharge. Additional information on scour depths and depths to armoring are included in the section titled “Scour Results”. Scouredstreambed elevations, based on the calculated scour depths, are presented in tables 1 and 2. A cross-section of the scour computed at the bridge is presented in f

  13. Bridging Refugee Youth and Children's Services: A Case Study of Cross-Service Training

    ERIC Educational Resources Information Center

    Morland, Lyn; Duncan, Julianne; Hoebing, Joyce; Kirschke, Juanita; Schmidt, Laura

    2005-01-01

    Bridging Refugee Youth and Children's Services (BRYCS), a public-private partnership between the federal Office of Refugee Resettlement, Lutheran Immigration and Refugee Service, and the United States Conference of Catholic Bishops, provides national technical assistance to public child welfare. After a series of "community conversations," BRYCS…

  14. Bridge Building Potential in Cross-Cultural Learning: A Mixed Method Study

    ERIC Educational Resources Information Center

    Rienties, Bart; Johan, Novie; Jindal-Snape, Divya

    2015-01-01

    Although many international students experience transitional issues, most research assumes that these issues will disappear over time with increased interaction. Using principles of social network theory, this study addressed why some students become bridge builders between international and host students, while others primarily interact with…

  15. Crossing the Bridge: GED Credentials and Postsecondary Educational Outcomes. Year One Report

    ERIC Educational Resources Information Center

    Patterson, Margaret Becker; Zhang, Jizhi; Song, Wei; Guison-Dowdy, Anne

    2010-01-01

    For most high school non-completers, the GED[R] credential provides a bridge to postsecondary education, but little is known about how successfully GED (General Educational Development) Test candidates make that transition and whether enrollment rates change with time. The American Council on Education (ACE) has begun a three-year longitudinal…

  16. trans-Methylpyridine cyclen versus cross-bridged trans-methylpyridine cyclen. Synthesis, acid-base and metal complexation studies (metal = Co2+, Cu2+, and Zn2+).

    PubMed

    Bernier, Nicolas; Costa, Judite; Delgado, Rita; Félix, Vítor; Royal, Guy; Tripier, Raphaël

    2011-05-01

    The synthesis of the cross-bridged cyclen CRpy(2) {4,10-bis((pyridin-2-yl)methyl)-1,4,7,10-tetraazabicyclo[5.5.2]tetradecane}, a constrained analogue of the previously described trans-methylpyridine cyclen Cpy(2) is reported. The additional ethylene bridge confers to CRpy(2) proton-sponge type behaviour which was explored by NMR and potentiometric studies. Transition metal complexes have been synthesized (by complexation of both ligands with Co(2+), Cu(2+) and Zn(2+)) and characterized in solution and in the solid state. The single crystal X-ray structures of [CoCpy(2)](2+), [CuCpy(2)](2+) and [ZnCpy(2)](2+) complexes were determined. Stability constants of the complexes, including those of the cross-bridged derivative, were determined using potentiometric titration data and the kinetic inertness of the [CuCRpy(2)](2+) complex in an acidic medium (half-life values) was evaluated by spectrophotometry. The pre-organized structure of the cross-bridged ligand imposes an additional strain for the complexation leading to complexes with smaller thermodynamic stability in comparison with the related non-bridged ligand. The electrochemical study involving cyclic voltammetry underlines the importance of the ethylene cross-bridge on the redox properties of the transition metal complexes. PMID:21409259

  17. Bridging Informatics and Earth Science: a Look at Gregory Leptoukh's Contributions

    NASA Astrophysics Data System (ADS)

    Lynnes, C.

    2012-12-01

    With the tragic passing this year of Gregory Leptoukh, the Earth and Space Sciences community lost a tireless participant in--and advocate for--science informatics. Throughout his career at NASA, Dr. Leptoukh established a theme of bridging the gulf between the informatics and science communities. Nowhere is this more evident than his leadership in the development of Giovanni (GES DISC Interactive Online Visualization ANd aNalysis Infrastructure). Giovanni is an online tool that serves to hide the often-complex technical details of data format and structure, making science data easier to explore and use by Earth scientists. To date Giovanni has been acknowledged as a contributor in 500-odd scientific articles. In recent years, Leptoukh concentrated his efforts on multi-sensor data inter-comparison, merging and fusion. This work exposed several challenges at the intersection of data and science. One of these was the ease with which a naive user might generate spurious comparisons, a potential hazard that was the genesis of the Multi-sensor Data Synergy Advisor (MDSA). The MDSA uses semantic ontologies and inference rules to organize knowledge about dataset quality and other salient characteristics in order to advise users on potential caveats for comparing or merging two datasets. Recently, Leptoukh also led the development of AeroStat, an online Giovanni instance to investigate aerosols via statistics from station and satellite comparisons and merged maps of data from more than one instrument. Aerostat offers a neural net based bias adjustment to "harmonize" the data by removing systematic offsets between datasets before merging. These examples exhibit Leptoukh's talent for adopting advanced computer technologies in the service of making science data more accessible to researchers. In this, he set an example that is at once both vital and challenging for the ESSI community to emulate.

  18. Bridging Informatics and Earth Science: a Look at Gregory Leptoukh's Contributions

    NASA Technical Reports Server (NTRS)

    2012-01-01

    With the tragic passing this year of Gregory Leptoukh, the Earth and Space Sciences community lost a tireless participant in--and advocate for--science informatics. Throughout his career at NASA, Dr. Leptoukh established a theme of bridging the gulf between the informatics and science communities. Nowhere is this more evident than his leadership in the development of Giovanni (GES DISC Interactive Online Visualization ANd aNalysis Infrastructure). Giovanni is an online tool that serves to hide the often-complex technical details of data format and structure, making science data easier to explore and use by Earth scientists. To date Giovanni has been acknowledged as a contributor in 500-odd scientific articles. In recent years, Leptoukh concentrated his efforts on multi-sensor data inter-comparison, merging and fusion. This work exposed several challenges at the intersection of data and science. One of these was the ease with which a naive user might generate spurious comparisons, a potential hazard that was the genesis of the Multi-sensor Data Synergy Advisor (MDSA). The MDSA uses semantic ontologies and inference rules to organize knowledge about dataset quality and other salient characteristics in order to advise users on potential caveats for comparing or merging two datasets. Recently, Leptoukh also led the development of AeroStat, an online Giovanni instance to investigate aerosols via statistics from station and satellite comparisons and merged maps of data from more than one instrument. Aerostat offers a neural net based bias adjustment to harmonize the data by removing systematic offsets between datasets before merging. These examples exhibit Leptoukh's talent for adopting advanced computer technologies in the service of making science data more accessible to researchers. In this, he set an example that is at once both vital and challenging for the ESSI community to emulate.

  19. Regulation of the glycophorin C-protein 4.1 membrane-to-skeleton bridge and evaluation of its contribution to erythrocyte membrane stability.

    PubMed

    Chang, S H; Low, P S

    2001-06-22

    The band 3-ankyrin-spectrin bridge and the glycophorin C-protein 4.1-spectrin/actin bridge constitute the two major tethers between the erythrocyte membrane and its spectrin skeleton. Although a structural requirement for the band 3-ankyrin bridge is well established, the contribution of the glycophorin C-protein 4.1 bridge to red cell function remains to be defined. In order to explore this latter bridge further, we have identified and/or characterized five stimuli that sever the linkage in intact erythrocytes and have examined the impact of this rupture on membrane mechanical properties. We report here that elevation of cytosolic 2,3-bisphosphoglycerate, an increase in intracellular Ca(2+), removal of cell O(2), a decrease in intracellular pH, and activation of erythrocyte protein kinase C all promote dissociation of protein 4.1 from glycophorin C, leading to reduced retention of glycophorin C in detergent-extracted spectrin/actin skeletons. Significantly, where mechanical studies could be performed, we also observe that rupture of the membrane-to-skeleton bridge has little or no impact on the mechanical properties of the cell, as assayed by ektacytometry and nickel mesh filtration. We, therefore, suggest that, although regulation of the glycophorin C-protein 4.1-spectrin/actin bridge likely occurs physiologically, the role of the tether and the associated regulatory changes remain to be established. PMID:11294862

  20. Breakage-fusion-bridge Cycles and Large Insertions Contribute to the Rapid Evolution of Accessory Chromosomes in a Fungal Pathogen

    PubMed Central

    Croll, Daniel; Zala, Marcello; McDonald, Bruce A.

    2013-01-01

    Chromosomal rearrangements are a major driver of eukaryotic genome evolution, affecting speciation, pathogenicity and cancer progression. Changes in chromosome structure are often initiated by mis-repair of double-strand breaks in the DNA. Mis-repair is particularly likely when telomeres are lost or when dispersed repeats misalign during crossing-over. Fungi carry highly polymorphic chromosomal complements showing substantial variation in chromosome length and number. The mechanisms driving chromosome polymorphism in fungi are poorly understood. We aimed to identify mechanisms of chromosomal rearrangements in the fungal wheat pathogen Zymoseptoria tritici. We combined population genomic resequencing and chromosomal segment PCR assays with electrophoretic karyotyping and resequencing of parents and offspring from experimental crosses to show that this pathogen harbors a highly diverse complement of accessory chromosomes that exhibits strong global geographic differentiation in numbers and lengths of chromosomes. Homologous chromosomes carried highly differentiated gene contents due to numerous insertions and deletions. The largest accessory chromosome recently doubled in length through insertions totaling 380 kb. Based on comparative genomics, we identified the precise breakpoint locations of these insertions. Nondisjunction during meiosis led to chromosome losses in progeny of three different crosses. We showed that a new accessory chromosome emerged in two viable offspring through a fusion between sister chromatids. Such chromosome fusion is likely to initiate a breakage-fusion-bridge (BFB) cycle that can rapidly degenerate chromosomal structure. We suggest that the accessory chromosomes of Z. tritici originated mainly from ancient core chromosomes through a degeneration process that included BFB cycles, nondisjunction and mutational decay of duplicated sequences. The rapidly evolving accessory chromosome complement may serve as a cradle for adaptive evolution in

  1. Air toxics exposure from vehicle emissions at a U.S. border crossing: Buffalo Peace Bridge Study.

    PubMed

    Spengler, John; Lwebuga-Mukasa, Jamson; Vallarino, Jose; Melly, Steve; Chillrud, Steve; Baker, Joel; Minegishi, Taeko

    2011-07-01

    The Peace Bridge in Buffalo, New York, which spans the Niagara River at the east end of Lake Erie, is one of the busiest U.S. border crossings. The Peace Bridge plaza on the U.S. side is a complex of roads, customs inspection areas, passport control areas, and duty-free shops. On average 5000 heavy-duty diesel trucks and 20,000 passenger cars traverse the border daily, making the plaza area a potential "hot spot" for emissions from mobile sources. In a series of winter and summer field campaigns, we measured air pollutants, including many compounds considered by the U.S. Environmental Protection Agency (EPA*) as mobile-source air toxics (MSATs), at three fixed sampling sites: on the shore of Lake Erie, approximately 500 m upwind (under predominant wind conditions) of the Peace Bridge plaza; immediately downwind of (adjacent to) the plaza; and 500 m farther downwind, into the community of west Buffalo. Pollutants sampled were particulate matter (PM) < or = 10 microm (PM10) and < or = 2.5 microm (PM2.5) in aerodynamic diameter, elemental carbon (EC), 28 elements, 25 volatile organic compounds (VOCs) including 3 carbonyls, 52 polycyclic aromatic hydrocarbons (PAHs), and 29 nitrogenated polycyclic aromatic hydrocarbons (NPAHs). Spatial patterns of counts of ultrafine particles (UFPs, particles < 0.1 microm in aerodynamic diameter) and of particle-bound PAH (pPAH) concentrations were assessed by mobile monitoring in the neighborhood adjacent to the Peace Bridge plaza using portable instruments and Global Positioning System (GPS) tracking. The study was designed to assess differences in upwind and downwind concentrations of MSATs, in areas near the Peace Bridge plaza on the U.S. side of the border. The Buffalo Peace Bridge Study featured good access to monitoring locations proximate to the plaza and in the community, which are downwind with the dominant winds from the direction of Lake Erie and southern Ontario. Samples from the lakeside Great Lakes Center (GLC), which

  2. Level II scour analysis for Bridge 24 (MANCUS00070024) on U.S. Route 7, crossing Lye Brook, Manchester, Vermont

    USGS Publications Warehouse

    Olson, Scott A.

    1997-01-01

    This report provides the results of a detailed Level II analysis of scour potential at structure MANCUS00070024 on U.S. Route 7 crossing Lye Brook, Manchester, Vermont (figures 1–8). A Level II study is a basic engineering analysis of the site, including a quantitative analysis of stream stability and scour (U.S. Department of Transportation, 1993). Results of a Level I scour investigation also are included in Appendix E of this report. A Level I investigation provides a qualitative geomorphic characterization of the study site. Information on the bridge, gleaned from Vermont Agency of Transportation (VTAOT) files, was compiled prior to conducting Level I and Level II analyses and is found in Appendix D. The site is in the Taconic section of the New England physiographic province in southwestern Vermont. The 8.13-mi2 drainage area is in a predominantly rural and forested basin. In the vicinity of the study site, the primary surface cover consists of brush and trees. In the study area, Lye Brook has an incised, sinuous channel with a slope of approximately 0.03 ft/ft, an average channel top width of 66 ft and an average bank height of 11 ft. The channel bed material ranges from gravel to boulder with a median grain size (D50) of 90.0 mm (0.295 ft). The geomorphic assessment at the time of the Level I and Level II site visit on August 6, 1996, indicated that the reach was stable. Although, the immediate reach is considered stable, upstream of the bridge the Lye Brook valley is very steep (0.05 ft/ft). Extreme events in a valley this steep may quickly reveal the instability of the channel. In the Flood Insurance Study for the Town of Manchester (Federal Emergency Management Agency, January, 1985), Lye Brook’s overbanks were described as “boulder strewn” after the August 1976 flood. The U.S. Route 7 crossing of Lye Brook is a 28-ft-long, two-lane bridge consisting of one 25-foot concrete span (Vermont Agency of Transportation, written communication, September

  3. Level II scour analysis for Bridge 2 (RYEGTH00020002) on Town Highway 2, crossing the Wells River, Ryegate, Vermont

    USGS Publications Warehouse

    Ivanoff, Michael A.

    1997-01-01

    This report provides the results of a detailed Level II analysis of scour potential at structure RYEGTH00020002 on Town Highway 2 crossing the Wells River, Ryegate, Vermont (figures 1–8). A Level II study is a basic engineering analysis of the site, including a quantitative analysis of stream stability and scour (U.S. Department of Transportation, 1993). Results of a Level I scour investigation also are included in Appendix E of this report. A Level I investigation provides a qualitative geomorphic characterization of the study site. Information on the bridge, gleaned from Vermont Agency of Transportation (VTAOT) files, was compiled prior to conducting Level I and Level II analyses and is found in Appendix D. The site is in the New England Upland section of the New England physiographic province in east-central Vermont. The 75.7-mi2 drainage area is in a predominantly rural and forested basin. In the vicinity of the study site, the surface cover consists of cut grass, trees, and brush on the flood plains while the immediate banks have dense woody vegetation. In the study area, the Wells River has an incised, sinuous channel with a slope of approximately 0.006 ft/ft, an average channel top width of 110 ft and an average bank height of 12 ft. The channel bed material ranges from sand to boulder with a median grain size (D50) of 82.3 mm (0.270 ft). The geomorphic assessment at the time of the Level I and Level II site visit on August 24, 1995, indicated that the reach was laterally unstable with moderate fluvial erosion and meandering downstream of the bridge. The Town Highway 2 crossing of the Wells River is a 79-ft-long, two-lane bridge consisting of one 75-foot steel-beam span (Vermont Agency of Transportation, written communication, March 27, 1995). The opening length of the structure parallel to the bridge face is 75.1 ft. The bridge is supported by vertical, concrete abutments, the left has a spill-through embankment, with wingwalls. The channel is not skewed

  4. X-ray diffraction indicates that active cross-bridges bind to actin target zones in insect flight muscle.

    PubMed

    Tregear, R T; Edwards, R J; Irving, T C; Poole, K J; Reedy, M C; Schmitz, H; Towns-Andrews, E; Reedy, M K

    1998-03-01

    We report the first time-resolved study of the two-dimensional x-ray diffraction pattern during active contraction in insect flight muscle (IFM). Activation of demembranated Lethocerus IFM was triggered by 1.5-2.5% step stretches (risetime 10 ms; held for 1.5 s) giving delayed active tension that peaked at 100-200 ms. Bundles of 8-12 fibers were stretch-activated on SRS synchrotron x-ray beamline 16.1, and time-resolved changes in diffraction were monitored with a SRS 2-D multiwire detector. As active tension rose, the 14.5- and 7.2-nm meridionals fell, the first row line dropped at the 38.7 nm layer line while gaining a new peak at 19.3 nm, and three outer peaks on the 38.7-nm layer line rose. The first row line changes suggest restricted binding of active myosin heads to the helically preferred region in each actin target zone, where, in rigor, two-headed lead bridges bind, midway between troponin bulges that repeat every 38.7 nm. Halving this troponin repeat by binding of single active heads explains the intensity rise at 19.3 nm being coupled to a loss at 38.7 nm. The meridional changes signal movement of at least 30% of all myosin heads away from their axially ordered positions on the myosin helix. The 38.7- and 19.3-nm layer line changes signal stereoselective attachment of 7-23% of the myosin heads to the actin helix, although with too little ordering at 6-nm resolution to affect the 5.9-nm actin layer line. We conclude that stretch-activated tension of IFM is produced by cross-bridges that bind to rigor's lead-bridge target zones, comprising < or = 1/3 of the 75-80% that attach in rigor. PMID:9512040

  5. Level II scour analysis for Bridge 7 (WALDTH00020007) on Town Highway 2, crossing Coles Brook, Walden, Vermont

    USGS Publications Warehouse

    Striker, Lora K.; Medalie, Laura

    1997-01-01

    ft, an average channel top width of 37 ft and an average bank height of 4 ft. The channel bed material ranges from sand to cobble with a median grain size (D50) of 32.9 mm (0.108 ft). The geomorphic assessment at the time of the Level I and Level II site visit on August 9, 1995, indicated that the reach was laterally unstable due to cut-banks, point bars, and loose unconsolidated bed material. The Town Highway 2 crossing of Coles Brook is a 74-ft-long, two-lane bridge consisting of one 71-foot steel-beam span (Vermont Agency of Transportation, written communication, April 5, 1995). The opening length of the structure parallel to the bridge face is 69.3 ft. The bridge is supported by spill-through abutments. The channel is skewed approximately 35 degrees to the opening while the measured opening-skew-to-roadway is 15 degrees. A scour hole 1.5 ft deeper than the mean thalweg depth was observed from 60 ft. to 100 ft. downstream during the Level I assessment. Scour protection measures at the site include: type-1 stone fill (less than 12 inches diameter) along the right bank upstream, at the downstream end of the downstream left wingwall and downstream right wingwall; and type-2 stone fill (less than 36 inches diameter) along the left bank upstream, at the upstream end of the upstream right wingwall, and along the entire base of the left and right abutments. Additional details describing conditions at the site are included in the Level II Summary and Appendices D and E. Scour depths and recommended rock rip-rap sizes were computed using the general guidelines described in Hydraulic Engineering Circular 18 (Richardson and others, 1995). Total scour at a highway crossing is comprised of three components: 1) long-term streambed degradation; 2) contraction scour (due to accelerated flow caused by a reduction in flow area at a bridge) and; 3) local scour (caused by accelerated flow around piers and abutments). Total scour is the sum of the three components. Equations are

  6. Safer Bridges

    NASA Technical Reports Server (NTRS)

    1977-01-01

    Safer bridges are among a number of spinoff benefits from NASA procedures for testing 'cfracture toughness" of a structural part, meaning its ability to -siscracktsh at might cause failure. The New River Bridge in West Virginia, shown under construction, is the world's largest single span bridge. U.S. Steel fracture toughness requirements for such bridges include NASA-developed test procedures. Bridge materials and other metal structures may develop flaws during their service lifetimes. Such flaws can affect the structural integrity of the part. Thus, it is important to know the "fracture toughness" of a structural part, or its ability to resist cracks. NASA has long experience in developing fracture toughness tests for aerospace hardware. Since 1960, NASA-Lewis has worked closely with the American Society for Testing & Materials. Lewis and NASA-funded industrial contractors have made many important contributions to test procedures, now recommended by ASTM, for measuring fracture toughness.

  7. Radar-based dynamic testing of the cable-suspended bridge crossing the Ebro River at Amposta, Spain

    SciTech Connect

    Gentile, Carmelo; Luzi, Guido

    2014-05-27

    Microwave remote sensing is the most recent experimental methodology suitable to the non-contact measurement of deflections on large structures, in static or dynamic conditions. After a brief description of the radar measurement system, the paper addresses the application of microwave remote sensing to ambient vibration testing of a cable-suspended bridge. The investigated bridge crosses the Ebro River at Amposta, Spain and consists of two steel stiffening trusses and a series of equally spaced steel floor beams; the main span is supported by inclined stay cables and two series of 8 suspension cables. The dynamic tests were performed in operational conditions, with the sensor being placed in two different positions so that the response of both the steel deck and the arrays of suspension elements was measured. The experimental investigation confirms the simplicity of use of the radar and the accuracy of the results provided by the microwave remote sensing as well as the issues often met in the clear localization of measurement points.

  8. Radar-based dynamic testing of the cable-suspended bridge crossing the Ebro River at Amposta, Spain

    NASA Astrophysics Data System (ADS)

    Gentile, Carmelo; Luzi, Guido

    2014-05-01

    Microwave remote sensing is the most recent experimental methodology suitable to the non-contact measurement of deflections on large structures, in static or dynamic conditions. After a brief description of the radar measurement system, the paper addresses the application of microwave remote sensing to ambient vibration testing of a cable-suspended bridge. The investigated bridge crosses the Ebro River at Amposta, Spain and consists of two steel stiffening trusses and a series of equally spaced steel floor beams; the main span is supported by inclined stay cables and two series of 8 suspension cables. The dynamic tests were performed in operational conditions, with the sensor being placed in two different positions so that the response of both the steel deck and the arrays of suspension elements was measured. The experimental investigation confirms the simplicity of use of the radar and the accuracy of the results provided by the microwave remote sensing as well as the issues often met in the clear localization of measurement points.

  9. Level II scour analysis for Bridge 38 (BETHTH00070038) on Town Highway 007, crossing Gilead Brook, Bethel, Vermont

    USGS Publications Warehouse

    Ivanoff, Michael A.; Song, Donald L.

    1996-01-01

    The town highway 5 crossing of the Black River is a 70-ft-long, two-lane bridge consisting of one 65-foot clear span (Vermont Agency of Transportation, written commun., August 2, 1994). The bridge is supported by vertical, concrete abutments with wingwalls. There is also a retaining wall along the upstream side of the road embankments. The channel is skewed approximately 20 degrees to the opening while the opening-skew-to-roadway is 15 degrees. A scour hole 3.0 ft deeper than the mean thalweg depth was observed along the right abutment. The scour hole was 27 feet long, 15 feet wide, and was 2.5 feet below the abutment footing at the time of the Level I assessment. This right abutment had numerous cracks and had settled. Additional details describing conditions at the site are included in the Level II Summary and Appendices D and E. Scour depths and rock rip-rap sizes were computed using the general guidelines described in Hydraulic Engineering Circular 18 (Richardson and others, 1993). Scour depths were calculated assuming an infinite depth of erosive material and a homogeneous particle-size distribution. The scour analysis results are presented in tables 1 and 2 and a graph of the scour depths is presented in figure 8.

  10. Level II scour analysis for Bridge 46 (BRNETH00610046) on Town Highway 61, crossing East Peacham Brook, Barnet, Vermont

    USGS Publications Warehouse

    Ivanoff, Michael A.

    1997-01-01

    Contraction scour for all modelled flows ranged from 0 to 1.2 ft. The worst-case contraction scour occurred at the 500-year discharge. Abutment scour ranged from 10.4 to 13.9 ft. The worst-case abutment scour occurred at the 500-year discharge. Additional information on scour depths and depths to armoring are included in the section titled “Scour Results”. Scoured-streambed elevations, based on the calculated scour depths, are presented in tables 1 and 2. A cross-section of the scour computed at the bridge is presented in figure 8. Scour depths were calculated assuming an infinite depth of erosive material and a homogeneous particle-size distribution. It is generally accepted that the Froehlich equation (abutment scour) gives “excessively conservative estimates of scour depths” (Richardson and others, 1995, p. 47). Usual

  11. Level II scour analysis for Bridge 17 (SHEFTH00380017) on Town Highway 38, crossing Miller Run, Sheffield, Vermont

    USGS Publications Warehouse

    Striker, Lora K.; Degnan, James R.

    1997-01-01

    Contraction scour for modelled flows ranged from 0.0 to 2.4 ft. Abutment scour ranged from 6.1 to 7.9 ft at the left abutment and 11.4 to 17.4 ft at the right abutment. The worstcase contraction and abutment scour occurred at the 500-year discharge. Additional information on scour depths and depths to armoring are included in the section titled “Scour Results”. Scoured-streambed elevations, based on the calculated scour depths, are presented in tables 1 and 2. A cross-section of the scour computed at the bridge is presented in figure 8. Scour depths were calculated assuming an infinite depth of erosive material and a homogeneous particle-size distribution. Usually, computed scour depths are evaluated in combination with other information including (but not limited to) historical performance during flood events, the geomorphic stabi

  12. Level II scour analysis for Bridge 12 (BRAITH00230012) on Town Highway 23, crossing Ayers Brook, Braintree, Vermont

    USGS Publications Warehouse

    Olson, Scott A.

    1996-01-01

    D and E. Scour depths and rock rip-rap sizes were computed using the general guidelines described in Hydraulic Engineering Circular 18 (Richardson and others, 1993). Total scour at a highway crossing is comprised of three components: 1) long-term streambed degradation; 2) contraction scour (due to accelerated flow caused by a reduction in flow area at a bridge) and; 3) local scour (caused by accelerated flow around piers and abutments). Total scour is the sum of the three components. Equations are available to compute depths for contraction and local scour and a summary of the results of these computations follows. Contraction scour for all modelled flows ranged from 4.2 to 9.4 ft. The worst-case contraction scour occurred at the incipient-overtopping discharge which was less than the 100-year discharge. Abutment scour ranged from 4.3 to 17.5 ft. The worst-case abutment scour occurred at the 500-year discharge. Additional information on scour depths and depths to armoring are included in the section titled “Scour Results”. Scoured-streambed elevations, based on the calculated scour depths, are presented in tables 1 and 2. A cross-section of the scour computed at the bridge is presented in figure 8. Scour depths were calculated assuming an infinite depth of erosive material and a homogeneous particle-size distribution. It is generally accepted that the Froehlich equation (abutment scour) gives “excessively conservative estimates of scour depths” (Richardson and others, 1993, p. 48). Usually, computed scour depths are evaluated in combination with other information including (but not limited to) historical performance during flood events, the geomorphic stability assessment, existing scour protection measures, and the results of the hydraulic analyses. Therefore, scour depths adopted by VTAOT may differ from the computed values documented herein.

  13. Level II scour analysis for Bridge 16 (BRNATH00800016) on Town Highway 80, crossing Locust Creek, Barnard, Vermont

    USGS Publications Warehouse

    Ivanoff, Michael A.; Weber, Matthew A.

    1996-01-01

    Additional details describing conditions at the site are included in the Level II Summary, Appendix D, and Appendix E. Scour depths and rock rip-rap sizes were computed using the general guidelines described in Hydraulic Engineering Circular 18 (Richardson and others, 1993). Total scour at a highway crossing is comprised of three components: 1) long-term streambed degradation; 2) contraction scour (due to accelerated flow caused by a reduction in flow area at a bridge) and; 3) local scour (caused by accelerated flow around piers and abutments). Total scour is the sum of the three components. Equations are available to compute depths for contraction and local scour and a summary of the results of these computations follows. Contraction scour for all modelled flows ranged from 0.0 to 3.7 ft. The worst-case contraction scour occurred at the incipient-overtopping discharge, which was between the 100- and 500-year discharge. Abutment scour ranged from 17.5 to 23.2 ft. The worst-case abutment scour occurred at the 500-year discharge. Additional information on scour depths and depths to armoring are included in the section titled “Scour Results”. Scoured-streambed elevations, based on the calculated scour depths, are presented in tables 1 and 2. A cross-section of the scour computed at the bridge is presented in figure 8. Scour depths were calculated assuming an infinite depth of erosive material and a homogeneous particle-size distribution. It is generally accepted that the Froehlich equation (abutment scour) gives “excessively conservative estimates of scour depths” (Richardson and others, 1993, p. 48). Usually, computed scour depths are evaluated in combination with other information including (but not limited to) historical performance during flood events, the geomorphic stability assessment, existing scour protection measures, and the results of the hydraulic analyses. Therefore, scour depths adopted by VTAOT may differ from the computed values documented

  14. Level II scour analysis for Bridge 4 (CRAFTH00040004) on Town Highway 4, crossing Whitney Brook, Craftsbury, Vermont

    USGS Publications Warehouse

    Boehmler, Erick M.; Hammond, Robert E.

    1996-01-01

    Total scour at a highway crossing is comprised of three components: 1) long-term degradation; 2) contraction scour (due to accelerated flow caused by reduction in flow area at a bridge) and; 3) local scour (caused by accelerated flow around piers and abutments). Total scour is the sum of the three components. Equations are available to compute depths for contraction and local scour and a summary of the computed scour results follow. Contraction scour for all modelled flows ranged from 0.7 to 1.7 feet. The worst-case contraction scour occurred at the 500-year discharge. Abutment scour ranged from 10.7 to 15.3 feet. The worst-case abutment scour also occurred at the 500-year discharge. Additional information on scour depths and depths to armoring are included in the section titled “Scour Results”. Scoured-streambed elevations, based on the calculated scour depths, are presented in tables 1 and 2. A cross-section of the scour computed at the bridge is presented in figure 8. Scour depths were calculated assuming an infinite depth of erosive material and a homogeneous particle-size distribution. It is generally accepted that the Froehlich equation (abutment scour) gives “excessively conservative estimates of scour depths” (Richardson and others, 1995, p. 47). Usually, computed scour depths are evaluated in combination with other information including (but not limited to) historical performance during flood events, the geomorphic stability assessment, existing scour protection measures, and the results of the hydraulic analyses. Therefore, scour depths adopted by VTAOT may differ from the computed values documented herein.

  15. Level II scour analysis for Bridge 5 (DUMMVT00300005) on State Route 30, crossing Stickney Brook, Dummerston, Vermont

    USGS Publications Warehouse

    Ivanoff, Michael A.

    1997-01-01

    This report provides the results of a detailed Level II analysis of scour potential at structure DUMMVT00300005 on State Route 30 crossing Stickney Brook, Dummerston, Vermont (figures 1–8). A Level II study is a basic engineering analysis of the site, including a quantitative analysis of stream stability and scour (U.S. Department of Transportation, 1993). Results of a Level I scour investigation also are included in Appendix E of this report. A Level I investigation provides a qualitative geomorphic characterization of the study site. Information on the bridge, gleaned from Vermont Agency of Transportation (VTAOT) files, was compiled prior to conducting Level I and Level II analyses and is found in Appendix D. The site is in the New England Upland section of the New England physiographic province in southeastern Vermont. The 6.31-mi2 drainage area is in a predominantly rural and forested basin. In the vicinity of the study site, the surface cover is forest and brush. In the study area, Stickney Brook has an incised, straight channel with a slope of approximately 0.04 ft/ft, an average channel top width of 80 ft and an average bank height of 7 ft. The channel bed material is predominantly cobble with a median grain size (D50) of 80.3 mm (0.264 ft). The geomorphic assessment at the time of the Level I and Level II site visit on August 12, 1996, indicated that the reach was aggrading. The State Route 30 crossing of Stickney Brook is a 84-ft-long, two-lane bridge consisting of one 82-foot steel-beam span (Vermont Agency of Transportation, written communication, March 30, 1995). The opening length of the structure parallel to the bridge face is 79.7 ft. The bridge is supported by vertical, concrete abutments with spill-through embankments. The channel is skewed approximately 5 degrees to the opening while the opening-skew-to-roadway is 0 degrees. A scour hole 0.5 ft deeper than the mean thalweg depth was observed along the toe of the right spill-through slope during

  16. Level II scour analysis for Bridge 43 (CHELTH00460043) on Town Highway 46, crossing Jail Brook, Chelsea, Vermont

    USGS Publications Warehouse

    Olson, Scott A.

    1997-01-01

    This report provides the results of a detailed Level II analysis of scour potential at structure CHELTH00460043 on Town Highway 46 crossing Jail Brook, Chelsea, Vermont (figures 1–8). A Level II study is a basic engineering analysis of the site, including a quantitative analysis of stream stability and scour (U.S. Department of Transportation, 1993). Results of a Level I scour investigation also are included in Appendix E of this report. A Level I investigation provides a qualitative geomorphic characterization of the study site. Information on the bridge, gleaned from Vermont Agency of Transportation (VTAOT) files, was compiled prior to conducting Level I and Level II analyses and is found in Appendix D. The site is in the New England Upland section of the New England physiographic province in central Vermont. The 4.68-mi2 drainage area is in a predominantly rural and forested basin. In the vicinity of the study site, the surface cover is best described as suburban with homes, lawns, and a few trees. In the study area, Jail Brook has an incised, straight channel with a slope of approximately 0.02 ft/ft, an average channel top width of 32 ft and an average bank height of 6 ft. The channel bed material ranges from coarse sand to boulder with a median grain size (D50) of 43.0 mm (0.141 ft). The geomorphic assessment at the time of the Level I and Level II site visit on November 18, 1994, indicated that the reach was stable. The Town Highway 46 crossing of Jail Brook is a 27-ft-long, two-lane bridge consisting of one 23-foot concrete span (Vermont Agency of Transportation, written communication, August 25, 1994). The opening length of the structure parallel to the bridge face is 22.8 ft.The bridge is supported by vertical, concrete abutments with wingwalls. The channel is skewed approximately zero degrees to the opening and the opening-skew-to-roadway is also zero degrees. Channel scour was not observed. However, the left abutment footing was exposed one foot. Scour

  17. Level II scour analysis for Bridge 13 (SHARTH00040013) on Town Highway 4, crossing Broad Brook, Sharon, Vermont

    USGS Publications Warehouse

    Wild, Emily C.; Weber, Matthew A.

    1997-01-01

    This report provides the results of a detailed Level II analysis of scour potential at structure SHARTH00040013 on Town Highway 4 crossing Broad Brook, Sharon, Vermont (figures 1–8). A Level II study is a basic engineering analysis of the site, including a quantitative analysis of stream stability and scour (U.S. Department of Transportation, 1993). Results of a Level I scour investigation also are included in Appendix E of this report. A Level I investigation provides a qualitative geomorphic characterization of the study site. Information on the bridge, gleaned from Vermont Agency of Transportation (VTAOT) files, was compiled prior to conducting Level I and Level II analyses and is found in Appendix D. The site is in the New England Upland section of the New England physiographic province in central Vermont. The 16.6-mi2 drainage area is in a predominantly rural and forested basin. In the vicinity of the study site, the surface cover is brushland on the downstream left overbank and row crops on the right overbank, while the immediate banks have dense woody vegetation. Upstream of the bridge, the overbanks are forested. In the study area, Broad Brook has an incised, sinuous channel with a slope of approximately 0.02 ft/ft, an average channel top width of 69 ft and an average bank height of 5 ft. The channel bed material ranges from sand to boulder with a median grain size (D50) of 112 mm (0.369 ft). The geomorphic assessment at the time of the Level I site visit on April 11, 1995 and Level II site visit on July 23, 1996, indicated that the reach was stable. The Town Highway 4 crossing of Broad Brook is a 34-ft-long, two-lane bridge consisting of one 31-foot concrete tee beam span (Vermont Agency of Transportation, written communication, March 23, 1995). The opening length of the structure parallel to the bridge face is 30.1 ft. The bridge is supported by vertical, concrete abutments with wingwalls. The channel is skewed approximately 10 degrees to the opening

  18. Level II scour analysis for Bridge 26 (ROYATH00540026) on Town Highway 54, crossing Broad Brook, Royalton, Vermont

    USGS Publications Warehouse

    Burns, Ronda L.; Weber, Matthew A.

    1997-01-01

    This report provides the results of a detailed Level II analysis of scour potential at structure ROYATH00540026 on Town Highway 54 crossing Broad Brook, Royalton, Vermont (figures 1–8). A Level II study is a basic engineering analysis of the site, including a quantitative analysis of stream stability and scour (U.S. Department of Transportation, 1993). Results of a Level I scour investigation also are included in Appendix E of this report. A Level I investigation provides a qualitative geomorphic characterization of the study site. Information on the bridge, gleaned from Vermont Agency of Transportation (VTAOT) files, was compiled prior to conducting Level I and Level II analyses and is found in Appendix D. The site is in the New England Upland section of the New England physiographic province in central Vermont. The 11.9-mi2 drainage area is in a predominantly rural and forested basin. In the vicinity of the study site, the surface cover on the left bank upstream and downstream is pasture with trees and brush on the immediate banks. The right bank, upstream and downstream of the bridge, is forested. In the study area, Broad Brook has an incised, sinuous channel with a slope of approximately 0.01 ft/ft, an average channel top width of 37 ft and an average bank height of 4 ft. The channel bed material ranges from sand to boulders with a median grain size (D50) of 66.3 mm (0.218 ft). The geomorphic assessment at the time of the Level I site visit on April 13, 1995 and the Level II site visit on July 11, 1996, indicated that the reach was stable. The Town Highway 54 crossing of Broad Brook is a 29-ft-long, one-lane bridge consisting of one 24-foot steel-beam span with a timber deck (Vermont Agency of Transportation, written communication, March 23, 1995). The opening length of the structure parallel to the bridge face is 23.3 ft. The bridge is supported by a vertical, concrete face laid-up stone abutment with concrete wingwalls on the left and a laid-up stone

  19. Level II scour analysis for Bridge 68 (NFIETH00960068) on Town Highway 96, crossing the Dog River, Northfield, Vermont

    USGS Publications Warehouse

    Burns, Ronda L.

    1997-01-01

    This report provides the results of a detailed Level II analysis of scour potential at structure NFIETH00960068 on Town Highway 96 crossing the Dog River, Northfield, Vermont (figures 1–8). A Level II study is a basic engineering analysis of the site, including a quantitative analysis of stream stability and scour (U.S. Department of Transportation, 1993). Results of a Level I scour investigation also are included in Appendix E of this report. A Level I investigation provides a qualitative geomorphic characterization of the study site. Information on the bridge, gleaned from Vermont Agency of Transportation (VTAOT) files, was compiled prior to conducting Level I and Level II analyses and is found in Appendix D. The site is in the Green Mountain section of the New England physiographic province in central Vermont. The 30.7-mi2 drainage area is in a predominantly rural and forested basin. In the vicinity of the study site, the surface cover on the left bank upstream and downstream is pasture while the immediate banks have dense woody vegetation. The right bank upstream is forested and the downstream right bank is pasture. Vermont state route 12A runs parallel to the river on the right bank. In the study area, the Dog River has an incised, straight channel with a slope of approximately 0.004 ft/ft, an average channel top width of 70 ft and an average bank height of 7 ft. The channel bed material ranges from sand to cobble with a median grain size (D50) of 47.9 mm (0.157 ft). The geomorphic assessment at the time of the Level I and Level II site visit on July 25, 1996, indicated that the reach was stable. The Town Highway 96 crossing of the Dog River is a 45-ft-long, one-lane bridge consisting of one 43-foot steel-beam span with a timber deck (Vermont Agency of Transportation, written communication, October 13, 1995). The opening length of the structure parallel to the bridge face is 41.5 ft.The bridge is supported by vertical, concrete abutments with wingwalls. The

  20. Level II scour analysis for Bridge 13 (PFRDTH00030013) on Town Highway 3, crossing Furnace Brook, Pittsford, Vermont

    USGS Publications Warehouse

    Flynn, Robert H.; Medalie, Laura

    1997-01-01

    This report provides the results of a detailed Level II analysis of scour potential at structure PFRDTH00030013 on Town Highway 3 crossing Furnace Brook, Pittsford, Vermont (figures 1–8). A Level II study is a basic engineering analysis of the site, including a quantitative analysis of stream stability and scour (U.S. Department of Transportation, 1993). Results of a Level I scour investigation also are included in Appendix E of this report. A Level I investigation provides a qualitative geomorphic characterization of the study site. Information on the bridge, gleaned from Vermont Agency of Transportation (VTAOT) files, was compiled prior to conducting Level I and Level II analyses and is found in Appendix D. The site is in the Taconic section of the New England physiographic province in western Vermont. The 17.1-mi2 drainage area is in a predominantly rural and forested basin. In the vicinity of the study site, the surface cover is grass along the downstream right bank while the remaining banks are primarily forested. In the study area, Furnace Brook has an incised, sinuous channel with a slope of approximately 0.03 ft/ft, an average channel top width of 49 ft and an average channel depth of 4 ft. The predominant channel bed material ranges from gravel to bedrock with a median grain size (D50) of 70.2 mm (0.230 ft). The geomorphic assessment at the time of the Level I and Level II site visit on June 20, 1995, indicated that the reach was stable. The Town Highway 3 crossing of Furnace Brook is a 75-ft-long, two-lane bridge consisting of one 72-ft-long steel stringer span (Vermont Agency of Transportation, written communication, March 14, 1995). The bridge is supported by vertical, concrete abutments with spill-through slopes. The channel is skewed approximately 20 degrees to the opening while the opening-skew-to-roadway is 35 degrees. The opening-skew-to-roadway was determined from surveyed data collected at the bridge although, information provided from the

  1. Level II scour analysis for Bridge 38 (TOPSTH00570038) on Town Highway 57, crossing Waits River, Topsham, Vermont

    USGS Publications Warehouse

    Striker, Lora K.; Boehmler, Erick M.

    1997-01-01

    This report provides the results of a detailed Level II analysis of scour potential at structure TOPSTH00570038 on Town Highway 57 crossing the Waits River, Topsham, Vermont (figures 1–8). A Level II study is a basic engineering analysis of the site, including a quantitative analysis of stream stability and scour (U.S. Department of Transportation, 1993). Results of a Level I scour investigation also are included in Appendix E of this report. A Level I investigation provides a qualitative geomorphic characterization of the study site. Information on the bridge, gleaned from Vermont Agency of Transportation (VTAOT) files, was compiled prior to conducting Level I and Level II analyses and is found in Appendix D. The site is in the New England Upland section of the New England physiographic province in east central Vermont. The 37.3-mi2 drainage area is in a predominantly rural and forested basin. In the vicinity of the study site, the surface cover is predominantly pasture while the left bank upstream is suburban. In the study area, the Waits River has a sinuous locally anabranched channel with a slope of approximately 0.01 ft/ft, an average channel top width of 76 ft and an average bank height of 6 ft. The channel bed material ranges from sand to cobble with a median grain size (D50) of 57.2 mm (0.188 ft). The geomorphic assessment at the time of the Level I and Level II site visit on August 28, 1995, indicated that the reach was considered laterally unstable due to cut-banks upstream, mid-channel bars and lateral migration of the channel towards the left abutment. The Town Highway 34 crossing of the Waits River is a 34-ft-long, one-lane bridge consisting of one 31-foot steel-beam span (Vermont Agency of Transportation, written communication, March 28, 1995). The opening length of the structure parallel to the bridge face is 30.4 ft. The bridge is supported by a vertical, stone abutment with concrete facing and wingwalls on the right and by a vertical, concrete

  2. Level II scour analysis for Bridge 18 (GROTTH00480018) on Town Highway 48, crossing the Wells River Groton, Vermont

    USGS Publications Warehouse

    Striker, Lora K.; Medalie, Laura

    1997-01-01

    This report provides the results of a detailed Level II analysis of scour potential at structure GROTTH00480018 on Town Highway 48 crossing the Wells River, Groton, Vermont (figures 1–8). A Level II study is a basic engineering analysis of the site, including a quantitative analysis of stream stability and scour (U.S. Department of Transportation, 1993). Results of a Level I scour investigation also are included in Appendix E of this report. A Level I investigation provides a qualitative geomorphic characterization of the study site. Information on the bridge, gleaned from Vermont Agency of Transportation (VTAOT) files, was compiled prior to conducting Level I and Level II analyses and is found in Appendix D. The site is in the New England Upland section of the New England physiographic province in eastern Vermont. The 53.6-mi2 drainage area is in a predominantly rural and forested basin. In the vicinity of the study site, the surface cover is pasture on the right bank upstream and the left bank downstream while the surface cover is shrub and brushland along the left bank upstream and the right bank downstream. The immediate banks are vegetated with brush and scattered trees. In the study area, the Wells River has an incised, straight channel with a slope of approximately 0.003 ft/ft, an average channel top width of 69 ft and an average bank height of 7 ft. The channel bed material ranges from sand to cobble with a median grain size (D50) of 66.7 mm (0.219 ft). The geomorphic assessment at the time of the Level I and Level II site visit on August 28, 1995, indicated that the reach was stable. The Town Highway 48 crossing of the Wells River is a 38-ft-long, one-lane bridge consisting of one 36-foot steel-beam span (Vermont Agency of Transportation, written communication, March 24, 1995). The opening length of the structure parallel to the bridge face is 33.7 ft. The bridge is supported by vertical, concrete abutments with wingwalls. The channel is skewed

  3. Level II scour analysis for Bridge 25 (JAMATH00010025) on Town Highway 1, crossing Ball Mountain Brook, Jamaica, Vermont

    USGS Publications Warehouse

    Burns, Ronda L.

    1997-01-01

    This report provides the results of a detailed Level II analysis of scour potential at structure JAMATH00010025 on Town Highway 1 crossing Ball Mountain Brook, Jamaica, Vermont (figures 1–8). A Level II study is a basic engineering analysis of the site, including a quantitative analysis of stream stability and scour (U.S. Department of Transportation, 1993). Results of a Level I scour investigation also are included in Appendix E of this report. A Level I investigation provides a qualitative geomorphic characterization of the study site. Information on the bridge, gleaned from Vermont Agency of Transportation (VTAOT) files, was compiled prior to conducting Level I and Level II analyses and is found in Appendix D. The site is in the Green Mountain section of the New England physiographic province in southern Vermont. The 29.5-mi2 drainage area is in a predominantly rural and forested basin. In the vicinity of the study site, the surface cover is forest except on the downstream right bank which is pasture with some trees along the channel. In the study area, Ball Mountain Brook has an incised, straight channel with a slope of approximately 0.021 ft/ft, an average channel top width of 86 ft and an average bank height of 9 ft. The channel bed material ranges from gravel to bedrock with a median grain size (D50) of 222 mm (0.727 ft). The geomorphic assessment at the time of the Level I and Level II site visit on August 13, 1996, indicated that the reach was stable. The Town Highway 1 crossing of Ball Mountain Brook is a 78-ft-long, two-lane bridge consisting of one 75-foot steel-beam span (Vermont Agency of Transportation, written communication, March 29, 1995). The opening length of the structure parallel to the bridge face is 73 ft. The bridge is supported by vertical, concrete abutments with wingwalls. The channel is skewed approximately 30 degrees to the opening while the opening-skew-to-roadway is 30 degrees. A scour hole 1.0 ft deeper than the mean thalweg depth

  4. Building Cross-Cultural Bridges--Cultural Analysis of Critical Incidents.

    ERIC Educational Resources Information Center

    White, Caroline

    Culture forms the basis for cross-cultural awareness and understanding. The initial response to a new culture is to find it fascinating, exotic, and thrilling. Although, to function in a new cultural environment, and become aware of deep cultural patterns people need time, research, and investigation. Dealing with a new culture, people need a…

  5. Level II scour analysis for Bridge 22 (JAY-TH00400022) on Town Highway 40, crossing Jay Branch, Jay, Vermont

    USGS Publications Warehouse

    Ivanoff, Michael A.; Song, Donald L.

    1997-01-01

    8). A Level II study is a basic engineering analysis of the site, including a quantitative analysis of stream stability and scour (U.S. Department of Transportation, 1993). Results of a Level I scour investigation also are included in Appendix E of this report. A Level I investigation provides a qualitative geomorphic characterization of the study site. Information on the bridge, gleaned from Vermont Agency of Transportation (VTAOT) files, was compiled prior to conducting Level I and Level II analyses and is found in Appendix D. The site is in the Green Mountain section of the New England physiographic province in northern Vermont. The 2.15-mi2 drainage area is in a predominantly rural and forested basin. In the vicinity of the study site, the surface cover is primarily pasture on the upstream and downstream left overbank while the immediate banks have dense woody vegetation. The downstream right overbank of the bridge is forested. In the study area, Jay Branch Tributary has an incised, sinuous channel with a slope of approximately 0.02 ft/ft, an average channel top width of 26 ft and an average bank height of 3 ft. The channel bed material ranges from gravel to cobble with a median grain size (D50) of 40.5 mm (0.133 ft). The geomorphic assessment at the time of the Level I and Level II site visit on June 7, 1995, indicated that the reach was stable. The Town Highway 40 crossing of Jay Branch Tributary is a 27-ft-long, two-lane bridge consisting of one 25-foot steel-beam span (Vermont Agency of Transportation, written communication, March 6, 1995). The opening length of the structure parallel to the bridge face is 23.5 ft. The bridge is supported by vertical, concrete abutments with wingwalls. The channel skew and the opening-skew-to-roadway are zero degrees. The scour counter-measures at the site included type-2 stone fill (less than 36 inches diameter) at the upstream end of the left and right abutments, at the upstream right wingwall, and at the downstream left

  6. Amphibians crossing the Bering Land Bridge: evidence from holarctic treefrogs (Hyla, Hylidae, Anura).

    PubMed

    Li, Jia-Tang; Wang, Ji-Shan; Nian, Hui-Huang; Litvinchuk, Spartak N; Wang, Jichao; Li, Yang; Rao, Ding-Qi; Klaus, Sebastian

    2015-06-01

    Based on an updated, time-calibrated phylogeny and applying biogeographical model testing and diversification analysis, we re-examined systematics and biogeography of the Holarctic treefrog genus Hyla with a focus on the East Asian species. We analyzed four mitochondrial genes (12S and 16S rRNA, tRNA(Leu), ND1) and one nuclear gene (POMC) for 192 samples representing 30 species of Hyla. Based on our results we suggest that H. ussuriensis is a synonym of H. japonica. Specimens from Sakhalin and Kunashir Islands might represent a cryptic species within H. japonica. We confirm earlier hypotheses that the genus Hyla originated during the Eocene to Early Oligocene and that Eurasian species originated from two independent dispersal events from North America via the Bering Land Bridge. Middle Eocene to Oligocene dispersal gave rise to the most recent common ancestor of the West Palearctic H. arborea-group and the East Palearctic, newly defined, H. chinensis-group. The Northeast Asian H. japonica-group resulted from a second wave of colonization from the Nearctic. A trans-Atlantic dispersal route could be excluded. Dispersal of the H. arborea-group to the western Palearctic coincides with the closure of the Turgai Strait at the end of the Oligocene. Diversification of Hyla decreased at the end of the Middle Miocene, possibly coinciding with the end of the Mid Miocene Climatic Optimum and the advent of cooler and drier climates in the Northern Hemisphere. PMID:25765368

  7. Effects of MgATP and MgADP on the cross-bridge kinetics of rabbit soleus slow-twitch muscle fibers.

    PubMed Central

    Wang, G; Kawai, M

    1996-01-01

    The elementary steps surrounding the nucleotide binding step in the cross-bridge cycle were investigated with sinusoidal analysis in rabbit soleus slow-twitch muscle fibers. The single-fiber preparations were activated at pCa 4.40, ionic strength 180 mM, 20 degrees C, and the effects of MgATP (S) and MgADP (D) concentrations on three exponential processes B, C, and D were studied. Our results demonstrate that all apparent (measured) rate constants increased and saturated hyperbolically as the MgATP concentration was increased. These results are consistent with the following cross-bridge scheme: [cross-bridge scheme: see text] where A = actin, M = myosin, S = MgATP, and D = MgADP. AM+S is a collision complex, and AM*S is its isomerized form. From our studies, we obtained K0 = 18 +/- 4 mM-1 (MgADP association constant, N = 7, average +/- sem), K1a = 1.2 +/- 0.3 mM-1 (MgATP association constant, N = 8 hereafter), k1b = 90 +/- 20 s-1 (rate constant of ATP isomerization), k-1b = 100 +/- 9 s-1 (rate constant of reverse isomerization), K1b = 1.0 +/- 0.2 (equilibrium constant of isomerization), k2 = 21 +/- 3 s-1 (rate constant of cross-bridge detachment), k-2 = 14.1 +/- 1.0 s-1 (rate constant of reversal of detachment), and K2 = 1.6 +/- 0.3 (equilibrium constant of detachment). K0 is 8 times and K1a is 2.2 times those in rabbit psoas, indicating that nucleotides bind to cross-bridges more tightly in soleus slow-twitch muscle fibers than in psoas fast-twitch muscle fibers. These results indicate that cross-bridges of slow-twitch fibers are more resistant to ATP depletion than those of fast-twitch fibers. The rate constants of ATP isomerization and cross-bridge detachment steps are, in general, one-tenth to one-thirtieth of those in psoas. PMID:8874019

  8. Level II scour analysis for Bridge 6 (FAYSTH00010006) on Town Highway 1, crossing Shepard Brook, Fayston, Vermont

    USGS Publications Warehouse

    Striker, Lora K.; Flynn, Robert H.

    1997-01-01

    This report provides the results of a detailed Level II analysis of scour potential at structure FAYSTH00010006 on Town Highway 1 crossing Shepard Brook, Fayston, Vermont (figures 1–8). A Level II study is a basic engineering analysis of the site, including a quantitative analysis of stream stability and scour (U.S. Department of Transportation, 1993). Results of a Level I scour investigation also are included in Appendix E of this report. A Level I investigation provides a qualitative geomorphic characterization of the study site. Information on the bridge, gleaned from Vermont Agency of Transportation (VTAOT) files, was compiled prior to conducting Level I and Level II analyses and is found in Appendix D. The site is in the Green Mountain section of the New England physiographic province in central Vermont. The 16.6-mi2 drainage area is in a predominantly rural and forested basin. In the vicinity of the study site, the surface cover is forest. In the study area, Shepard Brook has an incised, sinuous channel with a slope of approximately 0.01 ft/ft, an average channel top width of 56 ft and an average bank height of 3 ft. The channel bed material ranges from sand to boulder with a median grain size (D50) of 72.6 mm (0.238 ft). The geomorphic assessment at the time of the Level I and Level II site visit on July 2, 1996, indicated that the reach was stable. The Town Highway 1 crossing of the Shepard Brook is a 42-ft-long, two-lane bridge consisting of one 40-foot concrete T-beam span (Vermont Agency of Transportation, written communication, October 13, 1995). The opening length of the structure parallel to the bridge face is 39.6 ft. The bridge is supported by vertical, concrete abutments with wingwalls. The channel is skewed approximately 15 degrees to the opening while the calculated opening-skew-to-roadway is 30 degrees. Scour, 2.0 ft deeper than the mean thalweg depth, was observed along the right abutment during the Level I assessment. The left abutment is

  9. Level II scour analysis for Bridge 21 (MORETH00010021) on Town Highway 1, crossing Cox Brook, Moretown, Vermont

    USGS Publications Warehouse

    Striker, Lora K.; Medalie, Laura

    1997-01-01

    This report provides the results of a detailed Level II analysis of scour potential at structure MORETH00010021 on Town Highway 1 crossing Cox Brook, Moretown, Vermont (figures 1–8). A Level II study is a basic engineering analysis of the site, including a quantitative analysis of stream stability and scour (U.S. Department of Transportation, 1993). Results of a Level I scour investigation also are included in Appendix E of this report. A Level I investigation provides a qualitative geomorphic characterization of the study site. Information on the bridge, gleaned from Vermont Agency of Transportation (VTAOT) files, was compiled prior to conducting Level I and Level II analyses and is found in Appendix D. The site is in the Green Mountain section of the New England physiographic province in north-central Vermont. The 2.85-mi2 drainage area is in a predominantly rural and forested basin. In the vicinity of the study site, the surface cover is predominantly forested. In the study area, Cox Brook has an incised, sinuous channel with a slope of approximately 0.02 ft/ft, an average channel top width of 23 ft and an average bank height of 4 ft. The channel bed material ranges from gravel to cobble with a median grain size (D50) of 47.5 mm (0.156 ft). The geomorphic assessment at the time of the Level I and Level II site visit on July 18, 1996, indicated that the reach was stable. The Town Highway 1 crossing of Cox Brook is a 29-ft-long, two-lane bridge consisting of one 27-foot steel-beam span (Vermont Agency of Transportation, written communication, October 13, 1995). The opening length of the structure parallel to the bridge face is 24.8 ft. The bridge is supported by vertical, concrete abutments with wingwalls. The channel is skewed approximately 60 degrees to the opening while the measured opening-skew-to-roadway is 40 degrees. A scour hole 1.0 ft deeper than the mean thalweg depth was observed along the left abutment downstream during the Level I assessment. The

  10. Level II scour analysis for Bridge 26 (WSTOTH00070026) on Town Highway 7, crossing Greendale Brook, Weston, Vermont

    USGS Publications Warehouse

    Striker, Lora K.; Hammond, Robert A.

    1997-01-01

    This report provides the results of a detailed Level II analysis of scour potential at structure WSTOTH00070026 on Town Highway 7 crossing Greendale Brook, Weston, Vermont (figures 1–8). A Level II study is a basic engineering analysis of the site, including a quantitative analysis of stream stability and scour (U.S. Department of Transportation, 1993). Results of a Level I scour investigation also are included in Appendix E of this report. A Level I investigation provides a qualitative geomorphic characterization of the study site. Information on the bridge, gleaned from Vermont Agency of Transportation (VTAOT) files, was compiled prior to conducting Level I and Level II analyses and is found in Appendix D. The site is in the Green Mountain section of the New England physiographic province in south central Vermont. The 3.13-mi2 drainage area is in a predominantly rural and forested basin. In the vicinity of the study site, the surface cover is forest. In the study area, the Greendale Brook has a sinuous, non-incised, non-alluvial channel with a slope of approximately 0.015 ft/ft, an average channel top width of 38 ft and an average bank height of 3 ft. The channel bed material ranges from sand to boulder with a median grain size (D50) of 64.8 mm (0.213 ft). The geomorphic assessment at the time of the Level I and Level II site visit on August 19, 1996, indicated that the reach was laterally unstable. The channel has moved to the right, however, scour countermeasures are in place along the upstream right bank. The Town Highway 7 crossing of the Greendale Brook is a 52-ft-long, two-lane bridge consisting of one 50-foot steel-beam span with a concrete deck (Vermont Agency of Transportation, written communication, April 07, 1995). The opening length of the structure parallel to the bridge face is 48.6 ft. The bridge is supported by vertical, concrete abutments with wingwalls. The channel is skewed approximately 50 degrees to the opening while the opening

  11. Level II scour analysis for Bridge 4 (MAIDTH00070004) on Town Highway 7, crossing Cutler Mill Brook, Maidstone, Vermont

    USGS Publications Warehouse

    Striker, Lora K.; Medalie, Laura

    1997-01-01

    This report provides the results of a detailed Level II analysis of scour potential at structure MAIDTH00070004 on Town Highway 7 crossing the Cutler Mill Brook, Maidstone, Vermont (figures 1–8). A Level II study is a basic engineering analysis of the site, including a quantitative analysis of stream stability and scour (U.S. Department of Transportation, 1993). Results of a Level I scour investigation also are included in Appendix E of this report. A Level I investigation provides a qualitative geomorphic characterization of the study site. Information on the bridge, gleaned from Vermont Agency of Transportation (VTAOT) files, was compiled prior to conducting Level I and Level II analyses and is found in Appendix D. The site is in the White Mountain section of the New England physiographic province in northeastern Vermont. The 18.1-mi2 drainage area is in a predominantly rural and forested basin. In the vicinity of the study site, the surface cover is predominantly shrub and brushland. In the study area, the Cutler Mill Brook has a non-incised, meandering channel with local braiding and a slope of approximately 0.004 ft/ft, an average channel top width of 43 ft and an average bank height of 2 ft. The channel bed material ranges from sand to cobble with a median grain size (D50) of 27.6 mm (0.091 ft). The geomorphic assessment at the time of the Level I and Level II site visit on July 19, 1995, indicated that the reach was laterally unstable due to large meanders in the channel. The Town Highway 7 crossing of the Cutler Mill Brook is a 25-ft-long, one-lane bridge consisting of one 22-foot concrete span (Vermont Agency of Transportation, written communication, August 5, 1994). The opening length of the structure parallel to the bridge face is 21.7 ft. The bridge is supported by vertical, concrete abutments with wingwalls. The channel is skewed approximately 20 degrees to the opening while the opening-skew-to-roadway is 0 degrees. A scour hole 2.0 ft deeper than

  12. Bathymetric and velocimetric surveys at highway bridges crossing the Missouri River in and into Missouri during summer flooding, July-August 2011

    USGS Publications Warehouse

    Huizinga, Richard J.

    2012-01-01

    Bathymetric and velocimetric surveys were conducted by the U.S. Geological Survey, in cooperation with the Kansas and Missouri Departments of Transportation, in the vicinity of 36 bridges at 27 highway crossings of the Missouri River between Brownville, Nebraska and St. Louis, Missouri, from July 13 through August 3, 2011, during a summer flood. A multibeam echo sounder mapping system was used to obtain channel-bed elevations for river reaches ranging from 1,350 to 1,860 feet and extending across the active channel of the Missouri River. These bathymetric scans provide a "snapshot" of the channel conditions at the time of the surveys and provide characteristics of scour holes that may be useful in the development of predictive guidelines or equations for scour holes. These data also may be used by the Kansas and Missouri Departments of Transportation to assess the bridges for stability and integrity issues with respect to bridge scour during floods. Bathymetric data were collected around every pier that was in water, except those at the edge of water, in extremely shallow water, or surrounded by debris rafts. Scour holes were present at most piers for which bathymetry could be obtained, except at piers on channel banks, those near or embedded in lateral or longitudinal spur dikes, and those on exposed bedrock outcrops. Scour holes observed at the surveyed bridges were examined with respect to depth and shape. Although exposure of parts of foundational support elements was observed at several piers, at most sites the exposure likely can be considered minimal compared to the overall substructure that remains buried in bed material; however, there were several notable exceptions where the bed material thickness between the bottom of the scour hole and bedrock was less than 6 feet. Such substantial exposure of usually buried substructural elements may warrant special observation in future flood events. Previous bathymetric surveys had been done at several of the sites

  13. Level II scour analysis for Bridge 18 (SHEFTH00410018) on Town Highway 41, crossing Millers Run, Sheffield, Vermont

    USGS Publications Warehouse

    Wild, Emily C.; Boehmler, Erick M.

    1997-01-01

    This report provides the results of a detailed Level II analysis of scour potential at structure SHEFTH00410018 on Town Highway 41 crossing Millers Run, Sheffield, Vermont (figures 1–8). A Level II study is a basic engineering analysis of the site, including a quantitative analysis of stream stability and scour (U.S. Department of Transportation, 1993). Results of a Level I scour investigation also are included in Appendix E of this report. A Level I investigation provides a qualitative geomorphic characterization of the study site. Information on the bridge, gleaned from Vermont Agency of Transportation (VTAOT) files, was compiled prior to conducting Level I and Level II analyses and is found in Appendix D. The site is in the White Mountain section of the New England physiographic province in northeastern Vermont. The 16.2-mi2 drainage area is in a predominantly rural and forested basin. In the vicinity of the study site, the surface cover is grass upstream and downstream of the bridge while the immediate banks have dense woody vegetation. In the study area, Millers Run has an incised, straight channel with a slope of approximately 0.01 ft/ft, an average channel top width of 50 ft and an average bank height of 6 ft. The channel bed material ranges from sand to boulder with a median grain size (D50) of 50.9 mm (0.167 ft). The geomorphic assessment at the time of the Level I and Level II site visit on August 1, 1995, indicated that the reach was laterally unstable, which is evident in the moderate to severe fluvial erosion in the upstream reach. The Town Highway 41 crossing of the Millers Run is a 30-ft-long, one-lane bridge consisting of a 28-foot steel-stringer span (Vermont Agency of Transportation, written communication, March 28, 1995). The opening length of the structure parallel to the bridge face is 22.2 ft. The bridge is supported by vertical, concrete abutments with wingwalls. The channel is skewed approximately 20 degrees to the opening. The computed

  14. Reversal of the cross-bridge force-generating transition by photogeneration of phosphate in rabbit psoas muscle fibres.

    PubMed Central

    Dantzig, J A; Goldman, Y E; Millar, N C; Lacktis, J; Homsher, E

    1992-01-01

    1. Orthophosphate (P(i), 0.1-2.0 mM) was photogenerated within the filament lattice of isometrically contracting glycerinated fibres of rabbit psoas muscle at 10 and 20 degrees C. The P(i) was produced by laser flash photolysis of the photolabile compound 1-(2-nitrophenyl)ethylphosphate (caged P(i)). Caged P(i) caused a depression of tension that was much smaller than that caused by P(i). 2. Photolysis of caged P(i) produced a decline in isometric force composed of four phases: phase I, a lag phase (e.g. 1-4 ms at 10 degrees C) during which force did not change; phase II, an exponential decline by as much as 20% of the pre-pulse force; phase III, a partial force recovery (0-3% of the pre-pulse force); and phase IV, a further slow (0.5-3 s) decline to the steady value. Phases I, III and IV were largely independent of [P(i)] and are likely to be indirect effects caused by the caged P(i) photolysis. 3. Both the rate and amplitude of phase II depended markedly on [P(i)]. The amplitude of phase II was similar to the reduction of steady-state force by P(i). The rate of phase II increased with increasing temperature and [P(i)]. At high [P(i)] the rate began to saturate, and approached limits of 123 s-1 at 10 degrees C and 194 s-1 at 20 degrees C. 4. The rate of phase II was independent of sarcomere overlap, while the amplitude was proportional to tension at partial filament overlap. A control experiment using caged ATP showed that phase II was not produced by the photolytic by-products or the light pulse. The results suggest that phase II is associated with the force-generating transition of the cross-bridge cycle. 5. Sinusoidal length oscillations at 0.5 and 2 kHz were used to measure muscle stiffness during phase II. Stiffness declined in a single exponential phase, with the same time course as phase II of the tension transient. The change in stiffness was 83 +/- 6% (mean +/- S.E.M., n = 10, 0.5 kHz) of the change in tension when both signals were normalized to their

  15. Impact of familial hypertrophic cardiomyopathy-linked mutations in the NH2 terminus of the RLC on β-myosin cross-bridge mechanics.

    PubMed

    Farman, Gerrie P; Muthu, Priya; Kazmierczak, Katarzyna; Szczesna-Cordary, Danuta; Moore, Jeffrey R

    2014-12-15

    Familial hypertrophic cardiomyopathy (HCM) is associated with mutations in sarcomeric proteins, including the myosin regulatory light chain (RLC). Here we studied the impact of three HCM mutations located in the NH2 terminus of the RLC on the molecular mechanism of β-myosin heavy chain (MHC) cross-bridge mechanics using the in vitro motility assay. To generate mutant β-myosin, native RLC was depleted from porcine cardiac MHC and reconstituted with mutant (A13T, F18L, and E22K) or wild-type (WT) human cardiac RLC. We characterized the mutant myosin force and motion generation capability in the presence of a frictional load. Compared with WT, all three mutants exhibited reductions in maximal actin filament velocity when tested under low or no frictional load. The actin-activated ATPase showed no significant difference between WT and HCM-mutant-reconstituted myosins. The decrease in velocity has been attributed to a significantly increased duty cycle, as was measured by the dependence of actin sliding velocity on myosin surface density, for all three mutant myosins. These results demonstrate a mutation-induced alteration in acto-myosin interactions that may contribute to the pathogenesis of HCM. PMID:25324513

  16. Level II scour analysis for Bridge 35 (BRIDTH00050035) on Town Highway 05, crossing the North Branch Ottauquechee River, Bridgewater, Vermont

    USGS Publications Warehouse

    Olson, Scott A.; Ayotte, Joseph D.

    1996-01-01

    year discharge. Abutment scour ranged from 8.0 to 15.1 ft. with the worst-case abutment scour occurring at the 500-year discharge. Additional information on scour depths and depths to armoring are included in the section titled “Scour Results”. Scoured-streambed elevations, based on the calculated scour depths, are presented in tables 1 and 2. A cross-section of the scour computed at the bridge is presented in figure 8. Scour depths were calculated assuming an infinite depth of erosive material and a homogeneous particle-size distribution. It is generally accepted that the Froehlich equation (abutment scour) gives “excessively conservative estimates of scour depths” (Richardson and others, 1993, p. 48). Many factors, including historical performance during flood events, the geomorphic assessment, scour protection measures, and the results of the hydraulic analyses, must be considered to properly assess the validity of abutment scour results. Therefore, scour depths adopted by VTAOT may differ from the computed values documented herein, based on the consideration of additional contributing factors and experienced engineering judgement.

  17. Aspartate-Based CXCR4 Chemokine Receptor Binding of Cross-Bridged Tetraazamacrocyclic Copper(II) and Zinc(II) Complexes.

    PubMed

    Maples, Randall D; Cain, Amy N; Burke, Benjamin P; Silversides, Jon D; Mewis, Ryan E; D'huys, Thomas; Schols, Dominique; Linder, Douglas P; Archibald, Stephen J; Hubin, Timothy J

    2016-08-26

    The CXCR4 chemokine receptor is implicated in a number of diseases including HIV infection and cancer development and metastasis. Previous studies have demonstrated that configurationally restricted bis-tetraazamacrocyclic metal complexes are high-affinity CXCR4 antagonists. Here, we present the synthesis of Cu(2+) and Zn(2+) acetate complexes of six cross-bridged tetraazamacrocycles to mimic their coordination interaction with the aspartate side chains known to bind them to CXCR4. X-ray crystal structures for three new Cu(2+) acetate complexes and two new Zn(2+) acetate complexes demonstrate metal-ion-dependent differences in the mode of binding the acetate ligand concomitantly with the requisite cis-V-configured cross-bridged tetraazamacrocyle. Concurrent density functional theory molecular modelling studies produced an energetic rationale for the unexpected [Zn(OAc)(H2 O)](+) coordination motif present in all of the Zn(2+) cross-bridged tetraazamacrocycle crystal structures, which differs from the chelating acetate [Zn(OAc)](+) structures of known unbridged and side-bridged tetraazamacrocyclic Zn(2+) -containing CXCR4 antagonists. PMID:27458983

  18. 3-D structural analysis of the crucial intermediate of skeletal muscle myosin and its role in revised actomyosin cross-bridge cycle

    PubMed Central

    Katayama, Eisaku

    2014-01-01

    Skeletal myosin S1 consists of two functional segments, a catalytic-domain and a lever-arm. Since the crystal structure of ADP/Vi-bound S1 exhibits a strong intramolecular flexure between two segments, inter-conversion between bent and extended forms; i.e. “tilting of the lever-arm” has been accepted as the established molecular mechanism of skeletal muscle contraction. We utilized quick-freeze deep-etch replica electron microscopy to directly visualize the structure of in vitro actin-sliding myosin, and found the existence of a novel oppositely-bent configuration, instead of the expected ADP/Vi-bound form. We also noticed that SH1–SH2 cross-linked myosin gives an aberrant appearance similar to the above structure. Since SH1–SH2-cross-linked myosin is a well-studied analogue of the transient intermediate of the actomyosin cross-bridge cycle, we devised a new image-processing procedure to define the relative view-angles between the catalytic-domain and the lever-arm from those averaged images, and built a 3-D model of the new conformer. The lever-arm in that model was bent oppositely to the ADP/Vi-bound form, in accordance with observed actin-sliding cross-bridge structure. Introducing this conformer as the crucial intermediate that transiently appears during sliding, we propose a revised scheme of the cross-bridge cycle. In the scenario, the novel conformer keeps actin-binding in two different modes until it forms a primed configuration. The final extension of the lever-arm back to the original rigor-state constitutes the “power-stroke”. Various images observed during sliding could be easily interpreted by the new conformer. Even the enigmatic behavior of the cross-bridges reported as “loose chemo-mechanical coupling” might be adequately explained under some assumptions. PMID:27493503

  19. Bathymetric surveys at highway bridges crossing the Missouri River in Kansas City, Missouri, using a multibeam echo sounder, 2010

    USGS Publications Warehouse

    Huizinga, Richard J.

    2010-01-01

    Bathymetric surveys were conducted by the U.S. Geological Survey, in cooperation with the Missouri Department of Transportation, on the Missouri River in the vicinity of nine bridges at seven highway crossings in Kansas City, Missouri, in March 2010. A multibeam echo sounder mapping system was used to obtain channel-bed elevations for river reaches that ranged from 1,640 to 1,800 feet long and extending from bank to bank in the main channel of the Missouri River. These bathymetric scans will be used by the Missouri Department of Transportation to assess the condition of the bridges for stability and integrity with respect to bridge scour. Bathymetric data were collected around every pier that was in water, except those at the edge of the water or in extremely shallow water, and one pier that was surrounded by a large debris raft. A scour hole was present at every pier for which bathymetric data could be obtained. The scour hole at a given pier varied in depth relative to the upstream channel bed, depending on the presence and proximity of other piers or structures upstream from the pier in question. The surveyed channel bed at the bottom of the scour hole was between 5 and 50 feet above bedrock. At bridges with drilled shaft foundations, generally there was exposure of the upstream end of the seal course and the seal course often was undermined to some extent. At one site, the minimum elevation of the scour hole at the main channel pier was about 10 feet below the bottom of the seal course, and the sides of the drilled shafts were evident in a point cloud visualization of the data at that pier. However, drilled shafts generally penetrated 20 feet into bedrock. Undermining of the seal course was evident as a sonic 'shadow' in the point cloud visualization of several of the piers. Large dune features were present in the channel at nearly all of the surveyed sites, as were numerous smaller dunes and many ripples. Several of the sites are on or near bends in the river

  20. Kinetics of a single cross-bridge in familial hypertrophic cardiomyopathy heart muscle measured by reverse Kretschmann fluorescence

    NASA Astrophysics Data System (ADS)

    Mettikolla, Prasad; Calander, Nils; Luchowski, Rafal; Gryczynski, Ignacy; Gryczynski, Zygmunt; Borejdo, Julian

    2010-01-01

    Familial hypertrophic cardiomyopathy (FHC) is a serious heart disease that often leads to a sudden cardiac death of young athletes. It is believed that the alteration of the kinetics of interaction between actin and myosin causes FHC by making the heart to pump blood inefficiently. We set out to check this hypothesis ex vivo. During contraction of heart muscle, a myosin cross-bridge imparts periodic force impulses to actin. The impulses are analyzed by fluorescence correlation spectroscopy (FCS) of fluorescently labeled actin. To minimize observation volume and background fluorescence, we carry out FCS measurements in surface plasmon coupled emission mode in a reverse Kretschmann configuration. Fluorescence is a result of near-field coupling of fluorophores excited in the vicinity of the metal-coated surface of a coverslip with the surface plasmons propagating in the metal. Surface plasmons decouple on opposite sides of the metal film and emit in a directional manner as far-field p-polarized radiation. We show that the rate of changes of orientation is significantly faster in contracting cardiac myofibrils of transgenic mice than wild type. These results are consistent with the fact that mutated heart muscle myosin translates actin faster in in vitro motility assays.

  1. O(1) time algorithms for computing histogram and Hough transform on a cross-bridge reconfigurable array of processors

    SciTech Connect

    Kao, T.; Horng, S.; Wang, Y.

    1995-04-01

    Instead of using the base-2 number system, we use a base-m number system to represent the numbers used in the proposed algorithms. Such a strategy can be used to design an O(T) time, T = (log(sub m) N) + 1, prefix sum algorithm for a binary sequence with N-bit on a cross-bridge reconfigurable array of processors using N processors, where the data bus is m-bit wide. Then, this basic operation can be used to compute the histogram of an n x n image with G gray-level value in constant time using G x n x n processors, and compute the Hough transform of an image with N edge pixels and n x n parameter space in constant time using n x n x N processors, respectively. This result is better than the previously known results proposed in the literature. Also, the execution time of the proposed algorithms is tunable by the bus bandwidth. 43 refs.

  2. Level II scour analysis for Bridge 8, (MANCTH00060008) on Town Highway 6, crossing Bourn Brook, Manchester, Vermont

    USGS Publications Warehouse

    Burns, Ronda L.; Hammond, Robert E.

    1997-01-01

    Contraction scour for all modelled flows was zero ft. The left abutment scour ranged from 3.6 to 9.2 ft. The worst-case left abutment scour occurred at the 500-year discharge. The right abutment scour ranged from 9.8 to 12.6 ft. The worst case right abutment scour occurred at the 500-year discharge. Additional information on scour depths and depths to armoring are included in the section titled “Scour Results”. Scoured-streambed elevations, based on the calculated scour depths, are presented in tables 1 and 2. A cross-section of the scour computed at the bridge is presented in figure 8. Scour depths were calculated assuming an infinite depth of erosive material and a homogeneous particle-size distribution. It is generally accepted that the Froehlich equation (abutment scour) gives “excessively conservative estimates of scour depths” (Richardson and others, 1995, p. 47). Usually, computed scour depths are evaluated in combination with other information including (but not limited to) historical performance during flood events, the geomorphic stability assessment, existing scour protection measures, and the results of the hydraulic analyses. Therefore, scour depths adopted by VTAOT may differ from the computed values documented herein.

  3. Level II scour analysis for Bridge 29 (LONDTH00410029) on Town Highway 41, crossing Cook Brook, Londonderry, Vermont

    USGS Publications Warehouse

    Striker, Lora K.; Wild, Emily C.

    1997-01-01

    Contraction scour for all modelled flows ranged from 0.0 to 1.5. Abutment scour ranged from 8.4 to 15.1 ft. The worst-case abutment scour occurred at the 500-year discharge. Additional information on scour depths and depths to armoring are included in the section titled “Scour Results”. Scoured-streambed elevations, based on the calculated scour depths, are presented in tables 1 and 2. A cross-section of the scour computed at the bridge is presented in figure 8. Scour depths were calculated assuming an infinite depth of erosive material and a homogeneous particle-size distribution. It is generally accepted that the Froehlich equation (abutment scour) gives “excessively conservative estimates of scour depths” (Richardson and others, 1995, p. 47). Usually, computed scour depths are evaluated in combination with other information including (but not limited to) historical performance during flood events, the geomorphic stability assessment, existing scour protection measures, and the results of the hydraulic analyses. Therefore, scour depths adopted by VTAOT may differ from the computed values documented herein.

  4. Level II scour analysis for Bridge 4 (RYEGTH00050004) on Town Highway 5, crossing the Wells River, Ryegate, Vermont

    USGS Publications Warehouse

    Ivanoff, Michael A.; Hammond, Robert E.

    1997-01-01

    Contraction scour for all modelled flows ranged from 1.8 to 2.6 ft. The worst-case contraction scour occurred at the 500-year discharge. Abutment scour ranged from 10.2 to 22.6 ft. The worst-case abutment scour occurred at the 500-year discharge. Additional information on scour depths and depths to armoring are included in the section titled “Scour Results”. Scoured-streambed elevations, based on the calculated scour depths, are presented in tables 1 and 2. A cross-section of the scour computed at the bridge is presented in figure 8. Scour depths were calculated assuming an infinite depth of erosive material and a homogeneous particle-size distribution. It is generally accepted that the Froehlich equation (abutment scour) gives “excessively conservative estimates of scour depths” (Richardson and others, 1995, p. 47). Usually, computed scour depths are evaluated in combination with other information including (but not limited to) historical performance during flood events, the geomorphic stability assessment, existing scour protection measures, and the results of the hydraulic analyses. Therefore, scour depths adopted by VTAOT may differ from the computed values documented herein.

  5. Level II scour analysis for Bridge 81 (JAMAVT01000081) on State Route 100, crossing the Winhall River, Jamaica, Vermont

    USGS Publications Warehouse

    Ivanoff, Michael A.; Hammond, Robert E.

    1997-01-01

    The contraction scour ranged from 0.0 to 2.6 ft. The worst-case contraction scour occurred at the incipient road-overtopping discharge. Abutment scour ranged from 7.9 to 21.9 ft. The worst-case abutment scour occurred at the 500-year discharge. Additional information on scour depths and depths to armoring are included in the section titled “Scour Results”. Scoured-streambed elevations, based on the calculated scour depths, are presented in tables 1 and 2. A cross-section of the scour computed at the bridge is presented in figure 8. Scour depths were calculated assuming an infinite depth of erosive material and a homogeneous particle-size distribution. Usually, computed scour depths are evaluated in combination with other information including (but not limited to) historical performance during flood events, the geomorphic stability assessment, existing scour protection measures, and the results of the hydraulic analyses. Therefore, scour depths adopted by VTAOT may differ from the computed values documented herein.

  6. Level II scour analysis for Bridge 80 (JAMAVT01000080) on State Highway 100, crossing the West River, Jamaica, Vermont

    USGS Publications Warehouse

    Ivanoff, Michael A.; Degnan, James R.

    1997-01-01

    There was no computed contraction scour. Abutment scour ranged from 15.8 to 23.9 ft. The worst-case abutment scour occurred at the 500-year discharge. Pier scour ranged from 9.5 to 22.8 ft. The worst-case pier scour occurred at the 500-year discharge. Additional information on scour depths and depths to armoring are included in the section titled “Scour Results”. Scoured-streambed elevations, based on the calculated scour depths, are presented in tables 1 and 2. A cross-section of the scour computed at the bridge is presented in figure 8. Scour depths were calculated assuming an infinite depth of erosive material and a homogeneous particle-size distribution. It is generally accepted that the Froehlich equation (abutment scour) gives “excessively conservative estimates of scour depths” (Richardson and others, 1995, p. 47). Usually, computed scour depths are evaluated in combination with other information including (but not limited to) historical performance during flood events, the geomorphic stability assessment, existing scour protection measures, and the results of the hydraulic analyses. Therefore, scour depths adopted by VTAOT may differ from the computed values documented herein.

  7. Level II scour analysis for Bridge 31 (JERITH00350031) on Town Highway 35, crossing Mill Brook, Jericho, Vermont

    USGS Publications Warehouse

    Wild, Emily C.

    1997-01-01

    Contraction scour for all modelled flows ranged from 0.4 to 1.3 ft. The worst-case contraction scour occurred at the 500-year discharge. Left abutment scour ranged from 9.9 to 12.4 ft. Right abutment scour ranged from 13.8 to 17.8 ft. The worst-case abutment scour occurred at the 500-year discharge. Additional information on scour depths and depths to armoring are included in the section titled “Scour Results”. Scoured-streambed elevations, based on the calculated scour depths, are presented in tables 1 and 2. A cross-section of the scour computed at the bridge is presented in figure 8. Scour depths were calculated assuming an infinite depth of erosive material and a homogeneous particle-size distribution. It is generally accepted that the Froehlich equation (abutment scour) gives “excessively conservative estimates of scour depths” (Richardson and others, 1995, p. 47). Usually, computed scour depths are evaluated in combination with other information including (but not limited to) historical performance during flood events, the geomorphic stability assessment, existing scour protection measures, and the results of the hydraulic analyses. Therefore, scour depths adopted by VTAOT may differ from the computed values documented herein.

  8. The increase in non-cross-bridge forces after stretch of activated striated muscle is related to titin isoforms.

    PubMed

    Cornachione, Anabelle S; Leite, Felipe; Bagni, Maria Angela; Rassier, Dilson E

    2016-01-01

    Skeletal muscles present a non-cross-bridge increase in sarcomere stiffness and tension on Ca(2+) activation, referred to as static stiffness and static tension, respectively. It has been hypothesized that this increase in tension is caused by Ca(2+)-dependent changes in the properties of titin molecules. To verify this hypothesis, we investigated the static tension in muscles containing different titin isoforms. Permeabilized myofibrils were isolated from the psoas, soleus, and heart ventricle from the rabbit, and tested in pCa 9.0 and pCa 4.5, before and after extraction of troponin C, thin filaments, and treatment with the actomyosin inhibitor blebbistatin. The myofibrils were tested with stretches of different amplitudes in sarcomere lengths varying between 1.93 and 3.37 μm for the psoas, 2.68 and 4.21 μm for the soleus, and 1.51 and 2.86 μm for the ventricle. Using gel electrophoresis, we confirmed that the three muscles tested have different titin isoforms. The static tension was present in psoas and soleus myofibrils, but not in ventricle myofibrils, and higher in psoas myofibrils than in soleus myofibrils. These results suggest that the increase in the static tension is directly associated with Ca(2+)-dependent change in titin properties and not associated with changes in titin-actin interactions. PMID:26405100

  9. Level II scour analysis for Bridge 32 (CONCTH00030032) on Town Highway 3, crossing the Moose River, Concord, Vermont

    USGS Publications Warehouse

    Olson, Scott A.

    1996-01-01

    Contraction scour for all modelled flows ranged from 0.0 to 0.7 ft. Abutment scour ranged from 9.9 to 16.4 ft. Pier scour ranged from 14.4 to 16.2 ft. The worst-case contraction, abutment, and pier scour occurred at the 500-year discharge. Additional information on scour depths and depths to armoring are included in the section titled “Scour Results”. Scoured-streambed elevations, based on the calculated scour depths, are presented in tables 1 and 2. A cross-section of the scour computed at the bridge is presented in figure 8. Scour depths were calculated assuming an infinite depth of erosive material and a homogeneous particle-size distribution. It is generally accepted that the Froehlich equation (abutment scour) gives “excessively conservative estimates of scour depths” (Richardson and others, 1995, p. 47). Usually, computed scour depths are evaluated in combination with other information including (but not limited to) historical performance during flood events, the geomorphic stability assessment, existing scour protection measures, and the results of the hydraulic analyses. Therefore, scour depths adopted by VTAOT may differ from the computed values documented herein.

  10. Level II scour analysis for Bridge 6 (VICTTH000110006) on Town Highway 1, crossing the Moose River, Victory, Vermont

    USGS Publications Warehouse

    Olson, Scott A.

    1997-01-01

    Contraction scour for all modelled flows ranged from 0.2 to 0.4 ft. The worst-case contraction scour occurred at the 500-year discharge. Abutment scour ranged from 7.3 to 8.2 ft. The worst-case abutment scour also occurred at the 500-year discharge. Additional information on scour depths and depths to armoring are included in the section titled “Scour Results”. Scoured-streambed elevations, based on the calculated scour depths, are presented in tables 1 and 2. A cross-section of the scour computed at the bridge is presented in figure 8. Scour depths were calculated assuming an infinite depth of erosive material and a homogeneous particle-size distribution. It is generally accepted that the Froehlich equation (abutment scour) gives “excessively conservative estimates of scour depths” (Richardson and others, 1995, p. 47). Usually, computed scour depths are evaluated in combination with other information including (but not limited to) historical performance during flood events, the geomorphic stability assessment, existing scour protection measures, and the results of the hydraulic analyses. Therefore, scour depths adopted by VTAOT may differ from the computed values documented herein.

  11. Bridge-scour analysis on Cuchillo Negro Creek at the Interstate 25 crossing near Truth or Consequences, New Mexico

    USGS Publications Warehouse

    Waltemeyer, S.D.

    1995-01-01

    A sediment-transport model to simulate channel change was applied to a 1-mile reach of Cuchillo Negro Creek at the Interstate 25 crossing at Truth or Consequences, New Mexico, using the Bridge-Stream Tube model for Alluvial River Simulation (BRI-STARS). The 500-year flood discharge was estimated to be 10,700 cubic feet per second. The 100-year, 500-year, and regional maximum discharges were used to design synthetic and discretized hydrographs using a flood volume equation. The regional maximum discharge relation was developed for New Mexico based on 259 streamflow-gaging stations' maximum peak discharge. The regional maximum-peak discharge for the site was determined to be 81,700 cubic feet per second. Bed-material particle-size distribution was determined for six size classes ranging from 1 to 30 millimeters. The median diameter was 4.6 millimeters at the bed surface and 9.0 millimeters 13 feet below the bed surface. Bed-material discharge for use in the model was estimated to be 18,770 tons per day using hydraulic properties, water temperature, and Yang's gravel equation. Channel-change simulations showed a maximum channel degradation of 1.38 feet for the regional maximum-peak discharge hydrograph.

  12. Level II scour analysis for Bridge 36 (ANDOVT00110036) on VT 11, crossing Middle Branch Williams River, Andover, Vermont

    USGS Publications Warehouse

    Striker, Lora K.; Burns, Rhonda L.

    1997-01-01

    Contraction scour for all modelled flows ranged from 0.0 to 2.8 ft. The worst-case contraction scour occurred at the 500-year discharge. Abutment scour ranged from 9.5 to 13.7 ft. The worst-case abutment scour also occurred at the 500-year discharge. Additional information on scour depths and depths to armoring are included in the section titled “Scour Results”. Scoured-streambed elevations, based on the calculated scour depths, are presented in tables 1 and 2. A cross-section of the scour computed at the bridge is presented in figure 8. Scour depths were calculated assuming an infinite depth of erosive material and a homogeneous particle-size distribution. It is generally accepted that the Froehlich equation (abutment scour) gives “excessively conservative estimates of scour depths” (Richardson and others, 1995, p. 47). Usually, computed scour depths are evaluated in combination with other information including (but not limited to) historical performance during flood events, the geomorphic stability assessment, existing scour protection measures, and the results of the hydraulic analyses. Therefore, scour depths adopted by VTAOT may differ from the computed values documented herein.

  13. Level II scour analysis for Bridge 8 (WELLTH00020008) on Town Highway 2, crossing Wells Brook, Wells, Vermont

    USGS Publications Warehouse

    Striker, Lora K.; Ivanoff, Michael A.

    1997-01-01

    Contraction scour for all modelled flows ranged from 0.0 to 0.8 ft. The worst-case contraction scour occurred at the incipient roadway-overtopping discharge, which was less than the 100-year discharge. Abutment scour ranged from 5.6 to 10.0 ft at the left abutment and from 3.1 to 4.2 ft at the right abutment. The worst-case abutment scour occurred at the incipient roadway-overtopping discharge at the left abutment. Additional information on scour depths and depths to armoring are included in the section titled “Scour Results”. Scoured-streambed elevations, based on the calculated scour depths, are presented in tables 1 and 2. A cross-section of the scour computed at the bridge is presented in figure 8. Scour depths were calculated assuming an infinite depth of erosive material and a homogeneous particle-size distribution. Usually, computed scour depths are evaluated in combination with other information including (but not limited to) historical performance during flood events, the geomorphic stability assessment, existing scour protection measures, and the results of the hydraulic analyses. Therefore, scour depths adopted by VTAOT may differ from the computed values documented herein.

  14. Level II scour analysis for Bridge 36 (STOWTH00430036) on Town Highway 43, crossing Miller Brook, Stowe, Vermont

    USGS Publications Warehouse

    Striker, Lora K.; Wild, Emily C.

    1997-01-01

    Contraction scour for all modelled flows ranged from 0.0 to 0.9 ft. The worst-case contraction scour occurred at the 500-year discharge. Abutment scour ranged from 3.1 to 6.5 ft. The worst-case abutment scour occurred at the 100-year discharge. Additional information on scour depths and depths to armoring are included in the section titled “Scour Results”. Scoured-streambed elevations, based on the calculated scour depths, are presented in tables 1 and 2. A cross-section of the scour computed at the bridge is presented in figure 8. Scour depths were calculated assuming an infinite depth of erosive material and a homogeneous particle-size distribution. It is generally accepted that the Froehlich equation (abutment scour) gives “excessively conservative estimates of scour depths” (Richardson and others, 1995, p. 47). Usually, computed scour depths are evaluated in combination with other information including (but not limited to) historical performance during flood events, the geomorphic stability assessment, existing scour protection measures, and the results of the hydraulic analyses. Therefore, scour depths adopted by VTAOT may differ from the computed values documented herein.

  15. Level II scour analysis for Bridge 22 (WALDTH00180022) on Town Highway 18, crossing Coles Brook, Walden, Vermont

    USGS Publications Warehouse

    Striker, Lora K.; Ivanoff, Michael A.

    1997-01-01

    Contraction scour for all modelled flows was 0.0 ft. Abutment scour ranged from 6.4 to 7.9 ft at the left abutment and from 11.8 to 14.9 ft at the right abutment. The worst-case abutment scour occurred at the 500-year discharge. Additional information on scour depths and depths to armoring are included in the section titled “Scour Results”. Scouredstreambed elevations, based on the calculated scour depths, are presented in tables 1 and 2. A cross-section of the scour computed at the bridge is presented in figure 8. Scour depths were calculated assuming an infinite depth of erosive material and a homogeneous particlesize distribution. It is generally accepted that the Froehlich equation (abutment scour) gives “excessively conservative estimates of scour depths” (Richardson and others, 1995, p. 47). Usually, computed scour depths are evaluated in combination with other information including (but not limited to) historical performance during flood events, the geomorphic stability assessment, existing scour protection measures, and the results of the hydraulic analyses. Therefore, scour depths adopted by VTAOT may differ from the computed values documented herein.

  16. Level II scour analysis for Bridge 53 (CHESTH01180053) on Town Highway 118, crossing the Williams River, Chester, Vermont

    USGS Publications Warehouse

    Striker, Lora K.; Medalie, Laura

    1997-01-01

    Contraction scour for all modelled flows was 0.0 ft. Abutment scour ranged from 5.8 to 6.8 ft at the left abutment and 9.4 to 14.4 ft at the right abutment. The worst-case abutment scour occurred at the incipient roadway-overtopping discharge. Additional information on scour depths and depths to armoring are included in the section titled “Scour Results”. Scoured-streambed elevations, based on the calculated scour depths, are presented in tables 1 and 2. A cross-section of the scour computed at the bridge is presented in figure 8. Scour depths were calculated assuming an infinite depth of erosive material and a homogeneous particle-size distribution. It is generally accepted that the Froehlich equation (abutment scour) gives “excessively conservative estimates of scour depths” (Richardson and others, 1995, p. 47). Usually, computed scour depths are evaluated in combination with other information including (but not limited to) historical performance during flood events, the geomorphic stability assessment, existing scour protection measures, and the results of the hydraulic analyses. Therefore, scour depths adopted by VTAOT may differ from the computed values documented herein.

  17. Level II scour analysis for Bridge 26 (JAMATH00010026) on Town Highway 1, crossing Ball Mountain Brook, Jamaica, Vermont

    USGS Publications Warehouse

    Burns, Ronda L.; Medalie, Laura

    1997-01-01

    Contraction scour for the modelled flows ranged from 1.0 to 2.7 ft. The worst-case contraction scour occurred at the incipient-overtopping discharge. Abutment scour ranged from 8.4 to 17.6 ft. The worst-case abutment scour for the right abutment occurred at the incipient-overtopping discharge. For the left abutment, the worst-case abutment scour occurred at the 500-year discharge. Additional information on scour depths and depths to armoring are included in the section titled “Scour Results”. Scoured-streambed elevations, based on the calculated scour depths, are presented in tables 1 and 2. A cross-section of the scour computed at the bridge is presented in figure 8. Scour depths were calculated assuming an infinite depth of erosive material and a homogeneous particle-size distribution. It is generally accepted that the Froehlich equation (abutment scour) gives “excessively conservative estimates of scour depths” (Richardson and others, 1995, p. 47). Usually, computed scour depths are evaluated in combination with other information including (but not limited to) historical performance during flood events, the geomorphic stability assessment, existing scour protection measures, and the results of the hydraulic analyses. Therefore, scour depths adopted by VTAOT may differ from the computed values documented herein.

  18. Level II scour analysis for Bridge 30 (BRNATH00470030) on Town Highway 47, crossing Locust Creek, Barnard, Vermont

    USGS Publications Warehouse

    Boehmler, Erick M.; Song, Donald L.

    1997-01-01

    Contraction scour for all modelled flows ranged from 0.0 to 1.4 feet. The worst-case contraction scour occurred at the 500-year discharge. Abutment scour ranged from 2.3 to 8.9 feet. The worst-case abutment scour occurred at the 100-year discharge at the right abutment. Additional information on scour depths and depths to armoring are included in the section titled “Scour Results”. Scoured-streambed elevations, based on the calculated scour depths, are presented in tables 1 and 2. A cross-section of the scour computed at the bridge is presented in figure 8. Scour depths were calculated assuming an infinite depth of erosive material and a homogeneous particle-size distribution. It is generally accepted that the Froehlich equation (abutment scour) gives “excessively conservative estimates of scour depths” (Richardson and others, 1995, p. 47). Usually, computed scour depths are evaluated in combination with other information including (but not limited to) historical performance during flood events, the geomorphic stability assessment, existing scour protection measures, and the results of the hydraulic analyses. Therefore, scour depths adopted by VTAOT may differ from the computed values documented herein.

  19. Level II scour analysis for Bridge 5 (IRASTH00010005) on Town Highway 1, crossing Lords Creek, Irasburg, Vermont

    USGS Publications Warehouse

    Boehmler, Erick M.; Song, Donald L.

    1996-01-01

    Contraction scour for all modelled flows ranged from 2.4 to 4.6 ft. The worst-case contraction scour occurred at the 500-year discharge. Abutment scour ranged from 7.2 to 9.8 ft. The worst-case abutment scour also occurred at the 500-year discharge. Additional information on scour depths and depths to armoring are included in the section titled “Scour Results”. Scoured-streambed elevations, based on the calculated scour depths, are presented in tables 1 and 2. A cross-section of the scour computed at the bridge is presented in figure 8. Scour depths were calculated assuming an infinite depth of erosive material and a homogeneous particle-size distribution. It is generally accepted that the Froehlich equation (abutment scour) gives “excessively conservative estimates of scour depths” (Richardson and others, 1995, p. 47). Usually, computed scour depths are evaluated in combination with other information including (but not limited to) historical performance during flood events, the geomorphic stability assessment, existing scour protection measures, and the results of the hydraulic analyses. Therefore, scour depths adopted by VTAOT may differ from the computed values documented herein.

  20. Level II scour analysis for Bridge 7 (CHARTH00010007) on Town Highway 1, crossing Mad Brook, Charleston, Vermont

    USGS Publications Warehouse

    Boehmler, Erick M.; Weber, Matthew A.

    1997-01-01

    Contraction scour for all modelled flows ranged from 0.0 to 0.3 ft. The worst-case contraction scour occurred at the incipient overtopping discharge, which was less than the 100-year discharge. Abutment scour ranged from 6.2 to 9.4 ft. The worst-case abutment scour for the right abutment was 9.4 feet at the 100-year discharge. The worst-case abutment scour for the left abutment was 8.6 feet at the incipient overtopping discharge. Additional information on scour depths and depths to armoring are included in the section titled “Scour Results”. Scoured-streambed elevations, based on the calculated scour depths, are presented in tables 1 and 2. A cross-section of the scour computed at the bridge is presented in figure 8. Scour depths were calculated assuming an infinite depth of erosive material and a homogeneous particle-size distribution. It is generally accepted that the Froehlich equation (abutment scour) gives “excessively conservative estimates of scour depths” (Richardson and others, 1995, p. 47). Usually, computed scour depths are evaluated in combination with other information including (but not limited to) historical performance during flood events, the geomorphic stability assessment, existing scour protection measures, and the results of the hydraulic analyses. Therefore, scour depths adopted by VTAOT may differ from the computed values documented herein.

  1. A Novel Type of Peptidoglycan-binding Domain Highly Specific for Amidated d-Asp Cross-bridge, Identified in Lactobacillus casei Bacteriophage Endolysins*

    PubMed Central

    Regulski, Krzysztof; Courtin, Pascal; Kulakauskas, Saulius; Chapot-Chartier, Marie-Pierre

    2013-01-01

    Peptidoglycan hydrolases (PGHs) are responsible for bacterial cell lysis. Most PGHs have a modular structure comprising a catalytic domain and a cell wall-binding domain (CWBD). PGHs of bacteriophage origin, called endolysins, are involved in bacterial lysis at the end of the infection cycle. We have characterized two endolysins, Lc-Lys and Lc-Lys-2, identified in prophages present in the genome of Lactobacillus casei BL23. These two enzymes have different catalytic domains but similar putative C-terminal CWBDs. By analyzing purified peptidoglycan (PG) degradation products, we showed that Lc-Lys is an N-acetylmuramoyl-l-alanine amidase, whereas Lc-Lys-2 is a γ-d-glutamyl-l-lysyl endopeptidase. Remarkably, both lysins were able to lyse only Gram-positive bacterial strains that possess PG with d-Ala4→d-Asx-l-Lys3 in their cross-bridge, such as Lactococcus casei, Lactococcus lactis, and Enterococcus faecium. By testing a panel of L. lactis cell wall mutants, we observed that Lc-Lys and Lc-Lys-2 were not able to lyse mutants with a modified PG cross-bridge, constituting d-Ala4→l-Ala-(l-Ala/l-Ser)-l-Lys3; moreover, they do not lyse the L. lactis mutant containing only the nonamidated d-Asp cross-bridge, i.e. d-Ala4→d-Asp-l-Lys3. In contrast, Lc-Lys could lyse the ampicillin-resistant E. faecium mutant with 3→3 l-Lys3-d-Asn-l-Lys3 bridges replacing the wild-type 4→3 d-Ala4-d-Asn-l-Lys3 bridges. We showed that the C-terminal CWBD of Lc-Lys binds PG containing mainly d-Asn but not PG with only the nonamidated d-Asp-containing cross-bridge, indicating that the CWBD confers to Lc-Lys its narrow specificity. In conclusion, the CWBD characterized in this study is a novel type of PG-binding domain targeting specifically the d-Asn interpeptide bridge of PG. PMID:23733182

  2. A novel type of peptidoglycan-binding domain highly specific for amidated D-Asp cross-bridge, identified in Lactobacillus casei bacteriophage endolysins.

    PubMed

    Regulski, Krzysztof; Courtin, Pascal; Kulakauskas, Saulius; Chapot-Chartier, Marie-Pierre

    2013-07-12

    Peptidoglycan hydrolases (PGHs) are responsible for bacterial cell lysis. Most PGHs have a modular structure comprising a catalytic domain and a cell wall-binding domain (CWBD). PGHs of bacteriophage origin, called endolysins, are involved in bacterial lysis at the end of the infection cycle. We have characterized two endolysins, Lc-Lys and Lc-Lys-2, identified in prophages present in the genome of Lactobacillus casei BL23. These two enzymes have different catalytic domains but similar putative C-terminal CWBDs. By analyzing purified peptidoglycan (PG) degradation products, we showed that Lc-Lys is an N-acetylmuramoyl-L-alanine amidase, whereas Lc-Lys-2 is a γ-D-glutamyl-L-lysyl endopeptidase. Remarkably, both lysins were able to lyse only Gram-positive bacterial strains that possess PG with D-Ala(4)→D-Asx-L-Lys(3) in their cross-bridge, such as Lactococcus casei, Lactococcus lactis, and Enterococcus faecium. By testing a panel of L. lactis cell wall mutants, we observed that Lc-Lys and Lc-Lys-2 were not able to lyse mutants with a modified PG cross-bridge, constituting D-Ala(4)→L-Ala-(L-Ala/L-Ser)-L-Lys(3); moreover, they do not lyse the L. lactis mutant containing only the nonamidated D-Asp cross-bridge, i.e. D-Ala(4)→D-Asp-L-Lys(3). In contrast, Lc-Lys could lyse the ampicillin-resistant E. faecium mutant with 3→3 L-Lys(3)-D-Asn-L-Lys(3) bridges replacing the wild-type 4→3 D-Ala(4)-D-Asn-L-Lys(3) bridges. We showed that the C-terminal CWBD of Lc-Lys binds PG containing mainly D-Asn but not PG with only the nonamidated D-Asp-containing cross-bridge, indicating that the CWBD confers to Lc-Lys its narrow specificity. In conclusion, the CWBD characterized in this study is a novel type of PG-binding domain targeting specifically the D-Asn interpeptide bridge of PG. PMID:23733182

  3. Mouse intact cardiac myocyte mechanics: cross-bridge and titin-based stress in unactivated cells.

    PubMed

    King, Nicholas M P; Methawasin, Methajit; Nedrud, Joshua; Harrell, Nicholas; Chung, Charles S; Helmes, Michiel; Granzier, Henk

    2011-01-01

    A carbon fiber-based cell attachment and force measurement system was used to measure the diastolic stress-sarcomere length (SL) relation of mouse intact cardiomyocytes, before and after the addition of actomyosin inhibitors (2,3-butanedione monoxime [BDM] or blebbistatin). Stress was measured during the diastolic interval of twitching myocytes that were stretched at 100% base length/second. Diastolic stress increased close to linear from 0 at SL 1.85 µm to 4.2 mN/mm(2) at SL 2.1 µm. The actomyosin inhibitors BDM and blebbistatin significantly lowered diastolic stress by ∼1.5 mN/mm(2) (at SL 2.1 µm, ∼30% of total), suggesting that during diastole actomyosin interaction is not fully switched off. To test this further, calcium sensitivity of skinned myocytes was studied under conditions that simulate diastole: 37°C, presence of Dextran T500 to compress the myofilament lattice to the physiological level, and [Ca(2+)] from below to above 100 nM. Mean active stress was significantly increased at [Ca(2+)] > 55 nM (pCa 7.25) and was ∼0.7 mN/mm(2) at 100 nM [Ca(2+)] (pCa 7.0) and ∼1.3 mN/mm(2) at 175 nM Ca(2+) (pCa 6.75). Inhibiting active stress in intact cells attached to carbon fibers at their resting SL and stretching the cells while first measuring restoring stress (pushing outward) and then passive stress (pulling inward) made it possible to determine the passive cell's mechanical slack SL as ∼1.95 µm and the restoring stiffness and passive stiffness of the cells around the slack SL each as ∼17 mN/mm(2)/µm/SL. Comparison between the results of intact and skinned cells shows that titin is the main contributor to restoring stress and passive stress of intact cells, but that under physiological conditions, calcium sensitivity is sufficiently high for actomyosin interaction to contribute to diastolic stress. These findings are relevant for understanding diastolic function and for future studies of diastolic heart failure. PMID:21187335

  4. Isomeric Trimethylene and Ethylene Pendant-armed Cross-bridged Tetraazamacrocycles and in Vitro/in Vivo Comparisions of their Copper(II) Complexes

    PubMed Central

    2011-01-01

    Ethylene cross-bridged tetraamine macrocycles are useful chelators in coordination, catalytic, medicinal, and radiopharmaceutical chemistry. Springborg and co-workers developed trimethylene cross-bridged analogues, although their pendant-armed derivatives received little attention. We report here the synthesis of a bis-carboxymethyl pendant-armed cyclen with a trimethylene cross-bridge (C3B-DO2A) and its isomeric ethylene-cross-bridged homocyclen ligand (CB-TR2A) as well as their copper(II) complexes. The in vitro and in vivo properties of these complexes are compared with respect to their potential application as 64Cu-radiopharmaceuticals in positron emission tomography (PET imaging). The inertness of Cu-C3B-DO2A to decomplexation is remarkable, exceeding that of Cu-CB-TE2A. Electrochemical reduction of Cu-CB-TR2A is quasi-reversible, whereas that of Cu-C3B-DO2A is irreversible. The reaction conditions for preparing 64Cu-C3B-DO2A (microwaving at high temperature) are relatively harsh compared to 64Cu-CB-TR2A (basic ethanol). The in vivo behavior of the 64Cu complexes was evaluated in normal rats. Rapid and continual clearance of 64Cu-CB-TR2A through the blood, liver, and kidneys suggests relatively good in vivo stability, albeit inferior to 64Cu-CB-TE2A. Although 64Cu-C3B-DO2A clears continually, the initial uptake is high and only about half is excreted within 22 h, suggesting poor stability and transchelation of 64Cu to proteins in the blood and/or liver. These data suggest that in vitro inertness of a chelator complex may not always be a good indicator of in vivo stability. PMID:21381676

  5. Cell wall monoglycine cross-bridges and methicillin hypersusceptibility in a femAB null mutant of methicillin-resistant Staphylococcus aureus.

    PubMed Central

    Strandén, A M; Ehlert, K; Labischinski, H; Berger-Bächi, B

    1997-01-01

    The femAB operon is involved in the formation of the characteristic pentaglycine side chain of the staphylococcal peptidoglycan. Allele replacement of the femAB operon with the tetracycline resistance determinant tetK in a methicillin-resistant Staphylococcus aureus strain resulted in impaired growth, methicillin hypersusceptibility, and lysostaphin resistance. The usual pentaglycine cross-bridges were replaced by monoglycine bridges exclusively, and cross-linking of the peptidoglycan strands was drastically reduced. Complementation of the femAB null mutant by either femA or femAB resulted in the extension of the cross-bridges to a triglycine or a pentaglycine, respectively. This finding suggests that FemA is responsible for the formation of glycines 2 and 3, and FemB is responsible for formation of glycines 4 and 5, of the pentaglycine side chain of the peptidoglycan precursor. Moreover, it can be deduced that addition of the first glycine must occur by a femAB-independent mechanism. PMID:8981974

  6. From cycling between coupled reactions to the cross-bridge cycle: mechanical power output as an integral part of energy metabolism.

    PubMed

    Diederichs, Frank

    2012-01-01

    ATP delivery and its usage are achieved by cycling of respective intermediates through interconnected coupled reactions. At steady state, cycling between coupled reactions always occurs at zero resistance of the whole cycle without dissipation of free energy. The cross-bridge cycle can also be described by a system of coupled reactions: one energising reaction, which energises myosin heads by coupled ATP splitting, and one de-energising reaction, which transduces free energy from myosin heads to coupled actin movement. The whole cycle of myosin heads via cross-bridge formation and dissociation proceeds at zero resistance. Dissipation of free energy from coupled reactions occurs whenever the input potential overcomes the counteracting output potential. In addition, dissipation is produced by uncoupling. This is brought about by a load dependent shortening of the cross-bridge stroke to zero, which allows isometric force generation without mechanical power output. The occurrence of maximal efficiency is caused by uncoupling. Under coupled conditions, Hill's equation (velocity as a function of load) is fulfilled. In addition, force and shortening velocity both depend on [Ca2+]. Muscular fatigue is triggered when ATP consumption overcomes ATP delivery. As a result, the substrate of the cycle, [MgATP2-], is reduced. This leads to a switch off of cycling and ATP consumption, so that a recovery of [ATP] is possible. In this way a potentially harmful, persistent low energy state of the cell can be avoided. PMID:24957757

  7. Level II scour analysis for Bridge 25 (BRNAVT00120025) on State Highway 12, crossing Locust Creek, Barnard, Vermont

    USGS Publications Warehouse

    Ivanoff, Michael A.; Weber, Matthew A.

    1996-01-01

    abutments with wingwalls. The channel is skewed approximately 30 degrees to the opening while the opening-skew-to-roadway is 45 degrees. A scour hole 1 ft deeper than the mean thalweg depth was observed along a bedrock outcrop near the upstream left wingwall during the Level I assessment. The scour protection measures in place at the site are type-1 stone fill (less than 12 inches diameter) along the left abutment, upstream right bank, and both downstream banks; type-2 stone fill (less than 36 inches diameter) at the downstream side of the right road approach and upstream left bank; type-3 stone fill (less than 48 inches diameter) at the upstream end of the upstream right wingwall and downstream end of downstream left wingwall; type-5 (wall/ artificial levee) at the upstream end of the upstream left wingwall. Additional details describing conditions at the site are included in the Level II Summary and Appendices D and E. Scour depths and rock rip-rap sizes were computed using the general guidelines described in Hydraulic Engineering Circular 18 (Richardson and others, 1993). Total scour at a highway crossing is comprised of three components: 1) long-term streambed degradation; 2) contraction scour (due to accelerated flow caused by a reduction in flow area at a bridge) and; 3) local scour (caused by accelerated flow around piers and abutments). Total scour is the sum of the three components. Equations are available to compute depths for contraction and local scour and a summary of the results of these computations follows. Contraction scour for all modelled flows ranged from 0.0 to 1.4 ft. The worst-case contraction scour occurred at the 100-year discharge. Abutment scour ranged from 8.5 to 20.9 ft. The worst-case abutment scour occurred at the 500-year discharge. Additional information on scour depths and depths to armoring are included in the section titled “Scour Results”. Scoured-streambed elevations, based on the calculated scour depths, are presented in

  8. An amateur's contribution to the design of Telford's Menai Suspension Bridge: a commentary on Gilbert (1826) ‘On the mathematical theory of suspension bridges’

    PubMed Central

    Calladine, C. R.

    2015-01-01

    Davies Gilbert's work on the catenary is notable on two counts. First, it influenced Thomas Telford in formulating his final design for the Menai Strait suspension bridge (1826); and second, it established for the first time the form of the ‘catenary of equal strength’. The classical catenary is a uniform flexible chain or cable hanging freely under gravity between supports. The ‘catenary of equal strength’ is the form of a cable whose cross-sectional area is made proportional to the tension at each point, so that the tensile stress is uniform throughout. In this paper I provide a sketch of the lives and achievements of Gilbert and Telford, and of their interaction over the Menai Bridge. There follows a commentary on Gilbert's 1826 paper, and on his two related publications; and a brief sketch of the earlier history of the catenary. I then describe the development of the suspension bridge up to the present time. Finally, I discuss relations between mathematical analysts and practical engineers. This commentary was written to celebrate the 350th anniversary of the journal Philosophical Transactions of the Royal Society. PMID:25750153

  9. Level II scour analysis for Bridge 38 (CONCTH00060038) on Town Highway 6, crossing the Moose River, Concord, Vermont

    USGS Publications Warehouse

    Olson, Scott A.

    1996-01-01

    Contraction scour for all modelled flows ranged from 0.1 to 3.1 ft. The worst-case contraction scour occurred at the incipient-overtopping discharge. Abutment scour at the left abutment ranged from 10.4 to 12.5 ft with the worst-case occurring at the 500-year discharge. Abutment scour at the right abutment ranged from 25.3 to 27.3 ft with the worst-case occurring at the incipient-overtopping discharge. The worst-case total scour also occurred at the incipient-overtopping discharge. The incipient-overtopping discharge was in between the 100- and 500-year discharges. Additional information on scour depths and depths to armoring are included in the section titled “Scour Results”. Scoured-streambed elevations, based on the calculated scour depths, are presented in tables 1 and 2. A cross-section of the scour computed at the bridge is presented in figure 8. Scour depths were calculated assuming an infinite depth of erosive material and a homogeneous particle-size distribution. It is generally accepted that the Froehlich equation (abutment scour) gives “excessively conservative estimates of scour depths” (Richardson and others, 1995, p. 47). Usually, computed scour depths are evaluated in combination with other information including (but not limited to) historical performance during flood events, the geomorphic stability assessment, existing scour protection measures, and the results of the hydraulic analyses. Therefore, scour depths adopted by VTAOT may differ from the computed values documented herein.

  10. Level II scour analysis for Bridge 3 (BRIDTH000100003) on Town Highway 1, crossing Dailey Hollow Branch, Bridgewater, Vermont

    USGS Publications Warehouse

    Olson, Scott A.; Song, Donald L.

    1996-01-01

    Total scour at a highway crossing is comprised of three components: 1) long-term aggradation or degradation; 2) contraction scour (due to reduction in flow area caused by a bridge) and; 3) local scour (caused by accelerated flow around piers and abutments). Total scour is the sum of the three components. Equations are available to compute scour depths for contraction and local scour and a summary of the results follows. Contraction scour for all modelled flows ranged from 0.6 ft to 1.3 ft and the worst-case contraction scour occurred at the 500-year discharge. Abutment scour ranged from 6.7 ft to 12.2 ft and the worst-case abutment scour occurred at the 500-year discharge. Scour depths and depths to armoring are summarized on p. 14 in the section titled “Scour Results”. Scour elevations, based on the calculated depths are presented in tables 1 and 2; a graph of the scour elevations is presented in figure 8 Scour depths were calculated assuming an infinite depth of erosive material and a homogeneous particle-size distribution. For all scour presented in this report, “the scour depths adopted [by VTAOT] may differ from the equation values based on engineering judgement” (Richardson and others, 1993, p. 21, 27). It is generally accepted that the Froehlich equation (abutment scour) gives “excessively conservative estimates of scour depths” (Richardson and others, 1993, p. 48). Many factors, including historical performance during flood events, the geomorphic assessment, and the results of the hydraulic analyses, must be considered to properly assess the validity of abutment scour results.

  11. Contributions of DNA interstrand cross-links to aging of cells and organisms

    PubMed Central

    Grillari, Johannes; Katinger, Hermann; Voglauer, Regina

    2007-01-01

    Impaired DNA damage repair, especially deficient transcription-coupled nucleotide excision repair, leads to segmental progeroid syndromes in human patients as well as in rodent models. Furthermore, DNA double-strand break signalling has been pinpointed as a key inducer of cellular senescence. Several recent findings suggest that another DNA repair pathway, interstrand cross-link (ICL) repair, might also contribute to cell and organism aging. Therefore, we summarize and discuss here that (i) systemic administration of anti-cancer chemotherapeutics, in many cases DNA cross-linking drugs, induces premature progeroid frailty in long-term survivors; (ii) that ICL-inducing 8-methoxy-psoralen/UVA phototherapy leads to signs of premature skin aging as prominent long-term side effect and (iii) that mutated factors involved in ICL repair like ERCC1/XPF, the Fanconi anaemia proteins, WRN and SNEV lead to reduced replicative life span in vitro and segmental progeroid syndromes in vivo. However, since ICL-inducing drugs cause damage different from ICL and since all currently known ICL repair factors work in more than one pathway, further work will be needed to dissect the actual contribution of ICL damage to aging. PMID:18083760

  12. Assessment of parental contribution and effective population size from a 3×3 diallel cross of clam Meretrix meretrix

    NASA Astrophysics Data System (ADS)

    Dai, Ping; Wang, Hongxia; Liu, Baozhong

    2014-03-01

    Unbalanced parental contribution and small effective population size ( N e) are common issues during the artificial breeding of marine bivalves. The impact of hatchery-spawning practices on parental contribution, effective population size, the N e/ N ratio, and genetic diversity are largely unknown. To address this, we conducted a parentage analysis on a complete 3×3 diallel cross of clam M eretrix meretrix using eight microsatellite markers. The genetic diversity of the parents was higher than that of their respective offspring in most crosses (8/9). Sires or dams from the same family contributed unequally to the pool of offspring from a particular cross, and the same parent clam exhibited large variation in parental contribution among different crosses. The variance in male contribution was higher than that of the female contribution in most crosses, suggesting that male contribution was more skewed than for females. The N e/ N ratio for nine crosses ranged from 0.58 to 0.86. There was no linear relationship between the sex ratio and the N e/ N ratio ( P > 0.05). Moreover, a sex ratio closer to one-to-one does not necessarily mean a larger effective population size. A solution to small effective population size in commercial breeding programs is increasing broodstock numbers and attempting to maintain a balanced sex ratio.

  13. Computationally predicted IgE epitopes of walnut allergens contribute to cross-reactivity with peanuts

    PubMed Central

    Maleki, Soheila J.; Teuber, Suzanne S.; Cheng, Hsiaopo; Chen, Deliang; Comstock, Sarah S.; Ruan, Sanbao; Schein, Catherine H.

    2011-01-01

    Background Cross reactivity between peanuts and tree nuts implies that similar IgE epitopes are present in their proteins. Objective To determine whether walnut sequences similar to known peanut IgE binding sequences, according to the property distance (PD) scale implemented in the Structural Database of Allergenic Proteins (SDAP), react with IgE from sera of patients with allergy to walnut and/or peanut. Methods Patient sera were characterized by Western blotting for IgE-binding to nut protein extracts, and to peptides from walnut and peanut allergens, similar to known peanut epitopes as defined by low PD values, synthesized on membranes. Competitive ELISA was used to show that peanut and predicted walnut epitope sequences compete with purified Ara h 2 for binding to IgE in serum from a cross-reactive patient. Results Sequences from the vicilin walnut allergen Jug r 2 which had low PD values to epitopes of the peanut allergen Ara h 2, a 2s-albumin, bound IgE in sera from five patients who reacted to either walnut, peanut or both. A walnut epitope recognized by 6 patients mapped to a surface-exposed region on a model of the N-terminal pro-region of Jug r 2. A predicted walnut epitope competed for IgE binding to Ara h 2 in serum as well as the known IgE epitope from Ara h 2. Conclusions Sequences with low PD value (<8.5) to known IgE epitopes could contribute to cross-reactivity between allergens. This further validates the PD scoring method for predicting cross-reactive epitopes in allergens. PMID:21883278

  14. Orientation of spin-labeled light chain-2 exchanged onto myosin cross-bridges in glycerinated muscle fibers.

    PubMed Central

    Hambly, B; Franks, K; Cooke, R

    1991-01-01

    Electron paramagnetic resonance (EPR) spectroscopy has been used to study the angular distribution of a spin label attached to rabbit skeletal muscle myosin light chain 2. A cysteine reactive spin label, 3-(5-fluoro-2,4-dinitroanilino)-2,2,5,5- tetramethyl-1-pyrrolidinyloxy (FDNA-SL) was bound to purified LC2. The labeled LC2 was exchanged into glycerinated muscle fibers and into myosin and its subfragments. Analysis of the spectra of labeled fibers in rigor showed that the probe was oriented with respect to the fiber axis, but that it was also undergoing restricted rotations. The motion of the probe could be modeled assuming rapid rotational diffusion (rotational correlation time faster than 5 ns) within a "cone" whose full width was 70 degrees. Very different spectra of rigor fibers were obtained with the fiber oriented parallel and perpendicular to the magnetic field, showing that the centroid of each cone had the same orientation for all myosin heads, making an angle of approximately 74 degrees to the fiber axis. Binding of light chains or labeled myosin subfragment-1 to ion exchange heads immobilized the probes, showing that most of the motion of the probe arose from protein mobility and not from mobility of the probe relative to the protein. Relaxed labeled fibers produced EPR spectra with a highly disordered angular distribution, consistent with myosin heads being detached from the thin filament and undergoing large angular motions. Addition of pyrophosphate, ADP, or an ATP analogue (AMPPNP), in low ionic strength buffer where these ligands do not dissociate cross-bridges from actin, failed to perturb the rigor spectrum. Applying static strains as high as 0.16 N/mm2 to the labeled rigor fibers also failed to change the orientation of the spin label. Labeled light chain was exchanged into myosin subfragment-1 (S1) and the labeled S1 was diffused into fibers. EPR spectra of these fibers had a component similar to that seen in the spectra of fibers into which

  15. Real-virtual contributions to the inclusive Higgs cross-section at N3LO

    NASA Astrophysics Data System (ADS)

    Anastasiou, Charalampos; Duhr, Claude; Dulat, Falko; Herzog, Franz; Mistlberger, Bernhard

    2013-12-01

    We compute the contributions to the N3LO inclusive Higgs boson cross-section from the square of one-loop amplitudes with a Higgs boson and three QCD partons as external states. Our result is a Taylor expansion in the dimensional regulator ɛ, where the coefficients of the expansion are analytic functions of the ratio of the Higgs boson mass and the partonic center of mass energy and they are valid for arbitrary values of this ratio. We also perform a threshold expansion around the limit of soft-parton radiation in the final state. The expressions for the coefficients of the threshold expansion are valid for arbitrary values of the dimension. As a by-product of the threshold expansion calculation, we have developed a soft expansion method at the integrand level by identifying the relevant soft and collinear regions for the loop-momentum.

  16. Cross-border contributions to obesity research and interventions: a review of Canadian and American occupational therapy contributions.

    PubMed

    Forhan, Mary; Gill, Simone

    2013-04-01

    This paper identifies the contributions of Canadian and American occupational therapists to the empirical discourse on obesity. This scoping study includes an independent review of the published literature followed by a series of meetings during which key themes and contributions were categorized. The Person, Environment, Occupation, and Performance Model (Baum & Christiansen, 2005) was used to organize the themes reported in the literature. Although occupational therapists contribute to knowledge about body systems and functions as well as activity limitations and participation restrictions for persons with obesity, the majority of work has a focus on the environment and the person, with limited attention to occupation. Occupational therapy practitioners and researchers are contributing in areas valued in obesity research and practice but can do more to promote consideration of the interaction of personal, environmental, and occupational factors which may cause obesity or contribute to the participation in everyday living for persons with obesity. PMID:23855571

  17. Helping Children Cross Cultural Boundaries in the Borderlands: Arts Program at Freese Elementary in San Diego Creates Cultural Bridges

    ERIC Educational Resources Information Center

    Brouillette, Liane; Jennings, Lynne

    2010-01-01

    This article describes the unique multicultural arts program that has developed at Freese Elementary School, located only 20 minutes from the United States-Mexico border, in the southeastern corner of the San Diego Unified School District. The Arts and Culture Magnet Program at Freese grew out of the need build bridges in a neighborhood where…

  18. 77 FR 38881 - Notice of Final Federal Agency Actions on Proposed Two New Ohio River Bridge Crossings in...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-06-29

    ... connection between KY 841 (Gene Snyder Freeway) in eastern Jefferson County, Kentucky and SR 265 in eastern... connection between KY 841 (Gene Snyder Freeway) in eastern Jefferson County, Kentucky and SR 265 in eastern... River Bridge and approach roadways connecting the Gene Snyder Freeway (KY 841) in Kentucky to the...

  19. Crossing the Bridge to Higher Mathematics: Using a Modified Moore Approach to Assist Students Transitioning to Higher Mathematics

    ERIC Educational Resources Information Center

    McLoughlin, M. Padraig M. M.

    2008-01-01

    The author of this paper submits that a mathematics student needs to learn to conjecture and prove or disprove said conjecture. Ergo, the purpose of the paper is to submit the thesis that learning requires doing; only through inquiry is learning achieved, and hence this paper proposes a programme of use of a modified Moore method in a Bridge to…

  20. Three-body collision contributions to recombination and collision-induced dissociation. 1: Cross sections

    SciTech Connect

    Pack, R.T.; Walker, R.B.; Kendrick, B.K.

    1998-04-10

    Atomic and molecular recombination and collision-induced dissociation (CID) reactions comprise two of the most fundamental types of chemical reactions. They are important in all gas phase chemistry; for example, about half of the 196 reactions identified as important in combustion chemistry are recombination or CID reactions. Many of the current chemical kinetics textbooks and kinetics papers treat atomic and molecular recombination and CID as occurring only via sequences of two-body collisions. Actually, there is considerable evidence from experiment and classical trajectory calculations for contributions by true three-body collisions to the recombination of atomic and diatomic radicals, and that evidence is reviewed. Then, an approximate quantum method treating both two-body and three-body collisions simultaneously and on equal footing is used to calculate cross sections for the reaction Ne{sub 2} + H {rightleftharpoons} Ne + Ne + H. The results provide clear quantum evidence that direct three-body collisions do contribute significantly to recombination and CID.

  1. Contributions of a hydrogen bond/salt bridge network to the stability of secondary and tertiary structure in lambda repressor.

    PubMed Central

    Marqusee, S.; Sauer, R. T.

    1994-01-01

    In the N-terminal domain of lambda repressor, the Asp 14 side chain forms an intrahelical, hydrogen bond/salt bridge with the Arg 17 side chain and a tertiary hydrogen bond with the Ser 77 side chain. By measuring the stabilities to urea denaturation of the wild-type N-terminal domain and variants containing single, double, and triple alanine substitutions at positions 14, 17, and 77, the side-chain interaction energies, the coupling energy between interactions, and the intrinsic effects of each wild-type side chain on protein stability have been estimated. These studies indicate that the Asp 14-Arg 17 and Asp 14-Ser 77 interactions are stabilizing by roughly 0.8 and 1.5 kcal/mol, respectively, but that Asp 14, by itself, is destabilizing by roughly 0.9 kcal/mol. We also show that a peptide model of alpha-helix 1, which contains Asp 14 and Arg 17, forms a reasonably stable, monomeric helix in solution and responds to alanine mutations at positions 14 and 17 in the fashion expected from the intact protein studies. These studies suggest that it is possible to view the stability effects of mutations in intact proteins in a hierarchical fashion, with the stability of units of secondary structure being distinguishable from the stability of tertiary structure. PMID:7756981

  2. Matrix-grain-bridging contributions to the toughness of SiC composites with alumina-coated SiC platelets

    SciTech Connect

    Cao, J.J.; He, Y.; MoberlyChan, W.J.; De Jonghe, L.C. |

    1996-05-01

    Silicon carbide composites were fabricated through the incorporation of alumina-coated SiC platelets into a SiC matrix. Mechanical properties were evaluated in direct comparison with a commercial Hexoloy SiC. The fracture toughness of the composite, with a fine grained {beta}-SiC matrix, was twice that of the commercial material. The alumina-coating on the platelets provided a weak interface to promote crack deflection and platelet bridging, as well as easing densification of the composites. On the other hand, a three-fold increase in fracture toughness (9.1 MPa {radical}m) of an in situ toughened monolithic SiC was achieved by processing at higher temperatures, promoting the {beta}-to-{alpha} phase transformation and forming a microstructure containing high-aspect-ration plate-shaped grains. Efforts were made to combine the effects of coated-platelets reinforcement and in situ toughening in the matrix. Moderate high toughness (8 MPa {radical}m) was achieved by coupled toughening. The contribution of matrix-grain-bridging, however, was limited by the processing temperature at which the oxide coating was stable.

  3. Impact of cross-tie design on the in-plane stiffness and local mode formation of cable networks on cable-stayed bridges

    NASA Astrophysics Data System (ADS)

    Ahmad, Javaid; Cheng, Shaohong; Ghrib, Faouzi

    2016-02-01

    Suppressing unfavorable stay cable vibrations using cross-ties is becoming more popular on cable-stayed bridges though the mechanics of the formed cable network is yet fully understood. In practice, the main task in designing cross-ties or cable networks is to choose the cross-tie installation location, stiffness and number based on the main cable properties in the network. To have a more comprehensive picture of how to choose these design parameters to achieve higher in-plane network stiffness while minimizing the number of excited local modes, it is imperative to examine dynamic behavior of cable networks with general configurations. In the current study, an analytical model of a general cable network consisting of multiple main cables interconnected by multiple lines of transverse flexible cross-ties will be developed. A new term, defined as the local mode cluster, will be introduced to assess the severity of local mode excitation. Criteria for identifying the presence of local mode cluster will be proposed. A parametric study will be conducted to evaluate the impact of cross-tie installation location, stiffness and number on the network modal response. Results obtained from the present study will provide deeper insight into the selection of these system parameters to achieve the combined benefits of increasing network in-plane stiffness and minimizing the excitation of local modes.

  4. Alterations at the Cross-Bridge Level Are Associated with a Paradoxical Gain of Muscle Function In Vivo in a Mouse Model of Nemaline Myopathy

    PubMed Central

    Gineste, Charlotte; Ottenheijm, Coen; Le Fur, Yann; Banzet, Sébastien; Pecchi, Emilie; Vilmen, Christophe; Cozzone, Patrick J.; Koulmann, Nathalie; Hardeman, Edna C.; Bendahan, David; Gondin, Julien

    2014-01-01

    Nemaline myopathy is the most common disease entity among non-dystrophic skeletal muscle congenital diseases. The first disease causing mutation (Met9Arg) was identified in the gene encoding α-tropomyosinslow gene (TPM3). Considering the conflicting findings of the previous studies on the transgenic (Tg) mice carrying the TPM3Met9Arg mutation, we investigated carefully the effect of the Met9Arg mutation in 8–9 month-old Tg(TPM3)Met9Arg mice on muscle function using a multiscale methodological approach including skinned muscle fibers analysis and in vivo investigations by magnetic resonance imaging and 31-phosphorus magnetic resonance spectroscopy. While in vitro maximal force production was reduced in Tg(TPM3)Met9Arg mice as compared to controls, in vivo measurements revealed an improved mechanical performance in the transgenic mice as compared to the former. The reduced in vitro muscle force might be related to alterations occuring at the cross-bridges level with muscle-specific underlying mechanisms. In vivo muscle improvement was not associated with any changes in either muscle volume or energy metabolism. Our findings indicate that TPM3(Met9Arg) mutation leads to a mild muscle weakness in vitro related to an alteration at the cross-bridges level and a paradoxical gain of muscle function in vivo. These results clearly point out that in vitro alterations are muscle-dependent and do not necessarily translate into similar changes in vivo. PMID:25268244

  5. Synthesis, Cu(II) complexation, 64Cu-labeling and biological evaluation of cross-bridged cyclam chelators with phosphonate pendant arms†

    PubMed Central

    Ferdani, Riccardo; Stigers, Dannon J.; Fiamengo, Ashley L.; Wei, Lihui; Li, Barbara T. Y.; Golen, James A.; Rheingold, Arnold L.; Weisman, Gary R.; Wong, Edward H.; Anderson, Carolyn J.

    2012-01-01

    A new class of cross-bridged cyclam-based macrocycles featuring phosphonate pendant groups has been developed. 1,4,8,11-tetraazacyclotetradecane-1,8-di(methanephosphonic acid) (CB-TE2P, 1) and 1,4,8,11-tetraazacyclotetradecane-1-(methanephosphonic acid)-8-(methanecarboxylic acid) (CB-TE1A1P, 2) have been synthesized and have been shown to readily form neutral copper (II) complexes at room temperature as the corresponding dianions. Both complexes showed high kinetic inertness to demetallation and crystal structures confirmed complete encapsulation of copper (II) ion within each macrocycle’s cleft-like structure. Unprecedented for cross-bridged cyclam derivatives, both CB-TE2P (1) and CB-TE1A1P (2) can be radiolabeled with 64Cu at room temperature in less than 1 hour with specific activities >1mCi/μg. The in vivo behavior of both 64Cu-CB-TE2P and 64Cu-CB-TE1A1P were investigated through biodistribution studies using healthy, male, Lewis rats. Both new compounds showed rapid clearance with similar or lower accumulation in non-target organs/tissues when compared to other copper chelators including CB-TE2A, NOTA and Diamsar. PMID:22170043

  6. Mechanical study of rat soleus muscle using caged ATP and X-ray diffraction: high ADP affinity of slow cross-bridges.

    PubMed Central

    Horiuti, K; Yagi, N; Takemori, S

    1997-01-01

    1. The cross-bridges in slow- and fast-twitch fibres (taken, respectively, from soleus and psoas muscles of rats) were examined in mechanical experiments using caged ATP and X-ray diffraction, to compare their binding of ATP and ADP. 2. Caged ATP was photolysed in rigor fibres. When ADP was removed from pre-photolysis fibres, the initial relaxation (+/- Ca2+) in soleus was as fast as that in psoas fibres, whereas the subsequent contraction (+Ca2+) was slower in soleus than in psoas. The ATPase rate during the steady-state contraction was also slower in soleus fibres. 3. When ADP was added to pre-photolysis fibres (+/- Ca2+), tension developed even in the initial phase, the overall tension development being biphasic. Both initial and late components of the Ca(2+)-free contraction were enhanced when ADP was added before photolysis, although pre-photolysis ADP was not a prerequisite for the late component. The effect of ADP was greater in soleus than in psoas fibres. Static experiments on rigor fibres revealed a higher ADP affinity in soleus fibres. 4. The intensity of the actin layer-line from ADP rigor soleus fibres decreased rapidly on photorelease of ATP. We conclude that, despite the tight ADP binding of the soleus cross-bridge, its isometric reaction is not rate limited by the 'off' rate of ADP. PMID:9263922

  7. Level II scour analysis for Bridge 42 (RANDVT00120042) on State Highway 12, crossing Third Branch White River, Randolph, Vermont

    USGS Publications Warehouse

    Olson, Scott A.; Weber, Matthew A.

    1996-01-01

    bridge consisting of four concrete spans. The maximum span length is 57 ft. (Vermont Agency of Transportation, written commun., July 29, 1994). The bridge is supported by vertical, concrete abutments and three concrete piers. The toe of the left abutment is at the channel edge. The toe of the right abutment is set back on the right over-bank. The roadway centerline on the structure has a slight horizontal curve; however, the main channel is skewed approximately 5 degrees to the bridge. Additional details describing conditions at the site are included in the Level II Summary and Appendices D and E. Scour depths and rock rip-rap sizes were computed using the general guidelines described in Hydraulic Engineering Circular 18 (Richardson and others, 1993). Scour depths were calculated assuming an infinite depth of erosive material and a homogeneous particle-size distribution. The scour analysis results are presented in tables 1 and 2 and a graph of the scour depths is presented in figure 8.

  8. Regulatory Cross-Talks and Cascades in Rice Hormone Biosynthesis Pathways Contribute to Stress Signaling

    PubMed Central

    Deb, Arindam; Grewal, Rumdeep K.; Kundu, Sudip

    2016-01-01

    Crosstalk among different hormone signaling pathways play an important role in modulating plant response to both biotic and abiotic stress. Hormone activity is controlled by its bio-availability, which is again influenced by its biosynthesis. Thus, independent hormone biosynthesis pathways must be regulated and co-ordinated to mount an integrated response. One of the possibilities is to use cis-regulatory elements to orchestrate expression of hormone biosynthesis genes. Analysis of CREs, associated with differentially expressed hormone biosynthesis related genes in rice leaf under Magnaporthe oryzae attack and drought stress enabled us to obtain insights about cross-talk among hormone biosynthesis pathways at the transcriptional level. We identified some master transcription regulators that co-ordinate different hormone biosynthesis pathways under stress. We found that Abscisic acid and Brassinosteroid regulate Cytokinin conjugation; conversely Brassinosteroid biosynthesis is affected by both Abscisic acid and Cytokinin. Jasmonic acid and Ethylene biosynthesis may be modulated by Abscisic acid through DREB transcription factors. Jasmonic acid or Salicylic acid biosynthesis pathways are co-regulated but they are unlikely to influence each others production directly. Thus, multiple hormones may modulate hormone biosynthesis pathways through a complex regulatory network, where biosynthesis of one hormone is affected by several other contributing hormones. PMID:27617021

  9. Regulatory Cross-Talks and Cascades in Rice Hormone Biosynthesis Pathways Contribute to Stress Signaling.

    PubMed

    Deb, Arindam; Grewal, Rumdeep K; Kundu, Sudip

    2016-01-01

    Crosstalk among different hormone signaling pathways play an important role in modulating plant response to both biotic and abiotic stress. Hormone activity is controlled by its bio-availability, which is again influenced by its biosynthesis. Thus, independent hormone biosynthesis pathways must be regulated and co-ordinated to mount an integrated response. One of the possibilities is to use cis-regulatory elements to orchestrate expression of hormone biosynthesis genes. Analysis of CREs, associated with differentially expressed hormone biosynthesis related genes in rice leaf under Magnaporthe oryzae attack and drought stress enabled us to obtain insights about cross-talk among hormone biosynthesis pathways at the transcriptional level. We identified some master transcription regulators that co-ordinate different hormone biosynthesis pathways under stress. We found that Abscisic acid and Brassinosteroid regulate Cytokinin conjugation; conversely Brassinosteroid biosynthesis is affected by both Abscisic acid and Cytokinin. Jasmonic acid and Ethylene biosynthesis may be modulated by Abscisic acid through DREB transcription factors. Jasmonic acid or Salicylic acid biosynthesis pathways are co-regulated but they are unlikely to influence each others production directly. Thus, multiple hormones may modulate hormone biosynthesis pathways through a complex regulatory network, where biosynthesis of one hormone is affected by several other contributing hormones. PMID:27617021

  10. Bridge permeameter

    DOEpatents

    Graf, Darin C.; Warpinski, Norman R.

    1996-01-01

    A system for single-phase, steady-state permeability measurements of porous rock utilizes a fluid bridge arrangement analogous to a Wheatstone bridge. The arms of the bridge contain the sample and calibrated flow resistors.

  11. Screening corrections for the interference contributions to the electron and positron scattering cross sections from polyatomic molecules

    NASA Astrophysics Data System (ADS)

    Blanco, Francisco; Ellis-Gibbings, Lilian; García, Gustavo

    2016-02-01

    An improvement of the screening-corrected Additivity Rule (SCAR) is proposed for calculating electron and positron scattering cross sections from polyatomic molecules within the independent atom model (IAM), following the analysis of numerical solutions to the three-dimensional Lippmann-Schwinger equation for multicenter potentials. Interference contributions affect all the considered energy range (1-300 eV); the lower energies where the atomic screening is most effective and higher energies, where interatomic distances are large compared to total cross sections and electron wavelengths. This correction to the interference terms provides a significant improvement for both total and differential elastic cross sections at these energies.

  12. Barriers and Bridges to Positive Cross-Ethnic Relations: African American and White Parent Socialization Beliefs and Practices.

    ERIC Educational Resources Information Center

    Hamm, Jill V.

    2001-01-01

    Using interviews and focus groups, lower and middle socioeconomic status (SES) African American parents and middle SES white parents discussed their objectives regarding cross-ethnic relations and how they helped their children forge positive cross-ethnic relations. The groups relied on different methods to promote socialization. Parents' efforts…

  13. Impact of Cross-Tie Properties on the Modal Behavior of Cable Networks on Cable-Stayed Bridges.

    PubMed

    Ahmad, Javaid; Cheng, Shaohong; Ghrib, Faouzi

    2015-01-01

    Dynamic behaviour of cable networks is highly dependent on the installation location, stiffness, and damping of cross-ties. Thus, these are the important design parameters for a cable network. While the effects of the former two on the network response have been investigated to some extent in the past, the impact of cross-tie damping has rarely been addressed. To comprehend our knowledge of mechanics associated with cable networks, in the current study, an analytical model of a cable network will be proposed by taking into account both cross-tie stiffness and damping. In addition, the damping property of main cables in the network will also be considered in the formulation. This would allow exploring not only the effectiveness of a cross-tie design on enhancing the in-plane stiffness of a constituted cable network, but also its energy dissipation capacity. The proposed analytical model will be applied to networks with different configurations. The influence of cross-tie stiffness and damping on the modal response of various types of networks will be investigated by using the corresponding undamped rigid cross-tie network as a reference base. Results will provide valuable information on the selection of cross-tie properties to achieve more effective cable vibration control. PMID:26167539

  14. Impact of Cross-Tie Properties on the Modal Behavior of Cable Networks on Cable-Stayed Bridges

    PubMed Central

    Ahmad, Javaid; Cheng, Shaohong; Ghrib, Faouzi

    2015-01-01

    Dynamic behaviour of cable networks is highly dependent on the installation location, stiffness, and damping of cross-ties. Thus, these are the important design parameters for a cable network. While the effects of the former two on the network response have been investigated to some extent in the past, the impact of cross-tie damping has rarely been addressed. To comprehend our knowledge of mechanics associated with cable networks, in the current study, an analytical model of a cable network will be proposed by taking into account both cross-tie stiffness and damping. In addition, the damping property of main cables in the network will also be considered in the formulation. This would allow exploring not only the effectiveness of a cross-tie design on enhancing the in-plane stiffness of a constituted cable network, but also its energy dissipation capacity. The proposed analytical model will be applied to networks with different configurations. The influence of cross-tie stiffness and damping on the modal response of various types of networks will be investigated by using the corresponding undamped rigid cross-tie network as a reference base. Results will provide valuable information on the selection of cross-tie properties to achieve more effective cable vibration control. PMID:26167539

  15. Horizontal Cross Bracing Detail, Vertical Cross Bracing Detail, Horizontal Cross ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Horizontal Cross Bracing Detail, Vertical Cross Bracing Detail, Horizontal Cross Bracing Joint, Vertical Cross Bracing End Detail - Ceylon Covered Bridge, Limberlost Park, spanning Wabash River at County Road 900 South, Geneva, Adams County, IN

  16. Level II scour analysis for Bridge 10 (WNDHTH00020010) on Town Highway 2, crossing the Middle Branch of the Williams River, Windham, Vermont

    USGS Publications Warehouse

    Striker, Lora K.; Wild, Emily C.

    1997-01-01

    This report provides the results of a detailed Level II analysis of scour potential at structure WNDHTH00020010 on Town Highway 2 crossing the Middle Branch Williams River, Windham, Vermont (figures 1–8). A Level II study is a basic engineering analysis of the site, including a quantitative analysis of stream stability and scour (U.S. Department of Transportation, 1993). Results of a Level I scour investigation also are included in Appendix E of this report. A Level I investigation provides a qualitative geomorphic characterization of the study site. Information on the bridge, gleaned from Vermont Agency of Transportation (VTAOT) files, was compiled prior to conducting Level I and Level II analyses and is found in Appendix D. The site is in the Green Mountain section of the New England physiographic province in south central Vermont. The 1.44-mi2 drainage area is in a predominantly rural and forested basin. In the vicinity of the study site, the predominate surface cover upstream of the bridge is pasture on the left bank and forest on the right bank. Downstream of the bridge the surface cover consists of forest on the right bank and grass on the left bank. In the study area, the Middle Branch Williams River has an incised, sinuous channel with a slope of approximately 0.03 ft/ft, an average channel top width of 28 ft and an average bank height of 5 ft. The channel bed material ranges from gravel to boulder with a median grain size (D50) of 61.4 mm (0.201 ft). The geomorphic assessment at the time of the Level I and Level II site visit on August 22, 1996, indicated that the reach was stable. The Town Highway 2 crossing of the Middle Branch Williams River is a 25-ft-long, two-lane bridge consisting of one 22-foot concrete slab span (Vermont Agency of Transportation, written communication, March 31, 1995). The bridge is supported by vertical, concrete abutments with wingwalls. The channel is skewed approximately 60 degrees to the opening while the opening

  17. Conversational Moves That Matter: Bridging Learning Outcomes and Patterns of Speech in Informal Cross-Organizational Conversations Among Top-Level Leaders

    ERIC Educational Resources Information Center

    Hartung, Kyle John; Wilson, Daniel Gray

    2016-01-01

    Cross-organizational "learning conversations" are an important source of informal learning among professionals, though little is known about whether specific characteristics of conversational interaction contribute to different learning outcomes in such conversations. This mixed-methods study examined the relationship between…

  18. Level II scour analysis for bridge 35 (BURKTH00310035) on Town Highway 31, crossing the West Branch Passumpsic River, Burke, Vermont

    USGS Publications Warehouse

    Boehmler, Erick M.; Degnan, James R.

    1998-01-01

    This report provides the results of a detailed Level II analysis of scour potential at structure BURKTH00310035 on Town Highway 31 crossing the West Branch Passumpsic River, Burke, Vermont (figures 1-8). A Level II study is a basic engineering analysis of the site, including a quantitative analysis of stream stability and scour (FHWA, 1993). Results of a Level I scour investigation also are included in appendix E of this report. A Level I investigation provides a qualitative geomorphic characterization of the study site. Information on the bridge, gleaned from Vermont Agency of Transportation (VTAOT) files, was compiled prior to conducting Level I and Level II analyses and is found in appendix D.

  19. Synthesis and structural characterization of the individual diastereoisomers of a cross-stapled alkene-bridged nisin DE-ring mimic.

    PubMed

    Slootweg, Jack C; Kemmink, Johan; Liskamp, Rob M J; Rijkers, Dirk T S

    2013-11-21

    Herein, we describe the synthesis, structural characterization, and synthetic use as an advanced intermediate of a cross-stapled alkene-bridged hexapeptide to mimic the DE-ring of the lantibiotic nisin. The linear precursor was cyclized by ring-closing metathesis to give the correctly folded bicyclic hexapeptide in a single step, and the four individual diastereoisomers were isolated, structurally assigned and characterized by HPLC, NMR and MS, respectively. The bicyclic hexapeptide was used as a versatile advanced synthon and was modified at its C- and N-terminus, among others, with an azide moiety to access a building block suitable for Cu(I)-catalyzed alkyne-azide cycloaddition-based ligation reactions. PMID:24081149

  20. Muscle weakness in TPM3-myopathy is due to reduced Ca2+-sensitivity and impaired acto-myosin cross-bridge cycling in slow fibres.

    PubMed

    Yuen, Michaela; Cooper, Sandra T; Marston, Steve B; Nowak, Kristen J; McNamara, Elyshia; Mokbel, Nancy; Ilkovski, Biljana; Ravenscroft, Gianina; Rendu, John; de Winter, Josine M; Klinge, Lars; Beggs, Alan H; North, Kathryn N; Ottenheijm, Coen A C; Clarke, Nigel F

    2015-11-15

    Dominant mutations in TPM3, encoding α-tropomyosinslow, cause a congenital myopathy characterized by generalized muscle weakness. Here, we used a multidisciplinary approach to investigate the mechanism of muscle dysfunction in 12 TPM3-myopathy patients. We confirm that slow myofibre hypotrophy is a diagnostic hallmark of TPM3-myopathy, and is commonly accompanied by skewing of fibre-type ratios (either slow or fast fibre predominance). Patient muscle contained normal ratios of the three tropomyosin isoforms and normal fibre-type expression of myosins and troponins. Using 2D-PAGE, we demonstrate that mutant α-tropomyosinslow was expressed, suggesting muscle dysfunction is due to a dominant-negative effect of mutant protein on muscle contraction. Molecular modelling suggested mutant α-tropomyosinslow likely impacts actin-tropomyosin interactions and, indeed, co-sedimentation assays showed reduced binding of mutant α-tropomyosinslow (R168C) to filamentous actin. Single fibre contractility studies of patient myofibres revealed marked slow myofibre specific abnormalities. At saturating [Ca(2+)] (pCa 4.5), patient slow fibres produced only 63% of the contractile force produced in control slow fibres and had reduced acto-myosin cross-bridge cycling kinetics. Importantly, due to reduced Ca(2+)-sensitivity, at sub-saturating [Ca(2+)] (pCa 6, levels typically released during in vivo contraction) patient slow fibres produced only 26% of the force generated by control slow fibres. Thus, weakness in TPM3-myopathy patients can be directly attributed to reduced slow fibre force at physiological [Ca(2+)], and impaired acto-myosin cross-bridge cycling kinetics. Fast myofibres are spared; however, they appear to be unable to compensate for slow fibre dysfunction. Abnormal Ca(2+)-sensitivity in TPM3-myopathy patients suggests Ca(2+)-sensitizing drugs may represent a useful treatment for this condition. PMID:26307083

  1. Structural basis for the in situ Ca2+ sensitization of cardiac troponin C by positive feedback from force-generating myosin cross-bridges

    PubMed Central

    Rieck, Daniel C.; Li, King-Lun; Ouyang, Yexin; Solaro, R. John; Dong, Wen-Ji

    2013-01-01

    The in situ structural coupling between the cardiac troponin (cTn) Ca2+-sensitive regulatory switch (CRS) and strong myosin cross-bridges was investigated using Förster resonance energy transfer (FRET). The double cysteine mutant cTnC(T13C/N51C) was fluorescently labeled with the FRET pair 5-(iodoacetamidoethyl)aminonaphthelene-1-sulfonic acid (IAEDENS) and N-(4-dimethylamino-3,5-dinitrophenyl)maleimide (DDPM) and then incorporated into detergent skinned left ventricular papillary fiber bundles. Ca2+ titrations of cTnC(T13C/N51C)AEDENS/DDPM-reconstituted fibers showed that the Ca2+-dependence of the opening of the N-domain of cTnC (N-cTnC) statistically matched the force–Ca2+ relationship. N-cTnC opening still occurred steeply during Ca2+ titrations in the presence of 1 mM vanadate, but the maximal extent of ensemble-averaged N-cTnC opening and the Ca2+-sensitivity of the CRS were significantly reduced. At nanomolar, resting Ca2+ levels, treatment with ADP•Mg in the absence of ATP caused a partial opening of N-cTnC. During subsequent Ca2+ titrations in the presence of ADP•Mg and absence of ATP, further N-cTnC opening was stimulated as the CRS responded to Ca2+ with increased Ca2+-sensitivity and reduced steepness. These findings supported our hypothesis here that strong cross-bridge interactions with the cardiac thin filament exert a Ca2+-sensitizing effect on the CRS by stabilizing the interaction between the exposed hydrophobic patch of N-cTnC and the switch region of cTnI. PMID:23896515

  2. Structural basis for the in situ Ca(2+) sensitization of cardiac troponin C by positive feedback from force-generating myosin cross-bridges.

    PubMed

    Rieck, Daniel C; Li, King-Lun; Ouyang, Yexin; Solaro, R John; Dong, Wen-Ji

    2013-09-15

    The in situ structural coupling between the cardiac troponin (cTn) Ca(2+)-sensitive regulatory switch (CRS) and strong myosin cross-bridges was investigated using Förster resonance energy transfer (FRET). The double cysteine mutant cTnC(T13C/N51C) was fluorescently labeled with the FRET pair 5-(iodoacetamidoethyl)aminonaphthelene-1-sulfonic acid (IAEDENS) and N-(4-dimethylamino-3,5-dinitrophenyl)maleimide (DDPM) and then incorporated into detergent skinned left ventricular papillary fiber bundles. Ca(2+) titrations of cTnC(T13C/N51C)AEDENS/DDPM-reconstituted fibers showed that the Ca(2+)-dependence of the opening of the N-domain of cTnC (N-cTnC) statistically matched the force-Ca(2+) relationship. N-cTnC opening still occurred steeply during Ca(2+) titrations in the presence of 1mM vanadate, but the maximal extent of ensemble-averaged N-cTnC opening and the Ca(2+)-sensitivity of the CRS were significantly reduced. At nanomolar, resting Ca(2+) levels, treatment with ADP·Mg in the absence of ATP caused a partial opening of N-cTnC. During subsequent Ca(2+) titrations in the presence of ADP·Mg and absence of ATP, further N-cTnC opening was stimulated as the CRS responded to Ca(2+) with increased Ca(2+)-sensitivity and reduced steepness. These findings supported our hypothesis here that strong cross-bridge interactions with the cardiac thin filament exert a Ca(2+)-sensitizing effect on the CRS by stabilizing the interaction between the exposed hydrophobic patch of N-cTnC and the switch region of cTnI. PMID:23896515

  3. Level II scour analysis for Bridge 46 (CHELTH00680046) on Town Highway 68, crossing the First Branch of the White River, Chelsea, Vermont

    USGS Publications Warehouse

    Ivanoff, Michael A.; Song, Donald L.

    1996-01-01

    Total scour at a highway crossing is comprised of three components: 1) long-term streambed degradation; 2) contraction scour (due to accelerated flow caused by a reduction in flow area at a bridge) and; 3) local scour (caused by accelerated flow around piers and abutments). Total scour is the sum of the three components. Equations are available to compute depths for contraction and local scour and a summary of the results of these computations follows. Contraction scour for all modelled flows ranged from 0.9 to 2.6 ft. The worst-case contraction scour occurred at the 500-year discharge. Abutment scour ranged from 14.3 to 24.0 ft. The worst-case abutment scour occurred at the 500-year discharge. Additional information on scour depths and depths to armoring are included in the section titled “Scour Results”. Scoured-streambed elevations, based on the calculated scour depths, are presented in tables 1 and 2. A cross-section of the scour computed at the bridge is presented in figure 8. Scour depths were calculated assuming an infinite depth of erosive material and a homogeneous particle-size distribution. The left abutment sits atop a bedrock outcrop. The results of the calculated scour depths will be limited by the bedrock. It is generally accepted that the Froehlich equation (abutment scour) gives “excessively conservative estimates of scour depths” (Richardson and others, 1995, p. 47). Usually, computed scour depths are evaluated in combination with other information including (but not limited to) historical performance during flood events, the geomorphic stability assessment, existing scour protection measures, and the results of the hydraulic analyses. Therefore, scour depths adopted by VTAOT may differ from the computed values documented herein.

  4. Crossing the Gap between Indigenous Worldview and Western Science: Millet Festival as a Bridge in the Teaching Module

    ERIC Educational Resources Information Center

    Chiang, Chia-Ling; Lee, Huei

    2015-01-01

    The worldview within indigenous people's traditional knowledge and western science can be a world of difference. In order to help indigenous students cross the gap and develop a sense of cultural identification. Taking Bunun, one of the Taiwanese indigenous tribes, as our subject, this study aims to develop a teaching module through Bunun's Millet…

  5. Bridging the Divide: Developing the Institutional Structures That Most Effectively Deliver Cross-Sectoral Education and Training.

    ERIC Educational Resources Information Center

    Wheelahan, Leesa

    Issues in developing the institutional structures to deliver cross-sectoral education and training were examined in a study of five Australian single-sector higher education institutions with various institutional arrangements with the vocational education and training (VET) sector and five dual-sector universities. Data were collected from the…

  6. Diversity and Similarity of Motor Function and Cross-Bridge Kinetics in Papillary Muscles of Transgenic Mice Carrying Myosin Regulatory Light Chain Mutations D166V and R58Q

    PubMed Central

    Wang, Li; Muthu, Priya; Szczesna-Cordary, Danuta; Kawai, Masataka

    2013-01-01

    Mechanical properties of skinned papillary muscle fibers from transgenic mice expressing familial hypertrophic cardiomyopathy associated mutations D166V and R58Q in myosin regulatory light chain were investigated. Elementary steps and the apparent rate constants of the cross-bridge cycle were characterized from the tension transients induced by sinusoidal length changes during maximal Ca2+ activation, together with ATP, ADP, and Pi studies. The tension-pCa relation was also tested in two sets of solutions with differing Pi and ionic strength. Our results showed that in both mutants, the fast apparent rate constant 2πc and the rate constants of the cross-bridge detachment step (k2) were smaller than those of wild type (WT), demonstrating the slower cross-bridge kinetics. D166V showed significantly smaller ATP (K1) and ADP (K0) association constants than WT, displaying weaker ATP binding and easier ADP release, whereas those of R58Q were not significantly different from WT. In tension-pCa study, both D166V and R58Q mutations exhibited increased Ca2+ sensitivity and less cooperativity. We conclude that, while the two FHC mutations have similar clinical manifestations and prognosis, some of the mechanical parameters of cross-bridges (K0, K1) are differently modified, whereas some others (Ca2+-sensitivity, cooperativity, k2) are similarly modified by these two FHC associated mutations. PMID:23727233

  7. Level II scour analysis for Bridge 25 (ROYATH00550025) on Town Highway 55, crossing Broad Brook, Royalton, Vermont

    USGS Publications Warehouse

    Burns, Ronda L.; Weber, Matthew A.

    1997-01-01

    Contraction scour for all modelled flows ranged from 0.6 to 1.5 ft. The worst-case contraction scour occurred at the incipient-overtopping discharge which was less than the 100-year discharge. Abutment scour ranged from 3.5 to 8.9 ft. The worst-case abutment scour occurred at the incipient road-overtopping discharge for the left abutment and at the 100-year discharge for the right abutment. Additional information on scour depths and depths to armoring are included in the section titled “Scour Results”. Scoured-streambed elevations, based on the calculated scour depths, are presented in tables 1 and 2. A crosssection of the scour computed at the bridge is presented in figure 8. Scour depths were calculated assuming an infinite depth of erosive material and a homogeneous particle-size distribution. It is generally accepted that the Froehlich equation (abutment scour) gives “excessively conservative estimates of scour depths” (Richardson and others, 1995, p. 47). Usually, computed scour depths are evaluated in combination with other information including (but not limited to) historical performance during flood events, the geomorphic stability assessment, existing scour protection measures, and the results of the hydraulic analyses. Therefore, scour depths adopted by VTAOT may differ from the computed values documented herein.

  8. Level II scour analysis for Bridge 39 (TOPSTH00510039) on Town Highway 51, crossing Tabor Branch Waits River, Topsham, Vermont

    USGS Publications Warehouse

    Striker, Lora K.; Severance, Tim

    1997-01-01

    Contraction scour for all modelled flows ranged from 0.0 to 0.4 ft. The worst-case contraction scour occurred at the maximum free surface flow discharge, which was less than the 100-year discharge. Abutment scour ranged from 4.8 to 8.0 ft. The worst-case abutment scour occurred at 500-year discharge. Additional information on scour depths and depths to armoring are included in the section titled “Scour Results”. Scoured-streambed elevations, based on the calculated scour depths, are presented in tables 1 and 2. A crosssection of the scour computed at the bridge is presented in figure 8. Scour depths were calculated assuming an infinite depth of erosive material and a homogeneous particle-size distribution. It is generally accepted that the Froehlich equation (abutment scour) gives “excessively conservative estimates of scour depths” (Richardson and others, 1995, p. 47). Usually, computed scour depths are evaluated in combination with other information including (but not limited to) historical performance during flood events, the geomorphic stability assessment, existing scour protection measures, and the results of the hydraulic analyses. Therefore, scour depths adopted by VTAOT may differ from the computed values documented herein.

  9. Level II scour analysis for Bridge 16 (GROTTH00170016) on Town Highway 17, crossing the Wells River, Groton, Vermont

    USGS Publications Warehouse

    Striker, L.K.; Ivanoff, M.A.

    1997-01-01

    Contraction scour for all modelled flows was 0 ft. Abutment scour ranged from 7.6 to 8.4 ft at the left abutment and from 9.9 to 14.8 ft at the right abutment. The worst-case abutment scour occurred at the 500-year discharge. Additional information on scour depths and depths to armoring are included in the section titled “Scour Results”. Scoured-streambed elevations, based on the calculated scour depths, are presented in tables 1 and 2. A crosssection of the scour computed at the bridge is presented in figure 8. Scour depths were calculated assuming an infinite depth of erosive material and a homogeneous particle-size distribution. It is generally accepted that the Froehlich equation (abutment scour) gives “excessively conservative estimates of scour depths” (Richardson and others, 1995, p. 47). Usually, computed scour depths are evaluated in combination with other information including (but not limited to) historical performance during flood events, the geomorphic stability assessment, existing scour protection measures, and the results of the hydraulic analyses. Therefore, scour depths adopted by VTAOT may differ from the computed values documented herein.

  10. 29. Historic photographer, photographer unknown, c. 1944. VIEW OF BRIDGE, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    29. Historic photographer, photographer unknown, c. 1944. VIEW OF BRIDGE, LOOKING EAST FROM TOP OF WEST TOWER. SHEEP CROSSING BRIDGE. NOTE SWAY CABLES. - Verde River Sheep Bridge, Spanning Verde River (Tonto National Forest), Cave Creek, Maricopa County, AZ

  11. 11. Standing on westerly fender at edge of bridge looking ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    11. Standing on westerly fender at edge of bridge looking easterly, showing horizontal beams for deck and cross beams (reflection of steel grating on deck). Also shows bridge guardrail. - Colusa Bridge, Spanning Sacramento River, Colusa, Colusa County, CA

  12. Level II scour analysis for Bridge 10 (CHESTH00030010) on Town Highway 3 (VT 35), crossing the South Branch of Williams River, Chester, Vermont

    USGS Publications Warehouse

    Wild, Emily C.; Hammond, Robert E.

    1997-01-01

    This report provides the results of a detailed Level II analysis of scour potential at structure CHESTH00030010 on Town Highway 3 (VT 35) crossing the South Branch Williams River, Chester, Vermont (figures 1–8). A Level II study is a basic engineering analysis of the site, including a quantitative analysis of stream stability and scour (U.S. Department of Transportation, 1993). Results of a Level I scour investigation also are included in Appendix E of this report. A Level I investigation provides a qualitative geomorphic characterization of the study site. Information on the bridge, gleaned from Vermont Agency of Transportation (VTAOT) files, was compiled prior to conducting Level I and Level II analyses and is found in Appendix D. The site is in the New England Upland section of the New England physiographic province in southeastern Vermont. The 9.44-mi2 drainage area is in a predominantly rural and forested basin. In the vicinity of the study site, the surface cover is forest. In the study area, the South Branch Williams River has an incised, sinuous channel with a slope of approximately 0.03 ft/ft, an average channel top width of 67 ft and an average bank height of 5 ft. The channel bed material ranges from gravel to boulder with a median grain size (D50) of 69.0 mm (0.226 ft). The geomorphic assessment at the time of the Level I and Level II site visit on August 26-27, 1996, indicated that the reach was stable. The Town Highway 3 (VT 35) crossing of the South Branch Williams River is a 69-foot-long, two-lane bridge consisting of one 67-foot steel-stringer span with a concrete deck (Vermont Agency of Transportation, written communication, August 23, 1994). The opening length of the structure parallel to the bridge face is 64.5 ft. The bridge is supported by vertical, concrete abutments with spill-through embankments. The channel is skewed approximately 50 degrees to the opening while the opening-skew-to-roadway is 30 degrees. The scour protection (spill

  13. Bathymetric and velocimetric surveys at highway bridges crossing the Missouri River between Kansas City and St. Louis, Missouri, April-May, 2013

    USGS Publications Warehouse

    Huizinga, Richard J.

    2014-01-01

    Bathymetric and velocimetric data were collected by the U.S. Geological Survey, in cooperation with the Missouri Department of Transportation, in the vicinity of 10 bridges at 9 highway crossings of the Missouri River between Lexington and Washington, Missouri, from April 22 through May 2, 2013. A multibeam echosounder mapping system was used to obtain channel-bed elevations for river reaches ranging from 1,640 to 1,840 feet longitudinally and extending laterally across the active channel between banks and spur dikes in the Missouri River during low- to moderate-flow conditions. These bathymetric surveys indicate the channel conditions at the time of the surveys and provide characteristics of scour holes that may be useful in the development of predictive guidelines or equations for scour holes. These data also may be useful to the Missouri Department of Transportation to assess the bridges for stability and integrity issues with respect to bridge scour during floods. Bathymetric data were collected around every pier that was in water, except those at the edge of water or in very shallow water (less than about 6 feet). Scour holes were present at most piers for which bathymetry could be obtained, except at piers on channel banks, near or embedded in lateral or longitudinal spur dikes, and on exposed bedrock outcrops. Scour holes observed at the surveyed bridges were examined with respect to depth and shape. Although exposure of parts of foundational support elements was observed at several piers, at most sites the exposure likely can be considered minimal compared to the overall substructure that remains buried in channel-bed material; however, there were several notable exceptions where the bed material thickness between the bottom of the scour hole and bedrock was less than 6 feet. Such substantial exposure of usually buried substructural elements may warrant special observation in future flood events. Previous bathymetric surveys had been done at all of the

  14. Level II scour analysis for Bridge 43 (CHESVT00110043) on State Highway 11, crossing the Middle Branch Williams River, Chester, Vermont

    USGS Publications Warehouse

    Striker, Lora K.; Burns, Ronda L.

    1997-01-01

    76-ft-long, two-lane bridge consisting of two 37-foot concrete Tee-beam spans (Vermont Agency of Transportation, written communication, March 29, 1995). The bridge is supported by vertical, concrete abutments with wingwalls. The channel is skewed approximately 35 degrees to the opening. The computed opening-skew-to-roadway was 30 degrees but the historical records indicate this angle is 25 degrees. Scour protection measures at the site consist of type-1 stone fill (less than 12 inches diameter) along the downstream banks and the upstream right wing wall. Type-2 (less than 36 inches diameter) stone fill protection is noted on the upstream and downstream left wingwalls and upstream along the left bank. Additional details describing conditions at the site are included in the Level II Summary and Appendices D and E. Scour depths and recommended rock rip-rap sizes were computed using the general guidelines described in Hydraulic Engineering Circular 18 (Richardson and others, 1995). Total scour at a highway crossing is comprised of three components: 1) long-term streambed degradation; 2) contraction scour (due to accelerated flow caused by a reduction in flow area at a bridge) and; 3) local scour (caused by accelerated flow around piers and abutments). Total scour is the sum of the three components. Equations are available to compute depths for contraction and local scour and a summary of the results of these computations follows. Contraction scour for all modelled flows ranged from 0.0 to 1.5 ft. The worst-case contraction scour occurred at the 500-year discharge. Abutment scour ranged from 7.2 to 10.7 ft. The worst-case abutment scour occurred at the 500-year discharge for the right abutment. Pier scour ranged from 7.3 to 8.6 ft. The worst-case pier scour occurred at the 500-year discharge. Additional information on scour depths and depths to armoring are included in the section titled “Scour Results”. Scoured-streambed elevations, based on the calculated scour

  15. Cross-Disciplinary Consultancy to Bridge Public Health Technical Needs and Analytic Developers: Asyndromic Surveillance Use Case

    PubMed Central

    Faigen, Zachary; Deyneka, Lana; Ising, Amy; Neill, Daniel; Conway, Mike; Fairchild, Geoffrey; Gunn, Julia; Swenson, David; Painter, Ian; Johnson, Lauren; Kiley, Chris; Streichert, Laura

    2015-01-01

    Introduction: We document a funded effort to bridge the gap between constrained scientific challenges of public health surveillance and methodologies from academia and industry. Component tasks are the collection of epidemiologists’ use case problems, multidisciplinary consultancies to refine them, and dissemination of problem requirements and shareable datasets. We describe an initial use case and consultancy as a concrete example and challenge to developers. Materials and Methods: Supported by the Defense Threat Reduction Agency Biosurveillance Ecosystem project, the International Society for Disease Surveillance formed an advisory group to select tractable use case problems and convene inter-disciplinary consultancies to translate analytic needs into well-defined problems and to promote development of applicable solution methods. The initial consultancy’s focus was a problem originated by the North Carolina Department of Health and its NC DETECT surveillance system: Derive a method for detection of patient record clusters worthy of follow-up based on free-text chief complaints and without syndromic classification. Results: Direct communication between public health problem owners and analytic developers was informative to both groups and constructive for the solution development process. The consultancy achieved refinement of the asyndromic detection challenge and of solution requirements. Participants summarized and evaluated solution approaches and discussed dissemination and collaboration strategies. Practice Implications: A solution meeting the specification of the use case described above could improve human monitoring efficiency with expedited warning of events requiring follow-up, including otherwise overlooked events with no syndromic indicators. This approach can remove obstacles to collaboration with efficient, minimal data-sharing and without costly overhead. PMID:26834939

  16. Crossing the Bridge: Foreign Language Students' Reciprocal Images in (Inter)Cultural Mediation between Portugal and Turkey

    ERIC Educational Resources Information Center

    Basílio, Daniel; Araújo e Sá, Maria Helena; Simões, Ana Raquel

    2016-01-01

    This study intends to highlight the role that Foreign Language Education (FLE), particularly in the Higher Education context, can play so as to contribute to the rapprochement of two distant and still mutually unknown countries such as Portugal and Turkey. In this sense, it ultimately aims at supporting the training of intercultural speakers,…

  17. The effect of lattice spacing change on cross-bridge kinetics in chemically skinned rabbit psoas muscle fibers. I. Proportionality between the lattice spacing and the fiber width.

    PubMed Central

    Kawai, M; Wray, J S; Zhao, Y

    1993-01-01

    Chemically skinned rabbit psoas muscle fibers/bundles were osmotically compressed with a macromolecule dextran T-500 (0-16%, g/100 ml) at 20 degrees C, 200 mM ionic strength, and pH 7.0. The lattice spacing of psoas bundles was measured by equatorial x-ray diffraction studies during relaxation and after rigor induction, and the results were compared with the fiber width measurements by optical microscopy. The purpose of the present study is to determine whether fiber width is a reliable measure of the lattice spacing, and to determine the available spacing for myosin cross-bridges between the thick and thin filaments. We observed that both the lattice spacing and the fiber width decreased with an increase in the dextran concentration during relaxation or after rigor induction, and that the spacing and the fiber width were proportionately related. We further observed that, in the absence of dextran, the lattice spacing (and the fiber width) shrank on a relax-to-rigor transition, whereas in the presence of 16% dextran, the spacing expanded on a relax-to-rigor transition. The cross-over of these plots occurred at the 4-7% dextran concentration. During Ca activation, the fiber width shrank in the absence of dextran, and it slightly expanded in the presence of 14.4% dextran. The degree of expansion was not as large as in the relax-to-rigor transition, and the cross-over occurred at about 11% dextran concentration. We also carried out experiments with dextran T-40 and T-10 to determine the upper limit of the molecular weight that enters the lattice space. We found that the upper limit is about 20 kD. PMID:7679296

  18. Level II scour analysis for Bridge 33 (BRIDTH00050033) on Town Highway 5, crossing the North Branch Ottauquechee River, Bridgewater, Vermont

    USGS Publications Warehouse

    Olson, Scott A.; Song, Donald L.

    1996-01-01

    This report provides the results of a detailed Level II analysis of scour potential at structure BRIDTH00050033 on town highway 5 crossing the North Branch Ottauquechee River, Bridgewater, Vermont (figures 1–8). A Level II study is a basic engineering analysis of the site, including a quantitative analysis of stream stability and scour (U.S. Department of Transportation, 1993). Results of a Level I scour investigation also are included in Appendix E of this report. A Level I investigation provides a qualitative geomorphic characterization of the study site. Information on the bridge, gleaned from Vermont Agency of Transportation (VTAOT) files, was compiled prior to conducting Level I and Level II analyses and is found in Appendix D. The site is in the Green Mountain section of the New England physiographic province of central Vermont in the town of Bridgewater. The 5.01-mi2 drainage area is in a predominantly rural and forested basin. In the vicinity of the study site, the downstream banks are forested and the upstream banks have dense woody brush; the upstream right overbank is an open field. In the study area, the North Branch Ottauquechee River has an incised, sinuous channel with a slope of approximately 0.017 ft/ft, an average channel top width of 30 ft and an average channel depth of 3 ft. The predominant channel bed materials are gravel and cobble with a median grain size (D50) of 83.2 mm (0.273 ft). The geomorphic assessment at the time of the Level I and Level II site visit on November 3, 1994, indicated that the reach was stable. Also at the time of the site visit, there was considerable backwater at the bridge site due to a three foot tall beaver dam 40 feet downstream. The beaver dam was assumed destroyed by flood flow and was ignored in the analyses. The town highway 5 crossing of the North Branch Ottauquechee Riveris a 25-ft-long, onelane bridge consisting of one 23-foot steel-beam span with a timber deck (Vermont Agency of Transportation, written

  19. Computationally predicted IgE epitopes of walnut allergens contribute to cross-reactivity with peanuts

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Cross reactivity between peanuts and tree nuts implies that similar IgE epitopes are present in their proteins. To determine whether walnut sequences similar to known peanut IgE binding sequences, according to the property distance (PD) scale implemented in the Structural Database of Allergenic Prot...

  20. Cross-Disciplinary Contributions to E-Learning Design: A Tripartite Design Model

    ERIC Educational Resources Information Center

    Hutchins, Holly M.; Hutchison, Dennis

    2008-01-01

    Purpose: The purpose of this paper is to review cross-disciplinary research on e-learning from workplace learning, educational technology, and instructional communication disciplines to identify relevant e-learning design principles. It aims to use these principles to propose an e-learning model that can guide the design of instructionally sound,…

  1. Bridge permeameter

    DOEpatents

    Graf, D.C.; Warpinski, N.R.

    1996-08-13

    A system is described for single-phase, steady-state permeability measurements of porous rock which utilizes a fluid bridge arrangement analogous to a Wheatstone bridge. The arms of the bridge contain the sample and calibrated flow resistors. 8 figs.

  2. Level II scour analysis for Bridge 38 (ANDOVT00110038) on State Route 11, crossing the Middle Branch Williams River, Andover, Vermont

    USGS Publications Warehouse

    Striker, Lora K.; Hammond, Robert E.

    1997-01-01

    This report provides the results of a detailed Level II analysis of scour potential at structure ANDOVT00110038 on State Route 11 crossing the Middle Branch Williams River, Andover, Vermont (figures 1–8). A Level II study is a basic engineering analysis of the site, including a quantitative analysis of stream stability and scour (U.S. Department of Transportation, 1993). Results of a Level I scour investigation also are included in Appendix E of this report. A Level I investigation provides a qualitative geomorphic characterization of the study site. Information on the bridge, gleaned from Vermont Agency of Transportation (VTAOT) files, was compiled prior to conducting Level I and Level II analyses and is found in Appendix D. The site is in the Green Mountain section of the New England physiographic province in south central Vermont. The 5.65-mi2 drainage area is in a predominantly rural and forested basin. Upstream and downstream of the study site banks and overbanks are forested. In the study area, the Middle Branch Williams River has an incised, sinuous channel with a slope of approximately 0.02 ft/ft, an average channel top width of 44 ft and an average bank height of 4 ft. The channel bed material ranges from gravel to boulders with a median grain size (D50) of 54.0 mm (0.177 ft). The geomorphic assessment at the time of the Level I and Level II site visit on September 5, 1996, indicated that the reach was stable. The State Route 11 crossing of the Middle Branch Williams River is a 33-ft-long, two-lane bridge consisting of one 31-foot concrete T-beam span (Vermont Agency of Transportation, written communication, March 29, 1995). The bridge is supported by vertical, concrete abutments with wingwalls. The channel is skewed approximately 55 degrees to the opening while the measured opening-skew-to-roadway is 45 degrees. There were no scour problems observed during the Level I assessment. Type-4 stone fill (less than 60 inches diameter) and type-3 stone fill

  3. 7. DETAIL VIEW SHOWING CONNECTION OF BRIDGE COLUMN, TRUSS, TOP ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    7. DETAIL VIEW SHOWING CONNECTION OF BRIDGE COLUMN, TRUSS, TOP BEAM, AND ARCHED CROSS MEMBER. NOTE KNEE BRACE FOR CROSS MEMBER AND DIAGONAL TENSION BAR - Heber Creeper Railroad Line, Olmstead Bridge, Spanning Provo River, Provo, Utah County, UT

  4. Properties of highly viscous gels formed by neurofilaments in vitro. A possible consequence of a specific inter-filament cross-bridging.

    PubMed Central

    Leterrier, J F; Eyer, J

    1987-01-01

    Neurofilaments freshly isolated from bovine spinal cord form a reversible gel in vitro, consisting of nearly parallel and interlinked filaments organized in bundles. This phenomenon is obtained above a critical neurofilament concentration and is highly sensitive to denaturation. No gelation occurs with neurofilaments reconstituted from urea-solubilized subunits. The velocity of the gelation kinetics, optimum at a slightly acidic pH, is inhibited by low and high ionic strength and activated by millimolar concentrations of Mg2+ and other bivalent cations. No protein other than the purified neurofilament preparation itself (80-95% neurofilament triplet) is necessary for the formation of a gel. However, purified cytoskeletal proteins from microtubules and neurofilaments influence the viscosity of the native preparation. These observations suggest a reticulation in vitro between neurofilaments, dependent upon a fragile conformation of the polymers and possibly mediated through the high-Mr neurofilament subunits (200 kDa and 150 kDa). The significance of these results is discussed with regard to the inter-neurofilament cross-bridging in situ involving the 200 kDa subunit described by Hirokawa, Glicksman & Willard [(1984) J. Cell Biol. 98, 1523-1536]. Images Fig. 1. Fig. 2. Fig. 3. Fig. 4. Fig. 7. Fig. 8. PMID:3663160

  5. The embryonic myosin R672C mutation that underlies Freeman-Sheldon syndrome impairs cross-bridge detachment and cycling in adult skeletal muscle.

    PubMed

    Racca, Alice W; Beck, Anita E; McMillin, Margaret J; Korte, F Steven; Bamshad, Michael J; Regnier, Michael

    2015-06-15

    Distal arthrogryposis is the most common known heritable cause of congenital contractures (e.g. clubfoot) and results from mutations in genes that encode proteins of the contractile complex of skeletal muscle cells. Mutations are most frequently found in MYH3 and are predicted to impair the function of embryonic myosin. We measured the contractile properties of individual skeletal muscle cells and the activation and relaxation kinetics of isolated myofibrils from two adult individuals with an R672C substitution in embryonic myosin and distal arthrogryposis syndrome 2A (DA2A) or Freeman-Sheldon syndrome. In R672C-containing muscle cells, we observed reduced specific force, a prolonged time to relaxation and incomplete relaxation (elevated residual force). In R672C-containing muscle myofibrils, the initial, slower phase of relaxation had a longer duration and slower rate, and time to complete relaxation was greatly prolonged. These observations can be collectively explained by a small subpopulation of myosin cross-bridges with greatly reduced detachment kinetics, resulting in a slower and less complete deactivation of thin filaments at the end of contractions. These findings have important implications for selecting and testing directed therapeutic options for persons with DA2A and perhaps congenital contractures in general. PMID:25740846

  6. Characterization of the cross-bridge force-generating step using inorganic phosphate and BDM in myofibrils from rabbit skeletal muscles

    PubMed Central

    Tesi, C; Colomo, F; Piroddi, N; Poggesi, C

    2002-01-01

    The inhibitory effects of inorganic phosphate (Pi) on isometric force in striated muscle suggest that in the ATPase reaction Pi release is coupled to force generation. Whether Pi release and the power stroke are synchronous events or force is generated by an isomerization of the quaternary complex of actomyosin and ATPase products (AM.ADP.Pi) prior to the following release of Pi is still controversial. Examination of the dependence of isometric force on [Pi] in rabbit fast (psoas; 5-15 °C) and slow (soleus; 15-20 °C) myofibrils was used to test the two-step hypothesis of force generation and Pi release. Hyperbolic fits of force-[Pi] relations obtained in fast and slow myofibrils at 15 °C produced an apparent asymptote as [Pi]∞ of 0.07 and 0.44 maximal isometric force (i.e. force in the absence of Pi) in psoas and soleus myofibrils, respectively, with an apparent Kd of 4.3 mm in both. In each muscle type, the force-[Pi] relation was independent of temperature. However, 2,3-butanedione 2-monoxime (BDM) decreased the apparent asymptote of force in both muscle types, as expected from its inhibition of the force-generating isomerization. These data lend strong support to models of cross-bridge action in which force is produced by an isomerization of the AM.ADP.Pi complex immediately preceding the Pi release step. PMID:12015429

  7. Level II scour analysis for Bridge 46 (ENOSVT01080046) on State Route 108, crossing an Unnamed "The Branch" Tributary, Enosburg, Vermont

    USGS Publications Warehouse

    Boehmler, Erick M.; Medalie, Laura

    1996-01-01

    Contraction scour for all modelled flows ranged from 0.3 to 0.5 ft. The worst-case contraction scour occurred at the 500-year discharge. Abutment scour ranged from 4.0 to 8.0 ft. The worst-case abutment scour occurred at the 500-year discharge. Additional information on scour depths and depths to armoring are included in the section titled “Scour Results”. Scoured-streambed elevations, based on the calculated scour depths, are presented in tables 1 and 2. A cross-section of the scour computed at the bridge is presented in figure 8. Scour depths were calculated assuming an infinite depth of erosive material and a homogeneous particle-size distribution. It is generally accepted that the Froehlich equation (abutment scour) gives “excessively conservative estimates of scour depths” (Richardson and others, 1995, p. 47). Usually, computed scour depths are evaluated in combination with other information including (but not limited to) historical performance during flood events, the geomorphic stability assessment, existing scour protection measures, and the results of the hydraulic analyses. Therefore, scour depths adopted by VTAOT may differ from the computed values documented herein.

  8. Level II scour analysis for Bridge 6 (RICHTH00030006) on Town Highway 3, crossing an unnamed tributary to the Missisquoi River, Richford, Vermont

    USGS Publications Warehouse

    Flynn, Robert H.; Song, Donald L.

    1996-01-01

    Contraction scour for all modelled flows ranged from 1.7 to 1.8 ft. The worst-case contraction scour occurred at the 500-year discharge. Scour at the left abutment ranged from 7.6 to 12.6 ft with the worst case occurring at the 100-year event. Scour at the right abutment ranged from 1.6 to 5.6 ft with the worst case occurring at the 500-year event. Additional information on scour depths and depths to armoring are included in the section titled “Scour Results”. Scoured-streambed elevations, based on the calculated scour depths, are presented in tables 1 and 2. A cross-section of the scour computed at the bridge is presented in figure 8. Scour depths were calculated assuming an infinite depth of erosive material and a homogeneous particle-size distribution. It is generally accepted that the Froehlich equation (abutment scour) gives “excessively conservative estimates of scour depths” (Richardson and others, 1995, p. 47). Usually, computed scour depths are evaluated in combination with other information including (but not limited to) historical performance during flood events, the geomorphic stability assessment, existing scour protection measures, and the results of the hydraulic analyses. Therefore, scour depths adopted by VTAOT may differ from the computed values documented herein.

  9. Cross-modal reorganization in cochlear implant users: Auditory cortex contributes to visual face processing.

    PubMed

    Stropahl, Maren; Plotz, Karsten; Schönfeld, Rüdiger; Lenarz, Thomas; Sandmann, Pascale; Yovel, Galit; De Vos, Maarten; Debener, Stefan

    2015-11-01

    There is converging evidence that the auditory cortex takes over visual functions during a period of auditory deprivation. A residual pattern of cross-modal take-over may prevent the auditory cortex to adapt to restored sensory input as delivered by a cochlear implant (CI) and limit speech intelligibility with a CI. The aim of the present study was to investigate whether visual face processing in CI users activates auditory cortex and whether this has adaptive or maladaptive consequences. High-density electroencephalogram data were recorded from CI users (n=21) and age-matched normal hearing controls (n=21) performing a face versus house discrimination task. Lip reading and face recognition abilities were measured as well as speech intelligibility. Evaluation of event-related potential (ERP) topographies revealed significant group differences over occipito-temporal scalp regions. Distributed source analysis identified significantly higher activation in the right auditory cortex for CI users compared to NH controls, confirming visual take-over. Lip reading skills were significantly enhanced in the CI group and appeared to be particularly better after a longer duration of deafness, while face recognition was not significantly different between groups. However, auditory cortex activation in CI users was positively related to face recognition abilities. Our results confirm a cross-modal reorganization for ecologically valid visual stimuli in CI users. Furthermore, they suggest that residual takeover, which can persist even after adaptation to a CI is not necessarily maladaptive. PMID:26220741

  10. Charged-current inclusive neutrino cross sections in the superscaling model including quasielastic, pion production and meson-exchange contributions

    NASA Astrophysics Data System (ADS)

    Ivanov, M. V.; Megias, G. D.; González-Jiménez, R.; Moreno, O.; Barbaro, M. B.; Caballero, J. A.; Donnelly, T. W.

    2016-08-01

    Charged current inclusive neutrino-nucleus cross sections are evaluated using the superscaling model for quasielastic scattering and its extension to the pion production region. The contribution of two-particle-two-hole vector meson-exchange current excitations is also considered within a fully relativistic model tested against electron scattering data. The results are compared with the inclusive neutrino-nucleus data from the T2K and SciBooNE experiments. For experiments where < {E}ν > ∼ 0.8 {{GeV}}, the three mechanisms considered in this work provide good agreement with the data. However, when the neutrino energy is larger, effects from beyond the Δ also appear to be playing a role. The results show that processes induced by vector two-body currents play a minor role in the inclusive cross sections at the kinematics considered.