These are representative sample records from Science.gov related to your search topic.
For comprehensive and current results, perform a real-time search at Science.gov.
1

Cross-Linked Hyaluronan Gel Reduces the Acute Rectal Toxicity of Radiotherapy for Prostate Cancer  

SciTech Connect

Purpose: To prospectively analyze whether cross-linked hyaluronan gel reduces the mean rectal dose and acute rectal toxicity of radiotherapy for prostate cancer. Methods and Materials: Between September 2008 and March 2009, we transperitoneally injected 9mL of cross-linked hyaluronan gel (Hylaform; Genzyme Corporation, Cambridge, MA) into the anterior perirectal fat of 10 early-stage prostate cancer patients to increase the separation between the prostate and rectum by 8 to 18mm at the start of radiotherapy. Patients then underwent high-dose rate brachytherapy to 2,200cGy followed by intensity-modulated radiation therapy to 5,040cGy. We assessed acute rectal toxicity using the National Cancer Institute Common Terminology Criteria for Adverse Events v3.0 grading scheme. Results: Median follow-up was 3 months. The anteroposterior dimensions of Hylaform at the start and end of radiotherapy were 13 {+-} 3mm (mean {+-} SD) and 10 {+-} 4mm, respectively. At the start of intensity-modulated radiation therapy, daily mean rectal doses were 73 {+-} 13cGy with Hylaform vs. 106 {+-} 20cGy without Hylaform (p = 0.005). There was a 0% incidence of National Cancer Institute Common Terminology Criteria for Adverse Events v3.0 Grade 1, 2, or 3 acute diarrhea in 10 patients who received Hylaform vs. a 29.7% incidence (n = 71) in 239 historical controls who did not receive Hylaform (p = 0.04). Conclusions: By increasing the separation between the prostate and rectum, Hylaform decreased the mean rectal dose. This led to a significant reduction in the acute rectal toxicity of radiotherapy for prostate cancer.

Wilder, Richard B., E-mail: richardbwilder@yahoo.co [Cancer Center of Irvine, Irvine, CA (United States); Barme, Greg A.; Gilbert, Ronald F.; Holevas, Richard E.; Kobashi, Luis I.; Reed, Richard R.; Solomon, Ronald S.; Walter, Nancy L.; Chittenden, Lucy; Mesa, Albert V.; Agustin, Jeffrey; Lizarde, Jessica; Macedo, Jorge; Ravera, John; Tokita, Kenneth M. [Cancer Center of Irvine, Irvine, CA (United States)

2010-07-01

2

Self-reinforcement and protein sustained delivery of hyaluronan hydrogel by tailoring a dually cross-linked network.  

PubMed

A series of self-reinforcing hyaluronan hydrogels were developed to improve mechanical properties and protein sustained delivery thanks to a dually cross-linked network. Hyaluronan gel particles (HGPs, 1-5?m in diameter) with different cross-linking densities, i.e. HGPs-1.5, HGPs-3 and HGPs-15, were prepared in an inverse emulsion system and used as the reinforcing phase after glycidyl methacrylation, while glycidyl methacrylated hyaluronan with a substitution degree of 45.2% was synthesized as the matrix phase. These two phases were cross-linked under ultraviolet irradiation to form self-reinforcing hyaluronan hydrogels (srHAs) that showed typical cross-linked structure of HGPs connecting the matrix phase by cross-section observation. In comparison to hyaluronan bulk gels and their blends with HGPs, srHAs distinctly enhanced the mechanical properties and BSA long-term sustained delivery, especially srHA-1.5 showed the highest compressive modulus of 220±15kPa and the slowest BSA delivery (67% release at 14d). The 3T3 fibroblast cell culture showed that all the srHAs had no cytotoxicity. PMID:25491993

Luo, Chunhong; Xu, Guoguang; Wang, Xinghui; Tu, Mei; Zeng, Rong; Rong, Jianhua; Zhao, Jianhao

2015-01-01

3

The Inflammation-associated Protein TSG-6 Cross-links Hyaluronan via Hyaluronan-induced TSG-6 Oligomers  

PubMed Central

Tumor necrosis factor-stimulated gene-6 (TSG-6) is a hyaluronan (HA)-binding protein that plays important roles in inflammation and ovulation. TSG-6-mediated cross-linking of HA has been proposed as a functional mechanism (e.g. for regulating leukocyte adhesion), but direct evidence for cross-linking is lacking, and we know very little about its impact on HA ultrastructure. Here we used films of polymeric and oligomeric HA chains, end-grafted to a solid support, and a combination of surface-sensitive biophysical techniques to quantify the binding of TSG-6 into HA films and to correlate binding to morphological changes. We find that full-length TSG-6 binds with pronounced positive cooperativity and demonstrate that it can cross-link HA at physiologically relevant concentrations. Our data indicate that cooperative binding of full-length TSG-6 arises from HA-induced protein oligomerization and that the TSG-6 oligomers act as cross-linkers. In contrast, the HA-binding domain of TSG-6 (the Link module) alone binds without positive cooperativity and weaker than the full-length protein. Both the Link module and full-length TSG-6 condensed and rigidified HA films, and the degree of condensation scaled with the affinity between the TSG-6 constructs and HA. We propose that condensation is the result of protein-mediated HA cross-linking. Our findings firmly establish that TSG-6 is a potent HA cross-linking agent and might hence have important implications for the mechanistic understanding of the biological function of TSG-6 (e.g. in inflammation). PMID:21596748

Baranova, Natalia S.; Nilebäck, Erik; Haller, F. Michael; Briggs, David C.; Svedhem, Sofia; Day, Anthony J.; Richter, Ralf P.

2011-01-01

4

Slide-ring gel: Topological gel with freely movable cross-links  

NASA Astrophysics Data System (ADS)

The structure of “slide-ring (SR) gel” was investigated by means of small angle neutron scattering (SANS). The SR gel was synthesized by coupling of ?-cyclodextrin molecules on polyrotaxane chains. A cross-linking point of SR gel has a shape of “figure-of-eight”. Two-dimensional SANS patterns for uniaxially stretched SR gels showed a “normal” butterfly pattern. This result indicates that the cross-links slide along the polymer chain so as to minimize the local strain as a “pulley”. The pulley effect was found to be significant to reduce spatial inhomogeneities inherent in polymer gels.

Karino, Takeshi; Shibayama, Mitsuhiro; Ito, Kohzo

2006-11-01

5

Incorporation of pentraxin 3 into hyaluronan matrices is tightly regulated and promotes matrix cross-linking.  

PubMed

Mammalian oocytes are surrounded by a highly hydrated hyaluronan (HA)-rich extracellular matrix with embedded cumulus cells, forming the cumulus cell·oocyte complex (COC) matrix. The correct assembly, stability, and mechanical properties of this matrix, which are crucial for successful ovulation, transport of the COC to the oviduct, and its fertilization, depend on the interaction between HA and specific HA-organizing proteins. Although the proteins inter-?-inhibitor (I?I), pentraxin 3 (PTX3), and TNF-stimulated gene-6 (TSG-6) have been identified as being critical for COC matrix formation, its supramolecular organization and the molecular mechanism of COC matrix stabilization remain unknown. Here we used films of end-grafted HA as a model system to investigate the molecular interactions involved in the formation and stabilization of HA matrices containing TSG-6, I?I, and PTX3. We found that PTX3 binds neither to HA alone nor to HA films containing TSG-6. This long pentraxin also failed to bind to products of the interaction between I?I, TSG-6, and HA, among which are the covalent heavy chain (HC)·HA and HC·TSG-6 complexes, despite the fact that both I?I and TSG-6 are ligands of PTX3. Interestingly, prior encounter with I?I was required for effective incorporation of PTX3 into TSG-6-loaded HA films. Moreover, we demonstrated that this ternary protein mixture made of I?I, PTX3, and TSG-6 is sufficient to promote formation of a stable (i.e. cross-linked) yet highly hydrated HA matrix. We propose that this mechanism is essential for correct assembly of the COC matrix and may also have general implications in other inflammatory processes that are associated with HA cross-linking. PMID:25190808

Baranova, Natalia S; Inforzato, Antonio; Briggs, David C; Tilakaratna, Viranga; Enghild, Jan J; Thakar, Dhruv; Milner, Caroline M; Day, Anthony J; Richter, Ralf P

2014-10-31

6

Inter-?-inhibitor impairs TSG-6-induced hyaluronan cross-linking.  

PubMed

Under inflammatory conditions and in the matrix of the cumulus-oocyte complex, the polysaccharide hyaluronan (HA) becomes decorated covalently with heavy chains (HCs) of the serum glycoprotein inter-?-inhibitor (I?I). This alters the functional properties of the HA as well as its structural role within extracellular matrices. The covalent transfer of HCs from I?I to HA is catalyzed by TSG-6 (tumor necrosis factor-stimulated gene-6), but TSG-6 is also known as a HA cross-linker that induces condensation of the HA matrix. Here, we investigate the interplay of these two distinct functions of TSG-6 by studying the ternary interactions of I?I and TSG-6 with well defined films of end-grafted HA chains. We demonstrate that TSG-6-mediated cross-linking of HA films is impaired in the presence of I?I and that this effect suppresses the TSG-6-mediated enhancement of HA binding to CD44-positive cells. Furthermore, we find that the interaction of TSG-6 and I?I in the presence of HA gives rise to two types of complexes that independently promote the covalent transfer of heavy chains to HA. One type of complex interacts very weakly with HA and is likely to correspond to the previously reported covalent HC·TSG-6 complexes. The other type of complex is novel and binds stably but noncovalently to HA. Prolonged incubation with TSG-6 and I?I leads to HA films that contain, in addition to covalently HA-bound HCs, several tightly but noncovalently bound molecular species. These findings have important implications for understanding how the biological activities of TSG-6 are regulated, such that the presence or absence of I?I will dictate its function. PMID:24005673

Baranova, Natalia S; Foulcer, Simon J; Briggs, David C; Tilakaratna, Viranga; Enghild, Jan J; Milner, Caroline M; Day, Anthony J; Richter, Ralf P

2013-10-11

7

Deformation and fracture of cross-linked polymer gels  

NASA Astrophysics Data System (ADS)

Because soft materials, particularly polymer gels, are playing a greater role in industrial and biotechnological applications today, the exploration of their mechanical behavior over a range of deformations is becoming more relevant in our daily lives. Understanding these properties is therefore necessary as a means to predict their response for specific applications. To address these concerns, this dissertation presents a set of analytic tools based on flat punch probe indentation tests to predict the response of polymer gels from a mechanical perspective over a large range of stresses and at failure. At small strains, a novel technique is developed to determine the transport properties of gels based on their measured mechanical behavior. Assuming that a polymer gel behaves in a similar manner as a porous structure, the differentiation of solvent flow from viscoelasticity of a gel network is shown to be possible utilizing a flat, circular punch and a flat, rectangular punch under oscillatory conditions. Use of the technique is demonstrated with a poly(N-isopropyl acrylamide) (pNIPAM) hydrogel. Our results indicate that solvent flow is inhibited at temperatures above the critical solution temperature of 35°C. At high stresses and fracture, the flat probe punch indentation geometry is used to understand how the structure and geometry of silicone based gels affect their mechanical properties. A delayed failure response of the gels is observed and the modes of failure are found to be dependent on the geometry of the system. The addition of a sol fraction in these gels was found to toughen the network and play an important role at these large deformations. Potential mechanisms of fracture resistance are discussed, as is the effect of geometric confinement as it relates to large scale deformation and fracture. These results lay the groundwork for understanding the mechanical response of other highly, deformable material systems utilizing this particular geometry.

Lin, Wei-Chun

8

Ultrahigh Ductile Gels Developed by Inter Cross-linking Network (ICN)  

NASA Astrophysics Data System (ADS)

Gels have low frictional properties, permeability and biocompatibility due to high water content. In the last decade, several high-strength gels have been developed, which are promising for extending the application of gels as industrial materials. In this study, ultrahigh ductile gels are proposed by developing Inter Cross-linking Network (ICN), which is the novel internal structure of gels. The ICN gels can achieve more than 67.9% increase in the ductility in comparison with normal poly(N,N-dimethylacrylamide) gels, only by adding a little amount of fiber, hydroxypropyl cellulose, which is known as lyotropic crystalline polymer, while containing 97wt% water.

Takada, Go; Hidema, Ruri; Furukawa, Hidemitsu

9

Ionically cross-linked hyaluronic acid: wetting, lubrication, and viscoelasticity of a modified adhesion barrier gel  

PubMed Central

Hyaluronic acid (HA), in linear or cross-linked form, is a common component of cosmetics, personal care products, combination medical products, and medical devices. In all cases, the ability of the HA solution or gel to wet surfaces and/or disrupt and lubricate interfaces is a limiting feature of its mechanism of action. We synthesized ferric ion–cross-linked networks of HA based on an adhesion barrier, varied the degree of cross-linking, and performed wetting goniometry, viscometry, and dynamic mechanical analysis. As cross-linking increases, so do contact angle, viscosity, storage modulus, and loss modulus; thus, wetting and lubrication are compromised. These findings have implications in medical device materials, such as adhesion barriers and mucosal drug delivery vehicles. PMID:22915924

Vorvolakos, Katherine; Isayeva, Irada S; Luu, Hoan-My Do; Patwardhan, Dinesh V; Pollack, Steven K

2011-01-01

10

Collagen telopeptides (cross-linking sites) play a role in collagen gel lattice contraction  

NASA Technical Reports Server (NTRS)

Solubilized interstitial collagens will form a fibrillar, gel-like lattice when brought to physiologic conditions. In the presence of human dermal fibroblasts the collagen lattice will contract. The rate of contraction can be determined by computer-assisted planemetry. The mechanisms involved in contraction are as yet unknown. Using this system it was found that the rate of contraction was markedly decreased when collagen lacking telopeptides was substituted for native collagen. Histidinohydroxylysinonorleucine (HHL) is a major stable trifunctional collagen cross-link in mature skin that involves a carboxyl terminal, telopeptide site 16c, the sixteenth amino acid residue from the carboxy terminal of the telopeptide region of alpha 1 (I) in type I collagen. Little, if any, HHL was present in native, purified, reconstituted, soluble collagen fibrils from 1% acetic acid-extracted 2-year-old bovine skin. In contrast, HHL cross-links were present (0.22 moles of cross-link per mole of collagen) in lattices of the same collagen contracted by fibroblasts. However, rat tail tendon does not contain HHL cross-links, and collagen lattices made of rat tail tendon collagen are capable of contraction. This suggests that telopeptide sites, and not mature HHL cross-links per se, are essential for fibroblasts to contract collagen lattices. Beta-aminopropionitrile fumarate (BAPN), a potent lathyrogen that perturbs collagen cross-linking by inhibition of lysyl oxidase, also inhibited the rate of lattice cell contraction in lattices composed of native collagen. However, the concentrations of BAPN that were necessary to inhibit the contraction of collagen lattices also inhibited fibroblast growth suggestive of cellular toxicity. In accordance with other studies, we found no inhibition of the rate of lattice contraction when fibronectin-depleted serum was used. Electron microscopy of contracted gels revealed typical collagen fibers with a characteristic axial periodicity. The data provide evidence that collagen telopeptide sites play a role in collagen gel lattice contraction.

Woodley, D. T.; Yamauchi, M.; Wynn, K. C.; Mechanic, G.; Briggaman, R. A.

1991-01-01

11

Surface characteristics determining the cell compatibility of ionically cross-linked alginate gels.  

PubMed

In this study we investigated differences in the characteristics determining the suitability of five types of ion (Fe(3+), Al(3+), Ca(2+), Ba(2+) and Sr(2+))-cross-linked alginate films as culture substrates for cells. Human dermal fibroblasts were cultured on each alginate film to examine the cell affinity of the alginates. Since cell behavior on the surface of a material is dependent on the proteins adsorbed to it, we investigated the protein adsorption ability and surface features (wettability, morphology and charge) related to the protein adsorption abilities of alginate films. We observed that ferric, aluminum and barium ion-cross-linked alginate films supported better cell growth and adsorbed higher amounts of serum proteins than other types. Surface wettability analysis demonstrated that ferric and aluminum ion-cross-linked alginates had moderate hydrophilic surfaces, while other types showed highly hydrophilic surfaces. The roughness was exhibited only on barium ion-cross-linked alginate surface. Surface charge measurements revealed that alginate films had negatively charged surfaces, and showed little difference among the five types of gel. These results indicate that the critical factors of ionically cross-linked alginate films determining the protein adsorption ability required for their cell compatibility may be surface wettability and morphology. PMID:24496019

Machida-Sano, Ikuko; Hirakawa, Makoto; Matsumoto, Hiroki; Kamada, Mitsuki; Ogawa, Sakito; Satoh, Nao; Namiki, Hideo

2014-04-01

12

Combined cross-linking treatments of bovine serum albumin gel beadlets for controlled-delivery of caffeine  

Microsoft Academic Search

Combined cross-linking agents (CCLA) of microbial transglutaminase (MTgase) and ribose were applied during production of bovine serum albumin gels via incubation and heating treatment, respectively. CCLA produced stronger gels with lower protein solubility in disruptive solvents (1% sodium dodecyl sulphate plus 1% ?-mercaptoethanol) as compared to BSA gels (BSA\\/Control) or gels produced using single cross-linking agents (SCLA) of MTGase or

Chee-Yuen Gan; Lai-Hoong Cheng; Eng-Tong Phuah; Pei-Ni Chin; Abbas F. M. AlKarkhi; Azhar Mat Easa

2009-01-01

13

The microstructure of collagen type I gel cross-linked with gold nanoparticles  

PubMed Central

Scanning electron microscopy, transmission electron micrsocopy, rheomerty, and electrochemistry were used to provide insight into the microstructure of collagen type I gel (1% w/v) modified with the tiopronin-protected (N-(2-mercaptopropionyl)glycine) gold nanoparticles (TPAu), a multivalent crosslinker. The cross-linking reaction, performed via EDC (1-ethyl-3-(3-dimethyl aminopropyl) carbodiimide) coupling, results in compliant, mechanically stable and continuous gels. The gels contain unusual interconnected collagen-TPAu particles. Electrochemical measurements of 4-hydroxy-(2,2,6,6-tetramethylpiperidine-1-oxyl) (4HT) diffusion within the gel reveal that the gel hindrance is nearly independent of the TPAu concentration. The properties of the collagen-TPAu gel make it suitable for potential biomedical applications, such as delivery of small molecule drugs. PMID:22796781

Schuetz, Thomas; Richmond, Nathan; Harmon, Marianne E.; Schuetz, Joseph; Castaneda, Luciano; Slowinska, Katarzyna

2012-01-01

14

Iodopropyl-branched polysiloxane gel electrolytes with improved ionic conductivity upon cross-linking.  

PubMed

We here report the implementation of poly[(3-N-methylimidazoliumpropyl)methylsiloxane-co-dimethylsiloxane]iodides as suitable polymeric hosts for a novel class of in situ cross-linkable iodine/iodide-based gel-electrolytes for dye-sensitized solar cells. The polymers are first partially quaternized and then subjected to a thermal cross-linking which allows the formation of a 3D polymeric network which is accompanied by a dramatic enhancement of the ionic conductivity. PMID:25266064

De Gregorio, G L; Giannuzzi, R; Cipolla, M P; Agosta, R; Grisorio, R; Capodilupo, A; Suranna, G P; Gigli, G; Manca, M

2014-11-21

15

Immobilization of Cross-Linked Phenylalanine Ammonia Lyase Aggregates in Microporous Silica Gel  

PubMed Central

A separable and highly-stable enzyme system was developed by adsorption of phenylalanine ammonia lyase (PAL) from Rhodotorula glutinis in amino-functionalized macroporous silica gel and subsequent enzyme crosslinking. This resulted in the formation of cross-linked enzyme aggregates (PAL-CLEAs) into macroporous silica gel (MSG-CLEAs). The effect of adsorptive conditions, type of aggregating agent, its concentration as well as that of cross-linking agent was studied. MSG-CLEAs production was most effective using ammonium sulfate (40%-saturation), followed by cross-linking for 1 h with 1.5% (v/v) glutaraldehyde. The resulting MSG-CLEAs extended the optimal temperature and pH range compared to free PAL and PAL-CLEAs. Moreover, MSG-CLEAs exhibited the excellent stability of the enzyme against various deactivating conditions such as temperature and denaturants, and showed higher storage stability compared to the free PAL and the conventional PAL-CLEAs. Such as, after 6 h incubation at 60°C, the MSG-CLEAs still retained more than 47% of the initial activity whereas PAL-CLEAs only retained 7% of the initial activity. Especially, the MSG-CLEAs exhibited good reusability due to its suitable size and active properties. These results indicated that PAL-CLEAs on MSG might be used as a feasible and efficient solution for improving properties of immobilized enzyme in industrial application. PMID:24260425

Cui, Jian Dong; Li, Lian Lian; Bian, Hong Jie

2013-01-01

16

Rate effect in the fracture of rubbers and chemically cross-linked gels  

NASA Astrophysics Data System (ADS)

Stationary crack propagation in rubbers and chemically cross-linked gels is studied by a new molecular theory of fracture in polymer networks. The fracture energy G (energy required to create a unit free surface by fracture) as a function of the crack velocity V is shown to obey, when measured in the unit of ?lkBT, a master curve as a function of the dimensionless velocity 2tan ?V/l?0(T), where ? is the number density of the network chains, T is absolute temperature, ? is the angle of the crack tip, l is the mean distance between the adjacent cross-links, and ?0(T) is the scission rate of the chains. The slope of the master curve in logarithmic scale depends on the nature of chain rupture; it takes a small value 0.16-0.2 in the low velocity region, and exhibits a crossover to the three times larger value 0.5-0.6 in the high velocity region. The ultimate strength G0 as defined by the fracture energy in the limit of zero crack velocity is obtained as a function of the molecular weight of the network chain, the bond energy, and temperature. The theoretical model is applied specifically to peeling and tearing experiments of rubbers and gels to study how the velocity affects the fracture energy in different geometry of network breakage. All results are qualitatively compared with the data reported in the literature.

Tanaka, Fumihiko

2014-10-01

17

MALDI analysis of proteins after extraction from dissolvable ethylene glycol diacrylate cross-linked polyacrylamide gels.  

PubMed

Although the extraction of intact proteins from polyacrylamide gels followed by mass spectrometric molecular mass determination has been shown to be efficient, there is room for alternative approaches. Our study evaluates ethylene glycol diacrylate, a cleavable cross-linking agent used for a new type of dissolvable gels. It attains an ester linkage that can be hydrolyzed in alkali conditions. The separation performance of the new gel system was tested by 1D and 2D SDS-PAGE using the outer chloroplast envelope of Pisum sativum as well as a soluble protein fraction of human lymphocytes, respectively. Gel spot staining (CBB), dissolving, and extracting were conducted using a custom-developed workflow. It includes protein extraction with an ammonia-SDS buffer followed by methanol treatment to remove acrylamide filaments. Necessary purification for MALDI-TOF analysis was implemented using methanol-chloroform precipitation and perfusion HPLC. Both cleaning procedures were applied to several standard proteins of different molecular weight as well as 'real' biological samples (8-75 kDa). The protein amounts, which had to be loaded on the gel to detect a peak in MALDI-TOF MS, were in the range of 0.1 to 5 ?g, and the required amount increased with increasing mass. PMID:23775326

Papasotiriou, Dimitrios G; Markoutsa, Stavroula; Gorka, Jan; Schleiff, Enrico; Karas, Michael; Meyer, Bjoern

2013-09-01

18

Generalized structural description of calcium-sodium aluminosilicate hydrate gels: the cross-linked substituted tobermorite model.  

PubMed

Structural models for the primary strength and durability-giving reaction product in modern cements, a calcium (alumino)silicate hydrate gel, have previously been based solely on non-cross-linked tobermorite structures. However, recent experimental studies of laboratory-synthesized and alkali-activated slag (AAS) binders have indicated that the calcium-sodium aluminosilicate hydrate [C-(N)-A-S-H] gel formed in these systems can be significantly cross-linked. Here, we propose a model that describes the C-(N)-A-S-H gel as a mixture of cross-linked and non-cross-linked tobermorite-based structures (the cross-linked substituted tobermorite model, CSTM), which can more appropriately describe the spectroscopic and density information available for this material. Analysis of the phase assemblage and Al coordination environments of AAS binders shows that it is not possible to fully account for the chemistry of AAS by use of the assumption that all of the tetrahedral Al is present in a tobermorite-type C-(N)-A-S-H gel, due to the structural constraints of the gel. Application of the CSTM can for the first time reconcile this information, indicating the presence of an additional activation product that contains highly connected four-coordinated silicate and aluminate species. The CSTM therefore provides a more advanced description of the chemistry and structure of calcium-sodium aluminosilicate gel structures than that previously established in the literature. PMID:23534827

Myers, Rupert J; Bernal, Susan A; San Nicolas, Rackel; Provis, John L

2013-04-30

19

Separation performance of single-stranded DNA electrophoresis in photopolymerized cross-linked polyacrylamide gels.  

PubMed

Considerable effort has been directed toward optimizing performance and maximizing throughput in ssDNA electrophoresis because it is a critical analytical step in a variety of genomic assays. Ultimately, it would be desirable to quantitatively determine the achievable level of separation resolution directly from measurements of fundamental physical properties associated with the gel matrix rather than by the trial and error process often employed. Unfortunately, this predictive capability is currently lacking, due in large part to the need for a more detailed understanding of the fundamental parameters governing separation performance (mobility, diffusion, and dispersion). We seek to address this issue by systematically characterizing electrophoretic mobility, diffusion, and dispersion behavior of ssDNA fragments in the 70-1,000 base range in a photopolymerized cross-linked polyacrylamide matrix using a slab gel DNA sequencer. Data are collected for gel concentrations of 6, 9, and 12%T at electric fields ranging from 15 to 40 V/cm, and resolution predictions are compared with corresponding experimentally measured values. The data exhibit a transition from behavior consistent with the Ogston model for small fragments to behavior in agreement with the biased reptation model at larger fragment sizes. Mobility data are also used to estimate the mean gel pore size and compare the predictions of several models. PMID:16331587

Lo, Roger C; Ugaz, Victor M

2006-02-01

20

Properties of collagen gels cross-linked by N-hydroxysuccinimide activated adipic acid deriviate.  

PubMed

In order to improve the properties of collagen gel, N-hydroxysuccinimide activated adipic acid derivative (NHS-AA) was introduced into the formation of collagen fibrils. NHS-AA with different [NHS-AA]/[NH2] ratios (0.1-1.5, calculated by [ester group] of NHS-AA and [NH2] of lysine and hydroxylysine residues of collagen) was added after, simultaneously with or before the formation of collagen fibrils (abbreviated CAF, CSF and CBF, respectively) to obtain different collagen gels. With the same dose of NHS-AA, the cross-linking degree for CAF was lower than those for CSF and CBF. The formation of collagen fibrils was restrained by NHS-AA for CSF and CBF while that for CAF was unaffected. When the dose of NHS-AA increased from 0.1 to 1.5, the water contents of CSF and CBF increased while that of CAF had no obvious change. With lower dose of NHS-AA (0.1), CAF possessed higher value of G' (87.3Pa) and the best thermal stability (47.6°C). As the ratio of [NHS-AA]/[NH2] increased to 1.5, CSF had the maximum value of G' (288.8Pa) and CAF had the best thermal stability (52.9°C). These results showed collagen gels with different properties could be prepared by adding NHS-AA with different adding sequence and dose. PMID:24933521

Duan, Lian; Liu, Wentao; Tian, Zhenhua; Li, Conghu; Li, Guoying

2014-08-01

21

Gamma-cross-linked nonfibrillar collagen gel as a scaffold for osteogenic differentiation of mesenchymal stem cells.  

PubMed

We fabricated a transparent nonfibrillar collagen gel using gamma irradiation (5 kGy) and cultured rat mesenchymal stem cells (MSCs) on both the gamma-irradiated collagen gel and on unirradiated fibrillar collagen gel. Cells attached well and proliferated with high viability on the surface of both gels. The cells cultured on the gamma-irradiated nonfibrillar gel had a unique elongated shape and adhered to each other in culture. After 21 days of culture in dexamethasone-containing culture medium, the contents of bone-specific osteocalcin and calcium on the gamma-irradiated nonfibrillar gel were 1.4 and 1.9 times higher than those on fibrillar collagen gel, respectively. These data show that osteogenic differentiation of MSCs was promoted more efficiently on the gamma-cross-linked nonfibrillar gel than on the fibrillar gel and demonstrate the potential of the gamma-irradiated collagen gel for use in bone tissue engineering. PMID:25176637

Takitoh, Takako; Bessho, Masahiko; Hirose, Motohiro; Ohgushi, Hajime; Mori, Hideki; Hara, Masayuki

2015-02-01

22

Swelling/shrinking kinetics of chemically cross-linked poly(vinyl alcohol) gels in the presence of borate ions  

NASA Astrophysics Data System (ADS)

The swelling/shrinking kinetics of chemically cross-linked poly(vinyl alcohol) (PVA) gels with borate ions has been studied by measuring the gel size as a function of time. The experimental process consisted of two steps, i.e., (I) immersion of a gel in a mixture of NaOH and boric acid aqueous solutions, and (II) subsequent immersion in deionized water or in a NaOH solution without borate ions. In step I, the gel swelled or shrank depending on the borate ion concentration and reached individual equilibrium values within 5000 min. After equilibration, the gel was transferred to the second bath and step II was initiated. When a gel was immersed in deionized water, the gel swelled considerably and then deswelled gradually to the original size. On the other hand, when a gel was dipped in a bath containing NaOH, a reverse process of step I took place and the gel size gradually reduced to the original size. The diffusion coefficients in these steps are discussed in conjunction with those obtained by dynamic light scattering.

Shibayama, Mitsuhiro; Uesaka, Masao; Shiwa, Yasuhiro

1996-09-01

23

Oral hyaluronan gel reduces post operative tarsocrural effusion in the yearling Thoroughbred  

Microsoft Academic Search

Summary Reasons for performing study: Hyaluronan (HA) has been used to treat joint disease via intra-articular, i.v. and oral administration. The efficacy of intra-articular and i.v. use has been evaluated but the oral route has yet to be examined. Objectives: To determine the effect of oral hyaluronan gel on joint effusion following arthroscopic surgery for osteochondritis dissecans (OCD) of the

B. J. BERGIN; S. W. PIERCE; L. R. BRAMLAGE; A. STROMBERG

2010-01-01

24

Novel cross-linked alcohol-insoluble solid (CL-AIS) affinity gel from pea pod for pectinesterase purification.  

PubMed

Alcohol-insoluble solids (AIS) from pea pod were cross-linked (CL-AIS) and used as an affinity gel matrix to isolate pectin esterases (PEs) from tendril shoots of chayote (TSC) and jelly fig achenes (JFA), and the results were compared with those isolated by ion-exchange chromatography with a commercial resin. CL-AIS gel matrix in a column displayed poor absorption and purification fold of PE; however, highly methoxylated CL-AIS (HM-CL-AIS), by exposing CL-AIS to methanolic sulfuric acid to increase the degree of esterification (DE) to 92%, facilitated the enzyme purification. The purified TSC PE and JFA PE by the HM-CL-AIS column were proofed as a single band on an SDS-PAGE gel, showing that the HM-CL-AIS column was a good matrix for purification of PE, either with alkaline isoelectric point (pI) (TSC PE) or with acidic pI (JFA PE). PMID:16190661

Wu, Ming-Chang; Lin, Guan-Hui; Wang, Yuh-Tai; Jiang, Chii-Ming; Chang, Hung-Min

2005-10-01

25

In vitro hemocompatibility testing of UV-modified hyaluronan hydrogels  

Microsoft Academic Search

Hydrogels (hylans) based on cross-linked hyaluronan (HA) are potentially good biomaterials for vascular tissue engineering applications because they are highly non-antigenic and -immunogenic. To facilitate surface endothelialization, vital to vascular deployment, we irradiated the gel surface with low wavelength UV light. This process micro-textures the smooth gel surface to provide sites for cell anchorage and causes limited scission of native

Leena Pravina Amarnath; Arvind Srinivas; Anand Ramamurthi

2006-01-01

26

A Technique for High-Throughput Protein Crystallization in Ionically Cross-Linked Polysaccharide Gel Beads for X-Ray Diffraction Experiments  

PubMed Central

A simple technique for high-throughput protein crystallization in ionically cross-linked polysaccharide gel beads has been developed for contactless handling of crystals in X-ray crystallography. The method is designed to reduce mechanical damage to crystals caused by physical contact between crystal and mount tool and by osmotic shock during various manipulations including cryoprotection, heavy-atom derivatization, ligand soaking, and diffraction experiments. For this study, protein crystallization in alginate and ?-carrageenan gel beads was performed using six test proteins, demonstrating that proteins could be successfully crystallized in gel beads. Two complete diffraction data sets from lysozyme and ID70067 protein crystals in gel beads were collected at 100 K without removing the crystals; the results showed that the crystals had low mosaicities. In addition, crystallization of glucose isomerase was carried out in alginate gel beads in the presence of synthetic zeolite molecular sieves (MS), a hetero-epitaxic nucleant; the results demonstrated that MS can reduce excess nucleation of this protein in beads. To demonstrate heavy-atom derivatization, lysozyme crystals were successfully derivatized with K2PtBr6 within alginate gel beads. These results suggest that gel beads prevent serious damage to protein crystals during such experiments. PMID:24740192

Sugahara, Michihiro

2014-01-01

27

Synthesis of nanocomposites from Pd(0) and a hyper-cross-linked functional resin obtained from a conventional gel-type precursor.  

PubMed

Hyper-cross-linked resins stemming from a gel-type poly-chloromethylated poly(styrene-co-divinylbenzene) resin (GT) have been investigated by a multi-methodological approach based on elemental analysis, scanning electron microscopy, X-ray microanalysis, and solvent absorption. The hyper-cross-linking of the parent resin was accomplished by Friedel-Crafts alkylation of the phenyl rings of the resins with the chloromethyl groups. This produced a permanent pore system comprising both micropores (<2.0 nm in diameter) and mesopores (2.2 nm). The chloromethyl groups that did not react in the hyper-cross-linking step were transformed into methylmercaptan groups and the latter were then converted into sulfonic groups by oxidation with hydrogen peroxide. By this procedure the extensive permanent porosity of the parent unsulfonated hyper-cross-linked polymer (HGT) was retained by the sulfonated polymer (HGTS). The final exchange capacity of HGTS was determined to be 0.36 mmol g(-1). HGTS was easily metalated with Pd(II) and the subsequent reduction of the metal centers with either aqueous sodium borohydride, formaldehyde, or dihydrogen produced three Pd(0)/HGTS nanocomposites. The metal nanoparticles had diameters in the 1-6 nm range for all the nanocomposites, as determined by TEM, but with somewhat different distributions. When formaldehyde was used, more than 90% of the nanoparticles were less than 3 nm and their radial distribution throughout the polymer beads was quite homogeneous. These findings show that with this reducing agent the metal nanoparticles are generated within the pore system of the polymer matrix, hence their size is controlled by the dimensions of the pores of the polymeric support. PMID:23728964

Je?ábek, Karel; Zecca, Marco; Centomo, Paolo; Marchionda, Federico; Peruzzo, Luca; Canton, Patrizia; Negro, Enrico; Di Noto, Vito; Corain, Benedetto

2013-07-01

28

Influence of titanium oxide and titanium peroxy gel on the breakdown of hyaluronan by reactive oxygen species  

Microsoft Academic Search

The molecular events occuring at the interface between titanium and connective tissue were investigated in order to help explain the unique biocompatible properties of titanium implants and their successful osseointegration into bone tissue. In this study the influence of commercially pure titanium and titanium peroxy gels on the breakdown of the connective tissue component and serum derived factor, hyaluronan, by

G. C. Taylor; R. J. Waddington; R. Moseley; K. R. Williams; G. Embery

1996-01-01

29

Noncovalently and covalently cross-linked polyurethane gels as alignment media and the suppression of residual polymer signals using diffusion-filtered spectroscopy.  

PubMed

With polyurethane (PU), a novel alignment medium for organic solvents is introduced and characterized, which is very robust and easy to produce on a large scale. Linear PU already constitutes an elastomer gel with several solvents based on its ability to form hydrogen bonds. Covalent cross-linking of the polymer with accelerated electrons provides an alignment medium with different properties. However, PU exhibits a number of undesired polymer signals in corresponding spectra, which ideally have to be removed spectroscopically. Within this context, we demonstrate the applicability of diffusion-filtered experiments for removal of the polymer signals. Example spectra for the usefulness of PU alignment media are provided for the common test molecules strychnine and norcamphor. PMID:23280657

Kaden, Peter; Freudenberger, J Christoph; Luy, Burkhard

2012-12-01

30

Interfacial Bioorthogonal Cross-Linking.  

PubMed

Described herein is interfacial bioorthogonal cross-linking, the use of bioorthogonal chemistry to create and pattern biomaterials through diffusion-controlled gelation at the liquid-gel interface. The basis is a rapid (k 2 284000 M(-1) s(-1)) reaction between strained trans-cyclooctene (TCO) and tetrazine (Tz) derivatives. Syringe delivery of Tz-functionalized hyaluronic acid (HA-Tz) to a bath of bis-TCO cross-linker instantly creates microspheres with a cross-linked shell through which bis-TCO diffuses freely to introduce further cross-linking at the interface. Tags can be introduced with 3D resolution without external triggers or templates. Water-filled hydrogel channels were prepared by simply reversing the order of addition. Prostate cancer cells encapsulated in the microspheres have 99% viability, proliferate readily, and form aggregated clusters. This process is projected to be useful in the fabrication of cell-instructive matrices for in vitro tissue models. PMID:25177528

Zhang, Han; Dicker, Kevin T; Xu, Xian; Jia, Xinqiao; Fox, Joseph M

2014-08-19

31

Gel electrophoretic studies of photochemical cross-linking of type I collagen with brominated 1,8-naphthalimide dyes and visible light  

NASA Astrophysics Data System (ADS)

Insoluble Type I collagen from bovine Achilles tendon (Sigma C9879) was suspended in a 3 mM solution of the dye diEd66Br dissolved in Cremophor ELR (BASF) to give a molecular concentration ratio. Fifty-microliter aliquots in 5-mm-diameter wells were exposed to 458 J/cm2 (225 mW/cm2, 1800 sec) of 457.9-nm light from an argon ion laser; similar aliquots with and without dye were kept in the dark to serve as controls. Following pelleting of the collagen by centrifugation and 3x washing in phosphate-buffered saline, aliquots of light-treated and control sample pellets were (1) digested in collagenase (Sigma C9891) or (2) extracted in 0.5 M acetic acid, followed by centrifugative ultrafiltration (10-kd cutoff) in 0.01 M acetic acid. Aliquots of the supernatant of the acid-extracted collagen also were digested in pepsin. Electrophoretic protein migration in 8% to 25% gradient polyacrylamide gels following SDS solubilization disclosed numerous, densely packed, essentially contiguous protein bands. These studies indicate that the dye and light treatment of insoluble Type I collagen (1) results in cross-linking of collagen molecules and (2) does not denature the trimer conformation sufficiently to enable significant digestion by pepsin.

Judy, Millard M.; Fuh, L.; Matthews, James Lester; Lewis, David E.; Utecht, Ronald E.

1994-09-01

32

Chemical cross-linking of Chlamydia trachomatis.  

PubMed Central

Purified elementary bodies (EBs) of Chlamydia trachomatis serovar L2 were analyzed by chemical cross-linking with disuccinimidyl selenodipropionate. The effect of the cross-linking was analyzed by immunoblotting sodium dodecyl sulfate-polyacrylamide gel electrophoresis-separated components which were reacted with monoclonal antibodies against major outer membrane protein (MOMP) and lipopolysaccharide (LPS). It was shown that in EBs, MOMP was cross-linked to the LPS component of the outer membrane. Migration analysis of the cross-linked components showed that with extensive cross-linking, most of the MOMP became cross-linked to LPS, changing the migration rate from 40 to 42.5 kilodaltons. A small fraction of MOMP associated with LPS was shown to be present in bands with migration rates of 100 and 110 kilodaltons. No association of MOMP or LPS to other proteins, or to dimer or multimer forms of MOMP without LPS, was observed. A totally different membrane structure must be present in reticulate bodies, since there, MOMP was so heavily cross-linked that it did not enter the polyacrylamide gel and thus became impossible to analyze. Furthermore, the monoclonal antibody, which reacted with LPS associated with MOMP in the cross-linked EBs, did not react with reticulate bodies. Images PMID:2449399

Birkelund, S; Lundemose, A G; Christiansen, G

1988-01-01

33

The Determination of Hyaluronan Molecular Weight Distribution by Means of High-Performance Size Exclusion Chromatography  

Microsoft Academic Search

The high-performance liquid chromatographic (HPLC) method relevant to the size exclusion chromatographic mode (SEC) used for the distribution analysis of high-molecular-weight hyaluronans is described. The HPLC fillings used, to which was applied a phosphate buffer (50 mM, pH 7.8) effluent, consisted of a cross-linked hydroxyethylmethacrylate derivative gel (HEMA-BIO), which is commercially available, and a highly porous aminopropyl-silica sorbent (SG-10-6000-NH2), which

E. Orviský; L. Šoltés; P. Chabr?ek; I. Novák; V. Kéry; M. Stan?íková; I. Vinš

1992-01-01

34

Application of NMR spectroscopy and multidimensional imaging to the gelcasting process and in-situ real-time monitoring of cross-linking polyacrylamide gels  

SciTech Connect

In the gelcasting process, a slurry of ceramic powder in a solution of organic monomers is cast in a mold. The process is different from injection molding in that it separates mold-filling from setting during conversion of the ceramic slurry to a formed green part. In this work, NMR spectroscopy and imaging have been conducted for in-situ monitoring of the gelation process and for mapping the polymerization. {sup 1}H nuclear magnetic resonance spectra have been obtained during polymerization of a premix of soluble reactive methacrylamide (monomer) and N, N`-methylene bisacrylamide (cross-linking molecules). The premix was polymerized by adding ammonium persulfate (initiator) and tetramethyl-ethylene-diamine (accelerator) to form long-chain, cross-linked polymers. The time-varying spin-lattice relaxation times T{sub 1} during polymerization have been studied at 25 and 35{degrees}C, and the variation of spectra and T{sub 1} with respect to extent of polymerization has been determined. To verify homogeneous polymerization, multidimensional NMR imaging was utilized for in-situ monitoring of the process. The intensities from the images are modeled and the correspondence shows a direct extraction of T{sub 1} data from the images.

Ahuja, S.; Dieckman, S.L.; Gopalsami, N. [and others

1995-04-01

35

Cross-linking casein micelles by a microbial transglutaminase: influence of cross-links in acid-induced gelation  

Microsoft Academic Search

Mechanical and structural properties of transglutaminase-induced casein gels are described here and compared with those of traditional acid casein gels. These gels were characterised by rheology and microscopy (confocal laser scanning microscopy and transmission electron microscopy). Unlike traditional casein gels produced by acidification and\\/or renneting which lead to gels cross-linked by weak physical interactions, gels formed using transglutaminase are covalently

C Schorsch; H Carrie; I. T Norton

2000-01-01

36

Radiation cross-linked carboxymethyl sago pulp hydrogels loaded with ciprofloxacin: Influence of irradiation on gel fraction, entrapped drug and in vitro release  

NASA Astrophysics Data System (ADS)

Carboxymethyl sago pulp (CMSP) with 0.4 DS, viscosity 184 dl/g and molecular weight 76,000 g/mol was synthesized from sago waste. 10 and 20% w/v solutions of CMSP were irradiated at 10-30 kGy to form hydrogels and were characterized by % gel fraction (GF). Irradiation of 20% CMSP using 25 kGy has produced stable hydrogels with the highest % GF and hence loaded with ciprofloxacin HCl. Drug-loaded hydrogels were produced by irradiating the mixture of drug and 20% CMSP solution at 25 kGy. After irradiation, the hydrogels were cut into circular discs with a diameter of 6±1 mm and evaluated for physicochemical properties as well as drug release kinetics. The ciprofloxacin loading in the disc was 14.7%±1 w/w with an entrapment efficiency of 73.5% w/w. The low standard deviation of drug-loaded discs indicated uniform thickness (1.5±0.3 mm). The unloaded discs were thinner (1±0.4 mm) and more brittle than the drug-loaded discs. FESEM, FT-IR, XRD, DSC and TGA analysis revealed the absence of polymer-drug interaction and transformation of crystalline to amorphous form of ciprofloxacin in the discs. The disc sustained the drug release in phosphate buffer pH 7.4 over 36 h in a first-order manner. The mechanism of the drug release was found to be swelling controlled diffusion and matrix erosion. The anti-bacterial effect of ciprofloxacin was retained after irradiation and CMSP disc could be a promising device for ocular drug delivery.

Lam, Yi Lyn; Muniyandy, Saravanan; Kamaruddin, Hashim; Mansor, Ahmad; Janarthanan, Pushpamalar

2015-01-01

37

Hylan gel composition for percutaneous embolization.  

PubMed

Viscoelastic, pseudoplastic, radiopaque injectable hylan gel for percutaneous embolization was developed and evaluated by in vitro and in vivo tests. The embolization gel is composed of cross-linked hylan (hyaluronan, hyaluronate), tantalum, microcrystalline cellulose, hexamethonium chloride, and thrombin. Upon delivery through small-lumen catheters to the appropriate vascular site, the gel induces formation of a solid blood/gel coagulum. Results from animal studies (rat aorta, rabbit auricular artery) demonstrate that formation of complete and long-lasting arterial blockage is readily achievable without complications due to blood flow, partial vessel obstruction, uncontrolled polymerization, or movement of the gel or its components (specifically thrombin and hexamethonium chloride) into the circulation. Microscopic evaluation indicates that arterial occlusion initially occurs as a result of the injected gel and formed fibrin; at 7 weeks and beyond, arteries are occluded by injected gel, inflammatory cells and fibrosis (scar tissue). PMID:1874755

Larsen, N E; Leshchiner, E A; Parent, E G; Hendrikson-Aho, J; Balazs, E A; Hilal, S K

1991-06-01

38

p-NN'-phenylenebismaleimide, a specific cross-linking agent for F-actin.  

PubMed Central

Covalent cross-links can be inserted between the subunits of F-actin by using p-NN'-phenylenebismaleimide. Cross-linking reaches its maximum value when one molecule of reagent has reacted with each actin subunit. p-NN'-Phenylenebismaleimide reacts initially with a cysteine residue on one subunit, the slower cross-linking reaction involving a lysine residue on a neighbouring subunit. Hydrolysis of the actin-bound reagent limits the extent of cross-linking. Quantitative analysis of the amounts of cross-linked oligomers seen on polyacrylamide gels containing sodium dodecyl sulphate suggests that neither the binding of the reagent to actin nor the formation of cross-links introduces strain into the structure. The cross-links do not join together different F-actin filaments, and evidence is presented that suggests that the cross-links join subunits of the same long-pitched helix. Images Fig. 1. PMID:743226

Knight, P; Offer, G

1978-01-01

39

Photoreactivities and thermal properties of psoralen cross-links  

SciTech Connect

The authors have studied the photoreaction of 8-methoxypsoralen (8-MOP), 4,5',8-trimethylpsoralen (TMP), and 4'-(hydroxymethyl)-4,5',8-trimethylpsoralen (HMT) with a pair of 18-base-long oligonucleotides in which a 14-base region is complementary. Only one 5'TpA site, favored for both monoadduct and cross-link formation with psoralen, is present in this oligonucleotide pair. They have used this model system to demonstrate, for the first time, strand specificity in the photoreaction of psoralen with DNA. They found that the two types of cross-links which form at this site have large differences in thermal stabilities. In addition, the denaturation of each cross-links isomer duplex occurred in at least three stages, which can be visualized as three bands in thermal equilibrium under the conditions of a denaturing polyacrylamide gel. This novel observation suggests that there are several domains differing in thermal stability in a psoralen cross-link.

Yeung, A.T.; Jones, B.K.; Chu, C.T.

1988-05-03

40

Cross-Linked Polymers Video  

NSDL National Science Digital Library

This video explains an activity related to cross-linked polymers. The topic is covered in relation to nanotechnology and requires background knowledge in eight grade science. The 1:27 minute video details the materials needed and steps required to complete this lesson. Visitors must complete a quick and free registration to access the materials.

2014-09-04

41

Hyaluronan: from extracellular glue to pericellular cue  

Microsoft Academic Search

Hyaluronan is an extracellular and cell-surface-associated polysaccharide that is traditionally regarded as a biological 'goo' that participates in lubricating joints or holding together gel-like connective tissues. Although these are common physiological roles of hyaluronan in adult organisms, hyaluronan also functions as a microenvironmental cue that co-regulates cell behaviour during embryonic development, healing processes, inflammation and tumour development. Recent work highlights

Bryan P. Toole

2004-01-01

42

Mechanical anisotropy in compressed collagen produced by localised photodynamic cross-linking.  

PubMed

Orientated focal cross-linking can be used to generate surface anisotropy, improve material stiffness and layer integration for the production of a stable 3D construct. Riboflavin (0.25 mM) diffusion into plastically compressed (PC) collagen gel was assessed by measuring the diffusion depth of riboflavin with time. The dynamic force analyser was used for peel force testing for interlayer cross-linking and material stiffness in perpendicular axis after orientated/topical cross-linking. One minute riboflavin diffusion time on either surface will saturate >12% of the collagen gel. Bonding strength doubled between PC collagen gel layers with a 5 min increase in cross-linking time (between 4 and 9 min) and break stress was increased significantly after cross-linking. Importantly, mechanical anisotropy was introduced in the break stress using orientated stripes of riboflavin in cross-linking, almost doubling the break stress parallel to the stripes. Limited riboflavin penetration in 1 min means that surface photo-dynamic cross-linking will enhance deep cell survival within the gel. Riboflavin mediated focal/orientated cross-linking generated new predictable anisotropy at the construct. The increase in bonding strength between layers after cross-linking enhances layer integration and graded surface stiffness will impact on cellular/mechanical properties of compressed gels. PMID:23262311

Wong, Josephine P F; MacRobert, Alexander J; Cheema, Umber; Brown, Robert A

2013-02-01

43

Collagen cross linking: Current perspectives  

PubMed Central

Keratoconus is a common ectatic disorder occurring in more than 1 in 1,000 individuals. The condition typically starts in adolescence and early adulthood. It is a disease with an uncertain cause and its progression is unpredictable, but in extreme cases, vision deteriorates and can require corneal transplant surgery. Corneal collagen cross-linking (CCL) with riboflavin (C3R) is a recent treatment option that can enhance the rigidity of the cornea and prevent disease progression. Since its inception, the procedure has evolved with newer instrumentation, surgical techniques, and is also now performed for expanded indications other than keratoconus. With increasing experience, newer guidelines regarding optimization of patient selection, the spectrum of complications and their management, and combination procedures are being described. This article in conjunction with the others in this issue, will try and explore the uses of collagen cross-linking (CXL) in its current form. PMID:23925327

Rao, Srinivas K

2013-01-01

44

Microrheology of cross-linked polyacrylamide networks  

NASA Astrophysics Data System (ADS)

Experiments investigating the local viscoelastic properties of a chemically cross-linked polymer are performed on polyacrylamide solutions in the sol and the gel regimes using polystyrene beads of varying sizes and surface chemistry as probes. The thermal motions of the probes are measured to obtain the elastic and viscous moduli of the sample. Probe dynamics are measured using two different dynamic light scattering techniques, diffusing wave spectroscopy (DWS) and quasielastic light scattering (QELS) as well as video-based particle tracking. Diffusing wave spectroscopy probes the short-time dynamics of the scatterers while QELS measures the dynamics at larger times. Video-based particle tracking provides a way to investigate the local environment of the individual probe particles. A combination of all the techniques results in a larger range of frequencies that can be probed compared to conventional bulk measurements while providing local information at the level of individual probes. A modified algebraic form of the generalized Stokes-Einstein equation is used to calculate the frequency-dependent moduli. A comparison of microrheological measurements with bulk rheology exhibits striking similarity, confirming the applicability of microrheology for chemically cross-linked polymeric systems.

Dasgupta, Bivash R.; Weitz, D. A.

2005-02-01

45

Microrheology of cross-linked polymers  

NASA Astrophysics Data System (ADS)

We use different microrheological techniques to investigate the elastic and viscous properties of polyacrylamide, a chemically cross-linked polymer. We have already shown^1 that a localized probe of the mechanical properties using light scattering compares very well with macrorheology measurements for polyethylene oxide, a simple flexible polymer. The addition of cross-linkers to a polymeric system is the next level of complexity that needs to be investigated using this technique. We probe both the sol and the gel phases of polyacrylamide. The two different phases are obtained by changing the concentration of acrylamide and methylenebisacrylamide, the cross-linking agent. We employ single scattering, diffusing wave spectroscopy and multi-particle tracking to measure the dynamics of the probe particles that are embedded in the polymer and compare it with bulk measurements. Light scattering probes the ensemble averaged response of the beads at higher frequencies while particle tracking can measure a local response of the polymer. ^1Bivash R. Dasgupta, Shang-You Tee, John C. Crocker, B.J. Frisken, and D.A. Weitz, PRE 65 051505 (2002).

Dasgupta, Bivash R.; Weitz, D. A.

2003-03-01

46

In vitro hemocompatibility testing of UV-modified hyaluronan hydrogels.  

PubMed

Hydrogels (hylans) based on cross-linked hyaluronan (HA) are potentially good biomaterials for vascular tissue engineering applications because they are highly non-antigenic and -immunogenic. To facilitate surface endothelialization, vital to vascular deployment, we irradiated the gel surface with low wavelength UV light. This process micro-textures the smooth gel surface to provide sites for cell anchorage and causes limited scission of native long-chain HA yielding smaller fragments that elicit an enhanced cell response. In the current in vitro study, we assessed the effects of UV irradiation on the short-term (<45 min) interaction between hylan gels and human blood cells (RBCs, platelets) and coagulation proteins at physiologic temperature. Although the lowered hydrophilicity of irradiated (UV) hylans elicited greater vascular cell response relative to unmodified (U) hylans, platelet deposition was unaffected and much lower compared to collagen-coated glass controls. The adhered platelets were rounded or mildly pseudopodic and did not express p-selectin, an activation marker. Both gel types induced identical, and minimal platelet release as measured using an platelet factor 4 ELISA, and identically deferred the intrinsic and extrinsic coagulation pathways. Both gel types induced elevated levels of contact activation of bound, but not plasma-phase factor XII relative to controls. Hemolysis rates were also identical and within accepted standards. We conclude that UV-treatment of hylans, useful to improve surface endothelialization, does not compromise their short-term hemocompatibility, vital to their use as vascular implant materials. PMID:16143386

Amarnath, Leena Pravina; Srinivas, Arvind; Ramamurthi, Anand

2006-03-01

47

Cross-linked hydroxypropylcellulose films: mechanical behaviour and electro-optical properties of PDLC type cells  

Microsoft Academic Search

We study the effect of the amount of cross-linking agent upon the mechanical and electro-optical behaviour of several cells prepared from hydroxypropylcellulose (HPC) cross-linked with 1,4 diisocianatobutane (BDI) (0.0%, 3.1%, 7.6%, 12.3% w\\/w). The tensile properties and the sol\\/gel fractions were obtained as a function of the amount of the cross-linking agent used to prepare the solid films. The Young's

P. L Almeida; S Tavares; A. F Martins; M. H Godinho; M. T Cidade; J. L Figueirinhas

2002-01-01

48

Highly Cross-Linked Polyethylenes  

Microsoft Academic Search

\\u000a Osteolysis after total joint replacement using ultra-high molecular weight Polyethylene bearing components has been shown\\u000a to be a major factor for the long-term failure of such components. Highly cross-linked polyethylene has already been introduced\\u000a in the late 1970s and demonstrated to have superior wear resistance compared to non-irradiated and irradiation sterilized\\u000a polyethylene used since 1962. In 1986 irradiation sterilization in

Robert M. Streicher

49

Cross-Linked Polyethylene for Higher Voltages  

Microsoft Academic Search

The rapid evolution of cross-linked polyethylene for high-voltage cable applications and the factors which promoted this development are discussed in relation to the growing demand for solid-dielectric constructions. Advances in cable design and technology are outlined for this thermally-stable insulation, highlighting the technical advantages of tandem-extruded cross-linked semiconductive shielding.

A. L. Mckean; F. S. Oliver; S. W. Trill

1967-01-01

50

Use of oligonucleotides to define the site of interstrand cross-links induced by Adriamycin.  

PubMed Central

It has been known for several years that Adriamycin forms adducts and interstrand cross-links when reacted for long periods of time with bacterial and mammalian DNA in vitro, with the cross-link being restricted to 2 bp elements containing GpC sequences. The self-complementary 20mer deoxyoligonucleotide TA4T4GCA4T4A has been used in this study as a model of the apparent G-G cross-linking site at GpC sequences. The rate of formation of cross-links, as well as the dependence on both Adriamycin and Fe(III) concentration, were similar with this oligonucleotide as compared with calf thymus DNA. The cross-linking was demonstrated on both denaturing and non-denaturing sequencing gels. The half-life of the G-G cross-link was 40 h, consistent with that implied with high molecular weight, heterogeneous sequence DNA. Exonuclease III digests of adducts formed with 20mer deoxyoligonucleotides containing single, central G-G, G-I and I-I potential cross-links revealed that a guanine residue is required at both ends of the cross-link. No cross-linking was observed with a similar oligonucleotide containing only a single central (G.C) bp. Images PMID:7630722

Cutts, S M; Phillips, D R

1995-01-01

51

Hyaluronan in human malignancies  

SciTech Connect

Hyaluronan, a major macropolysaccharide in the extracellular matrix of connective tissues, is intimately involved in the biology of cancer. Hyaluronan accumulates into the stroma of various human tumors and modulates intracellular signaling pathways, cell proliferation, motility and invasive properties of malignant cells. Experimental and clinicopathological evidence highlights the importance of hyaluronan in tumor growth and metastasis. A high stromal hyaluronan content is associated with poorly differentiated tumors and aggressive clinical behavior in human adenocarcinomas. Instead, the squamous cell carcinomas and malignant melanomas tend to have a reduced hyaluronan content. In addition to the stroma-cancer cell interaction, hyaluronan can influence stromal cell recruitment, tumor angiogenesis and epithelial-mesenchymal transition. Hyaluronan receptors, hyaluronan synthases and hyaluronan degrading enzymes, hyaluronidases, are involved in the modulation of cancer progression, depending on the tumor type. Furthermore, intracellular signaling and angiogenesis are affected by the degradation products of hyaluronan. Hyaluronan has also therapeutic implications since it is involved in multidrug resistance.

Sironen, R.K. [Institute of Clinical Medicine, Pathology and Forensic Medicine, University of Eastern Finland, P.O. Box 1627, FI-70211 Kuopio (Finland) [Institute of Clinical Medicine, Pathology and Forensic Medicine, University of Eastern Finland, P.O. Box 1627, FI-70211 Kuopio (Finland); Department of Pathology, Kuopio University Hospital, P.O. Box 1777, FI-70211 Kuopio (Finland); Tammi, M.; Tammi, R. [Institute of Biomedicine, Anatomy, University of Eastern Finland, P.O. Box 1627, FI-70211 Kuopio (Finland)] [Institute of Biomedicine, Anatomy, University of Eastern Finland, P.O. Box 1627, FI-70211 Kuopio (Finland); Auvinen, P.K. [Department of Oncology, Kuopio University Hospital, P.O. Box 1777, FI-70211 Kuopio (Finland)] [Department of Oncology, Kuopio University Hospital, P.O. Box 1777, FI-70211 Kuopio (Finland); Anttila, M. [Institute of Clinical Medicine, Pathology and Forensic Medicine, University of Eastern Finland, P.O. Box 1627, FI-70211 Kuopio (Finland) [Institute of Clinical Medicine, Pathology and Forensic Medicine, University of Eastern Finland, P.O. Box 1627, FI-70211 Kuopio (Finland); Department of Gynecology and Obstetrics, Kuopio University Hospital, P.O. Box 1777, FI-70211 Kuopio (Finland); Kosma, V-M., E-mail: Veli-Matti.Kosma@uef.fi [Institute of Clinical Medicine, Pathology and Forensic Medicine, University of Eastern Finland, P.O. Box 1627, FI-70211 Kuopio (Finland); Department of Pathology, Kuopio University Hospital, P.O. Box 1777, FI-70211 Kuopio (Finland)

2011-02-15

52

quantitative determination of collagen cross-links.  

PubMed

The primary functional role of collagen is as a supporting tissue and it is now established that the aggregated forms of the collagen monomers are stabilised to provide mechanical strength by a series of intermolecular cross-links. In order to understand the mechanical properties of collagen, it is necessary to identify and quantitatively determine the concentration of the cross-links during their changes with maturation, ageing and disease. These cross-links are formed by oxidative deamination of the epsilon-amino group of the single lysine or hydroxylysine in the amino and carboxy telopeptides of collagen by lysyl oxidase, the aldehyde formed reacting with a specific lysine or hydroxylysine in the triple helix. The divalent Schiff base and keto-amine bonds so formed link the molecules head to tail and spontaneously convert during maturation to trivalent cross-links, a histidine derivative and cyclic pyridinolines and pyrroles, respectively. These latter bonds are believed to be transverse inter-fibrillar cross-links, and are tissue rather than species specific. We describe the determination of these cross-links in detail.Elastin is also stabilised by cross-linking based on oxidative deamination of most of its lysine residues to yield tetravalent cross-links, desmosine and iso-desmosine, the determination of which is also described.A second cross-linking pathway occurs during ageing (and to a greater extent in diabetes mellitus) involving reaction with tissue glucose. The initial product glucitol-lysine can be determined as furosine and pyridosine, and determination of advanced glycation end-products believed to be cross-links, such as pentosidine, are also described. PMID:19247601

Avery, Nicholas C; Sims, Trevor J; Bailey, Allen J

2009-01-01

53

Dynamic Light Scattering Studies on Photo Polymerized and Chemically Cross-linked Polyacrylamide Hydrogels  

NASA Astrophysics Data System (ADS)

Dynamic light scattering studies have been carried on (1) chemically cross-linked polyacrylamide (CCPA) gel (2) photopolymerized polyacrylamide (PPPA) gel and (3) PPPA gel with 93nm diameter polystyrene particles incorporated. All the three gels exhibited nonergodicity. The diffusion coefficients have been obtained by analyzing the initial time decay of intermediate scattering functions (ISF) for all the three gels. ISFs obtained for different scattering wave-vectors for pure gels showed collapse, whereas such a collapse was not observed for gel with particles, which imply a change in dynamics with incorporation of particles. The results are understood based on models that describe dynamics in gels.

Sabareesh, K. P. V.; Jena, Sidhartha S.; Tata, B. V. R.

2006-05-01

54

Modified gum arabic cross-linked gelatin scaffold for biomedical applications.  

PubMed

The present work deals with development of modified gum arabic cross-linked gelatin scaffold for cell culture. A new biocompatible scaffold was developed by cross-linking gelatin (Gel) with gum arabic, a polysaccharide. Gum arabic was subjected to periodate oxidation to obtain gum arabic aldehyde (GAA). GAA was reacted with gelatin under appropriate pH to prepare the cross-linked hydrogel. Cross-linking occurred due to Schiff's base reaction between aldehyde groups of oxidized gum arabic and amino groups of gelatin. The scaffold prepared from the hydrogel was characterized by swelling properties, degree of cross-linking, in vitro degradation and scanning electron microscopy (SEM). Cytocompatibility evaluation using L-929 and HepG2 cells confirmed non-cytotoxic and non-adherent nature of the scaffold. These properties are essential for generating multicellular spheroids and hence the scaffold is proposed to be a suitable candidate for spheroid cell culture. PMID:25175214

Sarika, P R; Cinthya, Kuriakose; Jayakrishnan, A; Anilkumar, P R; James, Nirmala Rachel

2014-10-01

55

Cross-linking of bacteriorhodopsin using specific carboxyl modifications and proteolytic cleavage  

SciTech Connect

Specific carboxyl modification of purple membrane using a water-soluble carbodiimide yielded a mixture of oligomers, revealed by gel electrophoresis. Purple membrane pre-treated with papain or trypsin, cleaving the C-terminal tail, showed the same pattern of cross-linked products. Chymotryptic cleavage released amino acids 1-72 (7kD fragment) from the cross-linked products, as it did with native membrane. The tail and helices A and B are not, therefore, involved in carbodiimide-promoted cross-linking. Similar cleavage of a hydrophobic dihydroquinoline-modified sample showed that mainly intra-molecular cross-linking occurs, with little cross-linking between the large and small chymotryptic fragments.

Wu-Chou, S.; Robinson, A.E.; Hrabeta, E.; Packer, L.

1984-10-30

56

The effect of cross-link distributions in axially-ordered, cross-linked networks  

PubMed Central

Cross-linking between the constituent chains of biopolymers has a marked effect on their materials properties. In certain of these materials, such as fibrillar collagen, increases in cross-linking lead to an increase in the melting temperature. Fibrillar collagen is an axially-ordered network of cross-linked polymer chains exhibiting a broadened denaturation transition, which has been explained in terms of the successive denaturation with temperature of multiple species. We model axially-ordered cross-linked materials as stiff chains with distinct arrangements of cross-link-forming sites. Simulations suggest that systems composed of chains with identical arrangements of cross-link-forming sites exhibit critical behavior. In contrast, systems composed of non-identical chains undergo a crossover. This model suggests that the arrangement of cross-link-forming sites may contribute to the broadening of the denaturation transition in fibrillar collagen. PMID:23751928

Bennett, C. Brad; Kruczek, James; Rabson, D. A.; Matthews, W. Garrett; Pandit, Sagar A.

2013-01-01

57

The effect of cross-link distributions in axially-ordered, cross-linked networks  

NASA Astrophysics Data System (ADS)

Cross-linking between the constituent chains of biopolymers has a marked effect on their materials’ properties. In certain of these materials, such as fibrillar collagen, increases in cross-linking lead to an increase in the melting temperature. Fibrillar collagen is an axially-ordered network of cross-linked polymer chains exhibiting a broadened denaturation transition, which has been explained in terms of the successive denaturation with temperature of multiple species. We model axially-ordered, cross-linked materials as stiff chains with distinct arrangements of cross-link-forming sites. Simulations suggest that systems composed of chains with identical arrangements of cross-link-forming sites exhibit critical behavior. In contrast, systems composed of non-identical chains undergo a crossover. This model suggests that the arrangement of cross-link-forming sites may contribute to the broadening of the denaturation transition in fibrillar collagen.

Bennett, C. Brad; Kruczek, James; Rabson, D. A.; Matthews, W. Garrett; Pandit, Sagar A.

2013-07-01

58

Tailoring the properties of gelatin films for drug delivery applications: influence of the chemical cross-linking method.  

PubMed

Two types of chemically cross-linked gelatin films were prepared and characterized. The first type of films was cross-linked with 1-ethyl-3-(3-dimethyl aminopropyl)carbodiimide hydrochloride (EDC) under heterogeneous conditions and are named Gel-E. In the second type of films, gelatin was previously functionalized with methacrylamide side groups by the reaction with methacrylic anhydride and for that is named Gel-MA. The modified gelatin was subsequently cross-linked by a photoinitiated radical polymerization. These films were characterized relatively to their degree of cross-linking, buffer uptake capacity, resistance to hydrolytic and proteolytic degradation, and mechanical and thermal properties. Results show that the employed cross-linking method, together with the degree cross-linking, dictate the final properties of the films. Gel-E films have significant lower buffer uptake capacities and higher resistance to collagenase digestion when compared to Gel-MA films. Additionally, Gel-E films exhibit higher values of stress at break and lower strains at break. Moreover, the films properties could be modified by varying the extent of the chemical cross-linking, which in turn could be controlled by varying the concentration of EDC, for the first type of films (Gel-E), or by using gelatins with different degrees of functionalization, in the case of the second type of films (Gel-MA). PMID:24971558

Coimbra, P; Gil, M H; Figueiredo, M

2014-09-01

59

Phased psoralen cross-links do not bend the DNA double helix  

SciTech Connect

Although the chemical reaction of psoralens with nucleic acids is well understood, the structure of psoralen-DNA cross-linked products is still not clear. Model building studies based on the crystal structure of the psoralen-thymine monoadduct suggest that each cross-link bends the DNA double helix by 46.5/sup 0/. Here the authors use gel electrophoresis to test the validity of the current models. They have synthesized a series of DNA fragments (21-24 base pairs in length), each containing one unique T-A site for 4'-(hydroxymethyl)-4,5'8-trimethylpsoralen (HMT) cross-linking. Because of an estimated 28/sup 0/ unwinding of the helix by HMT, one expects that the 22-bp cross-linked fragment will be repeated nearly in phase with the average helical screw when multimerized. In that sequence ligation will maximally amplify any deformation to the double helix. They find that the ligated multimers of cross-linked DNA migrate close to the multimers of non-cross-linked DNA on polyacrylamide gels. These observations place an upper limit of 10/sup 0/ on DNA bending induced by psoralen cross-linking and indicate unwinding by about 1 bp, as well as stiffening of the double helix. These properties are not unexpected for classical intercalators.

Haran, T.E.; Crothers, D.M.

1988-09-06

60

Polyimide Aerogels with Three-Dimensional Cross-Linked Structure  

NASA Technical Reports Server (NTRS)

Polyimide aerogels with three-dimensional cross-linked structure are made using linear oligomeric segments of polyimide, and linked with one of the following into a 3D structure: trifunctional aliphatic or aromatic amines, latent reactive end caps such as nadic anhydride or phenylethynylphenyl amine, and silica or silsesquioxane cage structures decorated with amine. Drying the gels supercritically maintains the solid structure of the gel, creating a polyimide aerogel with improved mechanical properties over linear polyimide aerogels. Lightweight, low-density structures are desired for acoustic and thermal insulation for aerospace structures, habitats, astronaut equipment, and aeronautic applications. Aerogels are a unique material for providing such properties because of their extremely low density and small pore sizes. However, plain silica aerogels are brittle. Reinforcing the aerogel structure with a polymer (X-Aerogel) provides vast improvements in strength while maintaining low density and pore structure. However, degradation of polymers used in cross-linking tends to limit use temperatures to below 150 C. Organic aerogels made from linear polyimide have been demonstrated, but gels shrink substantially during supercritical fluid extraction and may have lower use temperature due to lower glass transition temperatures. The purpose of this innovation is to raise the glass transition temperature of all organic polyimide aerogel by use of tri-, tetra-, or poly-functional units in the structure to create a 3D covalently bonded network. Such cross-linked polyimides typically have higher glass transition temperatures in excess of 300 400 C. In addition, the reinforcement provided by a 3D network should improve mechanical stability, and prevent shrinkage on supercritical fluid extraction. The use of tri-functional aromatic or aliphatic amine groups in the polyimide backbone will provide such a 3D structure.

Panek, John

2010-01-01

61

Cross-linking Chemistry of Squid Beak*  

PubMed Central

In stark contrast to most aggressive predators, Dosidicus gigas (jumbo squids) do not use minerals in their powerful mouthparts known as beaks. Their beaks instead consist of a highly sclerotized chitinous composite with incremental hydration from the tip to the base. We previously reported l-3,4-dihydroxyphenylalanine (dopa)-histidine (dopa-His) as an important covalent cross-link providing mechanical strengthening to the beak material. Here, we present a more complete characterization of the sclerotization chemistry and describe additional cross-links from D. gigas beak. All cross-links presented in this report share common building blocks, a family of di-, tri-, and tetra-histidine-catecholic adducts, that were separated by affinity chromatography and high performance liquid chromatography (HPLC) and identified by tandem mass spectroscopy and proton nuclear magnetic resonance (1H NMR). The data provide additional insights into the unusually high cross-link density found in mature beaks. Furthermore, we propose both a low molecular weight catechol, and peptidyl-dopa, to be sclerotization agents of squid beak. This appears to represent a new strategy for forming hard tissue in animals. The interplay between covalent cross-linking and dehydration on the graded properties of the beaks is discussed. PMID:20870720

Miserez, Ali; Rubin, Daniel; Waite, J. Herbert

2010-01-01

62

Transglutaminase catalyzed cross-linking of sodium caseinate improves oxidative stability of flaxseed oil emulsion.  

PubMed

Sodium caseinate was modified by transglutaminase catalyzed cross-linking reaction prior to the emulsification process in order to study the effect of cross-linking on the oxidative stability of protein stabilized emulsions. The extent of the cross-linking catalyzed by different dosages of transglutaminase was investigated by following the ammonia production during the reaction and using SDS-PAGE gel. O/W emulsions prepared with the cross-linked and non-cross-linked sodium caseinates were stored for 30 days under the same conditions. Peroxide value measurement, oxygen consumption measurement, and headspace gas chromatography analysis were used to study the oxidative stability of the emulsions. The emulsion made of the cross-linked sodium caseinate showed an improved oxidative stability with reduced formation of fatty acid hydroperoxides and volatiles and a longer period of low rate oxygen consumption. The improving effect of transglutaminase catalyzed cross-linking could be most likely attributed to the enhanced physical stability of the interfacial protein layer against competitive adsorption by oil oxidation products. PMID:22655797

Ma, Hairan; Forssell, Pirkko; Kylli, Petri; Lampi, Anna-Maija; Buchert, Johanna; Boer, Harry; Partanen, Riitta

2012-06-20

63

Method of Cross-Linking Aerogels Using a One-Pot Reaction Scheme  

NASA Technical Reports Server (NTRS)

A document discusses a new, simplified method for cross-linking silica and other oxide aerogels, with a polymeric material to increase strength of such materials without adversely affecting porosity or low density. This innovation introduces the polymer precursor into the sol before gelation either as an agent, which co-reacts with the oxide gel, or as soluble polymer precursors, which do not interact with the oxide gel in any way. Subsequent exposure to heat, light, catalyst or other method of promoting polymerization causes cross-linking without any additional infiltration steps.

Meador, Ann B.; Capadona, Lynn A.

2008-01-01

64

Plasticizer migration from cross-linked flexible PVC. 1. Effects on tribology  

NASA Astrophysics Data System (ADS)

Utilization of soft PVC is restricted by plasticizer migration that can affect material properties, as well as its toxicity. Modifying the chemical structure of PVC is one of the most effective tool to reduce the diffusion of plasticizer. In this work, a soft cross-linked PVC was obtained using a difunctional amine, namely isophoron diamine (IPDA) as the cross-linking agent. The gel content (wt %) was evaluated by weighting the insoluble portion obtained through solvent extraction technique. Thermogravimetric analysis (TGA) revealed that cross-linking reactions promote thermal degradation phenomena in the polymer matrix. Tribological properties of soft uncross-linked, cross-linked and rigid PVC were determined. Soft formulations were held in contact for 32 days with rigid PVC sheets. Plasticizer migration towards the interface causes an increase of dynamic friction compared to that of the reference rigid PVC.

Pannico, M.; Persico, P.; Ambrogi, V.; Carfagna, C.

2010-06-01

65

Cross-linked structure of network evolution  

SciTech Connect

We study the temporal co-variation of network co-evolution via the cross-link structure of networks, for which we take advantage of the formalism of hypergraphs to map cross-link structures back to network nodes. We investigate two sets of temporal network data in detail. In a network of coupled nonlinear oscillators, hyperedges that consist of network edges with temporally co-varying weights uncover the driving co-evolution patterns of edge weight dynamics both within and between oscillator communities. In the human brain, networks that represent temporal changes in brain activity during learning exhibit early co-evolution that then settles down with practice. Subsequent decreases in hyperedge size are consistent with emergence of an autonomous subgraph whose dynamics no longer depends on other parts of the network. Our results on real and synthetic networks give a poignant demonstration of the ability of cross-link structure to uncover unexpected co-evolution attributes in both real and synthetic dynamical systems. This, in turn, illustrates the utility of analyzing cross-links for investigating the structure of temporal networks.

Bassett, Danielle S., E-mail: dsb@seas.upenn.edu [Department of Bioengineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104 (United States); Department of Physics, University of California, Santa Barbara, California 93106 (United States); Sage Center for the Study of the Mind, University of California, Santa Barbara, California 93106 (United States); Wymbs, Nicholas F.; Grafton, Scott T. [Department of Psychology and UCSB Brain Imaging Center, University of California, Santa Barbara, California 93106 (United States)] [Department of Psychology and UCSB Brain Imaging Center, University of California, Santa Barbara, California 93106 (United States); Porter, Mason A. [Oxford Centre for Industrial and Applied Mathematics, Mathematical Institute, University of Oxford, Oxford OX2 6GG (United Kingdom) [Oxford Centre for Industrial and Applied Mathematics, Mathematical Institute, University of Oxford, Oxford OX2 6GG (United Kingdom); CABDyN Complexity Centre, University of Oxford, Oxford, OX1 1HP (United Kingdom); Mucha, Peter J. [Carolina Center for Interdisciplinary Applied Mathematics, Department of Mathematics, University of North Carolina, Chapel Hill, North Carolina 27599 (United States) [Carolina Center for Interdisciplinary Applied Mathematics, Department of Mathematics, University of North Carolina, Chapel Hill, North Carolina 27599 (United States); Department of Applied Physical Sciences, University of North Carolina, Chapel Hill, North Carolina 27599 (United States)

2014-03-15

66

Highly cross-linked nanoporous polymers  

DOEpatents

Condensation polymerization followed by a supercritical extraction step can be used to obtain highly cross-linked nanoporous polymers with high surface area, controlled pore sizes and rigid structural integrity. The invention polymers are useful for applications requiring separation membranes. 1 fig.

Steckle, W.P. Jr.; Apen, P.G.; Mitchell, M.A.

1998-01-20

67

RHEOLOGY OF CROSS-LINKING FISH GELATINS  

Technology Transfer Automated Retrieval System (TEKTRAN)

We extracted gelatin from Alaskan pollock (Theragra chalcogramma) and Alaskan pink salmon (Oncorhynchus gorbuscha) for potential use in biomedical applications, such as bioadhesives and microspheres for drug delivery. To improve their mechanical properties, we cross-linked the gelatins using genipin...

68

Cross-Linked Structure of Network Evolution  

E-print Network

We study the temporal co-variation of network co-evolution via the cross-link structure of networks, for which we take advantage of the formalism of hypergraphs to map cross-link structures back to network nodes. We investigate two sets of temporal network data in detail. In a network of coupled nonlinear oscillators, hyperedges that consist of network edges with temporally co-varying weights uncover the driving co-evolution patterns of edge weight dynamics both within and between oscillator communities. In the human brain, networks that represent temporal changes in brain activity during learning exhibit early co-evolution that then settles down with practice, and subsequent decreases in hyperedge size are consistent with emergence of an autonomous subgraph whose dynamics no longer depends on other parts of the network. Our results on real and synthetic networks give a poignant demonstration of the ability of cross-link structure to uncover unexpected co-evolution attributes in both real and synthetic dynamical systems. This, in turn, illustrates the utility of analyzing cross-links for investigating the structure of temporal networks.

Danielle S. Bassett; Nicholas F. Wymbs; Mason A. Porter; Peter J. Mucha; Scott T. Grafton

2014-08-05

69

Characterization of Hyaluronan-Protein Microstructures and Polymer Solutions  

NASA Astrophysics Data System (ADS)

Evidence is mounting that mechanical and topographical features of biomaterials can be as critical for cellular behavior as chemical properties. A case in point is hyaluronan (HA), a large polysaccharide with unique mechanical and hydrodynamic properties, found in many tissues and bodily fluids. Thanks to a large variety of accessible conformations and aggregation states, this remarkable polymer can impart on its biological environment a diverse range of structural and viscoelastic properties with far-reaching consequences for cell physiology (migration, inflammation, cancer). Supramolecular assembly of HA is typically mediated by HA-binding proteins. These specialized molecules are known to assist the formation of organized structures, such as cross-linked bundles, gels, or the all-important pericellular coat, a polymer network anchored to many cell surfaces. Precisely how the material properties of HA-rich matrices and aggregates are modified by the associated proteins, however, is largely a matter of speculation. We will present new insights concerning the cell coat and HA-protein solutions characterized using passive microrheology, fluorescence recovery after photobleaching (FRAP), and optical force probe microscopy.

Curtis, J. E.; McLane, L.; Bedoya, M.; Beatty, R.; Kramer, A.; Boehm, H.; Scrimgeour, J.

2010-03-01

70

Enzymatically Cross-linked Alginic-Hyaluronic acid Composite Hydrogels As Cell Delivery Vehicles  

PubMed Central

An injectable composite gel was developed from alginic and hyaluronic acid. The ezymatically cross-linked injectable gels were prepared via the oxidative coupling of tyramine modified sodium algiante and sodium hyaluronate in the presence of horse radish peroxidase (HRP) and hydrogen peroxide (H2O2). The composite gels were prepared by mixing equal parts of the two tryaminated polymer solutions in 10U HRP and treating with 1.0% H2O2. The properties of the alginate gels were significanly affected by the addition of hyaluronic acid. The percentage water absorption and storage modulus of the composite gels were found to be lower than the alginate gels. The alginate and composite gels showed lower protein release compared to hyaluronate gels in the absence of hyaluronidase. Even hyaluronate gels showed only approximately 10% protein release after 14 days incubation in phosphate buffer solution. ATDC-5 cells encapsulated in the injectable gels showed high cell viability. The composite gels showed the presence of enlarged spherical cells with significantly higher metabolic activity compared to cells in hyaluronic and alginic acid gels. The results suggest the potential of the composite approach to develop covalently cross-linked hydrogels with tuneable physical, mechanical, and biological properties. PMID:23357799

Ganesh, Nitya; Hanna, Craig; Nair, Shantikumar V.; Nair, Lakshmi S.

2013-01-01

71

Complications of Corneal Collagen Cross-Linking  

PubMed Central

Cross-linking of corneal collagen (CXL) is a promising approach for the treatment of keratoconus and secondary ectasia. Several long-term and short-term complications of CXL have been studied and documented. The possibility of a secondary infection after the procedure exists because the patient is subjected to epithelial debridement and the application of a soft contact lens. Formation of temporary corneal haze, permanent scars, endothelial damage, treatment failure, sterile infiltrates, and herpes reactivation are the other reported complications of this procedure. Cross-linking is a low-invasive procedure with low complication and failure rate but it may have direct or primary complications due to incorrect technique application or incorrect patient's inclusion and indirect or secondary complications related to therapeutic soft contact lens, patient's poor hygiene, and undiagnosed concomitant ocular surface diseases. PMID:22254130

Dhawan, Shikha; Rao, Kavita; Natrajan, Sundaram

2011-01-01

72

Internal composition versus the mechanical properties of polyelectrolyte multilayer films: the influence of chemical cross-linking.  

PubMed

Different types of polyelectrolyte multilayer films composed of poly(L-lysine)/hyaluronan (PLL/HA), chitosan/hyaluronan (CHI/HA) and poly(allylamine hydrochloride)/poly(L-glutamic acid) (PAH/PGA) have been investigated for their internal composition, including water content, ion pairing, and ability to be covalently cross-linked, as well as for their mechanical properties. Film buildup under physiological conditions was monitored by the quartz crystal microbalance with dissipation monitoring (QCM-D) and attenuated total reflectance Fourier transform infrared spectroscopy (ATR-FTIR), which allows unambiguous quantification of the different groups present in the polyelectrolytes. (PAH/PGA) films emerged as the most dense films with the lowest hydration (29%) and the highest COO(-) molar density. In addition, PAH is greatly in excess in these films (3 PAH monomers per PGA monomer). The formation of amide bonds during film cross-linking using the water-soluble carbodiimide EDC was also investigated. All of the films could be cross-linked in a tunable manner, but PAH/PGA exhibited the highest absolute number of amide bonds created, approximately 7 times more than for (PLL/HA) and (CHI/HA) films. The Young's modulus E of the films measured by AFM nanoindentation was shown to vary over 1 to 2 orders of magnitude for the different systems. Interestingly, a linear relationship between E and the density of the covalent cross-links created was observed for (PLL/HA) and (CHI/HA) films whereas (PGA/PAH) films exhibited biphasic behavior. The mean distance between covalent cross-links was estimated to be approximately 11 nm for (PLL/HA) and (CHI/HA) films and only approximately 6 nm for (PAH/PGA) films for the maximum EDC concentration tested (100 mg/mL). PMID:20560550

Boudou, Thomas; Crouzier, Thomas; Auzély-Velty, Rachel; Glinel, Karine; Picart, Catherine

2009-12-15

73

Influence of Coagents on the Silane Grafting and Cross-linking of Polypropylene  

Microsoft Academic Search

The grafting of vinyltrimethoxysilane (VTMS) onto polypropylene (PP) was carried out in a melt process, and the cross-linking in the hot water. The influence of coagents, i.e., styrene (St), divinylbenzene (DVB), triallyl isocyanurate (TAIC) and trimethylolpropane triacrylate (TMPTA) on the grafting degree, gel percentage, melt flow index (MFI) of the VTMS modified PP were investigated. It was found that the

Shun Zhou; Miao Hu; Yuan Hu; Zhengzhou Wang

2009-01-01

74

Tea Derived Galloylated Polyphenols Cross-Link Purified Gastrointestinal Mucins  

PubMed Central

Polyphenols derived from tea are thought to be important for human health. We show using a combination of particle tracking microrheology and small-angle neutron scattering that polyphenols acts as cross-linkers for purified gastrointestinal mucin, derived from the stomach and the duodenum. Both naturally derived purified polyphenols, and green and black tea extracts are shown to act as cross-linkers. The main active cross-linking component is found to be the galloylated forms of catechins. The viscosity, elasticity and relaxation time of the mucin solutions experience an order of magnitude change in value upon addition of the polyphenol cross-linkers. Similarly small-angle neutron scattering experiments demonstrate a sol-gel transition with the addition of polyphenols, with a large increase in the scattering at low angles, which is attributed to the formation of large scale (>10 nm) heterogeneities during gelation. Cross-linking of mucins by polyphenols is thus expected to have an impact on the physicochemical environment of both the stomach and duodenum; polyphenols are expected to modulate the barrier properties of mucus, nutrient absorption through mucus and the viscoelastic microenvironments of intestinal bacteria. PMID:25162539

Georgiades, Pantelis; Pudney, Paul D. A.; Rogers, Sarah; Thornton, David J.; Waigh, Thomas A.

2014-01-01

75

Modelling of cross-linked actin networks - Influence of geometrical parameters and cross-link compliance.  

PubMed

A major structural component of the cell is the actin cytoskeleton, in which actin subunits are polymerised into actin filaments. These networks can be cross-linked by various types of ABPs (Actin Binding Proteins), such as Filamin A. In this paper, the passive response of cross-linked actin filament networks is evaluated, by use of a numerical and continuum network model. For the numerical model, the influence of filament length, statistical dispersion, cross-link compliance (including that representative of Filamin A) and boundary conditions on the mechanical response is evaluated and compared to experimental results. It is found that the introduction of statistical dispersion of filament lengths has a significant influence on the computed results, reducing the network stiffness by several orders of magnitude. Actin networks have previously been shown to have a characteristic transition from an initial bending-dominated to a stretching-dominated regime at larger strains, and the cross-link compliance is shown to shift this transition. The continuum network model, a modified eight-chain polymer model, is evaluated and shown to predict experimental results reasonably well, although a single set of parameters cannot be found to predict the characteristic dependence of filament length for different types of cross-links. Given the vast diversity of cross-linking proteins, the dependence of mechanical response on cross-link compliance signifies the importance of incorporating it properly in models to understand the roles of different types of actin networks and their respective tasks in the cell. PMID:24491254

Fallqvist, B; Kulachenko, A; Kroon, M

2014-06-01

76

Protein Compatibility of Selected Cross-linking Reactions for Hydrogels.  

PubMed

The compatibility of selected cross-linking reactions with lysozyme is investigated. Michael-type additions of nucleophilic amino acids to maleimide, vinyl sulfone and acrylamide groups are detected by gel electrophoresis. The degree of modification depends on the polymer and the pH. Complete modification with more than five PEG chains is observed after incubation with mPEG5k-vinyl sulfone at pH 9, whereas 96% of the protein remains unmodified after incubation with mPEG5k-acrylamide at pH 4. Incubation with mPEG5k-thiol results in thiol-disulfide exchange reactions. Hydrogel preparation is simulated by using polymer mixtures. Protein modifications are detected, which may affect the protein structure, decrease activity and bioavailability, and increase the risk for immune responses. PMID:25399803

Hammer, Nadine; Brandl, Ferdinand P; Kirchhof, Susanne; Messmann, Viktoria; Goepferich, Achim M

2014-11-14

77

Hyaluronan Synthesis and Myogenesis  

PubMed Central

Exogenous hyaluronan is known to alter muscle precursor cell proliferation, migration, and differentiation, ultimately inhibiting myogenesis in vitro. The aim of the current study was to investigate the role of endogenous hyaluronan synthesis during myogenesis. In quantitative PCR studies, the genes responsible for synthesizing hyaluronan were found to be differentially regulated during muscle growth, repair, and pathology. Although all Has genes (Has1, Has2, and Has3) were differentially regulated in these models, only Has2 gene expression consistently associated with myogenic differentiation. During myogenic differentiation in vitro, Has2 was the most highly expressed of the synthases and increased after induction of differentiation. To test whether this association between Has2 expression and myogenesis relates to a role for Has2 in myoblast differentiation and fusion, C2C12 myoblasts were depleted of Has2 by siRNA and induced to differentiate. Depletion of Has2 inhibited differentiation and caused a loss of cell-associated hyaluronan and the hyaluronan-dependent pericellular matrix. The inhibition of differentiation caused by loss of hyaluronan was confirmed with the hyaluronan synthesis inhibitor 4-methylumbelliferone. In hyaluronan synthesis-blocked cultures, restoration of the pericellular matrix could be achieved through the addition of exogenous hyaluronan and the proteoglycan versican, but this was not sufficient to restore differentiation to control levels. These data indicate that intrinsic hyaluronan synthesis is necessary for myoblasts to differentiate and form syncytial muscle cells, but the hyaluronan-dependent pericellular matrix is not sufficient to support differentiation alone; additional hyaluronan-dependent cell functions that are yet unknown may be required for myogenic differentiation. PMID:23493399

Hunt, Liam C.; Gorman, Chris; Kintakas, Christopher; McCulloch, Daniel R.; Mackie, Eleanor J.; White, Jason D.

2013-01-01

78

General protein-protein cross-linking.  

PubMed

This protocol describes a general protein-to-protein cross-linking procedure using the water-soluble amine-reactive homobifunctional BS(3) (bis[sulfosuccinimidyl] suberate); however, the protocol can be easily adapted using other cross-linkers of similar properties. BS(3) is composed of two sulfo-NHS ester groups and an 11.4 Å linker. Sulfo-NHS ester groups react with primary amines in slightly alkaline conditions (pH 7.2-8.5) and yield stable amide bonds. The reaction releases N-hydroxysuccinimide (see an application of NHS esters on Labeling a protein with fluorophores using NHS ester derivitization). PMID:24581440

Alegria-Schaffer, Alice

2014-01-01

79

Cross-linked carbon nanotube heat spreader  

NASA Astrophysics Data System (ADS)

Isolated individual carbon nanotubes (CNTs) have shown exceptional thermal conductivity along their axis, but have poor thermal transfer between adjacent CNTs. Thick bundles of aligned CNTs have been used as heat pipes, but the thermal input and output areas are the same, providing no heat spreading effect. Energetic argon ion beams are used to join, or cross-link overlapping CNTs in a thick film to form an interpenetrating network with an isotropic thermal conductivity of 2150 W/m-K. Such thick films may be used as heat spreaders to enlarge the thermal footprint of various electronic and semiconductor devices, laser diodes and CPU chips, for example, to enhance cooling.

Konesky, Gregory

2014-09-01

80

Corneal collagen cross-linking: A review  

PubMed Central

The aim was to review the published literature on corneal collagen cross-linking. The emphasis was on the seminal publications, systemic reviews, meta-analyses and randomized controlled trials. Where such an evidence did not exist, selective large series cohort studies, case controlled studies and case series with follow-up preferably greater than 12 months were included. Riboflavin/Ultraviolet A (UVA) corneal collagen cross-linking appears to be the first treatment modality to halt the progression of keratoconus and other corneal ectatic disorders with improvement in visual, keratometric and topographic parameters documented by most investigators. Its precise mechanism of action at a molecular level is as yet not fully determined. Follow-up is limited to 4–6 years at present but suggests continued stability and improvement in corneal shape with time. Most published data are with epithelium-off techniques. Epithelium-on studies suggest some efficacy but less than with the epithelium-off procedures and long-term data are not currently available. The use of Riboflavin/UVA CXL for the management of infectious and non-infectious keratitis appears very promising. Its use in the management of bullous keratopathy is equivocal. Investigation of other methodologies for CXL are under investigation. PMID:25000866

O’Brart, David P.S.

2014-01-01

81

Chicken Corneocyte Cross-Linked Proteome  

PubMed Central

Shotgun proteomic analysis was performed of epidermal scale, feather, beak and claw from the domestic chicken. To this end, the samples were separated first into solubilized and particulate fractions, the latter enriched in isopeptide cross-linking, by exhaustive extraction in sodium dodecyl sulfate under reducing conditions. Among the 205 proteins identified were 17 keratins (types ? and ?), 51 involved in protein synthesis, 8 junctional, 8 histone, 5 heat shock and 5 14-3-3 proteins. Considerable overlap among the beak, claw, feather and scale samples was observed in protein profiles, but those from beak and claw were the most similar. Scale and feather profiles were the most distinctive, each exhibiting specific proteins. Less than 20% of the proteins were found only in the detergent solubilized fraction, while 34-57% were found only in the particulate fraction, depending on the source, and the rest in both fractions. The results provide the first comprehensive analysis of the content of these cornified structures, reveal the efficient use of available proteins in conferring mechanical and chemical stability to them and emphasize the importance of isopeptide cross-linking in avian epithelial cornification. PMID:23256538

Rice, Robert H.; Winters, Brett R.; Durbin-Johnson, Blythe P.; Rocke, David M.

2013-01-01

82

Unique Fragmentation of Singly Charged DEST Cross-Linked Peptides  

NASA Astrophysics Data System (ADS)

It has previously been shown that when cross-linking reagent diethyl suberthioimidate (DEST) reacts with primary amines of proteins to yield amidinated residues, the primary amines retain their high basicity, and cross-linked species can be enriched by strong cation exchange. It is now demonstrated that collisional activation of singly-charged DEST cross-linked peptide ions leads to preferential cleavage at the cross-linked sites. The resulting product ions facilitate the detection and identification of cross-linked peptides.

He, Yi; Lauber, Matthew A.; Reilly, James P.

2012-06-01

83

Organization of photosystem I polypeptides examined by chemical cross-linking  

NASA Technical Reports Server (NTRS)

Photosystem I from the cyanobacterium Synechocystis sp. PCC 6803 was examined using the chemical cross-linkers glutaraldehyde and N-ethyl-1-3-[3-(dimethylamino)propyl]carbodiimide to investigate the organization of the polypeptide subunits. Thylakoid membranes and photosystem I, which was isolated by Triton X-100 fractionation, were treated with cross-linking reagents and were resolved using a Tricine/urea low-molecular-weight resolution gel system. Subunit-specific antibodies and western blotting analysis were used to identify the components of cross-linked species. These analyses identified glutaraldehyde-dependent cross-linking products composed of small amounts of PsaD and PsaC, PsaC and PsaE, and PsaE and PsaF. The novel cross-link between PsaE and PsaF was also observed following treatment with N-ethyl-1-3-[3-(dimethylamino)propyl]carbodiimide. These cross-linking results suggest a structural interaction between PsaE and PsaF and predict a transmembrane topology for PsaF.

Armbrust, T. S.; Chitnis, P. R.; Guikema, J. A.; Spooner, B. S. (Principal Investigator)

1996-01-01

84

Ehrlich chromogens, probable cross-links in elastin and collagen.  

PubMed Central

(1) Proteolytic digests of tissue elastin contain material which reacts with dimethylaminobenzaldehyde in acid solution (Ehrlich's reagent) to give a cherry-pink colour. This Ehrlich chromogen(s) [EC(s)] is similar to but not identical with EC(s) previously demonstrated in tissue collagens [Scott, Hughes & Shuttleworth (1979) Biosci. Rep. 1, 611-618]. Both ECs react with diazonium salts in acid to give coloured products. (2) Diazobenzene linked via a phenolic ester to polyacrylamide beads (Biogel P10) has been used to absorb ECs specifically and almost quantitatively from proteolytic digests. The coupled deeply coloured azo-EC-peptides were then recovered after mild alkaline cleavage from the support and purified by gel chromatography. (3) Using 15N-labelled NaNO2, the collagen azo-EC-peptides were prepared, and 15N abundance measured therein. The molar absorption coefficient of the azo-EC group was calculated (18,700) based on the assumption that each azo-EC group contained one 15N atom. (4) Collagen azo-EC-peptides contained glucose and galactose, whereas elastin azo-EC peptides did not. The amino acid patterns of the two peptides were quite different, the former being rich in polar amino acids, the latter containing much alanine. The patterns were compatible with an origin from the cross-linking regions of collagen and elastin respectively. (5) Quantitative (molar) comparisons of the azo-EC group content with amino acid, amino end-group and sugar contents, and azo-EC peptide molecular mass, suggest that a structure is present in the collagen azo-EC-peptides containing two EC groups shared between four peptide chains. Three peptide chains probably meet at each (cross-linking) EC group. (6) Based on this structure, about 15% of adult bovine skin collagen contains EC groups. PMID:3415661

Kemp, P D; Scott, J E

1988-01-01

85

The Role of Nonenzymatic Glycation and Carbonyls in Collagen Cross-Linking for the Treatment of Keratoconus  

PubMed Central

Purpose. Corneal cross-linking (CXL) is a treatment for keratoconus that eliminates the need for keratoplasty in most patients. However, its molecular mechanisms remain under study. Advanced glycation end products (AGEs) have been suggested by many studies as the causative strengthening agent during CXL, though no studies to date have directly tested this hypothesis. Methods. Corneas of young rabbits and sharks were pretreated with pyridoxal hydrochloride and copper ions before CXL. Two known inhibitors of AGE formation, aminoguanidine and rifampicin, were applied during CXL in the treatment solution. Tensile strength tests were conducted after these experiments to detect diminished or accentuated corneal stiffening after CXL. SDS-PAGE was performed on type I collagen cross-linked in the absence and presence of AGE inhibitors. Results. Pretreatment with pyridoxal hydrochloride resulted in significantly higher corneal stiffening after CXL. AGE inhibitors significantly diminished cross-linking as detected by both tensile strength measurements using whole corneas and gel electrophoresis of in vitro cross-linking of type I collagen in solution, in the presence and absence of the inhibitors. Rifampicin inhibited CXL more significantly than aminoguanidine in gel electrophoresis and tensile strength tests, confirming recent findings on its efficacy as an AGE inhibitor. Conclusions. Data presented here suggest that CXL is carbonyl dependent and involves the formation of AGE cross-links. Six possible cross-linking mechanisms are discussed. PMID:21724915

Littlechild, Stacy; McCall, Scott; Zhang, Yuntao; Conrad, Gary W.

2011-01-01

86

Filamin Cross-Linked Semiflexible Networks: Fragility under Strain  

Microsoft Academic Search

The semiflexible F-actin network of the cytoskeleton is cross-linked by a variety of proteins including filamin, which contains Ig domains that unfold under applied tension. We examine a simple filament network model cross-linked by such unfolding linkers that captures the main mechanical features of F-actin networks cross-linked by filamin proteins and show that, under sufficient strain, the network spontaneously self-organizes

B. A. Didonna; Alex J. Levine

2006-01-01

87

Nonlinear elasticity of cross-linked networks  

NASA Astrophysics Data System (ADS)

Cross-linked semiflexible polymer networks are omnipresent in living cells. Typical examples are actin networks in the cytoplasm of eukaryotic cells, which play an essential role in cell motility, and the spectrin network, a key element in maintaining the integrity of erythrocytes in the blood circulatory system. We introduce a simple mechanical network model at the length scale of the typical mesh size and derive a continuous constitutive law relating the stress to deformation. The continuous constitutive law is found to be generically nonlinear even if the microscopic law at the scale of the mesh size is linear. The nonlinear bulk mechanical properties are in good agreement with the experimental data for semiflexible polymer networks, i.e., the network stiffens and exhibits a negative normal stress in response to a volume-conserving shear deformation, whereby the normal stress is of the same order as the shear stress. Furthermore, it shows a strain localization behavior in response to an uniaxial compression. Within the same model we find a hierarchy of constitutive laws depending on the degree of nonlinearities retained in the final equation. The presented theory provides a basis for the continuum description of polymer networks such as actin or spectrin in complex geometries and it can be easily coupled to growth problems, as they occur, for example, in modeling actin-driven motility.

John, Karin; Caillerie, Denis; Peyla, Philippe; Raoult, Annie; Misbah, Chaouqi

2013-04-01

88

Cross-linking study of the quaternary fine structure of mitochondrial F1-ATPase.  

PubMed

A method has been developed for exploring the quaternary fine structure of oligomeric proteins by crosslinking studies and applied to bovine heart mitochondrial F1-ATPase. The F1 was first labeled with 1-fluoro-2,4-dinitro-[14C]benzene, subsequently reduced with sodium hydrosulfite, and finally cross-linked with 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide. Gel electrophoresis in the chemically modified protein in the presence of sodium dodecyl sulfate and mercaptoethanol showed the existence of a 105-115-kilodalton molecular species in addition to the five monomeric subunits of F1. This cross-linked species could be alpha 2, alpha beta, or beta 2. Isolation of the cross-linked species and titration with 5,5'-dithiobis-(2-nitrobenzoic acid) showed the absence of sulfhydryl group. Therefore, the cross-linked species must be the dimer beta 2. After digestion of the purified beta 2 with pepsin, a single radioactive peptide was isolated. Determination of the amino acid sequence of this peptide and comparison of its radioactivity with the total radioactivity on beta-subunits show that it was formed exclusively by cross-linking Lys162 of one beta-subunit with Glu199 of another beta-subunit. The observation that two beta-subunits can be cross-linked by a rigid phenylenediamine bridge of 5.7- or 4.3-A length is difficult to reconcile with the widely assumed structure of F1 with the alpha- and beta-subunits occupying alternate corners of a planar hexagon, but is consistent with the structure in which a triangular set of three beta-subunits sits above a triangular set of three alpha-subunits in a staggered conformation. PMID:2890632

Joshi, V K; Wang, J H

1987-11-15

89

Cross-Linked Poly(acrylic acid) Microgels from Precipitation Polymerization  

Microsoft Academic Search

Cross-linked poly(acrylic acid) microgels were prepared via thermally initiated free-radical precipitation polymerization in a binary organic solvent. N,N?-Methylenebisacrylamide (MBA) and 2,2?-azobisisobutyronitrile were used as cross-linker and initiator, respectively. The effect of (MAB) concentration on different features of sample (i.e., spectral characteristics, glass transition temperature, equilibrium swelling, gel content and rheological properties) was investigated. The Flory-Rehner equation and rubber elasticity theory

H. Es-haghi; H. Bouhendi; Gh. Bagheri-Marandi; M. J. Zohurian-Mehr; K. Kabiry

2010-01-01

90

Extrusion of Cross-Linked Hydroxypropylated Corn Starches II. Morphological and Molecular Characterization 1  

Microsoft Academic Search

Cereal Chem. 77(3):326-332 A series of cross-linked hydroxypropylated corn starches were extru- ded with a Leistritz micro-18 co-rotating extruder. Extrusion process variables including moisture (30, 35, and 40%), barrel temperature (60, 80, and 100°C), and screw design (low, medium, and high shear) were investigated. Scanning electron microscopy (SEM) of extruded starches showed a gel phase with distorted granules and granule

A. E. McPherson; J. Jane

2000-01-01

91

DNA-protein cross-linking via guanine oxidation: dependence upon protein and photosensitizer.  

PubMed

DNA-protein cross-links form when guanine undergoes a 1-electron oxidation in a flash-quench experiment, and the importance of reactive oxygen species, protein, and photosensitizer is examined here. In these experiments, a strong oxidant produced by oxidative quenching of a DNA-bound photosensitizer generates an oxidized guanine base that reacts with protein to form the covalent adduct. These cross-links are cleaved by hot piperidine and are not the result of reactive oxygen species, since neither a hydroxyl radical scavenger (mannitol) nor oxygen affects the yield of DNA-histone cross-linking, as determined via a chloroform extraction assay. The cross-linking yield depends on protein, decreasing as histone > cytochrome c > bovine serum albumin. The yield does not depend on the cytochrome oxidation state, suggesting that reduction of the guanine radical by ferrocytochrome c does not compete effectively with cross-linking. The photosensitizer strongly influences the cross-linking yield, which decreases in the order Ru(phen)(2)dppz(2+) [phen = 1,10-phenanthroline; dppz = dipyridophenazine] > Ru(bpy)(3)(2+) [bpy = 2,2'-bipyridine] > acridine orange > ethidium, in accordance with measured oxidation potentials. A long-lived transient absorption signal for ethidium dication in poly(dG-dC) confirms that guanine oxidation is inefficient for this photosensitizer. From a polyacrylamide sequencing gel of a (32)P-labeled 40-mer, all of these photosensitizers are shown to damage guanines preferentially at the 5' G of 5'-GG-3' steps, consistent with a 1-electron oxidation. Additional examination of ethidium shows that it can generate cross-links between histone and plasmid DNA (pUC19) and that the yield depends on the quencher. Altogether, these results illustrate the versatility of the flash-quench technique as a way to generate physiologically relevant DNA-protein adducts via the oxidation of guanine and expand the scope of such cross-linking reactions to include proteins that may associate only transiently with DNA. PMID:12939156

Kurbanyan, Kristina; Nguyen, Kim L; To, Phuong; Rivas, Eunice V; Lueras, Alexis M K; Kosinski, Cynthia; Steryo, Mary; González, Arcelia; Mah, Daisy Ann; Stemp, Eric D A

2003-09-01

92

Cross-linked hydroxypropylcellulose films: mechanical behaviour and electro-optical properties of PDLC type cells  

NASA Astrophysics Data System (ADS)

We study the effect of the amount of cross-linking agent upon the mechanical and electro-optical behaviour of several cells prepared from hydroxypropylcellulose (HPC) cross-linked with 1,4 diisocianatobutane (BDI) (0.0%, 3.1%, 7.6%, 12.3% w/w). The tensile properties and the sol/gel fractions were obtained as a function of the amount of the cross-linking agent used to prepare the solid films. The Young's modulus appears to be constant, over the range of concentrations studied. The electro-optical cells prepared with the nematic liquid crystal (E7) were analysed by light transmission. Several trends were observed, e.g. the cross-linking agent, at the percentages used, has a strong influence on the cells contrast but not on the cell's maximum transmission or turn on voltage, while the film thickness shows preponderantly its influence on the cell's maximum transmission and turn on voltage. The mechanical properties of the HPC films are important for a recent application that is now being developed [Liq. Cryst., in press], where a flexible substrate is used. The results obtained point out ways for the realisation of an optimum electro-optical cell.

Almeida, P. L.; Tavares, S.; Martins, A. F.; Godinho, M. H.; Cidade, M. T.; Figueirinhas, J. L.

2002-09-01

93

Controlled uptake and release of lysozyme from glycerol diglycidyl ether cross-linked oxidized starch microgel.  

PubMed

A biodegradable microgel system based on glycerol-1,3-diglycidyl ether (GDGE) cross-linked TEMPO-oxidized potato starch polymers was developed for controlled uptake and release of proteins. A series of microgels were prepared with a wide range of charge density and cross-link density. We found both swelling capacity (SWw) and lysozyme uptake at saturation (?sat) increased with increasing degree of oxidation (DO) and decreasing cross-link density. Microgel of DO100% with a low cross-link density (RGDGE/polymer (w/w) of 0.025) was selected to be the optimum gel type for lysozyme absorption; ?sat increased with increasing pH and decreasing ionic strength. It suggests that the binding strength was the strongest at high pH and low ionic strength, which was recognized as the optimum absorption conditions. The lysozyme release was promoted at low pH and high ionic strength, which were considered to be the most suitable conditions for triggering protein release. These results may provide useful information for the controlled uptake and release of proteins by oxidized starch microgels. PMID:25659699

Zhao, Luhai; Chen, Yuying; Li, Wei; Lu, Meiling; Wang, Shanshan; Chen, Xiaodong; Shi, Mengxuan; Wu, Jiande; Yuan, Qipeng; Li, Yuan

2015-05-01

94

Statistical Mechanics of Cross-Linked Polymer Networks II. Swelling  

Microsoft Academic Search

The interaction of solvents with cross-linked network structures, such as occur in vulcanized rubber, is subjected to a statistical mechanical treatment based on the model and procedure presented in the preceding paper. The activity of the solvent is expressed as a function of its concentration in the swollen network, and of the degree of cross-linking. The maximum degree of swelling

Paul J. Flory; John Rehner Jr.

1943-01-01

95

Multi-Scale Modeling of Cross-Linked Nanotube Materials  

NASA Technical Reports Server (NTRS)

The effect of cross-linking single-walled carbon nanotubes on the Young's modulus of a nanotube-reinforced composite is modeled with a multi-scale method. The Young's modulus is predicted as a function of nanotube volume fraction and cross-link density. In this method, the constitutive properties of molecular representative volume elements are determined using molecular dynamics simulation and equivalent-continuum modeling. The Young's modulus is subsequently calculated for cross-linked nanotubes in a matrix which consists of the unreacted cross-linking agent. Two different cross-linking agents are used in this study, one that is short and rigid (Molecule A), and one that is long and flexible (Molecule B). Direct comparisons between the predicted elastic constants are made for the models in which the nanotubes are either covalently bonded or not chemically bonded to the cross-linking agent. At a nanotube volume fraction of 10%, the Young's modulus of Material A is not affected by nanotube crosslinking, while the Young's modulus of Material B is reduced by 64% when the nanotubes are cross-linked relative to the non-cross-linked material with the same matrix.

Frankland, S. J. V.; Odegard, G. M.; Herzog, M. N.; Gates, T. S.; Fay, C. C.

2005-01-01

96

Cross-linked polyvinyl alcohol films as alkaline battery separators  

NASA Technical Reports Server (NTRS)

Cross-linking methods were investigated to determine their effect on the performance of polyvinyl alcohol (PVA) films as alkaline battery separators. The following types of cross-linked PVA films are discussed: (1) PVA-dialdehyde blends post-treated with an acid or acid periodate solution (two-step method) and (2) PVA-dialdehyde blends cross-linked during film formation (drying) by using a reagent with both aldehyde and acid functionality (one-step method). Laboratory samples of each cross-linked type of film were prepared and evaluated in standard separator screening tests. The pilot-plant batches of films were prepared and compared to measure differences due to the cross-linking method. The pilot-plant materials were then tested in nickel oxide - zinc cells to compare the two methods with respect to performance characteristics and cycle life. Cell test results are compared with those from tests with Celgard.

Sheibley, D. W.; Manzo, M. A.; Gonzalez-Sanabria, O. D.

1982-01-01

97

Cross-linked polyvinyl alcohol and method of making same  

NASA Technical Reports Server (NTRS)

A film-forming polyvinyl alcohol polymer is mixed with a polyaldehyde-polysaccharide cross-linking agent having at least two monosaccharide units and a plurality of aldehyde groups per molecule, perferably an average of at least one aldehyde group per monosaccharide units. The cross-linking agent, such as a polydialdehyde starch, is used in an amount of about 2.5 to 20% of the theoretical amount required to cross-link all of the available hydroxyl groups of the polyvinyl alcohol polymer. Reaction between the polymer and cross-linking agent is effected in aqueous acidic solution to produce the cross-linked polymer. The polymer product has low electrical resistivity and other properties rendering it suitable for making separators for alkaline batteries.

Hsu, L. C.; Sheibley, D. W.; Philipp, W. H. (inventors)

1981-01-01

98

Cross-linked polyvinyl alcohol films as alkaline battery separators  

NASA Technical Reports Server (NTRS)

Cross-linking methods have been investigated to determine their effect on the performance of polyvinyl alcohol (PVA) films as alkaline battery separators. The following types of cross-linked PVA films are discussed: (1) PVA-dialdehyde blends post-treated with an acid or acid periodate solution (two-step method) and (2) PVA-dialdehyde blends cross-linked during film formation (drying) by using a reagent with both aldehyde and acid functionality (one-step method). Laboratory samples of each cross-linked type of film were prepared and evaluated in standard separator screening tests. Then pilot-plant batches of films were prepared and compared to measure differences due to the cross-linking method. The pilot-plant materials were then tested in nickel oxide-zinc cells to compare the two methods with respect to performance characteristics and cycle life. Cell test results are compared with those from tests with Celgard.

Sheibley, D. W.; Manzo, M. A.; Gonzalez-Sanabria, O. D.

1983-01-01

99

Cross-linked polyvinyl alcohol films as alkaline battery separators  

SciTech Connect

Cross-linking methods have been investigated to determine their effect on the performance of polyvinyl alcohol (PVA) films as alkaline battery separators. The following types of cross-linked PVA films are discussed: PVA-dialdehyde blends post-treated with an acid or acid periodate solution and PVA-dialdehyde blends cross-linked during film formation (drying) by using a reagent with both aldehyde and acid functionality. Laboratory samples of each cross-linked type of film were prepared and evaluated in standard separator screening tests. Then pilotplant batches of films were prepared and compared to measure differences due to the cross-linking method. The pilot-plant materials were then tested in nickel oxide-zinc cells to compare the two methods with respect to performance characteristics and cycle life. Cell test results are compared with those from tests with Celgard.

Sheibley, D.W.; Gonzalez-Sanabria, O.D.; Manzo, M.A.

1983-02-01

100

Elasticity of cross-linked semiflexible biopolymers under tension.  

PubMed

Aiming at the mechanical properties of cross-linked biopolymers, we set up and analyze a model of two weakly bending wormlike chains subjected to a tensile force, with regularly spaced inter-chain bonds (cross-links) represented by harmonic springs. Within this model, we compute the force-extension curve and the differential stiffness exactly and discuss several limiting cases. Cross-links effectively stiffen the chain pair by reducing thermal fluctuations transverse to the force and alignment direction. The extra alignment due to cross-links increases both with growing number and with growing strength of the cross-links, and is most prominent for small force f. For large f, the additional, cross-link-induced extension is subdominant except for the case of linking the chains rigidly and continuously along their contour. In this combined limit, we recover asymptotically the elasticity of a weakly bending wormlike chain without constraints, stiffened by a factor of 4. The increase in differential stiffness can be as large as 100% for small f or large numbers of cross-links. PMID:24125288

von der Heydt, Alice; Wilkin, Daniel; Benetatos, Panayotis; Zippelius, Annette

2013-09-01

101

Precise localisation of three intra-RNA cross-links in 23S RNA and one in 5S RNA, induced by treatment of Escherichia coli 50S ribosomal subunits with bis-(2-chloroethyl)-methylamine.  

PubMed Central

Treatment of E. coli 50S ribosomal subunits with low doses of bis-(2-chloroethyl)-methylamine ("nitrogen mustard") leads to formation of a number of intra-RNA and RNA-protein cross-links. After partial digestion of the cross-linked subunits with cobra venom nuclease, followed by destruction of the protein moiety with proteinase K, complexes containing the intra-RNA cross-links were isolated by two-dimensional gel electrophoresis. The individual complexes were subjected to oligonucleotide analysis, either directly or after a second partial digestion procedure using ribonuclease T1, and the cross-link sites determined. In 23S RNA, the cross-links found were between bases 763 and 1567, 1210 and 1236, 1482 and 1501; in 5S RNA, base 69 was cross-linked to base 107. The significance of these cross-links in relation to the three-dimensional organization of the ribosomal RNA is discussed. Images PMID:6818528

Stiege, W; Zwieb, C; Brimacombe, R

1982-01-01

102

Chemistry of the collagen cross-links. Isolation and characterization of two intermediate intermolecular cross-links in collagen  

PubMed Central

This paper describes the isolation from reduced collagen of two new amino acids believed to be involved, in their non-reduced form, as intermolecular cross-links stabilizing the collagen fibre. The reduction of intact collagen fibrils with tritiated sodium borohydride was found to stabilize the aldehyde-mediated cross-links to acid hydrolysis and thus allowed their location and isolation from acid hydrolysates on an automatic amino acid analyser. Comparison of the radioactive elution patterns from the autoanalyser of collagen treated in various ways before reduction permitted a preliminary classification of the peaks into cross-link precursors, intramolecular and intermolecular cross-links. The techniques employed to isolate the purified components on a large scale and to identify them structurally are described in detail. Two labile intermolecular cross-links were isolated in their reduced forms, one of which was identified by high-resolution mass spectrometry as N?-(5-amino-5-carboxypentyl)hydroxylysine. The structure of this compound was confirmed by chemical synthesis. The cross-link precursor ?-aminoadipic ?-semialdehyde was isolated in its reduced form, ?-hydroxynorleucine, together with its acid degradation product ?-chloronorleucine. A relatively stable intermolecular cross-link was isolated and partially characterized by mass spectrometry as an aldol resulting from the reaction of the ?-semialdehyde derived from lysine and hydroxylysine. PMID:5451907

Bailey, A. J.; Peach, Catherine M.; Fowler, L. J.

1970-01-01

103

21 CFR 177.2420 - Polyester resins, cross-linked.  

Code of Federal Regulations, 2013 CFR

...of this section 6. Miscellaneous materials: Castor oil, hydrogenated ?-Methylstyrene Polyethylene glycol 6000 Silicon dioxide Wax, petroleum Complying with § 178.3710 of this chapter. (c) The cross-linked polyester...

2013-04-01

104

21 CFR 177.2420 - Polyester resins, cross-linked.  

Code of Federal Regulations, 2014 CFR

...of this section 6. Miscellaneous materials: Castor oil, hydrogenated ?-Methylstyrene Polyethylene glycol 6000 Silicon dioxide Wax, petroleum Complying with § 178.3710 of this chapter. (c) The cross-linked polyester...

2014-04-01

105

21 CFR 177.2420 - Polyester resins, cross-linked.  

Code of Federal Regulations, 2012 CFR

...of this section 6. Miscellaneous materials: Castor oil, hydrogenated ?-Methylstyrene Polyethylene glycol 6000 Silicon dioxide Wax, petroleum Complying with § 178.3710 of this chapter. (c) The cross-linked polyester...

2012-04-01

106

Predicting structures of cross-linked condensation polymers  

NASA Technical Reports Server (NTRS)

Mathematical procedure is used to predict structure of cross-linked condensation polymer differentiated from an additional polymer resulting from specific reaction. Procedure will greatly reduce amount of empirical formulation and testing needed to produce desired product.

Marsh, H. E.

1979-01-01

107

Dynamic Role of Cross-Linking Proteins in Actin Rheology  

E-print Network

We develop a computational model to compare the relative importance of unbinding and unfolding of actin cross-linking proteins (ACPs) in the dynamic properties of the actin cytoskeleton. We show that in the strain-stiffening ...

Kim, Taeyoon

108

Preparation and cross-linking properties of methacrylated sucrose  

Microsoft Academic Search

By interfacial esterification of sucrose with methacryloyl chloride, an ester derivative of sucrose—methacryloyloxysucrose\\u000a was prepared, which contains vinyl side groups. The structure of methacrylated sucrose (MS) was determined by means of FTIR,\\u000a 1H NMR, and 13C NMR spectra. The MS was used as new cross-linker to cross-link poly(2-hydroxyethyl methacrylate). The influence of the amounts\\u000a of cross-linking agent on the swelling

Roman Jantas; Lucyna Herczy?ska; Joanna Potakowska

109

Cross-linked polyelectrolyte multilayers for marine antifouling applications.  

PubMed

A polyionic multilayer film was fabricated by layer-by-layer (LbL) sequential deposition followed by cross-linking under mild conditions on a substrate surface to inhibit marine fouling. A novel polyanion, featuring methyl ester groups for an easy cross-linking was used as a generic solution for stabilization of LbL films in a harsh environment. Covalent cross-linking was confirmed by FTIR and XPS spectroscopy. AFM was used to observe film morphology and its variation because of cross-linking, as well as to measure the thickness of the LbL films. Cross-linking improved the stability of the LbL film when it was immersed in artificial seawater, natural seawater, and in a polar organic solvent (DMSO). No changes in the thickness and topography of the film were observed in these media. The LbL films prevented settlement of Amphibalanus amphitrite barnacle cyprids and reduced adhesion of the benthic diatom Amphora coffeaeformis. Assay results indicated that the cross-linking process did not weaken the antifouling effect of LbL films. The high stability and low degree of fouling make these coatings potentially promising candidates in marine applications. PMID:23781913

Zhu, Xiaoying; Ja?czewski, Dominik; Lee, Serina Siew Chen; Teo, Serena Lay-Ming; Vancso, G Julius

2013-07-10

110

Cross-linking and the molecular packing of corneal collagen  

NASA Technical Reports Server (NTRS)

We have quantitatively characterized, for the first time, the cross-linking in bovine cornea collagen as a function of age. The major iminium reducible cross-links were dehydro-hydroxylysinonorleucine (deH-HLNL) and dehydro-histidinohydroxymerodesmosine (deH-HHMD). The former rapidly diminished after birth; however, the latter persisted in mature animals at a level of 0.3 - 0.4 moles/mole of collagen. A nonreducible cross-link, histidinohydroxylysinonorleucine (HHL), previously found only in skin, was also found to be a major mature cross-link in cornea. The presence of HHL indicates that cornea fibrils have a molecular packing similar to skin collagen. However, like deH-HHMD, the HHL content in corneal fibrils only reaches a maximum value with time about half that of skin. These data suggest that the corneal fibrils are comprised of discrete filaments that are internally stabilized by HHL and deH-HHMD cross-links. This pattern of intermolecular cross-linking would facilitate the special collagen swelling property required for corneal transparency.

Yamauchi, M.; Chandler, G. S.; Tanzawa, H.; Katz, E. P.

1996-01-01

111

[Cross-linking mechanism of the matrix of hydrogel patch].  

PubMed

In this study, we prepared various matrices of hydrogel patches and studied their cross-linking mechanism by observing their rheological properties, which could provide theoretical basis and deep technical support for further industrial development of hydrogel patch. Rheology method was used to do the amplitude scanning and single-frequency scanning for various hydrogel matrix, under the condition of oscillation mode of the rheometer. Then the linear viscoelastic region, composite modulus value, as well as changes in slope with time of the composite modulus and phase angle of various hydrogel matrix were analyzed in detail. The results showed that the stability of matrix was mainly determined by hydrogel frame; only in acidic environment, the cross-linking reaction between cross-linker and hydrogel frame can occur; elasticity of matrix can be decreased by organic acid and the effect level was related to the ratio of the number of carboxyl and hydroxyl (-COO(-)/-OH) in adjusters: if the ratio was not equal, the higher -COO(-)/-OH in adjusters would be the less elasticity of matrix decreased; the cross-linking speed of matrix was determined by adjuster, the cross-linking speed of matrix contain different adjusters was ranged in following order: matrix containing tartaric acid > matrix containing lactic acid > matrix containing malic acid > matrix containing citric acid; the cross-linking speed of matrix was not uniform in the whole cross-linking process. PMID:22919728

Hou, Xue-Mei; Ding, Bao-Yue; Cai, Zhen; Zhang, Wei; Gao, Jing; Ding, Xue-Ying; Li, Wei-Hua; Gao, Shen

2012-06-01

112

Cross-linked polyvinyl alcohol and method of making same  

SciTech Connect

A film-forming polyvinyl alcohol polymer is mixed with a polyaldehyde-polysaccharide cross-linking agent having at least two monosaccharide units and a plurality of aldehyde groups per molecule, preferably an average of at least one aldehyde group per monosaccharide units. The cross-linking agent, such as a polydialdehyde starch, is used in an amount of about 2.5 to 20% of the theoretical amount required to cross-link all of the available hydroxyl groups of the polyvinyl alcohol polymer. Reaction between the polymer and cross-linking agent is effected in aqueous acidic solution to produce the cross-linked polymer. The polymer product has low electrical resistivity and other properties rendering it suitable for making separators for alkaline batteries. In that event, the mixture of polymer and cross-linking agent is formed into a sheet or film or the like and the film is cut to size and otherwise fabricated into a configuration suitable for a particular end use. The crosslinking reaction is then carried out to produce the final product.

Hsu, L.; Philipp, W.H.; Sheibley, D.W.

1981-06-09

113

??? Cross-Links Increase Fibrin Fiber Elasticity and Stiffness  

PubMed Central

Fibrin fibers, which are ?100 nm in diameter, are the major structural component of a blood clot. The mechanical properties of single fibrin fibers determine the behavior of a blood clot and, thus, have a critical influence on heart attacks, strokes, and embolisms. Cross-linking is thought to fortify blood clots; though, the role of ?–? cross-links in fibrin fiber assembly and their effect on the mechanical properties of single fibrin fibers are poorly understood. To address this knowledge gap, we used a combined fluorescence and atomic force microscope technique to determine the stiffness (modulus), extensibility, and elasticity of individual, uncross-linked, exclusively ?–? cross-linked (?Q398N/Q399N/K406R fibrinogen variant), and completely cross-linked fibrin fibers. Exclusive ?–? cross-linking results in 2.5× stiffer and 1.5× more elastic fibers, whereas full cross-linking results in 3.75× stiffer, 1.2× more elastic, but 1.2× less extensible fibers, as compared to uncross-linked fibers. On the basis of these results and data from the literature, we propose a model in which the ?-C region plays a significant role in inter- and intralinking of fibrin molecules and protofibrils, endowing fibrin fibers with increased stiffness and elasticity. PMID:22225811

Helms, Christine C.; Ariëns, Robert A.S.; Uitte de Willige, S.; Standeven, Kristina F.; Guthold, Martin

2012-01-01

114

Cross-linked agarose for separation of low molecular weight natural products in hydrophilic interaction liquid chromatography.  

PubMed

Following its market introduction in 1982, the cross-linked 12% agarose gel media Superose 12 has become widely known as a tool for size exclusion chromatography of proteins and other biological macromolecules. In this review it is shown that, when appropriate mobile phases are used, Superose possesses adsorption properties similar to that of traditional media for hydrophilic interaction liquid chromatography (HILIC). This is illustrated by the separation and purification of low molecular weight compounds such as polyphenols including active components of traditional Chinese medicinal herbs and green tea. Structural features of the cross-linked agarose that likely cause the observed adsorption effects are discussed as well. These are identified as being primarily ether bonds acting as strong hydrogen bond acceptors as well as hydrophobic residues originating from the cross-linking reagents. PMID:20440717

Tan, Tianwei; Su, Zhi-Guo; Gu, Ming; Xu, Jun; Janson, Jan-Christer

2010-05-01

115

Hyaluronan and Stone Disease  

NASA Astrophysics Data System (ADS)

Kidney stones cannot be formed as long as crystals are passed in the urine. However, when crystals are retained it becomes possible for them to aggregate and form a stone. Crystals are expected to be formed not earlier than the distal tubules and collecting ducts. Studies both in vitro and in vivo demonstrate that calcium oxalate monohydrate crystals do not adhere to intact distal epithelium, but only when the epithelium is proliferating or regenerating, so that it possesses dedifferentiated cells expressing hyaluronan, osteopontin (OPN) and their mutual receptor CD44 at the apical cell membrane. The polysaccharide hyaluronan is an excellent crystal binding molecule because of its negative ionic charge. We hypothesized that the risk for crystal retention in the human kidney would be increased when tubular cells express hyaluronan at their apical cell membrane. Two different patient categories in which nephrocalcinosis frequently occurs were studied to test this hypothesis (preterm neonates and kidney transplant patients). Hyaluronan (and OPN) expression at the luminal membrane of tubular cells indeed was observed, which preceded subsequent retention of crystals in the distal tubules. Tubular nephrocalcinosis has been reported to be associated with decline of renal function and thus further studies to extend our knowledge of the mechanisms of retention and accumulation of crystals in the kidney are warranted. Ultimately, this may allow the design of new strategies for the prevention and treatment of both nephrocalcinosis and nephrolithiasis in patients.

Asselman, Marino

2008-09-01

116

Enzymatically cross-linked bovine lactoferrin as injectable hydrogel for cell delivery.  

PubMed

Lactoferrin (LF), a 78?kDa glycoprotein, has recently been recognized as an effector molecule in the skeleton due to its ability to decrease osteoclastogenesis and increase osteoblast proliferation, survival, and differentiation. The objective of the study is to investigate the feasibility of developing an injectable hydrogel from bovine lactoferrin (bLF) as a cell delivery vehicle. The study demonstrated the feasibility of cross-linking tyramine substituted bLF in the presence of horse radish peroxidase and hydrogen peroxide (H2O2). The gel presented a mild environment to maintain mouse bone marrow-derived stromal cell (mBMSC) viability and proliferation. Stromal cells derived from multiple gene reporter transgenic mouse (Ibsp-Topaz/Dmp1-mCherry) line showed the ability of the cells to undergo osteogenic differentiation in the hydrogel when cultured in mineralization media. The cross-linked gel supported protein phosphorylation/de-phosphorylation in the encapsulated MC3T3-E1 cells. bLF and bLF gel also showed the ability to modulate growth factor production in mBMSCs. PMID:24802947

Amini, Ashley A; Kan, Ho-Man; Cui, Zhanwu; Maye, Peter; Nair, Lakshmi S

2014-11-01

117

An injectable cross-linked scaffold for nucleus pulposus regeneration  

Microsoft Academic Search

Incorporation of scaffolds has long been recognized as a critical element in most tissue engineering strategies. However with regard to intervertebral disc tissue engineering, the use of a scaffold containing the principal extracellular matrix components of native disc tissue (i.e. collagen type II, aggrecan and hyaluronan) has not been investigated. In this study the behavior of bovine nucleus pulposus cells

Damien O. Halloran; Sibylle Grad; Martin Stoddart; Peter Dockery; Mauro Alini; Abhay S. Pandit

2008-01-01

118

21 CFR 177.2710 - Styrene-divinylbenzene resins, cross-linked.  

Code of Federal Regulations, 2010 CFR

...2009-04-01 true Styrene-divinylbenzene resins, cross-linked. 177.2710 Section...177.2710 Styrene-divinylbenzene resins, cross-linked. Styrene-divinylbenzene cross-linked copolymer resins may be safely used as articles...

2010-04-01

119

Photo-Induced Cross-Linking of Unmodified Proteins (PICUP) Applied to Amyloidogenic Peptides  

PubMed Central

The assembly of amyloidogenic proteins into toxic oligomers is a seminal event in the pathogenesis of protein misfolding diseases, including Alzheimer's, Parkinson's, and Huntington's diseases, hereditary amyotrophic lateral sclerosis, and type 2 diabetes. Owing to the metastable nature of these protein assemblies, it is difficult to assess their oligomer size distribution quantitatively using classical methods, such as electrophoresis, chromatography, fluorescence, or dynamic light scattering. Oligomers of amyloidogenic proteins exist as metastable mixtures, in which the oligomers dissociate into monomers and associate into larger assemblies simultaneously. PICUP stabilizes oligomer populations by covalent cross-linking and when combined with fractionation methods, such as sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) or size-exclusion chromatography (SEC), PICUP provides snapshots of the oligomer size distributions that existed before cross-linking. Hence, PICUP enables visualization and quantitative analysis of metastable protein populations and can be used to monitor assembly and decipher relationships between sequence modifications and oligomerization1. Mechanistically, PICUP involves photo-oxidation of Ru2+ in a tris(bipyridyl)Ru(II) complex (RuBpy) to Ru3+ by irradiation with visible light in the presence of an electron acceptor. Ru3+ is a strong one-electron oxidizer capable of abstracting an electron from a neighboring protein molecule, generating a protein radical1,2. Radicals are unstable, highly-reactive species and therefore disappear rapidly through a variety of intra- and intermolecular reactions. A radical may utilize the high energy of an unpaired electron to react with another protein monomer forming a dimeric radical, which subsequently loses a hydrogen atom and forms a stable, covalently-linked dimer. The dimer may then react further through a similar mechanism with monomers or other dimers to form higher-order oligomers. Advantages of PICUP relative to other photo- or chemical cross-linking methods3,4 include short (?1 s) exposure to non-destructive visible light, no need for pre facto modification of the native sequence, and zero-length covalent cross-linking. In addition, PICUP enables cross-linking of proteins within wide pH and temperature ranges, including physiologic parameters. Here, we demonstrate application of PICUP to cross-linking of three amyloidogenic proteins the 40- and 42-residue amyloid ?-protein variants (A?40 and A?42), and calcitonin, and a control protein, growth-hormone releasing factor (GRF). PMID:19229175

Rahimi, Farid; Maiti, Panchanan; Bitan, Gal

2009-01-01

120

Spectroscopic characterization of collagen cross-links in bone.  

PubMed

Collagen is the most abundant protein of the organic matrix in mineralizing tissues. One of its most critical properties is its cross-linking pattern. The intermolecular cross-linking provides the fibrillar matrices with mechanical properties such as tensile strength and viscoelasticity. In this study, Fourier transform infrared (FTIR) spectroscopy and FTIR imaging (FTIRI) analyses were performed in a series of biochemically characterized samples including purified collagen cross-linked peptides, demineralized bovine bone collagen from animals of different ages, collagen from vitamin B6-deficient chick homogenized bone and their age- and sex-matched controls, and histologically stained thin sections from normal human iliac crest biopsy specimens. One region of the FTIR spectrum of particular interest (the amide I spectral region) was resolved into its underlying components. Of these components, the relative percent area ratio of two subbands at approximately 1660 cm(-1) and approximately 1690 cm(-1) was related to collagen cross-links that are abundant in mineralized tissues (i.e., pyridinoline [Pyr] and dehydrodihydroxylysinonorleucine [deH-DHLNL]). This study shows that it is feasible to monitor Pyr and DHLNL collagen cross-links spatial distribution in mineralized tissues. The spectroscopic parameter established in this study may be used in FTIRI analyses, thus enabling the calculation of relative Pyr/DHLNL amounts in thin (approximately 5 microm) calcified tissue sections with a spatial resolution of approximately 7 microm. PMID:11585346

Paschalis, E P; Verdelis, K; Doty, S B; Boskey, A L; Mendelsohn, R; Yamauchi, M

2001-10-01

121

Spectroscopic characterization of collagen cross-links in bone  

NASA Technical Reports Server (NTRS)

Collagen is the most abundant protein of the organic matrix in mineralizing tissues. One of its most critical properties is its cross-linking pattern. The intermolecular cross-linking provides the fibrillar matrices with mechanical properties such as tensile strength and viscoelasticity. In this study, Fourier transform infrared (FTIR) spectroscopy and FTIR imaging (FTIRI) analyses were performed in a series of biochemically characterized samples including purified collagen cross-linked peptides, demineralized bovine bone collagen from animals of different ages, collagen from vitamin B6-deficient chick homogenized bone and their age- and sex-matched controls, and histologically stained thin sections from normal human iliac crest biopsy specimens. One region of the FTIR spectrum of particular interest (the amide I spectral region) was resolved into its underlying components. Of these components, the relative percent area ratio of two subbands at approximately 1660 cm(-1) and approximately 1690 cm(-1) was related to collagen cross-links that are abundant in mineralized tissues (i.e., pyridinoline [Pyr] and dehydrodihydroxylysinonorleucine [deH-DHLNL]). This study shows that it is feasible to monitor Pyr and DHLNL collagen cross-links spatial distribution in mineralized tissues. The spectroscopic parameter established in this study may be used in FTIRI analyses, thus enabling the calculation of relative Pyr/DHLNL amounts in thin (approximately 5 microm) calcified tissue sections with a spatial resolution of approximately 7 microm.

Paschalis, E. P.; Verdelis, K.; Doty, S. B.; Boskey, A. L.; Mendelsohn, R.; Yamauchi, M.

2001-01-01

122

Filamin cross-linked semiflexible networks: Fragility under strain  

E-print Network

The semiflexible F-actin network of the cytoskeleton is cross-linked by a variety of proteins including filamin, which contain Ig-domains that unfold under applied tension. We examine a simple semiflexible network model cross-linked by such unfolding linkers that captures the main mechanical features of F-actin networks cross-linked by filamin proteins and show that under sufficiently high strain the network spontaneously self-organizes so that an appreciable fraction of the filamin cross-linkers are at the threshold of domain unfolding. We propose an explanation of this organization based on a mean-field model and suggest a qualitative experimental signature of this type of network reorganization under applied strain that may be observable in intracellular microrheology experiments of Crocker et al.

B. A. DiDonna; Alex J. Levine

2006-02-09

123

Swelling of cross-linked polystyrene spheres in toluene vapor  

SciTech Connect

The swelling behavior of individual micron-sized polystyrene (PS) spheres in toluene vapor was studied via mass loading by means of micromechanical cantilever sensors. For 4%-8% cross-linked PS a mass increase of 180% in saturated toluene vapor was measured. The mass of the swollen PS sphere decreases with increasing exposure time to ultraviolet light. In addition, the swelling response is significantly different between the first and the second exposure to toluene vapor. This is attributed to the formation of a cross-linked shell at the surface of the PS spheres. Shape persistent parts were observed for locally irradiated PS spheres.

Zhang, R.; Graf, K.; Berger, R. [Polymer Physics Group, Max Planck Institute for Polymer Research, Ackermannweg 10, D-55128 Mainz (Germany); Polymer Physics Group, Max Planck Institute for Polymer Research, Ackermannweg 10, D-55128 Mainz, Germany and Research Center for Micro- and Nanochemistry and Engineering, University of Siegen, D-57068 Siegen (Germany); Polymer Physics Group, Max Planck Institute for Polymer Research, Ackermannweg 10, D-55128 Mainz (Germany)

2006-11-27

124

Cross-linking of two antiparallel vortex tubes  

NASA Technical Reports Server (NTRS)

The detailed mechanisms in vortex cross-linking are unveiled by adequately resolved, direct numerical simulation of two viscous vortex tubes. There are three characteristic phases: (1) inviscid induction followed by core flattening and stretching; (2) bridging of the two vortices by accumulation of annihilated and then cross-linked vortex lines; and (3) threading of the remnants of the initial vortex pair in between the two bridges as they pull apart. These phases and the role of threading (along with bridging) in the mixing and the enstrophy cascade are explained, and it is shown that the mechanism is insensitive to asymmetries.

Melander, M. V.; Hussain, F.

1989-01-01

125

Filamin Cross-Linked Semiflexible Networks: Fragility under Strain  

Microsoft Academic Search

The semiflexible F-actin network of the cytoskeleton is cross-linked by a\\u000avariety of proteins including filamin, which contain Ig-domains that unfold\\u000aunder applied tension. We examine a simple semiflexible network model\\u000across-linked by such unfolding linkers that captures the main mechanical\\u000afeatures of F-actin networks cross-linked by filamin proteins and show that\\u000aunder sufficiently high strain the network spontaneously self-organizes

B. A. DiDonna; Alex J. Levine

2006-01-01

126

The many ways to cleave hyaluronan  

Microsoft Academic Search

Hyaluronan is being used increasingly as a component of artificial matrices and in bioengineering for tissue scaffolding. The length of hyaluronan polymer chains is now recognized as informational, involving a wide variety of size-specific functions. Inadvertent scission of hyaluronan can occur during the process of preparation. On the other hand, certain size-specific hyaluronan fragments may be desirable, endowing the finished

Robert Stern; Grigorij Kogan; Mark J. Jedrzejas; Ladislav Šoltés

2007-01-01

127

Cyclodextrin derivative of hyaluronan  

Microsoft Academic Search

Conversion of hyaluronan (HA) to its ?-cyclodextrin derivative (HA-?-CD) was accomplished by direct coupling of ?-cyclodextrin (?-CD) molecules with carboxylic acid groups of the HA macromolecule. The intermolecular dehydration, yielding the HA-?-CD derivative, was performed by the action of diethyl azodicarboxylate and triphenylphosphine under mild, neutral conditions. The physico-chemical characteristics of the novel (bio)material, determined both in solution and solid

L. Šoltés; R. Mendichi; E. Machovà; B. Steiner; J. Alföldi; V. Sasinkovà; S. Bystrický; K. Balog

1999-01-01

128

Effects of cross-linked high-molecular-weight hyaluronic acid on epidural fibrosis: experimental study.  

PubMed

OBJECT Epidural fibrosis is nonphysiological scar formation, usually at the site of neurosurgical access into the spinal canal, in the intimate vicinity of and around the origin of the radicular sheath. The formation of dense fibrous tissue causes lumbar and radicular pain. In addition to radicular symptoms, the formation of scar tissue may cause problems during reoperation. The authors aimed to investigate the effects of cross-linked high-molecular-weight hyaluronic acid (HA), an HA derivative known as HA gel, on the prevention of epidural fibrosis by using histopathological and biochemical parameters. METHODS Fifty-six adult female Sprague-Dawley rats were evaluated. The rats were divided into 4 groups. Rats in the sham group (n = 14) underwent laminectomy and discectomy and received no treatment; rats in the control group (n = 14) underwent laminectomy and discectomy and received 0.9% NaCl treatment in the surgical area; rats in the HA group (n = 14) received HA treatment at the surgical area after laminectomy and discectomy; and rats in the HA gel group (n = 14) underwent laminectomy and discectomy in addition to receiving treatment with cross-linked high-molecular-weight HA in the surgical area. All rats were decapitated after 4 weeks, and the specimens were evaluated histopathologically and biochemically. The results were statistically compared using the Mann-Whitney U-test. RESULTS Compared with the sham and control groups, the HA and HA gel groups showed significantly lower fibroblast cell density and tissue hydroxyproline concentrations (p < 0.05). There was statistically significant lower dural adhesion and foreign-body reaction between the control and HA gel groups (p < 0.05). Granulation tissue and epidural fibrosis were significantly lower in the HA and HA gel groups compared with the sham group (p < 0.05). There were no significant differences in any histopathological parameters or biochemical values between Groups 3 and 4 (p > 0.05). CONCLUSIONS Cross-linked high-molecular-weight HA had positive effects on the prevention of epidural fibrosis and the reduction of fibrotic tissue density. The efficacy of this agent should also be verified in further experimental and clinical studies. PMID:25396261

Is?k, Semra; Ta?kap?l?o?lu, M Özgür; Atalay, Fatma Oz; Dogan, Seref

2015-01-01

129

Chemical cross-linking analyses of ox neurofilaments.  

PubMed Central

Freshly isolated intact ox neurofilaments have been incubated with copper(II)-o-phenanthroline complex to induce thiol cross-linking between the two largest (apparent Mr 205 000 and 158 000) polypeptide components. Subsequent tryptic digestion shows that the thiol bonds formed between these polypeptides are distributed exclusively among 'rod-domain' fragments that remain associated with intact sedimentable filaments. These observations suggest that the polypeptide chains of the two largest neurofilament components are closely arranged within the backbone but are separate from one another in more peripheral regions. Soluble protofilaments derived from neurofilament disassembly at low ionic strength and high pH have also been cross-linked via thiol bonds in order to determine the polypeptide arrangement within these structures. All three neurofilament polypeptides cross-link more readily when in the form of protofilaments than when in the form of fully assembled filaments, and the pattern of cross-linked complexes formed is different. Analysis of one of these complexes shows that at least some of the protofilaments are composed of oligomers containing both the 72 000- and the 158 000-Mr neurofilament polypeptides arranged in close proximity. Images Fig. 1. Fig. 2. Fig. 3. PMID:3718487

Carden, M J; Eagles, P A

1986-01-01

130

UV laser-induced cross-linking in peptides  

PubMed Central

RATIONALE The aim of this study was to demonstrate, and to characterize by high resolution mass spectrometry, that it is possible to preferentially induce covalent cross-links in peptides by using high energy femtosecond UV laser pulses. The cross-link is readily formed only when aromatic amino acids are present in the peptide sequence. METHODS Three peptides, xenopsin, angiotensin I, interleukin, individually or in combination, were exposed to high energy femtosecond UV laser pulses, either alone or in the presence of spin trapping molecules, the reaction products being characterized by high resolution mass spectrometry. RESULTS High resolution mass spectrometry and spin trapping strategies showed that cross-linking occurs readily, proceeds via a radical mechanism, and is the highly dominant reaction, proceeding without causing significant photo-damage in the investigated range of experimental parameters. CONCLUSIONS High energy femtosecond UV laser pulses can be used to induce covalent cross-links between aromatic amino acids in peptides, overcoming photo-oxidation processes, that predominate as the mean laser pulse intensity approaches illumination conditions achievable with conventional UV light sources. PMID:23754800

Leo, Gabriella; Altucci, Carlo; Bourgoin-Voillard, Sandrine; Gravagnuolo, Alfredo M.; Esposito, Rosario; Marino, Gennaro; Costello, Catherine E.; Velotta, Raffaele; Birolo, Leila

2013-01-01

131

Cross-Linked Protein Crystals for Vaccine Delivery  

NASA Astrophysics Data System (ADS)

The progress toward subunit vaccines has been limited by their poor immunogenicity and limited stability. To enhance the immune response, subunit vaccines universally require improved adjuvants and delivery vehicles. In the present paper, we propose the use of cross-linked protein crystals (CLPCs) as antigens. We compare the immunogenicity of CLPCs of human serum albumin with that of soluble protein and conclude that there are marked differences in the immune response to the different forms of human serum albumin. Relative to the soluble protein, crystalline forms induce and sustain over almost a 6-month study a 6- to 10-fold increase in antibody titer for highly cross-linked crystals and an approximately 30-fold increase for lightly cross-linked crystals. We hypothesize that the depot effect, the particulate structure of CLPCs, and highly repetitive nature of protein crystals may play roles in the enhanced production of circulating antibodies. Several features of CLPCs, such as their remarkable stability, purity, biodegradability, and ease of manufacturing, make them highly attractive for vaccine formulations. This work paves the way for a systematic study of protein crystallinity and cross-linking on enhancement of humoral and T cell responses.

St. Clair, Nancy; Shenoy, Bhami; Jacob, Lawrence D.; Margolin, Alexey L.

1999-08-01

132

Immobilization of enzymes in photochemically cross-linked polyvinyl alcohol  

Microsoft Academic Search

Invertase and amyloglucosidase were entrapped in polyvinyl alcohol membranes through UV irradiation of pendent styrylpyridinium groups. The influence of cross-linking on immobilization efficiency was studied using prepolymers with varied cross-linker density, the above mentioned enzymes of different molecular weight, and various substrates. It was found that the larger enzyme invertase is effectively immobilized even in polymers with very low contents

Thomas Uhlich; Mathias Ulbricht; Georg Tomaschewski

1996-01-01

133

Thermoresponsive nanohydrogels cross-linked by gold nanoparticles.  

PubMed

Thermoresponsive nanohydrogels cross-linked by gold nanoparticles (AuNPs) were prepared by 1,3-dipolar cycloaddition reactions and in situ reversible addition-fragmentation chain-transfer (RAFT) polymerization. In order to synthesize thermoresponsive nanohydrogels, AuNPs decorated with azide groups (AuNPs-N(3)) were prepared through ligand exchange. Click reactions between AuNPs-N(3) and dialkynetrithiocarbonate yielded cross-linked AuNP aggregates. The size and cross-linking density of AuNP aggregates increased with the molar ratio of acetylene groups to azide groups. After click reactions, the absorption maximum of the plasmon band of AuNPs red-shifted to a long wavelength. Thermoresponsive nanohydrogels were prepared by in situ RAFT polymerization of N-isopropylacrylamide (NIPAM) using trithiocarbonate in the cross-linked AuNP aggregates as chain-transfer agents. The thermoresponsive nanohydrogels presented a low critical solution temperature at around 32 degrees C due to the "coil-to-globule" transition of connecting PNIPAM chains in the nanohydrogels. The size of the thermoresponsive nanohydrogels was determined by the molar ratio of acetylene groups to azide groups. PMID:20669920

Lian, Xueming; Jin, Jie; Tian, Jia; Zhao, Hanying

2010-08-01

134

Studies on the Sorption of Palladium using Cross?Linked Poly (4?Vinylpyridine?Divinylbenzene) Resins in Nitric Acid Medium  

Microsoft Academic Search

Various cross?linked (4, 8, and 12%) gel?type weak?base poly(4?vinylpyridine) (PVP) resins were studied for palladium recovery from nitric acid medium. The sorption of palladium was found to decrease with an increase in cross?linkage of the resin. 8 and 12% PVP resins exhibited maximum DPd(II) values at 2–6 M HNO3, whereas 4% PVP resin showed maximum DPd(II) values at lower acidities (0.1 M

R. Kumaresan; K. N. Sabharwal; T. G. Srinivasan; P. R. Vasudeva Rao; Gunesh Dhekane

2008-01-01

135

Surface grafted chitosan gels. Part II. Gel formation and characterization.  

PubMed

Responsive biomaterial hydrogels attract significant attention due to their biocompatibility and degradability. In order to make chitosan based gels, we first graft one layer of chitosan to silica, and then build a chitosan/poly(acrylic acid) multilayer using the layer-by-layer approach. After cross-linking the chitosan present in the polyelectrolyte multilayer, poly(acrylic acid) is partly removed by exposing the multilayer structure to a concentrated carbonate buffer solution at a high pH, leaving a surface-grafted cross-linked gel. Chemical cross-linking enhances the gel stability against detachment and decomposition. The chemical reaction between gluteraldehyde, the cross-linking agent, and chitosan was followed in situ using total internal reflection Raman (TIRR) spectroscopy, which provided a molecular insight into the complex reaction mechanism, as well as the means to quantify the cross-linking density. The amount of poly(acrylic acid) trapped inside the surface grafted films was found to decrease with decreasing cross-linking density, as confirmed in situ using TIRR, and ex situ by Fourier transform infrared (FTIR) measurements on dried films. The responsiveness of the chitosan-based gels with respect to pH changes was probed by quartz crystal microbalance with dissipation (QCM-D) and TIRR. Highly cross-linked gels show a small and fully reversible behavior when the solution pH is switched between pH 2.7 and 5.7. In contrast, low cross-linked gels are more responsive to pH changes, but the response is fully reversible only after the first exposure to the acidic solution, once an internal restructuring of the gel has taken place. Two distinct pKa's for both chitosan and poly(acrylic acid), were determined for the cross-linked structure using TIRR. They are associated with populations of chargeable groups displaying either a bulk like dissociation behavior or forming ionic complexes inside the hydrogel film. PMID:25006685

Liu, Chao; Thormann, Esben; Claesson, Per M; Tyrode, Eric

2014-07-29

136

Covalent cross-linking of radiolabeled human chorionic gonadotropin to rat ovarian luteinizing hormone receptor with glutaraldehyde.  

PubMed

Crude plasma membranes of pseudopregnant rat ovaries were incubated with 125I-labeled human chorionic gonadotropin (125I-hCG) and the formed luteinizing hormone (LH)/hCG receptor-125I-hCG complex was solubilized, partially purified by Sepharose 6B gel filtration, cross-linked with glutaraldehyde and subjected to sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) and fluorography. An apparent molecular weight (mol wt) of 130,000 was obtained for the non-reduced complex. A similar-sized complex was observed, when 3H-hCG (beta-subunit labeled) instead of 125I-hCG (alpha-subunit labeled) was used, indicating that the complex contains intact hCG. Upon reduction of the cross-linked receptor-125I-hCG complex, a 105,000 mol wt complex in addition to the 130,000 one was observed. No smaller complexes appeared, however, upon reduction of the receptor-3H-hCG complex, suggesting that the alpha-subunit of hCG predominantly interacts with the receptor. The cross-linking efficiency was dependent on protein concentration, glutaraldehyde concentration, pH, reaction time and temperature. Under optimal conditions (2 mM glutaraldehyde, pH 7.0-8.0, 60 min, 20 degrees C) no nonspecific complexes appeared and the efficiency of cross-linking of the partially purified detergent-solubilized receptor-125I-hCG complex was approximately 30%. Glutaraldehyde thus provides a rapid and efficient cross-linking reagent to covalently attach 125I-hCG to its receptor and is likely to be highly applicable to other receptor-ligand systems as well. PMID:3131517

Petäjä, U; Kellokumpu, S; Keinänen, K; Metsikkö, K; Rajaniemi, H

1987-01-01

137

Mapping protein interfaces by chemical cross-linking and Fourier transform ion cyclotron resonance mass spectrometry: application to a calmodulin / adenylyl cyclase 8 peptide complex.  

PubMed

Chemical cross-linking--an established technique in protein chemistry--has re-emerged, in combination with mass spectrometric analysis of the reaction products, as a valuable tool to identify interacting amino acid sequences in protein complexes. In the present study, we are mapping the interface of the calcium-dependent complex between calmodulin (CaM) and a peptide derived from the C-terminal region of adenylyl cyclase 8 (AC 8). Cross-linking reactions are performed using the two amine-reactive, isotope-labeled (d0 and d4) cross-linkers BS(3) (bis[sulfosuccinimidyl]suberate) and BS(2)G (bi[sulfosuccinimidyl] glutarate) as well as the 'zero-length' cross-linker (EDC, ethyl-3-[3-dimethylaminopropyl] carbodiimide hydrochloride). After separation of the cross-linking reaction mixtures by one-dimensional gel electrophoresis (sodium dodecyl sulphate polyacrylamide gel) and in-gel digestion of the cross-linked complexes, the resulting peptide mixtures are analyzed by nano-high-performance liquid chromatography/ nano-electrospray ionization Fourier transform ion cyclotron resonance mass spectrometry. The identified intermolecular cross-linking products will give further insight into calmodulin/adenylyl cyclase 8 interaction. PMID:16322659

Schmidt, Andreas; Kalkhof, Stefan; Ihling, Christian; Cooper, Dermot M F; Sinz, Andrea

2005-01-01

138

Cross-Linked Fiber Network Embedded in Elastic Matrix  

PubMed Central

The mechanical behavior of a three-dimensional cross-linked fiber network embedded in matrix is studied in this work. The network is composed from linear elastic fibers which store energy only in the axial deformation mode, while the matrix is also isotropic and linear elastic. Such systems are encountered in a broad range of applications, from tissue to consumer products. As the matrix modulus increases, the network is constrained to deform more affinely. This leads to internal forces acting between the network and the matrix, which produce strong stress concentration at the network cross-links. This interaction increases the apparent modulus of the network and decreases the apparent modulus of the matrix. A model is developed to predict the effective modulus of the composite and its predictions are compared with numerical data for a variety of networks. PMID:24089623

Zhang, L.; Lake, S.P.; Barocas, V.H.; Shephard, M.S.; Picu, R.C.

2013-01-01

139

Development of casein microgels from cross-linking of casein micelles by genipin.  

PubMed

Casein micelles are porous colloidal particles, constituted of casein molecules, water, and minerals. The vulnerability of the supramolecular structure of casein micelles face to changes in the environmental conditions restrains their applications in other domains besides food. Thus, redesigning casein micelles is a challenge to create new functionalities for these biosourced particles. The objective of this work was to create stable casein microgels from casein micelles using a natural cross-linker, named genipin. Suspensions of purified casein micelles (25 g L(-1)) were mixed with genipin solutions to have final concentrations of 5, 10, and 20 mM genipin. Covalently linked casein microgels were formed via cross-linking of lysyl and arginyl residues of casein molecules. The reacted products exhibited blue color. The cross-linking reaction induced gradual changes on the colloidal properties of the particles. The casein microgels were smaller and more negatively charged and presented smoother surfaces than casein micelles. These results were explained based on the cross-linking of free NH2 present in an external layer of ?-casein. Light scattering and rheological measurements showed that the reaction between genipin and casein molecules was intramicellar, as one single population of particles was observed and the values of viscosity (and, consequently, the volume fraction of the particles) were reduced. Contrary to the casein micelles, the casein microgels were resistant to the presence of dissociating agents, e.g., citrate (calcium chelating) and urea, but swelled as a consequence of internal electrostatic repulsion and the disruption of hydrophobic interactions between protein chains. The casein microgels did not dissociate at the air-solution interface and formed solid-like interfaces rather than a viscoelastic gel. The potential use of casein microgels as adaptable nanocarriers is proposed in the article. PMID:25117401

Silva, Naaman F Nogueira; Saint-Jalmes, Arnaud; de Carvalho, Antônio F; Gaucheron, Frédéric

2014-09-01

140

Enzymatically cross-linked injectable alginate-g-pyrrole hydrogels for neovascularization.  

PubMed

Microparticles capable of releasing protein drugs are often incorporated into injectable hydrogels to minimize their displacement at an implantation site, reduce initial drug burst, and further control drug release rates over a broader range. However, there is still a need to develop methods for releasing drug molecules over extended periods of time, in order to sustain the bioactivity of drug molecules at an implantation site. In this study, we hypothesized that a hydrogel formed through the cross-linking of pyrrole units linked to a hydrophilic polymer would release protein drugs in a more sustained manner, because of an enhanced association between cross-linked pyrrole groups and the drug molecules. To examine this hypothesis, we prepared hydrogels of alginate substituted with pyrrole groups, alginate-g-pyrrole, through a horse-radish peroxidase (HRP)-activated cross-linking of the pyrrole groups. The hydrogels were encapsulated with poly(lactic-co-glycolic acid) (PLGA) microparticles loaded with vascular endothelial growth factor (VEGF). The resulting hydrogel system released VEGF in a more sustained manner than Ca(2+) alginate or Ca(2+) alginate-g-pyrrole gel systems. Finally, implantations of the VEGF-releasing HRP-activated alginate-g-pyrrole hydrogel system on chicken chorioallantoic membranes resulted in the formation of blood vessels in higher densities and with larger diameters, compared to other control conditions. Overall, the drug releasing system developed in this study will be broadly useful for regulating release rates of a wide array of protein drugs, and further enhance the quality of protein drug-based therapies. PMID:23886705

Devolder, Ross; Antoniadou, Eleni; Kong, Hyunjoon

2013-11-28

141

Reversible PH Lability of Cross-Linked Vault Nanocapsules  

SciTech Connect

Vaults are ubiquitous, self-assembled protein nanocapsules with dimension in the sub-100 nm range that are conserved across diverse phyla from worms to humans. Their normal presence in humans at a copy number of over 10 000/cell makes them attractive as potential drug delivery vehicles. Toward this goal, bifunctional amine-reactive reagents are shown to be useful for the reversible cross-linking of recombinant vaults such that they may be closed and opened in a controllable manner.

Yu, M.; Ng, B.C.; Rome, L.H.; Tolbert, S.H.; Monbouquette, H.G.

2009-05-28

142

Characterization of cross-linked gelatin nanofibers through electrospinning  

Microsoft Academic Search

Gelatin nanofibers can be used in the development of a biomimicking artificial extra cellular matrix(ECM) for tissue engineering,\\u000a wound healing dressings and drug release. However, gelatin nanofibers are water soluble and have weak mechanical strength.\\u000a Two different cross-linking methods for preparing gelatin nanofibers were used to render gelatin nanofibres insoluble: 1)\\u000a UV radiation for modified gelatin nanofibers by trans-cinnamic acid;

Jong Hyun Ko; HaiYan Yin; Jeongho An; Dong June Chung; Ji-Heung Kim; Soo Bok Lee; Do Gi Pyun

2010-01-01

143

Ion exchange selectivity for cross-linked polyacrylic acid  

NASA Technical Reports Server (NTRS)

The ion separation factors for 21 common metal ions with cross-linked polyacrylic acid were determined as a function of pH and the percent of the cross-linked polyacrylic acid neutralized. The calcium ion was used as a reference. At a pH of 5 the decreasing order of affinity of the ions for the cross-linked polyacrylic acid was found to be: Hg++, Fe+++, Pb++, Cr+++, Cu++, Cd++, Al+++, Ag+, Zn++, Ni++, Mn++, Co++, Ca++, Sr++, Ba++, Mg++, K+, Rb+, Cs+, Na+, and Li+. Members of a chemical family exhibited similar selectivities. The Hg++ ion appeared to be about a million times more strongly bound than the alkali metal ions. The relative binding of most of the metal ions varied with pH; the very tightly and very weakly bound ions showed the largest variations with pH. The calcium ion-hydrogen ion equilibrium was perturbed very little by the presence of the other ions. The separation factors and selectivity coefficients are discussed in terms of equilibrium and thermodynamic significance.

May, C. E.; Philipp, W. H.

1983-01-01

144

Planning combinatorial disulfide cross-links for protein fold determination  

PubMed Central

Background Fold recognition techniques take advantage of the limited number of overall structural organizations, and have become increasingly effective at identifying the fold of a given target sequence. However, in the absence of sufficient sequence identity, it remains difficult for fold recognition methods to always select the correct model. While a native-like model is often among a pool of highly ranked models, it is not necessarily the highest-ranked one, and the model rankings depend sensitively on the scoring function used. Structure elucidation methods can then be employed to decide among the models based on relatively rapid biochemical/biophysical experiments. Results This paper presents an integrated computational-experimental method to determine the fold of a target protein by probing it with a set of planned disulfide cross-links. We start with predicted structural models obtained by standard fold recognition techniques. In a first stage, we characterize the fold-level differences between the models in terms of topological (contact) patterns of secondary structure elements (SSEs), and select a small set of SSE pairs that differentiate the folds. In a second stage, we determine a set of residue-level cross-links to probe the selected SSE pairs. Each stage employs an information-theoretic planning algorithm to maximize information gain while minimizing experimental complexity, along with a Bayes error plan assessment framework to characterize the probability of making a correct decision once data for the plan are collected. By focusing on overall topological differences and planning cross-linking experiments to probe them, our fold determination approach is robust to noise and uncertainty in the models (e.g., threading misalignment) and in the actual structure (e.g., flexibility). We demonstrate the effectiveness of our approach in case studies for a number of CASP targets, showing that the optimized plans have low risk of error while testing only a small portion of the quadratic number of possible cross-link candidates. Simulation studies with these plans further show that they do a very good job of selecting the correct model, according to cross-links simulated from the actual crystal structures. Conclusions Fold determination can overcome scoring limitations in purely computational fold recognition methods, while requiring less experimental effort than traditional protein structure determination approaches. PMID:22168447

2011-01-01

145

Radiation synthesis of low swelling acrylamide based hydrogels and determination of average molecular weight between cross-links  

NASA Astrophysics Data System (ADS)

A comparative analysis of determination of cross-link density ( ?e) of hydrogels by using swelling tests and mechanical measurements has been made. Poly(acrylamide/methacrylamide) P(AAm/MAAm) and poly(acrylamide/hydroxyethyl methacrylate) P(AAm/HEMA) hydrogels were prepared by using gamma rays and used as model hydrogel systems. The uniaxial compression test was applied to cylindrical gel samples in the swollen state at pH 7. Stress-strain curves of hydrogels were evaluated to calculate the shear modulus values. The average molecular weight between cross-links (M) and ?e obtained from mechanical measurements were significantly different than the values obtained from swelling experiments. Large differences were attributed to the uncertainty on the value of the ? parameter used in the Flory-Rehner equation. ±1% change in this parameter doubled or reduced the M value of hydrogel to half value.

Mahmudi, Naim; ?en, Murat; Rendevski, Stojan; Güven, Olgun

2007-12-01

146

New Aptes Cross-linked Polymers from Poly(ethylene oxide)s and Cyanuric Chloride for Lithium Batteries  

NASA Technical Reports Server (NTRS)

A new series of polymer electrolytes for use as membranes for lithium batteries are described. Electrolytes were made by polymerization between cyanuric chloride and diamino-terminated poly(ethylene oxide)s, followed by cross-linking via a sol-gel process. Thermal analysis and lithium conductivity of freestanding polymer films were studied. The effects of several variables on conductivity were investigated, such as length of backbone PEO chain, length of branching PEO chain, extent of branching, extent of cross-linking, salt content, and salt counterion. Polymer films with the highest percentage of PEO were found to be the most conductive, with a maximum lithium conductivity of 3.9 x 10(exp -5) S/cm at 25 C. Addition of plasticizer to the dry polymers increased conductivity by an order of magnitude.

Tigelaar, Dean M.; Meador, Mary Ann B.; Kinder, James D.; Bennett, William R.

2005-01-01

147

Mechanical properties of tough hydrogels synthesized with a facile simultaneous radiation polymerization and cross-linking method  

NASA Astrophysics Data System (ADS)

Radiation-induced polymerization and cross-linking method has been applied to hydrogel preparations for decades, but less attention has been paid to the mechanical properties of the hydrogels. In this work, we provide a systematic study on the mechanical properties of hydrogels synthesized with the simultaneous radiation polymerization and cross-linking method. The prepared polyacrylamide (PAAm) had very good mechanical properties, namely high compressive strengths (several to more than 10 MPa), high tensile strengths (up to 260 kPa), high fracture strains (up to 12) and high fracture energies (10-160 J/m2). Absorbed dose and monomer concentration were the two important factors affecting the mechanical properties of the gels. The compressive strength and elastic modulus of the gels increased with increasing absorbed dose and monomer concentration, while the tensile strength, fracture strain and fracture energy of the gels decreased with increasing absorbed dose. The gels also showed excellent elastic recovery property, as indicated by the low stress-strain hysteresis ratios in cyclic tensile tests as well as the small loss factors measured with dynamic mechanical analysis (DMA).

Jiang, Fangzhi; Wang, Xuezhen; He, Changcheng; Saricilar, Sureyya; Wang, Huiliang

2015-01-01

148

Viscoelastic and mechanical properties of hyaluronan films and hydrogels modified by carbodiimide.  

PubMed

This study investigated an effect of different ways of the preparation of insoluble hyaluronan material on its mechanical and viscoelastic properties. Hyaluronan (NaHy) of molecular weight Mw=500,000gmol(-1) was modified with N-(3-dimethylaminopropyl-N'-ethylcarbodiimide hydrochloride (EDC) and N-hydroxysuccinimide (NHS), to be able absorb liquid without changing its mechanical properties. The modified, water insoluble NaHy materials were prepared in different geometry; as modified films and modified cylinders with exact dimensions. The occurrence of modification was confirmed by FT-IR (Fourier transform infrared spectroscopy) and (1)H NMR (proton nuclear magnetic resonance) spectroscopy and swelling test. The determined mechanical and viscoelastic properties of unmodified and modified hyaluronan revealed the high dependency of elasticity changes depending on the gel processing method. Moreover, NaHy gels in the cylindrical form with the sponge-like structure predominant them as a convenient geometry for application in a humid environment. PMID:25563954

G?und?lová, Lenka; Gregorova, Adriana; Mrá?ek, Aleš; Vícha, Robert; Smolka, Petr; Mina?ík, Antonín

2015-03-30

149

The Actin Cross-Linking Domain of the Vibrio cholerae RTX Toxin Directly Catalyzes the Covalent Cross-Linking of Actin  

PubMed Central

Vibrio cholerae is a Gram-negative bacterial pathogen that exports enterotoxins to alter host cells and elicit diarrheal disease. Among the secreted toxins is the multifunctional RTX toxin, which causes cell rounding and actin depolymerization by covalently cross-linking actin monomers into dimers, trimers, and higher multimers. The region of the toxin responsible for cross-linking activity, the actin cross-linking domain (ACD), has recently been identified. In this study, we further investigate the role of the ACD in the actin cross-linking reaction. We show that the RTX toxin cross-links actin independent of tissue transglutaminase, thus eliminating an indirect model of ACD activity. We demonstrate that a fusion protein of the ACD and the N-terminal portion of Lethal Factor from B. anthracis, LFNACD, has cross-linking activity in vivo and in crude cell extracts. Furthermore, we determine that LFNACD directly catalyzes the formation of covalent linkages between actin molecules in vitro and that Mg2+ and ATP are essential cofactors for the cross-linking reaction. In addition, G-actin is proposed as a cytoskeletal substrate of the RTX toxin in vivo. Future studies of the in vitro cross-linking reaction will facilitate characterization of the enzymatic properties of the ACD and contribute to our knowledge of the novel mechanism of covalent actin cross-linking. PMID:16954226

Cordero, Christina L.; Kudryashov, Dmitry S.; Reisler, Emil; Fullner Satchell, Karla J.

2008-01-01

150

Chemical cross-linking/mass spectrometry targeting acidic residues in proteins and protein complexes  

PubMed Central

The study of proteins and protein complexes using chemical cross-linking followed by the MS identification of the cross-linked peptides has found increasingly widespread use in recent years. Thus far, such analyses have used almost exclusively homobifunctional, amine-reactive cross-linking reagents. Here we report the development and application of an orthogonal cross-linking chemistry specific for carboxyl groups. Chemical cross-linking of acidic residues is achieved using homobifunctional dihydrazides as cross-linking reagents and a coupling chemistry at neutral pH that is compatible with the structural integrity of most protein complexes. In addition to cross-links formed through insertion of the dihydrazides with different spacer lengths, zero-length cross-link products are also obtained, thereby providing additional structural information. We demonstrate the application of the reaction and the MS identification of the resulting cross-linked peptides for the chaperonin TRiC/CCT and the 26S proteasome. The results indicate that the targeting of acidic residues for cross-linking provides distance restraints that are complementary and orthogonal to those obtained from lysine cross-linking, thereby expanding the yield of structural information that can be obtained from cross-linking studies and used in hybrid modeling approaches. PMID:24938783

Leitner, Alexander; Joachimiak, Lukasz A.; Unverdorben, Pia; Walzthoeni, Thomas; Frydman, Judith; Förster, Friedrich; Aebersold, Ruedi

2014-01-01

151

One-step electrospinning of cross-linked chitosan fibers.  

PubMed

Chitin is a nitrogen-rich polysaccharide that is abundant in crustaceans, mollusks, insects, and fungi and is the second most abundant organic material found in nature next to cellulose. Chitosan, the N-deacetylated derivative of chitin, is environmentally friendly, nontoxic, biodegradable, and antibacterial. Fibrous mats are typically used in industries for filter media, catalysis, and sensors. Decreasing fiber diameters within these mats causes many beneficial effects such as increased specific surface area to volume ratios. When the intrinsically beneficial effects of chitosan are combined with the enhanced properties of nanofibrous mats, applications arise in a wide range of fields, including medical, packaging, agricultural, and automotive. This is particularly important as innovative technologies that focus around bio-based materials are currently of high urgency, as they can decrease dependencies on fossil fuels. We have demonstrated that Schiff base cross-linked chitosan fibrous mats can be produced utilizing a one-step electrospinning process that is 25 times faster and, therefore, more economical than a previously reported two-step vapor-cross-linking method. These fibrous mats are insoluble in acidic, basic, and aqueous solutions for 72 h. Additionally, this improved production method results in a decreased average fiber diameter, which measures 128 +/- 40 nm. Chemical and structural analyses were conducted utilizing Fourier transform infrared spectroscopy, solubility studies, and scanning electron microscopy. PMID:17696400

Schiffman, Jessica D; Schauer, Caroline L

2007-09-01

152

[Corneal collagen cross-linking in keratoconus management].  

PubMed

Functional results of collagen UV cross-linking in keratoconus management are evaluated. 77 patients (87 eyes) with keratoconus stage I-II (Amsler classification) were under observation. All the patients received UV radiation (370 3m, 3mW/sm2) for 30 min with simultaneous instillation of "Dextralink" solution. Besides routine ophthalmological examination confocal biomicroscopy (HRT III, Heidelberg, Germany) and optical coherent tomography (Vizante-OCT, Carl Zeis, Germany) were performed before, in 1, 3, 6 and 12 months, 2 and 3 years after the procedure. By the 6th month the best corrected visual acuity showed improvement from 0.41 + 0.12 (M+m) till 0.52 + 0.01. Corneal refractive power decreased to 49.41 + 1.69 dpt by the last examination. UV cross-linking is a minimally invasive and effective option for management of keratoconus at the early stages, that let achieve biomechanical stabilization of the cornea and reduce progression rate. PMID:22165094

Bikbov, M M; Bikbova, G M; Khabibullin, A F

2011-01-01

153

Damage and fatigue in cross-linked rubbers  

NASA Astrophysics Data System (ADS)

Damage and fatigue of elastomers have not been fundamentally understood because of the complex nature of these materials. All currently existing models are completely phenomenological. Therefore two problems have been investigated in this research to address those fundamental issues. The first problem was creating an innovative concept with a mathematical modeling, which would be able to describe the damage using molecular characteristics of elastomers. The second problem is developing new approaches to study fatigue, and especially impact fatigue of elastomers. The following results have been obtained in this research. A theoretical model of damage has been developed which involves the basic molecular characteristics of cross-linked elastomers and takes into account the effects of viscoelasticity and stress-induced crystallization. This model was found very reliable and successful in description of numerous quasi-static simple extension experiments for monotonous and repeating loadings. It also roughly predicts in molecular terms the failure of elastomers with various degrees of cross-linking. Quasi-impact fatigue tests with different geometry of an indenter have also been performed. Some microscopic features of rubber damage have been investigated using optical microscopy and SEM. In particular, the accumulation of a completely de-vulcanized, liquid-like substance was observed under intense, multi-cycle impacts. All the findings discovered in quasi-impact experiments are consistent with the damage model predictions.

Melnikov, Alexei

154

Collagen Cross-Linking: Current Status and Future Directions  

PubMed Central

Collagen cross-linking (CXL) using UVA light and riboflavin (vitamin B2) was introduced as a clinical application to stabilize the cornea by inducing cross-links within and between collagen fibers. CXL has been investigated extensively and has been shown clinically to arrest the progression of keratoconic or post-LASIK ectasia. With its minimal cost, simplicity, and proven positive clinical outcome, CXL can be regarded as a useful approach to reduce the number of penetrating keratoplasties performed. Small case series have also indicated that CXL is beneficial in corneal edema by reducing stromal swelling behavior and in keratitis by inhibiting pathogen growth. Despite these encouraging results, CXL remains a relatively new method that is potentially associated with complications. Aspects such as side effects and recurrence rates have still to be elucidated. In light of the growing interest in CXL, our paper summarizes present knowledge about this promising approach. We have intentionally endeavored to include the more relevant studies from the recent literature to provide an overview of the current status of CXL. PMID:22288005

Hovakimyan, Marine; Guthoff, Rudolf F.; Stachs, Oliver

2012-01-01

155

The many ways to cleave hyaluronan.  

PubMed

Hyaluronan is being used increasingly as a component of artificial matrices and in bioengineering for tissue scaffolding. The length of hyaluronan polymer chains is now recognized as informational, involving a wide variety of size-specific functions. Inadvertent scission of hyaluronan can occur during the process of preparation. On the other hand, certain size-specific hyaluronan fragments may be desirable, endowing the finished bioengineered product with specific properties. In this review, the vast arrays of reactions that cause scission of hyaluronan polymers is presented, including those on an enzymatic, free radical, and chemical basis. PMID:17716848

Stern, Robert; Kogan, Grigorij; Jedrzejas, Mark J; Soltés, Ladislav

2007-01-01

156

A Structural Approach to Establishing a Platform Chemistry for the Tunable, Bulk Electron Beam Cross-Linking of Shape Memory Polymer Systems.  

PubMed

The synthetic design and thermomechanical characterization of shape memory polymers (SMPs) built from a new polyurethane chemistry that enables facile, bulk and tunable cross-linking of low-molecular weight thermoplastics by electron beam irradiation is reported in this study. SMPs exhibit stimuli-induced geometry changes and are being proposed for applications in numerous fields. We have previously reported a polyurethane SMP system that exhibits the complex processing capabilities of thermoplastic polymers and the mechanical robustness and tunability of thermomechanical properties that are often characteristic of thermoset materials. These previously reported polyurethanes suffer practically because the thermoplastic molecular weights needed to achieve target cross-link densities severely limit high-throughput thermoplastic processing and because thermally unstable radiation-sensitizing additives must be used to achieve high enough cross-link densities to enable desired tunable shape memory behavior. In this study, we demonstrate the ability to manipulate cross-link density in low-molecular weight aliphatic thermoplastic polyurethane SMPs (M w as low as ~1.5 kDa) without radiation-sensitizing additives by incorporating specific structural motifs into the thermoplastic polymer side chains that we hypothesized would significantly enhance susceptibility to e-beam cross-linking. A custom diol monomer was first synthesized and then implemented in the synthesis of neat thermoplastic polyurethane SMPs that were irradiated at doses ranging from 1 to 500 kGy. Dynamic mechanical analysis (DMA) demonstrated rubbery moduli to be tailorable between 0.1 and 55 MPa, and both DMA and sol/gel analysis results provided fundamental insight into our hypothesized mechanism of electron beam cross-linking, which enables controllable bulk cross-linking to be achieved in highly processable, low-molecular weight thermoplastic shape memory polymers without sensitizing additives. PMID:25411511

Hearon, Keith; Besset, Celine J; Lonnecker, Alexander T; Ware, Taylor; Voit, Walter E; Wilson, Thomas S; Wooley, Karen L; Maitland, Duncan J

2013-11-26

157

Analysis of the heavy-chain modification and TSG-6 activity in pathological hyaluronan matrices.  

PubMed

During inflammation and developmental processes, heavy chains (HCs) from inter-?-inhibitor (I?I) are covalently transferred to hyaluronan (HA) via the enzyme tumor-necrosis-factor-stimulated-gene 6 (TSG-6) to form a HC-HA complex. In this manuscript, we describe a gel-based assay to detect HC-HA and TSG-6 activity in tissues. PMID:25325979

Lauer, Mark E; Loftis, Jacqueline; de la Motte, Carol; Hascall, Vincent C

2015-01-01

158

Evidence for RNA-RNA cross-link formation in Escherichia coli ribosomes.  

PubMed Central

Evidence is presented in three separate cases for the formation of RNA-RNA cross-links in intact E. coli ribosomes and ribosomal subunits. The first case is a cross-link between the 18S and 13S regions of the 23S RNA, induced by ultraviolet irradiation. The second is a cross-link at the subunit interface, generated by the bifunctional reagent bis-(2-chloroethyl)-amine. The third example is a cross-link between sections O'-D and P-A of the 16S RNA, induced as in the first case by ultraviolet irradiation. The RNA-RNA cross-links can be identified as such, despite the complications introduced by concomitant RNA-protein cross-linking reactions. The experiments represent a first attempt to introduce RNA-RNA cross-linking into studies of the topographical organization of the RNA within the ribosome. Images PMID:358146

Zwieb, C; Ross, A; Rinke, J; Meinke, M; Brimacombe, R

1978-01-01

159

[Keratoconus treatment by corneal cross-linking (CLX)].  

PubMed

Keratoconus is a disease of the cornea that usually begins during puberty and progressively weakens its biomechanical structure. Keratoconic eyes show a conic shape and progressive thinning, both leading to irregular astigmatism and reduced vision that cannot be corrected by glasses. In early cases, special contact lens can partly compensate for the visual loss while they do not stop disease progression. Until recently, the only treatment option was a corneal transplant. In 1999, a technique called corneal collagen cross-linking (CXL) was used in human corneas suffering from keratoconus for the first time. CXL uses a process called photopolymerization to halt the progression of keratoconus with an efficacy of more than 95%. Today our challenge is to screen and identify patients early enough to offer a treatment on time before irreversible vision loss develops. PMID:25004773

Hammer, Arthur; Tabibian, David; Richoz, Olivier; Hafezi, Farhad

2014-06-01

160

Encapsulation of cobalt nanoparticles in cross-linked-polymer cages  

NASA Astrophysics Data System (ADS)

Nanoparticles embedded in polymeric cages give rise to interesting applications ranging from nanocatalysis to drug-delivery systems. In this context, we report on synthesis of cobalt (Co) nanoparticles trapped in polyvinyl alcohol (PVA) matrix to yield self-supporting magnetic films in PVA slime. A 20 nm, Co formed in FCC geometry encapsulated with a weak citrate coat when caged in PVA matrix exhibited persistence of magnetism and good radio-frequency response. Cross-linking of PVA chains to form cage-like structures to arrest Co nanoparticles therein, is believed to be the reason for oxide-free nature of Co, promising applications in biomedicine as well as in radio-frequency shielding.

Hatamie, Shadie; Dhole, S. D.; Ding, J.; Kale, S. N.

2009-07-01

161

Pyrite oxidation inhibition by a cross-linked lipid coating  

PubMed Central

The effect of a diacetylene-containing phospholipid on the oxidation of pyrite, FeS2, was investigated. Earlier work reported by our research group showed that the adsorption of l,2-bis(10,12-tricosadiynoyl)-sn-glycero-3-phosphocholine on pyrite suppressed the extent of its oxidation by about 75% over a specific time period. Results presented here show that the pre-exposure to UV radiation of this lipid after sorption onto pyrite results in a 90% suppression. Attenuated total reflection (ATR) Fourier transform infra-red spectroscopy (FTIR) suggests that the UV irradiation of the lipid does not result in degradation of the adsorbed layer. It is believed that the UV exposure results in the cross-linking and polymerization of the adsorbed phospholipid into a relatively impermeable barrier that separates the pyrite from the aqueous phase. The results of this study might have implications for the protection of pyrite from oxidation in the environment.

Zhang, Xiang; Borda, Michael J; Schoonen, Martin AA; Strongin, Daniel R

2003-01-01

162

Cross-linked polyethylenimine–tripolyphosphate nanoparticles for gene delivery  

PubMed Central

The high transfection efficiency of polyethylenimine (PEI) makes it an attractive potential nonviral genetic vector for gene delivery and therapy. However, the highly positive charge of PEI leads to cytotoxicity and limits its application. To reduce the cytotoxicity of PEI, we prepared anion-enriched nanoparticles that combined PEI with tripolyphosphate (TPP). We then characterized the PEI-TPP nanoparticles in terms of size, zeta potential, and Fourier-transform infrared (FTIR) spectra, and assessed their transfection efficiency, cytotoxicity, and ability to resist deoxyribonuclease (DNase) I digestion. The cellular uptake of PEI-TPP with phosphorylated internal ribosome entry site–enhanced green fluorescent protein C1 or FAM (fluorouracil, Adriamycin [doxorubicin] and mitomycin)-labeled small interfering ribonucleic acids (siRNAs) was monitored by fluorescence microscopy and confocal laser microscopy. The efficiency of transfected delivery of plasmid deoxyribonucleic acid (DNA) and siRNA in vitro was 1.11- to 4.20-fold higher with the PEI-TPP particles (7.6% cross-linked) than with the PEI, at all N:P ratios (nitrogen in PEI to phosphorus in DNA) tested. The cell viability of different cell lines was more than 90% at the chosen N:P ratios of PEI-TPP/DNA complexes. Moreover, PEI-TPP nanoparticles resisted digestion by DNase I for more than 2 hours. The time-dependent absorption experiment showed that 7.6% of cross-linked PEI-TPP particles were internalized by 293T cells within 1 hour. In summary, PEI-TPP nanoparticles effectively transfected cells while conferring little or no toxicity, and thus have potential application in gene delivery. PMID:25342902

Huang, Xianzhang; Shen, Sujing; Zhang, Zhanfeng; Zhuang, Junhua

2014-01-01

163

Peptidoglycan Cross-Linking in Glycopeptide-Resistant Actinomycetales  

PubMed Central

Synthesis of peptidoglycan precursors ending in d-lactate (d-Lac) is thought to be responsible for glycopeptide resistance in members of the order Actinomycetales that produce these drugs and in related soil bacteria. More recently, the peptidoglycan of several members of the order Actinomycetales was shown to be cross-linked by l,d-transpeptidases that use tetrapeptide acyl donors devoid of the target of glycopeptides. To evaluate the contribution of these resistance mechanisms, we have determined the peptidoglycan structure of Streptomyces coelicolor A(3)2, which harbors a vanHAX gene cluster for the production of precursors ending in d-Lac, and Nonomuraea sp. strain ATCC 39727, which is devoid of vanHAX and produces the glycopeptide A40296. Vancomycin retained residual activity against S. coelicolor A(3)2 despite efficient incorporation of d-Lac into cytoplasmic precursors. This was due to a d,d-transpeptidase-catalyzed reaction that generated a stem pentapeptide recognized by glycopeptides by the exchange of d-Lac for d-Ala and Gly. The contribution of l,d-transpeptidases to resistance was limited by the supply of tetrapeptide acyl donors, which are essential for the formation of peptidoglycan cross-links by these enzymes. In the absence of a cytoplasmic metallo-d,d-carboxypeptidase, the tetrapeptide substrate was generated by hydrolysis of the C-terminal d-Lac residue of the stem pentadepsipeptide in the periplasm in competition with the exchange reaction catalyzed by d,d-transpeptidases. In Nonomuraea sp. strain ATCC 39727, the contribution of l,d-transpeptidases to glycopeptide resistance was limited by the incomplete conversion of pentapeptides into tetrapeptides despite the production of a cytoplasmic metallo-d,d-carboxypeptidase. Since the level of drug production exceeds the level of resistance, we propose that l,d-transpeptidases merely act as a tolerance mechanism in this bacterium. PMID:24395229

Hugonnet, Jean-Emmanuel; Haddache, Nabila; Veckerlé, Carole; Dubost, Lionel; Marie, Arul; Shikura, Noriyasu; Mainardi, Jean-Luc; Rice, Louis B.

2014-01-01

164

Cross-linking and 1H n.m.r. spectroscopy of the pyruvate dehydrogenase complex of Escherichia coli  

PubMed Central

The pyruvate dehydrogenase complex of Escherichia coli was treated with o-phenylene bismaleimide in the presence of the substrate pyruvate, producing almost complete cross-linking of the lipoate acetyltransferase polypeptide chains as judged by sodium dodecyl sulphate/polyacrylamide-gel electrophoresis. This took place without effect on the catalytic activities of the other two component enzymes and with little evidence of cross-links being formed with other types of protein subunit. Limited proteolysis with trypsin indicated that the cross-links were largely confined to the lipoyl domains of the lipoate acetyltransferase component of the same enzyme particle. This intramolecular cross-linking had no effect on the very sharp resonances observed in the 1H n.m.r. spectrum of the enzyme complex, which derive from regions of highly mobile polypeptide chain in the lipoyl domains. Comparison of the spin–spin relaxation times, T2, with the measured linewidths supported the idea that the highly mobile region is best characterized as a random coil. Intensity measurements in spin-echo spectra showed that it comprises a significant proportion (probably not less than one-third) of a lipoyl domain and is thus much more than a small hinge region, but there was insufficient intensity in the resonances to account for the whole lipoyl domain. On the other hand, no evidence was found in the 1H n.m.r. spectrum for a substantial structured region around the lipoyl-lysine residues that was free to move on the end of this highly flexible connection. If such a structured region were bound to other parts of the enzyme complex for a major part of its time, its resonances might be broadened sufficiently to evade detection by 1H n.m.r. spectroscopy. ImagesFig. 2.Fig. 3. PMID:6753833

Packman, Leonard C.; Perham, Richard N.; Roberts, Gordon C. K.

1982-01-01

165

Synthesis of poly(N-isopropylacrylamide) hydrogels by radiation polymerization and cross-linking  

SciTech Connect

Poly(N-isopropylacrylamide) [poly(NIPAAm)] shows a typical thermal reversibility of phase transition in aqueous solutions. That is, it precipitates from solution above a critical temperature called the lower critical solution temperature (LCST) and dissolves below this temperature. When it is cross-linked, the obtained hydrogel collapses above LCST, while it swells and expands below LCST. This hydrogel has received much attention recently and has been used as a model system to demonstrate the validity of theories describing the coil-globule transition, swelling of networks, and folding and unfolding of biopolymers. It has also been proposed for various applications ranging from controlled drug delivery to solute separation. Poly(NIPAAm) hydrogel is usually synthesized at room temperature from an aqueous solution of the monomer by using a redox initiator composed of ammonium persulfate and N,N,N{prime},N{prime}-tetramethylethylenediamine in the presence of N,N{prime}-methylenebisacrylamide as a cross-linker. Since the LCST of poly(NIPAAm) is around 32 C, the polymerization at room temperature proceeds in a homogeneous solution. Recently, poly(NIPAAm) hydrogels were synthesized by starting the polymerization below the LCST and then elevating the temperature above it, by which method macroporous gels with fast temperature response were obtained. The idea is to apply a radiation--induced polymerization method for the synthesis of poly(NIPAAm) hydrogels. This method offers unique advantages for synthesis: it is a simple and additive-free process at all temperatures, and the degree of cross-linking can be easily controlled by irradiation conditions. Therefore, radiation methods are especially attractive for the synthesis of hydrogels with potential biomedical application where the residual chemical initiators may contaminate the product. It is possible to combine into one step the synthesis and sterilization of the product, and it is economically competitive.

Nagaoka, Noriyasu; Kubota, Hitoshi; Katakai, Ryoichi [Gunma Univ. (Japan). Dept. of Chemistry; Safranj, Agneza; Yoshida, Masaru; Omichi, Hideki [Japan Atomic Energy Research Inst., Gunma (Japan). Dept. of Material Development

1993-12-20

166

Mechanically strong, flexible polyimide aerogels cross-linked with aromatic triamine.  

PubMed

Polyimide gels are produced by cross-linking anhydride capped polyamic acid oligomers with aromatic triamine in solution and chemically imidizing. The gels are then supercritically dried to form nanoporous polyimide aerogels with densities as low as 0.14 g/cm(3) and surface areas as high as 512 m(2)/g. To understand the effect of the polyimide backbone on properties, aerogels from several combinations of diamine and dianhydride, and formulated oligomer chain length are examined. Formulations made from 2,2'-dimethylbenzidine as the diamine shrink the least but have among the highest compressive modulus. Formulations made using 4,4'-oxydianiline or 2,2'dimethylbenzidine can be fabricated into continuous thin films using a roll to roll casting process. The films are flexible enough to be rolled or folded back on themselves and recover completely without cracking or flaking, and have tensile strengths of 4-9 MPa. Finally, the highest onset of decomposition (above 600 °C) of the polyimide aerogels was obtained using p-phenylene diamine as the backbone diamine with either dianhydride studied. All of the aerogels are suitable candidates for high-temperature insulation with glass transition temperatures ranging from 270-340 °C and onsets of decomposition from 460-610 °C. PMID:22233638

Meador, Mary Ann B; Malow, Ericka J; Silva, Rebecca; Wright, Sarah; Quade, Derek; Vivod, Stephanie L; Guo, Haiquan; Guo, Jiao; Cakmak, Miko

2012-02-01

167

Multiple phases of protien gels  

Microsoft Academic Search

A multiple phase transition was observed in gels made by covalently cross-linking proteins in either native or denatured state. The enzymatic activity of the gels prepared from native alpha-chymotrypsin was determined for each of the multiple phases. The reversibility of the swelling degrees and the enzymatic reaction rates upon phase transition suggests that the protein is at a free energy

Masahiko Annaka; Toyoichi Tanaka

1994-01-01

168

Development of a Novel Cross-linking Strategy for Fast and Accurate Identification of Cross-linked Peptides of Protein Complexes*  

PubMed Central

Knowledge of elaborate structures of protein complexes is fundamental for understanding their functions and regulations. Although cross-linking coupled with mass spectrometry (MS) has been presented as a feasible strategy for structural elucidation of large multisubunit protein complexes, this method has proven challenging because of technical difficulties in unambiguous identification of cross-linked peptides and determination of cross-linked sites by MS analysis. In this work, we developed a novel cross-linking strategy using a newly designed MS-cleavable cross-linker, disuccinimidyl sulfoxide (DSSO). DSSO contains two symmetric collision-induced dissociation (CID)-cleavable sites that allow effective identification of DSSO-cross-linked peptides based on their distinct fragmentation patterns unique to cross-linking types (i.e. interlink, intralink, and dead end). The CID-induced separation of interlinked peptides in MS/MS permits MS3 analysis of single peptide chain fragment ions with defined modifications (due to DSSO remnants) for easy interpretation and unambiguous identification using existing database searching tools. Integration of data analyses from three generated data sets (MS, MS/MS, and MS3) allows high confidence identification of DSSO cross-linked peptides. The efficacy of the newly developed DSSO-based cross-linking strategy was demonstrated using model peptides and proteins. In addition, this method was successfully used for structural characterization of the yeast 20 S proteasome complex. In total, 13 non-redundant interlinked peptides of the 20 S proteasome were identified, representing the first application of an MS-cleavable cross-linker for the characterization of a multisubunit protein complex. Given its effectiveness and simplicity, this cross-linking strategy can find a broad range of applications in elucidating the structural topology of proteins and protein complexes. PMID:20736410

Kao, Athit; Chiu, Chi-li; Vellucci, Danielle; Yang, Yingying; Patel, Vishal R.; Guan, Shenheng; Randall, Arlo; Baldi, Pierre; Rychnovsky, Scott D.; Huang, Lan

2011-01-01

169

Generating palladium nanoclusters inside functional cross-linked polymer frameworks  

Microsoft Academic Search

The use of functional resins as designable supports for palladium nanoclusters is reviewed. Data are related to the generation of Pd nanoparticles under various conditions and inside gel-type or macroporous frameworks. The combination of different physico-chemical techniques (ISEC, ESR and PGSE NMR) is illustrated as a powerful tool for evaluating nanomorphology and molecular accessibility, mainly of gel-type resins. A few

Benedetto Corain; Milan Kralik

2001-01-01

170

Preparation of monodisperse poly(N-isopropylacrylamide) microgel particles with homogenous cross-link density distribution.  

PubMed

Monodisperse microgel latex with homogeneous cross-link density distribution within the particles was prepared by feeding the monomer and cross-linker into the reaction mixture in a regulated way during the polymerization. To determine the appropriate monomer feeding parameters, the kinetics of the particle formation was investigated by HPLC. The swelling and optical characteristics of the prepared homogenously cross-linked microgel particles were compared to the properties of inhomogenously cross-linked microgels prepared by the normal precipitation polymerization method. The distribution of the cross-link density within the particles inserts a great influence on the characteristics of the system. The degree of swelling of the homogeneous particles is significantly higher than that of the heterogeneous microgel particles. Furthermore, at room temperature the pNIPAm latex containing the homogeneously cross-linked particles is transparent, while the heterogeneously cross-linked particles form a highly turbid system at the same 0.1 wt% concentration. PMID:21591700

Acciaro, Roberta; Gilányi, Tibor; Varga, Imre

2011-06-21

171

Tubulin interaction with kinetochore proteins: analysis by in vitro assembly and chemical cross-linking  

PubMed Central

The sera from patients with the CREST (calcinosis, Raynaud's phenomenon, esophageal dysmotility, sclerodactyly, telangiectasia) variation of the autoimmune disease scleroderma contain autoantibodies that specifically recognize the kinetochore by immunofluorescence. Two major antigens of molecular masses 18 and 80 kD are consistently identified by Western blotting of proteins of isolated chromosomes using CREST sera. In this paper, the possible roles that these two proteins play in the interaction of metaphase chromosomes with tubulin and microtubules are examined using two different procedures. In one set of experiments. Chinese hamster ovary (CHO) chromosomes were extracted with 1-2 M NaCl before incubating with phosphocellulose- purified tubulin under in vitro microtubule assembly conditions. After this treatment, the kinetochores of the residual chromosome scaffolds can still initiate the in vitro assembly of microtubules. Immunoblots of the chromosome scaffold proteins demonstrate that the 18-kD protein has been solubilized by the 1-2 M NaCl extraction, suggesting that this protein is not essential for microtubule assembly at the kinetochore. In a second approach, tubulin was covalently cross-linked to kinetochores of CHO chromosomes using the reversible cross-linking reagent dithiobis (succinimidyl propionate). After DNase I digestion, the chromosomes were solubilized and subjected to anti-tubulin affinity chromatography. Tubulin-kinetochore protein complexes were specifically eluted and analyzed by PAGE and immunoblotting with scleroderma CREST serum. Only a small number of proteins were eluted from the antitubulin affinity column as shown by Coomassie Blue-stained gels. In addition to tubulin, an 80-kD polypeptide, bands at 110 and 24 kD, as well as a faint band at 54 kD, can be resolved. Several minor bands can also be seen in silver-stained gels. The 80-kD protein band from whole metaphase chromosomes reacted with scleroderma CREST serum by immunoblotting and therefore probably represents the major centromere antigen CENP-B. This report provides evidence for a specific protein complex on metaphase chromosomes that is contiguous with kinetochore- bound tubulin and may be involved in microtubule-kinetochore interactions during mitosis. PMID:3305522

1987-01-01

172

"Post-it" type connected DNA created with a reversible covalent cross-link.  

PubMed

We report the development of a new heterobase that is held together through reversible bonding. The so-formed cross-link adds strong stabilization to the DNA duplex. Despite this, the cross-link opens and closes through reversible imine bonding. Moreover, even enzymatic incorporation of the cross-link is possible. The new principle can be used to stabilize DNA duplexes and nanostructures that otherwise require high salt concentrations, which may hinder biological applications. PMID:25446281

Tomás-Gamasa, María; Serdjukow, Sascha; Su, Meng; Müller, Markus; Carell, Thomas

2015-01-12

173

Self-beating artificial cells: design of cross-linked polymersomes showing self-oscillating motion.  

PubMed

Biomimetic cross-linked polymersomes that exhibit a self-beating motion without any on-off switching are developed. The polymersomes are made from a well-defined synthetic thermoresponsive diblock copolymer, and the thermoresponsive segment includes ruthenium catalysts for the oscillatory chemical reaction and vinylidene groups to cross-link the polymersomes. Autonomous volume and shape oscillations of the cross-linked polymersomes are realized following redox changes of the catalysts. PMID:25504232

Tamate, Ryota; Ueki, Takeshi; Yoshida, Ryo

2015-02-01

174

Cross-linking of sulfonated styrene–ethylene\\/butylene–styrene triblock polymer via sulfonamide linkages  

Microsoft Academic Search

Sulfonated styrene–butadiene–styrene (SSBS) triblock copolymer was cross-linked through condensation of sulfonic acid groups with bis(4-aminophenyl)sulfone to form sulfonamide linkages using a coupling agent (carbonyldiimidazole). Intact and clear light brown membranes were obtained when cast from solution, and cross-linking was established by measuring percent water uptake, determined gravimetrically and by near-IR (NIR) spectroscopy, and percent sulfonation by titration. The cross-linked SSBS

S Kaur; G Florio; D Michalak

2002-01-01

175

Adsorption behavior of reactive dye in aqueous solution on chemical cross-linked chitosan beads  

Microsoft Academic Search

A batch system was applied to study the adsorption of reactive dye (reactive red 189) from aqueous solutions by cross-linked chitosan beads. The ionic cross-linking reagent sodium tripolyphosphate was used to obtain more rigid chitosan beads. To stabilize chitosan in acid solutions, chemical cross-linking reagent epichlorohydrin (ECH), glutaraldehyde and ethylene glycol diglycidyl ether was used and ECH shows a higher

M. S Chiou; H. Y Li

2003-01-01

176

Cross-linking of polytetrafluoroethylene during room-temperature irradiation  

SciTech Connect

Exposure of polytetrafluoroethylene (PTFE) to {alpha}-radiation was investigated to detennine the physical and chemical effects, as well as to compare and contrast the damage mechanisms with other radiation types ({beta}, {gamma}, or thermal neutron). A number of techniques were used to investigate the chemical and physical changes in PTFE after exposure to {alpha}-radiation. These techniques include: Fourier transform infrared spectroscopy (FTIR), differential scanning calorimetry (DSC), and fluorescence spectroscopy. Similar to other radiation types at low doses, the primary damage mechanism for the exposure of PTFE to {alpha}-radiation appears to be chain scission. Increased doses result in a change-over of the damage mechanism to cross-linking. This result is not observed for any radiation type other than {alpha} when irradiation is performed at room temperature. Finally, at high doses, PTFE undergoes mass-loss (via smallfluorocarbon species evolution) and defluorination. The amount and type of damage versus sample depth was also investigated. Other types of radiation yield damage at depths on the order of mm to cm into PTFE due to low linear energy transfer (LET) and the correspondingly large penetration depths. By contrast, the {alpha}-radiation employed in this study was shown to only induce damage to a depth of approximately 26 {mu}m, except at very high doses.

Pugmire, David L [Los Alamos National Laboratory; Wetteland, Chris J [Los Alamos National Laboratory; Duncan, Wanda S [Los Alamos National Laboratory; Lakis, Rollin E [Los Alamos National Laboratory; Schwartz, Daniel S [Los Alamos National Laboratory

2008-01-01

177

Grafting of cross-linked hydrogel networks to titanium surfaces.  

PubMed

The performance of medical implants and devices is dependent on the biocompatibility of the interfacial region between tissue and the implant material. Polymeric hydrogels are attractive materials for use as biocompatible surface coatings for metal implants. In such systems, a factor that is critically important for the longevity of an implant is the formation of a robust bond between the hydrogel layer and the implant metal surface and the ability for this assembly to withstand physiological conditions. Here, we describe the grafting of cross-linked hydrogel networks to titanium surfaces using grit-blasting and subsequent chemical functionalization using a silane-based adhesion promoter. Metal surface characterization was carried out using profilometry, scanning electron microscopy (SEM), and energy dispersive X-ray spectroscopy (EDX) analysis. Hydrogel layers composed of poly(ethylene glycol)-dimethacrylate (PEG-DMA), poly(2-hydroxyethylmethacrylate) (PHEMA), or poly(ethylene glycol)/poly(acrylic acid) (PEG/PAA) semi-interpenetrating polymer networks (semi-IPNs) have been prepared. The mechanical properties of these hydrogel-metal assemblies have been characterized using lap-shear measurements, and the surface morphology was studied by SEM and EDX. We have shown that both high surface roughness and chemical functionalization are critical for adhesion of the hydrogel layer to the titanium substrate. PMID:24364560

Muir, Beinn V O; Myung, David; Knoll, Wolfgang; Frank, Curtis W

2014-01-22

178

Zinc cross-linked hydroxamated alginates for pulsed drug release  

PubMed Central

Introduction: Alginates can be tailored chemically to improve solubility, physicochemical, and biological properties and its complexation with metal ion is useful for controlling the drug release. Materials And Methods: Synthesized N,O-dimethyl, N-methyl, or N-Benzyl hydroxylamine derivatives of sodium alginate were subsequently complexed with zinc to form beads. Hydroxamation of sodium alginate was confirmed by Fourier transform infra-red spectroscopy (FTIR) and differential scanning calorimetry (DSC). Results: The synthesized polymeric material exhibited reduced aqueous, HCl and NaOH solubility. The hydroxamated derivatives demonstrated pulsed release where change in pH of the dissolution medium stimulated the atenolol release. Conclusion: Atenolol loaded Zn cross-linked polymeric beads demonstrated the sustained the plasma drug levels with increased half-life. Although the synthesized derivatives greatly altered the aqueous solubility of sodium alginate, no significant differences in in vitro and in vivo atenolol release behavior amongst the N,O-dimethyl, N-methyl, or N-Benzyl hydroxylamine derivatives of sodium alginate were observed. PMID:24350039

Raut, Neha S; Deshmukh, Prasad R; Umekar, Milind J; Kotagale, Nandkishor R

2013-01-01

179

Pyridinium cross-links in heritable disorders of collagen  

SciTech Connect

Ehlers-Danlos syndrome (EDS) is a heterogeneous group of inherited disorders of collagen that is characterized by skin fragility, skin hyperextensibility, and joint hypermobility. EDS type VI is caused by impaired collagen lysyl hydroxylase (procollagen-lysine, 2-oxoglutarate 5-dioxygenase; E.C.1.14.11.4), the ascorbate-dependent enzyme that hydroxylates lysyl residues on collagen neopeptides. Different alterations in the gene for collagen lysyl hydroxylase have been reported in families with EDS type VI. In EDS type VI, impairment of collagen lysyl hydroxylase results in a low hydroxylysine content in mature collagen. Hydroxylysine is a precursor of the stable, covalent, intermolecular cross-links of collagen, pyridinoline (Pyr), and deoxypyridinoline (Dpyr). Elsewhere we reported in preliminary form that patients with EDS type VI had a distinctive alteration in the urinary excretion of Pyr and Dpyr. In the present study, we confirm that the increased Dpyr/Pyr ratio is specific for EDS type VI and is not observed in other inherited or acquired collagen disorders. In addition, we find that skin from patients with EDS type VI has reduced Pyr and increased Dpyr, which could account for the organ pathology. 19 refs., 1 tab.

Pasquali, M.; Still, M.J.; Dembure, P.P. [Emory Univ., Atlanta, GA (United States)] [and others

1995-12-01

180

Mechanism of Calponin Stabilization of Cross-Linked Actin Networks  

PubMed Central

The actin-binding protein calponin has been previously implicated in actin cytoskeletal regulation and is thought to act as an actin stabilizer, but the mechanism of its function is poorly understood. To investigate this underlying physical mechanism, we studied an in vitro model system of cross-linked actin using bulk rheology. Networks with basic calponin exhibited a delayed onset of strain stiffening (10.0% without calponin, 14.9% with calponin) and were able to withstand a higher maximal strain before failing (35% without calponin, 56% with calponin). Using fluorescence microscopy to study the mechanics of single actin filaments, we found that calponin increased the flexibility of actin filaments, evident as a decrease in persistence length from 17.6 ?m without to 7.7 ?m with calponin. Our data are consistent with current models of affine strain behavior in semiflexible polymer networks, and suggest that calponin stabilization of actin networks can be explained purely by changes in single-filament mechanics. We propose a model in which calponin stabilizes actin networks against shear through a reduction of persistence length of individual filaments. PMID:24559982

Jensen, Mikkel Herholdt; Morris, Eliza J.; Gallant, Cynthia M.; Morgan, Kathleen G.; Weitz, David A.; Moore, Jeffrey R.

2014-01-01

181

Transepithelial corneal collagen cross-linking in ultrathin keratoconic corneas  

PubMed Central

Background The purpose of this paper was to report the results of transepithelial corneal collagen cross-linking (CXL) with modified riboflavin and ultraviolet A irradiation in patients affected by keratoconus, each with thinnest pachymetry values of less than 400 ?m (with epithelium) and not treatable using standard de-epithelialization techniques. Methods Sixteen patients affected by progressive keratoconus with thinnest pachymetry values ranging from 331 ?m to 389 ?m underwent transepithelial CXL in one eye using a riboflavin 0.1% solution in 15% Dextran T500 containing ethylenediamine tetra-acetic acid 0.01% and trometamol to enhance epithelial penetration. The patients underwent complete ophthalmological examination, including endothelial cell density measurements and computerized videokeratography, before CXL and at one day, one week, and one, 6, and 12 months thereafter. Results Epithelial healing was complete in all patients after one day of use of a soft bandage contact lens. No side effects or damage to the limbal region was observed during the follow-up period. All patients showed slightly improved uncorrected and spectacle-corrected visual acuity; keratometric astigmatism showed reductions (up to 5.3 D) and apical ectasia power decreased (Kmax values reduced up to 4.3 D). Endothelial cell density was unchanged. Conclusion Application of transepithelial CXL using riboflavin with substances added to enhance epithelial permeability was safe, seemed to be moderately effective in keratoconic eyes with ultrathin corneas, and applications of the procedure could be extended to patients with advanced keratoconus. PMID:23152657

Spadea, Leopoldo; Mencucci, Rita

2012-01-01

182

Food gels: Gelling process and new applications  

Microsoft Academic Search

Food gels are viscoelastic substances and several gelled products are manufactured throughout the world. The gelling agents in foods are usually polysaccharides and proteins. In food gels, the polymer molecules are not cross-linked by covalent bonds with the exception of disulphide bonds in some protein gels. Instead, the molecules are held together by a combination of weak inter-molecular forces like

SOUMYA BANERJEE; SUVENDU BHATTACHARYA

2011-01-01

183

Food Gels: Gelling Process and New Applications  

Microsoft Academic Search

Food gels are viscoelastic substances and several gelled products are manufactured throughout the world. The gelling agents in foods are usually polysaccharides and proteins. In food gels, the polymer molecules are not cross-linked by covalent bonds with the exception of disulphide bonds in some protein gels. Instead, the molecules are held together by a combination of weak inter-molecular forces like

Soumya Banerjee; Suvendu Bhattacharya

2012-01-01

184

Effect of radiation cross-linking on the abrasive wear behaviour of polyethylenes  

NASA Astrophysics Data System (ADS)

This study explores the differences in the dry abrasive wear behavior of different polyethylenes, and compares the effect of radiation cross-linking on the wear behavior. Four different types of polyethylenes: LDPE, LLDPE, HDPE and UHMWPE were studied. Cross-linking was carried out by high energy electron beam with radiation dose of 200 kGy. The results show that in unirradiated state UHMWPE has excellent wear resistance, with HDPE showing comparable wear properties; both LDPE and LLDPE exhibit high wear rate. Cross-linking improves wear rate of LDPE and UHMWPE, however, the wear rate of HDPE and LLDPE increases with cross-linking.

Gul, Rizwan M.; Khan, Tahir I.

2014-06-01

185

Covalent cross-links in polyampholytic chitosan fibers enhances bone regeneration in a rabbit model.  

PubMed

Chitosan fibers were prepared in citric acid bath, pH 7.4 and NaOH solution at pH 13, to form ionotropically cross-linked and uncross-linked fibers, respectively. The fibers formed in citric acid bath were further cross-linked via carbodiimide chemistry; wherein the pendant carboxyl moieties of citric acid were used for new amide bond formation. Moreover, upon covalent cross-linking in the ionically gelled citrate-chitosan fibers, incomplete conversion of the ion pairs to amide linkages took place resulting in the formation of a dual network structure. The dual cross-linked fibers displayed improved mechanical property, higher stability against enzymatic degradation, hydrophobicity and superior bio-mineralization compared to the uncross-linked and native citrate cross-linked fibers. Additionally, upon cyclic loading, the ion pairs in the dual cross-linked fibers dissociated by dissipating energy and reformed during the relaxation period. The twin property of elasticity and energy dissipation mechanism makes the dual cross-linked fiber unique under dynamic mechanical conditions. The differences in the physico-chemical characteristics were reflected in protein adsorption, which in turn influenced the cellular activities on the fibers. Compared to the uncross-linked and ionotropically cross-linked fibers, the dual cross-linked fibers demonstrated higher proliferation and osteogenic differentiation of the MSCs in vitro as well as better osseous tissue regeneration in a rabbit model. PMID:25483844

Ghosh, Paulomi; Rameshbabu, Arun Prabhu; Das, Dipankar; Francis, Nimmy K; Pawar, Harpreet Singh; Subramanian, Bhuvaneshwaran; Pal, Sagar; Dhara, Santanu

2015-01-01

186

Effect of cross-linking and enzymatic hydrolysis composite modification on the properties of rice starches.  

PubMed

Native rice starch lacks the versatility necessary to function adequately under rigorous industrial processing, so modified starches are needed to meet the functional properties required in food products. This work investigated the impact of enzymatic hydrolysis and cross-linking composite modification on the properties of rice starches. Rice starch was cross-linked with epichlorohydrin (EPI) with different concentrations (0.5%, 0.7%, 0.9% w/w, on a dry starch basis), affording cross-linked rice starches with the three different levels of cross-linking that were named R?, R?, and R?, respectively. The cross-linked rice starches were hydrolyzed by ?-amylase and native, hydrolyzed, and hydrolyzed cross-linked rice starches were comparatively studied. It was found that hydrolyzed cross-linked rice starches showed a lower the degree of amylase hydrolysis compared with hydrolyzed rice starch. The higher the degree of cross-linking, the higher the capacity to resist enzyme hydrolysis. Hydrolyzed cross-linked rice starches further increased the adsorptive capacities of starches for liquids and decreased the trend of retrogradation, and it also strengthened the capacity to resist shear compared to native and hydrolyzed rice starches. PMID:22772809

Xiao, Huaxi; Lin, Qinlu; Liu, Gao-Qiang

2012-01-01

187

Photomobile polymer materials: photoresponsive behavior of cross-linked liquid-crystalline polymers with mesomorphic diarylethenes.  

PubMed

Cross-linked liquid-crystalline (LC) polymers with a mesomorphic diarylethene were prepared to demonstrate a versatile strategy for cross-linked photochromic LC polymers as photomobile materials. Upon exposure to UV light to cause photocyclization of the diarylethene chromophore, the cross-linked polymer films bend toward an actinic light source. By irradiation with visible light to cause a closed-ring to open-ring isomerization, the bent films revert to the initial flat state. Without visible-light irradiation, the bent films remain bent even at 120?°C, indicating high thermal stability of the cross-linked diarylethene LC polymers. PMID:25581255

Mamiya, Jun-Ichi; Kuriyama, Akito; Yokota, Naoki; Yamada, Munenori; Ikeda, Tomiki

2015-02-16

188

Alkaline battery containing a separator of a cross-linked copolymer of vinyl alcohol and unsaturated carboxylic acid  

NASA Technical Reports Server (NTRS)

A battery separator for an alkaline battery is described. The separator comprises a cross linked copolymer of vinyl alcohol units and unsaturated carboxylic acid units. The cross linked copolymer is insoluble in water, has excellent zincate diffusion and oxygen gas barrier properties and a low electrical resistivity. Cross linking with a polyaldehyde cross linking agent is preferred.

Hsu, L. C.; Philipp, W. H.; Sheibley, D. W.; Gonzalez-Sanabria, O. D. (inventors)

1985-01-01

189

Maleimide cross-linked bioactive PEG hydrogel exhibits improved reaction kinetics and cross-linking for cell encapsulation and in-situ delivery  

PubMed Central

Engineered polyethylene glycol-maleimide matrices for regenerative medicine exhibit improved reaction efficiency and wider range of Young’s moduli by utilizing maleimide cross-linking chemistry. This hydrogel chemistry is advantageous for cell delivery due to the mild reaction that occurs rapidly enough for in situ delivery, while easily lending itself to “plug-and-play” design variations such as incorporation of enzyme-cleavable cross-links and cell-adhesion peptides. PMID:22174081

Phelps, Edward A.; Enemchukwu, Nduka O.; Fiore, Vincent F.; Sy, Jay C.; Murthy, Niren; Sulchek, Todd A.; Barker, Thomas H.

2012-01-01

190

Transglutaminases: Widespread Cross-linking Enzymes in Plants  

PubMed Central

Background Transglutaminases have been studied in plants since 1987 in investigations aimed at interpreting some of the molecular mechanisms by which polyamines affect growth and differentiation. Transglutaminases are a widely distributed enzyme family catalysing a myriad of biological reactions in animals. In plants, the post-translational modification of proteins by polyamines forming inter- or intra-molecular cross-links has been the main transglutaminase reaction studied. Characteristics of Plant Transglutaminases The few plant transglutaminases sequenced so far have little sequence homology with the best-known animal enzymes, except for the catalytic triad; however, they share a possible structural homology. Proofs of their catalytic activity are: (a) their ability to produce glutamyl-polyamine derivatives; (b) their recognition by animal transglutaminase antibodies; and (c) biochemical features such as calcium-dependency, etc. However, many of their fundamental biochemical and physiological properties still remain elusive. Transglutaminase Activity is Ubiquitous It has been detected in algae and in angiosperms in different organs and sub-cellular compartments, chloroplasts being the best-studied organelles. Possible Roles Possible roles concern the structural modification of specific protein substrates. In chloroplasts, transglutaminases appear to stabilize the photosynthetic complexes and Rubisco, being regulated by light and other factors, and possibly exerting a positive effect on photosynthesis and photo-protection. In the cytosol, they modify cytoskeletal proteins. Preliminary reports suggest an involvement in the cell wall construction/organization. Other roles appear to be related to fertilization, abiotic and biotic stresses, senescence and programmed cell death, including the hypersensitive reaction. Conclusions The widespread occurrence of transglutaminases activity in all organs and cell compartments studied suggests a relevance for their still incompletely defined physiological roles. At present, it is not possible to classify this enzyme family in plants owing to the scarcity of information on genes encoding them. PMID:18492735

Serafini-Fracassini, Donatella; Del Duca, Stefano

2008-01-01

191

The theory and art of corneal cross-linking.  

PubMed

Before the discovery of corneal cross-linking (CXL), patients with keratoconus would have had to undergo corneal transplantation, or wear rigid gas permeable lenses (RGPs) that would temporarily flatten the cone, thereby improving the vision. The RGP contact lens (CL) would not however alter the corneal stability and if the keratoconus was progressive, the continued steepening of the cone would occur under the RGP CL. To date, the Siena Eye has been the largest study to investigate long term effects of standard CXL. Three hundred and sixty-three eyes were treated and monitored over 4 years, producing reliable long-term results proving long-term stability of the cornea by halting the progression of keratoconus, and proving the safety of the procedure. Traditionally, CXL requires epithelial removal prior to corneal soakage of a dextran-based 0.1% riboflavin solution, followed by exposure of ultraviolet-A (UV-A) light for 30 min with an intensity of 3 mW/cm2. A series of in vitro investigations on human and porcine corneas examined the best treatment parameters for standard CXL, such as riboflavin concentration, intensity, wavelength of UV-A light, and duration of treatment. Photochemically, CXL is achieved by the generation of chemical bonds within the corneal stroma through localized photopolymerization, strengthening the cornea whilst minimizing exposure to the surrounding structures of the eye. In vitro studies have shown that CXL has an effect on the biomechanical properties of the cornea, with an increased corneal rigidity of approximately 70%. This is a result of the creation of new chemical bonds within the stroma. PMID:23925326

McQuaid, Rebecca; Cummings, Arthur B; Mrochen, Michael

2013-08-01

192

Integrated Cryogenic Satellite Communications Cross-Link Receiver Experiment  

NASA Technical Reports Server (NTRS)

An experiment has been devised which will validate, in space, a miniature, high-performance receiver. The receiver blends three complementary technologies; high temperature superconductivity (HTS), pseudomorphic high electron mobility transistor (PHEMT) monolithic microwave integrated circuits (MMIC), and a miniature pulse tube cryogenic cooler. Specifically, an HTS band pass filter, InP MMIC low noise amplifier, HTS-sapphire resonator stabilized local oscillator (LO), and a miniature pulse tube cooler will be integrated into a complete 20 GHz receiver downconverter. This cooled downconverter will be interfaced with customized signal processing electronics and integrated onto the space shuttle's 'HitchHiker' carrier. A pseudorandom data sequence will be transmitted to the receiver, which is in low Earth orbit (LEO), via the Advanced Communication Technology Satellite (ACTS) on a 20 GHz carrier. The modulation format is QPSK and the data rate is 2.048 Mbps. The bit error rate (BER) will be measured in situ. The receiver is also equipped with a radiometer mode so that experiment success is not totally contingent upon the BER measurement. In this mode, the receiver uses the Earth and deep space as a hot and cold calibration source, respectively. The experiment closely simulates an actual cross-link scenario. Since the receiver performance depends on channel conditions, its true characteristics would be masked in a terrestrial measurement by atmospheric absorption and background radiation. Furthermore, the receiver's performance depends on its physical temperature, which is a sensitive function of platform environment, thermal design, and cryocooler performance. This empirical data is important for building confidence in the technology.

Romanofsky, R. R.; Bhasin, K. B.; Downey, A. N.; Jackson, C. J.; Silver, A. H.; Javadi, H. H. S.

1995-01-01

193

Unconventional metal organic frameworks: porous cross-linked phosphonates.  

PubMed

The past decade has witnessed an exponential growth of metal organic framework compounds (MOFs). The defining character of these compounds is their porosity. However, in many cases no effort was made to show evidence that a stable porous structure has been achieved and that the pores may be accessed. In the present paper we describe recent work on porous pillared zirconium diphosphonates, and the newer and in many respects different characteristics of tin(iv) phosphonates. The Sn(IV) monophosphonates form spherical globules that exhibit very high surface areas. The surface area arises from their nano-sized particles that pack in a "house of cards" arrangement. Also, it is shown that the 1,4-monophenyldiphosphonic acid forms highly porous (250-400 m2 g(-1)) materials with Sn(IV) when prepared in alcohol-water media. This is not the case with analogous Zr(IV) compounds. The many variations in the syntheses of both the zirconium and tin aryl- and alkyldiphosphonate pillars and their combinations with spacers such as methyl- and monophenylphosphonic acid have created a variety of highly porous materials that are stable to 400 degrees C in air, highly stable in acid media, do not collapse when de-solvated, and can be post and presynthesis altered to include functional groups. Several new directions taken by other researchers are also described. However, it is emphasized in this presentation that the cross-linked compounds form particles that precipitate rapidly into nanoparticles that exhibit only short range order. Therefore, they differ from the more conventional MOFs in that they are not amenable to structure solution by X-ray or neutron diffraction techniques. Rather, they must be understood on the basis of modeling and indirect data from EM, NMR, and additional spectroscopic and textural studies. PMID:18985237

Clearfield, Abraham

2008-11-28

194

Surface instabilities in ultrathin, cross-linked poly(N-isopropylacrylamide) coatings.  

PubMed

Near-the-surface instabilities with a cusplike morphology were observed in ultrathin photo-cross-linked poly(N-isopropylacrylamide) coatings upon swelling in water. The characteristic wavelength of the instability was approximately 25 times the dry thickness and scaled linearly with coating thickness between 30 and 1200 nm. Above 1200 nm, slippage of the coating along the confining substrate led to reticulated patterns with a much larger wavelength. To help interpret the origin of the instability, the coatings were also exposed to a solvent slightly worse than water (acetone) and a solvent slightly better than water (isopropanol). In all cases, the characteristic wavelength scaled linearly with respect to the swelling induced by each solvent. Both water and isopropanol produced well-defined cusps or folds in the gel surface, while acetone produced semiordered blisters that grew into one another. The features produced in acetone may be a consequence of swelling being close to the threshold value for the loss of planar stability. Through the use of a first-order linear perturbation of the Flory-Rehner model, it is shown that the emergence of a characteristic wavelength is consistent with an inhomogeneous distribution of solvent that results from diffusion of solvent into a dry coating. PMID:20929198

Ortiz, Ophir; Vidyasagar, Ajay; Wang, Jing; Toomey, Ryan

2010-11-16

195

IQGAP1, a Rac- and Cdc42-binding Protein, Directly Binds and Cross-links Microfilaments  

PubMed Central

Activated forms of the GTPases, Rac and Cdc42, are known to stimulate formation of microfilament-rich lamellipodia and filopodia, respectively, but the underlying mechanisms have remained obscure. We now report the purification and characterization of a protein, IQGAP1, which is likely to mediate effects of these GTPases on microfilaments. Native IQGAP1 purified from bovine adrenal comprises two ?190-kD subunits per molecule plus substoichiometric calmodulin. Purified IQGAP1 bound directly to F-actin and cross-linked the actin filaments into irregular, interconnected bundles that exhibited gel-like properties. Exogenous calmodulin partially inhibited binding of IQGAP1 to F-actin, and was more effective in the absence, than in the presence of calcium. Immunofluorescence microscopy demonstrated cytochalasin D–sensitive colocalization of IQGAP1 with cortical microfilaments. These results, in conjunction with prior evidence that IQGAP1 binds directly to activated Rac and Cdc42, suggest that IQGAP1 serves as a direct molecular link between these GTPases and the actin cytoskeleton, and that the actin-binding activity of IQGAP1 is regulated by calmodulin. PMID:9199170

Bashour, Anne-Marie; Fullerton, Aaron T.; Hart, Matthew J.; Bloom, George S.

1997-01-01

196

Reinforcement of Bacillus subtilis spores by cross-linking of outer coat proteins during maturation.  

PubMed

Resistance characteristics of bacterial endospores towards various environmental stresses such as chemicals and heat are in part attributed to their coat proteins. Heat resistance is developed in a late stage of sporulation and during maturation of released spores. Using our gel-free proteomic approach and LC-FT-ICR-MS/MS analysis we have monitored the efficiency of the tryptic digestion of proteins in the coat during spore maturation over a period of eight days, using metabolically (15)N labeled mature spores as reference. The results showed that during spore maturation the loss of digestion efficiency of outer coat and crust proteins synchronized with the increase in heat resistance. This implicates that spore maturation involves chemical cross-linking of outer coat and crust layer proteins leaving the inner coat layer proteins unmodified. It appears that digestion efficiencies of spore surface proteins can be linked to their location within the coat and crust layers. We also attempted to study a possible link between spore maturation and the observed heterogeneity in spore germination. PMID:25481062

Abhyankar, Wishwas; Pandey, Rachna; Ter Beek, Alexander; Brul, Stanley; de Koning, Leo J; de Koster, Chris G

2015-02-01

197

Radiation cross-linking of small electrical wire insulator fabricated from NR/LDPE blends  

NASA Astrophysics Data System (ADS)

A low voltage, radiation-crosslinked wire insulator has been fabricated from blends of natural rubber block (STR-5L) and LDPE with phthalic anhydride (PA) as a compatibilizer. Physical properties of the NR/LDPE blend ratios of 50/50 and 60/40 with 0.5, 1.0, and 1.5 wt% PA were evaluated. The gel content increased as the radiation dose increased. Tensile at break exhibited a maximum value of 12 MPa at 120 kGy for 1.0 and 1.5 wt% PA of both blend ratios. A higher PA content yielded a higher modulus for the same blend ratio. Blends of 60/40 ratio with 1.0 wt% PA and 0.8 wt% antimony oxide flame retardant gave the highest limiting oxygen index (LOI) of >30% at above 150 kGy. Other electrical properties of the wire insulator were investigated. It was found that an insulator fabricated from a PA content of 1.0 wt% in the NR/LDPE blend ratio of 50/50, after gamma ray cross-linked at a dose of 180 kGy in low vacuum (1 mm Hg), met the Thai Industrial Standard 11-2531 for low voltage wire below 1.0 kV. To comply with the standard for vertical flame test, a more suitable flame retardant was needed for the insulator.

Siri-Upathum, Chyagrit; Punnachaiya, Suvit

2007-12-01

198

On the Formation and Properties of Interstrand DNA-DNA Cross-links Forged by Reaction of an Abasic Site With the Opposing Guanine Residue of 5?-CAp Sequences in Duplex DNA  

PubMed Central

We recently reported that the aldehyde residue of an abasic (Ap) site in duplex DNA can generate an interstrand cross-link via reaction with a guanine residue on the opposing strand. This finding is intriguing because the highly deleterious nature of interstrand cross-links suggests that even small amounts of Ap-derived cross-links could make a significant contribution to the biological consequences stemming from the generation of Ap sites in cellular DNA. Incubation of 21-bp duplexes containing a central 5?-CAp sequence under conditions of reductive amination (NaCNBH3, pH 5.2) generated much higher yields of cross-linked DNA than reported previously. At pH 7, in the absence of reducing agents, these Ap-containing duplexes also produced cross-linked duplexes that were readily detected on denaturing polyacrylamide gels. Cross-link formation was not highly sensitive to reaction conditions and, once formed, the cross-link was stable to a variety of work-up conditions. Results of multiple experiments including MALDI-TOF mass spectrometry, gel mobility, methoxyamine capping of the Ap aldehyde, inosine-for-guanine replacement, hydroxyl radical footprinting, and LCMS/MS were consistent with a cross-linking mechanism involving reversible reaction of the Ap aldehyde residue with the N2-amino group of the opposing guanine residue in 5?-CAp sequences to generate hemiaminal, imine, or cyclic hemiaminal cross-links (7-10) that were irreversibly converted under conditions of reductive amination (NaCNBH3/pH 5.2) to a stable amine linkage. Further support for the importance of the exocyclic N2-amino group in this reaction was provided by an experiment showing that installation of a 2-aminopurine-thymine base pair at the cross-linking site produced high yields (15-30%) of a cross-linked duplex at neutral pH, in the absence of NaCNBH3. PMID:23215239

Johnson, Kevin M.; Price, Nathan E.; Wang, Jin; Fekry, Mostafa I.; Dutta, Sanjay; Seiner, Derrick R.; Wang, Yinsheng; Gates, Kent S.

2014-01-01

199

Facile synthesis of core-shell/hollow anisotropic particles via control of cross-linking during one-pot dispersion polymerization.  

PubMed

Preparation of anisotropic particles based on seed phase separation involves multiple processes, and asymmetrical structures and surfaces cannot be produced when anisotropic shapes emerge. In conventional one-pot dispersion polymerization (Dis.P) using cross-linker, only spherical particles are prepared due to rapid and high cross-linking. Herein, monodisperse snowman-like particles with core-shell/hollow structures and partially rough surface were synthesized straightforward by a modified one-pot Dis.P, in which ethylene glycol and water (6/4, vol.) were used as medium, and ammonium persulfate (APS) aqueous solution, vinyl acetate (VA) and/or acrylic acid (AA), divinylbenzene (DVB) and styrene (St) were added at 6h. The cross-linking of growing particles was confined to exterior (forming cross-linked shell), and gel contents were low, leading to phase separation. Asymmetrical morphologies, structures, sizes and surface roughness were flexibly tuned by varying amounts of APS, VA and/or AA, water and DVB, and DVB adding speed. At low APS contents or high DVB amounts, the inhomogeneous cross-linking of head enabled its phase to separate, producing elongated head. With addition of VA and AA, phase separations inside head and body were induced, generating hollow structure. Adding DVB very slowly, nonlinear growth of third compartment occurred, forming bowed head. PMID:25626132

Liu, Yanan; Ma, Yuhong; Liu, Lianying; Yang, Wantai

2015-05-01

200

PREPARATION OF NOVEL METALLIC AND BIMETALLIC CROSS-LINKED POLY (VINYL ALCOHOL) NANOCOMPOSITES UNDER MICROWAVE IRRADIATION  

EPA Science Inventory

A facile method utilizing microwave irradiation is described that accomplishes the cross-linking reaction of PVA with metallic and bimetallic systems. Nanocomposites of PVA-cross-linked metallic systems such as Pt, Cu, and In and bimetallic systems such as Pt-In, Ag-Pt, Pt-Fe, Cu...

201

Post-Self-Assembly Cross-Linking to Integrate Molecular Nanofibers with Copolymers in Oscillatory Hydrogels  

E-print Network

Post-Self-Assembly Cross-Linking to Integrate Molecular Nanofibers with Copolymers in Oscillatory Information ABSTRACT: We study the use of post-self-assembly cross- linking to combine molecular nanofibers. The combination of supramolecular self-assembly with copolymerization offers a versatile and facile approach

Epstein, Irving R.

202

Cross-linking electrochemical mass spectrometry for probing protein three-dimensional structures.  

PubMed

Chemical cross-linking combined with mass spectrometry (MS) is powerful to provide protein three-dimensional structure information but difficulties in identifying cross-linked peptides and elucidating their structures limit its usefulness. To tackle these challenges, this study presents a novel cross-linking MS in conjunction with electrochemistry using disulfide-bond-containing dithiobis[succinimidyl propionate] (DSP) as the cross-linker. In our approach, electrolysis of DSP-bridged protein/peptide products, as online monitored by desorption electrospray ionization mass spectrometry is highly informative. First, as disulfide bonds are electrochemically reducible, the cross-links are subject to pronounced intensity decrease upon electrolytic reduction, suggesting a new way to identify cross-links. Also, mass shift before and after electrolysis suggests the linkage pattern of cross-links. Electrochemical reduction removes disulfide bond constraints, possibly increasing sequence coverage for tandem MS analysis and yielding linear peptides whose structures are more easily determined than their cross-linked precursor peptides. Furthermore, this cross-linking electrochemical MS method is rapid, due to the fast nature of electrochemical conversion (much faster than traditional chemical reduction) and no need for chromatographic separation, which would be of high value for structural proteomics research. PMID:25141260

Zheng, Qiuling; Zhang, Hao; Tong, Lingying; Wu, Shiyong; Chen, Hao

2014-09-16

203

NOVEL METALLIC AND BIMETALLIC CROSS-LINKED POLY (VINYL ALCOHOL) NANOCOMPOSITES PREPARED UNDER MICROWAVE IRRADIATION  

EPA Science Inventory

A facile microwave irradiation approach that results in a cross-linking reaction of poly (vinyl alcohol) (PVA) with metallic and bimetallic systems is described. Nanocomposites of PVA cross-linked metallic systems such as Pt, Cu, and In and bimetallic systems such as Pt-In, Ag-P...

204

Plasticizer migration from cross-linked flexible PVC. 1. Effects on tribology  

Microsoft Academic Search

Utilization of soft PVC is restricted by plasticizer migration that can affect material properties, as well as its toxicity. Modifying the chemical structure of PVC is one of the most effective tool to reduce the diffusion of plasticizer. In this work, a soft cross-linked PVC was obtained using a difunctional amine, namely isophoron diamine (IPDA) as the cross-linking agent. The

M. Pannico; P. Persico; V. Ambrogi; C. Carfagna

2010-01-01

205

Synthesis Of Cross-Linked Carbon Nanotube Mats And Their Applications  

Microsoft Academic Search

Carbon nanotubes (CNTs) possess excellent tensile strength and electron transport properties that make them a promising component in future materials and technologies. The covalent cross-linking of carbon nanotubes is one avenue of producing thin, flexible mats that can be used in a variety of applications. Here we describe the cross-linking of functionalized CNTs through the Michael addition and imine formation

Darryl Neri Ventura

2011-01-01

206

Microwave Absorption of Single-Walled Carbon Nanotubes/Soluble Cross-Linked Polyurethane Composites  

E-print Network

Microwave Absorption of Single-Walled Carbon Nanotubes/Soluble Cross-Linked Polyurethane Composites composites of single-walled carbon nanotubes (SWNTs) with soluble cross-linked polyurethane (SCPU) were because of their easy fabrication into various shapes.20-24 Polyurethanes (PUs), with possessing

Gao, Hongjun

207

Graphene Oxide Sheets Chemically Cross-Linked by Polyallylamine Sungjin Park,  

E-print Network

Graphene Oxide Sheets Chemically Cross-Linked by Polyallylamine Sungjin Park, Dmitriy A. Dikin, Son colloidal suspension of chemically cross-linked graphene oxide sheets was generated by addition of polyallylamine to an aqueous suspension of graphene oxide sheets followed by sonication of the mixture

208

Polymer Micelles Stabilization on Demand through Reversible Photo-Cross-Linking  

E-print Network

-cross-linked by light illumination at two different wavelengths, with tunable cross-linking density. As this optical concentration of the polymer. If this happens, the entrapped guest such as a drug can leak out quickly, which on light-controllable polymer micelles,6 we propose a new all-optical strategy for the stabilization

Zhao, Yue

209

The Crystal Structures of Psoralen Cross-linked DNAs: Drug-dependent Formation of  

E-print Network

#12;The Crystal Structures of Psoralen Cross-linked DNAs: Drug-dependent Formation of Holliday-trimethylpsoralen (HMT). The HMT-adduct of d(CCGCTAGCGG) forms a psoralen-induced Holliday junction, showing. The psoralen cross-link de®nes the intramolecular interactions of the drug-induced junction, while the sequence

Eichman, Brandt F.

210

Near-UV induced interstrand cross-links in anthraquinone-DNA duplexes.  

PubMed

Anthraquinone (AQ) has been extensively used as a photosensitizer to study charge transfer in DNA. Near-UV photolysis of AQ induces electron abstraction in oligonucleotides leading to AQ radical anions and base radical cations. In general, this reaction is followed by the transport of base radical cations to sites of low oxidation potential, that is, GG, and conversion of G radical cations to DNA breaks. Here, we show that AQ also produces interstrand cross-links in DNA duplexes. About half of the cross-links collapse to single strands in hot piperidine treatment. The structure of stable interstrand cross-links was deduced by MS, NMR, and sequence substitution. The cross-links consist of a covalent link between the methyl group of T on one strand with either C6 or C7 of AQ on the other strand. The formation of interstrand cross-links decreased in O2 compared to deoxygenated solutions. In the presence of O2, the yield of breaks at GG doublets was 10-fold greater than that of cross-links for end tethered AQ, while cross-links exceeded breaks for centrally located AQ. The formation of stable cross-links can be explained by initial charge transfer from T to excited AQ, deprotonation of T radical cations, and condensation of the latter species with AQ radicals. These studies reveal a novel pathway of damage in the photolysis of AQ-DNA duplexes. PMID:17105277

Bergeron, François; Nair, Vandana K; Wagner, J Richard

2006-11-22

211

Collagen cross-linking of skin in patients with amyotrophic lateral sclerosis  

NASA Technical Reports Server (NTRS)

Collagen cross-links of skin tissue (left upper arm) from 11 patients with amyotrophic lateral sclerosis (ALS) and 9 age-matched control subjects were quantified. It was found that patients with ALS had a significant reduction in the content of an age-related, stable cross-link, histidinohydroxylysinonorleucine, that was negatively correlated with the duration of illness. The contents of sodium borohydride-reducible labile cross-links, dehydro-hydroxylysinonorleucine and dehydro-histidinohydroxymerodesmosine, were significantly increased and were positively associated with the duration of illness (r = 0.703, p less than 0.05 and r = 0.684, p less than 0.05, respectively). The results clearly indicate that during the course of ALS, the cross-linking pathway of skin collagen runs counter to its normal aging, resulting in a "rejuvenation" phenomenon of skin collagen. Thus, cross-linking of skin collagen is affected in ALS.

Ono, S.; Yamauchi, M.

1992-01-01

212

Characterization of the bombesin receptor on mouse pancreatic acini by chemical cross-linking  

SciTech Connect

Bombesin (BN), gastrin-releasing peptide (GRP) and GRP(18-27) (neuromedin C) were equipotent and 30-fold more potent than neuromedin B (NMB) in inhibiting binding of {sup 125}I-GRP to and in stimulating amylase release from mouse pancreatic acini. In the present study we used {sup 125}I-GRP and chemical cross-linking techniques to characterize the mouse pancreatic BN receptor. After binding of {sup 125}I-GRP to membranes, and incubation with various chemical cross-linking agents, cross-linked radioactivity was analyzed by SDS-PAG electrophoresis and autoradiography. With each of 4 different chemical cross-linking agents, there was a single broad polypeptide band of Mr 80,000. Cross-linking did not occur in the absence of the cross-linking agent. Cross-linking was inhibited only by peptides that interact with the BN receptor such as GRP, NMB, GRP(18-27) or BN. Dose-inhibition curves for the ability of BN or NMB to inhibit binding of {sup 125}I-GRP to membranes or cross-linking to the 80,000 polypeptide demonstrated for both that BN was 15-fold more potent than NMB. The apparent molecular weight of the cross-linked polypeptide was unchanged by adding dithiothreitol. N-Glycanase treatment reduced the molecular weight of the cross-linked peptide to 40,000. The present results indicate that the BN receptor on mouse pancreatic acinar cell membranes resembles that recently described on various tumor cells in being a single glycoprotein with a molecular weight of 76,000. Because dithiothreitol had no effect, this glycoprotein is not a subunit of a larger disulfide-linked structure.

Huang, S.C.; Yu, D.H.; Wank, S.A.; Gardner, J.D.; Jensen, R.T. (National Institutes of Health, Bethesda, MD (USA))

1990-11-01

213

Ionically cross-linked alginate hydrogels as tissue engineering scaffolds  

NASA Astrophysics Data System (ADS)

Generation of living tissues through tissue engineering can be achieved via incorporation of cells into synthetic scaffolds designed to facilitate new tissue formation. Necessary characteristics of a scaffold include biocompatibility, high porosity with controllable pore size and interconnectivity, moldability, chemical and mechanical stability, and structural homogeneity. Hydrogels often possess many of the necessary characteristics and thus are favorable candidates for scaffolding. Alginate hydrogels are commonly made by ionically crosslinking with calcium ions from CaCl2 or CaSO4. These hydrogels are favored for their mild gel formation, however the gelation rate is rapid and uncontrollable (fast-gelation), resulting in varying crosslinking density throughout the gel. In this work, structurally homogeneous calcium alginate hydrogels were formed via a slow-gelation system that utilizes uniform mixing of CaCO3 with sodium alginate solution, and the addition of slowly hydrolyzing D-gluconic acid lactone to slowly release calcium ions for crosslinking. Homogeneity and mechanical properties of these hydrogels were shown to be superior to those of fast-gelled hydrogels. Gelation rate was controlled through the incorporation of CaSO4, and by varying total calcium content, polymer concentration and gelation temperature. Control over mechanical properties and diffusivity was demonstrated in the homogeneous hydrogels by adjusting compositional variables. Consistent control over solute diffusivity through gel discs reflected the structural homogeneity of the gels. To overcome the instability of ionically crosslinked gels in tissue culture medium, a method was developed to control the hydrogel dimensions by adjusting the ionic concentration of the medium. Stability of the hydrogels in this controlled environment was characterized through swelling experiments and mechanical testing. To provide for scaffold degradation and thereby promote tissue growth, alginate lyase was incorporated into the system induce enzymatically controlled alginate degradation. This alginate hydrogel system is novel in that cells are directly and uniformly incorporated into a hydrogel with controlled gelation rate and material properties. The injectable alginate hydrogels can be molded into complex shapes or injected into the body to avoid invasive surgery. Further, the ability to tailor their gelation rate, material properties and degradation enable these alginate hydrogels to be used for a variety of biomedical applications including drug or biofactor delivery.

Kuo, Catherine Kyleen

214

Retention of the original LLC structure in a cross-linked poly(ethylene glycol) diacrylate hydrogel with reinforcement from a silica network.  

PubMed

Cross-linked poly(ethylene glycol) diacrylate (PEGDA) hydrogels with uniformly controlled nanoporous structures templated from hexagonal lyotropic liquid crystals (LLC) represent separation membrane materials with potentially high permeability and selectivity due to their high pore density and narrow pore size distribution. However, retaining LLC templated nanostructures is a challenge as the polymer gels are not strong enough to sustain the surface tension during the drying process. In the current study, cross-linked PEGDA gels were reinforced with a silica network synthesized via an in situ sol-gel method, which assists in the retention of the hexagonal LLC structure. The silica precursor does not obstruct the formation of hexagonal phases. After surfactant removal and drying, these hexagonal structures in samples with a certain amount of tetraethoxysilane (TEOS) loading are well retained while the nanostructures are collapsed in samples without silica reinforcement, leading to the hypothesis that the reinforcement provided by the silica network stabilizes the LLC structure. The study examines the conditions necessary for a sufficient and well dispersed silica network in PEGDA gels that contributes to the retention of original LLC structures, which potentially enables broad applications of these gels as biomedical and membrane materials. PMID:24916196

Zhang, Juan; Xie, Zongli; Hoang, Manh; Hill, Anita J; Cong, Weiwei; She, Feng Hua; Gao, Weimin; Kong, Ling Xue

2014-07-28

215

Catabolism of hyaluronan: involvement of transition metals.  

PubMed

One of the very complex structures in the vertebrates is the joint. The main component of the joint is the synovial fluid with its high-molar-mass glycosaminoglycan hyaluronan, which turnover is approximately twelve hours. Since the synovial fluid does not contain any hyaluronidases, the fast hyaluronan catabolism is caused primarily by reductive-oxidative processes.Eight transition metals - V(23), Mn(25), Fe(26), Co(27), Ni(28), Cu(29), Zn(30), and Mo(42) - naturally occurring in living organism are essential for the control of various metabolic and signaling pathways. They are also the key elements in catabolism of hyaluronan in the joint.In this overview, the role of these metals in physiological and pathophysiological catabolism of hyaluronan is described. The participation of these metals in the initiation and propagation of the radical degradation hyaluronan is critically reviewed. PMID:21217859

Soltés, Ladislav; Kogan, Grigorij

2009-12-01

216

Reentrant phase diagram and pH effects in cross-linked gelatin gels  

E-print Network

Experimental results have shown that the kinetics of bond formation in chemical crosslinking of gelatin solutions is strongly affected not only by gelatin and reactant concentrations but also by the solution pH. We present an extended numerical investigation of the phase diagram and of the kinetics of bond formation as a function of the pH, via Monte Carlo simulations of a lattice model for gelatin chains and reactant agent in solution. We find a reentrant phase diagram, namely gelation can be hindered either by loop formation, at low reactant concentrations, or by saturation of active sites of the chains via formation of single bonds with crosslinkers, at high reactant concentrations. The ratio of the characteristic times for the formation of the first and of the second bond between the crosslinker and an active site of a chain is found to depend on the reactant reactivity, in good agreement with experimental data.

T. Abete; E. Del Gado; L. de Arcangelis; D. Hellio Serughetti; M. Djabourov

2008-06-19

217

Cross-linked redox gels containing glucose oxidase for amperometric biosensor applications  

Microsoft Academic Search

Oxidoreductases, such as glucose oxidase, can be electrically wired to electrodes by electrostatic complexing or by covalent binding of redox polymers so that the electrons flow from the enzyme, through the polymer, to the electrode. We describe two materials for amperometric biosensors based on a cross-linkable poly(vinylpyridine) complex of (Os-(bpy)âCl){sup +\\/2+} that communicates electrically with flavin adenine dinucleiotide redox centers

Brian A. Gregg; Adam. Heller

1990-01-01

218

Gelatin hydrogels cross-linked by gamma-ray irradiation: materials for absorption and release of dye.  

PubMed

Gelatin hydrogels cross-linked by y-ray irradiation using 60Co as gamma-ray source were prepared. As a model of controlled release of low-molecular-weight compounds, absorption and release of methylene blue, a water-soluble cationic dye, was investigated. Irradiated gelatin hydrogels did not redissolve at temperatures over 40 degrees C, while unirradiated gels were thermoplastic and reversibly changed the stage between gel and sol. Measurement of both the wet weight after swelling in distilled water and dry weight after freeze-drying showed that the higher-dose irradiation gave stiffer and more compact gels with the lower specific water content, irrespective of the absorbed dose rate. The time-course of absorption and release of methylene blue in aqueous solution was measured. Since absorption of dye into gelatin gels was much affected by liquid phase pH, amount of absorption was higher in pH above an IEP of gelatins. Moreover, the absorption and release of methylene blue with Type-B gelatin were higher than with Type-A gelatin, respectively. Therefore, absorption and release of the dye depend on the electrostatic interaction between the dye molecule and gelatin. PMID:16028592

Bessho, Masahiko; Furuta, Masakazu; Kojima, Takao; Okuda, Shuichi; Hara, Masayuki

2005-01-01

219

The RecQ helicase RECQL5 participates in psoralen-induced interstrand cross-link repair.  

PubMed

Interstrand cross-links (ICLs) are very severe lesions as they are absolute blocks of replication and transcription. This property of interstrand cross-linking agents has been exploited clinically for the treatment of cancers and other diseases. ICLs are repaired in human cells by specialized DNA repair pathways including components of the nucleotide excision repair pathway, double-strand break repair pathway and the Fanconi anemia pathway. In this report, we identify the role of RECQL5, a member of the RecQ family of helicases, in the repair of ICLs. Using laser-directed confocal microscopy, we demonstrate that RECQL5 is recruited to ICLs formed by trioxalen (a psoralen-derived compound) and ultraviolet irradiation A. Using single-cell gel electrophoresis and proliferation assays, we identify the role of RECQL5 in the repair of ICL lesions. The domain of RECQL5 that recruits to the site of ICL was mapped to the KIX region between amino acids 500 and 650. Inhibition of transcription and of topoisomerases did not affect recruitment, which was inhibited by DNA-intercalating agents, suggesting that the DNA structure itself may be responsible for the recruitment of RECQL5 to the sites of ICLs. PMID:23715498

Ramamoorthy, Mahesh; May, Alfred; Tadokoro, Takashi; Popuri, Venkateswarlu; Seidman, Michael M; Croteau, Deborah L; Bohr, Vilhelm A

2013-10-01

220

The RecQ helicase RECQL5 participates in psoralen-induced interstrand cross-link repair  

PubMed Central

Interstrand cross-links (ICLs) are very severe lesions as they are absolute blocks of replication and transcription. This property of interstrand cross-linking agents has been exploited clinically for the treatment of cancers and other diseases. ICLs are repaired in human cells by specialized DNA repair pathways including components of the nucleotide excision repair pathway, double-strand break repair pathway and the Fanconi anemia pathway. In this report, we identify the role of RECQL5, a member of the RecQ family of helicases, in the repair of ICLs. Using laser-directed confocal microscopy, we demonstrate that RECQL5 is recruited to ICLs formed by trioxalen (a psoralen-derived compound) and ultraviolet irradiation A. Using single-cell gel electrophoresis and proliferation assays, we identify the role of RECQL5 in the repair of ICL lesions. The domain of RECQL5 that recruits to the site of ICL was mapped to the KIX region between amino acids 500 and 650. Inhibition of transcription and of topoisomerases did not affect recruitment, which was inhibited by DNA-intercalating agents, suggesting that the DNA structure itself may be responsible for the recruitment of RECQL5 to the sites of ICLs. PMID:23715498

Bohr, Vilhelm A.

2013-01-01

221

Dynamic viscoelastic properties of collagen gels with high mechanical strength.  

PubMed

We developed a new method for the preparation of mechanically strong collagen gels by combining successively basic gel formation, followed by 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide (EDC) cross-linking and lyophilization. Gels cross-linked three times with this method showed stronger mechanical properties (G': 3730±2060 Pa, G?: 288±35 Pa) than a conventional gel that was sequentially cross-linked with EDC once (G': 226±70 Pa, G?: 21±4.4 Pa), but not as strong as the same gel with heating for 30 min at 80°C (G': 7010±830 Pa, G?: 288±35 Pa) reported in our previous paper. The conventional collagen gel was cross-linked with EDC once, heated once, and then subjected twice to a lyophilization-gel formation-cross-linking cycle to give three-cycled gel 2. This gel had the strongest mechanical properties (G': 40,200±18,000 Pa, G?: 3090±1400 Pa, Young's modulus: 0.197±0.069 MPa) of the gels tested. These promising results suggest possible applications of the gels as scaffolds in tissue engineering research. PMID:23706205

Mori, Hideki; Shimizu, Kousuke; Hara, Masayuki

2013-08-01

222

Electrospun gelatin nanofibers: A facile cross-linking approach using oxidized sucrose.  

PubMed

Gelatin nanofibers were fabricated via electrospinning with minimal toxicity from solvents and cross-linking agents. Electrospinning was carried out using a solvent system based on water and acetic acid (8:2, v/v). Acetic acid concentration was kept as minimum as possible to reduce the toxic effects. Electrospun gelatin nanofibers were cross-linked with oxidized sucrose. Sucrose was oxidized by periodate oxidation to introduce aldehyde functionality. Cross-linking with oxidized sucrose could be achieved without compromising the nanofibrous architecture. Cross-linked gelatin nanofibers maintained the fibrous morphology even after keeping in contact with aqueous medium. The morphology of the cross-linked nanofibrous mats was examined by scanning electron microscopy (SEM). Oxidized sucrose cross-linked gelatin nanofibers exhibited improved thermal and mechanical properties. The nanofibrous mats were evaluated for cytotoxicity and cell viability using L-929 fibroblast cells. The results confirmed that oxidized sucrose cross-linked gelatin nanofibers were non-cytotoxic towards L-929 cells with good cell viability. PMID:25478965

Jalaja, K; James, Nirmala R

2015-02-01

223

Anomalous normal stresses in biopolymer networks with compliant cross-links  

NASA Astrophysics Data System (ADS)

Cross-linked biopolymer filament networks that constitute the cytoskeleton in living cells show rich mechanical response including large strain stiffening and negative normal stresses. Here, we have studied these phenomena in the case where the cross-links act as flexible worm-like chain springs. We find that in contrast to the well-studied case of sparse networks with rigid cross-links that display negative normal stresses when subject to shear loading, flexible cross-links give rise to positive normal stresses during early stages of deformation. With increased loading, we observe a transition where the normal stresses become negative. In this regime, the ratio of the normal stresses to the shear stress is found to increase with increase in the density of cross-links, in distinct contrast to the behavior observed for rigid cross-links. We show that these anomalous properties can be understood by considering the way in which the applied load is shared by the extension of the cross-links and the bending and stretching of the filaments.

Chen, P.

2014-02-01

224

Ex vivo wear of conventional and cross-linked polyethylene acetabular liners.  

PubMed

Explanted highly cross-linked polyethylene acetabular liners show third-body scratching. It was suggested that this surface damage could increase the wear rate of highly cross-linked polyethylene. We investigated the wear behavior of surgically explanted highly cross-linked and conventional acetabular liners using a hip simulator. Highly cross-linked explants showed no weight loss. The scratches and original machine marks of the highly cross-linked liners present at explantation remained during testing; the wear rates of these liners were 1.1 +/- 2.3 mg/million cycles, representing weight gain. In contrast, conventional liners showed wear rates of -12.9 +/- 1.4 mg/million cycles, representing weight loss. Wear was associated with rapid surface polishing and scratch elimination. After testing, the liners were melted to trigger shape memory and recover plastic deformation-induced surface changes. Highly cross-linked liners showed substantial recovery of original machining marks after melting, indicating that the scratches were a result of plastic deformation and not wear. None of the conventional polyethylenes showed any recovery after melting. The wear resistance of the highly cross-linked polyethylene studied was not compromised by surface changes that occurred during the first year of in vivo service. PMID:16131885

Muratoglu, Orhun K; Wannomae, Keith; Christensen, Steven; Rubash, Harry E; Harris, William H

2005-09-01

225

Optimization of Formaldehyde Cross-Linking for Protein Interaction Analysis of Non-Tagged Integrin ?1  

PubMed Central

Formaldehyde cross-linking of protein complexes combined with immunoprecipitation and mass spectrometry analysis is a promising technique for analysing protein-protein interactions, including those of transient nature. Here we used integrin ?1 as a model to describe the application of formaldehyde cross-linking in detail, particularly focusing on the optimal parameters for cross-linking, the detection of formaldehyde cross-linked complexes, the utility of antibodies, and the identification of binding partners. Integrin ?1 was found in a high molecular weight complex after formaldehyde cross-linking. Eight different anti-integrin ?1 antibodies were used for pull-down experiments and no loss in precipitation efficiency after cross-linking was observed. However, two of the antibodies could not precipitate the complex, probably due to hidden epitopes. Formaldehyde cross-linked complexes, precipitated from Jurkat cells or human platelets and analyzed by mass spectrometry, were found to be composed of integrin ?1, ?4 and ?6 or ?1, ?6, ?2, and ?5, respectively. PMID:20634879

Klockenbusch, Cordula; Kast, Juergen

2010-01-01

226

Cross-linked Bioreducible Layer-by-layer Films for Increased Cell Adhesion and Transgene Expression  

PubMed Central

The effect of cross-linking layer-by-layer (LbL) films consisting of bioreducible poly(2-dimethylaminoethyl methacrylate) (rPDMAEMA) and DNA is examined with regards to rigidity, biodegradability, cell adhesion, and transfection activity using 1,5-diiodopentane (DIP) cross-linker. DIP chemically reacts with the tertiary amines of rPDMAEMA, altering the chemical composition of these LbL films. The result is a change in surface morphology, film swelling behavior and film rigidity, measured with AFM and ellipsometry. It is found that the apparent Young’s modulus is increased more than four times its original value upon cross-linking. Cross-linking mass is additionally confirmed with quartz crystal microbalance with dissipation (QCM-D). Comprehensive analyses of these experimental values were investigated to calculate the degree of cross-linking using the rubber elasticity theory and the Flory-Rehner theory. Additionally, the Flory-Huggins parameter, ?, was calculated. Good agreement in the two methods yields a cross-linking density of ~0.82 mmol/cm3. The Flory-Huggins parameter increased upon cross-linking from 1.07 to 1.2, indicating increased hydrophobicity of the network and formation of bulk water droplets within the films. In addition, the effects of cross-linking on film disassembly by 1,4-dithiothreitol (DTT) is found to be insignificant despite the alteration in film rigidity. Mouse fibroblast cells and smooth muscle cells are used to study the effect of cross-linking on cell adhesion and cell transfection activity. In vitro transfection activity up to seven days is quantified using secreted alkaline phosphatase (SEAP) DNA. Film cross-linking is found to enhance cell adhesion and prolong the duration of cellular transfection. These results contribute to the development of bioreducible polymer coatings for localized gene delivery. PMID:20369813

Blacklock, Jenifer; Sievers, Torsten K.; Handa, Hitesh; You, Ye-Zi; Oupický, David; Mao, Guangzhao; Möhwald, Helmuth

2010-01-01

227

Cross-linked bioreducible layer-by-layer films for increased cell adhesion and transgene expression.  

PubMed

The effect of cross-linking layer-by-layer (LbL) films consisting of bioreducible poly(2-dimethylaminoethyl methacrylate) (rPDMAEMA) and DNA is examined with regard to rigidity, biodegradability, cell adhesion, and transfection activity using 1,5-diiodopentane (DIP) cross-linker. DIP chemically reacts with the tertiary amines of rPDMAEMA, altering the chemical composition of these LbL films. The result is a change in surface morphology, film swelling behavior, and film rigidity, measured with AFM and ellipsometry. It is found that the apparent Young's modulus is increased more than 4 times its original value upon cross-linking. Cross-linking mass is additionally confirmed with a quartz crystal microbalance with dissipation (QCM-D). Comprehensive analyses of these experimental values were investigated to calculate the degree of cross-linking using the rubber elasticity theory and the Flory-Rehner theory. Additionally, the Flory-Huggins parameter, chi, was calculated. Good agreement in the two methods yields a cross-linking density of approximately 0.82 mmol/cm(3). The Flory-Huggins parameter increased upon cross-linking from 1.07 to 1.2, indicating increased hydrophobicity of the network and formation of bulk water droplets within the films. In addition, the effects of cross-linking on film disassembly by 1,4-dithiothreitol (DTT) are found to be insignificant despite the alteration in film rigidity. Mouse fibroblast cells and smooth muscle cells are used to study the effect of cross-linking on cell adhesion and cell transfection activity. In vitro transfection activity up to seven days is quantified using secreted alkaline phosphatase (SEAP) DNA. Film cross-linking is found to enhance cell adhesion and prolong the duration of cellular transfection. These results contribute to the development of bioreducible polymer coatings for localized gene delivery. PMID:20369813

Blacklock, Jenifer; Sievers, Torsten K; Handa, Hitesh; You, Ye-Zi; Oupický, David; Mao, Guangzhao; Möhwald, Helmuth

2010-04-29

228

Reduced concentrations of collagen cross-links are associated with reduced strength of bone.  

PubMed

The known cross-links of bone collagen are derived from lysine and hydroxylysine. The first step in the enzymatic cross-linking process is a deamination by lysyl oxidase producing an aldehyde which then may condense with a lysyl or hydroxylysyl residue of a neighbouring collagen molecule. Some of the resulting divalent aldimine and oxo-imine cross-links may later on be incorporated in trivalent hydroxylysyl-pyridinoline and lysyl-pyridinoline cross-links. In bone collagen prepared from the cancellous bone of vertebral bodies of osteoporotic individuals we found a reduced stability towards acetic acid and pepsin, and a substantial reduction in the concentration of the divalent collagen cross-links compared with sex- and age-matched controls. To what extent do the collagen cross-links influence the mechanical properties of bone? beta-amino-propionitrile (BAPN) irreversibly inhibits the enzyme lysyl oxidase and therefore, the formation of cross-links between the collagen molecules. In the present study female rats, 70 days old, injected subcutaneously two times daily with BAPN (333 mg/kg/day) for 1 month and saline injected control rats were studied. The concentration of the hydroxypyridinium cross-links of femoral mid-diaphyseal cortical bone was determined by HPLC with fluorescence detection and the mechanical properties of the rat femoral diaphyses were analyzed by a materials testing machine. The BAPN injections resulted in a 45% reduction in the concentration of the hydroxypyridinium cross-links and a 31% decrease in the stability of the bone collagen towards acetic acid and pepsin compared with the control rats. No changes were found in ash or collagen concentrations of the cortical bone.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:8579939

Oxlund, H; Barckman, M; Ortoft, G; Andreassen, T T

1995-10-01

229

Cross-linked polyvinyl alcohols and oil reservoir permeability control therewith  

SciTech Connect

This patent describes an improved method of recovering oil under steam flooding conditions from an oil-bearing subterranean formation penetrated by an injection well and a production well, in which an aqueous fluid is injected into the formation through the injection well to displace oil to the production well. The improvement comprising employing, in at least a portion of the aqueous fluid injected into the formation, a cross-linked polymer obtained by cross-linking polyvinyl alcohol with a cross-linking agent which is a mixture of a phenolic component and an aldehyde or a mixture of a naphtholic component and an aldehyde.

Hoskin, D.H.; Shu, P.

1990-01-30

230

Isocyanate Cross-Linked Silica: Structurally Strong Aerogels  

NASA Technical Reports Server (NTRS)

Molecular-level synergism between the silica nanoparticles of pre-formed monoliths and molecular cross-linkers inverts the relative host-guest roles in glass-polymer composites, leading to new strong low-density materials. Attempts to load gels with variable amounts of polyurethane precursors such as di-ISO and diol end-capped polybutylene adipate followed by heat treatment, washing, and supercritical drying led to opaque materials, somewhat stronger than silica but still quite brittle and much inferior to the materials described above. Direct mixing of a diisocyanate and an alcohol-free sol has been attempted recently by Yim et al. Reportedly, that procedure leads to week-long gelation times and requires an at least equally long aging period. In our attempt to add various amounts of di-ISO in a base-catalyzed sol in PC, we also noticed a week-long gelation time. The resulting aerogels were translucent but no less brittle than native silica. According to more recent studies, if propylene carbonate is replaced with acetone, it leads not only to shorter processing times, but also to much stronger gels that can tolerate loads in excess of 40 kg in the arrangement presented. We attribute that behavior to the lower viscosity of acetone, that allows faster diffusion of the di-ISO solution within the pores before di-ISO has time to react with the surface of silica. Further studies are underway to vary the chemical identity of the diisocyanate, as well as the composition and density of silica.

Leventis, Nicholas; Sotiriou-Leventis, Chariklia; Zhang, Guo-Hui; Rawashdeh, Abdel-Monem M.

2002-01-01

231

Visible-light photocatalyzed cross-linking of diacetylene ligands by quantum dots to improve their aqueous colloidal stability.  

PubMed

Ligand cross-linking is known to improve the colloidal stability of nanoparticles, particularly in aqueous solutions. However, most cross-linking is performed chemically, in which it is difficult to limit interparticle cross-linking, unless performed at low concentrations. Photochemical cross-linking is a promising approach but usually requires ultraviolet (UV) light to initiate. Using such high-energy photons can be harmful to systems in which the ligand-nanoparticle bond is fairly weak, as is the case for the commonly used semiconductor quantum dots (QDs). Here, we introduce a novel approach to cross-link thiolated ligands on QDs by utilizing the photocatalytic activity of QDs upon absorbing visible light. We show that using visible light leads to better ligand cross-linking by avoiding the problem of ligand dissociation that occurs upon UV light exposure. Once cross-linked, the ligands significantly enhance the colloidal stability of those same QDs that facilitated cross-linking. PMID:25036275

Götz, Marion G; Takeuchi, Hiroko; Goldfogel, Matthew J; Warren, Julia M; Fennell, Brandon D; Heyes, Colin D

2014-12-11

232

Target-responsive DNAzyme cross-linked hydrogel for visual quantitative detection of lead.  

PubMed

Because of the severe health risks associated with lead pollution, rapid, sensitive, and portable detection of low levels of Pb(2+) in biological and environmental samples is of great importance. In this work, a Pb(2+)-responsive hydrogel was prepared using a DNAzyme and its substrate as cross-linker for rapid, sensitive, portable, and quantitative detection of Pb(2+). Gold nanoparticles (AuNPs) were first encapsulated in the hydrogel as an indicator for colorimetric analysis. In the absence of lead, the DNAzyme is inactive, and the substrate cross-linker maintains the hydrogel in the gel form. In contrast, the presence of lead activates the DNAzyme to cleave the substrate, decreasing the cross-linking density of the hydrogel and resulting in dissolution of the hydrogel and release of AuNPs for visual detection. As low as 10 nM Pb(2+) can be detected by the naked eye. Furthermore, to realize quantitative visual detection, a volumetric bar-chart chip (V-chip) was used for quantitative readout of the hydrogel system by replacing AuNPs with gold-platinum core-shell nanoparticles (Au@PtNPs). The Au@PtNPs released from the hydrogel upon target activation can efficiently catalyze the decomposition of H2O2 to generate a large volume of O2. The gas pressure moves an ink bar in the V-chip for portable visual quantitative detection of lead with a detection limit less than 5 nM. The device was able to detect lead in digested blood with excellent accuracy. The method developed can be used for portable lead quantitation in many applications. Furthermore, the method can be further extended to portable visual quantitative detection of a variety of targets by replacing the lead-responsive DNAzyme with other DNAzymes. PMID:25340621

Huang, Yishun; Ma, Yanli; Chen, Yahong; Wu, Xuemeng; Fang, Luting; Zhu, Zhi; Yang, Chaoyong James

2014-11-18

233

Inverted bulk-heterojunction solar cell with cross-linked hole-blocking layer.  

PubMed

We have developed a hole-blocking layer for bulk-heterojunction solar cells based on cross-linked polyethylenimine (PEI). We tested five different ether-based cross-linkers and found that all of them give comparable solar cell efficiencies. The initial idea that a cross-linked layer is more solvent resistant compared to a pristine PEI layer could not be confirmed. With and without cross-linking, the PEI layer sticks very well to the surface of the indium-tin-oxide electrode and cannot be removed by solvents used to process PEI or common organic semiconductors. The cross-linked PEI hole-blocking layer functions for multiple donor-acceptor blends. We found that using cross-linkers improves the reproducibility of the device fabrication process. PMID:24817837

Udum, Yasemin; Denk, Patrick; Adam, Getachew; Apaydin, Dogukan H; Nevosad, Andreas; Teichert, Christian; S White, Matthew; S Sariciftci, Niyazi; Scharber, Markus C

2014-05-01

234

Inverted bulk-heterojunction solar cell with cross-linked hole-blocking layer  

PubMed Central

We have developed a hole-blocking layer for bulk-heterojunction solar cells based on cross-linked polyethylenimine (PEI). We tested five different ether-based cross-linkers and found that all of them give comparable solar cell efficiencies. The initial idea that a cross-linked layer is more solvent resistant compared to a pristine PEI layer could not be confirmed. With and without cross-linking, the PEI layer sticks very well to the surface of the indium–tin–oxide electrode and cannot be removed by solvents used to process PEI or common organic semiconductors. The cross-linked PEI hole-blocking layer functions for multiple donor–acceptor blends. We found that using cross-linkers improves the reproducibility of the device fabrication process. PMID:24817837

Udum, Yasemin; Denk, Patrick; Adam, Getachew; Apaydin, Dogukan H.; Nevosad, Andreas; Teichert, Christian; S. White, Matthew.; S. Sariciftci, Niyazi.; Scharber, Markus C.

2014-01-01

235

Filamin Cross-Linked Semiflexible Networks: Fragility under Strain B. A. DiDonna1  

E-print Network

Filamin Cross-Linked Semiflexible Networks: Fragility under Strain B. A. DiDonna1 and Alex J] by measurements of low- frequency intracellular strain fluctuations. In our model this fragile state is generated

Levine, Alex J.

236

Effect of Cross-linking History on Slow Shape Recovery of Disordered Nematic Elastomers  

NASA Astrophysics Data System (ADS)

A loosely cross-linked nematic elastomer having a polydomain texture slowly recovers to their initial shape from the distorted state in the order of 1000 s after the imposed field is removed. The mesogen orientation during cross-linking greatly affects the shape recovery dynamics of polydomain nematic elastomers, whereas it has no appreciable influence on their equilibrium properties such as the nematic-isotropic transition temperature, degree of swelling, and field-induced strain. A nematic elastomer formed in the (low-temperature) polydomain nematic state exhibits considerably faster shape recovery than that originally prepared in the (high-temperature) isotropic state because of the memory effect of the initial director distribution during cross-linking. The relaxation time steeply increases as the temperature approaches the transition temperatures; this is independent of the initial mesogen alignment at the cross-linking stage.

Urayama, Kenji; Honda, Seiji; Takigawa, Toshikazu

2007-03-01

237

Cross-linking proteins with bimetallic tetracarboxylate compounds of transition metals  

DOEpatents

Stable cross-linked complexes of transition-metal tetracarboxylates and proteins are formed. The preferred transition-metal is rhodium. The protein may be collagen or an enzyme such as a proteolytic enzyme.

Kostic, Nenad M. (Ames, IA); Chen, Jian (Ames, IA)

1991-03-05

238

Thymine modified amphiphilic biodegradable copolymers for photo-cross-linked micelles as stable drug carriers.  

PubMed

A photo-cross-linked micelle is synthesized via photodimerization of thymine moieties fabricated from amphiphilic block copolymers (mPEG-b-P(LA-co-MPT). The crosslinking behavior is monitored by UV-Vis spectra and (1) H NMR. Dynamic light scattering (DLS) and transmission electron microscopy (TEM) showed that cross-linked micelles had smaller sizes than their uncross-linked precursors. In vitro studies reveal that cross-linking of the micelle cores results in a slow drug release and faster cellular uptake in comparison with uncross-linked ones in MCF-7 and Hela cells. Moreover, the paclitaxel (PTX)-loaded core-cross-linked micelles exhibit similar anticancer efficacy as free PTX. This work provides a convenient tool for designing a more stable structure in the blood circulation to realize a controlled drug delivery. PMID:23966335

Kuang, Huihui; He, Hongyan; Hou, Jie; Xie, Zhigang; Jing, Xiabin; Huang, Yubin

2013-11-01

239

Cross-Link-Governed Dynamics of Biopolymer Networks Chase P. Broedersz,1  

E-print Network

is the intrinsic dynamics of their cross-links. Such systems rep- resent a distinct class of polymeric materials describes the structural relaxation that results from many independent unbinding or rebinding events. Using

MacKintosh, F.C.

240

Extent ofPeptide Cross-Linking inthePeptidoglycan of Neisseria gonorrhoeae  

Microsoft Academic Search

Theextent ofpeptide cross-linking inpeptidoglycan (PG)isolated fromvarious strains ofNeisseria gonorrhoeae wasexamined. Purified PG,specifically labeled inthepeptide moiety with(3H)diaminopimelic acid(DAP)andlabeled inthe glycan with('4C)glucosamine and(\\

R. S. ROSENTHAL; R. M. WRIGHT; K. SINHA

1980-01-01

241

Cross-linked enzyme aggregates of recombinant Pseudomonas putida nitrilase for enantioselective nitrile hydrolysis.  

PubMed

The cross-linked enzyme aggregate (CLEA) method is used for the dual purpose of combining both the purification and immobilization of enzyme in one step. The present work involved the preparation of a carrier-free, highly active reusable biocatalyst (nitrilase) which encounters least mass-transfer limitations with higher thermal and storage stability. The effect of type of aggregating agent, its concentration as well as that of cross-linking agent was studied. Nitrilase aggregates were prepared using ammonium sulphate (35%) precipitation followed by cross-linking with glutaraldehyde (125 mM) which rendered 70% activity retention. The various cross-linking parameters were optimized in order to increase the activity retention. Stability in terms of temperature, reusability and leaching were also examined. The CLEA preparation showed residual nitrilase activity on repeated use. A highly stable CLEA of nitrilase was finally prepared with maximum activity recovery. PMID:20385491

Kumar, Sandeep; Mohan, Utpal; Kamble, Ashwini L; Pawar, Sandip; Banerjee, Uttam C

2010-09-01

242

Computational exploration of polymer nanocomposite mechanical property modification via cross-linking topology  

SciTech Connect

Molecular dynamics simulations have been performed in order to study the effects of nanoscale filler cross-linking topologies and loading levels on the mechanical properties of a model elastomeric nanocomposite. The model system considered here is constructed from octa-functional polyhedral oligomeric silsesquioxane (POSS) dispersed in a poly(dimethylsiloxane) (PDMS) matrix. Shear moduli, G, have been computed for pure and for filled and unfilled PDMS as a function of cross-linking density, POSS fill loading level, and polymer network topology. The results reported here show that G increases as the cross-linking (covalent bonds formed between the POSS and the PDMS network) density increases. Further, G is found to have a strong dependence on cross-linking topology. The increase in shear modulus, G, for POSS filled PDMS is significantly higher than that for unfilled PDMS cross-linked with standard molecular species, suggesting an enhanced reinforcement mechanism for POSS. In contrast, in blended systems (POSS/PDMS mixture with no cross-linking) G was not observed to significantly increase with POSS loading. Finally, we find intriguing differences in the structural arrangement of bond strains between the cross-linked and the blended systems. In the unfilled PDMS the distribution of highly strained bonds appears to be random, while in the POSS filled system, the strained bonds form a net-like distribution that spans the network. Such a distribution may form a structural network 'holding' the composite together and resulting in increases in G compared to an unfilled, cross-linked system. These results are of importance for engineering of new POSS-based multifunctional materials with tailor-made mechanical properties.

Lacevic, N; Gee, R; Saab, A; Maxwell, R

2008-04-24

243

General method for the isolation and analysis of polynucleotide fragments cross-linked to protein  

Microsoft Academic Search

A general method is proposed for the isolation and sequencing of fragments of polynucleotides cross-linked to a definite protein among multicomponent nucleoproteins. The method can be used for initially unlabeled complexes regardless of the method of forming the cross-linkages. With the aid of this method, a fragment of the 16S RNA covalently cross-linked to the S7 protein under the action

G. G. Abdurashidova; E. A. Tsvetkova; E. I. Budovskii

1986-01-01

244

Development of a reusable protein seed crystal processed by chemical cross-linking  

Microsoft Academic Search

A reusable protein seed crystal processed by chemical cross-linking is developed. The process used to achieve cross-linking with glutaraldehyde is described. The lattice constants of the resulting crystals were analyzed using X-ray diffraction, and the characteristics of the seed crystals were investigated using an optical microscope and an atomic-force microscope. The results showed that the lattice constants of the crystalline

Yoshikazu Iimura; Izumi Yoshizaki; Long Rong; Satoshi Adachi; Shinichi Yoda; Hiroshi Komatsu

2005-01-01

245

A Y form of hammerhead ribozyme trapped by photo-cross-links retains full cleavage activity  

Microsoft Academic Search

The conformation in solution of a small bipartite I-III hammerhead ribozyme has been deduced from the photo-cross-links formed between cleavable ribo-deoxysubstrates appropriately substituted with the probe deoxy-4-thiouridine and ribozyme residues. The ribozyme-substrate complex is able to adopt a Y-like structure with stems I and II in close proximity in the presence of 400 mM Na+ only. Indeed, a cross-link joining stem

Catherine Bravo; Anne Woisard; J.-L. Fourrey; Philippe Laugâa; Alain Favre

1999-01-01

246

Reduced platelet adhesion and blood coagulation on cross-linked albumin films  

Microsoft Academic Search

Surface-induced thrombosis is a major complication associated with blood-contacting biomaterials. Cross-linked albumin films possessing native albumin characteristics such as resistance to cell adhesion and drug binding ability are available for improving the blood compatibility of biomaterial surfaces. In the present study, we aimed to evaluate the blood compatibility of cross-linked albumin films. Platelet adhesion analysis showed that albumin film coated

Hironori Yamazoe; Ayako Oyane; Takeshi Nashima; Atsuo Ito

2010-01-01

247

Influence of accelerated aging on mechanical and structural properties of cross-linked polyethylene (XLPE) insulation  

Microsoft Academic Search

Contents  ?This paper describes results of laboratory accelerated aging test and the influence of different aging conditions on non-electrical\\u000a properties of cross-linked polyethylene insulation (XLPE). Accelerated aging has been carried out on a cable model with different\\u000a electrical and thermal stresses, and with thermal stresses in air or water as surrounding environment. Tensile strength, elongation\\u000a at break, degree of cross linking

D. Andjelkovic; N. Rajakovic

2001-01-01

248

[Correlation between degree of mineralization and collagen cross-links as determinants of bone quality].  

PubMed

Little is known about the correlation between degree of mineralization and collagen properties (enzymatic and non-enzymatic cross-links) in bone. In the patients with femoral neck fracture, not only the mineral embrittlement but also the qualitative changes in collagen cross-links were observed in both low and high mineralized bone fractions. These results suggest that this trend towards an increased loss of collagen quality may have led to accelerated increase of fragility in osteoporosis. PMID:15930704

Saito, Mitsuru; Fujii, Katsuyuki

2005-06-01

249

Dextran cross-linked gelatin microspheres as a drug delivery system  

Microsoft Academic Search

This paper describes the use of oxidized dextran as a cross-linker for the preparation of gelatin microspheres. Microspheres were obtained by a thermal gelation method and their dissolution kinetic was examined. In order to find evidence of sugar mediated cross-linking, swelling tests and gelatin microspheres dissolution experiments were performed. The obtained results indicated that oxidized dextran can form a cross-linked

Rita Cortesi; Elisabetta Esposito; Maria Osti; Enea Menegatti; Giacomo Squarzoni; Stanley Spencer Davis; Claudio Nastruzzi

1999-01-01

250

Functional Properties of Cross-Linked and Hydroxypropylated Waxy Hull-less Barley Starches  

Microsoft Academic Search

Cereal Chem. 76(2):182-188 Waxy hull-less barley (HB) starches containing 0 or 5% amylose were cross-linked with phosphorus oxychloride and the cro ss-linked starches were hydroxypropylated with propylene oxide. For comparison, waxy corn and potato starches were similarly modified. For all starches, cross-linking inhibited granule swelling and prevented swollen granules from disinte- gration, resulting in dramatic improvement in pasting properties and

G. H. Zheng; H. L. Han; R. S. Bhatty

1999-01-01

251

Adsorption of anionic dyes in acid solutions using chemically cross-linked chitosan beads  

Microsoft Academic Search

One kind of adsorbents with high adsorption capacity of anionic dyes was prepared using ionically and chemically cross-linked chitosan beads. A batch system was applied to study the adsorption of four reactive dyes (RB2, RR2, RY2, RY86), three acid dyes (AO12, AR14, AO7) and one direct dye (DR81) from aqueous solutions by the cross-linked chitosan beads. The adsorption capacities had

Ming-Shen Chiou; Pang-Yen Ho; Hsing-Ya Li

2004-01-01

252

The measurement of cross-linked fracture fluid viscosity using a pipe viscometer  

E-print Network

THE MEASUREMENT OF CROSS-LINKED FRACTURE FLUID VISCOSITY USING A PIPE VISCOMETER A Thesis by JOHN DOUGLAS VERMAELEN Submitted to the Graduate College of Texas A&M University in partial fulfillment of the requirements for the degr ee... of MASTER OF SCIENCE December 1985 Major Subject: Petr oleum Engineering THE MEASUREMENT OF CROSS-LINKED FRACTURE FLUID VISCOSITY USING A PIPE VISCOMETER A Thesis by JOHN DOUGLAS VERMAELEN Approved as to style and content by: Stephen A. Holditch...

Vermaelen, John Douglas

2012-06-07

253

Molybdate sorption by cross-linked chitosan beads: Dynamic studies  

SciTech Connect

Recent trends in environmental monitoring have induced increasing development of new wastewater treatment techniques. Membrane processes, electrochemical techniques, or ion-exchange systems are widely used, but biosorption has been recognized in the last 30 years as a promising way to reduce the contamination of surface water issued from industrial effluent. Chitosan, a biopolymer extracted from crustacean shells, exhibits high sorption capacities for metal ion recovery. Sorption efficiency and removal rates are controlled by several diffusion mechanisms. Chitosan gel beads have been prepared and have shown enhanced sorption performance in batch systems. This study shows that, in continuous systems, sorption capacities can reach 700 mg/g, a level close to that obtained in batch studies. The effects of metal concentration, flow velocity, and column size are investigated and demonstrate that, because of diffusion mechanisms, the optimum concentration range is approximately 50 to 100 mg/L. In column systems, the Biot number, though greater than 1, is lower than the Biot number obtained in batch systems, indicating that external mass transfer influences mass transfer at the low superficial velocity investigated in this work.

Guibal, E.; Milot, C.; Roussy, J.

1999-01-01

254

Site-specific protein cross-linking with genetically incorporated 3,4-dihydroxy-L-phenylalanine.  

PubMed

Come together right now with L-DOPA: Chemical cross-linking is widely used to study protein-protein interactions. However, many cross-linking agents suffer from low reactivity or selectivity. An efficient and selective reaction of site-specific protein cross-linking was achieved using genetically incorporated 3,4-dihydroxy-L-phenylalanine. PMID:19422009

Umeda, Aiko; Thibodeaux, Gabrielle Nina; Zhu, Jie; Lee, YungAh; Zhang, Zhiwen Jonathan

2009-05-25

255

Analysis of secondary structure in proteins by chemical cross-linking coupled to MS.  

PubMed

Chemical cross-linking is an attractive technique for the study of the structure of protein complexes due to its low sample consumption and short analysis time. Furthermore, distance constraints obtained from the identification of cross-linked peptides by MS can be used to construct and validate protein models. If a sufficient number of distance constraints are obtained, then determining the secondary structure of a protein can allow inference of the protein's fold. In this work, we show how the distance constraints obtained from cross-linking experiments can identify secondary structures within the protein sequence. Molecular modeling of alpha helices and beta sheets reveals that each secondary structure presents different cross-linking possibilities due to the topological distances between reactive residues. Cross-linking experiments performed with amine reactive cross-linkers with model alpha helix containing proteins corroborated the molecular modeling predictions. The cross-linking patterns established here can be extended to other cross-linkers with known lengths for the determination of secondary structures in proteins. PMID:22778071

Fioramonte, Mariana; dos Santos, Aline Mara; McIlwain, Sean; Noble, William S; Franchini, Kleber G; Gozzo, Fabio C

2012-08-01

256

Bi-functional cross-linking reagents efficiently capture protein-DNA complexes in Drosophila embryos  

PubMed Central

Chromatin immunoprecipitation (ChIP) is widely used for mapping DNA-protein interactions across eukaryotic genomes in cells, tissues or even whole organisms. Critical to this procedure is the efficient cross-linking of chromatin-associated proteins to DNA sequences that are in close proximity. Since the mid-nineties formaldehyde fixation has been the method of choice. However, some protein-DNA complexes cannot be successfully captured for ChIP using formaldehyde. One such formaldehyde refractory complex is the developmentally regulated insulator factor, Elba. Here we describe a new embryo fixation procedure using the bi-functional cross-linking reagents DSG (disuccinimidyl glutarate) and DSP (dithiobis[succinimidyl propionate). We show that unlike standard formaldehyde fixation protocols, it is possible to capture Elba association with insulator elements in 2–5 h embryos using this new cross-linking procedure. We show that this new cross-linking procedure can also be applied to localize nuclear proteins that are amenable to ChIP using standard formaldehyde cross-linking protocols, and that in the cases tested the enrichment was generally superior to that achieved using formaldehyde cross-linking. PMID:24135698

Aoki, Tsutomu; Wolle, Daniel; Preger-Ben Noon, Ella; Dai, Qi; Lai, Eric C; Schedl, Paul

2014-01-01

257

Enabling Thermoreversible Physically Cross-Linked Polymerized Colloidal Array Photonic Crystals  

PubMed Central

We physically cross-linked a thermoreversible poly(vinyl alcohol) (PVA) hydrogel (TG) within a crystalline colloidal array (CCA) to form an enabling photonic crystal material. The TG consists of a physically cross-linked network formed in a process reminiscent of the well-known freeze-thaw physically cross-linking process, but which avoids solvent freezing which invariably disorders the CCA. These TGCCA can be inexpensively fabricated in any large volume and shape by avoiding the previous covalently polymerized CCA constraints that required thin sheet geometries to enable penetration of the UV light used to photopolymerize the system. This TG hydrogel enables rigidificaton of CCA crystals and subsequent chemical functionalization. In addition, an additional interpenetrating hydrogel can be polymerized within the TGPCCA. The TG can then be dissolved away by simply increasing the temperature. The TGCCA photonic crystal diffraction is highly efficient and similar to previously demonstrated PCCA with covalent cross-links. These TGCCA are stable for weeks or longer at room temperature and can be utilized as photonic crystal materials. They also can be irreversibly covalently cross-linked by using gluteraldehyde. These gluteraldehyde cross-linked TGCCA can be made into chemically responsive sensor photonic crystals by functionalizing the PVA hydroxyl groups with chemical recognition agents. We demonstrate low and high pH sensing by functionalizing with carboxylates and phenol derivatives, respectively. PMID:19966904

Asher, Sanford A.; Kimble, Kyle W.; Walker, Jeremy P.

2009-01-01

258

Bifunctional Electrophiles Cross-Link Thioredoxins with Redox Relay Partners in Cells  

PubMed Central

Thioredoxin protects cells against oxidative damage by reducing disulfide bonds in improperly oxidized proteins. Previously, we found that the baker's yeast cytosolic thioredoxin Trx2 undergoes cross-linking to form several protein-protein complexes in cells treated with the bifunctional electrophile divinyl sulfone (DVSF). Here, we report that the peroxiredoxin Tsa1 and the thioredoxin reductase Trr1, both of which function in a redox relay network with thioredoxin, become cross-linked in complexes with Trx2 upon DVSF treatment. Treatment of yeast with other bifunctional electrophiles, including diethyl acetylenedicarboxylate (DAD), mechlorethamine (HN2), and 1,2,3,4-diepoxybutane (DEB), resulted in the formation of similar cross-linked complexes. Cross-linking of Trx2 and Tsa1 to other proteins by DVSF and DAD is dependent on modification of the active site Cys residues within these proteins. In addition, the human cytosolic thioredoxin, cytosolic thioredoxin reductase, and peroxiredoxin 2 form cross-linked complexes to other proteins in the presence of DVSF, although each protein shows different susceptibilities to modification by DAD, HN2, and DEB. Taken together, our results indicate that bifunctional electrophiles potentially disrupt redox homeostasis in yeast and human cells by forming cross-linked complexes between thioredoxins and their redox partners. PMID:23414292

Naticchia, Matthew R.; Brown, Haley A.; Garcia, Francisco J.; Lamade, Andrew M.; Justice, Samantha L.; Herrin, Rachelle P.; Morano, Kevin A.; West, James D.

2013-01-01

259

Facile fabrication of core cross-linked micelles by RAFT polymerization and enzyme-mediated reaction.  

PubMed

Polymeric micelles formed in aqueous solution by assembly of amphiphilic block copolymers have been extensively investigated due to their great potential as drug carriers. However, the stability of polymeric assembly is still one of the major challenges in delivering drugs to tissues and cells. Here, we report a facile route to fabricate core cross-linked (CCL) micelles using an enzymatic polymerization as the cross-linking method. We present synthesis of poly(ethylene glycol)-block-poly(N-isopropyl acrylamide-co-N-(4-hydroxyphenethyl) acrylamide) diblock copolymer PEG-b-P(NIPAAm-co-NHPAAm) via reversible addition-fragmentation chain transfer (RAFT) polymerization. The diblock copolymer was then self-assembled into non-cross-linked (NCL) micelles upon heating above the lower critical solution temperature (LCST), and subsequently cross-linked using horseradish peroxidase (HRP) and hydrogen peroxide (H2O2) as enzyme and oxidant. The characterization of the diblock copolymer and micelles were studied by NMR, DLS, UV-vis, and fluorescence spectroscopy. The fluorescence study reveals that the cross-linking process endows the micelles with much lower critical micelle concentration (CMC). In addition, the drug release study shows that the CCL micelles have lower release amount of doxorubicin (DOX) than the NCL micelles due to the enhanced stability of the CCL micelles by core cross-linking process. PMID:24768266

Wu, Yukun; Lai, Quanyong; Lai, Shuqi; Wu, Jing; Wang, Wei; Yuan, Zhi

2014-06-01

260

Stabilization of superparamagnetic iron oxide nanoclusters in concentrated brine with cross-linked polymer shells.  

PubMed

Iron oxide nanoparticles, in the form of sub-100-nm clusters, were synthesized in the presence of poly(acrylic acid) (PAA) or poly(styrene sulfonate-alt-maleic acid) (PSS-alt-MA) to provide electrosteric stabilization. The superparamagnetic nanoclusters were characterized using a superconducting quantum interference device (SQUID), transmission electron microscopy (TEM), dynamic light scattering (DLS), thermogravimetric analysis (TGA), and zeta potential measurements. To anchor the polymer shell on the nanoparticle surface, the polymer was cross-linked for a range of cross-linking densities. For nanoclusters with only 12% (w/w) PSS-alt-MA, electrosteric stabilization was sufficient even in 8 wt % NaCl. For PAA, the cross-linked polymer shell was essentially permanent and did not desorb even upon dilution of the nanoparticles for iron oxide concentrations down to 0.014 wt %. Without cross-linking, over half of the polymer desorbed from the particle surfaces. This general approach of the adsorption of polymer stabilizers onto nanoparticles followed by cross-linking may be utilized for a wide variety of cross-linkable polymers without the need to form covalent bonds between the nanoparticles and polymer stabilizer. Thus, this cross-linking approach is an efficient and inexpensive method of stabilizing nanoparticles for large-scale applications, including the electromagnetic imaging of subsurface reservoirs, even at high salinity. PMID:21728368

Yoon, Ki Youl; Kotsmar, Csaba; Ingram, Davis R; Huh, Chun; Bryant, Steven L; Milner, Thomas E; Johnston, Keith P

2011-09-01

261

Bi-functional cross-linking reagents efficiently capture protein-DNA complexes in Drosophila embryos.  

PubMed

Chromatin immunoprecipitation (ChIP) is widely used for mapping DNA-protein interactions across eukaryotic genomes in cells, tissues or even whole organisms. Critical to this procedure is the efficient cross-linking of chromatin-associated proteins to DNA sequences that are in close proximity. Since the mid-nineties formaldehyde fixation has been the method of choice. However, some protein-DNA complexes cannot be successfully captured for ChIP using formaldehyde. One such formaldehyde refractory complex is the developmentally regulated insulator factor, Elba. Here we describe a new embryo fixation procedure using the bi-functional cross-linking reagents DSG (disuccinimidyl glutarate) and DSP (dithiobis[succinimidyl propionate). We show that unlike standard formaldehyde fixation protocols, it is possible to capture Elba association with insulator elements in 2-5 h embryos using this new cross-linking procedure. We show that this new cross-linking procedure can also be applied to localize nuclear proteins that are amenable to ChIP using standard formaldehyde cross-linking protocols, and that in the cases tested the enrichment was generally superior to that achieved using formaldehyde cross-linking. PMID:24135698

Aoki, Tsutomu; Wolle, Daniel; Preger-Ben Noon, Ella; Dai, Qi; Lai, Eric C; Schedl, Paul

2014-01-01

262

Bifunctional electrophiles cross-link thioredoxins with redox relay partners in cells.  

PubMed

Thioredoxin protects cells against oxidative damage by reducing disulfide bonds in improperly oxidized proteins. Previously, we found that the baker's yeast cytosolic thioredoxin Trx2 undergoes cross-linking to form several protein-protein complexes in cells treated with the bifunctional electrophile divinyl sulfone (DVSF). Here, we report that the peroxiredoxin Tsa1 and the thioredoxin reductase Trr1, both of which function in a redox relay network with thioredoxin, become cross-linked in complexes with Trx2 upon DVSF treatment. Treatment of yeast with other bifunctional electrophiles, including diethyl acetylenedicarboxylate (DAD), mechlorethamine (HN2), and 1,2,3,4-diepoxybutane (DEB), resulted in the formation of similar cross-linked complexes. Cross-linking of Trx2 and Tsa1 to other proteins by DVSF and DAD is dependent on modification of the active site Cys residues within these proteins. In addition, the human cytosolic thioredoxin, cytosolic thioredoxin reductase, and peroxiredoxin 2 form cross-linked complexes to other proteins in the presence of DVSF, although each protein shows different susceptibilities to modification by DAD, HN2, and DEB. Taken together, our results indicate that bifunctional electrophiles potentially disrupt redox homeostasis in yeast and human cells by forming cross-linked complexes between thioredoxins and their redox partners. PMID:23414292

Naticchia, Matthew R; Brown, Haley A; Garcia, Francisco J; Lamade, Andrew M; Justice, Samantha L; Herrin, Rachelle P; Morano, Kevin A; West, James D

2013-03-18

263

Collagen Cross-Linking Using Riboflavin and Ultraviolet-A for Corneal Thinning Disorders  

PubMed Central

Executive Summary Objective The main objectives for this evidence-based analysis were to determine the safety and effectiveness of photochemical corneal collagen cross-linking with riboflavin (vitamin B2) and ultraviolet-A radiation, referred to as CXL, for the management of corneal thinning disease conditions. The comparative safety and effectiveness of corneal cross-linking with other minimally invasive treatments such as intrastromal corneal rings was also reviewed. The Medical Advisory Secretariat (MAS) evidence-based analysis was performed to support public financing decisions. Subject of the Evidence-Based Analysis The primary treatment objective for corneal cross-linking is to increase the strength of the corneal stroma, thereby stabilizing the underlying disease process. At the present time, it is the only procedure that treats the underlying disease condition. The proposed advantages for corneal cross-linking are that the procedure is minimally invasive, safe and effective, and it can potentially delay or defer the need for a corneal transplant. In addition, corneal cross-linking does not adversely affect subsequent surgical approaches, if they are necessary, or interfere with corneal transplants. The evidence for these claims for corneal cross-linking in the management of corneal thinning disorders such as keratoconus will be the focus of this review. The specific research questions for the evidence review were as follows: Technical: How technically demanding is corneal cross-linking and what are the operative risks? Safety: What is known about the broader safety profile of corneal cross-linking? Effectiveness - Corneal Surface Topographic Affects: What are the corneal surface remodeling effects of corneal cross-linking? Do these changes interfere with subsequent interventions, particularly corneal transplant known as penetrating keratoplasty (PKP)? Effectiveness -Visual Acuity: What impacts does the remodeling have on visual acuity? Are these impacts predictable, stable, adjustable and durable? Effectiveness - Refractive Outcomes: What impact does remodeling have on refractive outcomes? Effectiveness - Visual Quality (Symptoms): What impact does corneal cross-linking have on vision quality such as contrast vision, and decreased visual symptoms (halos, fluctuating vision)? Effectiveness - Contact lens tolerance: To what extent does contact lens intolerance improve after corneal cross-linking? Vision-Related QOL: What is the impact of corneal cross-linking on functional visual rehabilitation and quality of life? Patient satisfaction: Are patients satisfied with their vision following the procedure? Disease Process: What impact does corneal cross-linking have on the underling corneal thinning disease process? Does corneal cross-linking delay or defer the need for a corneal transplant? What is the comparative safety and effectiveness of corneal cross-linking compared with other minimally invasive treatments for corneal ectasia such as intrastromal corneal rings? Clinical Need: Target Population and Condition Corneal ectasia (thinning) disorders represent a range of disorders involving either primary disease conditions, such as keratoconus (KC) and pellucid marginal corneal degeneration, or secondary iatrogenic conditions, such as corneal thinning occurring after laser in situ keratomileusis (LASIK) refractive surgery. Corneal thinning is a disease that occurs when the normally round dome-shaped cornea progressively thins causing a cone-like bulge or forward protrusion in response to the normal pressure of the eye. The thinning occurs primarily in the stroma layers and is believed to be a breakdown in the collagen process. This bulging can lead to irregular astigmatism or shape of the cornea. Because the anterior part of the cornea is responsible for most of the focusing of the light on the retina, this can then result in loss of visual acuity. The reduced visual acuity can make even simple daily tasks, such as driving, watching television or reading, difficult to perform. Keratoconus is the most common form of cor

Pron, G; Ieraci, L; Kaulback, K

2011-01-01

264

Precise tailoring of tyramine-based hyaluronan hydrogel properties using DMTMM conjugation.  

PubMed

Injectable tyramine modified hyaluronic acid (HA-Tyr) hydrogels which are bio-orthogonally cross-linked with horseradish peroxidase (HRP) and hydrogen peroxide (H2O2) are excellent candidate biomaterials for drug delivery, regenerative medicine and tissue engineering. Ligation of tyramine to HA has been reported using the very well established N-(3-dimethylaminopropyl)-N'-ethylcarbodiimide hydrochloride (EDC) and N-hydroxysuccinimide (NHS) chemistry. Here we demonstrate the applicability of 4-(4,6-dimethoxy-1,3,5-triazin-2-yl)-4-methylmorpholinium chloride (DMTMM) as an alternative coupling agent to synthesize HA-Tyr conjugates. The optimized derivatization process allows accurate control of the degree of substituted Tyr on hyaluronan (DSmol). Hence, viscoelastic properties, in vitro swelling and enzymatic digestion profiles of the crosslinked hydrogels can be precisely tuned via DSmol. Our study demonstrates the advantages of DMTMM conjugation as a powerful tool to synthesize HA-Tyr hydrogels with properties exactly tailored for biomedical applications. PMID:25439901

Loebel, Claudia; D'Este, Matteo; Alini, Mauro; Zenobi-Wong, Marcy; Eglin, David

2015-01-22

265

Quantification of carboxyl groups in carbodiimide cross-linked collagen sponges.  

PubMed

Glutaraldehyde (GA) fixation of bioprosthetic tissue is a well adapted technique, with commercial products on the market for almost 40 years. Amine groups present in tissue react with GA to form different types of cross-links. An estimation of the degree of cross-linking of the tissue can be obtained by measuring the concentration of residual amine groups, which is frequently carried out with the 2,4,6 trinitrobenzene sulphonic acid (TNBS) assay. Cross-linked tissue and collagen matrices are usually further characterized by determining their physical properties (such as the shrinkage temperature), biological properties (such as resistance to enzymatic degradation), and mechanical properties before in vivo evaluation takes place. In an effort to improve the properties of cross-linked tissue and collagen, alternative cross-linking methods have been developed. One of these methods is based on the use of water soluble carbodiimides (CDI). It is generally accepted that this cross-linking method leads only to the formation of amide linkages between tissue carboxyl and amine groups. Therefore, until recently the TNBS assay was also used to determine the degree of cross-linking of CDI cross-linked tissue and collagen. However, it cannot be excluded that after activation of carboxyl groups of tissue and collagen by CDI, these groups can react with other nucleophiles (like hydroxyl groups) present in the matrix. To obtain a better insight in the degree of cross-linking of CDI cross-linked matrices a reliable assay for quantification of residual carboxyl groups is required. Up to now such an assay was not available. In this study a new assay to determine residual carboxyl groups in CDI cross-linked collagen matrices is presented. Reconstituted dermal bovine collagen matrices (RDBC) were cross-linked with a water soluble CDI and N-hydroxysuccinimide (NHS) and residual carboxyl groups were labeled using 5-bromomethyl fluorescein. Subsequently, the fluorescent label was released by mild hydrolysis and quantified with capillary zone electrophoresis. A calibration curve relating the concentration of carboxyl groups with peak intensities was obtained using Sephadex standards with known concentrations of carboxyl groups. The concentration of carboxyl groups in unprocessed RDBC as determined with this new technique was equal to the concentration of carboxyl groups measured by amino acid analysis. On the basis of the concentration of residual carboxyl groups determined for CDI/NHS cross-linked RDBC and RDBC, in which the amine groups were blocked with propionaldehyde before CDI/NHS cross-linking, it was concluded that activated carboxyl groups can also react with other groups (such as hydroxyl groups) present in the matrix. This implies that the crosslink density of RDBC matrices after treatment with CDI/NHS is higher than expected on the basis of amide bond formation only, as determined by the TNBS assay. PMID:17595021

Everaerts, Frank; Torrianni, Mark; Hendriks, Marc; Feijen, Jan

2007-12-15

266

Cooperativity between the hydrophobic and cross-linking domains of elastin.  

PubMed

The principal protein component of the elastic fiber found in elastic tissues is elastin, an amorphous, cross-linked biopolymer that is assembled from a high molecular weight monomer. The hydrophobic and cross-linking domains of elastin have been considered separate and independent, such that changes to one region are not thought to affect the other. However, results from these solid-state 13C NMR experiments demonstrate that cooperativity in protein folding exists between the two domain types. The sequence of the EP20-24-24 polypeptide has three hydrophobic sequences from exons 20 and 24 of the soluble monomer tropoelastin, interspersed with cross-linking domains constructed from exons 21 and 23. In the middle of each cross-linking domain is a "hinge" sequence. When this pentapeptide is replaced with alanines, as in EP20-24-24[23U], its properties are changed. In addition to the expected increase in alpha-helical content and the resulting increase in rigidity of the cross-linking domains, changes to the organization of the hydrophobic regions are also observed. Using one-dimensional CPMAS (cross-polarization with magic angle spinning) techniques, including spectral editing and relaxation measurements, evidence for a change in dynamics to both domain types is observed. Furthermore, it is likely that the methyl groups of the leucines of the hydrophobic domains are also affected by the substitution to the hinge region of the cross-linking sequences. This cooperativity between the two domain types brings new questions to the phenomenon of coacervation in elastin polypeptides and strongly suggests that functional models for the protein must include a role for the cross-linking regions. PMID:16777851

Kumashiro, Kristin K; Ho, Joanna P; Niemczura, Walter P; Keeley, Fred W

2006-08-18

267

Genipin-cross-linked collagen/chitosan biomimetic scaffolds for articular cartilage tissue engineering applications.  

PubMed

In this study, genipin-cross-linked collagen/chitosan biodegradable porous scaffolds were prepared for articular cartilage regeneration. The influence of chitosan amount and genipin concentration on the scaffolds physicochemical properties was evaluated. The morphologies of the scaffolds were characterized by scanning electron microscope (SEM) and cross-linking degree was investigated by ninhydrin assay. Additionally, the mechanical properties of the scaffolds were assessed under dynamic compression. To study the swelling ratio and the biostability of the collagen/chitosan scaffold, in vitro tests were also carried out by immersion of the scaffolds in PBS solution or digestion in collagenase, respectively. The results showed that the morphologies of the scaffolds underwent a fiber-like to a sheet-like structural transition by increasing chitosan amount. Genipin cross-linking remarkably changed the morphologies and pore sizes of the scaffolds when chitosan amount was less than 25%. Either by increasing the chitosan ratio or performing cross-linking treatment, the swelling ratio of the scaffolds can be tailored. The ninhydrin assay demonstrated that the addition of chitosan could obviously increase the cross-linking efficiency. The degradation studies indicated that genipin cross-linking can effectively enhance the biostability of the scaffolds. The biocompatibility of the scaffolds was evaluated by culturing rabbit chondrocytes in vitro. This study demonstrated that a good viability of the chondrocytes seeded on the scaffold was achieved. The SEM analysis has revealed that the chondrocytes adhered well to the surface of the scaffolds and contacted each other. These results suggest that the genipin-cross-linked collagen/chitosan matrix may be a promising formulation for articular cartilage scaffolding. PMID:20648541

Yan, Le-Ping; Wang, Ying-Jun; Ren, Li; Wu, Gang; Caridade, Sofia G; Fan, Jia-Bing; Wang, Ling-Yun; Ji, Pei-Hong; Oliveira, Joaquim M; Oliveira, João T; Mano, João F; Reis, Rui L

2010-11-01

268

Immune Focusing and Enhanced Neutralization Induced by HIV-1 gp140 Chemical Cross-Linking  

PubMed Central

Experimental vaccine antigens based upon the HIV-1 envelope glycoproteins (Env) have failed to induce neutralizing antibodies (NAbs) against the majority of circulating viral strains as a result of antibody evasion mechanisms, including amino acid variability and conformational instability. A potential vaccine design strategy is to stabilize Env, thereby focusing antibody responses on constitutively exposed, conserved surfaces, such as the CD4 binding site (CD4bs). Here, we show that a largely trimeric form of soluble Env can be stably cross-linked with glutaraldehyde (GLA) without global modification of antigenicity. Cross-linking largely conserved binding of all potent broadly neutralizing antibodies (bNAbs) tested, including CD4bs-specific VRC01 and HJ16, but reduced binding of several non- or weakly neutralizing antibodies and soluble CD4 (sCD4). Adjuvanted administration of cross-linked or unmodified gp140 to rabbits generated indistinguishable total gp140-specific serum IgG binding titers. However, sera from animals receiving cross-linked gp140 showed significantly increased CD4bs-specific antibody binding compared to animals receiving unmodified gp140. Moreover, peptide mapping of sera from animals receiving cross-linked gp140 revealed increased binding to gp120 C1 and V1V2 regions. Finally, neutralization titers were significantly elevated in sera from animals receiving cross-linked gp140 rather than unmodified gp140. We conclude that cross-linking favors antigen stability, imparts antigenic modifications that selectively refocus antibody specificity and improves induction of NAbs, and might be a useful strategy for future vaccine design. PMID:23843636

Schiffner, T.; Kong, L.; Duncan, C. J. A.; Back, J. W.; Benschop, J. J.; Shen, X.; Huang, P. S.; Stewart-Jones, G. B.; DeStefano, J.; Seaman, M. S.; Tomaras, G. D.; Montefiori, D. C.; Schief, W. R.

2013-01-01

269

Cross-linking methionine and amine residues with reactive halogen species.  

PubMed

Irreversible cross-links are increasingly being recognized as important posttranslational oxidative protein modifications that contribute to tissue injury during oxidative stress and inflammation. They also have a structural function in extracellular matrix proteins such as collagen IV. Likely contenders for forming such cross-links are the reactive halogen species that are generated by neutrophils and eosinophils, including hypochlorous acid, hypobromous acid, and their related haloamines. Methionine residues are kinetically preferred targets for these oxidants and oxidation can potentially result in sulfilimine (>S=N-) bonds with amines. Therefore, we investigated whether oxidation of methionine in the model peptide formyl-Met-Leu-Phe-Lys (fMLFK) produces cross-links with lysine residues, using mass spectrometry to characterize the products. As expected, the sulfoxide was the major product with each reactive halogen species. However, intra- and intermolecular cross-linked products were also formed. Isomers of an intramolecular sulfilimine were readily produced by hypobromous acid and bromamines, with hypochlorous acid forming lesser amounts. The predominant cross-link with chloramines was an intermolecular bond between the sulfur of fMLFK and the amine derived from the chloramine. Reactive halogen species also formed these sulfilimine cross-links in other peptides that contain methionine. We propose that protein cross-links involving methionine and amine residues will form via this mechanism when granulocytes are activated at sites of inflammation. Our results also support the proposal that reactive halogen species generated by the peroxidase peroxidasin could be responsible for the sulfilimine bonds that are integral to the structure of collagen IV. PMID:24486343

Ronsein, Graziella E; Winterbourn, Christine C; Di Mascio, Paolo; Kettle, Anthony J

2014-05-01

270

Increased hyaluronan fragmentation during pulmonary ischemia  

PubMed Central

Hyaluronan (HA), a glycosaminoglycan critical to the lung extracellular matrix, has been shown to dissociate into low-molecular-weight (LMW) HA fragments following exposure to injurious stimuli. In the present study we questioned whether lung HA changed during ischemia and whether changes had an effect on subsequent angiogenesis. After left pulmonary artery ligation (LPAL) in mice, we analyzed left lung homogenates immediately after the onset of ischemia (0 h) and intermittently for 14 days. The relative expression of HA synthase (HAS)1, HAS2, and HAS3 was determined by real-time RT-PCR, total HA in the lung was measured by an ELISA-like assay, gel electrophoresis was performed to determine changes in HA size distribution, and the activity of hyaluronidases was determined by zymography. A 50% increase in total HA was measured 16 h after the onset of ischemia and remained elevated for up to 7 days. Furthermore, a fourfold increase in LMW HA fragments (495–30 kDa) was observed by 4 h after LPAL. Both HAS1 and HAS2 showed increased expression 4–16 h after LPAL, yet no changes were seen in hyaluronidase activity. These results suggest that both HA fragmentation and activation of HA synthesis contribute to increased HA levels during lung ischemia. Delivery of LMW HA fragments in an in vitro tube formation assay or directly to the ischemic mouse lung in vivo both resulted in increased angiogenesis. We conclude that ischemic injury results in matrix fragmentation, which leads to stimulation of neovascularization. PMID:21821727

Eldridge, Lindsey; Moldobaeva, Aigul

2011-01-01

271

Vitamin E-diffused highly cross-linked UHMWPE particles induce less osteolysis compared to highly cross-linked virgin UHMWPE particles in vivo.  

PubMed

Recent in vitro findings suggest that UHMWPE wear particles containing vitamin E (VE) may have reduced biologic activity and decreased osteolytic potential. We hypothesized that particles from VE-stabilized, radiation cross-linked UHMWPE would cause less osteolysis in a murine calvarial bone model when compared to virgin gamma irradiated cross-linked UHMWPE. Groups received equal amount of particulate debris overlaying the calvarium for 10 days. Calvarial bone was examined using high resolution micro-CT and histomorphometric analyses. There was a statistically significant difference between virgin (12.2%±8%) and VE-UHMWPE (3%±1.4%) groups in regards to bone resorption (P=0.005) and inflammatory fibrous tissue overlaying the calvaria (0.48 vs. 0.20, P<0.0001). These results suggest that VE-UHMWPE particles have reduced osteolytic potential in vivo when compared to virgin UHMWPE. PMID:24998319

Bichara, David A; Malchau, Erik; Sillesen, Nanna H; Cakmak, Selami; Nielsen, G Petur; Muratoglu, Orhun K

2014-09-01

272

The effects of different crossing-linking conditions of genipin on type I collagen scaffolds: an in vitro evaluation.  

PubMed

The purpose of this paper is to analyze the properties of fabricating rat tail type I collagen scaffolds cross-linked with genipin under different conditions. The porous genipin cross-linked scaffolds are obtained through a two step freeze-drying process. To find out the optimal cross-link condition, we used different genipin concentrations and various cross-linked temperatures to prepare the scaffolds in this study. The morphologies of the scaffolds were characterized by scanning electron microscope, and the mechanical properties of the scaffolds were evaluated under dynamic compression. Additionally, the cross-linking degree was assessed by ninhydrin assay. To investigate the swelling ratio and the in vitro degradation of the collagen scaffold, the tests were also carried out by immersion of the scaffolds in a PBS solution or digestion in a type I collagenase respectively. The morphologies of the non-cross-linked scaffolds presented a lattice-like structure while the cross-linked ones displayed a sheet-like framework. The morphology of the genipin cross-linked scaffolds could be significantly changed by either increasing genipin concentration or the temperature. The swelling ratio of each cross-linked scaffold was much lower than that of the control (non-cross-linked).The ninhydrin assay demonstrated that the higher temperature and genipin concentration could obviously increase the cross-linking efficiency. The in vitro degradation studies indicated that genipin cross-linking can effectively elevate the biostability of the scaffolds. The biocompatibility and cytotoxicity of the scaffolds was evaluated by culturing rat chondrocytes on the scaffold in vitro and by MTT. The results of MTT and the fact that the chondrocytes adhered well to the scaffolds demonstrated that genipin cross-linked scaffolds possessed an excellent biocompatibility and low cytotoxicity. Based on these results, 0.3 % genipin concentrations and 37 °C cross-linked temperatures are recommended. PMID:24442821

Zhang, Xiujie; Chen, Xueying; Yang, Ting; Zhang, Naili; Dong, Li; Ma, Shaoying; Liu, Xiaoming; Zhou, Mo; Li, Baoxing

2014-12-01

273

Dependence of nanomechanical modification of polymers on plasma-induced cross-linking  

SciTech Connect

The nanomechanical properties of low-density polyethylene (LDPE) modified by inductively coupled, radio-frequency Ar plasma were investigated by surface force microscopy. The polymer surface was modified under plasma conditions of different ion energy fluences and radiation intensities obtained by varying the sample distance from the plasma power source. Nanoindentation results of the surface stiffness versus maximum penetration depth did not reveal discernible differences between untreated and plasma-treated LDPE, presumably due to the small thickness of the modified surface layer that resulted in a substrate effect. On the contrary, nanoscratching experiments demonstrated a significant increase in the surface shear resistance of plasma-modified LDPE due to chain cross-linking. These experiments revealed an enhancement of cross-linking with increasing ion energy fluence and radiation intensity, and a tip size effect on the friction force and dominant friction mechanisms (adhesion, plowing, and microcutting). In addition, LDPE samples with a LiF crystal shield were exposed to identical plasma conditions to determine the role of vacuum ultraviolet (VUV) and ultraviolet (UV) radiation in the cross-linking process. The cross-linked layer of plasma-treated LDPE exhibited much higher shear strength than that of VUV/UV-treated LDPE. Plasma-induced surface modification of the nanomechanical properties of LDPE is interpreted in the context of molecular models of the untreated and cross-linked polymer surfaces derived from experimental findings.

Tajima, S.; Komvopoulos, K. [Department of Mechanical Engineering, University of California, Berkeley, California 94720 (United States)

2007-01-01

274

Polyimide aerogels with amide cross-links: a low cost alternative for mechanically strong polymer aerogels.  

PubMed

Polyimide aerogels combine high porosity, low thermal conductivity, flexibility, and low density with excellent mechanical properties. However, previously used cross-linkers, such as 1,3,5-triaminophenoxybenzene (TAB), 2,4,6-tris(4-aminophenyl)pyridine (TAPP), or octa(aminophenoxy)silsesquioxane (OAPS), either are not commercially available or are prohibitively expensive. Finding more cost efficient cross-linkers that are commercially available to synthesize these aerogels is crucial for making large scale manufacturing attractive. Herein, we describe an approach to making polyimide aerogels starting with amine capped oligomers that are cross-linked with 1,3,5-benzenetricarbonyl trichloride (BTC). BTC is a lower cost, commercially available alternative to TAB, TAPP, or OAPS. Aerogels made in this way have the same or higher modulus and higher surface area compared to those previously reported with either TAB or OAPS cross-links at the same density. While the cross-link structure is an amide, the thermal stability is not compromised most likely because the cross-link is only a small part of the composition of the aerogel. Onset of decomposition depends primarily on the backbone chemistry with 4,4'-oxidianiline (ODA) being more thermally stable than 2,2'-dimethylbenzidine (DMBZ), similar to those previously reported with other cross-links. PMID:25564878

Meador, Mary Ann B; Alemán, Christian R; Hanson, Katrina; Ramirez, Nakaira; Vivod, Stephanie L; Wilmoth, Nathan; McCorkle, Linda

2015-01-21

275

Preparation and characterization of in situ ionic cross-linked pectin films: unique biodegradable polymers.  

PubMed

The study aimed to investigate the swelling and degradation of calcium pectinate (CaP) films that were cross-linked by the innovative approach of adding aqueous calcium chloride (CaCl2) to pre-formed pectin films in situ. The films, cast from low methoxy pectin, were dried and cross-linked by immersion in a selected CaCl2 solution for a selected period. It was found that CaCl2 concentration, immersion time, and temperature affected the films' dissolution and swelling behaviors in simulated intestinal fluid. With lower CaCl2 concentration, more time was needed to form a proper film. Heat accelerated the cross-linking reaction, probably by elevating the cross-linked solution flux into the matrix. Depending upon cross-linking conditions, similar calcium contents in the CaP films resulted in different swelling and degradation behaviors. The degree of pectin esterification (DE) affected the films' degradation rate. The role of pectin molecular weight and DE on the films' mechanical properties was determined by stress/strain analysis. PMID:24507280

Penhasi, Adel; Meidan, Victor M

2014-02-15

276

Biodegradable Chitosan-Based Ambroxol Hydrochloride Microspheres: Effect of Cross-Linking Agents  

PubMed Central

The objective of this study was to investigate the influence of type of cross-linking method used on the properties of ambroxol hydrochloride microspheres such as encapsulation efficiency, particle size, and drug release. Microspheres were prepared by solvent evaporation technique using chitosan as a matrix-forming agent and cross-linked using formaldehyde and heat treatment. Morphological and physicochemical properties of microspheres were then investigated by scanning electron microscopy (SEM), X-ray diffractometry (XRD), differential scanning calorimetry (DSC), and Fourier-transform infrared spectroscopy (FTIR) spectroscopy. The cross-linking of chitosan takes place at the free amino group because of formation of imine bond as evidenced by FTIR. The DSC, XRD, and FTIR analysis showed that chitosan microspheres cross linked by heating were superior in properties and performance as compared to the microspheres cross-linked using formaldehyde. SEM results revealed that heat-treated microspheres were spherical, discrete having smooth, and porous structure. The particle size and encapsulation efficiencies of the prepared chitosan microspheres ranged between 10.83–24.11 ?m and 39.73?80.56%, respectively. The drug release was extended up to 12 h, and the kinetics of the drug release was obeying Higuchi kinetic proving diffusion-controlled drug release. PMID:21607049

Gangurde, HH; Chavan, NV; Mundada, AS; Derle, DV; Tamizharasi, S

2011-01-01

277

F actin bundles in Drosophila bristles. I. Two filament cross-links are involved in bundling  

PubMed Central

Transverse sections though Drosophila bristles reveal 7-11 nearly round, plasma membrane-associated bundles of actin filaments. These filaments are hexagonally packed and in a longitudinal section they show a 12-nm periodicity in both the 1.1 and 1.0 views. From earlier studies this periodicity is attributable to cross-links and indicates that the filaments are maximally cross-linked, singed mutants also have 7-11 bundles, but the bundles are smaller, flattened, and the filaments within the bundles are randomly packed (not hexagonal); no periodicity can be detected in longitudinal sections. Another mutant, forked (f36a), also has 7-11 bundles but even though the bundles are very small, the filaments within them are hexagonally packed and display a 12-nm periodicity in longitudinal section. The singed-forked double mutant lacks filament bundles. Thus there are at least two species of cross-links between adjacent actin filaments. Hints of why two species of cross-links are necessary can be gleaned by studying bristle formation. Bristles sprout with only microtubules within them. A little later in development actin filaments appear. At early stages the filaments in the bundles are randomly packed. Later the filaments in the bundles become hexagonally packed and maximally cross-linked. We consider that the forked proteins may be necessary early in development to tie the filaments together in a bundle so that they can be subsequently zippered together by fascin (the singed gene product). PMID:7622563

1995-01-01

278

Ice templated and cross-linked xylan/nanocrystalline cellulose hydrogels.  

PubMed

Structured xylan-based hydrogels, reinforced with cellulose nanocrystals (CNCs), have successfully been prepared from water suspensions by cross-linking during freeze-casting. In order to induce cross-linking during the solidification/sublimation operation, xylan was first oxidized using sodium periodate to introduce dialdehydes. The oxidized xylan was then mixed with CNCs after which the suspension was frozen unidirectionally in order to control the ice crystal formation and by that the pore morphology of the material. Finally the ice crystal templates were removed by freeze-drying. During the freeze-casting process hemiacetal bonds are formed between the aldehyde groups and hydroxyl groups, either on other xylan molecules or on CNCs, which cross-links the system. The proposed cross-linking reaction was confirmed by using cross-polarization magic angle spinning (CP/MAS) nuclear magnetic resonance (NMR) spectroscopy. The pore morphology of the obtained materials was analyzed by scanning electron microscopy (SEM). The materials were also tested for compressive strength properties, both in dry and water swollen state. All together this study describes a novel combined freeze-casting/cross-linking process which enables fabrication of nanoreinforced biopolymer-based hydrogels with controlled porosity and 3-D architecture. PMID:24188834

Köhnke, Tobias; Elder, Thomas; Theliander, Hans; Ragauskas, Arthur J

2014-01-16

279

Site specificity of psoralen-DNA interstrand cross-linking determined by nuclease Bal31 digestion  

SciTech Connect

A novel method for determination of psoralen photo-cross-linking sites in double-stranded DNA is described, which is based on a pronounced inhibition of Bal31 exonuclease activity by psoralen-DNA interstrand cross-links. The results using a 51 base pair fragment of plasmid pUC19 and a 346 base pair fragment of pBR322 show that 5'-TA sequences are preferred cross-linking sites compared to 3'-TA sequences. They also indicate that sequences flanking the 5'-TA site influence the cross-linking efficiency at the site. The DNA photo-cross-linking by 4,5',8-trimethylpsoralen and 8-methoxypsoralen was analyzed, and these two psoralens showed identical site specificity. The 5'-TA preference is rationalized on the basis of the local DNA structure in terms of ..pi..-..pi.. electronic interaction between the thymines and the intercalated psoralens, as well as on the base tilt angles of the DNA.

Zhen, W.; Buchardt, O.; Nielsen, H.; Nielsen, P.E.

1986-10-21

280

Alkali reversal of psoralen cross-link for the targeted delivery of psoralen monoadduct lesion  

SciTech Connect

Psoralen intercalates into double-stranded DNA and photoreacts mainly with thymines to form monoadducts and interstrand cross-links. The authors used an oligonucleotide model to demonstrate a novel mechanism: the reversal of psoralen cross-links by base-catalyzed rearrangement at 90/sup 0/C (BCR). The BCR reaction is more efficient than the photoreversal reaction. They show that the BCR occurs predominantly on the furan side of a psoralen cross-link. The cleavage does not result in the breaking of the DNA backbone, and the thymine based freed from the cross-link by the cleavage reaction appears to be unmodified. Similarly, BCR of the furan-side monoadduct of psoralen removed the psoralen molecule and regenerated the unaltered native oligonucleotide. The pyrone-side psoralen monoadduct is relatively resistant to BCR. One can use BCR to perform efficient oligonucleotide-directed, site-specific delivery of a psoralen monoadduct. As a demonstration of this approach, they have hybridized a 19 base long oligonucleotide vehicle containing a furan-side psoralen monoadduct to a 56 base long complementary oligonucleotide target strand and formed a specific cross-link at the target site with 365-nm UV. Subsequent BCR released the oligonucleotide vehicle and deposited the psoralen at the target site.

Yeung, A.T.; Dinehart, W.J.; Jones, B.K.

1988-08-23

281

Emodin-mediated cross-linking enhancement for extracellular matrix homeostasis.  

PubMed

The extracellular matrix (ECM) is an essential element of mammalian organisms, and its cross-linking formation plays a vital role in ECM development and postnatal homeostasis. Defects in cross-link formation caused by aging, genetic, or environmental factors are known to cause numerous diseases in mammals. To augment the cross-linking formation of ECM, the present study established a ZsGreen reporter system controlled by the promoter of lysyl oxidase-like 1 gene (LOXL1), which serves as both a scaffold element and a cross-linking enzyme in the ECM. By using this system in a drug screen, we identified emodin as a strong enhancer of LOXL1 expression that promoted cross-linking formation of ECM in all the tested systems, including human fibroblast cells, cultured human skin tissues, and animals that received long-term emodin treatment. Collectively, the results suggest that emodin may serve as an effective drug or supplement for ECM homeostasis. PMID:24680685

Jian, Lihua; Zhang, Chen; Chen, Guangfeng; Shi, Xiujuan; Qiu, Yu; Xue, Yunyun; Yang, Shuzhang; Lu, Lixia; Yuan, Qionglan; Xu, Guotong; Ying, Ming; Liu, Xiaoqing

2014-04-18

282

Regulation of material properties in electrospun scaffolds: role of cross-linking and fiber tertiary structure  

PubMed Central

We cross-linked scaffolds of electrospun collagen to varying degrees with glutaraldehyde using an ethanol-based solvent system and subsequently defined how the percentage of cross-linking impacts bulk and microscale material properties and fiber structure. At hydration, electrospun fibers underwent coiling; the extent of coiling was proportional to the percentage of cross-linking introduced into the samples and was largely suppressed as cross-linking approached saturation. These data suggest that electrospun collagen fibers are not deposited in a minimal energy state; fiber coiling may reflect a molecular reorganization. This result has functional/structural implications for protein-based electrospun scaffolds. Changes in fiber topology that develop during post-electrospinning processing may alter monomer organization, mask or unmask receptor binding sites, and/or change the biological properties of these nanomaterials. Hydrated scaffolds were mounted into a custom stretching device installed on a microscope stage and photographed after incremental changes in strain. Changes in fiber alignment were measured using the two-dimensional fast Fourier transform method. Fibers in all scaffolds underwent alignment in response to strain; however, the rate and extent of alignment that could be achieved varied as a function of cross-linking. We propose four distinct modes of scaffold response to strain: fiber uncoiling, fiber reorientation, fiber elongation and interfiber sliding. We conclude that bulk material properties and local microscale architecture must be simultaneously considered to optimize the performance of electrospun scaffolds. PMID:18676212

Newton, Dan; Mahajan, Raul; Ayres, Chantal; Bowman, James R.; Bowlin, Gary L.; Simpson, David G.

2009-01-01

283

Synthesis, Characterization, and Antibacterial Activity of Cross-Linked Chitosan-Glutaraldehyde  

PubMed Central

This present study deals with synthesis, characterization and antibacterial activity of cross-linked chitosan-glutaraldehyde. Results from this study indicated that cross-linked chitosan-glutaraldehyde markedly inhibited the growth of antibiotic-resistant Burkholderia cepacia complex regardless of bacterial species and incubation time while bacterial growth was unaffected by solid chitosan. Furthermore, high temperature treated cross-linked chitosan-glutaraldehyde showed strong antibacterial activity against the selected strain 0901 although the inhibitory effects varied with different temperatures. In addition, physical-chemical and structural characterization revealed that the cross-linking of chitosan with glutaraldehyde resulted in a rougher surface morphology, a characteristic Fourier transform infrared (FTIR) band at 1559 cm?1, a specific X-ray diffraction peak centered at 2? = 15°, a lower contents of carbon, hydrogen and nitrogen, and a higher stability of glucose units compared to chitosan based on scanning electron microscopic observation, FTIR spectra, X-ray diffraction pattern, as well as elemental and thermo gravimetric analysis. Overall, this study indicated that cross-linked chitosan-glutaraldehyde is promising to be developed as a new antibacterial drug. PMID:23670533

Li, Bin; Shan, Chang-Lin; Zhou, Qing; Fang, Yuan; Wang, Yang-Li; Xu, Fei; Han, Li-Rong; Ibrahim, Muhammad; Guo, Long-Biao; Xie, Guan-Lin; Sun, Guo-Chang

2013-01-01

284

Collagen-based fibrillar multilayer films cross-linked by a natural agent.  

PubMed

Surface functionalization plays an important role in the design of biomedical implants, especially when layer forming cells, such as endothelial or epithelial cells, are needed. In this study, we define a novel nanoscale surface coating composed of collagen/alginate polyelectrolyte multilayers and cross-linked for stability with genipin. This buildup follows an exponential growth regime versus the number of deposition cycles with a distinct nanofibrillar structure that is not damaged by the cross-linking step. Stability and cell compatibility of the cross-linked coatings were studied with human umbilical vein endothelial cells. The surface coating can be covered by a monolayer of vascular endothelial cells within 5 days. Genipin cross-linking renders the surface more suitable for cell attachment and proliferation compared to glutaraldehyde (more conventional cross-linker) cross-linked surfaces, where cell clumps in dispersed areas were observed. In summary, it is possible with the defined system to build fibrillar structures with a nanoscale control of film thickness, which would be useful for in vivo applications such as inner lining of lumens for vascular and tracheal implants. PMID:22662909

Chaubaroux, Christophe; Vrana, Engin; Debry, Christian; Schaaf, Pierre; Senger, Bernard; Voegel, Jean-Claude; Haikel, Youssef; Ringwald, Christian; Hemmerlé, Joseph; Lavalle, Philippe; Boulmedais, Fouzia

2012-07-01

285

Response of Staphylococcus aureus to Subinhibitory Concentrations of a Sequence-Selective, DNA Minor Groove Cross-Linking Pyrrolobenzodiazepine Dimer  

PubMed Central

Synopsis Objectives ELB-21 is a pyrrolo[2,1-c][1,4]benzodiazepine dimer with potent anti-staphylococcal activity; it binds covalently to guanine residues on opposing strands of duplex DNA, interfering with regulatory proteins and transcription elongation in a sequence selective manner. Transcriptional and proteomic alterations induced by exposure of Staphylococcus aureus clinical isolate EMRSA-16 to ELB-21 were determined in order to define more precisely the bactericidal mechanism of the drug. Methods DNase I footprinting was used to identify high affinity DNA binding sites. Microarrays and gel electrophoresis were used to assess the ELB-21-induced phenotype. Results High affinity interstrand binding sites in which guanine residues were separated by four base pairs, and also some intrastrand cross-linking sites of variable length were identified. Exposure of EMRSA-16 to 0.015 mg/L ELB-21 elicited a twofold or greater up-regulation of 168 genes in logarithmic phase and 181 genes in stationary phase; the majority of genes affected were associated with resident prophages ?Sa2 and ?Sa3, pathogenicity island SaPI4 and DNA damage repair. ELB-21 induced a marked increase in the number of viable phage particles in culture supernatants. The expression of only a limited number of genes showed more than 50% reduction. Sixteen extracellular and four intracellular proteins were differentially expressed during logarithmic and stationary phases, including RecA, proteins associated with staphylococcal pathogenesis (IsaA, CspA), cell division and wall synthesis. Conclusions ELB-21 kills S. aureus by forming multiple interstand and intrastrand DNA cross-links, resulting in induction of the DNA damage response, derepression of resident prophages and modulation of a limited number of genes involved with cell wall synthesis. PMID:19744983

Doyle, Marie; Feuerbaum, Eva-Anne; Fox, Keith R.; Hinds, Jason; Thurston, David E.; Taylor, Peter W.

2009-01-01

286

Cross-linked poly(acrylic acids) microgels and agarose as semi-interpenetrating networks for resveratrol release.  

PubMed

Carbomers, cross-linked poly(acrylic acid) microgels, have been widely used in pharmaceutical formulations as swollen hydrogels. Agarose, whose thermoreversibility may be exploited for drug loading, forms a gel with a mechanism involving coil-helix transition at about 36 °C. In this work carbomer microgels were combined with agarose networks in a semi-interpenetrating polymer network structure, aiming at obtaining suitable delivery systems for the loading and release of molecules with poor bioavailability but high therapeutic interest, like resveratrol. The rheological properties of the formulations and their in vitro cytocompatibility were studied and optimized acting on the neutralizing agent (triethylamine (N,N-diethylethanamine), triethanolamine (tris(2-hydroxyethyl)amine) and sodium hydroxide) and amount of OH donors (1,2-propanediol and glycerol). As a preparation method, autoclaving was introduced to simultaneously obtain heating and sterilising. Among the different neutralizing agents, NaOH was chosen to avoid the use of amines, considering the final application. Without the addition of alcohols as typical OH donors to induce Carbomer gelification, gels with appropriate rheological properties and stability were produced. For this formulation, the release of resveratrol after 7 days was about 80 % of the loaded mass, suggesting it is an interesting approach to be exploited for the development of innovative resveratrol delivery systems. PMID:25577210

Tunesi, Marta; Prina, Elisabetta; Munarin, Fabiola; Rodilossi, Serena; Albani, Diego; Petrini, Paola; Giordano, Carmen

2015-01-01

287

Bacterial cellulose gels with high mechanical strength.  

PubMed

A composite structure was formed between polyethylene glycol diacrylate (PEGDA) and bacterial cellulose (BC) gels swollen in polyethylene glycol (PEG) as a solvent (BC/PEG gel) to improve the mechanical strength of the gels. The mechanical strength under compression and the rheostatic properties of the gels were evaluated. The compression test results indicated that the mechanical strength of the gels depended on the weight percent of cross-linked PEGDA in the gel, the chain length between the cross-linking points, and the cross-linking density of PEGDA polymers. The PEGDA polymers around the cellulose fibers were resistant to pressure; thus, the BC/PEG-PEGDA gel was stronger than the BC/PEG gel under compression. The results of transmittance measurements and thermomechanical analysis showed that the rheostatic properties of the gels were retained even after composite structure formation. BC/PEG-PEGDA gels, which are expected to be biocompatible, may be useful for clinical applications as a soft material. PMID:25492172

Numata, Yukari; Sakata, Tadanori; Furukawa, Hidemitsu; Tajima, Kenji

2015-02-01

288

Swelling of Olympic Gels  

NASA Astrophysics Data System (ADS)

The swelling equilibrium of Olympic gels, which are composed of entangled cyclic polymers, is studied by Monte Carlo simulations. In contrast to chemically cross-linked polymer networks, we observe that Olympic gels made of chains with a larger degree of polymerization, N, exhibit a smaller equilibrium swelling degree, Q?N-0.28?0-0.72, at the same polymer volume fraction ?0 at network preparation. This observation is explained by a desinterspersion (reorganization with release of nontrapped entanglements) process of overlapping nonconcatenated rings upon swelling.

Lang, M.; Fischer, J.; Werner, M.; Sommer, J.-U.

2014-06-01

289

Structural, mechanical and osmotic properties of injectable hyaluronan-based composite hydrogels  

PubMed Central

The osmotic and scattering properties of hyaluronan-based composite hydrogels composed of stiff biopolymer chains (carboxymethylated thiolated hyaluronan (CMHA-S)) crosslinked by a flexible polymer (polyethylene glycol diacrylate (PEGDA)) are investigated and analyzed in terms of the scaling theory. The total pre-gel polymer weight concentration is varied between 0.5 wt.% and 3.2 wt.%, while the mole ratio between the reactive PEG chain ends and the thiolated HA moieties is changed between 0.15 and 1.0. The shear modulus G of the fully swollen gels exhibits a stronger dependence on pre-gel concentration than on the crosslink density. Osmotic deswelling measurements reveal that the osmotic mixing pressure depends on the weight ratio CMHA-S/PEGDA, and is practically unaffected by the pre-gel concentration. Small-angle neutron scattering observations indicate that the thermodynamic properties of these composite gels are governed by total polymer concentration, i.e., specific interactions between the two polymeric components do not play a significant role. PMID:20824199

Horkay, Ferenc; Magda, Jules; Alcoutlabi, Mataz; Atzet, Sarah; Zarembinski, Thomas

2010-01-01

290

A genetic anomaly of oriented collagen biosynthesis and cross-linking: Keratoconus.  

PubMed

Oriented collagen biosynthesis is one of the major mechanisms involved in tissue and organ formation during development. Corneal biogenesis is one example. Defects in this process lead to anomalies in tissue structure and function. The transparency of cornea and its achievement are a good example as well as its pathological modifications. Keratoconus is one example of this type of pathologies, involving also inappropriate cross-linking of collagen fibers. Among the tentatives to correct this anomaly, the riboflavin-potentiated UV-cross-linking (CXL) of keratoconus corneas appears clinically satisfactory, although none of the experiments and clinical results published prove effective cross-linking. The published results are reviewed in this article. PMID:25468492

Bourges, J L; Robert, A M; Robert, L

2014-11-01

291

Optimizing end-group cross-linking polymer electrolytes for fuel cell applications  

SciTech Connect

This paper demonstrates the optimization of proton conductivity and water uptake for cross-linkable polymer electrolytes through synthesis and characterization of end-group cross-linkable sulfonated poly(arylene ether) copolymers (ESF-BPs). The extent of reaction of cross-linking was controlled by reaction time resulting in a series of polymers with two, independent tunable parameters, degree of sulfonation (DS) and degree of cross-linking (DC). For the polymers presented, cross-linking improved proton conductivity while reducing water uptake, an uncommon trend in polymer electrolytes where water is critical for proton conduction. Other trends relating to changes are reported and the results yield insight into the role of DS and DC and how to optimize electrochemical properties and performance of polymer electrolytes through these tunable parameters. Select polymer electrolytes were tested in fuel cells where performance and durability with accelerated relative humidity cycling were compared with Nafion{reg_sign}.

Kim, Yu Seung [Los Alamos National Laboratory; Lee, Kwan Soo [Los Alamos National Laboratory; Jeong, Myung - Hwan [GIST, KOREA; Lee, Jae - Suk [GIST, KOREA

2009-01-01

292

Carbon Nanofiber Incorporated Silica Based Aerogels with Di-Isocyanate Cross-Linking  

NASA Technical Reports Server (NTRS)

Lightweight materials with excellent thermal insulating properties are highly sought after for a variety of aerospace and aeronautic applications. (1) Silica based aerogels with their high surface area and low relative densities are ideal for applications in extreme environments such as insulators for the Mars Rover battery. (2) However, the fragile nature of aerogel monoliths prevents their widespread use in more down to earth applications. We have shown that the fragile aerogel network can be cross-linked with a di-isocyanate via amine decorated surfaces to form a conformal coating. (3) This coating reinforces the neck regions between secondary silica particles and significantly strengthens the aerogels with only a small effect on density or porosity. Scheme 1 depicts the cross-linking reaction with the di-isocyanate and exhibits the stages that result in polymer cross-linked aerogel monoliths.

Vivod, Stephanie L.; Meador, Mary Ann B.; Capadona, Lynn A.; Sullivan, Roy M.; Ghosn, Louis J.; Clark, Nicholas; McCorkle, Linda

2008-01-01

293

Isolation of a novel bone glycosylated phosphoprotein with disulphide cross-links to osteonectin.  

PubMed

An 80 kDa protein was purified from calf bone by HCl-demineralization followed by 0.5 M EDTA/1.0 M NaCl extraction and sequential chromatography on DE-52, hydroxyapatite, and TSK-gel G3000SW HPLC columns. From the DE-52 column the protein was eluted at three different fractions, of which one further separated into two fractions on the hydroxyapatite column, indicating that the protein is present in four different molecular forms designated as 80 k-I-1, k-I-2, k-II, k-III. The N-terminal sequence analysis of all four forms gave the same sequence, SEQYNQEPNNV. Several tryptic internal peptides were also generated, purified and sequenced, leading to the identification of several repeat sequences, IFLGXXEI. Homology searching of the N-terminal and internal sequences indicates that this is a novel protein. Both 80 k-I-2 and k-III had similar amino acid composition with high contents of Asx, Glx and Leu and contained 7 and 16 phosphoserines per 1000 total amino acids, respectively. The 80 k-I-1 and 80 k-II forms were stained with Rhodamine B specific for phosphoproteins. The four forms contained different contents of neutral sugars ranging from 5.5 to 26% (w/w protein) and approximately 1.7% sialic acid. These data indicated that the 80 kDa protein exists in four isomeric forms, at least based on the different post-translational modifications. The evaluation of the 80 kDa glycosylated phosphoprotein under alkylating, reducing and non-reducing conditions indicated that this protein undergoes polymerization through intermolecular disulphide bonds. Furthermore, the 80 kDa protein and osteonectin (ON), both of which are cysteine-rich proteins, can cross-link with each other via disulphide bonds, and this process can be induced to take place in vitro under experimental conditions. The occurrence of such a phenomenon in vivo was confirmed from the presence of similar high Mr components containing both 80 kDa and ON in the same SDS/PAGE bands, detected by the respective antibody reactions in crude bone extracts which were extracted in the presence of alkylating agent. PMID:9494116

Zhou, H Y; Salih, E; Glimcher, M J

1998-03-15

294

Improved Strategies for Rapid Identification of Chemically Cross-linked Peptides Using Protein Interaction Reporter Technology  

PubMed Central

Protein interaction reporter (PIR) technology can enable identification of in vivo protein interactions with the use of specialized chemical cross-linkers, liquid chromatography, and high-resolution mass spectrometry. PIR-cross-linkers contain labile bonds that are specifically fragmented under low energy collision or photodissociation conditions in the mass spectrometer source, thus releasing cross-linked peptides. Successful analysis of PIR-cross-linked proteins requires the use of expected mathematical relationships between cross-linked complexes released peptides after fragmentation of the labile PIR bonds. Presented here is a next-generation software tool, BLinks, for use in the analysis and identification of PIR-cross-linked proteins. BLinks is an advancement beyond our previous efforts by incorporation of chromatographic profiles that must match between cross-linked complexes and released peptides to enable estimation of p values to help filter true relationships from complex datasets. Additionally, BLinks was used to incorporate Mascot database searching results from subsequent MS/MS analysis of the released peptides to facilitate identification of cross-linked proteins. BLinks was used in the analysis of human serum albumin, and 46 inter-peptide relationships were found spanning thirty proximal residues with a 2.2% false discovery rate. BLinks was also used to track peptides involved in multiple, co-eluting relationships that make accurate identification of protein interactions difficult. An additional 10 inter-peptide relationships were identified despite poor correlation using the profiling tools provided with BLinks. Additionally, BLinks can be used to globally map all inter-peptide relationships from the data analysis and customize subsequent analysis to target specific peptides of interest, thus making it a useful tool for both discovery of protein interactions and mapping protein topology. PMID:20886857

Hoopmann, Michael R.; Weisbrod, Chad R.; Bruce, James E.

2010-01-01

295

Characterization of polyelectrolyte behavior of the polysaccharides chitosan, heparin, and hyaluronan, by light scattering and viscometry.  

NASA Astrophysics Data System (ADS)

This study on the polyelectrolyte behavior of polysaccharides in solution is motivated by our recent work in development of nanostructured polysaccharide-based surface coatings. Chitosan behaves as a weak polycation, and hyaluronan behaves as a weak polyanion, while heparin behaves as a strong polyanion. The ability to control the conformation of these polysaccharides in solution, by changing the solution ionic strength and pH may offer the opportunity to further tune the nanoscale features of polysaccharide-based surface coatings assembled from solution. In the work reported here, the solution conformation of these polymers is determined from gel permeation chromatography coupled to differential refractive index, light scattering, and viscometry detection. These results are related to the nanostructure of chitosan-heparin and chitosan-hyaluronan surface coatings based on polyelectrolyte multilayers.

Boddohi, Soheil; Yonemura, Susan; Kipper, Matt

2008-03-01

296

Increasing Thermal Stability of Gelatin by UV-Induced Cross-Linking with Glucose  

PubMed Central

The effects of ultraviolet (254?nm) radiation on a hydrated gelatin-glucose matrix were investigated for the development of a physiologically thermostable substrate for potential use in cell scaffold production. Experiments conducted with a differential scanning calorimeter indicate that ultraviolet irradiation of gelatin-glucose hydrogels dramatically increases thermal stability such that no melting is observed at temperatures of at least 90°C. The addition of glucose significantly increases the yield of cross-linked product, suggesting that glucose has a role in cross-link formation. Comparisons of lyophilized samples using scanning electron microscopy show that irradiated materials have visibly different densities. PMID:24963297

Masutani, Evan M.; Kinoshita, Christopher K.; Tanaka, Travis T.; Ellison, Andrew K. D.; Yoza, Brandon A.

2014-01-01

297

Femtosecond-UVA-riboflavin (FUR) cross-linking approach to penetrating keratoplasty and anterior lamellar keratoplasty?  

PubMed Central

Purpose To introduce femtosecond laser wound design combined with riboflavin/ultraviolet light-A (UVA) collagen cross-linking at the wound for penetrating (PKP) and anterior lamellar keratoplasty (ALK). Primary outcomes were intraocular pressure (IOP in mmHg) at burst point for the PKP group, and tensile strength (kPa) until dehiscence for the ALK group. Methods Human corneoscleral rims (N = 20) were mounted on artificial anterior chambers. PKP specimens underwent FUR, femtosecond laser-cut without cross-linking, or conventional corneal transplantation. PKP maximum burst IOP with progressive suture removal was assessed by a digital manometer, in triplicate and by three observers. ALK involved whole human globes (N = 10) divided into three groups using a 200-micron, 8 mm diameter donor lenticule, with or without cross-linking. Cross-linked specimens were exposed to UVA light (3 mW/cm2 irradiance, 3.4 J, 370 nm wavelength) for 30 min with 0.1% riboflavin (20% Dextran) applied every 2-min. ALK tensile strength was determined using a digital tensiometer. Results In PKP, burst IOP was 31.32 mmHg greater for corneas that underwent the UVA-riboflavin treatment than for those that did not (p < 0.05). There was no significant relationship (p = 0.719) established between cut design (femtosecond versus conventional). On multivariate analysis, there was a mean of 15.82 mmHg higher sustainable pressure for each stabilization suture present (p < 0.0001). In ALK, specimens comprised of human donor and human recipient tissue combined with UVA-riboflavin therapy experienced the greatest level of adhesion strength (954.7 ± 290.4 kPa) as shown by the force required to separate the tissues, and compared to non-cross-linked specimens. Electron microscopy of ALK specimens showed non-fused and fused longitudinal cross-linked collagen fibers as well as bridges, densities, attachment plaques and primitive plasmalemmal densities. Conclusions Cross-linking effects of the FUR technique enable a stronger graft-recipient adhesion compared to conventional penetrating and anterior lamellar keratoplasty. Electron microscopy enabled visualization of cross-linked interface and potential bonding. The FUR approach may further lead to sutureless transplantation techniques in the future. Setting/venue ImagePlus Laser Eye Centre, Winnipeg, and University of Ottawa Eye Institute, Ottawa, Canada. PMID:23960934

Rocha, Guillermo; Butler, Michael; Butler, Andrea; Hackett, Joanne M.

2011-01-01

298

Protein cluster formation during enzymatic cross-linking of globular proteins.  

PubMed

Work on enzymatic cross-linking of globular food proteins has mainly focused on food functional effects such as improvements of gelation and enhanced stabilization of emulsions and foams, and on the detailed biochemical characterization of the cross-linking chemistry. What is still lacking is a physical characterization of cluster formation and gelation, as has been done for example, for cluster formation and gelation during heat-induced protein aggregation. Here we present preliminary results along these lines. We propose that enzymatic cross-linking of apo-alpha-lactalbumin is a good model system for studying the problem of cluster formation and gelation during enzymatic cross-linking of globular proteins. We present initial results on cluster sizes produced when crosslinking dilute solutions of apo-alpha-lactalbumin with a range of cross-linking enzymes: microbial transglutaminase, horseradish peroxidase, and mushroom tyrosinase. These results are used to highlight similarities and differences between different enzymes, when acting on the same substrate. Next we consider cluster growth and gelation in somewhat more detail for the specific case of cross-linking by horseradish peroxidase, under the periodic addition of H2O2. Upon increasing the initial concentration of apo-alpha-lactalbumin, at a fixed enzyme-to-substrate ratio and fixed reaction time, the size of the clusters at the end of the reaction increases rapidly, and above a critical concentration, gelation occurs. For the conditions that we have used, gelation occurred at very low initial apo-alpha-lactalbumin concentrations of 34% (w/v), indicating a very dilute cross-linked protein network, with a low average number of cross-links per protein. It is found that reactive protein monomers are first rapidly (1-2 h) incorporated into small covalent clusters. This is followed by a much slower phase (up to about 12 h) in which the small clusters are coupled together to form much larger covalent protein clusters. Consistent with this two-step mechanism, atomic force microscopy shows that the covalent protein clusters are very heterogeneous and seem to consist of smaller subclusters. PMID:23234160

Saricay, Yunus; Dhayal, Surender Kumar; Wierenga, Peter Alexander; de Vries, Renko

2012-01-01

299

Structure of the 1,4-bis(2'-deoxyadenosin-N6-yl)-2R,3R-butanediol cross-link arising from alkylation of the human N-ras codon 61 by butadiene diepoxide.  

PubMed

The solution structure of the 1,4-bis(2'-deoxyadenosin-N(6)-yl)-2R,3R-butanediol cross-link arising from N(6)-dA alkylation of nearest-neighbor adenines by butadiene diepoxide (BDO(2)) was determined in the oligodeoxynucleotide 5'-d(CGGACXYGAAG)-3'.5'-d(CTTCTTGTCCG)-3'. This oligodeoxynucleotide contained codon 61 (underlined) of the human N-ras protooncogene. The cross-link was accommodated in the major groove of duplex DNA. At the 5'-side of the cross-link there was a break in Watson-Crick base pairing at base pair X(6).T(17), whereas at the 3'-side of the cross-link at base pair Y(7).T(16), base pairing was intact. Molecular dynamics calculations carried out using a simulated annealing protocol, and restrained by a combination of 338 interproton distance restraints obtained from (1)H NOESY data and 151 torsion angle restraints obtained from (1)H and (31)P COSY data, yielded ensembles of structures with good convergence. Helicoidal analysis indicated an increase in base pair opening at base pair X(6).T(17), accompanied by a shift in the phosphodiester backbone torsion angle beta P5'-O5'-C5'-C4' at nucleotide X(6). The rMD calculations predicted that the DNA helix was not significantly bent by the presence of the four-carbon cross-link. This was corroborated by gel mobility assays of multimers containing nonhydroxylated four-carbon N(6),N(6)-dA cross-links, which did not predict DNA bending. The rMD calculations suggested the presence of hydrogen bonding between the hydroxyl group located on the beta-carbon of the four-carbon cross-link and T(17) O(4), which perhaps stabilized the base pair opening at X(6).T(17) and protected the T(17) imino proton from solvent exchange. The opening of base pair X(6).T(17) altered base stacking patterns at the cross-link site and induced slight unwinding of the DNA duplex. The structural data are interpreted in terms of biochemical data suggesting that this cross-link is bypassed by a variety of DNA polymerases, yet is significantly mutagenic [Kanuri, M., Nechev, L. V., Tamura, P. J., Harris, C. M., Harris, T. M., and Lloyd, R. S. (2002) Chem. Res. Toxicol. 15, 1572-1580]. PMID:16042385

Merritt, W Keither; Nechev, Lubomir V; Scholdberg, Tandace A; Dean, Stephen M; Kiehna, Sarah E; Chang, Johanna C; Harris, Thomas M; Harris, Constance M; Lloyd, R Stephen; Stone, Michael P

2005-08-01

300

Hybrid sol-gel optical materials  

DOEpatents

Hybrid sol-gel materials comprise silicate sols cross-linked with linear polysilane, polygermane, or poly(silane-germane). The sol-gel materials are useful as optical identifiers in tagging and verification applications and, in a different aspect, as stable, visible light transparent non-linear optical materials. Methyl or phenyl silicones, polyaryl sulfides, polyaryl ethers, and rubbery polysilanes may be used in addition to the linear polysilane. The linear polymers cross-link with the sol to form a matrix having high optical transparency, resistance to thermooxidative aging, adherence to a variety of substrates, brittleness, and a resistance to cracking during thermal cycling.

Zeigler, J.M.

1993-04-20

301

Hybrid sol-gel optical materials  

DOEpatents

Hybrid sol-gel materials comprise silicate sols cross-linked with linear polysilane, polygermane, or poly(silane-germane). The sol-gel materials are useful as optical identifiers in tagging and verification applications and, in a different aspect, as stable, visible light transparent non-linear optical materials. Methyl or phenyl silicones, polyaryl sulfides, polyaryl ethers, and rubbery polysilanes may be used in addition to the linear polysilane. The linear polymers cross-link with the sol to form a matrix having high optical transparency, resistance to thermooxidative aging, adherence to a variety of substrates, brittleness, and a resistance to cracking during thermal cycling.

Zeigler, John M. (Albuquerque, NM)

1993-01-01

302

Hybrid sol-gel optical materials  

DOEpatents

Hybrid sol-gel materials comprise silicate sols cross-linked with linear polysilane, polygermane, or poly(silane-germane). The sol-gel materials are useful as optical identifiers in tagging and verification applications and, in a different aspect, as stable, visible light transparent non-linear optical materials. Methyl or phenyl silicones, polyaryl sulfides, polyaryl ethers, and rubbery polysilanes may be used in addition to the linear polysilane. The linear polymers cross-link with the sol to form a matrix having high optical transparency, resistance to thermooxidative aging, adherence to a variety of substrates, brittleness, and a resistance to cracking during thermal cycling.

Zeigler, John M. (Albuquerque, NM)

1992-01-01

303

Use of Proteinase K Nonspecific Digestion for Selective and Comprehensive Identification of Interpeptide Cross-links: Application to Prion Proteins*  

PubMed Central

Chemical cross-linking combined with mass spectrometry is a rapidly developing technique for structural proteomics. Cross-linked proteins are usually digested with trypsin to generate cross-linked peptides, which are then analyzed by mass spectrometry. The most informative cross-links, the interpeptide cross-links, are often large in size, because they consist of two peptides that are connected by a cross-linker. In addition, trypsin targets the same residues as amino-reactive cross-linkers, and cleavage will not occur at these cross-linker-modified residues. This produces high molecular weight cross-linked peptides, which complicates their mass spectrometric analysis and identification. In this paper, we examine a nonspecific protease, proteinase K, as an alternative to trypsin for cross-linking studies. Initial tests on a model peptide that was digested by proteinase K resulted in a “family” of related cross-linked peptides, all of which contained the same cross-linking sites, thus providing additional verification of the cross-linking results, as was previously noted for other post-translational modification studies. The procedure was next applied to the native (PrPC) and oligomeric form of prion protein (PrP?). Using proteinase K, the affinity-purifiable CID-cleavable and isotopically coded cross-linker cyanurbiotindipropionylsuccinimide and MALDI-MS cross-links were found for all of the possible cross-linking sites. After digestion with proteinase K, we obtained a mass distribution of the cross-linked peptides that is very suitable for MALDI-MS analysis. Using this new method, we were able to detect over 60 interpeptide cross-links in the native PrPC and PrP? prion protein. The set of cross-links for the native form was used as distance constraints in developing a model of the native prion protein structure, which includes the 90–124-amino acid N-terminal portion of the protein. Several cross-links were unique to each form of the prion protein, including a Lys185–Lys220 cross-link, which is unique to the PrP? and thus may be indicative of the conformational change involved in the formation of prion protein oligomers. PMID:22438564

Petrotchenko, Evgeniy V.; Serpa, Jason J.; Hardie, Darryl B.; Berjanskii, Mark; Suriyamongkol, Bow P.; Wishart, David S.; Borchers, Christoph H.

2012-01-01

304

Hyaluronan as an Immune Regulator in Human Diseases  

PubMed Central

Accumulation and turnover of extracellular matrix components are the hallmarks of tissue injury. Fragmented hyaluronan stimulates the expression of inflammatory genes by a variety of immune cells at the injury site. Hyaluronan binds to a number of cell surface proteins on a variety of cell types. Hyaluronan fragments signal through both Toll-like receptor (TLR) 4 and TLR2 as well as CD44 to stimulate inflammatory genes in inflammatory cells. Hyaluronan is also present on the cell surface of epithelial cells and provides protection against tissue damage by interacting with TLR2 and TLR4 on these parenchymal cells. Hyaluronan and hyaluronan-binding proteins regulate inflammation, tissue injury and repair through regulating inflammatory cell recruitment, release of inflammatory cytokines, and stem cell migration. This review focuses on the role of hyaluronan as an immune regulator in human diseases. PMID:21248167

NOBLE, PAUL W.; LIANG, JIURONG; JIANG, DIANHUA

2010-01-01

305

Hyaluronan therapy: looking toward the future.  

PubMed

Hyaluronan therapy has numerous medical applications, including the treatment of joint arthropathies, wound healing, prevention of postsurgical adhesions, treatment of urinary incontinence, ophthalmic surgery, and tissue augmentation and engineering. Studies have been conducted and are ongoing to evaluate the efficacy of intra-articular hyaluronans in disease modification in osteoarthritis of the knee; efficacy in disease states other than osteoarthritis; as adjunct therapy after joint surgery; and in joints other than the knee--namely the shoulder, hand, hip, temporomandibular joint, spine, foot, and ankle. Preliminary results have been promising and parallel what has been found in treatment of osteoarthritis of the knee. Research also continues into the development of chemically modified derivatized hyaluronan to optimize responses and enhance duration of action, as well as to expand the uses of this therapeutic modality. PMID:15005297

Kelly, Michael A; Moskowitz, Roland W; Lieberman, Jay R

2004-02-01

306

Preparation, characterization and dielectric properties of 4,4-diphenylmethane diisocyanate (MDI) based cross-linked polyimide films  

Microsoft Academic Search

Four different types of cross-linked polyimides based on 4,4-diphenylmethane diisocyanate (MDI) were prepared by the reaction of different types of conventional poly(amic acid) intermediates with MDI as a cross-linking agent. Subsequently, they were thermally imidized in order to obtain corresponding cross-linked polyimide structure. The results of FTIR-ATR showed that MDI can effectively react with carboxylic acid groups of PAA to

Hüseyin Deligöz; Tuncer Yalcinyuva; Saadet Özgümüs; Saffettin Yildirim

2006-01-01

307

Evaluation of cross-linked chitosan microparticles containing metronidazole for periodontitis treatment.  

PubMed

The aims of this study were to find the optimal formulation for the preparation of metronidazole-loaded chitosan microparticles (MTZ-MPs) via an emulsion cross-linking process, and to compare the in vitro release of MTZ from hydrogels and films containing the drug in forms of MTZ-MPs and raw powders. The effects of emulsifier type and concentration, amount of cross-linking agent, cross-linking time, drug:chitosan ratio, form of drug adding and washing method on the properties of the MTZ-MPs were investigated. The results indicated that the optimal conditions for round and free-flowing MTZ-MPs with a high percentage of entrapped drug and preferable release profile were 1% of Span80 in soybean oil, 5% of glutaraldehyde based on chitosan solution, 30 min of cross-linking time, 1:1 drug:chitosan ratio, drug adding in form of ethanol solution and washing with hexane only. MTZ-MPs prepared from the optimal formulation were incorporated in mucoadhesive hydrogel and film. The release profiles of the drug from hydrogel and film containing MTZ-MPs were in prolong pattern compared with those containing drug powders. However, the hydrogels exhibited higher preferable pattern of release profile than the films. Therefore, the hydrogel containing MTZ-MPs was possible to be further clinically investigated for peridontitis treatment. PMID:23827560

Pichayakorn, Wiwat; Boonme, Prapaporn

2013-04-01

308

Noncovalent Cross-Linking of Casein by Epigallocatechin Gallate Characterized by Single Molecule Force Microscopy  

E-print Network

a compaction of the casein micelle. KEYWORDS: Epigallocatechin gallate; polyphenol; casein; single molecule, 7, 8). It has also been shown to increase the stability of the casein micelles to heat denaturationNoncovalent Cross-Linking of Casein by Epigallocatechin Gallate Characterized by Single Molecule

Williamson, Mike P.

309

Hierarchically Porous Polymers from Hyper-cross-linked Block Polymer Precursors.  

PubMed

We report synthesis of hierarchically porous polymers (HPPs) consisting of micropores and well-defined 3D continuous mesopores by combination of hyper-cross-linking and block polymer self-assembly. Copolymerization of 4-vinylbenzyl chloride (VBzCl) with divinylbenzene (DVB) in the presence of polylactide (PLA) macro-chain-transfer agent produced a cross-linked block polymer precursor PLA-b-P(VBzCl-co-DVB) via reversible addition-fragmentation chain transfer polymerization. A nanoscopic bicontinuous morphology containing PLA and P(VBzCl-co-DVB) microdomains was obtained as a result of polymerization-induced microphase separation. While a basic treatment of the precursor selectively removed PLA to yield a reticulated mesoporous polymer, hyper-cross-linking of the precursor by FeCl3 generated micropores in the P(VBzCl-co-DVB) microdomain via Friedel-Crafts alkylation and simultaneously degraded PLA to produce the HPP containing micropores in the mesoporous framework. The mesopore size of the HPP could be precisely controlled from 6 to 15 nm by controlling the molar mass of PLA. We demonstrate acceleration in adsorption rate in the HPP compared to a hyper-cross-linked microporous polymer. PMID:25551291

Seo, Myungeun; Kim, Soobin; Oh, Jaehoon; Kim, Sun-Jung; Hillmyer, Marc A

2015-01-21

310

Cross-linked smart poly(dimethylsiloxane) membranes for removal of volatile organic compounds in water  

NASA Astrophysics Data System (ADS)

This paper focuses on the effects of fluorine cross-linker of the cross-linked poly(dimethylsiloxane) membranes from polydimethylsiloxane dimethylmethacrylate macromonomer (PDMSDMMA) and divinyl perfluoro- n-hexane (DVF) on the pervaporation characteristics of the removal of benzene from an aqueous solution of dilute benzene. When an aqueous solution of 0.05 wt% benzene was permeated through the cross-linked PDMSDMMA (PDMSDMMA-DVF) membranes, they showed a high benzene permselectivity and permeability of these membranes was enhanced with increasing DVF content significantly. The best normalized permeation rate, separation factor for benzene permselectivity, and pervaporation separation index (PSI) of a PDMSDMMA-DVF membrane were 1.72×10 -5 kg m/m 2 h, 4316, and 7423, respectively. The best normalized permeation rate of a PDMSDMMA-DVF membrane was approximately same as the PDMSDMMA membranes cross-linked with other divinyl compounds, but the separation factor and PSI of the former membrane were greater than those of the latter ones. These pervaporation characteristics are discussed from the viewpoint of chemical and physical structure of the cross-linked PDMSDMMA-DVF membranes in detail.

Ohshima, Tadahiro; Miyata, Takashi; Uragami, Tadashi; Berghmens, Hugo

2005-04-01

311

Gelatin-glutaraldehyde cross-linking on silicone rubber to increase endothelial cell adhesion and growth.  

PubMed

Silicone is a biomaterial that is widely used in many areas because of its high optical clarity, its durability, and the ease with which it can be cast. However, these advantages are counterbalanced by strong hydrophobicity. Gelatin cross-linking has been used as a hydrophilic coating on many biomaterials but not on silicone rubber. In this study, two gelatin glutaraldehyde (GA) cross-linking methods were used to coat a hydrophilic membrane on silicone rubber. In method I, gelatin and GA were mixed in three different proportions (64:1, 128:1, and 256:1) before coating. In method II, a newly formed 5% gelatin membrane was cross-linked with a 2.5% GA solution. All coatings were hydrophilic, as determined from the measurement of contact angle for a drop of water on the surface. Bovine coronary arterial endothelial cells were shown to grow well on the surface modified by method II at 72 h. In method I, the cells grew well for gelatin-GA proportions of 64:1 and 128:1 at 72 h. No cell attachment on untreated silicone rubber was observed by the third d of seeding. The results indicated that both methods of gelatin-GA cross-linking provided a hydrophilic surface on silicone for endothelial cell adhesion and growth in vitro. PMID:12703975

Ai, Hua; Mills, David K; Jonathan, Alexander S; Jones, Steven A

2002-10-01

312

Carbon Tetrachloride as Thermoporometry Liquid-probe to Study the Cross linking of Styrene Copolymer  

E-print Network

styrene copolymer networks have been measured by thermoporometry using CCl4 as a probe liquid. All-to-solid and the solid-to-solid thermal transitions of CCl4 and successfully validated on test samples. It was found hand. Keywords Photo-cross linking, benzil, thermoporometry, CCl4, polystyrene, nanoporous silica hal

Paris-Sud XI, Université de

313

Statistical Mechanics of Cross-Linked Polymer Networks I. Rubberlike Elasticity  

Microsoft Academic Search

A model is proposed for the structure of a cross-linked network, such as exists in a vulcanized rubber, which is amenable to statistical treatment. Expressions are derived for the structural entropy of the network, and for the entropy change on deformation. The latter is in agreement with the relationship derived by Wall and others by a different treatment.

Paul J. Flory; John Rehner Jr.

1943-01-01

314

Tissue Transglutaminase, Protein Cross-linking and Alzheimer's Disease: Review and Views  

PubMed Central

Extensive protein cross-linking and aggregation are some of the most common molecular events in the pathogenesis of Alzheimer's disease (AD). Both ?-amyloid (A?) plaques and neurofibrillary tangles, which are extracellular and intracellular proteinaceous aggregates, respectively, contribute to neuronal death and progressive cognitive decline. Although protein cross-linking has been recognized and extensively studied for many years, the underlying mechanisms are largely unknown. Recent data indicates that tissue transglutaminase (tTG), which catalyzes the cross-linking of a wide spectrum of proteins including A?, tau, ?-synuclein and neurofilament proteins, may be involved in protein aggregation in AD. Many AD risk factors, such as trauma, inflammation, ischemia and stress, up-regulate tTG protein and activity levels. In this review, we summarize the evidence that tTG plays a role in AD, especially in cross-linking of A?, tau, ?-synuclein and neurofilament proteins. An experimentally testable hypothesis is that tTG may play a central role in AD pathogenesis and that it provides a conceptual link between sporadic and familial AD through a shared pathogenic pathway. PMID:18784819

Wang, Deng-Shun; Dickson, Dennis W; Malter, James S

2008-01-01

315

Preparation of cross-linked enzyme aggregates of trehalose synthase via co-aggregation with polyethyleneimine.  

PubMed

Trehalose synthase (TreS) from Meiothermus ruber was co-aggregated with polyethyleneimine (PEI) and precipitated with polyethylene glycol (PEG), followed by cross-linking with glutaraldehyde to obtain TreS-polyethyleneimine cross-linked enzyme aggregates (termed as CLEAs-PEI-PEG). The TreS solution at 0.5 mg mL(-1) protein concentration, with PEI at a mass ratio of 1:0.8 (enzyme/PEI, w/w) and 25 % (w/v) PEG concentration were found to be most adequate for the co-aggregation of TreS. CLEAs-PEI-PEG was most active with glutaraldehyde at a mass ratio of 1:0.5 (enzyme/glutaraldehyde, w/w) to cross-link the co-aggregates. The CLEAs-PEI-PEG prepared in this work had an optimum pH of 6.5 and optimum temperature of 60 °C. For lower concentrations of enzyme, using PEI could enhance the cross-linking efficiency of TreS. The thermal stability and pH tolerance of CLEAs-PEI-PEG were significantly improved. Scanning electron microscopy revealed that the main structure of CLEAs-PEI-PEG showed scaffolding morphology which was constituted by structured ball-like particles with a size of 1-2.5 ?m in diameter. PMID:25163880

Zheng, Jianfeng; Chen, Ying; Yang, Liwei; Li, Mingchun; Zhang, Jun

2014-11-01

316

Photo-Induced Electron Transfer Between Photosystem 2 via Cross-linked Redox Hydrogels  

E-print Network

Full Paper Photo-Induced Electron Transfer Between Photosystem 2 via Cross-linked Redox Hydrogels was wired to electrode surfaces via osmium-containing redox polymers based on poly(vinyl)imidazol. The redox illumination, the enzymatic reaction could be switched on and a catalytic current was observed at the electrode

Roegner, Matthias

317

Mechlorethamine-Induced DNA-Protein Cross-Linking in Human Fibrosarcoma (HT1080) Cells  

PubMed Central

Antitumor nitrogen mustards, such as bis(2-chloroethyl)methylamine (mechlorethamine), are useful chemotherapeutic agents with a long history of clinical application. The antitumor effects of nitrogen mustards are attributed to their ability to induce DNA-DNA and DNA-protein cross-links (DPCs) that block DNA replication. In the present work, a mass spectrometry based methodology was employed to characterize in vivo DNA-protein cross-linking following treatment of human fibrosarcoma (HT1080) cells with cytotoxic concentrations of mechlorethamine. A combination of mass spectrometry-based proteomics and immunological detection was used to identify 38 nuclear proteins which were covalently cross-linked to chromosomal DNA following treatment with mechlorethamine. Isotope dilution HPLC-ESI+-MS/MS analysis of total proteolytic digests revealed a concentration-dependent formation of N-[2-(S-cysteinyl)ethyl]-N-[2-(guan-7-yl)ethyl]methylamine (Cys-N7G-EMA) conjugates, indicating that mechlorethamine cross-links cysteine thiols within proteins to N-7 positions of guanine in DNA. PMID:21486066

Michaelson-Richie, Erin D.; Ming, Xun; Codreanu, Simona G.; Loeber, Rachel L.; Liebler, Daniel C.; Campbell, Colin; Tretyakova, Natalia Y.

2011-01-01

318

Laccase-Based CLEAs: Chitosan as a Novel Cross-Linking Agent  

PubMed Central

Laccase from Coriolopsis Polyzona was insolubilized as cross-linked enzyme aggregates (CLEAs) for the first time with chitosan as the cross-linking agent. Concentrations between 0.01 and 1.867?g/L of chitosan were used and between 0.05 and 600?mM of 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide hydrochloride. The laccase was precipitated using ammonium sulphate and cross-linked simultaneously. Specific activity and thermal stability of these biocatalysts were measured. Activities of up to 737?U/g were obtained when 2,2-azino-bis-(3-ethylbenzthiazoline-6-sulfonic acid) (ABTS) was used as a substrate. Moreover, the stability of these biocatalysts was improved with regards to thermal degradation compared to free laccase when exposed to denaturing conditions of high temperature and low pH. The CLEAs stability against chemical denaturants was also tested but no significant improvement was detected. The total amount of ABTS to be oxidized during thermal degradation by CLEAs and free laccase was calculated and the insolubilized enzymes were reported to oxidize more substrate than free laccase. The formation conditions were analyzed by response surface methodology in order to determine an optimal environment for the production of efficient laccase-based CLEAs using chitosan as the cross-linking agent. After 24 hours of formation at pH 3 and at 4°C without agitation, the CLEAs exhibit the best specific activity. PMID:21811672

Arsenault, Alexandre; Cabana, Hubert; Jones, J. Peter

2011-01-01

319

Concentration of collagen cross-links in human dentin bears no relation to the individual age  

Microsoft Academic Search

Lysylpyridinoline (LP) and hydroxylysylpyridinoline (HP) are collagen cross-link residues. HP is present in most tissues, whereas LP is specific for bone and dentin. Based on the current literature there are certain indications that measurement of the concentrations of HP and LP in dentin may be a valuable tool to determine the individual age. The purpose of this investigation was to

Y. Açil; I. N. G. Springer; J. G. Prasse; J. Hedderich; S. Jepsen

2002-01-01

320

Accepted Manuscript Mechanical and electrical properties of cross-linked carbon nanotubes  

E-print Network

-6223(07)00660-4 DOI: 10.1016/j.carbon.2007.12.023 Reference: CARBON 4745 To appear in: Carbon Received Date: 4 JulyAccepted Manuscript Mechanical and electrical properties of cross-linked carbon nanotubes Seung I 2007 Revised Date: 14 November 2007 Accepted Date: 13 December 2007 Please cite this article as: Cha, S

Hong, Soon Hyung

321

Role of collagen content and cross-linking in large pulmonary arterial stiffening after chronic hypoxia  

E-print Network

hypertension (HPH) occurs in patients with lung diseases such as chronic obstructive pulmonary disease (BarberaRole of collagen content and cross-linking in large pulmonary arterial stiffening after chronic ­ Madison Abstract Chronic hypoxic pulmonary hypertension (HPH) is associated with large pulmonary artery

Chesler, Naomi C.

322

The counterbend phenomenon in flagellar axonemes and cross-linked filament bundles.  

PubMed

Recent observations of flagellar counterbend in sea urchin sperm show that the mechanical induction of curvature in one part of a passive flagellum induces a compensatory countercurvature elsewhere. This apparent paradoxical effect cannot be explained using the standard elastic rod theory of Euler and Bernoulli, or even the more general Cosserat theory of rods. Here, we develop a geometrically exact mechanical model to describe the statics of microtubule bundles that is capable of predicting the curvature reversal events observed in eukaryotic flagella. This is achieved by allowing the interaction of deformations in different material directions, by accounting not only for structural bending, but also for the elastic forces originating from the internal cross-linking mechanics. Large-amplitude static configurations can be described analytically, and an excellent match between the model and the observed counterbend deformation was found. This allowed a simultaneous estimation of multiple sperm flagellum material parameters, namely the cross-linking sliding resistance, the bending stiffness, and the sperm head junction compliance ratio. We further show that small variations on the empirical conditions may induce discrepancies for the evaluation of the flagellar material quantities, so that caution is required when interpreting experiments. Finally, our analysis demonstrates that the counterbend emerges as a fundamental property of sliding resistance in cross-linked filamentous polymer bundles, which also suggests that cross-linking proteins may contribute to the regulation of the flagellar waveform in swimming sperm via counterbend mechanics. PMID:23824293

Gadêlha, Hermes; Gaffney, Eamonn A; Goriely, Alain

2013-07-23

323

In vivo actin cross-linking induced by Vibrio cholerae type VI secretion system is associated  

E-print Network

In vivo actin cross-linking induced by Vibrio cholerae type VI secretion system is associated cholerae strain V52. Previous work indicated that trans- location of VgrG-1 occurred only after endocytic of host cells, eventually causing cell death. To determine whether V. cholerae T6SS is functional during

Mekalanos, John

324

pH-responsive robust polymer micelles with metal-ligand coordinated core cross-links.  

PubMed

We report on pH-responsive core-shell polymer micelles with catechol-Fe(3+) coordinated core cross-links, which provide robustness to drug-loaded polymer micelles and allow the facilitated intracellular release of loaded anticancer drugs in response to an endosomal acidic pH. PMID:24643304

Hwang, Gyu Ha; Min, Kyung Hyun; Lee, Hong Jae; Nam, Hye Young; Choi, Gi Hyun; Kim, Byung Joo; Jeong, Seo Young; Lee, Sang Cheon

2014-04-28

325

Experimental scleral cross-linking increases glaucoma damage in a mouse model.  

PubMed

The purpose of this study was to assess the effect of a scleral cross-linking agent on susceptibility to glaucoma damage in a mouse model.CD1 mice underwent 3 subconjunctival injections of 0.5 M glyceraldehyde (GA) in 1 week, then had elevated intraocular pressure (IOP) induced by bead injection. Degree of cross-linking was measured by enzyme-linked immunosorbent assay (ELISA), scleral permeability was measured by fluorescence recovery after photobleaching (FRAP), and the mechanical effects of GA exposure were measured by inflation testing. Control mice had buffer injection or no injection in 2 separate glaucoma experiments. IOP was monitored by Tonolab and retinal ganglion cell (RGC) loss was measured by histological axon counting. To rule out undesirable effects of GA, we performed electroretinography and detailed histology of the retina. GA exposure had no detectable effects on RGC number, retinal structure or function either histologically or electrophysiologically. GA increased cross-linking of sclera by 37% in an ELISA assay, decreased scleral permeability (FRAP, p = 0.001), and produced a steeper pressure-strain behavior by in vitro inflation testing. In two experimental glaucoma experiments, GA-treated eyes had greater RGC axon loss from elevated IOP than either buffer-injected or control eyes, controlling for level of IOP exposure over time (p = 0.01, and 0.049, multivariable regression analyses). This is the first report that experimental alteration of the sclera, by cross-linking, increases susceptibility to RGC damage in mice. PMID:25285424

Kimball, Elizabeth C; Nguyen, Cathy; Steinhart, Matthew R; Nguyen, Thao D; Pease, Mary E; Oglesby, Ericka N; Oveson, Brian C; Quigley, Harry A

2014-11-01

326

Temperature dependence of creep compliance of highly cross-linked epoxy: A molecular simulation study  

SciTech Connect

We have used molecular dynamics (MD) simulations to study the effect of temperature on the creep compliance of neat cross-linked epoxy. Experimental studies of mechanical behavior of cross-linked epoxy in literature commonly report creep compliance values, whereas molecular simulations of these systems have primarily focused on the Young’s modulus. In this work, in order to obtain a more direct comparison between experiments and simulations, atomistically detailed models of the cross-linked epoxy are used to study their creep compliance as a function of temperature using MD simulations. The creep tests are performed by applying a constant tensile stress and monitoring the resulting strain in the system. Our results show that simulated values of creep compliance increase with an increase in both time and temperature. We believe that such calculations of the creep compliance, along with the use of time temperature superposition, hold great promise in connecting the molecular insight obtained from molecular simulation at small length- and time-scales with the experimental behavior of such materials. To the best of our knowledge, this work is the first reported effort that investigates the creep compliance behavior of cross-linked epoxy using MD simulations.

Khabaz, Fardin, E-mail: rajesh.khare@ttu.edu; Khare, Ketan S., E-mail: rajesh.khare@ttu.edu; Khare, Rajesh, E-mail: rajesh.khare@ttu.edu [Department of Chemical Engineering, Texas Tech University, Lubbock, TX 79409 (United States)

2014-05-15

327

The counterbend phenomenon in flagellar axonemes and cross-linked filament bundles  

PubMed Central

Recent observations of flagellar counterbend in sea urchin sperm show that the mechanical induction of curvature in one part of a passive flagellum induces a compensatory countercurvature elsewhere. This apparent paradoxical effect cannot be explained using the standard elastic rod theory of Euler and Bernoulli, or even the more general Cosserat theory of rods. Here, we develop a geometrically exact mechanical model to describe the statics of microtubule bundles that is capable of predicting the curvature reversal events observed in eukaryotic flagella. This is achieved by allowing the interaction of deformations in different material directions, by accounting not only for structural bending, but also for the elastic forces originating from the internal cross-linking mechanics. Large-amplitude static configurations can be described analytically, and an excellent match between the model and the observed counterbend deformation was found. This allowed a simultaneous estimation of multiple sperm flagellum material parameters, namely the cross-linking sliding resistance, the bending stiffness, and the sperm head junction compliance ratio. We further show that small variations on the empirical conditions may induce discrepancies for the evaluation of the flagellar material quantities, so that caution is required when interpreting experiments. Finally, our analysis demonstrates that the counterbend emerges as a fundamental property of sliding resistance in cross-linked filamentous polymer bundles, which also suggests that cross-linking proteins may contribute to the regulation of the flagellar waveform in swimming sperm via counterbend mechanics. PMID:23824293

Gadêlha, Hermes; Gaffney, Eamonn A.; Goriely, Alain

2013-01-01

328

Effect of the Cross-Linking Density on the Thermoresponsive Behavior of Hollow PNIPAM Microgels.  

PubMed

We report on the fabrication of thermally responsive hollow pNIPAM particles through the oxidation of the metal core in an Au@pNIPAM system. The selective oxidation of the Au core is achieved by addition of AuCl4(-) to an aqueous dispersion of Au@pNIPAM particles in the presence of cetyltrimethylammonium bromide (CTAB). We fabricate hollow pNIPAM particles with three cross-linking densities (N,N'-methylenebis(acrylamide), BA, at 5%, 10%, and 17.5%). The study of the effect of the amount of BA within the microgel network was performed by dynamic light scattering (DLS), transmission electron microscopy (TEM), and atomic force microscopy (AFM), showing its key role in determining the final hollow structure and thermal response. While the thermal responsiveness is largely achieved at low cross-linking densities, the hollow structure only remains at larger cross-linking densities. This was further confirmed by cryo-TEM analysis of hollow pNIPAM particles below and above the volume phase transition temperature (VPTT). Thus, it clearly shows (i) the shrinking of particle size with the temperature at low cross-linking density and (ii) the dependence of particle size on the amount of cross-linker for the final hollow pNIPAM structure. Observed differences in the hollow pNIPAM structure are attributed to different elastic contributions (?elas), showing higher elasticity for microgels synthesized at lower amount of BA. PMID:25526382

Contreras-Cáceres, Rafael; Schellkopf, Leonard; Fernández-López, Cristina; Pastoriza-Santos, Isabel; Pérez-Juste, Jorge; Stamm, Manfred

2015-01-27

329

Highly conductive carbon nanotube buckypapers with improved doping stability via conjugational cross-linking.  

PubMed

Carbon nanotube (CNT) sheets or buckypapers have demonstrated promising electrical conductivity and mechanical performance. However, their electrical conductivity is still far below the requirements for engineering applications, such as using as a substitute for copper mesh, which is currently used in composite aircraft structures for lightning strike protection. In this study, different CNT buckypapers were stretched to increase their alignment, and then subjected to conjugational cross-linking via chemical functionalization. The conjugationally cross-linked buckypapers (CCL-BPs) demonstrated higher electrical conductivity of up to 6200 S cm( - 1), which is more than one order increase compared to the pristine buckypapers. The CCL-BPs also showed excellent doping stability in over 300 h in atmosphere and were resistant to degradation at elevated temperatures. The tensile strength of the stretched CCL-BPs reached 220 MPa, which is about three times that of pristine buckypapers. We attribute these property improvements to the effective and stable conjugational cross-links of CNTs, which can simultaneously improve the electrical conductivity, doping stability and mechanical properties. Specifically, the electrical conductivity increase resulted from improving the CNT alignment and inter-tube electron transport capability. The conjugational cross-links provide effective 3D conductive paths to increase the mobility of electrons among individual nanotubes. The stable covalent bonding also enhances the thermal stability and load transfer. The significant electrical and mechanical property improvement renders buckypaper a multifunctional material for various applications, such as conducting composites, battery electrodes, capacitors, etc. PMID:22072011

Chen, I-Wen Peter; Liang, Richard; Zhao, Haibo; Wang, Ben; Zhang, Chuck

2011-12-01

330

Highly conductive carbon nanotube buckypapers with improved doping stability via conjugational cross-linking  

NASA Astrophysics Data System (ADS)

Carbon nanotube (CNT) sheets or buckypapers have demonstrated promising electrical conductivity and mechanical performance. However, their electrical conductivity is still far below the requirements for engineering applications, such as using as a substitute for copper mesh, which is currently used in composite aircraft structures for lightning strike protection. In this study, different CNT buckypapers were stretched to increase their alignment, and then subjected to conjugational cross-linking via chemical functionalization. The conjugationally cross-linked buckypapers (CCL-BPs) demonstrated higher electrical conductivity of up to 6200 S cm - 1, which is more than one order increase compared to the pristine buckypapers. The CCL-BPs also showed excellent doping stability in over 300 h in atmosphere and were resistant to degradation at elevated temperatures. The tensile strength of the stretched CCL-BPs reached 220 MPa, which is about three times that of pristine buckypapers. We attribute these property improvements to the effective and stable conjugational cross-links of CNTs, which can simultaneously improve the electrical conductivity, doping stability and mechanical properties. Specifically, the electrical conductivity increase resulted from improving the CNT alignment and inter-tube electron transport capability. The conjugational cross-links provide effective 3D conductive paths to increase the mobility of electrons among individual nanotubes. The stable covalent bonding also enhances the thermal stability and load transfer. The significant electrical and mechanical property improvement renders buckypaper a multifunctional material for various applications, such as conducting composites, battery electrodes, capacitors, etc.

Chen, I.-Wen Peter; Liang, Richard; Zhao, Haibo; Wang, Ben; Zhang, Chuck

2011-12-01

331

Isolation and removal of proteolytic enzymes with magnetic cross-linked erythrocytes  

NASA Astrophysics Data System (ADS)

New magnetic adsorbents for batch isolation and removal of various proteolytic enzymes were prepared by glutaraldehyde cross-linking of bovine, porcine and human erythrocytes in the presence of fine magnetic particles. Trypsin, chymotrypsin, alkaline bacterial protease and proteases present in various commercial enzyme preparations were efficiently adsorbed on these adsorbents; on the contrary, proteins without proteolytic activity were not adsorbed.

Šafa?ík, Ivo; Šafa?íková, Mirka

2001-01-01

332

Design of phosphated cross-linked microspheres of bael fruit gum as a biodegradable carrier.  

PubMed

Present work was aimed at designing of phosphated cross-linked microspheres of bael fruit gum (BFG) by emulsification method using sodium-tri-meta phosphate as a cross-linking agent for treatment of colon cancer using 5-fluorouracil as model drug. Stirring speed was found to be 1,000 rpm for about 5 h to be optimal to obtain reproducible microspheres. It was found that there is an increase in particle size as polymer concentration is increased whereas a reduction in particle size was observed as there is increase in stirring speed. Cross-linked BFG microspheres were successfully prepared by emulsification method. Optimum surfactant concentration was found to be 2 % w/w. Scanning electron microscopy studies showed that the drug-loaded microspheres were non-aggregated and in spherical shape. Differential scanning calorimetry and Fourier transform infrared-spectroscopy studies showed that drug and excipients are compatible. Release studies showed that drug release was more profound in cecal medium induced with enzymes causing degradation of the cross linked BFG than that of the release showed in simulated intestinal fluid. Stability studies showed that there were no significant changes in the drug content and physical appearance of microspheres. PMID:24668152

Mahammed, Nawaz; Gowda, D V; Deshpande, Rohan D; Thirumaleshwar, Shailesh

2015-01-01

333

Cytotoxicity and internalization of Pluronic micelles stabilized by core cross-linking.  

PubMed

A UV-cross-linkable agent was incorporated and polymerized in Pluronic micelle core to create an interpenetrating polymer network (IPN) of poly(pentaerythritol tetraacrylate). This stabilization prevented micelle disruption below the critical micelle temperature (CMT) and concentration (CMC), while maintaining the integrity of the PEO corona and the hydrophobic properties of the PPO core. The prepared stabilized spherical micelles of Pluronic P94 and F127 presented hydrodynamic diameters ranging from 40 to 50nm. The stability of cross-linked Pluronic micelles at 37°C in the presence of serum proteins was studied and no aggregation of the micelles was observed, revealing the colloidal stability of the system. Cytotoxicity experiments in NIH/3T3 mouse fibroblasts revealed that the presence of the cross-linking agent did not induce any further toxicity in comparison to the respective pure polymer solutions. Furthermore, stabilized micelles of Pluronic P94 were shown to be less toxic than the polymer itself. A hydrophobic fluorescent probe (Nile red) was absorbed in the cross-linked core of pre-stabilized micelles to mimic the incorporation of a poorly water-soluble drug, and the internalization and intracellular localization of Nile red was studied by confocal microscopy at different incubation times. Overall, the results indicate that Pluronic micelles stabilized by core cross-linking are capable of delivering hydrophobic components physically entrapped in the micelles, thus making them a potential candidate as a delivery platform for imaging or therapy of cancer. PMID:25307996

Arranja, Alexandra; Schroder, André P; Schmutz, Marc; Waton, Gilles; Schosseler, François; Mendes, Eduardo

2014-12-28

334

Synthesis of biotinylated retinoids for cross-linking and isolation of retinol binding proteins  

E-print Network

Synthesis of biotinylated retinoids for cross-linking and isolation of retinol binding proteins is dedicated to Professor Yoshito Kishi on his receipt of the Tetrahedron Prize Abstract--The synthesis of (3R proteins (RBPs) via a nucleophilic displacement of the haloacetate by a residue in the binding site

Nesnas, Nasri

335

Cross-Linked Nanoporous Materials from Reactive and Multifunctional Block Polymers  

SciTech Connect

Polylactide-b-poly(styrene-co-2-hydroxyethylmethacrylate) (PLA-b-P(S-co-HEMA)) and polylactide-b-poly(styrene-co-2-hydroxyethylacrylate) (PLA-b-P(S-co-HEA)) were synthesized by combination of ring-opening polymerization and reversible addition-fragmentation chain transfer polymerization. {sup 1}H nuclear magnetic resonance spectroscopy and size exclusion chromatography data indicated that the polymerizations were controlled and that hydroxyl groups were successfully incorporated into the block polymers. The polymers were reacted with 4,4{prime}-methylenebis(phenyl isocyanate) (MDI) to form the corresponding cross-linked materials. The materials were annealed at 150 C to complete the coupling reaction. Robust nanoporous materials were obtained from the cross-linked polymers by treatment with aqueous base to hydrolyze the PLA phase. Small-angle X-ray scattering study combined with scanning electron microscopy showed that MDI-cross-linked PLA-b-P(S-co-HEMA)/PLA-b-P(S-co-HEA) can adopt lamellar, hexagonally perforated lamellar, and hexagonally packed cylindrical morphologies after annealing. In particular, the HPL morphology was found to evolve from lamellae due to increase in volume fraction of PS phase as MDI reacted with hydroxyl groups. The reaction also kinetically trapped the morphology by cross-linking. Bicontinuous morphologies were also observed when dibutyltin dilaurate was added to accelerate reaction between the polymer and MDI.

Seo, Myungeun; Amendt, Mark A.; Hillmyer, Marc A. (UMM)

2012-10-10

336

DNA-Protein Cross-Linking by 1,2,3,4-Diepoxybutane  

PubMed Central

1,2,3,4-Diepoxybutane (DEB) is a strongly genotoxic diepoxide hypothesized to be the ultimate carcinogenic metabolite of the common industrial chemical and environmental carcinogen 1,3-butadiene. DEB is a bis-electrophile capable of cross-linking cellular biomolecules to form DNA-DNA and DNA-protein cross-links (DPCs), which are thought to play a central role in its biological activity. Previous studies with recombinant proteins have shown that the biological outcomes of DEB-induced DPCs are strongly influenced by protein identities. The present work combines affinity capture methodology with mass spectrometry-based proteomics and immunological detection to identify the proteins which form DPCs in nuclear extracts from human cervical carcinoma (HeLa) cells. We identified 39 human proteins that form covalent DPCs in the presence of DEB. DNA-protein cross-linking efficiency following treatment with 25 mM DEB was 2–12%, depending on protein identity. HPLC-ESI+-MS/MS analysis of the total proteolytic digests of cross-linked proteins revealed the presence of 1-(S-cysteinyl)-4-(guan-7-yl)-2,3-butanediol conjugates, suggesting that DEB forms DPCs between cysteine thiols within proteins and the N-7 guanine positions within DNA. PMID:20666492

Michaelson-Richie, Erin D.; Loeber, Rachel L.; Codreanu, Simona G.; Ming, Xun; Liebler, Daniel C.; Campbell, Colin; Tretyakova, Natalia Y.

2010-01-01

337

Bone Fracture Toughness and Strength Correlate with Collagen Cross-Link Maturity in a Dose-Controlled Lathyrism Mouse Model.  

PubMed

Collagen cross-linking is altered in many diseases of bone, and enzymatic collagen cross-links are important to bone quality as evidenced by losses of strength following lysyl oxidase inhibition (lathyrism). We hypothesized that cross-links also contribute directly to bone fracture toughness. A mouse model of lathyrism using subcutaneous injection of up to 500mg/kg ?-aminopropionitrile (BAPN) was developed and characterized (60 animals across 4 dosage groups). Three weeks of 150 or 350?mg/kg BAPN treatment in young growing mice significantly reduced cortical bone fracture toughness, strength, and pyridinoline cross-link content. Ratios reflecting relative cross-link maturity were positive regressors of fracture toughness (HP/[DHLNL?+?HLNL] r(2) ?=?0.208, p?cross-links were significant positive regressors of tissue strength (lysyl pyridinoline r(2) ?=?0.159, p?=?0.014; hydroxylysyl pyridinoline r(2) ?=?0.112, p?cross-links, which were not significantly reduced by BAPN, did not correlate with mechanical properties. The effect of BAPN treatment on mechanical properties was dose specific, with the greatest impact found at the intermediate (350mg/kg) dose. Calcein labeling was used to define locations of new bone formation, allowing for the identification of regions of normally cross-linked (preexisting) and BAPN treated (newly formed, cross-link-deficient) bone. Raman spectroscopy revealed spatial differences due to relative tissue age and effects of cross-link inhibition. Newly deposited tissues had lower mineral/matrix, carbonate/phosphate and Amide I cross-link (matrix maturity) ratios compared to preexisting tissues. BAPN treatment did not affect mineral measures, but significantly increased the cross-link (matrix maturity) ratio compared to newly formed control tissue. Our study reveals that spatially localized effects of short term BAPN cross-link inhibition can alter the whole bone collagen cross-link profile to a measureable degree, and this cross-link profile correlates with bone fracture toughness and strength. Thus, cross-link profile perturbations associated with bone disease may provide insight into bone mechanical quality and fracture risk. © 2014 American Society for Bone and Mineral Research. PMID:25213475

McNerny, Erin M B; Gong, Bo; Morris, Michael D; Kohn, David H

2014-09-11

338

A top down approach to protein structural studies using chemical cross-linking and Fourier transform mass spectrometry.  

PubMed

Mass spectrometric analysis of wild-type proteins that have been covalently modified by bifunctional cross-linking reagents and then digested proteolytically can be used to obtain low-resolution distance constraints, which can be useful for protein structure determination. Limitations of this approach include time-consuming separation steps, such as the separation of internally cross-linked protein monomers from covalent dimers, and a susceptibility to artifacts due to low levels of natural and man-made peptide modifications that can be mistaken for cross-linked species. The results presented here show that when a crude cross-linked protein mixture is injected into an electrospray ionization Fourier transform mass spectrometry (ESI-FTMS) instrument, the cross-link positions can be localized by fragmentation and mass spectrometry on the 'gas-phase purified' singly internally cross-linked monomer. Our results show that reaction of ubiquitin with the homobifunctional lysine-lysine cross-linking reagent dissuccinimidyl suberate (DSS) resulted in two cross-links consistent with the known ubiquitin tertiary structure (K6-K11 and K48-K63). Because no protein or peptide chemistry steps are needed, other than the initial cross-linking, this new top down approach appears well suited for high-throughput experiments with multiple cross-linkers and reaction conditions. Published in 2002 by John Wiley & Sons, Ltd. PMID:12512095

Kruppa, Gary H; Schoeniger, Joseph; Young, Malin M

2003-01-01

339

Monitoring the Internal Structure of Poly(N-vinylcaprolactam) Microgels with Variable Cross-Link Concentration.  

PubMed

The combination of a set of complementary techniques allows us to construct an unprecedented and comprehensive picture of the internal structure, temperature dependent swelling behavior, and the dependence of these properties on the cross-linker concentration of microgel particles based on N-vinylcaprolactam (VCL). The microgels were synthesized by precipitation polymerization using different amounts of cross-linking agent. Characterization was performed by small-angle neutron scattering (SANS) using two complementary neutron instruments to cover a uniquely broad Q-range with one probe. Additionally we used dynamic light scattering (DLS), atomic force microscopy (AFM), and differential scanning calorimetry (DSC). Previously obtained nuclear magnetic resonance spectroscopy (NMR) results on the same PVCL particles are utilized to round the picture off. Our study shows that both the particle radius and the cross-link density and therefore also the stiffness of the microgels rises with increasing cross-linker content. Hence, more cross-linker reduces the swelling capability distinctly. These findings are supported by SANS and AFM measurements. Independent DLS experiments also found the increase in particle size but suggest an unchanged cross-link density. The reason for the apparent contradiction is the indirect extraction of the parameters via a model in the evaluation of DLS measurements. The more direct approach in AFM by evaluating the cross section profiles of observed microgel particles gives evidence of significantly softer and more deformable particles at lower cross-linker concentrations and therefore verifies the change in cross-link density. DSC data indicate a minor but unexpected shift of the volume phase transition temperature (VPTT) to higher temperatures and exposes a more heterogeneous internal structure of the microgels with increasing cross-link density. Moreover, a change in the total energy transfer during the VPT gives evidence that the strength of hydrogen bonds is significantly affected by the cross-link density. A strong and reproducible deviation of the material density of the cross-linked microgel polymer chains toward a higher value compared to the respective linear chains has yet to be explained. PMID:25493607

Schneider, Florian; Balaceanu, Andreea; Feoktystov, Artem; Pipich, Vitaliy; Wu, Yaodong; Allgaier, Jürgen; Pyckhout-Hintzen, Wim; Pich, Andrij; Schneider, Gerald J

2014-12-23

340

Initial Studies Using Aliphatic ?-Nitro Alcohols for Therapeutic Corneal Cross-Linking  

PubMed Central

Purpose Corneal collagen cross-linking through UVA-riboflavin photochemistry (UVAR) has been shown to be an effective treatment for keratoconus and related keratectasias. In recent studies using sclera, the authors observed that short-chain aliphatic ?-nitro alcohols can cross-link collagenous tissue under physiologic conditions. Thus, this study was undertaken to evaluate these agents as potential pharmacologic alternatives to UVAR. Methods Porcine corneal strips (8 × 4 mm) and corneoscleral complexes were cross-linked using 1 to 100 mM 2-nitroethanol (2ne), 2-nitro-1-propanol (2nprop), and 3-nitro-2-pentanol (3n2pent) at pH 7.4, 34°C. Cross-linking by UVAR was carried out for comparison. Thermal shrinkage temperature analysis was used to evaluate cross-linking effects, and changes in corneal light transmission were determined with a fiber-optic spectrophotometer. Results At 10 and 100 mM for 96 hours, initial shrinkage temperature (Ti) was shifted by 3.3°C (P < 0.001) and 9.8°C (P < 0.001) for 2ne, 2.9°C (P = 0.008) and 4.9°C (P < 0.001) for 2nprop, and 3.8°C (P = 0.003) and 4.9°C (P < 0.001) for 3n2pent. Reacting at 1 mM through daily exchange of fluid over 7 days shifted Ti by 3.8°C (P < 0.001), 4.4°C (P = 0.002), and 3.2°C (P = 0.005), for 2ne, 2nprop, and 3n2pent, respectively. These shifts were greater than cross-linking using UVAR (Ti = 1.9°C; P = 0.012). In the blue light region (400?500 nm), transmission was decreased by 5.6% (P = 0.003), 2.1% (P = 0.260), and 0% (P = 0.428) for 2ne, 2nprop, and 3n2pent, respectively. Conclusions ?-Nitro alcohols can induce corneal cross-linking in vitro better than the UVAR technique and can induce negligible effects on light transmission. These early results suggest that such compounds could be used as topical stiffening agents for keratoconus and related disorders. PMID:18836172

Paik, David C.; Wen, Quan; Braunstein, Richard E.; Airiani, Suzanna; Trokel, Stephen L.

2009-01-01

341

Boundary lubrication of articular cartilage : contribution of hyaluronan in health and injury  

E-print Network

MJ, Soltes L: The many ways to cleave hyaluronan. BiotechnolSoltes L: Role, metabolism, chemical modifications and applications of hyaluronan.Soltes L: Role, metabolism, chemical modifications and applications of hyaluronan.

Antonacci, Jennifer M.

2011-01-01

342

Ingested hyaluronan moisturizes dry skin.  

PubMed

Hyaluronan (HA) is present in many tissues of the body and is essential to maintain moistness in the skin tissues, which contain approximately half the body's HA mass. Due to its viscosity and moisturizing effect, HA is widely distributed as a medicine, cosmetic, food, and, recently marketed in Japan as a popular dietary supplement to promote skin moisture. In a randomized, double-blind, placebo-controlled clinical study it was found that ingested HA increased skin moisture and improved treatment outcomes for patients with dry skin. HA is also reported to be absorbed by the body distributed, in part, to the skin. Ingested HA contributes to the increased synthesis of HA and promotes cell proliferation in fibroblasts. These effects show that ingestion of HA moisturizes the skin and is expected to improve the quality of life for people who suffer from dry skin. This review examines the moisturizing effects of dry skin by ingested HA and summarizes the series of mechanisms from absorption to pharmacological action. PMID:25014997

Kawada, Chinatsu; Yoshida, Takushi; Yoshida, Hideto; Matsuoka, Ryosuke; Sakamoto, Wakako; Odanaka, Wataru; Sato, Toshihide; Yamasaki, Takeshi; Kanemitsu, Tomoyuki; Masuda, Yasunobu; Urushibata, Osamu

2014-01-01

343

Cross-linked silver-impregnated skin for burn wound management.  

PubMed

Biological skin is effective in restoring the missing water vapor barrier and promoting healing in burn wounds. Its effectiveness in wound management has been limited, however, by its inherently limited antibacterial properties and the fact that it is sometimes rejected before healing is complete, even reversing previous beneficial effects. Limited availability and storage difficulties have posed further problems. Impregnation of biological skin with silver ions has been proven to provide a potent bactericidal effect directly at the wound surface. We hypothesized that aldehyde cross-linking of silver-impregnated skin would mask the histocompatibility sites from the recipient's immune system. This has been demonstrated previously with aldehyde cross-linking of allografts and xenografts, prolonging retention sufficiently to permit complete wound healing. Commercially available skin was treated with an aldehyde compound and impregnated with silver. Initial studies of this cross-linked skin for treatment of burn wounds showed average retention to be between 117 and 161 days, far exceeding that of any untreated skin. It was subsequently found that the aldehyde cross-linking permitted impregnation with higher concentrations of silver than had previously been possible--2,600 to 2,830 ppm as compared to an average of 1,020 to 1,350 ppm in previously available silver-impregnated skin. This results in a more potent, immediate antibacterial effect at the wound surface and an extended period of time-release antibacterial action before the silver is exhausted. The antibacterial properties of this aldehyde cross-linked silver-impregnated skin are effective in decontaminating even grossly infected wounds and in protecting against contamination of clean wounds from adjacent infected areas or external sources.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:3192604

Ersek, R A; Denton, D R

1988-01-01

344

Peptidoglycan cross-linking and teichoic acid attachment in Streptococcus pneumoniae.  

PubMed

Autolysin-defective pneumococci continue to synthesize both peptidoglycan and teichoic acid polymers (Fischer and Tomasz, J. Bacteriol. 157:507-513, 1984). Most of these peptidoglycan polymers are released into the surrounding medium, and a smaller portion becomes attached to the preexisting cell wall. We report here studies on the degree of cross-linking, teichoic acid substitution, and chemical composition of these peptidoglycan polymers and compare them with normal cell walls. peptidoglycan chains released from the penicillin-treated pneumococci contained no attached teichoic acids. The released peptidoglycan was hydrolyzed by M1 muramidase; over 90% of this material adsorbed to vancomycin-Sepharose and behaved like disaccharide-peptide monomers during chromatography, indicating that the released peptidoglycan contained un-cross-linked stem peptides, most of which carried the carboxy-terminal D-alanyl-D-alanine. The N-terminal residue of the released peptidoglycan was alanine, with only a minor contribution from lysine. In addition to the usual stem peptide components of pneumococcal cell walls (alanine, lysine, and glutamic acid), chemical analysis revealed the presence of significant amounts of serine, aspartate, and glycine and a high amount of alanine and glutamate as well. We suggest that these latter amino acids and the excess alanine and glutamate are present as interpeptide bridges. Heterogeneity of these was suggested by the observation that digestion of the released peptidoglycan with the pneumococcal murein hydrolase (amidase) produced peptides that were resolved by ion-exchange chromatography into two distinct peaks; the more highly mobile of these was enriched with glycine and aspartate. The peptidoglycan chains that became attached to the preexisting cell wall in the presence of penicillin contained fewer peptide cross-links and proportionally fewer attached teichoic acids than did their normal counterparts. The normal cell wall was heavily cross-linked, and the cross-linked peptides were distributed equally between the teichoic acid-linked and teichoic acid-free fragments. PMID:4008447

Fischer, H; Tomasz, A

1985-07-01

345

Peptidoglycan cross-linking in Staphylococcus aureus. An apparent random polymerisation process.  

PubMed

The peptidoglycan of Staphylococcus aureus contains relatively short glycan chains and is highly cross-linked via its peptide chains. The material from wild-type (strain H) and mutants H28, H4B and MR-1 was freed from the teichoic-acid-linked component and then hydrolysed by Chalaropsis muramidase to yield disaccharide-repeating units of the glycan with attached peptides either non-cross-linked (monomer) or joined to similar units by one (dimer), two (trimer) or more (oligomer) peptide cross links. The resulting fragments were separated by high-resolution HPLC so that distinguishable components as large as nonamer could be identified. Extrapolation showed that, in S. aureus H, H28 and MR-1, oligomers at least as large as eicosamer formed part of the smooth distribution of oligomer fragments, whereas in strain H4B (PBP4-) the maximum size was around dodecamer. The oligomer distribution profile was related to the polymerization theories of Flory, which allow a distinction to be made between a monomer addition model, whereby each oligomer can only be synthesized by the addition of a single monomer unit to its next lower homologue, and a random addition model, in which an oligomer can be formed by linkage of any combination of its constituent smaller units. In S. aureus close approximation to the random addition model for oligomer synthesis and hence for peptidoglycan cross-linking was observed, both in PBP4+ and PBP4- mutants. The implications for secondary cross-linking in S. aureus cell wall formation are inescapable, although the possibility of an endopeptidase/transpeptidase providing later modification of the peptidoglycan is not completely ruled out. PMID:2384086

Snowden, M A; Perkins, H R

1990-07-31

346

Immobilization of Quantum Dots in the Photo-Cross-Linked Poly(ethylene glycol)-Based Hydrogel  

SciTech Connect

An inorganic/organic composite hybrid nano-system has been successfully synthesized in which nanocrystalline quantum dots (QDs) were effectively immobilized within a photo-cross-linked poly(ethylene glycol) hydrogel. Organometallic synthesis of CdTe and CdSe QDs was accomplished with a trioctylphosphine oxide (TOPO) cap. Replacing the TOPO cap with mercaptoacetic acid groups further yielded modified water-soluble nanocrystals. The immobilization of these functionalized CdTe and CdSe QDs within PEG hydrogel network has been shown to be effective through utilization of physical trapping. The CdTe and CdSe QDs had a particle diameter of 4.5 and 2.5-6.0 nm, respectively. The most efficiently trapped QDs had a size of 4.5 nm or larger. Particle size determination was derived from spectroscopic (absorption and photoluminescence) and high-resolution transmission electron microscopic techniques. These QD-immobilized gel systems demonstrated photoluminescence characteristics unique to semiconductor QD nanocrystals. The authors have envisioned the utilization of the unique photophysical properties of this material as a convenient signal transducer for in vivo biosensing. The most promising application of the described QD/PEG-NC hybrid system is in the fields of in vivo fluorescence microscopy and as a monitoring system for drug delivery and wound healing.

Gattas-Asfura, Kerim M.(Miami University) [Miami University; Zheng, Yujun (Miami University) [Miami University; Micic, Miodrag (BATTELLE (PACIFIC NW LAB)) [BATTELLE (PACIFIC NW LAB); Snedaker, Michael J.(Miami University) [Miami University; Ji, Xiaojun (Miami University) [Miami University; Sui, Guodong (Miami University) [Miami University; Orbulescu, Jhony (Miami University) [Miami University; Andreopoulos, Fotios M.(Miami University) [Miami University; Pham, Si M.(Miami University) [Miami University; Wang, Chong M.(BATTELLE (PACIFIC NW LAB)) [BATTELLE (PACIFIC NW LAB)

2003-09-25

347

SJG-136 (NSC 694501), a novel rationally designed DNA minor groove interstrand cross-linking agent with potent and broad spectrum antitumor activity: part 1: cellular pharmacology, in vitro and initial in vivo antitumor activity.  

PubMed

SJG-136 (NSC 694501) is a rationally designed pyrrolobenzodiazepine dimer that binds in the minor groove of DNA. It spans 6 bp with a preference for binding to purine-GATC-pyrimidine sequences. The agent has potent activity in the National Cancer Institute (NCI) anticancer drug screen with 50% net growth inhibition conferred by 0.14 to 320 nmol/L (7.4 nmol/L mean). Sensitive cell lines exhibit total growth inhibition and 50% lethality after treatment with as little as 0.83 and 7.1 nmol/L SJG-136, respectively. COMPARE and molecular target analysis of SJG-136 data versus that of >60,000 compounds tested in the NCI 60 cell line screen shows that, although the agent has similarity to other DNA binding agents, the pattern of activity for SJG-136 does not fit within the clusters of any known agents, suggesting that SJG-136 possesses a distinct mechanism of action. Testing in the NCI standard hollow fiber assay produced prominent growth inhibition in 20 of 24 i.p. and 7 of 24 s.c. test combinations with 5 of 12 cell lines exhibiting cell kill. In addition, SJG-136 produced antitumor activity in mice bearing CH1 and CH1cisR xenografts, a cisplatin-resistant human ovarian tumor model, and also in mice bearing LS174T xenografts, a human colon tumor model. SJG-136 produces DNA interstrand cross-links between two N-2 guanine positions on opposite strands and separated by 2 bp. In human tumor cell lines, the cross-links form rapidly and persist compared with those produced by conventional cross-linking agents such as nitrogen mustards. In mice bearing the LS174T human colon xenograft, DNA interstrand cross-links can be detected in tumor cells using a modification of the single cell gel electrophoresis (comet) assay after administration of a therapeutic dose. Cross-links in the tumor increase with dose and are clearly detectable at 1 hour after i.v. administration. The level of cross-linking persists over a 24-hour period in this tumor in contrast to cross-links produced by conventional cross-linking agents observed over the same time period. PMID:15374986

Hartley, John A; Spanswick, Victoria J; Brooks, Natalie; Clingen, Peter H; McHugh, Peter J; Hochhauser, Daniel; Pedley, R Barbara; Kelland, Lloyd R; Alley, Michael C; Schultz, Robert; Hollingshead, Melinda G; Schweikart, Karen M; Tomaszewski, Joseph E; Sausville, Edward A; Gregson, Stephen J; Howard, Philip W; Thurston, David E

2004-09-15

348

Inhibitors of advanced glycation end product-associated protein cross-linking.  

PubMed

The reaction of lens proteins with sugars over time results in the formation of protein-bound advanced glycation end products (AGEs). The most damaging element of AGE formation may be the synthesis of protein-protein cross-links in long-lived proteins, such as collagen or lens crystallins. A quantitative cross-linking assay, involving the sugar-dependent incorporation of [U-(14)C]lysine into protein, was employed to determine the efficacy of a variety of potential cross-linking inhibitors. Reaction mixtures contained 5.0 mM L-threose, 2.5 microCi [(14)C]lysine (1.0 mCi/mmole), 5.0 mg/ml bovine lens proteins, 0-10 mM inhibitor and 1.0 mM DTPA in 100 mM phosphate buffer, pH 7.0. Of 17 potential inhibitors tested, 11 showed 50% inhibition or less at 10 mM. The dicarbonyl-reactive compounds 2-aminoguanidine, semicarbazide and o-phenylenediamine inhibited 50% at 2.0 mM, whereas 10 mM dimethylguanidine had no effect. Several amino acids failed to compete effectively with [(14)C]lysine in the cross-linking assay; however, cysteine inhibited 50% at 1.0 mM. This was likely due to the sulfhydryl group of cysteine, because 3-mercaptopropionic acid and reduced glutathione exhibited similar activity. Sodium metabisulfite had the highest activity, inhibiting 50% at only 0.1-0.2 mM. Protein dimer formation, as determined by SDS-PAGE, was inhibited in a quantitatively similar manner. The dicarbonyl-reactive inhibitors and the sulfur-containing compounds produced similar inhibition curves for [(14)C]lysine incorporation over a 3 week assay with 250 mM glucose. A much lesser effect was observed on either the incorporation of [(14)C]glucose, or on fluorophore formation (360/420 nm), suggesting that non-cross-link fluorophores were also formed. The inhibitor data were consistent with cross-linking by a dicarbonyl intermediate. This was supported by the fact that the inhibitors were uniformly less effective when the 5.0 mM threose was replaced by either 3.0 mM 3-deoxythreosone or 3.0 mM threosone. PMID:11341999

Lehman, T D; Ortwerth, B J

2001-02-14

349

Oegylated and cross-linking carbazole dendrons and dendrimers: Synthesis, characterization, assembly and thin film fabrication  

NASA Astrophysics Data System (ADS)

Dendrimers and dendrons (fractional dendrimers) are macromolecular structures that have well-defined molecular weights and precise number of functional groups. Tailoring these structures has provided designer molecules that can be used for various applications including drug delivery, sensors, and anti-biofouling surfaces. Overall, this dissertation provides novel protocols for the understanding of molecular design, synthesis, and structure-property relationship of OEGylated and conjugated carbazole dendrons and dendrimers. In this design, the use of oligo(ethylene glycol) (OEG) allows for the fabrication of biocompatible materials and imparts hydrophilicity on the structure while the carbazole functionality allows the cross-linking of these designer molecules. Such fine-tuning of macromolecular structures leading to the fabrication of anti-biofouling thin films, nanostructuring at the air-water interface, and assembly into supramolecular superstructures are considered in this dissertation. Chapter 2 details the synthesis, characterization, and electrochemical cross-linking of OEGylated linear dendrons and "Janus-type" dendrimers. Cross-linking the carbazole moieties enables the deposition of these films on Au, indium tin oxide-coated glass, and doped silicon through cyclic voltammetry and provides films with secondary level of organization imparted by the inter- and intra-molecular interaction among the carbazole units. Chapter 3 describes the fabrication of nonspecific protein adsorption resistant surfaces through electrochemical grafting of three different dendrons on SAM carbazole-coated gold substrates. The predictable shape of each dendron and the ability to cross-link the carbazole units have enabled parametrization of OEG conformation and density on these interfaces. Chapter 4 demonstrates the fundamental architectural requirements for obtaining stable films with OEGylated linear dendron molecules providing a new architectural design of nanostructuring OEGylated macromolecules by combining the LB technique and electrochemical cross-linking. The behavior of these OEGylated systems at the air-water interface varies with carbazole dendron generation, the length of the OEG units and the surface pressure applied upon compression. Chapter 5 describes the synthesis and self-assembly behavior of a new series of OEGylated "Janus-type" carbazole dendrimers wherein ordering of these dendrimers was found to depend on the dendrimer generation as well as the solution concentration. Cross-linking the carbazole superstructures was successfully done in situ via chemical oxidation of the carbazole moieties and reduction of the Au ions to zero valent Au.

Felipe, Mary Jane Legaspi

2011-12-01

350

Aliphatic ?-Nitroalcohols for Therapeutic Corneoscleral Cross-linking: Chemical Mechanisms and Higher Order Nitroalcohols  

PubMed Central

Purpose. The recent tissue cross-linking studies indicate that aliphatic ?-nitroalcohols (BNAs) may be useful as pharmacologic corneoscleral cross-linking agents. The present study was performed to identify the specific chemistry involved under physiologic conditions, with the intent of identifying more effective agents. Methods. The mechanism of chemical cross-linking at pH 7.4 and 37°C was studied using three techniques. The colorimetric Griess assay was used to follow the release of nitrite from three mono-nitroalcohols (2-nitroethanol [2ne], 2-nitro-1-propanol [2nprop]), and 3-nitro-2-pentanol [3n2pent]). Second, the evolution of 2nprop in 0.2 M NaH2PO4/Na2HPO4/D2O was studied using 1H-NMR. Third, thermal shrinkage temperature analysis (Ts), a measure of tissue cross-linking, was used to support information from 1the H-NMR studies. Results. A time-dependent release of nitrite was observed for all three mono-nitroalcohols studied. The maximum levels were comparable using either 2ne or 2nprop (?30%). However, much less (?10%) was observed from 3n2pent. Using 1H-NMR, 2nprop evolved into a unique splitting pattern. No match was observed with reference spectra from three possible products of denitration. In contrast, 2-methyl-2-nitro-1,3-propanediol (MNPD), a nitro-diol, was identified, implying the formation of formaldehyde from a retro-nitroaldol (i.e., reverse Henry) reaction. In support of this mechanism, Ts shifts induced by the nitro-triol 2-hydroxymethyl-2-nitro-1,3-propanediol (HNPD) were superior to the nitro-diol MNPD which were superior to the mono nitroalcohol 2nprop. Conclusions. BNAs function as both formaldehyde and nitrite donors under physiologic conditions to cross-link collagenous tissue. Higher order BNAs are more effective than mono nitroalcohols, raising the possibility of using these agents for therapeutic corneoscleral cross-linking. PMID:19797229

Solomon, Marissa R.; Wen, Quan; Turro, Nicholas J.; Trokel, Stephen L.

2010-01-01

351

Quasi-solid polymer electrolytes using photo-cross-linked polymers. Lithium and divalent cation conductors and their applications  

NASA Astrophysics Data System (ADS)

In this report, we will present the results on the photo-cross-linked poly-(ethylene glycol) diacrylate (PEGDA) based quasi-solid, i.e. gel, polymer electrolyte systems with lithium, magnesium and zinc trifluoromethanesulfonates [triflate; M n(CF 3SO 3) n] and their preliminary applications to primary cells. The Celgard® membrane-impregnated electrolytes were prepared in the same manner as Abraham et al. [K.M. Abraham, M. Alamgir, D.K. Hoffman, J. Electrochem. Soc. 142 (1995) 683]. The precursor solutions were composed of metal triflates, ethylene carbonate, propylene carbonate, and tetraethylene glycol diacrylate. The Celgard® #3401 membrane was soaked overnight in the precursor solution, then clamped between two Pyrex glass plates and irradiated with UV light to form a gel electrolyte. The maxima of the conductivity obtained were 4.5×10 -4 S cm -1 at 12 mol% for LiCF 3SO 3, 1.7×10 -4 S cm -1 at 1 mol% for Mg(CF 3SO 3) 2, and 2.1×10 -4 S cm -1 at 4 mol% for Zn(CF 3SO 3) 2 system, respectively. The Arrhenius plots of the conductivities are almost linear between 268 and 338 K with 15-25 kJ/mol of activation energy for conduction. The cell, Li|LiCF 3SO 3-SPE+Celgard® #3401|(CH 3) 4NI 5+acetylene black, showed 2.86 V of OCV and could discharge up to 25% with respect to the cathode active material at a discharging current of 0.075 mA/cm 2.

Ikeda, Shoichiro; Mori, Yoichi; Furuhashi, Yuri; Masuda, Hideki; Yamamoto, Osamu

352

Transglutaminase-mediated Intramolecular Cross-linking of Membrane-bound ?-Synuclein Promotes Amyloid Formation in Lewy Bodies*  

PubMed Central

The ?-synuclein immunopositive and chaotrope-insoluble material from human brains with Lewy body pathology was analyzed by mass spectrometry. From the proteinase K-cleavable peripheral fraction of Lewy bodies, which was densely cross-linked by ?-glutamyl-?-lysine bonds between HspB1 and ubiquitin in a pattern similar to neurofibrillary tangles (Nemes, Z., Devreese, B., Steinert, P. M., Van Beeumen, J., and Fésüs, L. (2004) FASEB J. 18, 1135–1137), 53 proteins were identified. In the core of Lewy bodies only ?-synuclein was found, and it contained a low amount of intramolecular cross-links between Gln-99 and Lys-58. In vitro cross-linking of ?-synuclein by transglutaminases 1–3 and 5 produced a heterogeneous population of variably cross-linked ?-synucleins in solution, which inhibited the aggregation of the protein into amyloid. However, in the presence of phosphatidylserine-rich membranes and micromolar calcium concentrations, the cross-linking by transglutaminases 1, 2, and 5 showed specificity toward the utilization of Gln-99 and Lys-58. As shown by thioflavin T fluorescence monitoring, the formation of this cross-link accelerated the aggregation of native ?-synuclein. Chemical cross-linking of residues 58–99 triggered amyloid formation, whereas such bonding of residues 99 to 10 was inhibitory. Our findings reveal the pivotal role of membrane attachment and transglutaminase-mediated intermolecular cross-linking for the propagative misfolding and aggregation of ?-synuclein. PMID:19651786

Nemes, Zoltán; Petrovski, Goran; Aerts, Maarten; Sergeant, Kjell; Devreese, Bart; Fésüs, László

2009-01-01

353

Biomedical publications of Prof. David N. Nikogosyan, made in UCC UV-induced nucleic acid-protein cross-linking  

E-print Network

Biomedical publications of Prof. David N. Nikogosyan, made in UCC UV-induced nucleic acid-protein cross-linking 1. E.N. Dobrov, D.N. Nikogosyan: UV-induced nucleic acid-protein cross-linking: manual acids in collagen. J. Photochem. Photobiol. B: Biol., 47(1), 63-67 (1998) 2. D.N. Nikogosyan, H. Görner

Nikogosyan, David N.

354

High-Efficiency Triple-Helix-Mediated Photo-Cross-Linking at a Targeted Site within a Selectable Mammalian Gene  

E-print Network

phosphoribosyltransferase (APRT) gene was modified with the photochemically reactive psoralen derivative 4-(hydroxymethyl)-4 site for psoralen-induced photo-cross-links) at or near the triplex junction leads to increased, as expected for psoralen-mediated cross-links. The yield and distribution of photoadducts depended on 5-Tp

Wensel, Theodore G.

355

The process of EDC-NHS cross-linking of reconstituted collagen fibres increases collagen fibrillar order and alignment  

NASA Astrophysics Data System (ADS)

We describe the production of collagen fibre bundles through a multi-strand, semi-continuous extrusion process. Cross-linking using an EDC (1-ethyl-3-(3-dimethylaminopropyl)carbodiimide), NHS (N-hydroxysuccinimide) combination was considered. Atomic Force Microscopy and Raman spectroscopy focused on how cross-linking affected the collagen fibrillar structure. In the cross-linked fibres, a clear fibrillar structure comparable to native collagen was observed which was not observed in the non-cross-linked fibre. The amide III doublet in the Raman spectra provided additional evidence of alignment in the cross-linked fibres. Raman spectroscopy also indicated no residual polyethylene glycol (from the fibre forming buffer) or water in any of the fibres.

Shepherd, D. V.; Shepherd, J. H.; Ghose, S.; Kew, S. J.; Cameron, R. E.; Best, S. M.

2015-01-01

356

The process of EDC-NHS Cross-linking of reconstituted collagen fibres increases collagen fibrillar order and alignment  

PubMed Central

We describe the production of collagen fibre bundles through a multi-strand, semi-continuous extrusion process. Cross-linking using an EDC (1-ethyl-3-(3-dimethylaminopropyl)carbodiimide), NHS (N-hydroxysuccinimide) combination was considered. Atomic Force Microscopy (AFM) and Raman spectroscopy focused on how cross-linking affected the collagen fibrillar structure. In the cross-linked fibres, a clear fibrillar structure comparable to native collagen was observed which was not observed in the non-cross-linked fibre. The amide III doublet in the Raman spectra provided additional evidence of alignment in the cross-linked fibres. Raman spectroscopy also indicated no residual polyethylene glycol (from the fibre forming buffer) or water in any of the fibres. PMID:25506518

Shepherd, D.V.; Shepherd, J.H.; Ghose, S.; Kew, S.J.; Cameron, R.E.; Best, S.M.

2014-01-01

357

Cross-linked high conductive membranes based on water soluble ionomer for high performance proton exchange membrane fuel cells  

NASA Astrophysics Data System (ADS)

In this paper, a series of proton exchange membranes prepared by “Click Reaction” are reported. The cross-linked membranes are based on water soluble sulfonated poly (ether ether ketone) containing dipropenyl groups (SDPEEK-nE/nH). Compared with self-crosslinked membranes (SDPEEK-nS), this “Click” cross-linked membranes using 1,2-Ethanedithiol and 1,6-Hexanedithiol as the cross-linker exhibit extremely reduced water uptake and swelling ratio. The lowest proton conductivity at 80 °C of the “Click” cross-linked membranes reaches to 0.168 S cm-1, and the highest methanol permeability of the “Click” cross-linked SDPEEK-8E is only 4.13 × 10-7 cm2 s-1, which is 5 times lower than that of Nafion 117 membrane. All the results imply that the cross-linked membranes with novel thiol cross-linker are promising alternative material for fuel cell application.

Jiang, Hao; Guo, Xin; Zhang, Gang; Ni, Jing; Zhao, Chengji; Liu, Zhongguo; Zhang, Liyuan; Li, Mingyu; Xu, Shuai; Na, Hui

2013-11-01

358

Nematic Nanotube Gels M. F. Islam, A. M. Alsayed, Z. Dogic, J. Zhang, T. C. Lubensky, and A. G. Yodh  

E-print Network

concentration in an N-isopropyl acrylamide gel and then inducing a volume-compression transition. These gels acrylamide monomer that is then polymerized and cross- linked to form a gel [13]. Then the solvent quality bundles of SWNTs. The gel consisted of polymerized N-isopropyl acrylamide polymer (NIPA; 492 mM), N; N0

Fraden, Seth

359

Soluble non-cross-linked peptidoglycan polymers stimulate monocyte-macrophage inflammatory functions.  

PubMed Central

Soluble non-cross-linked peptidoglycan polymers are released by gram-positive bacteria when beta-lactam antibiotics are administered to humans. In this report, we show that this type of peptidoglycan can stimulate monocyte-macrophage functions that cause inflammation. Non-cross-linked peptidoglycan polymers from penicillin-treated Streptococcus faecium were purified and shown to stimulate the production of interleukin 1 by human monocytes and of colony-stimulating factors by a murine macrophage cell line. In addition, the release of plasminogen activator by human monocytes was inhibited by the soluble peptidoglycan. These in vitro results suggest that prolonged treatment with beta-lactam antibiotics, by causing the production of soluble peptidoglycan, may result in interleukin 1-mediated inflammatory reactions, excessive production of monocytes and granulocytes, and increased fibrin deposition. Images PMID:3875561

Gold, M R; Miller, C L; Mishell, R I

1985-01-01

360

Analysis of protein ligand-receptor binding by photoaffinity cross-linking.  

PubMed

Photoaffinity cross-linking is a rapidly developing technology for studying biomolecular interactions, including protein ligand-receptor binding. This technology provides detailed binding information including receptor contact sites, active conformation of receptor-ligand complexes, global binding surfaces, and binding modes. Advancements in genetic technology have enabled non-natural photoactive amino acid derivatives to be incorporated into designer or target proteins, providing a host of new opportunities for manufacturing protein photo-probes while bypassing the traditional peptide or small protein limits of classical chemical synthesis. This unit provides several protocols for performing basic photoaffinity cross-linking and related analyses for applications in ligand-receptor binding and protein-protein interactions. © 2015 by John Wiley & Sons, Inc. PMID:25640895

Wu, Ling; Xu, Bin

2015-01-01

361

Biochemical properties of bioplastics made from wheat gliadins cross-linked with cinnamaldehyde.  

PubMed

The aim of this work has been to study the modification of gliadin films with cinnamaldehyde as a potential cross-linker agent. The molecular weight profile and cross-linking density showed that cinnamaldehyde increased reticulation in the resulting films. The participation of free amino groups of the protein in the newly created entanglements could be a possible mechanism of connection between the polypeptidic chains. The combination of a Schiff base and a Michael addition is a feasible approach to understanding this mechanism. The protein solubility in different media pointed to lower participation by both noncovalent and disulfide bonds in stabilizing the structure of the cross-linked films. The new covalent bonds formed by the cinnamaldehyde treatment hampered water absorption and weight loss, leading to more water-resistant matrices which had not disintegrated after 5 months. The properties of this novel bioplastic could be modified to suit the intended application by using cinnamaldehyde, a naturally occurring compound. PMID:22047158

Balaguer, M Pau; Gómez-Estaca, Joaquín; Gavara, Rafael; Hernandez-Munoz, Pilar

2011-12-28

362

Easy synthesis and imaging applications of cross-linked green fluorescent hollow carbon nanoparticles.  

PubMed

We propose an ingenious method for synthesizing cross-linked hollow fluorescent carbon nanoparticles (HFCNs) with green emission by simply mixing acetic acid, water, and diphosphorus pentoxide. This is an automatic method without external heat treatment to rapidly produce large quantities of HFCNs, in contrast to other syntheses of fluorescent carbon nanoparticles that required high temperature, complicated operations, or long reaction times. Characterizations of HFCNs through high-resolution transmission electron microscopy, infrared/Raman spectroscopy, and X-ray diffraction indicate that abundant small oxygenous graphite domains existed and endowed the HFCNs with fluorescent properties. After simple post-treatments, the cross-linked HFCNs can be used for cell-imaging applications. Compared with traditional dyes and CdTe quantum dots, HFCNs are the superior fluorescent bioimaging agent according to their low toxicity, stability, and resistance to photobleaching. The HFCNs were also applied to watermark ink and fluorescent powder, showing their promising potentials for further wide usage. PMID:22188541

Fang, Youxing; Guo, Shaojun; Li, Dan; Zhu, Chengzhou; Ren, Wen; Dong, Shaojun; Wang, Erkang

2012-01-24

363

Elastin cross-linking in the skin from patients with amyotrophic lateral sclerosis  

NASA Technical Reports Server (NTRS)

Two cross-links unique to elastin, desmosine and isodesmosine were measured and compared in skin tissue (left upper arm) from 10 patients with amyotrophic lateral sclerosis (ALS) and from seven age-matched controls. The contents of desmosine and isodesmosine were significantly decreased (p < 0.01 and p < 0.01, respectively) in patients with ALS compared with those of controls, and were negatively and significantly associated with duration of illness in ALS patients (r = -0.77, p < 0.01 and r = -0.65, p < 0.05, respectively). The decline in skin desmosine and isodesmosine is more rapid in ALS than in normal ageing. Thus cross-linking of skin elastin is affected in ALS.

Ono, S.; Yamauchi, M.

1994-01-01

364

Cross-Linking and Immunoprecipitation of Nuclear RNA-Binding Proteins.  

PubMed

The systematic identification of in vivo targets of nuclear RNA-binding proteins (RBPs) is crucial to elucidate the physiological functions of each RBP. However, it has been difficult to distinguish real targets from nonspecifically bound RNAs and to determine the exact binding sites of each RBP by using a conventional RNA-immunoprecipitation (RIP) method. Photoactivatable Ribonucleoside-Enhanced Cross-linking and Immunoprecipitation (PAR-CLIP) is a recently developed method that relies on RNA-protein cross-linking to reduce the contamination of nonspecifically bound RNAs. Furthermore, in combination with high-throughput sequencing followed by bioinformatic analysis, the exact RBP-binding sites can be identified at a single nucleotide resolution. Here, we describe in detail a PAR-CLIP protocol to prepare cDNA libraries for high-throughput sequencing from RNA fragments that are bound to RBPs not only in the nucleus but also in the cytoplasm. PMID:25555586

Li, Quan; Uemura, Yuri; Kawahara, Yukio

2015-01-01

365

Metal cation cross-linked nanocellulose hydrogels as tissue engineering substrates.  

PubMed

The use of cellulose materials for biomedical applications is attractive due to their low cost, biocompatibility, and biodegradability. Specific processing of cellulose to yield nanofibrils further improves mechanical properties and suitability as a tissue engineering substrate due to the similarity to the fibrous structure, porosity, and size-scale of the native extracellular matrix. In order to generate the substrate, nanocellulose hydrogels were fabricated from carboxylated cellulose nanofibrils via hydrogelation using metal salts. Hydrogels cross-linked with Ca(2+) and Fe(3+) were investigated as tissue culture substrates for C3H10T1/2 fibroblast cells. Control substrates as well as those with physically adsorbed and covalently attached fibronectin protein were evaluated with X-ray photoelectron spectroscopy (XPS), Fourier transform infrared (FTIR), and enzyme linked immunosorbent assay (ELISA). Significantly more cells were attached to surfaces modified with protein, with the highest number of cells adhered to the calcium cross-linked hydrogels with covalently attached protein. PMID:25295848

Zander, Nicole E; Dong, Hong; Steele, Joshua; Grant, John T

2014-11-12

366

Iterative Reducible Ligation to form Homogeneous Penicillamine Cross-linked Polypeptides.  

PubMed

The syntheses of homogeneous penicillamine disulfide cross-linked polypeptides are reported. Dodecapeptides containing N-terminal, C-terminal, or N- and C-terminal Pen were serially ligated into 36 amino acid polypeptides linked through Cys-Pen, Pen-Cys or Pen-Pen disulfide bonds. Critical to the syntheses was the incorporation of thiazolidine masked Cys and Pen as the N-terminal residues and selective hydrolysis with silver trifluoromethanesulfonate in acidic aqueous conditions to generate a free thiol for subsequent ligation. This approach allows the synthesis of homogeneous disulfide cross-linked polypeptides that have different reductive stabilities and have application in gene delivery by undergoing a tempered reductive triggered release of DNA. PMID:24347694

Ericson, Mark D; Rice, Kevin G

2013-06-26

367

Facile fabrication of AIE-based stable cross-linked fluorescent organic nanoparticles for cell imaging.  

PubMed

An aggregation induced emission dye (RNH2) with two amino end-groups was facilely incorporated into stable cross-linked fluorescent organic nanoparticles via room temperature anhydride ring-opening polymerization and consecutive cross-linking with polyethylene polyamine. Thus obtained RO-OA-PEPA FONs were characterized by a series of techniques including (1)H nuclear magnetic resonance, Fourier transform infrared spectroscopy, UV-vis absorption spectrum, fluorescent spectroscopy and transmission electron microscopy. Biocompatibility evaluation and cell uptake behavior of RO-OA-PEPA FONs were further investigated to explore their potential biomedical application. We demonstrated that such FONs showed high-water dispersibility, strong red fluorescence, stable uniform morphology (100-200 nm) and excellent biocompatibility, making them promising for cell imaging application. PMID:24411519

Zhang, Xiqi; Zhang, Xiaoyong; Yang, Bin; Hui, Junfeng; Liu, Meiying; Wei, Yen

2014-04-01

368

Water dispersible, non-cytotoxic, cross-linked luminescent AIE dots: Facile preparation and bioimaging applications  

NASA Astrophysics Data System (ADS)

Fluorescent organic nanoparticles have attracted great current research interest due to their superior properties as compared with small organic dyes and fluorescent inorganic nanoparticles. However, fluorescent organic nanoparticles based on conventional organic dyes often result in significant fluorescence decrease due to the notorious aggregation-caused quenching effect. On the other hand, these fluorescent organic nanoparticles obtained from self-assembly are normally not stable in diluted solution. Therefore, the development of novel fluorescent organic nanoparticles which could overcome these limitations is highly desirable for their practical biomedical applications. In this work, water dispersible, non-cytotoxic and cross-linked luminescent polymeric nanoparticles based on aggregation induced emission dyes were prepared via one pot emulsion polymerization. These cross-linked luminescent polymeric nanoparticles emitted strong red fluorescence and were highly stable in diluted aqueous solution, making them highly potential for various biomedical applications.

Liu, Meiying; Zhang, Xiqi; Yang, Bin; Deng, Fengjie; Li, Zhen; Wei, Junchao; Zhang, Xiaoyong; Wei, Yen

2014-12-01

369

pH-sensitive genipin-cross-linked chitosan microspheres for heparin removal.  

PubMed

Chitosan hydrogel microspheres were obtained by cross-linking chitosan in its inverse emulsion using genipin as cross-linker. The genipin-cross-linked chitosan microspheres (ChGp) swell significantly in water at pH values below 6.5 and shrink to a smaller extent at pH values above 6.5. ChGp microspheres bind heparin in water. The kinetics of heparin binding was found to be pH dependent and was faster and more efficient at a lower pH. That can be also controlled by the weight of ChGp microspheres used. Rate and efficiency of heparin adsorption at pH 7.4, which is typical of blood, could be increased by quaternization of ChGp microspheres using glycidyltrimethylammonium chloride (GTMAC). The polymeric material obtained thus can be potentially useful for heparin removal in biomedical applications. PMID:18942790

Kami?ski, Kamil; Zazakowny, Karolina; Szczubia?ka, Krzysztof; Nowakowska, Maria

2008-11-01

370

Analysis of Epidermal Growth Factor Receptor Dimerization by BS3 Cross-Linking  

PubMed Central

Dimerization of receptor tyrosine kinases is a well-characterized process. It is imperative for the activation of many receptors, including the epidermal growth factor receptor (EGFR). EGFR has been shown to be regulated by a number of factors, including lipid raft localization. For example, alteration of the lipid raft localization of EGFR has been demonstrated to modify receptor dimerization. This protocol describes an assay to quantify EGFR dimers using BS3 cross-linking. BS3 cross-linking is well suited for this purpose because of its length, water solubility, and membrane impermeability. Although this protocol is written specifically for EGFR, the assay can be extrapolated in order to characterize dimerization of other receptor tyrosine kinases. PMID:25319886

Turk, Harmony F.; Chapkin, Robert S.

2015-01-01

371

Thermosensitivity of N-isopropylacrylamide hydrogels cross-linked with degradable cross-linker.  

PubMed

Thermosensitive N-isopropylacrylamide (NIPA)-based hydrogels have been prepared using a biodegradable pseudo-peptide (DMTLT, a tri-molecular adduct of tyrosine, lysine, tyrosine) as cross-linker. This new cross-linker provides a similar cross-linking efficiency as N,N' methylenbisacrylamide (BIS) (a standard biostable cross-linker) used as reference. The amount of DMTLT has shown to modulate, in addition to the cross-linking density, the transition temperature (the higher the amount of DMTLT, the lower the transition temperature), as well as the morphology and the whole aqueous behaviour. The incorporation of hydrophilic N,N'-dimethylacrylamide (DMA) increases the transition temperature, as expected. Finally, the matrices have exhibited in aqueous media a well-defined pulsatile behaviour in swelling and release of benzoic acid and dextran as models of ionisable molecules and non-ionisable macromolecules. PMID:18534096

Pérez, Paloma; Gallardo, Alberto; Corrigan, Owen I; Román, Julio San

2008-01-01

372

Study of rigid cross-linked PVC foams with heat resistance.  

PubMed

Three heat resistant cross-linked PVC foam plastics were prepared and their performances were compared with universal cross-linked PVC structural foam. The results show that these three heat resistant foams have higher glass transition temperatures (close to 100 °C) than universal structural foam (83.2 °C). Compared with the universal structural foam, the three heat resistant foams show much higher decomposition temperature and better chemical stability due to the crosslinking of PVC macromolecular chains. The heat distortion temperature (HDT) values of the three heat resistant foam plastics are just a little higher than that of universal structural foam. The three heat resistant foam plastics have good dimensional stability at 140 °C, and when used as core material can closely adhere to the face plates in medium temperature curing processes. Compared with universal structural foam, the three heat resistant foam plastics have slightly better mechanical properties. PMID:23519258

Shi, Aihua; Zhang, Guangcheng; Zhao, Chenhui

2012-01-01

373

Transmembrane Signaling Characterized in Bacterial Chemoreceptors by Using Sulfhydryl Cross-Linking in vivo  

NASA Astrophysics Data System (ADS)

Transmembrane signaling by bacterial chemoreceptors is thought to involve conformational changes within a stable homodimer. We investigated the functional consequences of constraining movement between pairs of helices in the four-helix structure of the transmembrane domain of chemoreceptor Trg. Using a family of cysteine-containing receptors, we identified oxidation treatments for intact cells that catalyzed essentially complete sulfhydryl cross-linking at selected positions and yet left flagellar and sensory functions largely unperturbed. Constraining movement by cross-links between subunits had little effect on tactic response, but constraining movement between transmembrane segments of the monomer drastically reduced function. We deduce that transmembrane signaling requires substantial movement between transmembrane helices of a monomer but not between interacting helices across the interface between subunits.

Lee, Geoffrey F.; Lebert, Michael R.; Lilly, Angela A.; Hazelbauer, Gerald L.

1995-04-01

374

Enhanced apoptotic effects of dihydroartemisinin-aggregated gelatin and hyaluronan nanoparticles on human lung cancer cells.  

PubMed

Recent studies suggest that dihydroartemisinin (DHA), a derivative of artemisinin isolated from the traditional Chinese herb Artemisia annua L., has anticancer properties. Due to poor water solubility, poor oral activity, and a short plasma half-life, large doses of DHA have to be injected to achieve the necessary bioavailability. This study examined increasing DHA bioavailability by encapsulating DHA within gelatin (GEL) or hyaluronan (HA) nanoparticles via an electrostatic field system. Observations from transmission electron microscopy show that DHA in GEL and HA nanoparticles formed GEL/DHA and HA/DHA aggregates that were approximately 30-40 nm in diameter. The entrapment efficiencies for DHA were approximately 13 and 35% for the GEL/DHA and HA/DHA aggregates, respectively. The proliferation of A549 cells was inhibited by the GEL/DHA and HA/DHA aggregates. Fluorescent annexin V-fluorescein isothiocyanate (FITC) and propidium iodide (PI) staining displayed low background staining with annexin V-FITC or PI on DHA-untreated cells. In contrast, annexin V-FITC and PI stains dramatically increased when the cells were incubated with GEL/DHA and HA/DHA aggregates. These results suggest that DHA-aggregated GEL and HA nanoparticles exhibit higher anticancer proliferation activities than DHA alone in A549 cells most likely due to the greater aqueous dispersion after hydrophilic GEL or HA nanoparticles aggregation. These results demonstrate that DHA can aggregate with nanoparticles in an electrostatic field environment to form DHA nanosized aggregates. PMID:24039154

Sun, Qian; Teong, Benjamin; Chen, I-Fen; Chang, Shwu Jen; Gao, Jimin; Kuo, Shyh-Ming

2014-04-01

375

Cross-Linked Hydroxy-Al-Montmorillonite as a Stationary Phase in Liquid Chromatography  

Microsoft Academic Search

Quasi-spherical particles (7-tzm mean diameter) were prepared from cross-linked hydroxy-A1- montmorillonite (basal spacing = 15.3 and 18.6 A) by spray-drying. These particles (SP-CLM) were used as a packing material for columns in high-pressure liquid chromatography (HPLC). Aromatic phosphate esters, chlorosubstituted phenyl-ureas, monosubstituted benzenes, and the o-, m-, and p-isomers of di- substituted benzenes were separated on the columns, using isopropanol

Faina Tsvetkov; U. MINGELGRIN; N. LAHAV

1990-01-01

376

Biosorption of uranium by cross-linked and alginate immobilized residual biomass from distillery spent wash  

Microsoft Academic Search

Residual biomass from a whiskey distillery was examined for its ability to function as a biosorbent for uranium. Biomass recovered and lyophilised exhibited a maximum biosorption capacity of 165-170 mg uranium\\/g dry weight biomass at 15v°C. With a view towards the development of continuous or semi-continuous flow biosorption processes it was decided to immobilize the material by (1) cross-linking with

M. Bustard; A. P. McHale

1997-01-01

377

Synthesis and Characterizations of Hydroxy-aluminum Cross-Linked Montmorillonite  

Microsoft Academic Search

Cross-linked montmorillonite was prepared by reacting homoionic sodium form of bentonite (Na-M) from Istenmezeje (Hungary)\\u000a with high molecular weight polyhydroxy-aluminum complex. The complex was prepared by controlled hydrolysis of alumina macrocation.\\u000a The intercalated clay (Na-Al-M) was thermally treated to convert the hydroxy cations to oxide pillars. The pillared products\\u000a were characterized by X-ray powder diffraction (XRD), Fourie transform infrared spectroscopy

L. Pöppl; E. Tóth; M. Tóth; I. Pászli; V. Izvekov; M. Gábor

1998-01-01

378

Quartz Crystal Microbalance Measurements of Protein Deposition onto Cross-linked polyHEMA Hydrogel  

NASA Astrophysics Data System (ADS)

The adsorption of various concentrations of several opthalmologically relevant proteins was measured using Quartz Crystal Microbalance (QCM). Hen egg white lysozyme HEWL, bovine serum albumin BSA, and lactoferrin were measured both individually and in various combinations as they adsorbed onto cross-linked polyHEMA substrate. Results are discussed in terms of the concentration and time dependence of total adhered protein, as well as the amount of desorbable protein. Variations seen during competitive adsorption are also presented.

Teichroeb, Jonathan; Forrest, James; Jones, Lyndon

2006-03-01

379

Fabrication and properties of irradiation-cross-linked poly(vinyl alcohol)/clay aerogel composites.  

PubMed

Poly(vinyl alcohol) (PVOH)/clay aerogel composites were fabricated by an environmentally friendly freeze-drying of the aqueous precursor suspensions, followed by cross-linking induced by gamma irradiation without chemical additives. The influences of cross-linking conditions, i.e., absorbed dose and polymer loading as well as density on the aerogel structure and properties, were investigated. The absorbed dose of 30 kGy was found to be the optimum dose for fabricating strong PVOH composites; the compressive modulus of an aerogel prepared from an aqueous suspension containing 2 wt % PVOH/8 wt % clay increased 10-fold, and that containing 1 wt % PVOH/9 wt % clay increased 12 times upon cross-linking with a dose of 30 kGy. Increasing the solids concentration led to an increase in the mechanical strength, in accordance with the changes in microstructure from layered structure to network structure. The increase of absorbed dose also led to decreased porous size of the network structure. Cross-linking and the increase of the PVOH lead to decreased thermal stability. The strengthened PVOH/clay aerogels possess very low flammability, as measured by cone calorimetry, with heat, smoke, and volatile products release value decreasing as increasing clay content. The mechanism of flame retardation in these materials was investigated with weight loss, FTIR, WAXD, and SEM of the burned residues. The proposed mechanism is that with decreasing fuel content (increasing clay content), increased heat and mass transport barriers are developed; simultaneously low levels of thermal conductivity are maintained during the burning. PMID:25164075

Chen, Hong-Bing; Liu, Bo; Huang, Wei; Wang, Jun-Sheng; Zeng, Guang; Wu, Wen-Hao; Schiraldi, David A

2014-09-24

380

Ultraviolet photochemical cross-linking to detect RNA-binding proteins.  

PubMed

RNA is photoreactive on exposure to ultraviolet (UV) light in the 250- to 270-nm range. On UV treatment, RNA bases absorb energy to generate free radicals that can covalently attach to nearby amino acid residues in RNA-bound proteins. UV cross-linking experiments have been extensively used to identify and characterize RNA-binding proteins. The method described here involves the use of (32)P-labeled RNA and crude extracts or purified proteins. PMID:24298030

Rio, Donald C

2013-12-01

381

Informatics Strategies for Large-Scale Novel Cross-Linking Analysis  

PubMed Central

The detection of protein interactions in biological systems represents a significant challenge for today’s technology. Chemical cross-linking provides the potential to impart new chemical bonds in a complex system that result in mass changes in a set of tryptic peptides detected by mass spectrometry. However, system complexity and cross-linking product heterogeneity have precluded widespread chemical cross-linking use for large-scale identification of protein–protein interactions. The development of mass spectrometry identifiable cross-linkers called protein interaction reporters (PIRs) has enabled on-cell chemical cross-linking experiments with product type differentiation. However, the complex datasets resultant from PIR experiments demand new informatics capabilities to allow interpretation. This manuscript details our efforts to develop such capabilities and describes the program X-links, which allows PIR product type differentiation. Furthermore, we also present the results from Monte Carlo simulation of PIR-type experiments to provide false discovery rate estimates for the PIR product type identification through observed precursor and released peptide masses. Our simulations also provide peptide identification calculations based on accurate masses and database complexity that can provide an estimation of false discovery rates for peptide identification. Overall, the calculations show a low rate of false discovery of PIR product types due to random mass matching of approximately 12% with 10 ppm mass measurement accuracy and spectral complexity resulting from 100 peptides. In addition, consideration of a reduced database resulting from stage 1 analysis of Shewanella oneidensis MR-1 containing 367 proteins resulted in a significant reduction of expected identification false discovery rate estimation compared to that from the entire Shewanella oneidensis MR-1 proteome. PMID:17676784

Anderson, Gordon A.; Tolic, Nikola; Tang, Xiaoting; Zheng, Chunxiang; Bruce, James E.

2008-01-01

382

Quantitative evaluation of the lengths of homobifunctional protein cross-linking reagents used as molecular rulers  

PubMed Central

Homobifunctional chemical cross-linking reagents are important tools for functional and structural characterization of proteins. Accurate measures of the lengths of these molecules currently are not available, despite their widespread use. Stochastic dynamics calculations now provide quantitative measures of the lengths, and length dispersions, of 32 widely used molecular rulers. Significant differences from published data have been found. Supplemental material: See www.proteinscience.org PMID:11420431

Green, Nora S.; Reisler, Emil; Houk, K.N.

2001-01-01

383

Mechanism of cell death resulting from DNA interstrand cross-linking in mammalian cells  

Microsoft Academic Search

DNA interstrand cross-links (ICLs) are critical cytotoxic lesions produced by cancer chemotherapeutic agents such as the nitrogen mustards and platinum drugs; however, the exact mechanism of ICL-induced cell death is unclear. Here, we show a novel mechanism of p53-independent apoptotic cell death involving prolonged cell-cycle (G2) arrest, ICL repair involving HR, transient mitosis, incomplete cytokinesis, and gross chromosomal abnormalities resulting

T Osawa; D Davies; J A Hartley

2011-01-01

384

Fracture of a Cross-Linked Polyethylene Liner Due to Impingement  

Microsoft Academic Search

We report a case of fracture at 2 years after implantation of a 50-kGy moderately cross-linked ultrahigh molecular weight polyethylene liner with an extended lip (Marathon, DePuy, Warsaw, IN). The extended lip section had fractured. The liner showed no oxidation. The articular surface was grossly deformed, likely due to wear, creep, and\\/or plastic deformation, and the liner showed no recovery

Gavan P. Duffy; Keith K. Wannomae; Shannon L. Rowell; Orhun K. Muratoglu

2009-01-01

385

Collagen cross-links and early postnatal growth in newborns with intrauterine growth retardation  

Microsoft Academic Search

This study assessed growth and skeletal metabolism in full-term newborns with intrauterine growth retardation (IUGR) and determined the value of the urinary excretion of collagen cross-links in predicting postnatal catch-up growth. We studied 38 newborns (16 females) born at term with a birth weight less than the 10th centile of the reference and a ponderal index ([PI] 100 × weight

Laura Rossi; Francesco Branca; Stefano Cianfarani

2000-01-01

386

ATP-adenosine-glutathione cross-linked hemoglobin as clinically useful oxygen carrier.  

PubMed

To attenuate hemoglobin's (Hb) intrinsic toxicity, Texas Tech University scientists developed a novel concept of "pharmacologic cross-linking" to formulate an effective oxygen carrier, HemoTech, which consists of purified bovine Hb cross-linked intramolecularly with ATP and intermolecularly with adenosine, and conjugated with reduced glutathione (GSH). In this composition, while ATP prevents Hb dimerization, adenosine permits the formation of homogeneous polymers. ATP also serves as a regulator of blood vessel tone via activation of the P2Y receptor, whereas adenosine counteracts the vasoconstrictive and pro-inflammatory properties of Hb via stimulation of adenosine A2 and A3 receptors. GSH introduces electronegative charge onto the Hb surface that blocks Hb's transglomerular and transendothelial passage. Besides, GSH shields heme from nitric oxide and reactive oxygen species, thus enhancing vasodilation and lowering Hb prooxidative potential. HemoTech underwent favorable initial pre-clinical testing and proof of medical concept, and is under commercial development by HemoBioTech Inc. HemoTech has entered the regulatory process in the US. Several mandated requirements have already been met, including viral/transmissible spongiform encephalopathy (TSE) clearance validation studies and various pre-clinical pharmacological, pharmacokinetic, toxicological, genotoxicity and efficacy tests. These studies provided further evidence that "pharmacologic cross-linking" of the Hb molecule with ATP, adenosine and GSH, is useful for designing a viable Hb-based oxygen carrier. PMID:21902624

Simoni, Jan; Simoni, Grace; Wesson, Donald E; Feola, Mario

2012-09-01

387

Rapid aggregation of gold nanoparticles induced by non-cross-linking DNA hybridization.  

PubMed

To date, aggregation of DNA-functionalized gold nanoparticles by hybridization of target DNA in a cross-linking configuration has been intensively studied. Here, we report that aggregation in a non-cross-linking configuration is also possible and is even better from the viewpoint of genetic analysis because of its speed and sensitivity. In this system, 15 nm diameter gold nanoparticles functionalized with (alkanethiol)-15mer DNA are hybridized to target 15mer DNA at room temperature. At high NaCl concentration (>/=0.5 M), hybridization with complementary target DNA induces nanoparticle aggregation based on the salting-out effect. The aggregation can be detected by a colorimetric change of the colloidal solution within 3 min. Furthermore, unusual sensitivity of this system for single-base mismatch at the terminus opposite to the anchored side has been discovered. In fact, target DNA with such a kind of mismatch does not induce the colorimetric change at all, while target DNA with single-base mismatch at the middle of it cannot be discriminated from the fully complementary target. This non-cross-linking aggregation system opens up a new possibility of rapid and reliable genetic analysis. PMID:12837070

Sato, Kae; Hosokawa, Kazuo; Maeda, Mizuo

2003-07-01

388

Enhanced stability and bioconjugation of photo-cross-linked polystyrene-shell, Au-core nanoparticles.  

PubMed

Encapsulating Au nanoparticles within a shell of photo-cross-linked block copolymer surfactant dramatically improves the physical and chemical stability of the nanoparticles, particularly when they are applied as bioconjugates. Photo-cross-linkable block copolymer amphiphiles [polystyrene-co-poly(4-vinyl benzophenone)]-block-poly(acrylic acid) [(PS-co-PVBP)-b-PAA] and [poly(styrene)-co-poly(4-vinyl benzophenone)]-block-poly(ethylene oxide) [(PS-co-PVBP)-b-PEO] were assembled around Au nanoparticles ranging from 12 to 108 nm in diameter. UV irradiation cross-linked the PVBP groups on the polymer to yield particles that withstood extremes of temperature, ionic strength, and chemical etching. Streptavidin was attached to [PS-co-PVBP]-b-PAA-coated particles using the same noncovalent and covalent conjugation protocols used to bind biomolecules to divinylbenzene-cross-linked PS microspheres. We expect that these particles will be useful as plasmonic, highly light-scattering and light-absorbing analogs to fluorescently labeled PS nanospheres. PMID:17530871

Chen, Ying; Cho, Juhee; Young, Alexi; Taton, T Andrew

2007-07-01

389

Mechanism of Shear Thickening in Reversibly Cross-linked Supramolecular Polymer Networks  

PubMed Central

We report here the nonlinear rheological properties of metallo-supramolecular networks formed by the reversible cross-linking of semi-dilute unentangled solutions of poly(4-vinylpyridine) (PVP) in dimethyl sulfoxide (DMSO). The reversible cross-linkers are bis-Pd(II) or bis-Pt(II) complexes that coordinate to the pyridine functional groups on the PVP. Under steady shear, shear thickening is observed above a critical shear rate, and that critical shear rate is experimentally correlated with the lifetime of the metal-ligand bond. The onset and magnitude of the shear thickening depend on the amount of cross-linkers added. In contrast to the behavior observed in most transient networks, the time scale of network relaxation is found to increase during shear thickening. The primary mechanism of shear thickening is ascribed to the shear-induced transformation of intrachain cross-linking to interchain cross-linking, rather than nonlinear high tension along polymer chains that are stretched beyond the Gaussian range. PMID:20479956

Xu, Donghua; Hawk, Jennifer L.; Loveless, David M.; Jeon, Sung Lan; Craig, Stephen L.

2010-01-01

390

Leveraging cross-link modification events in CLIP-seq for motif discovery.  

PubMed

High-throughput protein-RNA interaction data generated by CLIP-seq has provided an unprecedented depth of access to the activities of RNA-binding proteins (RBPs), the key players in co- and post-transcriptional regulation of gene expression. Motif discovery forms part of the necessary follow-up data analysis for CLIP-seq, both to refine the exact locations of RBP binding sites, and to characterize them. The specific properties of RBP binding sites, and the CLIP-seq methods, provide additional information not usually present in the classic motif discovery problem: the binding site structure, and cross-linking induced events in reads. We show that CLIP-seq data contains clear secondary structure signals, as well as technology- and RBP-specific cross-link signals. We introduce Zagros, a motif discovery algorithm specifically designed to leverage this information and explore its impact on the quality of recovered motifs. Our results indicate that using both secondary structure and cross-link modifications can greatly improve motif discovery on CLIP-seq data. Further, the motifs we recover provide insight into the balance between sequence- and structure-specificity struck by RBP binding. PMID:25505146

Bahrami-Samani, Emad; Penalva, Luiz O F; Smith, Andrew D; Uren, Philip J

2015-01-01

391

Polymer Micelles with Cross-Linked Polyanion Core for Delivery of a Cationic Drug Doxorubicin  

PubMed Central

Polymer micelles with cross-linked ionic cores were prepared by using block ionomer complexes of poly(ethylene oxide)-b-poly(methacrylic acid) (PEO-b-PMA) copolymer and divalent metal cations as templates. Doxorubicin (DOX), an anthracycline anticancer drug, was successfully incorporated into the ionic cores of such micelles via electrostatic interactions. A substantial drug loading level (up to 50 w/w %) was achieved and it was strongly dependent on the structure of the cross-linked micelles and pH. The drug-loaded micelles were stable in aqueous dispersions exhibiting no aggregation or precipitation for a prolonged period of time. The DOX-loaded polymer micelles exhibited noticeable pH-sensitive behavior with accelerated release of DOX in acidic environment due to the protonation of carboxylic groups in the cores of the micelles. The attempt to protect the DOX-loaded core with the polycationic substances resulted in the decrease of loading efficacy and had a slight effect on the release characteristics of the micelles. The DOX-loaded polymer micelles exhibited a potent cytotoxicity against human A2780 ovarian carcinoma cells. These results point to a potential of novel polymer micelles with cross-linked ionic cores to be attractive carriers for the delivery of DOX. PMID:19386272

Kim, Jong Oh; Kabanov, Alexander V.; Bronich, Tatiana K.

2009-01-01

392

Collagen cross-link excretion during space flight and bed rest  

NASA Technical Reports Server (NTRS)

Extended exposure to weightlessness results in bone loss. However, little information exists as to the precise nature or time course of this bone loss. Bone resorption results in the release of collagen breakdown products, including N-telopeptide and the pyridinium (PYD) cross-links, pyridinoline and deoxypyridinoline. Urinary pyridinoline and deoxypyridinoline are known to increase during bed rest. We assessed excretion of PYD cross-links and N-telopeptide before, during, and after long (28-day, 59-day, and 84-day) Skylab missions, as well as during short (14-day) and long (119-day) bed-rest studies. During space flight, the urinary cross-link excretion level was twice those observed before flight. Urinary excretion levels of the collagen breakdown products were also 40-50% higher, during short and long bed rest, than before. These results clearly show that the changes in bone metabolism associated with space flight involve increased resorption. The rate of response (i.e. within days to weeks) suggests that alterations in bone metabolism are an early effect of weightlessness. These studies are important for a better understanding of bone metabolism in space crews and in those who are bedridden.

Smith, S. M.; Nillen, J. L.; Leblanc, A.; Lipton, A.; Demers, L. M.; Lane, H. W.; Leach, C. S.; LeBlanc, A. (Principal Investigator)

1998-01-01

393

Fracture Mechanics of Collagen Fibrils: Influence of Natural Cross-Links  

PubMed Central

Tendons are important load-bearing structures, which are frequently injured in both sports and work. Type I collagen fibrils are the primary components of tendons and carry most of the mechanical loads experienced by the tissue, however, knowledge of how load is transmitted between and within fibrils is limited. The presence of covalent enzymatic cross-links between collagen molecules is an important factor that has been shown to influence mechanical behavior of the tendons. To improve our understanding of how molecular bonds translate into tendon mechanics, we used an atomic force microscopy technique to measure the mechanical behavior of individual collagen fibrils loaded to failure. Fibrils from human patellar tendons, rat-tail tendons (RTTs), NaBH4 reduced RTTs, and tail tendons of Zucker diabetic fat rats were tested. We found a characteristic three-phase stress-strain behavior in the human collagen fibrils. There was an initial rise in modulus followed by a plateau with reduced modulus, which was finally followed by an even greater increase in stress and modulus before failure. The RTTs also displayed the initial increase and plateau phase, but the third region was virtually absent and the plateau continued until failure. The importance of cross-link lability was investigated by NaBH4 reduction of the rat-tail fibrils, which did not alter their behavior. These findings shed light on the function of cross-links at the fibril level, but further studies will be required to establish the underlying mechanisms. PMID:23746520

Svensson, Rene B.; Mulder, Hindrik; Kovanen, Vuokko; Magnusson, S. Peter

2013-01-01

394

Relationship between structure and cytocompatibility of divinyl sulfone cross-linked hyaluronic acid.  

PubMed

Hyaluronic acid (HA), a carbohydrate polymer naturally found in the eye, has been chemically modified by cross-linking to enhance its performance as a drug carrier. Although the treatment of HA with divinyl sulfone (DVS) is reported, the effects of cross-linker concentration on the biomaterial-mediated retinal pigment epithelial (RPE) cellular responses are yet to be investigated. This paper explores, for the first time, the relationship between molecular structure and cytocompatibility of HA hydrogels cross-linked with DVS of varying concentrations (0-100mM). The results showed that with increasing DVS concentration, the sulfur content and sulfonyl-bis-ethyl cross-link amount are increased and the mechanical stability and resistance against enzymatic degradation are enhanced, indicating the crucial role of cross-linker in the alteration of structure and property of this polysaccharide biomaterial. The cell viability, pro-inflammatory gene and cytokine expression, and glutamate uptake were suggested to be indicative of cytocompatibility and found to be strongly dependent on the cross-linker concentration. PMID:24299766

Lai, Jui-Yang

2014-01-30

395

Initiation of DNA Interstrand Cross-link Repair in Mammalian Cells  

PubMed Central

Interstrand cross-links (ICLs) are among the most cytotoxic DNA lesions to cells because they prevent the two DNA strands from separating, thereby precluding replication and transcription. Even though chemotherapeutic cross-linking agents are well established in clinical use, and numerous repair proteins have been implicated in the initial events of mammalian ICL repair, the precise mechanistic details of these events remain to be elucidated. This review will summarize our current understanding of how ICL repair is initiated with an emphasis on the context (replicating, transcribed or quiescent DNA) in which the ICL is recognized, and how the chemical and physical properties of ICLs influence repair. Although most studies have focused on replication-dependent repair because of the relation to highly replicative tumor cells, replication-independent ICL repair is likely to be important in the circumvention of cross-link cytotoxicity in non-dividing, terminally differentiated cells that may be challenged with exogenous or endogenous sources of ICLs. Consequently, the ICL repair pathway that should be considered ‘dominant’ appears to depend on the cell type and the DNA context in which the ICL is encountered. The ability to define and inhibit distinct pathways of ICL repair in different cell cycle phases may help in developing methods that increase cytotoxicity to cancer cells while reducing side-effects in non-dividing normal cells. This may also lead to a better understanding of pathways that protect against malignancy and aging. PMID:20658650

Hlavin, Erica M.; Smeaton, Michael B.; Miller, Paul S.

2010-01-01

396

An attempt to cast light into starch nanocrystals preparation and cross-linking.  

PubMed

Potato starch was hydrolyzed with 2.2 or 3.7 M hydrochloric acid in order to obtain the nanocrystals which afterwards were chemically cross-linked with sodium hexametaphosphate. The stronger acidity resulted in smaller nanocrystals with mean size of 48 nm in a shorter time. X-ray diffraction confirmed the dominant crystalline nature of particles and Fourier transform infrared spectroscopy suggested the presence of lower number of free hydroxyl groups in nanocrystals after cross-linking. Starch nanocrystals showed two distinctive differential scaning colorimetry endotherms at 26 and 125 °C, attributed to destruction of nanocrystals lattice and moblizing of each nanocrystal's structure, respectively. Cross-linking resulted in a tenacious spatial arrangement of nanocrystals, strengthening the crystals lattice against phase transitions induced by heating. Scanning electron microscopy images confirmed the particle size measured for nanocrystals by light scattering. Atomic force microscopy topographic images suggested that starch nanocrystals were originated from small amylopectin blocklets in granular assembly of starch. PMID:23870875

Jivan, Mehdi Jalali; Madadlou, Ashkan; Yarmand, Mohamadsaeed

2013-12-01

397

Single-molecule dynamics of lysozyme processing distinguishes linear and cross-linked peptidoglycan substrates.  

PubMed

The dynamic processivity of individual T4 lysozyme molecules was monitored in the presence of either linear or cross-linked peptidoglycan substrates. Single-molecule monitoring was accomplished using a novel electronic technique in which lysozyme molecules were tethered to single-walled carbon nanotube field-effect transistors through pyrene linker molecules. The substrate-driven hinge-bending motions of lysozyme induced dynamic electronic signals in the underlying transistor, allowing long-term monitoring of the same molecule without the limitations of optical quenching or bleaching. For both substrates, lysozyme exhibited processive low turnover rates of 20-50 s(-1) and rapid (200-400 s(-1)) nonproductive motions. The latter nonproductive binding events occupied 43% of the enzyme's time in the presence of the cross-linked peptidoglycan but only 7% with the linear substrate. Furthermore, lysozyme catalyzed the hydrolysis of glycosidic bonds to the end of the linear substrate but appeared to sidestep the peptide cross-links to zigzag through the wild-type substrate. PMID:22239748

Choi, Yongki; Moody, Issa S; Sims, Patrick C; Hunt, Steven R; Corso, Brad L; Seitz, David E; Blaszczak, Larry C; Blaszcazk, Larry C; Collins, Philip G; Weiss, Gregory A

2012-02-01

398

Charge regulation and energy dissipation while compressing and sliding a cross-linked chitosan hydrogel layer.  

PubMed

Interactions between a silica surface and a surface coated with a grafted cross-linked hydrogel made from chitosan/PAA multilayers are investigated, utilizing colloidal probe atomic force microscopy. Attractive double-layer forces are found to dominate the long-range interaction over a broad range of pH and ionic strength conditions. The deduced potential at the hydrogel/aqueous interface is found to be very low. This situation is maintained in the whole pH-range investigated, even though the degree of protonation of chitosan changes significantly. This demonstrates that pH-variations change the concentration of counterions within the hydrogel to keep the interior close to uncharged, which is similar to what has been observed for polyelectrolyte brushes. Changes in pH and ionic strength affect the adhesion force and the friction force between the silica surface and the hydrogel layer, but not the friction coefficient. This suggests that the main energy dissipation mechanism arises from processes occurring within the hydrogel layer, rather than at the silica/hydrogel interface, and we suggest that it is related to stretching of polymer chains between the cross-linking points. We also find that an increased cross-linking density, from 40% to 100%, in the hydrogel reduces the friction coefficient. PMID:25553574

Liu, Chao; Thormann, Esben; Tyrode, Eric; Claesson, Per M

2015-04-01

399

Characterization and tissue incorporation of cross-linked human acellular dermal matrix.  

PubMed

Here, we describe a novel human acellular dermal matrix (ADM) cross-linked using electron beam irradiation. Structural and biomechanical characteristics of the human ADM were assessed by infrared spectrometry and uni-axial tensile testing. Electron beam irradiation affects collagen secondary structure, which can be detected in the amide I spectral region (1660 cm(-1) and 1690 cm(-1)). At doses exceeding 25 kGy, cross-linking of the collagen matrix results in a denser, more stratified appearance and parallel arrangement, with significantly increased tensile strength and elastic modulus. In a micropig model, the implanted ADM elicits rapid host cell infiltration and extracellular matrix deposition; however, the delayed remodeling resulted in long-term structural integrity. Furthermore, mean densities of collagen and elastin, expression of extracellular matrix proteins, and microvessel formation within the implanted ADM increased significantly, whereas the thickness of the implanted ADM did not decrease during the course of the study. Compared with normal adjacent tissue, type I collagen mRNA levels in the ADM increased 12-fold at 3 months after implantation, and transforming growth factor-? mRNA levels increased 3.3-fold at 2 months. Matrix metalloproteinase (MMP)-1 and MMP-9 mRNA levels were also elevated. Collectively, these results demonstrate that the structural and biomechanical properties of this novel cross-linked human ADM are adequate for use as a biologic tissue substitute. PMID:25617138

Lee, Ju Hee; Kim, Hyung Goo; Lee, Won Jai

2015-03-01

400

Physicochemical, in vitro digestibility and functional properties of carboxymethyl rice starch cross-linked with epichlorohydrin.  

PubMed

Cross-linked carboxymethyl rice starches (CL-CMRSs) were prepared from reactions between native rice starch and varied concentrations (0.1-15%w/w, M-0.1 to M-15) of epichlorohydrin (ECH) in a simultaneous carboxymethylation-crosslinking reaction setup using methanol as the solvent. The degree of carboxymethyl substitution was between 0.24 and 0.28, while apparent amylose contents were lowered due to modification. SEM images showed minor change on the granule surface, while XRD profiles indicated slight loss of crystallinity. DSC thermograms revealed no transition peak in all treated samples. The water uptake (WU), swelling volume (SV) and free swelling capacity (FSC) of CL-CMRSs increased significantly as a result of the modification, while swelling of CMRSs cross-linked with 2% (M-2) and 3% (M-3) ECH yielded FSC values and WU values that were much greater than those of native starches and were comparable to that of Explotab®. All modified starch samples showed increased amount of rapidly digestible starch (RDS), while cross-linking with 5-7.5% ECH raised the resistant starch (RS) content, compared to native starch. M-2 also showed promising results in tablet disintegration test. ECH-CL-CMRSs could potentially be used as an excipient in pharmaceutical and food/food supplement products. PMID:23790936

Kittipongpatana, Ornanong S; Kittipongpatana, Nisit

2013-11-15

401

Density Variant Glycan Microarray for Evaluating Cross-Linking of Mucin-like Glycoconjugates by Lectins  

PubMed Central

Interactions of mucin glycoproteins with cognate receptors are dictated by the structures and spatial organization of glycans that decorate the mucin polypeptide backbone. The glycan-binding proteins, or lectins, that interact with mucins are often oligomeric receptors with multiple ligand binding domains. In this work, we employed a microarray platform comprising synthetic glycopolymers that emulate natural mucins arrayed at different surface densities to evaluate how glycan valency and spatial separation affect the preferential binding mode of a particular lectin. We evaluated a panel of four lectins (Soybean agglutinin (SBA), Wisteria floribunda lectin (WFL), Vicia villosa-B-4 agglutinin (VVA), and Helix pomatia agglutin (HPA)) with specificity for ?-N-acetylgalactosamine (?-GalNAc), an epitope displayed on mucins overexpressed in many adenocarcinomas. While these lectins possess the ability to agglutinate A1-blood cells carrying the ?-GalNAc epitope and cross-link low valency glycoconjugates, only SBA showed a tendency to form intermolecular cross-links among the arrayed polyvalent mucin mimetics. These results suggest that glycopolymer microarrays can reveal discrete higher-order binding preferences beyond the recognition of individual glycan epitopes. Our findings indicate that glycan valency can set thresholds for cross-linking by lectins. More broadly, well-defined synthetic glycopolymers enable the integration of glycoconjugate structural and spatial diversity in a single microarray screening platform. PMID:22967056

2012-01-01

402

Density variant glycan microarray for evaluating cross-linking of mucin-like glycoconjugates by lectins.  

PubMed

Interactions of mucin glycoproteins with cognate receptors are dictated by the structures and spatial organization of glycans that decorate the mucin polypeptide backbone. The glycan-binding proteins, or lectins, that interact with mucins are often oligomeric receptors with multiple ligand binding domains. In this work, we employed a microarray platform comprising synthetic glycopolymers that emulate natural mucins arrayed at different surface densities to evaluate how glycan valency and spatial separation affect the preferential binding mode of a particular lectin. We evaluated a panel of four lectins (Soybean agglutinin (SBA), Wisteria floribunda lectin (WFL), Vicia villosa-B-4 agglutinin (VVA), and Helix pomatia agglutin (HPA)) with specificity for ?-N-acetylgalactosamine (?-GalNAc), an epitope displayed on mucins overexpressed in many adenocarcinomas. While these lectins possess the ability to agglutinate A(1)-blood cells carrying the ?-GalNAc epitope and cross-link low valency glycoconjugates, only SBA showed a tendency to form intermolecular cross-links among the arrayed polyvalent mucin mimetics. These results suggest that glycopolymer microarrays can reveal discrete higher-order binding preferences beyond the recognition of individual glycan epitopes. Our findings indicate that glycan valency can set thresholds for cross-linking by lectins. More broadly, well-defined synthetic glycopolymers enable the integration of glycoconjugate structural and spatial diversity in a single microarray screening platform. PMID:22967056

Godula, Kamil; Bertozzi, Carolyn R

2012-09-26

403

Leveraging cross-link modification events in CLIP-seq for motif discovery  

PubMed Central

High-throughput protein–RNA interaction data generated by CLIP-seq has provided an unprecedented depth of access to the activities of RNA-binding proteins (RBPs), the key players in co- and post-transcriptional regulation of gene expression. Motif discovery forms part of the necessary follow-up data analysis for CLIP-seq, both to refine the exact locations of RBP binding sites, and to characterize them. The specific properties of RBP binding sites, and the CLIP-seq methods, provide additional information not usually present in the classic motif discovery problem: the binding site structure, and cross-linking induced events in reads. We show that CLIP-seq data contains clear secondary structure signals, as well as technology- and RBP-specific cross-link signals. We introduce Zagros, a motif discovery algorithm specifically designed to leverage this information and explore its impact on the quality of recovered motifs. Our results indicate that using both secondary structure and cross-link modifications can greatly improve motif discovery on CLIP-seq data. Further, the motifs we recover provide insight into the balance between sequence- and structure-specificity struck by RBP binding. PMID:25505146

Bahrami-Samani, Emad; Penalva, Luiz O.F.; Smith, Andrew D.; Uren, Philip J.

2015-01-01

404

Tunable high performance cross-linked alkaline anion exchange membranes for fuel cell applications.  

PubMed

Fuel cells are energy conversion devices that show great potential in numerous applications ranging from automobiles to portable electronics. However, further development of fuel cell components is necessary for them to become commercially viable. One component critical to their performance is the polymer electrolyte membrane, which is an ion conductive medium separating the two electrodes. While proton conducting membranes are well established (e.g., Nafion), hydroxide conducting membranes (alkaline anion exchange membranes, AAEMs) have been relatively unexplored by comparison. Operating under alkaline conditions offers significant efficiency benefits, especially for the oxygen reduction reaction; therefore, effective AAEMs could significantly advance fuel cell technologies. Here we demonstrate the use of ring-opening metathesis polymerization to generate new cross-linked membrane materials exhibiting high hydroxide ion conductivity and good mechanical properties. Cross-linking allows for increased ion incorporation, which, in turn supports high conductivities. This facile synthetic approach enables the preparation of cross-linked materials with the potential to meet the demands of hydrogen-powered fuel cells as well as direct methanol fuel cells. PMID:20178312

Robertson, Nicholas J; Kostalik, Henry A; Clark, Timothy J; Mutolo, Paul F; Abruña, Héctor D; Coates, Geoffrey W

2010-03-17

405

Tunable High Performance Cross-Linked Alkaline Anion Exchange Membranes for Fuel Cell Applications  

SciTech Connect

Fuel cells are energy conversion devices that show great potential in numerous applications ranging from automobiles to portable electronics. However, further development of fuel cell components is necessary for them to become commercially viable. One component critical to their performance is the polymer electrolyte membrane, which is an ion conductive medium separating the two electrodes. While proton conducting membranes are well established (e.g., Nafion), hydroxide conducting membranes (alkaline anion exchange membranes, AAEMs) have been relatively unexplored by comparison. Operating under alkaline conditions offers significant efficiency benefits, especially for the oxygen reduction reaction; therefore, effective AAEMs could significantly advance fuel cell technologies. Here we demonstrate the use of ring-opening metathesis polymerization to generate new cross-linked membrane materials exhibiting high hydroxide ion conductivity and good mechanical properties. Cross-linking allows for increased ion incorporation, which, in turn supports high conductivities. This facile synthetic approach enables the preparation of cross-linked materials with the potential to meet the demands of hydrogen-powered fuel cells as well as direct methanol fuel cells.

Robertson, Nicholas J.; Kostalik, IV, Henry A.; Clark, Timothy J.; Mutolo, Paul F.; Abruña, Héctor D.; Coates, Geoffrey W.

2010-01-01

406

Cross-links in carbon nanotube assembly introduced by using polyacrylonitrile as precursor.  

PubMed

Individual carbon nanotube (CNT) exhibits extraordinary mechanics. However, the properties of the macroscopic CNT-based structure, such as CNT fibers and films, are far lower than that of individual CNT. One of the main reasons is the weak interaction between tubes and bundles in the CNT assemblies. It is understood that the cross-links in CNT assembly play a key role to improve the performance of CNT-based structure. Different approaches have been taken to create CNT joints. Most of these approaches focus on connecting CNTs by generating new covalent bonding between tubes. In this work, we intend to reinforce the CNT network by locking the contacted CNTs. Polyacrylonitrile (PAN) was used as precursor because PAN can form graphitic structures after carbonization. The freestanding superthin CNT sheet and CNT yarn were used to evaluate the effects of the PAN precursor to form cross-links between CNTs. The tensile strength of CNT yarn is improved when the yarn is partially infiltrated with PAN and consequently carbonated. High-resolution transmission electron microscopy observation of the sheets shows that graphite structures are formed and cross-link CNTs in CNT assembly. PMID:23901778

Cui, Yanbin; Zhang, Mei

2013-08-28

407

Direct cross-linking of C{sub 70} in Ar plasma  

SciTech Connect

C{sub 70} polymer films were prepared by rf plasma irradiation in Ar atmosphere. Laser desorption ionization time-of-flight mass spectra (LDITOF-MS) for the polymer films showed that C{sub 2} loss occurred in the course of direct cross-linking of C{sub 70} molecules. The polymer structure is discussed based on molecular orbital (MO) calculations of C{sub 70} dimers at semiempirical levels, and the lower probability of direct cross-linking of C{sub 70} molecules than that of C{sub 60} molecules is suggested. The electric dark current of the plasma-polymerized C{sub 70} was 10{sup -13} S/cm, compared to 10{sup -8} S/cm in the C{sub 60} polymer prepared at the same plasma power. The almost-insulating electric conductivity of the C{sub 70} polymer is attributable to the lower probability of conductive cross-linking of C{sub 70} molecules originating from the electronic structure of C{sub 70}. The experimental and theoretical results suggest that the C{sub 70} molecule is the smallest carbon nanotube with polyhedral caps and that the chemical properties of the caps closely resemble the C{sub 60} molecule. 36 refs., 7 figs., 5 tabs.

Ata, Masafumi; Kurihara, Ken`ichi; Takahashi, Noboru [Sony Corporation Research Center, Yokohama (Japan)] [Sony Corporation Research Center, Yokohama (Japan)

1997-01-02

408

Mechanical properties of retrieved highly cross-linked crossfire liners after short-term implantation.  

PubMed

This study reports on detailed analyses of retrieved, annealed cross-linked liners. Twelve cross-linked liners (Crossfire, Stryker Orthopaedics, Mahwah, NJ) of the same Omnifit design were retrieved at revision surgery by one institution after an average 1.9 years (0.02-4.8 years) in vivo. In each case, the revision surgery was performed for reasons unrelated to wear. The mechanical properties and extent of oxidation of all inserts were characterized using a standard small punch test and measurement of the oxidation index. Results indicated that there was no association between implantation time and either mechanical properties or extent of oxidation for the inserts near the worn bearing surface. Slight variation in properties was observed as a function of sampling location, with the properties near the unworn surface displaying the greatest relative variability. We conclude that the variability in polyethylene properties observed in this small study was not clinically significant for these short-term-implanted, annealed cross-linked liners. PMID:16230233

Kurtz, Steven M; Hozack, William; Turner, Joseph; Purtill, James; MacDonald, Daniel; Sharkey, Peter; Parvizi, Javad; Manley, Michael; Rothman, Richard

2005-10-01

409

In vivo covalent cross-linking of cellular actin by the Vibrio cholerae RTX toxin  

PubMed Central

Enteric pathogens often export toxins that elicit diarrhea as a part of the etiology of disease, including toxins that affect cytoskeletal structure. Recently, we discovered that the intestinal pathogen Vibrio cholerae elicits rounding of epithelial cells that is dependent upon a gene we designated rtxA. Here we investigate the association of rtxA with the cell-rounding effect. We find that V.cholerae exports a large toxin, RTX (repeats-in-toxin) toxin, to culture supernatant fluids and that this toxin is responsible for cell rounding. Furthermore, we find that cell rounding is not due to necrosis, suggesting that RTX toxin is not a typical member of the RTX family of pore-forming toxins. Rather, RTX toxin causes depolymerization of actin stress fibers and covalent cross-linking of cellular actin into dimers, trimers and higher multimers. This RTX toxin-specific cross-linking occurs in cells previously rounded with cytochalasin D, indicating that G-actin is the toxin target. Although several models explain our observations, our simultaneous detection of actin cross-linking and depolymerization points toward a novel mechanism of action for RTX toxin, distinguishing it from all other known toxins. PMID:11032799

Fullner, Karla Jean; Mekalanos, John J.

2000-01-01

410

Investigation of Phycobilisome Subunit Interaction Interfaces by Coupled Cross-linking and Mass Spectrometry.  

PubMed

The phycobilisome (PBS) is an extremely large light-harvesting complex, common in cyanobacteria and red algae, composed of rods and core substructures. These substructures are assembled from chromophore-bearing phycocyanin and allophycocyanin subunits, nonpigmented linker proteins and in some cases additional subunits. To date, despite the determination of crystal structures of isolated PBS components, critical questions regarding the interaction and energy flow between rods and core are still unresolved. Additionally, the arrangement of minor PBS components located inside the core cylinders is unknown. Different models of the general architecture of the PBS have been proposed, based on low resolution images from electron microscopy or high resolution crystal structures of isolated components. This work presents a model of the assembly of the rods onto the core arrangement and for the positions of inner core components, based on cross-linking and mass spectrometry analysis of isolated, functional intact Thermosynechococcus vulcanus PBS, as well as functional cross-linked adducts. The experimental results were utilized to predict potential docking interactions of different protein pairs. Combining modeling and cross-linking results, we identify specific interactions within the PBS subcomponents that enable us to suggest possible functional interactions between the chromophores of the rods and the core and improve our understanding of the assembly, structure, and function of PBS. PMID:25296757

Tal, Ofir; Trabelcy, Beny; Gerchman, Yoram; Adir, Noam

2014-11-28

411

Human Muscle LIM Protein Dimerizes along the Actin Cytoskeleton and Cross-Links Actin Filaments  

PubMed Central

The muscle LIM protein (MLP) is a nucleocytoplasmic shuttling protein playing important roles in the regulation of myocyte remodeling and adaptation to hypertrophic stimuli. Missense mutations in human MLP or its ablation in transgenic mice promotes cardiomyopathy and heart failure. The exact function(s) of MLP in the cytoplasmic compartment and the underlying molecular mechanisms remain largely unknown. Here, we provide evidence that MLP autonomously binds to, stabilizes, and bundles actin filaments (AFs) independently of calcium and pH. Using total internal reflection fluorescence microscopy, we have shown how MLP cross-links actin filaments into both unipolar and mixed-polarity bundles. Quantitative analysis of the actin cytoskeleton configuration confirmed that MLP substantially promotes actin bundling in live myoblasts. In addition, bimolecular fluorescence complementation (BiFC) assays revealed MLP self-association. Remarkably, BiFC complexes mostly localize along actin filament-rich structures, such as stress fibers and sarcomeres, supporting a functional link between MLP self-association and actin cross-linking. Finally, we have demonstrated that MLP self-associates through its N-terminal LIM domain, whereas it binds to AFs through its C-terminal LIM domain. Together our data support that MLP contributes to the maintenance of cardiomyocyte cytoarchitecture by a mechanism involving its self-association and actin filament cross-linking. PMID:24934443

Hoffmann, Céline; Moreau, Flora; Moes, Michèle; Luthold, Carole; Dieterle, Monika; Goretti, Emeline; Neumann, Katrin; Steinmetz, André

2014-01-01

412

Two-photon induced collagen cross-linking in bioartificial cardiac tissue  

NASA Astrophysics Data System (ADS)

Cardiac tissue engineering is a promising strategy for regenerative therapies to overcome the shortage of donor organs for transplantation. Besides contractile function, the stiffness of tissue engineered constructs is crucial to generate transplantable tissue surrogates with sufficient mechanical stability to withstand the high pressure present in the heart. Although several collagen cross-linking techniques have proven to be efficient in stabilizing biomaterials, they cannot be applied to cardiac tissue engineering, as cell death occurs in the treated area. Here, we present a novel method using femtosecond (fs) laser pulses to increase the stiffness of collagen-based tissue constructs without impairing cell viability. Raster scanning of the fs laser beam over riboflavin-treated tissue induced collagen cross-linking by two-photon photosensitized singlet oxygen production. One day post-irradiation, stress-strain measurements revealed increased tissue stiffness by around 40% being dependent on the fibroblast content in the tissue. At the same time, cells remained viable and fully functional as demonstrated by fluorescence imaging of cardiomyocyte mitochondrial activity and preservation of active contraction force. Our results indicate that two-photon induced collagen cross-linking has great potential for studying and improving artificially engineered tissue for regenerative therapies.

Kuetemeyer, Kai; Kensah, George; Heidrich, Marko; Meyer, Heiko; Martin, Ulrich; Gruh, Ina; Heisterkamp, Alexander

2011-08-01

413

Collagen cross-linking in sun-exposed and unexposed sites of aged human skin  

NASA Technical Reports Server (NTRS)

A recently described nonreducible, acid-heat stable compound, histidinohydroxylysinonorleucine (HHL), is a collagen cross-link isolated from mature skin tissue. Its abundance is related to chronologic aging of skin. The present communication describes the quantity of HHL from aged human skin of the same individuals in sun-exposed (wrist) and