Sample records for cross-spectrum experimental method

  1. Fast radio burst search: cross spectrum vs. auto spectrum method

    NASA Astrophysics Data System (ADS)

    Liu, Lei; Zheng, Weimin; Yan, Zhen; Zhang, Juan

    2018-06-01

    The search for fast radio bursts (FRBs) is a hot topic in current radio astronomy studies. In this work, we carry out a single pulse search with a very long baseline interferometry (VLBI) pulsar observation data set using both auto spectrum and cross spectrum search methods. The cross spectrum method, first proposed in Liu et al., maximizes the signal power by fully utilizing the fringe phase information of the baseline cross spectrum. The auto spectrum search method is based on the popular pulsar software package PRESTO, which extracts single pulses from the auto spectrum of each station. According to our comparison, the cross spectrum method is able to enhance the signal power and therefore extract single pulses from data contaminated by high levels of radio frequency interference (RFI), which makes it possible to carry out a search for FRBs in regular VLBI observations when RFI is present.

  2. Effects of silicon cross section and neutron spectrum on the radial uniformity in neutron transmutation doping.

    PubMed

    Kim, Haksung; Ho Pyeon, Cheol; Lim, Jae-Yong; Misawa, Tsuyoshi

    2012-01-01

    The effects of silicon cross section and neutron spectrum on the radial uniformity of a Si-ingot are examined experimentally with various neutron spectrum conditions. For the cross section effect, the numerical results using silicon single crystal cross section reveal good agreements with experiments within relative difference of 6%, whereas the discrepancy is approximately 20% in free-gas cross section. For the neutron spectrum effect, the radial uniformity in hard neutron spectrum is found to be more flattening than that in soft spectrum. Copyright © 2011 Elsevier Ltd. All rights reserved.

  3. Cross-spectrum measurement of thermal-noise limited oscillators.

    PubMed

    Hati, A; Nelson, C W; Howe, D A

    2016-03-01

    Cross-spectrum analysis is a commonly used technique for the detection of phase and amplitude noise of a signal in the presence of interfering uncorrelated noise. Recently, we demonstrated that the phase-inversion (anti-correlation) effect due to amplitude noise leakage can cause complete or partial collapse of the cross-spectral function. In this paper, we discuss the newly discovered effect of anti-correlated thermal noise that originates from the common-mode power divider (splitter), an essential component in a cross-spectrum noise measurement system. We studied this effect for different power splitters and discuss its influence on the measurement of thermal-noise limited oscillators. We provide theory, simulation and experimental results. In addition, we expand this study to reveal how the presence of ferrite-isolators and amplifiers at the output ports of the power splitters can affect the oscillator noise measurements. Finally, we discuss a possible solution to overcome this problem.

  4. Self spectrum window method in wigner-ville distribution.

    PubMed

    Liu, Zhongguo; Liu, Changchun; Liu, Boqiang; Lv, Yangsheng; Lei, Yinsheng; Yu, Mengsun

    2005-01-01

    Wigner-Ville distribution (WVD) is an important type of time-frequency analysis in biomedical signal processing. The cross-term interference in WVD has a disadvantageous influence on its application. In this research, the Self Spectrum Window (SSW) method was put forward to suppress the cross-term interference, based on the fact that the cross-term and auto-WVD- terms in integral kernel function are orthogonal. With the Self Spectrum Window (SSW) algorithm, a real auto-WVD function was used as a template to cross-correlate with the integral kernel function, and the Short Time Fourier Transform (STFT) spectrum of the signal was used as window function to process the WVD in time-frequency plane. The SSW method was confirmed by computer simulation with good analysis results. Satisfactory time- frequency distribution was obtained.

  5. Influence of experimental methods on crossing in magnetic force-gap hysteresis curve of HTS maglev system

    NASA Astrophysics Data System (ADS)

    Lu, Yiyun; Qin, Yujie; Dang, Qiaohong; Wang, Jiasu

    2010-12-01

    The crossing in magnetic levitation force-gap hysteresis curve of melt high-temperature superconductor (HTS) vs. NdFeB permanent magnet (PM) was experimentally studied. One HTS bulk and PM was used in the experiments. Four experimental methods were employed combining of high/low speed of movement of PM with/without heat insulation materials (HIM) enclosed respectively. Experimental results show that crossing of the levitation force-gap curve is related to experimental methods. A crossing occurs in the magnetic force-gap curve while the PM moves approaching to and departing from the sample with high or low speed of movement without HIM enclosed. When the PM is enclosed with HIM during the measurement procedures, there is no crossing in the force-gap curve no matter high speed or low speed of movement of the PM. It was found experimentally that, with the increase of the moving speed of the PM, the maximum magnitude of levitation force of the HTS increases also. The results are interpreted based on Maxwell theories and flux flow-creep models of HTS.

  6. Statistical Model Analysis of (n,p) Cross Sections and Average Energy For Fission Neutron Spectrum

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Odsuren, M.; Khuukhenkhuu, G.

    2011-06-28

    Investigation of charged particle emission reaction cross sections for fast neutrons is important to both nuclear reactor technology and the understanding of nuclear reaction mechanisms. In particular, the study of (n,p) cross sections is necessary to estimate radiation damage due to hydrogen production, nuclear heating and transmutations in the structural materials of fission and fusion reactors. On the other hand, it is often necessary in practice to evaluate the neutron cross sections of the nuclides for which no experimental data are available.Because of this, we carried out the systematical analysis of known experimental (n,p) and (n,a) cross sections for fastmore » neutrons and observed a systematical regularity in the wide energy interval of 6-20 MeV and for broad mass range of target nuclei. To explain this effect using the compound, pre-equilibrium and direct reaction mechanisms some formulae were deduced. In this paper, in the framework of the statistical model known experimental (n,p) cross sections averaged over the thermal fission neutron spectrum of U-235 are analyzed. It was shown that the experimental data are satisfactorily described by the statistical model. Also, in the case of (n,p) cross sections the effective average neutron energy for fission spectrum of U-235 was found to be around 3 MeV.« less

  7. Multidimensional analysis of fast-spectrum material replacement measurements for systematic estimation of cross section uncertainties

    NASA Technical Reports Server (NTRS)

    Klann, P. G.; Lantz, E.; Mayo, W. T.

    1973-01-01

    A series of central core and core-reflector interface sample replacement experiments for 16 materials performed in the NASA heavy-metal-reflected, fast spectrum critical assembly (NCA) were analyzed in four and 13 groups using the GAM 2 cross-section set. The individual worths obtained by TDSN and DOT multidimensional transport theory calculations showed significant differences from the experimental results. These were attributed to cross-section uncertainties in the GAM 2 cross sections. Simultaneous analysis of the measured and calculated sample worths permitted separation of the worths into capture and scattering components which systematically provided fast spectrum averaged correction factors to the magnitudes of the GAM 2 absorption and scattering cross sections. Several Los Alamos clean critical assemblies containing Oy, Ta, and Mo as well as one of the NCA compositions were reanalyzed using the corrected cross sections. In all cases the eigenvalues were significantly improved and were recomputed to within 1 percent of the experimental eigenvalue. A comparable procedure may be used for ENDF cross sections when these are available.

  8. Cross-Spectrum PM Noise Measurement, Thermal Energy, and Metamaterial Filters.

    PubMed

    Gruson, Yannick; Giordano, Vincent; Rohde, Ulrich L; Poddar, Ajay K; Rubiola, Enrico

    2017-03-01

    Virtually all commercial instruments for the measurement of the oscillator PM noise make use of the cross-spectrum method (arXiv:1004.5539 [physics.ins-det], 2010). High sensitivity is achieved by correlation and averaging on two equal channels, which measure the same input, and reject the background of the instrument. We show that a systematic error is always present if the thermal energy of the input power splitter is not accounted for. Such error can result in noise underestimation up to a few decibels in the lowest-noise quartz oscillators, and in an invalid measurement in the case of cryogenic oscillators. As another alarming fact, the presence of metamaterial components in the oscillator results in unpredictable behavior and large errors, even in well controlled experimental conditions. We observed a spread of 40 dB in the phase noise spectra of an oscillator, just replacing the output filter.

  9. Experimental demonstration of spectrum-sliced elastic optical path network (SLICE).

    PubMed

    Kozicki, Bartłomiej; Takara, Hidehiko; Tsukishima, Yukio; Yoshimatsu, Toshihide; Yonenaga, Kazushige; Jinno, Masahiko

    2010-10-11

    We describe experimental demonstration of spectrum-sliced elastic optical path network (SLICE) architecture. We employ optical orthogonal frequency-division multiplexing (OFDM) modulation format and bandwidth-variable optical cross-connects (OXC) to generate, transmit and receive optical paths with bandwidths of up to 1 Tb/s. We experimentally demonstrate elastic optical path setup and spectrally-efficient transmission of multiple channels with bit rates ranging from 40 to 140 Gb/s between six nodes of a mesh network. We show dynamic bandwidth scalability for optical paths with bit rates of 40 to 440 Gb/s. Moreover, we demonstrate multihop transmission of a 1 Tb/s optical path over 400 km of standard single-mode fiber (SMF). Finally, we investigate the filtering properties and the required guard band width for spectrally-efficient allocation of optical paths in SLICE.

  10. Experimental and evaluated photoneutron cross sections for 197Au

    NASA Astrophysics Data System (ADS)

    Varlamov, V.; Ishkhanov, B.; Orlin, V.

    2017-10-01

    There is a serious well-known problem of noticeable disagreements between the partial photoneutron cross sections obtained in various experiments. Such data were mainly determined using quasimonoenergetic annihilation photon beams and the method of neutron multiplicity sorting at Lawrence Livermore National Laboratory (USA) and Centre d'Etudes Nucleaires of Saclay (France). The analysis of experimental cross sections employing new objective physical data reliability criteria has shown that many of those are not reliable. The IAEA Coordinated Research Project (CRP) on photonuclear data evaluation was approved. The experimental and previously evaluated cross sections of the partial photoneutron reactions (γ ,1 n ) and (γ ,2 n ) on 197Au were analyzed using the new data reliability criteria. The data evaluated using the new experimental-theoretical method noticeably differ from both experimental data and data previously evaluated using nuclear modeling codes gnash, gunf, alice-f, and others. These discrepancies needed to be resolved.

  11. Bit Synchronization with Cross Spectrum Synchronization Loop. Attachment III.

    DTIC Science & Technology

    1981-10-01

    AO-AII 1 ICMCR AAE~C BIT SYNCHRONIZATION WITH CROSS SPECTRUM SYNCHRONIZATION LOOP .A_ ETC(U) O’ASFE CT A1 R A MA A 6. A C LINDSEY, C M CHIE NOOOI𔃾...BUR[AU OF STANOARDS 196.- A I~I -I I I Yinwoa on. IAoalt [ S0Box0 2793D, Pasadena Calif 91105 82 03 09098 I7- ATTACHMENT III BIT SYNCHRONIZATION WITH...CROSS SPECTRUM SYNCHRONIZATION LOOP I ’I PREPARED FOR NAVAL RESEARCH LABORATORY WASHINGTON, D.C. 20375 .Jr TECHNICAL MONITOR: MR. MORT FRANK I CONTRACT

  12. Use of boron nitride for neutron spectrum characterization and cross-section validation in the epithermal range through integral activation measurements

    NASA Astrophysics Data System (ADS)

    Radulović, Vladimir; Trkov, Andrej; Jaćimović, Radojko; Gregoire, Gilles; Destouches, Christophe

    2016-12-01

    A recent experimental irradiation and measurement campaign using containers made from boron nitride (BN) at the Jožef Stefan Institute (JSI) TRIGA Mark II reactor in Ljubljana, Slovenia, has shown the applicability of BN for neutron spectrum characterization and cross-section validation in the epithermal range through integral activation measurements. The first part of the paper focuses on the determination of the transmission function of a BN container through Monte Carlo calculations and experimental measurements. The second part presents the process of tayloring the sensitivity of integral activation measurements to specific needs and a selection of suitable radiative capture reactions for neutron spectrum characterization in the epithermal range. A BN container used in our experiments and its qualitative effect on the neutron spectrum in the irradiation position employed is displayed in the Graphical abstract.

  13. Near-Infrared Spectrum Detection of Wheat Gluten Protein Content Based on a Combined Filtering Method.

    PubMed

    Cai, Jian-Hua

    2017-09-01

    To eliminate the random error of the derivative near-IR (NIR) spectrum and to improve model stability and the prediction accuracy of the gluten protein content, a combined method is proposed for pretreatment of the NIR spectrum based on both empirical mode decomposition and the wavelet soft-threshold method. The principle and the steps of the method are introduced and the denoising effect is evaluated. The wheat gluten protein content is calculated based on the denoised spectrum, and the results are compared with those of the nine-point smoothing method and the wavelet soft-threshold method. Experimental results show that the proposed combined method is effective in completing pretreatment of the NIR spectrum, and the proposed method improves the accuracy of detection of wheat gluten protein content from the NIR spectrum.

  14. Normal mode and experimental analysis of TNT Raman spectrum

    NASA Astrophysics Data System (ADS)

    Liu, Yuemin; Perkins, Richard; Liu, Yucheng; Tzeng, Nianfeng

    2017-04-01

    In this study, a Raman spectrum of TNT was characterized through experiments and simulated using 22 hybrid density functional theory (DFT) methods. Among the different hybrid DFT methods, it was found that the most accurate simulation results of the Raman shift frequency were calculated by the O3LYP method. However, the deviations of the calculated Raman frequencies from the experimental value showed no dependency on the abilities of the DFT methods in recovering the correlation energy. The accuracies of the DFT methods in predicting the Raman bands are probably determined by the numerical grid and convergence criteria for optimizations of each DFT method. It was also decided that the prominent Raman shift 1362 cm-1 is mainly caused by symmetric stretching of the 4-nitro groups. Findings of this study can facilitate futuristic development of more effective surface enhanced Raman spectroscopy/scattering (SERS) substrates for explosive characterization and detection.

  15. [New method of mixed gas infrared spectrum analysis based on SVM].

    PubMed

    Bai, Peng; Xie, Wen-Jun; Liu, Jun-Hua

    2007-07-01

    A new method of infrared spectrum analysis based on support vector machine (SVM) for mixture gas was proposed. The kernel function in SVM was used to map the seriously overlapping absorption spectrum into high-dimensional space, and after transformation, the high-dimensional data could be processed in the original space, so the regression calibration model was established, then the regression calibration model with was applied to analyze the concentration of component gas. Meanwhile it was proved that the regression calibration model with SVM also could be used for component recognition of mixture gas. The method was applied to the analysis of different data samples. Some factors such as scan interval, range of the wavelength, kernel function and penalty coefficient C that affect the model were discussed. Experimental results show that the component concentration maximal Mean AE is 0.132%, and the component recognition accuracy is higher than 94%. The problems of overlapping absorption spectrum, using the same method for qualitative and quantitative analysis, and limit number of training sample, were solved. The method could be used in other mixture gas infrared spectrum analyses, promising theoretic and application values.

  16. Fault diagnosis of rolling element bearings with a spectrum searching method

    NASA Astrophysics Data System (ADS)

    Li, Wei; Qiu, Mingquan; Zhu, Zhencai; Jiang, Fan; Zhou, Gongbo

    2017-09-01

    Rolling element bearing faults in rotating systems are observed as impulses in the vibration signals, which are usually buried in noise. In order to effectively detect faults in bearings, a novel spectrum searching method is proposed in this paper. The structural information of the spectrum (SIOS) on a predefined frequency grid is constructed through a searching algorithm, such that the harmonics of the impulses generated by faults can be clearly identified and analyzed. Local peaks of the spectrum are projected onto certain components of the frequency grid, and then the SIOS can interpret the spectrum via the number and power of harmonics projected onto components of the frequency grid. Finally, bearings can be diagnosed based on the SIOS by identifying its dominant or significant components. The mathematical formulation is developed to guarantee the correct construction of the SIOS through searching. The effectiveness of the proposed method is verified with both simulated and experimental bearing signals.

  17. Experimental validation of a structural damage detection method based on marginal Hilbert spectrum

    NASA Astrophysics Data System (ADS)

    Banerji, Srishti; Roy, Timir B.; Sabamehr, Ardalan; Bagchi, Ashutosh

    2017-04-01

    Structural Health Monitoring (SHM) using dynamic characteristics of structures is crucial for early damage detection. Damage detection can be performed by capturing and assessing structural responses. Instrumented structures are monitored by analyzing the responses recorded by deployed sensors in the form of signals. Signal processing is an important tool for the processing of the collected data to diagnose anomalies in structural behavior. The vibration signature of the structure varies with damage. In order to attain effective damage detection, preservation of non-linear and non-stationary features of real structural responses is important. Decomposition of the signals into Intrinsic Mode Functions (IMF) by Empirical Mode Decomposition (EMD) and application of Hilbert-Huang Transform (HHT) addresses the time-varying instantaneous properties of the structural response. The energy distribution among different vibration modes of the intact and damaged structure depicted by Marginal Hilbert Spectrum (MHS) detects location and severity of the damage. The present work investigates damage detection analytically and experimentally by employing MHS. The testing of this methodology for different damage scenarios of a frame structure resulted in its accurate damage identification. The sensitivity of Hilbert Spectral Analysis (HSA) is assessed with varying frequencies and damage locations by means of calculating Damage Indices (DI) from the Hilbert spectrum curves of the undamaged and damaged structures.

  18. CMB EB and TB cross-spectrum estimation via pseudospectrum techniques

    NASA Astrophysics Data System (ADS)

    Grain, J.; Tristram, M.; Stompor, R.

    2012-10-01

    We discuss methods for estimating EB and TB spectra of the cosmic microwave background anisotropy maps covering limited sky area. Such odd-parity correlations are expected to vanish whenever parity is not broken. As this is indeed the case in the standard cosmologies, any evidence to the contrary would have a profound impact on our theories of the early Universe. Such correlations could also become a sensitive diagnostic of some particularly insidious instrumental systematics. In this work we introduce three different unbiased estimators based on the so-called standard and pure pseudo-spectrum techniques and later assess their performance by means of extensive Monte Carlo simulations performed for different experimental configurations. We find that a hybrid approach combining a pure estimate of B-mode multipoles with a standard one for E-mode (or T) multipoles, leads to the smallest error bars for both EB (or TB respectively) spectra as well as for the three other polarization-related angular power spectra (i.e., EE, BB, and TE). However, if both E and B multipoles are estimated using the pure technique, the loss of precision for the EB spectrum is not larger than ˜30%. Moreover, for the experimental configurations considered here, the statistical uncertainties-due to sampling variance and instrumental noise-of the pseudo-spectrum estimates is at most a factor ˜1.4 for TT, EE, and TE spectra and a factor ˜2 for BB, TB, and EB spectra, higher than the most optimistic Fisher estimate of the variance.

  19. Improving nuclear data accuracy of 241Am and 237Np capture cross sections

    NASA Astrophysics Data System (ADS)

    Žerovnik, Gašper; Schillebeeckx, Peter; Cano-Ott, Daniel; Jandel, Marian; Hori, Jun-ichi; Kimura, Atsushi; Rossbach, Matthias; Letourneau, Alain; Noguere, Gilles; Leconte, Pierre; Sano, Tadafumi; Kellett, Mark A.; Iwamoto, Osamu; Ignatyuk, Anatoly V.; Cabellos, Oscar; Genreith, Christoph; Harada, Hideo

    2017-09-01

    In the framework of the OECD/NEA WPEC subgroup 41, ways to improve neutron induced capture cross sections for 241Am and 237Np are being sought. Decay data, energy dependent cross section data and neutron spectrum averaged data are important for that purpose and were investigated. New time-of-flight measurements were performed and analyzed, and considerable effort was put into development of methods for analysis of spectrum averaged data and re-analysis of existing experimental data.

  20. Andreev spectrum with high spin-orbit interactions: Revealing spin splitting and topologically protected crossings

    NASA Astrophysics Data System (ADS)

    Murani, A.; Chepelianskii, A.; Guéron, S.; Bouchiat, H.

    2017-10-01

    In order to point out experimentally accessible signatures of spin-orbit interaction, we investigate numerically the Andreev spectrum of a multichannel mesoscopic quantum wire (N) with high spin-orbit interaction coupled to superconducting electrodes (S), contrasting topological and nontopological behaviors. In the nontopological case (square lattice with Rashba interactions), we find that the Kramers degeneracy of Andreev levels is lifted by a phase difference between the S reservoirs except at multiples of π , when the normal quantum wires can host several conduction channels. The level crossings at these points invariant by time-reversal symmetry are not lifted by disorder. Whereas the dc Josephson current is insensitive to these level crossings, the high-frequency admittance (susceptibility) at finite temperature reveals these level crossings and the lifting of their degeneracy at π by a small Zeeman field. We have also investigated the hexagonal lattice with intrinsic spin-orbit interaction in the range of parameters where it is a two-dimensional topological insulator with one-dimensional helical edges protected against disorder. Nontopological superconducting contacts can induce topological superconductivity in this system characterized by zero-energy level crossing of Andreev levels. Both Josephson current and finite-frequency admittance carry then very specific signatures at low temperature of this disorder-protected Andreev level crossing at π and zero energy.

  1. Theoretical and experimental study on electron interactions with chlorobenzene: Shape resonances and differential cross sections

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Barbosa, Alessandra Souza; Laboratório de Colisões Atómicas e Moleculares, CEFITEC, Departamento de Física, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, 2829-516 Caparica; Varella, Márcio T. do N.

    2016-08-28

    In this work, we report theoretical and experimental cross sections for elastic scattering of electrons by chlorobenzene (ClB). The theoretical integral and differential cross sections (DCSs) were obtained with the Schwinger multichannel method implemented with pseudopotentials (SMCPP) and the independent atom method with screening corrected additivity rule (IAM-SCAR). The calculations with the SMCPP method were done in the static-exchange (SE) approximation, for energies above 12 eV, and in the static-exchange plus polarization approximation, for energies up to 12 eV. The calculations with the IAM-SCAR method covered energies up to 500 eV. The experimental differential cross sections were obtained in themore » high resolution electron energy loss spectrometer VG-SEELS 400, in Lisbon, for electron energies from 8.0 eV to 50 eV and angular range from 7{sup ∘} to 110{sup ∘}. From the present theoretical integral cross section (ICS) we discuss the low-energy shape-resonances present in chlorobenzene and compare our computed resonance spectra with available electron transmission spectroscopy data present in the literature. Since there is no other work in the literature reporting differential cross sections for this molecule, we compare our theoretical and experimental DCSs with experimental data available for the parent molecule benzene.« less

  2. An Accurate Method for Measuring Airplane-Borne Conformal Antenna's Radar Cross Section

    NASA Astrophysics Data System (ADS)

    Guo, Shuxia; Zhang, Lei; Wang, Yafeng; Hu, Chufeng

    2016-09-01

    The airplane-borne conformal antenna attaches itself tightly with the airplane skin, so the conventional measurement method cannot determine the contribution of the airplane-borne conformal antenna to its radar cross section (RCS). This paper uses the 2D microwave imaging to isolate and extract the distribution of the reflectivity of the airplane-borne conformal antenna. It obtains the 2D spatial spectra of the conformal antenna through the wave spectral transform between the 2D spatial image and the 2D spatial spectrum. After the interpolation from the rectangular coordinate domain to the polar coordinate domain, the spectral domain data for the variation of the scatter of the conformal antenna with frequency and angle is obtained. The experimental results show that the measurement method proposed in this paper greatly enhances the airplane-borne conformal antenna's RCS measurement accuracy, essentially eliminates the influences caused by the airplane skin and more accurately reveals the airplane-borne conformal antenna's RCS scatter properties.

  3. Investigation of the influence of the neutron spectrum in determinations of integral cross-section ratios

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Smith, D.L.

    1987-11-01

    Ratio measurements are routinely employed in studies of neutron interaction processes in order to generate new differential cross-section data or to test existing differential cross-section information through examination of the corresponding response in integral neutron spectra. Interpretation of such data requires that careful attention be given to details of the neutron spectra involved in these measurements. Two specific tasks are undertaken in the present investigation: (1) Using perturbation theory, a formula is derived which permits one to relate the ratio measured in a realistic quasimonoenergetic spectrum to the desired pure monoenergetic ratio. This expression involves only the lowest-order moments ofmore » the neutron energy distribution and corresponding parameters which serve to characterize the energy dependence of the differential cross sections, quantities which can generally be estimated with reasonable precision from the uncorrected data or from auxiliary information. (2) Using covariance methods, a general formalism is developed for calculating the uncertainty of a measured integral cross-section ratio which involves an arbitrary neutron spectrum. This formalism is employed to further examine the conditions which influence the sensitivity of such measured ratios to details of the neutron spectra and to their uncertainties. Several numerical examples are presented in this report in order to illustrate these principles, and some general conclusion are drawn concerning the development and testing of neutron cross-section data by means of ratio experiments. 16 refs., 1 fig., 4 tabs.« less

  4. (abstract) Cross with Your Spectra? Cross-Correlate Instead!

    NASA Technical Reports Server (NTRS)

    Beer, Reinhard

    1994-01-01

    The use of cross-correlation for certain types of spectral analysis is discussed. Under certain circumstances, the use of cross-correlation between a real spectrum and either a model or another spectrum can provide a very powerful tool for spectral analysis. The method (and its limitations) will be described with concrete examples using ATMOS data.

  5. Halo Pressure Profile through the Skew Cross-power Spectrum of the Sunyaev-Zel’dovich Effect and CMB Lensing in Planck

    NASA Astrophysics Data System (ADS)

    Timmons, Nicholas; Cooray, Asantha; Feng, Chang; Keating, Brian

    2017-11-01

    We measure the cosmic microwave background (CMB) skewness power spectrum in Planck, using frequency maps of the HFI instrument and the Sunyaev-Zel’dovich (SZ) component map. The two-to-one skewness power spectrum measures the cross-correlation between CMB lensing and the thermal SZ effect. We also directly measure the same cross-correlation using the Planck CMB lensing map and the SZ map and compare it to the cross-correlation derived from the skewness power spectrum. We model fit the SZ power spectrum and CMB lensing-SZ cross-power spectrum via the skewness power spectrum to constrain the gas pressure profile of dark matter halos. The gas pressure profile is compared to existing measurements in the literature including a direct estimate based on the stacking of SZ clusters in Planck.

  6. Electron scattering by molecules. II - Experimental methods and data

    NASA Technical Reports Server (NTRS)

    Trajmar, S.; Chutjian, A.; Register, D. F.

    1983-01-01

    Experimental techniques for measuring electron-molecule collision cross sections are briefly summarized. A survey of the available experimental cross section data is presented. The emphasis here is on elastic scattering, rotational, vibrational and electronic excitations, total electron scattering, and momentum transfer in the few eV to few hundred eV impact energy range. Reference is made to works concerned with high energy electron scattering, innershell and multi-electron excitations, conicidence methods and electron scattering in laser fields.

  7. [An automatic peak detection method for LIBS spectrum based on continuous wavelet transform].

    PubMed

    Chen, Peng-Fei; Tian, Di; Qiao, Shu-Jun; Yang, Guang

    2014-07-01

    Spectrum peak detection in the laser-induced breakdown spectroscopy (LIBS) is an essential step, but the presence of background and noise seriously disturb the accuracy of peak position. The present paper proposed a method applied to automatic peak detection for LIBS spectrum in order to enhance the ability of overlapping peaks searching and adaptivity. We introduced the ridge peak detection method based on continuous wavelet transform to LIBS, and discussed the choice of the mother wavelet and optimized the scale factor and the shift factor. This method also improved the ridge peak detection method with a correcting ridge method. The experimental results show that compared with other peak detection methods (the direct comparison method, derivative method and ridge peak search method), our method had a significant advantage on the ability to distinguish overlapping peaks and the precision of peak detection, and could be be applied to data processing in LIBS.

  8. Halo Pressure Profile through the Skew Cross-power Spectrum of the Sunyaev–Zel’dovich Effect and CMB Lensing in Planck

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Timmons, Nicholas; Cooray, Asantha; Feng, Chang

    2017-11-01

    We measure the cosmic microwave background (CMB) skewness power spectrum in Planck , using frequency maps of the HFI instrument and the Sunyaev–Zel’dovich (SZ) component map. The two-to-one skewness power spectrum measures the cross-correlation between CMB lensing and the thermal SZ effect. We also directly measure the same cross-correlation using the Planck CMB lensing map and the SZ map and compare it to the cross-correlation derived from the skewness power spectrum. We model fit the SZ power spectrum and CMB lensing–SZ cross-power spectrum via the skewness power spectrum to constrain the gas pressure profile of dark matter halos. The gasmore » pressure profile is compared to existing measurements in the literature including a direct estimate based on the stacking of SZ clusters in Planck .« less

  9. Comparison of RF spectrum prediction methods for dynamic spectrum access

    NASA Astrophysics Data System (ADS)

    Kovarskiy, Jacob A.; Martone, Anthony F.; Gallagher, Kyle A.; Sherbondy, Kelly D.; Narayanan, Ram M.

    2017-05-01

    Dynamic spectrum access (DSA) refers to the adaptive utilization of today's busy electromagnetic spectrum. Cognitive radio/radar technologies require DSA to intelligently transmit and receive information in changing environments. Predicting radio frequency (RF) activity reduces sensing time and energy consumption for identifying usable spectrum. Typical spectrum prediction methods involve modeling spectral statistics with Hidden Markov Models (HMM) or various neural network structures. HMMs describe the time-varying state probabilities of Markov processes as a dynamic Bayesian network. Neural Networks model biological brain neuron connections to perform a wide range of complex and often non-linear computations. This work compares HMM, Multilayer Perceptron (MLP), and Recurrent Neural Network (RNN) algorithms and their ability to perform RF channel state prediction. Monte Carlo simulations on both measured and simulated spectrum data evaluate the performance of these algorithms. Generalizing spectrum occupancy as an alternating renewal process allows Poisson random variables to generate simulated data while energy detection determines the occupancy state of measured RF spectrum data for testing. The results suggest that neural networks achieve better prediction accuracy and prove more adaptable to changing spectral statistics than HMMs given sufficient training data.

  10. Linearized spectrum correlation analysis for line emission measurements

    NASA Astrophysics Data System (ADS)

    Nishizawa, T.; Nornberg, M. D.; Den Hartog, D. J.; Sarff, J. S.

    2017-08-01

    A new spectral analysis method, Linearized Spectrum Correlation Analysis (LSCA), for charge exchange and passive ion Doppler spectroscopy is introduced to provide a means of measuring fast spectral line shape changes associated with ion-scale micro-instabilities. This analysis method is designed to resolve the fluctuations in the emission line shape from a stationary ion-scale wave. The method linearizes the fluctuations around a time-averaged line shape (e.g., Gaussian) and subdivides the spectral output channels into two sets to reduce contributions from uncorrelated fluctuations without averaging over the fast time dynamics. In principle, small fluctuations in the parameters used for a line shape model can be measured by evaluating the cross spectrum between different channel groupings to isolate a particular fluctuating quantity. High-frequency ion velocity measurements (100-200 kHz) were made by using this method. We also conducted simulations to compare LSCA with a moment analysis technique under a low photon count condition. Both experimental and synthetic measurements demonstrate the effectiveness of LSCA.

  11. Parameterized Cross Sections for Pion Production in Proton-Proton Collisions

    NASA Technical Reports Server (NTRS)

    Blattnig, Steve R.; Swaminathan, Sudha R.; Kruger, Adam T.; Ngom, Moussa; Norbury, John W.; Tripathi, R. K.

    2000-01-01

    An accurate knowledge of cross sections for pion production in proton-proton collisions finds wide application in particle physics, astrophysics, cosmic ray physics, and space radiation problems, especially in situations where an incident proton is transported through some medium and knowledge of the output particle spectrum is required when given the input spectrum. In these cases, accurate parameterizations of the cross sections are desired. In this paper much of the experimental data are reviewed and compared with a wide variety of different cross section parameterizations. Therefore, parameterizations of neutral and charged pion cross sections are provided that give a very accurate description of the experimental data. Lorentz invariant differential cross sections, spectral distributions, and total cross section parameterizations are presented.

  12. Dynamic characterization of a damaged beam using empirical mode decomposition and Hilbert spectrum method

    NASA Astrophysics Data System (ADS)

    Chang, Chih-Chen; Poon, Chun-Wing

    2004-07-01

    Recently, the empirical mode decomposition (EMD) in combination with the Hilbert spectrum method has been proposed to identify the dynamic characteristics of linear structures. In this study, this EMD and Hilbert spectrum method is used to analyze the dynamic characteristics of a damaged reinforced concrete (RC) beam in the laboratory. The RC beam is 4m long with a cross section of 200mm X 250mm. The beam is sequentially subjected to a concentrated load of different magnitudes at the mid-span to produce different degrees of damage. An impact load is applied around the mid-span to excite the beam. Responses of the beam are recorded by four accelerometers. Results indicate that the EMD and Hilbert spectrum method can reveal the variation of the dynamic characteristics in the time domain. These results are also compared with those obtained using the Fourier analysis. In general, it is found that the two sets of results correlate quite well in terms of mode counts and frequency values. Some differences, however, can be seen in the damping values, which perhaps can be attributed to the linear assumption of the Fourier transform.

  13. Bringing the cross-correlation method up to date

    NASA Technical Reports Server (NTRS)

    Statler, Thomas

    1995-01-01

    The cross-correlation (XC) method of Tonry & Davis (1979, AJ, 84, 1511) is generalized to arbitrary parametrized line profiles. In the new algorithm the correlation function itself, rather than the observed galaxy spectrum, is fitted by the model line profile: this removes much of the complication in the error analysis caused by template mismatch. Like the Fourier correlation quotient (FCQ) method of Bender (1990, A&A, 229, 441), the inferred line profiles are, up to a normalization constant, independent of template mismatch as long as there are no blended lines. The standard reduced chi(exp 2) is a good measure of the fit of the inferred velocity distribution, largely decoupled from the fit of the spectral template. The updated XC method performs as well as other recently developed methods, with the added virtue of conceptual simplicity.

  14. Cross-frequency and band-averaged response variance prediction in the hybrid deterministic-statistical energy analysis method

    NASA Astrophysics Data System (ADS)

    Reynders, Edwin P. B.; Langley, Robin S.

    2018-08-01

    The hybrid deterministic-statistical energy analysis method has proven to be a versatile framework for modeling built-up vibro-acoustic systems. The stiff system components are modeled deterministically, e.g., using the finite element method, while the wave fields in the flexible components are modeled as diffuse. In the present paper, the hybrid method is extended such that not only the ensemble mean and variance of the harmonic system response can be computed, but also of the band-averaged system response. This variance represents the uncertainty that is due to the assumption of a diffuse field in the flexible components of the hybrid system. The developments start with a cross-frequency generalization of the reciprocity relationship between the total energy in a diffuse field and the cross spectrum of the blocked reverberant loading at the boundaries of that field. By making extensive use of this generalization in a first-order perturbation analysis, explicit expressions are derived for the cross-frequency and band-averaged variance of the vibrational energies in the diffuse components and for the cross-frequency and band-averaged variance of the cross spectrum of the vibro-acoustic field response of the deterministic components. These expressions are extensively validated against detailed Monte Carlo analyses of coupled plate systems in which diffuse fields are simulated by randomly distributing small point masses across the flexible components, and good agreement is found.

  15. Cross-protection between experimental anti-leptospirosis bacterins

    PubMed Central

    Dib, Cristina Corsi; Gonçales, Amane Paldês; de Morais, Zenaide Maria; de Souza, Gisele Oliveira; Miraglia, Fabiana; Abreu, Patricia Antonia Estima; Vasconcellos, Silvio Arruda

    2014-01-01

    We investigated the existence of cross-protection between two anti-leptospirosis monovalent experimental bacterins produced with two strains of Leptospira serogroup Pomona: Fromm strain of serovar Kennewicky, isolated from pigs in the United States, and strain GR6 of serovar Pomona isolated from pigs in Brazil. Both were added of aluminum hydroxide as an adjuvant. Experimental bacterins were tested with the hamster potency test in order to assess protection provided against the disease and against the establishment of kidney infection. Controls were polyvalent commercial vaccine produced with Leptospira strains isolated outside Brazil, which included a representative of Pomona serovar, or Sorensen solution added of aluminum hydroxide adjuvant. The challenge was performed with cross-strains of serogroup Pomona tested in accordance with international standards established for the potency test. After 21 days of the challenge, survivors were killed to evaluate the condition of Leptospira renal carrier. Experimental bacterins protected hamsters against homologous and heterologous strains, demonstrating the existence of cross-protection. The commercial vaccine protected the hamsters challenged with both strains, but there was a high proportion of animals diagnosed as renal carriers when the challenge was performed with strain GR6, isolated from pigs in Brazil. PMID:25477946

  16. Thick-target transmission method for excitation functions of interaction cross sections

    NASA Astrophysics Data System (ADS)

    Aikawa, M.; Ebata, S.; Imai, S.

    2016-09-01

    We propose a method, called as thick-target transmission (T3) method, to obtain an excitation function of interaction cross sections. In an ordinal experiment to measure the excitation function of interaction cross sections by the transmission method, we need to change the beam energy for each cross section. In the T3 method, the excitation function is derived from the beam attenuations measured at the targets of different thicknesses without changing the beam energy. The advantage of the T3 method is the simplicity and availability for radioactive beams. To confirm the availability, we perform a simulation for the 12C + 27Al system with the PHITS code instead of actual experiments. Our results have large uncertainties but well reproduce the tendency of the experimental data.

  17. [A correction method of baseline drift of discrete spectrum of NIR].

    PubMed

    Hu, Ai-Qin; Yuan, Hong-Fu; Song, Chun-Feng; Li, Xiao-Yu

    2014-10-01

    In the present paper, a new correction method of baseline drift of discrete spectrum is proposed by combination of cubic spline interpolation and first order derivative. A fitting spectrum is constructed by cubic spline interpolation, using the datum in discrete spectrum as interpolation nodes. The fitting spectrum is differentiable. First order derivative is applied to the fitting spectrum to calculate derivative spectrum. The spectral wavelengths which are the same as the original discrete spectrum were taken out from the derivative spectrum to constitute the first derivative spectra of the discrete spectra, thereby to correct the baseline drift of the discrete spectra. The effects of the new method were demonstrated by comparison of the performances of multivariate models built using original spectra, direct differential spectra and the spectra pretreated by the new method. The results show that negative effects on the performance of multivariate model caused by baseline drift of discrete spectra can be effectively eliminated by the new method.

  18. Full-profile fitting of emission spectrum to determine transition intensity parameters of Yb3 +:GdTaO4

    NASA Astrophysics Data System (ADS)

    Zhang, Qingli; Sun, Guihua; Ning, Kaijie; Shi, Chaoshu; Liu, Wenpeng; Sun, Dunlu; Yin, Shaotang

    2016-11-01

    The Judd-Ofelt theoretic transition intensity parameters of luminescence of rare-earth ions in solids are important for the quantitative analysis of luminescence. It is very difficult to determine them with emission or absorption spectra for a long time. A “full profile fitting” method to obtain in solids with its emission spectrum is proposed, in which the contribution of a radiative transition to the emission spectrum is expressed as the product of transition probability, line profile function, instrument measurement constant and transition center frequency or wavelength, and the whole experimental emission spectrum is the sum of all transitions. In this way, the emission spectrum is expressed as a function with the independent variables intensity parameters , full width at half maximum (FWHM) of profile functions, instrument measurement constant, wavelength, and the Huang-Rhys factor S if the lattice vibronic peaks in the emission spectrum should be considered. The ratios of the experimental to the calculated energy lifetimes are incorporated into the fitting function to remove the arbitrariness during fitting and other parameters. Employing this method obviates measurement of the absolute emission spectrum intensity. It also eliminates dependence upon the number of emission transition peaks. Every experiment point in emission spectra, which usually have at least hundreds of data points, is the function with variables and other parameters, so it is usually viable to determine and other parameters using a large number of experimental values. We applied this method to determine twenty-five of Yb3+ in GdTaO4. The calculated and experiment energy lifetimes, experimental and calculated emission spectrum are very consistent, indicating that it is viable to obtain the transition intensity parameters of rare-earth ions in solids by a full profile fitting to the ions’ emission spectrum. The calculated emission cross sections of Yb3+:GdTaO4 also indicate that the F

  19. The experimental vibrational infrared spectrum of lemon peel and simulation of spectral properties of the plant cell wall

    NASA Astrophysics Data System (ADS)

    Berezin, K. V.; Shagautdinova, I. T.; Chernavina, M. L.; Novoselova, A. V.; Dvoretskii, K. N.; Likhter, A. M.

    2017-09-01

    The experimental vibrational IR spectra of the outer part of lemon peel are recorded in the range of 3800-650 cm-1. The effect of artificial and natural dehydration of the peel on its vibrational spectrum is studied. It is shown that the colored outer layer of lemon peel does not have a noticeable effect on the vibrational spectrum. Upon 28-day storage of a lemon under natural laboratory conditions, only sequential dehydration processes are reflected in the vibrational spectrum of the peel. Within the framework of the theoretical DFT/B3LYP/6-31G(d) method, a model of a plant cell wall is developed consisting of a number of polymeric molecules of dietary fibers like cellulose, hemicellulose, pectin, lignin, some polyphenolic compounds (hesperetin glycoside-flavonoid), and a free water cluster. Using a supermolecular approach, the spectral properties of the wall of a lemon peel cell was simulated, and a detailed theoretical interpretation of the recorded vibrational spectrum is given.

  20. Determination of Vertical Borehole and Geological Formation Properties using the Crossed Contour Method.

    PubMed

    Leyde, Brian P; Klein, Sanford A; Nellis, Gregory F; Skye, Harrison

    2017-03-01

    This paper presents a new method called the Crossed Contour Method for determining the effective properties (borehole radius and ground thermal conductivity) of a vertical ground-coupled heat exchanger. The borehole radius is used as a proxy for the overall borehole thermal resistance. The method has been applied to both simulated and experimental borehole Thermal Response Test (TRT) data using the Duct Storage vertical ground heat exchanger model implemented in the TRansient SYstems Simulation software (TRNSYS). The Crossed Contour Method generates a parametric grid of simulated TRT data for different combinations of borehole radius and ground thermal conductivity in a series of time windows. The error between the average of the simulated and experimental bore field inlet and outlet temperatures is calculated for each set of borehole properties within each time window. Using these data, contours of the minimum error are constructed in the parameter space of borehole radius and ground thermal conductivity. When all of the minimum error contours for each time window are superimposed, the point where the contours cross (intersect) identifies the effective borehole properties for the model that most closely represents the experimental data in every time window and thus over the entire length of the experimental data set. The computed borehole properties are compared with results from existing model inversion methods including the Ground Property Measurement (GPM) software developed by Oak Ridge National Laboratory, and the Line Source Model.

  1. Determination of Vertical Borehole and Geological Formation Properties using the Crossed Contour Method

    PubMed Central

    Leyde, Brian P.; Klein, Sanford A; Nellis, Gregory F.; Skye, Harrison

    2017-01-01

    This paper presents a new method called the Crossed Contour Method for determining the effective properties (borehole radius and ground thermal conductivity) of a vertical ground-coupled heat exchanger. The borehole radius is used as a proxy for the overall borehole thermal resistance. The method has been applied to both simulated and experimental borehole Thermal Response Test (TRT) data using the Duct Storage vertical ground heat exchanger model implemented in the TRansient SYstems Simulation software (TRNSYS). The Crossed Contour Method generates a parametric grid of simulated TRT data for different combinations of borehole radius and ground thermal conductivity in a series of time windows. The error between the average of the simulated and experimental bore field inlet and outlet temperatures is calculated for each set of borehole properties within each time window. Using these data, contours of the minimum error are constructed in the parameter space of borehole radius and ground thermal conductivity. When all of the minimum error contours for each time window are superimposed, the point where the contours cross (intersect) identifies the effective borehole properties for the model that most closely represents the experimental data in every time window and thus over the entire length of the experimental data set. The computed borehole properties are compared with results from existing model inversion methods including the Ground Property Measurement (GPM) software developed by Oak Ridge National Laboratory, and the Line Source Model. PMID:28785125

  2. Experimental study on cross-sensitivity of temperature and vibration of embedded fiber Bragg grating sensors

    NASA Astrophysics Data System (ADS)

    Chen, Tao; Ye, Meng-li; Liu, Shu-liang; Deng, Yan

    2018-03-01

    In view of the principle for occurrence of cross-sensitivity, a series of calibration experiments are carried out to solve the cross-sensitivity problem of embedded fiber Bragg gratings (FBGs) using the reference grating method. Moreover, an ultrasonic-vibration-assisted grinding (UVAG) model is established, and finite element analysis (FEA) is carried out under the monitoring environment of embedded temperature measurement system. In addition, the related temperature acquisition tests are set in accordance with requirements of the reference grating method. Finally, comparative analyses of the simulation and experimental results are performed, and it may be concluded that the reference grating method may be utilized to effectively solve the cross-sensitivity of embedded FBGs.

  3. The Complete, Temperature Resolved Experimental Spectrum of Methanol Between 560 and 654 GHZ

    NASA Astrophysics Data System (ADS)

    Fortman, Sarah M.; Neese, Christopher F.; De Lucia, Frank C.

    2013-06-01

    The complete spectrum of methanol (CH_3OH) in the 560.4-654.0 GHz spectral region has been characterized over a range of astrophysically significant temperatures, 248-397 K. Analysis of experimental spectra recorded with absolute intensity calibration over a slow temperature ramp provides a means for the simulation of the spectrum as a function of temperature without a complete quantum mechanical (QM) model. These results include contributions from v_t = 3 and other higher states that are difficult to model via QM techniques. They also contain contributions from the ^{13}C isotopologue in natural abundance. These results are used to both provide catalogs in the usual line frequency, linestrength, and lower state energy format and in a frequency point-by-point format that is particularly well suited for the characterization of blended lines. In contrast to our earlier work on the semi-rigid species ethyl cyanide and vinyl cyanide, significant intensity difference between these experimental values and those calculated by QM methods were found for some of the lines. Analysis of these differences points to the difficulty of the calculation of dipole matrix elements in the context of the internal rotation of the methanol molecule. We will compare our experimental intensities with the most recent QM model, as well as an earlier QM model that includes the variation of the dipole moment function with the torsional angle. S. M. Fortman, I. R. Medvedev, C. F. Neese, and F. C. De Lucia, Astrophys. J. 737, 20/1-6 (2011). L.-H. Xu, et al. J. Mol. Spectrosc. 251, 305-313 (2008). M. A. Mekhtiev, P. D. Godfrey, and J. T. Hougen, J. Mol. Spectrosc. 194, 171-178 (1999).

  4. DOPPLER CALCULATIONS FOR LARGE FAST CERAMIC REACTORS--EFFECTS OF IMPROVED METHODS AND RECENT CROSS SECTION INFORMATION

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Greebler, P.; Goldman, E.

    1962-12-19

    Doppler calculations for large fast ceramic reactors (FCR), using recent cross section information and improved methods, are described. Cross sections of U/sup 238/, Pu/sup 239/, and Pu/sup 210/ with fuel temperature variations needed for perturbation calculations of Doppler reactivity changes are tabulated as a function of potential scattering cross section per absorber isotope at energies below 400 kev. These may be used in Doppler calculations for anv fast reactor. Results of Doppler calculations on a large fast ceramic reactor are given to show the effects of the improved calculation methods and of recent cross secrion data on the calculated Dopplermore » coefficient. The updated methods and cross sections used yield a somewhat harder spectrum and accordingly a somewhat smaller Doppler coefficient for a given FCR core size and composition than calculated in earlier work, but they support the essential conclusion derived earlier that the Doppler effect provides an important safety advantage in a large FCR. 28 references. (auth)« less

  5. UV-Vis Ratiometric Resonance Synchronous Spectroscopy for Determination of Nanoparticle and Molecular Optical Cross Sections.

    PubMed

    Nettles, Charles B; Zhou, Yadong; Zou, Shengli; Zhang, Dongmao

    2016-03-01

    Demonstrated herein is a UV-vis Ratiometric Resonance Synchronous Spectroscopic (R2S2, pronounced as "R-two-S-two" for simplicity) technique where the R2S2 spectrum is obtained by dividing the resonance synchronous spectrum of a NP-containing solution by the solvent resonance synchronous spectrum. Combined with conventional UV-vis measurements, this R2S2 method enables experimental quantification of the absolute optical cross sections for a wide range of molecular and nanoparticle (NP) materials that range optically from pure photon absorbers or scatterers to simultaneous photon absorbers and scatterers, simultaneous photon absorbers and emitters, and all the way to simultaneous photon absorbers, scatterers, and emitters in the UV-vis wavelength region. Example applications of this R2S2 method were demonstrated for quantifying the Rayleigh scattering cross sections of solvents including water and toluene, absorption and resonance light scattering cross sections for plasmonic gold nanoparticles, and absorption, scattering, and on-resonance fluorescence cross sections for semiconductor quantum dots (Qdots). On-resonance fluorescence quantum yields were quantified for the model molecular fluorophore Eosin Y and fluorescent Qdots CdSe and CdSe/ZnS. The insights and methodology presented in this work should be of broad significance in physical and biological science research that involves photon/matter interactions.

  6. Statistical inference methods for two crossing survival curves: a comparison of methods.

    PubMed

    Li, Huimin; Han, Dong; Hou, Yawen; Chen, Huilin; Chen, Zheng

    2015-01-01

    A common problem that is encountered in medical applications is the overall homogeneity of survival distributions when two survival curves cross each other. A survey demonstrated that under this condition, which was an obvious violation of the assumption of proportional hazard rates, the log-rank test was still used in 70% of studies. Several statistical methods have been proposed to solve this problem. However, in many applications, it is difficult to specify the types of survival differences and choose an appropriate method prior to analysis. Thus, we conducted an extensive series of Monte Carlo simulations to investigate the power and type I error rate of these procedures under various patterns of crossing survival curves with different censoring rates and distribution parameters. Our objective was to evaluate the strengths and weaknesses of tests in different situations and for various censoring rates and to recommend an appropriate test that will not fail for a wide range of applications. Simulation studies demonstrated that adaptive Neyman's smooth tests and the two-stage procedure offer higher power and greater stability than other methods when the survival distributions cross at early, middle or late times. Even for proportional hazards, both methods maintain acceptable power compared with the log-rank test. In terms of the type I error rate, Renyi and Cramér-von Mises tests are relatively conservative, whereas the statistics of the Lin-Xu test exhibit apparent inflation as the censoring rate increases. Other tests produce results close to the nominal 0.05 level. In conclusion, adaptive Neyman's smooth tests and the two-stage procedure are found to be the most stable and feasible approaches for a variety of situations and censoring rates. Therefore, they are applicable to a wider spectrum of alternatives compared with other tests.

  7. Statistical Inference Methods for Two Crossing Survival Curves: A Comparison of Methods

    PubMed Central

    Li, Huimin; Han, Dong; Hou, Yawen; Chen, Huilin; Chen, Zheng

    2015-01-01

    A common problem that is encountered in medical applications is the overall homogeneity of survival distributions when two survival curves cross each other. A survey demonstrated that under this condition, which was an obvious violation of the assumption of proportional hazard rates, the log-rank test was still used in 70% of studies. Several statistical methods have been proposed to solve this problem. However, in many applications, it is difficult to specify the types of survival differences and choose an appropriate method prior to analysis. Thus, we conducted an extensive series of Monte Carlo simulations to investigate the power and type I error rate of these procedures under various patterns of crossing survival curves with different censoring rates and distribution parameters. Our objective was to evaluate the strengths and weaknesses of tests in different situations and for various censoring rates and to recommend an appropriate test that will not fail for a wide range of applications. Simulation studies demonstrated that adaptive Neyman’s smooth tests and the two-stage procedure offer higher power and greater stability than other methods when the survival distributions cross at early, middle or late times. Even for proportional hazards, both methods maintain acceptable power compared with the log-rank test. In terms of the type I error rate, Renyi and Cramér—von Mises tests are relatively conservative, whereas the statistics of the Lin-Xu test exhibit apparent inflation as the censoring rate increases. Other tests produce results close to the nominal 0.05 level. In conclusion, adaptive Neyman’s smooth tests and the two-stage procedure are found to be the most stable and feasible approaches for a variety of situations and censoring rates. Therefore, they are applicable to a wider spectrum of alternatives compared with other tests. PMID:25615624

  8. Probing reionization with the cross-power spectrum of 21 cm and near-infrared radiation backgrounds

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mao, Xiao-Chun, E-mail: xcmao@bao.ac.cn

    2014-08-01

    The cross-correlation between the 21 cm emission from the high-redshift intergalactic medium and the near-infrared (NIR) background light from high-redshift galaxies promises to be a powerful probe of cosmic reionization. In this paper, we investigate the cross-power spectrum during the epoch of reionization. We employ an improved halo approach to derive the distribution of the density field and consider two stellar populations in the star formation model: metal-free stars and metal-poor stars. The reionization history is further generated to be consistent with the electron-scattering optical depth from cosmic microwave background measurements. Then, the intensity of the NIR background is estimatedmore » by collecting emission from stars in first-light galaxies. On large scales, we find that the 21 cm and NIR radiation backgrounds are positively correlated during the very early stages of reionization. However, these two radiation backgrounds quickly become anti-correlated as reionization proceeds. The maximum absolute value of the cross-power spectrum is |Δ{sub 21,NIR}{sup 2}|∼10{sup −4} mK nW m{sup –2} sr{sup –1}, reached at ℓ ∼ 1000 when the mean fraction of ionized hydrogen is x-bar{sub i}∼0.9. We find that Square Kilometer Array can measure the 21 cm-NIR cross-power spectrum in conjunction with mild extensions to the existing CIBER survey, provided that the integration time independently adds up to 1000 and 1 hr for 21 cm and NIR observations, and that the sky coverage fraction of the CIBER survey is extended from 4 × 10{sup –4} to 0.1. Measuring the cross-correlation signal as a function of redshift provides valuable information on reionization and helps confirm the origin of the 'missing' NIR background.« less

  9. Insight on agglomerates of gold nanoparticles in glass based on surface plasmon resonance spectrum: study by multi-spheres T-matrix method

    NASA Astrophysics Data System (ADS)

    Avakyan, L. A.; Heinz, M.; Skidanenko, A. V.; Yablunovski, K. A.; Ihlemann, J.; Meinertz, J.; Patzig, C.; Dubiel, M.; Bugaev, L. A.

    2018-01-01

    The formation of a localized surface plasmon resonance (SPR) spectrum of randomly distributed gold nanoparticles in the surface layer of silicate float glass, generated and implanted by UV ArF-excimer laser irradiation of a thin gold layer sputter-coated on the glass surface, was studied by the T-matrix method, which enables particle agglomeration to be taken into account. The experimental technique used is promising for the production of submicron patterns of plasmonic nanoparticles (given by laser masks or gratings) without damage to the glass surface. Analysis of the applicability of the multi-spheres T-matrix (MSTM) method to the studied material was performed through calculations of SPR characteristics for differently arranged and structured gold nanoparticles (gold nanoparticles in solution, particles pairs, and core-shell silver-gold nanoparticles) for which either experimental data or results of the modeling by other methods are available. For the studied gold nanoparticles in glass, it was revealed that the theoretical description of their SPR spectrum requires consideration of the plasmon coupling between particles, which can be done effectively by MSTM calculations. The obtained statistical distributions over particle sizes and over interparticle distances demonstrated the saturation behavior with respect to the number of particles under consideration, which enabled us to determine the effective aggregate of particles, sufficient to form the SPR spectrum. The suggested technique for the fitting of an experimental SPR spectrum of gold nanoparticles in glass by varying the geometrical parameters of the particles aggregate in the recurring calculations of spectrum by MSTM method enabled us to determine statistical characteristics of the aggregate: the average distance between particles, average size, and size distribution of the particles. The fitting strategy of the SPR spectrum presented here can be applied to nanoparticles of any nature and in various

  10. Experimental and theoretical electron-scattering cross-section data for dichloromethane

    NASA Astrophysics Data System (ADS)

    Krupa, K.; Lange, E.; Blanco, F.; Barbosa, A. S.; Pastega, D. F.; Sanchez, S. d'A.; Bettega, M. H. F.; García, G.; Limão-Vieira, P.; Ferreira da Silva, F.

    2018-04-01

    We report on a combination of experimental and theoretical investigations into the elastic differential cross sections (DCSs) and integral cross sections for electron interactions with dichloromethane, C H2C l2 , in the incident electron energy over the 7.0-30 eV range. Elastic electron-scattering cross-section calculations have been performed within the framework of the Schwinger multichannel method implemented with pseudopotentials (SMCPP), and the independent-atom model with screening-corrected additivity rule including interference-effects correction (IAM-SCAR+I). The present elastic DCSs have been found to agree reasonably well with the results of IAM-SCAR+I calculations above 20 eV and also with the SMC calculations below 30 eV. Although some discrepancies were found for 7 eV, the agreement between the two theoretical methodologies is remarkable as the electron-impact energy increases. Calculated elastic DCSs are also reported up to 10000 eV for scattering angles from 0° to 180° together with total cross section within the IAM-SCAR+I framework.

  11. A synthetic method of solar spectrum based on LED

    NASA Astrophysics Data System (ADS)

    Wang, Ji-qiang; Su, Shi; Zhang, Guo-yu; Zhang, Jian

    2017-10-01

    A synthetic method of solar spectrum which based on the spectral characteristics of the solar spectrum and LED, and the principle of arbitrary spectral synthesis was studied by using 14 kinds of LED with different central wavelengths.The LED and solar spectrum data were selected by Origin Software firstly, then calculated the total number of LED for each center band by the transformation relation between brightness and illumination and Least Squares Curve Fit in Matlab.Finally, the spectrum curve of AM1.5 standard solar spectrum was obtained. The results met the technical indexes of the solar spectrum matching with ±20% and the solar constant with >0.5.

  12. A method for calculating proton-nucleus elastic cross-sections

    NASA Technical Reports Server (NTRS)

    Tripathi, R. K.; Wilson, J. W.; Cucinotta, F. A.

    2002-01-01

    Recently [Nucl. Instr. and Meth. B 145 (1998) 277; Extraction of in-medium nucleon-nucleon amplitude from experiment, NASA-TP, 1998], we developed a method of extracting nucleon-nucleon (N-N) cross-sections in the medium directly from experiment. The in-medium N-N cross-sections form the basic ingredients of several heavy-ion scattering approaches including the coupled-channel approach developed at the NASA Langley Research Center. We investigated [Proton-nucleus total cross-sections in coupled-channel approach, NASA/TP, 2000; Nucl. Instr. and Meth. B 173-174 (2001) 391] the ratio of real to imaginary part of the two body scattering amplitude in the medium. These ratios are used in combination with the in-medium N-N cross-sections to calculate proton-nucleus elastic cross-sections. The agreement is excellent with the available experimental data. These cross-sections are needed for the radiation risk assessment of space missions. c2002 Elsevier Science B.V. All rights reserved.

  13. Power-Stepped HF Cross-Modulation Experiments: Simulations and Experimental Observations

    NASA Astrophysics Data System (ADS)

    Greene, S.; Moore, R. C.

    2014-12-01

    High frequency (HF) cross modulation experiments are a well established means for probing the HF-modified characteristics of the D-region ionosphere. The interaction between the heating wave and the probing pulse depends on the ambient and modified conditions of the D-region ionosphere. Cross-modulation observations are employed as a measure of the HF-modified refractive index. We employ an optimized version of Fejer's method that we developed during previous experiments. Experiments were performed in March 2013 at the High Frequency Active Auroral Research Program (HAARP) observatory in Gakona, Alaska. During these experiments, the power of the HF heating signal incrementally increased in order to determine the dependence of cross-modulation on HF power. We found that a simple power law relationship does not hold at high power levels, similar to previous ELF/VLF wave generation experiments. In this paper, we critically compare these experimental observations with the predictions of a numerical ionospheric HF heating model and demonstrate close agreement.

  14. The Complete, Temperature Resolved Experimental Spectrum of Methanol (CH3OH) between 560 and 654 GHz

    NASA Astrophysics Data System (ADS)

    Fortman, Sarah M.; Neese, Christopher F.; De Lucia, Frank C.

    2014-02-01

    The complete spectrum of methanol (CH3OH) has been characterized over a range of astrophysically significant temperatures in the 560.4-654.0 GHz spectral region. Absolute intensity calibration and analysis of 166 experimental spectra recorded over a slow 248-398 K temperature ramp provide a means for the simulation of the complete spectrum of methanol as a function of temperature. These results include contributions from vt = 3 and other higher states that are difficult to model via quantum mechanical (QM) techniques. They also contain contributions from the 13C isotopologue in terrestrial abundance. In contrast to our earlier work on semi-rigid species, such as ethyl cyanide and vinyl cyanide, significant intensity differences between these experimental values and those calculated by QM methods were found for many of the lines. Analysis of these differences shows the difficulty of the calculation of dipole matrix elements in the context of the internal rotation of the methanol molecule. These results are used to both provide catalogs in the usual line frequency, linestrength, and lower state energy format, as well as in a frequency point-by-point catalog that is particularly well suited for the characterization of blended lines.

  15. Experimental investigation on centrifugal compressor blade crack classification using the squared envelope spectrum.

    PubMed

    Li, Hongkun; Zhang, Xuefeng; Xu, Fujian

    2013-09-18

    Centrifugal compressors are a key piece of equipment for modern production. Among the components of the centrifugal compressor, the impeller is a pivotal part as it is used to transform kinetic energy into pressure energy. Blade crack condition monitoring and classification has been broadly investigated in the industrial and academic area. In this research, a pressure pulsation (PP) sensor arranged in close vicinity to the crack area and the corresponding casing vibration signals are used to monitor blade crack information. As these signals cannot directly demonstrate the blade crack, the method employed in this research is based on the extraction of weak signal characteristics that are induced by blade cracking. A method for blade crack classification based on the signals monitored by using a squared envelope spectrum (SES) is presented. Experimental investigations on blade crack classification are carried out to verify the effectiveness of this method. The results show that it is an effective tool for blade crack classification in centrifugal compressors.

  16. Experimental Investigation on Centrifugal Compressor Blade Crack Classification Using the Squared Envelope Spectrum

    PubMed Central

    Li, Hongkun; Zhang, Xuefeng; Xu, Fujian

    2013-01-01

    Centrifugal compressors are a key piece of equipment for modern production. Among the components of the centrifugal compressor, the impeller is a pivotal part as it is used to transform kinetic energy into pressure energy. Blade crack condition monitoring and classification has been broadly investigated in the industrial and academic area. In this research, a pressure pulsation (PP) sensor arranged in close vicinity to the crack area and the corresponding casing vibration signals are used to monitor blade crack information. As these signals cannot directly demonstrate the blade crack, the method employed in this research is based on the extraction of weak signal characteristics that are induced by blade cracking. A method for blade crack classification based on the signals monitored by using a squared envelope spectrum (SES) is presented. Experimental investigations on blade crack classification are carried out to verify the effectiveness of this method. The results show that it is an effective tool for blade crack classification in centrifugal compressors. PMID:24051521

  17. Prevalence of Autism Spectrum Disorder in Nurseries in Lebanon: A Cross Sectional Study

    ERIC Educational Resources Information Center

    Chaaya, Monique; Saab, Dahlia; Maalouf, Fadi T.; Boustany, Rose-Mary

    2016-01-01

    In Lebanon, no estimate for autism prevalence exists. This cross-sectional study examines the prevalence of Autism spectrum disorder (ASD) in toddlers in nurseries in Beirut and Mount-Lebanon. The final sample included 998 toddlers (16-48 months) from 177 nurseries. We sent parents the Modified Checklist for Autism in Toddlers (M-CHAT) for…

  18. On the cross-stream spectral method for the Orr-Sommerfeld equation

    NASA Technical Reports Server (NTRS)

    Zorumski, William E.; Hodge, Steven L.

    1993-01-01

    Cross-stream models are defined as solutions to the Orr-Sommerfeld equation which are propagating normal to the flow direction. These models are utilized as a basis for a Hilbert space to approximate the spectrum of the Orr-Sommerfeld equation with plane Poiseuille flow. The cross-stream basis leads to a standard eigenvalue problem for the frequencies of Poiseuille flow instability waves. The coefficient matrix in the eigenvalue problem is shown to be the sum of a real matrix and a negative-imaginary diagonal matrix which represents the frequencies of the cross-stream modes. The real coefficient matrix is shown to approach a Toeplitz matrix when the row and column indices are large. The Toeplitz matrix is diagonally dominant, and the diagonal elements vary inversely in magnitude with diagonal position. The Poiseuille flow eigenvalues are shown to lie within Gersgorin disks with radii bounded by the product of the average flow speed and the axial wavenumber. It is shown that the eigenvalues approach the Gersgorin disk centers when the mode index is large, so that the method may be used to compute spectra with an essentially unlimited number of elements. When the mode index is large, the real part of the eigenvalue is the product of the axial wavenumber and the average flow speed, and the imaginary part of the eigen value is identical to the corresponding cross-stream mode frequency. The cross-stream method is numerically well-conditioned in comparison to Chebyshev based methods, providing equivalent accuracy for small mode indices and superior accuracy for large indices.

  19. VizieR Online Data Catalog: Experimental spectrum of methanol (CH3OH) (McMillan+,

    NASA Astrophysics Data System (ADS)

    McMillan, J. P.; Fortman, S. M.; Neese, C. F.; de, Lucia F. C.

    2017-05-01

    In this paper we describe the spectrum of methanol between 214.6 and 265.4 GHz. In this region we observed 589 lines with scaled absorbance cross-sections greater than 0.0037 nm2. For comparison there are 386 lines in a composite catalog above this scaled absorbance cross-section. The spectrometer uses ax24 frequency multiplied probe, a heterodyne receiver, and a temperature controlled 6 m long cell (Fortman et al. 2010ApJ...725.1682F, 2011ApJ...737...20F). Four hundred eighty-six spectral scans were recorded as the temperature was ramped over a period of 305 minutes from 240 K to 389 K. The spectrum was recorded at 24.4140625 kHz intervals, with an integration time of ~18 us/bin. The temperatures were determined spectroscopically and are used as a part of the file name. The decontaminated absorbance spectra data are contained in 486 flat text files in this tarball. Each spectrum file contains 2.08 million data bins, starting at 214.6 GHz and incrementing in steps of 24.4140625 kHz. The frequency (in MHz) is provided in "tablefre.dat" and calibration data are provided in "tablecal.dat" (4 data files).

  20. Ultraviolet Spectrum And Chemical Reactivity Of CIO Dimer

    NASA Technical Reports Server (NTRS)

    Demore, William B.; Tschuikow-Roux, E.

    1992-01-01

    Report describes experimental study of ultraviolet spectrum and chemical reactivity of dimer of chlorine monoxide (CIO). Objectives are to measure absorption cross sections of dimer at near-ultraviolet wavelengths; determine whether asymmetrical isomer (CIOCIO) exists at temperatures relevant to Antarctic stratosphere; and test for certain chemical reactions of dimer. Important in photochemistry of Antarctic stratosphere.

  1. Detection of Virus-Specific CD8+ T Cells With Cross-Reactivity Against Alloantigens: Potency and Flaws of Present Experimental Methods

    PubMed Central

    van den Heuvel, Heleen; Heutinck, Kirstin M.; van der Meer-Prins, Ellen P.M.W.; Yong, Si La; Claas, Frans H.J.; ten Berge, Ineke J.M.

    2015-01-01

    Background Virus-specific T cells have the intrinsic capacity to cross-react against allogeneic HLA antigens, a phenomenon known as heterologous immunity. In transplantation, these cells may contribute to the alloimmune response and negatively impact graft outcome. This study describes the various techniques that can be used to detect heterologous immune responses of virus-specific CD8+ T cells against allogeneic HLA antigens. The strengths and weaknesses of the different approaches are discussed and illustrated by experimental data. Methods Mixed-lymphocyte reactions (MLRs) were performed to detect allo-HLA cross-reactivity of virus-specific CD8+ T cells in total peripheral blood mononuclear cells. T-cell lines and clones were generated to confirm allo-HLA cross-reactivity by IFNγ production and cytotoxicity. In addition, the conventional MLR protocol was adjusted by introducing a 3-day resting phase and subsequent short restimulation with alloantigen or viral peptide, whereupon the expression of IFNγ, IL-2, CD107a, and CD137 was determined. Results The accuracy of conventional MLR is challenged by potential bystander activation. T-cell lines and clones can circumvent this issue, yet their generation is laborious and time-consuming. Using the adjusted MLR and restimulation protocol, we found that only truly cross-reactive T cells responded to re-encounter of alloantigen and viral peptide, whereas bystander-activated cells did not. Conclusions The introduction of a restimulation phase improved the accuracy of the MLR as a screening tool for the detection of allo-HLA cross-reactivity by virus-specific CD8+ T cells at bulk level. For detailed characterization of cross-reactive cells, T-cell lines and clones remain the golden standard. PMID:27500209

  2. On muon energy spectrum in muon groups underground

    NASA Technical Reports Server (NTRS)

    Bakatanov, V. N.; Chudakov, A. E.; Novoseltsev, Y. F.; Novoseltseva, M. V.; Stenkin, Y. V.

    1985-01-01

    A method is described which was used to measure muon energy spectrum characteristics in muon groups underground using mu-e decays recording. The Baksan Telescope's experimental data on mu-e decays intensity in muon groups of various multiplicities are analyzed. The experimental data indicating very flat spectrum does not however represent the total spectrum in muon groups. Obviously the muon energy spectrum depends strongly on a distance from the group axis. The core attraction effect makes a significant distortion, making the spectrum flatter. After taking this into account and making corrections for this effect the integral total spectrum index in groups has a very small depencence on muon multiplicity and agrees well with expected one: beta=beta (sub expected) = 1.75.

  3. Raman fiber-optical method for colon cancer detection: Cross-validation and outlier identification approach

    NASA Astrophysics Data System (ADS)

    Petersen, D.; Naveed, P.; Ragheb, A.; Niedieker, D.; El-Mashtoly, S. F.; Brechmann, T.; Kötting, C.; Schmiegel, W. H.; Freier, E.; Pox, C.; Gerwert, K.

    2017-06-01

    Endoscopy plays a major role in early recognition of cancer which is not externally accessible and therewith in increasing the survival rate. Raman spectroscopic fiber-optical approaches can help to decrease the impact on the patient, increase objectivity in tissue characterization, reduce expenses and provide a significant time advantage in endoscopy. In gastroenterology an early recognition of malign and precursor lesions is relevant. Instantaneous and precise differentiation between adenomas as precursor lesions for cancer and hyperplastic polyps on the one hand and between high and low-risk alterations on the other hand is important. Raman fiber-optical measurements of colon biopsy samples taken during colonoscopy were carried out during a clinical study, and samples of adenocarcinoma (22), tubular adenomas (141), hyperplastic polyps (79) and normal tissue (101) from 151 patients were analyzed. This allows us to focus on the bioinformatic analysis and to set stage for Raman endoscopic measurements. Since spectral differences between normal and cancerous biopsy samples are small, special care has to be taken in data analysis. Using a leave-one-patient-out cross-validation scheme, three different outlier identification methods were investigated to decrease the influence of systematic errors, like a residual risk in misplacement of the sample and spectral dilution of marker bands (esp. cancerous tissue) and therewith optimize the experimental design. Furthermore other validations methods like leave-one-sample-out and leave-one-spectrum-out cross-validation schemes were compared with leave-one-patient-out cross-validation. High-risk lesions were differentiated from low-risk lesions with a sensitivity of 79%, specificity of 74% and an accuracy of 77%, cancer and normal tissue with a sensitivity of 79%, specificity of 83% and an accuracy of 81%. Additionally applied outlier identification enabled us to improve the recognition of neoplastic biopsy samples.

  4. Method to Reduce Long-lived Fission Products by Nuclear Transmutations with Fast Spectrum Reactors.

    PubMed

    Chiba, Satoshi; Wakabayashi, Toshio; Tachi, Yoshiaki; Takaki, Naoyuki; Terashima, Atsunori; Okumura, Shin; Yoshida, Tadashi

    2017-10-24

    Transmutation of long-lived fission products (LLFPs: 79 Se, 93 Zr, 99 Tc, 107 Pd, 129 I, and 135 Cs) into short-lived or non-radioactive nuclides by fast neutron spectrum reactors without isotope separation has been proposed as a solution to the problem of radioactive wastes disposal. Despite investigation of many methods, such transmutation remains technologically difficult. To establish an effective and efficient transmutation system, we propose a novel neutron moderator material, yttrium deuteride (YD 2 ), to soften the neutron spectrum leaking from the reactor core. Neutron energy spectra and effective half-lives of LLFPs, transmutation rates, and support ratios were evaluated with the continuous-energy Monte Carlo code MVP-II/MVP-BURN and the JENDL-4.0 cross section library. With the YD 2 moderator in the radial blanket and shield regions, effective half-lives drastically decreased from 106 to 102 years and the support ratios reached 1.0 for all six LLFPs. This successful development and implementation of a transmutation system for LLFPs without isotope separation contributes to a the ability of fast spectrum reactors to reduce radioactive waste by consuming their own LLFPs.

  5. Temperature dependence of the NO3 absorption spectrum

    NASA Technical Reports Server (NTRS)

    Sander, Stanley P.

    1986-01-01

    The absorption spectrum of the gas-phase NO3 radical has been studied between 220 and 700 nm by using both flash photolysis and discharge flow reactors for the production of NO3. In the flash photolysis method, cross sections at the peak of the (0,0) band at 661.9 nm were measured relative to the cross section of ClONO2 at several different wavelengths. From the best current measurements of the ClONO2 spectrum, the NO3 cross section at 661.9 nm was determined to be (2.28 + or 0.34) x 10 to the -17th sq cm/molecule at 298 K. Measurements at 230 K indicated that the cross section increases by a factor of 1.18 at the peak of the (0,0) band. The discharge flow method was used both to obtain absolute cross sections at 661.9 nm and to obtain relative absorption spectra between 300 and 700 nm at 298 and 230 K. A value of (1.83 + or - 0.27) x 10 to the -17th sq cm/molecule was obtained for sigma NO3 at 661.9 nm at 298 K. Upper limits to the NO3 cross sections were also measured between 220 and 260 nm with the discharge flow method.

  6. Pu239 Cross-Section Variations Based on Experimental Uncertainties and Covariances

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sigeti, David Edward; Williams, Brian J.; Parsons, D. Kent

    2016-10-18

    Algorithms and software have been developed for producing variations in plutonium-239 neutron cross sections based on experimental uncertainties and covariances. The varied cross-section sets may be produced as random samples from the multi-variate normal distribution defined by an experimental mean vector and covariance matrix, or they may be produced as Latin-Hypercube/Orthogonal-Array samples (based on the same means and covariances) for use in parametrized studies. The variations obey two classes of constraints that are obligatory for cross-section sets and which put related constraints on the mean vector and covariance matrix that detemine the sampling. Because the experimental means and covariances domore » not obey some of these constraints to sufficient precision, imposing the constraints requires modifying the experimental mean vector and covariance matrix. Modification is done with an algorithm based on linear algebra that minimizes changes to the means and covariances while insuring that the operations that impose the different constraints do not conflict with each other.« less

  7. Evaluation of experimental railroad-highway grade crossings in Louisiana : final report : 1970-1985.

    DOT National Transportation Integrated Search

    1986-04-01

    This report concludes formal evaluation of forty-one experimental high-type railroad-highway grade crossings installed experimentally throughout Louisiana between 1970 and 1984. These crossings were composed of various of rubber, high-density polyeth...

  8. Frequency domain analysis of errors in cross-correlations of ambient seismic noise

    NASA Astrophysics Data System (ADS)

    Liu, Xin; Ben-Zion, Yehuda; Zigone, Dimitri

    2016-12-01

    We analyse random errors (variances) in cross-correlations of ambient seismic noise in the frequency domain, which differ from previous time domain methods. Extending previous theoretical results on ensemble averaged cross-spectrum, we estimate confidence interval of stacked cross-spectrum of finite amount of data at each frequency using non-overlapping windows with fixed length. The extended theory also connects amplitude and phase variances with the variance of each complex spectrum value. Analysis of synthetic stationary ambient noise is used to estimate the confidence interval of stacked cross-spectrum obtained with different length of noise data corresponding to different number of evenly spaced windows of the same duration. This method allows estimating Signal/Noise Ratio (SNR) of noise cross-correlation in the frequency domain, without specifying filter bandwidth or signal/noise windows that are needed for time domain SNR estimations. Based on synthetic ambient noise data, we also compare the probability distributions, causal part amplitude and SNR of stacked cross-spectrum function using one-bit normalization or pre-whitening with those obtained without these pre-processing steps. Natural continuous noise records contain both ambient noise and small earthquakes that are inseparable from the noise with the existing pre-processing steps. Using probability distributions of random cross-spectrum values based on the theoretical results provides an effective way to exclude such small earthquakes, and additional data segments (outliers) contaminated by signals of different statistics (e.g. rain, cultural noise), from continuous noise waveforms. This technique is applied to constrain values and uncertainties of amplitude and phase velocity of stacked noise cross-spectrum at different frequencies, using data from southern California at both regional scale (˜35 km) and dense linear array (˜20 m) across the plate-boundary faults. A block bootstrap resampling method

  9. Zero-crossing sampling of Fourier-transform interferograms and spectrum reconstruction using the real-zero interpolation method.

    PubMed

    Minami, K; Kawata, S; Minami, S

    1992-10-10

    The real-zero interpolation method is applied to a Fourier-transformed infrared (FT-IR) interferogram. With this method an interferogram is reconstructed from its zero-crossing information only, without the use of a long-word analog-to-digital converter. We installed a phase-locked loop circuit into an FT-IR spectrometer for oversampling the interferogram. Infrared absorption spectra of polystyrene and Mylar films were measured as binary interferograms by the FT-IR spectrometer, which was equipped with the developed circuits, and their Fourier spectra were successfully reconstructed. The relationship of the oversampling ratio to the dynamic range of the reconstructed interferogram was evaluated through computer simulations. We also discuss the problems of this method for practical applications.

  10. Experimental research on crossing shock wave boundary layer interactions

    NASA Astrophysics Data System (ADS)

    Settles, G. S.; Garrison, T. J.

    1994-10-01

    An experimental research effort of the Penn State Gas Dynamics Laboratory on the subject of crossing shock wave boundary layer interactions is reported. This three year study was supported by AFOSR Grant 89-0315. A variety of experimental techniques were employed to study the above phenomena including planar laser scattering flowfield visualization, kerosene lampblack surface flow visualization, laser-interferometer skin friction surveys, wall static pressure measurements, and flowfield five-hole probe surveys. For a model configuration producing two intersecting shock waves, measurements were made for a range of oblique shock strengths at freestream Mach numbers of 3.0 and 3.85. Additionally, measurements were made at Mach 3.85 for a configuration producing three intersecting waves. The combined experimental dataset was used to formulate the first detailed flowfield models of the crossing-shock and triple-shock wave/boundary layer interactions. The structure of these interactions was found to be similar over a broad range of interaction strengths and is dominated by a large, separated, viscous flow region.

  11. Short range spread-spectrum radiolocation system and method

    DOEpatents

    Smith, Stephen F.

    2003-04-29

    A short range radiolocation system and associated methods that allow the location of an item, such as equipment, containers, pallets, vehicles, or personnel, within a defined area. A small, battery powered, self-contained tag is provided to an item to be located. The tag includes a spread-spectrum transmitter that transmits a spread-spectrum code and identification information. A plurality of receivers positioned about the area receive signals from a transmitting tag. The position of the tag, and hence the item, is located by triangulation. The system employs three different ranging techniques for providing coarse, intermediate, and fine spatial position resolution. Coarse positioning information is provided by use of direct-sequence code phase transmitted as a spread-spectrum signal. Intermediate positioning information is provided by the use of a difference signal transmitted with the direct-sequence spread-spectrum code. Fine positioning information is provided by use of carrier phase measurements. An algorithm is employed to combine the three data sets to provide accurate location measurements.

  12. Integrating Statistical Mechanics with Experimental Data from the Rotational-Vibrational Spectrum of HCl into the Physical Chemistry Laboratory

    ERIC Educational Resources Information Center

    Findley, Bret R.; Mylon, Steven E.

    2008-01-01

    We introduce a computer exercise that bridges spectroscopy and thermodynamics using statistical mechanics and the experimental data taken from the commonly used laboratory exercise involving the rotational-vibrational spectrum of HCl. Based on the results from the analysis of their HCl spectrum, students calculate bulk thermodynamic properties…

  13. Status, methods and aims of the knee investigations at CR spectrum

    NASA Astrophysics Data System (ADS)

    Shaulov, S. B.; Bezshapov, S. P.

    2013-02-01

    Usually it is supposed that the definition of the CR mass composition in knee region is the key to problem of CR spectrum modification in this range. However tens of experiments done for the last half a century, have not decided this problem. The possible causes of fiasco and arguments in favour of necessity to reformulate a method of attack are discussed. It is formulated that the first experimental task now is to solve a more simple problem: is there abnormal CR component in knee field or not. It seams that impossible to formulate correctly more common problem of mass composition without solving of this one. The observational basis is discussed. The hypothesis of strange quark matter is suggested for the abnormal component.

  14. A novel power harmonic analysis method based on Nuttall-Kaiser combination window double spectrum interpolated FFT algorithm

    NASA Astrophysics Data System (ADS)

    Jin, Tao; Chen, Yiyang; Flesch, Rodolfo C. C.

    2017-11-01

    Harmonics pose a great threat to safe and economical operation of power grids. Therefore, it is critical to detect harmonic parameters accurately to design harmonic compensation equipment. The fast Fourier transform (FFT) is widely used for electrical popular power harmonics analysis. However, the barrier effect produced by the algorithm itself and spectrum leakage caused by asynchronous sampling often affects the harmonic analysis accuracy. This paper examines a new approach for harmonic analysis based on deducing the modifier formulas of frequency, phase angle, and amplitude, utilizing the Nuttall-Kaiser window double spectrum line interpolation method, which overcomes the shortcomings in traditional FFT harmonic calculations. The proposed approach is verified numerically and experimentally to be accurate and reliable.

  15. Experimental Protein Structure Verification by Scoring with a Single, Unassigned NMR Spectrum

    PubMed Central

    Courtney, Joseph M.; Ye, Qing; Nesbitt, Anna E.; Tang, Ming; Tuttle, Marcus D.; Watt, Eric D.; Nuzzio, Kristin M.; Sperling, Lindsay J.; Comellas, Gemma; Peterson, Joseph R.; Morrissey, James H.; Rienstra, Chad M.

    2016-01-01

    Standard methods for de novo protein structure determination by nuclear magnetic resonance (NMR) require time-consuming data collection and interpretation efforts. Here we present a qualitatively distinct and novel approach, called Comparative, Objective Measurement of Protein Architectures by Scoring Shifts (COMPASS), which identifies the best structures from a set of structural models by numerical comparison with a single, unassigned 2D 13C-13C NMR spectrum containing backbone and side-chain aliphatic signals. COMPASS does not require resonance assignments. It is particularly well suited for interpretation of magic-angle spinning solid-state NMR spectra, but also applicable to solution NMR spectra. We demonstrate COMPASS with experimental data from four proteins—GB1, ubiquitin, DsbA, and the extracellular domain of human tissue factor—and with reconstructed spectra from 11 additional proteins. For all these proteins, with molecular mass up to 25 kDa, COMPASS distinguished the correct fold, most often within 1.5 Å root-mean-square deviation of the reference structure. PMID:26365800

  16. Measurement of 89Y(n,2n) spectral averaged cross section in LR-0 special core reactor spectrum

    NASA Astrophysics Data System (ADS)

    Košťál, Michal; Losa, Evžen; Baroň, Petr; Šolc, Jaroslav; Švadlenková, Marie; Koleška, Michal; Mareček, Martin; Uhlíř, Jan

    2017-12-01

    The present paper describes reaction rate measurement of 89Y(n,2n)88Y in a well-defined reactor spectrum of a special core assembled in the LR-0 reactor and compares this value with results of simulation. The reaction rate is derived from the measurement of activity of 88Y using gamma-ray spectrometry of irradiated Y2O3 sample. The resulting cross section value averaged in spectrum is 43.9 ± 1.5 μb, averaged in the 235U spectrum is 0.172 ± 0.006 mb. This cross-section is important as it is used as high energy neutron monitor and is therefore included in the International Reactor Dosimetry and Fusion File. Calculations of reaction rates were performed with the MCNP6 code using ENDF/B-VII.0, JEFF-3.1, JEFF-3.2, JENDL-3.3, JENDL-4, ROSFOND-2010, CENDL-3.1 and IRDFF nuclear data libraries. The agreement with uranium description by CIELO library is very good, while in ENDF/B-VII.0 description of uranium, underprediction about 10% in average can be observed.

  17. Removing cosmic spikes using a hyperspectral upper-bound spectrum method

    DOE PAGES

    Anthony, Stephen Michael; Timlin, Jerilyn A.

    2016-11-04

    Cosmic ray spikes are especially problematic for hyperspectral imaging because of the large number of spikes often present and their negative effects upon subsequent chemometric analysis. Fortunately, while the large number of spectra acquired in a hyperspectral imaging data set increases the probability and number of cosmic spikes observed, the multitude of spectra can also aid in the effective recognition and removal of the cosmic spikes. Zhang and Ben-Amotz were perhaps the first to leverage the additional spatial dimension of hyperspectral data matrices (DM). They integrated principal component analysis (PCA) into the upper bound spectrum method (UBS), resulting in amore » hybrid method (UBS-DM) for hyperspectral images. Here, we expand upon their use of PCA, recognizing that principal components primarily present in only a few pixels most likely correspond to cosmic spikes. Eliminating the contribution of those principal components in those pixels improves the cosmic spike removal. Both simulated and experimental hyperspectral Raman image data sets are used to test the newly developed UBS-DM-hyperspectral (UBS-DM-HS) method which extends the UBS-DM method by leveraging characteristics of hyperspectral data sets. As a result, a comparison is provided between the performance of the UBS-DM-HS method and other methods suitable for despiking hyperspectral images, evaluating both their ability to remove cosmic ray spikes and the extent to which they introduce spectral bias.« less

  18. Removing cosmic spikes using a hyperspectral upper-bound spectrum method

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Anthony, Stephen Michael; Timlin, Jerilyn A.

    Cosmic ray spikes are especially problematic for hyperspectral imaging because of the large number of spikes often present and their negative effects upon subsequent chemometric analysis. Fortunately, while the large number of spectra acquired in a hyperspectral imaging data set increases the probability and number of cosmic spikes observed, the multitude of spectra can also aid in the effective recognition and removal of the cosmic spikes. Zhang and Ben-Amotz were perhaps the first to leverage the additional spatial dimension of hyperspectral data matrices (DM). They integrated principal component analysis (PCA) into the upper bound spectrum method (UBS), resulting in amore » hybrid method (UBS-DM) for hyperspectral images. Here, we expand upon their use of PCA, recognizing that principal components primarily present in only a few pixels most likely correspond to cosmic spikes. Eliminating the contribution of those principal components in those pixels improves the cosmic spike removal. Both simulated and experimental hyperspectral Raman image data sets are used to test the newly developed UBS-DM-hyperspectral (UBS-DM-HS) method which extends the UBS-DM method by leveraging characteristics of hyperspectral data sets. As a result, a comparison is provided between the performance of the UBS-DM-HS method and other methods suitable for despiking hyperspectral images, evaluating both their ability to remove cosmic ray spikes and the extent to which they introduce spectral bias.« less

  19. Removing Cosmic Spikes Using a Hyperspectral Upper-Bound Spectrum Method.

    PubMed

    Anthony, Stephen M; Timlin, Jerilyn A

    2017-03-01

    Cosmic ray spikes are especially problematic for hyperspectral imaging because of the large number of spikes often present and their negative effects upon subsequent chemometric analysis. Fortunately, while the large number of spectra acquired in a hyperspectral imaging data set increases the probability and number of cosmic spikes observed, the multitude of spectra can also aid in the effective recognition and removal of the cosmic spikes. Zhang and Ben-Amotz were perhaps the first to leverage the additional spatial dimension of hyperspectral data matrices (DM). They integrated principal component analysis (PCA) into the upper bound spectrum method (UBS), resulting in a hybrid method (UBS-DM) for hyperspectral images. Here, we expand upon their use of PCA, recognizing that principal components primarily present in only a few pixels most likely correspond to cosmic spikes. Eliminating the contribution of those principal components in those pixels improves the cosmic spike removal. Both simulated and experimental hyperspectral Raman image data sets are used to test the newly developed UBS-DM-hyperspectral (UBS-DM-HS) method which extends the UBS-DM method by leveraging characteristics of hyperspectral data sets. A comparison is provided between the performance of the UBS-DM-HS method and other methods suitable for despiking hyperspectral images, evaluating both their ability to remove cosmic ray spikes and the extent to which they introduce spectral bias.

  20. Regularization of the double period method for experimental data processing

    NASA Astrophysics Data System (ADS)

    Belov, A. A.; Kalitkin, N. N.

    2017-11-01

    In physical and technical applications, an important task is to process experimental curves measured with large errors. Such problems are solved by applying regularization methods, in which success depends on the mathematician's intuition. We propose an approximation based on the double period method developed for smooth nonperiodic functions. Tikhonov's stabilizer with a squared second derivative is used for regularization. As a result, the spurious oscillations are suppressed and the shape of an experimental curve is accurately represented. This approach offers a universal strategy for solving a broad class of problems. The method is illustrated by approximating cross sections of nuclear reactions important for controlled thermonuclear fusion. Tables recommended as reference data are obtained. These results are used to calculate the reaction rates, which are approximated in a way convenient for gasdynamic codes. These approximations are superior to previously known formulas in the covered temperature range and accuracy.

  1. A New Digital Signal Processing Method for Spectrum Interference Monitoring

    NASA Astrophysics Data System (ADS)

    Angrisani, L.; Capriglione, D.; Ferrigno, L.; Miele, G.

    2011-01-01

    Frequency spectrum is a limited shared resource, nowadays interested by an ever growing number of different applications. Generally, the companies providing such services pay to the governments the right of using a limited portion of the spectrum, consequently they would be assured that the licensed radio spectrum resource is not interested by significant external interferences. At the same time, they have to guarantee that their devices make an efficient use of the spectrum and meet the electromagnetic compatibility regulations. Therefore the competent authorities are called to control the access to the spectrum adopting suitable management and monitoring policies, as well as the manufacturers have to periodically verify the correct working of their apparatuses. Several measurement solutions are present on the market. They generally refer to real-time spectrum analyzers and measurement receivers. Both of them are characterized by good metrological accuracies but show costs, dimensions and weights that make no possible a use "on the field". The paper presents a first step in realizing a digital signal processing based measurement instrument able to suitably accomplish for the above mentioned needs. In particular the attention has been given to the DSP based measurement section of the instrument. To these aims an innovative measurement method for spectrum monitoring and management is proposed in this paper. It performs an efficient sequential analysis based on a sample by sample digital processing. Three main issues are in particular pursued: (i) measurement performance comparable to that exhibited by other methods proposed in literature; (ii) fast measurement time, (iii) easy implementation on cost-effective measurement hardware.

  2. Spectrum recovery method based on sparse representation for segmented multi-Gaussian model

    NASA Astrophysics Data System (ADS)

    Teng, Yidan; Zhang, Ye; Ti, Chunli; Su, Nan

    2016-09-01

    Hyperspectral images can realize crackajack features discriminability for supplying diagnostic characteristics with high spectral resolution. However, various degradations may generate negative influence on the spectral information, including water absorption, bands-continuous noise. On the other hand, the huge data volume and strong redundancy among spectrums produced intense demand on compressing HSIs in spectral dimension, which also leads to the loss of spectral information. The reconstruction of spectral diagnostic characteristics has irreplaceable significance for the subsequent application of HSIs. This paper introduces a spectrum restoration method for HSIs making use of segmented multi-Gaussian model (SMGM) and sparse representation. A SMGM is established to indicating the unsymmetrical spectral absorption and reflection characteristics, meanwhile, its rationality and sparse property are discussed. With the application of compressed sensing (CS) theory, we implement sparse representation to the SMGM. Then, the degraded and compressed HSIs can be reconstructed utilizing the uninjured or key bands. Finally, we take low rank matrix recovery (LRMR) algorithm for post processing to restore the spatial details. The proposed method was tested on the spectral data captured on the ground with artificial water absorption condition and an AVIRIS-HSI data set. The experimental results in terms of qualitative and quantitative assessments demonstrate that the effectiveness on recovering the spectral information from both degradations and loss compression. The spectral diagnostic characteristics and the spatial geometry feature are well preserved.

  3. The Cross-Entropy Based Multi-Filter Ensemble Method for Gene Selection.

    PubMed

    Sun, Yingqiang; Lu, Chengbo; Li, Xiaobo

    2018-05-17

    The gene expression profile has the characteristics of a high dimension, low sample, and continuous type, and it is a great challenge to use gene expression profile data for the classification of tumor samples. This paper proposes a cross-entropy based multi-filter ensemble (CEMFE) method for microarray data classification. Firstly, multiple filters are used to select the microarray data in order to obtain a plurality of the pre-selected feature subsets with a different classification ability. The top N genes with the highest rank of each subset are integrated so as to form a new data set. Secondly, the cross-entropy algorithm is used to remove the redundant data in the data set. Finally, the wrapper method, which is based on forward feature selection, is used to select the best feature subset. The experimental results show that the proposed method is more efficient than other gene selection methods and that it can achieve a higher classification accuracy under fewer characteristic genes.

  4. Absolute single-photoionization cross sections of Se 2 + : Experiment and theory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Macaluso, D. A.; Aguilar, A.; Kilcoyne, A. L. D.

    2015-12-28

    Absolute single-photoionization cross-section measurements for Se 2+ ions were performed at the Advanced Light Source at Lawrence Berkeley National Laboratory using the merged-beams photo-ion technique. Measurements were made at a photon energy resolution of 24 ± 3 meV in the photon energy range 23.5-42.5 eV, spanning the ground state and low-lying metastable state ionization thresholds. Here, to clearly resolve the resonant structure near the ground-state threshold, high-resolution measurements were made from 30.0 to 31.9 eV at a photon energy resolution of 6.7 ± 0.7 meV. Numerous resonance features observed in the experimental spectra are assigned and their energies and quantummore » defects tabulated. The high-resolution cross-section measurements are compared with large-scale, state-of-the-art theoretical cross-section calculations obtained from the Dirac Coulomb R -matrix method. Suitable agreement is obtained over the entire photon energy range investigated. In conclusion, these results are an experimental determination of the absolute photoionization cross section of doubly ionized selenium and include a detailed analysis of the photoionization resonance spectrum of this ion.« less

  5. Evaluation of experimental railroad-highway grade crossings in Louisiana.

    DOT National Transportation Integrated Search

    1983-08-01

    This interim report was prepared to provide a review of the performance of thirty railroad-highway grade crossings installed experimentally in Louisiana between 1970 and 1983. They were constructed of rubber, high-density polyethylene (HDPE) or pre-c...

  6. Fingerprint extraction from interference destruction terahertz spectrum.

    PubMed

    Xiong, Wei; Shen, Jingling

    2010-10-11

    In this paper, periodic peaks in a terahertz absorption spectrum are confirmed to be induced from interference effects. Theoretically, we explained the periodic peaks and calculated the locations of them. Accordingly, a technique was suggested, with which the interference peaks in a terahertz spectrum can be eliminated and therefore a real terahertz absorption spectrum can be obtained. Experimentally, a sample, Methamphetamine, was investigated and its terahertz fingerprint was successfully extracted from its interference destruction spectrum. This technique is useful in getting samples' terahertz fingerprint spectra, and furthermore provides a fast nondestructive testing method using a large size terahertz beam to identify materials.

  7. A novel power spectrum calculation method using phase-compensation and weighted averaging for the estimation of ultrasound attenuation.

    PubMed

    Heo, Seo Weon; Kim, Hyungsuk

    2010-05-01

    An estimation of ultrasound attenuation in soft tissues is critical in the quantitative ultrasound analysis since it is not only related to the estimations of other ultrasound parameters, such as speed of sound, integrated scatterers, or scatterer size, but also provides pathological information of the scanned tissue. However, estimation performances of ultrasound attenuation are intimately tied to the accurate extraction of spectral information from the backscattered radiofrequency (RF) signals. In this paper, we propose two novel techniques for calculating a block power spectrum from the backscattered ultrasound signals. These are based on the phase-compensation of each RF segment using the normalized cross-correlation to minimize estimation errors due to phase variations, and the weighted averaging technique to maximize the signal-to-noise ratio (SNR). The simulation results with uniform numerical phantoms demonstrate that the proposed method estimates local attenuation coefficients within 1.57% of the actual values while the conventional methods estimate those within 2.96%. The proposed method is especially effective when we deal with the signal reflected from the deeper depth where the SNR level is lower or when the gated window contains a small number of signal samples. Experimental results, performed at 5MHz, were obtained with a one-dimensional 128 elements array, using the tissue-mimicking phantoms also show that the proposed method provides better estimation results (within 3.04% of the actual value) with smaller estimation variances compared to the conventional methods (within 5.93%) for all cases considered. Copyright 2009 Elsevier B.V. All rights reserved.

  8. Derivation and Cross-Validation of Cutoff Scores for Patients With Schizophrenia Spectrum Disorders on WAIS-IV Digit Span-Based Performance Validity Measures.

    PubMed

    Glassmire, David M; Toofanian Ross, Parnian; Kinney, Dominique I; Nitch, Stephen R

    2016-06-01

    Two studies were conducted to identify and cross-validate cutoff scores on the Wechsler Adult Intelligence Scale-Fourth Edition Digit Span-based embedded performance validity (PV) measures for individuals with schizophrenia spectrum disorders. In Study 1, normative scores were identified on Digit Span-embedded PV measures among a sample of patients (n = 84) with schizophrenia spectrum diagnoses who had no known incentive to perform poorly and who put forth valid effort on external PV tests. Previously identified cutoff scores resulted in unacceptable false positive rates and lower cutoff scores were adopted to maintain specificity levels ≥90%. In Study 2, the revised cutoff scores were cross-validated within a sample of schizophrenia spectrum patients (n = 96) committed as incompetent to stand trial. Performance on Digit Span PV measures was significantly related to Full Scale IQ in both studies, indicating the need to consider the intellectual functioning of examinees with psychotic spectrum disorders when interpreting scores on Digit Span PV measures. © The Author(s) 2015.

  9. Multifractal Cross Wavelet Analysis

    NASA Astrophysics Data System (ADS)

    Jiang, Zhi-Qiang; Gao, Xing-Lu; Zhou, Wei-Xing; Stanley, H. Eugene

    Complex systems are composed of mutually interacting components and the output values of these components usually exhibit long-range cross-correlations. Using wavelet analysis, we propose a method of characterizing the joint multifractal nature of these long-range cross correlations, a method we call multifractal cross wavelet analysis (MFXWT). We assess the performance of the MFXWT method by performing extensive numerical experiments on the dual binomial measures with multifractal cross correlations and the bivariate fractional Brownian motions (bFBMs) with monofractal cross correlations. For binomial multifractal measures, we find the empirical joint multifractality of MFXWT to be in approximate agreement with the theoretical formula. For bFBMs, MFXWT may provide spurious multifractality because of the wide spanning range of the multifractal spectrum. We also apply the MFXWT method to stock market indices, and in pairs of index returns and volatilities we find an intriguing joint multifractal behavior. The tests on surrogate series also reveal that the cross correlation behavior, particularly the cross correlation with zero lag, is the main origin of cross multifractality.

  10. Interuser Interference Analysis for Direct-Sequence Spread-Spectrum Systems Part I: Partial-Period Cross-Correlation

    NASA Technical Reports Server (NTRS)

    Ni, Jianjun (David)

    2012-01-01

    This presentation discusses an analysis approach to evaluate the interuser interference for Direct-Sequence Spread-Spectrum (DSSS) Systems for Space Network (SN) Users. Part I of this analysis shows that the correlation property of pseudo noise (PN) sequences is the critical factor which determines the interuser interference performance of the DSSS system. For non-standard DSSS systems in which PN sequence s period is much larger than one data symbol duration, it is the partial-period cross-correlation that determines the system performance. This study reveals through an example that a well-designed PN sequence set (e.g. Gold Sequence, in which the cross-correlation for a whole-period is well controlled) may have non-controlled partial-period cross-correlation which could cause severe interuser interference for a DSSS system. Since the analytical derivation of performance metric (bit error rate or signal-to-noise ratio) based on partial-period cross-correlation is prohibitive, the performance degradation due to partial-period cross-correlation will be evaluated using simulation in Part II of this analysis in the future.

  11. Investigation of orifice aeroacoustics by means of multi-port methods

    NASA Astrophysics Data System (ADS)

    Sack, Stefan; Åbom, Mats

    2017-10-01

    Comprehensive methods to cascade active multi-ports, e.g., for acoustic network prediction, have until now only been available for plane waves. This paper presents procedures to combine multi-ports with an arbitrary number of considered duct modes. A multi-port method is used to extract complex mode amplitudes from experimental data of single and tandem in-duct orifice plates for Helmholtz numbers up to around 4 and, hence, beyond the cut-on of several higher order modes. The theory of connecting single multi-ports to linear cascades is derived for the passive properties (the scattering of the system) and the active properties (the source cross-spectrum matrix of the system). One scope of this paper is to investigate the influence of the hydrodynamic near field on the accuracy of both the passive and the active predictions in multi-port cascades. The scattering and the source cross-spectrum matrix of tandem orifice configurations is measured for three cases, namely, with a distance between the plates of 10 duct diameter, for which the downstream orifice is outside the jet of the upstream orifice, 4 duct diameter, and 2 duct diameter (both inside the jet). The results are compared with predictions from single orifice measurements. It is shown that the scattering is only sensitive to disturbed inflow in certain frequency ranges where coupling between the flow and sound field exists, whereas the source cross-spectrum matrix is very sensitive to disturbed inflow for all frequencies. An important part of the analysis is based on an eigenvalue analysis of the scattering matrix and the source cross-spectrum matrix to evaluate the potential of sound amplification and dominant source mechanisms.

  12. A Fast Radio Burst Search Method for VLBI Observation

    NASA Astrophysics Data System (ADS)

    Liu, Lei; Tong, Fengxian; Zheng, Weimin; Zhang, Juan; Tong, Li

    2018-02-01

    We introduce the cross-spectrum-based fast radio burst (FRB) search method for Very Long Baseline Interferometer (VLBI) observation. This method optimizes the fringe fitting scheme in geodetic VLBI data post-processing, which fully utilizes the cross-spectrum fringe phase information and therefore maximizes the power of single-pulse signals. Working with cross-spectrum greatly reduces the effect of radio frequency interference compared with using auto-power spectrum. Single-pulse detection confidence increases by cross-identifying detections from multiple baselines. By combining the power of multiple baselines, we may improve the detection sensitivity. Our method is similar to that of coherent beam forming, but without the computational expense to form a great number of beams to cover the whole field of view of our telescopes. The data processing pipeline designed for this method is easy to implement and parallelize, which can be deployed in various kinds of VLBI observations. In particular, we point out that VGOS observations are very suitable for FRB search.

  13. A comparison of methods for teaching receptive labeling to children with autism spectrum disorders: a systematic replication.

    PubMed

    Grow, Laura L; Kodak, Tiffany; Carr, James E

    2014-01-01

    Previous research has demonstrated that the conditional-only method (starting with a multiple-stimulus array) is more efficient than the simple-conditional method (progressive incorporation of more stimuli into the array) for teaching receptive labeling to children with autism spectrum disorders (Grow, Carr, Kodak, Jostad, & Kisamore,). The current study systematically replicated the earlier study by comparing the 2 approaches using progressive prompting with 2 boys with autism. The results showed that the conditional-only method was a more efficient and reliable teaching procedure than the simple-conditional method. The results further call into question the practice of teaching simple discriminations to facilitate acquisition of conditional discriminations. © Society for the Experimental Analysis of Behavior.

  14. A robust power spectrum split cancellation-based spectrum sensing method for cognitive radio systems

    NASA Astrophysics Data System (ADS)

    Qi, Pei-Han; Li, Zan; Si, Jiang-Bo; Gao, Rui

    2014-12-01

    Spectrum sensing is an essential component to realize the cognitive radio, and the requirement for real-time spectrum sensing in the case of lacking prior information, fading channel, and noise uncertainty, indeed poses a major challenge to the classical spectrum sensing algorithms. Based on the stochastic properties of scalar transformation of power spectral density (PSD), a novel spectrum sensing algorithm, referred to as the power spectral density split cancellation method (PSC), is proposed in this paper. The PSC makes use of a scalar value as a test statistic, which is the ratio of each subband power to the full band power. Besides, by exploiting the asymptotic normality and independence of Fourier transform, the distribution of the ratio and the mathematical expressions for the probabilities of false alarm and detection in different channel models are derived. Further, the exact closed-form expression of decision threshold is calculated in accordance with Neyman—Pearson criterion. Analytical and simulation results show that the PSC is invulnerable to noise uncertainty, and can achive excellent detection performance without prior knowledge in additive white Gaussian noise and flat slow fading channels. In addition, the PSC benefits from a low computational cost, which can be completed in microseconds.

  15. Free molecular collision cross section calculation methods for nanoparticles and complex ions with energy accommodation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Larriba, Carlos, E-mail: clarriba@umn.edu; Hogan, Christopher J.

    2013-10-15

    The structures of nanoparticles, macromolecules, and molecular clusters in gas phase environments are often studied via measurement of collision cross sections. To directly compare structure models to measurements, it is hence necessary to have computational techniques available to calculate the collision cross sections of structural models under conditions matching measurements. However, presently available collision cross section methods contain the underlying assumption that collision between gas molecules and structures are completely elastic (gas molecule translational energy conserving) and specular, while experimental evidence suggests that in the most commonly used background gases for measurements, air and molecular nitrogen, gas molecule reemission ismore » largely inelastic (with exchange of energy between vibrational, rotational, and translational modes) and should be treated as diffuse in computations with fixed structural models. In this work, we describe computational techniques to predict the free molecular collision cross sections for fixed structural models of gas phase entities where inelastic and non-specular gas molecule reemission rules can be invoked, and the long range ion-induced dipole (polarization) potential between gas molecules and a charged entity can be considered. Specifically, two calculation procedures are described detail: a diffuse hard sphere scattering (DHSS) method, in which structures are modeled as hard spheres and collision cross sections are calculated for rectilinear trajectories of gas molecules, and a diffuse trajectory method (DTM), in which the assumption of rectilinear trajectories is relaxed and the ion-induced dipole potential is considered. Collision cross section calculations using the DHSS and DTM methods are performed on spheres, models of quasifractal aggregates of varying fractal dimension, and fullerene like structures. Techniques to accelerate DTM calculations by assessing the contribution of grazing gas

  16. A straightforward experimental method to evaluate the Lamb-Mössbauer factor of a 57Co/Rh source

    NASA Astrophysics Data System (ADS)

    Spina, G.; Lantieri, M.

    2014-01-01

    In analyzing Mössbauer spectra by means of the integral transmission function, a correct evaluation of the recoilless fs factor of the source at the position of the sample is needed. A novel method to evaluate fs for a 57Co source is proposed. The method uses the standard transmission experimental set up and it does not need further measurements but the ones that are mandatory in order to center the Mössbauer line and to calibrate the Mössbauer transducer. Firstly, the background counts are evaluated by collecting a standard Multi Channel Scaling (MCS) spectrum of a tick metal iron foil absorber and two Pulse Height Analysis (PHA) spectra with the same life-time and setting the maximum velocity of the transducer at the same value of the MCS spectrum. Secondly, fs is evaluated by fitting the collected MCS spectrum throughout the integral transmission approach. A test of the suitability of the technique is presented, too.

  17. Spectrum-shape method and the next-to-leading-order terms of the β -decay shape factor

    NASA Astrophysics Data System (ADS)

    Haaranen, M.; Kotila, J.; Suhonen, J.

    2017-02-01

    Effective values of the axial-vector coupling constant gA have lately attracted much attention due to the prominent role of gA in determining the half-lives of double β decays, in particular their neutrinoless mode. The half-life method, i.e., comparing the calculated half-lives to the corresponding experimental ones, is the most widely used method to access the effective values of gA. The present paper investigates the possibilities offered by a complementary method: the spectrum-shape method (SSM). In the SSM, comparison of the shapes of the calculated and measured β electron spectra of forbidden nonunique β decays yields information on the magnitude of gA. In parallel, we investigate the impact of the next-to-leading-order terms of the β -decay shape function and the radiative corrections on the half-life method and the SSM by analyzing the fourfold forbidden decays of 113Cd and 115In by using three nuclear-structure theory frameworks; namely, the nuclear shell model, the microscopic interacting boson-fermion model, and the microscopic quasiparticle-phonon model. The three models yield a consistent result, gA≈0.92 , when the SSM is applied to the decay of 113Cd for which β -spectrum data are available. At the same time the half-life method yields results which are in tension with each other and the SSM result.

  18. Experimental Protein Structure Verification by Scoring with a Single, Unassigned NMR Spectrum.

    PubMed

    Courtney, Joseph M; Ye, Qing; Nesbitt, Anna E; Tang, Ming; Tuttle, Marcus D; Watt, Eric D; Nuzzio, Kristin M; Sperling, Lindsay J; Comellas, Gemma; Peterson, Joseph R; Morrissey, James H; Rienstra, Chad M

    2015-10-06

    Standard methods for de novo protein structure determination by nuclear magnetic resonance (NMR) require time-consuming data collection and interpretation efforts. Here we present a qualitatively distinct and novel approach, called Comparative, Objective Measurement of Protein Architectures by Scoring Shifts (COMPASS), which identifies the best structures from a set of structural models by numerical comparison with a single, unassigned 2D (13)C-(13)C NMR spectrum containing backbone and side-chain aliphatic signals. COMPASS does not require resonance assignments. It is particularly well suited for interpretation of magic-angle spinning solid-state NMR spectra, but also applicable to solution NMR spectra. We demonstrate COMPASS with experimental data from four proteins--GB1, ubiquitin, DsbA, and the extracellular domain of human tissue factor--and with reconstructed spectra from 11 additional proteins. For all these proteins, with molecular mass up to 25 kDa, COMPASS distinguished the correct fold, most often within 1.5 Å root-mean-square deviation of the reference structure. Copyright © 2015 Elsevier Ltd. All rights reserved.

  19. Experimental Verification of the Individual Energy Dependencies of the Partial L-Shell Photoionization Cross Sections of Pd and Mo

    NASA Astrophysics Data System (ADS)

    Hönicke, Philipp; Kolbe, Michael; Müller, Matthias; Mantler, Michael; Krämer, Markus; Beckhoff, Burkhard

    2014-10-01

    An experimental method for the verification of the individually different energy dependencies of L1-, L2-, and L3- subshell photoionization cross sections is described. The results obtained for Pd and Mo are well in line with theory regarding both energy dependency and absolute values, and confirm the theoretically calculated cross sections by Scofield from the early 1970 s and, partially, more recent data by Trzhaskovskaya, Nefedov, and Yarzhemsky. The data also demonstrate the questionability of quantitative x-ray spectroscopical results based on the widely used fixed jump ratio approximated cross sections with energy independent ratios. The experiments are carried out by employing the radiometrically calibrated instrumentation of the Physikalisch-Technische Bundesanstalt at the electron storage ring BESSY II in Berlin; the obtained fluorescent intensities are thereby calibrated at an absolute level in reference to the International System of Units. Experimentally determined fixed fluorescence line ratios for each subshell are used for a reliable deconvolution of overlapping fluorescence lines. The relevant fundamental parameters of Mo and Pd are also determined experimentally in order to calculate the subshell photoionization cross sections independently of any database.

  20. [Signal analysis and spectrum distortion correction for tunable diode laser absorption spectroscopy system].

    PubMed

    Bao, Wei-Yi; Zhu, Yong; Chen, Jun; Chen, Jun-Qing; Liang, Bo

    2011-04-01

    In the present paper, the signal of a tunable diode laser absorption spectroscopy (TDLAS) trace gas sensing system, which has a wavelength modulation with a wide range of modulation amplitudes, is studied based on Fourier analysis method. Theory explanation of spectrum distortion induced by laser intensity amplitude modulation is given. In order to rectify the spectrum distortion, a method of synchronous amplitude modulation suppression by a variable optical attenuator is proposed. To validate the method, an experimental setup is designed. Absorption spectrum measurement experiments on CO2 gas were carried out. The results show that the residual laser intensity modulation amplitude of the experimental system is reduced to -0.1% of its original value and the spectrum distortion improvement is 92% with the synchronous amplitude modulation suppression. The modulation amplitude of laser intensity can be effectively reduced and the spectrum distortion can be well corrected by using the given correction method and system. By using a variable optical attenuator in the TDLAS (tunable diode laser absorption spectroscopy) system, the dynamic range requirements of photoelectric detector, digital to analog converter, filters and other aspects of the TDLAS system are reduced. This spectrum distortion correction method can be used for online trace gas analyzing in process industry.

  1. DETECTORS AND EXPERIMENTAL METHODS: Heuristic approach for peak regions estimation in gamma-ray spectra measured by a NaI detector

    NASA Astrophysics Data System (ADS)

    Zhu, Meng-Hua; Liu, Liang-Gang; You, Zhong; Xu, Ao-Ao

    2009-03-01

    In this paper, a heuristic approach based on Slavic's peak searching method has been employed to estimate the width of peak regions for background removing. Synthetic and experimental data are used to test this method. With the estimated peak regions using the proposed method in the whole spectrum, we find it is simple and effective enough to be used together with the Statistics-sensitive Nonlinear Iterative Peak-Clipping method.

  2. Spectrum interrogation of fiber acoustic sensor based on self-fitting and differential method.

    PubMed

    Fu, Xin; Lu, Ping; Ni, Wenjun; Liao, Hao; Wang, Shun; Liu, Deming; Zhang, Jiangshan

    2017-02-20

    In this article, we propose an interrogation method of fiber acoustic sensor to recover the time-domain signal from the sensor spectrum. The optical spectrum of the sensor will show a ripple waveform when responding to acoustic signal due to the scanning process in a certain wavelength range. The reason behind this phenomenon is the dynamic variation of the sensor spectrum while the intensity of different wavelength is acquired at different time in a scanning period. The frequency components can be extracted from the ripple spectrum assisted by the wavelength scanning speed. The signal is able to be recovered by differential between the ripple spectrum and its self-fitted curve. The differential process can eliminate the interference caused by environmental perturbations such as temperature or refractive index (RI), etc. The proposed method is appropriate for fiber acoustic sensors based on gratings or interferometers. A long period grating (LPG) is adopted as an acoustic sensor head to prove the feasibility of the interrogation method in experiment. The ability to compensate the environmental fluctuations is also demonstrated.

  3. Determination of the Spectral Index in the Fission Spectrum Energy Regime

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, Amy Sarah

    2016-05-16

    Neutron reaction cross sections play a vital role in tracking the production and destruction of isotopes exposed to neutron fluence. They are central to the process of reconciling the initial and final atom inventories. Measurements of irradiated samples by radiochemical methods in tangent with an algorithm are used to evaluate the fluence a sample is exposed to over the course of the irradiation. This algorithm is the Isotope Production Code (IPC) created and used by the radiochemistry data assessment team at Los Alamos National Laboratory (LANL). An integral result is calculated by varying the total neutron fluence seen by amore » sample. A sample, irradiated in a critical assembly, will be exposed to a unique neutron flux defined by the neutron source and distance of the sample from the source. Neutron cross sections utilized are a function of the hardness of the neutron spectrum at the location of irradiation. A spectral index is used an indicator of the hardness of the neutron spectrum. Cross sections fit forms applied in IPC are collapsed from a LANL 30-group energy structure. Several decades of research and development have been performed to formalize the current IPC cross section library. Basis of the current fission spectrum neutron reaction cross section library is rooted in critical assembly experiments performed from the 1950’s through the early 1970’s at LANL. The focus of this report is development of the spectral index used an indicator of the hardness of the neutron spectrum in the fission spectrum energy regime.« less

  4. Passive Acoustic Mapping with the Angular Spectrum Method

    PubMed Central

    Crake, Calum; McDannold, Nathan; Clement, Gregory T.

    2017-01-01

    In the present proof of principle study, we evaluated the homogenous angular spectrum method for passive acoustic mapping (AS-PAM) of microbubble oscillations using simulated and experimental data. In the simulated data we assessed the ability of AS-PAM to form 3D maps of a single and multiple point sources. Then, in the two dimensional limit, we compared the 2D maps from AS-PAM with alternative frequency and time domain passive acoustic mapping (FD- and TD-PAM) approaches. Finally, we assessed the ability of AS-PAM to visualize microbubble activity in vivo with data obtained during 8 different experiments of FUS-induced blood-brain barrier disruption in 3 nonhuman primates, using a clinical MR-guided FUS system. Our in silico results demonstrate AS-PAM can be used to perform 3D passive acoustic mapping. 2D AS-PAM as compared to FD- PAM and TD-PAM is 10 and 200 times faster respectively and has similar sensitivity, resolution, and localization accuracy, even when the noise was 10-fold higher than the signal. In-vivo, the AS-PAM reconstructions of emissions at frequency bands pertinent to the different types of microbubble oscillations were also found to be more sensitive than TD-PAM. AS-PAM of harmonic-only components predicted safe blood-brain barrier disruption, whereas AS-PAM of broadband emissions correctly identified MR-evident tissue damage. The disparity (3.2mm) in the location of the cavitation activity between the three methods was within their resolution limits. These data clearly demonstrate that AS-PAM is a sensitive and fast approach for PAM, thus providing a clinically relevant method to guide therapeutic ultrasound procedures. PMID:28026755

  5. Intercultural Sourcebook: Cross-Cultural Training Methods. Volume 2.

    ERIC Educational Resources Information Center

    Fowler, Sandra M., Ed.; Mumford, Monica G., Ed.

    This comprehensive collection of training methods and exercises used by top trainers in the cross-cultural field contains resources essential for cross-cultural learning. This second volume of the collection includes articles by 34 leading cross-cultural trainers and covers new or divergent training methods for cross-cultural skill development and…

  6. Neuropsychopharmacotherapeutic efficacy of curcumin in experimental paradigm of autism spectrum disorders.

    PubMed

    Bhandari, Ranjana; Kuhad, Anurag

    2015-11-15

    Neuroinflammatory response triggered by the stimulation of matrix metalloproteinases plays a pivotal role in the development of autistic phenotype. MMPs stimulate inflammatory cytokines release along with mitochondrial deficits that ultimately lead to neuronal dysfunction and precipitate autistic symptoms. The aim of the present study was to explore the neuropsychopharmacotherapeutic efficacy of curcumin in the experimental paradigm of autism spectrum disorders. 1M propanoic acid (4μl) was infused over 10min into the anterior portion of the caudoputamen to induce autistic behavior in rats. Curcumin (50, 100 and 200mg/kg) was administered per orally starting from 2nd day of surgery and continued up to 28th day. Rats were tested for various neurobehavioural paradigms like social interaction, stereotypy, locomotor activity, anxiety, novelty, depression, spatial learning and memory as well as for repetitive and pervasive behavior. In addition, biochemical tests for oxidative stress, mitochondrial complexes, TNF-α and MMP-9 were also carried out. Intracerebroventricular injection of propanoic acid produced neurological, sensory, behavioral, biochemical and molecular deficits which were assessed as endophenotype of autism spectrum disorders. Regular treatment with curcumin for four weeks significantly and dose dependently restored neurological, behavioral, biochemical and molecular changes associated with autistic phenotype in rats. The major finding of the study is that curcumin restored the core and associated symptoms of autistic phenotype by suppressing oxidative-nitrosative stress, mitochondrial dysfunction, TNF-α and MMP-9 in PPA-induced autism in rats. Therefore, curcumin can be developed as a potential neuropsychopharmacotherapeutic adjunct for autism spectrum disorders (ASD). Copyright © 2015 Elsevier Inc. All rights reserved.

  7. Evaluation of experimental railroad-highway grade crossings in Louisiana : interim report No. 5.

    DOT National Transportation Integrated Search

    1980-04-01

    This interim report is prepared to provide a review of the performance evaluation exhibited on twenty-three (23) experimental railroad-highway grade-crossing projects in the state of Louisiana. The railroad crossings were installed during a ten-year ...

  8. A general method for radio spectrum efficiency defining

    NASA Astrophysics Data System (ADS)

    Ramadanovic, Ljubomir M.

    1986-08-01

    A general method for radio spectrum efficiency defining is proposed. Although simple it can be applied to various radio services. The concept of spectral elements, as information carriers, is introduced to enable the organization of larger spectral spaces - radio network models - characteristic for a particular radio network. The method is applied to some radio network models, concerning cellular radio telephone systems and digital radio relay systems, to verify its unified approach capability. All discussed radio services operate continuously.

  9. An adaptive singular spectrum analysis method for extracting brain rhythms of electroencephalography

    PubMed Central

    Hu, Hai; Guo, Shengxin; Liu, Ran

    2017-01-01

    Artifacts removal and rhythms extraction from electroencephalography (EEG) signals are important for portable and wearable EEG recording devices. Incorporating a novel grouping rule, we proposed an adaptive singular spectrum analysis (SSA) method for artifacts removal and rhythms extraction. Based on the EEG signal amplitude, the grouping rule determines adaptively the first one or two SSA reconstructed components as artifacts and removes them. The remaining reconstructed components are then grouped based on their peak frequencies in the Fourier transform to extract the desired rhythms. The grouping rule thus enables SSA to be adaptive to EEG signals containing different levels of artifacts and rhythms. The simulated EEG data based on the Markov Process Amplitude (MPA) EEG model and the experimental EEG data in the eyes-open and eyes-closed states were used to verify the adaptive SSA method. Results showed a better performance in artifacts removal and rhythms extraction, compared with the wavelet decomposition (WDec) and another two recently reported SSA methods. Features of the extracted alpha rhythms using adaptive SSA were calculated to distinguish between the eyes-open and eyes-closed states. Results showed a higher accuracy (95.8%) than those of the WDec method (79.2%) and the infinite impulse response (IIR) filtering method (83.3%). PMID:28674650

  10. Unmet Needs of Families of School-Aged Children with an Autism Spectrum Disorder

    ERIC Educational Resources Information Center

    Brown, Hilary K.; Ouellette-Kuntz, Helene; Hunter, Duncan; Kelley, Elizabeth; Cobigo, Virginie

    2012-01-01

    Background: To aid decision making regarding the allocation of limited resources, information is needed on the perceived unmet needs of parents of school-aged children with an autism spectrum disorder. Materials and Methods: A cross-sectional survey was conducted of 101 Canadian families of school-aged children with an autism spectrum disorder.…

  11. Time evolution of surface chlorophyll patterns from cross-spectrum analysis of satellite color images

    NASA Technical Reports Server (NTRS)

    Denman, Kenneth L.; Abbott, Mark R.

    1988-01-01

    The rate of decorrelation of surface chlorophyll patterns as a function of the time separation between pairs of images was determined from two sequences of CZCS images of the Pacific Ocean area adjacent to Vancouver Island, Canada; cloud-free subareas were selected that were common to several images separated in time by 1-17 days. Image pairs were subjected to two-dimensional autospectrum and cross-spectrum analysis in an array processor, and squared coherence estimates found for several wave bands were plotted against time separation, in analogy with a time-lagged cross correlation function. It was found that, for wavelengths of 50-150 km, significant coherence was lost after 7-10 days, while for wavelengths of 25-50 km, significant coherence was lost after only 5-7 days. In both cases, offshore regions maintained coherence longer than coastal regions.

  12. The Autism-Spectrum Quotient--Italian version: a cross-cultural confirmation of the broader autism phenotype.

    PubMed

    Ruta, Liliana; Mazzone, Domenico; Mazzone, Luigi; Wheelwright, Sally; Baron-Cohen, Simon

    2012-04-01

    The Autism Spectrum Quotient (AQ) has been used to define the 'broader' (BAP), 'medium' (MAP) and 'narrow' autism phenotypes (NAP). We used a new Italian version of the AQ to test if difference on AQ scores and the distribution of BAP, MAP and NAP in autism parents (n = 245) versus control parents (n = 300) were replicated in a Sicilian sample. Parents of children with autism spectrum conditions scored higher than the control parents on total AQ, social skills and communication subscales, and exhibited higher rates of BAP, MAP and NAP. We conclude that the Italian AQ is a cross-culturally reliable measure of these different phenotypes, and can be used to identify a phenotypic gradient of severity of autistic traits in families. To understand the molecular basis of these phenotypes will require its use in genetic association studies.

  13. Frequency Spectrum Method-Based Stress Analysis for Oil Pipelines in Earthquake Disaster Areas

    PubMed Central

    Wu, Xiaonan; Lu, Hongfang; Huang, Kun; Wu, Shijuan; Qiao, Weibiao

    2015-01-01

    When a long distance oil pipeline crosses an earthquake disaster area, inertial force and strong ground motion can cause the pipeline stress to exceed the failure limit, resulting in bending and deformation failure. To date, researchers have performed limited safety analyses of oil pipelines in earthquake disaster areas that include stress analysis. Therefore, using the spectrum method and theory of one-dimensional beam units, CAESAR II is used to perform a dynamic earthquake analysis for an oil pipeline in the XX earthquake disaster area. This software is used to determine if the displacement and stress of the pipeline meet the standards when subjected to a strong earthquake. After performing the numerical analysis, the primary seismic action axial, longitudinal and horizontal displacement directions and the critical section of the pipeline can be located. Feasible project enhancement suggestions based on the analysis results are proposed. The designer is able to utilize this stress analysis method to perform an ultimate design for an oil pipeline in earthquake disaster areas; therefore, improving the safe operation of the pipeline. PMID:25692790

  14. Frequency spectrum method-based stress analysis for oil pipelines in earthquake disaster areas.

    PubMed

    Wu, Xiaonan; Lu, Hongfang; Huang, Kun; Wu, Shijuan; Qiao, Weibiao

    2015-01-01

    When a long distance oil pipeline crosses an earthquake disaster area, inertial force and strong ground motion can cause the pipeline stress to exceed the failure limit, resulting in bending and deformation failure. To date, researchers have performed limited safety analyses of oil pipelines in earthquake disaster areas that include stress analysis. Therefore, using the spectrum method and theory of one-dimensional beam units, CAESAR II is used to perform a dynamic earthquake analysis for an oil pipeline in the XX earthquake disaster area. This software is used to determine if the displacement and stress of the pipeline meet the standards when subjected to a strong earthquake. After performing the numerical analysis, the primary seismic action axial, longitudinal and horizontal displacement directions and the critical section of the pipeline can be located. Feasible project enhancement suggestions based on the analysis results are proposed. The designer is able to utilize this stress analysis method to perform an ultimate design for an oil pipeline in earthquake disaster areas; therefore, improving the safe operation of the pipeline.

  15. Investigating the cross-cultural validity of DSM-5 autism spectrum disorder: evidence from Finnish and UK samples.

    PubMed

    Mandy, William; Charman, Tony; Puura, Kaija; Skuse, David

    2014-01-01

    The recent Diagnostic and Statistical Manual of Mental Disorders-Fifth Edition (DSM-5) reformulation of autism spectrum disorder has received empirical support from North American and UK samples. Autism spectrum disorder is an increasingly global diagnosis, and research is needed to discover how well it generalises beyond North America and the United Kingdom. We tested the applicability of the DSM-5 model to a sample of Finnish young people with autism spectrum disorder (n = 130) or the broader autism phenotype (n = 110). Confirmatory factor analysis tested the DSM-5 model in Finland and compared the fit of this model between Finnish and UK participants (autism spectrum disorder, n = 488; broader autism phenotype, n = 220). In both countries, autistic symptoms were measured using the Developmental, Diagnostic and Dimensional Interview. Replicating findings from English-speaking samples, the DSM-5 model fitted well in Finnish autism spectrum disorder participants, outperforming a Diagnostic and Statistical Manual of Mental Disorders-Fourth Edition (DSM-IV) model. The DSM-5 model fitted equally well in Finnish and UK autism spectrum disorder samples. Among broader autism phenotype participants, this model fitted well in the United Kingdom but poorly in Finland, suggesting that cross-cultural variability may be greatest for milder autistic characteristics. We encourage researchers with data from other cultures to emulate our methodological approach, to map any cultural variability in the manifestation of autism spectrum disorder and the broader autism phenotype. This would be especially valuable given the ongoing revision of the International Classification of Diseases-11th Edition, the most global of the diagnostic manuals.

  16. To Cross-Link or Not to Cross-Link? Cross-Linking Associated Foreign Body Response of Collagen-Based Devices

    PubMed Central

    Delgado, Luis M.; Bayon, Yves; Pandit, Abhay

    2015-01-01

    Collagen-based devices, in various physical conformations, are extensively used for tissue engineering and regenerative medicine applications. Given that the natural cross-linking pathway of collagen does not occur in vitro, chemical, physical, and biological cross-linking methods have been assessed over the years to control mechanical stability, degradation rate, and immunogenicity of the device upon implantation. Although in vitro data demonstrate that mechanical properties and degradation rate can be accurately controlled as a function of the cross-linking method utilized, preclinical and clinical data indicate that cross-linking methods employed may have adverse effects on host response, especially when potent cross-linking methods are employed. Experimental data suggest that more suitable cross-linking methods should be developed to achieve a balance between stability and functional remodeling. PMID:25517923

  17. Gamma-ray Background Spectrum and Annihilation Rate in the Baryon-symmetric Big-bang Cosmology

    NASA Technical Reports Server (NTRS)

    Puget, J. L.

    1973-01-01

    An attempt was made to acquire experimental information on the problem of baryon symmetry on a large cosmological scale by observing the annihilation products. Data cover absorption cross sections and background radiation due to other sources for the two main products of annihilation, gamma rays and neutrinos. Test results show that the best direct experimental test for the presence of large scale antimatter lies in the gamma ray background spectrum between 1 and 70 MeV.

  18. Experimental and Computational Investigations of the Threshold Photoelectron Spectrum of the HCCN Radical

    NASA Astrophysics Data System (ADS)

    Gans, B.; Falvo, Cyril; Coudert, L. H.; Garcia, Gustavo A.; Küger, J.; Loison, J.-C.

    2017-06-01

    The HCCN radical, already detected in the interstellar medium, is also important for nitrile chemistry in Titan's atmosphere. Quite recently the photoionization spectrum of the radical has been recorded using mass selected threshold photoelectron (TPE) spectroscopy and this provided us with the first spectroscopic information about the HCCN} cation. Modeling such a spectrum requires accounting for the non-rigidity of HCCN and for the Renner-Teller effect in HCCN+. In its ^3A'' electronic ground state, HCCN is a non-rigid molecule as the potential for the \\angle{HCC} bending angle is very shallow. Vibronic couplings with the same bending angle leads, in the ^2Π electronic ground state of HCCN+, to a strong Renner-Teller effect giving rise to a bent ^2A' and a quasi-linear ^2A'' state. In this paper the photoionization spectrum of the HCCN radical is simulated. The model developped treats the \\angle{HCC} bending angle as a large amplitude coordinate in both the radical and the cation and accounts for the overall rotation and the Renner-Teller couplings. Gaussian quadrature are used to calculate matrix elements of the three potential energy functions retrieved through ab initio calculations and rovibrational operators going to infinity for the linear configuration are treated rigorously. The HCCN TPE spectrum is computed with the above model calculating all rotational components and choosing the appropriate lineshape. This synthetic spectrum will be shown in the paper and compared with the experimental one.^b Guélin and Cernicharo, A&A 244 (1991) L21 Loison et al., Icarus 247 (2015) 218 Garcia, Krüger, Gans, Falvo, Coudert, and Loison, J. Chem. Phys. (2017) submitted Koput, J. Phys. Chem. A 106 (2002) 6183 Zhao, Zhang, and Sun, J. Phys. Chem. A 112 (2008) 12125

  19. Multifractal detrended cross-correlation analysis in the MENA area

    NASA Astrophysics Data System (ADS)

    El Alaoui, Marwane; Benbachir, Saâd

    2013-12-01

    In this paper, we investigated multifractal cross-correlations qualitatively and quantitatively using a cross-correlation test and the Multifractal detrended cross-correlation analysis method (MF-DCCA) for markets in the MENA area. We used cross-correlation coefficients to measure the level of this correlation. The analysis concerns four stock market indices of Morocco, Tunisia, Egypt and Jordan. The countries chosen are signatory of the Agadir agreement concerning the establishment of a free trade area comprising Arab Mediterranean countries. We computed the bivariate generalized Hurst exponent, Rényi exponent and spectrum of singularity for each pair of indices to measure quantitatively the cross-correlations. By analyzing the results, we found the existence of multifractal cross-correlations between all of these markets. We compared the spectrum width of these indices; we also found which pair of indices has a strong multifractal cross-correlation.

  20. Refinements in the Los Alamos model of the prompt fission neutron spectrum

    DOE PAGES

    Madland, D. G.; Kahler, A. C.

    2017-01-01

    This paper presents a number of refinements to the original Los Alamos model of the prompt fission neutron spectrum and average prompt neutron multiplicity as derived in 1982. The four refinements are due to new measurements of the spectrum and related fission observables many of which were not available in 1982. Here, they are also due to a number of detailed studies and comparisons of the model with previous and present experimental results including not only the differential spectrum, but also integal cross sections measured in the field of the differential spectrum. The four refinements are (a) separate neutron contributionsmore » in binary fission, (b) departure from statistical equilibrium at scission, (c) fission-fragment nuclear level-density models, and (d) center-of-mass anisotropy. With these refinements, for the first time, good agreement has been obtained for both differential and integral measurements using the same Los Alamos model spectrum.« less

  1. Treatment of Early-Onset Schizophrenia Spectrum Disorders (TEOSS): Rationale, Design, and Methods

    ERIC Educational Resources Information Center

    McClellan, Jon; Sikich, Linmarie; Findling, Robert L.; Frazier, Jean A.; Vitiello, Benedetto; Hlastala, Stefanie A.; Williams, Emily; Ambler, Denisse; Hunt-Harrison, Tyehimba; Maloney, Ann E.; Ritz, Louise; Anderson, Robert; Hamer, Robert M.; Lieberman, Jeffrey A.

    2007-01-01

    Objective: The Treatment of Early Onset Schizophrenia Spectrum Disorders Study is a publicly funded clinical trial designed to compare the therapeutic benefits, safety, and tolerability of risperidone, olanzapine, and molindone in youths with early-onset schizophrenia spectrum disorders. The rationale, design, and methods of the Treatment of Early…

  2. Resonances in the Photoionization Cross Sections of Atomic Nitrogen Shape the Far-ultraviolet Spectrum of the Bright Star in 47 Tucanae

    NASA Astrophysics Data System (ADS)

    Dixon, William V.; Chayer, Pierre

    2013-08-01

    The far-ultraviolet spectrum of the Bright Star (B8 III) in 47 Tuc (NGC 104) shows a remarkable pattern: it is well fit by local thermodynamic equilibrium models at wavelengths longer than Lyβ, but at shorter wavelengths it is fainter than the models by a factor of two. A spectrum of this star obtained with the Far Ultraviolet Spectroscopic Explorer shows broad absorption troughs with sharp edges at 995 and 1010 Å and a deep absorption feature at 1072 Å none of which are predicted by the models. We find that these features are caused by resonances in the photoionization cross sections of the first and second excited states of atomic nitrogen (2s 2 2p 3 2 D 0 and 2 P 0). Using cross sections from the Opacity Project, we can reproduce these features, but only if we use the cross sections at their full resolution, rather than the resonance-averaged cross sections usually employed to model stellar atmospheres. These resonances are strongest in stellar atmospheres with enhanced nitrogen and depleted carbon abundances, a pattern typical of post-asymptotic giant branch stars.

  3. The Complete, Temperature Resolved Experimental Spectrum of Methyl Formate (HCOOCH3) between 214.6 and 265.4 GHz

    NASA Astrophysics Data System (ADS)

    McMillan, James P.; Fortman, Sarah M.; Neese, Christopher F.; De Lucia, Frank C.

    2016-05-01

    Because methyl formate (HCOOCH3) is abundant in the interstellar medium and has a strong, complex spectrum, it is a major contributor to the list of identified astrophysical lines. Because of its spectral complexity, with many low lying torsional and vibrational states, the quantum mechanical (QM) analysis of its laboratory spectrum is challenging and thus incomplete. As a result it is assumed that methyl formate is also one of the major contributors to the lists of unassigned lines in astrophysical spectra. This paper provides a characterization, without the need for QM analysis, of the spectrum of methyl formate between 214.6 and 265.4 GHz for astrophysically significant temperatures. The experimental basis for this characterization is a set of 425 spectra, with absolute intensity calibration, recorded between 248 and 408 K. Analysis of these spectra makes possible the calculation of the Complete Experimental Spectrum of methyl formate as a function of temperature. Of the 7132 strongest lines reported in this paper, 2523 are in the QM catalogs. Intensity differences of 5%-10% from those calculated via QM models were also found. Results are provided in a frequency point-by-point catalog that is well suited for the simulation of overlapped spectra. The common astrophysical line frequency, line strength, and lower state energy catalog is also provided.

  4. A deconvolution method for deriving the transit time spectrum for ultrasound propagation through cancellous bone replica models.

    PubMed

    Langton, Christian M; Wille, Marie-Luise; Flegg, Mark B

    2014-04-01

    The acceptance of broadband ultrasound attenuation for the assessment of osteoporosis suffers from a limited understanding of ultrasound wave propagation through cancellous bone. It has recently been proposed that the ultrasound wave propagation can be described by a concept of parallel sonic rays. This concept approximates the detected transmission signal to be the superposition of all sonic rays that travel directly from transmitting to receiving transducer. The transit time of each ray is defined by the proportion of bone and marrow propagated. An ultrasound transit time spectrum describes the proportion of sonic rays having a particular transit time, effectively describing lateral inhomogeneity of transit times over the surface of the receiving ultrasound transducer. The aim of this study was to provide a proof of concept that a transit time spectrum may be derived from digital deconvolution of input and output ultrasound signals. We have applied the active-set method deconvolution algorithm to determine the ultrasound transit time spectra in the three orthogonal directions of four cancellous bone replica samples and have compared experimental data with the prediction from the computer simulation. The agreement between experimental and predicted ultrasound transit time spectrum analyses derived from Bland-Altman analysis ranged from 92% to 99%, thereby supporting the concept of parallel sonic rays for ultrasound propagation in cancellous bone. In addition to further validation of the parallel sonic ray concept, this technique offers the opportunity to consider quantitative characterisation of the material and structural properties of cancellous bone, not previously available utilising ultrasound.

  5. Experimental investigation on the thermal performance of Si micro-heat pipe with different cross-sections

    NASA Astrophysics Data System (ADS)

    Hamidnia, Mohammad; Luo, Yi; Wang, Xiaodong; Li, Congming

    2017-10-01

    Increasing component densities of the integrated circuit (IC) and packaging levels has led to thermal management problems. Si substrates with embedded micro-heat pipes (MHPs) couple good thermal characteristics and cost savings associated with IC batch processing. The thermal performance of MHP is intimately related to the cross-sectional geometry. Different cross-sections are designed in order to enhance the backflow of working fluid. In this experimental study, three different Si MHPs with same hydraulic diameter and various cross-sections are fabricated by micro-fabrication methods and tested under different conditions of fluid charge ratios. The results show that the trapezoidal MHP associated with rectangular artery which is charged with 40% of vapor chamber’s volume has the best thermal performance. This silicon-based MHP is a passive approach for thermal management, which could widen applications in the commercial electronics industry and LED lightings.

  6. A new method to cluster genomes based on cumulative Fourier power spectrum.

    PubMed

    Dong, Rui; Zhu, Ziyue; Yin, Changchuan; He, Rong L; Yau, Stephen S-T

    2018-06-20

    Analyzing phylogenetic relationships using mathematical methods has always been of importance in bioinformatics. Quantitative research may interpret the raw biological data in a precise way. Multiple Sequence Alignment (MSA) is used frequently to analyze biological evolutions, but is very time-consuming. When the scale of data is large, alignment methods cannot finish calculation in reasonable time. Therefore, we present a new method using moments of cumulative Fourier power spectrum in clustering the DNA sequences. Each sequence is translated into a vector in Euclidean space. Distances between the vectors can reflect the relationships between sequences. The mapping between the spectra and moment vector is one-to-one, which means that no information is lost in the power spectra during the calculation. We cluster and classify several datasets including Influenza A, primates, and human rhinovirus (HRV) datasets to build up the phylogenetic trees. Results show that the new proposed cumulative Fourier power spectrum is much faster and more accurately than MSA and another alignment-free method known as k-mer. The research provides us new insights in the study of phylogeny, evolution, and efficient DNA comparison algorithms for large genomes. The computer programs of the cumulative Fourier power spectrum are available at GitHub (https://github.com/YaulabTsinghua/cumulative-Fourier-power-spectrum). Copyright © 2018. Published by Elsevier B.V.

  7. Receptive Vocabulary in Boys with Autism Spectrum Disorder: Cross-Sectional Developmental Trajectories

    PubMed Central

    McDuffie, Andrea S.; Hagerman, Randi J.; Abbeduto, Leonard

    2013-01-01

    In light of evidence that receptive language may be a relative weakness for individuals with autism spectrum disorder (ASD), this study characterized receptive vocabulary profiles in boys with ASD using cross-sectional developmental trajectories relative to age, nonverbal cognition, and expressive vocabulary. Participants were 49 boys with ASD (4–11 years) and 80 typically developing boys (2–11 years). Receptive vocabulary, assessed with the Peabody Picture Vocabulary Test, was a weakness for boys with ASD relative to age and nonverbal cognition. Relative to expressive vocabulary, assessed with the Expressive Vocabulary Test, receptive vocabulary increased at a lower rate for boys with ASD. Vocabulary trajectories in ASD are distinguished from typical development; however, nonverbal cognition largely accounts for the patterns observed. PMID:23588510

  8. A critical evaluation of various methods for the analysis of flow-solid interaction in a nest of thin cylinders subjected to cross flows

    NASA Technical Reports Server (NTRS)

    Kim, Sang-Wook

    1987-01-01

    Various experimental, analytical, and numerical analysis methods for flow-solid interaction of a nest of cylinders subjected to cross flows are reviewed. A nest of cylinders subjected to cross flows can be found in numerous engineering applications including the Space Shuttle Maine Engine-Main Injector Assembly (SSME-MIA) and nuclear reactor heat exchangers. Despite its extreme importance in engineering applications, understanding of the flow-solid interaction process is quite limited and design of the tube banks are mostly dependent on experiments and/or experimental correlation equations. For future development of major numerical analysis methods for the flow-solid interaction of a nest of cylinders subjected to cross flow, various turbulence models, nonlinear structural dynamics, and existing laminar flow-solid interaction analysis methods are included.

  9. Experimental Cross Sections of Fission Fragments of Thorium-232 Irradiated with Medium-Energy Protons

    NASA Astrophysics Data System (ADS)

    Libanova, O. N.; Golubeva, E. S.; Ermolaev, S. V.; Matushko, V. L.; Botvina, A. S.

    2018-05-01

    This paper is focused on fission of Th-232 nuclei induced by protons with energies ranging from 20 to 140 MeV. This energy range is the most informative for studying the competition between asymmetric and symmetric fission modes. Experimental cross sections of production of radionuclides in thorium targets have been determined a year after irradiation. The corresponding theoretical values are calculated using the cascade-evaporation-fission model. The theoretical and experimental cross sections (literature data included) are compared.

  10. Subsurface attenuation estimation using a novel hybrid method based on FWE function and power spectrum

    NASA Astrophysics Data System (ADS)

    Li, Jingnan; Wang, Shangxu; Yang, Dengfeng; Tang, Genyang; Chen, Yangkang

    2018-02-01

    Seismic waves propagating in the subsurface suffer from attenuation, which can be represented by the quality factor Q. Knowledge of Q plays a vital role in hydrocarbon exploration. Many methods to measure Q have been proposed, among which the central frequency shift (CFS) and the peak frequency shift (PFS) are commonly used. However, both methods are under the assumption of a particular shape for amplitude spectra, which will cause systematic error in Q estimation. Recently a new method to estimate Q has been proposed to overcome this disadvantage by using frequency weighted exponential (FWE) function to fit amplitude spectra of different shapes. In the FWE method, a key procedure is to calculate the central frequency and variance of the amplitude spectrum. However, the amplitude spectrum is susceptible to noise, whereas the power spectrum is less sensitive to random noise and has better anti-noise performance. To enhance the robustness of the FWE method, we propose a novel hybrid method by combining the advantage of the FWE method and the power spectrum, which is called the improved FWE method (IFWE). The basic idea is to consider the attenuation of the power spectrum instead of the amplitude spectrum and to use a modified FWE function to fit power spectra, according to which we derive a new Q estimation formula. Tests of noisy synthetic data show that the IFWE are more robust than the FWE. Moreover, the frequency bandwidth selection in the IFWE can be more flexible than that in the FWE. The application to field vertical seismic profile data and surface seismic data further demonstrates its validity.

  11. INSTRUMENTS AND METHODS OF INVESTIGATION Charge spectrum of galactic cosmic ray nuclei as measured in meteorite olivines

    NASA Astrophysics Data System (ADS)

    Aleksandrov, Andrei B.; Bagulya, Aleksandr V.; Vladimirov, Mikhail S.; Goncharova, Lyudmila A.; Ivliev, Aleksandr I.; Kalinina, Galina V.; Kashkarov, Leonid L.; Konovalova, Nina S.; Okat'eva, Natal'ya M.; Polukhina, Natal'ya G.; Rusetskii, Aleksei S.; Starkov, Nikolai I.

    2010-11-01

    This paper presents experimental results on galactic cosmic ray nuclei in olivine crystals from the Marjalahti and Eagle Station pallasites. The charge spectrum of the nuclei is measured to be in good agreement with the experimental data from the HEAO-3 and ARIEL-6 satellite missions.

  12. An experimental and theoretical investigation into the electronically excited states of para-benzoquinone

    NASA Astrophysics Data System (ADS)

    Jones, D. B.; Limão-Vieira, P.; Mendes, M.; Jones, N. C.; Hoffmann, S. V.; da Costa, R. F.; Varella, M. T. do N.; Bettega, M. H. F.; Blanco, F.; García, G.; Ingólfsson, O.; Lima, M. A. P.; Brunger, M. J.

    2017-05-01

    We report on a combination of experimental and theoretical investigations into the structure of electronically excited para-benzoquinone (pBQ). Here synchrotron photoabsorption measurements are reported over the 4.0-10.8 eV range. The higher resolution obtained reveals previously unresolved pBQ spectral features. Time-dependent density functional theory calculations are used to interpret the spectrum and resolve discrepancies relating to the interpretation of the Rydberg progressions. Electron-impact energy loss experiments are also reported. These are combined with elastic electron scattering cross section calculations performed within the framework of the independent atom model-screening corrected additivity rule plus interference (IAM-SCAR + I) method to derive differential cross sections for electronic excitation of key spectral bands. A generalized oscillator strength analysis is also performed, with the obtained results demonstrating that a cohesive and reliable quantum chemical structure and cross section framework has been established. Within this context, we also discuss some issues associated with the development of a minimal orbital basis for the single configuration interaction strategy to be used for our high-level low-energy electron scattering calculations that will be carried out as a subsequent step in this joint experimental and theoretical investigation.

  13. Experimental method for determination of bending and torsional rigidities of advanced composite laminates

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Maeda, Takenori

    1995-11-01

    This paper presents an experimental method for the determination of the bending and torsional rigidities of advanced fiber composite laminates with the aid of laser holographic interferometry. The proposed method consists of a four-point bending test and a resonance test. The bending rigidity ratio (D{sub 12}/D{sub 22}) can be determined from the fringe patterns of the four-point bending test. The bending rigidities (D{sub 11} and D{sub 22}) and the torsional rigidity (D{sub 66}) are calculated from the natural frequencies of cantilever plates of the resonance test. The test specimens are carbon/epoxy cross-ply laminates. The adequacy of the experimental method ismore » confirmed by comparing the measured rigidities with the theoretical values obtained from classical lamination theory (CLT) by using the measured tensile properties. The results show that the present method can be used to evaluate the rigidities of orthotropic laminates with reasonably good accuracy.« less

  14. A logic-based method to build signaling networks and propose experimental plans.

    PubMed

    Rougny, Adrien; Gloaguen, Pauline; Langonné, Nathalie; Reiter, Eric; Crépieux, Pascale; Poupon, Anne; Froidevaux, Christine

    2018-05-18

    With the dramatic increase of the diversity and the sheer quantity of biological data generated, the construction of comprehensive signaling networks that include precise mechanisms cannot be carried out manually anymore. In this context, we propose a logic-based method that allows building large signaling networks automatically. Our method is based on a set of expert rules that make explicit the reasoning made by biologists when interpreting experimental results coming from a wide variety of experiment types. These rules allow formulating all the conclusions that can be inferred from a set of experimental results, and thus building all the possible networks that explain these results. Moreover, given an hypothesis, our system proposes experimental plans to carry out in order to validate or invalidate it. To evaluate the performance of our method, we applied our framework to the reconstruction of the FSHR-induced and the EGFR-induced signaling networks. The FSHR is known to induce the transactivation of the EGFR, but very little is known on the resulting FSH- and EGF-dependent network. We built a single network using data underlying both networks. This leads to a new hypothesis on the activation of MEK by p38MAPK, which we validate experimentally. These preliminary results represent a first step in the demonstration of a cross-talk between these two major MAP kinases pathways.

  15. THE COMPLETE, TEMPERATURE RESOLVED EXPERIMENTAL SPECTRUM OF METHYL FORMATE (HCOOCH{sub 3}) BETWEEN 214.6 AND 265.4 GHz

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McMillan, James P.; Fortman, Sarah M.; Neese, Christopher F.

    2016-05-20

    Because methyl formate (HCOOCH{sub 3}) is abundant in the interstellar medium and has a strong, complex spectrum, it is a major contributor to the list of identified astrophysical lines. Because of its spectral complexity, with many low lying torsional and vibrational states, the quantum mechanical (QM) analysis of its laboratory spectrum is challenging and thus incomplete. As a result it is assumed that methyl formate is also one of the major contributors to the lists of unassigned lines in astrophysical spectra. This paper provides a characterization, without the need for QM analysis, of the spectrum of methyl formate between 214.6more » and 265.4 GHz for astrophysically significant temperatures. The experimental basis for this characterization is a set of 425 spectra, with absolute intensity calibration, recorded between 248 and 408 K. Analysis of these spectra makes possible the calculation of the Complete Experimental Spectrum of methyl formate as a function of temperature. Of the 7132 strongest lines reported in this paper, 2523 are in the QM catalogs. Intensity differences of 5%–10% from those calculated via QM models were also found. Results are provided in a frequency point-by-point catalog that is well suited for the simulation of overlapped spectra. The common astrophysical line frequency, line strength, and lower state energy catalog is also provided.« less

  16. Scaling of spectra in grid turbulence with a mean cross-stream temperature gradient

    NASA Astrophysics Data System (ADS)

    Bahri, Carla; Arwatz, Gilad; Mueller, Michael E.; George, William K.; Hultmark, Marcus

    2014-11-01

    Scaling of grid turbulence with a constant mean cross-stream temperature gradient is investigated using a combination of theoretical predictions, DNS, and experimental data. Conditions for self-similarity of the governing equations and the scalar spectrum are investigated, which reveals necessary conditions for self-similarity to exist. These conditions provide a theoretical framework for scaling of the temperature spectrum as well as the temperature flux spectrum. One necessary condition, predicted by the theory, is that the characteristic length scale describing the scalar spectrum must vary as √{ t} for a self-similar solution to exist. In order to investigate this, T-NSTAP sensors, specially designed for temperature measurements at high frequencies, were deployed in a heated passive grid turbulence setup together with conventional cold-wires, and complementary DNS calculations were performed to complement and complete the experimental data. These data are used to compare the behavior of different length scales and validate the theoretical predictions.

  17. The use of fractional orders in the determination of birefringence of highly dispersive materials by the channelled spectrum method

    NASA Astrophysics Data System (ADS)

    Nagarajan, K.; Shashidharan Nair, C. K.

    2007-07-01

    The channelled spectrum employing polarized light interference is a very convenient method for the study of dispersion of birefringence. However, while using this method, the absolute order of the polarized light interference fringes cannot be determined easily. Approximate methods are therefore used to estimate the order. One of the approximations is that the dispersion of birefringence across neighbouring integer order fringes is negligible. In this paper, we show how this approximation can cause errors. A modification is reported whereby the error in the determination of absolute fringe order can be reduced using fractional orders instead of integer orders. The theoretical background for this method supported with computer simulation is presented. An experimental arrangement implementing these modifications is described. This method uses a Constant Deviation Spectrometer (CDS) and a Soleil Babinet Compensator (SBC).

  18. Electronic excitation cross section in positron scattering by H2 molecules using distorted-wave method

    NASA Astrophysics Data System (ADS)

    Weiss, Luciara I.; Pinho, Adriane S. F.; Michelin, Sergio E.; Fujimoto, Milton M.

    2018-02-01

    In this work we have applied for the first time the distorted-wave approximation (DWA) combined with Schwinger Variational Iterative Method (SVIM) to describe electronic excitation of H2 molecules by positron collisions. The integral (ICS) and differential (DCS) excitation cross sections for X 1 Σ g + → B 1 Σ u + transition of H2 molecule, in the range from near threshold up to 45 eV of positron energies, were reported in static (ST) and static-correlation-polarization (STPOL) levels. Our two-state ICS in DWA-ST level have quantitative agreement with experimental measurement at energies from threshold up to 18 eV and the inclusion of polarization effects increases the cross sections. Comparison with 2-state close-coupling approximation (CCA), 2-state Schwinger Multichannel (SMC), 5-state SMC and 1013-state from Convergent Close-Coupling (CCC) methods are done and is encouraging. The relative steeper drop above 22 eV in experimental ICS was not observed by any theoretical calculations indicating that new measurements would be interesting for this transition in this energy range.

  19. Experimental study of the influence of the counter and scintillator on the universal curves in the cross-efficiency method in LSC.

    PubMed

    Cassette, P; Tartès, I

    2014-05-01

    The cross-efficiency method in LSC is one of the approaches proposed for the extension of the Système International de Référence (SIR) to radionuclides emitting no gamma radiation. This method is based on a so-called "universal cross-efficiency curve", establishing a relationship between the detection efficiency of the radionuclide to be measured and the detection efficiency of a suitable tracer. This paper reports a study at LNHB on the influence of the scintillator and of the LS counter on the cross-efficiency curves. This was done by measuring the cross-efficiency curves obtained for (63)Ni and (55)Fe vs. (3)H, using three different commercial LS counters (Guardian 1414, Tricarb 3170 and Quantulus 1220), three different liquid scintillator cocktails (Ultima Gold, Hionic Fluor and PicoFluor 15 from Perkin Elmer(®)), and for chemical and colour-quenched sources. This study shows that these cross-efficiency curves are dependent on the scintillator, on the counter used and on the nature of the quenching phenomenon, and thus cannot definitively be considered as "universal". © 2013 Published by Elsevier Ltd.

  20. Measurement of the 23Na(n,2n) cross section in 235U and 252Cf fission neutron spectra

    NASA Astrophysics Data System (ADS)

    Košťál, Michal; Schulc, Martin; Rypar, Vojtěch; Losa, Evžen; Švadlenková, Marie; Baroň, Petr; Jánský, Bohumil; Novák, Evžen; Mareček, Martin; Uhlíř, Jan

    2017-09-01

    The presented paper aims to compare the calculated and experimental reaction rates of 23Na(n,2n)22Na in a well-defined reactor spectra and in the spontaneous fission spectrum of 252Cf. The experimentally determined reaction rate, derived using gamma spectroscopy of irradiated NaF sample, is used for average cross section determination.Estimation of this cross-section is important as it is included in International Reactor Dosimetry and Fusion File and is also relevant to the correct estimation of long-term activity of Na coolant in Sodium Fast Reactors. The calculations were performed with the MCNP6 code using ENDF/B-VII.0, JEFF-3.1, JEFF-3.2, JENDL-3.3, JENDL-4, ROSFOND-2010, CENDL-3.1 and IRDFF nuclear data libraries. In the case of reactor spectrum, reasonable agreement was not achieved with any library. However, in the case of 252Cf spectrum agreement was achieved with IRDFF, JEFF-3.1 and JENDL libraries.

  1. EFPI sensor utilizing optical spectrum analyzer with tunable laser: detection of baseline oscillations faster than spectrum acquisition rate

    NASA Astrophysics Data System (ADS)

    Ushakov, Nikolai; Liokumovich, Leonid

    2014-05-01

    A novel approach for extrinsic Fabry-Perot interferometer baseline measurement has been developed. The principles of frequency-scanning interferometry are utilized for registration of the interferometer spectral function, from which the baseline is demodulated. The proposed approach enables one to capture the absolute baseline variations at frequencies much higher than the spectral acquisition rate. Despite the conventional approaches, associating a single baseline indication to the registered spectrum, in the proposed method a modified frequency detection procedure is applied to the spectrum. This provides an ability to capture the baseline variations which took place during the spectrum acquisition. The limitations on the parameters of the possibly registered baseline variations are formulated. The experimental verification of the proposed approach for different perturbations has been performed.

  2. Experimental and modal verification of an integral equation solution for a thin-walled dichroic plate with cross-shaped holes

    NASA Technical Reports Server (NTRS)

    Epp, L. W.; Stanton, P. H.

    1993-01-01

    In order to add the capability of an X-band uplink onto the 70-m antenna, a new dichroic plate is needed to replace the Pyle-guide-shaped dichroic plate currently in use. The replacement dichroic plate must exhibit an additional passband at the new uplink frequency of 7.165 GHz, while still maintaining a passband at the existing downlink frequency of 8.425 GHz. Because of the wide frequency separation of these two passbands, conventional methods of designing air-filled dichroic plates exhibit grating lobe problems. A new method of solving this problem by using a dichroic plate with cross-shaped holes is presented and verified experimentally. Two checks of the integral equation solution are described. One is the comparison to a modal analysis for the limiting cross shape of a square hole. As a final check, a prototype dichroic plate with cross-shaped holes was built and measured.

  3. Experimental scleral cross-linking increases glaucoma damage in a mouse model

    PubMed Central

    Kimball, Elizabeth C.; Nguyen, Cathy; Steinhart, Matthew R.; Nguyen, Thao D.; Pease, Mary E.; Oglesby, Ericka N.; Oveson, Brian C.; Quigley, Harry A.

    2014-01-01

    The purpose of this study was to assess the effect of a scleral cross-linking agent on susceptibility to glaucoma damage in a mouse model. CD1 mice underwent 3 subconjunctival injections of 0.5 M glyceraldehyde (GA) in 1 week, then had elevated intraocular pressure (IOP) induced by bead injection. Degree of cross-linking was measured by enzyme-linked immunosorbent assay (ELISA), scleral permeability was measured by fluorescence recovery after photobleaching (FRAP), and the mechanical effects of GA exposure were measured by inflation testing. Control mice had buffer injection or no injection in 2 separate glaucoma experiments. IOP was monitored by Tonolab and retinal ganglion cell (RGC) loss was measured by histological axon counting. To rule out undesirable effects of GA, we performed electroretinography and detailed histology of the retina. GA exposure had no detectable effects on RGC number, retinal structure or function either histologically or electrophysiologically. GA increased cross-linking of sclera by 37% in an ELISA assay, decreased scleral permeability (FRAP, p = 0.001), and produced a steeper pressure—strain behavior by in vitro inflation testing. In two experimental glaucoma experiments, GA-treated eyes had greater RGC axon loss from elevated IOP than either buffer-injected or control eyes, controlling for level of IOP exposure over time (p = 0.01, and 0.049, multivariable regression analyses). This is the first report that experimental alteration of the sclera, by cross-linking, increases susceptibility to RGC damage in mice. PMID:25285424

  4. Structural changes in the myocardium and serum lipid spectrum in experimental hypercholesterolemia and hypothyroidism.

    PubMed

    Nepomnyashchikh, L M; Lushnikova, E L; Polyakov, L P; Molodykh, O P; Klinnikova, M G; Russkikh, G S; Poteryaeva, O N; Nepomnyashchikh, R D; Pichigin, V I

    2013-09-01

    We studied the peculiarities of lipid spectrum of the blood and structural reorganization of the myocardium in experimental hypercholesterolemia with and without hypothyroidism. It was found that alimentary hypercholesterolemia accompanied by elevated total cholesterol, LDL, HDL, and triglyceride concentrations led to a decrease in body weight, heart weight, number of cardiomyocytes in the heart and induced pronounced lytic changes in cardiomyocytes, circulation disorders (sludge syndrome, echinocytosis of erythrocytes, lymphostasis), diffuse fibrosis of the stroma, and appearance of foam cells among diffuse mononuclear infiltrate cells. The combination of hypercholesterolemia with hypothyroid status caused more pronounced changes in the lipid spectrum and atherogenic index and more pronounced lytic and necrobiotic changes in cardiomyocytes. These findings suggest that elevated cholesterol concentrations in the blood, especially against the background of suppressed thyroid function, can directly induce considerable damage to cardiomyocytes, intramural vessels, and erythrocytes without the development of myocardial ischemia and in the absence of atherosclerotic plaques.

  5. Experimental design methods for bioengineering applications.

    PubMed

    Keskin Gündoğdu, Tuğba; Deniz, İrem; Çalışkan, Gülizar; Şahin, Erdem Sefa; Azbar, Nuri

    2016-01-01

    Experimental design is a form of process analysis in which certain factors are selected to obtain the desired responses of interest. It may also be used for the determination of the effects of various independent factors on a dependent factor. The bioengineering discipline includes many different areas of scientific interest, and each study area is affected and governed by many different factors. Briefly analyzing the important factors and selecting an experimental design for optimization are very effective tools for the design of any bioprocess under question. This review summarizes experimental design methods that can be used to investigate various factors relating to bioengineering processes. The experimental methods generally used in bioengineering are as follows: full factorial design, fractional factorial design, Plackett-Burman design, Taguchi design, Box-Behnken design and central composite design. These design methods are briefly introduced, and then the application of these design methods to study different bioengineering processes is analyzed.

  6. Guidelines on experimental methods to assess mitochondrial dysfunction in cellular models of neurodegenerative diseases.

    PubMed

    Connolly, Niamh M C; Theurey, Pierre; Adam-Vizi, Vera; Bazan, Nicolas G; Bernardi, Paolo; Bolaños, Juan P; Culmsee, Carsten; Dawson, Valina L; Deshmukh, Mohanish; Duchen, Michael R; Düssmann, Heiko; Fiskum, Gary; Galindo, Maria F; Hardingham, Giles E; Hardwick, J Marie; Jekabsons, Mika B; Jonas, Elizabeth A; Jordán, Joaquin; Lipton, Stuart A; Manfredi, Giovanni; Mattson, Mark P; McLaughlin, BethAnn; Methner, Axel; Murphy, Anne N; Murphy, Michael P; Nicholls, David G; Polster, Brian M; Pozzan, Tullio; Rizzuto, Rosario; Satrústegui, Jorgina; Slack, Ruth S; Swanson, Raymond A; Swerdlow, Russell H; Will, Yvonne; Ying, Zheng; Joselin, Alvin; Gioran, Anna; Moreira Pinho, Catarina; Watters, Orla; Salvucci, Manuela; Llorente-Folch, Irene; Park, David S; Bano, Daniele; Ankarcrona, Maria; Pizzo, Paola; Prehn, Jochen H M

    2018-03-01

    Neurodegenerative diseases are a spectrum of chronic, debilitating disorders characterised by the progressive degeneration and death of neurons. Mitochondrial dysfunction has been implicated in most neurodegenerative diseases, but in many instances it is unclear whether such dysfunction is a cause or an effect of the underlying pathology, and whether it represents a viable therapeutic target. It is therefore imperative to utilise and optimise cellular models and experimental techniques appropriate to determine the contribution of mitochondrial dysfunction to neurodegenerative disease phenotypes. In this consensus article, we collate details on and discuss pitfalls of existing experimental approaches to assess mitochondrial function in in vitro cellular models of neurodegenerative diseases, including specific protocols for the measurement of oxygen consumption rate in primary neuron cultures, and single-neuron, time-lapse fluorescence imaging of the mitochondrial membrane potential and mitochondrial NAD(P)H. As part of the Cellular Bioenergetics of Neurodegenerative Diseases (CeBioND) consortium ( www.cebiond.org ), we are performing cross-disease analyses to identify common and distinct molecular mechanisms involved in mitochondrial bioenergetic dysfunction in cellular models of Alzheimer's, Parkinson's, and Huntington's diseases. Here we provide detailed guidelines and protocols as standardised across the five collaborating laboratories of the CeBioND consortium, with additional contributions from other experts in the field.

  7. LETTER TO THE EDITOR: Quantum manifestations of closed orbits in the photoexcitation scaled spectrum of the hydrogen atom in crossed fields

    NASA Astrophysics Data System (ADS)

    Rao, Jianguo; Delande, D.; Taylor, K. T.

    2001-06-01

    The scaled photoexcitation spectrum of the hydrogen atom in crossed electric and magnetic fields has been obtained by means of accurate quantum mechanical calculation using a new algorithm. Closed orbits in the corresponding classical system have also been obtained, using a new, efficient and practical searching procedure. Two new classes of closed orbit have been identified. Fourier transforming each photoexcitation quantum spectrum to yield a plot against scaled action has allowed direct comparison between peaks in such plots and the scaled action values of closed orbits. Excellent agreement has been found with all peaks assigned.

  8. Errata and update to ;Experimental cross sections for L-shell X-ray production and ionization by protons;

    NASA Astrophysics Data System (ADS)

    Miranda, J.; Lapicki, G.

    2018-01-01

    A compilation of experimental L-shell X-ray production and ionization cross sections induced by proton impact was published recently (Miranda and Lapicki, 2014), collecting 15 439 experimental cross sections. The database covers an energy range from 10 keV to 1 GeV, and targets from 10Ne to 95Am. A correction to several tabulated values that were in error, as well as an update including new data published after 2012 and older references not found previously are given in the present work. The updated data base increased the total number of experimental cross sections by 3.1% to 15 921. A new analysis of the total number of experimental points per year shows that the possible saturation in the cumulative total number of data is increased to 15 950 ± 110 points.

  9. Spectrum splitting metrics and effect of filter characteristics on photovoltaic system performance.

    PubMed

    Russo, Juan M; Zhang, Deming; Gordon, Michael; Vorndran, Shelby; Wu, Yuechen; Kostuk, Raymond K

    2014-03-10

    During the past few years there has been a significant interest in spectrum splitting systems to increase the overall efficiency of photovoltaic solar energy systems. However, methods for comparing the performance of spectrum splitting systems and the effects of optical spectral filter design on system performance are not well developed. This paper addresses these two areas. The system conversion efficiency is examined in detail and the role of optical spectral filters with respect to the efficiency is developed. A new metric termed the Improvement over Best Bandgap is defined which expresses the efficiency gain of the spectrum splitting system with respect to a similar system that contains the highest constituent single bandgap photovoltaic cell. This parameter indicates the benefit of using the more complex spectrum splitting system with respect to a single bandgap photovoltaic system. Metrics are also provided to assess the performance of experimental spectral filters in different spectrum splitting configurations. The paper concludes by using the methodology to evaluate spectrum splitting systems with different filter configurations and indicates the overall efficiency improvement that is possible with ideal and experimental designs.

  10. Spectrum-based estimators of the bivariate Hurst exponent

    NASA Astrophysics Data System (ADS)

    Kristoufek, Ladislav

    2014-12-01

    We discuss two alternate spectrum-based estimators of the bivariate Hurst exponent in the power-law cross-correlations setting, the cross-periodogram and local X -Whittle estimators, as generalizations of their univariate counterparts. As the spectrum-based estimators are dependent on a part of the spectrum taken into consideration during estimation, a simulation study showing performance of the estimators under varying bandwidth parameter as well as correlation between processes and their specification is provided as well. These estimators are less biased than the already existent averaged periodogram estimator, which, however, has slightly lower variance. The spectrum-based estimators can serve as a good complement to the popular time domain estimators.

  11. [Discussion of scattering in THz time domain spectrum tests].

    PubMed

    Yan, Fang; Zhang, Zhao-hui; Zhao, Xiao-yan; Su, Hai-xia; Li, Zhi; Zhang, Han

    2014-06-01

    Using THz-TDS to extract the absorption spectrum of a sample is an important branch of various THz applications. Basically, we believe that the THz radiation scatters from sample particles, leading to an obvious baseline increasing with frequencies in its absorption spectrum. The baseline will affect the measurement accuracy due to ambiguous height and pattern of the spectrum. The authors should try to remove the baseline, and eliminate the effects of scattering. In the present paper, we investigated the causes of baselines, reviewed some of scatter mitigating methods and summarized some of research aspects in the future. In order to validate the correctness of these methods, we designed a series of experiments to compare the computational accuracy of molar concentration. The result indicated that the computational accuracy of molar concentration can be improved, which can be the basis of quantitative analysis in further researches. Finally, with comprehensive experimental results, we presented further research directions on THz absorption spectrum that is needed for the removal of scattering effects.

  12. Shot noise cross-correlation functions and cross spectra - Implications for models of QPO X-ray sources

    NASA Technical Reports Server (NTRS)

    Shibazaki, N.; Elsner, R. F.; Bussard, R. W.; Ebisuzaki, T.; Weisskopf, M. C.

    1988-01-01

    The cross-correlation functions (CCFs) and cross spectra expected for quasi-periodic oscillation (QPO) shot noise models are calculated under various assumptions, and the results are compared to observations. Effects due to possible coherence of the QPO oscillations are included. General formulas for the cross spectrum, the cross-phase spectrum, and the time-delay spectrum for QPO shot models are calculated and discussed. It is shown that the CCFs, cross spectra, and power spectra observed for Cyg X-e2 imply that the spectrum of the shots evolves with time, with important implications for the interpretation of these functions as well as of observed average energy spectra. The possible origins for the observed hard lags are discussed, and some physical difficulties for the Comptonization model are described. Classes of physical models for QPO sources are briefly addressed, and it is concluded that models involving shot formation at the surface of neutron stars are favored by observation.

  13. Comparison of Two Methods of Noise Power Spectrum Determinations of Medical Radiography Systems

    NASA Astrophysics Data System (ADS)

    Hassan, Wan Muhamad Saridan Wan; Ahmed Darwish, Zeki

    2011-03-01

    Noise in medical images is recognized as an important factor that determines the image quality. Image noise is characterized by noise power spectrum (NPS). We compared two methods of NPS determination namely the methods of Wagner and Dobbins on Lanex Regular TMG screen-film system and Hologic Lorad Selenia full field digital mammography system, with the aim of choosing the better method to use. The methods differ in terms of various parametric choices and algorithm implementations. These parameters include the low pass filtering, low frequency filtering, windowing, smoothing, aperture correction, overlapping of region of interest (ROI), length of fast Fourier transform, ROI size, method of ROI normalization, and slice selection of the NPS. Overall, the two methods agreed to the practical value of noise power spectrum between 10-3-10-6 mm2 over spatial frequency range 0-10 mm-1.

  14. Intercomparison of methods for image quality characterization. II. Noise power spectrum

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dobbins, James T. III; Samei, Ehsan; Ranger, Nicole T.

    Second in a two-part series comparing measurement techniques for the assessment of basic image quality metrics in digital radiography, in this paper we focus on the measurement of the image noise power spectrum (NPS). Three methods were considered: (1) a method published by Dobbins et al. [Med. Phys. 22, 1581-1593 (1995)] (2) a method published by Samei et al. [Med. Phys. 30, 608-622 (2003)], and (3) a new method sanctioned by the International Electrotechnical Commission (IEC 62220-1, 2003), developed as part of an international standard for the measurement of detective quantum efficiency. In addition to an overall comparison of themore » estimated NPS between the three techniques, the following factors were also evaluated for their effect on the measured NPS: horizontal versus vertical directional dependence, the use of beam-limiting apertures, beam spectrum, and computational methods of NPS analysis, including the region-of-interest (ROI) size and the method of ROI normalization. Of these factors, none was found to demonstrate a substantial impact on the amplitude of the NPS estimates ({<=}3.1% relative difference in NPS averaged over frequency, for each factor considered separately). Overall, the three methods agreed to within 1.6%{+-}0.8% when averaged over frequencies >0.15 mm{sup -1}.« less

  15. Reconstruction of halo power spectrum from redshift-space galaxy distribution: cylinder-grouping method and halo exclusion effect

    NASA Astrophysics Data System (ADS)

    Okumura, Teppei; Takada, Masahiro; More, Surhud; Masaki, Shogo

    2017-07-01

    The peculiar velocity field measured by redshift-space distortions (RSD) in galaxy surveys provides a unique probe of the growth of large-scale structure. However, systematic effects arise when including satellite galaxies in the clustering analysis. Since satellite galaxies tend to reside in massive haloes with a greater halo bias, the inclusion boosts the clustering power. In addition, virial motions of the satellite galaxies cause a significant suppression of the clustering power due to non-linear RSD effects. We develop a novel method to recover the redshift-space power spectrum of haloes from the observed galaxy distribution by minimizing the contamination of satellite galaxies. The cylinder-grouping method (CGM) we study effectively excludes satellite galaxies from a galaxy sample. However, we find that this technique produces apparent anisotropies in the reconstructed halo distribution over all the scales which mimic RSD. On small scales, the apparent anisotropic clustering is caused by exclusion of haloes within the anisotropic cylinder used by the CGM. On large scales, the misidentification of different haloes in the large-scale structures, aligned along the line of sight, into the same CGM group causes the apparent anisotropic clustering via their cross-correlation with the CGM haloes. We construct an empirical model for the CGM halo power spectrum, which includes correction terms derived using the CGM window function at small scales as well as the linear matter power spectrum multiplied by a simple anisotropic function at large scales. We apply this model to a mock galaxy catalogue at z = 0.5, designed to resemble Sloan Digital Sky Survey-III Baryon Oscillation Spectroscopic Survey (BOSS) CMASS galaxies, and find that our model can predict both the monopole and quadrupole power spectra of the host haloes up to k < 0.5 {{h Mpc^{-1}}} to within 5 per cent.

  16. Experimental investigation and CFD analysis on cross flow in the core of PMR200

    DOE PAGES

    Lee, Jeong -Hun; Yoon, Su -Jong; Cho, Hyoung -Kyu; ...

    2015-04-16

    The Prismatic Modular Reactor (PMR) is one of the major Very High Temperature Reactor (VHTR) concepts, which consists of hexagonal prismatic fuel blocks and reflector blocks made of nuclear gradegraphite. However, the shape of the graphite blocks could be easily changed by neutron damage duringthe reactor operation and the shape change can create gaps between the blocks inducing the bypass flow.In the VHTR core, two types of gaps, a vertical gap and a horizontal gap which are called bypass gap and cross gap, respectively, can be formed. The cross gap complicates the flow field in the reactor core by connectingmore » the coolant channel to the bypass gap and it could lead to a loss of effective coolant flow in the fuel blocks. Thus, a cross flow experimental facility was constructed to investigate the cross flow phenomena in the core of the VHTR and a series of experiments were carried out under varying flow rates and gap sizes. The results of the experiments were compared with CFD (Computational Fluid Dynamics) analysis results in order to verify its prediction capability for the cross flow phenomena. Fairly good agreement was seen between experimental results and CFD predictions and the local characteristics of the cross flow was discussed in detail. Based on the calculation results, pressure loss coefficient across the cross gap was evaluated, which is necessary for the thermo-fluid analysis of the VHTR core using a lumped parameter code.« less

  17. Prevalence of Autism Spectrum Disorder in Nurseries in Lebanon: A Cross Sectional Study.

    PubMed

    Chaaya, Monique; Saab, Dahlia; Maalouf, Fadi T; Boustany, Rose-Mary

    2016-02-01

    In Lebanon, no estimate for autism prevalence exists. This cross-sectional study examines the prevalence of Autism spectrum disorder (ASD) in toddlers in nurseries in Beirut and Mount-Lebanon. The final sample included 998 toddlers (16-48 months) from 177 nurseries. We sent parents the Modified Checklist for Autism in Toddlers (M-CHAT) for screening, and a self-administered questionnaire (associated factors). We imputed missing M-CHAT data with successful answers. Since there were no follow-up interviews for the M-CHAT, we used the positive predictive value (0.058) from a large study for prevalence estimates. ASD prevalence was 1 in 66 children (comparable to US). Ratios were: male/female: 1.05; Beirut/Mount-Lebanon: 1.2. Using a more representative sample and ascertaining results are needed for better prevalence estimates in Lebanon.

  18. Experimental study of the energy dependence of the total cross section for the 6He + natSi and 9Li + natSi reactions

    NASA Astrophysics Data System (ADS)

    Sobolev, Yu. G.; Penionzhkevich, Yu. E.; Aznabaev, D.; Zemlyanaya, E. V.; Ivanov, M. P.; Kabdrakhimova, G. D.; Kabyshev, A. M.; Knyazev, A. G.; Kugler, A.; Lashmanov, N. A.; Lukyanov, K. V.; Maj, A.; Maslov, V. A.; Mendibayev, K.; Skobelev, N. K.; Slepnev, R. S.; Smirnov, V. V.; Testov, D.

    2017-11-01

    New experimental measurements of the total reaction cross sections for the 6He + natSi and 9Li + natSi processes in the energy range of 5 to 40 A MeV are presented. A modified transmission method based on high-efficiency detection of prompt n-γ radiation has been used in the experiment. A bump is observed for the first time in the energy dependence σR( E) at E ˜ 10-30 A MeV for the 9Li + natSi reaction, and existence of the bump in σR( E) at E ˜ 10-20 A MeV first observed in the standard transmission experiments is experimentally confirmed for the 6He + natSi reaction. Theoretical analysis of the measured 6He + natSi and 9Li + natSi reaction cross sections is performed within the microscopic double folding model. Disagreement is observed between the experimental and theoretical cross sections in the region of the bump at the energies of 10 to 20 A MeV, which requires further study.

  19. Improving Signal-to-Noise Ratio in Scanning Transmission Electron Microscopy Energy-Dispersive X-Ray (STEM-EDX) Spectrum Images Using Single-Atomic-Column Cross-Correlation Averaging.

    PubMed

    Jeong, Jong Seok; Mkhoyan, K Andre

    2016-06-01

    Acquiring an atomic-resolution compositional map of crystalline specimens has become routine practice, thus opening possibilities for extracting subatomic information from such maps. A key challenge for achieving subatomic precision is the improvement of signal-to-noise ratio (SNR) of compositional maps. Here, we report a simple and reliable solution for achieving high-SNR energy-dispersive X-ray (EDX) spectroscopy spectrum images for individual atomic columns. The method is based on standard cross-correlation aided by averaging of single-column EDX maps with modifications in the reference image. It produces EDX maps with minimal specimen drift, beam drift, and scan distortions. Step-by-step procedures to determine a self-consistent reference map with a discussion on the reliability, stability, and limitations of the method are presented here.

  20. Performance of fluorescence retrieval methods and fluorescence spectrum reconstruction under various sensor spectral configurations

    NASA Astrophysics Data System (ADS)

    Li, Rong; Zhao, Feng

    2015-10-01

    Solar-induced chlorophyll fluorescence is closely related to photosynthesis and can serve as an indicator of plant status. Several methods have been proposed to retrieve fluorescence signal (Fs) either at specific spectral bands or within the whole fluorescence emission region. In this study, we investigated the precision of the fluorescence signal obtained through these methods under various sensor spectral characteristics. Simulated datasets generated by the SCOPE (Soil Canopy Observation, Photochemistry and Energy fluxes) model with known `true' Fs as well as an experimental dataset are exploited to investigate four commonly used Fs retrieval methods, namely the original Fraunhofer Line Discriminator method (FLD), the 3 bands FLD (3FLD), the improved FLD (iFLD), and the Spectral Fitting Methods (SFMs). Fluorescence Spectrum Reconstruction (FSR) method is also investigated using simulated datasets. The sensor characteristics of spectral resolution (SR) and signal-to-noise ratio (SNR) are taken into account. According to the results, finer SR and SNR both lead to better accuracy. Lowest precision is obtained for the FLD method with strong overestimation. Some improvements are made by the 3FLD method, but it still tends to overestimate. Generally, the iFLD method and the SFMs provide better accuracy. As to FSR, the shape and magnitude of reconstructed Fs are generally consistent with the `true' Fs distributions when fine SR is exploited. With coarser SR, however, though R2 of the retrieved Fs may be high, large bias is likely to be obtained as well.

  1. Cross-checking of Large Evaluated and Experimental Nuclear Reaction Databases

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zeydina, O.; Koning, A.J.; Soppera, N.

    2014-06-15

    Automated methods are presented for the verification of large experimental and evaluated nuclear reaction databases (e.g. EXFOR, JEFF, TENDL). These methods allow an assessment of the overall consistency of the data and detect aberrant values in both evaluated and experimental databases.

  2. Thermal neutron capture and resonance integral cross sections of 45Sc

    NASA Astrophysics Data System (ADS)

    Van Do, Nguyen; Duc Khue, Pham; Tien Thanh, Kim; Thi Hien, Nguyen; Kim, Guinyun; Kim, Kwangsoo; Shin, Sung-Gyun; Cho, Moo-Hyun; Lee, Manwoo

    2015-11-01

    The thermal neutron cross section (σ0) and resonance integral (I0) of the 45Sc(n,γ)46Sc reaction have been measured relative to that of the 197Au(n,γ)198Au reaction by means of the activation method. High-purity natural scandium and gold foils without and with a cadmium cover of 0.5 mm thickness were irradiated with moderated pulsed neutrons produced from the Pohang Neutron Facility (PNF). The induced activities in the activated foils were measured with a high purity germanium (HPGe) detector. In order to improve the accuracy of the experimental results the counting losses caused by the thermal (Gth) and resonance (Gepi) neutron self-shielding, the γ-ray attenuation (Fg) and the true γ-ray coincidence summing effects were made. In addition, the effect of non-ideal epithermal spectrum was also taken into account by determining the neutron spectrum shape factor (α). The thermal neutron cross-section and resonance integral of the 45Sc(n,γ)46Sc reaction have been determined relative to the reference values of the 197Au(n,γ)198Au reaction, with σo,Au = 98.65 ± 0.09 barn and Io,Au = 1550 ± 28 barn. The present thermal neutron cross section has been determined to be σo,Sc = 27.5 ± 0.8 barn. According to the definition of cadmium cut-off energy at 0.55 eV, the present resonance integral cross section has been determined to be Io,Sc = 12.4 ± 0.7 barn. The present results are compared with literature values and discussed.

  3. Self-stigma and suicidality in patients with neurotic spectrum disorder - a cross sectional study.

    PubMed

    Latalova, Klara; Prasko, Jan; Kamaradova, Dana; Ociskova, Marie; Cinculova, Andrea; Grambal, Ales; Kubinek, Radim; Mainerova, Barbora; Smoldasova, Jarmila; Tichackova, Anezka; Sigmundova, Zuzana

    2014-01-01

    Self-stigmatization is a step-by-step process during which the person uncritically accepts the societal negative evaluation and applies it to himself. Relation between self-stigma and suicidality in neurotic disorders is not known. The aim of our study was to find connection between self-stigma and the level of suicidality in neurotic spectrum disorders. It was a cross-sectional study of 198 inpatients with pharmacoresistant neurotic spectrum disorders hospitalized at the psychotherapeutic ward of the Department of Psychiatry, University Hospital Olomouc. Patients were diagnosed using the ICD-10 research diagnostic criteria. The assessments included Internalized Stigma Of Mental Illness (ISMI), Beck Depression Inventory-second edition (BDI-II), objective and subjective Clinical Global Impression (CGI), Morin sleep scale, Dissociative Experience Scale (DES) and Montgomery and Asberg Depression Rating Scale, item 10 Suicidal Thoughts (MADRS item 10 suicidality) for the assessment. The subjective rate of suicidality and also the objective rate of suicidality were strongly positively correlated with the total score of ISMI. There were also significant correlations with all subscores except for the correlation between the BDI 9 and the sub score Resistance against stigma, which barely missed the level of statistical significance. More attention should be paid to self-stigma in neurotic patients, especially in those with suicidal thoughts and tendencies.

  4. Sequential fuzzy diagnosis method for motor roller bearing in variable operating conditions based on vibration analysis.

    PubMed

    Li, Ke; Ping, Xueliang; Wang, Huaqing; Chen, Peng; Cao, Yi

    2013-06-21

    A novel intelligent fault diagnosis method for motor roller bearings which operate under unsteady rotating speed and load is proposed in this paper. The pseudo Wigner-Ville distribution (PWVD) and the relative crossing information (RCI) methods are used for extracting the feature spectra from the non-stationary vibration signal measured for condition diagnosis. The RCI is used to automatically extract the feature spectrum from the time-frequency distribution of the vibration signal. The extracted feature spectrum is instantaneous, and not correlated with the rotation speed and load. By using the ant colony optimization (ACO) clustering algorithm, the synthesizing symptom parameters (SSP) for condition diagnosis are obtained. The experimental results shows that the diagnostic sensitivity of the SSP is higher than original symptom parameter (SP), and the SSP can sensitively reflect the characteristics of the feature spectrum for precise condition diagnosis. Finally, a fuzzy diagnosis method based on sequential inference and possibility theory is also proposed, by which the conditions of the machine can be identified sequentially as well.

  5. Sequential Fuzzy Diagnosis Method for Motor Roller Bearing in Variable Operating Conditions Based on Vibration Analysis

    PubMed Central

    Li, Ke; Ping, Xueliang; Wang, Huaqing; Chen, Peng; Cao, Yi

    2013-01-01

    A novel intelligent fault diagnosis method for motor roller bearings which operate under unsteady rotating speed and load is proposed in this paper. The pseudo Wigner-Ville distribution (PWVD) and the relative crossing information (RCI) methods are used for extracting the feature spectra from the non-stationary vibration signal measured for condition diagnosis. The RCI is used to automatically extract the feature spectrum from the time-frequency distribution of the vibration signal. The extracted feature spectrum is instantaneous, and not correlated with the rotation speed and load. By using the ant colony optimization (ACO) clustering algorithm, the synthesizing symptom parameters (SSP) for condition diagnosis are obtained. The experimental results shows that the diagnostic sensitivity of the SSP is higher than original symptom parameter (SP), and the SSP can sensitively reflect the characteristics of the feature spectrum for precise condition diagnosis. Finally, a fuzzy diagnosis method based on sequential inference and possibility theory is also proposed, by which the conditions of the machine can be identified sequentially as well. PMID:23793021

  6. Social Interest in High-Functioning Adults with Autism Spectrum Disorders

    ERIC Educational Resources Information Center

    Fletcher-Watson, Sue; Leekam, Susan R.; Findlay, John M.

    2013-01-01

    Autism spectrum disorders (ASD) are principally characterized by impairments in social functioning. Experimental investigation often is conducted using methods measuring social attention, social cognition, and social communication. In this study, we instead measured interest in social information, making a distinction between basic-level…

  7. Method to deterministically study photonic nanostructures in different experimental instruments.

    PubMed

    Husken, B H; Woldering, L A; Blum, C; Vos, W L

    2009-01-01

    We describe an experimental method to recover a single, deterministically fabricated nanostructure in various experimental instruments without the use of artificially fabricated markers, with the aim to study photonic structures. Therefore, a detailed map of the spatial surroundings of the nanostructure is made during the fabrication of the structure. These maps are made using a series of micrographs with successively decreasing magnifications. The graphs reveal intrinsic and characteristic geometric features that can subsequently be used in different setups to act as markers. As an illustration, we probe surface cavities with radii of 65 nm on a silica opal photonic crystal with various setups: a focused ion beam workstation; a scanning electron microscope (SEM); a wide field optical microscope and a confocal microscope. We use cross-correlation techniques to recover a small area imaged with the SEM in a large area photographed with the optical microscope, which provides a possible avenue to automatic searching. We show how both structural and optical reflectivity data can be obtained from one and the same nanostructure. Since our approach does not use artificial grids or markers, it is of particular interest for samples whose structure is not known a priori, like samples created solely by self-assembly. In addition, our method is not restricted to conducting samples.

  8. Experimental validation of structural optimization methods

    NASA Technical Reports Server (NTRS)

    Adelman, Howard M.

    1992-01-01

    The topic of validating structural optimization methods by use of experimental results is addressed. The need for validating the methods as a way of effecting a greater and an accelerated acceptance of formal optimization methods by practicing engineering designers is described. The range of validation strategies is defined which includes comparison of optimization results with more traditional design approaches, establishing the accuracy of analyses used, and finally experimental validation of the optimization results. Examples of the use of experimental results to validate optimization techniques are described. The examples include experimental validation of the following: optimum design of a trussed beam; combined control-structure design of a cable-supported beam simulating an actively controlled space structure; minimum weight design of a beam with frequency constraints; minimization of the vibration response of helicopter rotor blade; minimum weight design of a turbine blade disk; aeroelastic optimization of an aircraft vertical fin; airfoil shape optimization for drag minimization; optimization of the shape of a hole in a plate for stress minimization; optimization to minimize beam dynamic response; and structural optimization of a low vibration helicopter rotor.

  9. Comparison of self-stigma and quality of life in patients with depressive disorders and schizophrenia spectrum disorders – a cross-sectional study

    PubMed Central

    Holubova, Michaela; Prasko, Jan; Matousek, Stanislav; Latalova, Klara; Marackova, Marketa; Vrbova, Kristyna; Grambal, Aleš; Slepecky, Milos; Zatkova, Marta

    2016-01-01

    Background The views of one’s self-stigma and quality of life (QoL) in patients with schizophrenia and depressive disorders are significant subjective notions, both being proven to affect patient’s functioning in life. The objective of this study was to investigate the QoL and self-stigma in connection with demographic factors and compare the two groups of patients in terms of those variables. Methods In a cross-sectional study, the outpatients with schizophrenia spectrum disorders and depressive disorders completed the Quality of Life Satisfaction and Enjoyment Questionnaire, the Internalized Stigma of Mental Illness Scale, and a demographic questionnaire during a routine psychiatric control. Furthermore, both patients and their psychiatrists evaluated the severity of the disorder by Clinical Global Impression-Severity scale. Results The QoL of patients with depressive disorders or schizophrenia spectrum disorders did not significantly differ between the two groups. In both groups, unemployment was perceived to be a significant factor decreasing the QoL. Self-stigma was detected to be higher in patients with schizophrenia spectrum disorders than in patients with depressive disorders. A strong correlation was found between the two scales, meaning that those with higher levels of self-stigmatization were less prone to see their life as fulfilling and joyful. Conclusion This study shows that the degree of the internalized stigma can be an important aspect linked to the QoL irrespective of the diagnostic category. PMID:27920539

  10. A new compilation of experimental nuclear data for total reaction cross sections

    NASA Astrophysics Data System (ADS)

    Lantz, Mattias; Sihver, L.

    The nucleon-nucleus and nucleus-nucleus total reaction cross sections are of importance in many different fields, both for a better theoretical understanding as well as for a number of applications, including space radiation dosimetry. We have performed a comprehensive literature study in order to find all available experimental data on total reaction cross sections, σR , and interaction cross sections, σI , for neutrons, protons, and all stable and exotic heavy ions. Excluded from the data base are measurements where the cross sections have been derived through model-dependent calculations from other kinds of measurements. The objective of the study is to identify where more measurements are needed in view of different applications, and to make the data easily available for model developers and experimentalists. We will present some examples from the study, which is in the stage of quality control of all the gathered data.

  11. A spectrum fractal feature classification algorithm for agriculture crops with hyper spectrum image

    NASA Astrophysics Data System (ADS)

    Su, Junying

    2011-11-01

    A fractal dimension feature analysis method in spectrum domain for hyper spectrum image is proposed for agriculture crops classification. Firstly, a fractal dimension calculation algorithm in spectrum domain is presented together with the fast fractal dimension value calculation algorithm using the step measurement method. Secondly, the hyper spectrum image classification algorithm and flowchart is presented based on fractal dimension feature analysis in spectrum domain. Finally, the experiment result of the agricultural crops classification with FCL1 hyper spectrum image set with the proposed method and SAM (spectral angle mapper). The experiment results show it can obtain better classification result than the traditional SAM feature analysis which can fulfill use the spectrum information of hyper spectrum image to realize precision agricultural crops classification.

  12. Method for Making Measurements of the Post-Combustion Residence Time in a Gas Turbine Engine

    NASA Technical Reports Server (NTRS)

    Miles, Jeffrey H. (Inventor)

    2017-01-01

    A method of measuring a residence time in a gas-turbine engine is disclosed that includes measuring a combustor pressure signal at a combustor entrance and a turbine exit pressure signal at a turbine exit. The method further includes computing a cross-spectrum function between the combustor pressure signal and the turbine exit pressure signal, calculating a slope of the cross-spectrum function, shifting the turbine exit pressure signal an amount corresponding to a time delay between the measurement of the combustor pressure signal and the turbine exit pressure signal, and recalculating the slope of the cross-spectrum function until the slope reaches zero.

  13. Genetic methods for detection of antibiotic resistance: focus on extended-spectrum β-lactamases.

    PubMed

    Chroma, Magdalena; Kolar, Milan

    2010-12-01

    In 1928, the first antibiotic, penicillin, was discovered. That was the beginning of a great era in the development and prescription of antibiotics. However, the introduction of these antimicrobial agents into clinical practice was accompanied by the problem of antibiotic resistance. Currently, bacterial resistance to antibiotics poses a major problem in both hospital and community settings throughout the world. This review provides examples of modern genetic methods and their practical application in the field of extended-spectrum β-lactamase detection. Since extended-spectrum β-lactamases are the main mechanism of Gram-negative bacterial resistance to oxyimino-cephalosporins, rapid and accurate detection is requested in common clinical practice. Currently, the detection of extended-spectrum β-lactamases is primarily based on the determination of bacterial phenotypes rather than genotypes. This is because therapeutic decisions are based on assessing the susceptibility rather than presence of resistance genes. One of the main disadvantages of genetic methods is high costs, including those of laboratory equipment. On the other hand, if these modern methods are introduced into diagnostics, they often help in rapid and accurate detection of certain microorganisms or their resistance and pathogenic determinants.

  14. Experimental methods for identifying failure mechanisms

    NASA Technical Reports Server (NTRS)

    Daniel, I. M.

    1983-01-01

    Experimental methods for identifying failure mechanisms in fibrous composites are studied. Methods to identify failure in composite materials includes interferometry, holography, fractography and ultrasonics.

  15. Accuracy of Reaction Cross Section for Exotic Nuclei in Glauber Model Based on MCMC Diagnostics

    NASA Astrophysics Data System (ADS)

    Rueter, Keiti; Novikov, Ivan

    2017-01-01

    Parameters of a nuclear density distribution for an exotic nuclei with halo or skin structures can be determined from the experimentally measured reaction cross-section. In the presented work, to extract parameters such as nuclear size information for a halo and core, we compare experimental data on reaction cross-sections with values obtained using expressions of the Glauber Model. These calculations are performed using a Markov Chain Monte Carlo algorithm. We discuss the accuracy of the Monte Carlo approach and its dependence on k*, the power law turnover point in the discreet power spectrum of the random number sequence and on the lag-1 autocorrelation time of the random number sequence.

  16. Gaseous Sulfate Solubility in Glass: Experimental Method

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bliss, Mary

    2013-11-30

    Sulfate solubility in glass is a key parameter in many commercial glasses and nuclear waste glasses. This report summarizes key publications specific to sulfate solubility experimental methods and the underlying physical chemistry calculations. The published methods and experimental data are used to verify the calculations in this report and are expanded to a range of current technical interest. The calculations and experimental methods described in this report will guide several experiments on sulfate solubility and saturation for the Hanford Waste Treatment Plant Enhanced Waste Glass Models effort. There are several tables of sulfate gas equilibrium values at high temperature tomore » guide experimental gas mixing and to achieve desired SO3 levels. This report also describes the necessary equipment and best practices to perform sulfate saturation experiments for molten glasses. Results and findings will be published when experimental work is finished and this report is validated from the data obtained.« less

  17. Comparison of holographic lens and filter systems for lateral spectrum splitting

    NASA Astrophysics Data System (ADS)

    Vorndran, Shelby; Chrysler, Benjamin; Kostuk, Raymond K.

    2016-09-01

    Spectrum splitting is an approach to increasing the conversion efficiency of a photovoltaic (PV) system. Several methods can be used to perform this function which requires efficient spatial separation of different spectral bands of the incident solar radiation. In this paper several of holographic methods for implementing spectrum splitting are reviewed along with the benefits and disadvantages associated with each approach. The review indicates that a volume holographic lens has many advantages for spectrum splitting in terms of both power conversion efficiency and energy yield. A specific design for a volume holographic spectrum splitting lens is discussed for use with high bandgap InGaP and low bandgap silicon PV cells. The holographic lenses are modeled using rigorous coupled wave analysis, and the optical efficiency is evaluated using non-sequential raytracing. A proof-of-concept off-axis holographic lens is also recorded in dichromated gelatin film and the spectral diffraction efficiency of the hologram is measured with multiple laser sources across the diffracted spectral band. The experimental volume holographic lens (VHL) characteristics are compared to an ideal spectrum splitting filter in terms of power conversion efficiency and energy yield in environments with high direct normal incidence (DNI) illumination and high levels of diffuse illumination. The results show that the experimental VHL can achieve 62.5% of the ideal filter power conversion efficiency, 64.8% of the ideal filter DNI environment energy yield, and 57.7% of the ideal diffuse environment energy yield performance.

  18. Method and apparatus for determination of temperature, neutron absorption cross section and neutron moderating power

    DOEpatents

    Vagelatos, Nicholas; Steinman, Donald K.; John, Joseph; Young, Jack C.

    1981-01-01

    A nuclear method and apparatus determines the temperature of a medium by injecting fast neutrons into the medium and detecting returning slow neutrons in three first energy ranges by producing three respective detection signals. The detection signals are combined to produce three derived indicia each systematically related to the population of slow neutrons returning from the medium in a respective one of three second energy ranges, specifically exclusively epithermal neutrons, exclusively substantially all thermal neutrons and exclusively a portion of the thermal neutron spectrum. The derived indicia are compared with calibration indicia similarly systematically related to the population of slow neutrons in the same three second energy ranges returning from similarly irradiated calibration media for which the relationships temperature, neutron absorption cross section and neutron moderating power to such calibration indicia are known. The comparison indicates the temperature at which the calibration indicia correspond to the derived indicia and consequently the temperature of the medium. The neutron absorption cross section and moderating power of the medium can be identified at the same time.

  19. Analysis of a crossed Bragg cell acousto-optical spectrometer for SETI

    NASA Technical Reports Server (NTRS)

    Gulkis, S.

    1989-01-01

    The search for radio signals from extraterrestrial intelligent beings (SETI) requires the use of large instantaneous bandwidth (500 MHz) and high resolution (20 Hz) spectrometers. Digital systems with a high degree of modularity can be used to provide this capability, and this method has been widely discussed. Another technique for meeting the SETI requirement is to use a crossed Bragg cell spectrometer as described by Psaltis and Casasent. This technique makes use of the Folded Spectrum concept, introduced by Thomas. The Folded Spectrum is a 2-D Fourier Transform of a raster scanned 1-D signal. It is directly related to the long 1-D spectrum of the original signal and is ideally suited for optical signal processing. The folded spectrum technique has received little attention to date, primarily because early systems made use of photographic film which are unsuitable for the real time data analysis and voluminous data requirements of SETI. An analysis of the crossed Bragg cell spectrometer is presented as a method to achieve the spectral processing requirements for SETI. Systematic noise contributions unique to the Bragg cell system will be discussed.

  20. Analysis of a crossed Bragg cell acousto-optical spectrometer for SETI.

    PubMed

    Gulkis, S

    1989-01-01

    The search for radio signals from extraterrestrial intelligent beings (SETI) requires the use of large instantaneous bandwidth (500 MHz) and high resolution (20 Hz) spectrometers. Digital systems with a high degree of modularity can be used to provide this capability, and this method has been widely discussed. Another technique for meeting the SETI requirement is to use a crossed Bragg cell spectrometer as described by Psaltis and Casasent. This technique makes use of the Folded Spectrum concept, introduced by Thomas. The Folded Spectrum is a 2-D Fourier Transform of a raster scanned 1-D signal. It is directly related to the long 1-D spectrum of the original signal and is ideally suited for optical signal processing. The folded spectrum technique has received little attention to date, primarily because early systems made use of photographic film which are unsuitable for the real time data analysis and voluminous data requirements of SETI. An analysis of the crossed Bragg cell spectrometer is presented as a method to achieve the spectral processing requirements for SETI. Systematic noise contributions unique to the Bragg cell system will be discussed.

  1. Analysis of a crossed Bragg cell acousto-optical spectrometer for SETI

    NASA Astrophysics Data System (ADS)

    Gulkis, Samuel

    The search for radio signals from extraterrestrial intelligent beings (SETI) requires the use of large instantaneous bandwidth (500 MHz) and high resolution (20 Hz) spectrometers. Digital systems with a high degree of modularity can be used to provide this capability, and this method has been widely discussed. Another technique for meeting the SETI requirement is to use a crossed Bragg cell spectrometer as described by Psaltis and Casasent. This technique makes use of the Folded Spectrum concept, introduced by Thomas. The Folded Spectrum is a 2-D Fourier Transform of a raster scanned 1-D signal. It is directly related to the long 1-D spectrum of the original signal and is ideally suited for optical signal processing. The folded spectrum technique has received little attention to date, primarily because early systems made use of photographic film which are unsuitable for the real time data analysis and voluminous data requirements of SETI. An analysis of the crossed Bragg cell spectrometer is presented as a method to achieve the spectral processing requirements for SETI. Systematic noise contributions unique to the Bragg cell system will be discussed.

  2. Experimental investigation on the accuracy of plastic scintillators and of the spectrum discrimination method in small photon fields.

    PubMed

    Papaconstadopoulos, Pavlos; Archambault, Louis; Seuntjens, Jan

    2017-02-01

    corrections and within 0.3-0.8% after volume averaging corrections. The spectrum discrimination method provided reproducible Cherenkov spectra under the different calibration set-ups with noisier spectra extracted if the calibration is performed in water and parallel to the CAX. The impact of fiber orientation and wavelength threshold during calibration on OF det was in general minimal. Clinically relevant differences were observed between similar scintillator dosimeters in photon fields smaller than 1 ×  1 cm 2 . Further research on PSDs is needed that can explain the origin of these differences especially related to the Cherenkov spectrum dependencies on the optical fiber technical characteristics. © 2016 American Association of Physicists in Medicine.

  3. An experimental comparison of various methods of nearfield acoustic holography

    DOE PAGES

    Chelliah, Kanthasamy; Raman, Ganesh; Muehleisen, Ralph T.

    2017-05-19

    An experimental comparison of four different methods of nearfield acoustic holography (NAH) is presented in this study for planar acoustic sources. The four NAH methods considered in this study are based on: (1) spatial Fourier transform, (2) equivalent sources model, (3) boundary element methods and (4) statistically optimized NAH. Two dimensional measurements were obtained at different distances in front of a tonal sound source and the NAH methods were used to reconstruct the sound field at the source surface. Reconstructed particle velocity and acoustic pressure fields presented in this study showed that the equivalent sources model based algorithm along withmore » Tikhonov regularization provided the best localization of the sources. Reconstruction errors were found to be smaller for the equivalent sources model based algorithm and the statistically optimized NAH algorithm. Effect of hologram distance on the performance of various algorithms is discussed in detail. The study also compares the computational time required by each algorithm to complete the comparison. Four different regularization parameter choice methods were compared. The L-curve method provided more accurate reconstructions than the generalized cross validation and the Morozov discrepancy principle. Finally, the performance of fixed parameter regularization was comparable to that of the L-curve method.« less

  4. An experimental comparison of various methods of nearfield acoustic holography

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chelliah, Kanthasamy; Raman, Ganesh; Muehleisen, Ralph T.

    An experimental comparison of four different methods of nearfield acoustic holography (NAH) is presented in this study for planar acoustic sources. The four NAH methods considered in this study are based on: (1) spatial Fourier transform, (2) equivalent sources model, (3) boundary element methods and (4) statistically optimized NAH. Two dimensional measurements were obtained at different distances in front of a tonal sound source and the NAH methods were used to reconstruct the sound field at the source surface. Reconstructed particle velocity and acoustic pressure fields presented in this study showed that the equivalent sources model based algorithm along withmore » Tikhonov regularization provided the best localization of the sources. Reconstruction errors were found to be smaller for the equivalent sources model based algorithm and the statistically optimized NAH algorithm. Effect of hologram distance on the performance of various algorithms is discussed in detail. The study also compares the computational time required by each algorithm to complete the comparison. Four different regularization parameter choice methods were compared. The L-curve method provided more accurate reconstructions than the generalized cross validation and the Morozov discrepancy principle. Finally, the performance of fixed parameter regularization was comparable to that of the L-curve method.« less

  5. Ultraviolet absorption spectrum of HOCl

    NASA Technical Reports Server (NTRS)

    Burkholder, James B.

    1993-01-01

    The room temperature UV absorption spectrum of HOCl was measured over the wavelength range 200 to 380 nm with a diode array spectrometer. The absorption spectrum was identified from UV absorption spectra recorded following UV photolysis of equilibrium mixtures of Cl2O/H2O/HOCl. The HOCl spectrum is continuous with a maximum at 242 nm and a secondary peak at 304 nm. The measured absorption cross section at 242 nm was (2.1 +/- 0.3) x 10 exp -19/sq cm (2 sigma error limits). These results are in excellent agreement with the work of Knauth et al. (1979) but in poor agreement with the more recent measurements of Mishalanie et al. (1986) and Permien et al. (1988). An HOCl nu2 infrared band intensity of 230 +/- 35/sq cm atm was determined based on this UV absorption cross section. The present results are compared with these previous measurements and the discrepancies are discussed.

  6. Electrospray ionization time-of-flight mass spectrum analysis method of polyaluminum chloride flocculants.

    PubMed

    Feng, Chenghong; Bi, Zhe; Tang, Hongxiao

    2015-01-06

    Electrospray mass spectrometry has been reported as a novel technique for Al species identification, but to date, the working mechanism is not clear and no unanimous method exists for spectrum analysis of traditional Al salt flocculants, let alone for analysis of polyaluminum chloride (PAC) flocculants. Therefore, this paper introduces a novel theoretical calculation method to identify Al species from a mass spectrum, based on deducing changes in m/z (mass-to-charge ratio) and molecular formulas of oligomers in five typical PAC flocculants. The use of reference chemical species was specially proposed in the method to guarantee the uniqueness of the assigned species. The charge and mass reduction of the Al cluster was found to proceed by hydrolysis, gasification, and change of hydroxyl on the oxy bridge. The novel method was validated both qualitatively and quantitatively by comparing the results to those obtained with the (27)Al NMR spectrometry.

  7. jsNMR: an embedded platform-independent NMR spectrum viewer.

    PubMed

    Vosegaard, Thomas

    2015-04-01

    jsNMR is a lightweight NMR spectrum viewer written in JavaScript/HyperText Markup Language (HTML), which provides a cross-platform spectrum visualizer that runs on all computer architectures including mobile devices. Experimental (and simulated) datasets are easily opened in jsNMR by (i) drag and drop on a jsNMR browser window, (ii) by preparing a jsNMR file from the jsNMR web site, or (iii) by mailing the raw data to the jsNMR web portal. jsNMR embeds the original data in the HTML file, so a jsNMR file is a self-transforming dataset that may be exported to various formats, e.g. comma-separated values. The main applications of jsNMR are to provide easy access to NMR data without the need for dedicated software installed and to provide the possibility to visualize NMR spectra on web sites. Copyright © 2015 John Wiley & Sons, Ltd.

  8. [The error analysis and experimental verification of laser radar spectrum detection and terahertz time domain spectroscopy].

    PubMed

    Liu, Wen-Tao; Li, Jing-Wen; Sun, Zhi-Hui

    2010-03-01

    Terahertz waves (THz, T-ray) lie between far-infrared and microwave in electromagnetic spectrum with frequency from 0.1 to 10 THz. Many chemical agent explosives show characteristic spectral features in the terahertz. Compared with conventional methods of detecting a variety of threats, such as weapons and chemical agent, THz radiation is low frequency and non-ionizing, and does not give rise to safety concerns. The present paper summarizes the latest progress in the application of terahertz time domain spectroscopy (THz-TDS) to chemical agent explosives. A kind of device on laser radar detecting and real time spectrum measuring was designed which measures the laser spectrum on the bases of Fourier optics and optical signal processing. Wedge interferometer was used as the beam splitter to wipe off the background light and detect the laser and measure the spectrum. The result indicates that 10 ns laser radar pulse can be detected and many factors affecting experiments are also introduced. The combination of laser radar spectrum detecting, THz-TDS, modern pattern recognition and signal processing technology is the developing trend of remote detection for chemical agent explosives.

  9. Method for interconverting drying and heating times between round and square cross sections of ponderosa pine

    Treesearch

    William T. Simpson

    2005-01-01

    To use small-diameter trees effectively as square timbers, we need to be able to estimate the amount of time it takes for these timbers to air-dry. Since experimental data on estimating air-drying time for small-diameter logs have been developed, this study looked at a way to relate that method to square timbers. Drying times were determined for a group of round cross-...

  10. Extension of the energy range of the experimental activation cross-sections data of longer-lived products of proton induced nuclear reactions on dysprosium up to 65MeV.

    PubMed

    Tárkányi, F; Ditrói, F; Takács, S; Hermanne, A; Ignatyuk, A V

    2015-04-01

    Activation cross-sections data of longer-lived products of proton induced nuclear reactions on dysprosium were extended up to 65MeV by using stacked foil irradiation and gamma spectrometry experimental methods. Experimental cross-sections data for the formation of the radionuclides (159)Dy, (157)Dy, (155)Dy, (161)Tb, (160)Tb, (156)Tb, (155)Tb, (154m2)Tb, (154m1)Tb, (154g)Tb, (153)Tb, (152)Tb and (151)Tb are reported in the 36-65MeV energy range, and compared with an old dataset from 1964. The experimental data were also compared with the results of cross section calculations of the ALICE and EMPIRE nuclear model codes and of the TALYS nuclear reaction model code as listed in the latest on-line libraries TENDL 2013. Copyright © 2015. Published by Elsevier Ltd.

  11. Determination of the effective refractive index spectrum of a quantum-well semiconductor laser diode from the measured modal gain spectrum

    NASA Astrophysics Data System (ADS)

    Wu, Linzhang; Tian, Wei; Gao, Feng

    2004-09-01

    This paper presents a self-consistent method to directly determine the effective refractive-index spectrum of a semiconductor quantum-well (QW) laser diode from the measured modal gain spectrum for a given current. The dispersion spectra of the optical waveguide confinement factor and the strongly carrier-density-dependent refractive index of the QW active layer of the test laser are also accurately obtained. The experimental result from a single QW GaInP/AlGaInP laser diode, which has 6 nm thick compressively strained Ga0.4InP active layer sandwiched by two 80 nm thick Al0.33GaInP, is presented.

  12. Resveratrol suppresses neuroinflammation in the experimental paradigm of autism spectrum disorders.

    PubMed

    Bhandari, Ranjana; Kuhad, Anurag

    2017-02-01

    Neuronal dysfunction caused by neuroinflammation triggered by the stimulation of matrix metalloproteinases and the subsequent release of pro-inflammatory cytokines, as a result of oxidative stress and mitochondrial dysfunction, is one of the probable mechanisms involved in the pathogenesis of autism spectrum disorders (ASD). The aim of the present study was to explore the ameliorative potential of resveratrol on neuroinflammation in the experimental paradigm of neuroinflammatory model of ASD in rats. 1M Propanoic acid (PPA) (4 μl) was infused over 10 min into the anterior portion of the lateral ventricle to induce ASD like symptoms in rats. Resveratrol (5, 10 and 15 mg/kg) was administered starting from the 2nd day of the surgery and continued upto 28th day. Rats were tested for various behavioural paradigms such as social interaction, stereotypy, locomotor activity, anxiety, novelty, depression, spatial learning, memory, repetitive and pervasive behaviour between the 7th day and 28th day. In addition, biochemical tests for oxidative stress, mitochondrial complexes, TNF-α and MMP-9 were also assessed. Treatment with resveratrol for four weeks restored, significantly and dose dependently, all the neurological, sensory, behavioural, biochemical and molecular deficits in PPA induced autistic phenotype in rats. The major finding of the study is that resveratrol restored the core and associated symptoms of autistic phenotype by suppressing oxidative-nitrosative stress, mitochondrial dysfunction, TNF-α and MMP-9 expression in PPA induced ASD in rats. Therefore, resveratrol might serve as an adjunct potential therapeutic agent for amelioration of neurobehavioural and biochemical deficits associated with autism spectrum disorders. Copyright © 2016 Elsevier Ltd. All rights reserved.

  13. A General Method for Targeted Quantitative Cross-Linking Mass Spectrometry.

    PubMed

    Chavez, Juan D; Eng, Jimmy K; Schweppe, Devin K; Cilia, Michelle; Rivera, Keith; Zhong, Xuefei; Wu, Xia; Allen, Terrence; Khurgel, Moshe; Kumar, Akhilesh; Lampropoulos, Athanasios; Larsson, Mårten; Maity, Shuvadeep; Morozov, Yaroslav; Pathmasiri, Wimal; Perez-Neut, Mathew; Pineyro-Ruiz, Coriness; Polina, Elizabeth; Post, Stephanie; Rider, Mark; Tokmina-Roszyk, Dorota; Tyson, Katherine; Vieira Parrine Sant'Ana, Debora; Bruce, James E

    2016-01-01

    Chemical cross-linking mass spectrometry (XL-MS) provides protein structural information by identifying covalently linked proximal amino acid residues on protein surfaces. The information gained by this technique is complementary to other structural biology methods such as x-ray crystallography, NMR and cryo-electron microscopy[1]. The extension of traditional quantitative proteomics methods with chemical cross-linking can provide information on the structural dynamics of protein structures and protein complexes. The identification and quantitation of cross-linked peptides remains challenging for the general community, requiring specialized expertise ultimately limiting more widespread adoption of the technique. We describe a general method for targeted quantitative mass spectrometric analysis of cross-linked peptide pairs. We report the adaptation of the widely used, open source software package Skyline, for the analysis of quantitative XL-MS data as a means for data analysis and sharing of methods. We demonstrate the utility and robustness of the method with a cross-laboratory study and present data that is supported by and validates previously published data on quantified cross-linked peptide pairs. This advance provides an easy to use resource so that any lab with access to a LC-MS system capable of performing targeted quantitative analysis can quickly and accurately measure dynamic changes in protein structure and protein interactions.

  14. Reducing cross-sectional data using a genetic algorithm method and effects on cross-section geometry and steady-flow profiles

    USGS Publications Warehouse

    Berenbrock, Charles E.

    2015-01-01

    The effects of reduced cross-sectional data points on steady-flow profiles were also determined. Thirty-five cross sections of the original steady-flow model of the Kootenai River were used. These two methods were tested for all cross sections with each cross section resolution reduced to 10, 20 and 30 data points, that is, six tests were completed for each of the thirty-five cross sections. Generally, differences from the original water-surface elevation were smaller as the number of data points in reduced cross sections increased, but this was not always the case, especially in the braided reach. Differences were smaller for reduced cross sections developed by the genetic algorithm method than the standard algorithm method.

  15. Efficacy and safety of cross-cylinder photorefractive keratectomy versus single method in medium-high astigmatism: a randomized clinical trial.

    PubMed

    Sedghipour, Mohammad R; Lotfi, Afshin; Sadeghilar, Ayaz; Banan, Saeeid

    2012-09-07

    BACKGROUND: To compare efficacy and safety of photorefractive keratectomy (PRK) by cross-cylinder with single methods in medium-high astigmatism. DESIGN: Randomized clinical trial study PARTICIPANTS: Fifty patients with medium-high compound myopic astigmatism were enrolled between September 2007 and September 2008. METHODS: PRK was performed on 100 eyes of 50 patients with compound myopic astigmatism. Each patient underwent PRK by cross-cylinder approach in one eye and single method on the contralateral eye. Vector analysis was used to assess astigmatic results. MAIN OUTCOME MEASURES: Improvement of visual acuity (snelen chart), refraction, aberrometry. RESULTS: Uncorrected visual acuity (UCCA) equal to 20/40 or better after six months, was achieved in 98% of eyes in the cross-cylinder method versus 96% in single method.. Mean preoperative spherical equivalent(SE) was -5.2 ±2.1 D in the cross-cylinder method versus -5.1 ±0.5 D in the single method. At six months, the mean SE was - 0.5±0.4 D and -0.6±0.3 D, respectively. Mean IOS was 0.4±0.3 in the cross-cylinder group and 0.4±0.4 in the single group. Mean postoperative absolute change in total root-mean-square higher order aberrations in the cross-cylinder group and single group were 0.16 pm and 0.17 pm, respectively. Any of the mentioned differences didn't appear to be statistically significant. CONCLUSIONS: Both PRK methods appeared to be safe and effective in correcting medium-high astigmatism. © 2012 The Author. Clinical and Experimental Ophthalmology © 2012 Royal Australian and New Zealand College of Ophthalmologists.

  16. Experimental Cross-Species Infection of Common Marmosets by Titi Monkey Adenovirus

    PubMed Central

    Chen, Eunice C.; Liu, Maria; Brasky, Kathleen M.; Lanford, Robert E.; Kelly, Kristi R.; Bales, Karen L.; Schnurr, David P.; Canfield, Don R.; Patterson, Jean L.; Chiu, Charles Y.

    2013-01-01

    Adenoviruses are DNA viruses that infect a number of vertebrate hosts and are associated with both sporadic and epidemic disease in humans. We previously identified a novel adenovirus, titi monkey adenovirus (TMAdV), as the cause of a fulminant pneumonia outbreak in a colony of titi monkeys (Callicebus cupreus) at a national primate center in 2009. Serological evidence of infection by TMAdV was also found in a human researcher at the facility and household family member, raising concerns for potential cross-species transmission of the virus. Here we present experimental evidence of cross-species TMAdV infection in common marmosets (Callithrix jacchus). Nasal inoculation of a cell cultured-adapted TMAdV strain into three marmosets produced an acute, mild respiratory illness characterized by low-grade fever, reduced activity, anorexia, and sneezing. An increase in virus-specific neutralization antibody titers accompanied the development of clinical signs. Although serially collected nasal swabs were positive for TMAdV for at least 8 days, all 3 infected marmosets spontaneously recovered by day 12 post-inoculation, and persistence of the virus in tissues could not be established. Thus, the pathogenesis of experimental inoculation of TMAdV in common marmosets resembled the mild, self-limiting respiratory infection typically seen in immunocompetent human hosts rather than the rapidly progressive, fatal pneumonia observed in 19 of 23 titi monkeys during the prior 2009 outbreak. These findings further establish the potential for adenovirus cross-species transmission and provide the basis for development of a monkey model useful for assessing the zoonotic potential of adenoviruses. PMID:23894316

  17. Improved measurement of the reactor antineutrino flux and spectrum at Daya Bay

    DOE PAGES

    An, F. P.; Balantekin, A. B.; Band, H. R.; ...

    2017-01-01

    Here, a new measurement of the reactor antineutrino flux and energy spectrum by the Daya Bay reactor neutrino experiment is reported. The antineutrinos were generated by six 2.9 GW th nuclear reactors and detected by eight antineutrino detectors deployed in two near (560 m and 600 m flux-weighted baselines) and one far (1640 m flux-weighted baseline) underground experimental halls. With 621 days of data, more than 1.2 million inverse beta decay (IBD) candidates were detected. The IBD yield in the eight detectors was measured, and the ratio of measured to predicted flux was found to be 0.946 ± 0.020 (0.992more » ± 0.021) for the Huber+Mueller (ILL+Vogel) model. A 2.9σ deviation was found in the measured IBD positron energy spectrum compared to the predictions. In particular, an excess of events in the region of 4$-$6 MeV was found in the measured spectrum, with a local significance of 4.4σ. Finally, a reactor antineutrino spectrum weighted by the IBD cross section is extracted for model-independent predictions.« less

  18. Blind system identification of two-thermocouple sensor based on cross-relation method.

    PubMed

    Li, Yanfeng; Zhang, Zhijie; Hao, Xiaojian

    2018-03-01

    In dynamic temperature measurement, the dynamic characteristics of the sensor affect the accuracy of the measurement results. Thermocouples are widely used for temperature measurement in harsh conditions due to their low cost, robustness, and reliability, but because of the presence of the thermal inertia, there is a dynamic error in the dynamic temperature measurement. In order to eliminate the dynamic error, two-thermocouple sensor was used to measure dynamic gas temperature in constant velocity flow environments in this paper. Blind system identification of two-thermocouple sensor based on a cross-relation method was carried out. Particle swarm optimization algorithm was used to estimate time constants of two thermocouples and compared with the grid based search method. The method was validated on the experimental equipment built by using high temperature furnace, and the input dynamic temperature was reconstructed by using the output data of the thermocouple with small time constant.

  19. Blind system identification of two-thermocouple sensor based on cross-relation method

    NASA Astrophysics Data System (ADS)

    Li, Yanfeng; Zhang, Zhijie; Hao, Xiaojian

    2018-03-01

    In dynamic temperature measurement, the dynamic characteristics of the sensor affect the accuracy of the measurement results. Thermocouples are widely used for temperature measurement in harsh conditions due to their low cost, robustness, and reliability, but because of the presence of the thermal inertia, there is a dynamic error in the dynamic temperature measurement. In order to eliminate the dynamic error, two-thermocouple sensor was used to measure dynamic gas temperature in constant velocity flow environments in this paper. Blind system identification of two-thermocouple sensor based on a cross-relation method was carried out. Particle swarm optimization algorithm was used to estimate time constants of two thermocouples and compared with the grid based search method. The method was validated on the experimental equipment built by using high temperature furnace, and the input dynamic temperature was reconstructed by using the output data of the thermocouple with small time constant.

  20. Experimental measurements with Monte Carlo corrections and theoretical calculations of neutron inelastic scattering cross section of 115In

    NASA Astrophysics Data System (ADS)

    Wang, Chao; Xiao, Jun; Luo, Xiaobing

    2016-10-01

    The neutron inelastic scattering cross section of 115In has been measured by the activation technique at neutron energies of 2.95, 3.94, and 5.24 MeV with the neutron capture cross sections of 197Au as an internal standard. The effects of multiple scattering and flux attenuation were corrected using the Monte Carlo code GEANT4. Based on the experimental values, the 115In neutron inelastic scattering cross sections data were theoretically calculated between the 1 and 15 MeV with the TALYS software code, the theoretical results of this study are in reasonable agreement with the available experimental results.

  1. New experimental treatments for core social domain in autism spectrum disorders.

    PubMed

    Canitano, Roberto

    2014-01-01

    Current therapeutics in autism spectrum disorders (ASD) only treat the associated symptoms, without addressing core social dysfunctions. A paradigm shift in research of the pathogenesis of ASD, its synaptic abnormalities and altered signaling in multiple dynamic systems, have led to new experimental treatments for treating the core social abnormalities of ASD. NMDA antagonists, especially memantine, have been introduced in clinical trials addressing glutamatergic transmission in children and adolescents with ASD. GABAergic signaling has been targeted in trials using the GABAB receptor agonist arbaclofen for ASD patients with promising results. Oxytocin has been recognized as implicated in social development and affiliative behaviors. Preliminary findings from clinical trials using oxytocin in children with ASD show encouraging improvements in social cognition, but larger studies are needed. In two of the single gene disorders associated with ASD, Insulin Growth Factor (IGF-1) is a new treatment that has been tested in Rett syndrome and Phelan-McDermid syndrome (Chromosome 22 deletion syndrome). IGF-1 has been demonstrated to reverse the reduction in the number of excitatory synapses and the density of neurons that characterize these conditions in animal studies and it is being introduced as an experimental treatment. As a novel approach to verify treatment efficacy, neural processing modifications were recently evaluated by fMRI after a pivotal response training intervention. Another study of neural changes in response to treatment examined variations in EEG signaling in patients after an Early Start Denver Model (ESDM) intervention.

  2. Self-replenishing ability of cross-linked low surface energy polymer films investigated by a complementary experimental-simulation approach

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Esteves, A. C. C., E-mail: a.c.c.esteves@tue.nl, E-mail: g.dewith@tue.nl; Lyakhova, K.; Riel, J. M. van

    2014-03-28

    Nowadays, many self-healing strategies are available for recovering mechanical damage of bulk polymeric materials. The recovery of surface-dependent functionalities on polymer films is, however, equally important and has been less investigated. In this work we study the ability of low surface energy cross-linked poly(ester urethane) networks containing perfluorinated dangling chains to self-replenish their surface, after being submitted to repeated surface damage. For this purpose we used a combined experimental-simulation approach. Experimentally, the cross-linked films were intentionally damaged by cryo-microtoming to remove top layers and create new surfaces which were characterized by water Contact Angle measurements and X-Ray Photoelectron Spectroscopy. Themore » same systems were simultaneously represented by a Dissipative Particles Dynamics simulation method, where the damage was modeled by removing the top film layers in the simulation box and replacing it by new “air” beads. The influence of different experimental parameters, such as the concentration of the low surface energy component and the molecular mobility span of the dangling chains, on the surface recovery is discussed. The combined approach reveals important details of the self-replenishing ability of damaged polymer films such as the occurrence of multiple-healing events, the self-replenishing efficiency, and the minimum “healing agent” concentration for a maximum recovery.« less

  3. Estimators of The Magnitude-Squared Spectrum and Methods for Incorporating SNR Uncertainty

    PubMed Central

    Lu, Yang; Loizou, Philipos C.

    2011-01-01

    Statistical estimators of the magnitude-squared spectrum are derived based on the assumption that the magnitude-squared spectrum of the noisy speech signal can be computed as the sum of the (clean) signal and noise magnitude-squared spectra. Maximum a posterior (MAP) and minimum mean square error (MMSE) estimators are derived based on a Gaussian statistical model. The gain function of the MAP estimator was found to be identical to the gain function used in the ideal binary mask (IdBM) that is widely used in computational auditory scene analysis (CASA). As such, it was binary and assumed the value of 1 if the local SNR exceeded 0 dB, and assumed the value of 0 otherwise. By modeling the local instantaneous SNR as an F-distributed random variable, soft masking methods were derived incorporating SNR uncertainty. The soft masking method, in particular, which weighted the noisy magnitude-squared spectrum by the a priori probability that the local SNR exceeds 0 dB was shown to be identical to the Wiener gain function. Results indicated that the proposed estimators yielded significantly better speech quality than the conventional MMSE spectral power estimators, in terms of yielding lower residual noise and lower speech distortion. PMID:21886543

  4. Combined Teaching Method: An Experimental Study

    ERIC Educational Resources Information Center

    Kolesnikova, Iryna V.

    2016-01-01

    The search for the best approach to business education has led educators and researchers to seek many different teaching strategies, ranging from the traditional teaching methods to various experimental approaches such as active learning techniques. The aim of this experimental study was to compare the effects of the traditional and combined…

  5. Radioisotope identification method for poorly resolved gamma-ray spectrum of nuclear security concern

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ninh, Giang Nguyen; Phongphaeth, Pengvanich, E-mail: phongphaeth.p@chula.ac.th; Nares, Chankow

    Gamma-ray signal can be used as a fingerprint for radioisotope identification. In the context of radioactive and nuclear materials security at the border control point, the detection task can present a significant challenge due to various constraints such as the limited measurement time, the shielding conditions, and the noise interference. This study proposes a novel method to identify the signal of one or several radioisotopes from a poorly resolved gamma-ray spectrum. In this method, the noise component in the raw spectrum is reduced by the wavelet decomposition approach, and the removal of the continuum background is performed using the baselinemore » determination algorithm. Finally, the identification of radioisotope is completed using the matrix linear regression method. The proposed method has been verified by experiments using the poorly resolved gamma-ray signals from various scenarios including single source, mixing of natural uranium with five of the most common industrial radioactive sources (57Co, 60Co, 133Ba, 137Cs, and 241Am). The preliminary results show that the proposed algorithm is comparable with the commercial method.« less

  6. A cognitive gateway-based spectrum sharing method in downlink round robin scheduling of LTE system

    NASA Astrophysics Data System (ADS)

    Deng, Hongyu; Wu, Cheng; Wang, Yiming

    2017-07-01

    A key technique of LTE is how to allocate efficiently the resource of radio spectrum. Traditional Round Robin (RR) scheduling scheme may lead to too many resource residues when allocating resources. When the number of users in the current transmission time interval (TTI) is not the greatest common divisor of resource block groups (RBGs), and such a phenomenon lasts for a long time, the spectrum utilization would be greatly decreased. In this paper, a novel spectrum allocation scheme of cognitive gateway (CG) was proposed, in which the LTE spectrum utilization and CG’s throughput were greatly increased by allocating idle resource blocks in the shared TTI in LTE system to CG. Our simulation results show that the spectrum resource sharing method can improve LTE spectral utilization and increase the CG’s throughput as well as network use time.

  7. [A Method to Reconstruct Surface Reflectance Spectrum from Multispectral Image Based on Canopy Radiation Transfer Model].

    PubMed

    Zhao, Yong-guang; Ma, Ling-ling; Li, Chuan-rong; Zhu, Xiao-hua; Tang, Ling-li

    2015-07-01

    Due to the lack of enough spectral bands for multi-spectral sensor, it is difficult to reconstruct surface retlectance spectrum from finite spectral information acquired by multi-spectral instrument. Here, taking into full account of the heterogeneity of pixel from remote sensing image, a method is proposed to simulate hyperspectral data from multispectral data based on canopy radiation transfer model. This method first assumes the mixed pixels contain two types of land cover, i.e., vegetation and soil. The sensitive parameters of Soil-Leaf-Canopy (SLC) model and a soil ratio factor were retrieved from multi-spectral data based on Look-Up Table (LUT) technology. Then, by combined with a soil ratio factor, all the parameters were input into the SLC model to simulate the surface reflectance spectrum from 400 to 2 400 nm. Taking Landsat Enhanced Thematic Mapper Plus (ETM+) image as reference image, the surface reflectance spectrum was simulated. The simulated reflectance spectrum revealed different feature information of different surface types. To test the performance of this method, the simulated reflectance spectrum was convolved with the Landsat ETM + spectral response curves and Moderate Resolution Imaging Spectrometer (MODIS) spectral response curves to obtain the simulated Landsat ETM+ and MODIS image. Finally, the simulated Landsat ETM+ and MODIS images were compared with the observed Landsat ETM+ and MODIS images. The results generally showed high correction coefficients (Landsat: 0.90-0.99, MODIS: 0.74-0.85) between most simulated bands and observed bands and indicated that the simulated reflectance spectrum was well simulated and reliable.

  8. Method of fan sound mode structure determination

    NASA Technical Reports Server (NTRS)

    Pickett, G. F.; Sofrin, T. G.; Wells, R. W.

    1977-01-01

    A method for the determination of fan sound mode structure in the Inlet of turbofan engines using in-duct acoustic pressure measurements is presented. The method is based on the simultaneous solution of a set of equations whose unknowns are modal amplitude and phase. A computer program for the solution of the equation set was developed. An additional computer program was developed which calculates microphone locations the use of which results in an equation set that does not give rise to numerical instabilities. In addition to the development of a method for determination of coherent modal structure, experimental and analytical approaches are developed for the determination of the amplitude frequency spectrum of randomly generated sound models for use in narrow annulus ducts. Two approaches are defined: one based on the use of cross-spectral techniques and the other based on the use of an array of microphones.

  9. Automated Cross-Sectional Measurement Method of Intracranial Dural Venous Sinuses.

    PubMed

    Lublinsky, S; Friedman, A; Kesler, A; Zur, D; Anconina, R; Shelef, I

    2016-03-01

    MRV is an important blood vessel imaging and diagnostic tool for the evaluation of stenosis, occlusions, or aneurysms. However, an accurate image-processing tool for vessel comparison is unavailable. The purpose of this study was to develop and test an automated technique for vessel cross-sectional analysis. An algorithm for vessel cross-sectional analysis was developed that included 7 main steps: 1) image registration, 2) masking, 3) segmentation, 4) skeletonization, 5) cross-sectional planes, 6) clustering, and 7) cross-sectional analysis. Phantom models were used to validate the technique. The method was also tested on a control subject and a patient with idiopathic intracranial hypertension (4 large sinuses tested: right and left transverse sinuses, superior sagittal sinus, and straight sinus). The cross-sectional area and shape measurements were evaluated before and after lumbar puncture in patients with idiopathic intracranial hypertension. The vessel-analysis algorithm had a high degree of stability with <3% of cross-sections manually corrected. All investigated principal cranial blood sinuses had a significant cross-sectional area increase after lumbar puncture (P ≤ .05). The average triangularity of the transverse sinuses was increased, and the mean circularity of the sinuses was decreased by 6% ± 12% after lumbar puncture. Comparison of phantom and real data showed that all computed errors were <1 voxel unit, which confirmed that the method provided a very accurate solution. In this article, we present a novel automated imaging method for cross-sectional vessels analysis. The method can provide an efficient quantitative detection of abnormalities in the dural sinuses. © 2016 by American Journal of Neuroradiology.

  10. Electron-pair-production cross section in the tip region of the positron spectrum

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sud, K.K.; Sharma, D.K.

    1984-11-01

    The radial integrals for electron-pair production in a point Coulomb potential have been expressed by Sud, Sharma, and Sud in terms of the matrix generalization of the GAMMA function. Two new partial differential equations in photon energy satisfied by the matrix GAMMA function are obtained. We have obtained, on integrating the partial differential equations, accurate radial integrals as a function of photon energy for the pair production by intermediate-energy photons. The cross section in the tip region of the spectrum are calculated for photons of energy 5.0 to 10.0 MeV for /sup 92/U. The new technique results in extensive savingmore » in computer time as the basic radial integrals in terms of the hypergeometric function F/sub 2/ are computed at one photon energy for each pair of partial waves. The results of our calculations are compared with plane-wave Born-approximation results and with the calculations of Dugne and of Deck, Moroi, and Alling.« less

  11. Raman spectrum method for characterization of pull-in voltages of graphene capacitive shunt switches

    NASA Astrophysics Data System (ADS)

    Li, Peng; You, Zheng; Cui, Tianhong

    2012-12-01

    An approach using Raman spectrum method is reported to measure pull-in voltages of graphene capacitive shunt switches. When the bias excesses the pull-in voltage, the Raman spectrum's intensity largely decreases. Two factors that contribute to the intensity reduction are investigated. Moreover, by monitoring the frequency shift of G peak and 2D band, we are able to detect the pull-in voltage and measure the strain change in graphene beams during switching.

  12. Mobile/android application for QRS detection using zero cross method

    NASA Astrophysics Data System (ADS)

    Rizqyawan, M. I.; Simbolon, A. I.; Suhendra, M. A.; Amri, M. F.; Kusumandari, D. E.

    2018-03-01

    In automatic ECG signal processing, one of the main topics of research is QRS complex detection. Detecting correct QRS complex or R peak is important since it is used to measure several other ECG metrics. One of the robust methods for QRS detection is Zero Cross method. This method uses an addition of high-frequency signal and zero crossing count to detect QRS complex which has a low-frequency oscillation. This paper presents an application of QRS detection using Zero Cross algorithm in the Android-based system. The performance of the algorithm in the mobile environment is measured. The result shows that this method is suitable for real-time QRS detection in a mobile application.

  13. Spread Spectrum Receiver Electromagnetic Interference (EMI) Test Guide

    NASA Technical Reports Server (NTRS)

    Wheeler, M. L.

    1998-01-01

    The objective of this test guide is to document appropriate unit level test methods and techniques for the performance of EMI testing of Direct Sequence (DS) spread spectrum receivers. Consideration of EMI test methods tailored for spread spectrum receivers utilizing frequency spreading, techniques other than direct sequence (such as frequency hopping, frequency chirping, and various hybrid methods) is beyond the scope of this test guide development program and is not addressed as part of this document EMI test requirements for NASA programs are primarily developed based on the requirements contained in MIL-STD-46 1 D (or earlier revisions of MIL-STD-46 1). The corresponding test method guidelines for the MIL-STD-461 D tests are provided in MIL-STD-462D. These test methods are well documented with the exception of the receiver antenna port susceptibility tests (intermodulation, cross modulation, and rejection of undesired signals) which must be tailored to the specific type of receiver that is being tested. Thus, test methods addressed in this guide consist only of antenna port tests designed to evaluate receiver susceptibility characteristics. MIL-STD-462D should be referred for guidance pertaining to test methods for EMI tests other than the antenna port tests. The scope of this test guide includes: (1) a discussion of generic DS receiver performance characteristics; (2) a summary of S-band TDRSS receiver operation; (3) a discussion of DS receiver EMI susceptibility mechanisms and characteristics; (4) a summary of military standard test guidelines; (5) recommended test approach and methods; and (6) general conclusions and recommendations for future studies in the area of spread spectrum receiver testing.

  14. Two-photon absorption spectrum of the photoinitiator Lucirin TPO-L

    NASA Astrophysics Data System (ADS)

    Mendonca, C. R.; Correa, D. S.; Baldacchini, T.; Tayalia, P.; Mazur, E.

    2008-03-01

    Two-photon absorption induced polymerization provides a powerful method for the fabrication of intricate three-dimensional microstructures. Recently, Lucirin TPO-L was shown to be a photoinitiator with several advantageous properties for two-photon induced polymerization. Here we measure the two-photon absorption cross-section spectrum of Lucirin TPO-L, which presents a maximum of 1.2 GM at 610 nm. Despite its small two-photon absorption cross-section, it is possible to fabricate excellent microstructures by two-photon polymerization due to the high polymerization quantum yield of Lucirin TPO-L. These results indicate that optimization of the two-photon absorption cross-section is not the only material parameter to be considered when searching for new photoinitiators for microfabrication via two-photon absorption.

  15. Local region power spectrum-based unfocused ship detection method in synthetic aperture radar images

    NASA Astrophysics Data System (ADS)

    Wei, Xiangfei; Wang, Xiaoqing; Chong, Jinsong

    2018-01-01

    Ships on synthetic aperture radar (SAR) images will be severely defocused and their energy will disperse into numerous resolution cells under long SAR integration time. Therefore, the image intensity of ships is weak and sometimes even overwhelmed by sea clutter on SAR image. Consequently, it is hard to detect the ships from SAR intensity images. A ship detection method based on local region power spectrum of SAR complex image is proposed. Although the energies of the ships are dispersed on SAR intensity images, their spectral energies are rather concentrated or will cause the power spectra of local areas of SAR images to deviate from that of sea surface background. Therefore, the key idea of the proposed method is to detect ships via the power spectra distortion of local areas of SAR images. The local region power spectrum of a moving target on SAR image is analyzed and the way to obtain the detection threshold through the probability density function (pdf) of the power spectrum is illustrated. Numerical P- and L-band airborne SAR ocean data are utilized and the detection results are also illustrated. Results show that the proposed method can well detect the unfocused ships, with a detection rate of 93.6% and a false-alarm rate of 8.6%. Moreover, by comparing with some other algorithms, it indicates that the proposed method performs better under long SAR integration time. Finally, the applicability of the proposed method and the way of parameters selection are also discussed.

  16. Income Mobility Breeds Tolerance for Income Inequality: Cross-National and Experimental Evidence.

    PubMed

    Shariff, Azim F; Wiwad, Dylan; Aknin, Lara B

    2016-05-01

    American politicians often justify income inequality by referencing the opportunities people have to move between economic stations. Though past research has shown associations between income mobility and resistance to wealth redistribution policies, no experimental work has tested whether perceptions of mobility influence tolerance for inequality. In this article, we present a cross-national comparison showing that income mobility is associated with tolerance for inequality and experimental work demonstrating that perceptions of higher mobility directly affect attitudes toward inequality. We find support for both the prospect of upward mobility and the view that peoples' economic station is the product of their own efforts, as mediating mechanisms. © The Author(s) 2016.

  17. Thick-target-method study of Mα β x-ray production cross sections of Pb and Bi impacted by positrons up to 9 keV

    NASA Astrophysics Data System (ADS)

    Wu, Y.; Liang, Y.; Xu, M. X.; Yuan, Y.; Chang, C. H.; Qian, Z. C.; Wang, B. Y.; Kuang, P.; Zhang, P.

    2018-03-01

    Atomic M -shell x-ray production cross sections induced by positrons near the threshold energy have been presented in this paper. In the experiment, online monitoring technology, which utilizes a high-purity germanium detector to record the annihilation photons emitted from the pure thick target impacted by positrons, was developed to obtain the accurate number of the incident positrons. The effects of the multiple scattering of incident positrons, from the bremsstrahlung and annihilation photons and other secondary particles on the experimental characteristic x-ray yield, were eliminated by Monte Carlo simulation in combination with theoretical integral calculation. The Tikhonov regularization method was adopted to handle the ill-posed inverse problem involved in the thick-target method, i.e., x-ray production cross sections by the corrected characteristic x-ray yield. Experimental results of Mα β x-ray production cross sections for Pb and Bi impacted by 6-9-keV positrons were compared with the corresponding values predicted by the distorted-wave Born approximation (DWBA). Good agreement was found between the two. Moreover, we have presented the experimental results on the ratios of the Mα β x-ray production cross sections by electron impact in the literature to that by 6-9-keV positron impact in this work. They were also in accordance with the theoretical ratios calculated by the predictions of DWBA theory.

  18. Collision cross section (CCS) measurement by ion cyclotron resonance mass spectrometry with short-time Fourier transform.

    PubMed

    Hu, Miao; Zhang, Linzhou; He, Shan; Xu, Chunming; Shi, Quan

    2018-05-15

    The collision cross section (CCS) is an important shape parameter which is often used in molecular structure investigation. In Fourier transform ion cyclotron resonance mass spectrometry (FTICR-MS), the CCS affects the ion signal damping shape due to the effect of ion-neutral collisions. It is potential to obtain ion CCS values from FTICR-MS with the help of a proper ion-collision model. We have developed a rapid method to obtain the ion damping profile and CCS for mixtures by only one FTICR-MS measurement. The method utilizes short-time Fourier transform (STFT) to process FTICR-MS time domain signals. The STFT-processed result is a three-dimensional (3D) spectrum which has an additional time axis in addition to the conventional mass-to-charge ratio and intensity domains. The damping profile of each ion can be recognized from the 3D spectrum. After extracting the decay profile of a specified ion, all the three ion-neutral collision models were tested in curve fitting. The hard-sphere model was proven to be suitable for our experimental setup. A linear relationship was observed between the CCS value and hard-sphere model parameters. Therefore, the CCS values of all the peaks were obtained through the addition of internal model compounds and linear calibration. The proposed method was successfully applied to determine the CCSs of fatty acids and polyalanines in a petroleum gas oil matrix. This technique can be used for simultaneous measurement of cross sections for many ions in congested spectra. Copyright © 2018 John Wiley & Sons, Ltd.

  19. Multi-Method Assessment of Feeding Problems among Children with Autism Spectrum Disorders

    ERIC Educational Resources Information Center

    Sharp, William G.; Jaquess, David L.; Lukens, Colleen T.

    2013-01-01

    Estimates suggest that atypical eating is pervasive among children with autism spectrum disorders (ASD); however, much remains unknown regarding the nature and prevalence of feeding problems in this population due to methodological limitations, including lack of adequate assessment methods and empirical evaluation of existing measures. In the…

  20. Measurement of the differential and total cross sections of the γ d → K 0 Λ ( p ) reaction within the resonance region

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Compton, N.; Taylor, C. E.; Hicks, K.

    Here, we report the first measurement of differential and total cross sections for themore » $${\\gamma}d \\to K^0{\\Lambda}(p)$$ reaction, using data from the CLAS detector at the Thomas Jefferson National Accelerator Facility. Data collected during two separate experimental runs were studied with photon-energy coverage 0.8 - 3.6 GeV and 0.5 - 2.6 GeV, respectively. The two measurements are consistent giving confidence in the method and determination of systematic uncertainties. The cross sections are compared with predictions from the KAON-MAID theoretical model (without kaon exchange), which deviate from the data at higher W and at forward kaon angles. These data, along with previously published cross sections for $$K^+ {\\Lambda}$$ photoproduction, provide essential constraints on the nucleon resonance spectrum. A first partial wave analysis has been performed that describes the data without the introduction of new resonances.« less

  1. Measurement of the differential and total cross sections of the γ d → K 0 Λ ( p ) reaction within the resonance region

    DOE PAGES

    Compton, N.; Taylor, C. E.; Hicks, K.; ...

    2017-12-04

    Here, we report the first measurement of differential and total cross sections for themore » $${\\gamma}d \\to K^0{\\Lambda}(p)$$ reaction, using data from the CLAS detector at the Thomas Jefferson National Accelerator Facility. Data collected during two separate experimental runs were studied with photon-energy coverage 0.8 - 3.6 GeV and 0.5 - 2.6 GeV, respectively. The two measurements are consistent giving confidence in the method and determination of systematic uncertainties. The cross sections are compared with predictions from the KAON-MAID theoretical model (without kaon exchange), which deviate from the data at higher W and at forward kaon angles. These data, along with previously published cross sections for $$K^+ {\\Lambda}$$ photoproduction, provide essential constraints on the nucleon resonance spectrum. A first partial wave analysis has been performed that describes the data without the introduction of new resonances.« less

  2. The effect of pressure on spontaneous Rayleigh-Brillouin scattering spectrum in nitrogen

    NASA Astrophysics Data System (ADS)

    Yang, Chuanyin; Wu, Tao; Shang, Jingcheng; Zhang, Xinyi; Hu, Rongjing; He, XingDao

    2018-05-01

    In order to study the effect of gas pressure on spontaneous Rayleigh-Brillouin scattering spectrum and verify the validity of Tenti S6 model at pressures up to 8 atm, the spontaneous Rayleigh-Brillouin scattering experiment in nitrogen was performed for a wavelength of 532 nm at the constant room temperature of 296 K and a 90° scattering angle. By comparing the experimental spectrum with the theoretical spectrum, the normalized root mean square deviation was calculated and found less than 2.2%. It is verified that Tenti S6 model can be applied to the spontaneous Rayleigh-Brillion scattering of nitrogen under higher pressures. The results of the experimental data analysis demonstrate that pressure has more effect on Brillouin peak intensity and has negligible effect on Brillouin frequency shift, and pressure retrieval based on spontaneous Rayleigh-Brillouin scattering profile is a promising method for remote of pressure, such as harsh environment applications. Some factors that caused experiment deviations are also discussed.

  3. [Achievement of the noninvasive measurement for human blood glucose with NIR diffusion reflectance spectrum method].

    PubMed

    Zhang, Hong-yan; Ding, Dong; Song, Li-qiang; Gu, Lin-na; Yang, Peng; Tang, Yu-guo

    2005-06-01

    The noninvasive measurement of human blood glucose was achieved with NIR diffusion reflectance spectrum method. The thumb fingertip NIR diffusion reflectance spectra of six different age healthy volunteers were collected using Nexus-870 and its NIR fiber port smart accessory. The test was implemented with changing the blood glucose concentration for the limosis and satiation of every volunteer. The calibration model was set up using PLS method with the smoothing, baseline correction and first derivatives pretreatment spectrum in the 7500-8500 cm(-1) region for single volunteer, the same age combination and that of different age. When the spectrum was obtained, the actual blood glucose value of every spectrun sample was demarcated using ultraviolet spectrophotometer. The correlation between the calibration value and true value for single volunteer is better than that for the combination of volunteers, the correlative coefficients are all over 0.90471, RMSECs are all less than 0.171.

  4. Scattering Cross Section of Sound Waves by the Modal Element Method

    NASA Technical Reports Server (NTRS)

    Baumeister, Kenneth J.; Kreider, Kevin L.

    1994-01-01

    #he modal element method has been employed to determine the scattered field from a plane acoustic wave impinging on a two dimensional body. In the modal element method, the scattering body is represented by finite elements, which are coupled to an eigenfunction expansion representing the acoustic pressure in the infinite computational domain surrounding the body. The present paper extends the previous work by developing the algorithm necessary to calculate the acoustics scattering cross section by the modal element method. The scattering cross section is the acoustical equivalent to the Radar Cross Section (RCS) in electromagnetic theory. Since the scattering cross section is evaluated at infinite distance from the body, an asymptotic approximation is used in conjunction with the standard modal element method. For validation, the scattering cross section of the rigid circular cylinder is computed for the frequency range 0.1 is less than or equal to ka is less than or equal to 100. Results show excellent agreement with the analytic solution.

  5. Treatment of early-onset schizophrenia spectrum disorders (TEOSS): rationale, design, and methods.

    PubMed

    McClellan, Jon; Sikich, Linmarie; Findling, Robert L; Frazier, Jean A; Vitiello, Benedetto; Hlastala, Stefanie A; Williams, Emily; Ambler, Denisse; Hunt-Harrison, Tyehimba; Maloney, Ann E; Ritz, Louise; Anderson, Robert; Hamer, Robert M; Lieberman, Jeffrey A

    2007-08-01

    The Treatment of Early Onset Schizophrenia Spectrum Disorders Study is a publicly funded clinical trial designed to compare the therapeutic benefits, safety, and tolerability of risperidone, olanzapine, and molindone in youths with early-onset schizophrenia spectrum disorders. The rationale, design, and methods of the Treatment of Early Onset Schizophrenia Spectrum Disorders Study are described. Using a randomized, double-blind, parallel-group design at four sites, youths with EOSS (ages 8-19 years) were assigned to an 8-week acute trial of risperidone (0.5-6.0 mg/day), olanzapine (2.5-20 mg/day), or molindone (10-140 mg/day). Responders continued double-blind treatment for 44 weeks. The primary outcome measure was responder status at 8 weeks, defined by a 20% reduction in baseline Positive and Negative Symptom Scale scores plus ratings of significant improvement on the Clinical Global Impressions. Secondary outcome measures included assessments of psychopathology, functional impairment, quality of life, and medication safety. An intent-to-treat analytic plan was used. From February 2002 to May 2006, 476 youths were screened, 173 were further evaluated, and 119 were randomized. Several significant study modifications were required to address safety, the use of adjunctive medications, and the termination of the olanzapine treatment arm due to weight gain. The Treatment of Early Onset Schizophrenia Spectrum Disorders Study will inform clinical practice regarding the use of antipsychotic medications for youths with early-onset schizophrenia spectrum disorders. Important safety concerns emerged during the study, including higher than anticipated rates of suicidality and problems tapering thymoleptic agents before randomization.

  6. The energy spectrum and the optical absorption spectrum of C{sub 60} fullerene within the Hubbard model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Silant’ev, A. V., E-mail: kvvant@rambler.ru

    2015-10-15

    Anticommutator Green’s functions and the energy spectrum of C{sub 60} fullerene are calculated in the approximation of static fluctuations within the Hubbard model. On the basis of this spectrum, an interpretation is proposed for the experimentally observed optical absorption bands of C{sub 60} fullerene. The parameters of C{sub 60} fullerene that characterize it within the Hubbard model are calculated by the optical absorption spectrum.

  7. Spectrum Recombination.

    ERIC Educational Resources Information Center

    Greenslade, Thomas B., Jr.

    1984-01-01

    Describes several methods of executing lecture demonstrations involving the recombination of the spectrum. Groups the techniques into two general classes: bringing selected portions of the spectrum together using lenses or mirrors and blurring the colors by rapid movement or foreshortening. (JM)

  8. Attenuation analysis of real GPR wavelets: The equivalent amplitude spectrum (EAS)

    NASA Astrophysics Data System (ADS)

    Economou, Nikos; Kritikakis, George

    2016-03-01

    Absorption of a Ground Penetrating Radar (GPR) pulse is a frequency dependent attenuation mechanism which causes a spectral shift on the dominant frequency of GPR data. Both energy variation of GPR amplitude spectrum and spectral shift were used for the estimation of Quality Factor (Q*) and subsequently the characterization of the subsurface material properties. The variation of the amplitude spectrum energy has been studied by Spectral Ratio (SR) method and the frequency shift by the estimation of the Frequency Centroid Shift (FCS) or the Frequency Peak Shift (FPS) methods. The FPS method is more automatic, less robust. This work aims to increase the robustness of the FPS method by fitting a part of the amplitude spectrum of GPR data with Ricker, Gaussian, Sigmoid-Gaussian or Ricker-Gaussian functions. These functions fit different parts of the spectrum of a GPR reference wavelet and the Equivalent Amplitude Spectrum (EAS) is selected, reproducing Q* values used in forward Q* modeling analysis. Then, only the peak frequencies and the time differences between the reference wavelet and the subsequent reflected wavelets are used to estimate Q*. As long as the EAS is estimated, it is used for Q* evaluation in all the GPR section, under the assumption that the selected reference wavelet is representative. De-phasing and constant phase shift, for obtaining symmetrical wavelets, proved useful in the sufficiency of the horizons picking. Synthetic, experimental and real GPR data were examined in order to demonstrate the effectiveness of the proposed methodology.

  9. Predictions for measuring the cross power spectrum of the HI 21-cm signal and the Lyman-α forest using OWFA

    NASA Astrophysics Data System (ADS)

    Sarkar, Anjan Kumar; Bharadwaj, Somnath; Guha Sarkar, Tapomoy

    2018-05-01

    We have studied the possibility of measuring the cross-correlation of the redshifted HI 21-cm signal and the Lyman-α forest using an upcoming radio-interferometric array OWFA and an spectroscopic observation like SDSS-IV. Our results shows that it is possible to have a 6 σ detection of the cross-correlation signal with OWFA PII using an observing time of 200 hrs each in Np = 25 independent fields-of-view. However, not much can be done beyond this using the cross-correlation signal for zc = 3.35 and B = 30 MHz. Apart from this, we have also envisaged a situation where observations are carried out at zc = 3.05 and 2.55 which lie closer to the peak of the quasar distribution at z = 2.25 and with a larger bandwidth of B = 60 MHz. We see that the SNR of the cross-correlation detection can be significantly enhanced to ~ 17 for zc = 2.55 and B = 60 MHz. It is then possible to measure βT and βF individually with an SNR >= 5 by combining the cross-correlation with the HI 21-cm auto-correlation measurements. We further find that a measurement of the binned cross-correlation power spectrum with SNR >= 5 is also possible in several bins at k <= 0.3 Mpc‑1.

  10. Vibrational spectrum and assignments of 2-(4-methoxyphenyl)-1 H-benzo[ d]imidazole by ab initio Hartree-Fock and density functional methods

    NASA Astrophysics Data System (ADS)

    Arslan, Hakan; Algül, Öztekin

    2008-06-01

    The room temperature attenuated total reflection Fourier transform infrared spectrum of the 2-(4-methoxyphenyl)-1 H-benzo[ d]imidazole has been recorded with diamond/ZnSe prism. The conformational behaviour, structural stability of optimized geometry, frequency and intensity of the vibrational bands of the title compound were investigated by utilizing ab initio calculations with 6-311G** basis set at HF, B3LYP, BLYP, B3PW91 and mPW1PW91 levels. The harmonic vibrational frequencies were calculated and scaled values have been compared with experimental IR spectrum. The observed and the calculated frequencies are found to be in good agreement. The theoretical vibrational spectra of the title compound were interpreted by means of potential energy distributions using VEDA 4 program. Furthermore, the optimal uniform scaling factors calculated for the title compound are 0.9120, 0.9596, 0.9660, 0.9699, and 0.9993 for HF, mPW1PW91, B3PW91, B3LYP and BLYP methods, respectively.

  11. Band selection method based on spectrum difference in targets of interest in hyperspectral imagery

    NASA Astrophysics Data System (ADS)

    Zhang, Xiaohan; Yang, Guang; Yang, Yongbo; Huang, Junhua

    2016-10-01

    While hyperspectral data shares rich spectrum information, it has numbers of bands with high correlation coefficients, causing great data redundancy. A reasonable band selection is important for subsequent processing. Bands with large amount of information and low correlation should be selected. On this basis, according to the needs of target detection applications, the spectral characteristics of the objects of interest are taken into consideration in this paper, and a new method based on spectrum difference is proposed. Firstly, according to the spectrum differences of targets of interest, a difference matrix which represents the different spectral reflectance of different targets in different bands is structured. By setting a threshold, the bands satisfying the conditions would be left, constituting a subset of bands. Then, the correlation coefficients between bands are calculated and correlation matrix is given. According to the size of the correlation coefficient, the bands can be set into several groups. At last, the conception of normalized variance is used on behalf of the information content of each band. The bands are sorted by the value of its normalized variance. Set needing number of bands, and the optimum band combination solution can be get by these three steps. This method retains the greatest degree of difference between the target of interest and is easy to achieve by computer automatically. Besides, false color image synthesis experiment is carried out using the bands selected by this method as well as other 3 methods to show the performance of method in this paper.

  12. Parenting Interventions for Children with Autism Spectrum and Disruptive Behavior Disorders: Opportunities for Cross-Fertilization

    PubMed Central

    Brookman-Frazee, Lauren; Stahmer, Aubyn; Baker-Ericzen, Mary J.; Tsai, Katherine

    2012-01-01

    Empirical support exists for parent training/education (PT/PE) interventions for children with disruptive behavior disorders (DBD) and autism spectrum disorders (ASD). While the models share common roots, current approaches have largely developed independently and the research findings have been disseminated in two different literature traditions: mental health and developmental disabilities. Given that these populations often have overlapping clinical needs and are likely to receive services in similar settings, efforts to integrate the knowledge gained in the disparate literature may be beneficial. This article provides a systematic overview of the current (1995–2005) empirical research on PT/PE for children with DBD and ASD; attending to factors for cross-fertilization. Twenty-two ASD and 38 DBD studies were coded for review. Literature was compared in three main areas: (1) research methodology, (2) focus of PT/PE intervention, and (3) PT/PE procedures. There was no overlap in publication outlets between the studies for the two populations. Results indicate that there are opportunities for cross-fertilization in the areas of (1) research methodology, (2) intervention targets, and (3) format of parenting interventions. The practical implications of integrating these two highly related areas of research are identified and discussed. PMID:17053963

  13. How to estimate the 3D power spectrum of the Lyman-α forest

    NASA Astrophysics Data System (ADS)

    Font-Ribera, Andreu; McDonald, Patrick; Slosar, Anže

    2018-01-01

    We derive and numerically implement an algorithm for estimating the 3D power spectrum of the Lyman-α (Lyα) forest flux fluctuations. The algorithm exploits the unique geometry of Lyα forest data to efficiently measure the cross-spectrum between lines of sight as a function of parallel wavenumber, transverse separation and redshift. We start by approximating the global covariance matrix as block-diagonal, where only pixels from the same spectrum are correlated. We then compute the eigenvectors of the derivative of the signal covariance with respect to cross-spectrum parameters, and project the inverse-covariance-weighted spectra onto them. This acts much like a radial Fourier transform over redshift windows. The resulting cross-spectrum inference is then converted into our final product, an approximation of the likelihood for the 3D power spectrum expressed as second order Taylor expansion around a fiducial model. We demonstrate the accuracy and scalability of the algorithm and comment on possible extensions. Our algorithm will allow efficient analysis of the upcoming Dark Energy Spectroscopic Instrument dataset.

  14. How to estimate the 3D power spectrum of the Lyman-α forest

    DOE PAGES

    Font-Ribera, Andreu; McDonald, Patrick; Slosar, Anže

    2018-01-02

    Here, we derive and numerically implement an algorithm for estimating the 3D power spectrum of the Lyman-α (Lyα) forest flux fluctuations. The algorithm exploits the unique geometry of Lyα forest data to efficiently measure the cross-spectrum between lines of sight as a function of parallel wavenumber, transverse separation and redshift. We start by approximating the global covariance matrix as block-diagonal, where only pixels from the same spectrum are correlated. We then compute the eigenvectors of the derivative of the signal covariance with respect to cross-spectrum parameters, and project the inverse-covariance-weighted spectra onto them. This acts much like a radial Fouriermore » transform over redshift windows. The resulting cross-spectrum inference is then converted into our final product, an approximation of the likelihood for the 3D power spectrum expressed as second order Taylor expansion around a fiducial model. We demonstrate the accuracy and scalability of the algorithm and comment on possible extensions. Our algorithm will allow efficient analysis of the upcoming Dark Energy Spectroscopic Instrument dataset.« less

  15. How to estimate the 3D power spectrum of the Lyman-α forest

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Font-Ribera, Andreu; McDonald, Patrick; Slosar, Anže

    Here, we derive and numerically implement an algorithm for estimating the 3D power spectrum of the Lyman-α (Lyα) forest flux fluctuations. The algorithm exploits the unique geometry of Lyα forest data to efficiently measure the cross-spectrum between lines of sight as a function of parallel wavenumber, transverse separation and redshift. We start by approximating the global covariance matrix as block-diagonal, where only pixels from the same spectrum are correlated. We then compute the eigenvectors of the derivative of the signal covariance with respect to cross-spectrum parameters, and project the inverse-covariance-weighted spectra onto them. This acts much like a radial Fouriermore » transform over redshift windows. The resulting cross-spectrum inference is then converted into our final product, an approximation of the likelihood for the 3D power spectrum expressed as second order Taylor expansion around a fiducial model. We demonstrate the accuracy and scalability of the algorithm and comment on possible extensions. Our algorithm will allow efficient analysis of the upcoming Dark Energy Spectroscopic Instrument dataset.« less

  16. L2 Milestone: Neutron Capture Cross Sections from Surrogate (p, d) Measurements: Determination of the Unknown 87Y(n, g) Cross Section and Assessment of the Method Via the 90Zr(n, g) Benchmark Case: Theory Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Escher, J. E.

    Cross sections for compound-nuclear reactions involving unstable targets are important for many applications, but can often not be measured directly. Here we describe a method for extracting cross sections for neutron-capture on unstable isotopes from indirect (surrogate) measurements. The surrogate reaction, which produces the compound nucleus of interest, has to be described and the decay of the nucleus has to be modeled. We outline the approach for one-neutron pickup and report on the determination of the 90Zr(n, γ ) reaction from surrogate 92Zr(p,d) data, which is compared to the directly-measured capture cross section and thus provides a benchmark for themore » method. We then apply the method to determine the 87Y(n, γ ) cross section, which has not been measured directly. The work was carried out in the context of an LLNL L2 Milestone. This report addresses the theory aspects of the milestone. A complementary document summarizes the experimental efforts [1].« less

  17. First-principles method for calculating the rate constants of internal-conversion and intersystem-crossing transitions.

    PubMed

    Valiev, R R; Cherepanov, V N; Baryshnikov, G V; Sundholm, D

    2018-02-28

    A method for calculating the rate constants for internal-conversion (k IC ) and intersystem-crossing (k ISC ) processes within the adiabatic and Franck-Condon (FC) approximations is proposed. The applicability of the method is demonstrated by calculation of k IC and k ISC for a set of organic and organometallic compounds with experimentally known spectroscopic properties. The studied molecules were pyrromethene-567 dye, psoralene, hetero[8]circulenes, free-base porphyrin, naphthalene, and larger polyacenes. We also studied fac-Alq 3 and fac-Ir(ppy) 3 , which are important molecules in organic light emitting diodes (OLEDs). The excitation energies were calculated at the multi-configuration quasi-degenerate second-order perturbation theory (XMC-QDPT2) level, which is found to yield excitation energies in good agreement with experimental data. Spin-orbit coupling matrix elements, non-adiabatic coupling matrix elements, Huang-Rhys factors, and vibrational energies were calculated at the time-dependent density functional theory (TDDFT) and complete active space self-consistent field (CASSCF) levels. The computed fluorescence quantum yields for the pyrromethene-567 dye, psoralene, hetero[8]circulenes, fac-Alq 3 and fac-Ir(ppy) 3 agree well with experimental data, whereas for the free-base porphyrin, naphthalene, and the polyacenes, the obtained quantum yields significantly differ from the experimental values, because the FC and adiabatic approximations are not accurate for these molecules.

  18. Atypical cross talk between mentalizing and mirror neuron networks in autism spectrum disorder.

    PubMed

    Fishman, Inna; Keown, Christopher L; Lincoln, Alan J; Pineda, Jaime A; Müller, Ralph-Axel

    2014-07-01

    Converging evidence indicates that brain abnormalities in autism spectrum disorder (ASD) involve atypical network connectivity, but it is unclear whether altered connectivity is especially prominent in brain networks that participate in social cognition. To investigate whether adolescents with ASD show altered functional connectivity in 2 brain networks putatively impaired in ASD and involved in social processing, theory of mind (ToM) and mirror neuron system (MNS). Cross-sectional study using resting-state functional magnetic resonance imaging involving 25 adolescents with ASD between the ages of 11 and 18 years and 25 typically developing adolescents matched for age, handedness, and nonverbal IQ. Statistical parametric maps testing the degree of whole-brain functional connectivity and social functioning measures. Relative to typically developing controls, participants with ASD showed a mixed pattern of both over- and underconnectivity in the ToM network, which was associated with greater social impairment. Increased connectivity in the ASD group was detected primarily between the regions of the MNS and ToM, and was correlated with sociocommunicative measures, suggesting that excessive ToM-MNS cross talk might be associated with social impairment. In a secondary analysis comparing a subset of the 15 participants with ASD with the most severe symptomology and a tightly matched subset of 15 typically developing controls, participants with ASD showed exclusive overconnectivity effects in both ToM and MNS networks, which were also associated with greater social dysfunction. Adolescents with ASD showed atypically increased functional connectivity involving the mentalizing and mirror neuron systems, largely reflecting greater cross talk between the 2. This finding is consistent with emerging evidence of reduced network segregation in ASD and challenges the prevailing theory of general long-distance underconnectivity in ASD. This excess ToM-MNS connectivity may reflect

  19. Polarization dependent two-photon absorption spectroscopy on a naturally occurring biomarker (curcumin) in solution: A theoretical-experimental study

    NASA Astrophysics Data System (ADS)

    Tiburcio-Moreno, Jose A.; Alvarado-Gil, J. J.; Diaz, Carlos; Echevarria, Lorenzo; Hernández, Florencio E.

    2013-09-01

    We report on the theoretical-experimental analysis of the two-photon absorption (TPA) and two-photon circular-linear dichroism (TPCLD) spectra of (1E,6E)-1,7-bis(4-hydroxy-3-methoxyphenyl)-1,6-heptadiene-3,5-dione (curcumin) in Tetrahydrofuran (THF) solution. The measurement of the full TPA spectrum of this molecule reveals a maximum TPA cross-section at 740 nm, i.e. more than 10 times larger than the maximum reported in the literature at 800 nm for the application of curcumin in bioimaging. The TPCLD spectrum exposes the symmetry of the main excited-states involved in the two-photon excitation process. TD-DFT calculations support the experimental results. These outcomes are expected to expand the application of natural-occurring dyes in bioimaging.

  20. Multi-platform experiment to cross a boundary between laboratory and real situational studies: experimental discussion of cross-situational consistency of driving behaviors.

    PubMed

    Terai, H; Miwa, K; Okuda, H; Tazaki, Y; Suzuki, T; Kojima, K; Morita, J; Maehigashi, A; Takeda, K

    2012-01-01

    We constructed an innovative experimental platform to study cross-situational consistency in driving behavior, conducted behavioral experiments, and reported the data obtained in the experiment. To discuss cross-situational consistency, we separated situations in which people use some systems to conduct tasks into three independent conceptual factors: environment, context, and system. We report the experimental results with the following systems: a laboratory system with a gaming controller and steering/pedal controllers and a real system, COMS an instrumented vehicle. The results are summarized as follows. 1) The individual behaviors in each system were stable, and consistency was retained. 2) The consistency of the behaviors was also confirmed when the participants drove using different interfaces in identical systems. 3) However, only slight correlation was observed across different systems in a specific situation where a strong high-order cognitive constraint (i.e., rapid driving) and a weak low-order cognitive constraint (driving with easy handling toward a straight-line course) were given.

  1. [A method for the analysis of overlapped peaks in the high performance liquid chromatogram based on spectrum analysis].

    PubMed

    Liu, Bao; Fan, Xiaoming; Huo, Shengnan; Zhou, Lili; Wang, Jun; Zhang, Hui; Hu, Mei; Zhu, Jianhua

    2011-12-01

    A method was established to analyse the overlapped chromatographic peaks based on the chromatographic-spectra data detected by the diode-array ultraviolet detector. In the method, the three-dimensional data were de-noised and normalized firstly; secondly the differences and clustering analysis of the spectra at different time points were calculated; then the purity of the whole chromatographic peak were analysed and the region were sought out in which the spectra of different time points were stable. The feature spectra were extracted from the spectrum-stable region as the basic foundation. The nonnegative least-square method was chosen to separate the overlapped peaks and get the flow curve which was based on the feature spectrum. The three-dimensional divided chromatographic-spectrum peak could be gained by the matrix operations of the feature spectra with the flow curve. The results displayed that this method could separate the overlapped peaks.

  2. Numerical and experimental research on pentagonal cross-section of the averaging Pitot tube

    NASA Astrophysics Data System (ADS)

    Zhang, Jili; Li, Wei; Liang, Ruobing; Zhao, Tianyi; Liu, Yacheng; Liu, Mingsheng

    2017-07-01

    Averaging Pitot tubes have been widely used in many fields because of their simple structure and stable performance. This paper introduces a new shape of the cross-section of an averaging Pitot tube. Firstly, the structure of the averaging Pitot tube and the distribution of pressure taps are given. Then, a mathematical model of the airflow around it is formulated. After that, a series of numerical simulations are carried out to optimize the geometry of the tube. The distribution of the streamline and pressures around the tube are given. To test its performance, a test platform was constructed in accordance with the relevant national standards and is described in this paper. Curves are provided, linking the values of flow coefficient with the values of Reynolds number. With a maximum deviation of only  ±3%, the results of the flow coefficient obtained from the numerical simulations were in agreement with those obtained from experimental methods. The proposed tube has a stable flow coefficient and favorable metrological characteristics.

  3. Electron capture cross sections by O+ from atomic He

    NASA Astrophysics Data System (ADS)

    Joseph, Dwayne C.; Saha, Bidhan C.

    2009-11-01

    The adiabatic representation is used in both the quantal and semi classical molecular orbital close coupling methods (MOCC) to evaluate charge exchange cross sections. Our results show good agreement with experimental cross sections

  4. Laser-Induced Optical Pumping Measurements of Cross Section for Fine- and Hyperfine-Structure Transitions in Sodium Induced by Collisions with Helium and Argon Atoms

    NASA Technical Reports Server (NTRS)

    Dobson, Chris C.; Sung, C. C.

    1999-01-01

    Optical pumping of the ground states of sodium can radically alter the shape of the laser-induced fluorescence excitation spectrum, complicating measurements of temperature, pressure, etc., which are based on these spectra. Modeling of the fluorescence using rate equations for the eight hyperfine states of the sodium D manifolds can be used to quantify the contribution to the ground state pumping of transitions among the hyperfine excited states induced by collisions with buffer gas atoms. This model is used here to determine, from the shape of experimental spectra, cross sections lor DELTA.F transitions of the P(sub 3/2) state induced by collisions with helium and argon atoms, for a range of values assumed for the P(sub 1/2), DELTA.F cross sections. The hyperfine cross sections measured using this method, which to our knowledge is novel, are compared with cross sections for transitions involving polarized magnetic substates m(sub F) measured previously using polarization sensitive absorption. Also, fine-structure transition cross sections were measured in the pumped vapor, giving agreement with previous measurements made in the absence of pumping.

  5. Fast-ion Dα spectrum diagnostic in the EAST

    NASA Astrophysics Data System (ADS)

    Hou, Y. M.; Wu, C. R.; Huang, J.; Heidbrink, W. W.; von Hellermann, M. G.; Xu, Z.; Jin, Z.; Chang, J. F.; Zhu, Y. B.; Gao, W.; Chen, Y. J.; Lyu, B.; Hu, R. J.; Zhang, P. F.; Zhang, L.; Gao, W.; Wu, Z. W.; Yu, Y.; Ye, M. Y.

    2016-11-01

    In toroidal magnetic fusion devices, fast-ion D-alpha diagnostic (FIDA) is a powerful method to study the fast-ion feature. The fast-ion characteristics can be inferred from the Doppler shifted spectrum of Dα light according to charge exchange recombination process between fast ions and probe beam. Since conceptual design presented in the last HTPD conference, significant progress has been made to apply FIDA systems on the Experimental Advanced Superconducting Tokamak (EAST). Both co-current and counter-current neutral beam injectors are available, and each can deliver 2-4 MW beam power with 50-80 keV beam energy. Presently, two sets of high throughput spectrometer systems have been installed on EAST, allowing to capture passing and trapped fast-ion characteristics simultaneously, using Kaiser HoloSpec transmission grating spectrometer and Bunkoukeiki FLP-200 volume phase holographic spectrometer coupled with Princeton Instruments ProEM 1024B eXcelon and Andor DU-888 iXon3 1024 CCD camera, respectively. This paper will present the details of the hardware descriptions and experimental spectrum.

  6. Exact Doppler broadening of tabulated cross sections. [SIGMA 1 kernel broadening method

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cullen, D.E.; Weisbin, C.R.

    1976-07-01

    The SIGMA1 kernel broadening method is presented to Doppler broaden to any required accuracy a cross section that is described by a table of values and linear-linear interpolation in energy-cross section between tabulated values. The method is demonstrated to have no temperature or energy limitations and to be equally applicable to neutron or charged-particle cross sections. The method is qualitatively and quantitatively compared to contemporary approximate methods of Doppler broadening with particular emphasis on the effect of each approximation introduced.

  7. Experimental Observation of Bohr's Nonlinear Fluidic Surface Oscillation.

    PubMed

    Moon, Songky; Shin, Younghoon; Kwak, Hojeong; Yang, Juhee; Lee, Sang-Bum; Kim, Soyun; An, Kyungwon

    2016-01-25

    Niels Bohr in the early stage of his career developed a nonlinear theory of fluidic surface oscillation in order to study surface tension of liquids. His theory includes the nonlinear interaction between multipolar surface oscillation modes, surpassing the linear theory of Rayleigh and Lamb. It predicts a specific normalized magnitude of 0.416η(2) for an octapolar component, nonlinearly induced by a quadrupolar one with a magnitude of η much less than unity. No experimental confirmation on this prediction has been reported. Nonetheless, accurate determination of multipolar components is important as in optical fiber spinning, film blowing and recently in optofluidic microcavities for ray and wave chaos studies and photonics applications. Here, we report experimental verification of his theory. By using optical forward diffraction, we measured the cross-sectional boundary profiles at extreme positions of a surface-oscillating liquid column ejected from a deformed microscopic orifice. We obtained a coefficient of 0.42 ± 0.08 consistently under various experimental conditions. We also measured the resonance mode spectrum of a two-dimensional cavity formed by the cross-sectional segment of the liquid jet. The observed spectra agree well with wave calculations assuming a coefficient of 0.414 ± 0.011. Our measurements establish the first experimental observation of Bohr's hydrodynamic theory.

  8. Diffraction based method to reconstruct the spectrum of the Thomson scattering x-ray source

    NASA Astrophysics Data System (ADS)

    Chi, Zhijun; Yan, Lixin; Zhang, Zhen; Zhou, Zheng; Zheng, Lianmin; Wang, Dong; Tian, Qili; Wang, Wei; Nie, Zan; Zhang, Jie; Du, Yingchao; Hua, Jianfei; Shi, Jiaru; Pai, Chihao; Lu, Wei; Huang, Wenhui; Chen, Huaibi; Tang, Chuanxiang

    2017-04-01

    As Thomson scattering x-ray sources based on the collision of intense laser and relativistic electrons have drawn much attention in various scientific fields, there is an increasing demand for the effective methods to reconstruct the spectrum information of the ultra-short and high-intensity x-ray pulses. In this paper, a precise spectrum measurement method for the Thomson scattering x-ray sources was proposed with the diffraction of a Highly Oriented Pyrolytic Graphite (HOPG) crystal and was demonstrated at the Tsinghua Thomson scattering X-ray source. The x-ray pulse is diffracted by a 15 mm (L) ×15 mm (H)× 1 mm (D) HOPG crystal with 1° mosaic spread. By analyzing the diffraction pattern, both x-ray peak energies and energy spectral bandwidths at different polar angles can be reconstructed, which agree well with the theoretical value and simulation. The higher integral reflectivity of the HOPG crystal makes this method possible for single-shot measurement.

  9. Diffraction based method to reconstruct the spectrum of the Thomson scattering x-ray source.

    PubMed

    Chi, Zhijun; Yan, Lixin; Zhang, Zhen; Zhou, Zheng; Zheng, Lianmin; Wang, Dong; Tian, Qili; Wang, Wei; Nie, Zan; Zhang, Jie; Du, Yingchao; Hua, Jianfei; Shi, Jiaru; Pai, Chihao; Lu, Wei; Huang, Wenhui; Chen, Huaibi; Tang, Chuanxiang

    2017-04-01

    As Thomson scattering x-ray sources based on the collision of intense laser and relativistic electrons have drawn much attention in various scientific fields, there is an increasing demand for the effective methods to reconstruct the spectrum information of the ultra-short and high-intensity x-ray pulses. In this paper, a precise spectrum measurement method for the Thomson scattering x-ray sources was proposed with the diffraction of a Highly Oriented Pyrolytic Graphite (HOPG) crystal and was demonstrated at the Tsinghua Thomson scattering X-ray source. The x-ray pulse is diffracted by a 15 mm (L) ×15 mm (H)× 1 mm (D) HOPG crystal with 1° mosaic spread. By analyzing the diffraction pattern, both x-ray peak energies and energy spectral bandwidths at different polar angles can be reconstructed, which agree well with the theoretical value and simulation. The higher integral reflectivity of the HOPG crystal makes this method possible for single-shot measurement.

  10. A molecular cross-linking approach for hybrid metal oxides.

    PubMed

    Jung, Dahee; Saleh, Liban M A; Berkson, Zachariah J; El-Kady, Maher F; Hwang, Jee Youn; Mohamed, Nahla; Wixtrom, Alex I; Titarenko, Ekaterina; Shao, Yanwu; McCarthy, Kassandra; Guo, Jian; Martini, Ignacio B; Kraemer, Stephan; Wegener, Evan C; Saint-Cricq, Philippe; Ruehle, Bastian; Langeslay, Ryan R; Delferro, Massimiliano; Brosmer, Jonathan L; Hendon, Christopher H; Gallagher-Jones, Marcus; Rodriguez, Jose; Chapman, Karena W; Miller, Jeffrey T; Duan, Xiangfeng; Kaner, Richard B; Zink, Jeffrey I; Chmelka, Bradley F; Spokoyny, Alexander M

    2018-04-01

    There is significant interest in the development of methods to create hybrid materials that transform capabilities, in particular for Earth-abundant metal oxides, such as TiO 2 , to give improved or new properties relevant to a broad spectrum of applications. Here we introduce an approach we refer to as 'molecular cross-linking', whereby a hybrid molecular boron oxide material is formed from polyhedral boron-cluster precursors of the type [B 12 (OH) 12 ] 2- . This new approach is enabled by the inherent robustness of the boron-cluster molecular building block, which is compatible with the harsh thermal and oxidizing conditions that are necessary for the synthesis of many metal oxides. In this work, using a battery of experimental techniques and materials simulation, we show how this material can be interfaced successfully with TiO 2 and other metal oxides to give boron-rich hybrid materials with intriguing photophysical and electrochemical properties.

  11. A molecular cross-linking approach for hybrid metal oxides

    NASA Astrophysics Data System (ADS)

    Jung, Dahee; Saleh, Liban M. A.; Berkson, Zachariah J.; El-Kady, Maher F.; Hwang, Jee Youn; Mohamed, Nahla; Wixtrom, Alex I.; Titarenko, Ekaterina; Shao, Yanwu; McCarthy, Kassandra; Guo, Jian; Martini, Ignacio B.; Kraemer, Stephan; Wegener, Evan C.; Saint-Cricq, Philippe; Ruehle, Bastian; Langeslay, Ryan R.; Delferro, Massimiliano; Brosmer, Jonathan L.; Hendon, Christopher H.; Gallagher-Jones, Marcus; Rodriguez, Jose; Chapman, Karena W.; Miller, Jeffrey T.; Duan, Xiangfeng; Kaner, Richard B.; Zink, Jeffrey I.; Chmelka, Bradley F.; Spokoyny, Alexander M.

    2018-03-01

    There is significant interest in the development of methods to create hybrid materials that transform capabilities, in particular for Earth-abundant metal oxides, such as TiO2, to give improved or new properties relevant to a broad spectrum of applications. Here we introduce an approach we refer to as `molecular cross-linking', whereby a hybrid molecular boron oxide material is formed from polyhedral boron-cluster precursors of the type [B12(OH)12]2-. This new approach is enabled by the inherent robustness of the boron-cluster molecular building block, which is compatible with the harsh thermal and oxidizing conditions that are necessary for the synthesis of many metal oxides. In this work, using a battery of experimental techniques and materials simulation, we show how this material can be interfaced successfully with TiO2 and other metal oxides to give boron-rich hybrid materials with intriguing photophysical and electrochemical properties.

  12. Bi-spectrum based-EMD applied to the non-stationary vibration signals for bearing faults diagnosis.

    PubMed

    Saidi, Lotfi; Ali, Jaouher Ben; Fnaiech, Farhat

    2014-09-01

    Empirical mode decomposition (EMD) has been widely applied to analyze vibration signals behavior for bearing failures detection. Vibration signals are almost always non-stationary since bearings are inherently dynamic (e.g., speed and load condition change over time). By using EMD, the complicated non-stationary vibration signal is decomposed into a number of stationary intrinsic mode functions (IMFs) based on the local characteristic time scale of the signal. Bi-spectrum, a third-order statistic, helps to identify phase coupling effects, the bi-spectrum is theoretically zero for Gaussian noise and it is flat for non-Gaussian white noise, consequently the bi-spectrum analysis is insensitive to random noise, which are useful for detecting faults in induction machines. Utilizing the advantages of EMD and bi-spectrum, this article proposes a joint method for detecting such faults, called bi-spectrum based EMD (BSEMD). First, original vibration signals collected from accelerometers are decomposed by EMD and a set of IMFs is produced. Then, the IMF signals are analyzed via bi-spectrum to detect outer race bearing defects. The procedure is illustrated with the experimental bearing vibration data. The experimental results show that BSEMD techniques can effectively diagnosis bearing failures. Copyright © 2014 ISA. Published by Elsevier Ltd. All rights reserved.

  13. Continuous optical measurement system of hemolysis during a photosensitization reaction using absorption spectrum

    NASA Astrophysics Data System (ADS)

    Hamada, R.; Ogawa, E.; Arai, T.

    2018-02-01

    To investigate hemolysis phenomena during a photosensitization reaction with the reaction condition continuously and simultaneously for a safety assessment of hemolysis side effect, we constructed an optical system to measure blood sample absorption spectrum during the reaction. Hemolysis degree might be under estimated in general evaluation methods because there is a constant oxygen pressure assumption in spite of oxygen depression take place. By investigating hemoglobin oxidation and oxygen desorption dynamics obtained from the contribution of the visible absorption spectrum and multiple regression analysis, both the hemolysis phenomena and its oxygen environment might be obtained with time. A 664 nm wavelength laser beam for the reaction excitation and 475-650 nm light beam for measuring the absorbance spectrum were arranged perpendicularly crossing. A quartz glass cuvette with 1×10 mm in dimensions for the spectrum measurement was located at this crossing point. A red blood cells suspension medium was arranged with low hematocrit containing 30 μg/ml talaporfin sodium. This medium was irradiated up to 40 J/cm2 . The met-hemoglobin, oxygenatedhemoglobin, and deoxygenated-hemoglobin concentrations were calculated by a multiple regression analysis from the measured spectra. We confirmed the met-hemoglobin concentration increased and oxygen saturation decreased with the irradiation time, which seems to indicate the hemolysis progression and oxygen consumption, respectively. By using our measuring system, the hemolysis progression seems to be obtained with oxygen environment information.

  14. Spectral saliency via automatic adaptive amplitude spectrum analysis

    NASA Astrophysics Data System (ADS)

    Wang, Xiaodong; Dai, Jialun; Zhu, Yafei; Zheng, Haiyong; Qiao, Xiaoyan

    2016-03-01

    Suppressing nonsalient patterns by smoothing the amplitude spectrum at an appropriate scale has been shown to effectively detect the visual saliency in the frequency domain. Different filter scales are required for different types of salient objects. We observe that the optimal scale for smoothing amplitude spectrum shares a specific relation with the size of the salient region. Based on this observation and the bottom-up saliency detection characterized by spectrum scale-space analysis for natural images, we propose to detect visual saliency, especially with salient objects of different sizes and locations via automatic adaptive amplitude spectrum analysis. We not only provide a new criterion for automatic optimal scale selection but also reserve the saliency maps corresponding to different salient objects with meaningful saliency information by adaptive weighted combination. The performance of quantitative and qualitative comparisons is evaluated by three different kinds of metrics on the four most widely used datasets and one up-to-date large-scale dataset. The experimental results validate that our method outperforms the existing state-of-the-art saliency models for predicting human eye fixations in terms of accuracy and robustness.

  15. Iterative methods for tomography problems: implementation to a cross-well tomography problem

    NASA Astrophysics Data System (ADS)

    Karadeniz, M. F.; Weber, G. W.

    2018-01-01

    The velocity distribution between two boreholes is reconstructed by cross-well tomography, which is commonly used in geology. In this paper, iterative methods, Kaczmarz’s algorithm, algebraic reconstruction technique (ART), and simultaneous iterative reconstruction technique (SIRT), are implemented to a specific cross-well tomography problem. Convergence to the solution of these methods and their CPU time for the cross-well tomography problem are compared. Furthermore, these three methods for this problem are compared for different tolerance values.

  16. Automated assessment of bone changes in cross-sectional micro-CT studies of murine experimental osteoarthritis

    PubMed Central

    Vincent, Tonia L.; Marenzana, Massimo

    2017-01-01

    Objective The degradation of articular cartilage, which characterises osteoarthritis (OA), is usually paired with excessive bone remodelling, including subchondral bone sclerosis, cysts, and osteophyte formation. Experimental models of OA are widely used to investigate pathogenesis, yet few validated methodologies for assessing periarticular bone morphology exist and quantitative measurements are limited by manual segmentation of micro-CT scans. The aim of this work was to chart the temporal changes in periarticular bone in murine OA by novel, automated micro-CT methods. Methods OA was induced by destabilisation of the medial meniscus (DMM) in 10-week old male mice and disease assessed cross-sectionally from 1- to 20-weeks post-surgery. A novel approach was developed to automatically segment subchondral bone compartments into plate and trabecular bone in micro-CT scans of tibial epiphyses. Osteophyte volume, as assessed by shape differences using 3D image registration, and by measuring total epiphyseal volume was performed. Results Significant linear and volumetric structural modifications in subchondral bone compartments and osteophytes were measured from 4-weeks post-surgery and showed progressive changes at all time points; by 20 weeks, medial subchondral bone plate thickness increased by 160±19.5 μm and the medial osteophyte grew by 0.124±0.028 μm3. Excellent agreement was found when automated measurements were compared with manual assessments. Conclusion Our automated methods for assessing bone changes in murine periarticular bone are rapid, quantitative, and highly accurate, and promise to be a useful tool in future preclinical studies of OA progression and treatment. The current approaches were developed specifically for cross-sectional micro-CT studies but could be applied to longitudinal studies. PMID:28334010

  17. ''Reading'' the photoelectron {beta}-parameter spectrum in a resonance region

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dolmatov, V. K.; Guler, E.; Manson, S. T.

    2007-09-15

    The behavior of the dipole photoelectron angular distribution parameter {beta}{sub nl}({omega}) in the vicinity of autoionizing resonances is discussed. It is shown that from this behavior, surprisingly, many photoionization parameters that cannot be measured experimentally can be extracted. These are the energy positions and ordering of autoionizing resonance minima in the partial photoionization cross sections {sigma}{sub l+1} and {sigma}{sub l-1}, the energies at which these two cross sections intersect, and signs and magnitudes of the cos({delta}{sub l+1}-{delta}{sub l-1}) ({delta}{sub l{+-}}{sub 1} being the phase shifts of the dipole photoionization amplitudes D{sub l{+-}}{sub 1}, respectively) through the autoionizing resonance energy region.more » Based on this, a deeper interpretation of such effects as the width-narrowing, width-fluctuating, and q-reversal in the {beta}{sub nl} parameter spectrum in the autoionizing resonance energy region is given. As an example, calculated data for partial photoionization cross sections {sigma}{sub 3d{r_reversible}}{sub f} and {sigma}{sub 3d{r_reversible}}{sub p}, and {beta}{sub 3d} parameters for 3d photoelectrons from Cr{sup +} are presented.« less

  18. Equivalent input spectrum and drain current spectrum for 1/ƒ noise in short channel MOS transistors

    NASA Astrophysics Data System (ADS)

    Gentil, P.; Mounib, A.

    1981-05-01

    Flicker noise in MOS transistors can be evaluated by measuring the spectrum SID of the drain current fluctuation or the spectrum Sve of an equivalent gate fluctuation. We show here that experimental variations of {S I D}/{Sve} are in good agreement with gm2 by considering a model of the transconductance gm which takes into account the variations of the channel carriers mobility with the surface electric field. The model agrees with the experimental results obtained on short channel MOS transistors which exhibit large variations of mobility with the gate voltage. The validity of physical interpretations of noise data on MOS transistors is examined.

  19. Taguchi method of experimental design in materials education

    NASA Technical Reports Server (NTRS)

    Weiser, Martin W.

    1993-01-01

    Some of the advantages and disadvantages of the Taguchi Method of experimental design as applied to Materials Science will be discussed. This is a fractional factorial method that employs the minimum number of experimental trials for the information obtained. The analysis is also very simple to use and teach, which is quite advantageous in the classroom. In addition, the Taguchi loss function can be easily incorporated to emphasize that improvements in reproducibility are often at least as important as optimization of the response. The disadvantages of the Taguchi Method include the fact that factor interactions are normally not accounted for, there are zero degrees of freedom if all of the possible factors are used, and randomization is normally not used to prevent environmental biasing. In spite of these disadvantages it is felt that the Taguchi Method is extremely useful for both teaching experimental design and as a research tool, as will be shown with a number of brief examples.

  20. Hybrid spread spectrum radio system

    DOEpatents

    Smith, Stephen F [London, TN; Dress, William B [Camas, WA

    2010-02-09

    Systems and methods are described for hybrid spread spectrum radio systems. A method, includes receiving a hybrid spread spectrum signal including: fast frequency hopping demodulating and direct sequence demodulating a direct sequence spread spectrum signal, wherein multiple frequency hops occur within a single data-bit time and each bit is represented by chip transmissions at multiple frequencies.

  1. Do school crossing guards make crossing roads safer? A quasi-experimental study of pedestrian-motor vehicle collisions in Toronto, Canada.

    PubMed

    Rothman, Linda; Perry, Daniel; Buliung, Ron; Macarthur, Colin; To, Teresa; Macpherson, Alison; Larsen, Kristian; Howard, Andrew

    2015-07-31

    The presence of school crossing guards has been associated with more walking and more pedestrian-motor vehicle collisions (PMVCs) in area-level cross-sectional analyses. The objectives of the study were to (1) Determine the effect on PMVC rates of newly implemented crossing guards in Toronto, Canada (2) Determine where collisions were located in relation to crossing guards throughout the city, and whether they occurred during school travel times. School crossing guards with 50 m buffers were mapped along with police-reported child PMVCs from 2000-2011. (1) A quasi-experimental study identified all age collision counts near newly implemented guards before and after implementation, modeled using repeated measures Poisson regression adjusted for season and built environment variables. (2) A retrospective cohort study of all child PMVCS throughout the city to determine the proportions of child PMVCs which occurred during school travel times and at guard locations. There were 27,827 PMVCs, with 260 PMVCs at the locations of 58 newly implemented guards. Repeated measures adjusted Poisson regression found PMVCs rates remained unchanged at guard locations after implementation (IRR 1.02, 95 % CI 0.74, 1.39). There were 568 guards citywide with 1850 child PMVCs that occurred at guard locations. The majority of child PMVCs occurred outside school travel times (n = 1155, 62 %) and of those that occurred during school travel times, only 95 (13.7 %) were at a guard location. School crossing guards are a simple roadway modification to increase walking to school without apparent detrimental safety effects. Other more permanent interventions are necessary to address the frequency of child PMVCs occurring away from the location of crossing guards, and outside of school travel times.

  2. Cross-correlation of point series using a new method

    NASA Technical Reports Server (NTRS)

    Strothers, Richard B.

    1994-01-01

    Traditional methods of cross-correlation of two time series do not apply to point time series. Here, a new method, devised specifically for point series, utilizes a correlation measure that is based in the rms difference (or, alternatively, the median absolute difference) between nearest neightbors in overlapped segments of the two series. Error estimates for the observed locations of the points, as well as a systematic shift of one series with respect to the other to accommodate a constant, but unknown, lead or lag, are easily incorporated into the analysis using Monte Carlo techniques. A methodological restriction adopted here is that one series be treated as a template series against which the other, called the target series, is cross-correlated. To estimate a significance level for the correlation measure, the adopted alternative (null) hypothesis is that the target series arises from a homogeneous Poisson process. The new method is applied to cross-correlating the times of the greatest geomagnetic storms with the times of maximum in the undecennial solar activity cycle.

  3. An Effective Method for Substance Detection Using the Broad Spectrum THz Signal: A “Terahertz Nose”

    PubMed Central

    Trofimov, Vyacheslav A.; Varentsova, Svetlana A.

    2015-01-01

    We propose an effective method for the detection and identification of dangerous substances by using the broadband THz pulse. This pulse excites, for example, many vibrational or rotational energy levels of molecules simultaneously. By analyzing the time-dependent spectrum of the THz pulse transmitted through or reflected from a substance, we follow the average response spectrum dynamics. Comparing the absorption and emission spectrum dynamics of a substance under analysis with the corresponding data for a standard substance, one can detect and identify the substance under real conditions taking into account the influence of packing material, water vapor and substance surface. For quality assessment of the standard substance detection in the signal under analysis, we propose time-dependent integral correlation criteria. Restrictions of usually used detection and identification methods, based on a comparison between the absorption frequencies of a substance under analysis and a standard substance, are demonstrated using a physical experiment with paper napkins. PMID:26020281

  4. Rapid depth estimation for compact magnetic sources using a semi-automated spectrum-based method

    NASA Astrophysics Data System (ADS)

    Clifton, Roger

    2017-04-01

    This paper describes a spectrum-based algorithmic procedure for rapid reconnaissance for compact bodies at depths of interest using magnetic line data. The established method of obtaining depth to source from power spectra requires an interpreter to subjectively select just a single slope along the power spectrum. However, many slopes along the spectrum are, at least partially, indicative of the depth if the shape of the source is known. In particular, if the target is assumed to be a point dipole, all spectral slopes are determined by the depth, noise permitting. The concept of a `depth spectrum' is introduced, where the power spectrum in a travelling window or gate of data is remapped so that a single dipole in the gate would be represented as a straight line at its depth on the y-axis of the spectrum. In demonstration, the depths of two known ironstones are correctly displayed. When a second body is in the gate, the two anomalies interfere, leaving interference patterns on the depth spectra that are themselves diagnostic. A formula has been derived for the purpose. Because there is no need for manual selection of slopes along the spectrum, the process runs rapidly along flight lines with a continuously varying display, where the interpreter can pick out a persistent depth signal among the more rapidly varying noise. Interaction is nevertheless necessary, because the interpreter often needs to pass across an anomaly of interest several times, separating out interfering bodies, and resolving the slant range to the body from adjacent flight lines. Because a look-up table is used rather than a formula, the elementary structure used for the mapping can be adapted by including an extra dipole, possibly with a different inclination.

  5. A two-stage spectrum sensing scheme based on energy detection and a novel multitaper method

    NASA Astrophysics Data System (ADS)

    Qi, Pei-Han; Li, Zan; Si, Jiang-Bo; Xiong, Tian-Yi

    2015-04-01

    Wideband spectrum sensing has drawn much attention in recent years since it provides more opportunities to the secondary users. However, wideband spectrum sensing requires a long time and a complex mechanism at the sensing terminal. A two-stage wideband spectrum sensing scheme is considered to proceed spectrum sensing with low time consumption and high performance to tackle this predicament. In this scheme, a novel multitaper spectrum sensing (MSS) method is proposed to mitigate the poor performance of energy detection (ED) in the low signal-to-noise ratio (SNR) region. The closed-form expression of the decision threshold is derived based on the Neyman-Pearson criterion and the probability of detection in the Rayleigh fading channel is analyzed. An optimization problem is formulated to maximize the probability of detection of the proposed two-stage scheme and the average sensing time of the two-stage scheme is analyzed. Numerical results validate the efficiency of MSS and show that the two-stage spectrum sensing scheme enjoys higher performance in the low SNR region and lower time cost in the high SNR region than the single-stage scheme. Project supported by the National Natural Science Foundation of China (Grant No. 61301179), the China Postdoctoral Science Foundation (Grant No. 2014M550479), and the Doctorial Programs Foundation of the Ministry of Education, China (Grant No. 20110203110011).

  6. A composite experimental dynamic substructuring method based on partitioned algorithms and localized Lagrange multipliers

    NASA Astrophysics Data System (ADS)

    Abbiati, Giuseppe; La Salandra, Vincenzo; Bursi, Oreste S.; Caracoglia, Luca

    2018-02-01

    Successful online hybrid (numerical/physical) dynamic substructuring simulations have shown their potential in enabling realistic dynamic analysis of almost any type of non-linear structural system (e.g., an as-built/isolated viaduct, a petrochemical piping system subjected to non-stationary seismic loading, etc.). Moreover, owing to faster and more accurate testing equipment, a number of different offline experimental substructuring methods, operating both in time (e.g. the impulse-based substructuring) and frequency domains (i.e. the Lagrange multiplier frequency-based substructuring), have been employed in mechanical engineering to examine dynamic substructure coupling. Numerous studies have dealt with the above-mentioned methods and with consequent uncertainty propagation issues, either associated with experimental errors or modelling assumptions. Nonetheless, a limited number of publications have systematically cross-examined the performance of the various Experimental Dynamic Substructuring (EDS) methods and the possibility of their exploitation in a complementary way to expedite a hybrid experiment/numerical simulation. From this perspective, this paper performs a comparative uncertainty propagation analysis of three EDS algorithms for coupling physical and numerical subdomains with a dual assembly approach based on localized Lagrange multipliers. The main results and comparisons are based on a series of Monte Carlo simulations carried out on a five-DoF linear/non-linear chain-like systems that include typical aleatoric uncertainties emerging from measurement errors and excitation loads. In addition, we propose a new Composite-EDS (C-EDS) method to fuse both online and offline algorithms into a unique simulator. Capitalizing from the results of a more complex case study composed of a coupled isolated tank-piping system, we provide a feasible way to employ the C-EDS method when nonlinearities and multi-point constraints are present in the emulated system.

  7. A method for experimental modal separation

    NASA Technical Reports Server (NTRS)

    Hallauer, W. L., Jr.

    1977-01-01

    A method is described for the numerical simulation of multiple-shaker modal survey testing using simulated experimental data to optimize the shaker force-amplitude distribution for the purpose of isolating individual modes of vibration. Inertia, damping, stiffness, and model data are stored on magnetic disks, available by direct access to the interactive FORTRAN programs which perform all computations required by this relative force amplitude distribution method.

  8. Increasing the computational efficient of digital cross correlation by a vectorization method

    NASA Astrophysics Data System (ADS)

    Chang, Ching-Yuan; Ma, Chien-Ching

    2017-08-01

    This study presents a vectorization method for use in MATLAB programming aimed at increasing the computational efficiency of digital cross correlation in sound and images, resulting in a speedup of 6.387 and 36.044 times compared with performance values obtained from looped expression. This work bridges the gap between matrix operations and loop iteration, preserving flexibility and efficiency in program testing. This paper uses numerical simulation to verify the speedup of the proposed vectorization method as well as experiments to measure the quantitative transient displacement response subjected to dynamic impact loading. The experiment involved the use of a high speed camera as well as a fiber optic system to measure the transient displacement in a cantilever beam under impact from a steel ball. Experimental measurement data obtained from the two methods are in excellent agreement in both the time and frequency domain, with discrepancies of only 0.68%. Numerical and experiment results demonstrate the efficacy of the proposed vectorization method with regard to computational speed in signal processing and high precision in the correlation algorithm. We also present the source code with which to build MATLAB-executable functions on Windows as well as Linux platforms, and provide a series of examples to demonstrate the application of the proposed vectorization method.

  9. [Study on the experimental application of floating-reference method to noninvasive blood glucose sensing].

    PubMed

    Yu, Hui; Qi, Dan; Li, Heng-da; Xu, Ke-xin; Yuan, Wei-jie

    2012-03-01

    Weak signal, low instrument signal-to-noise ratio, continuous variation of human physiological environment and the interferences from other components in blood make it difficult to extract the blood glucose information from near infrared spectrum in noninvasive blood glucose measurement. The floating-reference method, which analyses the effect of glucose concentration variation on absorption coefficient and scattering coefficient, gets spectrum at the reference point and the measurement point where the light intensity variations from absorption and scattering are counteractive and biggest respectively. By using the spectrum from reference point as reference, floating-reference method can reduce the interferences from variation of physiological environment and experiment circumstance. In the present paper, the effectiveness of floating-reference method working on improving prediction precision and stability was assessed through application experiments. The comparison was made between models whose data were processed with and without floating-reference method. The results showed that the root mean square error of prediction (RMSEP) decreased by 34.7% maximally. The floating-reference method could reduce the influences of changes of samples' state, instrument noises and drift, and improve the models' prediction precision and stability effectively.

  10. Quantification of Material Fluorescence and Light Scattering Cross Sections Using Ratiometric Bandwidth-Varied Polarized Resonance Synchronous Spectroscopy.

    PubMed

    Xu, Joanna Xiuzhu; Hu, Juan; Zhang, Dongmao

    2018-05-25

    Presented herein is the ratiometric bandwidth-varied polarized resonance synchronous spectroscopy (BVPRS2) method for quantification of material optical activity spectra. These include the sample light absorption and scattering cross-section spectrum, the scattering depolarization spectrum, and the fluorescence emission cross-section and depolarization spectrum in the wavelength region where the sample both absorbs and emits. This ratiometric BVPRS2 spectroscopic method is a self-contained technique capable of quantitatively decoupling material fluorescence and light scattering signal contribution to its ratiometric BVPRS2 spectra through the linear curve-fitting of the ratiometric BVPRS2 signal as a function of the wavelength bandwidth used in the PRS2 measurements. Example applications of this new spectroscopic method are demonstrated with materials that can be approximated as pure scatterers, simultaneous photon absorbers/emitters, simultaneous photon absorbers/scatterers, and finally simultaneous photon absorbers/scatterers/emitters. Because the only instruments needed for this ratiometric BVPRS2 technique are the conventional UV-vis spectrophotometer and spectrofluorometer, this work should open doors for routine decomposition of material UV-vis extinction spectrum into its absorption and scattering component spectra. The methodology and insights provided in this work should be of broad significance to all chemical research that involves photon/matter interactions.

  11. The Prevalence of Internet Addiction among a Japanese Adolescent Psychiatric Clinic Sample with Autism Spectrum Disorder And/or Attention-Deficit Hyperactivity Disorder: A Cross-Sectional Study

    ERIC Educational Resources Information Center

    So, Ryuhei; Makino, Kazunori; Fujiwara, Masaki; Hirota, Tomoya; Ohcho, Kozo; Ikeda, Shin; Tsubouchi, Shouko; Inagaki, Masatoshi

    2017-01-01

    Extant literature suggests that autism spectrum disorder (ASD) and attention-deficit hyperactivity disorder (ADHD) are risk factors for internet addiction (IA). The present cross-sectional study explored the prevalence of IA among 132 adolescents with ASD and/or ADHD in a Japanese psychiatric clinic using Young's Internet Addiction Test. The…

  12. Experimental and Ab Initio Studies of the HDO Absorption Spectrum in the 13165-13500 1/cm Spectral Region

    NASA Technical Reports Server (NTRS)

    Schwenke, David; Naumenko, Olga; Bertseva, Elena; Campargue, Alain; Arnold, James O. (Technical Monitor)

    2000-01-01

    The HDO absorption spectrum has been recorded in the 13165 - 13500 cm(exp-1) spectral region by Intracavity Laser Absorption Spectroscopy. The spectrum (615 lines), dominated by the 2n2 + 3n3 and n1+3n3 bands was assigned and modeled leading to the derivation of 196 accurate energy levels of the (103) and (023) vibrational states. Finally, 150 of these levels have been reproduced by an effective Hamiltonian involving two vibrational dark states interacting with the (023) and ( 103) bright states. The rms deviation achieved by variation of 28 parameters is 0.05-1 cm, compared to an averaged experimental uncertainty of 0.007-1 cm, indicating the limit of validity of the effective Hamiltonian approach for HDO at high vibrational excitation. The predictions of previous ab initio calculations of the HDO spectrum were extensively used in the assignment process. The particular spectral region under consideration has been used to test and discuss the improvements of new ab initio calculations recently performed on the basis of the same potential energy surface but with an improved dipole moment surface. The improvements concern both the energy levels and the line intensities. In particular, the strong hybrid character of the n1+3n3 band is very well accounted for by the the new ab initio calculations.

  13. Chain of Dirac spectrum loops of nodes in crossed magnetic and electric fields

    NASA Astrophysics Data System (ADS)

    Gavrilenko, V. I.; Perov, A. A.; Protogenov, A. P.; Turkevich, R. V.; Chulkov, E. V.

    2018-03-01

    New semimetal systems along with Dirac and Weyl semimetals contain compounds, in which the energy of electron excitations vanishes not at nodes but on lines. A higher dimension of the degeneracy space changes many physical properties. We consider a chain of loops consisting of Dirac spectrum nodes in nonsymmorphic crystalline compounds placed in external mutually perpendicular magnetic and electric fields. An exact solution for the spectrum is obtained under the assumption of particle-hole symmetry. An analysis of this spectrum shows the existence of a line of critical values of the magnetic and electric fields, at which a quantum phase transition to a gapless state occurs. The use of the obtained spectrum allows also predicting a number of new oscillation and resonance effects in the field of magneto-optical phenomena.

  14. Unlocking Sensitivity for Visibility-based Estimators of the 21 cm Reionization Power Spectrum

    NASA Astrophysics Data System (ADS)

    Zhang, Yunfan Gerry; Liu, Adrian; Parsons, Aaron R.

    2018-01-01

    Radio interferometers designed to measure the cosmological 21 cm power spectrum require high sensitivity. Several modern low-frequency interferometers feature drift-scan antennas placed on a regular grid to maximize the number of instantaneously coherent (redundant) measurements. However, even for such maximum-redundancy arrays, significant sensitivity comes through partial coherence between baselines. Current visibility-based power-spectrum pipelines, though shown to ease control of systematics, lack the ability to make use of this partial redundancy. We introduce a method to leverage partial redundancy in such power-spectrum pipelines for drift-scan arrays. Our method cross-multiplies baseline pairs at a time lag and quantifies the sensitivity contributions of each pair of baselines. Using the configurations and beams of the 128-element Donald C. Backer Precision Array for Probing the Epoch of Reionization (PAPER-128) and staged deployments of the Hydrogen Epoch of Reionization Array, we illustrate how our method applies to different arrays and predict the sensitivity improvements associated with pairing partially coherent baselines. As the number of antennas increases, we find partial redundancy to be of increasing importance in unlocking the full sensitivity of upcoming arrays.

  15. Injection Locking Techniques for Spectrum Analysis

    NASA Astrophysics Data System (ADS)

    Gathma, Timothy D.; Buckwalter, James F.

    2011-04-01

    Wideband spectrum analysis supports future communication systems that reconfigure and adapt to the capacity of the spectral environment. While test equipment manufacturers offer wideband spectrum analyzers with excellent sensitivity and resolution, these spectrum analyzers typically cannot offer acceptable size, weight, and power (SWAP). CMOS integrated circuits offer the potential to fully integrate spectrum analysis capability with analog front-end circuitry and digital signal processing on a single chip. Unfortunately, CMOS lacks high-Q passives and wideband resonator tunability that is necessary for heterodyne implementations of spectrum analyzers. As an alternative to the heterodyne receiver architectures, two nonlinear methods for performing wideband, low-power spectrum analysis are presented. The first method involves injecting the spectrum of interest into an array of injection-locked oscillators. The second method employs the closed loop dynamics of both injection locking and phase locking to independently estimate the injected frequency and power.

  16. Method and apparatus for frequency spectrum analysis

    NASA Technical Reports Server (NTRS)

    Cole, Steven W. (Inventor)

    1992-01-01

    A method for frequency spectrum analysis of an unknown signal in real-time is discussed. The method is based upon integration of 1-bit samples of signal voltage amplitude corresponding to sine or cosine phases of a controlled center frequency clock which is changed after each integration interval to sweep the frequency range of interest in steps. Integration of samples during each interval is carried out over a number of cycles of the center frequency clock spanning a number of cycles of an input signal to be analyzed. The invention may be used to detect the frequency of at least two signals simultaneously. By using a reference signal of known frequency and voltage amplitude (added to the two signals for parallel processing in the same way, but in a different channel with a sampling at the known frequency and phases of the reference signal), the absolute voltage amplitude of the other two signals may be determined by squaring the sine and cosine integrals of each channel and summing the squares to obtain relative power measurements in all three channels and, from the known voltage amplitude of the reference signal, obtaining an absolute voltage measurement for the other two signals by multiplying the known voltage of the reference signal with the ratio of the relative power of each of the other two signals to the relative power of the reference signal.

  17. Experimental Observation of Bohr’s Nonlinear Fluidic Surface Oscillation

    PubMed Central

    Moon, Songky; Shin, Younghoon; Kwak, Hojeong; Yang, Juhee; Lee, Sang-Bum; Kim, Soyun; An, Kyungwon

    2016-01-01

    Niels Bohr in the early stage of his career developed a nonlinear theory of fluidic surface oscillation in order to study surface tension of liquids. His theory includes the nonlinear interaction between multipolar surface oscillation modes, surpassing the linear theory of Rayleigh and Lamb. It predicts a specific normalized magnitude of 0.416η2 for an octapolar component, nonlinearly induced by a quadrupolar one with a magnitude of η much less than unity. No experimental confirmation on this prediction has been reported. Nonetheless, accurate determination of multipolar components is important as in optical fiber spinning, film blowing and recently in optofluidic microcavities for ray and wave chaos studies and photonics applications. Here, we report experimental verification of his theory. By using optical forward diffraction, we measured the cross-sectional boundary profiles at extreme positions of a surface-oscillating liquid column ejected from a deformed microscopic orifice. We obtained a coefficient of 0.42 ± 0.08 consistently under various experimental conditions. We also measured the resonance mode spectrum of a two-dimensional cavity formed by the cross-sectional segment of the liquid jet. The observed spectra agree well with wave calculations assuming a coefficient of 0.414 ± 0.011. Our measurements establish the first experimental observation of Bohr’s hydrodynamic theory. PMID:26803911

  18. Method for Making Measurements of the Post-Combustion Residence Time in a Gas Turbine Engine

    NASA Technical Reports Server (NTRS)

    Miles, Jeffrey H (Inventor)

    2015-01-01

    A system and method of measuring a residence time in a gas-turbine engine is provided, whereby the method includes placing pressure sensors at a combustor entrance and at a turbine exit of the gas-turbine engine and measuring a combustor pressure at the combustor entrance and a turbine exit pressure at the turbine exit. The method further includes computing cross-spectrum functions between a combustor pressure sensor signal from the measured combustor pressure and a turbine exit pressure sensor signal from the measured turbine exit pressure, applying a linear curve fit to the cross-spectrum functions, and computing a post-combustion residence time from the linear curve fit.

  19. Non-perturbative methodologies for low-dimensional strongly-correlated systems: From non-Abelian bosonization to truncated spectrum methods

    DOE PAGES

    James, Andrew J. A.; Konik, Robert M.; Lecheminant, Philippe; ...

    2018-02-26

    We review two important non-perturbative approaches for extracting the physics of low-dimensional strongly correlated quantum systems. Firstly, we start by providing a comprehensive review of non-Abelian bosonization. This includes an introduction to the basic elements of conformal field theory as applied to systems with a current algebra, and we orient the reader by presenting a number of applications of non-Abelian bosonization to models with large symmetries. We then tie this technique into recent advances in the ability of cold atomic systems to realize complex symme-tries. Secondly, we discuss truncated spectrum methods for the numerical study of systems in one andmore » two dimensions. For one-dimensional systems we provide the reader with considerable insight into the methodology by reviewing canonical applications of the technique to the Ising model (and its variants) and the sine-Gordon model. Following this we review recent work on the development of renormalization groups, both numerical and analytical, that alleviate the effects of truncating the spectrum. Using these technologies, we consider a number of applications to one-dimensional systems: properties of carbon nanotubes, quenches in the Lieb-Liniger model, 1+1D quantum chro-modynamics, as well as Landau-Ginzburg theories. In the final part we move our attention to consider truncated spectrum methods applied to two-dimensional systems. This involves combining truncated spectrum methods with matrix product state algorithms. Lastly, we describe applications of this method to two-dimensional systems of free fermions and the quantum Ising model, including their non-equilibrium dynamics.« less

  20. Non-perturbative methodologies for low-dimensional strongly-correlated systems: From non-Abelian bosonization to truncated spectrum methods

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    James, Andrew J. A.; Konik, Robert M.; Lecheminant, Philippe

    We review two important non-perturbative approaches for extracting the physics of low-dimensional strongly correlated quantum systems. Firstly, we start by providing a comprehensive review of non-Abelian bosonization. This includes an introduction to the basic elements of conformal field theory as applied to systems with a current algebra, and we orient the reader by presenting a number of applications of non-Abelian bosonization to models with large symmetries. We then tie this technique into recent advances in the ability of cold atomic systems to realize complex symme-tries. Secondly, we discuss truncated spectrum methods for the numerical study of systems in one andmore » two dimensions. For one-dimensional systems we provide the reader with considerable insight into the methodology by reviewing canonical applications of the technique to the Ising model (and its variants) and the sine-Gordon model. Following this we review recent work on the development of renormalization groups, both numerical and analytical, that alleviate the effects of truncating the spectrum. Using these technologies, we consider a number of applications to one-dimensional systems: properties of carbon nanotubes, quenches in the Lieb-Liniger model, 1+1D quantum chro-modynamics, as well as Landau-Ginzburg theories. In the final part we move our attention to consider truncated spectrum methods applied to two-dimensional systems. This involves combining truncated spectrum methods with matrix product state algorithms. Lastly, we describe applications of this method to two-dimensional systems of free fermions and the quantum Ising model, including their non-equilibrium dynamics.« less

  1. Application of a spectrum standardization method for carbon analysis in coal using laser-induced breakdown spectroscopy (LIBS).

    PubMed

    Li, Xiongwei; Wang, Zhe; Fu, Yangting; Li, Zheng; Liu, Jianmin; Ni, Weidou

    2014-01-01

    Measurement of coal carbon content using laser-induced breakdown spectroscopy (LIBS) is limited by its low precision and accuracy. A modified spectrum standardization method was proposed to achieve both reproducible and accurate results for the quantitative analysis of carbon content in coal using LIBS. The proposed method used the molecular emissions of diatomic carbon (C2) and cyanide (CN) to compensate for the diminution of atomic carbon emissions in high volatile content coal samples caused by matrix effect. The compensated carbon line intensities were further converted into an assumed standard state with standard plasma temperature, electron number density, and total number density of carbon, under which the carbon line intensity is proportional to its concentration in the coal samples. To obtain better compensation for fluctuations of total carbon number density, the segmental spectral area was used and an iterative algorithm was applied that is different from our previous spectrum standardization calculations. The modified spectrum standardization model was applied to the measurement of carbon content in 24 bituminous coal samples. The results demonstrate that the proposed method has superior performance over the generally applied normalization methods. The average relative standard deviation was 3.21%, the coefficient of determination was 0.90, the root mean square error of prediction was 2.24%, and the average maximum relative error for the modified model was 12.18%, showing an overall improvement over the corresponding values for the normalization with segmental spectrum area, 6.00%, 0.75, 3.77%, and 15.40%, respectively.

  2. Non-perturbative methodologies for low-dimensional strongly-correlated systems: From non-Abelian bosonization to truncated spectrum methods

    NASA Astrophysics Data System (ADS)

    James, Andrew J. A.; Konik, Robert M.; Lecheminant, Philippe; Robinson, Neil J.; Tsvelik, Alexei M.

    2018-04-01

    We review two important non-perturbative approaches for extracting the physics of low-dimensional strongly correlated quantum systems. Firstly, we start by providing a comprehensive review of non-Abelian bosonization. This includes an introduction to the basic elements of conformal field theory as applied to systems with a current algebra, and we orient the reader by presenting a number of applications of non-Abelian bosonization to models with large symmetries. We then tie this technique into recent advances in the ability of cold atomic systems to realize complex symmetries. Secondly, we discuss truncated spectrum methods for the numerical study of systems in one and two dimensions. For one-dimensional systems we provide the reader with considerable insight into the methodology by reviewing canonical applications of the technique to the Ising model (and its variants) and the sine-Gordon model. Following this we review recent work on the development of renormalization groups, both numerical and analytical, that alleviate the effects of truncating the spectrum. Using these technologies, we consider a number of applications to one-dimensional systems: properties of carbon nanotubes, quenches in the Lieb–Liniger model, 1  +  1D quantum chromodynamics, as well as Landau–Ginzburg theories. In the final part we move our attention to consider truncated spectrum methods applied to two-dimensional systems. This involves combining truncated spectrum methods with matrix product state algorithms. We describe applications of this method to two-dimensional systems of free fermions and the quantum Ising model, including their non-equilibrium dynamics.

  3. Non-perturbative methodologies for low-dimensional strongly-correlated systems: From non-Abelian bosonization to truncated spectrum methods.

    PubMed

    James, Andrew J A; Konik, Robert M; Lecheminant, Philippe; Robinson, Neil J; Tsvelik, Alexei M

    2018-02-26

    We review two important non-perturbative approaches for extracting the physics of low-dimensional strongly correlated quantum systems. Firstly, we start by providing a comprehensive review of non-Abelian bosonization. This includes an introduction to the basic elements of conformal field theory as applied to systems with a current algebra, and we orient the reader by presenting a number of applications of non-Abelian bosonization to models with large symmetries. We then tie this technique into recent advances in the ability of cold atomic systems to realize complex symmetries. Secondly, we discuss truncated spectrum methods for the numerical study of systems in one and two dimensions. For one-dimensional systems we provide the reader with considerable insight into the methodology by reviewing canonical applications of the technique to the Ising model (and its variants) and the sine-Gordon model. Following this we review recent work on the development of renormalization groups, both numerical and analytical, that alleviate the effects of truncating the spectrum. Using these technologies, we consider a number of applications to one-dimensional systems: properties of carbon nanotubes, quenches in the Lieb-Liniger model, 1  +  1D quantum chromodynamics, as well as Landau-Ginzburg theories. In the final part we move our attention to consider truncated spectrum methods applied to two-dimensional systems. This involves combining truncated spectrum methods with matrix product state algorithms. We describe applications of this method to two-dimensional systems of free fermions and the quantum Ising model, including their non-equilibrium dynamics.

  4. Theoretical investigation on the soft X-ray spectrum of the highly-charged W54+ ions

    NASA Astrophysics Data System (ADS)

    Ding, Xiaobin; Yang, Jiaoxia; Koike, Fumihiro; Murakami, Izumi; Kato, Daiji; Sakaue, Hiroyuki A.; Nakamura, Nobuyuki; Dong, Chenzhong

    2018-01-01

    A detailed level collisional-radiative model of the E1 transition spectrum of Ca-like W54+ ion has been constructed. All the necessary atomic data has been calculated by relativistic configuration interaction (RCI) method with the implementation of Flexible Atomic Code (FAC). The results are in reasonable agreement with the available experimental and previous theoretical data. The synthetic spectrum has explained the EBIT spectrum in 29.5-32.5 Å , while several new strong transitions has been predicted to be observed in 18.5-19.6 Å for the future EBIT experiment with electron density ne = 1012 cm-3 and electron beam energy Ee = 18.2 keV.

  5. Microchannel plate cross-talk mitigation for spatial autocorrelation measurements

    NASA Astrophysics Data System (ADS)

    Lipka, Michał; Parniak, Michał; Wasilewski, Wojciech

    2018-05-01

    Microchannel plates (MCP) are the basis for many spatially resolved single-particle detectors such as ICCD or I-sCMOS cameras employing image intensifiers (II), MCPs with delay-line anodes for the detection of cold gas particles or Cherenkov radiation detectors. However, the spatial characterization provided by an MCP is severely limited by cross-talk between its microchannels, rendering MCP and II ill-suited for autocorrelation measurements. Here, we present a cross-talk subtraction method experimentally exemplified for an I-sCMOS based measurement of pseudo-thermal light second-order intensity autocorrelation function at the single-photon level. The method merely requires a dark counts measurement for calibration. A reference cross-correlation measurement certifies the cross-talk subtraction. While remaining universal for MCP applications, the presented cross-talk subtraction, in particular, simplifies quantum optical setups. With the possibility of autocorrelation measurements, the signal needs no longer to be divided into two camera regions for a cross-correlation measurement, reducing the experimental setup complexity and increasing at least twofold the simultaneously employable camera sensor region.

  6. Novel Method for Vessel Cross-Sectional Shear Wave Imaging.

    PubMed

    He, Qiong; Li, Guo-Yang; Lee, Fu-Feng; Zhang, Qihao; Cao, Yanping; Luo, Jianwen

    2017-07-01

    Many studies have investigated the applications of shear wave imaging (SWI) to vascular elastography, mainly on the longitudinal section of vessels. It is important to investigate SWI in the arterial cross section when evaluating anisotropy of the vessel wall or complete plaque composition. Here, we proposed a novel method based on the coordinate transformation and directional filter in the polar coordinate system to achieve vessel cross-sectional shear wave imaging. In particular, ultrasound radiofrequency data were transformed from the Cartesian to the polar coordinate system; the radial displacements were then estimated directly. Directional filtering was performed along the circumferential direction to filter out the reflected waves. The feasibility of the proposed vessel cross-sectional shear wave imaging method was investigated through phantom experiments and ex vivo and in vivo studies. Our results indicated that the dispersion relation of the shear wave (i.e., the guided circumferential wave) within the vessel can be measured via the present method, and the elastic modulus of the vessel can be determined. Copyright © 2017 World Federation for Ultrasound in Medicine & Biology. Published by Elsevier Inc. All rights reserved.

  7. Thin-film thickness measurement method based on the reflection interference spectrum

    NASA Astrophysics Data System (ADS)

    Jiang, Li Na; Feng, Gao; Shu, Zhang

    2012-09-01

    A method is introduced to measure the thin-film thickness, refractive index and other optical constants. When a beam of white light shines on the surface of the sample film, the reflected lights of the upper and the lower surface of the thin-film will interfere with each other and reflectivity of the film will fluctuate with light wavelength. The reflection interference spectrum is analyzed with software according to the database, while the thickness and refractive index of the thin-film is measured.

  8. The Effectiveness of Theory of Mind Training On the Social Skills of Children with High Functioning Autism Spectrum Disorders.

    PubMed

    Adibsereshki, Narges; Nesayan, Abbas; Asadi Gandomani, Roghayeh; Karimlou, Masood

    2015-01-01

    Children with Autism Spectrum Disorders (ASD) tend to have problems in establishing and maintaining their social relationships. Some professionals believe this social impairment is the result of deficit in Theory of Mind (ToM). This study was conducted to explore the effectiveness of ToM training on such children. A quasi-experimental method, pre- test, post-test with control group was used. The sample included of 12 girls and 12 boys with High Functioning Autism Spectrum Disorders (HFASD). Two instruments were used as follows: the Theory of Mind test and the social skills questionnaire (1). The samples were randomly placed in the experimental and control groups. The experimental groups had 15 sessions of ToM training and the control groups had just regular school program. The data were analyzed by Kolmogorov-Smirnov, independent t- and twoway- variance tests. The scores for social skills in the experimental group were significantly more than the control group. ToM training might improve the social skills of children with autism spectrum disorders.

  9. CrossLink: a novel method for cross-condition classification of cancer subtypes.

    PubMed

    Ma, Chifeng; Sastry, Konduru S; Flore, Mario; Gehani, Salah; Al-Bozom, Issam; Feng, Yusheng; Serpedin, Erchin; Chouchane, Lotfi; Chen, Yidong; Huang, Yufei

    2016-08-22

    We considered the prediction of cancer classes (e.g. subtypes) using patient gene expression profiles that contain both systematic and condition-specific biases when compared with the training reference dataset. The conventional normalization-based approaches cannot guarantee that the gene signatures in the reference and prediction datasets always have the same distribution for all different conditions as the class-specific gene signatures change with the condition. Therefore, the trained classifier would work well under one condition but not under another. To address the problem of current normalization approaches, we propose a novel algorithm called CrossLink (CL). CL recognizes that there is no universal, condition-independent normalization mapping of signatures. In contrast, it exploits the fact that the signature is unique to its associated class under any condition and thus employs an unsupervised clustering algorithm to discover this unique signature. We assessed the performance of CL for cross-condition predictions of PAM50 subtypes of breast cancer by using a simulated dataset modeled after TCGA BRCA tumor samples with a cross-validation scheme, and datasets with known and unknown PAM50 classification. CL achieved prediction accuracy >73 %, highest among other methods we evaluated. We also applied the algorithm to a set of breast cancer tumors derived from Arabic population to assign a PAM50 classification to each tumor based on their gene expression profiles. A novel algorithm CrossLink for cross-condition prediction of cancer classes was proposed. In all test datasets, CL showed robust and consistent improvement in prediction performance over other state-of-the-art normalization and classification algorithms.

  10. Laser Induced Optical Pumping Measurements of Cross Sections for Fine and Hyperfine Structure Transitions in Sodium Induced by Collisions with Helium Argon Atoms

    NASA Technical Reports Server (NTRS)

    Dobson, Chris C.; Sung, C. C.

    1998-01-01

    Optical pumping of the ground states of sodium can radically alter the shape of the laser induced fluorescence excitation spectrum, complicating measurements of temperature, pressure, etc., which are based on these spectra. Modeling of the fluorescence using rate equations for the eight hyperfine states of the sodium D manifolds can be used to quantify the contribution to the ground state pumping of transitions among the hyperfine excited states induced by collisions with buffer gas atoms. This model is used here to determine, from the shape of experimental spectra, cross sections for (Delta)F transitions of the P(sub 3/2) state induced by collisions with helium and argon atoms, for a range of values assumed for the P(sub 1/2), (Delta)F cross sections. The hyperfine cross sections measured using this method, which is thought to be novel, are compared with cross sections for transitions involving polarized magnetic substates, m(sub F), measured previously using polarization sensitive absorption. Also, fine structure transition ((Delta)J) cross sections were measured in the pumped vapor, giving agreement with previous measurements made in the absence of pumping.

  11. Cross-Validation of Survival Bump Hunting by Recursive Peeling Methods.

    PubMed

    Dazard, Jean-Eudes; Choe, Michael; LeBlanc, Michael; Rao, J Sunil

    2014-08-01

    We introduce a survival/risk bump hunting framework to build a bump hunting model with a possibly censored time-to-event type of response and to validate model estimates. First, we describe the use of adequate survival peeling criteria to build a survival/risk bump hunting model based on recursive peeling methods. Our method called "Patient Recursive Survival Peeling" is a rule-induction method that makes use of specific peeling criteria such as hazard ratio or log-rank statistics. Second, to validate our model estimates and improve survival prediction accuracy, we describe a resampling-based validation technique specifically designed for the joint task of decision rule making by recursive peeling (i.e. decision-box) and survival estimation. This alternative technique, called "combined" cross-validation is done by combining test samples over the cross-validation loops, a design allowing for bump hunting by recursive peeling in a survival setting. We provide empirical results showing the importance of cross-validation and replication.

  12. Cross-Validation of Survival Bump Hunting by Recursive Peeling Methods

    PubMed Central

    Dazard, Jean-Eudes; Choe, Michael; LeBlanc, Michael; Rao, J. Sunil

    2015-01-01

    We introduce a survival/risk bump hunting framework to build a bump hunting model with a possibly censored time-to-event type of response and to validate model estimates. First, we describe the use of adequate survival peeling criteria to build a survival/risk bump hunting model based on recursive peeling methods. Our method called “Patient Recursive Survival Peeling” is a rule-induction method that makes use of specific peeling criteria such as hazard ratio or log-rank statistics. Second, to validate our model estimates and improve survival prediction accuracy, we describe a resampling-based validation technique specifically designed for the joint task of decision rule making by recursive peeling (i.e. decision-box) and survival estimation. This alternative technique, called “combined” cross-validation is done by combining test samples over the cross-validation loops, a design allowing for bump hunting by recursive peeling in a survival setting. We provide empirical results showing the importance of cross-validation and replication. PMID:26997922

  13. Broad photoelectron spectrum and lowered electron affinity due to hydrogen in ZnOH: A joint experimental and theoretical study

    NASA Astrophysics Data System (ADS)

    Iordanov, I.; Gunaratne, K. D. D.; Harmon, C. L.; Sofo, J. O.; Castleman, A. W.

    2012-06-01

    We report a combined experimental and theoretical photoelectron spectroscopy study of ZnOH-. We find that the electron binding energy spectrum of ZnOH- reveals a broad and featureless peak between 1.4 and 2.4 eV in energy. The vertical detachment energy (VDE) of ZnOH- is determined to be 1.78 eV, which is lower than the 2.08 eV VDE of ZnO-. Our theoretical calculations match the VDE of ZnOH- accurately, but we find that the broadness of the peak cannot be explained by rotational or vibrational state excitation. The broadness of this peak is in strong contrast to the narrow and easily understood first peak of the ZnO spectrum, which features a well-resolved vibrational progression that can be readily explained by calculating the Franck-Condon transition factors. This study provides spectroscopic evidence of the effect of hydrogen on diatomic ZnO.

  14. Broad photoelectron spectrum and lowered electron affinity due to hydrogen in ZnOH: a joint experimental and theoretical study.

    PubMed

    Iordanov, I; Gunaratne, K D D; Harmon, C L; Sofo, J O; Castleman, A W

    2012-06-07

    We report a combined experimental and theoretical photoelectron spectroscopy study of ZnOH(-). We find that the electron binding energy spectrum of ZnOH(-) reveals a broad and featureless peak between 1.4 and 2.4 eV in energy. The vertical detachment energy (VDE) of ZnOH(-) is determined to be 1.78 eV, which is lower than the 2.08 eV VDE of ZnO(-). Our theoretical calculations match the VDE of ZnOH(-) accurately, but we find that the broadness of the peak cannot be explained by rotational or vibrational state excitation. The broadness of this peak is in strong contrast to the narrow and easily understood first peak of the ZnO spectrum, which features a well-resolved vibrational progression that can be readily explained by calculating the Franck-Condon transition factors. This study provides spectroscopic evidence of the effect of hydrogen on diatomic ZnO.

  15. Doppler broadening of neutron-induced resonances using ab initio phonon spectrum

    NASA Astrophysics Data System (ADS)

    Noguere, G.; Maldonado, P.; De Saint Jean, C.

    2018-05-01

    Neutron resonances observed in neutron cross section data can only be compared with their theoretical analogues after a correct broadening of the resonance widths. This broadening is usually carried out by two different theoretical models, namely the Free Gas Model and the Crystal Lattice Model, which, however, are only applicable under certain assumptions. Here, we use neutron transmission experiments on UO2 samples at T=23.7 K and T=293.7 K, to investigate the limitations of these models when an ab initio phonon spectrum is introduced in the calculations. Comparisons of the experimental and theoretical transmissions highlight the underestimation of the energy transferred at low temperature and its impact on the accurate determination of the radiation widths Γ_{γ_{λ}} of the 238U resonances λ. The observed deficiency of the model represents an experimental evidence that the Debye-Waller factor is not correctly calculated at low temperature near the Neel temperature ( TN=30.8 K).

  16. Experimental and theoretical double differential cross sections for electron impact ionization of methane

    NASA Astrophysics Data System (ADS)

    Yavuz, Murat; Ozer, Zehra Nur; Ulu, Melike; Champion, Christophe; Dogan, Mevlut

    2016-04-01

    Experimental and theoretical double differential cross sections (DDCSs) for electron-induced ionization of methane (CH4) are here reported for primary energies ranging from 50 eV to 350 eV and ejection angles between 25° and 130°. Experimental DDCSs are compared with theoretical predictions performed within the first Born approximation Coulomb wave. In this model, the initial molecular state is described by using single center wave functions, the incident (scattered) electron being described by a plane wave, while a Coulomb wave function is used for modeling the secondary ejected electron. A fairly good agreement may be observed between theory and experiment with nevertheless an expected systematic overestimation of the theory at low-ejection energies (<50 eV).

  17. Spectrum-based method to generate good decoy libraries for spectral library searching in peptide identifications.

    PubMed

    Cheng, Chia-Ying; Tsai, Chia-Feng; Chen, Yu-Ju; Sung, Ting-Yi; Hsu, Wen-Lian

    2013-05-03

    As spectral library searching has received increasing attention for peptide identification, constructing good decoy spectra from the target spectra is the key to correctly estimating the false discovery rate in searching against the concatenated target-decoy spectral library. Several methods have been proposed to construct decoy spectral libraries. Most of them construct decoy peptide sequences and then generate theoretical spectra accordingly. In this paper, we propose a method, called precursor-swap, which directly constructs decoy spectral libraries directly at the "spectrum level" without generating decoy peptide sequences by swapping the precursors of two spectra selected according to a very simple rule. Our spectrum-based method does not require additional efforts to deal with ion types (e.g., a, b or c ions), fragment mechanism (e.g., CID, or ETD), or unannotated peaks, but preserves many spectral properties. The precursor-swap method is evaluated on different spectral libraries and the results of obtained decoy ratios show that it is comparable to other methods. Notably, it is efficient in time and memory usage for constructing decoy libraries. A software tool called Precursor-Swap-Decoy-Generation (PSDG) is publicly available for download at http://ms.iis.sinica.edu.tw/PSDG/.

  18. [Study on phase correction method of spatial heterodyne spectrometer].

    PubMed

    Wang, Xin-Qiang; Ye, Song; Zhang, Li-Juan; Xiong, Wei

    2013-05-01

    Phase distortion exists in collected interferogram because of a variety of measure reasons when spatial heterodyne spectrometers are used in practice. So an improved phase correction method is presented. The phase curve of interferogram was obtained through Fourier inverse transform to extract single side transform spectrum, based on which, the phase distortions were attained by fitting phase slope, so were the phase correction functions, and the convolution was processed between transform spectrum and phase correction function to implement spectrum phase correction. The method was applied to phase correction of actually measured monochromatic spectrum and emulational water vapor spectrum. Experimental results show that the low-frequency false signals in monochromatic spectrum fringe would be eliminated effectively to increase the periodicity and the symmetry of interferogram, in addition when the continuous spectrum imposed phase error was corrected, the standard deviation between it and the original spectrum would be reduced form 0.47 to 0.20, and thus the accuracy of spectrum could be improved.

  19. Stellar neutron capture cross sections of 41K and 45Sc

    NASA Astrophysics Data System (ADS)

    Heil, M.; Plag, R.; Uberseder, E.; Bisterzo, S.; Käppeler, F.; Mengoni, A.; Pignatari, M.

    2016-05-01

    The neutron capture cross sections of light nuclei (A <56 ) are important for s -process scenarios since they act as neutron poisons. We report on measurements of the neutron capture cross sections of 41K and 45Sc, which were performed at the Karlsruhe 3.7 MV Van de Graaff accelerator via the activation method in a quasistellar neutron spectrum corresponding to a thermal energy of k T =25 keV. Systematic effects were controlled by repeated irradiations, resulting in overall uncertainties of less than 3%. The measured spectrum-averaged data have been used to normalize the energy-dependent (n ,γ ) cross sections from the main data libraries JEFF-3.2, JENDL-4.0, and ENDF/B-VII.1, and a set of Maxwellian averaged cross sections was calculated for improving the s -process nucleosynthesis yields in AGB stars and in massive stars. At k T =30 keV, the new Maxwellian averaged cross sections of 41K and 45Sc are 19.2 ±0.6 mb and 61.3 ±1.8 mb, respectively. Both values are 20% lower than previously recommended. The effect of neutron poisons is discussed for nuclei with A <56 in general and for the investigated isotopes in particular.

  20. An evaluation method for nanoscale wrinkle

    NASA Astrophysics Data System (ADS)

    Liu, Y. P.; Wang, C. G.; Zhang, L. M.; Tan, H. F.

    2016-06-01

    In this paper, a spectrum-based wrinkling analysis method via two-dimensional Fourier transformation is proposed aiming to solve the difficulty of nanoscale wrinkle evaluation. It evaluates the wrinkle characteristics including wrinkling wavelength and direction simply using a single wrinkling image. Based on this method, the evaluation results of nanoscale wrinkle characteristics show agreement with the open experimental results within an error of 6%. It is also verified to be appropriate for the macro wrinkle evaluation without scale limitations. The spectrum-based wrinkling analysis is an effective method for nanoscale evaluation, which contributes to reveal the mechanism of nanoscale wrinkling.

  1. A fast quadrature-based numerical method for the continuous spectrum biphasic poroviscoelastic model of articular cartilage.

    PubMed

    Stuebner, Michael; Haider, Mansoor A

    2010-06-18

    A new and efficient method for numerical solution of the continuous spectrum biphasic poroviscoelastic (BPVE) model of articular cartilage is presented. Development of the method is based on a composite Gauss-Legendre quadrature approximation of the continuous spectrum relaxation function that leads to an exponential series representation. The separability property of the exponential terms in the series is exploited to develop a numerical scheme that can be reduced to an update rule requiring retention of the strain history at only the previous time step. The cost of the resulting temporal discretization scheme is O(N) for N time steps. Application and calibration of the method is illustrated in the context of a finite difference solution of the one-dimensional confined compression BPVE stress-relaxation problem. Accuracy of the numerical method is demonstrated by comparison to a theoretical Laplace transform solution for a range of viscoelastic relaxation times that are representative of articular cartilage. Copyright (c) 2010 Elsevier Ltd. All rights reserved.

  2. Energy spectrum and transport in narrow HgTe quantum wells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Germanenko, A. V., E-mail: Alexander.Germanenko@urfu.ru; Minkov, G. M.; Rut, O. E.

    The results of an experimental study of the transport phenomena and the hole energy spectrum of two-dimensional systems in the quantum well of HgTe zero-gap semiconductor with normal arrangement of quantum-confinement subbands are presented. An analysis of the experimental data allows us to reconstruct the carrier energy spectrum near the hole subband extrema. The results are interpreted using the standard kP model.

  3. On the nature of solvatochromic effect: The riboflavin absorption spectrum as a case study

    NASA Astrophysics Data System (ADS)

    Daidone, Isabella; Amadei, Andrea; Aschi, Massimiliano; Zanetti-Polzi, Laura

    2018-03-01

    We present here the calculation of the absorption spectrum of riboflavin in acetonitrile and dimethyl sulfoxide using a hybrid quantum/classical approach, namely the perturbed matrix method, based on quantum mechanical calculations and molecular dynamics simulations. The calculated spectra are compared to the absorption spectrum of riboflavin previously calculated in water and to the experimental spectra obtained in all three solvents. The experimentally observed variations in the absorption spectra upon change of the solvent environment are well reproduced by the calculated spectra. In addition, the nature of the excited states of riboflavin interacting with different solvents is investigated, showing that environment effects determine a recombination of the gas-phase electronic states and that such a recombination is strongly affected by the polarity of the solvent inducing significant changes in the absorption spectra.

  4. Measurement of the differential and total cross sections of the γ d → K 0 Λ ( p ) reaction within the resonance region

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Compton, N.; Taylor, C. E.; Hicks, K.

    We report the first measurement of differential and total cross sections for the gamma d -> K-0 Lambda(p) reaction, using data from the CLAS detector at the Thomas Jefferson National Accelerator Facility. Data collected during two separate experimental runs were studied with photon-energy coverage 0.8-3.6 GeV and 0.5-2.6 GeV, respectively. The two measurements are consistent giving confidence in the method and determination of systematic uncertainties. The cross sections are compared with predictions from the KAON-MAID theoretical model (without kaon exchange), which deviate from the data at higher W and at forward kaon angles. These data, along with previously published crossmore » sections for K+Lambda photoproduction, provide essential constraints on the nucleon resonance spectrum. A first partial wave analysis was performed that describes the data without the introduction of new resonances.« less

  5. Experimental Methods in Reduced-gravity Soldering Research

    NASA Technical Reports Server (NTRS)

    Pettegrew, Richard D.; Struk, Peter M.; Watson, John K.; Haylett, Daniel R.

    2002-01-01

    The National Center for Microgravity Research, NASA Glenn Research Center, and NASA Johnson Space Center are conducting an experimental program to explore the influence of reduced gravity environments on the soldering process. An improved understanding of the effects of the acceleration environment is important to application of soldering during current and future human space missions. Solder joint characteristics that are being considered include solder fillet geometry, porosity, and microstructural features. Both through-hole and surface mounted devices are being investigated. This paper focuses on the experimental methodology employed in this project and the results of macroscopic sample examination. The specific soldering process, sample configurations, materials, and equipment were selected to be consistent with those currently on-orbit. Other apparatus was incorporated to meet requirements imposed by operation onboard NASA's KC-135 research aircraft and instrumentation was provided to monitor both the atmospheric and acceleration environments. The contingent of test operators was selected to include both highly skilled technicians and less skilled individuals to provide a population cross-section that would be representative of the skill mix that might be encountered in space mission crews.

  6. Detecting level crossings without solving the Hamiltonian. I. Mathematical background

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bhattacharya, M.; Raman, C.

    2007-03-15

    When the parameters of a physical system are varied, the eigenvalues of observables can undergo crossings and avoided crossings among themselves. It is relevant to be aware of such points since important physical processes often occur there. In a recent paper [M. Bhattacharya and C. Raman, Phys. Rev. Lett. 97, 140405 (2006)] we introduced a powerful algebraic solution to the problem of finding (avoided) crossings in atomic and molecular spectra. This was done via a mapping to the problem of locating the roots of a polynomial in the parameters of interest. In this article we describe our method in detail.more » Given a physical system that can be represented by a matrix, we show how to find a bound on the number of (avoided) crossings in its spectrum, the scaling of this bound with the size of the Hilbert space and the parametric dependencies of the Hamiltonian, the interval in which the (avoided) crossings all lie in parameter space, the number of crossings at any given parameter value, and the minimum separation between the (avoided) crossings. We also show how the crossings can reveal the symmetries of the physical system, how (avoided) crossings can always be found without solving for the eigenvalues, how they may sometimes be found even in case the Hamiltonian is not fully known, and how crossings may be visualized in a more direct way than displayed by the spectrum. In the accompanying paper [M. Bhattacharya and C. Raman, Phys. Rev. A 75, 033406 (2007)] we detail the application of these techniques to atoms and molecules.« less

  7. Experimental examination of ultraviolet Raman cross sections of chemical warfare agent simulants

    NASA Astrophysics Data System (ADS)

    Kullander, F.; Landström, L.; Lundén, H.; Wästerby, Pär.

    2015-05-01

    Laser induced Raman scattering from the commonly used chemical warfare agent simulants dimethyl sulfoxide, tributyl phosphate, triethyl phosphonoacetate was measured at excitation wavelengths ranging from 210 to 410 nm using a pulsed laser based spectrometer system with a probing distance of 1.4 m and with a field of view on the target of less than 1mm. For the purpose of comparison with well explored reference liquids the Raman scattering from simulants was measured in the form of an extended liquid surface layer on top of a silicon wafer. This way of measuring enabled direct comparison to the Raman scattering strength from cyclohexane. The reference Raman spectra were used to validate the signal strength of the simulants and the calibration of the experimental set up. Measured UV absorbance functions were used to calculate Raman cross sections. Established Raman cross sections of the simulants make it possible to use them as reference samples when measuring on chemical warfare agents in droplet form.

  8. Experimental results on antiproton-nuclei annihilation cross section at very low energies

    NASA Astrophysics Data System (ADS)

    Aghai-Khozani, H.; Barna, D.; Corradini, M.; Hayano, R.; Hori, M.; Kobayashi, T.; Leali, M.; Lodi-Rizzini, E.; Mascagna, V.; Prest, M.; Soter, A.; Todoroki, K.; Vallazza, E.; Venturelli, L.; Zurlo, N.

    2014-03-01

    Investigating the antiproton cross section on nuclei at low energies (1 eV - 1 MeV) is of great interest for fundamental cosmology and nuclear physics as well. The process is of great relevance for the models which try to explain the matter/antimatter asymmetry in the universe assuming the existence of the so-called "island" where antinucleon-nucleon annihilations occur in the border region [1]. For the nuclear physics point of view, the annihilation process is considered a useful tool to evaluate the neutron/proton ratio probing the external region of the nucleus. Moreover, the cross section measured at LEAR in the 80s-90s showed an unexpected behaviour for energies below 1 MeV. The results showed a saturation with the atomic mass number against the A2/3 trend which is known for higher energies. The ASACUSA collaboration at CERN measured 5.3 MeV antiproton annihilation cross section on different nuclei whose results demonstrated to be consistent with the black-disk model with the Coulomb correction [2]. So far, experimental limits prevented the data acquisition for energies below 1 MeV. In 2012 the 100 keV region has been investigated for the first time [3]. We present here the results of the experiment.

  9. Calculations of Nuclear Astrophysics and Californium Fission Neutron Spectrum Averaged Cross Section Uncertainties Using ENDF/B-VII.1, JEFF-3.1.2, JENDL-4.0 and Low-fidelity Covariances

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pritychenko, B., E-mail: pritychenko@bnl.gov

    Nuclear astrophysics and californium fission neutron spectrum averaged cross sections and their uncertainties for ENDF materials have been calculated. Absolute values were deduced with Maxwellian and Mannhart spectra, while uncertainties are based on ENDF/B-VII.1, JEFF-3.1.2, JENDL-4.0 and Low-Fidelity covariances. These quantities are compared with available data, independent benchmarks, EXFOR library, and analyzed for a wide range of cases. Recommendations for neutron cross section covariances are given and implications are discussed.

  10. Whispering Gallery Optical Resonator Spectroscopic Probe and Method

    NASA Technical Reports Server (NTRS)

    Anderson, Mark S. (Inventor)

    2014-01-01

    Disclosed herein is a spectroscopic probe comprising at least one whispering gallery mode optical resonator disposed on a support, the whispering gallery mode optical resonator comprising a continuous outer surface having a cross section comprising a first diameter and a second diameter, wherein the first diameter is greater than the second diameter. A method of measuring a Raman spectrum and an Infra-red spectrum of an analyte using the spectroscopic probe is also disclosed.

  11. Spectrum determination and modification of the AFRL Co-60 cell

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Turinetti, J.R.; Kemp, W.T.; Chavez, J.R.

    The AFRL Co-60 cell at Phillips Research Site, Kirtland Air Force Base, is a 1500 ft{sup 2} concrete room with a 5200 Ci, as of 18 December 1996, J.L. Shepherd Co-60 source. The source provides high dose rate ionizing radiation up to 12000 rad(Si)/min. The Co-60 cell is used to characterize total-dose gamma effects of microelectronic and photonic devices, circuits, and subsystems. The spectrum of a Co-60 facility includes more than the two photopeaks of gamma ray emission. If there is a large low energy contribution from scattering, dose enhancement might be a problem. It is important to know themore » spectrum of a Co-60 facility and understand how experimental modifications can change that spectrum. The AFRL Co-60 cell spectrum is found to be a clean spectrum with small low energy contributions and dominant Co-60 photopeaks. Experimental modifications to reduce dose enhancement such as the use of a Pb/Al box and even better a Pb/Sn/Cu/Al box are found to decrease the low energy contributions. Experimental modifications to reduce dose rate such as using lead attenuators in front of the experiment and/or raising the source partially are found to significantly alter the spectrum, sometimes creating large low energy contributions.« less

  12. A metasurface-based prism analogue for terahertz rainbow spectrum manipulation

    NASA Astrophysics Data System (ADS)

    Zheng, Shen; Li, Chao; Li, Shichao; Zhang, Xiaojuan; Fang, Guangyou

    2017-06-01

    Optical prisms can spread compound light spatially into a rainbow and have widespread applications in spectroscopy and imaging. Limited by the natural materials as well as technologies, there has been no natural counterpart of the optical prism that works in the Terahertz (THz) band so far. In this letter, a THz prism analogue based on metasurfaces working in the transmission diffraction mechanism is first proposed to generate the THz rainbow spectrum. The physics of different modes excited by the interaction between the incident wave and the metasurface is investigated in theory and simulation. A coherent enhancement method was developed to improve the mode competition of the rainbow spectrum over other unwanted leaky modes to guarantee the high transfer efficiency of the wavelength dependent transmission diffraction. The experimental results show that the prism analogue can spread the incident spectrum from 0.15 to 0.22 THz in an angular scope of about 30.8° with comparatively high transferring efficiency.

  13. Outcomes of an Acceptance and Commitment Therapy-Based Skills Training Group for Students with High-Functioning Autism Spectrum Disorder: A Quasi-Experimental Pilot Study

    ERIC Educational Resources Information Center

    Pahnke, Johan; Lundgren, Tobias; Hursti, Timo; Hirvikoski, Tatja

    2014-01-01

    Autism spectrum disorder is characterized by social impairments and behavioural inflexibility. In this pilot study, the feasibility and outcomes of a 6-week acceptance and commitment therapy-based skills training group were evaluated in a special school setting using a quasi-experimental design (acceptance and commitment therapy/school classes as…

  14. Influences of optical-spectrum errors on excess relative intensity noise in a fiber-optic gyroscope

    NASA Astrophysics Data System (ADS)

    Zheng, Yue; Zhang, Chunxi; Li, Lijing

    2018-03-01

    The excess relative intensity noise (RIN) generated from broadband sources degrades the angular-random-walk performance of a fiber-optic gyroscope dramatically. Many methods have been proposed and managed to suppress the excess RIN. However, the properties of the excess RIN under the influences of different optical errors in the fiber-optic gyroscope have not been systematically investigated. Therefore, it is difficult for the existing RIN-suppression methods to achieve the optimal results in practice. In this work, the influences of different optical-spectrum errors on the power spectral density of the excess RIN are theoretically analyzed. In particular, the properties of the excess RIN affected by the raised-cosine-type ripples in the optical spectrum are elaborately investigated. Experimental measurements of the excess RIN corresponding to different optical-spectrum errors are in good agreement with our theoretical analysis, demonstrating its validity. This work provides a comprehensive understanding of the properties of the excess RIN under the influences of different optical-spectrum errors. Potentially, it can be utilized to optimize the configurations of the existing RIN-suppression methods by accurately evaluating the power spectral density of the excess RIN.

  15. An investigation on characterizing dense coal-water slurry with ultrasound: theoretical and experimental method

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xue, M.H.; Su, M.X.; Dong, L.L.

    2010-07-01

    Particle size distribution and concentration in particulate two-phase flow are important parameters in a wide variety of industrial areas. For the purpose of online characterization in dense coal-water slurries, ultrasonic methods have many advantages such as avoiding dilution, the capability for being used in real time, and noninvasive testing, while light-based techniques are not capable of providing information because optical methods often require the slurry to be diluted. In this article, the modified Urick equation including temperature modification, which can be used to determine the concentration by means of the measurement of ultrasonic velocity in a coal-water slurry, is evaluatedmore » on the basis of theoretical analysis and experimental study. A combination of the coupled-phase model and the Bouguer-Lambert-Beer law is employed in this work, and the attenuation spectrum is measured within the frequency region from 3 to 12 MHz. Particle size distributions of the coal-water slurry at different volume fractions are obtained with the optimum regularization technique. Therefore, the ultrasonic technique presented in this work brings the possibility of using ultrasound for online measurements of dense slurries.« less

  16. Analysis of a crossed Bragg-cell acousto optical spectrometer for SETI

    NASA Technical Reports Server (NTRS)

    Gulkis, S.

    1986-01-01

    The search for radio signals from extraterrestrial intelligent (SETI) beings requires the use of large instantaneous bandwidth (500 MHz) and high resolution (20 Hz) spectrometers. Digital systems with a high degree of modularity can be used to provide this capability, and this method has been widely discussed. Another technique for meeting the SETI requirement is to use a crossed Bragg-cell spectrometer as described by Psaltis and Casasent (1979). This technique makes use of the Folded Spectrum concept, introduced by Thomas (1966). The Folded Spectrum is a two-dimensional Fourier Transform of a raster scanned one-dimensional signal. It is directly related to the long one-dimensional spectrum of the original signal and is ideally suited for optical signal processing.

  17. Analysis of a crossed Bragg-cell acousto optical spectrometer for SETI

    NASA Astrophysics Data System (ADS)

    Gulkis, S.

    1986-10-01

    The search for radio signals from extraterrestrial intelligent (SETI) beings requires the use of large instantaneous bandwidth (500 MHz) and high resolution (20 Hz) spectrometers. Digital systems with a high degree of modularity can be used to provide this capability, and this method has been widely discussed. Another technique for meeting the SETI requirement is to use a crossed Bragg-cell spectrometer as described by Psaltis and Casasent (1979). This technique makes use of the Folded Spectrum concept, introduced by Thomas (1966). The Folded Spectrum is a two-dimensional Fourier Transform of a raster scanned one-dimensional signal. It is directly related to the long one-dimensional spectrum of the original signal and is ideally suited for optical signal processing.

  18. Research on the correlation between corona current spectrum and audible noise spectrum of HVDC transmission line

    NASA Astrophysics Data System (ADS)

    Liu, Yingyi; Zhou, Lijuan; Liu, Yuanqing; Yuan, Haiwen; Ji, Liang

    2017-11-01

    Audible noise is closely related to corona current on a high voltage direct current (HVDC) transmission line. In this paper, we measured a large amount of audible noise and corona current waveforms simultaneously based on the largest outdoor HVDC corona cage all over the world. By analyzing the experimental data, the related statistical regularities between a corona current spectrum and an audible noise spectrum were obtained. Furthermore, the generation mechanism of audible noise was analyzed theoretically, and the related mathematical expression between the audible noise spectrum and the corona current spectrum, which is suitable for all of these measuring points in the space, has been established based on the electro-acoustic conversion theory. Finally, combined with the obtained mathematical relation, the internal reasons for these statistical regularities appearing in measured corona current and audible noise data were explained. The results of this paper not only present the statistical association regularities between the corona current spectrum and the audible noise spectrum on a HVDC transmission line, but also reveal the inherent reasons of these associated rules.

  19. Theoretical and Experimental K+ + Nucleus Total and Reaction Cross Sections from the KDP-RIA Model

    NASA Astrophysics Data System (ADS)

    Kerr, L. K.; Clark, B. C.; Hama, S.; Ray, L.; Hoffmann, G. W.

    2000-02-01

    The 5-dimensional spin-0 form of the Kemmer-Duffin-Petiau (KDP) equation is used to calculate scattering observables [elastic differential cross sections (dσ / dΩ), total cross sections (σ Tot ), and total reaction cross sections (σ Reac )] and to deduce σ Tot and σReac from transmission data for K+ + 6Li, 12C, 28Si and 40Ca at several momenta in the range 488 - 714 MeV / c. Realistic uncertainties are generated for the theoretical predictions. These errors, mainly due to uncertainties associated with the elementary K+ + nucleon amplitudes, are large, which may account for some of the disagreement between experimental and theoretical σTot and σReac. The results suggest that the K+ + nucleon amplitudes need to be much better determined before further improvement in the understanding of these data can occur.

  20. Unsupervised malaria parasite detection based on phase spectrum.

    PubMed

    Fang, Yuming; Xiong, Wei; Lin, Weisi; Chen, Zhenzhong

    2011-01-01

    In this paper, we propose a novel method for malaria parasite detection based on phase spectrum. The method first obtains the amplitude spectrum and phase spectrum for blood smear images through Quaternion Fourier Transform (QFT). Then it gets the reconstructed image based on Inverse Quaternion Fourier transform (IQFT) on a constant amplitude spectrum and the original phase spectrum. The malaria parasite areas can be detected easily from the reconstructed blood smear images. Extensive experiments have demonstrated the effectiveness of this novel method.

  1. Some lemma on spectrum of eigen value regarding power method

    NASA Astrophysics Data System (ADS)

    Jamali, A. R. M. Jalal Uddin; Alam, Md. Sah

    2017-04-01

    Eigen value problems arise in almost all science and engineering fields. There exist some smart methods in literature in which most of them are able to find only Eigen values but could not find corresponding Eigen vectors. There exist many engineering as well as scientific fields in which both largest as well as smallest Eigen pairs are required. Power method is very simple but a powerful tool for finding largest Eigen value and corresponding Eigen vector (Eigen-pair). Again Inverse Power method is applied to find out smallest Eigen-pair and/or desire Eigen-pairs. But it is known that Inverse Power method is computationally very costly. On the other hand by using shifting property, Power method can find further Eigen-pairs. But the position of this Eigen value in the set of spectrum of the Eigen values is not identified. In this regard we proposed four lemma associate with Modified Power method. Each Lemma is proved ornately. The Modified Power method is implemented and illustrates an example for the verification of the Lemma. By using lemma the modified power algorithm is able to find out both largest and smallest Eigen-pairs successfully and efficiently in some cases. Moreover by the help of the Lemma, algorithm is able to detect the nature (positive and negative) of the Eigen values.

  2. The Crossed-Dipole Structure of Aircraft in an Electromagnetic Pulse Environment

    DTIC Science & Technology

    1974-09-01

    The crossed-dipole receiving antenna has been used as a representative model to approximate electromagnetic pulse effects on aircraft. This paper...receiving antenna is excited by a broad spectrum electromagnetic pulse , certain important electrical resonances occur: that is, at specific single...dipole are presented which give insight into methods of analyzing aircraft in an electromagnetic pulse environment.

  3. Self-registering spread-spectrum barcode method

    DOEpatents

    Cummings, Eric B.; Even Jr., William R.

    2004-11-09

    A novel spread spectrum barcode methodology is disclosed that allows a barcode to be read in its entirety even when a significant fraction or majority of the barcode is obscured. The barcode methodology makes use of registration or clocking information that is distributed along with the encoded user data across the barcode image. This registration information allows for the barcode image to be corrected for imaging distortion such as zoom, rotation, tilt, curvature, and perspective.

  4. First Year Wilkinson Microwave Anisotropy Probe(WMAP)Observations: The Angular Power Spectrum

    NASA Technical Reports Server (NTRS)

    Hinshaw, G.; Spergel, D. N.; Verde, L.; Hill, R. S.; Meyer, S. S.; Barnes, C.; Bennett, C. L.; Halpern, M.; Jarosik, N.; Kogut, A.

    2003-01-01

    We present the angular power spectrum derived from the first-year Wilkinson Microwave Anisotropy Probe (WMAP) sky maps. We study a variety of power spectrum estimation methods and data combinations and demonstrate that the results are robust. The data are modestly contaminated by diffuse Galactic foreground emission, but we show that a simple Galactic template model is sufficient to remove the signal. Point sources produce a modest contamination in the low frequency data. After masking approximately 700 known bright sources from the maps, we estimate residual sources contribute approximately 3500 mu sq Kappa at 41 GHz, and approximately 130 mu sq Kappa at 94 GHz, to the power spectrum [iota(iota + 1)C(sub iota)/2pi] at iota = 1000. Systematic errors are negligible compared to the (modest) level of foreground emission. Our best estimate of the power spectrum is derived from 28 cross-power spectra of statistically independent channels. The final spectrum is essentially independent of the noise properties of an individual radiometer. The resulting spectrum provides a definitive measurement of the CMB power spectrum, with uncertainties limited by cosmic variance, up to iota approximately 350. The spectrum clearly exhibits a first acoustic peak at iota = 220 and a second acoustic peak at iota approximately 540, and it provides strong support for adiabatic initial conditions. Researchers have analyzed the CT(sup Epsilon) power spectrum, and present evidence for a relatively high optical depth, and an early period of cosmic reionization. Among other things, this implies that the temperature power spectrum has been suppressed by approximately 30% on degree angular scales, due to secondary scattering.

  5. Radar target classification method with high accuracy and decision speed performance using MUSIC spectrum vectors and PCA projection

    NASA Astrophysics Data System (ADS)

    Secmen, Mustafa

    2011-10-01

    This paper introduces the performance of an electromagnetic target recognition method in resonance scattering region, which includes pseudo spectrum Multiple Signal Classification (MUSIC) algorithm and principal component analysis (PCA) technique. The aim of this method is to classify an "unknown" target as one of the "known" targets in an aspect-independent manner. The suggested method initially collects the late-time portion of noise-free time-scattered signals obtained from different reference aspect angles of known targets. Afterward, these signals are used to obtain MUSIC spectrums in real frequency domain having super-resolution ability and noise resistant feature. In the final step, PCA technique is applied to these spectrums in order to reduce dimensionality and obtain only one feature vector per known target. In the decision stage, noise-free or noisy scattered signal of an unknown (test) target from an unknown aspect angle is initially obtained. Subsequently, MUSIC algorithm is processed for this test signal and resulting test vector is compared with feature vectors of known targets one by one. Finally, the highest correlation gives the type of test target. The method is applied to wire models of airplane targets, and it is shown that it can tolerate considerable noise levels although it has a few different reference aspect angles. Besides, the runtime of the method for a test target is sufficiently low, which makes the method suitable for real-time applications.

  6. Automated assessment of bone changes in cross-sectional micro-CT studies of murine experimental osteoarthritis.

    PubMed

    Das Neves Borges, Patricia; Vincent, Tonia L; Marenzana, Massimo

    2017-01-01

    The degradation of articular cartilage, which characterises osteoarthritis (OA), is usually paired with excessive bone remodelling, including subchondral bone sclerosis, cysts, and osteophyte formation. Experimental models of OA are widely used to investigate pathogenesis, yet few validated methodologies for assessing periarticular bone morphology exist and quantitative measurements are limited by manual segmentation of micro-CT scans. The aim of this work was to chart the temporal changes in periarticular bone in murine OA by novel, automated micro-CT methods. OA was induced by destabilisation of the medial meniscus (DMM) in 10-week old male mice and disease assessed cross-sectionally from 1- to 20-weeks post-surgery. A novel approach was developed to automatically segment subchondral bone compartments into plate and trabecular bone in micro-CT scans of tibial epiphyses. Osteophyte volume, as assessed by shape differences using 3D image registration, and by measuring total epiphyseal volume was performed. Significant linear and volumetric structural modifications in subchondral bone compartments and osteophytes were measured from 4-weeks post-surgery and showed progressive changes at all time points; by 20 weeks, medial subchondral bone plate thickness increased by 160±19.5 μm and the medial osteophyte grew by 0.124±0.028 μm3. Excellent agreement was found when automated measurements were compared with manual assessments. Our automated methods for assessing bone changes in murine periarticular bone are rapid, quantitative, and highly accurate, and promise to be a useful tool in future preclinical studies of OA progression and treatment. The current approaches were developed specifically for cross-sectional micro-CT studies but could be applied to longitudinal studies.

  7. Multicarrier orthogonal spread-spectrum (MOSS) data communications

    DOEpatents

    Smith, Stephen F [London, TN; Dress, William B [Camas, WA

    2008-01-01

    Systems and methods are described for multicarrier orthogonal spread-spectrum (MOSS) data communication. A method includes individually spread-spectrum modulating at least two of a set of orthogonal frequency division multiplexed carriers, wherein the resulting individually spread-spectrum modulated at least two of a set of orthogonal frequency division multiplexed carriers are substantially mutually orthogonal with respect to both frequency division multiplexing and spread-spectrum modulation.

  8. Vibronic coupling effect on circular dichroism spectrum: Carotenoid-retinal interaction in xanthorhodopsin

    NASA Astrophysics Data System (ADS)

    Fujimoto, Kazuhiro J.; Balashov, Sergei P.

    2017-03-01

    The role of vibronic coupling of antenna carotenoid and retinal in xanthorhodopsin (XR) in its circular dichroism (CD) spectrum is examined computationally. A vibronic exciton model combined with a transition-density-fragment interaction (TDFI) method is developed, and applied to absorption and CD spectral calculations of XR. The TDFI method is based on the electronic Coulomb and exchange interactions between transition densities for individual chromophores [K. J. Fujimoto, J. Chem. Phys. 137, 034101 (2012)], which provides a quantitative description of electronic coupling energy. The TDFI calculation reveals a dominant contribution of the Coulomb interaction to the electronic coupling energy and a negligible contribution of the exchange interaction, indicating that the antenna function of carotenoid results from the Förster type of excitation-energy transfer, not from the Dexter one. The calculated absorption and CD spectra successfully reproduce the main features of the experimental results, which allow us to investigate the mechanism of biphasic CD spectrum observed in XR. The results indicate that vibronic coupling between carotenoid and retinal plays a significant role in the shape of the CD spectrum. Further analysis reveals that the negative value of electronic coupling directly contributes to the biphasic shape of CD spectrum. This study also reveals that the C6—C7 bond rotation of salinixanthin is not the main factor for the biphasic CD spectrum although it gives a non-negligible contribution to the spectral shift. The present method is useful for analyzing the molecular mechanisms underlying the chromophore-chromophore interactions in biological systems.

  9. Fine structure of spectrum of twist-three operators in QCD

    NASA Astrophysics Data System (ADS)

    Belitsky, A. V.

    1999-04-01

    We unravel the structure of the spectrum of the anomalous dimensions of the quark-gluon twist-3 operators which are responsible for the multiparton correlations in hadrons and enter as a leading contribution to several physical cross sections. The method of analysis is based on the recent finding of a non-trivial integral of motion for the corresponding Hamiltonian problem in multicolour limit which results into exact integrability of the three-particle system. Quasiclassical expansion is used for solving the problem. We address the chiral-odd sector as a case of study.

  10. A wavelet-based Gaussian method for energy dispersive X-ray fluorescence spectrum.

    PubMed

    Liu, Pan; Deng, Xiaoyan; Tang, Xin; Shen, Shijian

    2017-05-01

    This paper presents a wavelet-based Gaussian method (WGM) for the peak intensity estimation of energy dispersive X-ray fluorescence (EDXRF). The relationship between the parameters of Gaussian curve and the wavelet coefficients of Gaussian peak point is firstly established based on the Mexican hat wavelet. It is found that the Gaussian parameters can be accurately calculated by any two wavelet coefficients at the peak point which has to be known. This fact leads to a local Gaussian estimation method for spectral peaks, which estimates the Gaussian parameters based on the detail wavelet coefficients of Gaussian peak point. The proposed method is tested via simulated and measured spectra from an energy X-ray spectrometer, and compared with some existing methods. The results prove that the proposed method can directly estimate the peak intensity of EDXRF free from the background information, and also effectively distinguish overlap peaks in EDXRF spectrum.

  11. Measurements of neutron capture cross sections on 70Zn at 0.96 and 1.69 MeV

    NASA Astrophysics Data System (ADS)

    Punte, L. R. M.; Lalremruata, B.; Otuka, N.; Suryanarayana, S. V.; Iwamoto, Y.; Pachuau, Rebecca; Satheesh, B.; Thanga, H. H.; Danu, L. S.; Desai, V. V.; Hlondo, L. R.; Kailas, S.; Ganesan, S.; Nayak, B. K.; Saxena, A.

    2017-02-01

    The cross sections of the 70Zn(n ,γ )Zn71m (T1 /2=3.96 ±0.05 -h ) reaction have been measured relative to the 197Au(n ,γ )198Au cross sections at 0.96 and 1.69 MeV using a 7Li(p ,n )7Be neutron source and activation technique. The cross section of this reaction has been measured for the first time in the MeV region. The new experimental cross sections have been compared with the theoretical prediction by talys-1.6 with various level-density models and γ -ray strength functions as well as the tendl-2015 library. The talys-1.6 calculation with the generalized superfluid level-density model and Kopecky-Uhl generalized Lorentzian γ -ray strength function predicted the new experimental cross sections at both incident energies. The 70Zn(n ,γ ) g+m 71Zn total capture cross sections have also been derived by applying the evaluated isomeric ratios in the tendl-2015 library to the measured partial capture cross sections. The spectrum averaged total capture cross sections derived in the present paper agree well with the jendl-4.0 library at 0.96 MeV, whereas it lies between the tendl-2015 and the jendl-4.0 libraries at 1.69 MeV.

  12. 47 CFR 301.10 - Cross-reference.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 47 Telecommunication 5 2014-10-01 2014-10-01 false Cross-reference. 301.10 Section 301.10 Telecommunication NATIONAL TELECOMMUNICATIONS AND INFORMATION ADMINISTRATION, DEPARTMENT OF COMMERCE RELOCATION OF AND SPECTRUM SHARING BY FEDERAL GOVERNMENT STATIONS General Information § 301.10 Cross-reference. The...

  13. 47 CFR 301.10 - Cross-reference.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 47 Telecommunication 5 2013-10-01 2013-10-01 false Cross-reference. 301.10 Section 301.10 Telecommunication NATIONAL TELECOMMUNICATIONS AND INFORMATION ADMINISTRATION, DEPARTMENT OF COMMERCE RELOCATION OF AND SPECTRUM SHARING BY FEDERAL GOVERNMENT STATIONS General Information § 301.10 Cross-reference. The...

  14. Spectrum synthesis for a spectrally tunable light source based on a DMD-convex grating Offner configuration

    NASA Astrophysics Data System (ADS)

    Ma, Suodong; Pan, Qiao; Shen, Weimin

    2016-09-01

    As one kind of light source simulation devices, spectrally tunable light sources are able to generate specific spectral shape and radiant intensity outputs according to different application requirements, which have urgent demands in many fields of the national economy and the national defense industry. Compared with the LED-type spectrally tunable light source, the one based on a DMD-convex grating Offner configuration has advantages of high spectral resolution, strong digital controllability, high spectrum synthesis accuracy, etc. As a key link of the above type light source to achieve target spectrum outputs, spectrum synthesis algorithm based on spectrum matching is therefore very important. An improved spectrum synthesis algorithm based on linear least square initialization and Levenberg-Marquardt iterative optimization is proposed in this paper on the basis of in-depth study of the spectrum matching principle. The effectiveness of the proposed method is verified by a series of simulations and experimental works.

  15. Spectral Reconstruction Based on Svm for Cross Calibration

    NASA Astrophysics Data System (ADS)

    Gao, H.; Ma, Y.; Liu, W.; He, H.

    2017-05-01

    Chinese HY-1C/1D satellites will use a 5nm/10nm-resolutional visible-near infrared(VNIR) hyperspectral sensor with the solar calibrator to cross-calibrate with other sensors. The hyperspectral radiance data are composed of average radiance in the sensor's passbands and bear a spectral smoothing effect, a transform from the hyperspectral radiance data to the 1-nm-resolution apparent spectral radiance by spectral reconstruction need to be implemented. In order to solve the problem of noise cumulation and deterioration after several times of iteration by the iterative algorithm, a novel regression method based on SVM is proposed, which can approach arbitrary complex non-linear relationship closely and provide with better generalization capability by learning. In the opinion of system, the relationship between the apparent radiance and equivalent radiance is nonlinear mapping introduced by spectral response function(SRF), SVM transform the low-dimensional non-linear question into high-dimensional linear question though kernel function, obtaining global optimal solution by virtue of quadratic form. The experiment is performed using 6S-simulated spectrums considering the SRF and SNR of the hyperspectral sensor, measured reflectance spectrums of water body and different atmosphere conditions. The contrastive result shows: firstly, the proposed method is with more reconstructed accuracy especially to the high-frequency signal; secondly, while the spectral resolution of the hyperspectral sensor reduces, the proposed method performs better than the iterative method; finally, the root mean square relative error(RMSRE) which is used to evaluate the difference of the reconstructed spectrum and the real spectrum over the whole spectral range is calculated, it decreses by one time at least by proposed method.

  16. Simultaneous Multi-Scale Diffusion Estimation and Tractography Guided by Entropy Spectrum Pathways

    PubMed Central

    Galinsky, Vitaly L.; Frank, Lawrence R.

    2015-01-01

    We have developed a method for the simultaneous estimation of local diffusion and the global fiber tracts based upon the information entropy flow that computes the maximum entropy trajectories between locations and depends upon the global structure of the multi-dimensional and multi-modal diffusion field. Computation of the entropy spectrum pathways requires only solving a simple eigenvector problem for the probability distribution for which efficient numerical routines exist, and a straight forward integration of the probability conservation through ray tracing of the convective modes guided by a global structure of the entropy spectrum coupled with a small scale local diffusion. The intervoxel diffusion is sampled by multi b-shell multi q-angle DWI data expanded in spherical waves. This novel approach to fiber tracking incorporates global information about multiple fiber crossings in every individual voxel and ranks it in the most scientifically rigorous way. This method has potential significance for a wide range of applications, including studies of brain connectivity. PMID:25532167

  17. Partial wave analysis for folded differential cross sections

    NASA Astrophysics Data System (ADS)

    Machacek, J. R.; McEachran, R. P.

    2018-03-01

    The value of modified effective range theory (MERT) and the connection between differential cross sections and phase shifts in low-energy electron scattering has long been recognized. Recent experimental techniques involving magnetically confined beams have introduced the concept of folded differential cross sections (FDCS) where the forward (θ ≤ π/2) and backward scattered (θ ≥ π/2) projectiles are unresolved, that is the value measured at the angle θ is the sum of the signal for particles scattered into the angles θ and π - θ. We have developed an alternative approach to MERT in order to analyse low-energy folded differential cross sections for positrons and electrons. This results in a simplified expression for the FDCS when it is expressed in terms of partial waves and thereby enables one to extract the first few phase shifts from a fit to an experimental FDCS at low energies. Thus, this method predicts forward and backward angle scattering (0 to π) using only experimental FDCS data and can be used to determine the total elastic cross section solely from experimental results at low-energy, which are limited in angular range.

  18. Method of estimating pulse response using an impedance spectrum

    DOEpatents

    Morrison, John L; Morrison, William H; Christophersen, Jon P; Motloch, Chester G

    2014-10-21

    Electrochemical Impedance Spectrum data are used to predict pulse performance of an energy storage device. The impedance spectrum may be obtained in-situ. A simulation waveform includes a pulse wave with a period greater than or equal to the lowest frequency used in the impedance measurement. Fourier series coefficients of the pulse train can be obtained. The number of harmonic constituents in the Fourier series are selected so as to appropriately resolve the response, but the maximum frequency should be less than or equal to the highest frequency used in the impedance measurement. Using a current pulse as an example, the Fourier coefficients of the pulse are multiplied by the impedance spectrum at corresponding frequencies to obtain Fourier coefficients of the voltage response to the desired pulse. The Fourier coefficients of the response are then summed and reassembled to obtain the overall time domain estimate of the voltage using the Fourier series analysis.

  19. Hardening neutron spectrum for advanced actinide transmutation experiments in the ATR.

    PubMed

    Chang, G S; Ambrosek, R G

    2005-01-01

    The most effective method for transmuting long-lived isotopes contained in spent nuclear fuel into shorter-lived fission products is in a fast neutron spectrum reactor. In the absence of a fast test reactor in the United States, initial irradiation testing of candidate fuels can be performed in a thermal test reactor that has been modified to produce a test region with a hardened neutron spectrum. Such a test facility, with a spectrum similar but somewhat softer than that of the liquid-metal fast breeder reactor (LMFBR), has been constructed in the INEEL's Advanced Test Reactor (ATR). The radial fission power distribution of the actinide fuel pin, which is an important parameter in fission gas release modelling, needs to be accurately predicted and the hardened neutron spectrum in the ATR and the LMFBR fast neutron spectrum is compared. The comparison analyses in this study are performed using MCWO, a well-developed tool that couples the Monte Carlo transport code MCNP with the isotope depletion and build-up code ORIGEN-2. MCWO analysis yields time-dependent and neutron-spectrum-dependent minor actinide and Pu concentrations and detailed radial fission power profile calculations for a typical fast reactor (LMFBR) neutron spectrum and the hardened neutron spectrum test region in the ATR. The MCWO-calculated results indicate that the cadmium basket used in the advanced fuel test assembly in the ATR can effectively depress the linear heat generation rate in the experimental fuels and harden the neutron spectrum in the test region.

  20. Endoscopical determination of gastric mucosal blood flow by the crossed thermocouple method.

    PubMed

    Hiramatsu, A; Watanabe, T; Okuhira, M; Uchiyama, S; Mizuno, T; Sameshima, Y

    1984-06-01

    A crossed thermocouple method in combination with endoscopy was applied to determine the blood flow rate of the human gastric mucosa. Determination was carried out with 11 healthy control subjects at 8 sites of the stomach. The blood flow rates at all sites in the corpus were found to be higher than those at the antrum. In subjects less than 50 years old the blood flow rate in the corpus was higher than in older subjects. These results were in agreed well with those obtained by the hydrogen gas clearance method, which is widely adopted clinically. The crossed thermocouple method is easily applicable to all sites in the gastric mucosa and the time required for the assay is very short. This method dose not require the inhalation of hydrogen gas which is necessary for the hydrogen gas clearance method and which is possibly harmful to humans. Although the values obtained by the crossed thermocouple method are relative to the value at a certain fixed site, this method will holds great potential for the determination of gastric mucosal blood flow rate.

  1. A first-principle calculation of the XANES spectrum of Cu2+ in water

    NASA Astrophysics Data System (ADS)

    La Penna, G.; Minicozzi, V.; Morante, S.; Rossi, G. C.; Stellato, F.

    2015-09-01

    The progress in high performance computing we are witnessing today offers the possibility of accurate electron density calculations of systems in realistic physico-chemical conditions. In this paper, we present a strategy aimed at performing a first-principle computation of the low energy part of the X-ray Absorption Spectroscopy (XAS) spectrum based on the density functional theory calculation of the electronic potential. To test its effectiveness, we apply the method to the computation of the X-ray absorption near edge structure part of the XAS spectrum in the paradigmatic, but simple case of Cu2+ in water. In order to keep into account the effect of the metal site structure fluctuations in determining the experimental signal, the theoretical spectrum is evaluated as the average over the computed spectra of a statistically significant number of simulated metal site configurations. The comparison of experimental data with theoretical calculations suggests that Cu2+ lives preferentially in a square-pyramidal geometry. The remarkable success of this approach in the interpretation of XAS data makes us optimistic about the possibility of extending the computational strategy we have outlined to the more interesting case of molecules of biological relevance bound to transition metal ions.

  2. Origin of chemoselectivity in N-heterocyclic carbene catalyzed cross-benzoin reactions: DFT and experimental insights.

    PubMed

    Langdon, Steven M; Legault, Claude Y; Gravel, Michel

    2015-04-03

    An exploration into the origin of chemoselectivity in the NHC-catalyzed cross-benzoin reaction reveals several key factors governing the preferred pathway. In the first computational study to explore the cross-benzoin reaction, a piperidinone-derived triazolium catalyst produces kinetically controlled chemoselectivity. This is supported by (1)H NMR studies as well as a series of crossover experiments. Major contributors include the rapid and preferential formation of an NHC adduct with alkyl aldehydes, a rate-limiting carbon-carbon bond formation step benefiting from a stabilizing π-stacking/π-cation interaction, and steric penalties paid by competing pathways. The energy profile for the analogous pyrrolidinone-derived catalyst was found to be remarkably similar, despite experimental data showing that it is less chemoselective. The chemoselectivity could not be improved through kinetic control; however, equilibrating conditions show substantial preference for the same cross-benzoin product kinetically favored by the piperidinone-derived catalyst.

  3. Empirical Performance of Cross-Validation With Oracle Methods in a Genomics Context

    PubMed Central

    Martinez, Josue G.; Carroll, Raymond J.; Müller, Samuel; Sampson, Joshua N.; Chatterjee, Nilanjan

    2012-01-01

    When employing model selection methods with oracle properties such as the smoothly clipped absolute deviation (SCAD) and the Adaptive Lasso, it is typical to estimate the smoothing parameter by m-fold cross-validation, for example, m = 10. In problems where the true regression function is sparse and the signals large, such cross-validation typically works well. However, in regression modeling of genomic studies involving Single Nucleotide Polymorphisms (SNP), the true regression functions, while thought to be sparse, do not have large signals. We demonstrate empirically that in such problems, the number of selected variables using SCAD and the Adaptive Lasso, with 10-fold cross-validation, is a random variable that has considerable and surprising variation. Similar remarks apply to non-oracle methods such as the Lasso. Our study strongly questions the suitability of performing only a single run of m-fold cross-validation with any oracle method, and not just the SCAD and Adaptive Lasso. PMID:22347720

  4. Empirical Performance of Cross-Validation With Oracle Methods in a Genomics Context.

    PubMed

    Martinez, Josue G; Carroll, Raymond J; Müller, Samuel; Sampson, Joshua N; Chatterjee, Nilanjan

    2011-11-01

    When employing model selection methods with oracle properties such as the smoothly clipped absolute deviation (SCAD) and the Adaptive Lasso, it is typical to estimate the smoothing parameter by m-fold cross-validation, for example, m = 10. In problems where the true regression function is sparse and the signals large, such cross-validation typically works well. However, in regression modeling of genomic studies involving Single Nucleotide Polymorphisms (SNP), the true regression functions, while thought to be sparse, do not have large signals. We demonstrate empirically that in such problems, the number of selected variables using SCAD and the Adaptive Lasso, with 10-fold cross-validation, is a random variable that has considerable and surprising variation. Similar remarks apply to non-oracle methods such as the Lasso. Our study strongly questions the suitability of performing only a single run of m-fold cross-validation with any oracle method, and not just the SCAD and Adaptive Lasso.

  5. Performance analysis of cross-seeding WDM-PON system using transfer matrix method

    NASA Astrophysics Data System (ADS)

    Simatupang, Joni Welman; Pukhrambam, Puspa Devi; Huang, Yen-Ru

    2016-12-01

    In this paper, a model based on the transfer matrix method is adopted to analyze the effects of Rayleigh backscattering and Fresnel multiple reflections on a cross-seeding WDM-PON system. As part of analytical approximation methods, this time-independent model is quite simple but very efficient when it is applied to various WDM-PON transmission systems, including the cross-seeding scheme. The cross seeding scheme is most beneficial for systems with low loop-back ONU gain or low reflection loss at the drop fiber for upstream data in bidirectional transmission. However for downstream data transmission, multiple reflections power could destroy the usefulness of the cross-seeding scheme when the reflectivity is high enough and the RN is positioned near OLT or close to ONU.

  6. Discriminative and Criterion Validity of the Autism Spectrum Identity Scale (ASIS)

    ERIC Educational Resources Information Center

    McDonald, T. A. M.

    2017-01-01

    Individuals on the autism spectrum face stigma that can influence identity development. Previous research on the 22-item Autism Spectrum Identity Scale (ASIS) reported a four-factor structure with strong split-sample cross-validation and good internal consistency. This study reports the discriminative and criterion validity of the ASIS with other…

  7. THz frequency spectrum of protein-solvent interaction energy using a recurrence plot-based Wiener-Khinchin method.

    PubMed

    Karain, Wael

    2016-10-01

    The dynamics of a protein and the water surrounding it are coupled via nonbonded energy interactions. This coupling can exhibit a complex, nonlinear, and nonstationary nature. The THz frequency spectrum for this interaction energy characterizes both the vibration spectrum of the water hydrogen bond network, and the frequency range of large amplitude modes of proteins. We use a Recurrence Plot based Wiener-Khinchin method RPWK to calculate this spectrum, and the results are compared to those determined using the classical auto-covariance-based Wiener-Khinchin method WK. The frequency spectra for the total nonbonded interaction energy extracted from molecular dynamics simulations between the β-Lactamase Inhibitory Protein BLIP, and water molecules within a 10 Å distance from the protein surface, are calculated at 150, 200, 250, and 310 K, respectively. Similar calculations are also performed for the nonbonded interaction energy between the residues 49ASP, 53TYR, and 142PHE in BLIP, with water molecules within 10 Å from each residue respectively at 150, 200, 250, and 310 K. A comparison of the results shows that RPWK performs better than WK, and is able to detect some frequency data points that WK fails to detect. This points to the importance of using methods capable of taking the complex nature of the protein-solvent energy landscape into consideration, and not to rely on standard linear methods. In general, RPWK can be a valuable addition to the analysis tools for protein molecular dynamics simulations. Proteins 2016; 84:1549-1557. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  8. Experimental Methodology in English Teaching and Learning: Method Features, Validity Issues, and Embedded Experimental Design

    ERIC Educational Resources Information Center

    Lee, Jang Ho

    2012-01-01

    Experimental methods have played a significant role in the growth of English teaching and learning studies. The paper presented here outlines basic features of experimental design, including the manipulation of independent variables, the role and practicality of randomised controlled trials (RCTs) in educational research, and alternative methods…

  9. Middle UV to near-IR spectrum of electron-excited SO2

    USGS Publications Warehouse

    Ajello, J.M.; Aguilar, A.; Mangina, R.S.; James, G.K.; Geissler, P.; Trafton, L.

    2008-01-01

    We investigated the electron impact–induced fluorescence spectrum of SO2 to provide excitation cross sections for modeling Io's emission spectrum and analyzing Cassini Imaging Science Subsystem observations. The electron-excited middle-ultraviolet visible optical near-infrared (VOIR) emission spectrum of SO2 gas was generated in the laboratory and studied from 2000 to 11,000 Å at a resolution of Δλ ∼ 2.5 Å full width at half maximum (FWHM). The VOIR laboratory spectrum longward of 6000 Å consists entirely of S I, II and O I, II multiplets for electron impact energies above ∼15 eV. Between 2000 and 6000 Å, we find previously identified molecular bands from both SO and SO2. This work represents a significant improvement in spectral resolution over our earlier work done at 18 Å FWHM. From a measurement of the medium-resolution spectrum, we provide detailed 25- and 100-eV emission cross sections for spectral features from 2000 to 11,000 Å. On the basis of these data, we suggest future ground-based and satellite telescopic observations in the VOIR that are of promise for understanding Io's atmosphere.

  10. Middle UV to Near-IR Spectrum of Electron-Excited SO2

    NASA Technical Reports Server (NTRS)

    Ajello, Joseph M.; Aguilar, Alejandro; Mangina, Rao S.; James, Geoffrey K.; Geissler, Paul; Trafton, Laurence

    2008-01-01

    We investigated the electron impact-induced fluorescence spectrum of SO2 to provide excitation cross sections for modeling Io's mission spectrum and analyzing Cassini Imaging Science Subsystem observations. The electron-excited middle-ultraviolet visible optical near-infrared (VOIR) emission spectrum of SO2 gas was generated in the laboratory and studied from 2000 to 11,000 A at a resolution of (Delta)(lamda) approximately 2.5 A full width at half maximum (FWHM). The VOIR laboratory spectrum longward of 6000 A consists entirely of S I, II and O I, II multiplets for electron impact energies above approximately 15 eV. Between 2000 and 6000 A, we find previously identified molecular bands from both SO and SO2. This work represents a significant improvement in spectral resolution over our earlier work done at 18 A FWHM. From a measurement of the medium-resolution spectrum, we provide detailed 25- and 100-eV emission cross sections for spectral features from 2000 to 11,000 A . On the basis of these data, we suggest future ground-based and satellite telescopic observations in the VOIR that are of promise for understanding Io's atmosphere.

  11. A method for (n,alpha) and (n,p) cross section measurements using a lead slowing-down spectrometer

    NASA Astrophysics Data System (ADS)

    Thompson, Jason Tyler

    The need for nuclear data comes from several sources including astrophysics, stockpile stewardship, and reactor design. Photodisintegration, neutron capture, and charged particle out reactions on stable or short-lived radioisotopes play crucial roles during stellar evolution and forming solar isotopic abundances whereas these reactions can affect the safety of our national weapons stockpile or criticality and safety calculations for reactors. Although models can be used to predict some of these values, these predictions are only as good as the experimental data that constrains them. For neutron-induced emission of α particles and protons ((n,α) and (n,p) reactions) at energies below 1 MeV, the experimental data is at best scarce and models must rely on extrapolations from unlike situations, (i.e. different reactions, isotopes, and energies) providing ample room for uncertainty. In this work a new method of measuring energy dependent (n,α) and (n,p) cross sections was developed for the energy range of 0.1 eV - ˜100 keV using a lead slowing-down spectrometer (LSDS). The LSDS provides a ˜10 4 neutron flux increase over the more conventionally used time-of-flight (ToF) methods at equivalent beam conditions, allowing for the measurement of small cross sections (µb’s to mb’s) while using small sample masses (µg’s to mg’s). Several detector concepts were designed and tested, including specially constructed Canberra passivated, implanted, planar silicon (PIPS) detectors; and gas-electron-multiplier (GEM) foils. All designs are compensated to minimize γ-flash problems. The GEM detector was found to function satisfactory for (n,α) measurements, but the PIPS detectors were found to be better suited for (n,p) reaction measurements. A digital data acquisition (DAQ) system was programmed such that background can be measured simultaneously with the reaction cross section. Measurements of the 147Sm(n,α)144Nd and 149 Sm(n,α)146Nd reaction cross sections were

  12. The reliability of photoneutron cross sections for 90,91,92,94Zr

    NASA Astrophysics Data System (ADS)

    Varlamov, V. V.; Davydov, A. I.; Ishkhanov, B. S.; Orlin, V. N.

    2018-05-01

    Data on partial photoneutron reaction cross sections (γ,1n) and (γ,2n) for 90,91,92,94Zr obtained at Livermore (USA) and for 90Zr obtained at Saclay (France) were analyzed. Experimental data were obtained using quasimonoenergetic photon beams from the annihilation in flight of relativistic positrons. The method of photoneutron multiplicity sorting based on the neutron energy measuring was used to separate partial reactions. The research carried out is based on the objective of using the physical criteria of data reliability. The large systematic uncertainties were found in partial cross sections, since they do not satisfy those criteria. To obtain the reliable cross sections of the partial (γ,1n) and (γ,2n) and total (γ,1n) + (γ,2n) reactions on 90,91,92,94Zr and (γ,3n) reaction on 94Zr, the experimental-theoretical method was used. It is based on the experimental data for neutron yield cross section rather independent from the neutron multiplicity and theoretical equations of the combined photonucleon reaction model (CPNRM). Newly evaluated data are compared with experimental ones. The reasons of noticeable disagreements between those are discussed.

  13. Optimal Bandwidth for Multitaper Spectrum Estimation

    DOE PAGES

    Haley, Charlotte L.; Anitescu, Mihai

    2017-07-04

    A systematic method for bandwidth parameter selection is desired for Thomson multitaper spectrum estimation. We give a method for determining the optimal bandwidth based on a mean squared error (MSE) criterion. When the true spectrum has a second-order Taylor series expansion, one can express quadratic local bias as a function of the curvature of the spectrum, which can be estimated by using a simple spline approximation. This is combined with a variance estimate, obtained by jackknifing over individual spectrum estimates, to produce an estimated MSE for the log spectrum estimate for each choice of time-bandwidth product. The bandwidth that minimizesmore » the estimated MSE then gives the desired spectrum estimate. Additionally, the bandwidth obtained using our method is also optimal for cepstrum estimates. We give an example of a damped oscillatory (Lorentzian) process in which the approximate optimal bandwidth can be written as a function of the damping parameter. Furthermore, the true optimal bandwidth agrees well with that given by minimizing estimated the MSE in these examples.« less

  14. Temperature dependence of the HNO3 UV absorption cross sections

    NASA Technical Reports Server (NTRS)

    Burkholder, James B.; Talukdar, Ranajit K.; Ravishankara, A. R.; Solomon, Susan

    1993-01-01

    The temperature dependence of the HNO3 absorption cross sections between 240 and 360 K over the wavelength range 195 to 350 nm has been measured using a diode array spectrometer. Absorption cross sections were determined using both (1) absolute pressure measurements at 298 K and (2) a dual absorption cell arrangement in which the absorption spectrum at various temperatures is measured relative to the room temperature absorption spectrum. The HNO3 absorption spectrum showed a temperature dependence which is weak at short wavelengths but stronger at longer wavelengths which are important for photolysis in the lower stratosphere. The 298 K absorption cross sections were found to be larger than the values currently recommended for atmospheric modeling (DeMore et al., 1992). Our absorption cross section data are critically compared with the previous measurements of both room temperature and temperature-dependent absorption cross sections. Temperature-dependent absorption cross sections of HNO3 are recommended for use in atmospheric modeling. These temperature dependent HNO3 absorption cross sections were used in a two-dimensional dynamical-photochemical model to demonstrate the effects of the revised absorption cross sections on loss rate of HNO3 and the abundance of NO2 in the stratosphere.

  15. Outcomes of an acceptance and commitment therapy-based skills training group for students with high-functioning autism spectrum disorder: a quasi-experimental pilot study.

    PubMed

    Pahnke, Johan; Lundgren, Tobias; Hursti, Timo; Hirvikoski, Tatja

    2014-11-01

    Autism spectrum disorder is characterized by social impairments and behavioural inflexibility. In this pilot study, the feasibility and outcomes of a 6-week acceptance and commitment therapy-based skills training group were evaluated in a special school setting using a quasi-experimental design (acceptance and commitment therapy/school classes as usual). A total of 28 high-functioning students with autism spectrum disorder (aged 13-21 years) were assessed using self- and teacher-ratings at pre- and post-assessment and 2-month follow-up. All participants completed the skills training, and treatment satisfaction was high. Levels of stress, hyperactivity and emotional distress were reduced in the treatment group. The acceptance and commitment therapy group also reported increased prosocial behaviour. These changes were stable or further improved at the 2-month follow-up. Larger studies are needed to further evaluate the benefits of acceptance and commitment therapy for autism spectrum disorder. © The Author(s) 2013.

  16. The Intergradation, Genetic Interchangeability and Interpretation of Gene Conversion Spectrum Types

    PubMed Central

    Lamb, Bernard C.; Ghikas, Aglaia

    1979-01-01

    In the Pasadena strains of Ascobolus immersus, the gene conversion propperties of 29 induced (nine UV, nine NG, and 11 ICR-170) and nine spontaneous white-ascospore mutations have been studied. Each mutant was crossed to three types of derived wild-type strains; single mutants often gave very different conversion results in the three types of crosses, with any or all of the following changes in: percentage with post-meiotic segregation among aberrant-ratio asci; percentage with conversion to wild type among aberrant-ratio asci; and in total conversion frequency. — These results are compared with those of Leblon (1972 a, b) from Ascobolus immersus and Yu-Sun, Wickramaratne and Whitehouse (1977) from Sordaria brevicollis. It is shown that conversion spectrum types are not necessarily distinct, but can completely intergrade, on the criteria of both post-meiotic segregation frequency and direction of correction. Genetic differences between strains in the present work resulted in much interchangeability of spectrum types for the same mutation in different crosses; e.g., from type C in one cross to type B/D type in another cross, although the mutation is presumably of the same molecular type (addition or deletion frame shift, or base substitution) in each cross. These changes of conversion properties for a given mutation in different crosses mean that previous interpretations of spectrum types in terms of specific conversion properties for various molecular types of mutation are inapplicable, or inadequate on their own, to explain the present data. Other factors, such as heterozygous cryptic mutations or conversion control genes, are probably involved. Because of asymmetric hybrid DNA formation, correction properties may differ from observed conversion properties. PMID:17248926

  17. On-the-fly Doppler broadening of unresolved resonance region cross sections

    DOE PAGES

    Walsh, Jonathan A.; Forget, Benoit; Smith, Kord S.; ...

    2017-07-29

    In this paper, two methods for computing temperature-dependent unresolved resonance region cross sections on-the-fly within continuous-energy Monte Carlo neutron transport simulations are presented. The first method calculates Doppler broadened cross sections directly from zero-temperature average resonance parameters. In a simulation, at each event that requires cross section values, a realization of unresolved resonance parameters is generated about the desired energy and temperature-dependent single-level Breit-Wigner resonance cross sections are computed directly via the analytical Ψ-x Doppler integrals. The second method relies on the generation of equiprobable cross section magnitude bands on an energy-temperature mesh. Within a simulation, the bands are sampledmore » and interpolated in energy and temperature to obtain cross section values on-the-fly. Both of the methods, as well as their underlying calculation procedures, are verified numerically in extensive code-to-code comparisons. Energy-dependent pointwise cross sections calculated with the newly-implemented procedures are shown to be in excellent agreement with those calculated by a widely-used nuclear data processing code. Relative differences at or below 0.1% are observed. Integral criticality benchmark results computed with the proposed methods are shown to reproduce those computed with a state-of-the-art processed nuclear data library very well. In simulations of fast spectrum systems which are highly-sensitive to the representation of cross section data in the unresolved region, k-eigenvalue and neutron flux spectra differences of <10 pcm and <1.0% are observed, respectively. The direct method is demonstrated to be well-suited to the calculation of reference solutions — against which results obtained with a discretized representation may be assessed — as a result of its treatment of the energy, temperature, and cross section magnitude variables as continuous. Also, because there is no pre

  18. Experimental measurement of the 12C+16O fusion cross sections at astrophysical energies

    NASA Astrophysics Data System (ADS)

    Fang, X.; Tan, W. P.; Beard, M.; deBoer, R. J.; Gilardy, G.; Jung, H.; Liu, Q.; Lyons, S.; Robertson, D.; Setoodehnia, K.; Seymour, C.; Stech, E.; Vande Kolk, B.; Wiescher, M.; de Souza, R.; Hudan, S.; Singh, V.; Tang, X. D.; Uberseder, E.

    2018-05-01

    The total cross sections of the 12C+16O fusion have been experimentally determined at low energies to investigate the role of this reaction during late stellar evolution burning phases. A high-intensity oxygen beam was produced by the 5MV pelletron accelerator at the University of Notre Dame impinging on a thick ultra-pure graphite target. Protons and γ-rays were measured simultaneously in the center-of-mass energy range from 3.64 to 5.01 MeV, using strip silicon and HPGe detectors. Statistical model calculations were employed to interpret the experimental results. A new broad resonance-like structure is observed for the 12C+16O reaction, and a decreasing trend of its S-factor towards low energies is found.

  19. Comparison of GEANT4 very low energy cross section models with experimental data in water.

    PubMed

    Incerti, S; Ivanchenko, A; Karamitros, M; Mantero, A; Moretto, P; Tran, H N; Mascialino, B; Champion, C; Ivanchenko, V N; Bernal, M A; Francis, Z; Villagrasa, C; Baldacchin, G; Guèye, P; Capra, R; Nieminen, P; Zacharatou, C

    2010-09-01

    The GEANT4 general-purpose Monte Carlo simulation toolkit is able to simulate physical interaction processes of electrons, hydrogen and helium atoms with charge states (H0, H+) and (He0, He+, He2+), respectively, in liquid water, the main component of biological systems, down to the electron volt regime and the submicrometer scale, providing GEANT4 users with the so-called "GEANT4-DNA" physics models suitable for microdosimetry simulation applications. The corresponding software has been recently re-engineered in order to provide GEANT4 users with a coherent and unique approach to the simulation of electromagnetic interactions within the GEANT4 toolkit framework (since GEANT4 version 9.3 beta). This work presents a quantitative comparison of these physics models with a collection of experimental data in water collected from the literature. An evaluation of the closeness between the total and differential cross section models available in the GEANT4 toolkit for microdosimetry and experimental reference data is performed using a dedicated statistical toolkit that includes the Kolmogorov-Smirnov statistical test. The authors used experimental data acquired in water vapor as direct measurements in the liquid phase are not yet available in the literature. Comparisons with several recommendations are also presented. The authors have assessed the compatibility of experimental data with GEANT4 microdosimetry models by means of quantitative methods. The results show that microdosimetric measurements in liquid water are necessary to assess quantitatively the validity of the software implementation for the liquid water phase. Nevertheless, a comparison with existing experimental data in water vapor provides a qualitative appreciation of the plausibility of the simulation models. The existing reference data themselves should undergo a critical interpretation and selection, as some of the series exhibit significant deviations from each other. The GEANT4-DNA physics models

  20. Little Boy neutron spectrum below 1 MeV

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Evans, A.E.

    1984-01-01

    A high-resolution /sup 3/He ionization chamber of the type development by Cuttler and Shalev was used to study the neutron spectrum from the Little Boy mockup. Measurements were made at distances of 0.75 and 2.0 m and at angles of 0/sup 0/, 45/sup 0/, and 90/sup 0/ with respect to the axis of the assembly, which was operated at power levels from 8.6 to 450 mW. Detector efficiency as a function of energy as well as parameters for correction of pulse-height distributions for proton-recoil and wall effects were determined from a set of response functions for monoenergetic neutrons measured atmore » the Los Alamos 3.75-MeV Van de Graaff Accelerator Facility. Pulse-shape discrimination was used to separate /sup 3/He-recoil pulses from the pulse-height distribution. The spectrum was found to be highly structured, with peaks corresponding to minima in the total neutron cross section of iron. In particular, 15% of the neutrons above the epithermal peak in energy were found to be in the 24-keV iron window. Lesser peaks out to 700 keV are also attributable to filtering action of the weapon's heavy iron casing. Data taken using experimental proton-recoil proportional counters are compared with the high-resolution spectra.« less

  1. Angular-spectrum representation of nondiffracting X waves

    NASA Astrophysics Data System (ADS)

    Fagerholm, Juha; Friberg, Ari T.; Huttunen, Juhani; Morgan, David P.; Salomaa, Martti M.

    1996-10-01

    We derive the nondiffracting X waves, first discussed within acoustics by Lu and Greenleaf [IEEE Trans. Ultrason. Ferroelec. Freq. Contr. 39, 19 (1992)], using the general mathematical formalism based on an angular spectrum of plane waves. This serves to provide a unified treatment of not only the fundamental zeroth-order X waves of Lu and Greenleaf, but also of the lesser-known higher-order derivative X waves, first discussed here in terms of a single, universal, angular spectrum. The characteristic crossed (letter-X-like) shape and the special properties of the X waves, as well as of their angular-spectrum representation, are discussed and illustrated in detail. Asymptotically, for increasing order, the appearance of the X waves is found to transform into a triangular wedgelike waveform.

  2. Incorporating additional targets into learning trials for individuals with autism spectrum disorder.

    PubMed

    Nottingham, Casey L; Vladescu, Jason C; Kodak, Tiffany M

    2015-01-01

    Recently, researchers have investigated the effectiveness and efficiency of presenting secondary targets during learning trials for individuals with autism spectrum disorder (ASD). This instructional method may be more efficient than typical methods used with learners with ASD, because learners may acquire secondary targets without additional instruction. This review will discuss the recent literature on providing secondary targets during teaching trials for individuals with ASD, identify common aspects and results among these studies, and identify areas for future research. © Society for the Experimental Analysis of Behavior.

  3. Treating the Cause of Illness Rather than the Symptoms: Parental Causal Beliefs and Treatment Choices in Autism Spectrum Disorder

    ERIC Educational Resources Information Center

    Dardennes, Roland M.; Al Anbar, Nebal N.; Prado-Netto, Arthur; Kaye, Kelley; Contejean, Yves; Al Anbar, Nesreen N.

    2011-01-01

    Objectives: To explore the relationship between causal beliefs on autism (CBA) and treatment choices. Design and methods: A cross-sectional design was employed. Parents of a child with autism spectrum disorder (ASD) were asked to complete the Lay-Beliefs about Autism Questionnaire (LBA-Q) and answer questions about treatments used. Only items…

  4. Ab initio method for calculating total cross sections

    NASA Technical Reports Server (NTRS)

    Bhatia, A. K.; Schneider, B. I.; Temkin, A.

    1993-01-01

    A method for calculating total cross sections without formally including nonelastic channels is presented. The idea is to use a one channel T-matrix variational principle with a complex correlation function. The derived T matrix is therefore not unitary. Elastic scattering is calculated from T-parallel-squared, but total scattering is derived from the imaginary part of T using the optical theorem. The method is applied to the spherically symmetric model of electron-hydrogen scattering. No spurious structure arises; results for sigma(el) and sigma(total) are in excellent agreement with calculations of Callaway and Oza (1984). The method has wide potential applicability.

  5. A Comparison of Methods for Teaching Receptive Labeling to Children with Autism Spectrum Disorders: A Systematic Replication

    ERIC Educational Resources Information Center

    Grow, Laura L.; Kodak, Tiffany; Carr, James E.

    2014-01-01

    Previous research has demonstrated that the conditional-only method (starting with a multiple-stimulus array) is more efficient than the simple-conditional method (progressive incorporation of more stimuli into the array) for teaching receptive labeling to children with autism spectrum disorders (Grow, Carr, Kodak, Jostad, & Kisamore, 2011).…

  6. [Study of cholesterol concentration based on serum UV-visible absorption spectrum].

    PubMed

    Zhu, Wei-Hua; Zhao, Zhi-Min; Guo, Xin; Chen, Hui

    2009-04-01

    In the present paper, UV-visible absorption spectrum and neural network theory were used for the analysis of cholesterol concentration. Experimental investigation shows that the absorption spectrum has the following characteristics in the wave band of 350-600 nm: (1) There is a stronger absorption peak at 416 nm for the test sample with different cholesterol concentration; (2) There is a shoulder peak between 450 and 500 nm, whose central wavelength is 460 nm; (3) There is a weaker peak at 578 nm; (4) Absorption spectrums shape of different cholesterol concentration is different obviously. The absorption spectrum of serum is the synthesis result of cholesterol and other components (such as sugar), and the information is contained at each wavelength. There is no significant correlation between absorbance and cholesterol content at 416 nm, showing a random relation, so whether cholesterol content is abnormal is not determined by the absorbance peak at 416 nm. Based on the evident correlation between serum absorption spectrum and cholesterol concentration in the wave band of 455-475 nm, a neural network model was built to predict the cholesterol concentration. The correlation coefficient between predicted cholesterol content output A and objectives T reaches 0.968, which can be regarded as better prediction, and it provides a spectra test method of cholesterol concentration.

  7. Complete band gaps in a polyvinyl chloride (PVC) phononic plate with cross-like holes: numerical design and experimental verification.

    PubMed

    Miniaci, Marco; Marzani, Alessandro; Testoni, Nicola; De Marchi, Luca

    2015-02-01

    In this work the existence of band gaps in a phononic polyvinyl chloride (PVC) plate with a square lattice of cross-like holes is numerically and experimentally investigated. First, a parametric analysis is carried out to find plate thickness and cross-like holes dimensions capable to nucleate complete band gaps. In this analysis the band structures of the unitary cell in the first Brillouin zone are computed by exploiting the Bloch-Floquet theorem. Next, time transient finite element analyses are performed to highlight the shielding effect of a finite dimension phononic region, formed by unitary cells arranged into four concentric square rings, on the propagation of guided waves. Finally, ultrasonic experimental tests in pitch-catch configuration across the phononic region, machined on a PVC plate, are executed and analyzed. Very good agreement between numerical and experimental results are found confirming the existence of the predicted band gaps. Copyright © 2014 Elsevier B.V. All rights reserved.

  8. Atmospheric pollution measurement by optical cross correlation methods - A concept

    NASA Technical Reports Server (NTRS)

    Fisher, M. J.; Krause, F. R.

    1971-01-01

    Method combines standard spectroscopy with statistical cross correlation analysis of two narrow light beams for remote sensing to detect foreign matter of given particulate size and consistency. Method is applicable in studies of generation and motion of clouds, nuclear debris, ozone, and radiation belts.

  9. Wavelength selection for portable noninvasive blood component measurement system based on spectral difference coefficient and dynamic spectrum

    NASA Astrophysics Data System (ADS)

    Feng, Ximeng; Li, Gang; Yu, Haixia; Wang, Shaohui; Yi, Xiaoqing; Lin, Ling

    2018-03-01

    Noninvasive blood component analysis by spectroscopy has been a hotspot in biomedical engineering in recent years. Dynamic spectrum provides an excellent idea for noninvasive blood component measurement, but studies have been limited to the application of broadband light sources and high-resolution spectroscopy instruments. In order to remove redundant information, a more effective wavelength selection method has been presented in this paper. In contrast to many common wavelength selection methods, this method is based on sensing mechanism which has a clear mechanism and can effectively avoid the noise from acquisition system. The spectral difference coefficient was theoretically proved to have a guiding significance for wavelength selection. After theoretical analysis, the multi-band spectral difference coefficient-wavelength selection method combining with the dynamic spectrum was proposed. An experimental analysis based on clinical trial data from 200 volunteers has been conducted to illustrate the effectiveness of this method. The extreme learning machine was used to develop the calibration models between the dynamic spectrum data and hemoglobin concentration. The experiment result shows that the prediction precision of hemoglobin concentration using multi-band spectral difference coefficient-wavelength selection method is higher compared with other methods.

  10. Multiconfiguration pair-density functional theory investigation of the electronic spectrum of MnO4.

    PubMed

    Sharma, Prachi; Truhlar, Donald G; Gagliardi, Laura

    2018-03-28

    The electronic spectrum of permanganate ions contains various highly multiconfigurational ligand-to-metal charge transfer states and is notorious for being one of the most challenging systems to be treated by quantum-chemical methods. Here we studied the lowest nine vertical excitation energies using restricted active space second-order perturbation theory (RASPT2) and multiconfiguration pair-density functional theory (MC-PDFT) to test and compare these two theories in computing such a challenging spectrum. The results are compared to literature data, including time-dependent density functional theory, completely renormalized equation-of-motion couple-cluster theory with single and double excitations, symmetry-adapted-cluster configuration interaction, and experimental spectra in the gas phase and solution. Our results show that MC-PDFT accurately predicts the spectrum at a significantly reduced cost as compared to RASPT2.

  11. Multiconfiguration pair-density functional theory investigation of the electronic spectrum of MnO4-

    NASA Astrophysics Data System (ADS)

    Sharma, Prachi; Truhlar, Donald G.; Gagliardi, Laura

    2018-03-01

    The electronic spectrum of permanganate ions contains various highly multiconfigurational ligand-to-metal charge transfer states and is notorious for being one of the most challenging systems to be treated by quantum-chemical methods. Here we studied the lowest nine vertical excitation energies using restricted active space second-order perturbation theory (RASPT2) and multiconfiguration pair-density functional theory (MC-PDFT) to test and compare these two theories in computing such a challenging spectrum. The results are compared to literature data, including time-dependent density functional theory, completely renormalized equation-of-motion couple-cluster theory with single and double excitations, symmetry-adapted-cluster configuration interaction, and experimental spectra in the gas phase and solution. Our results show that MC-PDFT accurately predicts the spectrum at a significantly reduced cost as compared to RASPT2.

  12. Behavioural Intervention Practices for Stereotypic and Repetitive Behaviour in Individuals with Autism Spectrum Disorder: A Systematic Review

    ERIC Educational Resources Information Center

    Patterson, Stephanie Y.; Smith, Veronica; Jelen, Michaela

    2010-01-01

    Aim: The purpose of this systematic review was to examine the quality of conduct of experimental studies contributing to our empirical understanding of function-based behavioural interventions for stereotypic and repetitive behaviours (SRBs) in individuals with autism spectrum disorders (ASDs). Method: Systematic review methodology was used to…

  13. A two-step method for retrieving the longitudinal profile of an electron bunch from its coherent radiation

    NASA Astrophysics Data System (ADS)

    Pelliccia, Daniele; Sen, Tanaji

    2014-11-01

    The coherent radiation emitted by an electron bunch provides a diagnostic signal that can be used to estimate its longitudinal distribution. Commonly only the amplitude of the intensity spectrum can be measured and the associated phase must be calculated to obtain the bunch profile. Very recently an iterative method was proposed to retrieve this phase. However ambiguities associated with non-uniqueness of the solution are always present in the phase retrieval procedure. Here we present a method to overcome the ambiguity problem by first performing multiple independent runs of the phase retrieval procedure and then second, sorting the good solutions by means of cross-correlation analysis. Results obtained with simulated bunches of various shapes and experimental measured spectra are presented, discussed and compared with the established Kramers-Kronig method. It is shown that even when the effect of the ambiguities is strong, as is the case for a double peak in the profile, the cross-correlation post-processing is able to filter out unwanted solutions. We show that, unlike the Kramers-Kronig method, the combined approach presented is able to faithfully reconstruct complicated bunch profiles.

  14. On the high energy proton spectrum measurements

    NASA Technical Reports Server (NTRS)

    Ellsworth, R. W.; Ito, A.; Macfall, J.; Siohan, F.; Streitmatter, R. E.; Tonwar, S. C.; Vishwanath, P. R.; Yodh, G. B.; Balasubrahmanyan, V. K.

    1977-01-01

    The steepening of the proton spectrum beyond 1000 GeV and the rise in inelastic cross sections between 20 and 600 GeV observed by the PROTON-1-2-3 satellite experiments were explained by systematic effects of energy dependent albedo (backscatter) from the calorimeter.

  15. Proximal Gamma-Ray Spectroscopy to Predict Soil Properties Using Windows and Full-Spectrum Analysis Methods

    PubMed Central

    Mahmood, Hafiz Sultan; Hoogmoed, Willem B.; van Henten, Eldert J.

    2013-01-01

    Fine-scale spatial information on soil properties is needed to successfully implement precision agriculture. Proximal gamma-ray spectroscopy has recently emerged as a promising tool to collect fine-scale soil information. The objective of this study was to evaluate a proximal gamma-ray spectrometer to predict several soil properties using energy-windows and full-spectrum analysis methods in two differently managed sandy loam fields: conventional and organic. In the conventional field, both methods predicted clay, pH and total nitrogen with a good accuracy (R2 ≥ 0.56) in the top 0–15 cm soil depth, whereas in the organic field, only clay content was predicted with such accuracy. The highest prediction accuracy was found for total nitrogen (R2 = 0.75) in the conventional field in the energy-windows method. Predictions were better in the top 0–15 cm soil depths than in the 15–30 cm soil depths for individual and combined fields. This implies that gamma-ray spectroscopy can generally benefit soil characterisation for annual crops where the condition of the seedbed is important. Small differences in soil structure (conventional vs. organic) cannot be determined. As for the methodology, we conclude that the energy-windows method can establish relations between radionuclide data and soil properties as accurate as the full-spectrum analysis method. PMID:24287541

  16. Flow in curved ducts of varying cross-section

    NASA Astrophysics Data System (ADS)

    Sotiropoulos, F.; Patel, V. C.

    1992-07-01

    Two numerical methods for solving the incompressible Navier-Stokes equations are compared with each other by applying them to calculate laminar and turbulent flows through curved ducts of regular cross-section. Detailed comparisons, between the computed solutions and experimental data, are carried out in order to validate the two methods and to identify their relative merits and disadvantages. Based on the conclusions of this comparative study a numerical method is developed for simulating viscous flows through curved ducts of varying cross-sections. The proposed method is capable of simulating the near-wall turbulence using fine computational meshes across the sublayer in conjunction with a two-layer k-epsilon model. Numerical solutions are obtained for: (1) a straight transition duct geometry, and (2) a hydroturbine draft-tube configuration at model scale Reynolds number for various inlet swirl intensities. The report also provides a detailed literature survey that summarizes all the experimental and computational work in the area of duct flows.

  17. A cross-domain communication resource scheduling method for grid-enabled communication networks

    NASA Astrophysics Data System (ADS)

    Zheng, Xiangquan; Wen, Xiang; Zhang, Yongding

    2011-10-01

    To support a wide range of different grid applications in environments where various heterogeneous communication networks coexist, it is important to enable advanced capabilities in on-demand and dynamical integration and efficient co-share with cross-domain heterogeneous communication resource, thus providing communication services which are impossible for single communication resource to afford. Based on plug-and-play co-share and soft integration with communication resource, Grid-enabled communication network is flexibly built up to provide on-demand communication services for gird applications with various requirements on quality of service. Based on the analysis of joint job and communication resource scheduling in grid-enabled communication networks (GECN), this paper presents a cross multi-domain communication resource cooperatively scheduling method and describes the main processes such as traffic requirement resolution for communication services, cross multi-domain negotiation on communication resource, on-demand communication resource scheduling, and so on. The presented method is to afford communication service capability to cross-domain traffic delivery in GECNs. Further research work towards validation and implement of the presented method is pointed out at last.

  18. Experimental investigation of the effects of different liquid environments on the graphene oxide produced by laser ablation method

    NASA Astrophysics Data System (ADS)

    Ghavidel, Elham; Sari, Amir Hossein; Dorranian, Davoud

    2018-07-01

    In this work, the effects of liquid environments on the characteristics and optical properties of carbon nanostructures - in particular, Graphene Oxide (GO) - prepared by pulsed laser ablation were studied experimentally. The second harmonic beam of a Q-switched Nd:YAG laser of 532 nm wavelength at 6 ns pulse width and 0.7 J/cm2 fluence was employed to irradiate the graphite target in liquid nitrogen, deionized water, and 0.01 M CTAB solution under the same initial experimental conditions. Produced nanostructures were characterized by Raman scattering spectrum, FE-SEM and TEM images, Photoluminescence, and UV-Vis-NIR spectrum. TEM and FE-SEM images show sheet-like morphology with few square micrometer area graphenes in all samples. Raman and UV-Vis-NIR analyses show that graphene is oxidized due to the presence of oxygen molecules in ablation environment. Results demonstrate that the graphene nanosheets produced in deionized water are multilayer, contains the largest sp2 domain size, the least defects and the lowest possibility of aggregation.

  19. Experimental micromechanical approach to failure process in CFRP cross-ply laminates

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Takeda, N.; Ogihara, S.; Kobayashi, A.

    The microscopic failure process of three different types of cross-ply laminates, (0/90{sub n}/0) (n = 4, 8, 12), was investigated at R.T. and 80 C. Progressive damage parameters, the transverse crack density and the delamination ratio, were measured. A simple modified shear-lag analysis including the thermal residual strains was conducted to predict the transverse crack density as a function of laminate strain, considering the constraint effect, as well as the strength distribution of the transverse layer. The analysis was also extended to the system containing delamination to predict the delamination length. A prediction was also presented for the transverse crackmore » density including the effect of the delamination growth. The prediction showed good agreement with the experimental results.« less

  20. Preliminary evaluation of a gel tube agglutination major cross-match method in dogs.

    PubMed

    Villarnovo, Dania; Burton, Shelley A; Horney, Barbara S; MacKenzie, Allan L; Vanderstichel, Raphaël

    2016-09-01

    A major cross-match gel tube test is available for use in dogs yet has not been clinically evaluated. This study compared cross-match results obtained using the gel tube and the standard tube methods for canine samples. Study 1 included 107 canine sample donor-recipient pairings cross-match tested with the RapidVet-H method gel tube test and compared results with the standard tube method. Additionally, 120 pairings using pooled sera containing anti-canine erythrocyte antibody at various concentrations were tested with leftover blood from a hospital population to assess sensitivity and specificity of the gel tube method in comparison with the standard method. The gel tube method had a good relative specificity of 96.1% in detecting lack of agglutination (compatibility) compared to the standard tube method. Agreement between the 2 methods was moderate. Nine of 107 pairings showed agglutination/incompatibility on either test, too few to allow reliable calculation of relative sensitivity. Fifty percent of the gel tube method results were difficult to interpret due to sample spreading in the reaction and/or negative control tubes. The RapidVet-H method agreed with the standard cross-match method on compatible samples, but detected incompatibility in some sample pairs that were compatible with the standard method. Evaluation using larger numbers of incompatible pairings is needed to assess diagnostic utility. The gel tube method results were difficult to categorize due to sample spreading. Weak agglutination reactions or other factors such as centrifuge model may be responsible. © 2016 American Society for Veterinary Clinical Pathology.

  1. Fatigue crack growth spectrum simplification: Facilitation of on-board damage prognosis systems

    NASA Astrophysics Data System (ADS)

    Adler, Matthew Adam

    2009-12-01

    monitoring and management of aircraft. A spectrum reduction method was proposed and experimentally validated that reduces a variable-amplitude spectrum to a constant-amplitude equivalent. The reduction from a variable-amplitude (VA) spectrum to a constant-amplitude equivalent (CAE) was proposed as a two-part process. Preliminary spectrum reduction is first performed by elimination of those loading events shown to be too negligible to significantly contribute to fatigue crack growth. This is accomplished by rainflow counting. The next step is to calculate the appropriate, equivalent maximum and minimum loads by means of a root-mean-square average. This reduced spectrum defines the CAE and replaces the original spectrum. The simplified model was experimentally shown to provide the approximately same fatigue crack growth as the original spectrum. Fatigue crack growth experiments for two dissimilar aircraft spectra across a wide-range of stress-intensity levels validated the proposed spectrum reduction procedure. Irrespective of the initial K-level, the constant-amplitude equivalent spectra were always conservative in crack growth rate, and were so by an average of 50% over the full range tested. This corresponds to a maximum 15% overestimation in driving force Delta K. Given other typical sources of scatter that occur during fatigue crack growth, a consistent 50% conservative prediction on crack growth rate is very satisfying. This is especially attractive given the reduction in cost gained by the simplification. We now have a seamless system that gives an acceptably good approximation of damage occurring in the aircraft. This contribution is significant because in a very simple way we now have given a path to bypass the current infrastructure and ground-support requirements. The decision-making is now a lot simpler. In managing an entire fleet we now have a workable system where the strength is in no need for a massive, isolated computational center. The fidelity of the model

  2. The multistate impact parameter method for molecular charge exchange in nitrogen

    NASA Technical Reports Server (NTRS)

    Ioup, J. W.

    1980-01-01

    The multistate impact parameter method is applied to the calculation of total cross sections for low energy change transfer between nitrogen ions and nitrogen molecules. Experimental data showing the relationships between total cross section and ion energy for various pressures and electron ionization energies were obtained. Calculated and experimental cross section values from the work are compared with the experimental and theoretical results of other investigators.

  3. Method of Cross-Linking Aerogels Using a One-Pot Reaction Scheme

    NASA Technical Reports Server (NTRS)

    Meador, Ann B.; Capadona, Lynn A.

    2008-01-01

    A document discusses a new, simplified method for cross-linking silica and other oxide aerogels, with a polymeric material to increase strength of such materials without adversely affecting porosity or low density. This innovation introduces the polymer precursor into the sol before gelation either as an agent, which co-reacts with the oxide gel, or as soluble polymer precursors, which do not interact with the oxide gel in any way. Subsequent exposure to heat, light, catalyst or other method of promoting polymerization causes cross-linking without any additional infiltration steps.

  4. Imitating intrinsic alignments: a bias to the CMB lensing-galaxy shape cross-correlation power spectrum induced by the large-scale structure bispectrum

    NASA Astrophysics Data System (ADS)

    Merkel, Philipp M.; Schäfer, Björn Malte

    2017-10-01

    Cross-correlating the lensing signals of galaxies and comic microwave background (CMB) fluctuations is expected to provide valuable cosmological information. In particular, it may help tighten constraints on parameters describing the properties of intrinsically aligned galaxies at high redshift. To access the information conveyed by the cross-correlation signal, its accurate theoretical description is required. We compute the bias to CMB lensing-galaxy shape cross-correlation measurements induced by non-linear structure growth. Using tree-level perturbation theory for the large-scale structure bispectrum, we find that the bias is negative on most angular scales, therefore mimicking the signal of intrinsic alignments. Combining Euclid-like galaxy lensing data with a CMB experiment comparable to the Planck satellite mission, the bias becomes significant only on smallest scales (ℓ ≳ 2500). For improved CMB observations, however, the corrections amount to 10-15 per cent of the CMB lensing-intrinsic alignment signal over a wide multipole range (10 ≲ ℓ ≲ 2000). Accordingly, the power spectrum bias, if uncorrected, translates into 2σ and 3σ errors in the determination of the intrinsic alignment amplitude in the case of CMB stage III and stage IV experiments, respectively.

  5. Diamond tool wear detection method using cutting force and its power spectrum analysis in ultra-precision fly cutting

    NASA Astrophysics Data System (ADS)

    Zhang, G. Q.; To, S.

    2014-08-01

    Cutting force and its power spectrum analysis was thought to be an effective method monitoring tool wear in many cutting processes and a significant body of research has been conducted on this research area. However, relative little similar research was found in ultra-precision fly cutting. In this paper, a group of experiments were carried out to investigate the cutting forces and its power spectrum characteristics under different tool wear stages. Result reveals that the cutting force increases with the progress of tool wear. The cutting force signals under different tool wear stages were analyzed using power spectrum analysis. The analysis indicates that a characteristic frequency does exist in the power spectrum of the cutting force, whose power spectral density increases with the increasing of tool wear level, this characteristic frequency could be adopted to monitor diamond tool wear in ultra-precision fly cutting.

  6. Compact and low cross-talk silicon-on-insulator crossing using a periodic dielectric waveguide.

    PubMed

    Feng, Junbo; Li, Qunqing; Fan, Shoushan

    2010-12-01

    We propose and experimentally demonstrate a compact, highly efficient, and negligible cross-talk silicon-on-insulator crossing using a periodic dielectric waveguide. The crossing occupies a footprint of less than 4 μm × 4 μm. Around 0.7 dB insertion loss and lower than -40 dB, cross talk was achieved experimentally over a broad wavelength range.

  7. [Research on the temperature field detection method of hot forging based on long-wavelength infrared spectrum].

    PubMed

    Zhang, Yu-Cun; Wei, Bin; Fu, Xian-Bin

    2014-02-01

    A temperature field detection method based on long-wavelength infrared spectrum for hot forging is proposed in the present paper. This method combines primary spectrum pyrometry and three-stage FP-cavity LCTF. By optimizing the solutions of three group nonlinear equations in the mathematical model of temperature detection, the errors are reduced, thus measuring results will be more objective and accurate. Then the system of three-stage FP-cavity LCTF was designed on the principle of crystal birefringence. The system realized rapid selection of any wavelength in a certain wavelength range. It makes the response of the temperature measuring system rapid and accurate. As a result, without the emissivity of hot forging, the method can acquire exact information of temperature field and effectively suppress the background light radiation around the hot forging and ambient light that impact the temperature detection accuracy. Finally, the results of MATLAB showed that the infrared spectroscopy through the three-stage FP-cavity LCTF could meet the requirements of design. And experiments verified the feasibility of temperature measuring method. Compared with traditional single-band thermal infrared imager, the accuracy of measuring result was improved.

  8. Retrieval of Droplet size Density Distribution from Multiple field of view Cross polarized Lidar Signals: Theory and Experimental Validation

    DTIC Science & Technology

    2016-06-02

    Retrieval of droplet-size density distribution from multiple-field-of-view cross-polarized lidar signals: theory and experimental validation...theoretical and experimental studies of mul- tiple scattering and multiple-field-of-view (MFOV) li- dar detection have made possible the retrieval of cloud...droplet cloud are typical of Rayleigh scattering, with a signature close to a dipole (phase function quasi -flat and a zero-depolarization ratio

  9. QCL spectroscopy combined with the least squares method for substance analysis

    NASA Astrophysics Data System (ADS)

    Samsonov, D. A.; Tabalina, A. S.; Fufurin, I. L.

    2017-11-01

    The article briefly describes distinctive features of quantum cascade lasers (QCL). It also describes an experimental set-up for acquiring mid-infrared absorption spectra using QCL. The paper demonstrates experimental results in the form of normed spectra. We tested the application of the least squares method for spectrum analysis. We used this method for substance identification and extraction of concentration data. We compare the results with more common methods of absorption spectroscopy. Eventually, we prove the feasibility of using this simple method for quantitative and qualitative analysis of experimental data acquired with QCL.

  10. Accurate determination of Brillouin frequency based on cross recurrence plot analysis in Brillouin distributed fiber sensor

    NASA Astrophysics Data System (ADS)

    Haneef, Shahna M.; Srijith, K.; Venkitesh, D.; Srinivasan, B.

    2017-04-01

    We propose and demonstrate the use of cross recurrence plot analysis (CRPA) to accurately determine the Brillouin shift due to strain and temperature in a Brillouin distributed fiber sensor. This signal processing technique, which is implemented in Brillouin sensors for the first time relies on apriori data i.e, the lineshape of the Brillouin gain spectrum and its similarity with the spectral features measured at different locations along the fiber. Analytical and experimental investigation of the proposed scheme is presented in this paper.

  11. Application of multivariate autoregressive spectrum estimation to ULF waves

    NASA Technical Reports Server (NTRS)

    Ioannidis, G. A.

    1975-01-01

    The estimation of the power spectrum of a time series by fitting a finite autoregressive model to the data has recently found widespread application in the physical sciences. The extension of this method to the analysis of vector time series is presented here through its application to ULF waves observed in the magnetosphere by the ATS 6 synchronous satellite. Autoregressive spectral estimates of the power and cross-power spectra of these waves are computed with computer programs developed by the author and are compared with the corresponding Blackman-Tukey spectral estimates. The resulting spectral density matrices are then analyzed to determine the direction of propagation and polarization of the observed waves.

  12. 47 CFR 101.521 - Spectrum utilization.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 47 Telecommunication 5 2011-10-01 2011-10-01 false Spectrum utilization. 101.521 Section 101.521... SERVICES 24 GHz Service and Digital Electronic Message Service § 101.521 Spectrum utilization. All... contain detailed descriptions of the modulation method, the channel time sharing method, any error...

  13. Comparison as an Approach to the Experimental Method

    ERIC Educational Resources Information Center

    Turner, David A.

    2017-01-01

    In his proposal for comparative education, Marc Antoinne Jullien de Paris argues that the comparative method offers a viable alternative to the experimental method. In an experiment, the scientist can manipulate the variables in such a way that he or she can see any possible combination of variables at will. In comparative education, or in…

  14. Using Experimental Methods in Higher Education Research

    ERIC Educational Resources Information Center

    Ross, Steven M.; Morrison, Gary R.; Lowther, Deborah L.

    2005-01-01

    Experimental methods have been used extensively for many years to conduct research in education and psychology. However, applications of experiments to investigate technology and other instructional innovations in higher education settings have been relatively limited. The present paper examines ways in which experiments can be used productively…

  15. Measurement of the ^235mU Production Cross Section Using a Critical Assembly*

    NASA Astrophysics Data System (ADS)

    Macri, Robert; Authier, Nicolas; Becker, John; Belier, Gilbert; Bond, Evelyn; Bredeweg, Todd; Glover, S.; Meot, Vincent; Rundberg, Robert; Vieira, David; Wilhelmy, Jerry

    2006-10-01

    Measurements of the creation and destruction cross sections for actinide nuclei constitute an important experimental effort in support of Stockpile Stewardship. In this talk I will give a progress report on the effort to measure the production cross section of the ^235mU isomer integrated over a fission neutron spectrum. This ongoing experiment is fielded at CEA in Valduc, France, taking advantage of the CALIBAN critical assembly. This effort is performed in collaboration with LANL, LLNL, Bruyeres le Chatel, and Valduc staff. This experiment utilizes a technique to measure internal conversion electrons from the ^235mU isomer with the French BIII detector (Bruyeres le Chatel), and involves a substantial chemistry effort (LANL) to prepare targets for irradiation and counting, as well as to remove fission fragments after irradiation. Experimental techniques will be discussed and preliminary data presented. *Work performed under the auspices of the U.S. Department of Energy by Los Alamos National Laboratory (W-7405-ENG-36) and Lawrence Livermore National Laboratory (W-7405-ENG-48), and CEA-DAM under CEA-DAM NNSA-DOE agreement.

  16. Rotational Spectrum of 1,1-Difluoroethane: Internal Rotation Analysis and Structure

    NASA Astrophysics Data System (ADS)

    Villamanan, R. M.; Chen, W. D.; Wlodarczak, G.; Demaison, J.; Lesarri, A. G.; Lopez, J. C.; Alonso, J. L.

    1995-05-01

    The rotational spectrum of CH3CHF2 in its ground state was measured up to 653 GHz. Accurate rotational and centrifugal distortion constants were determined. The internal rotation splittings were analyzed using the internal axis method. An ab initio structure has been calculated and a near-equilibrium structure has been estimated using offsets derived empirically. This structure was compared to an experimental r0 structure. The four lowest excited states (including the methyl torsion) have also been assigned.

  17. Cross-Proportions: A Conceptual Method for Developing Quantitative Problem-Solving Skills

    ERIC Educational Resources Information Center

    Cook, Elzbieta; Cook, Stephen L.

    2005-01-01

    The cross-proportion method allows both the instructor and the student to easily determine where an error is made during problem solving. The C-P method supports a strong cognitive foundation upon which students can develop other diagnostic methods as they advance in chemistry and scientific careers.

  18. Structural characterization of drug-like compounds by ion mobility mass spectrometry: comparison of theoretical and experimentally derived nitrogen collision cross sections.

    PubMed

    Campuzano, Iain; Bush, Matthew F; Robinson, Carol V; Beaumont, Claire; Richardson, Keith; Kim, Hyungjun; Kim, Hugh I

    2012-01-17

    We present the use of drug-like molecules as a traveling wave (T-wave) ion mobility (IM) calibration sample set, covering the m/z range of 122.1-609.3, the nitrogen collision cross-section (Ω(N(2))) range of 124.5-254.3 Å(2) and the helium collision cross-section (Ω(He)) range of 63.0-178.8 Å(2). Absolute Ω(N(2)) and Ω(He) values for the drug-like calibrants and two diastereomers were measured using a drift-tube instrument with radio frequency (RF) ion confinement. T-wave drift-times for the protonated diastereomers betamethasone and dexamethasone are reproducibly different. Calibration of these drift-times yields T-wave Ω(N(2)) values of 189.4 and 190.4 Å(2), respectively. These results demonstrate the ability of T-wave IM spectrometry to differentiate diastereomers differing in Ω(N(2)) value by only 1 Å(2), even though the resolution of these IM experiments were ∼40 (Ω/ΔΩ). Demonstrated through density functional theory optimized geometries and ionic electrostatic surface potential analysis, the small but measurable mobility difference between the two diastereomers is mainly due to short-range van der Waals interactions with the neutral buffer gas and not long-range charge-induced dipole interactions. The experimental RF-confining drift-tube and T-wave Ω(N(2)) values were also evaluated using a nitrogen based trajectory method, optimized for T-wave operating temperature and pressures, incorporating additional scaling factors to the Lennard-Jones potentials. Experimental Ω(He) values were also compared to the original and optimized helium based trajectory methods.

  19. An integrated molecular docking and rescoring method for predicting the sensitivity spectrum of various serine hydrolases to organophosphorus pesticides.

    PubMed

    Yang, Ling-Ling; Yang, Xiao; Li, Guo-Bo; Fan, Kai-Ge; Yin, Peng-Fei; Chen, Xiang-Gui

    2016-04-01

    The enzymatic chemistry method is currently the most widely used method for the rapid detection of organophosphorus (OP) pesticides, but the enzymes used, such as cholinesterases, lack sufficient sensitivity to detect low concentrations of OP pesticides present in given samples. Serine hydrolase is considered an ideal enzyme source in seeking high-sensitivity enzymes used for OP pesticide detection. However, it is difficult to systematically evaluate sensitivities of various serine hydrolases to OP pesticides by in vitro experiments. This study aimed to establish an in silico method to predict the sensitivity spectrum of various serine hydrolases to OP pesticides. A serine hydrolase database containing 219 representative serine hydrolases was constructed. Based on this database, an integrated molecular docking and rescoring method was established, in which the AutoDock Vina program was used to produce the binding poses of OP pesticides to various serine hydrolases and the ID-Score method developed recently by us was adopted as a rescoring method to predict their binding affinities. In retrospective case studies, this method showed good performance in predicting the sensitivities of known serine hydrolases to two OP pesticides: paraoxon and diisopropyl fluorophosphate. The sensitivity spectrum of the 219 collected serine hydrolases to 37 commonly used OP pesticides was finally obtained using this method. Overall, this study presented a promising in silico tool to predict the sensitivity spectrum of various serine hydrolases to OP pesticides, which will help in finding high-sensitivity serine hydrolases for OP pesticide detection. © 2015 Society of Chemical Industry.

  20. EDDIX--a database of ionisation double differential cross sections.

    PubMed

    MacGibbon, J H; Emerson, S; Liamsuwan, T; Nikjoo, H

    2011-02-01

    The use of Monte Carlo track structure is a choice method in biophysical modelling and calculations. To precisely model 3D and 4D tracks, the cross section for the ionisation by an incoming ion, double differential in the outgoing electron energy and angle, is required. However, the double differential cross section cannot be theoretically modelled over the full range of parameters. To address this issue, a database of all available experimental data has been constructed. Currently, the database of Experimental Double Differential Ionisation Cross sections (EDDIX) contains over 1200 digitalised experimentally measured datasets from the 1960s to present date, covering all available ion species (hydrogen to uranium) and all available target species. Double differential cross sections are also presented with the aid of an eight parameter functions fitted to the cross sections. The parameters include projectile species and charge, target nuclear charge and atomic mass, projectile atomic mass and energy, electron energy and deflection angle. It is planned to freely distribute EDDIX and make it available to the radiation research community for use in the analytical and numerical modelling of track structure.

  1. Valence and lowest Rydberg electronic states of phenol investigated by synchrotron radiation and theoretical methods

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Limão-Vieira, P., E-mail: plimaovieira@fct.unl.pt; Ferreira da Silva, F.; Lange, E.

    2016-07-21

    We present the experimental high-resolution vacuum ultraviolet (VUV) photoabsorption spectra of phenol covering for the first time the full 4.3–10.8 eV energy-range, with absolute cross sections determined. Theoretical calculations on the vertical excitation energies and oscillator strengths were performed using time-dependent density functional theory and the equation-of-motion coupled cluster method restricted to single and double excitations level. These have been used in the assignment of valence and Rydberg transitions of the phenol molecule. The VUV spectrum reveals several new features not previously reported in the literature, with particular reference to the 6.401 eV transition, which is here assigned to themore » 3sσ/σ{sup ∗}(OH)←3π(3a″) transition. The measured absolute photoabsorption cross sections have been used to calculate the photolysis lifetime of phenol in the earth’s atmosphere (0–50 km).« less

  2. Cross-Country Skiing Injuries and Training Methods.

    PubMed

    Nagle, Kyle B

    2015-01-01

    Cross-country skiing is a low injury-risk sport that has many health benefits and few long-term health risks. Some concern exists that cross-country skiing may be associated with a higher incidence of atrial fibrillation; however, mortality rates among skiers are lower than those among the general population. While continuing to emphasize aerobic and anaerobic training, training methods also should promote ski-specific strength training to increase maximum force and its rate of delivery and to build muscular endurance to maintain that power through a race. Multiple tests are available to monitor training progress. Which tests are most appropriate depends on the specific events targeted. In addition to laboratory-based tests, there also are many simpler, more cost-effective tests, such as short time trials, that can be used to monitor training progress and predict performance particularly at the junior skier level where access and cost may be more prohibitive.

  3. [Experimental realization of minimally invasive techniques of scleral collagen cross-linking].

    PubMed

    Iomdina, Е N; Tarutta, Е P; Semchishen, V А; Korigodskiy, А R; Zakharov, I D; Khoroshilova-Maslova, I P; Ignat'eva, N Yu; Kiseleva, Т N; Sianosyan, А А; Milash, S V

    effect. The findings also include: a 1.8 times higher rate of scleral cross-linking, activation of cellular elements, neoformation of connective tissue on the scleral surface, and vascular growth, which together indicate a pronounced metabolic and strengthening effect of Sklerateks on the sclera. Experimental results on minimally invasive techniques of SXL allow to recommend them for further clinical investigation as a promising treatment of progressive myopia.

  4. Geodesic acoustic modes in noncircular cross section tokamaks

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sorokina, E. A., E-mail: sorokina.ekaterina@gmail.com; Lakhin, V. P.; Konovaltseva, L. V.

    2017-03-15

    The influence of the shape of the plasma cross section on the continuous spectrum of geodesic acoustic modes (GAMs) in a tokamak is analyzed in the framework of the MHD model. An expression for the frequency of a local GAM for a model noncircular cross section plasma equilibrium is derived. Amendments to the oscillation frequency due to the plasma elongation and triangularity and finite tokamak aspect ratio are calculated. It is shown that the main factor affecting the GAM spectrum is the plasma elongation, resulting in a significant decrease in the mode frequency.

  5. Effect of temperature on the spectrum of fiber Bragg grating sensors embedded in polymer composite

    NASA Astrophysics Data System (ADS)

    Anoshkin, A. N.; Shipunov, G. S.; Voronkov, A. A.; Shardakov, I. N.

    2017-12-01

    This work presents the experimental results on the effect of temperature on the spectrum of fiber Bragg grating (FBG) sensors embedded in a polymer composite material manufactured by the prepreg method. The tests are carried out for flat bar specimens made of fiberglass with five embedded FBG sensors. For measuring the reflected wave power, the ASTRO X322 Interrogator is used. It is shown that embedding leads to the occurrence of an additional power peak and decreases the reflection spectrum signal by 10-12 dB. This is due to the effect of transverse compression force and the anisotropic character of the thermal expansion coefficient of the material. In heating, the reflected spectrum is close to the initial state of the material, but it has a less power.

  6. Subtraction method of computing QCD jet cross sections at NNLO accuracy

    NASA Astrophysics Data System (ADS)

    Trócsányi, Zoltán; Somogyi, Gábor

    2008-10-01

    We present a general subtraction method for computing radiative corrections to QCD jet cross sections at next-to-next-to-leading order accuracy. The steps needed to set up this subtraction scheme are the same as those used in next-to-leading order computations. However, all steps need non-trivial modifications, which we implement such that that those can be defined at any order in perturbation theory. We give a status report of the implementation of the method to computing jet cross sections in electron-positron annihilation at the next-to-next-to-leading order accuracy.

  7. Extension of the energy range of experimental activation cross-sections data of deuteron induced nuclear reactions on indium up to 50MeV.

    PubMed

    Tárkányi, F; Ditrói, F; Takács, S; Hermanne, A; Ignatyuk, A V

    2015-11-01

    The energy range of our earlier measured activation cross-sections data of longer-lived products of deuteron induced nuclear reactions on indium were extended from 40MeV up to 50MeV. The traditional stacked foil irradiation technique and non-destructive gamma spectrometry were used. No experimental data were found in literature for this higher energy range. Experimental cross-sections for the formation of the radionuclides (113,110)Sn, (116m,115m,114m,113m,111,110g,109)In and (115)Cd are reported in the 37-50MeV energy range, for production of (110)Sn and (110g,109)In these are the first measurements ever. The experimental data were compared with the results of cross section calculations of the ALICE and EMPIRE nuclear model codes and of the TALYS 1.6 nuclear model code as listed in the on-line library TENDL-2014. Copyright © 2015 Elsevier Ltd. All rights reserved.

  8. Ultra wide band 3-D cross section (RCS) holography

    NASA Astrophysics Data System (ADS)

    Collins, H. D.; Hall, T. E.

    1992-07-01

    Ultra wide band impulse holography is an exciting new concept for predictive radar cross section (RCS) evaluation employing near-field measurements. Reconstruction of the near-field hologram data maps the target's scattering areas, and uniquely identifies the 'hot spot' locations on the target. In addition, the target and calibration sphere's plane wave angular spectrums are computed (via digital algorithm) and used to generate the target's far-field RCS values in three dimensions for each frequency component in the impulse. Thin and thick targets are defined in terms of their near-field amplitude variations in range. Range gating and computer holographic techniques are applied to correct these variations. Preliminary experimental results on various targets verify the concept of RCS holography. The unique 3-D presentation (i.e., typically containing 524,288 RCS values for a 1024 (times) 512 sampled aperture for every frequency component) illustrates the efficacy of target recognition in terms of its far-field plane wave angular spectrum image. RCS images can then be viewed at different angles for target recognition, etc.

  9. Non-Born-Oppenheimer calculations of the pure vibrational spectrum of HeH+.

    PubMed

    Pavanello, Michele; Bubin, Sergiy; Molski, Marcin; Adamowicz, Ludwik

    2005-09-08

    Very accurate calculations of the pure vibrational spectrum of the HeH(+) ion are reported. The method used does not assume the Born-Oppenheimer approximation, and the motion of both the electrons and the nuclei are treated on equal footing. In such an approach the vibrational motion cannot be decoupled from the motion of electrons, and thus the pure vibrational states are calculated as the states of the system with zero total angular momentum. The wave functions of the states are expanded in terms of explicitly correlated Gaussian basis functions multipled by even powers of the internuclear distance. The calculations yielded twelve bound states and corresponding eleven transition energies. Those are compared with the pure vibrational transition energies extracted from the experimental rovibrational spectrum.

  10. Gamma ray cosmology: The extra galactic gamma spectrum and methods to detect the underlying source

    NASA Technical Reports Server (NTRS)

    Cline, David B.

    1990-01-01

    The possible sources of extragalactic gamma rays and methods to distinguish the different sources are discussed. The sources considered are early universe decays and annihilation of Particles, active galactic nuclei (AGN) sources, and baryon-antibaryon annihilation in a baryon symmetric cosmology. The energy spectrum and possible angular fluctuations due to these sources are described.

  11. A Revised Method of Presenting Wavenumber-Frequency Power Spectrum Diagrams That Reveals the Asymmetric Nature of Tropical Large-scale Waves

    NASA Technical Reports Server (NTRS)

    Chao, Winston C.; Yang, Bo; Fu, Xiouhua

    2007-01-01

    The popular method of presenting wavenumber-frequency power spectrum diagrams for studying tropical large-scale waves in the literature is shown to give an incomplete presentation of these waves. The so-called "convectively-coupled Kelvin (mixed Rossby-gravity) waves" are presented as existing only in the symmetric (antisymmetric) component of the diagrams. This is obviously not consistent with the published composite/regression studies of "convectively-coupled Kelvin waves," which illustrate the asymmetric nature of these waves. The cause of this inconsistency is revealed in this note and a revised method of presenting the power spectrum diagrams is proposed. When this revised method is used, "convectively-coupled Kelvin waves" do show anti-symmetric components, and "convectively-coupled mixed Rossby-gravity waves (also known as Yanai waves)" do show a hint of symmetric components. These results bolster a published proposal that these waves be called "chimeric Kelvin waves," "chimeric mixed Rossby-gravity waves," etc. This revised method of presenting power spectrum diagrams offers a more rigorous means of comparing the General Circulation Models (GCM) output with observations by calling attention to the capability of GCMs in correctly simulating the asymmetric characteristics of the equatorial waves.

  12. Absolute electron-impact total ionization cross sections of chlorofluoromethanes

    NASA Astrophysics Data System (ADS)

    Martínez, Roberto; Sierra, Borja; Redondo, Carolina; Rayo, María N. Sánchez; Castaño, Fernando

    2004-12-01

    An experimental study is reported on the electron-impact total ionization cross sections (TICSs) of CCl4, CCl3F, CCl2F2, and CClF3 molecules. The kinetic energy of the colliding electrons was in the 10-85 eV range. TICSs were obtained as the sum of the partial ionization cross sections of all fragment ions, measured and identified in a linear double focusing time-of-flight mass spectrometer. The resulting TICS profiles—as a function of the electron-impact energy—have been compared both with those computed by ab initio and (semi)empirical methods and with the available experimental data. The computational methods used include the binary-encounter-Bethe (BEB) modified to include atoms with principal quantum numbers n⩾3, the Deutsch and Märk (DM) formalism, and the modified additivity rule (MAR). It is concluded that both modified BEB and DM methods fit the experimental TICS for (CF4), CClF3, CCl2F2, CCl3F, and CCl4 to a high accuracy, in contrast with the poor accord of the MAR method. A discussion on the factors influencing the discrepancies of the fittings is presented.

  13. A new automated method for the determination of cross-section limits in ephemeral gullies

    NASA Astrophysics Data System (ADS)

    Castillo, Carlos; Ángel Campo-Bescós, Miguel; Casalí, Javier; Giménez, Rafael

    2017-04-01

    The assessment of gully erosion relies on the estimation of the soil volume enclosed by cross sections limits. Both 3D and 2D methods require the application of a methodology for the determination of the cross-section limits what has been traditionally carried out in two ways: a) by visual inspection of the cross-section by a certain expert operator; b) by the automated identification of thresholds for different geometrical variables such as elevation, slope or plan curvature obtained from the cross-section profile. However, for these last methods, typically, the thresholds are not of general application because they depend on absolute values valid only for the local gully conditions where they were derived. In this communication we evaluate an automated method for cross-section delimitation of ephemeral gullies and compare its performance with the visual assessment provided by five scientists experienced in gully erosion assessment, defining gully width, depth and area for a total of 60 ephemeral gullies cross-sections obtained from field surveys conducted on agricultural plots in Navarra (Spain). The automated method only depends on the calculation of a simple geometrical measurement, which is the bank trapezoid area for every point of each gully bank. This rectangle trapezoid (right-angled trapezoid) is defined by the elevation of a given point, the minimum elevation and the extremes of the cross-section. The gully limit for each bank is determined by the point in the bank with the maximum trapezoid area. The comparison of the estimates among the different expert operators showed large variation coefficients (up to 70%) in a number of cross-sections, larger for cross sections width and area and smaller for cross sections depth. The automated method produced comparable results to those obtained by the experts and was the procedure with the highest average correlation with the rest of the methods for the three dimensional parameters. The errors of the automated

  14. Reconstructing Face Image from the Thermal Infrared Spectrum to the Visible Spectrum

    PubMed Central

    Kresnaraman, Brahmastro; Deguchi, Daisuke; Takahashi, Tomokazu; Mekada, Yoshito; Ide, Ichiro; Murase, Hiroshi

    2016-01-01

    During the night or in poorly lit areas, thermal cameras are a better choice instead of normal cameras for security surveillance because they do not rely on illumination. A thermal camera is able to detect a person within its view, but identification from only thermal information is not an easy task. The purpose of this paper is to reconstruct the face image of a person from the thermal spectrum to the visible spectrum. After the reconstruction, further image processing can be employed, including identification/recognition. Concretely, we propose a two-step thermal-to-visible-spectrum reconstruction method based on Canonical Correlation Analysis (CCA). The reconstruction is done by utilizing the relationship between images in both thermal infrared and visible spectra obtained by CCA. The whole image is processed in the first step while the second step processes patches in an image. Results show that the proposed method gives satisfying results with the two-step approach and outperforms comparative methods in both quality and recognition evaluations. PMID:27110781

  15. Development of Cross-Assembly Phage PCR-Based Methods ...

    EPA Pesticide Factsheets

    Technologies that can characterize human fecal pollution in environmental waters offer many advantages over traditional general indicator approaches. However, many human-associated methods cross-react with non-human animal sources and lack suitable sensitivity for fecal source identification applications. The genome of a newly discovered bacteriophage (~97 kbp), the Cross-Assembly phage or “crAssphage”, assembled from a human gut metagenome DNA sequence library is predicted to be both highly abundant and predominately occur in human feces suggesting that this double stranded DNA virus may be an ideal human fecal pollution indicator. We report the development of two human-associated crAssphage endpoint PCR methods (crAss056 and crAss064). A shotgun strategy was employed where 384 candidate primers were designed to cover ~41 kbp of the crAssphage genome deemed favorable for method development based on a series of bioinformatics analyses. Candidate primers were subjected to three rounds of testing to evaluate assay optimization, specificity, limit of detection (LOD95), geographic variability, and performance in environmental water samples. The top two performing candidate primer sets exhibited 100% specificity (n = 70 individual samples from 8 different animal species), >90% sensitivity (n = 10 raw sewage samples from different geographic locations), LOD95 of 0.01 ng/µL of total DNA per reaction, and successfully detected human fecal pollution in impaired envi

  16. Comparison of Saliva Collection Methods in Children with High-Functioning Autism Spectrum Disorders: Acceptability and Recovery of Cortisol

    ERIC Educational Resources Information Center

    Putnam, Susan K.; Lopata, Christopher; Fox, Jeffery D.; Thomeer, Marcus L.; Rodgers, Jonathan D.; Volker, Martin A.; Lee, Gloria K.; Neilans, Erik G.; Werth, Jilynn

    2012-01-01

    This study compared cortisol concentrations yielded using three saliva collection methods (passive drool, salivette, and sorbette) in both in vitro and in vivo conditions, as well as method acceptability for a sample of children (n = 39) with High Functioning Autism Spectrum Disorders. No cortisol concentration differences were observed between…

  17. Impact of Employee Benefits on Families with Children with Autism Spectrum Disorders

    ERIC Educational Resources Information Center

    Gnanasekaran, Sangeeth; Choueiri, Roula; Neumeyer, Ann; Ajari, Ogheneochuko; Shui, Amy; Kuhlthau, Karen

    2016-01-01

    The objectives of this study are to evaluate the employee benefits parents of children with autism spectrum disorders have, how benefits are used, work change, and job satisfaction. We conducted a cross-sectional mailed survey study of 435 families with children with autism spectrum disorders residing in the United States. We received 161 surveys…

  18. Measurement of the length of pedestrian crossings from image data

    NASA Astrophysics Data System (ADS)

    Uddin, Mohammad S.; Shioyama, Tadayoshi

    2004-10-01

    A computer vision based new method for the measurement of the length of pedestrian crossings using a single camera is described. The main objective of this research is to develop a travel aid for the blind people. In a crossing, the usual black road surface is painted with constant width periodic white bands. In Japan, this width is 45 cm. The crossing region as well as its length is detected using this concept. At first, the crossing direction is determined from the power spectrum using fast Fourier transform. The periodic white and black bands are detected using integration along the crossing direction and then differentiation of the integral data perpendicular to crossing. This detection may be erroneous due to adverse effects of the neighboring region of crossing, as the intensity of the whole image is used for bands detection. To remove the neighboring effects, the crossing region is extracted. Then the crossing bands are detected from the image intensity using the crossing region only. Experiment is performed using 32 real road scenes with pedestrian crossing. The rms error is found 2.28 m. The technique determines the crossing length with good accuracy for crossings marked clearly with white paintings as well as fine image resolution.

  19. Method and apparatus for controlling cross contamination of microfluid channels

    DOEpatents

    Hasselbrink, Jr., Ernest F.; Rehm, Jason E [Alameda, CA; Paul, Phillip H [Livermore, CA; Arnold, Don W [Livermore, CA

    2006-02-07

    A method for controlling fluid flow at junctions in microchannel systems. Control of fluid flow is accomplished generally by providing increased resistance to electric-field and pressure-driven flow in the form of regions of reduced effective cross-sectional area within the microchannels and proximate a channel junction. By controlling these flows in the region of a microchannel junction it is possible to eliminate sample dispersion and cross contamination and inject well-defined volumes of fluid from one channel to another.

  20. Comparative quantification of dietary supplemented neural creatine concentrations with (1)H-MRS peak fitting and basis spectrum methods.

    PubMed

    Turner, Clare E; Russell, Bruce R; Gant, Nicholas

    2015-11-01

    Magnetic resonance spectroscopy (MRS) is an analytical procedure that can be used to non-invasively measure the concentration of a range of neural metabolites. Creatine is an important neurometabolite with dietary supplementation offering therapeutic potential for neurological disorders with dysfunctional energetic processes. Neural creatine concentrations can be probed using proton MRS and quantified using a range of software packages based on different analytical methods. This experiment examines the differences in quantification performance of two commonly used analysis packages following a creatine supplementation strategy with potential therapeutic application. Human participants followed a seven day dietary supplementation regime in a placebo-controlled, cross-over design interspersed with a five week wash-out period. Spectroscopy data were acquired the day immediately following supplementation and analyzed with two commonly-used software packages which employ vastly different quantification methods. Results demonstrate that neural creatine concentration was augmented following creatine supplementation when analyzed using the peak fitting method of quantification (105.9%±10.1). In contrast, no change in neural creatine levels were detected with supplementation when analysis was conducted using the basis spectrum method of quantification (102.6%±8.6). Results suggest that software packages that employ the peak fitting procedure for spectral quantification are possibly more sensitive to subtle changes in neural creatine concentrations. The relative simplicity of the spectroscopy sequence and the data analysis procedure suggest that peak fitting procedures may be the most effective means of metabolite quantification when detection of subtle alterations in neural metabolites is necessary. The straightforward technique can be used on a clinical magnetic resonance imaging system. Copyright © 2015 Elsevier Inc. All rights reserved.

  1. An evidence based method to calculate pedestrian crossing speeds in vehicle collisions (PCSC).

    PubMed

    Bastien, C; Wellings, R; Burnett, B

    2018-06-07

    Pedestrian accident reconstruction is necessary to establish cause of death, i.e. establishing vehicle collision speed as well as circumstances leading to the pedestrian being impacted and determining culpability of those involved for subsequent court enquiry. Understanding the complexity of the pedestrian attitude during an accident investigation is necessary to ascertain the causes leading to the tragedy. A generic new method, named Pedestrian Crossing Speed Calculator (PCSC), based on vector algebra, is proposed to compute the pedestrian crossing speed at the moment of impact. PCSC uses vehicle damage and pedestrian anthropometric dimensions to establish a combination of head projection angles against the windscreen; this angle is then compared against the combined velocities angle created from the vehicle and the pedestrian crossing speed at the time of impact. This method has been verified using one accident fatality case in which the exact vehicle and pedestrian crossing speeds were known from Police forensic video analysis. PCSC was then applied on two other accident scenarios and correctly corroborated with the witness statements regarding the pedestrians crossing behaviours. The implications of PCSC could be significant once fully validated against further future accident data, as this method is reversible, allowing the computation of vehicle impact velocity from pedestrian crossing speed as well as verifying witness accounts. Copyright © 2018 Elsevier Ltd. All rights reserved.

  2. Cryogenic terahertz spectrum of (+)-methamphetamine hydrochloride and assignment using solid-state density functional theory.

    PubMed

    Hakey, Patrick M; Allis, Damian G; Ouellette, Wayne; Korter, Timothy M

    2009-04-30

    The cryogenic terahertz spectrum of (+)-methamphetamine hydrochloride from 10.0 to 100.0 cm(-1) is presented, as is the complete structural analysis and vibrational assignment of the compound using solid-state density functional theory. This cryogenic investigation reveals multiple spectral features that were not previously reported in room-temperature terahertz studies of the title compound. Modeling of the compound employed eight density functionals utilizing both solid-state and isolated-molecule methods. The results clearly indicate the necessity of solid-state simulations for the accurate assignment of solid-state THz spectra. Assignment of the observed spectral features to specific atomic motions is based on the BP density functional, which provided the best-fit solid-state simulation of the experimental spectrum. The seven experimental spectral features are the result of thirteen infrared-active vibrational modes predicted at a BP/DNP level of theory with more than 90% of the total spectral intensity associated with external crystal vibrations.

  3. Therapeutic alliance in early schizophrenia spectrum disorders: a cross-sectional study.

    PubMed

    Johansen, Ragnhild; Iversen, Valentina C; Melle, Ingrid; Hestad, Knut A

    2013-05-09

    The therapeutic alliance is related to better course and outcome of treatment in schizophrenia. This study explores predictors and characteristics of the therapeutic alliance in recent-onset schizophrenia spectrum disorders including the agreement between patient and therapist alliance ratings. Forty-two patients were assessed with demographic, neurocognitive, and clinical measures including the Positive and Negative Syndrome Scale (PANSS). The therapeutic alliance was measured with the Working Alliance Inventory - Short Form (WAI-S). Patient WAI-S total scores were predicted by age and PANSS excitative symptoms. Therapist WAI-S total scores were predicted by PANSS insight. Patient and therapist WAI-S total scores were moderately associated. Neurocognition was not associated with working alliance. Working alliance is associated with specific demographic and symptom characteristics in patients with recent-onset schizophrenia spectrum disorders. There is moderate agreement between patients and therapists on the total quality of their working alliance. Findings highlight aspects that may increase therapists' specificity in the use of alliance-enhancing strategies.

  4. Experimental and Numerical Study of the Buckling of Composite Profiles with Open Cross Section under Axial Compression

    NASA Astrophysics Data System (ADS)

    Rozylo, Patryk; Teter, Andrzej; Debski, Hubert; Wysmulski, Pawel; Falkowicz, Katarzyna

    2017-10-01

    The object of the research are short, thin-walled columns with an open top-hat cross section made of multilayer laminate. The walls of the investigated profiles are made of plate elements. The entire columns are subjected to uniform compression. A detailed analysis allowed us to determine critical forces and post-critical equilibrium paths. It is assumed that the columns are articulately supported on the edges forming their ends. The numerical investigation is performed by the finite element method. The study involves solving the problem of eigenvalue and the non-linear problem of stability of the structure. The numerical analysis is performed by the commercial simulation software ABAQUS®. The numerical results are then validated experimentally. In the discussed cases, it is assumed that the material operates within a linearly-elastic range, and the non-linearity of the FEM model is due to large displacements.

  5. Compilation of load spectrum of loader drive axle

    NASA Astrophysics Data System (ADS)

    Wei, Yongxiang; Zhu, Haoyue; Tang, Heng; Yuan, Qunwei

    2018-03-01

    In order to study the preparation method of gear fatigue load spectrum for loaders, the load signal of four typical working conditions of loader is collected. The signal that reflects the law of load change is obtained by preprocessing the original signal. The torque of the drive axle is calculated by using the rain flow counting method. According to the operating time ratio of each working condition, the two dimensional load spectrum based on the real working conditions of the drive axle of loader is established by the cycle extrapolation and synthesis method. The two-dimensional load spectrum is converted into one-dimensional load spectrum by means of the mean of torque equal damage method. Torque amplification includes the maximum load torque of the main reduction gear. Based on the theory of equal damage, the accelerated cycles are calculated. In this way, the load spectrum of the loading condition of the drive axle is prepared to reflect loading condition of the loader. The load spectrum can provide reference for fatigue life test and life prediction of loader drive axle.

  6. Nucleon-Nucleon Total Cross Section

    NASA Technical Reports Server (NTRS)

    Norbury, John W.

    2008-01-01

    The total proton-proton and neutron-proton cross sections currently used in the transport code HZETRN show significant disagreement with experiment in the GeV and EeV energy ranges. The GeV range is near the region of maximum cosmic ray intensity. It is therefore important to correct these cross sections, so that predictions of space radiation environments will be accurate. Parameterizations of nucleon-nucleon total cross sections are developed which are accurate over the entire energy range of the cosmic ray spectrum.

  7. An experimental study of the wall-pressure fluctuations beneath low Reynolds number turbulent boundary layers.

    PubMed

    Van Blitterswyk, Jared; Rocha, Joana

    2017-02-01

    A more complete understanding of the physical relationships, between wall-pressure and turbulence, is required for modeling flow-induced noise and developing noise reduction strategies. In this study, the wall-pressure fluctuations, induced by low Reynolds number turbulent boundary layers, are experimentally studied using a high-resolution microphone array. Statistical characteristics obtained using traditional cross-correlation and cross-spectra analyses are complimented with wall-pressure-velocity cross-spectra and wavelet cross-correlations. Wall-pressure-velocity correlations revealed that turbulent activity in the buffer layer contributes at least 40% of the energy to the wall-pressure spectrum at all measured frequencies. As Reynolds number increases, the low-frequency energy shifts from the buffer layer to the logarithmic layer, as expected for regions of uniform streamwise momentum formed by hairpin packets. Conditional cross-spectra suggests that the majority of broadband wall-pressure energy is concentrated within the packets, with the pressure signatures of individual hairpin vortices estimated to decay on average within traveling ten displacement thicknesses, and the packet signature is retained for up to seven boundary layer thicknesses on average.

  8. Revealing the jet substructure in a compressed spectrum of new physics

    NASA Astrophysics Data System (ADS)

    Han, Chengcheng; Park, Myeonghun

    2016-07-01

    The physics beyond the Standard Model with parameters of the compressed spectrum is well motivated both in the theory side and with phenomenological reasons, especially related to dark matter phenomenology. In this letter, we propose a method to tag soft final state particles from a decaying process of a new particle in this parameter space. By taking a supersymmetric gluino search as an example, we demonstrate how the Large Hadron Collider experimental collaborations can improve sensitivity in these nontrivial search regions.

  9. How to Pluck a Spectrum from a Planet

    NASA Technical Reports Server (NTRS)

    2007-01-01

    This diagram illustrates how astronomers using NASA's Spitzer Space Telescope can capture the elusive spectra of hot-Jupiter planets. Spectra are an object's light spread apart into its basic components, or wavelengths. By dissecting light in this way, scientists can sort through it and uncover clues about the composition of the object giving off the light.

    To obtain a spectrum for an object, one first needs to capture its light. Hot-Jupiter planets are so close to their stars that even the most powerful telescopes can't distinguish their light from the light of their much brighter stars.

    But, there are a few planetary systems that allow astronomers to measure the light from just the planet by using a clever technique. Such 'transiting' systems are oriented in such a way that, from our vantage point, the planets' orbits are seen edge-on and cross directly in front of and behind their stars.

    In this technique, known as the secondary eclipse method, changes in the total infrared light from a star system are measured as its planet transits behind the star, vanishing from our Earthly point of view. The dip in observed light can then be attributed to the planet alone.

    To capture a spectrum of the planet, Spitzer must observe the system twice. It takes a spectrum of the star together with the planet (first panel), then, as the planet disappears from view, a spectrum of just the star (second panel). By subtracting the star's spectrum from the combined spectrum of the star plus the planet, it is able to get the spectrum for just the planet (third panel).

    This ground-breaking technique was used by Spitzer to obtain the first-ever spectra of two planets beyond our solar system, HD 209458b and HD 189733b. The results suggest that the hot planets are socked in with dry clouds high up in the planet's stratospheres. In addition, HD 209458b showed hints of silicates, indicating those high clouds might be made of very fine sand-like particles.

  10. A General Method for Copper-Catalyzed Arene Cross-Dimerization

    PubMed Central

    Do, Hien-Quang; Daugulis, Olafs

    2011-01-01

    A general method for a highly regioselective, copper-catalyzed cross-coupling of two aromatic compounds by using iodine oxidant has been developed. The reactions involve an initial iodination of one arene followed by arylation of the most acidic C-H bond of the other coupling component. Cross-coupling of electron-rich arenes, electron-poor arenes, five- and six-membered heterocycles is possible in many combinations. Typically, 1/1.5 to 1/3 ratio of coupling components is used in contrast to existing methodology that often employs a large excess of one of the arenes. Common functionalities such as ester, ketone, aldehyde, ether, nitrile, nitro, and amine are well-tolerated. PMID:21823581

  11. Visualization of synchronization of the uterine contraction signals: running cross-correlation and wavelet running cross-correlation methods.

    PubMed

    Oczeretko, Edward; Swiatecka, Jolanta; Kitlas, Agnieszka; Laudanski, Tadeusz; Pierzynski, Piotr

    2006-01-01

    In physiological research, we often study multivariate data sets, containing two or more simultaneously recorded time series. The aim of this paper is to present the cross-correlation and the wavelet cross-correlation methods to assess synchronization between contractions in different topographic regions of the uterus. From a medical point of view, it is important to identify time delays between contractions, which may be of potential diagnostic significance in various pathologies. The cross-correlation was computed in a moving window with a width corresponding to approximately two or three contractions. As a result, the running cross-correlation function was obtained. The propagation% parameter assessed from this function allows quantitative description of synchronization in bivariate time series. In general, the uterine contraction signals are very complicated. Wavelet transforms provide insight into the structure of the time series at various frequencies (scales). To show the changes of the propagation% parameter along scales, a wavelet running cross-correlation was used. At first, the continuous wavelet transforms as the uterine contraction signals were received and afterwards, a running cross-correlation analysis was conducted for each pair of transformed time series. The findings show that running functions are very useful in the analysis of uterine contractions.

  12. Experimental and theoretical study of the electronic spectrum of the BAr2 complex: Transition to the excited valence B(2s2p2 2D) state

    NASA Astrophysics Data System (ADS)

    Krumrine, Jennifer R.; Alexander, Millard H.; Yang, Xin; Dagdigian, Paul J.

    2000-03-01

    The 2s2p22D←2s22p 2P valence transition in the BAr2 cluster is investigated in a collaborative experimental and theoretical study. Laser fluorescence excitation spectra of a supersonic expansion of B atoms entrained in Ar at high source backing pressures display several features not assignable to the BAr complex. Resonance fluorescence is not observed, but instead emission from the lower 3s state. Size-selected fluorescence depletion spectra show that these features in the excitation spectrum are primarily due to the BAr2 complex. This electronic transition within BAr2 is modeled theoretically, similarly to our earlier study of the 3s←2p transition [M. H. Alexander et al., J. Chem. Phys. 106, 6320 (1997)]. The excited potential energy surfaces of the fivefold degenerate B(2s2p22D) state within the ternary complex are computed in a pairwise-additive model employing diatomic BAr potential energy curves which reproduce our previous experimental observations on the electronic states emanating from the B(2D)+Ar asymptote. The simulated absorption spectrum reproduces reasonably well the observed fluorescence depletion spectrum. The theoretical model lends insight into the energetics of the approach of B to multiple Ar atoms, and how the orientation of B p-orbitals governs the stability of the complex.

  13. Accurate treatment of total photoabsorption cross sections by an ab initio time-dependent method

    NASA Astrophysics Data System (ADS)

    Daud, Mohammad Noh

    2014-09-01

    A detailed discussion of parallel and perpendicular transitions required for the photoabsorption of a molecule is presented within a time-dependent view. Total photoabsorption cross sections for the first two ultraviolet absorption bands of the N2O molecule corresponding to transitions from the X1 A' state to the 21 A' and 11 A'' states are calculated to test the reliability of the method. By fully considering the property of the electric field polarization vector of the incident light, the method treats the coupling of angular momentum and the parity differently for two kinds of transitions depending on the direction of the vector whether it is: (a) situated parallel in a molecular plane for an electronic transition between states with the same symmetry; (b) situated perpendicular to a molecular plane for an electronic transition between states with different symmetry. Through this, for those transitions, we are able to offer an insightful picture of the dynamics involved and to characterize some new aspects in the photoabsorption process of N2O. Our calculations predicted that the parallel transition to the 21 A' state is the major dissociation pathway which is in qualitative agreement with the experimental observations. Most importantly, a significant improvement in the absolute value of the total cross section over previous theoretical results [R. Schinke, J. Chem. Phys. 134, 064313 (2011), M.N. Daud, G.G. Balint-Kurti, A. Brown, J. Chem. Phys. 122, 054305 (2005), S. Nanbu, M.S. Johnson, J. Phys. Chem. A 108, 8905 (2004)] was obtained.

  14. Connectivity to computers and the Internet among patients with schizophrenia spectrum disorders: a cross-sectional study

    PubMed Central

    Välimäki, Maritta; Kuosmanen, Lauri; Hätönen, Heli; Koivunen, Marita; Pitkänen, Anneli; Athanasopoulou, Christina; Anttila, Minna

    2017-01-01

    Purpose Information and communication technologies have been developed for a variety of health care applications and user groups in the field of health care. This study examined the connectivity to computers and the Internet among patients with schizophrenia spectrum disorders (SSDs). Patients and methods A cross-sectional survey design was used to study 311 adults with SSDs from the inpatient units of two psychiatric hospitals in Finland. The data collection lasted for 20 months and was done through patients’ medical records and a self-reported, structured questionnaire. Data analysis included descriptive statistics. Results In total, 297 patients were included in this study (response rate =96%). More than half of them (n=156; 55%) had a computer and less than half of them (n=127; 44%) had the Internet at home. Of those who generally had access to computers and the Internet, more than one-fourth (n=85; 29%) used computers daily, and >30% (n=96; 33%) never accessed the Internet. In total, approximately one-fourth of them (n=134; 25%) learned to use computers, and less than one-third of them (n=143; 31%) were known to use the Internet by themselves. Older people (aged 45–65 years) and those with less years of education (primary school) tended not to use the computers and the Internet at all (P<0.001), and younger people and those with higher education were associated with more active use. Conclusion Patients had quite good access to use computers and the Internet, and they mainly used the Internet to seek information. Social, occupational, and psychological functioning (which were evaluated with Global Assessment of Functioning) were not associated with access to and frequency of computer and the Internet use. The results support the use of computers and the Internet as part of clinical work in mental health care. PMID:28490882

  15. Dual-radiotracer translational SPECT neuroimaging. Comparison of three methods for the simultaneous brain imaging of D2/3 and 5-HT2A receptors.

    PubMed

    Tsartsalis, Stergios; Tournier, Benjamin B; Habiby, Selim; Ben Hamadi, Meriem; Barca, Cristina; Ginovart, Nathalie; Millet, Philippe

    2018-04-30

    SPECT imaging with two radiotracers at the same time is feasible if two different radioisotopes are employed, given their distinct energy emission spectra. In the case of 123 I and 125 I, dual SPECT imaging is not straightforward: 123 I emits photons at a principal energy emission spectrum of 143.1-179.9 keV. However, it also emits at a secondary energy spectrum (15-45 keV) that overlaps with the one of 125 I and the resulting cross-talk of emissions impedes the accurate quantification of 125 I. In this paper, we describe three different methods for the correction of this cross-talk and the simultaneous in vivo [ 123 I]IBZM and [ 125 I]R91150 imaging of D 2/3 and 5-HT 2A receptors in the rat brain. Three methods were evaluated for the correction of the effect of cross-talk in a series of simultaneous, [ 123 I]IBZM and [ 125 I]R91150 in vivo and phantom SPECT scans. Method 1 employs a dual-energy window (DEW) approach, in which the cross-talk on 125 I is considered a stable fraction of the energy emitted from 123 I at the principal emission spectrum. The coefficient describing the relationship between the emission of 123 I at the principal and the secondary spectrum was estimated from a series of single-radiotracer [ 123 I]IBZM SPECT studies. In Method 2, spectral factor analysis (FA) is applied to separate the radioactivity from 123 I and 125 I on the basis of their distinct emission patterns across the energy spectrum. Method 3 uses a modified simplified reference tissue model (SRTM C ) to describe the kinetics of [ 125 I]R91150. It includes the coefficient describing the cross-talk on 125 I from 123 I in the model parameters. The results of the correction of cross-talk on [ 125 I]R91150 binding potential (BP ND ) with each of the three methods, using cerebellum as the reference region, were validated against the results of a series of single-radiotracer [ 123 I]R91150 SPECT studies. In addition, the DEW approach (Method 1), considered to be the most

  16. 2-COLOR Pupil Imaging Method to Detect Stellar Oscillations

    NASA Astrophysics Data System (ADS)

    Costantino, Sigismondi; Alessandro, Cacciani; Mauro, Dolci; Stuart, Jeffries; Eric, Fossat; Ludovico, Cesario; Paolo, Rapex; Luca, Bertello; Ferenc, Varadi; Wolfgang, Finsterle

    Stellar intensity oscillations from the ground are strongly affected by atmospheric noise. For solar-type stars even Antarctic scintillation noise is still overwhelming. We proposed and tested a differential method that images on the same CCD detector two-color pupils of the telescope in order to compensate for intensity sky fluctuations guiding and saturation problems. SOHO data reveal that our method has an efficiency of 70% respect to the absolute amplitude variations. Using two instruments at Dome C and South Pole we can further minimize atmospheric color noise with cross-spectrum methods. This way we also decrease the likelihood of gaps in the data string due to bad weather. Observationally while waiting for the South Pole/Dome-C sites we are carrying on tests from available telescopes and Big Bear Mt. Wilson Teramo Milano. On the data analysis side we use the Random Lag Singular Cross-Spectrum Analysis which eliminates noise from the observed signal better than traditional Fourier transform. This method is also well-suited for extracting common oscillatory components from two or more observations including their relative phases as we are planning to do

  17. Knowledge of Parents of Children with Autism Spectrum Disorder of Behavior Modification Methods and Their Training Needs Accordingly

    ERIC Educational Resources Information Center

    Deeb, Raid Mousa Al-Shaik

    2016-01-01

    The study aimed at identifying knowledge of parents of children with autism spectrum disorder of behavior modification methods and their training needs accordingly. The sample of the study consisted of (98) parents in Jordan. A scale of behavior modification methods was constructed, and then validated. The results of the study showed that the…

  18. (n,xn) cross section measurements for Y-89 foils used as detectors for high energy neutron measurements in the deeply subcritical assembly "QUINTA"

    NASA Astrophysics Data System (ADS)

    Bielewicz, Marcin; Kilim, Stanisław; Strugalska-Gola, Elżbieta; Szuta, Marcin; Wojciechowski, Andrzej; Tyutyunnikov, Sergey; Prokofiev, Alexander; Passoth, Elke

    2017-09-01

    Study of the deep subcritical systems (QUINTA) using relativistic beams is performed within the project "Energy and Transmutation of Radioactive Wastes" (E&T - RAW). The experiment assembly was irradiated by deuteron/proton beam (Dubna NUCLOTRON). We calculated the neutron energy spectrum inside the whole assembly by using threshold energy (n,xn) reactions in yttrium (Y-89) foils. There are almost no experimental cross section data for those reactions. New Y-89(n,xn) cross section measurements were carried out at The Svedberg laboratory (TSL) in Uppsala, Sweden in 2015. In this paper we present preliminary results of those experiments.

  19. GRAPhEME: a setup to measure (n, xn γ) reaction cross sections

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Henning, Greg; Bacquias, A.; Capdevielle, O.

    2015-07-01

    Most of nuclear reactor developments are using evaluated data base for numerical simulations. However, the considered databases present still large uncertainties and disagreements. To improve their level of precision, new measurements are needed, in particular for (n, xn) reactions, which are of great importance as they modify the neutron spectrum, the neutron population, and produce radioactive species. The IPHC group started an experimental program to measure (n, xn gamma) reaction cross sections using prompt gamma spectroscopy and neutron energy determination by time of flight. Measurements of (n, xn gamma) cross section have been performed for {sup 235,238}U, {sup 232}Th, {supmore » nat,182,183,184,186}W, {sup nat}Zr. The experimental setup is installed at the neutron beam at GELINA (Geel, Belgium). The setup has recently been upgraded with the addition of a highly segmented 36 pixels planar HPGe detector. Significant efforts have been made to reduce radiation background and electromagnetic perturbations. The setup is equipped with a high rate digital acquisition system. The analysis of the segmented detector data requires a specific procedure to account for cross signals between pixels. An overall attention is paid to the precision of the measurement. The setup characteristic and the analysis procedure will be presented along with the acquisition and analysis challenges. Examples of results and their impact on models will be discussed. (authors)« less

  20. Smeared spectrum jamming suppression based on generalized S transform and threshold segmentation

    NASA Astrophysics Data System (ADS)

    Li, Xin; Wang, Chunyang; Tan, Ming; Fu, Xiaolong

    2018-04-01

    Smeared Spectrum (SMSP) jamming is an effective jamming in countering linear frequency modulation (LFM) radar. According to the time-frequency distribution difference between jamming and echo, a jamming suppression method based on Generalized S transform (GST) and threshold segmentation is proposed. The sub-pulse period is firstly estimated based on auto correlation function firstly. Secondly, the time-frequency image and the related gray scale image are achieved based on GST. Finally, the Tsallis cross entropy is utilized to compute the optimized segmentation threshold, and then the jamming suppression filter is constructed based on the threshold. The simulation results show that the proposed method is of good performance in the suppression of false targets produced by SMSP.

  1. Experimental tests of the effect of rotor diameter ratio and blade number to the cross-flow wind turbine performance

    NASA Astrophysics Data System (ADS)

    Susanto, Sandi; Tjahjana, Dominicus Danardono Dwi Prija; Santoso, Budi

    2018-02-01

    Cross-flow wind turbine is one of the alternative energy harvester for low wind speeds area. Several factors that influence the power coefficient of cross-flow wind turbine are the diameter ratio of blades and the number of blades. The aim of this study is to find out the influence of the number of blades and the diameter ratio on the performance of cross-flow wind turbine and to find out the best configuration between number of blades and diameter ratio of the turbine. The experimental test were conducted under several variation including diameter ratio between outer and inner diameter of the turbine and number of blades. The variation of turbine diameter ratio between inner and outer diameter consisted of 0.58, 0.63, 0.68 and 0.73 while the variations of the number of blades used was 16, 20 and 24. The experimental test were conducted under certain wind speed which are 3m/s until 4 m/s. The result showed that the configurations between 0.68 diameter ratio and 20 blade numbers is the best configurations that has power coefficient of 0.049 and moment coefficient of 0.185.

  2. The Negative Ion Photoelectron Spectrum of meta -Benzoquinone Radical Anion (MBQ •– ): A Joint Experimental and Computational Study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Bo; Hrovat, David A.; Deng, S. H. M.

    Negative ion photoelectron (NIPE) spectra of the radical anion of meta-benzoquinone (MBQ, m-OC6H4O) have been obtained at 20 K, using both 355 and 266 nm lasers for electron photodetachment. The spectra show well-resolved peaks and complex spectral patterns. The electron affinity of MBQ is determined from the first resolved peak to be 2.875 ±17 0.010 eV. Single-point, CASPT2/aug-cc-pVTZ//CASPT2/ aug-cc-pVDZ calculations predict accurately the positions of the 0-0 bands in the NIPE spectrum for formation of the four lowest electronic states of neutral MBQ from the 2A2 state of MBQ•-. In addition, the Franck-Condon factors that are computed from the CASPT2/aug-cc-pVDZmore » optimized geometries,vibrational frequencies, and normal mode vectors, successfully simulate the intensities and frequencies of the vibrational peaks in the NIPE spectrum that are associated with each of these electronic states. The successful simulation of the NIPE spectrum of MBQ•- allows the assignment of 3B2 as the ground state of MBQ, followed by the 1B2 and 1A1 electronic states, respectively 9.0 ± 0.2 and 16.6 ± 0.2 kcal/mol higher in energy than the triplet. These experimental energy differences are in good agreement with the calculated values of 9.7 and 15.7 kcal/mol. The relative energies of these two singlet states in MBQ confirm the previous prediction that their relative energies would be reversed from those in meta-benzoquinodimethane (MBQDM, m-CH2C6H4CH2).« less

  3. Experiences of Siblings of Individuals with Autism Spectrum Disorders

    PubMed Central

    Angell, Maureen E.; Meadan, Hedda; Stoner, Julia B.

    2012-01-01

    The purpose of this study was to explore the experiences of siblings of individuals with autism spectrum disorders (ASDs) and identify their self-reported support needs. We conducted in-person semi-structured interviews with 12 siblings aged 7 to 15 of children aged 6 to 15 with ASDs. Employing a qualitative collective case study research method, we conducted cross-case analyses to address our research questions. Three major themes emerged: (a) descriptions of the sibling subsystem (b) cohesion between and among the siblings, and (c) adaptability of the participant siblings to having family members with ASDs. Discussion of these findings and recommendations for future research contributes to the existing literature on siblings of children with disabilities. PMID:22928104

  4. Characterization of the Photon Energy Spectrum of a 6 MV Linac

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hernandez Bojorquez, M.; Larraga, J. M.; Garcia, A.

    2006-09-08

    In this work we study the influence of the purity of the materials used in experimental transmission measurements to obtain data to reconstruct the photon energy spectrum of a 6 MV Linac. We also evaluate the contribution to PDDs due to electron contamination in the reconstructed spectrum.

  5. Experimental evaluation of the certification-trail method

    NASA Technical Reports Server (NTRS)

    Sullivan, Gregory F.; Wilson, Dwight S.; Masson, Gerald M.; Itoh, Mamoru; Smith, Warren W.; Kay, Jonathan S.

    1993-01-01

    Certification trails are a recently introduced and promising approach to fault-detection and fault-tolerance. A comprehensive attempt to assess experimentally the performance and overall value of the method is reported. The method is applied to algorithms for the following problems: huffman tree, shortest path, minimum spanning tree, sorting, and convex hull. Our results reveal many cases in which an approach using certification-trails allows for significantly faster overall program execution time than a basic time redundancy-approach. Algorithms for the answer-validation problem for abstract data types were also examined. This kind of problem provides a basis for applying the certification-trail method to wide classes of algorithms. Answer-validation solutions for two types of priority queues were implemented and analyzed. In both cases, the algorithm which performs answer-validation is substantially faster than the original algorithm for computing the answer. Next, a probabilistic model and analysis which enables comparison between the certification-trail method and the time-redundancy approach were presented. The analysis reveals some substantial and sometimes surprising advantages for ther certification-trail method. Finally, the work our group performed on the design and implementation of fault injection testbeds for experimental analysis of the certification trail technique is discussed. This work employs two distinct methodologies, software fault injection (modification of instruction, data, and stack segments of programs on a Sun Sparcstation ELC and on an IBM 386 PC) and hardware fault injection (control, address, and data lines of a Motorola MC68000-based target system pulsed at logical zero/one values). Our results indicate the viability of the certification trail technique. It is also believed that the tools developed provide a solid base for additional exploration.

  6. Anxiety and Repetitive Behaviours in Autism Spectrum Disorders and Williams Syndrome: A Cross-Syndrome Comparison

    ERIC Educational Resources Information Center

    Rodgers, Jacqui; Riby, Deborah M.; Janes, Emily; Connolly, Brenda; McConachie, Helen

    2012-01-01

    Children with Autism Spectrum Disorder or Williams syndrome are vulnerable to anxiety. The factors that contribute to this risk remain unclear. This study compared anxiety in autism spectrum disorder and Williams Syndrome and examined the relationship between repetitive behaviours and anxiety. Thirty-four children with autism and twenty children…

  7. A revised method of presenting wavenumber-frequency power spectrum diagrams that reveals the asymmetric nature of tropical large-scale waves

    NASA Astrophysics Data System (ADS)

    Chao, Winston C.; Yang, Bo; Fu, Xiouhua

    2009-11-01

    The popular method of presenting wavenumber-frequency power spectrum diagrams for studying tropical large-scale waves in the literature is shown to give an incomplete presentation of these waves. The so-called “convectively coupled Kelvin (mixed Rossby-gravity) waves” are presented as existing only in the symmetric (anti-symmetric) component of the diagrams. This is obviously not consistent with the published composite/regression studies of “convectively coupled Kelvin waves,” which illustrate the asymmetric nature of these waves. The cause of this inconsistency is revealed in this note and a revised method of presenting the power spectrum diagrams is proposed. When this revised method is used, “convectively coupled Kelvin waves” do show anti-symmetric components, and “convectively coupled mixed Rossby-gravity waves (also known as Yanai waves)” do show a hint of symmetric components. These results bolster a published proposal that these waves should be called “chimeric Kelvin waves,” “chimeric mixed Rossby-gravity waves,” etc. This revised method of presenting power spectrum diagrams offers an additional means of comparing the GCM output with observations by calling attention to the capability of GCMs to correctly simulate the asymmetric characteristics of equatorial waves.

  8. Quantum control of isomerization by robust navigation in the energy spectrum

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Murgida, G. E., E-mail: murgida@tandar.cnea.gov.ar; Arranz, F. J., E-mail: fj.arranz@upm.es; Borondo, F., E-mail: f.borondo@uam.es

    2015-12-07

    In this paper, we present a detailed study on the application of the quantum control technique of navigation in the energy spectrum to chemical isomerization processes, namely, CN–Li⇆ Li–CN. This technique is based on the controlled time variation of a Hamiltonian parameter, an external uniform electric field in our case. The main result of our work establishes that the navigation involved in the method is robust, in the sense that quite sizable deviations from a pre-established control parameter time profile can be introduced and still get good final results. This is specially relevant thinking of a experimental implementation of themore » method.« less

  9. Theoretical and experimental investigation of multispectral photoacoustic osteoporosis detection method

    NASA Astrophysics Data System (ADS)

    Steinberg, Idan; Hershkovich, Hadas Sara; Gannot, Israel; Eyal, Avishay

    2014-03-01

    Osteoporosis is a widespread disorder, which has a catastrophic impact on patients lives and overwhelming related to healthcare costs. Recently, we proposed a multispectral photoacoustic technique for early detection of osteoporosis. Such technique has great advantages over pure ultrasonic or optical methods as it allows the deduction of both bone functionality from the bone absorption spectrum and bone resistance to fracture from the characteristics of the ultrasound propagation. We demonstrated the propagation of multiple acoustic modes in animal bones in-vitro. To further investigate the effects of multiple wavelength excitations and of induced osteoporosis on the PA signal a multispectral photoacoustic system is presented. The experimental investigation is based on measuring the interference of multiple acoustic modes. The performance of the system is evaluated and a simple two mode theoretical model is fitted to the measured phase signals. The results show that such PA technique is accurate and repeatable. Then a multiple wavelength excitation is tested. It is shown that the PA response due to different excitation wavelengths revels that absorption by the different bone constitutes has a profound effect on the mode generation. The PA response is measured in single wavelength before and after induced osteoporosis. Results show that induced osteoporosis alters the measured amplitude and phase in a consistent manner which allows the detection of the onset of osteoporosis. These results suggest that a complete characterization of the bone over a region of both acoustic and optical frequencies might be used as a powerful tool for in-vivo bone evaluation.

  10. Photoneutron cross sections for 59Co : Systematic uncertainties of data from various experiments

    NASA Astrophysics Data System (ADS)

    Varlamov, V. V.; Davydov, A. I.; Ishkhanov, B. S.

    2017-09-01

    Data on partial photoneutron reaction cross sections (γ ,1n), (γ ,2n), and (γ ,3n) for 59Co obtained in two experiments carried out at Livermore (USA) were analyzed. The sources of radiation in both experiments were the monoenergetic photon beams from the annihilation in flight of relativistic positrons. The total yield was sorted by the neutron multiplicity, taking into account the difference in the neutron energy spectra for different multiplicity. The two quoted studies differ in the method of determining the neutron. Significant systematic disagreements between the results of the two experiments exist. They are considered to be caused by large systematic uncertainties in partial cross sections, since they do not satisfy physical criteria for reliability of the data. To obtain reliable cross sections of partial and total photoneutron reactions a new method combining experimental data and theoretical evaluation was used. It is based on the experimental neutron yield cross section which is rather independent of neutron multiplicity and the transitional neutron multiplicity functions of the combined photonucleon reaction model (CPNRM). The model transitional multiplicity functions were used for the decomposition of the neutron yield cross section into the contributions of partial reactions. The results of the new evaluation noticeably differ from the partial cross sections obtained in the two experimental studies are under discussion.

  11. Sensitivity Analysis of Nuclide Importance to One-Group Neutron Cross Sections

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sekimoto, Hiroshi; Nemoto, Atsushi; Yoshimura, Yoshikane

    The importance of nuclides is useful when investigating nuclide characteristics in a given neutron spectrum. However, it is derived using one-group microscopic cross sections, which may contain large errors or uncertainties. The sensitivity coefficient shows the effect of these errors or uncertainties on the importance.The equations for calculating sensitivity coefficients of importance to one-group nuclear constants are derived using the perturbation method. Numerical values are also evaluated for some important cases for fast and thermal reactor systems.Many characteristics of the sensitivity coefficients are derived from the derived equations and numerical results. The matrix of sensitivity coefficients seems diagonally dominant. However,more » it is not always satisfied in a detailed structure. The detailed structure of the matrix and the characteristics of coefficients are given.By using the obtained sensitivity coefficients, some demonstration calculations have been performed. The effects of error and uncertainty of nuclear data and of the change of one-group cross-section input caused by fuel design changes through the neutron spectrum are investigated. These calculations show that the sensitivity coefficient is useful when evaluating error or uncertainty of nuclide importance caused by the cross-section data error or uncertainty and when checking effectiveness of fuel cell or core design change for improving neutron economy.« less

  12. A Cross-National Mixed-Method Study of Reality Pedagogy

    ERIC Educational Resources Information Center

    Sirrakos, George, Jr.; Fraser, Barry J.

    2017-01-01

    This mixed-methods cross-national study investigated the effectiveness of reality pedagogy (an approach in which teachers become part of students' activities, practices and rituals) in terms of changes in student perceptions of their learning environment and attitudes towards science. A questionnaire was administered to 142 students in grades 8-10…

  13. A general method for copper-catalyzed arene cross-dimerization.

    PubMed

    Do, Hien-Quang; Daugulis, Olafs

    2011-08-31

    A general method for a highly regioselective copper-catalyzed cross-coupling of two aromatic compounds using iodine as an oxidant has been developed. The reactions involve an initial iodination of one arene followed by arylation of the most acidic C-H bond of the other coupling component. Cross-coupling of electron-rich arenes, electron-poor arenes, and five- and six-membered heterocycles is possible in many combinations. Typically, a 1/1.5 to 1/3 ratio of coupling components is used, in contrast to existing methodology that often employs a large excess of one of the arenes. Common functionalities such as ester, ketone, aldehyde, ether, nitrile, nitro, and amine are well-tolerated.

  14. Measurement of 241Am-Be spectra (bare and Pb-covered) using TLD pairs in multi-spheres: Spectrum unfolding by different methods

    NASA Astrophysics Data System (ADS)

    Tripathy, S. P.; Bakshi, A. K.; Sathian, V.; Tripathi, S. M.; Vega-carrillo, H. R.; Nandy, M.; Sarkar, P. K.; Sharma, D. N.

    2009-01-01

    The neutron spectra from a Pb-covered and a bare (without Pb-cover) 241Am-Be (α,n) source were measured using thermoluminescent detector (TLD) pairs of 6LiF and 7LiF with high-density polyethylene (HDPE) multi-spheres of seven different diameters. A total of 8 distinct neutron response signals (including a bare mode exposure) were obtained from which the energy distribution for the entire energy range was generated with the help of different neutron spectrum unfolding methods, viz. BUNKI, BUNKIUT and Frascati unfolding interactive tool (FRUIT). Shape of these spectra are matching very well and is also comparable with the standard IAEA 241Am-Be spectrum, thus, validating the unfolding methods used in this work. The effect of Pb-cover on the spectrum and the unfolding details are reported in the paper.

  15. An angle-dependent estimation of CT x-ray spectrum from rotational transmission measurements

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lin, Yuan, E-mail: yuan.lin@duke.edu; Samei, Ehsan; Ramirez-Giraldo, Juan Carlos

    2014-06-15

    Purpose: Computed tomography (CT) performance as well as dose and image quality is directly affected by the x-ray spectrum. However, the current assessment approaches of the CT x-ray spectrum require costly measurement equipment and complicated operational procedures, and are often limited to the spectrum corresponding to the center of rotation. In order to address these limitations, the authors propose an angle-dependent estimation technique, where the incident spectra across a wide range of angular trajectories can be estimated accurately with only a single phantom and a single axial scan in the absence of the knowledge of the bowtie filter. Methods: Themore » proposed technique uses a uniform cylindrical phantom, made of ultra-high-molecular-weight polyethylene and positioned in an off-centered geometry. The projection data acquired with an axial scan have a twofold purpose. First, they serve as a reflection of the transmission measurements across different angular trajectories. Second, they are used to reconstruct the cross sectional image of the phantom, which is then utilized to compute the intersection length of each transmission measurement. With each CT detector element recording a range of transmission measurements for a single angular trajectory, the spectrum is estimated for that trajectory. A data conditioning procedure is used to combine information from hundreds of collected transmission measurements to accelerate the estimation speed, to reduce noise, and to improve estimation stability. The proposed spectral estimation technique was validated experimentally using a clinical scanner (Somatom Definition Flash, Siemens Healthcare, Germany) with spectra provided by the manufacturer serving as the comparison standard. Results obtained with the proposed technique were compared against those obtained from a second conventional transmission measurement technique with two materials (i.e., Cu and Al). After validation, the proposed technique was applied to

  16. Experimental Demonstration of In-Place Calibration for Time Domain Microwave Imaging System

    NASA Astrophysics Data System (ADS)

    Kwon, S.; Son, S.; Lee, K.

    2018-04-01

    In this study, the experimental demonstration of in-place calibration was conducted using the developed time domain measurement system. Experiments were conducted using three calibration methods—in-place calibration and two existing calibrations, that is, array rotation and differential calibration. The in-place calibration uses dual receivers located at an equal distance from the transmitter. The received signals at the dual receivers contain similar unwanted signals, that is, the directly received signal and antenna coupling. In contrast to the simulations, the antennas are not perfectly matched and there might be unexpected environmental errors. Thus, we experimented with the developed experimental system to demonstrate the proposed method. The possible problems with low signal-to-noise ratio and clock jitter, which may exist in time domain systems, were rectified by averaging repeatedly measured signals. The tumor was successfully detected using the three calibration methods according to the experimental results. The cross correlation was calculated using the reconstructed image of the ideal differential calibration for a quantitative comparison between the existing rotation calibration and the proposed in-place calibration. The mean value of cross correlation between the in-place calibration and ideal differential calibration was 0.80, and the mean value of cross correlation of the rotation calibration was 0.55. Furthermore, the results of simulation were compared with the experimental results to verify the in-place calibration method. A quantitative analysis was also performed, and the experimental results show a tendency similar to the simulation.

  17. Experimental evaluation of models for predicting Cherenkov light intensities from short-cooled nuclear fuel assemblies

    NASA Astrophysics Data System (ADS)

    Branger, E.; Grape, S.; Jansson, P.; Jacobsson Svärd, S.

    2018-02-01

    The Digital Cherenkov Viewing Device (DCVD) is a tool used by nuclear safeguards inspectors to verify irradiated nuclear fuel assemblies in wet storage based on the recording of Cherenkov light produced by the assemblies. One type of verification involves comparing the measured light intensity from an assembly with a predicted intensity, based on assembly declarations. Crucial for such analyses is the performance of the prediction model used, and recently new modelling methods have been introduced to allow for enhanced prediction capabilities by taking the irradiation history into account, and by including the cross-talk radiation from neighbouring assemblies in the predictions. In this work, the performance of three models for Cherenkov-light intensity prediction is evaluated by applying them to a set of short-cooled PWR 17x17 assemblies for which experimental DCVD measurements and operator-declared irradiation data was available; (1) a two-parameter model, based on total burnup and cooling time, previously used by the safeguards inspectors, (2) a newly introduced gamma-spectrum-based model, which incorporates cycle-wise burnup histories, and (3) the latter gamma-spectrum-based model with the addition to account for contributions from neighbouring assemblies. The results show that the two gamma-spectrum-based models provide significantly higher precision for the measured inventory compared to the two-parameter model, lowering the standard deviation between relative measured and predicted intensities from 15.2 % to 8.1 % respectively 7.8 %. The results show some systematic differences between assemblies of different designs (produced by different manufacturers) in spite of their similar PWR 17x17 geometries, and possible ways are discussed to address such differences, which may allow for even higher prediction capabilities. Still, it is concluded that the gamma-spectrum-based models enable confident verification of the fuel assembly inventory at the currently used

  18. Energy-loss spectrum for inelastic scattering of charged particles in disordered systems near the critical point

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gerasimov, O. I.; Adamian, V. M.

    The behavior of the theoretically predicted correlational ''fine''energy-loss spectrum of inelastic electron scattering in disordered systemsclose to single resonance is investigated near the critical point. In extendingour earlier work, it is shown that the relation of the statistical expressionof the cross section of energy loss to the function which describes the lineshape in an ideal gas asymptotically increases near the critical point as apower law. ''Fracton'' interpretation of display of the localization of asingle excitation in disordered systems in the resonance-line shape of theenergy-loss spectrum is suggested. The possibility of direct determination ofthe pair distribution function (without Fourier transformation ofmore » the structurefactor) using the method of charged-particle scattering is discussed.« less

  19. Advanced nodal neutron diffusion method with space-dependent cross sections: ILLICO-VX

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rajic, H.L.; Ougouag, A.M.

    1987-01-01

    Advanced transverse integrated nodal methods for neutron diffusion developed since the 1970s require that node- or assembly-homogenized cross sections be known. The underlying structural heterogeneity can be accurately accounted for in homogenization procedures by the use of heterogeneity or discontinuity factors. Other (milder) types of heterogeneity, burnup-induced or due to thermal-hydraulic feedback, can be resolved by explicitly accounting for the spatial variations of material properties. This can be done during the nodal computations via nonlinear iterations. The new method has been implemented in the code ILLICO-VX (ILLICO variable cross-section method). Numerous numerical tests were performed. As expected, the convergence ratemore » of ILLICO-VX is lower than that of ILLICO, requiring approx. 30% more outer iterations per k/sub eff/ computation. The methodology has also been implemented as the NOMAD-VX option of the NOMAD, multicycle, multigroup, two- and three-dimensional nodal diffusion depletion code. The burnup-induced heterogeneities (space dependence of cross sections) are calculated during the burnup steps.« less

  20. Full-spectrum multiwavelength pyrometry for nongray surfaces

    NASA Technical Reports Server (NTRS)

    Ng, Daniel; Williams, W. D.

    1992-01-01

    A full-spectrum (encompassing radiation on both sides of the Wien displacement peak) multiwavelength pyrometer was developed. It measures the surface temperature of arbitrary nongray ceramics by curve fitting a spectrum in this spectral region to a Planck function of temperature T. This function of T is modified by the surface spectral emissivity. The emissivity function was derived experimentally from additional spectra that were obtained by using an auxiliary radiation source and from application of Kirchhoff's law. This emissivity was verified by results that were obtained independently by using electromagnetic and solid-state theories. In the presence of interfering reflected radiation this general pyrometry improves the accuracy of the measured temperature by measuring an additional spectrum that characterizes the interfering radiation source.

  1. Piping benchmark problems. Volume 1. Dynamic analysis uniform support motion response spectrum method

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bezler, P.; Hartzman, M.; Reich, M.

    1980-08-01

    A set of benchmark problems and solutions have been developed for verifying the adequacy of computer programs used for dynamic analysis and design of nuclear piping systems by the Response Spectrum Method. The problems range from simple to complex configurations which are assumed to experience linear elastic behavior. The dynamic loading is represented by uniform support motion, assumed to be induced by seismic excitation in three spatial directions. The solutions consist of frequencies, participation factors, nodal displacement components and internal force and moment components. Solutions to associated anchor point motion static problems are not included.

  2. N(4)C-ethyl-N(4)C cross-linked DNA: synthesis and characterization of duplexes with interstrand cross-links of different orientations.

    PubMed

    Noronha, Anne M; Noll, David M; Wilds, Christopher J; Miller, Paul S

    2002-01-22

    The preparation and physical properties of short DNA duplexes that contain a N(4)C-ethyl-N(4)C interstrand cross-link are described. Duplexes that contain an interstrand cross-link between mismatched C-C residues and duplexes in which the C residues of a -CG- or -GC- step are linked to give "staggered" interstrand cross-links were prepared using a novel N(4)C-ethyl-N(4)C phosphoramidite reagent. Duplexes with the C-C mismatch cross-link have UV thermal transition temperatures that are 25 degrees C higher than the melting temperatures of control duplexes in which the cross-link is replaced with a G-C base pair. It appears that this cross-link stabilizes adjacent base pairs and does not perturb the structure of the helix, a conclusion that is supported by the CD spectrum of this duplex and by molecular models. An even higher level of stabilization, 49 degrees C, is seen with the duplex that contains a -CG- staggered cross-link. Molecular models suggest that this cross-link may induce propeller twisting in the cross-linked base pairs, and the CD spectrum of this duplex exhibits an unusual negative band at 298 nm, although the remainder of the spectrum is similar to that of B-form DNA. Mismatched C-C or -CG- staggered cross-linked duplexes that have complementary overhanging ends can undergo self-ligation catalyzed by T4 DNA ligase. Analysis of the ligated oligomers by nondenaturing polyacrylamide gel electrophoresis shows that the resulting oligomers migrate in a manner similar to that of a mixture of non-cross-linked control oligomers and suggests that these cross-links do not result in significant bending of the helix. However, the orientation of the staggered cross-link can have a significant effect on the structure and stability of the cross-linked duplex. Thus, the thermal stability of the duplex that contains a -GC- staggered cross-link is 10 degrees C lower than the melting temperature of the control, non-cross-linked duplex. Unlike the -CG- staggered cross

  3. Quality of life, self-stigma, and hope in schizophrenia spectrum disorders: a cross-sectional study

    PubMed Central

    Vrbova, Kristyna; Prasko, Jan; Ociskova, Marie; Kamaradova, Dana; Marackova, Marketa; Holubova, Michaela; Grambal, Ales; Slepecky, Milos; Latalova, Klara

    2017-01-01

    Goals The aim of this study was to explore the quality of life, self-stigma, personality traits, and hope in patients with schizophrenia spectrum disorders. Patients and methods A total of 52 outpatients participated in this cross-sectional study. The attending psychiatrist assessed each patient with Mini International Neuropsychiatric Interview (MINI). The patients then completed Quality of Life Satisfaction and Enjoyment Questionnaire (Q-LES-Q), Internalized Stigma of Mental Illness (ISMI) Scale, Temperament and Character Inventory – Revised (TCI-R), Adult Dispositional Hope Scale (ADHS), Drug Attitude Inventory 10 (DAI-10), and Liebowitz Social Anxiety Scale (LSAS)-Self-report. The psychiatrist evaluated Clinical Global Impression Severity – the objective version (objCGI-S), and the patients completed the Clinical Global Impression Severity – the subjective version (subjCGI-S). Each participant also completed Beck Depression Inventory-II (BDI-II), and Beck Anxiety Inventory (BAI). Results The quality of life was significantly higher in employed patients and individuals with higher hope, self-directedness (SD), and persistence (PS). The quality of life was lower among patients with higher number of psychiatric hospitalizations, those with higher severity of the disorder, and individuals who were taking higher doses of antipsychotics. Patients with more pronounced symptoms of depression, anxiety, and social anxiety had a lower quality of life. Finally, the quality of life was lower among individuals with higher harm avoidance (HA) and self-stigmatization (ISMI). Backward stepwise regression was applied to identify the most significant factors connected to self-stigma. The regression analysis showed that occupation, level of depression (BDI-II), attitude to using medication (DAI-10), social anxiety (LSAS), and antipsychotic index were the most relevant factors associated with lower quality of life. Conclusion Detection of the quality of life in the context of

  4. A general method for targeted quantitative cross-linking mass spectrometry

    USDA-ARS?s Scientific Manuscript database

    Chemical cross-linking mass spectrometry (XL-MS) provides protein structural information by identifying covalently linked proximal amino acid residues on protein surfaces. The information gained by this technique is complementary to other structural biology methods such as x-ray crystallography, NM...

  5. A Mixed-Method Evaluation of the Feasibility and Acceptability of a Telehealth-Based Parent-Mediated Intervention for Children with Autism Spectrum Disorder

    ERIC Educational Resources Information Center

    Pickard, Katherine E.; Wainer, Allison L.; Bailey, Kathryn M.; Ingersoll, Brooke R.

    2016-01-01

    Research within the autism spectrum disorder field has called for the use of service delivery models that are able to more efficiently disseminate evidence-based practices into community settings. This study employed telehealth methods in order to deliver an Internet-based, parent training intervention for autism spectrum disorder, ImPACT Online.…

  6. Cross-Link Guided Molecular Modeling with ROSETTA

    PubMed Central

    Leitner, Alexander; Rosenberger, George; Aebersold, Ruedi; Malmström, Lars

    2013-01-01

    Chemical cross-links identified by mass spectrometry generate distance restraints that reveal low-resolution structural information on proteins and protein complexes. The technology to reliably generate such data has become mature and robust enough to shift the focus to the question of how these distance restraints can be best integrated into molecular modeling calculations. Here, we introduce three workflows for incorporating distance restraints generated by chemical cross-linking and mass spectrometry into ROSETTA protocols for comparative and de novo modeling and protein-protein docking. We demonstrate that the cross-link validation and visualization software Xwalk facilitates successful cross-link data integration. Besides the protocols we introduce XLdb, a database of chemical cross-links from 14 different publications with 506 intra-protein and 62 inter-protein cross-links, where each cross-link can be mapped on an experimental structure from the Protein Data Bank. Finally, we demonstrate on a protein-protein docking reference data set the impact of virtual cross-links on protein docking calculations and show that an inter-protein cross-link can reduce on average the RMSD of a docking prediction by 5.0 Å. The methods and results presented here provide guidelines for the effective integration of chemical cross-link data in molecular modeling calculations and should advance the structural analysis of particularly large and transient protein complexes via hybrid structural biology methods. PMID:24069194

  7. The Atacama Cosmology Telescope: Two-season spectrum and parameters

    NASA Astrophysics Data System (ADS)

    Hlozek, Renée; Louis, Thibaut; Grace, Emily; Hasselfield, Matthew; Lungu, Marius; Maurin, Loic; Atacama Cosmology Telescope

    2017-01-01

    We present the temperature and polarization angular power spectra measured by the Atacama Cosmology Telescope polarimeter (ACTPol) over 548 deg^2 of sky on the celestial Equator, from nighttime data collected during 2013-14 using two kilo-detector arrays at 146 GHz. We use these spectra, and the spectra measured with the MBAC camera on ACT from 2008-10, in combination with Planck and WMAP satellite data to estimate cosmological parameters from the temperature, polarization, and temperature-polarization cross-correlations. We find the new ACTPol data to be consistent with the ΛCDM model. The ACTPol temperature-polarization cross-spectrum now provides stronger constraints on multiple parameters than the ACTPol temperature power spectrum, including the baryon density and the acoustic peak position angle, and the derived Hubble constant. Adding the new data to Planck temperature data tightens the limits on damping tail parameters, which we present here.

  8. Experimental studying of local characteristics of gas-liquid flow in microchannels by optical methods

    NASA Astrophysics Data System (ADS)

    Bartkus, German V.; Kuznetsov, Vladimir V.

    2018-03-01

    The local characteristics of the gas-liquid two-phase flow in rectangular microchannels 420 × 280 μm and 395 × 205 μm with T-shaped mixer inlet were experimentally investigated in this work. Visualization of flow regimes and measurement of local characteristics were carried out using a high-speed video camera Optronis CX600x2 and laser-induced fluorescence (LIF) method. Deionized water and ethanol were used as the liquid phase, and nitrogen - as the gas phase. The Rhodamine 6G dye was added to the liquid. The location of the microchannel in space (horizontal, vertical) was changed. The profiles of the liquid film along the long side of the microchannel were obtained, the local film thickness was measured in the channel`s central section for the elongated bubble flow and the transition flow of the deionized water-nitrogen mixture. The unevenness of liquid film thickness at the channel cross-section and along the bubble was experimentally shown. The temporal dynamics of two-phase flow for the ethanol-nitrogen mixture was shown. It was found that most of the liquid flows in the meniscus on the short side of the microchannel for the present gas and liquid flow rates.

  9. Experimental Research on Seismic Performance of Four-Element Variable Cross-Sectional Concrete Filled Steel Tubular Laced Columns

    NASA Astrophysics Data System (ADS)

    Ou, Zhijing; Lin, Jianmao; Chen, Shengfu; Lin, Wen

    2017-10-01

    A total of 7 experimental tests were conducted to investigate seismic performance of four element variable cross-sectional Concrete Filled Steel Tubular (CFST) laced columns. The experimental parameters are longitudinal slope and arrangement type of lacing tubes. The rules on hysteresis loop, ductility, energy expenditure, and stiffness degradation of specimens are researched. Test results indicate that all specimens have good seismic performance; their hysteresis loops are full without obvious shrinkage. With the increase of longitudinal slope, the horizontal carrying capacity increases, energy dissipation capacity improve, and there is slightly increase in stiffness degradation. The influence of arrangement type of lacing tubes on displacement ductility of specimens is big.

  10. Spectroscopic investigation (FTIR spectrum), NBO, HOMO-LUMO energies, NLO and thermodynamic properties of 8-Methyl-N-vanillyl-6-nonenamideby DFT methods

    NASA Astrophysics Data System (ADS)

    Sherin Percy Prema Leela, J.; Hemamalini, R.; Muthu, S.; Al-Saadi, Abdulaziz A.

    2015-07-01

    Capsicum a hill grown vegetable is also known as red pepper or chili pepper. Capsaicin(8-Methyl-N-vanillyl-6-nonenamide) is the active component in chili peppers, which is currently used in the treatment of osteoarthritis, psoriasis and cancer. Fourier transform infrared (FT-IR) spectrum of Capsaicin in the solid phase were recorded in the region 4000-400 cm-1 and analyzed. The vibrational frequencies of the title compound were obtained theoretically by DFT/B3LYP calculations employing the standard 6-311++G(d,p) basis set and were compared with Fourier transform infrared spectrum. Complete vibrational assignment analysis and correlation of the fundamental modes for the title compound were carried out. The vibrational harmonic frequencies were scaled using scale factor, yielding a good agreement between the experimentally recorded and the theoretically calculated values. Stability of the molecule arising from hyper conjugative interactions, charge delocalization and intra molecular hydrogen bond-like weak interaction has been analyzed using Natural bond orbital (NBO) analysis by using B3LYP/6-311++G(d,p) method. The results show that electron density (ED) in the σ∗ and π∗ antibonding orbitals and second-order delocalization energies E (2) confirm the occurrence of intra molecular charge transfer (ICT) within the molecule. The dipole moment (μ), polarizability (α) and the hyperpolarizability (β) values of the molecule has been computed. Thermodynamic properties (heat capacity, entropy and enthalpy) of the title compound at different temperatures were calculated.

  11. A Decentralized Eigenvalue Computation Method for Spectrum Sensing Based on Average Consensus

    NASA Astrophysics Data System (ADS)

    Mohammadi, Jafar; Limmer, Steffen; Stańczak, Sławomir

    2016-07-01

    This paper considers eigenvalue estimation for the decentralized inference problem for spectrum sensing. We propose a decentralized eigenvalue computation algorithm based on the power method, which is referred to as generalized power method GPM; it is capable of estimating the eigenvalues of a given covariance matrix under certain conditions. Furthermore, we have developed a decentralized implementation of GPM by splitting the iterative operations into local and global computation tasks. The global tasks require data exchange to be performed among the nodes. For this task, we apply an average consensus algorithm to efficiently perform the global computations. As a special case, we consider a structured graph that is a tree with clusters of nodes at its leaves. For an accelerated distributed implementation, we propose to use computation over multiple access channel (CoMAC) as a building block of the algorithm. Numerical simulations are provided to illustrate the performance of the two algorithms.

  12. Numerical and experimental analysis of an in-scale masonry cross-vault prototype up to failure

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rossi, Michela; Calderini, Chiara; Lagomarsino, Sergio

    2015-12-31

    A heterogeneous full 3D non-linear FE approach is validated against experimental results obtained on an in-scale masonry cross vault assembled with dry joints, and subjected to various loading conditions consisting on imposed displacement combinations to the abutments. The FE model relies into a discretization of the blocks by means of few rigid-infinitely resistant parallelepiped elements interacting by means of planar four-noded interfaces, where all the deformation (elastic and inelastic) occurs. The investigated response mechanisms of vault are the shear in-plane distortion and the longitudinal opening and closing mechanism at the abutments. After the validation of the approach on the experimentallymore » tested cross-vault, a sensitivity analysis is conducted on the same geometry, but in real scale, varying mortar joints mechanical properties, in order to furnish useful hints for safety assessment, especially in presence of seismic action.« less

  13. Impressions of the Meson Spectrum: Hybrids & Exotics, present and future

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pennington, Michael R.

    2016-03-25

    It has long been expected that the spectrum of hadrons in QCD would be far richer and extensive than experiment has so far revealed. While there have been experimental hints of this richness for some time, it is really only in the last few years that dramatic progress has been seen in the exploration both experimentally and in calculations on the lattice. Precision studies enabled by new technology both with detectors and high performance computations are converging on an understanding of the spectrum in strong coupling QCD. These methodologies are laying the foundation for a decade of potential discovery thatmore » electro and photoproduction experiments at Jefferson Lab, which when combined with key results on B and charmonium decays from both e+e? and pp colliders, should turn mere impressions of the light meson spectrum into a high definition picture.« less

  14. Aligning precisely polarization maintaining photonic crystal fiber and conventional single-mode fiber by online spectrum monitoring

    NASA Astrophysics Data System (ADS)

    Jiang, Ying; Zeng, Jie; Liang, Dakai; Ni, Xiaoyu; Luo, Wenyong

    2013-06-01

    The fibers aligning is very important in fusion splicing process. The core of polarization maintaining photonic crystal fiber(PM-PCF) can not be seen in the splicer due to microhole structure of its cross-section. So it is difficult to align precisely PM-PCF and conventional single-mode fiber(SMF).We demonstrate a novel method for aligning precisely PM-PCF and conventional SMF by online spectrum monitoring. Firstly, the light source of halogen lamp is connected to one end face of conventional SMF.Then align roughly one end face of PM-PCF and the other end face of conventional SMF by observing visible light in the other end face of PM-PCF. If there exists visible light, they are believed to align roughly. The other end face of PM-PCF and one end face of the other conventional SMF are aligned precisely in the other splicer by online spectrum monitoring. Now the light source of halogen lamp is changed into a broadband light source with 52nm wavelength range.The other end face of the other conventional SMF is connected to an optical spectrum analyzer.They are translationally and rotationally adjusted in the splicer by monitoring spectrum. When the transmission spectrum power is maximum, the aligning is precise.

  15. Absorption spectrum and absorption cross sections of the 2ν1 band of HO2 between 20 and 760 Torr air in the range 6636 and 6639 cm-1

    NASA Astrophysics Data System (ADS)

    Assaf, Emmanuel; Liu, Lu; Schoemaecker, Coralie; Fittschen, Christa

    2018-05-01

    The absorption spectrum of HO2 radicals has been measured in the range 6636-6639 cm-1 at several pressures between 20 and 760 Torr of air. Absolute absorption cross sections of the strongest line at around 6638.2 cm-1 have been determined from kinetic measurements, taking advantage of the well known rate constant of the self-reaction. Peak absorption cross sections of 22.6, 19.5, 14.4, 7.88, 5.12 and 3.23 × 10-20 cm2 were obtained at 20, 50, 100, 200, 400 and 760 Torr, respectively. By fitting these data, an empirical expression has been obtained for the absorption cross section of HO2 in the range 20-760 Torr air: σ6638.2cm-1 = 1.18 × 10-20 + (2.64 × 10-19 × (1-exp (-63.1/p (Torr))) cm2.

  16. Microscopic description of production cross sections including deexcitation effects

    NASA Astrophysics Data System (ADS)

    Sekizawa, Kazuyuki

    2017-07-01

    Background: At the forefront of the nuclear science, production of new neutron-rich isotopes is continuously pursued at accelerator laboratories all over the world. To explore the currently unknown territories in the nuclear chart far away from the stability, reliable theoretical predictions are inevitable. Purpose: To provide a reliable prediction of production cross sections taking into account secondary deexcitation processes, both particle evaporation and fission, a new method called TDHF+GEMINI is proposed, which combines the microscopic time-dependent Hartree-Fock (TDHF) theory with a sophisticated statistical compound-nucleus deexcitation model, GEMINI++. Methods: Low-energy heavy ion reactions are described based on three-dimensional Skyrme-TDHF calculations. Using the particle-number projection method, production probabilities, total angular momenta, and excitation energies of primary reaction products are extracted from the TDHF wave function after collision. Production cross sections for secondary reaction products are evaluated employing GEMINI++. Results are compared with available experimental data and widely used grazing calculations. Results: The method is applied to describe cross sections for multinucleon transfer processes in 40Ca+124Sn (Ec .m .≃128.54 MeV ), 48Ca+124Sn (Ec .m .≃125.44 MeV ), 40Ca+208Pb (Ec .m .≃208.84 MeV ), 58Ni+208Pb (Ec .m .≃256.79 MeV ), 64Ni+238U (Ec .m .≃307.35 MeV ), and 136Xe+198Pt (Ec .m .≃644.98 MeV ) reactions at energies close to the Coulomb barrier. It is shown that the inclusion of secondary deexcitation processes, which are dominated by neutron evaporation in the present systems, substantially improves agreement with the experimental data. The magnitude of the evaporation effects is very similar to the one observed in grazing calculations. TDHF+GEMINI provides better description of the absolute value of the cross sections for channels involving transfer of more than one proton, compared to the grazing

  17. Compensation of the Ionospheric Effects on SAR Interferogram Based on Range Split-Spectrum and Azimuth Offset Methods - a Case Study of Yushu Earthquake

    NASA Astrophysics Data System (ADS)

    He, Y. F.; Zhu, W.; Zhang, Q.; Zhang, W. T.

    2018-04-01

    InSAR technique can measure the surface deformation with the accuracy of centimeter-level or even millimeter and therefore has been widely used in the deformation monitoring associated with earthquakes, volcanoes, and other geologic process. However, ionospheric irregularities can lead to the wavy fringes in the low frequency SAR interferograms, which disturb the actual information of geophysical processes and thus put severe limitations on ground deformations measurements. In this paper, an application of two common methods, the range split-spectrum and azimuth offset methods are exploited to estimate the contributions of the ionosphere, with the aim to correct ionospheric effects in interferograms. Based on the theoretical analysis and experiment, a performance analysis is conducted to evaluate the efficiency of these two methods. The result indicates that both methods can mitigate the ionospheric effect in SAR interferograms and the range split-spectrum method is more precise than the other one. However, it is also found that the range split-spectrum is easily contaminated by the noise, and the achievable accuracy of the azimuth offset method is limited by the ambiguous integral constant, especially with the strong azimuth variations induced by the ionosphere disturbance.

  18. Electron–vibration coupling induced renormalization in the photoemission spectrum of diamondoids

    DOE PAGES

    Gali, Adam; Demján, Tamás; Vörös, Márton; ...

    2016-04-22

    The development of theories and methods devoted to the accurate calculation of the electronic quasi-particle states and levels of molecules, clusters and solids is of prime importance to interpret the experimental data. These quantum systems are often modelled by using the Born–Oppenheimer approximation where the coupling between the electrons and vibrational modes is not fully taken into account, and the electrons are treated as pure quasi-particles. Here, we show that in small diamond cages, called diamondoids, the electron–vibration coupling leads to the breakdown of the electron quasi-particle picture. More importantly, we demonstrate that the strong electron–vibration coupling is essential tomore » properly describe the overall lineshape of the experimental photoemission spectrum. This cannot be obtained by methods within Born–Oppenheimer approximation. Furthermore, we deduce a link between the vibronic states found by our many-body perturbation theory approach and the well-known Jahn–Teller effect.« less

  19. Electron–vibration coupling induced renormalization in the photoemission spectrum of diamondoids

    PubMed Central

    Gali, Adam; Demján, Tamás; Vörös, Márton; Thiering, Gergő; Cannuccia, Elena; Marini, Andrea

    2016-01-01

    The development of theories and methods devoted to the accurate calculation of the electronic quasi-particle states and levels of molecules, clusters and solids is of prime importance to interpret the experimental data. These quantum systems are often modelled by using the Born–Oppenheimer approximation where the coupling between the electrons and vibrational modes is not fully taken into account, and the electrons are treated as pure quasi-particles. Here, we show that in small diamond cages, called diamondoids, the electron–vibration coupling leads to the breakdown of the electron quasi-particle picture. More importantly, we demonstrate that the strong electron–vibration coupling is essential to properly describe the overall lineshape of the experimental photoemission spectrum. This cannot be obtained by methods within Born–Oppenheimer approximation. Moreover, we deduce a link between the vibronic states found by our many-body perturbation theory approach and the well-known Jahn–Teller effect. PMID:27103340

  20. Improved measurement of the reactor antineutrino flux and spectrum at Daya Bay

    NASA Astrophysics Data System (ADS)

    An, F. P.; Balantekin, A. B.; Band, H. R.; Bishai, M.; Blyth, S.; Cao, D.; Cao, G. F.; Cao, J.; Cen, W. R.; Chan, Y. L.; Chang, J. F.; Chang, L. C.; Chang, Y.; Chen, H. S.; Chen, Q. Y.; Chen, S. M.; Chen, Y. X.; Chen, Y.; Cheng, J.-H.; Cheng, J.; Cheng, Y. P.; Cheng, Z. K.; Cherwinka, J. J.; Chu, M. C.; Chukanov, A.; Cummings, J. P.; de Arcos, J.; Deng, Z. Y.; Ding, X. F.; Ding, Y. Y.; Diwan, M. V.; Dolgareva, M.; Dove, J.; Dwyer, D. A.; Edwards, W. R.; Gill, R.; Gonchar, M.; Gong, G. H.; Gong, H.; Grassi, M.; Gu, W. Q.; Guan, M. Y.; Guo, L.; Guo, R. P.; Guo, X. H.; Guo, Z.; Hackenburg, R. W.; Han, R.; Hans, S.; He, M.; Heeger, K. M.; Heng, Y. K.; Higuera, A.; Hor, Y. K.; Hsiung, Y. B.; Hu, B. Z.; Hu, T.; Hu, W.; Huang, E. C.; Huang, H. X.; Huang, X. T.; Huber, P.; Huo, W.; Hussain, G.; Jaffe, D. E.; Jaffke, P.; Jen, K. L.; Jetter, S.; Ji, X. P.; Ji, X. L.; Jiao, J. B.; Johnson, R. A.; Jones, D.; Joshi, J.; Kang, L.; Kettell, S. H.; Kohn, S.; Kramer, M.; Kwan, K. K.; Kwok, M. W.; Kwok, T.; Langford, T. J.; Lau, K.; Lebanowski, L.; Lee, J.; Lee, J. H. C.; Lei, R. T.; Leitner, R.; Li, C.; Li, D. J.; Li, F.; Li, G. S.; Li, Q. J.; Li, S.; Li, S. C.; Li, W. D.; Li, X. N.; Li, Y. F.; Li, Z. B.; Liang, H.; Lin, C. J.; Lin, G. L.; Lin, S.; Lin, S. K.; Lin, Y.-C.; Ling, J. J.; Link, J. M.; Littenberg, L.; Littlejohn, B. R.; Liu, D. W.; Liu, J. L.; Liu, J. C.; Loh, C. W.; Lu, C.; Lu, H. Q.; Lu, J. S.; Luk, K. B.; Lv, Z.; Ma, Q. M.; Ma, X. Y.; Ma, X. B.; Ma, Y. Q.; Malyshkin, Y.; Martinez Caicedo, D. A.; McDonald, K. T.; McKeown, R. D.; Mitchell, I.; Mooney, M.; Nakajima, Y.; Napolitano, J.; Naumov, D.; Naumova, E.; Ngai, H. Y.; Ning, Z.; Ochoa-Ricoux, J. P.; Olshevskiy, A.; Pan, H.-R.; Park, J.; Patton, S.; Pec, V.; Peng, J. C.; Pinsky, L.; Pun, C. S. J.; Qi, F. Z.; Qi, M.; Qian, X.; Raper, N.; Ren, J.; Rosero, R.; Roskovec, B.; Ruan, X. C.; Steiner, H.; Sun, G. X.; Sun, J. L.; Tang, W.; Taychenachev, D.; Treskov, K.; Tsang, K. V.; Tull, C. E.; Viaux, N.; Viren, B.; Vorobel, V.; Wang, C. H.; Wang, M.; Wang, N. Y.; Wang, R. G.; Wang, W.; Wang, X.; Wang, Y. F.; Wang, Z.; Wang, Z.; Wang, Z. M.; Wei, H. Y.; Wen, L. J.; Whisnant, K.; White, C. G.; Whitehead, L.; Wise, T.; Wong, H. L. H.; Wong, S. C. F.; Worcester, E.; Wu, C.-H.; Wu, Q.; Wu, W. J.; Xia, D. M.; Xia, J. K.; Xing, Z. Z.; Xu, J. Y.; Xu, J. L.; Xu, Y.; Xue, T.; Yang, C. G.; Yang, H.; Yang, L.; Yang, M. S.; Yang, M. T.; Ye, M.; Ye, Z.; Yeh, M.; Young, B. L.; Yu, Z. Y.; Zeng, S.; Zhan, L.; Zhang, C.; Zhang, H. H.; Zhang, J. W.; Zhang, Q. M.; Zhang, X. T.; Zhang, Y. M.; Zhang, Y. X.; Zhang, Y. M.; Zhang, Z. J.; Zhang, Z. Y.; Zhang, Z. P.; Zhao, J.; Zhao, Q. W.; Zhao, Y. B.; Zhong, W. L.; Zhou, L.; Zhou, N.; Zhuang, H. L.; Zou, J. H.; Daya Bay Collaboration

    2017-01-01

    A new measurement of the reactor antineutrino flux and energy spectrum by the Daya Bay reactor neutrino experiment is reported. The antineutrinos were generated by six 2.9 GWth nuclear reactors and detected by eight antineutrino detectors deployed in two near (560 m and 600 m flux-weighted baselines) and one far (1640 m flux-weighted baseline) underground experimental halls. With 621 days of data, more than 1.2 million inverse beta decay (IBD) candidates were detected. The IBD yield in the eight detectors was measured, and the ratio of measured to predicted flux was found to be 0.946±0.020 (0.992±0.021) for the Huber+Mueller (ILL+Vogel) model. A 2.9σ deviation was found in the measured IBD positron energy spectrum compared to the predictions. In particular, an excess of events in the region of 4-6 MeV was found in the measured spectrum, with a local significance of 4.4σ. A reactor antineutrino spectrum weighted by the IBD cross section is extracted for model-independent predictions. Supported in part by the Ministry of Science and Technology of China, the United States Department of Energy, the Chinese Academy of Sciences, the CAS Center for Excellence in Particle Physics, the National Natural Science Foundation of China, the Guangdong provincial government, the Shenzhen municipal government, the China General Nuclear Power Group, the Research Grants Council of the Hong Kong Special Administrative Region of China, the MOST and MOE in Taiwan, the U.S. National Science Foundation, the Ministry of Education, Youth and Sports of the Czech Republic, the Joint Institute of Nuclear Research in Dubna, Russia, the NSFC-RFBR joint research program, the National Commission for Scientific and Technological Research of Chile

  1. Novel Maximum-based Timing Acquisition for Spread-Spectrum Communications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sibbetty, Taylor; Moradiz, Hussein; Farhang-Boroujeny, Behrouz

    This paper proposes and analyzes a new packet detection and timing acquisition method for spread spectrum systems. The proposed method provides an enhancement over the typical thresholding techniques that have been proposed for direct sequence spread spectrum (DS-SS). The effective implementation of thresholding methods typically require accurate knowledge of the received signal-to-noise ratio (SNR), which is particularly difficult to estimate in spread spectrum systems. Instead, we propose a method which utilizes a consistency metric of the location of maximum samples at the output of a filter matched to the spread spectrum waveform to achieve acquisition, and does not require knowledgemore » of the received SNR. Through theoretical study, we show that the proposed method offers a low probability of missed detection over a large range of SNR with a corresponding probability of false alarm far lower than other methods. Computer simulations that corroborate our theoretical results are also presented. Although our work here has been motivated by our previous study of a filter bank multicarrier spread-spectrum (FB-MC-SS) system, the proposed method is applicable to DS-SS systems as well.« less

  2. Analyzing the thermionic reactor critical experiments. [thermal spectrum of uranium 235 core

    NASA Technical Reports Server (NTRS)

    Niederauer, G. F.

    1973-01-01

    The Thermionic Reactor Critical Experiments (TRCE) consisted of fast spectrum highly enriched U-235 cores reflected by different thicknesses of beryllium or beryllium oxide with a transition zone of stainless steel between the core and reflector. The mixed fast-thermal spectrum at the core reflector interface region poses a difficult neutron transport calculation. Calculations of TRCE using ENDF/B fast spectrum data and GATHER library thermal spectrum data agreed within about 1 percent for the multiplication factor and within 6 to 8 percent for the power peaks. Use of GAM library fast spectrum data yielded larger deviations. The results were obtained from DOT R Theta calculations with leakage cross sections, by region and by group, extracted from DOT RZ calculations. Delineation of the power peaks required extraordinarily fine mesh size at the core reflector interface.

  3. Fiber-distributed Ultra-wideband noise radar with steerable power spectrum and colorless base station.

    PubMed

    Zheng, Jianyu; Wang, Hui; Fu, Jianbin; Wei, Li; Pan, Shilong; Wang, Lixian; Liu, Jianguo; Zhu, Ninghua

    2014-03-10

    A fiber-distributed Ultra-wideband (UWB) noise radar was achieved, which consists of a chaotic UWB noise source based on optoelectronic oscillator (OEO), a fiber-distributed transmission link, a colorless base station (BS), and a cross-correlation processing module. Due to a polarization modulation based microwave photonic filter and an electrical UWB pass-band filter embedded in the feedback loop of the OEO, the power spectrum of chaotic UWB signal could be shaped and notch-filtered to avoid the spectrum-overlay-induced interference to the narrow band signals. Meanwhile, the wavelength-reusing could be implemented in the BS by means of the distributed polarization modulation-to-intensity modulation conversion. The experimental comparison for range finding was carried out as the chaotic UWB signal was notch-filtered at 5.2 GHz and 7.8 GHz or not. Measured results indicate that space resolution with cm-level could be realized after 3-km fiber transmission thanks to the excellent self-correlation property of the UWB noise signal provided by the OEO. The performance deterioration of the radar raised by the energy loss of the notch-filtered noise signal was negligible.

  4. Remote Raman Efficiencies and Cross-Sections of Organic and Inorganic Chemicals.

    PubMed

    Acosta-Maeda, Tayro E; Misra, Anupam K; Porter, John N; Bates, David E; Sharma, Shiv K

    2017-05-01

    We determined Raman cross-sections of various organic liquids and inorganic polyatomic ions in aqueous solutions with a 532 nm pulsed laser using remote Raman systems developed at the University of Hawaii. Using a calibrated integrating sphere as a light source, we converted the intensity counts in the spectrum of the light from the integrating sphere measured with UH remote Raman instrument to spectral radiance. From these data, a response function of the remote Raman instrument was obtained. With the intensity-calibrated instrument, we collected remote Raman data from a standard 1 mm path length fused silica spectrophotometer cell filled with cyclohexane. The measured value of the differential Raman cross-section for the 801 cm -1 vibrational mode of cyclohexane is 4.55 × 10 -30 cm 2 sr -1 molecule -1 when excited by a 532 nm laser, in good agreement with the values reported in the literature. Using the measured cyclohexane Raman cross-section as a reference and relative Raman mode intensities of the various ions and organic liquids, we calculated the Raman cross-sections of the strongest Raman lines of nitrate, sulfate, carbonate, phosphate ions, and organic liquids by maintaining same experimental conditions for remote Raman detection. These relative Raman cross-section values will be useful for estimating detection capabilities of remote Raman systems for planetary exploration.

  5. 76 FR 81991 - National Spectrum Sharing Research Experimentation, Validation, Verification, Demonstration and...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-12-29

    ... non-federal community, including the academic, commercial, and public safety sectors, to implement a..., Verification, Demonstration and Trials: Technical Workshop II on Coordinating Federal Government/Private Sector Spectrum Innovation Testing Needs AGENCY: The National Coordination Office (NCO) for Networking and...

  6. Electron collisions with phenol: Total, integral, differential, and momentum transfer cross sections and the role of multichannel coupling effects on the elastic channel

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Costa, Romarly F. da; Centro de Ciências Naturais e Humanas, Universidade Federal do ABC, 09210-580 Santo André, São Paulo; Oliveira, Eliane M. de

    2015-03-14

    We report theoretical and experimental total cross sections for electron scattering by phenol (C{sub 6}H{sub 5}OH). The experimental data were obtained with an apparatus based in Madrid and the calculated cross sections with two different methodologies, the independent atom method with screening corrected additivity rule (IAM-SCAR), and the Schwinger multichannel method with pseudopotentials (SMCPP). The SMCPP method in the N{sub open}-channel coupling scheme, at the static-exchange-plus-polarization approximation, is employed to calculate the scattering amplitudes at impact energies ranging from 5.0 eV to 50 eV. We discuss the multichannel coupling effects in the calculated cross sections, in particular how the numbermore » of excited states included in the open-channel space impacts upon the convergence of the elastic cross sections at higher collision energies. The IAM-SCAR approach was also used to obtain the elastic differential cross sections (DCSs) and for correcting the experimental total cross sections for the so-called forward angle scattering effect. We found a very good agreement between our SMCPP theoretical differential, integral, and momentum transfer cross sections and experimental data for benzene (a molecule differing from phenol by replacing a hydrogen atom in benzene with a hydroxyl group). Although some discrepancies were found for lower energies, the agreement between the SMCPP data and the DCSs obtained with the IAM-SCAR method improves, as expected, as the impact energy increases. We also have a good agreement among the present SMCPP calculated total cross section (which includes elastic, 32 inelastic electronic excitation processes and ionization contributions, the latter estimated with the binary-encounter-Bethe model), the IAM-SCAR total cross section, and the experimental data when the latter is corrected for the forward angle scattering effect [Fuss et al., Phys. Rev. A 88, 042702 (2013)].« less

  7. Real-Time Leaky Lamb Wave Spectrum Measurement and Its Application to NDE of Composites

    NASA Technical Reports Server (NTRS)

    Lih, Shyh-Shiuh; Bar-Cohen, Yoseph

    1999-01-01

    Numerous analytical and theoretical studies of the behavior of leaky Lamb waves (LLW) in composite materials were documented in the literature. One of the key issues that are constraining the application of this method as a practical tool is the amount of data that needs to be acquired and the slow process that is involved with such experiments. Recently, a methodology that allows quasi real-time acquisition of LLW dispersion data was developed. At each angle of incidence the reflection spectrum is available in real time from the experimental setup and it can be used for rapid detection of the defects. This technique can be used to rapidly acquire the various plate wave modes along various angles of incidence for the characterization of the material elastic properties. The experimental method and data acquisition technique will be described in this paper. Experimental data was used to examine a series of flaws including porosity and delaminations and demonstrated the efficiency of the developed technique.

  8. The Spectrum of Single Bubble Sonoluminescence.

    NASA Astrophysics Data System (ADS)

    Hiller, Robert Anthony

    1995-01-01

    An acoustically levitated bubble in a liquid may be driven to produce short flashes of light synchronous with the sound field in a process called sonoluminescence. The spectrum of the emitted light is measured with a grating monochromator and calibrated for absolute spectral radiance. The spectrum has been measured for various gases dissolved in pure water and heavy water, and alcohols and other hydrocarbon liquids. At a bandpass of 10nm EWHM the spectra are broad -band, showing no sign of lines or absorptions, with a peak in the ultraviolet. The experimental apparatus, including a system for producing sonoluminescence in a sealed container, is described.

  9. Temperature dependence of the ClONO2 UV absorption spectrum

    NASA Technical Reports Server (NTRS)

    Burkholder, James B.; Talukdar, Ranajit K.; Ravishankara, A. R.

    1994-01-01

    The temperature dependence of the ClONO2 absorption spectrum has been measured between 220 and 298 K and between 195 and 430 nm using a diode array spectrometer. The absorption cross sections were determined using both: (1) absolute pressure measurements at 296 K and (2) measurements at various temperatures relative to 296 K using a dual absorption cell arrangement. The temperature dependence of the ClONO2 absorption spectrum shows very broad structure. The amplitude of the temperature dependence relative to that at 296 K is weak at short wavelengths, less than 2% at 215 nm and 220 K, but significant at the wavelengths important in the stratosphere, about 30% at 325 nm and 220 K. Our ClONO2 absorption cross section data are in good general agreement with the previous measurements of Molina and Molina (1979).

  10. Numerical and experimental analysis of a darrieus-type cross flow water turbine in bare and shrouded configurations

    NASA Astrophysics Data System (ADS)

    Roa, A. M.; Aumelas, V.; Maître, T.; Pellone, C.

    2010-08-01

    The aim of this paper is to present the results of the analysis of a Darrieus-type cross flow water turbine in bare and shrouded configurations. Numerical results are compared to experimental data and differences found in values are also highlighted. The benefit of the introduction of a channelling device, which generates an efficiency increment factor varying from 2 to 5, depending on the configuration, is discussed.

  11. A partial least squares based spectrum normalization method for uncertainty reduction for laser-induced breakdown spectroscopy measurements

    NASA Astrophysics Data System (ADS)

    Li, Xiongwei; Wang, Zhe; Lui, Siu-Lung; Fu, Yangting; Li, Zheng; Liu, Jianming; Ni, Weidou

    2013-10-01

    A bottleneck of the wide commercial application of laser-induced breakdown spectroscopy (LIBS) technology is its relatively high measurement uncertainty. A partial least squares (PLS) based normalization method was proposed to improve pulse-to-pulse measurement precision for LIBS based on our previous spectrum standardization method. The proposed model utilized multi-line spectral information of the measured element and characterized the signal fluctuations due to the variation of plasma characteristic parameters (plasma temperature, electron number density, and total number density) for signal uncertainty reduction. The model was validated by the application of copper concentration prediction in 29 brass alloy samples. The results demonstrated an improvement on both measurement precision and accuracy over the generally applied normalization as well as our previously proposed simplified spectrum standardization method. The average relative standard deviation (RSD), average of the standard error (error bar), the coefficient of determination (R2), the root-mean-square error of prediction (RMSEP), and average value of the maximum relative error (MRE) were 1.80%, 0.23%, 0.992, 1.30%, and 5.23%, respectively, while those for the generally applied spectral area normalization were 3.72%, 0.71%, 0.973, 1.98%, and 14.92%, respectively.

  12. Theoretical and experimental signal-to-noise ratio assessment in new direction sensing continuous-wave Doppler lidar

    NASA Astrophysics Data System (ADS)

    Tegtmeier Pedersen, A.; Abari, C. F.; Mann, J.; Mikkelsen, T.

    2014-06-01

    A new direction sensing continuous-wave Doppler lidar based on an image-reject homodyne receiver has recently been demonstrated at DTU Wind Energy, Technical University of Denmark. In this contribution we analyse the signal-to-noise ratio resulting from two different data processing methods both leading to the direction sensing capability. It is found that using the auto spectrum of the complex signal to determine the wind speed leads to a signal-to-noise ratio equivalent to that of a standard self-heterodyne receiver. Using the imaginary part of the cross spectrum to estimate the Doppler shift has the benefit of a zero-mean background spectrum, but comes at the expense of a decrease in the signal-to noise ratio by a factor of √2.

  13. A comparative study of amplitude calibrations for the East Asia VLBI Network: A priori and template spectrum methods

    NASA Astrophysics Data System (ADS)

    Cho, Ilje; Jung, Taehyun; Zhao, Guang-Yao; Akiyama, Kazunori; Sawada-Satoh, Satoko; Kino, Motoki; Byun, Do-Young; Sohn, Bong Won; Shibata, Katsunori M.; Hirota, Tomoya; Niinuma, Kotaro; Yonekura, Yoshinori; Fujisawa, Kenta; Oyama, Tomoaki

    2017-12-01

    We present the results of a comparative study of amplitude calibrations for the East Asia VLBI Network (EAVN) at 22 and 43 GHz using two different methods of an "a priori" and a "template spectrum", particularly on lower declination sources. Using observational data sets of early EAVN observations, we investigated the elevation-dependence of the gain values at seven stations of the KaVA (KVN and VERA Array) and three additional telescopes in Japan (Takahagi 32 m, Yamaguchi 32 m, and Nobeyama 45 m). By comparing the independently obtained gain values based on these two methods, we found that the gain values from each method were consistent within 10% at elevations higher than 10°. We also found that the total flux densities of two images produced from the different amplitude calibrations were in agreement within 10% at both 22 and 43 GHz. By using the template spectrum method, furthermore, the additional radio telescopes can participate in KaVA (i.e., EAVN), giving a notable sensitivity increase. Therefore, our results will constrain the detailed conditions in order to measure the VLBI amplitude reliably using EAVN, and discuss the potential of possible expansion to telescopes comprising EAVN.

  14. Refinement of the experimental dynamic structure factor for liquid para-hydrogen and ortho-deuterium using semi-classical quantum simulation.

    PubMed

    Smith, Kyle K G; Poulsen, Jens Aage; Cunsolo, A; Rossky, Peter J

    2014-01-21

    The dynamic structure factor of liquid para-hydrogen and ortho-deuterium in corresponding thermodynamic states (T = 20.0 K, n = 21.24 nm(-3)) and (T = 23.0 K, n = 24.61 nm(-3)), respectively, has been computed by both the Feynman-Kleinert linearized path-integral (FK-LPI) and Ring-Polymer Molecular Dynamics (RPMD) methods and compared with Inelastic X Ray Scattering spectra. The combined use of computational and experimental methods enabled us to reduce experimental uncertainties in the determination of the true sample spectrum. Furthermore, the refined experimental spectrum of para-hydrogen and ortho-deuterium is consistently reproduced by both FK-LPI and RPMD results at momentum transfers lower than 12.8 nm(-1). At larger momentum transfers the FK-LPI results agree with experiment much better for ortho-deuterium than for para-hydrogen. More specifically we found that for k ∼ 20.0 nm(-1) para-hydrogen provides a test case for improved approximations to quantum dynamics.

  15. Experimental and theoretical study on THz spectrum artesunate

    NASA Astrophysics Data System (ADS)

    Zhang, Ai-Bing; Kong, Ling-Gao; Wang, Shi-Jin; Li, Lei; Zheng, Xiang-Zhi

    2008-10-01

    Artesunate is a very effective drug to treat malaria. They are studied experimentally by Terahertz (THz) time-domain spectroscopy (THz-TDS), and the characteristic absorption spectra are obtained in the range of 0.2 to 2.6 THz. The vibrational frequencies are calculated using the density functional theory (DFT). Theoretical results show that 0.71, 1.94 and 2.46 THz are significant agreement with the experimental results in 0.87, 1.82 and 2.46THz, and identification of vibrational modes are given. The calculated results further confirm that the characteristic frequencies come from the collective vibrational modes. The results suggest that the use of the THz-TDS technique can be an effective way to inspect for Chinese medicine.

  16. On similarity of various reactor spectra and 235U prompt fission neutron spectrum.

    PubMed

    Košťál, Michal; Matěj, Zdeněk; Losa, Evžen; Huml, Ondřej; Štefánik, Milan; Cvachovec, František; Schulc, Martin; Jánský, Bohumil; Novák, Evžen; Harutyunyan, Davit; Rypar, Vojtěch

    2018-05-01

    A well-defined neutron spectrum is an essential tool not only for calibration and testing of neutron detectors used in dosimetry and spectroscopy but also for validation and verification of evaluated cross sections. A new evaluation of thermal-neutron induced 235 U PFNS was performed by the International Atomic Energy Agency (IAEA) in the CIELO (Collaborative International Evaluated Library Organisation Project) project; new measurements of Spectral Averaged Cross sections averaged in the evaluated spectrum are to be obtained. In general, a neutron spectrum in the core is not identical to the pure fission one because fission neutrons undergo many scattering reactions, but it can be shown that PFNS and reactor spectra become undistinguishable from a certain energy boundary. This limit is important for experiments, because when the studied reaction threshold is over this limit, the spectral averaged cross sections in PFNS can be derived from the measured reactions in the reactor core. The evaluation of the neutron spectrum measurements in three different thermal-reactor cores shows that this lower limit is around the energy of 5.5 - 6 MeV. Above this energy the reactor spectra becomes identical with the 235 U PFNS. IAEA CIELO PFNS is within 5% of the measured PFNS from 10 to 14 MeV in a LR-0 reactor, while ENDF/B-VII evaluated PFNS underestimated measured neutron spectra. Copyright © 2018 Elsevier Ltd. All rights reserved.

  17. Calculation of total and ionization cross sections for electron scattering by primary benzene compounds

    NASA Astrophysics Data System (ADS)

    Singh, Suvam; Naghma, Rahla; Kaur, Jaspreet; Antony, Bobby

    2016-07-01

    The total and ionization cross sections for electron scattering by benzene, halobenzenes, toluene, aniline, and phenol are reported over a wide energy domain. The multi-scattering centre spherical complex optical potential method has been employed to find the total elastic and inelastic cross sections. The total ionization cross section is estimated from total inelastic cross section using the complex scattering potential-ionization contribution method. In the present article, the first theoretical calculations for electron impact total and ionization cross section have been performed for most of the targets having numerous practical applications. A reasonable agreement is obtained compared to existing experimental observations for all the targets reported here, especially for the total cross section.

  18. Systematic study of the experimental measurements on J / ψ cross sections and kinematic distributions in p + p collisions at different energies

    DOE PAGES

    Zha, Wangmei; Huang, Bingchu; Ma, Rongrong; ...

    2016-02-29

    The world experimental data on cross section and kinematic distribution in p + p and p + A collisions at √s = 6.8 – 7000 GeV are systematically examined in this work. The √s dependence of the inclusive cross section, rapidity, and transverse momentum distributions are studied phenomenologically. Also, we explore empirical formulas to obtain the total cross section, rapidity, and transverse momentum (p T) distribution. This is crucial for the interpretation of A + A J/ψ results at the BNL Relativistic Heavy Ion Collider when the p + p reference data are not available. In addition, the cross sectionmore » at midrapidity and transverse momentum distributions in p + p collisions at √s = 39 and 62.4 GeV are evaluated.« less

  19. Experimental Design and Methods for Development of Diagnostic Assays for Schistosomiasis Using Monoclonal Antibodies.

    DTIC Science & Technology

    1983-08-25

    solium, Echinococcus granulosus , Entamoeba histolytica, or Wucher erTra-bancr--ofti. The S. mansoni glycoproteins that were immunoprecipitated by sera...Sera from patients or experimental animals infected with Schistosoma, Fasciola hepatica, Trichinella spiralis, Taenia solium, Echinococcus ... granulosus , or Paragonimus westermani cross-react in diag-nostic assays with antigens derived from schistosomes, whether as whole organisms (1-4), crude

  20. Vacuum ultraviolet photoionization cross section of the hydroxyl radical.

    PubMed

    Dodson, Leah G; Savee, John D; Gozem, Samer; Shen, Linhan; Krylov, Anna I; Taatjes, Craig A; Osborn, David L; Okumura, Mitchio

    2018-05-14

    The absolute photoionization spectrum of the hydroxyl (OH) radical from 12.513 to 14.213 eV was measured by multiplexed photoionization mass spectrometry with time-resolved radical kinetics. Tunable vacuum ultraviolet (VUV) synchrotron radiation was generated at the Advanced Light Source. OH radicals were generated from the reaction of O( 1 D) + H 2 O in a flow reactor in He at 8 Torr. The initial O( 1 D) concentration, where the atom was formed by pulsed laser photolysis of ozone, was determined from the measured depletion of a known concentration of ozone. Concentrations of OH and O( 3 P) were obtained by fitting observed time traces with a kinetics model constructed with literature rate coefficients. The absolute cross section of OH was determined to be σ(13.436 eV) = 3.2 ± 1.0 Mb and σ(14.193 eV) = 4.7 ± 1.6 Mb relative to the known cross section for O( 3 P) at 14.193 eV. The absolute photoionization spectrum was obtained by recording a spectrum at a resolution of 8 meV (50 meV steps) and scaling to the single-energy cross sections. We computed the absolute VUV photoionization spectrum of OH and O( 3 P) using equation-of-motion coupled-cluster Dyson orbitals and a Coulomb photoelectron wave function and found good agreement with the observed absolute photoionization spectra.