Science.gov

Sample records for crosslinks enable highly

  1. Highly Efficient Perovskite Nanocrystal Light-Emitting Diodes Enabled by a Universal Crosslinking Method.

    PubMed

    Li, Guangru; Rivarola, Florencia Wisnivesky Rocca; Davis, Nathaniel J L K; Bai, Sai; Jellicoe, Tom C; de la Peña, Francisco; Hou, Shaocong; Ducati, Caterina; Gao, Feng; Friend, Richard H; Greenham, Neil C; Tan, Zhi-Kuang

    2016-05-01

    The preparation of highly efficient perovskite nanocrystal light-emitting diodes is shown. A new trimethylaluminum vapor-based crosslinking method to render the nanocrystal films insoluble is applied. The resulting near-complete nanocrystal film coverage, coupled with the natural confinement of injected charges within the perovskite crystals, facilitates electron-hole capture and give rise to a remarkable electroluminescence yield of 5.7%. PMID:26990965

  2. Differentially photo-crosslinked polymers enable self-assembling microfluidics

    PubMed Central

    Jamal, Mustapha; Zarafshar, Aasiyeh M.; Gracias, David H.

    2012-01-01

    An important feature of naturally self-assembled systems such as leaves and tissues is that they are curved and have embedded fluidic channels that enable the transport of nutrients to, or removal of waste from, specific three-dimensional (3D) regions. Here, we report the self-assembly of photopatterned polymers, and consequently microfluidic devices, into curved geometries. We discovered that differentially photo-crosslinked SU-8 films spontaneously and reversibly curved upon film de-solvation and re-solvation. Photolithographic patterning of the SU-8 films enabled the self-assembly of cylinders, cubes, and bidirectionally folded sheets. We integrated polydimethylsiloxane (PDMS) microfluidic channels with these SU-8 films to self-assemble curved microfluidic networks. PMID:22068594

  3. Characterization of the crosslinking reaction in high performance phenolic resins

    NASA Astrophysics Data System (ADS)

    Patel, Jigneshkumar; Zou, Guo Xiang; Hsu, Shaw Ling; university of massachusetts/Polymer science; Engineering Team

    In this study, a combination of thermal analysis, infrared spectroscopy (near and mid) in conjunction with low field NMR, was used to characterize the crosslinking reaction involving phenol formaldehyde resin and a crosslinking agent, Hexamethylenetetramine (HMTA). The strong hydrogen bonds in the resin and the completely crystalline HMTA (Tm = 280 °C) severely hamper the crosslinking process. Yet the addition of a small amount of plasticizer can induce a highly efficient crosslinking reaction to achieve the desired mechanical properties needed in a number of high performance organic-inorganic composites. The infrared spectroscopy clarifies the dissolution process of the crystalline crosslinker and the specific interactions needed to achieve miscibility of the reactants. The thermal analysis enabled us to follow the changing mobility of the system as a function of temperature. The low field NMR with the T1 inverse recovery technique allowed us to monitor the crosslinking process directly. For the first time, it is now possible to identify the functionality of the plasticizer and correlate the crosslinked structure achieved to the macroscopic performance needed for high performance organic-inorganic composites.

  4. Highly cross-linked nanoporous polymers

    DOEpatents

    Steckle, Jr., Warren P.; Apen, Paul G.; Mitchell, Michael A.

    1997-01-01

    Condensation polymerization followed by a supercritical extraction step can be used to obtain highly cross-linked nanoporous polymers with high surface area, controlled pore sizes and rigid structural integrity. The invention polymers are useful for applications requiring separation membranes.

  5. Highly cross-linked nanoporous polymers

    DOEpatents

    Steckle, Jr., Warren P.; Apen, Paul G.; Mitchell, Michael A.

    1998-01-01

    Condensation polymerization followed by a supercritical extraction step can be used to obtain highly cross-linked nanoporous polymers with high surface area, controlled pore sizes and rigid structural integrity. The invention polymers are useful for applications requiring separation membranes.

  6. Grafting functional antioxidants on highly crosslinked polyethylene

    NASA Astrophysics Data System (ADS)

    Al-Malaika, S.; Riasat, S.; Lewucha, C.

    2016-05-01

    The problem of interference of antioxidants, such as hindered phenols, with peroxide-initiated crosslinking of polyethylene was addressed through the use of functional (reactive) graftable antioxidants (g-AO). Reactive derivatives of hindered phenol and hindered amine antioxidants were synthesised, characterised and used to investigate their grafting reactions in high density polyethylene; both non-crosslinked (PE) and highly peroxide-crosslinked (PEXa). Assessment of the extent of in-situ grafting of the antioxidants, their retention after exhaustive solvent extraction in PE and PEXa, and the stabilising performance of the grafted antioxidants (g-AO) in the polymer were examined and benchmarked against conventionally stabilised crosslinked & non-crosslinked polyethylene. It was shown that the functional antioxidants graft to a high extent in PEXa, and that the level of interference of the g-AOs with the polymer crosslinking process was minimal compared to that of conventional antioxidants which bear the same antioxidant function. The much higher level of retention of the g-AOs in PEXa after exhaustive solvent extraction, compared to that of the corresponding conventional antioxidants, accounts for their superior long-term thermal stabilising performance under severe extractive conditions.

  7. Highly cross-linked nanoporous polymers

    DOEpatents

    Steckle, W.P. Jr.; Apen, P.G.; Mitchell, M.A.

    1998-01-20

    Condensation polymerization followed by a supercritical extraction step can be used to obtain highly cross-linked nanoporous polymers with high surface area, controlled pore sizes and rigid structural integrity. The invention polymers are useful for applications requiring separation membranes. 1 fig.

  8. Wear of highly crosslinked polyethylene acetabular components

    PubMed Central

    Callary, Stuart A; Solomon, Lucian B; Holubowycz, Oksana T; Campbell, David G; Munn, Zachary; Howie, Donald W

    2015-01-01

    Background and purpose Wear rates of highly crosslinked polyethylene (XLPE) acetabular components have varied considerably between different published studies. This variation is in part due to the different techniques used to measure wear and to the errors inherent in measuring the relatively low amounts of wear in XLPE bearings. We undertook a scoping review of studies that have examined the in vivo wear of XLPE acetabular components using the most sensitive method available, radiostereometric analysis (RSA). Methods A systematic search of the PubMed, Scopus, and Cochrane databases was performed to identify published studies in which RSA was used to measure wear of XLPE components in primary total hip arthroplasty (THA). Results 18 publications examined 12 primary THA cohorts, comprising only 260 THAs at 2–10 years of follow-up. The mean or median proximal wear rate reported ranged from 0.00 to 0.06 mm/year. However, differences in the manner in which wear was determined made it difficult to compare some studies. Furthermore, differences in RSA methodology between studies, such as the use of supine or standing radiographs and the use of beaded or unbeaded reference segments, may limit future meta-analyses examining the effect of patient and implant variables on wear rates. Interpretation This scoping review confirmed the low wear rates of XLPE in THA, as measured by RSA. We make recommendations to enhance the standardization of reporting of RSA wear results, which will facilitate early identification of poorly performing implants and enable a better understanding of the effects of surgical and patient factors on wear. PMID:25301435

  9. Proximity-enabled protein crosslinking through genetically encoding haloalkane unnatural amino acids.

    PubMed

    Xiang, Zheng; Lacey, Vanessa K; Ren, Haiyan; Xu, Jing; Burban, David J; Jennings, Patricia A; Wang, Lei

    2014-02-17

    The selective generation of covalent bonds between and within proteins would provide new avenues for studying protein function and engineering proteins with new properties. New covalent bonds were genetically introduced into proteins by enabling an unnatural amino acid (Uaa) to selectively react with a proximal natural residue. This proximity-enabled bioreactivity was expanded to a series of haloalkane Uaas. Orthogonal tRNA/synthetase pairs were evolved to incorporate these Uaas, which only form a covalent thioether bond with cysteine when positioned in close proximity. By using the Uaa and cysteine, spontaneous covalent bond formation was demonstrated between an affibody and its substrate Z protein, thereby leading to irreversible binding, and within the affibody to increase its thermostability. This strategy of proximity-enabled protein crosslinking (PEPC) may be generally expanded to target different natural amino acids, thus providing diversity and flexibility in covalent bond formation for protein research and protein engineering. PMID:24449339

  10. Microrheology of highly crosslinked microtubule networks is dominated by force-induced crosslinker unbinding

    PubMed Central

    Yang, Yali; Bai, Mo; Klug, William S.; Levine, Alex J.

    2012-01-01

    We determine the time- and force-dependent viscoelastic responses of reconstituted networks of microtubules that have been strongly crosslinked by biotin-streptavidin bonds. To measure the microscale viscoelasticity of such networks, we use a magnetic tweezers device to apply localized forces. At short time scales, the networks respond nonlinearly to applied force, with stiffening at small forces, followed by a reduction in the stiffening response at high forces, which we attribute to the force-induced unbinding of crosslinks. At long time scales, force-induced bond unbinding leads to local network rearrangement and significant bead creep. Interestingly, the network retains its elastic modulus even under conditions of significant plastic flow, suggesting that crosslinker breakage is balanced by the formation of new bonds. To better understand this effect, we developed a finite element model of such a stiff filament network with labile crosslinkers obeying force-dependent Bell model unbinding dynamics. The coexistence of dissipation, due to bond breakage, and the elastic recovery of the network is possible because each filament has many crosslinkers. Recovery can occur as long as a sufficient number of the original crosslinkers are preserved under the loading period. When these remaining original crosslinkers are broken, plastic flow results. PMID:23577042

  11. Highly crosslinked silicon polymers for gas chromatography columns

    NASA Technical Reports Server (NTRS)

    Shen, Thomas C. (Inventor)

    1994-01-01

    A new highly crosslinked silicone polymer particle for gas chromatography application and a process for synthesizing such copolymer are described. The new copolymer comprises vinyltriethoxysilane and octadecyltrichlorosilane. The copolymer has a high degree of crosslinking and a cool balance of polar to nonpolar sites in the porous silicon polymer assuring fast separation of compounds of variable polarity.

  12. Fatigue crack propagation resistance of highly crosslinked polyethylene.

    PubMed

    Bradford, Letitia; Baker, David; Ries, Michael D; Pruitt, Lisa A

    2004-12-01

    A higher degree of cross-linking has been shown to improve wear properties of ultra-high molecular weight polyethylene in laboratory studies. However, cross-linking can also affect the mechanical properties of ultra-high molecular weight polyethylene. Fatigue crack propagation resistance was determined for electron beam cross-linked ultra-high molecular weight polyethylene and compared with gamma irradiation cross-linked and noncross-linked polyethylene fatigue specimens. Crosslinking was done with different dosages of irradiation followed by melting. For one irradiation dose (50 kGy) extrusion and molding processes were compared. A fracture mechanics approach was used to determine how the degree of cross-linking affects resistance to crack propagation in ultra-high molecular weight polyethylene. Fatigue crack propagation resistance was reduced in proportion to the irradiation dose. The type of irradiation (gamma or electron beam) or manufacturing method (extrusion or molding) did not affect fatigue crack propagation resistance. The reduced fatigue strength of highly cross-linked ultra-high molecular weight polyethylene could lead to mechanical failure in conditions that are associated with cyclic local tensile stresses. PMID:15577468

  13. Codelivery of Doxorubicin and Paclitaxel by Cross-Linked Multilamellar Liposome Enables Synergistic Antitumor Activity

    PubMed Central

    2015-01-01

    Combining chemotherapeutics is a promising method of improving cancer treatment; however, the clinical success of combination therapy is limited by the distinct pharmacokinetics of combined drugs, which leads to nonuniform distribution. In this study, we report a new robust approach to load two drugs with different hydrophilicities into a single cross-linked multilamellar liposomal vesicle (cMLV) to precisely control the drug ratio that reaches the tumor in vivo. The stability of cMLVs improves the loading efficiency and sustained release of doxorubicin (Dox) and paclitaxel (PTX), maximizing the combined therapeutic effect and minimizing the systemic toxicity. Furthermore, we show that the cMLV formulation maintains specific drug ratios in vivo for over 24 h, enabling the ratio-dependent combination synergy seen in vitro to translate to in vivo antitumor activity and giving us control over another parameter important to combination therapy. This combinatorial delivery system may provide a new strategy for synergistic delivery of multiple chemotherapeutics with a ratiometric control over encapsulated drugs to treat cancer and other diseases. PMID:24673622

  14. Simulation of interfacial fracture in highly crosslinked adhesives

    SciTech Connect

    STEVENS,MARK J.

    2000-05-22

    The fracture of highly-crosslinked networks is investigated by molecular dynamics simulations. The network is modeled as a bead-spring polymer network between two solid surfaces. The network is dynamically formed by crosslinking an equilibrated liquid mixture. Tensile pull fracture is simulated as a function of the number of interracial bonds. The sequence of molecular structural deformations that lead to failure are determined, and the connectivity is found to strongly control the stress-strain response and failure modes. The failure strain is related to the minimal paths in the network that connect the two solid surfaces. The failure stress is a fraction of the ideal stress required to fracture all the interracial bonds, and is linearly proportional to the number of interracial bonds. By allowing only a single bond between a crosslinker and the surface, interracial failure always occurs. Allowing up to half of the crosslinker's bonds to occur with the surface, cohesive failure can occur.

  15. Enhanced identification of zero-length chemical crosslinks using label-free quantitation and high-resolution fragment ion spectra

    PubMed Central

    Sriswasdi, Sira; Harper, Sandra L.; Tang, Hsin-Yao; Speicher, David W.

    2014-01-01

    Chemical crosslinking coupled with mass spectrometry provides structural information that is useful for probing protein conformations and providing experimental support for molecular models. “Zero-length” crosslinks have greater value for these applications than longer crosslinks because they provide more stringent distance constraints. However, this method is less commonly utilized because it cannot take advantage of isotopic labels, MS-labile bonds, or enrichment tags to facilitate identification. In this study, we combined label-free precursor ion quantitation and targeted tandem mass spectrometry with a new software tool, Zero-length Crosslink Miner (ZXMiner), to form a multi-tiered analysis strategy. A major, critical objective was to simultaneously achieve very high accuracy with essentially no false positive crosslink identifications, while maintaining a good depth of analysis. Our strategy was optimized on several proteins with known crystal structures. Comparison of ZXMiner to several existing crosslink analysis software showed that other algorithms detected less true positive crosslinks and were far less accurate. Although prior use of zero-length crosslinking was typically restricted to small proteins, ZXMiner and the associated strategy enables facile analysis of very large protein complexes. This was demonstrated by identification of zero-length crosslinks using purified 526 kDa spectrin heterodimers and intact red cell membranes and membrane skeletons. PMID:24369724

  16. Enabling High Efficiency Ethanol Engines

    SciTech Connect

    Szybist, J.; Confer, K.

    2011-03-01

    Delphi Automotive Systems and ORNL established this CRADA to explore the potential to improve the energy efficiency of spark-ignited engines operating on ethanol-gasoline blends. By taking advantage of the fuel properties of ethanol, such as high compression ratio and high latent heat of vaporization, it is possible to increase efficiency with ethanol blends. Increasing the efficiency with ethanol-containing blends aims to remove a market barrier of reduced fuel economy with E85 fuel blends, which is currently about 30% lower than with petroleum-derived gasoline. The same or higher engine efficiency is achieved with E85, and the reduction in fuel economy is due to the lower energy density of E85. By making ethanol-blends more efficient, the fuel economy gap between gasoline and E85 can be reduced. In the partnership between Delphi and ORNL, each organization brought a unique and complementary set of skills to the project. Delphi has extensive knowledge and experience in powertrain components and subsystems as well as overcoming real-world implementation barriers. ORNL has extensive knowledge and expertise in non-traditional fuels and improving engine system efficiency for the next generation of internal combustion engines. Partnering to combine these knowledge bases was essential towards making progress to reducing the fuel economy gap between gasoline and E85. ORNL and Delphi maintained strong collaboration throughout the project. Meetings were held regularly, usually on a bi-weekly basis, with additional reports, presentations, and meetings as necessary to maintain progress. Delphi provided substantial hardware support to the project by providing components for the single-cylinder engine experiments, engineering support for hardware modifications, guidance for operational strategies on engine research, and hardware support by providing a flexible multi-cylinder engine to be used for optimizing engine efficiency with ethanol-containing fuels.

  17. The measurement of creep in ultrahigh molecular weight polyethylene: a comparison of conventional versus highly cross-linked polyethylene.

    PubMed

    Estok, Daniel M; Bragdon, Charles R; Plank, Gordon R; Huang, Anna; Muratoglu, Orhun K; Harris, William H

    2005-02-01

    Quantification of creep of highly cross-linked polyethylene would enable separation of creep from wear when evaluating femoral head penetration into polyethylene. We compared creep magnitude of a highly cross-linked versus conventional polyethylene in the laboratory. Twelve acetabular liners of each material were tested, 6 of which had a 32-mm inner diameter (ID) and 6 had 28-mm ID. Creep was measured using coordinate measuring machines during loading at 2 Hz without motion to 4 million cycles. Penetration into 32-mm ID conventional liners reached 97 microm versus 107 microm for highly cross-linked material, not significant. Penetration into 28-mm conventional liners was 132 microm versus 155 microm for highly cross-linked material (P = .017). Ninety percent of the creep had occurred by 2.5 million cycles. PMID:15902864

  18. Tunable high performance cross-linked alkaline anion exchange membranes for fuel cell applications.

    PubMed

    Robertson, Nicholas J; Kostalik, Henry A; Clark, Timothy J; Mutolo, Paul F; Abruña, Héctor D; Coates, Geoffrey W

    2010-03-17

    Fuel cells are energy conversion devices that show great potential in numerous applications ranging from automobiles to portable electronics. However, further development of fuel cell components is necessary for them to become commercially viable. One component critical to their performance is the polymer electrolyte membrane, which is an ion conductive medium separating the two electrodes. While proton conducting membranes are well established (e.g., Nafion), hydroxide conducting membranes (alkaline anion exchange membranes, AAEMs) have been relatively unexplored by comparison. Operating under alkaline conditions offers significant efficiency benefits, especially for the oxygen reduction reaction; therefore, effective AAEMs could significantly advance fuel cell technologies. Here we demonstrate the use of ring-opening metathesis polymerization to generate new cross-linked membrane materials exhibiting high hydroxide ion conductivity and good mechanical properties. Cross-linking allows for increased ion incorporation, which, in turn supports high conductivities. This facile synthetic approach enables the preparation of cross-linked materials with the potential to meet the demands of hydrogen-powered fuel cells as well as direct methanol fuel cells. PMID:20178312

  19. Tunable High Performance Cross-Linked Alkaline Anion Exchange Membranes for Fuel Cell Applications

    SciTech Connect

    Robertson, Nicholas J.; Kostalik, IV, Henry A.; Clark, Timothy J.; Mutolo, Paul F.; Abruña, Héctor D.; Coates, Geoffrey W.

    2010-02-23

    Fuel cells are energy conversion devices that show great potential in numerous applications ranging from automobiles to portable electronics. However, further development of fuel cell components is necessary for them to become commercially viable. One component critical to their performance is the polymer electrolyte membrane, which is an ion conductive medium separating the two electrodes. While proton conducting membranes are well established (e.g., Nafion), hydroxide conducting membranes (alkaline anion exchange membranes, AAEMs) have been relatively unexplored by comparison. Operating under alkaline conditions offers significant efficiency benefits, especially for the oxygen reduction reaction; therefore, effective AAEMs could significantly advance fuel cell technologies. Here we demonstrate the use of ring-opening metathesis polymerization to generate new cross-linked membrane materials exhibiting high hydroxide ion conductivity and good mechanical properties. Cross-linking allows for increased ion incorporation, which, in turn supports high conductivities. This facile synthetic approach enables the preparation of cross-linked materials with the potential to meet the demands of hydrogen-powered fuel cells as well as direct methanol fuel cells.

  20. High-performance microlasers enable display applications

    NASA Astrophysics Data System (ADS)

    Takeuchi, Eric B.; Hargis, David E.; Bergstedt, Robert; Dion, Al; Hurtado, Randy; Solone, Paul J.

    1999-08-01

    Recent advances in compact, air-cooled, diode-pumped solid- state visible microlasers have enabled the development of portable laser display systems. In addition to the added benefits of large color gamut, invariant color accuracy, image uniformity, high contrast, and large depth of focus inherent in the microlaser design, the reliability of these all-solid state red-green-blue (RGB) sources make them attractive for display applications. Compact, multi-watt laser modules have been demonstrated for use as a high brightness 'laser light engine' for replacing arc lamps in LCD/DMD type display configurations. Using this 'backlit' approach, a microlaser- based projector has been demonstrated, providing greater than 500 lumens at 1280 X 1024 resolution using reflective AMLCD light valves. Also being developed is an airborne tactical HMD system wherein the laser module is remotely coupled to a subtractive color LCD assembly through an optical fiber to provide a more than 24,000,000 (twenty-four million) cd/m2 luminance for illuminating the LCD assembly. This technology could be applied to a variety of cockpit displays providing sunlight readable illumination for both head-down and head-up backlit display configurations. The advantages of the microlaser technology will enable further applications in other military platforms such as command and control centers, simulators and HMDs. Longer term potential includes high end CAD workstations, entertainment systems, and electronic cinema.

  1. High temperature concrete composites containing organosiloxane crosslinked copolymers

    DOEpatents

    Zeldin, Arkady; Carciello, Neal; Kukacka, Lawrence; Fontana, Jack

    1980-01-01

    This invention relates to high temperature polymer concrete composites comprising about 10-30% by weight of a liquid monomer mixture consisting essentially of an organosiloxane polymer crosslinked with an olefinically unsaturated monomer selected from the group consisting of styrene, methyl methacrylate, trimethylolpropane trimethacrylate, triallyl cyanurate, n-phenylmalimide, divinyl benzene and mixtures theroef; and about 70-90% by weight of an inert inorganic filler system containing silica sand and preferably a member selected from the group consisting of portland cement, Fe.sub.2 O.sub.3, carbon black and mixtures thereof; and optionally a free radical initiator such as di-tert-butyl peroxide, azobisisobutyronitrile, benzoyl peroxide, lauryl peroxide and other organic peroxides to initiate crosspolymerization of the monomer mixture in the presence of the inorganic filler.

  2. High temperature concrete composites containing organosiloxane crosslinked copolymers

    DOEpatents

    Zeldin, A.; Carciello, N.; Kukacka, L.; Fontana, J.

    High temperature polymer concrete composites comprising about 10 to 30% by weight of a liquid monomer mixture is described. It consists essentially of an organosiloxane polymer crosslinked with an olefinically unsaturated monomer selected from the group consisting of styrene, methyl methacrylate, trimethylolpropane trimethacrylate, triallyl cyanurate, n-phenylmalimide, divinyl benzene and mixtures thereof. About 70 to 90% by weight of an inert inorganic filler system containing silica sand and portland cement, Fe/sub 2/O/sub 3/, carbon black or mixtures thereof. Optionally a free radical initiator such as di-tert-butyl peroxide, azobisisobyutyronitrile, benzoyl peroxide, lauryl peroxide and other organic peroxides are used to initiate crosspolymerization of the monomer mixture in the presence of the inorganic filler.

  3. Retrieved Highly Crosslinked UHMWPE Acetabular Liners Have Similar Wear Damage as Conventional UHMWPE

    PubMed Central

    Schroder, David T.; Kelly, Natalie H.; Parks, Michael L.

    2010-01-01

    Background Highly crosslinked UHMWPE is associated with increased wear resistance in hip simulator and clinical studies. Laboratory and case studies, however, have described rim fracture in crosslinked acetabular liners. Controversy exists, therefore, on the relative merits of crosslinked liners over conventional liners in terms of wear performance versus resistance to fatigue cracking. Questions/purposes We asked whether crosslinked liners would show less surface damage than conventional liners but would be more susceptible to fatigue damage. Methods We examined 36 conventional UHMWPE and 39 crosslinked UHMWPE retrieved implants with similar patient demographics and identical design for evidence of wear damage, including articular surface damage, impingement, screw-hole creep, and rim cracks. Results We observed no difference in wear damage scores for the two liners. Conventional liners more frequently impinged but were more often elevated with smaller head sizes. We observed creep in approximately 70% of both types of liners. Incipient rim cracks were found in five crosslinked liners, and one liner had a rim fracture. Only one conventional liner had an incipient rim crack. Conclusions Contrary to our expectation, damage was similar between crosslinked and conventional UHMWPE liners. Moreover, the 15% occurrence (six of 39) of incipient or complete fractures in crosslinked liners as compared with a 3% occurrence (one of 36) in conventional liners may have implications for the long-term performance of crosslinked liners. Longer-term studies will be necessary to establish the fate of rim cracks and thus the overall clinical fatigue performance of crosslinked liners. PMID:20844998

  4. A highly reversible room-temperature lithium metal battery based on crosslinked hairy nanoparticles

    NASA Astrophysics Data System (ADS)

    Choudhury, Snehashis; Mangal, Rahul; Agrawal, Akanksha; Archer, Lynden A.

    2015-12-01

    Rough electrodeposition, uncontrolled parasitic side-reactions with electrolytes and dendrite-induced short-circuits have hindered development of advanced energy storage technologies based on metallic lithium, sodium and aluminium electrodes. Solid polymer electrolytes and nanoparticle-polymer composites have shown promise as candidates to suppress lithium dendrite growth, but the challenge of simultaneously maintaining high mechanical strength and high ionic conductivity at room temperature has so far been unmet in these materials. Here we report a facile and scalable method of fabricating tough, freestanding membranes that combine the best attributes of solid polymers, nanocomposites and gel-polymer electrolytes. Hairy nanoparticles are employed as multifunctional nodes for polymer crosslinking, which produces mechanically robust membranes that are exceptionally effective in inhibiting dendrite growth in a lithium metal battery. The membranes are also reported to enable stable cycling of lithium batteries paired with conventional intercalating cathodes. Our findings appear to provide an important step towards room-temperature dendrite-free batteries.

  5. Water and polymer dynamics in highly crosslinked polyamide membranes

    NASA Astrophysics Data System (ADS)

    Frieberg, Bradley; Chan, Edwin; Tyagi, Madhu; Stafford, Christopher; Soles, Christopher

    Highly crosslinked polyamides for reverse osmosis are the state-of-the-art active material in membranes for desalination. The thin film composite membrane structure that is used commercially has been empirically designed to selectively allow the passage of water molecules and minimize the passage of solutes such as salt. However, due to the large roughness and variability of the polyamide layer, there is a limited understanding of the structure-property relationship for these materials as well as the transport mechanism. To better understand the water transport mechanism we measure the water and polymer dynamics of polyamide membranes using quasi-elastic neutron scattering (QENS). By hydrating the membrane with deuterated water, we are able to isolate the dynamics of the hydrogenated membrane on the pico- and nanosecond time scales. By subsequently hydrating the membranes with hydrogenated water, the QENS measurements on the same times scales reveal information about both the translational and rotational dynamics of water confined within the polyamide membrane. Further understanding of the water diffusion mechanism will establish design rules in which the performance of future membrane materials can be improved.

  6. A surface crosslinked UHMWPE stabilized by vitamin E with low wear and high fatigue strength.

    PubMed

    Oral, Ebru; Ghali, Bassem W; Rowell, Shannon L; Micheli, Brad R; Lozynsky, Andrew J; Muratoglu, Orhun K

    2010-09-01

    Wear particle-induced periprosthetic osteolysis has been a clinical problem driving the development of wear resistant ultrahigh molecular weight polyethylene (UHMWPE) for total joint replacement. Radiation crosslinking has been used to decrease wear through decreased plastic deformation; but crosslinking also reduces mechanical properties including fatigue resistance, a major factor limiting the longevity of joint implants. Reducing UHMWPE wear with minimal detriment to mechanical properties is an unaddressed need for articular bearing surface development. Here we report a novel approach to achieve this by limiting crosslinking to the articular surface. The antioxidant vitamin E reduces crosslinking efficiency in UHMWPE during irradiation with increasing concentration, thus we propose to spatially control the crosslink density distribution by controlling the vitamin E concentration profile. Surface crosslinking UHMWPE prepared using this approach had high wear resistance and decreased crosslinking in the bulk resulting in high fatigue crack propagation resistance. The interface region did not represent a weakness in the material due to the gradual change in the crosslink density. Such an implant has the potential of decreasing risk of fatigue fracture of total joint implants as well as expanding the use of UHMWPE to younger and more active patients. PMID:20579730

  7. Metal Chelating Crosslinkers Form Nanogels with High Chelation Stability.

    PubMed

    Lux, Jacques; Chan, Minnie; Elst, Luce Vander; Schopf, Eric; Mahmoud, Enas; Laurent, Sophie; Almutairi, Adah

    2013-12-14

    We present a series of hydrogel nanoparticles (nanogels) incorporating either acyclic or cyclic metal chelates as crosslinkers. These crosslinkers are used to formulate polyacrylamide-based nanogels (diameter 50 to 85 nm) yielding contrast agents with enhanced relaxivities (up to 6-fold greater than Dotarem®), because this nanogel structure slows the chelator's tumbling frequency and allows fast water exchange. Importantly, these nanogels also stabilize Gd(3+) within the chelator thermodynamically and kinetically against metal displacement through transmetallation, which should reduce toxicity associated with release of free Gd(3+). This chelation stability suggests that the chelate crosslinker strategy may prove useful for other applications of metal-chelating nanoparticles in medicine, including other imaging modalities and radiotherapy. PMID:24505553

  8. Metal Chelating Crosslinkers Form Nanogels with High Chelation Stability

    PubMed Central

    Elst, Luce Vander; Schopf, Eric; Mahmoud, Enas; Laurent, Sophie; Almutairi, Adah

    2013-01-01

    We present a series of hydrogel nanoparticles (nanogels) incorporating either acyclic or cyclic metal chelates as crosslinkers. These crosslinkers are used to formulate polyacrylamide-based nanogels (diameter 50 to 85 nm) yielding contrast agents with enhanced relaxivities (up to 6-fold greater than Dotarem®), because this nanogel structure slows the chelator's tumbling frequency and allows fast water exchange. Importantly, these nanogels also stabilize Gd3+ within the chelator thermodynamically and kinetically against metal displacement through transmetallation, which should reduce toxicity associated with release of free Gd3+. This chelation stability suggests that the chelate crosslinker strategy may prove useful for other applications of metal-chelating nanoparticles in medicine, including other imaging modalities and radiotherapy. PMID:24505553

  9. Physical properties of pectin-high amylose starch mixtures cross-linked with sodium trimetaphosphate.

    PubMed

    Carbinatto, Fernanda M; de Castro, Ana Dóris; Cury, Beatriz S F; Magalhães, Alviclér; Evangelista, Raul C

    2012-02-28

    Pectin-high amylose starch mixtures (1:4; 1:1; 4:1) were cross-linked at different degrees and characterized by rheological, thermal, X-ray diffraction and NMR analyses. For comparison, samples without cross-linker addition were also prepared and characterized. Although all samples behaved as gels, the results evidenced that the phosphorylation reaction promotes the network strengthening, resulting in covalent gels (highest critical stress, G' and recovery %). Likewise, cross-linked samples presented the highest thermal stability. However, alkaline treatment without cross-linker allowed a structural reorganization of samples, as they also behaved as covalent gels, but weaker than those gels from cross-linked samples, and presented higher thermal stability than the physical mixtures. X-ray diffractograms also evidenced the occurrence of physical and chemical modifications due to the cross-linking process and indicated that samples without cross-linker underwent some structural reorganization, resulting in a decrease of crystallinity. The chemical shift of resonance signals corroborates the occurrence of structural modifications by both alkaline treatment and cross-linking reaction. PMID:22178896

  10. Radiation cross-linking in ultra-high molecular weight polyethylene for orthopaedic applications

    PubMed Central

    Oral, Ebru; Muratoglu, Orhun K.

    2007-01-01

    The motivation for radiation cross-linking of ultra-high molecular weight polyethylene (UHMWPE) is to increase its wear resistance to be used as bearing surfaces for total joint arthroplasty. However, radiation also leaves behind long-lived residual free radicals in this polymer, the reactions of which can detrimentally affect mechanical properties. In this review, we focus on the radiation cross-linking and oxidative stability of first and second generation highly cross-linked UHMWPEs developed in our laboratory. PMID:19050735

  11. Cross-linking high-k fluoropolymer gate dielectrics enhances the charge mobility in rubrene field effect transistors

    NASA Astrophysics Data System (ADS)

    Adhikari, Jwala; Gadinski, Matthew; Wang, Qing; Gomez, Enrique

    2015-03-01

    Polymer dielectrics are promising materials where the chemical flexibility enables gate insulators with desired properties. For example, polar groups can be introduced to enhance the dielectric constant, although fluctuations in chain conformations at the semiconductor-dielectric interface can introduce energetic disorder and limit charge mobilities in thin-film transistors. Here, we demonstrate a photopatternable high-K fluoropolymer, poly(vinylidene fluoride-bromotrifluoroethylene) P(VDF-BTFE), with a dielectric constant between 8 and 11. The bromotrifluoroethylene moiety enables photo-crosslinking and stabilization of gate insulator films while also significantly enhancing the population of trans torsional conformations of the chains. Using rubrene single crystals as the active layer, charge mobilities exceeding 10 cm2/Vs are achieved in thin film transistors with cross-linked P(VDF-BTFE) gate dielectrics. We hypothesize that crosslinking reduces energetic disorder at the dielectric-semiconductor interface by suppressing segmental motion and controlling chain conformations of P(VDF-BTFE), thereby leading to approximately a three-fold enhancement in the charge mobility of rubrene thin-film transistors over devices incorporating uncross-linked dielectrics or silicon oxide. Center for Flexible Electronic, Penn State; The Dow Chemical Company.

  12. In Vivo Oxidative Stability Changes of Highly Cross-Linked Polyethylene Bearings: An Ex Vivo Investigation.

    PubMed

    Rowell, Shannon L; Reyes, Christopher R; Malchau, Henrik; Muratoglu, Orhun K

    2015-10-01

    The development of highly cross-linked UHMWPEs focused on stabilizing radiation-induced free radicals as the sole precursor to oxidative degradation. However, secondary in vivo oxidation mechanisms have been discovered. After a preliminary post-operative analysis, we subjected highly cross-linked retrievals with 1-4 years in vivo durations and never-implanted controls to accelerated aging to predict the extent to which their oxidative stability was compromised in vivo. Lipid absorption, oxidation, and hydroperoxides were measured using infrared spectroscopy. Gravimetric swelling was used to measure cross-link density. After aging, all retrievals, except vitamin E-stabilized components, regardless of initial lipid levels or oxidation, showed significant oxidative degradation, demonstrated by subsurface oxidative peaks, increased hydroperoxides and decreased cross-link density, compared to their post-operative material properties and never-implanted counterparts, confirming oxidative stability changes. PMID:26048729

  13. No adverse effects of submelt-annealed highly crosslinked polyethylene in cemented cups

    PubMed Central

    2012-01-01

    Background and purpose Highly crosslinked polyethylene (PE) is in standard use worldwide. Differences in the crosslinking procedure may affect the clinical performance. Experimenatal data from retrieved cups have shown free radicals and excessive wear of annealed highly crosslinked PE. We have previously reported low wear and good clinical performance after 6 years with this implant, and now report on the 10-year results. Patients and methods In 8 patients, we measured wear of annealed highly crosslinked PE prospectively with radiostereometry after 10 years. Activity was assessed by UCLA activity score and a specifically designed activity score. Conventional radiographs were evaluated for osteolysis and clinical outcome by the Harris hip score (HHS). Results The mean (95% CI) proximal head penetration for highly crosslinked PE after 10 years was 0.07 (–0.015 to 0.153) mm, and the 3D wear was 0.2 (0.026 to 0.36) mm. Without creep, proximal head penetration was 0.02 (–0.026 to 0.066) mm and for 3D penetration was 0.016 (–0.47 to 0.08) mm. This represents an annual proximal wear of less than 2 µm. All cups were clinically and radiographically stable but showed a tendency of increased rotation after 5 years. Interpretation Wear for annealed highly crosslinked PE is extremely low up to 10 years. Free radicals do not affect mechanical performance or lead to clinically adverse effects. Creep stops after the first 6 months after implantation. Highly crosslinked PE is a true competitor of hard-on-hard bearings. PMID:22248172

  14. Friedel–Crafts Crosslinked Highly Sulfonated Polyether Ether Ketone (SPEEK) Membranes for a Vanadium/Air Redox Flow Battery

    PubMed Central

    Merle, Géraldine; Ioana, Filipoi Carmen; Demco, Dan Eugen; Saakes, Michel; Hosseiny, Seyed Schwan

    2014-01-01

    Highly conductive and low vanadium permeable crosslinked sulfonated poly(ether ether ketone) (cSPEEK) membranes were prepared by electrophilic aromatic substitution for a Vanadium/Air Redox Flow Battery (Vanadium/Air-RFB) application. Membranes were synthesized from ethanol solution and crosslinked under different temperatures with 1,4-benzenedimethanol and ZnCl2 via the Friedel–Crafts crosslinking route. The crosslinking mechanism under different temperatures indicated two crosslinking pathways: (a) crosslinking on the sulfonic acid groups; and (b) crosslinking on the backbone. It was observed that membranes crosslinked at a temperature of 150 °C lead to low proton conductive membranes, whereas an increase in crosslinking temperature and time would lead to high proton conductive membranes. High temperature crosslinking also resulted in an increase in anisotropy and water diffusion. Furthermore, the membranes were investigated for a Vanadium/Air Redox Flow Battery application. Membranes crosslinked at 200 °C for 30 min with a molar ratio between 2:1 (mol repeat unit:mol benzenedimethanol) showed a proton conductivity of 27.9 mS/cm and a 100 times lower VO2+ crossover compared to Nafion. PMID:24957118

  15. A highly reversible room-temperature lithium metal battery based on crosslinked hairy nanoparticles.

    PubMed

    Choudhury, Snehashis; Mangal, Rahul; Agrawal, Akanksha; Archer, Lynden A

    2015-01-01

    Rough electrodeposition, uncontrolled parasitic side-reactions with electrolytes and dendrite-induced short-circuits have hindered development of advanced energy storage technologies based on metallic lithium, sodium and aluminium electrodes. Solid polymer electrolytes and nanoparticle-polymer composites have shown promise as candidates to suppress lithium dendrite growth, but the challenge of simultaneously maintaining high mechanical strength and high ionic conductivity at room temperature has so far been unmet in these materials. Here we report a facile and scalable method of fabricating tough, freestanding membranes that combine the best attributes of solid polymers, nanocomposites and gel-polymer electrolytes. Hairy nanoparticles are employed as multifunctional nodes for polymer crosslinking, which produces mechanically robust membranes that are exceptionally effective in inhibiting dendrite growth in a lithium metal battery. The membranes are also reported to enable stable cycling of lithium batteries paired with conventional intercalating cathodes. Our findings appear to provide an important step towards room-temperature dendrite-free batteries. PMID:26634644

  16. A highly reversible room-temperature lithium metal battery based on crosslinked hairy nanoparticles

    PubMed Central

    Choudhury, Snehashis; Mangal, Rahul; Agrawal, Akanksha; Archer, Lynden A.

    2015-01-01

    Rough electrodeposition, uncontrolled parasitic side-reactions with electrolytes and dendrite-induced short-circuits have hindered development of advanced energy storage technologies based on metallic lithium, sodium and aluminium electrodes. Solid polymer electrolytes and nanoparticle-polymer composites have shown promise as candidates to suppress lithium dendrite growth, but the challenge of simultaneously maintaining high mechanical strength and high ionic conductivity at room temperature has so far been unmet in these materials. Here we report a facile and scalable method of fabricating tough, freestanding membranes that combine the best attributes of solid polymers, nanocomposites and gel-polymer electrolytes. Hairy nanoparticles are employed as multifunctional nodes for polymer crosslinking, which produces mechanically robust membranes that are exceptionally effective in inhibiting dendrite growth in a lithium metal battery. The membranes are also reported to enable stable cycling of lithium batteries paired with conventional intercalating cathodes. Our findings appear to provide an important step towards room-temperature dendrite-free batteries. PMID:26634644

  17. Durability of highly cross-linked polyethylene in total hip and total knee arthroplasty.

    PubMed

    Dion, Neil T; Bragdon, Charles; Muratoglu, Orhun; Freiberg, Andrew A

    2015-07-01

    This article reviews the history of the development of highly cross-linked polyethylene and provides an in-depth review of the clinical results regarding the durability of highly cross-linked polyethylene (HXLPE) used in total hip arthroplasty (THA) and total knee arthroplasty (TKA). The use of polyethylene as a bearing surface has contributed to the success of THA and TKA; however, polyethylene wear and osteolysis can lead to failure. Ongoing clinical and retrieval studies are required to analyze outcomes at longer-term follow-up. PMID:26043046

  18. Vitamin E-diffused highly cross-linked UHMWPE particles induce less osteolysis compared to highly cross-linked virgin UHMWPE particles in vivo.

    PubMed

    Bichara, David A; Malchau, Erik; Sillesen, Nanna H; Cakmak, Selami; Nielsen, G Petur; Muratoglu, Orhun K

    2014-09-01

    Recent in vitro findings suggest that UHMWPE wear particles containing vitamin E (VE) may have reduced biologic activity and decreased osteolytic potential. We hypothesized that particles from VE-stabilized, radiation cross-linked UHMWPE would cause less osteolysis in a murine calvarial bone model when compared to virgin gamma irradiated cross-linked UHMWPE. Groups received equal amount of particulate debris overlaying the calvarium for 10 days. Calvarial bone was examined using high resolution micro-CT and histomorphometric analyses. There was a statistically significant difference between virgin (12.2%±8%) and VE-UHMWPE (3%±1.4%) groups in regards to bone resorption (P=0.005) and inflammatory fibrous tissue overlaying the calvaria (0.48 vs. 0.20, P<0.0001). These results suggest that VE-UHMWPE particles have reduced osteolytic potential in vivo when compared to virgin UHMWPE. PMID:24998319

  19. Tensile and tribological properties of high-crystallinity radiation crosslinked UHMWPE

    SciTech Connect

    Bistolfi, Alessandro; Turell, Mary Beth; Lee, Ying-Lung; Bellare, Anuj

    2009-09-02

    Osteolysis due to particulate wear debris associated with ultrahigh molecular weight polyethylene (UHMWPE) components of total joint replacement prostheses has been a major factor determining their in vivo lifetime. In recent years, radiation crosslinking has been employed to decrease wear rates in PE components, especially in acetabular cups of total hip replacement prostheses. A drawback of radiation crosslinking is that it leads to a crosslinked PE (or XPE) with lower mechanical properties compared with uncrosslinked PE. In contrast, high-crystallinity PEs are known to have several mechanical properties higher than conventional PE. In this study, we hypothesized that increasing the crystallinity of radiation crosslinked and remelted XPE would result in an increase in tensile properties without compromising wear resistance. High-pressure crystallization was performed on PE and XPE and analyzed for the resulting morphological alterations using differential scanning calorimeter, low voltage scanning electron microscopy, and ultrasmall angle X-ray scattering. Uniaxial tensile tests showed that high-pressure crystallization increased the tensile modulus and yield stress in both PE and XPE, decreased the ultimate strain and ultimate stress in PE but had no significant effect on ultimate strain or ultimate stress in XPE. Multidirectional wear tests demonstrated that high-pressure crystallization decreased the wear resistance of PE but had no effect on the wear resistance of XPE. In conclusion, this study shows that high-pressure crystallization can be effectively used to increase the crystallinity and modulus of XPE without compromising its superior wear resistance compared with PE.

  20. Comparison between decrosslinking of crosslinked high and low density polyethylenes via ultrasonically aided extrusion

    NASA Astrophysics Data System (ADS)

    Isayev, Avraam I.; Huang, Keyuan

    2016-03-01

    Among various crosslinked plastics, recycling of crosslinked polyethylenes is of a great importance due to the presence of a three-dimensional network. To solve this problem, novel environmentally friendly technologies for decrosslinking of the crosslinked polymers are developed based on ultrasonically assisted single (SSE) and twin screw (TSE) extruders. In particular, decrosslinking of peroxide crosslinked high-density polyethylene (XHDPE) and low-density polyethylene (XLDPE) by means of an ultrasonic SSE and TSE is investigated. Barrel pressure, die pressure and ultrasonic power consumption during extrusion are recorded. Swelling, rheological, thermal analysis and tensile tests are used to elucidate the structure-property relationships of decrosslinked XHDPE and XLDPE. The frequency dependencies of the storage and loss moduli, complex viscosity and tangent loss of XHDPE, XLDPE and their decrosslinked networks are described by the post critical gel model with its parameters correlated with gel fraction and crosslink density. The dynamic, thermal and tensile properties of the decrosslinked XHDPE and XLDPE are greatly affected by the type of preferential bond breakage. It was found that the decrosslinking of XLDPE is more difficult than that of XHDPE. An analysis based on the Horikx function reveals a highly preferential breakage of crosslinks during decrosslinking of XHDPE. In contrast to decrosslinking of XHDPE, the presence of long-chain branching in XLDPE is found to lead to the breakage of its main chains during decrosslinking. An improvement and a reduction in mechanical properties of decrosslinked XHDPE and XLDPE are, respectively, observed in comparison with those of virgin XHDPE and XLDPE.

  1. Reversibly cross-linked polyplexes enable cancer-targeted gene delivery via self-promoted DNA release and self-diminished toxicity.

    PubMed

    He, Hua; Bai, Yugang; Wang, Jinhui; Deng, Qiurong; Zhu, Lipeng; Meng, Fenghua; Zhong, Zhiyuan; Yin, Lichen

    2015-04-13

    Polycations often suffer from the irreconcilable inconsistency between transfection efficiency and toxicity. Polymers with high molecular weight (MW) and cationic charge feature potent gene delivery capabilities, while in the meantime suffer from strong chemotoxicity, restricted intracellular DNA release, and low stability in vivo. To address these critical challenges, we herein developed pH-responsive, reversibly cross-linked, polyetheleneimine (PEI)-based polyplexes coated with hyaluronic acid (HA) for the effective and targeted gene delivery to cancer cells. Low-MW PEI was cross-linked with the ketal-containing linker, and the obtained high-MW analogue afforded potent gene delivery capabilities during transfection, while rapidly degraded into low-MW segments upon acid treatment in the endosomes, which promoted intracellular DNA release and reduced material toxicity. HA coating of the polyplexes shielded the surface positive charges to enhance their stability under physiological condition and simultaneously reduced the toxicity. Additionally, HA coating allowed active targeting to cancer cells to potentiate the transfection efficiencies in cancer cells in vitro and in vivo. This study therefore provides an effective approach to overcome the efficiency-toxicity inconsistence of nonviral vectors, which contributes insights into the design strategy of effective and safe vectors for cancer gene therapy. PMID:25756930

  2. Cross-linked high amylose starch derivatives as matrices for controlled release of high drug loadings.

    PubMed

    Mulhbacher, J; Ispas-Szabo, P; Lenaerts, V; Mateescu, M A

    2001-09-11

    Selection of hydrogels as excipients in controlled drug release systems depends on the characteristics of the gel and of the drug. Three types of derivatives were synthesized from cross-linked high amylose starch (HASCL-6) by substitution of hydroxylic groups with cationic (carboxymethyl: CM), anionic (aminoethyl: AE) and acetate (Ac) groups. These new polymeric excipients are able to control the release over 20 h from monolithic tablets loaded with 20 to 60% drug. Three drugs were used as model tracer: acetaminophen (uncharged), acetylsalicylic acid (having an acidic group) and metformin (having a basic group). It was found that the release of ionic drugs from CM-HASCL-6 and AE-HASCL-6 matrices can be partially controlled by ionic interaction between pendant groups of polymer and drugs. The substitution degree of HASCL-6 derivatives can also be varied to modulate the drug's release time. These derivatives represent a novel generation of pharmaceutical excipients, recommended for high loading dosage formulations. PMID:11532312

  3. THE EFFECTS OF HIGH DOSE IRRADIATION ON THE CROSS-LINKING OF VITAMIN E-BLENDED ULTRAHIGH MOLECULAR WEIGHT POLYETHYLENE

    PubMed Central

    Oral, Ebru; Beckos, Christine Godleski; Malhi, Arnaz S.; Muratoglu, Orhun K.

    2008-01-01

    Vitamin E-stabilized, highly cross-linked ultrahigh molecular weight polyethylene (UHMWPE) is a promising oxidation and wear resistant UHMWPE with improved mechanical strength in comparison with the first generation, irradiated and melted UHMWPE. One approach of incorporating vitamin E in UHMWPE is through blending of vitamin E in UHMWPE powder followed by consolidation and radiation crosslinking. However radiation crosslinking efficiency of UHMWPE decreases in the presence of vitamin E. Therefore an optimum vitamin E concentration and radiation dose level needs to be determined to achieve a cross-link density comparable to 100-kGy irradiated and melted UHMWPE, which has shown excellent wear properties in vivo. We investigated the cross-link density and mechanical properties of vitamin E-blended UHMWPEs as a function of vitamin E concentration in the blend and gamma irradiation doses up to 200 kGy. We found that 0.3 wt% vitamin E-blended UHMWPE could not be cross-linked above a cross-link density achieved at a radiation dose of 65 kGy for virgin UHMWPE and 1.0 wt% vitamin E-blended UHMWPE could not be cross-linked above a cross-link density achieved at a radiation dose of 25 kGy for virgin UHMWPE even when the former were irradiated to a radiation dose of 200 kGy. In addition, higher plasticity at vitamin E concentrations at and above 0.3 wt% indicated that increased chain scissioning may be prevalent. Since the wear resistance of this irradiated UHMWPE would be expected to be low, vitamin E concentrations equal to or above 0.3 wt% are not recommended for subsequent irradiation to achieve a wear resistant cross-linked UHMWPE. The long–term oxidative stability of irradiated blends with low vitamin E concentrations has yet to be studied to determine an optimum between cross-link density and long-term oxidative stability. PMID:18514813

  4. Enablement, Constraint, and "The 7 Habits of Highly Effective People."

    ERIC Educational Resources Information Center

    Carlone, David

    2001-01-01

    Uses interviews to examine how the self-help book "The 7 Habits of Highly Effective People" shapes the identity of organization members who read and use the book. Suggests that such people are simultaneously enabled and constrained as they confront tensions between individualism and community, competition and cooperation, and domination and…

  5. Borate cross-linked graphene oxide-chitosan as robust and high gas barrier films

    NASA Astrophysics Data System (ADS)

    Yan, Ning; Capezzuto, Filomena; Lavorgna, Marino; Buonocore, Giovanna G.; Tescione, Fabiana; Xia, Hesheng; Ambrosio, Luigi

    2016-05-01

    Chitosan (CS) is one of the most promising polymers due to its biocompatibility, biodegradability, and natural abundance. However, its poor mechanical and barrier properties make it difficult to satisfy a wide range of applications. Herein, borate ions, originating from the hydrolysis of sodium tetraborate decahydrate (borax), have been used to crosslink chitosan and graphene oxide (GO) nanocomposites. Chitosan films consisting of 1.0 wt% boron and 1.0 wt% GO exhibit a significant improvement in both the toughness and oxygen barrier properties compared to pristine chitosan. In particular the tensile strength of the samples after thermal treatment increases by ~160% compared to pristine chitosan, whereas their oxygen permeability reduces by ~90%. This is ascribed to the chemical crosslinking between chitosan and GO nanoplatelets through borate ions, as well as the formation of a layered morphology with graphene nanoplatelets oriented parallel to the sample surface. The exceptional robust and high gas barrier film has promising application in the packaging industry. The borate-crosslinking chemistry represents the potential strategy for improving properties of other polymer nanocomposites.Chitosan (CS) is one of the most promising polymers due to its biocompatibility, biodegradability, and natural abundance. However, its poor mechanical and barrier properties make it difficult to satisfy a wide range of applications. Herein, borate ions, originating from the hydrolysis of sodium tetraborate decahydrate (borax), have been used to crosslink chitosan and graphene oxide (GO) nanocomposites. Chitosan films consisting of 1.0 wt% boron and 1.0 wt% GO exhibit a significant improvement in both the toughness and oxygen barrier properties compared to pristine chitosan. In particular the tensile strength of the samples after thermal treatment increases by ~160% compared to pristine chitosan, whereas their oxygen permeability reduces by ~90%. This is ascribed to the chemical

  6. Highly efficient and stable inverted polymer solar cells integrated with a cross-linked fullerene material as an interlayer.

    PubMed

    Hsieh, Chao-Hsiang; Cheng, Yen-Ju; Li, Pei-Jung; Chen, Chiu-Hsiang; Dubosc, Martin; Liang, Ru-Meng; Hsu, Chain-Shu

    2010-04-01

    A novel PCBM-based n-type material, [6,6]-phenyl-C(61)-butyric styryl dendron ester (PCBSD), functionalized with a dendron containing two styryl groups as thermal cross-linkers, has been rationally designed and easily synthesized. In situ cross-linking of PCBSD was carried out by heating at a low temperature of 160 degrees C for 30 min to generate a robust, adhesive, and solvent-resistant thin film. This cross-linked network enables a sequential active layer to be successfully deposited on top of this interlayer to overcome the problem of interfacial erosion and realize a multilayer inverted device by all-solution processing. An inverted solar cell device based on an ITO/ZnO/C-PCBSD/P3HT:PCBM/PEDOT:PSS/Ag configuration not only achieves enhanced device characteristics, with an impressive PCE of 4.4%, but also exhibits an exceptional device lifetime without encapsulation; it greatly outperforms a reference device (PCE = 3.5%) based on an ITO/ZnO/P3HT:PCBM/PEDOT:PSS/Ag configuration without the interlayer. This C-PCBSD interlayer exerts multiple positive effects on both P3HT/C-PCBSD and PCBM/C-PCBSD localized heterojunctions at the interface of the active layer, including improved exciton dissociation efficiency, reduced charge recombination, decreased interface contact resistance, and induction of vertical phase separation to reduce the bulk resistance of the active layer as well as passivation of the local shunts at the ZnO interface. Moreover, this promising approach can be applied to another inverted solar cell, ITO/ZnO/C-PCBSD/PCPDTBT:PC(71)BM/PEDOT:PSS/Ag, using PCPDTBT as the p-type low-band-gap conjugated polymer to achieve an improved PCE of 3.4%. Incorporation of this cross-linked C(60) interlayer could become a standard procedure in the fabrication of highly efficient and stable multilayer inverted solar cells. PMID:20222734

  7. Using high-performance networks to enable computational aerosciences applications

    NASA Technical Reports Server (NTRS)

    Johnson, Marjory J.

    1992-01-01

    One component of the U.S. Federal High Performance Computing and Communications Program (HPCCP) is the establishment of a gigabit network to provide a communications infrastructure for researchers across the nation. This gigabit network will provide new services and capabilities, in addition to increased bandwidth, to enable future applications. An understanding of these applications is necessary to guide the development of the gigabit network and other high-performance networks of the future. In this paper we focus on computational aerosciences applications run remotely using the Numerical Aerodynamic Simulation (NAS) facility located at NASA Ames Research Center. We characterize these applications in terms of network-related parameters and relate user experiences that reveal limitations imposed by the current wide-area networking infrastructure. Then we investigate how the development of a nationwide gigabit network would enable users of the NAS facility to work in new, more productive ways.

  8. Liquid immersion thermal crosslinking of 3D polymer nanopatterns for direct carbonisation with high structural integrity.

    PubMed

    Kang, Da-Young; Kim, Cheolho; Park, Gyurim; Moon, Jun Hyuk

    2015-01-01

    The direct pyrolytic carbonisation of polymer patterns has attracted interest for its use in obtaining carbon materials. In the case of carbonisation of nanopatterned polymers, the polymer flow and subsequent pattern change may occur in order to relieve their high surface energies. Here, we demonstrated that liquid immersion thermal crosslinking of polymer nanopatterns effectively enhanced the thermal resistance and maintained the structure integrity during the heat treatment. We employed the liquid immersion thermal crosslinking for 3D porous SU8 photoresist nanopatterns and successfully converted them to carbon nanopatterns while maintaining their porous features. The thermal crosslinking reaction and carbonisation of SU8 nanopatterns were characterised. The micro-crystallinity of the SU8-derived carbon nanopatterns was also characterised. The liquid immersion heat treatment can be extended to the carbonisation of various polymer or photoresist nanopatterns and also provide a facile way to control the surface energy of polymer nanopatterns for various purposes, for example, to block copolymer or surfactant self-assemblies. PMID:26677949

  9. Crosslinked polymeric ionic liquids as solid-phase microextraction sorbent coatings for high performance liquid chromatography.

    PubMed

    Yu, Honglian; Merib, Josias; Anderson, Jared L

    2016-03-18

    Neat crosslinked polymeric ionic liquid (PIL) sorbent coatings for solid-phase microextraction (SPME) compatible with high-performance liquid chromatography (HPLC) are reported for the first time. Six structurally different PILs were crosslinked to nitinol supports and applied for the determination of select pharmaceutical drugs, phenolics, and insecticides. Sampling conditions including sample solution pH, extraction time, desorption solvent, desorption time, and desorption solvent volume were optimized using design of experiment (DOE). The developed PIL sorbent coatings were stable when performing extractions under acidic pH and remained intact in various organic desorption solvents (i.e., methanol, acetonitrile, acetone). The PIL-based sorbent coating polymerized from the IL monomer 1-vinyl-3-(10-hydroxydecyl) imidazolium chloride [VC10OHIM][Cl] and IL crosslinker 1,12-di(3-vinylbenzylimidazolium) dodecane dichloride [(VBIM)2C12] 2[Cl] exhibited superior extraction performance compared to the other studied PILs. The extraction efficiency of pharmaceutical drugs and phenolics increased when the film thickness of the PIL-based sorbent coating was increased while many insecticides were largely unaffected. Satisfactory analytical performance was obtained with limits of detection (LODs) ranging from 0.2 to 2 μg L(-1) for the target analytes. The accuracy of the analytical method was examined by studying the relative recovery of analytes in real water samples, including tap water and lake water, with recoveries varying from 50.2% to 115.9% and from 48.8% to 116.6%, respectively. PMID:26896916

  10. Liquid immersion thermal crosslinking of 3D polymer nanopatterns for direct carbonisation with high structural integrity

    NASA Astrophysics Data System (ADS)

    Kang, Da-Young; Kim, Cheolho; Park, Gyurim; Moon, Jun Hyuk

    2015-12-01

    The direct pyrolytic carbonisation of polymer patterns has attracted interest for its use in obtaining carbon materials. In the case of carbonisation of nanopatterned polymers, the polymer flow and subsequent pattern change may occur in order to relieve their high surface energies. Here, we demonstrated that liquid immersion thermal crosslinking of polymer nanopatterns effectively enhanced the thermal resistance and maintained the structure integrity during the heat treatment. We employed the liquid immersion thermal crosslinking for 3D porous SU8 photoresist nanopatterns and successfully converted them to carbon nanopatterns while maintaining their porous features. The thermal crosslinking reaction and carbonisation of SU8 nanopatterns were characterised. The micro-crystallinity of the SU8-derived carbon nanopatterns was also characterised. The liquid immersion heat treatment can be extended to the carbonisation of various polymer or photoresist nanopatterns and also provide a facile way to control the surface energy of polymer nanopatterns for various purposes, for example, to block copolymer or surfactant self-assemblies.

  11. Novel active stabilization technology in highly crosslinked UHMWPEs for superior stability

    NASA Astrophysics Data System (ADS)

    Oral, Ebru; Neils, Andrew L.; Wannomae, Keith K.; Muratoglu, Orhun K.

    2014-12-01

    Radiation cross-linked ultrahigh molecular weight polyethylene (UHMWPE) is the bearing of choice in joint arthroplasty. The demands on the longevity of this polymer are likely to increase with the recently advancing deterioration of the performance of alternative metal-on-metal implants. Vitamin E-stabilized, cross-linked UHMWPEs are considered the next generation of improved UHMWPE bearing surfaces for improving the oxidation resistance of the polymer. It was recently discovered that in the absence of radiation-induced free radicals, lipids absorbed into UHMWPE from the synovial fluid can initiate oxidation and result in new free radical-mediated oxidation mechanisms. In the presence of radiation-induced free radicals, it is possible for the polymer to oxidize through both existing free radicals at the time of implantation and through newly formed free radicals in vivo. Thus, we showed that reducing the radiation-induced free radicals in vitamin E-stabilized UHMWPE would increase its oxidative stability and presumably lead to improved longevity. We describe mechanical annealing and warm irradiation of irradiated vitamin E blends as novel methods to eliminate 99% of radiation-induced free radicals without sacrificing crystallinity. These are significant improvements in the processing of highly cross-linked UHMWPE for joint implants with improved longevity.

  12. Liquid immersion thermal crosslinking of 3D polymer nanopatterns for direct carbonisation with high structural integrity

    PubMed Central

    Kang, Da-Young; Kim, Cheolho; Park, Gyurim; Moon, Jun Hyuk

    2015-01-01

    The direct pyrolytic carbonisation of polymer patterns has attracted interest for its use in obtaining carbon materials. In the case of carbonisation of nanopatterned polymers, the polymer flow and subsequent pattern change may occur in order to relieve their high surface energies. Here, we demonstrated that liquid immersion thermal crosslinking of polymer nanopatterns effectively enhanced the thermal resistance and maintained the structure integrity during the heat treatment. We employed the liquid immersion thermal crosslinking for 3D porous SU8 photoresist nanopatterns and successfully converted them to carbon nanopatterns while maintaining their porous features. The thermal crosslinking reaction and carbonisation of SU8 nanopatterns were characterised. The micro-crystallinity of the SU8-derived carbon nanopatterns was also characterised. The liquid immersion heat treatment can be extended to the carbonisation of various polymer or photoresist nanopatterns and also provide a facile way to control the surface energy of polymer nanopatterns for various purposes, for example, to block copolymer or surfactant self-assemblies. PMID:26677949

  13. Borate cross-linked graphene oxide-chitosan as robust and high gas barrier films.

    PubMed

    Yan, Ning; Capezzuto, Filomena; Lavorgna, Marino; Buonocore, Giovanna G; Tescione, Fabiana; Xia, Hesheng; Ambrosio, Luigi

    2016-05-19

    Chitosan (CS) is one of the most promising polymers due to its biocompatibility, biodegradability, and natural abundance. However, its poor mechanical and barrier properties make it difficult to satisfy a wide range of applications. Herein, borate ions, originating from the hydrolysis of sodium tetraborate decahydrate (borax), have been used to crosslink chitosan and graphene oxide (GO) nanocomposites. Chitosan films consisting of 1.0 wt% boron and 1.0 wt% GO exhibit a significant improvement in both the toughness and oxygen barrier properties compared to pristine chitosan. In particular the tensile strength of the samples after thermal treatment increases by ∼160% compared to pristine chitosan, whereas their oxygen permeability reduces by ∼90%. This is ascribed to the chemical crosslinking between chitosan and GO nanoplatelets through borate ions, as well as the formation of a layered morphology with graphene nanoplatelets oriented parallel to the sample surface. The exceptional robust and high gas barrier film has promising application in the packaging industry. The borate-crosslinking chemistry represents the potential strategy for improving properties of other polymer nanocomposites. PMID:27168418

  14. High growth speed of gallium nitride using ENABLE-MBE

    NASA Astrophysics Data System (ADS)

    Williams, J. J.; Fischer, A. M.; Williamson, T. L.; Gangam, S.; Faleev, N. N.; Hoffbauer, M. A.; Honsberg, C. B.

    2015-09-01

    Films of gallium nitride were grown at varying growth speeds, while all other major variables were held constant. Films grown determine the material impact of the high flux capabilities of the unique nitrogen plasma source ENABLE. Growth rates ranged from 13 to near 60 nm/min. X-ray ω scans of GaN (0002) have FWHM in all samples less than 300 arc sec. Cathodoluminescence shows radiative recombination for all samples at the band edge. In general material quality overall is high with slight degradation as growth speeds increase to higher rates.

  15. Refined AFC-Enabled High-Lift System Integration Study

    NASA Technical Reports Server (NTRS)

    Hartwich, Peter M.; Shmilovich, Arvin; Lacy, Douglas S.; Dickey, Eric D.; Scalafani, Anthony J.; Sundaram, P.; Yadlin, Yoram

    2016-01-01

    A prior trade study established the effectiveness of using Active Flow Control (AFC) for reducing the mechanical complexities associated with a modern high-lift system without sacrificing aerodynamic performance at low-speed flight conditions representative of takeoff and landing. The current technical report expands on this prior work in two ways: (1) a refined conventional high-lift system based on the NASA Common Research Model (CRM) is presented that is more representative of modern commercial transport aircraft in terms of stall characteristics and maximum Lift/Drag (L/D) ratios at takeoff and landing-approach flight conditions; and (2) the design trade space for AFC-enabled high-lift systems is expanded to explore a wider range of options for improving their efficiency. The refined conventional high-lift CRM (HL-CRM) concept features leading edge slats and slotted trailing edge flaps with Fowler motion. For the current AFC-enhanced high lift system trade study, the refined conventional high-lift system is simplified by substituting simply-hinged trailing edge flaps for the slotted single-element flaps with Fowler motion. The high-lift performance of these two high-lift CRM variants is established using Computational Fluid Dynamics (CFD) solutions to the Reynolds-Averaged Navier-Stokes (RANS) equations. These CFD assessments identify the high-lift performance that needs to be recovered through AFC to have the CRM variant with the lighter and mechanically simpler high-lift system match the performance of the conventional high-lift system. In parallel to the conventional high-lift concept development, parametric studies using CFD guided the development of an effective and efficient AFC-enabled simplified high-lift system. This included parametric trailing edge flap geometry studies addressing the effects of flap chord length and flap deflection. As for the AFC implementation, scaling effects (i.e., wind-tunnel versus full-scale flight conditions) are addressed

  16. A novel crosslinking strategy for preparing poly(vinyl alcohol)-based proton-conducting membranes with high sulfonation

    NASA Astrophysics Data System (ADS)

    Tsai, Chun-En; Lin, Chi-Wen; Hwang, Bing-Joe

    This study synthesizes poly(vinyl alcohol) (PVA)-based polymer electrolyte membranes by a two-step crosslinking process involving esterization and acetal ring formation reactions. This work also uses sulfosuccinic acid (SSA) as the first crosslinking agent to form an inter-crosslinked structure and a promoting sulfonating agent. Glutaraldehyde (GA) as the second crosslinking agent, reacts with the spare OH group of PVA and forms, not only a dense structure at the outer membrane surface, but also a hydrophobic protective layer. Compared with membranes prepared by a traditional one-step crosslinking process, membranes prepared by the two-step crosslinking process exhibit excellent dissolution resistance in water. The membranes become water-insoluble even at a molar ratio of SO 3H/PVA-OH as high as 0.45. Moreover, the synthesized membranes also exhibit high proton conductivities and high methanol permeability resistance. The current study measures highest proton conductivity of 5.3 × 10 -2 S cm -1 at room temperature from one of the synthesized membranes, higher than that of the Nafion ® membrane. Methanol permeability of the synthesized membranes measures about 1 × 10 -7 cm 2 S -1, about one order of magnitude lower than that of the Nafion ® membrane.

  17. The sensitive and selective adsorption of aromatic compounds with highly crosslinked polymer nanoparticles.

    PubMed

    Liu, Shuqin; Chen, Darui; Zheng, Juan; Zeng, Lewei; Jiang, Jijun; Jiang, Ruifeng; Zhu, Fang; Shen, Yong; Wu, Dingcai; Ouyang, Gangfeng

    2015-10-28

    This study presents the preparation and characterization of a nanoscale Davankov-type hyper-crosslinked-polymer (HCP) as an adsorbent of benzene-ring-containing dyes and organic pollutants. HCP nanoparticles post-crosslinked from a poly(DVB-co-VBC) precursor were synthesized in this study, possessing ultrahigh surface area, hydrophobicity and stability. The as-synthesized Davankov-type HCP exhibited a rapid and selective adsorption ability towards the benzene-ring-containing dyes due to its highly conjugated structure. Besides, for the first time, the prepared HCP nanoparticles were adopted for the adsorption of nonpolar organic pollutants by means of solid-phase microextraction (SPME). Owing to its high hydrophobicity, diverse pore size distribution and highly conjugated structure, a 10 μm HCP coating exhibited excellent adsorption abilities towards benzene-ring-containing polycyclic aromatic hydrocarbons (PAHs) and benzene series compounds (benzene, toluene, ethylbenzene and o-xylene; abbreviated to BTEX) and to highly hydrophobic long-chain n-alkanes. Finally, the HCP-nanoparticles-coated SPME fiber was applied to the simultaneous analysis of five PAHs in environmental water samples and satisfactory recoveries were achieved. The findings could provide a new benchmark for the exploitation of superb HCPs as effective adsorbents for SPME or other adsorption applications. PMID:26416568

  18. Does cyclic stress and accelerated ageing influence the wear behavior of highly crosslinked polyethylene?

    PubMed

    Affatato, Saverio; De Mattia, Jonathan Salvatore; Bracco, Pierangiola; Pavoni, Eleonora; Taddei, Paola

    2016-06-01

    First-generation (irradiated and remelted or annealed) and second-generation (irradiated and vitamin E blended or doped) highly crosslinked polyethylenes were introduced in the last decade to solve the problems of wear and osteolysis. In this study, the influence of the Vitamin-E addition on crosslinked polyethylene (XLPE_VE) was evaluated by comparing the in vitro wear behavior of crosslinked polyethylene (XLPE) versus Vitamin-E blended polyethylene XLPE and conventional ultra-high molecular weight polyethylene (STD_PE) acetabular cups, after accelerated ageing according to ASTM F2003-02 (70.0±0.1°C, pure oxygen at 5bar for 14 days). The test was performed using a hip joint simulator run for two millions cycles, under bovine calf serum as lubricant. Mass loss was found to decrease along the series XLPE_VE>STD_PE>XLPE, although no statistically significant differences were found between the mass losses of the three sets of cups. Micro-Raman spectroscopy was used to investigate at a molecular level the morphology changes induced by wear. The spectroscopic analyses showed that the accelerated ageing determined different wear mechanisms and molecular rearrangements during testing with regards to the changes in both the chain orientation and the distribution of the all-trans sequences within the orthorhombic, amorphous and third phases. The results of the present study showed that the addition of vitamin E was not effective to improve the gravimetric wear of PE after accelerated ageing. However, from a molecular point of view, the XLPE_VE acetabular cups tested after accelerated ageing appeared definitely less damaged than the STD_PE ones and comparable to XLPE samples. PMID:26970299

  19. AFC-Enabled Simplified High-Lift System Integration Study

    NASA Technical Reports Server (NTRS)

    Hartwich, Peter M.; Dickey, Eric D.; Sclafani, Anthony J.; Camacho, Peter; Gonzales, Antonio B.; Lawson, Edward L.; Mairs, Ron Y.; Shmilovich, Arvin

    2014-01-01

    The primary objective of this trade study report is to explore the potential of using Active Flow Control (AFC) for achieving lighter and mechanically simpler high-lift systems for transonic commercial transport aircraft. This assessment was conducted in four steps. First, based on the Common Research Model (CRM) outer mold line (OML) definition, two high-lift concepts were developed. One concept, representative of current production-type commercial transonic transports, features leading edge slats and slotted trailing edge flaps with Fowler motion. The other CRM-based design relies on drooped leading edges and simply hinged trailing edge flaps for high-lift generation. The relative high-lift performance of these two high-lift CRM variants is established using Computational Fluid Dynamics (CFD) solutions to the Reynolds-Averaged Navier-Stokes (RANS) equations for steady flow. These CFD assessments identify the high-lift performance that needs to be recovered through AFC to have the CRM variant with the lighter and mechanically simpler high-lift system match the performance of the conventional high-lift system. Conceptual design integration studies for the AFC-enhanced high-lift systems were conducted with a NASA Environmentally Responsible Aircraft (ERA) reference configuration, the so-called ERA-0003 concept. These design trades identify AFC performance targets that need to be met to produce economically feasible ERA-0003-like concepts with lighter and mechanically simpler high-lift designs that match the performance of conventional high-lift systems. Finally, technical challenges are identified associated with the application of AFC-enabled highlift systems to modern transonic commercial transports for future technology maturation efforts.

  20. Study the adsorption of sulfates by high cross-linked polystyrene divinylbenzene anion-exchange resin

    NASA Astrophysics Data System (ADS)

    Fathy, Mahmoud; Moghny, Th. Abdel; Awadallah, Ahmed E.; El-Bellihi, Abdel-Hameed A.-A.

    2014-11-01

    In response to rising concerns about the effect of sulfate on water quality, human health, and agriculture, many jurisdictions around the world are imposing tighter regulations for sulfate discharge. This is driving the need for environmental compliance in industries like mining, metal processing, pulp and paper, sewage treatment, and chemical manufacturing. The sulfate removal from synthetic water by high cross-linked polystyrene divinylbenzene resin was studied at batch experiments in this study. The effect of pH, contact time, sulfates concentration, and adsorbent dose on the sulfate sequestration was investigated. The optimum conditions were studied on Saline water as a case study. The results showed that with increasing of the absorbent amount; contact time, and pH improve the efficiency of sulfate removal. The maximum sulfates uptake was obtained in pH and contact time 3.0 and 120 min, respectively. Also, with increasing initial concentration of sulfates in water, the efficiency of sulfate removal decreased. The obtained results in this study were matched with Freundlich isotherm and pseudo-second-order kinetic. The maximum adsorption capacity (Qm) and constant rate were found 0.318 (mg/g) and 0.21 (mg/g.min), respectively. This study also showed that in the optimum conditions, the sulfate removal efficiency from Saline water by 0.1 mg/L sulfates was 65.64 %. Eventually, high cross-linked polystyrene divinylbenzene resin is recommended as a suitable and low cost absorbent to sulfate removal from aqueous solutions.

  1. Construction of monomer-free, highly crosslinked, water-compatible polymers.

    PubMed

    Dailing, E A; Lewis, S H; Barros, M D; Stansbury, J W

    2014-12-01

    Polymeric dental adhesives require the formation of densely crosslinked network structures to best ensure mechanical strength and durability in clinical service. Monomeric precursors to these materials typically consist of mixtures of hydrophilic and hydrophobic components that potentially undergo phase separation in the presence of low concentrations of water, which is detrimental to material performance and has motivated significant investigation into formulations that reduce this effect. We have investigated an approach to network formation based on nanogels that are dispersed in inert solvent and directly polymerized into crosslinked polymers. Monomers of various hydrophilic or hydrophobic characteristics were copolymerized into particulate nanogels bearing internal and external polymerizable functionality. Nanogel dispersions were stable at high concentrations in acetone or, with some exceptions, in water and produced networks with a wide range of mechanical properties. Networks formed rapidly upon light activation and reached high conversion with extremely low volumetric shrinkage. Prepolymerizing monomers into reactive nanostructures significantly changes how hydrophobic materials respond to water compared with networks obtained from polymerizations involving free monomer. The modulus of fully hydrated networks formed solely from nanogels was shown to equal or exceed the modulus in the dry state for networks based on nanogels containing a hydrophobic dimethacrylate and hydrophilic monomethacrylate, a result that was not observed in a hydroxyethyl methacrylate (HEMA) homopolymer or in networks formed from nanogels copolymerized with HEMA. These results highlight the unique approach to network development from nanoscale precursors and properties that have direct implications in functional dental materials. PMID:25248612

  2. Construction of Monomer-free, Highly Crosslinked, Water-compatible Polymers

    PubMed Central

    Dailing, E.A.; Lewis, S.H.; Barros, M.D.; Stansbury, J.W.

    2014-01-01

    Polymeric dental adhesives require the formation of densely crosslinked network structures to best ensure mechanical strength and durability in clinical service. Monomeric precursors to these materials typically consist of mixtures of hydrophilic and hydrophobic components that potentially undergo phase separation in the presence of low concentrations of water, which is detrimental to material performance and has motivated significant investigation into formulations that reduce this effect. We have investigated an approach to network formation based on nanogels that are dispersed in inert solvent and directly polymerized into crosslinked polymers. Monomers of various hydrophilic or hydrophobic characteristics were copolymerized into particulate nanogels bearing internal and external polymerizable functionality. Nanogel dispersions were stable at high concentrations in acetone or, with some exceptions, in water and produced networks with a wide range of mechanical properties. Networks formed rapidly upon light activation and reached high conversion with extremely low volumetric shrinkage. Prepolymerizing monomers into reactive nanostructures significantly changes how hydrophobic materials respond to water compared with networks obtained from polymerizations involving free monomer. The modulus of fully hydrated networks formed solely from nanogels was shown to equal or exceed the modulus in the dry state for networks based on nanogels containing a hydrophobic dimethacrylate and hydrophilic monomethacrylate, a result that was not observed in a hydroxyethyl methacrylate (HEMA) homopolymer or in networks formed from nanogels copolymerized with HEMA. These results highlight the unique approach to network development from nanoscale precursors and properties that have direct implications in functional dental materials. PMID:25248612

  3. Comparative fatigue behavior and toughness of remelted and annealed highly crosslinked polyethylenes.

    PubMed

    Medel, Francisco J; Peña, P; Cegoñino, José; Gómez-Barrena, E; Puértolas, J A

    2007-11-01

    Highly cross-linked polyethylenes (HXLPEs) have been incorporated into the hip replacement armamentarium based on their improved wear resistance. However, two different methods of thermal treatment separate the orthopedic community as strategies to control potential long-term oxidation, and controversy remains with problems in the long-term use of acetabular liners (long-term oxidation, rim fracture after impingement, etc.). Meanwhile, the mechanical properties of HXLPEs that may alleviate these problems are still unclear. On the other hand, HXLPEs are scarcely used in knee replacements, as there exists concern about the probably reduced fatigue and fracture performances of these materials. Thus, our aim was to compare the effects of both thermal treatment regimes on mechanical properties and to associate these findings with the material microstructure. The fatigue behavior of annealed and remelted HXLPEs was characterized using short-term cyclic stress-strain, long-term fatigue, and fatigue crack propagation tests. On the other hand, impact tests, tensile experiments, and the J-integral multispecimen method allowed us to assess toughness. Microstructure features such as crosslink density, crystallinity percentage, and lamellar thickness were investigated by swelling measurements, differential scanning calorimetry, and transmission electron microscopy, respectively. This study confirms that annealing preserves mechanical properties better than remelting from both fatigue and fracture resistance points of view, and it remarks that a suitable selection of irradiation and stabilization conditions is needed to achieve optimal mechanical performances of ultra high molecular weight polyethylenes for each specific total joint replacement. PMID:17680670

  4. Graphene oxide-based benzimidazole-crosslinked networks for high-performance supercapacitors.

    PubMed

    Cui, Yi; Cheng, Qian-Yi; Wu, Haiping; Wei, Zhixiang; Han, Bao-Hang

    2013-09-21

    The synthesis of graphene oxide (GO)-based benzimidazole-crosslinked network (GOBIN) materials is presented. These materials are prepared by the covalent crosslinking of GO sheets using a condensation reaction between the carboxylic acid moieties on the GO surface and the o-aminophenyl end groups of 3,3'-diaminobenzidine (or 1,2,4,5-benzenetetraamine tetrahydrochloride). An efficient one-pot catalyst- and template-free synthesis was performed. The obtained porous GO-based materials possess a Brunauer-Emmett-Teller specific surface area ranging from 260 to 920 m(2) g(-1). Electrochemical testing indicates that the GOBIN materials display a specific capacitance up to 370 F g(-1) at a current density of 0.1 A g(-1) and about 90% of the original capacitance is retained after 5000 cycles at a current density of 3 A g(-1). Therefore, GOBIN materials can be employed as promising electrode materials for high-performance supercapacitors with outstanding cycling stability. Furthermore, owing to their significantly high specific surface area, these materials also show hydrogen uptake (up to 1.24 wt%, at 77 K and 1.0 bar) and carbon dioxide capture (up to 14.2 wt%, at 273 K and 1.0 bar) properties. As a result, these GO-based porous materials improve both the supercapacitor performance and gas sorption property, which demonstrate an excellent performance in the practical application of energy storage. PMID:23793833

  5. Silica-Based, Hyper-Crosslinked Acid Stable Stationary Phases for High Performance Liquid Chromatography

    PubMed Central

    Zhang, Yu; Luo, Hao; Carr, Peter W.

    2011-01-01

    A new family of Hyper-Crosslinked (HC) phases has been recently introduced for use under very aggressive acid conditions including those encountered in ultra-fast, high temperature Two-Dimensional Liquid Chromatography (2DLC). This type of stationary phase showed significantly enhanced acid and thermal stability compared to the most acid stable, commercial RPLC phases. In addition, the use of “orthogonal” chemistry to make surface-confined polymer networks ensures good reproducibility and high efficiency. One of the most interesting features of the HC phases is the ability to derivatize the surface aromatic groups with various functional groups. This led to the development of a family of hyper-crosslinked phases possessing a wide variety of chromatographic selectivities by attaching hydrophobic (e.g. –C8), ionizable (e.g. -COOH, -SO3H), aromatic (e.g. –toluene) or polar (e.g. -OH) species to the aromatic polymer network. HC reversed phases with various degrees of hydrophobicity and mixed-mode HC phases with added strong and weak cation exchange sites have been synthesized, characterized and applied. These silica-based acid-stable HC phases, with their attractive chromatographic properties, should be very useful in the separations of bases or biological analytes in acidic media, especially at elevated temperatures. This work reviews the prior research on HC phases and introduces a novel HC phase made by alternative chemistry. PMID:21906745

  6. A Simple, High-Yield Synthesis of DNA Duplexes Containing a Covalent, Thermally-Reversible Interstrand Cross-link At a Defined Location**

    PubMed Central

    Varela, Jacqueline Gamboa; Gates, Kent S.

    2015-01-01

    Interstrand DNA-DNA cross-links are highly toxic to cells because these lesions block the extraction of information from the genetic material. The pathways by which cells repair cross-links are important, but not well understood. The preparation of chemically well-defined cross-linked DNA substrates represents a significant challenge in the study of cross-link repair. Here we report a simple method that employs “post-synthetic” modifications of commercially available 2’-deoxyoligonucleotides to install a single cross-link in high yield at a specified location within a DNA duplex. The cross-linking process exploits hydrazone formation between a non-natural N4-amino-2’-deoxycytidine nucleobase and the aldehyde residue of an abasic site in duplex DNA. The resulting cross-link is stable under physiological conditions, but can be readily dissociated and re-formed through heating-cooling cycles. PMID:25967397

  7. High-productivity immersion scanner enabling 1xnm hp manufacturing

    NASA Astrophysics Data System (ADS)

    Shirata, Yosuke; Shibazaki, Yuichi; Kosugi, Junichi; Kikuchi, Takahisa; Ohmura, Yasuhiro

    2013-04-01

    NSR-S622D, Nikon's new ArF immersion scanner, provides the best and practicable solutions to meet the escalating requirement from device manufactures to accommodate the further miniaturization of device pattern. NSR-S622D has various additional functions compared to the previous model such as the newly developed illumination system, new projection lens, new AF system new wafer table in addition to the matured Streamlign platform. These new features will derive the outstanding performance of NSR, enabling highly controlled CD uniformity, focus accuracy and overlay accuracy. NSR-S622D will provide the adequate capabilities that are demanded from a lithography tool for production of 1x nm hp node and beyond.

  8. Enabling High Efficiency Nanoplasmonics with Novel Nanoantenna Architectures.

    PubMed

    Cohen, Moshik; Shavit, Reuven; Zalevsky, Zeev

    2015-01-01

    Surface plasmon polaritons (SPPs) are propagating excitations that arise from coupling of light with collective electron oscillations. Characterized by high field intensity and nanometric dimensions, SPPs fashion rapid expansion of interest from fundamental and applicative perspectives. However, high metallic losses at optical frequencies still make nanoplasmonics impractical when high absolute efficiency is paramount, with major challenge is efficient plasmon generation in deep nanoscale. Here we introduce the Plantenna, the first reported nanodevice with the potential of addressing these limitations utilizing novel plasmonic architecture. The Plantenna has simple 2D structure, ultracompact dimensions and is fabricated on Silicon chip for future CMOS integration. We design the Plantenna to feed channel (20 nm × 20 nm) nanoplasmonic waveguides, achieving 52% coupling efficiency with Plantenna dimensions of λ(3)/17,000. We theoretically and experimentally show that the Plantenna enormously outperforms dipole couplers, achieving 28 dB higher efficiency with broad polarization diversity and huge local field enhancement. Our findings confirm the Plantenna as enabling device for high efficiency plasmonic technologies such as quantum nanoplasmonics, molecular strong coupling and plasmon nanolasers. PMID:26620270

  9. Enabling High Efficiency Nanoplasmonics with Novel Nanoantenna Architectures

    PubMed Central

    Cohen, Moshik; Shavit, Reuven; Zalevsky, Zeev

    2015-01-01

    Surface plasmon polaritons (SPPs) are propagating excitations that arise from coupling of light with collective electron oscillations. Characterized by high field intensity and nanometric dimensions, SPPs fashion rapid expansion of interest from fundamental and applicative perspectives. However, high metallic losses at optical frequencies still make nanoplasmonics impractical when high absolute efficiency is paramount, with major challenge is efficient plasmon generation in deep nanoscale. Here we introduce the Plantenna, the first reported nanodevice with the potential of addressing these limitations utilizing novel plasmonic architecture. The Plantenna has simple 2D structure, ultracompact dimensions and is fabricated on Silicon chip for future CMOS integration. We design the Plantenna to feed channel (20 nm × 20 nm) nanoplasmonic waveguides, achieving 52% coupling efficiency with Plantenna dimensions of λ3/17,000. We theoretically and experimentally show that the Plantenna enormously outperforms dipole couplers, achieving 28 dB higher efficiency with broad polarization diversity and huge local field enhancement. Our findings confirm the Plantenna as enabling device for high efficiency plasmonic technologies such as quantum nanoplasmonics, molecular strong coupling and plasmon nanolasers. PMID:26620270

  10. Coarse-Grained Molecular Dynamics Study of the Curing and Properties of Highly Cross-Linked Epoxy Polymers.

    PubMed

    Aramoon, Amin; Breitzman, Timothy D; Woodward, Christopher; El-Awady, Jaafar A

    2016-09-01

    In this work, a coarse-grained model is developed for highly cross-linked bisphenol A diglycidyl ether epoxy resin with diaminobutane hardener. In this model, all conformationally relevant coarse-grained degrees of freedom are accounted for by sampling over the free-energy surfaces of the atomic structures using quantum mechanical simulations. The interaction potentials between nonbonded coarse-grained particles are optimized to accurately predict the experimentally measured density and glass-transition temperature of the system. In addition, a new curing algorithm is also developed to model the creation of highly cross-linked epoxy networks. In this algorithm, to create a highly cross-linked network, the reactants are redistributed from regions with an excessive number of reactive molecules to regions with a lower number of reactants to increase the chances of cross-linking. This new algorithm also dynamically controls the rate of cross-linking at each local region to ensure uniformity of the resulting network. The curing simulation conducted using this algorithm is able to develop polymeric networks having a higher average degree of cross-linking, which is more uniform throughout the simulation cell as compared to that in the networks cured using other curing algorithms. The predicted gel point from the current curing algorithm is in the acceptable theoretical and experimental range of measured values. Also, the resulting cross-linked microstructure shows a volume shrinkage of 5%, which is close to the experimentally measured volume shrinkage of the cured epoxy. Finally, the thermal expansion coefficients of materials in the glassy and rubbery states show good agreement with the experimental values. PMID:27504803

  11. Enabling high-temperature nanophotonics for energy applications

    PubMed Central

    Yeng, Yi Xiang; Ghebrebrhan, Michael; Bermel, Peter; Chan, Walker R.; Joannopoulos, John D.; Soljačić, Marin; Celanovic, Ivan

    2012-01-01

    The nascent field of high-temperature nanophotonics could potentially enable many important solid-state energy conversion applications, such as thermophotovoltaic energy generation, selective solar absorption, and selective emission of light. However, special challenges arise when trying to design nanophotonic materials with precisely tailored optical properties that can operate at high-temperatures (> 1,100 K). These include proper material selection and purity to prevent melting, evaporation, or chemical reactions; severe minimization of any material interfaces to prevent thermomechanical problems such as delamination; robust performance in the presence of surface diffusion; and long-range geometric precision over large areas with severe minimization of very small feature sizes to maintain structural stability. Here we report an approach for high-temperature nanophotonics that surmounts all of these difficulties. It consists of an analytical and computationally guided design involving high-purity tungsten in a precisely fabricated photonic crystal slab geometry (specifically chosen to eliminate interfaces arising from layer-by-layer fabrication) optimized for high performance and robustness in the presence of roughness, fabrication errors, and surface diffusion. It offers near-ultimate short-wavelength emittance and low, ultra-broadband long-wavelength emittance, along with a sharp cutoff offering 4∶1 emittance contrast over 10% wavelength separation. This is achieved via Q-matching, whereby the absorptive and radiative rates of the photonic crystal’s cavity resonances are matched. Strong angular emission selectivity is also observed, with short-wavelength emission suppressed by 50% at 75° compared to normal incidence. Finally, a precise high-temperature measurement technique is developed to confirm that emission at 1,225 K can be primarily confined to wavelengths shorter than the cutoff wavelength. PMID:22308448

  12. Enabling propulsion materials for high-speed civil transport engines

    NASA Technical Reports Server (NTRS)

    Stephens, Joseph R.; Herbell, Thomas P.

    1992-01-01

    NASA Headquarters and LeRC have advocated an Enabling Propulsion Materials Program (EPM) to begin in FY-92. The High Speed Research Phase 1 program which began in FY-90 has focused on the environmental acceptability of a High Speed Civil Transport (HSCT). Studies by industry, including Boeing, McDonnell Douglas, GE Aircraft Engines, and Pratt & Whitney Aircraft, and in-house studies by NASA concluded that NO(x) emissions and airport noise reduction can only be economically achieved by revolutionary advancements in materials technologies. This is especially true of materials for the propulsion system where the combustor is the key to maintaining low emissions, and the exhaust nozzle is the key to reducing airport noise to an acceptable level. Both of these components will rely on high temperature composite materials that can withstand the conditions imposed by commercial aircraft operations. The proposed EPM program will operate in conjunction with the HSR Phase 1 Program and the planned HSR Phase 2 program slated to start in FY-93. Components and subcomponents developed from advanced materials will be evaluated in the HSR Phase 2 Program.

  13. A self-healable and highly stretchable supercapacitor based on a dual crosslinked polyelectrolyte

    NASA Astrophysics Data System (ADS)

    Huang, Yan; Zhong, Ming; Huang, Yang; Zhu, Minshen; Pei, Zengxia; Wang, Zifeng; Xue, Qi; Xie, Xuming; Zhi, Chunyi

    2015-12-01

    Superior self-healability and stretchability are critical elements for the practical wide-scale adoption of personalized electronics such as portable and wearable energy storage devices. However, the low healing efficiency of self-healable supercapacitors and the small strain of stretchable supercapacitors are fundamentally limited by conventional polyvinyl alcohol-based acidic electrolytes, which are intrinsically neither self-healable nor highly stretchable. Here we report an electrolyte comprising polyacrylic acid dual crosslinked by hydrogen bonding and vinyl hybrid silica nanoparticles, which displays all superior functions and provides a solution to the intrinsic self-healability and high stretchability problems of a supercapacitor. Supercapacitors with this electrolyte are non-autonomic self-healable, retaining the capacitance completely even after 20 cycles of breaking/healing. These supercapacitors are stretched up to 600% strain with enhanced performance using a designed facile electrode fabrication procedure.

  14. The sensitive and selective adsorption of aromatic compounds with highly crosslinked polymer nanoparticles

    NASA Astrophysics Data System (ADS)

    Liu, Shuqin; Chen, Darui; Zheng, Juan; Zeng, Lewei; Jiang, Jijun; Jiang, Ruifeng; Zhu, Fang; Shen, Yong; Wu, Dingcai; Ouyang, Gangfeng

    2015-10-01

    This study presents the preparation and characterization of a nanoscale Davankov-type hyper-crosslinked-polymer (HCP) as an adsorbent of benzene-ring-containing dyes and organic pollutants. HCP nanoparticles post-crosslinked from a poly(DVB-co-VBC) precursor were synthesized in this study, possessing ultrahigh surface area, hydrophobicity and stability. The as-synthesized Davankov-type HCP exhibited a rapid and selective adsorption ability towards the benzene-ring-containing dyes due to its highly conjugated structure. Besides, for the first time, the prepared HCP nanoparticles were adopted for the adsorption of nonpolar organic pollutants by means of solid-phase microextraction (SPME). Owing to its high hydrophobicity, diverse pore size distribution and highly conjugated structure, a 10 μm HCP coating exhibited excellent adsorption abilities towards benzene-ring-containing polycyclic aromatic hydrocarbons (PAHs) and benzene series compounds (benzene, toluene, ethylbenzene and o-xylene; abbreviated to BTEX) and to highly hydrophobic long-chain n-alkanes. Finally, the HCP-nanoparticles-coated SPME fiber was applied to the simultaneous analysis of five PAHs in environmental water samples and satisfactory recoveries were achieved. The findings could provide a new benchmark for the exploitation of superb HCPs as effective adsorbents for SPME or other adsorption applications.This study presents the preparation and characterization of a nanoscale Davankov-type hyper-crosslinked-polymer (HCP) as an adsorbent of benzene-ring-containing dyes and organic pollutants. HCP nanoparticles post-crosslinked from a poly(DVB-co-VBC) precursor were synthesized in this study, possessing ultrahigh surface area, hydrophobicity and stability. The as-synthesized Davankov-type HCP exhibited a rapid and selective adsorption ability towards the benzene-ring-containing dyes due to its highly conjugated structure. Besides, for the first time, the prepared HCP nanoparticles were adopted for the

  15. A self-healable and highly stretchable supercapacitor based on a dual crosslinked polyelectrolyte

    PubMed Central

    Huang, Yan; Zhong, Ming; Huang, Yang; Zhu, Minshen; Pei, Zengxia; Wang, Zifeng; Xue, Qi; Xie, Xuming; Zhi, Chunyi

    2015-01-01

    Superior self-healability and stretchability are critical elements for the practical wide-scale adoption of personalized electronics such as portable and wearable energy storage devices. However, the low healing efficiency of self-healable supercapacitors and the small strain of stretchable supercapacitors are fundamentally limited by conventional polyvinyl alcohol-based acidic electrolytes, which are intrinsically neither self-healable nor highly stretchable. Here we report an electrolyte comprising polyacrylic acid dual crosslinked by hydrogen bonding and vinyl hybrid silica nanoparticles, which displays all superior functions and provides a solution to the intrinsic self-healability and high stretchability problems of a supercapacitor. Supercapacitors with this electrolyte are non-autonomic self-healable, retaining the capacitance completely even after 20 cycles of breaking/healing. These supercapacitors are stretched up to 600% strain with enhanced performance using a designed facile electrode fabrication procedure. PMID:26691661

  16. A self-healable and highly stretchable supercapacitor based on a dual crosslinked polyelectrolyte.

    PubMed

    Huang, Yan; Zhong, Ming; Huang, Yang; Zhu, Minshen; Pei, Zengxia; Wang, Zifeng; Xue, Qi; Xie, Xuming; Zhi, Chunyi

    2015-01-01

    Superior self-healability and stretchability are critical elements for the practical wide-scale adoption of personalized electronics such as portable and wearable energy storage devices. However, the low healing efficiency of self-healable supercapacitors and the small strain of stretchable supercapacitors are fundamentally limited by conventional polyvinyl alcohol-based acidic electrolytes, which are intrinsically neither self-healable nor highly stretchable. Here we report an electrolyte comprising polyacrylic acid dual crosslinked by hydrogen bonding and vinyl hybrid silica nanoparticles, which displays all superior functions and provides a solution to the intrinsic self-healability and high stretchability problems of a supercapacitor. Supercapacitors with this electrolyte are non-autonomic self-healable, retaining the capacitance completely even after 20 cycles of breaking/healing. These supercapacitors are stretched up to 600% strain with enhanced performance using a designed facile electrode fabrication procedure. PMID:26691661

  17. Photoswitchable Nanoparticles Enable High-Resolution Cell Imaging: PULSAR Microscopy

    SciTech Connect

    Hu, Dehong; Tian, Z.; Wu, Wuwei; Wan, Wei; Li, Alexander D.

    2008-10-22

    Fluorescence imaging has transformed biological sciences and opened a window to reveal biological mechanisms in real time despite Abbe’s diffraction limit restricts current microscope resolution to 300 nm?.HDH2 Recently, two high-resolution fluorescence microscopic techniques emerged: one uses a special photoactivatable green fluorescent proteinHDH3 and the other employs a pair of cy3/cy5 dyes.HDH4 Both avoid Abbe’s diffraction limit by photoswitching nearby fluorophores off. Thus, photoswitching fluorescence between a bright and a dark state promises to deliver a wealth of information regarding biological phenomena at the nanoscale. The ideal probe is a key-enabling single molecule that can be photoswitched on and off. Such wonderful properties, albeit implausible to imagine at first, were realized in spiropyran derivatives. While being photoswitched, one molecule alternates red-fluorescence on-and-off. Using such photo-actuated unimolecular logical switching attained reconstruction (PULSAR) microscopy, we achieved high-resolution fluorescence imaging down to 80 nm? in nanostructures and cellular organelles.

  18. Smart surface coating of drug nanoparticles with cross-linkable polyethylene glycol for bio-responsive and highly efficient drug delivery

    NASA Astrophysics Data System (ADS)

    Wei, Weijia; Zhang, Xiujuan; Chen, Xianfeng; Zhou, Mengjiao; Xu, Ruirui; Zhang, Xiaohong

    2016-04-01

    Many drug molecules can be directly used as nanomedicine without the requirement of any inorganic or organic carriers such as silica and liposome nanostructures. This new type of carrier-free drug nanoparticles (NPs) has great potential in clinical treatment because of its ultra-high drug loading capacity and biodegradability. For practical applications, it is essential for such nanomedicine to possess robust stability and minimal premature release of therapeutic molecules during circulation in the blood stream. To meet this requirement, herein, we develop GSH-responsive and crosslinkable amphiphilic polyethylene glycol (PEG) molecules to modify carrier-free drug NPs. These PEG molecules can be cross-linked on the surface of the NPs to endow them with greater stability and the cross-link is sensitive to intracellular environment for bio-responsive drug release. With this elegant design, our experimental results show that the liberation of DOX from DOX-cross-linked PEG NPs is dramatically slower than that from DOX-non-cross-linked PEG NPs, and the DOX release profile can be controlled by tuning the concentration of the reducing agent to break the cross-link between PEG molecules. More importantly, in vivo studies reveal that the DOX-cross-linked PEG NPs exhibit favorable blood circulation half-life (>4 h) and intense accumulation in tumor areas, enabling effective anti-cancer therapy. We expect this work will provide a powerful strategy for stabilizing carrier-free nanomedicines and pave the way to their successful clinical applications in the future.Many drug molecules can be directly used as nanomedicine without the requirement of any inorganic or organic carriers such as silica and liposome nanostructures. This new type of carrier-free drug nanoparticles (NPs) has great potential in clinical treatment because of its ultra-high drug loading capacity and biodegradability. For practical applications, it is essential for such nanomedicine to possess robust stability

  19. Prediction of multiaxial mechanical behavior for conventional and highly crosslinked UHMWPE using a hybrid constitutive model.

    PubMed

    Bergström, J S; Rimnac, C M; Kurtz, S M

    2003-04-01

    The development of theoretical failure, fatigue, and wear models for ultra-high molecular weight polyethylene (UHMWPE) used in joint replacements has been hindered by the lack of a validated constitutive model that can accurately predict large deformation mechanical behavior under clinically relevant, multiaxial loading conditions. Recently, a new Hybrid constitutive model for unirradiated UHMWPE was developed Bergström et al., (Biomaterials 23 (2002) 2329) based on a physics-motivated framework which incorporates the governing micro-mechanisms of polymers into an effective and accurate continuum representation. The goal of the present study was to compare the predictive capability of the new Hybrid model with the J(2)-plasticity model for four conventional and highly crosslinked UHMWPE materials during multiaxial loading. After calibration under uniaxial loading, the predictive capabilities of the J(2)-plasticity and Hybrid model were tested by comparing the load-displacement curves from experimental multiaxial (small punch) tests with simulated load-displacement curves calculated using a finite element model of the experimental apparatus. The quality of the model predictions was quantified using the coefficient of determination (r(2)). The results of the study demonstrate that the Hybrid model outperforms the J(2)-plasticity model both for combined uniaxial tension and compression predictions and for simulating multiaxial large deformation mechanical behavior produced by the small punch test. The results further suggest that the parameters of the HM may be generalizable for a wide range of conventional, highly crosslinked, and thermally treated UHMWPE materials, based on the characterization of four material properties related to the elastic modulus, yield stress, rate of strain hardening, and locking stretch of the polymer chains. Most importantly, from a practical perspective, these four key material properties for the Hybrid constitutive model can be measured

  20. Study of crosslinking onset and hydrogen annealing of ultra-high molecular weight polyethylene irradiated with high-energy protons

    NASA Astrophysics Data System (ADS)

    Wilson, John Ford

    1997-09-01

    Ultra high molecular weight polyethylene (UHMW-PE) is used extensively in hip and knee endoprostheses. Radiation damage from the sterilization of these endoprostheses prior to surgical insertion results in polymer crosslinking and decreased oxidative stability. The motivation for this study was to determine if UHMW-PE could be crosslinked by low dose proton irradiation with minimal radiation damage and its subsequent deleterious effects. I found that low dose proton irradiation and post irradiation hydrogen annealing did crosslink UHMW-PE and limit post irradiation oxidation. Crosslinking onset was investigated for UHMW-PE irradiated with 2.6 and 30 MeV H+ ions at low doses from 5.7 × 1011-2.3 × 1014 ions/cm2. Crosslinking was determined from gel permeation chromatography (GPC) of 1,2,4 trichlorobenzene sol fractions and increased with dose. Fourier transform infrared spectroscopy (FTIR) showed irradiation resulted in increased free radicals confirmed from increased carbonyl groups. Radiation damage, especially at the highest doses observed, also showed up in carbon double bonds and increased methyl end groups. Hydrogen annealing after ion irradiation resulted in 40- 50% decrease in FTIR absorption associated with carbonyl. The hydrogen annealing prevented further oxidation after aging for 1024 hours at 80oC. Hydrogen annealing was successful in healing radiation damage through reacting with the free radicals generated during proton irradiation. Polyethylenes, polyesters, and polyamides are used in diverse applications by the medical profession in the treatment of orthopedic impairments and cardiovascular disease and for neural implants. These artificial implants are sterilized with gamma irradiation prior to surgery and the resulting radiation damage can lead to accelerated deterioration of the implant properties. The findings in this study will greatly impact the continued use of these materials through the elimination of many problems associated with radiation

  1. Translational informatics: enabling high-throughput research paradigms

    PubMed Central

    Embi, Peter J.; Sen, Chandan K.

    2009-01-01

    A common thread throughout the clinical and translational research domains is the need to collect, manage, integrate, analyze, and disseminate large-scale, heterogeneous biomedical data sets. However, well-established and broadly adopted theoretical and practical frameworks and models intended to address such needs are conspicuously absent in the published literature or other reputable knowledge sources. Instead, the development and execution of multidisciplinary, clinical, or translational studies are significantly limited by the propagation of “silos” of both data and expertise. Motivated by this fundamental challenge, we report upon the current state and evolution of biomedical informatics as it pertains to the conduct of high-throughput clinical and translational research and will present both a conceptual and practical framework for the design and execution of informatics-enabled studies. The objective of presenting such findings and constructs is to provide the clinical and translational research community with a common frame of reference for discussing and expanding upon such models and methodologies. PMID:19737991

  2. Blends of cross-linked high amylose starch/pectin loaded with diclofenac.

    PubMed

    Soares, Grazielle Arantes; de Castro, Ana Dóris; Cury, Beatriz S F; Evangelista, Raul C

    2013-01-01

    Polymers blends represent an important approach to obtain materials with modulated properties to reach different and desired properties in designing drug delivery systems in order to fulfill therapeutic needs. The aim of this work was to evaluate the influence of drug loading and polymer ratio on the physicochemical properties of microparticles of cross-linked high amylose starch-pectin blends loaded with diclofenac for further application in controlled drug delivery systems. Thermal analysis and X-ray diffractograms evidenced the occurrence of drug-polymer interactions and the former pointed also to an increase in thermal stability due to drug loading. The rheological properties demonstrated that drug loading resulted in formation of weaker gels while the increase of pectin ratio contributes to origin stronger structures. PMID:23044114

  3. Digestibility, fermentability, and energy value of highly cross-linked phosphate tapioca starch in men.

    PubMed

    Tachibe, M; Ohga, Hiroshi; Nishibata, T; Ebihara, K

    2011-08-01

    The objective of this study was to determine glycemic and breath hydrogen responses in 10 healthy men in response to highly cross-linked starch phosphate (HXLS), made of tapioca starch (TS). Plasma glucose concentration was analyzed at baseline and at 30, 60, 90, 120, 150, and 180 min postprandially. In addition, breath hydrogen excretion was measured at baseline and at hourly intervals, over 10 h, after test substance challenge. When compared with unmodified TS easily digested, the area under the curve of plasma glucose of HXLS was 64% smaller, and was almost the same as that of microcrystalline cellulose. When compared with fructo-oligosaccharide rapidly fermented by the microbial bacteria, the area under the excretion curve of breath hydrogen gas of HXLS was 93% smaller, and was almost the same as that of water only. These results show that HXLS is harder to digest and ferment than unmodified TS in men. PMID:22417501

  4. Once Annealed Highly Cross-Linked Polyethylene Exhibits Low Wear at 9 to 15 Years.

    PubMed

    D'Antonio, James; Capello, William N; Ramakrishnan, Rama

    2016-05-01

    A once annealed highly cross-linked polyethylene (HXLPE) was introduced in 1998. Concerns regarding its long-term performance and oxidative resistance exist because of the presence of retained free radicals. The authors studied 48 patients with 50 hip implants having an average age of 62 years. They were followed for 9 to 15 years. The purpose of this study was to determine linear wear rate and the incidence of osteolysis and/or mechanical failure. At an average follow-up of 12.2 years, the annual linear wear rate was 0.018 mm (SD, 0.024 mm). No mechanical failures or osteolysis have been found to date. The clinical performance of this HXLPE continues to meet expectations despite the presence of free radicals. [Orthopedics. 2016; 39(3):e565-e571.]. PMID:27088350

  5. Interfacial fracture between highly crosslinked polymer networks and a solid surface: Effect of interfacial bond density

    SciTech Connect

    STEVENS,MARK J.

    2000-03-23

    For highly crosslinked, polymer networks bonded to a solid surface, the effect of interfacial bond density as well as system size on interfacial fracture is studied molecular dynamics simulations. The correspondence between the stress-strain curve and the sequence of molecular deformations is obtained. The failure strain for a fully bonded surface is equal to the strain necessary to make taut the average minimal path through the network from the bottom solid surface to the top surface. At bond coverages less than full, nanometer scale cavities form at the surface yielding an inhomogeneous strain profile. The failure strain and stress are linearly proportional to the number of bonds at the interface unless the number of bonds is so few that van der Waals interactions dominate. The failure is always interfacial due to fewer bonds at the interface than in the bulk.

  6. Precipitated and chemically-crosslinked laccase over polyaniline nanofiber for high performance phenol sensing.

    PubMed

    Kim, Jae Hyun; Hong, Sung-Gil; Sun, Ho Jin; Ha, Su; Kim, Jungbae

    2016-01-01

    The present study aims at fabricating a laccase (LAC) based amperometric biosensor for detection of phenolic compounds. LAC was immobilized into the porous matrix of polyaniline nanofibers (PANFs) in a three-step process, consisting of enzyme adsorption, precipitation, and crosslinking (EAPC). Immobilized LAC on PANF in the form of EAPC was highly active and stable when compared to control samples of 'enzyme adsorption (EA)' and 'enzyme adsorption and crosslinking (EAC)' samples. For example, the activity of EAPC was 19.7 and 15.1 times higher than those of EA and EAC per unit weight of PANF, respectively. After 6days at room temperature, EAPC maintained 100% of its initial activity, while EA and EAC retained only 7.7% and 11% of their initial activities, respectively. When the samples were subjected to the heat treatment at 60°C over 3h, EAPC maintained 74% of its initial activity, while EA and EAC retained around 1% of their initial activities, respectively. To demonstrate the feasible application of EAPC in biosensors, the enzyme electrodes were prepared and used for detection of phenolic compounds, which are environmentally hazardous chemicals. The sensitivities of biosensors with EA, EAC, and EAPC were 20.3±5.9, 26.6±5.4 and 518±11μAmM(-1)cm(-2), respectively. At 50°C for 5h, EAPC electrode maintained 80% of its initial sensitivity, while EA and EAC electrode showed 0% and 19% of their initial sensitivities, respectively. Thus, LAC-based biosensor using EAPC protocol with PANFs showed a great promise for developing a highly sensitive and stable biosensor for detection of phenolic compounds. PMID:26294327

  7. Synthesis of cellulose-based superabsorbent hydrogels by high-energy irradiation in the presence of crosslinking agent

    NASA Astrophysics Data System (ADS)

    Fekete, Tamás; Borsa, Judit; Takács, Erzsébet; Wojnárovits, László

    2016-01-01

    Superabsorbent hydrogels were prepared from aqueous solutions of four cellulose derivatives (carboxymethylcellulose Na-salt - CMC, methylcellulose - MC, hydroxyethylcellulose - HEC and hydroxypropylcellulose - HPC) by gamma irradiation initiated crosslinking. CMC was used for the majority of the measurements. N,N'-methylene-bis-acrylamide (MBA) crosslinking agent was used to modify the gel properties. The crosslink density increased with the MBA concentration, leading to an improved gel fraction and lower water uptake. The crosslinking efficiency was the highest up to 1 w/wpolymer% MBA concentration. Very high MBA content (10 w/wpolymer%) led to a heterogeneous gel structure. Gelation also occurred under milder conditions in the presence of MBA: good gel properties were achieved at significantly lower doses and solute concentrations as compared to crosslinker-free solutions. The time required to reach maximum water uptake increased with the degree of swelling in equilibrium. Swelling properties of CMC gels with lower water uptake showed lower sensitivity to the ionic strength of the solvent.

  8. ASIC-enabled High Resolution Optical Time Domain Reflectometer

    NASA Astrophysics Data System (ADS)

    Skendzic, Sandra

    Fiber optics has become the preferred technology in communication systems because of what it has to offer: high data transmission rates, immunity to electromagnetic interference, and lightweight, flexible cables. An optical time domain reflectometer (OTDR) provides a convenient method of locating and diagnosing faults (e.g. break in a fiber) along a fiber that can obstruct crucial optical pathways. Both the ability to resolve the precise location of the fault and distinguish between two discrete, closely spaced faults are figures of merit. This thesis presents an implementation of a high resolution OTDR through the use of a compact and programmable ASIC (application specific integrated circuit). The integration of many essential OTDR functions on a single chip is advantageous over existing commercial instruments because it enables small, lightweight packaging, and offers low power and cost efficiency. Furthermore, its compactness presents the option of placing multiple ASICs in parallel, which can conceivably ease the characterization of densely populated fiber optic networks. The OTDR ASIC consists of a tunable clock, pattern generator, precise timer, electrical receiver, and signal sampling circuit. During OTDR operation, the chip generates narrow electrical pulse, which can then be converted to optical format when coupled with an external laser diode driver. The ASIC also works with an external photodetector to measure the timing and amplitude of optical reflections in a fiber. It has a 1 cm sampling resolution, which allows for a 2 cm spatial resolution. While this OTDR ASIC has been previously demonstrated for multimode fiber fault diagnostics, this thesis focuses on extending its functionality to single mode fiber. To validate this novel approach to OTDR, this thesis is divided into five chapters: (1) introduction, (2) implementation, (3), performance of ASIC-based OTDR, (4) exploration in optical pre-amplification with a semiconductor optical amplifier, and

  9. The Compressive Behavior of Isocyanate-crosslinked Silica Aerogel at High Strain Rates

    NASA Technical Reports Server (NTRS)

    Luo, H.; Lu, H.; Leventis, N.

    2006-01-01

    Aerogels are low-density, highly nano-porous materials. Their engineering applications are limited due to their brittleness and hydrophilicity. Recently, a strong lightweight crosslinked silica aerogel has been developed by encapsulating the skeletal framework of amine-modified silica aerogels with polyureas derived by isocyanate. The mesoporous structure of the underlying silica framework is preserved through conformal polymer coating, and the thermal conductivity remains low. Characterization has been conducted on the thermal, physical properties and the mechanical properties under quasi-static loading conditions. In this paper, we present results on the dynamic compressive behavior of the crosslinked silica aerogel (CSA) using a split Hopkinson pressure bar (SHPB). A new tubing pulse shaper was employed to help reach the dynamic stress equilibrium and constant strain rate. The stress-strain relationship was determined at high strain rates within 114-4386/s. The effects of strain rate, density, specimen thickness and water absorption on the dynamic behavior of the CSA were investigated through a series of dynamic experiments. The Young's moduli (or 0.2% offset compressive yield strengths) at a strain rate approx.350/s were determined as 10.96/2.08, 159.5/6.75, 192.2/7.68, 304.6/11.46, 407.0/20.91 and 640.5/30.47 MPa for CSA with densities 0.205, 0.454, 0.492, 0.551,0.628 and 0.731 g/cu cm, respectively. The deformation and failure behaviors of a native silica aerogel with density (0.472 g/cu cm ), approximately the same as a typical CSA sample were observed with a high speed digital camera. Digital image correlation technique was used to determine the surface strains through a series of images acquired using high speed photography. The relative uniform axial deformation indicated that localized compaction did not occur at a compressive strain level of approx.17%, suggesting most likely failure mechanism at high strain rate to be different from that under quasi

  10. The compressive behavior of isocyanate-crosslinked silica aerogel at high strain rates

    NASA Astrophysics Data System (ADS)

    Luo, H.; Lu, H.; Leventis, N.

    2006-06-01

    Aerogels are low-density, highly nano-porous materials. Their engineering applications are limited due to their brittleness and hydrophilicity. Recently, a strong lightweight crosslinked silica aerogel has been developed by encapsulating the skeletal framework of amine-modified silica aerogels with polyureas derived by isocyanate. The mesoporous structure of the underlying silica framework is preserved through conformal polymer coating, and the thermal conductivity remains low. Characterization has been conducted on the thermal, physical properties and the mechanical properties under quasi-static loading conditions. In this paper, we present results on the dynamic compressive behavior of the crosslinked silica aerogel (CSA) using a split Hopkinson pressure bar (SHPB). A new tubing pulse shaper was employed to help reach the dynamic stress equilibrium and constant strain rate. The stress-strain relationship was determined at high strain rates within 114-4386 s-1. The effects of strain rate, density, specimen thickness and water absorption on the dynamic behavior of the CSA were investigated through a series of dynamic experiments. The Young’s moduli (or 0.2% offset compressive yield strengths) at a strain rate ˜350 s-1 were determined as 10.96/2.08, 159.5/6.75, 192.2/7.68, 304.6/11.46, 407.0/20.91 and 640.5/30.47 MPa for CSA with densities 0.205, 0.454, 0.492, 0.551, 0.628 and 0.731 g cm-3, respectively. The deformation and failure behaviors of a native silica aerogel with density (0.472 g cm-3), approximately the same as a typical CSA sample were observed with a high speed digital camera. Digital image correlation technique was used to determine the surface strains through a series of images acquired using high speed photography. The relative uniform axial deformation indicated that localized compaction did not occur at a compressive strain level of ˜17%, suggesting most likely failure mechanism at high strain rate to be different from that under quasi

  11. Dually cross-linked single network poly(acrylic acid) hydrogels with superior mechanical properties and water absorbency.

    PubMed

    Zhong, Ming; Liu, Yi-Tao; Liu, Xiao-Ying; Shi, Fu-Kuan; Zhang, Li-Qin; Zhu, Mei-Fang; Xie, Xu-Ming

    2016-06-28

    Poly(acrylic acid) (PAA) hydrogels with superior mechanical properties, based on a single network structure with dual cross-linking, are prepared by one-pot free radical polymerization. The network structure of the PAA hydrogels is composed of dual cross-linking: a dynamic and reversible ionic cross-linking among the PAA chains enabled by Fe(3+) ions, and a sparse covalent cross-linking enabled by a covalent cross-linker (Bis). Under deformation, the covalently cross-linked PAA chains remain intact to maintain their original configuration, while the Fe(3+)-enabled ionic cross-linking among the PAA chains is broken to dissipate energy and then recombined. It is found that the mechanical properties of the PAA hydrogels are significantly influenced by the contents of covalent cross-linkers, Fe(3+) ions and water, which can be adjusted within a substantial range and thus broaden the applications of the hydrogels. Meanwhile, the PAA hydrogels have excellent recoverability based on the dynamic and reversible ionic cross-linking enabled by Fe(3+) ions. Moreover, the swelling capacity of the PAA hydrogels is as high as 1800 times in deionized water due to the synergistic effects of ionic and covalent cross-linkings. The combination of balanced mechanical properties, efficient recoverability, high swelling capacity and facile preparation provides a new method to obtain high-performance hydrogels. PMID:27230478

  12. Cross-Linking Amine-Rich Compounds into High Performing Selective CO2 Absorbents

    PubMed Central

    Andreoli, Enrico; Dillon, Eoghan P.; Cullum, Laurie; Alemany, Lawrence B.; Barron, Andrew R.

    2014-01-01

    Amine-based absorbents play a central role in CO2 sequestration and utilization. Amines react selectively with CO2, but a drawback is the unproductive weight of solvent or support in the absorbent. Efforts have focused on metal organic frameworks (MOFs) reaching extremely high CO2 capacity, but limited selectivity to N2 and CH4, and decreased uptake at higher temperatures. A desirable system would have selectivity (cf. amine) and high capacity (cf. MOF), but also increased adsorption at higher temperatures. Here, we demonstrate a proof-of-concept where polyethyleneimine (PEI) is converted to a high capacity and highly selective CO2 absorbent using buckminsterfullerene (C60) as a cross-linker. PEI-C60 (CO2 absorption of 0.14 g/g at 0.1 bar/90°C) is compared to one of the best MOFs, Mg-MOF-74 (0.06 g/g at 0.1 bar/90°C), and does not absorb any measurable amount of CH4 at 50 bar. Thus, PEI-C60 can perform better than MOFs in the sweetening of natural gas. PMID:25467054

  13. Advanced Coatings Enabling High Performance Instruments for Astrophysics Missions

    NASA Astrophysics Data System (ADS)

    Nikzad, Shouleh

    We propose a three-year effort to develop techniques for far-ultraviolet (FUV) and ultraviolet coatings both as reflective optics coatings and as out-of-band-rejection (solar-blind) filters that will have a dramatic effect on the throughput and efficiency of instruments. This is an ideal time to address this problem. On the one hand, exciting new science questions posed in UV and optical realm place exacting demands on instrument capabilities far beyond HST-COS, FUSE, and GALEX with large focal plane arrays and high efficiency requirements. And on the other hand, the development of techniques and process such as atomic layer deposition with its atomically precise capability and nano-engineered materials approach enables us to address the challenging materials issues in the UV where interaction of photons and matter happen in the first few nanometers of the material surface. Aluminum substrates with protective overlayers (typically XFy, where X = Li, Mg, or Ca) have been the workhorse of reflective coatings for ultraviolet and visible instruments; however, they have demonstrated severe limitations. The formation of oxide at the Al-XFy interface and thick protective layers both affect the overall optical performance, leading to diminished reflection at shorter wavelengths. To address these long-standing shortcomings of coatings, we will use our newly developed processes and equipment to produce high-quality single- and multi-layer films of a variety of dielectrics and metals deposited with nano-scale control. JPL s new ALD system affords high uniformity, low oxygen background, good plasma processes, and precise temperature control, which are vital to achieving the large scale, uniform, and ultrathin films that are free of oxygen at interfaces. For example, ALD-grown aluminum can be protected using our newly developed chemistry for ALD magnesium fluoride. Our work will verify that the ALD technique reliably prevents the oxidation of aluminum, and will subsequently be

  14. Crosslinked Polyamide

    DOEpatents

    Huang, Zhi H.; McDonald, William F.; Wright, Stacy C.; Taylor, Andrew C.

    2002-06-04

    A crosslinked polyamide material and a process for preparing the crosslinked polyamide material are disclosed. The crosslinked polyamide material comprises a crosslinked chemical combination of (1) a polyamide of the formula: ##STR1## wherein n is between about 50 and 10,000, wherein each R is between 1 and 50 carbon atoms alone and is optionally substituted with heteroatoms, oxygen, nitrogen, sulfur, or phosphorus and combinations thereof, wherein multiple of the R are in vertically aligned spaced relationship along a backbone forming the polyamide, and wherein two or more of the R contain an amino group; and (2) a crosslinking agent containing at least two functional groups capable of reacting with the amino groups of the polyamide. In one embodiment of the invention, the crosslinking agent is an aliphatic or aromatic isocyanate compound having 2 or more --N.dbd.C.dbd.O groups. In another embodiment of the invention, the crosslinking agent is an aliphatic aldehyde or aromatic aldehyde compound having 2 or more --CHO groups. In still another embodiment of the invention, the crosslinking agent is selected from a phosphine having the general formula (A).sub.2 P(B) and mixtures thereof, wherein A is hydroxyalkyl, and B is hydroxyalkyl, alkyl, or aryl. In yet another embodiment of the invention, the crosslinking agent is selected from the group consisting of epoxy resins having more than one epoxide group per molecule.

  15. Highly Stable and Porous Cross-Linked Polymers for Efficient Photocatalysis

    SciTech Connect

    Xie, Zhigang; Wang, Cheng; deKrafft, Kathryn E.; Lin, Wenbin

    2011-02-23

    Porous cross-linked polymers (PCPs) with phosphorescent [Ru(bpy)₃]{sup 2+} and [Ir(ppy)₂(bpy)]{sup +} building blocks were obtained via octacarbonyldicobalt (Co₂(CO)₈)-catalyzed alkyne trimerization reactions. The resultant Ru- and Ir-PCPs exhibited high porosity with specific surface areas of 1348 and 1547 m²/g, respectively. They are thermally stable at up to 350 °C in air and do not dissolve or decompose in all solvents tested, including concentrated hydrochloric acid. The photoactive PCPs were shown to be highly effective, recyclable, and reusable heterogeneous photocatalysts for aza-Henry reactions, α-arylation of bromomalonate, and oxyamination of an aldehyde, with catalytic activities comparable to those of the homogeneous [Ru(bpy)₃]{sup 2+} and [Ir(ppy)₂(bpy)]{sup +} photocatalysts. This work highlights the potential of developing photoactive PCPs as highly stable, molecularly tunable, and recyclable and reusable heterogeneous photocatalysts for a variety of important organic transformations.

  16. Highly cross-linked, electron-beam-irradiated, melted polyethylene: some pros.

    PubMed

    Harris, William H

    2004-12-01

    Extensive new evidence generated within the past the year provides strong support for the use of electron-beam highly cross-linked, subsequently melted ultra-high molecular weight polyethylene in total hip replacement arthroplasty. In terms of wear reduction, three studies involving three different demographic groups and two different measurement techniques have found that the femoral head penetration with this type of polyethylene after bedding in has finished taking place is less than 10 micra per year. This wear rate is similar to the wear rate of metal-on-metal and ceramic-on-ceramic articulations. Retrieval specimens up to 3 years after insertion confirmed the minimal wear by exhibiting persisting machine marks throughout the inside diameter of the liner. Extensive studies show no evidence of oxidation, confirming the absence of residual free radicals. No evidence of fatigue failure exists except three known cases out of 150,000, in which malposition of the acetabular component produced abnormally high contact stresses on unsupported polyethylene. The in vivo wear, oxidation resistance, and mechanical properties of this alternative bearing material are excellent, with in vivo durations now exceeding five years. The other major advantages over hard-on-hard bearings including familiarity, adaptability, forgiveness, and cost seem to be compelling. PMID:15577467

  17. Chemical immobilization of crosslinked polymeric ionic liquids on nitinol wires produces highly robust sorbent coatings for solid-phase microextraction.

    PubMed

    Ho, Tien D; Toledo, Bruna R; Hantao, Leandro W; Anderson, Jared L

    2014-09-16

    Super elastic nitinol (NiTi) wires were exploited as highly robust supports for three distinct crosslinked polymeric ionic liquid (PIL)-based coatings in solid-phase microextraction (SPME). The oxidation of NiTi wires in a boiling (30%w/w) H2O2 solution and subsequent derivatization in vinyltrimethoxysilane (VTMS) allowed for vinyl moieties to be appended to the surface of the support. UV-initiated on-fiber copolymerization of the vinyl-substituted NiTi support with monocationic ionic liquid (IL) monomers and dicationic IL crosslinkers produced a crosslinked PIL-based network that was covalently attached to the NiTi wire. This alteration alleviated receding of the coating from the support, which was observed for an analogous crosslinked PIL applied on unmodified NiTi wires. A series of demanding extraction conditions, including extreme pH, pre-exposure to pure organic solvents, and high temperatures, were applied to investigate the versatility and robustness of the fibers. Acceptable precision of the model analytes was obtained for all fibers under these conditions. Method validation by examining the relative recovery of a homologous group of phthalate esters (PAEs) was performed in drip-brewed coffee (maintained at 60 °C) by direct immersion SPME. Acceptable recoveries were obtained for most PAEs in the part-per-billion level, even in this exceedingly harsh and complex matrix. PMID:25150693

  18. Nanovoid formation in cross-linked epoxy and poly(dicyclopentadiene) networks during high strain rate deformation

    NASA Astrophysics Data System (ADS)

    Elder, Robert M.; Knorr, Daniel B., Jr.; Lenhart, Joseph L.; Andzelm, Jan W.; Sirk, Timothy W.

    2015-03-01

    Cross-linked polymer networks are widely used as structural and protective materials under extremes of temperature, pressure, or strain rate. In particular, substantial effort has been devoted to improving the high strain rate impact resistance of epoxy resins. Although epoxy resins are widely used in applications requiring impact resistance, epoxy resins with the strength and stiffness necessary in structural applications typically have poor toughness. Recent work showed that other chemistries in cross-linked polymers can overcome this trade-off between strength and toughness. Specifically, cross-linked polydicyclopentadiene (pDCPD) was found to have exceptional performance compared to epoxy resins, which is related to the high toughness of pDCPD. Based on the physicochemical properties of epoxy and pDCPD, it was hypothesized that the excellent toughness of pDCPD was due to the formation and growth of nanovoids during impact events. Void growth dissipates energy that otherwise would contribute to failure. We use atomistic molecular dynamics simulations to quantify void formation in these cross-linked polymer networks and to examine the molecular-level properties of the voids. Our findings suggest methods to increase void formation and growth, which may improve toughness.

  19. Textural performance of crosslinked or reduced-calcium milk protein ingredients in model high-protein nutrition bars.

    PubMed

    Banach, J C; Clark, S; Metzger, L E; Lamsal, B P

    2016-08-01

    Transglutaminase (Tgase) crosslinking and calcium reduction were investigated as ways to improve the texture and storage stability of high-protein nutrition (HPN) bars formulated with milk protein concentrate (MPC) and micellar casein concentrate (MCC). The MPC and MCC crosslinked at none, low, and high levels, and a reduced-calcium MPC (RCMPC) were each formulated into model HPN bars. Hardness, crumbliness, moisture content, pH, color, and water activity of the HPN bars were measured during accelerated storage. The HPN bars prepared with MPC were harder and more cohesive than those prepared with MCC. Higher levels of Tgase crosslinking improved HPN bar cohesiveness and decreased hardening during storage. The RCMPC produced softer, yet crumblier HPN bars. Small textural differences were observed for the HPN bars formulated with the transglutaminase crosslinked proteins or RCMPC when compared with their respective controls. However, modification only slightly improved protein ingredient ability to slow hardening while balancing cohesion and likely requires further improvement for increased applicability in soft-texture HPN bars. PMID:27236767

  20. Total Hip Arthroplasty Using Metal Head on a Highly Cross-linked Polyethylene Liner

    PubMed Central

    Kim, Min-Yook; Park, Ji-Hoon; Lee, Jung-Ho

    2015-01-01

    Purpose This retrospective study was performed to evaluate the clinical results and measure polyethylene liner wear in total hip arthroplasty (THA) with highly cross-linked polyethylene. Materials and Methods Except for patients who had died or were unable to have follow-up at least 2 years, 60 of 78 hips that underwent THA were included this study. The mean age was 64.5 years (range, 25-81 years) and the mean body mass index (BMI) was 23.0 kg/m2 (18.1-32.3 kg/m2). Diagnosis at the time of the operation was osteonecrois of the femoral head in 28 hips, primary osteoarthritis in 14, hip fracture in 13, and other diseases in 5. The mean follow-up period was 3.8 years (2.1-7.1 years). Harris hip score (HHS) was reviewed before THA and at the last follow-up. On the anteroposterior pelvic radiographs, acetabular cup inclination and ante-version were also measured. The annual linear wear rate was measured using Livermore's method on the radiographs. Results The mean HHS was 60.1 (28-94) before operation and 90.4 (47-100) at the last follow-up. In the immediate post-operation, the average inclination and anteversion angles of the acetabular cups were 46.3° (standard deviation, ±6.7°) and, 21.4°(±10.1°) respectively. The mean of the annual linear polyethylene wear was 0.079 mm/year (0.001-0.291 mm/year). Age, gender and BMI were not statistically related to linear polyethylene wear but the period of follow-up and the acetabular cup's inclination showed significant negative and positive correlation respectively. Conclusion The wear rate of a highly cross-linked polyethylene was shown to correlate negatively with duration of follow-up. However, our study was based on a short-term follow-up, so a long-term follow-up study is necessary in the future. PMID:27536629

  1. High internal quantum efficiency in fullerene solar cells based on crosslinked polymer donor networks

    PubMed Central

    Liu, Bo; Png, Rui-Qi; Zhao, Li-Hong; Chua, Lay-Lay; Friend, Richard H.; Ho, Peter K.H.

    2012-01-01

    The power conversion efficiency of organic photovoltaic cells depends crucially on the morphology of their donor–acceptor heterostructure. Although tremendous progress has been made to develop new materials that better cover the solar spectrum, this heterostructure is still formed by a primitive spontaneous demixing that is rather sensitive to processing and hence difficult to realize consistently over large areas. Here we report that the desired interpenetrating heterostructure with built-in phase contiguity can be fabricated by acceptor doping into a lightly crosslinked polymer donor network. The resultant nanotemplated network is highly reproducible and resilient to phase coarsening. For the regioregular poly(3-hexylthiophene):phenyl-C61-butyrate methyl ester donor–acceptor model system, we obtained 20% improvement in power conversion efficiency over conventional demixed biblend devices. We reached very high internal quantum efficiencies of up to 0.9 electron per photon at zero bias, over an unprecedentedly wide composition space. Detailed analysis of the power conversion, power absorbed and internal quantum efficiency landscapes reveals the separate contributions of optical interference and donor–acceptor morphology effects. PMID:23271655

  2. Wear Measurement of Highly Cross-linked UHMWPE using a 7Be Tracer Implantation Technique

    SciTech Connect

    Wimmer, Markus A.; Laurent, Michael P.; Dwivedi, Yasha; Gallardo, Luis A.; Chipps, K.; Blackmon, Jeffery C; Kozub, R. L.; Bardayan, Daniel W; Gross, Carl J; Stracener, Daniel W; Smith, Michael Scott; Nesaraja, Caroline D; Erikson, Luke; Patel, Nidhi; Rehm, Karl E.; Ahmad, Irshad; Greene, John P.; Greife, Uwe

    2013-01-01

    The very low wear rates achieved with the current highly cross-linked ultrahigh molecular weight polyethylenes (UHMWPE) used in joint prostheses have proven to be difficult to measure accurately by gravimetry. Tracer methods are there- fore being explored. The purpose of this study was to perform a proof-of-concept experiment on the use of the radioactive tracer beryllium-7 (7Be) for the determination of in vitro wear in a highly cross-linked orthopedic UHMWPE. Three cross-linked and four conventional UHMWPE pins made from compression- molded GUR 1050, were activated with 109 to 1010 7Be nuclei using a new implantation setup that produced a homogenous distribution of implanted nuclei up to 8.5 lm below the surface. The pins were tested for wear in a six-station pin-on-flat appara- tus for up to 7.1 million cycles (178 km). A Germanium gamma detector was employed to determine activity loss of the UHMWPE pins at preset intervals during the wear test. The wear of the cross-linked UHMWPE pins was readily detected and esti- mated to be 17 6 3 lg per million cycles. The conventional-to- cross-linked ratio of the wear rates was 13.1 6 0.8, in the expected range for these materials. Oxidative degradation dam- age from implantation was negligible; however, a weak depend- ence of wear on implantation dose was observed limiting the number of radioactive tracer atoms that can be introduced. Future applications of this tracer technology may include the analysis of location-specific wear, such as loss of material in the post or backside of a tibial insert.

  3. Experiments Enabled by a New High-Resolution Positron Beam

    NASA Astrophysics Data System (ADS)

    Natisin, Mike; Danielson, James; Surko, Cliff

    2016-05-01

    The ability to make state-resolved measurements of positron interactions with atoms and molecules is limited by difficulties encountered in creating beams with narrow energy spreads. Recent experiments and simulations of buffer gas positron cooling and trap-based beam formation have enabled the design and construction of a cryogenic buffer-gas trap with total beam energy spreads as low as 7 meV FWHM and temporal spreads of sub-microsecond duration. The potential effect of this narrow energy spread on the ability to probe new physics in positron scattering and annihilation experiments will be discussed. For example, beams with such energy spreads are expected to enable the first measurements of state-resolved excitation of molecular rotations by positron impact (i.e., H2). Further, these narrow spreads and resulting enhanced resolving power are expected to permit the study of new features in annihilation energy spectra, such as possible overtone, combination, and IR-inactive vibrational modes in Feshbach-resonant positron annihilation. Work supported by NSF Grant PHY-1401794.

  4. A Highly Elastic and Rapidly Crosslinkable Elastin-Like Polypeptide-Based Hydrogel for Biomedical Applications

    PubMed Central

    Zhang, Yi-Nan; Avery, Reginald K.; Vallmajo-Martin, Queralt; Assmann, Alexander; Vegh, Andrea; Memic, Adnan; Olsen, Bradley D.

    2015-01-01

    Elastin-like polypeptides (ELPs) are promising for biomedical applications due to their unique thermoresponsive and elastic properties. ELP-based hydrogels have been produced through chemical and enzymatic crosslinking or photocrosslinking of modified ELPs. Herein, a photocrosslinked ELP gel using only canonical amino acids is presented. The inclusion of thiols from a pair of cysteine residues in the ELP sequence allows disulfide bond formation upon exposure to UV light, leading to the formation of a highly elastic hydrogel. The physical properties of the resulting hydrogel such as mechanical properties and swelling behavior can be easily tuned by controlling ELP concentrations. The biocompatibility of the engineered ELP hydrogels is shown in vitro as well as corroborated in vivo with subcutaneous implantation of hydrogels in rats. ELP constructs demonstrate long-term structural stability in vivo, and early and progressive host integration with no immune response, suggesting their potential for supporting wound repair. Ultimately, functionalized ELPs demonstrate the ability to function as an in vivo hemostatic material over bleeding wounds. PMID:26523134

  5. Effect of acetabular orientation on stress distribution of highly cross-linked polyethylene liners.

    PubMed

    Lam, Luthan; Drew, Timothy; Boscainos, Petros

    2013-11-01

    Several case reports have documented the fracture of highly cross-linked polyethylene (HCLPE) liners used in total hip arthroplasty (THA). Although uncommon, fractured liners result in considerable morbidity for patients and require revision surgery. One postulated mechanism that leads to this type of implant failure is malorientation of the acetabular component. The purpose of this study was to investigate the effect of acetabular orientation on the stress distribution of HCLPE liners used in THA by means of finite element analysis. Three-dimensional models of a commonly used HCLPE liner were created corresponding to 12 different acetabular component orientations (inclination ranging from 20° to 70° and version ranging from 20° of retroversion to 40° of anteversion). A static stress analysis of the finite element models was performed under conditions simulating peak gait loads. The results of the analysis revealed that excessive inclination and extremes of version were associated with an increase in peak stress magnitudes. The locations of peak stress also were found to lie within the rim notch and locking ring groove regions, which were consistent with the fracture locations reported in published case reports. Therefore, the acetabular component should be oriented carefully during implantation to reduce the risk of rim loading and subsequent liner fracture. In addition, an alternative liner design may further help reduce stress risers and risk of fracture. PMID:24200436

  6. Cross-linked lysozyme crystal templated synthesis of Au nanoparticles as high-performance recyclable catalysts

    NASA Astrophysics Data System (ADS)

    Liang, Miao; Wang, Libing; Liu, Xia; Qi, Wei; Su, Rongxin; Huang, Renliang; Yu, Yanjun; He, Zhimin

    2013-06-01

    Bio-nanomaterials fabricated using a bioinspired templating technique represent a novel class of composite materials with diverse applications in biomedical, electronic devices, drug delivery, and catalysis. In this study, Au nanoparticles (NPs) are synthesized within the solvent channels of cross-linked lysozyme crystals (CLLCs) in situ without the introduction of extra chemical reagents or physical treatments. The as-prepared AuNPs-in-protein crystal hybrid materials are characterized by light microscopy, transmission electron microscopy, x-ray diffraction, and Fourier-transform infrared spectroscopy analyses. Small AuNPs with narrow size distribution reveal the restriction effects of the porous structure in the lysozyme crystals. These composite materials are proven to be active heterogeneous catalysts for the reduction of 4-nitrophenol to 4-aminophenol. These catalysts can be easily recovered and reused at least 20 times because of the physical stability and macro-dimension of CLLCs. This work is the first to use CLLCs as a solid biotemplate for the preparation of recyclable high-performance catalysts.

  7. Failure property distributions for conventional and highly crosslinked ultrahigh molecular weight polyethylenes.

    PubMed

    Kurtz, S M; Bergström, J; Rimnac, C M

    2005-05-01

    To make stochastic (probabilistic) failure predictions of a conventional or highly crosslinked ultrahigh molecular weight polyethylene (UHMWPE) material, not only must a failure criterion be defined, but it is also necessary to specify a probability distribution of the failure strength. This study sought to evaluate both parametric and nonparametric statistical approaches to describing the failure properties of UHMWPE, based on the Normal and Weibull model distributions, respectively. Because fatigue and fracture properties of materials have historically been well described with the use of Weibull statistics, it was expected that a nonparametric approach would provide a better fit of the failure distributions than the parametric approach. The ultimate true stress, true strain, and ultimate chain stretch data at failure were analyzed from 60 tensile tests conducted previously. The ultimate load and ultimate displacement from 121 small punch tests conducted previously were also analyzed. It was found that both Normal and Weibull models provide a reasonable description of the central tendency of the failure distribution. The principal difference between the Normal and Weibull models can be appreciated in the predicted lower-bound response at the tail end of the distribution. The data support the use of both parametric and nonparametric methods to bracket the lower-bound failure prediction in order to simulate the failure threshold for UHMWPE. PMID:15772963

  8. Furan-modified oligonucleotides for fast, high-yielding and site-selective DNA inter-strand cross-linking with non-modified complements†

    PubMed Central

    Stevens, Kristof; Madder, Annemieke

    2009-01-01

    Among the various types of DNA damage, inter-strand cross-links (ICL) represent one of the most cytotoxic lesions. Processes such as transcription and replication can be fully blocked by ICLs, as shown by the mechanism of action of some anticancer drugs. However, repair of ICLs can be a possible cause of resistance. To study the mechanisms of cross-link repair stable, site-specifically cross-linked duplexes are needed. We here report on the synthesis of site-specifically cross-linked DNA using an acyclic furan containing nucleoside. Selective in situ oxidation of the incorporated furan moiety generates a highly reactive oxo-enal that instantly reacts with the complementary base in a non-modified strand, yielding one specific stable cross-linked duplex species. Varying sequence context showed that a strong selectivity for cross-linking to either complementary A or complementary C is operating, without formation of cross-links to neighboring or distant bases. Reaction times are very short and high isolated yields are obtained using only one equivalent of modified strand. The formed covalent link is stable and the isolated cross-linked duplexes can be stored for several months without degradation. Structural characterization of the obtained ICL was possible by comparison to the natural mutagenic adducts of cis-2-butene-1,4-dial, a metabolite of furan primarily responsible for furan carcinogenicity. PMID:19151089

  9. Scratching vulnerability of conventional vs highly cross-linked polyethylene liners because of large embedded third-body particles.

    PubMed

    Heiner, Anneliese D; Galvin, Alison L; Fisher, John; Callaghan, John J; Brown, Thomas D

    2012-05-01

    The hypothesis of this study was that acetabular liner vulnerability to scratching from femoral heads, roughened by third bodies embedded in the liner, is not significantly lower for highly cross-linked polyethylene (HXPE) than for conventional polyethylene (CPE). Six CPE and 6 HXPE acetabular liners were each reproducibly embedded with 5 cobalt-chromium-molybdenum (CoCrMo) beads then run for 10,000 cycles in a joint simulator. By visual rank ordering, there was low association between liner scratch severity and polyethylene type. The CPE and HXPE liner scratches were not significantly different in scratch peak-valley height or width or in liner roughness in the vicinity of the embedded beads. This model indicated that high cross-linking of polyethylene does not offer appreciable protection against severe scratching induced by large embedded third-body particles. PMID:22115764

  10. Removal of highly crosslinked resists and hybrid polymers for single micro parts fabrication and nanoimprint stamp rework

    NASA Astrophysics Data System (ADS)

    Voigt, Anja; Engelke, Rainer; Ahrens, Gisela; Bullerjahn, Franziska; Schleunitz, Arne; Klein, Jan J.; Grützner, Gabi

    2014-03-01

    Thick photoresists, e.g. up to 1 mm layer thickness, are widely used for the manufacture of high aspect ratio microstructures, e.g. as mould for the fabrication of metallic micro parts. Such resists or materials exhibit high mechanical and chemical stability to non-deformably withstand a pattern transfer process, e.g. by electroplating. After the pattern transfer a solvent based removal is difficult or not possible in many cases. A selective mould removal - without the damage of electroplated metal structures - is required for the fabrication of single micro parts. As second application example UV curable and strongly crosslinkable inorganic-organic hybrid polymers such as OrmoComp ® and OrmoStamp ® are used in UV moulding. The cleaning and rework of these moulds or also of stamps for nanoimprint lithography (NIL) is a challenging task with increasing importance. The life time of an expensive master mould or stamp as well as of the replicated working stamps is important, and therefore the ability to rework such stamps without any defect or decreased resolution. Hence, we demonstrate the application of a plasma-assisted removal using the STP 2020 etching tool from MUEGGE [1] for remote dry etching of strongly crosslinked materials, i.e. the development of processes for the isotropical etching of highly crosslinked photoresists and hybrid polymer materials will be presented. In combination with this specific etching tool this technique shows a high potential to make plasma-assisted removal ready for industrial production.

  11. Anisotropy and oxidative resistance of highly crosslinked UHMWPE after deformation processing by solid-state ram extrusion.

    PubMed

    Kurtz, Steven M; Mazzucco, Dan; Rimnac, Clare M; Schroeder, Dave

    2006-01-01

    Solid-state deformation processing is a promising technique for modifying the physical and mechanical properties of highly crosslinked ultra-high molecular weight polyethylene (UHMWPE) beyond simple thermal treatment cycles that have been employed previously. This study evaluates anisotropy and oxidative resistance in a novel, radiation crosslinked (50 kGy) UHMWPE material (ArComXL: Biomet, Inc., Warsaw, IN), incorporating solid-state, deformation processing by extrusion below the melt transition for application in total hip arthroplasty. Tensile, compression, and small punch tests were conducted to evaluate the material properties in the three principal axes of the resulting material. Furthermore, short-term oxidative resistance was evaluated using Fourier transform infrared spectroscopy and the small punch test in conjunction with accelerated shelf aging protocols. The results of this testing indicate that the material is anisotropic, with significantly enhanced strength oriented along the long axis of the rod. For certain other properties, the magnitude of the anisotropy was relatively slight, especially in the elastic regime, in which only a 20% difference was noted between the long axis of the rod and the orthogonal, radial direction. The highly crosslinked material contains detectable free radicals, at a concentration that is 90% less than control, gamma inert sterilized UHMWPE. An unexpected finding of this study was evidence of oxidative stability of the deformation-processed material, even after 4 weeks of accelerated aging in a pressure vessel containing five atmospheres of oxygen (ASTM F2003), which resulted in macroscopic embrittlement of the control material. The oxidative stability observed in ArComXL suggests that the deformation-processed material may be suitable for air-permeable packaging and gas sterilization, which has thus far been reserved for remelted highly crosslinked UHMWPE. PMID:16085308

  12. In-vivo degradation of middle-term highly cross-linked and remelted polyethylene cups: Modification induced by creep, wear and oxidation.

    PubMed

    Miura, Yoshihiro; Hasegawa, Masahiro; Sudo, Akihiro; Pezzotti, Giuseppe; Puppulin, Leonardo

    2015-11-01

    In this study Raman (RS) and Fourier Transform Infrared (FT-IR) spectroscopic techniques were exploited to study 11 retrieved liners made of remelted highly cross-linked polyethylene (HXLPE), with the intent to elucidate their in-vivo mechanical and chemical degradation. The retrievals had different follow-ups, ranging from a few months to 7 years of implantation time and belong to the first generation of highly cross-linked and remelted polyethylene clinically introduced in 1999, but still currently implanted. Raman assessments enabled to discriminate contributes of wear and creep on the total reduction of thickness in different locations of the cup. According to our results, although the most of the viscoelastic deformation occurred during the first year (bedding-in period), it progressed during the steady wear state up to 7 years with much lower but not negligible rate. Overall, the wear rate of this remelted HXLPE liner was low. Preliminary analysis on microtomed sections of the liners after in-vivo and in-vitro accelerated aging (ASTM F2003-02) enabled to obtain a phenomenological correlation between the oxidation index (OI) and the amount of orthorhombic phase fraction (αc), which can be easily non-destructively measured by RS. Profiles of αc obtained from different locations of the cups were used to judge the oxidative degradation of the 11 retrievals, considering also the ex-vivo time elapsed from the revision surgery to the spectroscopic experiments. Low but measurable level of oxidation was detected in all the short-term retrievals, while in the middle-term samples peaks of OI were observed in the subsurface (up to OI=4.5), presumably induced by the combined effect of mechanical stress, lipid absorption and prolonged ex-vivo shelf-aging in air. PMID:26202469

  13. A microfluidic device enabling high-efficiency single cell trapping.

    PubMed

    Jin, D; Deng, B; Li, J X; Cai, W; Tu, L; Chen, J; Wu, Q; Wang, W H

    2015-01-01

    Single cell trapping increasingly serves as a key manipulation technique in single cell analysis for many cutting-edge cell studies. Due to their inherent advantages, microfluidic devices have been widely used to enable single cell immobilization. To further improve the single cell trapping efficiency, this paper reports on a passive hydrodynamic microfluidic device based on the "least flow resistance path" principle with geometry optimized in line with corresponding cell types. Different from serpentine structure, the core trapping structure of the micro-device consists of a series of concatenated T and inverse T junction pairs which function as bypassing channels and trapping constrictions. This new device enhances the single cell trapping efficiency from three aspects: (1) there is no need to deploy very long or complicated channels to adjust flow resistance, thus saving space for each trapping unit; (2) the trapping works in a "deterministic" manner, thus saving a great deal of cell samples; and (3) the compact configuration allows shorter flowing path of cells in multiple channels, thus increasing the speed and throughput of cell trapping. The mathematical model of the design was proposed and optimization of associated key geometric parameters was conducted based on computational fluid dynamics (CFD) simulation. As a proof demonstration, two types of PDMS microfluidic devices were fabricated to trap HeLa and HEK-293T cells with relatively significant differences in cell sizes. Experimental results showed 100% cell trapping and 90% single cell trapping over 4 × 100 trap sites for these two cell types, respectively. The space saving is estimated to be 2-fold and the cell trapping speed enhancement to be 3-fold compared to previously reported devices. This device can be used for trapping various types of cells and expanded to trap cells in the order of tens of thousands on 1-cm(2) scale area, as a promising tool to pattern large-scale single cells on specific

  14. The Incidence of Acetabular Osteolysis in Young Patients With Conventional versus Highly Crosslinked Polyethylene

    PubMed Central

    Mall, Nathan A.; Nunley, Ryan M.; Zhu, Jin Jun; Maloney, William J.; Barrack, Robert L.

    2010-01-01

    Background Osteolysis is a major mode of hip implant failure. Previous literature has focused on the amount of polyethylene wear comparing highly crosslinked polyethylene (HXPLE) with conventional liners but has not clarified the relative incidence of osteolysis with these two liners. Questions/purposes We determined (1) the incidence of osteolysis in HXLPE versus conventional polyethylene (CPE), (2) the ability to detect and evaluate the size of lytic lesions using radiographs compared with CT scans, (3) head penetration in hips without and with lysis, and (4) determined whether acetabular position, head size, and UCLA activity score contributed to lysis. Methods We compared head penetration and osteolysis on plain radiographs and presence and volume of osteolysis on CT scans in 48 patients with HXLPE (mean, 46.5 years) and 50 patients with CPE (mean, 43.2 years). The minimum followup was 5 years (average, 7.2 years; range, 5.1–10.9 years), Results Osteolysis was apparent on CT in a larger number of patients with CPE liners than HXLPE liners: 12 of 50 (24%) versus one of 48 (2%), respectively. We found no correlation between head penetration and volume of osteolytic lesions. Head penetration was greater in patients with osteolysis. Smaller head sizes were associated with greater wear and those with osteolysis had smaller head sizes; however, there was no difference in acetabular component position or UCLA activity in those with lysis compared with those without. Conclusions HXLPE diminished the incidence of osteolysis, but the lack of correlation between penetration and volume of osteolysis suggests other factors other than wear contribute to the development of osteolysis. Level of Evidence Level III, therapeutic study. See Guidelines for Authors for a complete description of levels of evidence. PMID:20824407

  15. FLUIDIZED BED STEAM REFORMING ENABLING ORGANIC HIGH LEVEL WASTE DISPOSAL

    SciTech Connect

    Williams, M

    2008-05-09

    Waste streams planned for generation by the Global Nuclear Energy Partnership (GNEP) and existing radioactive High Level Waste (HLW) streams containing organic compounds such as the Tank 48H waste stream at Savannah River Site have completed simulant and radioactive testing, respectfully, by Savannah River National Laboratory (SRNL). GNEP waste streams will include up to 53 wt% organic compounds and nitrates up to 56 wt%. Decomposition of high nitrate streams requires reducing conditions, e.g. provided by organic additives such as sugar or coal, to reduce NOX in the off-gas to N2 to meet Clean Air Act (CAA) standards during processing. Thus, organics will be present during the waste form stabilization process regardless of the GNEP processes utilized and exists in some of the high level radioactive waste tanks at Savannah River Site and Hanford Tank Farms, e.g. organics in the feed or organics used for nitrate destruction. Waste streams containing high organic concentrations cannot be stabilized with the existing HLW Best Developed Available Technology (BDAT) which is HLW vitrification (HLVIT) unless the organics are removed by pretreatment. The alternative waste stabilization pretreatment process of Fluidized Bed Steam Reforming (FBSR) operates at moderate temperatures (650-750 C) compared to vitrification (1150-1300 C). The FBSR process has been demonstrated on GNEP simulated waste and radioactive waste containing high organics from Tank 48H to convert organics to CAA compliant gases, create no secondary liquid waste streams and create a stable mineral waste form.

  16. WEAR RESISTANCE AND MECHANICAL PROPERTIES OF HIGHLY CROSSLINKED UHMWPE DOPED WITH VITAMIN-E

    PubMed Central

    Oral, Ebru; Christensen, Steven D.; Malhi, Arnaz S.; Wannomae, Keith K.; Muratoglu, Orhun K.

    2008-01-01

    Our hypothesis was that cross-linked UHMWPE stabilized with vitamin-E would be wear and fatigue resistant. Acetabular liners were radiation cross-linked, doped with vitamin E and γ-sterilized. Hip simulator wear rate of vitamin E-stabilized UHMWPE was approximately 1 and 6 mg/million-cycles in clean serum and in serum with third-body bone cement particles, respectively; a four to ten-fold decrease from that of conventional UHMWPE. The ultimate strength, yield strength, elongation-at-break and fatigue resistance of vitamin E-stabilized UHMWPE were significantly higher than that of 100-kGy irradiated and melted UHMWPE and were unaffected by accelerated aging. Rim impingement testing with 3.7 mm-thick acetabular liners up to 2 million-cycles showed no significant damage of the cross-linked liners compared to conventional, gamma-sterilized in inert UHMWPE vitamin-E stabilized liners. The data indicate good wear properties and improved mechanical and fatigue properties for vitamin-E stabilized cross-linked UHMWPE. PMID:16781413

  17. Temperature dependence of creep compliance of highly cross-linked epoxy: A molecular simulation study

    SciTech Connect

    Khabaz, Fardin Khare, Ketan S. Khare, Rajesh

    2014-05-15

    We have used molecular dynamics (MD) simulations to study the effect of temperature on the creep compliance of neat cross-linked epoxy. Experimental studies of mechanical behavior of cross-linked epoxy in literature commonly report creep compliance values, whereas molecular simulations of these systems have primarily focused on the Young’s modulus. In this work, in order to obtain a more direct comparison between experiments and simulations, atomistically detailed models of the cross-linked epoxy are used to study their creep compliance as a function of temperature using MD simulations. The creep tests are performed by applying a constant tensile stress and monitoring the resulting strain in the system. Our results show that simulated values of creep compliance increase with an increase in both time and temperature. We believe that such calculations of the creep compliance, along with the use of time temperature superposition, hold great promise in connecting the molecular insight obtained from molecular simulation at small length- and time-scales with the experimental behavior of such materials. To the best of our knowledge, this work is the first reported effort that investigates the creep compliance behavior of cross-linked epoxy using MD simulations.

  18. Phase Change of Gallium Enables Highly Reversible and Switchable Adhesion.

    PubMed

    Ye, Zhou; Lum, Guo Zhan; Song, Sukho; Rich, Steven; Sitti, Metin

    2016-07-01

    Gallium exhibits highly reversible and switchable adhesion when it undergoes a solid-liquid phase transition. The robustness of gallium is notable as it exhibits strong performance on a wide range of smooth and rough surfaces, under both dry and wet conditions. Gallium may therefore find numerous applications in transfer printing, robotics, electronic packaging, and biomedicine. PMID:27146217

  19. Plant respirometer enables high resolution of oxygen consumption rates

    NASA Technical Reports Server (NTRS)

    Foster, D. L.

    1966-01-01

    Plant respirometer permits high resolution of relatively small changes in the rate of oxygen consumed by plant organisms undergoing oxidative metabolism in a nonphotosynthetic state. The two stage supply and monitoring system operates by a differential pressure transducer and provides a calibrated output by digital or analog signals.

  20. High-contrast and fast electrochromic switching enabled by plasmonics

    DOE PAGESBeta

    Xu, Ting; Walter, Erich C.; Agrawal, Amit; Bohn, Christopher; Velmurugan, Jeyavel; Zhu, Wenqi; Lezec, Henri J.; Talin, A. Alec

    2016-01-27

    With vibrant colours and simple, room-temperature processing methods, electrochromic polymers have attracted attention as active materials for flexible, low-power-consuming devices. However, slow switching speeds in devices realized to date, as well as the complexity of having to combine several distinct polymers to achieve a full-colour gamut, have limited electrochromic materials to niche applications. Here we achieve fast, high-contrast electrochromic switching by significantly enhancing the interaction of light—propagating as deep-subwavelength-confined surface plasmon polaritons through arrays of metallic nanoslits, with an electrochromic polymer—present as an ultra-thin coating on the slit sidewalls. The switchable configuration retains the short temporal charge-diffusion characteristics of thinmore » electrochromic films, while maintaining the high optical contrast associated with thicker electrochromic coatings. In conclusion, we further demonstrate that by controlling the pitch of the nanoslit arrays, it is possible to achieve a full-colour response with high contrast and fast switching speeds, while relying on just one electrochromic polymer.« less

  1. High-contrast and fast electrochromic switching enabled by plasmonics

    NASA Astrophysics Data System (ADS)

    Xu, Ting; Walter, Erich C.; Agrawal, Amit; Bohn, Christopher; Velmurugan, Jeyavel; Zhu, Wenqi; Lezec, Henri J.; Talin, A. Alec

    2016-01-01

    With vibrant colours and simple, room-temperature processing methods, electrochromic polymers have attracted attention as active materials for flexible, low-power-consuming devices. However, slow switching speeds in devices realized to date, as well as the complexity of having to combine several distinct polymers to achieve a full-colour gamut, have limited electrochromic materials to niche applications. Here we achieve fast, high-contrast electrochromic switching by significantly enhancing the interaction of light--propagating as deep-subwavelength-confined surface plasmon polaritons through arrays of metallic nanoslits, with an electrochromic polymer--present as an ultra-thin coating on the slit sidewalls. The switchable configuration retains the short temporal charge-diffusion characteristics of thin electrochromic films, while maintaining the high optical contrast associated with thicker electrochromic coatings. We further demonstrate that by controlling the pitch of the nanoslit arrays, it is possible to achieve a full-colour response with high contrast and fast switching speeds, while relying on just one electrochromic polymer.

  2. High-contrast and fast electrochromic switching enabled by plasmonics

    NASA Astrophysics Data System (ADS)

    Talin, Albert; Xu, Ting; Walter, Erich; Agrawal, Amit; Bohn, Christopher; Velmurugan, Jeyavel; Zhu, Wenqi; Lezec, Henri

    With vibrant colors and simple, room-temperature processing methods, electrochromic polymers have long attracted attention as active materials for flexible, low-power consuming devices such as smart windows and displays. However, despite their many advantages, slow switching speed and complexity of combining several separate polymers to achieve full-color gamut has limited electrochromic materials to niche applications. Here we exploit the enhanced light-matter interaction associated with the deep-subwavelength mode confinement of surface plasmon polaritons propagating in metallic nanoslit arrays coated with ultra-thin electrochromic polymers to build a novel configuration for achieving high-contrast and fast electrochromic switching. The switchable configuration retains the short temporal charge-diffusion characteristics of thin electrochromic films while maintaining the high optical-contrast associated with thicker electrochromic coatings. We further demonstrate that by controlling the pitch of the nanoslit arrays, it is possible to achieve a full-color response with high-contrast and fast switching-speeds while relying on just one electrochromic polymer.

  3. High-contrast and fast electrochromic switching enabled by plasmonics.

    PubMed

    Xu, Ting; Walter, Erich C; Agrawal, Amit; Bohn, Christopher; Velmurugan, Jeyavel; Zhu, Wenqi; Lezec, Henri J; Talin, A Alec

    2016-01-01

    With vibrant colours and simple, room-temperature processing methods, electrochromic polymers have attracted attention as active materials for flexible, low-power-consuming devices. However, slow switching speeds in devices realized to date, as well as the complexity of having to combine several distinct polymers to achieve a full-colour gamut, have limited electrochromic materials to niche applications. Here we achieve fast, high-contrast electrochromic switching by significantly enhancing the interaction of light--propagating as deep-subwavelength-confined surface plasmon polaritons through arrays of metallic nanoslits, with an electrochromic polymer--present as an ultra-thin coating on the slit sidewalls. The switchable configuration retains the short temporal charge-diffusion characteristics of thin electrochromic films, while maintaining the high optical contrast associated with thicker electrochromic coatings. We further demonstrate that by controlling the pitch of the nanoslit arrays, it is possible to achieve a full-colour response with high contrast and fast switching speeds, while relying on just one electrochromic polymer. PMID:26814453

  4. Enabling Exploration of Deep Space: High Density Storage of Antimatter

    NASA Technical Reports Server (NTRS)

    Smith, Gerald A.; Kramer, Kevin J.

    1999-01-01

    Portable electromagnetic antiproton traps are now in a state of realization. This allows facilities like NASA Marshall Space Flight Center to conduct antimatter research remote to production sites. MSFC is currently developing a trap to store 10(exp 12) antiprotons for a twenty-day half-life period to be used in future experiments including antimatter plasma guns, antimatter-initiated microfusion, and the synthesis of antihydrogen for space propulsion applications. In 1998, issues including design, safety and transportation were considered for the MSFC High Performance Antimatter Trap (HiPAT). Radial diffusion and annihilation losses of antiprotons prompted the use of a 4 Tesla superconducting magnet and a 20 KV electrostatic potential at 10(exp -12) Torr pressure. Cryogenic fluids used to maintain a trap temperature of 4K were sized accordingly to provide twenty days of stand-alone storage time (half-life). Procurement of the superconducting magnet with associated cryostat has been completed. The inner, ultra-high vacuum system with electrode structures has been fabricated, tested and delivered to MSFC along with the magnet and cryostat. Assembly of these systems is currently in progress. Testing under high vacuum conditions, using electrons and hydrogen ions will follow in the months ahead.

  5. High-contrast and fast electrochromic switching enabled by plasmonics

    PubMed Central

    Xu, Ting; Walter, Erich C.; Agrawal, Amit; Bohn, Christopher; Velmurugan, Jeyavel; Zhu, Wenqi; Lezec, Henri J.; Talin, A. Alec

    2016-01-01

    With vibrant colours and simple, room-temperature processing methods, electrochromic polymers have attracted attention as active materials for flexible, low-power-consuming devices. However, slow switching speeds in devices realized to date, as well as the complexity of having to combine several distinct polymers to achieve a full-colour gamut, have limited electrochromic materials to niche applications. Here we achieve fast, high-contrast electrochromic switching by significantly enhancing the interaction of light—propagating as deep-subwavelength-confined surface plasmon polaritons through arrays of metallic nanoslits, with an electrochromic polymer—present as an ultra-thin coating on the slit sidewalls. The switchable configuration retains the short temporal charge-diffusion characteristics of thin electrochromic films, while maintaining the high optical contrast associated with thicker electrochromic coatings. We further demonstrate that by controlling the pitch of the nanoslit arrays, it is possible to achieve a full-colour response with high contrast and fast switching speeds, while relying on just one electrochromic polymer. PMID:26814453

  6. Enabling Efficient Climate Science Workflows in High Performance Computing Environments

    NASA Astrophysics Data System (ADS)

    Krishnan, H.; Byna, S.; Wehner, M. F.; Gu, J.; O'Brien, T. A.; Loring, B.; Stone, D. A.; Collins, W.; Prabhat, M.; Liu, Y.; Johnson, J. N.; Paciorek, C. J.

    2015-12-01

    A typical climate science workflow often involves a combination of acquisition of data, modeling, simulation, analysis, visualization, publishing, and storage of results. Each of these tasks provide a myriad of challenges when running on a high performance computing environment such as Hopper or Edison at NERSC. Hurdles such as data transfer and management, job scheduling, parallel analysis routines, and publication require a lot of forethought and planning to ensure that proper quality control mechanisms are in place. These steps require effectively utilizing a combination of well tested and newly developed functionality to move data, perform analysis, apply statistical routines, and finally, serve results and tools to the greater scientific community. As part of the CAlibrated and Systematic Characterization, Attribution and Detection of Extremes (CASCADE) project we highlight a stack of tools our team utilizes and has developed to ensure that large scale simulation and analysis work are commonplace and provide operations that assist in everything from generation/procurement of data (HTAR/Globus) to automating publication of results to portals like the Earth Systems Grid Federation (ESGF), all while executing everything in between in a scalable environment in a task parallel way (MPI). We highlight the use and benefit of these tools by showing several climate science analysis use cases they have been applied to.

  7. Monotonic and Fatigue Behavior of Five Clinically Relevant Conventional and Highly Crosslinked UHMWPEs in the Presence of Stress Concentrations

    PubMed Central

    Sobieraj, Michael C.; Mburphy, James E.; Brinkman, Jennifer G.; Kurtz, Steve M.; Rimnac, Clare M.

    2013-01-01

    Five formulations of clinically relevant UHMWPE (conventional, moderately crosslinked annealed and remelted, and highly crosslinked annealed and remelted) were investigated in a physiologically relevant environment. Their monotonic stress-strain behavior in the presence of notches of two different severities and at two different displacement rates was examined using a custom developed video based system. It was found that both an elevation of yield stress and a truncation of orientation hardening took place. Additionally these changes were found to be material and elastic stress concentration factor dependent. The fatigue behavior of these materials was examined using the same geometries via a stress-life approach with failure defined as fracture of the specimen in the 1,000 to 100,000 cycle lifetime range. The results were modeled using the Basquin relationship (σ=ANb, where σ=stress and N=lifetime, and A and b are experimentally derived constants) via maximum likelihood estimation methods to account for specimen runout (no failure at 250,000cycles). The conventional material was found to have a greater slope, b, and intercept, A, than the crosslinked materials as well as appearing to have less variance in its failure distributions. PMID:24008137

  8. Transparent crosslinked ultrashort peptide hydrogel dressing with high shape-fidelity accelerates healing of full-thickness excision wounds.

    PubMed

    Seow, Wei Yang; Salgado, Giorgiana; Lane, E Birgitte; Hauser, Charlotte A E

    2016-01-01

    Wound healing is a major burden of healthcare systems worldwide and hydrogel dressings offer a moist environment conducive to healing. We describe cysteine-containing ultrashort peptides that self-assemble spontaneously into hydrogels. After disulfide crosslinking, the optically-transparent hydrogels became significantly stiffer and exhibited high shape fidelity. The peptide sequence (LIVAGKC or LK6C) was then chosen for evaluation on mice with full-thickness excision wounds. Crosslinked LK6C hydrogels are handled easily with forceps during surgical procedures and offer an improvement over our earlier study of a non-crosslinked peptide hydrogel for burn wounds. LK6C showed low allergenic potential and failed to provoke any sensitivity when administered to guinea pigs in the Magnusson-Kligman maximization test. When applied topically as a dressing, the medium-infused LK6C hydrogel accelerated re-epithelialization compared to controls. The peptide hydrogel is thus safe for topical application and promotes a superior rate and quality of wound healing. PMID:27600999

  9. Transparent crosslinked ultrashort peptide hydrogel dressing with high shape-fidelity accelerates healing of full-thickness excision wounds

    PubMed Central

    Seow, Wei Yang; Salgado, Giorgiana; Lane, E. Birgitte; Hauser, Charlotte A. E.

    2016-01-01

    Wound healing is a major burden of healthcare systems worldwide and hydrogel dressings offer a moist environment conducive to healing. We describe cysteine-containing ultrashort peptides that self-assemble spontaneously into hydrogels. After disulfide crosslinking, the optically-transparent hydrogels became significantly stiffer and exhibited high shape fidelity. The peptide sequence (LIVAGKC or LK6C) was then chosen for evaluation on mice with full-thickness excision wounds. Crosslinked LK6C hydrogels are handled easily with forceps during surgical procedures and offer an improvement over our earlier study of a non-crosslinked peptide hydrogel for burn wounds. LK6C showed low allergenic potential and failed to provoke any sensitivity when administered to guinea pigs in the Magnusson-Kligman maximization test. When applied topically as a dressing, the medium-infused LK6C hydrogel accelerated re-epithelialization compared to controls. The peptide hydrogel is thus safe for topical application and promotes a superior rate and quality of wound healing. PMID:27600999

  10. Stabilisation of crosslinked ultra-high molecular weight polyethylene (UHMW-PE)-acetabular components with alpha-tocopherol.

    PubMed

    Wolf, C; Maninger, J; Lederer, K; Frühwirth-Smounig, H; Gamse, T; Marr, R

    2006-12-01

    A stabilisation of crosslinked ultra-high molecular weight polyethylene (UHMW-PE) with alpha-tocopherol (vitamin E) used for endoprostheses can increase its resistance against oxidative degradation remarkably. However, the method used for conventional UHMW-PE of adding alpha-tocopherol to the UHMW-PE powder before processing can not be applied for crosslinked UHMW-PE, since the alpha-tocopherol hinders the crosslinking process, which would be accompanied by a heavy degradation of this vitamin. The alpha-tocopherol has therefore to be added after the crosslinking process. This paper presents two methods for a stabilisation of finished products with alpha-tocopherol. In method 1, UHMW-PE-cubes (20 x 20 x 20 mm3) were stored in pure alpha-tocopherol under inert atmosphere at temperatures from 100 degrees C to 150 degrees C resulting in a high mass fraction of alpha-tocopherol in the edge zones. For further homogenisation, the cubes were stored in inert atmosphere at temperatures from 160 degrees C to 200 degrees C. In method 2, supercritical CO2 was used to incorporate the vitamin into the UHMW-PE. In an autoclave vessel, the cubes were treated with alpha-tocopherol dissolved in supercritical CO2 for several hours at temperatures from 100 degrees C to 170 degrees C. In both cases, the mass fraction of alpha-tocopherol was detected with the help of a FTIR-microscope. Both methods are well suited to stabilise crosslinked UHMW-PE with alpha-tocopherol. A stabilisation of the sensitive edge layer as well as a nearly homogenous distribution with varying alpha-tocopherol content may be realised by varying the process parameters. Using method 2, standard hip cups were stabilized nearly homogeneously with varying mass fraction of alpha-tocopherol. No oxidation of the UHMW-PE could be detected by infrared spectroscopy (FTIR) and HPLC studies showed a very low degradation of the alpha-tocopherol for both processes. PMID:17143764

  11. A constitutive model of nanocomposite hydrogels with nanoparticle crosslinkers

    NASA Astrophysics Data System (ADS)

    Wang, Qiming; Gao, Zheming

    2016-09-01

    Nanocomposite hydrogels with only nanoparticle crosslinkers exhibit extraordinarily higher stretchability and toughness than the conventional organically crosslinked hydrogels, thus showing great potential in the applications of artificial muscles and cartilages. Despite their potential, the microscopic mechanics details underlying their mechanical performance have remained largely elusive. Here, we develop a constitutive model of the nanoparticle hydrogels to elucidate the microscopic mechanics behaviors, including the microarchitecture and evolution of the nanoparticle crosslinked polymer chains during the mechanical deformation. The constitutive model enables us to understand the Mullins effect of the nanocomposite hydrogels, and the effects of nanoparticle concentrations and sizes on their cyclic stress-strain behaviors. The theory is quantitatively validated by the tensile tests on a nanocomposite hydrogel with nanosilica crosslinkers. The theory can also be extended to explain the mechanical behaviors of existing hydrogels with nanoclay crosslinkers, and the necking instability of the composite hydrogels with both nanoparticle crosslinkers and organic crosslinkers. We expect that this constitutive model can be further exploited to reveal mechanics behaviors of novel particle-polymer chain interactions, and to design unprecedented hydrogels with both high stretchability and toughness.

  12. Radiation and chemical crosslinking promote strain hardening behavior and molecular alignment in ultra high molecular weight polyethylene during multi-axial loading conditions.

    PubMed

    Kurtz, S M; Pruitt, L A; Jewett, C W; Foulds, J R; Edidin, A A

    1999-08-01

    The mechanical behavior and evolution of crystalline morphology during large deformation of eight types of virgin and crosslinked ultra high molecular weight polyethylene (UHMWPE) were studied using the small punch test and transmission electron microscopy (TEM). We investigated the hypothesis that both radiation and chemical crosslinking hinder molecular mobility at large deformations, and hence promote strain hardening and molecular alignment during the multiaxial loading of the small punch test. Chemical crosslinking of UHMWPE was performed using 0.25% dicumyl peroxide (GHR 8110, GUR 1020 and 1050), and radiation crosslinking was performed using 150 kGy of electron beam radiation (GUR 1150). Crosslinking increased the ultimate load at failure and decreased the ultimate displacement of the polyethylenes during the small punch test. Crosslinking also increased the near-ultimate hardening behavior of the polyethylenes. Transmission electron microscopy was used to characterize the crystalline morphology of the bulk material, undeformed regions of the small punch test specimens, and deformed regions of the specimens oriented perpendicular and parallel to the punch direction. In contrast with the virgin polyethylenes, which showed only subtle evidence of lamellar alignment, the crosslinked polyethylenes exhibited enhanced crystalline lamellae orientation after the small punch test, predominantly in the direction parallel to the punch direction or deformation axis. Thus, the results of this study support the hypothesis that crosslinking promotes strain hardening during multiaxial loading because of increased resistance to molecular mobility at large deformations effected by molecular alignment. The data also illustrate the sensitivity of large deformation mechanical behavior and crystalline morphology to the method of crosslinking and resin of polyethylene. PMID:10458558

  13. Magnetic response of gelatin ferrogels across the sol-gel transition: the influence of high energy crosslinking on thermal stability.

    PubMed

    Wisotzki, Emilia I; Eberbeck, Dietmar; Kratz, Harald; Mayr, Stefan G

    2016-05-01

    As emerging responsive materials, ferrogels have demonstrated significant potential for applications in areas of engineering to regenerative medicine. Promising techniques to study the behavior of magnetic nanoparticles (MNPs) in such matrices include magnetic particle spectroscopy (MPS) and magnetorelaxometry (MRX). This work investigated the magnetic response of gelatin-based ferrogels with increasing temperatures, before and after high energy crosslinking. The particle response was characterized by the nonlinear magnetization using MPS and quasistatic magnetization measurements as well as MRX to discriminate between Néel and Brownian relaxation mechanisms. The effective magnetic response of MNPs in gelatin was suppressed, indicating that the magnetization of the ferrogels was strongly influenced by competing dipole-dipole interactions. Significant changes in the magnetic behavior were observed across the gelatin sol-gel transition, as influenced by the matrix viscosity. These relaxation processes were modeled by Fourier transformation of the Langevin function, combined with a Debye term for the nonlinear magnetic response, for single core MNPs embedded in matrices of changing viscosities. Using high energy electron irradiation as a crosslinking method, modified ferrogels exhibited thermal stability on a range of timescales. However, MRX relaxation times revealed a slight softening around the gelatin sol-gel transition felt by the smallest particles, demonstrating a high sensitivity to observe local changes in the viscoelasticity. Overall, MPS and MRX functioned as non-contact methods to observe changes in the nanorheology around the native sol-gel transition and in crosslinked ferrogels, as well as provided an understanding of how MNPs were integrated into and influenced by the surrounding matrix. PMID:27029437

  14. Three-dimensionally presented anti-fouling zwitterionic motifs sequester and enable high-efficiency delivery of therapeutic proteins

    PubMed Central

    Liu, Pingsheng; Skelly, Jordan D.; Song, Jie

    2014-01-01

    Zwitterions are well known for their anti-biofouling properties. Past investigations of zwitterionic materials for biomedical uses have been centered on exploiting their ability to inhibit non-specific adsorption of proteins. Here, we report that zwitterionic motifs, when 3-dimensionally (3D) presented (e.g. in crosslinked hydrogels), could effectively sequester osteogenic bone morphogenetic protein-2 (rhBMP-2). The ionic interactions between rhBMP-2 and the 3D zwitterionic network enabled dynamic sequestering and sustained release of the protein with preserved bioactivity. We further demonstrated that the zwitterionic hydrogel confers high-efficiency in vivo local delivery of rhBMP-2. It can template the functional healing of critical-size femoral segmental defects in rats with rhBMP-2 at a loading dose substantially lower than those required for current natural or synthetic polymeric carriers. These findings reveal a novel function of zwitterionic materials beyond their commonly perceived anti-biofouling property, and may establish 3D zwitterionic matrices as novel high-efficiency vehicles for protein/ionic drug therapeutic delivery. PMID:24956565

  15. Gas-phase intramolecular protein crosslinking via ion/ion reactions: ubiquitin and a homobifunctional sulfo-NHS ester.

    PubMed

    Webb, Ian K; Mentinova, Marija; McGee, William M; McLuckey, Scott A

    2013-05-01

    Gas-phase intra-molecular crosslinking of protein ubiquitin cations has been demonstrated via ion/ion reactions with anions of a homobifunctional N-hydroxysulfosuccinimide (sulfo-NHS) ester reagent. The ion/ion reaction between multiply-protonated ubiquitin and crosslinker monoanions produces a stable, charge-reduced complex. Covalent crosslinking is indicated by the consecutive loss of 2 molecules of sulfo-NHS under ion trap collisional activation conditions. Covalent modification is verified by the presence of covalently crosslinked sequence ions produced by ion-trap collision-induced dissociation of the ion generated from the losses of sulfo-NHS. Analysis of the crosslinked sequence fragments allows for the localization of crosslinked primary amines, enabling proximity mapping of the gas-phase 3-D structures. The presence of two unprotonated reactive sites within the distance constraint of the crosslinker is required for successful crosslinking. The ability to covalently crosslink is, therefore, sensitive to protein charge state. As the charge state increases, fewer reactive sites are available and protein structure is more likely to become extended because of intramolecular electrostatic repulsion. At high charge states, the reagent shows little evidence for covalent crosslinking but does show evidence for 'electrostatic crosslinking' in that the binding of the sulfonate groups to the protein is sufficiently strong that backbone cleavages are favored over reagent detachment under ion trap collisional activation conditions. PMID:23463545

  16. Crosslinking of agarose bioplastic using citric acid.

    PubMed

    Awadhiya, Ankur; Kumar, David; Verma, Vivek

    2016-10-20

    We report chemical crosslinking of agarose bioplastic using citric acid. Crosslinking was confirmed using Fourier transform infrared (FTIR) spectroscopy. The effects of crosslinking on the tensile strength, swelling, thermal stability, and degradability of the bioplastic were studied in detail. The tensile strength of the bioplastic films increased from 25.1MPa for control films up to a maximum of 52.7MPa for citric acid crosslinked films. At 37°C, the amount of water absorbed by crosslinked agarose bioplastic was only 11.5% of the amount absorbed by non-crosslinked controls. Thermogravimetric results showed that the crosslinked samples retain greater mass at high temperature (>450°C) than control samples. Moreover, while the crosslinked films were completely degradable, the rate of degradation was lower compared to non-crosslinked controls. PMID:27474543

  17. A simple and high-resolution stereolithography-based 3D bioprinting system using visible light crosslinkable bioinks.

    PubMed

    Wang, Zongjie; Abdulla, Raafa; Parker, Benjamin; Samanipour, Roya; Ghosh, Sanjoy; Kim, Keekyoung

    2015-01-01

    Bioprinting is a rapidly developing technique for biofabrication. Because of its high resolution and the ability to print living cells, bioprinting has been widely used in artificial tissue and organ generation as well as microscale living cell deposition. In this paper, we present a low-cost stereolithography-based bioprinting system that uses visible light crosslinkable bioinks. This low-cost stereolithography system was built around a commercial projector with a simple water filter to prevent harmful infrared radiation from the projector. The visible light crosslinking was achieved by using a mixture of polyethylene glycol diacrylate (PEGDA) and gelatin methacrylate (GelMA) hydrogel with eosin Y based photoinitiator. Three different concentrations of hydrogel mixtures (10% PEG, 5% PEG + 5% GelMA, and 2.5% PEG + 7.5% GelMA, all w/v) were studied with the presented systems. The mechanical properties and microstructure of the developed bioink were measured and discussed in detail. Several cell-free hydrogel patterns were generated to demonstrate the resolution of the solution. Experimental results with NIH 3T3 fibroblast cells show that this system can produce a highly vertical 3D structure with 50 μm resolution and 85% cell viability for at least five days. The developed system provides a low-cost visible light stereolithography solution and has the potential to be widely used in tissue engineering and bioengineering for microscale cell patterning. PMID:26696527

  18. In vivo comparative wear study of traditional and highly cross-linked polyethylene in total hip arthroplasty.

    PubMed

    Manning, David W; Chiang, P P; Martell, J M; Galante, J O; Harris, W H

    2005-10-01

    In this study, we compare the in vivo wear performance of electron beam-irradiated, postirradiation-melted, highly cross-linked polyethylene (HXLPE) and traditional UHMWPE via the Martell method. Seventy hips with HXLPE performed at the Massachusetts General Hospital had 138 radiograph pairs for wear analysis and a 31.2-month average follow-up (range, 24-44 months). An age-matched, sex-matched, and body mass index-matched subgroup of 111 hips with 214 acceptable radiograph pairs and a 4-year follow-up from our previously published study on traditional polyethylene performed at Rush-Presbyterian-St. Luke's Medical Center served as a control group. Martell wear analysis was performed for each group. Overall and steady-state wear rates were compared via a specialized t test. The steady-state wear in the HXLPE arm was observed after 2.0 years, was 0.007 mm/y, and was significantly less than the steady-state wear in the traditional arm (0.174 mm/y) (P = .003). Highly cross-linked polyethylene penetration rate was not affected by sex, age, activity, or body mass index by Mann-Whitney analysis. PMID:16230239

  19. Measurement of cross-linked elastin synthesis in bleomycin-induced pulmonary fibrosis using a highly sensitive assay for desmosine and isodesmosine

    SciTech Connect

    Cantor, J.O.; Osman, M.; Keller, S.; Cerreta, J.M.; Mandl, I.; Turino, G.M.

    1984-03-01

    Cross-linked elastin synthesis was measured in the intratracheal bleomycin model of interstitial pulmonary fibrosis by incorporation of 14C-lysine into the elastin-specific crosslinks, desmosine and isodesmosine. Detection of the labeled crosslinks was facilitated by development of a highly sensitive assay utilizing thin-layer electrophoresis. The results indicate that crosslinked elastin synthesis is significantly elevated from controls (p less than 0.05) at 1 to 3 weeks after exposure to bleomycin and returns to normal by 5 weeks. The increases in labeled elastin synthesis are not directly related to changes in either total lung protein synthesis or the pool size of the 14C-lysine. In comparison with collagen and glycosaminoglycan synthesis in this model of lung injury, maximal increases in cross-linked elastin formation occur later, but overlap with the elevated synthesis of these other connective tissue components. The marked increase from normal in cross-linked elastin synthesis in this model suggests that this tissue component is an important part of the fibrotic response of the pulmonary parenchyma and may play a role in the observed alterations in lung structure and function.

  20. Cross-linked informofers.

    PubMed Central

    Prosvirnin, V V; Ruzidic, S; Samarina, O P

    1979-01-01

    The proteins of 30S RNP particles containing pre-mRNA (hnRNA) were cross-linked with bifunctional reagents (dimethyl-suberimidate and dimethyl-3,3'-dithiobispropionimidate). Further treatment with 1 or 2 M NaCl dissociates all RNA from protein. However, a significant part of protein particles--informofers being cross-linked survived high salt treatment. Their sedimentation coefficients were close to those of original particles. No RNA could be detected in the informofers even after labeling the cells with a precursor for a long period of time. Sodium dodecylsulfate or urea dissociated cross-linked informofers into oligomeric polypeptides. They could be dissociated by beta-mercaptoethanol treatment if a reversible cross-linked reagent had been used. The resulting polypeptides were represented by informatin. RNP particles (30S RNP or poly-particles) were reconstituted upon mixing of cross-linked informofers with pre-mRNA and removal of 2 M NaCl. PMID:503864

  1. Crosslinked, porous, polyacrylate beads

    NASA Technical Reports Server (NTRS)

    Rembaum, Alan (Inventor); Yen, Shiao-Ping Siao (Inventor); Dreyer, William J. (Inventor)

    1976-01-01

    Uniformly-shaped, porous, round beads are prepared by the co-polymerization of an acrylic monomer and a cross-linking agent in the presence of 0.05 to 5% by weight of an aqueous soluble polymer such as polyethylene oxide. Cross-linking proceeds at high temperature above about 50.degree.C or at a lower temperature with irradiation. Beads of even shape and even size distribution of less than 2 micron diameter are formed. The beads will find use as adsorbents in chromatography and as markers for studies of cell surface receptors.

  2. Crosslinked, porous, polyacrylate beads

    NASA Technical Reports Server (NTRS)

    Rembaum, Alan (Inventor); Yen, Shiao-Ping S. (Inventor); Dreyer, William J. (Inventor)

    1977-01-01

    Uniformly-shaped, porous, round beads are prepared by the co-polymerization of an acrylic monomer and a cross-linking agent in the presence of 0.05 to 5% by weight of an aqueous soluble polymer such as polyethylene oxide. Cross-linking proceeds at high temperature above about 50.degree. C or at a lower temperature with irradiation. Beads of even shape and even size distribution of less than 2 micron diameter are formed. The beads will find use as adsorbents in chromatography and as markers for studies of cell surface receptors.

  3. Highly cross-linked polyethylene in total hip and knee replacement: spatial distribution of molecular orientation and shape recovery behavior.

    PubMed

    Takahashi, Yasuhito; Masaoka, Toshinori; Pezzotti, Giuseppe; Shishido, Takaaki; Tateiwa, Toshiyuki; Kubo, Kosuke; Yamamoto, Kengo

    2014-01-01

    The present study investigated effects of processing procedures on morphology of highly cross-linked and re-melted UHMWPE (XLPE) in total hip and knee arthroplasty (THA, TKA). The shape recovery behavior was also monitored via uniaxial compression test at room temperature after non-destructive characterizations of the in-depth microstructure by confocal/polarized Raman spectroscopy. The goal of this study was to relate the manufacturing-induced morphology to the in vivo micromechanical performance, and ultimately to explore an optimal structure in each alternative joint bearing. It was clearly confirmed that the investigated XLPE hip and knee implants, which were produced from different orthopaedic grade resins (GUR 1050 and GUR 1020), consisted of two structural regions in the as-received states: the near-surface transitional anisotropic layer (≈100 μm thickness) and the bulk isotropic structural region. These XLPEs exhibited a different crystalline anisotropy and molecular texture within the near-surface layers. In addition, the knee insert showed a slightly higher efficiency of shape recovery against the applied strain over the hip liner owing to a markedly higher percentage of the bulk amorphous phase with intermolecular cross-linking. The quantitative data presented in this study might contribute to construct manufacturing strategies for further rationalized structures as alternative bearings in THA and TKA. PMID:25243183

  4. Highly Cross-Linked Polyethylene in Total Hip and Knee Replacement: Spatial Distribution of Molecular Orientation and Shape Recovery Behavior

    PubMed Central

    Masaoka, Toshinori; Pezzotti, Giuseppe; Shishido, Takaaki; Tateiwa, Toshiyuki; Kubo, Kosuke

    2014-01-01

    The present study investigated effects of processing procedures on morphology of highly cross-linked and re-melted UHMWPE (XLPE) in total hip and knee arthroplasty (THA, TKA). The shape recovery behavior was also monitored via uniaxial compression test at room temperature after non-destructive characterizations of the in-depth microstructure by confocal/polarized Raman spectroscopy. The goal of this study was to relate the manufacturing-induced morphology to the in vivo micromechanical performance, and ultimately to explore an optimal structure in each alternative joint bearing. It was clearly confirmed that the investigated XLPE hip and knee implants, which were produced from different orthopaedic grade resins (GUR 1050 and GUR 1020), consisted of two structural regions in the as-received states: the near-surface transitional anisotropic layer (≈100 μm thickness) and the bulk isotropic structural region. These XLPEs exhibited a different crystalline anisotropy and molecular texture within the near-surface layers. In addition, the knee insert showed a slightly higher efficiency of shape recovery against the applied strain over the hip liner owing to a markedly higher percentage of the bulk amorphous phase with intermolecular cross-linking. The quantitative data presented in this study might contribute to construct manufacturing strategies for further rationalized structures as alternative bearings in THA and TKA. PMID:25243183

  5. Synthesis of tetravalent LacNAc-glycoclusters as high-affinity cross-linker against Erythrina cristagalli agglutinin.

    PubMed

    Ogata, Makoto; Chuma, Yasushi; Yasumoto, Yoshinori; Onoda, Takashi; Umemura, Myco; Usui, Taichi; Park, Enoch Y

    2016-01-01

    Four kinds of tetravalent double-headed glycoclusters [(LacNAc)4-DHGs] were designed with linkers of varying lengths consisting of alkanedioic carboxyamido groups (C6, C12, C18 and C24) between two bi-antennary LacNAc-glycosides. These glycoclusters served as high-affinity cross-linking ligands for the LacNAc-binding lectin Erythrina cristagalli agglutinin (ECA). The binding activity and cross-linking between each ligand and ECA were characterized by a hemagglutination inhibition (HI) assay, isothermal titration calorimetry (ITC), a quantitative precipitation assay and dynamic light scattering (DLS). For the precipitation assay and DLS measurement, the synthesized (LacNAc)4-DHGs were found to be capable of binding and precipitating the ECA as multivalent ligands. ITC analysis indicated the binding of (LacNAc)4-DHGs was driven by a favorable enthalpy change. Furthermore, the entropy penalty from binding (LacNAc)4-DHGs clearly decreased in a spacer length-dependent manner. The binding affinities of flexible (LacNAc)4-DHGs (C18 and C24) with long spacers were found to be more favorable than those of the clusters having short spacers (C6 and C12). These results were supported by molecular dynamics simulations with explicit water molecules for the tetravalent glycoclusters with ECA. We concluded that the subtle modification in the epitope-presenting scaffolds exerts the significant effect in the recognition efficiency involved in the LacNAc moieties by ECA. PMID:26672510

  6. Synthesis of Two New Enrichable and MS-Cleavable Cross-linkers to Define Protein-Protein Interactions by Mass Spectrometry

    PubMed Central

    Burke, Anthony M.; Kandur, Wynne; Novitsky, Eric J.; Kaake, Robyn M.; Yu, Clinton; Kao, Athit; Vellucci, Danielle; Huang, Lan; Rychnovsky, Scott D.

    2015-01-01

    The cross-linking Mass Spectrometry (XL-MS) technique extracts structural information from protein complexes without requiring highly purified samples, crystallinity, or large amounts of material. However, there are challenges to applying the technique to protein complexes in vitro, and those challenges become more daunting with in vivo experiments. Issues include effective detection and identification of cross-linked peptides from complex mixtures. While MS-cleavable cross-linkers facilitate the sequencing and identification of cross-linked peptides, enrichable cross-linkers increase their detectability by allowing their separation from non-cross-linked peptides prior to MS analysis. Although a number of cross-linkers with single functionality have been developed in recent years, an ideal reagent would incorporate both capabilities for XL-MS studies. Therefore, two new cross-linkers have been designed and prepared that incorporate an azide (azide-A-DSBSO) or alkyne (alkyne-A-DSBSO) to enable affinity purification strategies based on click chemistry. The integration of an acid cleavage site next to the enrichment handle allows easy recovery of cross-linked products during affinity purification. In addition, these sulfoxide containing cross-linking reagents possess robust MS-cleavable bonds to facilitate fast and easy identification of cross-linked peptides using MS analysis. Optimized, gram-scale syntheses of these cross-linkers have been developed and the azide-A-DSBSO cross-linker has been evaluated with peptides and proteins to demonstrate its utility in XL-MS analysis. PMID:25823605

  7. Synthesis of two new enrichable and MS-cleavable cross-linkers to define protein-protein interactions by mass spectrometry.

    PubMed

    Burke, Anthony M; Kandur, Wynne; Novitsky, Eric J; Kaake, Robyn M; Yu, Clinton; Kao, Athit; Vellucci, Danielle; Huang, Lan; Rychnovsky, Scott D

    2015-05-01

    The cross-linking Mass Spectrometry (XL-MS) technique extracts structural information from protein complexes without requiring highly purified samples, crystallinity, or large amounts of material. However, there are challenges to applying the technique to protein complexes in vitro, and those challenges become more daunting with in vivo experiments. Issues include effective detection and identification of cross-linked peptides from complex mixtures. While MS-cleavable cross-linkers facilitate the sequencing and identification of cross-linked peptides, enrichable cross-linkers increase their detectability by allowing their separation from non-cross-linked peptides prior to MS analysis. Although a number of cross-linkers with single functionality have been developed in recent years, an ideal reagent would incorporate both capabilities for XL-MS studies. Therefore, two new cross-linkers have been designed and prepared that incorporate an azide (azide-A-DSBSO) or alkyne (alkyne-A-DSBSO) to enable affinity purification strategies based on click chemistry. The integration of an acid cleavage site next to the enrichment handle allows easy recovery of cross-linked products during affinity purification. In addition, these sulfoxide containing cross-linking reagents possess robust MS-cleavable bonds to facilitate fast and easy identification of cross-linked peptides using MS analysis. Optimized, gram-scale syntheses of these cross-linkers have been developed and the azide-A-DSBSO cross-linker has been evaluated with peptides and proteins to demonstrate its utility in XL-MS analysis. PMID:25823605

  8. In vivo oxidation of retrieved cross-linked ultra-high-molecular-weight polyethylene acetabular components with residual free radicals.

    PubMed

    Wannomae, Keith K; Bhattacharyya, Shayan; Freiberg, Andrew; Estok, Daniel; Harris, William H; Muratoglu, Orhun

    2006-10-01

    Wear of ultra-high-molecular-weight polyethylene (UHMWPE) contributes to debris that can lead to periprosthetic osteolysis in total hip arthroplasty. Irradiation not only decreases wear of UHMWPE but also generates residual free radicals that can oxidize the UHMWPE in the long term. Melting or annealing is used to quench the free radicals. Melting is more effective than annealing. We hypothesized that the postirradiation annealed UHMWPE components would oxidize in vivo and that postirradiation melted ones would not. We analyzed surgical explants of UHMWPE acetabular liners. The irradiated and annealed explants showed embrittlement, oxidation, and an increase in crystallinity. The irradiated and melted UHMWPE explants showed no oxidation, no increase in crystallinity, and no embrittlement. To prevent long-term chemical changes in highly cross-linked UHMWPE components, the residual free radicals must be stabilized after irradiation, preferably by melting and not annealing. PMID:17027543

  9. Fabrication of manganese dioxide nanoplates anchoring on biomass-derived cross-linked carbon nanosheets for high-performance asymmetric supercapacitors

    NASA Astrophysics Data System (ADS)

    Li, Yiju; Yu, Neng; Yan, Peng; Li, Yuguang; Zhou, Xuemei; Chen, Shuangling; Wang, Guiling; Wei, Tong; Fan, Zhuangjun

    2015-12-01

    In this paper, MnO2 nanoplates loading on biomass-derived cross-linked carbon nanosheets have been prepared by a two-step synthesis. At first, the cross-linked carbon nanosheets derived from willow catkin are synthesized by one-step pyrolysis and activation method, then the MnO2 anchored cross-linked carbon nanosheets is prepared via in-situ hydrothermal deposition. The asymmetric supercapacitor with terrific energy and power density is assembled by employing the MnO2 anchored cross-linked carbon nanosheets as the positive electrode and the cross-linked carbon nanosheets as the negative electrode in a 1 M Na2SO4 electrolyte. The asymmetric supercapacitor displays a high energy density of 23.6 Wh kg-1 at a power density of 188.8 W kg-1 within a wide voltage rage of 0-1.9 V. In addition, the asymmetric supercapacitor exhibits excellent cycling stability with only 1.4% capacitance loss after 10000 cycles at 1 A g-1. These discoveries open up the prospect of biomass/biowaste derived carbon-based composites for high-voltage asymmetric supercapacitors with superb energy and power density performance.

  10. Resorbable elastomeric networks prepared by photocrosslinking of high-molecular-weight poly(trimethylene carbonate) with photoinitiators and poly(trimethylene carbonate) macromers as crosslinking aids.

    PubMed

    Bat, Erhan; van Kooten, Theo G; Feijen, Jan; Grijpma, Dirk W

    2011-05-01

    Resorbable and elastomeric poly(trimethylene carbonate) (PTMC) networks were efficiently prepared by photoinitiated crosslinking of linear high-molecular-weight PTMC. To crosslink PTMC films, low-molecular-weight PTMC macromers with methacrylate end groups were synthesized and used as crosslinking aids. By exposing PTMC films containing only photoinitiator (Irgacure(®) 2959) or both photoinitiator and PTMC macromers to ultraviolet light, PTMC networks with high gel contents (87-95%) could be obtained. The crosslink density could be readily varied by adjusting the irradiation time or the amount of crosslinking aid used. The formed networks were flexible, with low elastic modulus values ranging from 7.1 to 7.5MPa, and also showed excellent resistance to creep in cyclic tests. In vitro experiments showed that the photocrosslinked PTMC networks could be eroded by macrophages, and upon incubation in aqueous cholesterol esterase enzyme- or potassium dioxide solutions. The rate of surface erosion of photocrosslinked PTMC networks was significantly lower than that observed for films prepared from linear PTMC. These resorbable PTMC elastomeric networks are compatible with cells and may find application in tissue engineering and controlled release. PMID:21232640

  11. Gas-Phase Intramolecular Protein Crosslinking via Ion/Ion Reactions: Ubiquitin and a Homobifunctional sulfo-NHS Ester

    PubMed Central

    Webb, Ian K.; Mentinova, Marija; McGee, William M.; McLuckey, Scott A.

    2013-01-01

    Gas-phase intra-molecular crosslinking of protein ubiquitin cations has been demonstrated via ion/ion reactions with anions of a homobifunctional N-hydroxysulfosuccinimide (sulfo-NHS) ester reagent. The ion/ion reaction between multiply-protonated ubiquitin and crosslinker monoanions produces a stable, charge reduced complex. Covalent crosslinking is indicated by the consecutive loss of two molecules of sulfo-NHS under ion trap collisional activation conditions. Covalent modification is verified by the presence of covalently crosslinked sequence ions produced by ion-trap collision-induced dissociation of the ion generated from the losses of sulfo-NHS. Analysis of the crosslinked sequence fragments allows for the localization of crosslinked primary amines, enabling proximity mapping of the gas-phase 3-D structures. The presence of two unprotonated reactive sites within the distance constraint of the crosslinker is required for successful crosslinking. The ability to covalently crosslink is therefore sensitive to protein charge state. As the charge state increases, fewer reactive sites are available and protein structure is more likely to become extended due to intramolecular electrostatic repulsion. At high charge states, the reagent shows little evidence for covalent crosslinking but does show evidence for ‘electrostatic crosslinking’ in that the binding of the sulfonate groups to the protein is sufficiently strong that backbone cleavages are favored over reagent detachment under ion trap collisional activation conditions. PMID:23463545

  12. Laser welding and collagen crosslinks

    SciTech Connect

    Reiser, K.M.; Last, J.A.; Small, W. IV; Maitland, D.J.; Heredia, N.J.; Da Silva, L.B.; Matthews, D.L.

    1997-02-20

    Strength and stability of laser-welded tissue may be influenced, in part, by effects of laser exposure on collagen crosslinking. We therefore studied effects of diode laser exposure (805 nm, 1-8 watts, 30 seconds) + indocyanine green dye (ICG) on calf tail tendon collagen crosslinks. Effect of ICG dye alone on crosslink content prior to laser exposure was investigated; unexpectedly, we found that ICG-treated tissue had significantly increased DHLNL and OHP, but not HLNL. Laser exposure after ICG application reduced elevated DHLNL and OHP crosslink content down to their native levels. The monohydroxylated crosslink HLNL was inversely correlated with laser output (p<0.01 by linear regression analysis). DHLNL content was highly correlated with content of its maturational product, OHP, suggesting that precursor-product relations are maintained. We conclude that: (1)ICG alone induces DHLNL and OHP crosslink formation; (2)subsequent laser exposure reduces the ICG-induced crosslinks down to native levels; (3)excessive diode laser exposure destroys normally occurring HLNL crosslinks.

  13. High-Resolution N6-Methyladenosine (m6A) Map Using Photo-Crosslinking-Assisted m6A Sequencing**

    PubMed Central

    Chen, Kai; Lu, Zhike; Wang, Xiao; Fu, Ye; Luo, Guan-Zheng; Liu, Nian; Han, Dali; Dominissini, Dan; Dai, Qing; Pan, Tao; He, Chuan

    2015-01-01

    N6-methyladenosine (m6A) is an abundant internal modification in eukaryotic mRNA and plays regulatory roles in mRNA metabolism. However, methods to precisely locate the m6A modification remain limited. We present here a photo-crosslinking-assisted m6A sequencing strategy (PA-m6A-seq) to more accurately define sites with m6A modification. Using this strategy, we obtained a high-resolution map of m6A in a human transcriptome. The map resembles the general distribution pattern observed previously, and reveals new m6A sites at base resolution. Our results provide insight into the relationship between the methylation regions and the binding sites of RNA-binding proteins. PMID:25491922

  14. Optical signal processing for enabling high-speed, highly spectrally efficient and high capacity optical systems

    NASA Astrophysics Data System (ADS)

    Fazal, Muhammad Irfan

    The unabated demand for more capacity due to the ever-increasing internet traffic dictates that the boundaries of the state of the art maybe pushed to send more data through the network. Traditionally, this need has been satisfied by multiple wavelengths (wavelength division multiplexing), higher order modulation formats and coherent communication (either individually or combined together). WDM has the ability to reduce cost by using multiple channels within the same physical fiber, and with EDFA amplifiers, the need for O-E-O regenerators is eliminated. Moreover the availability of multiple colors allows for wavelength-based routing and network planning. Higher order modulation formats increases the capacity of the link by their ability to encode data in both the phase and amplitude of light, thereby increasing the bits/sec/Hz as compared to simple on-off keyed format. Coherent communications has also emerged as a primary means of transmitting and receiving optical data due to its support of formats that utilize both phase and amplitude to further increase the spectral efficiency of the optical channel, including quadrature amplitude modulation (QAM) and quadrature phase shift keying (QPSK). Polarization multiplexing of channels can double capacity by allowing two channels to share the same wavelength by propagating on orthogonal polarization axis and is easily supported in coherent systems where the polarization tracking can be performed in the digital domain. Furthermore, the forthcoming IEEE 100 Gbit/s Ethernet Standard, 802.3ba, provides greater bandwidth, higher data rates, and supports a mixture of modulation formats. In particular, Pol-MUX QPSK is increasingly becoming the industry's format of choice as the high spectral efficiency allows for 100 Gbit/s transmission while still occupying the current 50 GHz/channel allocation of current 10 Gbit/s OOK fiber systems. In this manner, 100 Gbit/s transfer speeds using current fiber links, amplifiers, and filters

  15. High performance of transferring lithium ion for polyacrylonitrile-interpenetrating crosslinked polyoxyethylene network as gel polymer electrolyte.

    PubMed

    Kuo, Ping-Lin; Wu, Ching-An; Lu, Chung-Yu; Tsao, Chin-Hao; Hsu, Chun-Han; Hou, Sheng-Shu

    2014-03-12

    A polyacrylonitrile (PAN)-interpenetrating cross-linked polyoxyethylene (PEO) network (named XANE) was synthesized acting as separator and as gel polymer electrolytes simultaneously. SEM images show that the surface of the XANE membrane is nonporous, comparing to the surface of the commercial separator to be porous. This property results in excellent electrolyte uptake amount (425 wt %), and electrolyte retention for XANE membrane, significantly higher than that of commercial separator (200 wt %). The DSC result indicates that the PEO crystallinity is deteriorated by the cross-linked process and was further degraded by the interpenetration of the PAN. The XANE membrane shows significantly higher ionic conductivity (1.06-8.21 mS cm(-1)) than that of the commercial Celgard M824 separator (0.45-0.90 mS cm(-1)) ascribed to the high electrolyte retention ability of XANE (from TGA), the deteriorated PEO crystallinity (from DSC) and the good compatibility between XANE and electrode (from measuring the interfacial-resistance). For battery application, under all charge/discharge rates (from 0.1 to 3 C), the specific half-cell capacities of the cell composed of the XANE membrane are all higher than those of the aforementioned commercial separator. More specifically, the cell composed of the XANE membrane has excellent cycling stability, that is, the half-cell composed of the XANE membrane still exhibited more than 97% columbic efficiency after 100 cycles at 1 C. The above-mentioned advantageous properties and performances of the XANE membrane allow it to act as both an ionic conductor as well as a separator, so as to work as separator-free gel polymer electrolytes. PMID:24521309

  16. "Fastening" porphyrin in highly cross-linked polyphosphazene hybrid nanoparticles: powerful red fluorescent probe for detecting mercury ion.

    PubMed

    Hu, Ying; Meng, Lingjie; Lu, Qinghua

    2014-04-22

    It is a significant issue to overcome the concentration-quenching effect of the small fluorescent probes and maintain the high fluorescent efficiency at high concentration for sensitive and selective fluorescent mark or detection. We developed a new strategy to "isolate" and "fasten" porphyrin moieties in a highly cross-linked poly(tetraphenylporphyrin-co-cyclotriphosphazene) (TPP-PZS) by the polycondensation of hexachlorocyclotriphosphazene (HCCP) and 5,10,15,20-tetrakis(4-hydroxyphenyl)porphyrin (TPP-(OH)4) in a suitable solvent. The resulting TPP-PZS particles were characterized with transmission electron microscopy (TEM), scanning electron microscopy (SEM), Fourier transform infrared (FTIR), (31)P nuclear magnetic resonance (NMR), and ultraviolet and visible (UV-vis) absorption spectra. Remarkably, TPP-PZS particles obtained in acetone emitted a bright red fluorescence both in powder state and in solution because the aggregation of porphyrin moieties in "H-type" (face-to-face) and "J-type" (edge-to-edge) was effectively blocked. The fluorescent TPP-PZS particles also showed superior resistance to photobleaching, and had a high sensitivity and selectivity for the detection of Hg(2+) ions. The TPP-PZS particles were therefore used as an ideal material for preparing test strips to quickly detect/monitor the Hg(2+) ions in a facile way. PMID:24678932

  17. Soft metal plating enables hard metal seal to operate successfully in low temperature, high pressure environment

    NASA Technical Reports Server (NTRS)

    Lamvermeyer, D. J.

    1967-01-01

    Soft metal plating of hard metal lip seal enables successful operation of seal in a cryogenic fluid line under high pressure. The seal is coated with a thin film of 24 carat gold on the lip area to provide antigall and seal properties.

  18. Enablers and Inhibitors to English Language Learners' Research Process in a High School Setting

    ERIC Educational Resources Information Center

    Kim, Sung Un

    2015-01-01

    This researcher sought to examine enablers and inhibitors to English language learner (ELL) students' research process within the framework of Carol C. Kuhlthau's Information Search Process (ISP). At a high school forty-eight ELL students in three classes, an English as a Second Language (ESL) teacher, and a biology teacher participated in the…

  19. Preparation and characterization of highly cross-linked polyimide aerogels based on polyimide containing trimethoxysilane side groups.

    PubMed

    Pei, Xueliang; Zhai, Wentao; Zheng, Wenge

    2014-11-11

    In this study, highly cross-linked and completely imidized polyimide aerogels were prepared from polyimide containing trimethoxysilane side groups, which was obtained as the condensation product of polyimide containing acid chloride side groups and 3-aminopropyltrimethoxysilane. After adding water and acid catalyst, the trimethoxysilane side groups hydrolyzed and condensed one another, and a continuous increase in the complex viscosities of the polyimide solutions with time was observed. The formed polyimide gels were dried by freeze-drying from tert-butyl alcohol to obtain polyimide aerogels, which consisted of a three-dimensional network of polyimide fibers tangled together. By varying the solution concentration of the polyimide containing trimethoxysilane side groups, polyimide aerogels with different densities (ranging from 0.19 to 0.42 g/cm(3)) were obtained. The resulting polyimide aerogels had small pore diameter (ranging from 20.7 to 58.3 nm), high surface area (ranging from 310 to 344 m(2)/g), high 5% weight loss temperature in air (at about 440 °C), and an excellent mechanical property. In addition, the glass transition temperature (349 °C) of the polyimide aerogels was much higher than that (210 °C) of the corresponding linear polyimide. So, even after being heated at 300 °C for 30 min, the porous structure of the polyimide aerogels was not completely destroyed. PMID:25340747

  20. Functional hydrophilic polystyrene beads with uniformly size and high cross-linking degree facilitated rapid separation of exenatide.

    PubMed

    Li, Qiang; Zhao, Lan; Zhang, Rongyue; Huang, Yongdong; Zhang, Yan; Zhang, Kun; Wu, Xuexing; Zhang, Zhigang; Gong, Fangling; Su, Zhiguo; Ma, Guanghui

    2016-04-01

    A high cross-linking polystyrene(PSt)-based anion-exchange material with uniformly size, high ion exchange capacity, and high hydrophilicity was synthesized by a novel surface functionalization approach in this study. Uniformly sized PSt microspheres were prepared by the membrane emulsion polymerization strategy, and then modified by (1) conversing resid ual surface vinyl groups to epoxy groups followed by quaternization, and (2) decorating aromatic ring matrix including nitration, reduction and attachment of glycidyltrimethylammonium chloride. The 3-D morphology and porous features of microspheres were observed by scanning electron microscopy (SEM) and atomic force microscopy (AFM). The surface of the modified PSt became roughness but the particle size remained same. Meanwhile, FT-IR spectra and laser scanning confocal microscope (LCSM) indicated that the modification groups had been successfully covalently coated onto the PSt microspheres. Modified PSt microspheres showed greatly improved hydrophilicity and biocompatibility with 0.387mmol/mL ion exchange capacity (IEC). In the application evaluation procedure, exenatide can be purified from 42.9% (peptide crudes) to 88.6% by modified PSt column with 97.1% recovery yield. This modified PSt microspheres had a large potential in application for efficient separation of peptides. PMID:26970847

  1. Enabling High Performance Instruments for Astronomy and Space Exploration and ALD

    NASA Technical Reports Server (NTRS)

    Greer, Frank; Lee, M. C.; Hoenk, M. E.; Jones, T. J.; Jacquot, B. C.; Dickie, M.; Monacos, S.; Nikzad, S.; Day, P.; Leduc, R.; Hamden, E.; Schiminovich, D.; Beasley, M.; Gantner, B.; Morrissey, P.; Martin, C.

    2012-01-01

    Benefits of ALD for NASA instruments and applications: a) Ultrathin, highly conformal, and uniform films over arbitrarily large surface area. b). High quality films (density, roughness, conductivity, etc.) . Angstrom level control of stoichiometry, interfaces, and surface properties: 1) Multilayer nanolaminates/nanocomposites. 2) Low temperature surface engineering. Flight applications enabled by ALD: a) Anti-reflective coatings/Mirrors/Filters/Optics for UV/Vis/NIR Detectors. b) Superconducting Films for Submillimeter Astronomy.

  2. Enabling High Performance Instruments for UV Astronomy and Space Exploration with ALD

    NASA Technical Reports Server (NTRS)

    Greer, F.; Hoenk, M. E.; Jones, T. J.; Jacquot, B. C.; Monacos, S.; Nikzad, S.; Hamden, E.; Schiminovich, D.

    2011-01-01

    Benefits of Atomic Layer Deposition (ALD) for UV instruments and application are: (1) Ultrathin, highly conformal, and uniform films over arbitrarily large surface area (2) High quality films (density, roughness, conductivity, etc.) (3) Angstrom level control of stoichiometry, interfaces, and surface properties (3a) Multilayer nanolaminates/nanocomposites (3b) Low temperature surface engineering UV flight applications enabled by ALD. (1) Anti -reflective coatings/Mirrors/Filters/Optics for UV/Vis/NIR Detectors (2) Surface Passivation for III -N detectors

  3. High-Temperature Cross-Linking of Carbon Nanotube Multi-Yarn Using Polyvinylpyrrolidone as a Binding Agent.

    PubMed

    Misak, H; Asmatulu, R; Whitman, J; Mall, S

    2015-03-01

    Carbon nanotube (CNT) multi-yarn was cross-linked together at elevated temperatures using a poly- mer, with the intent of improving their strength and electrical conductivity. They were functionalized using an acid treatment and immersed in a bath of different concentrations (0.5%, 0.1%, and 0.2%) of polyvinylpyrrolidone (PVP). Then they were placed in an oven at various temperatures (180 °C, 200 °C, and 220 °C) in order to cause cross-linking among the carbon nanotube yarns. The phys- ical, chemical, electrical, and mechanical properties of the cross-linked yarns were investigated. The yarns cross-linked at higher temperatures and greater concentrations of PVP had a greater increase in linear mass density, indicating that the cross-linking process had worked as expected. Yarns that were cross-linked at lower temperatures had greater tensile strength and better spe- cific electrical conductivity. Those that were treated with a greater concentration of polymer had a greater ultimate tensile strength. All these results are encouraging first step, but still need further development if CNT yarn is to replace copper wire. PMID:26413653

  4. Mid-term survivorship and clinical outcomes of cobalt-chrome and oxidized zirconium on highly crosslinked polyethylene

    PubMed Central

    Petis, Stephen M.; Vasarhelyi, Edward M.; Lanting, Brent A.; Howard, James L.; Naudie, Douglas D.R.; Somerville, Lyndsay E.; McCalden, Richard W.

    2016-01-01

    Background The choice of bearing articulation for total hip arthroplasty in younger patients is amenable to debate. We compared mid-term patient-reported outcomes and survivorship across 2 different bearing articulations in a young patient cohort. Methods We reviewed patients with cobalt-chrome or oxidized zirconium on highly crosslinked polyethylene who were followed prospectively between 2004 and 2012. Kaplan–Meier analysis was used to determine predicted cumulative survivorship at 5 years with all-cause and aseptic revisions as the outcome. We compared patient-reported outcomes, including the Harris hip score (HHS), Western Ontario and McMaster University Osteoarthritis Index (WOMAC) and Short-form 12 (SF-12) scores. Results A total of 622 patients were followed during the study period. Mean follow-up was 8.2 (range 2.0–10.6) years for cobalt-chrome and 7.8 (range 2.1–10.7) years for oxidized zirconium. Mean age was 54.9 ± 10.6 years for cobalt-chrome and 54.8 ± 10.7 years for oxidized zirconium. Implant survivorship was 96.0% (95% confidence interval [CI] 94.9%–97.1%) for cobalt-chrome and 98.7% (95% CI 98.0%–99.4%) for oxidized zirconium on highly crosslinked polyethylene for all-cause revisions, and 97.2% (95% CI 96.2%–98.2%) for cobalt-chrome and 99.0% (95% CI 98.4%–99.6%) for oxidized zirconium for aseptic revisions. An age-, sex- and diagnosis-matched comparison of the HHS, WOMAC and SF-12 scores demonstrated no significant changes in clinical outcomes across the groups. Conclusion Both bearing surface couples demonstrated excellent mid-term survivorship and outcomes in young patient cohorts. Future analyses on wear and costs are warranted to elicit differences between the groups at long-term follow-up. PMID:26812409

  5. Long-term Results of a First-Generation Annealed Highly Cross-Linked Polyethylene in Young, Active Patients.

    PubMed

    Ranawat, Chitranjan S; Ranawat, Amar S; Ramteke, Alankar A; Nawabi, Danyal; Meftah, Morteza

    2016-03-01

    The survivorship of total hip arthroplasty in younger patients is dependent on the wear characteristics of the bearing surfaces. Long-term results with conventional polyethylene in young patients show a high failure rate. This study assessed the long-term results of a first-generation annealed highly cross-linked polyethylene (HCLPE) in uncemented total hip arthroplasty in young, active patients. Between 1999 and 2003, 112 total hip arthroplasty procedures performed in 91 patients with an average University of California Los Angeles activity score of 8 and mean age of 53 years (range, 24-65 years) were included from a prospective database. In all patients, a 28-mm metal femoral head on annealed HCLPE (Crossfire; Stryker, Mahwah, New Jersey) was used. At minimum 10-year follow-up (11.5±0.94 years), Kaplan-Meier survivorship was 97% for all failures (1 periprosthetic infection and 1 late dislocation) and 100% for mechanical failure (no revisions for osteolysis or loosening). This study showed low revision rates for wear-related failure and superior survivorship in young, active patients. Oxidation causing failure of the locking mechanism has not been a problem with Crossfire for up to 10 years. [Orthopedics. 2016; 39(2):e225-e229.]. PMID:26811959

  6. Graphene oxide-immobilized NH₂-terminated silicon nanoparticles by cross-linked interactions for highly stable silicon negative electrodes.

    PubMed

    Sun, Cheng; Deng, Yuanfu; Wan, Lina; Qin, Xusong; Chen, Guohua

    2014-07-23

    There is a great interest in the utilization of silicon-based anodes for lithium-ion batteries. However, its poor cycling stability, which is caused by a dramatic volume change during lithium-ion intercalation, and intrinsic low electric conductivity hamper its industrial applications. A facile strategy is reported here to fabricate graphene oxide-immobilized NH2-terminated silicon nanoparticles (NPs) negative electrode (Si@NH2/GO) directed by hydrogen bonding and cross-linked interactions to enhance the capacity retention of the anode. The NH2-modified Si NPs first form strong hydrogen bonds and covalent bonds with GO. The Si@NH2/GO composite further forms hydrogen bonds and covalent bonds with sodium alginate, which acts as a binder, to yield a stable composite negative electrode. These two chemical cross-linked/hydrogen bonding interactions-one between NH2-modified Si NPs and GO, and another between the GO and sodium alginate-along with highly mechanically flexible graphene oxide, produced a robust network in the negative electrode system to stabilize the electrode during discharge and charge cycles. The as-prepared Si@NH2/GO electrode exhibits an outstanding capacity retention capability and good rate performance, delivering a reversible capacity of 1000 mAh g(-1) after 400 cycles at a current of 420 mA g(-1) with almost 100% capacity retention. The results indicated the importance of system-level strategy for fabricating stable electrodes with improved electrochemical performance. PMID:24922522

  7. Wear resistance of the biocompatible phospholipid polymer-grafted highly cross-linked polyethylene liner against larger femoral head.

    PubMed

    Moro, Toru; Takatori, Yoshio; Kyomoto, Masayuki; Ishihara, Kazuhiko; Kawaguchi, Hiroshi; Hashimoto, Masami; Tanaka, Takeyuki; Oshima, Hirofumi; Tanaka, Sakae

    2015-07-01

    The use of larger femoral heads to prevent the dislocation of artificial hip joints has recently become more common. However, concerns about the subsequent use of thinner polyethylene liners and their effects on wear rate have arisen. Previously, we prepared and evaluated the biological and mechanical effects of a novel highly cross-linked polyethylene (CLPE) liner with a nanometer-scaled graft layer of poly(2-methacryloyloxyethyl phosphorylcholine) (PMPC). Our findings showed that the PMPC-grafted particles were biologically inert and caused no subsequent bone resorptive responses and that the PMPC-grafting markedly decreased wear in a hip joint simulator. However, the metal or ceramic femoral heads used in this previous study had a diameter of 26 mm. Here, we investigated the wear-resistance of the PMPC-grafted CLPE liner with a 40-mm femoral head during 10 × 10(6) cycles of loading in the hip joint simulator. The results provide preliminary evidence that the grafting markedly decreased gravimetric wear rate and the volume of wear particles, even when coupled with larger femoral heads. Thus, we believe the PMPC-grafting will prolong artificial hip joint longevity both by preventing aseptic loosening and by improving the stability of articular surface. PMID:25764495

  8. Facial Synthesis of Three-Dimensional Cross-Linked Cage for High-Performance Lithium Storage.

    PubMed

    Sun, Zixu; Wang, Xinghui; Ying, Hangjun; Wang, Guangjin; Han, Wei-Qiang

    2016-06-22

    Silicon/C composite is a promising anode material for high-energy Li-ion batteries. However, synthesizing high-performance Si-based materials at large scale and low cost remains a huge challenge. Here, we for the first time report the preparation of an interconnected three-dimensional (3D) porous Si-hybrid architecture by using a spray drying method. In this unique structure, the highly robust C-CNT-RGO cages not only can improve the conductivity of the electrode and buffer the volume expansion but also suppress the Si nanoparticles aggregation. As a result, the 3D Si@po-C/CNT/RGO electrode achieves long-life cycling stability at high rates (a reversible capacity of 854.9 mA h g(-1) at 2 A g(-1) after 500 cycles and capacity decay less than 0.013% per cycle) and good rate capability (1454.7, 1198.8, 949.2, 597.8, and 150 mA h g(-1) at current densities of 1, 2, 4, 10, and 20 A g(-1), respectively). Moreover, this novel electrode could deliver high reversible capacities and long-life stabilities even with high mass loading density (764.9 mA h g(-1) at 1.0 mg cm(-2) after 500 cycles and 472.2 mA h g(-1) at 1.5 mg cm(-2) after 400 cycles, respectively). This cheap and scalable strategy can be extended to fabricate other materials with large volume expansion (Sn, Ge, transition-metal oxides) and 3D porous carbon for other potential applications. PMID:27236924

  9. Persulfate initiated ultra-low cross-linked poly(N-isopropylacrylamide) microgels possess an unusual inverted cross-linking structure.

    PubMed

    Virtanen, O L J; Mourran, A; Pinard, P T; Richtering, W

    2016-05-01

    Cross-linking density and distribution are decisive for the mechanical and other properties of stimuli-sensitive poly(N-isopropylacrylamide) microgels. Here we investigate the structure of ultra-low cross-linked microgels by static light scattering and scanning force microscopy, and show that they have an inverted cross-linking structure with respect to conventional microgels, contrary to what has been assumed previously. The conventional microgels have the largest polymer volume fraction in the core from where the particle density decays radially outwards, whereas ultra-low cross-linked particles have the highest polymer volume fraction close to the surface. On a solid substrate these particles form buckled shapes at high surface coverage, as shown by scanning force micrographs. The special structure of ultra-low cross-linked microgels is attributed to cross-linking of the particle surface, which is exposed to hydrogen abstraction by radicals generated from persulfate initiators during and after polymerization. The particle core, which is less accessible to the diffusion of radicals, has consequently a lower polymer volume fraction in the swollen state. By systematic variation of the cross-linker concentration it is shown that the cross-linking contribution from peroxide under typical synthesis conditions is weaker than that from the use of 1 mol% N,N'-methylenebisacrylamide. Soft deformable hydrogel particles are of interest because they emulate biological tissues, and understanding the underlying synthesis principle enables tailoring the microgel structure for biomimetic applications. Deformability of microgels is usually controlled by the amount of added cross-linker; here we however highlight an alternative approach through structural softness. PMID:27033731

  10. A New Dry Etching Method with the High Etching Rate for Patterning Cross-Linked SU-8 Thick Films

    NASA Astrophysics Data System (ADS)

    Han, Jingning; Yin, Zhifu; Zou, Helin; Wang, Wenqiang; Feng, Jianbo

    2016-05-01

    Photo sensitive polymer SU-8, owing to its excellent mechanical properties and dielectric properties on polymerization, is widely used in MEMS device fabrications. However, the removing, stripping or re-patterning of the cross-linked SU-8 is a difficult issue. In this paper, CF4/O2 gas mixture provided by a plasma asher equipment was used for the patterning of cross-linked SU-8 material. The RF power, the temperature of the substrate holder, chamber pressure and gas concentration were optimized for the cross-linked SU-8 etching process. When the CF4/O2 mixture contains about 5%CF4 by volume, the etching rate can be reached at 5.2 μm/min.

  11. Persistent high fertility in Uganda: young people recount obstacles and enabling factors to use of contraceptives

    PubMed Central

    2010-01-01

    Background High fertility among young people aged 15-24 years is a public health concern in Uganda. Unwanted pregnancy, unsafe induced abortions and associated high morbidity and mortality among young women may be attributed to low contraceptive use. This study aims at exploring reasons for low contraceptive use among young people. Methods In 16 focus group discussions, the views of young people about obstacles and enabling factors to contraceptive use in Mityana and Mubende districts, Uganda were explored. The groups were homogeneously composed by married and unmarried men and women, between the ages of 15-24. The data obtained was analyzed using qualitative content analysis. Results Young men and women described multiple obstacles to contraceptive use. The obstacles were categorized as misconceptions and fears related to contraception, gender power relations, socio-cultural expectations and contradictions, short term planning, and health service barriers. Additionally, young people recounted several enabling factors that included female strategies to overcome obstacles, changing perceptions to contraceptive use, and changing attitude towards a small family size. Conclusions Our findings suggest changing perceptions and behavior shift towards contraceptive use and a small family size although obstacles still exist. Personalized strategies to young women and men are needed to motivate and assist young people plan their future families, adopt and sustain use of contraceptives. Reducing obstacles and reinforcing enabling factors through education, culturally sensitive behavior change strategies have the potential to enhance contraceptives use. Alternative models of contraceptive service delivery to young people are proposed. PMID:20813069

  12. Kojak: Efficient analysis of chemically cross-linked protein complexes

    PubMed Central

    Hoopmann, Michael R.; Zelter, Alex; Johnson, Richard S.; Riffle, Michael; MacCoss, Michael J.; Davis, Trisha N.; Moritz, Robert L.

    2015-01-01

    Protein chemical cross-linking and mass spectrometry enable the analysis of protein-protein interactions and protein topologies, however complicated cross-linked peptide spectra require specialized algorithms to identify interacting sites. The Kojak cross-linking software application is a new, efficient approach to identify cross-linked peptides, enabling large-scale analysis of protein-protein interactions by chemical cross-linking techniques. The algorithm integrates spectral processing and scoring schemes adopted from traditional database search algorithms, and can identify cross-linked peptides using many different chemical cross-linkers, with or without heavy isotope labels. Kojak was used to analyze both novel and existing datasets, and was compared with existing cross-linking algorithms. The algorithm provided increased cross-link identifications over existing algorithms, and equally importantly, the results in a fraction of computational time. The Kojak algorithm is open-source, cross-platform, and freely available. This software provides both existing and new cross-linking researchers alike an effective way to derive additional cross-link identifications from new or existing datasets. For new users, it provides a simple analytical resource resulting in more cross-link identifications than other methods. PMID:25812159

  13. Highly Cross-Linked Versus Conventional Polyethylene in Posterior-Stabilized Total Knee Arthroplasty at a Mean 5-Year Follow-up.

    PubMed

    Meneghini, R Michael; Lovro, Luke R; Smits, Shelly A; Ireland, Philip H

    2015-10-01

    Concerns of highly cross-linked polyethylene (XLPE) in total knee arthroplasty (TKA) exist regarding fatigue resistance and oxidation, particularly in posterior-stabilized (PS) designs. A prospective cohort study of 114 consecutive PS TKAs utilized conventional polyethylene in 50 knees and second-generation annealed XLPE in 64 TKAs. Clinical (Short-Form 36, Knee Society Scores, and LEAS) and radiographic outcomes were evaluated at a mean of 5 years in 103 TKAs. Mean KSS scores were 12 points higher (P=0.01) and SF-36 physical function subset 14 points higher (P=0.005) in the XLPE group. There was no radiographic osteolysis or mechanical failure related to the tibial polyethylene in either group. At 5-year follow-up, no deleterious effects related to highly cross-linked posterior stabilized tibial polyethylene inserts were observed. PMID:26021902

  14. Space-to-Space Power Beaming Enabling High Performance Rapid Geocentric Orbit Transfer

    NASA Technical Reports Server (NTRS)

    Dankanich, John W.; Vassallo, Corinne; Tadge, Megan

    2015-01-01

    The use of electric propulsion is more prevalent than ever, with industry pursuing all electric orbit transfers. Electric propulsion provides high mass utilization through efficient propellant transfer. However, the transfer times become detrimental as the delta V transitions from near-impulsive to low-thrust. Increasing power and therefore thrust has diminishing returns as the increasing mass of the power system limits the potential acceleration of the spacecraft. By using space-to-space power beaming, the power system can be decoupled from the spacecraft and allow significantly higher spacecraft alpha (W/kg) and therefore enable significantly higher accelerations while maintaining high performance. This project assesses the efficacy of space-to-space power beaming to enable rapid orbit transfer while maintaining high mass utilization. Concept assessment requires integrated techniques for low-thrust orbit transfer steering laws, efficient large-scale rectenna systems, and satellite constellation configuration optimization. This project includes the development of an integrated tool with implementation of IPOPT, Q-Law, and power-beaming models. The results highlight the viability of the concept, limits and paths to infusion, and comparison to state-of-the-art capabilities. The results indicate the viability of power beaming for what may be the only approach for achieving the desired transit times with high specific impulse.

  15. Crosslink Density and Molecular Weight Effects on the Viscoelastic Response of a Glassy High-Performance Polyimide

    NASA Technical Reports Server (NTRS)

    Nicholson, Lee M.; Whitley, Karen S.; Gates, Thomas S.

    2001-01-01

    Durability and long-term performance are among the primary concerns for the use of advanced polymer matrix composites (PMCs) in modern aerospace structural applications. For a PMC subJected to long-term exposure at elevated temperatures. the viscoelastic nature of the polymer matrix will contribute to macroscopic changes in composite stiffness, strength and fatigue life. Over time. changes in the polymer due to physical aging will have profound effects on tile viscoelastic compliance of the material, hence affecting its long-term durability. Thus, the ability to predict material performance using intrinsic properties, such as crosslink density and molecular weight, would greatly enhance the efficiency of design and development of PMCs. The objective of this paper is to discuss and present the results of an experimental study that considers the effects of crosslink density, molecular weight and temperature on the viscoelastic behavior including physical aging of an advanced polymer. Five distinct variations in crosslink density were used to evaluate the differences in mechanical performance of an advanced polyimide. The physical aging behavior was isolated by conducting sequenced, short-term isothermal creep compliance tests in tension. These tests were performed over a range of sub-glass transition temperatures. The material constants, material master curves and physical aging-related parameters were evaluated as a function of temperature crosslink density and molecular weight using time-temperature and time-aging time superposition techniques.

  16. UV Imaging Detectors: High-QE EBCMOS Enabling New Science Missions

    NASA Astrophysics Data System (ADS)

    Joseph, Charles L.; Woodgate, B. E.

    2011-01-01

    The EBCMOS (electron-bombarded CMOS) is an excellent general-purpose ultraviolet detector with photon-noise-limited performance. Visible-blind ultraviolet sensors with detective quantum efficiencies of 30% to 70% have been demonstrated, representing a 2x - 3x improvement in sensitivity over traditional photocathode detectors. The Electron-bombarded CCD and now EBCMOS with an opaque photocathode on a smooth surface offers the best photocathode QE. Ongoing research, including nanowire technology, is likely to provide an assortment of new photocathodes, each with an optimal QE and customized wavelength range. The red cutoff is particularly important for a UV detector since most astronomical targets emit 106 - 108 visible photons for every UV photon, potentially swamping the UV signal. Novel magnet designs for the EBCMOS have enabled weight and volume reductions by a factor of 3, making it competitive in these parameters as well. New science missions are enabled by EBCMOS detectors. One proposed mission is a near-UV long-duration balloon mission having an integral field spectrograph (IFS) plus a Fabry-Perot with 0.1" resolution over a 100" x 100" field of view. Its 1.5 m aperture telescope plus its high sensitivity EBCMOS detector enable a factor of 25 advantage over GALEX in the NUV band. Moreover, the detector plays an important role in obtaining near diffraction limited resolution. The balloon mission will map Ly-α and O VI features in LAEs and LABs redshifted into the NUV (0.6 < z < 1.8). It will also map the outflows of multiply ionized gas from Seyfert AGNs. Another proposed mission which may incorporate EBCMOS detectors is an orbital observatory to map the circumgalactic medium (CGM) in the far UV using O VI, Ly-α, and C IV absorption/emission lines. This mission includes highly optimized spectral imagers with photon-counting detectors to make challenging observations without a high-performance attitude control system.

  17. Development of Microfluidic Systems Enabling High-Throughput Single-Cell Protein Characterization

    PubMed Central

    Fan, Beiyuan; Li, Xiufeng; Chen, Deyong; Peng, Hongshang; Wang, Junbo; Chen, Jian

    2016-01-01

    This article reviews recent developments in microfluidic systems enabling high-throughput characterization of single-cell proteins. Four key perspectives of microfluidic platforms are included in this review: (1) microfluidic fluorescent flow cytometry; (2) droplet based microfluidic flow cytometry; (3) large-array micro wells (microengraving); and (4) large-array micro chambers (barcode microchips). We examine the advantages and limitations of each technique and discuss future research opportunities by focusing on three key performance parameters (absolute quantification, sensitivity, and throughput). PMID:26891303

  18. Ionic liquid enabled FeS2 for high-energy-density lithium-ion batteries.

    PubMed

    Evans, Tyler; Piper, Daniela Molina; Kim, Seul Cham; Han, Sang Sub; Bhat, Vinay; Oh, Kyu Hwan; Lee, Se-Hee

    2014-11-19

    High-energy-density FeS2 cathodes en-abled by a bis(trifluoromethanesulfonyl)imide (TFSI-) anion-based room temperature ionic liquid (RTIL) electrolyte are demonstrated. A TFSI-based ionic liquid (IL) significantly mitigates polysulfide dissolution, and therefore the parasitic redox shuttle mechanism, that plagues sulfur-based electrode chemistries. FeS2 stabilization with a TFSI(-) -based IL results in one of the highest energy density cathodes, 542 W h kg(-1) (normalized to cathode composite mass), reported to date. PMID:25236752

  19. Development of Microfluidic Systems Enabling High-Throughput Single-Cell Protein Characterization.

    PubMed

    Fan, Beiyuan; Li, Xiufeng; Chen, Deyong; Peng, Hongshang; Wang, Junbo; Chen, Jian

    2016-01-01

    This article reviews recent developments in microfluidic systems enabling high-throughput characterization of single-cell proteins. Four key perspectives of microfluidic platforms are included in this review: (1) microfluidic fluorescent flow cytometry; (2) droplet based microfluidic flow cytometry; (3) large-array micro wells (microengraving); and (4) large-array micro chambers (barcode microchips). We examine the advantages and limitations of each technique and discuss future research opportunities by focusing on three key performance parameters (absolute quantification, sensitivity, and throughput). PMID:26891303

  20. The Stanford Automated Mounter: Enabling High-Throughput Protein Crystal Screening at SSRL

    PubMed Central

    Smith, Clyde A.; Cohen, Aina E.

    2008-01-01

    The macromolecular crystallography experiment lends itself perfectly to high-throughput technologies. The initial steps including the expression, purification and crystallization of protein crystals, along with some of the later steps involving data processing and structure determination have all been automated to the point where some of the last remaining bottlenecks in the process have been crystal mounting, crystal screening and data collection. At the Stanford Synchrotron Radiation Laboratory (SSRL), a National User Facility which provides extremely brilliant X-ray photon beams for use in materials science, environmental science and structural biology research, the incorporation of advanced robotics has enabled crystals to be screened in a true high-throughput fashion, thus dramatically accelerating the final steps. Up to 288 frozen crystals can be mounted by the beamline robot (the Stanford Automated Mounter, or SAM) and screened for diffraction quality in a matter of hours without intervention. The best quality crystals can then be remounted for the collection of complete X-ray diffraction data sets. Furthermore, the entire screening and data collection experiment can be controlled from the experimenter’s home laboratory by means of advanced software tools that enable network-based control of the highly automated beamlines. PMID:19956359

  1. The Stanford Automated Mounter: Enabling High-Throughput Protein Crystal Screening at SSRL

    SciTech Connect

    Smith, C.A.; Cohen, A.E.

    2009-05-26

    The macromolecular crystallography experiment lends itself perfectly to high-throughput technologies. The initial steps including the expression, purification, and crystallization of protein crystals, along with some of the later steps involving data processing and structure determination have all been automated to the point where some of the last remaining bottlenecks in the process have been crystal mounting, crystal screening, and data collection. At the Stanford Synchrotron Radiation Laboratory, a National User Facility that provides extremely brilliant X-ray photon beams for use in materials science, environmental science, and structural biology research, the incorporation of advanced robotics has enabled crystals to be screened in a true high-throughput fashion, thus dramatically accelerating the final steps. Up to 288 frozen crystals can be mounted by the beamline robot (the Stanford Auto-Mounting System) and screened for diffraction quality in a matter of hours without intervention. The best quality crystals can then be remounted for the collection of complete X-ray diffraction data sets. Furthermore, the entire screening and data collection experiment can be controlled from the experimenter's home laboratory by means of advanced software tools that enable network-based control of the highly automated beamlines.

  2. Heat shrinkable behavior, physico-mechanical and structure properties of electron beam cross-linked blends of high-density polyethylene with acrylonitrile-butadiene rubber

    NASA Astrophysics Data System (ADS)

    Reinholds, Ingars; Kalkis, Valdis; Merijs-Meri, Remo; Zicans, Janis; Grigalovica, Agnese

    2016-03-01

    In this study, heat-shrinkable composites of electron beam irradiated high-density polyethylene (HDPE) composites with acrylonitrile-butadiene rubber (NBR) were investigated. HDPE/NBR blends at a ratio of components 100/0, 90/10, 80/20, 50/50 and 20/80 wt% were prepared using a two-roll mill. The compression molded films were irradiated high-energy (5 MeV) accelerated electrons up to irradiation absorbed doses of 100-300 kGy. The effect of electron beam induced cross-linking was evaluated by the changes of mechanical properties, gel content and by the differences of thermal properties, detected by differential scanning calorimetry. The thermo-shrinkage forces were determined as the kinetics of thermorelaxation and the residual shrinkage stresses of previously oriented (stretched up to 100% at above melting temperature of HDPE and followed by cooling to room temperature) specimens of irradiated HDPE/NBR blends under isometric heating-cooling mode. The compatibility between the both components was enhanced due to the formation of cross-linked sites at amorphous interphase. The results showed increase of mechanical stiffness of composites with increase of irradiation dose. The values of gel fraction compared to thermorelaxation stresses increased with the growth of irradiation dose level, as a result of formation cross-linked sites in amorphous PP/NBR interphase.

  3. Heat transfer performance of a phase-change thermal energy storage water heater using cross-linked high density polyethylene pellets

    SciTech Connect

    Jotshi, C.K.; Klausner, J.F.; Goswami, D.Y.; Hsieh, C.K.; Santhosh, M.K.; Colacino, F.

    1996-12-31

    The objective of this investigation was to develop an efficient water heater that stores thermal energy in a mixture of cross-linked high density polyethylene (HDPE) pellets and propylene glycol. Properties of cross-linked HDPE, such as melting and crystallization temperatures, heat of fusion and crystallization, and volume change were measured in the laboratory. The heat transfer coefficient for the mixture was also measured in a laboratory test. A prototype model of a storage water heater using a mixture of cross-linked HDPE pellets and propylene glycol was designed and fabricated. A copper finned heat transfer coil was used to extract the heat from the storage tank by passing water through it. The heat transfer efficiency (heat extracted by water/heat stored) was measured to be about 70%. To increase the efficiency, the storage unit was modified. In the modified unit, the length of the heat transfer coil was increased and coil spacing optimized. With the modification, the heat transfer efficiency was measured to be about 90%. In addition, a variable heat flux heating element, having high heat flux at the bottom and low heat flux at top, was used to reduce thermal stratification of the propylene glycol/HDPE pellet mixture.

  4. Enabling Earth-Abundant Pyrite (FeS2) Semiconductor Nanostructures for High Performance Photovoltaic Devices

    SciTech Connect

    Jin, Song

    2014-11-18

    This project seeks to develop nanostructures of iron pyrite, an earth-abundant semiconductor, to enable their applications in high-performance photovoltaic (PV) devices. Growth of high purity iron pyrite nanostructures (nanowires, nanorods, and nanoplates), as well as iron pyrite thin films and single crystals, has been developed and their structures characterized. These structures have been fundamentally investigated to understand the origin of the low solar energy conversion efficiency of iron pyrite and various passivation strategies and doping approaches have been explored in order to improve it. By taking advantage of the high surface-to-bulk ratio in nanostructures and effective electrolyte gating, we fully characterized both the surface inversion and bulk electrical transport properties for the first time through electrolyte-gated Hall measurements of pyrite nanoplate devices and show that pyrite is n-type in the bulk and p-type near the surface due to strong inversion, which has important consequences to using nanocrystalline pyrite for efficient solar energy conversion. Furthermore, through a comprehensive investigation on n-type iron pyrite single crystals, we found the ionization of high-density bulk deep donor states, likely resulting from bulk sulfur vacancies, creates a non-constant charge distribution and a very narrow surface space charge region that limits the total barrier height, thus satisfactorily explains the limited photovoltage and poor photoconversion efficiency of iron pyrite single crystals. These findings suggest new ideas on how to improve single crystal pyrite and nanocrystalline or polycrystalline pyrite films to enable them for high performance solar applications.

  5. AlN/3C-SiC composite plate enabling high-frequency and high-Q micromechanical resonators.

    PubMed

    Lin, Chih-Ming; Chen, Yung-Yu; Felmetsger, Valery V; Senesky, Debbie G; Pisano, Albert P

    2012-05-22

    An AlN/3C-SiC composite layer enables the third-order quasi-symmetric (QS(3)) Lamb wave mode with a high quality factor (Q) characteristic and an ultra-high phase velocity up to 32395 ms(-1). A Lamb wave resonator utilizing the QS(3) mode exhibits a low motional impedance of 91 Ω and a high Q of 5510 at a series resonance frequency (f(s)) of 2.92 GHz, resulting in the highest f(s)·Q product of 1.61 × 10(13) Hz among the suspended piezoelectric thin film resonators reported to date. PMID:22495881

  6. Enabling cost-effective high-current burst-mode operation in superconducting accelerators

    DOE PAGESBeta

    Sheffield, Richard L.

    2015-06-01

    Superconducting (SC) accelerators are very efficient for CW or long-pulse operation, and normal conducting (NC) accelerators are cost effective for short-pulse operation. The addition of a short NC linac section to a SC linac can correct for the energy droop that occurs when pulsed high-current operation is required that exceeds the capability of the klystrons to replenish the cavity RF fields due to the long field fill-times of SC structures, or a requirement to support a broad range of beam currents results in variable beam loading. This paper describes the implementation of this technique to enable microseconds of high beam-current,more » 90 mA or more, in a 12 GeV SC long-pulse accelerator designed for the MaRIE 42-keV XFEL proposed for Los Alamos National Laboratory.« less

  7. Enabling cost-effective high-current burst-mode operation in superconducting accelerators

    SciTech Connect

    Sheffield, Richard L.

    2015-06-01

    Superconducting (SC) accelerators are very efficient for CW or long-pulse operation, and normal conducting (NC) accelerators are cost effective for short-pulse operation. The addition of a short NC linac section to a SC linac can correct for the energy droop that occurs when pulsed high-current operation is required that exceeds the capability of the klystrons to replenish the cavity RF fields due to the long field fill-times of SC structures, or a requirement to support a broad range of beam currents results in variable beam loading. This paper describes the implementation of this technique to enable microseconds of high beam-current, 90 mA or more, in a 12 GeV SC long-pulse accelerator designed for the MaRIE 42-keV XFEL proposed for Los Alamos National Laboratory.

  8. DOE High Performance Computing Operational Review (HPCOR): Enabling Data-Driven Scientific Discovery at HPC Facilities

    SciTech Connect

    Gerber, Richard; Allcock, William; Beggio, Chris; Campbell, Stuart; Cherry, Andrew; Cholia, Shreyas; Dart, Eli; England, Clay; Fahey, Tim; Foertter, Fernanda; Goldstone, Robin; Hick, Jason; Karelitz, David; Kelly, Kaki; Monroe, Laura; Prabhat,; Skinner, David; White, Julia

    2014-10-17

    U.S. Department of Energy (DOE) High Performance Computing (HPC) facilities are on the verge of a paradigm shift in the way they deliver systems and services to science and engineering teams. Research projects are producing a wide variety of data at unprecedented scale and level of complexity, with community-specific services that are part of the data collection and analysis workflow. On June 18-19, 2014 representatives from six DOE HPC centers met in Oakland, CA at the DOE High Performance Operational Review (HPCOR) to discuss how they can best provide facilities and services to enable large-scale data-driven scientific discovery at the DOE national laboratories. The report contains findings from that review.

  9. MEMS-enabled Dip Pen Nanolithography for directed nanoscale deposition and high-throughput nanofabrication

    NASA Astrophysics Data System (ADS)

    Haaheim, J. R.; Nafday, O. A.; Levesque, T.; Fragala, J.; Shile, R.

    2009-02-01

    Precision nanoscale deposition is a fundamental requirement for nanoscience research, development, and commercial implementation. Dip Pen Nanolithography(R) (DPN) is an inherently additive SPM-based technique which operates under ambient conditions, making it suitable to deposit a wide range of biological and inorganic materials. This technique is fundamentally enabled by a portfolio of MEMS devices tailored for microfluidic ink delivery, directed placement of nanoscale materials via actuated cantilevers, and cm2 tip arrays for high-throughput nanofabrication. Multiplexed deposition of nanoscale materials is a challenging problem, but we have implemented InkWells(TM) to enable selective delivery of ink materials to different tips in multiple probe arrays, while preventing cross-contamination. Active Pens(TM) can take advantage of this, directly place a variety of materials in nanoscale proximity, and do so in a "clean" fashion since the cantilevers can be manipulated in Z. Further, massively parallel two-dimensional nanopatterning with DPN is now commercially available via NanoInk's 2D nano PrintArray(TM), making DPN a highthroughput, flexible and versatile method for precision nanoscale pattern formation. By fabricating 55,000 tip-cantilevers across a 1 cm2 chip, we leverage the inherent versatility of DPN and demonstrate large area surface coverage, routinely achieving throughputs of 3×107 μm2 per hour. Further, we have engineered the device to be easy to use, wire-free, and fully integrated with the NSCRIPTOR's scanner, stage, and sophisticated lithography routines. In this talk we discuss the methods of operating this commercially available device, and subsequent results showing sub-100 nm feature sizes and excellent uniformity (standard deviation < 16%). Finally, we will discuss applications enabled by this MEMS portfolio including: 1) rapidly and flexibly generating nanostructures; 2) chemically directed assembly and 3) directly writing biological materials.

  10. In situ thermally cross-linked polyacrylonitrile as binder for high-performance silicon as lithium ion battery anode.

    PubMed

    Shen, Lanyao; Shen, Lian; Wang, Zhaoxiang; Chen, Liquan

    2014-07-01

    Electrode integrity and electric contact between particles and between particle and current collector are critical for electrochemical performance, especially for that of electrode materials with large volume change during cycling and with poor electric conductivity. We report on the in situ thermally cross-linked polyacrylonitrile (PAN) as a binder for silicon-based anodes of lithium-ion batteries. The electrode delivers excellent cycle life and rate capability with a reversible capacity of about 1450 mA h g(-1) even after 100 cycles. The improved electrochemical performance of such silicon electrodes is attributed to heat-treatment-induced cross-linking and the formation of conjugated PAN. These findings open new avenues to explore other polymers for both anode and cathode electrodes of rechargeable batteries. PMID:24782265

  11. High Dielectric and Mechanical Properties Achieved in Cross-Linked PVDF/α-SiC Nanocomposites with Elevated Compatibility and Induced Polarization at the Interface.

    PubMed

    Feng, Yefeng; Miao, Bei; Gong, Honghong; Xie, Yunchuan; Wei, Xiaoyong; Zhang, Zhicheng

    2016-07-27

    Remarkably improved dielectric properties including high-k, low loss, and high breakdown strength combined with promising mechanical performance such as high flexibility, good heat, and chemical resistivity are hard to be achieved in high-k dielectric composites based on the current composite fabrication strategy. In this work, a family of high-k polymer nanocomposites has been fabricated from a facile suspension cast process followed by chemical cross-linking at elevated temperature. Internal double bonds bearing poly(vinylidene fluoride-chlorotrifluoroethylene) (P(VDF-CTFE-DB)) in total amorphous phase are employed as cross-linkable polymer matrix. α-SiC particles with a diameter of 500 nm are surface modified with 3-aminpropyltriethoxysilane (KH-550) as fillers for their comparable dielectric performance with PVDF polymer matrix, low conductivity, and high breakdown strength. The interface between SiC particles and PVDF matrix has been finely tailored, which leads to the significantly elevated dielectric constant from 10 to over 120 in SiC particles due to the strong induced polarization. As a result, a remarkably improved dielectric constant (ca. 70) has been observed in c-PVDF/m-SiC composites bearing 36 vol % SiC, which could be perfectly predicted by the effective medium approximation (EMA) model. The optimized interface and enhanced compatibility between two components are also responsible for the depressed conductivity and dielectric loss in the resultant composites. Chemical cross-linking constructed in the composites results in promising mechanical flexibility, good heat and chemical stability, and elevated tensile performance of the composites. Therefore, excellent dielectric and mechanical properties are finely balanced in the PVDF/α-SiC composites. This work might provide a facile and effective strategy to fabricate high-k dielectric composites with promising comprehensive performance. PMID:27377185

  12. Towards enabling ultrasound guidance in cervical cancer high-dose-rate brachytherapy

    NASA Astrophysics Data System (ADS)

    Wong, Adrian; Sojoudia, Samira; Gaudet, Marc; Yap, Wan Wan; Chang, Silvia D.; Abolmaesumi, Purang; Aquino-Parsons, Christina; Moradi, Mehdi

    2014-03-01

    MRI and Computed Tomography (CT) are used in image-based solutions for guiding High Dose Rate (HDR) brachytherapy treatment of cervical cancer. MRI is costly and CT exposes the patients to ionizing radiation. Ultrasound, on the other hand, is affordable and safe. The long-term goal of our work is to enable the use of multiparametric ultrasound imaging in image-guided HDR for cervical cancer. In this paper, we report the development of enabling technology for ultrasound guidance and tissue typing. We report a system to obtain the 3D freehand transabdominal ultrasound RF signals and B-mode images of the uterus, and a method for registration of ultrasound to MRI. MRI and 3D ultrasound images of the female pelvis were registered by contouring the uterus in the two modalities, creating a surface model, followed by rigid and B-spline deformable registration. The resulting transformation was used to map the location of the tumor from the T2-weighted MRI to ultrasound images and to determine cancerous and normal areas in ultrasound. B-mode images show a contrast for cancer vs. normal tissue. Our study shows the potential and the challenges of ultrasound imaging in guiding cervical cancer treatments.

  13. High-Speed Friction-Stir Welding to Enable Aluminum Tailor-Welded Blanks

    NASA Astrophysics Data System (ADS)

    Hovanski, Yuri; Upadhyay, Piyush; Carsley, John; Luzanski, Tom; Carlson, Blair; Eisenmenger, Mark; Soulami, Ayoub; Marshall, Dustin; Landino, Brandon; Hartfield-Wunsch, Susan

    2015-05-01

    Current welding technologies for production of aluminum tailor-welded blanks (TWBs) are utilized in low-volume and niche applications, and they have yet to be scaled for the high-volume vehicle market. This study targeted further weight reduction, part reduction, and cost savings by enabling tailor-welded blank technology for aluminum alloys at high volumes. While friction-stir welding (FSW) has been traditionally applied at linear velocities less than 1 m/min, high-volume production applications demand the process be extended to higher velocities more amenable to cost-sensitive production environments. Unfortunately, weld parameters and performance developed and characterized at low-to-moderate welding velocities do not directly translate to high-speed linear FSW. Therefore, to facilitate production of high-volume aluminum FSW components, parameters were developed with a minimum welding velocity of 3 m/min. With an emphasis on weld quality, welded blanks were evaluated for postweld formability using a combination of numerical and experimental methods. An evaluation across scales was ultimately validated by stamping full-size production door inner panels made from dissimilar thickness aluminum TWBs, which provided validation of the numerical and experimental analysis of laboratory-scale tests.

  14. Enabling high speed friction stir welding of aluminum tailor welded blanks

    NASA Astrophysics Data System (ADS)

    Hovanski, Yuri

    Current welding technologies for production of aluminum tailor-welded blanks (TWBs) are utilized in low-volume and niche applications, and have yet to be scaled for the high-volume vehicle market. This study targeted further weight reduction, part reduction, and cost savings by enabling tailor-welded blank technology for aluminum alloys at high-volumes. While friction stir welding (FSW) has traditionally been applied at linear velocities less than one meter per minute, high volume production applications demand the process be extended to higher velocities more amenable to cost sensitive production environments. Unfortunately, weld parameters and performance developed and characterized at low to moderate welding velocities do not directly translate to high speed linear friction stir welding. Therefore, in order to facilitate production of high volume aluminum FSW components, parameters were developed with a minimum welding velocity of three meters per minute. With an emphasis on weld quality, welded blanks were evaluated for post-weld formability using a combination of numerical and experimental methods. Evaluation across scales was ultimately validated by stamping full-size production door inner panels made from dissimilar thickness aluminum tailor-welded blanks, which provided validation of the numerical and experimental analysis of laboratory scale tests.

  15. High-Speed Friction-Stir Welding To Enable Aluminum Tailor-Welded Blanks

    SciTech Connect

    Hovanski, Yuri; Upadhyay, Piyush; Carsley, John; Luzanski, Tom; Carlson, Blair; Eisenmenger, Mark; Soulami, Ayoub; Marshall, Dustin; Landino, Brandon; Hartfield-Wunsch, Susan

    2015-05-01

    Current joining technologies for automotive aluminum alloys are utilized in low-volume and niche applications, and have yet to be scaled for the high-volume vehicle market. This study targeted further weight reduction, part reduction, and cost savings by enabling tailor-welded blank technology for aluminum alloys at high-volumes. While friction stir welding has been traditionally applied at linear velocities less than one meter per minute, high volume production applications demand the process be extended to higher velocities more amenable to cost sensitive production environments. Unfortunately, weld parameters and performance developed and characterized at low to moderate welding velocities do not directly translate to high speed linear friction stir welding. Therefore, in order to facilitate production of high volume aluminum welded components, parameters were developed with a minimum welding velocity of three meters per minute. With an emphasis on weld quality, welded blanks were evaluated for post-weld formability utilizing a combination of numerical and experimental methods. Evaluation across scales was ultimately validated by stamping full-size production door inner panels made from dissimilar thickness aluminum tailor-welded blanks, which provided validation of the numerical and experimental analysis of laboratory scale tests.

  16. Highly cross-linked Cu/a-Si core-shell nanowires for ultra-long cycle life and high rate lithium batteries

    NASA Astrophysics Data System (ADS)

    Wang, Hongxiang; Song, Hucheng; Lin, Zixia; Jiang, Xiaofan; Zhang, Xiaowei; Yu, Linwei; Xu, Jun; Pan, Lijia; Wang, Junzhuan; Zheng, Mingbo; Shi, Yi; Chen, Kunji

    2016-01-01

    Seeking long cycle lifetime and high rate performance are still challenging aspects to promote the application of silicon-loaded lithium ion batteries (LIBs), where optimal structural and compositional design are critical to maximize a synergistic effect in composite core-shell nanowire anode structures. We here propose and demonstrate a high quality conformal coating of an amorphous Si (a-Si) thin film over a matrix of highly cross-linked CuO nanowires (NWs). The conformal a-Si coating can serve as both a high capacity storage medium and a high quality binder that joins crossing CuO NWs into a continuous network. And the CuO NWs can be reduced into highly conductive Cu cores in low temperature H2 annealing. In this way, we have demonstrated an excellent cycling stability that lasts more than 700 (or 1000) charge/discharge cycles at a current density of 3.6 A g-1 (or 1 A g-1), with a high capacity retention rate of 80%. Remarkably, these Cu/a-Si core-shell anode structures can survive an extremely high charging current density of 64 A g-1 for 25 runs, and then recover 75% initial capacity when returning to 1 A g-1. We also present the first and straightforward experimental proof that these robust highly-cross-linked core-shell networks can preserve the structural integrity even after 1000 runs of cycling. All these results indicate a new and convenient strategy towards a high performance Si-loaded battery application.Seeking long cycle lifetime and high rate performance are still challenging aspects to promote the application of silicon-loaded lithium ion batteries (LIBs), where optimal structural and compositional design are critical to maximize a synergistic effect in composite core-shell nanowire anode structures. We here propose and demonstrate a high quality conformal coating of an amorphous Si (a-Si) thin film over a matrix of highly cross-linked CuO nanowires (NWs). The conformal a-Si coating can serve as both a high capacity storage medium and a high

  17. Stress management as an enabling technology for high-field superconducting dipole magnets

    NASA Astrophysics Data System (ADS)

    Holik, Eddie Frank, III

    This dissertation examines stress management and other construction techniques as means to meet future accelerator requirement demands by planning, fabricating, and analyzing a high-field, Nb3Sn dipole. In order to enable future fundamental research and discovery in high energy accelerator physics, bending magnets must access the highest fields possible. Stress management is a novel, propitious path to attain higher fields and preserve the maximum current capacity of advanced superconductors by managing the Lorentz stress so that strain induced current degradation is mitigated. Stress management is accomplished through several innovative design features. A block-coil geometry enables an Inconel pier and beam matrix to be incorporated in the windings for Lorentz Stress support and reduced AC loss. A laminar spring between windings and mica paper surrounding each winding inhibit any stress transferral through the support structure and has been simulated with ALGORRTM. Wood's metal filled, stainless steel bladders apply isostatic, surface-conforming preload to the pier and beam support structure. Sufficient preload along with mica paper sheer release reduces magnet training by inhibiting stick-slip motion. The effectiveness of stress management is tested with high-precision capacitive stress transducers and strain gauges. In addition to stress management, there are several technologies developed to assist in the successful construction of a high-field dipole. Quench protection has been designed and simulated along with full 3D magnetic simulation with OPERARTM. Rutherford cable was constructed, and cable thermal expansion data was analysed after heat treatment. Pre-impregnation analysis techniques were developed due to elemental tin leakage in varying quantities during heat treatment from each coil. Robust splicing techniques were developed with measured resistivites consistent with nO joints. Stress management has not been incorporated by any other high field dipole

  18. Highly cross-linked Cu/a-Si core-shell nanowires for ultra-long cycle life and high rate lithium batteries.

    PubMed

    Wang, Hongxiang; Song, Hucheng; Lin, Zixia; Jiang, Xiaofan; Zhang, Xiaowei; Yu, Linwei; Xu, Jun; Pan, Lijia; Wang, Junzhuan; Zheng, Mingbo; Shi, Yi; Chen, Kunji

    2016-02-01

    Seeking long cycle lifetime and high rate performance are still challenging aspects to promote the application of silicon-loaded lithium ion batteries (LIBs), where optimal structural and compositional design are critical to maximize a synergistic effect in composite core-shell nanowire anode structures. We here propose and demonstrate a high quality conformal coating of an amorphous Si (a-Si) thin film over a matrix of highly cross-linked CuO nanowires (NWs). The conformal a-Si coating can serve as both a high capacity storage medium and a high quality binder that joins crossing CuO NWs into a continuous network. And the CuO NWs can be reduced into highly conductive Cu cores in low temperature H2 annealing. In this way, we have demonstrated an excellent cycling stability that lasts more than 700 (or 1000) charge/discharge cycles at a current density of 3.6 A g(-1) (or 1 A g(-1)), with a high capacity retention rate of 80%. Remarkably, these Cu/a-Si core-shell anode structures can survive an extremely high charging current density of 64 A g(-1) for 25 runs, and then recover 75% initial capacity when returning to 1 A g(-1). We also present the first and straightforward experimental proof that these robust highly-cross-linked core-shell networks can preserve the structural integrity even after 1000 runs of cycling. All these results indicate a new and convenient strategy towards a high performance Si-loaded battery application. PMID:26572901

  19. New silicon technologies enable high-performance arrays of Single Photon Avalanche Diodes

    PubMed Central

    Gulinatti, Angelo; Rech, Ivan; Maccagnani, Piera; Cova, Sergio; Ghioni, Massimo

    2013-01-01

    In order to fulfill the requirements of many applications, we recently developed a new technology aimed at combining the advantages of traditional thin and thick silicon Single Photon Avalanche Diodes (SPAD). In particular we demonstrated single-pixel detectors with a remarkable improvement in the Photon Detection Efficiency at the longer wavelengths (e.g. 40% at 800nm) while maintaining a timing jitter better than 100ps. In this paper we will analyze the factors the currently prevent the fabrication of arrays of SPADs by adopting such a Red-Enhanced (RE) technology and we will propose further modifications to the device structure that will enable the fabrication of high performance RE-SPAD arrays for photon timing applications. PMID:24353395

  20. Modulation of orthogonal body waves enables high maneuverability in sidewinding locomotion

    NASA Astrophysics Data System (ADS)

    Astley, Henry; Gong, Chaohui; Travers, Matt; Serrano, Miguel; Vela, Patricio; Choset, Howie; Mendelson, Joseph, III; Hu, David; Goldman, Daniel

    2015-03-01

    To simplify control of high degree of freedom bodies, organisms may target a set of simple shape changes (a ``template''). Recent work has revealed that the locomotion of sidewinder rattlesnakes can be described by a combination of horizontal and vertical body waves with a phase difference of +/- π/2, representing a possible control template. These animals display high maneuverability which we hypothesize emerges from their ability to independently modulate these waves. Snakes used two distinct turning methods which we term differential turning (24° turn per cycle) and reversal turning (80°). Kinematic data suggested that during differential turning the animals imposed an amplitude modulation in the horizontal wave while in reversal turning they shifted the phase of the vertical wave by π. We tested these mechanisms in the robot, generating differential and reversal turning. Further manipulations of the two-wave system revealed a third turning mode, ``frequency turning,'' not observed in biological snakes which allowed the robot to execute large (127°) in-place turns. The two-wave system enables unprecedented maneuverability of high degree-of-freedom systems, revealing a practical benefits of the search for control templates. Zoo Atlanta

  1. High Performance Ultrathin GaAs Solar Cells Enabled with Heterogeneously Integrated Dielectric Periodic Nanostructures.

    PubMed

    Lee, Sung-Min; Kwong, Anthony; Jung, Daehwan; Faucher, Joseph; Biswas, Roshni; Shen, Lang; Kang, Dongseok; Lee, Minjoo Larry; Yoon, Jongseung

    2015-10-27

    Due to their favorable materials properties including direct bandgap and high electron mobilities, epitaxially grown III-V compound semiconductors such as gallium arsenide (GaAs) provide unmatched performance over silicon in solar energy harvesting. Nonetheless, their large-scale deployment in terrestrial photovoltaics remains challenging mainly due to the high cost of growing device quality epitaxial materials. In this regard, reducing the thickness of constituent active materials under appropriate light management schemes is a conceptually viable option to lower the cost of GaAs solar cells. Here, we present a type of high efficiency, ultrathin GaAs solar cell that incorporates bifacial photon management enabled by techniques of transfer printing to maximize the absorption and photovoltaic performance without compromising the optimized electronic configuration of planar devices. Nanoimprint lithography and dry etching of titanium dioxide (TiO2) deposited directly on the window layer of GaAs solar cells formed hexagonal arrays of nanoscale posts that serve as lossless photonic nanostructures for antireflection, diffraction, and light trapping in conjunction with a co-integrated rear-surface reflector. Systematic studies on optical and electrical properties and photovoltaic performance in experiments, as well as numerical modeling, quantitatively describe the optimal design rules for ultrathin, nanostructured GaAs solar cells and their integrated modules. PMID:26376087

  2. Nested Patch PCR enables highly multiplexed mutation discovery in candidate genes

    PubMed Central

    Varley, Katherine Elena; Mitra, Robi David

    2008-01-01

    Medical resequencing of candidate genes in individual patient samples is becoming increasingly important in the clinic and in clinical research. Medical resequencing requires the amplification and sequencing of many candidate genes in many patient samples. Here we introduce Nested Patch PCR, a novel method for highly multiplexed PCR that is very specific, can sensitively detect SNPs and mutations, and is easy to implement. This is the first method that couples multiplex PCR with sample-specific DNA barcodes and next-generation sequencing to enable highly multiplex mutation discovery in candidate genes for multiple samples in parallel. In our pilot study, we amplified exons from colon cancer and matched normal human genomic DNA. From each sample, we successfully amplified 96% (90 of 94) targeted exons from across the genome, totaling 21.6 kbp of sequence. Ninety percent of all sequencing reads were from targeted exons, demonstrating that Nested Patch PCR is highly specific. We found that the abundance of reads per exon was reproducible across samples. We reliably detected germline SNPs and discovered a colon tumor specific nonsense mutation in APC, a gene causally implicated in colorectal cancer. With Nested Patch PCR, candidate gene mutation discovery across multiple individual patient samples can now utilize the power of second-generation sequencing. PMID:18849522

  3. Intelligent, net or wireless enabled fluorosensors for high throughput monitoring of assorted crops

    NASA Astrophysics Data System (ADS)

    Barócsi, Attila

    2013-02-01

    Phenotypic characterization of assorted crops of different genotypes requires large data sets of diverse types for statistical reliability. Temporal monitoring of plant fluorescence is able to capture the dynamics of the photosynthesis process that is summarized in a number of parameters for which the genotypic heritability can be calculated. In this paper, an intelligent sensor system is presented that is capable of high-throughput production of baseline-corrected temporal fluorescence curves with many feature points. These are obtained by integrating several (direct and modulated) measurement methods applied at different wavelengths. Simultaneously, temporal change of the sample's emission and the ambient reference temperatures are recorded. Multiple sensors can be deployed easily in large span greenhouse environments with centralized data collection over wired or wireless infrastructure. The unique features of the sensors are a compact, embedded signal guiding fibre optic system, instrument-standard variable tubular detector and source modules, net or wireless enabling for remote control and fast, quasi real-time data collection. Along with the instrumentation, some representative phenotyping data are also presented that were taken on a subset of pepper recombinant inbred line population. It is also demonstrated that transient fluorescence feature points yield high heritability, offering a high confidence level for distinguishing the pepper genotypes.

  4. Enabling Astronomy in the Extremes: Developing the Antarctic High Plateau for Science

    NASA Astrophysics Data System (ADS)

    Burton, Michael

    2015-08-01

    The high plateau of Antarctica provides the driest, coldest and most stable environment on the Earth's surface, facets that facilitate astronomical observations. New windows are opened in the atmosphere in the terahertz bands, low sky backgrounds improve sensitivities across the infrared bands, and the stability enables precision photometry. Of course, the Antarctic high plateau is a challenging environment for humans to work in, logistics is difficult and access only possible for limited periods of the year. Operation is akin to space, albeit at less cost, using robotic facilities installed and serviced over the summer months.This talk will discuss astronomical developments on the Antarctic high plateau, in particular at its highest location, Dome A and the nearby Ridge A. At the former China is building the Kunlun Observatory, with mid-scale facilities for IR and THz astronomy planned. Currently a series of pathfinder optical / IR telescopes are in operation and being developed (the three 50cm AST telescopes). At Ridge A, the 60cm HEAT telescope is in operation, surveying the Galactic plane at 0.5 and 0.8 THz.

  5. High-power ultrasonic TERFENOL-D transducers enable commercial applications

    NASA Astrophysics Data System (ADS)

    Weisensel, G. N.; Hansen, Toby T.; Hrbek, William D.

    1998-06-01

    Ultrasonic technology applications have been researched in a wide range of fields, from sonochemistry and industrial cleaning to medical tools and agriculture. However, the largest limitation in many of these applications is the inability of existing technology to provide a single transducer with sufficient power to make important laboratory sonochemical processes commercially successful. TERFENOL-D magnetostrictive material technology enables a next-generation high power ultrasonic transducer. Until very recently, generating high power at high frequency has been unexplored territory for giant magnetostrictive materials. But the unique attributes of these materials, such as energy density and thermal handling capabilities, are being used to develop a wide variety of transducers, devices and systems for existing as well as new ultrasonic applications. These unique material attributes combine with novel magnetic field generation, transducer, acoustic transmission and coupling concepts to meet the challenges of power, size, thermal, efficiency and reliability requirements of transducers and system for many ultrasonic applications. Polymer processing and curing, enhanced oil and gas recovery, seed sonication, surgical tools, and beer foaming are just some of the many applications where ultrasonic magnetostrictive technologies are overcoming barriers to provide improved solutions.

  6. One-step growth of 3D CoNi2S4 nanorods and cross-linked NiCo2S4 nanosheet arrays on carbon paper as anodes for high-performance lithium ion batteries.

    PubMed

    Yang, Weiwei; Chen, Liang; Yang, Jie; Zhang, Xiang; Fang, Chun; Chen, Zhiling; Huang, Lin; Liu, Jianguo; Zhou, Yong; Zou, Zhigang

    2016-04-01

    3D CoNi2S4 and cross-linked NiCo2S4 arrays have been grown on carbon paper (CP) using a one-step hydrothermal method. The 3D cross-linked structure provides a convenient channel for electron and lithium-ion (Li(+)) transport and performs a facile strain relaxation during cycling, exhibits high capacity, excellent rate capability and superior cycle performance. PMID:27001486

  7. Results of Primary Total Hip Arthroplasty with 36-mm Femoral Heads on Highly Cross-linked Polyethylene-Minimum Seven-years Follow-up

    PubMed Central

    Choi, Won-Kee; Lee, Joo-Hwan

    2014-01-01

    Purpose We evaluate the clinical and radiographic midterm results of primary total hip arthroplasty (THA) using a 36 mm diameter femoral head on highly cross-linked polyethylene (minimum 7-year follow-up). Materials and Methods We retrospectively reviewed 73 patients (74 hips) that underwent primary THA with a 36 mm diameter femoral head on highly cross-linked polyethylene between July 2004 and February 2007. Clinical follow-ups included specific measurements like modified Harris hip scores (HHS) and Merle d'Aubigne and Postel score. For radiologic evaluations, together with position of acetabular cup at 6 weeks later of post-operation, we separately calculated the penentrations of femoral heads into polyethylene liners during post-operation and one year later check-ups, and during one year later check-ups and final check-ups. Results There were no complications except for one case of dislocation. Average modified HHS at final follow-up was 88±7.5 (range, 81-96), and Merle d'Aubigne and Postel scores were more than 15 (range, 15-18). Mean acetabular cup inclination and anteversion were 50.1°(range, 35°-58°) and 23.6°(range, 5°-38°), respectively. Average femoral head penetration during the first postoperative year was 0.071±0.034 mm/year, and steady-state wear rate determined using radiographs taken at one-year postoperatively and at latest follow-up was 0.051±0.022 mm/year. Average femoral head penetration during entire follow-ups was 0.058±0.013 mm/year. Conclusion Primary THA with a large diameter femoral head on highly cross-linked polyethylene was found to produce the results comparable to previous in vitro laboratory hip simulation studies. And we also find out good scores in terms of patient's functionality.

  8. Size and thickness effect on creep behavior in conventional and vitamin E-diffused highly crosslinked polyethylene for total hip arthroplasty.

    PubMed

    Takahashi, Yasuhito; Tateiwa, Toshiyuki; Shishido, Takaaki; Masaoka, Toshinori; Kubo, Kosuke; Yamamoto, Kengo

    2016-09-01

    Since the early 2000s, the use of large femoral heads is becoming increasingly popular in total hip arthroplasty (THA), which provides an improved range of motion and joint stability. Large femoral heads commonly necessitate to be coupled with thinner acetabular liners than the conventionally used because of the limited sizes of outer shells (especially for patients with small pelvic size). However, the influence of the liner thinning on the mechanical performance is still not clearly understood. The objective of this study was to experimentally clarify the size and thickness effect on the rates of compressive creep strain in conventional (virgin low-crosslinked) and vitamin E-diffused highly crosslinked, ultra-high molecular weight polyethylene (UHMWPE) acetabular liners. We applied uniaxial compression to these liners of various internal diameters (28, 32 and 36mm) and thicknesses (4.8, 6.8 and 8.9mm) up to 4320min under the constant load of 3000N. Vitamin E-diffused highly crosslinked UHMWPE components showed significantly greater creep resistance than the conventional ones. In the both types of UHMWPE, the rates of creep strain significantly decreased by increasing the internal diameter and thickness. Varying the component thickness contributed more largely to the creep behavior rather than the internal diameter. Our results suggest the positive mechanical advantage of using large femoral heads, but at the same time, a considerable liner thinning is not recommended for minimizing creep strain. Therefore, the further in-vitro as well as in-vivo research are necessary to conclude the optimal balance of head diameter and liner thickness within the limited sizes of outer shells. PMID:27261923

  9. The Centre of High-Performance Scientific Computing, Geoverbund, ABC/J - Geosciences enabled by HPSC

    NASA Astrophysics Data System (ADS)

    Kollet, Stefan; Görgen, Klaus; Vereecken, Harry; Gasper, Fabian; Hendricks-Franssen, Harrie-Jan; Keune, Jessica; Kulkarni, Ketan; Kurtz, Wolfgang; Sharples, Wendy; Shrestha, Prabhakar; Simmer, Clemens; Sulis, Mauro; Vanderborght, Jan

    2016-04-01

    The Centre of High-Performance Scientific Computing (HPSC TerrSys) was founded 2011 to establish a centre of competence in high-performance scientific computing in terrestrial systems and the geosciences enabling fundamental and applied geoscientific research in the Geoverbund ABC/J (geoscientfic research alliance of the Universities of Aachen, Cologne, Bonn and the Research Centre Jülich, Germany). The specific goals of HPSC TerrSys are to achieve relevance at the national and international level in (i) the development and application of HPSC technologies in the geoscientific community; (ii) student education; (iii) HPSC services and support also to the wider geoscientific community; and in (iv) the industry and public sectors via e.g., useful applications and data products. A key feature of HPSC TerrSys is the Simulation Laboratory Terrestrial Systems, which is located at the Jülich Supercomputing Centre (JSC) and provides extensive capabilities with respect to porting, profiling, tuning and performance monitoring of geoscientific software in JSC's supercomputing environment. We will present a summary of success stories of HPSC applications including integrated terrestrial model development, parallel profiling and its application from watersheds to the continent; massively parallel data assimilation using physics-based models and ensemble methods; quasi-operational terrestrial water and energy monitoring; and convection permitting climate simulations over Europe. The success stories stress the need for a formalized education of students in the application of HPSC technologies in future.

  10. Grid-Enabled High Energy Physics Research using a Beowulf Cluster

    NASA Astrophysics Data System (ADS)

    Mahmood, Akhtar

    2005-04-01

    At Edinboro University of Pennsylvania, we have built a 8-node 25 Gflops Beowulf Cluster with 2.5 TB of disk storage space to carry out grid-enabled, data-intensive high energy physics research for the ATLAS experiment via Grid3. We will describe how we built and configured our Cluster, which we have named the Sphinx Beowulf Cluster. We will describe the results of our cluster benchmark studies and the run-time plots of several parallel application codes. Once fully functional, the Cluster will be part of Grid3[www.ivdgl.org/grid3]. The current ATLAS simulation grid application, models the entire physical processes from the proton anti-proton collisions and detector's response to the collision debri through the complete reconstruction of the event from analyses of these responses. The end result is a detailed set of data that simulates the real physical collision event inside a particle detector. Grid is the new IT infrastructure for the 21^st century science -- a new computing paradigm that is poised to transform the practice of large-scale data-intensive research in science and engineering. The Grid will allow scientist worldwide to view and analyze huge amounts of data flowing from the large-scale experiments in High Energy Physics. The Grid is expected to bring together geographically and organizationally dispersed computational resources, such as CPUs, storage systems, communication systems, and data sources.

  11. Internet-enabled high-resolution brain mapping and virtual microscopy.

    PubMed

    Mikula, Shawn; Trotts, Issac; Stone, James M; Jones, Edward G

    2007-03-01

    Virtual microscopy involves the conversion of histological sections mounted on glass microscope slides to high-resolution digital images. Virtual microscopy offers several advantages over traditional microscopy, including remote viewing and data sharing, annotation, and various forms of data mining. We describe a method utilizing virtual microscopy for generation of internet-enabled, high-resolution brain maps and atlases. Virtual microscopy-based digital brain atlases have resolutions approaching 100,000 dpi, which exceeds by three or more orders of magnitude resolutions obtainable in conventional print atlases, MRI, and flat-bed scanning. Virtual microscopy-based digital brain atlases are superior to conventional print atlases in five respects: (1) resolution, (2) annotation, (3) interaction, (4) data integration, and (5) data mining. Implementation of virtual microscopy-based digital brain atlases is located at BrainMaps.org, which is based on more than 10 million megapixels (35 terabytes) of scanned images of serial sections of primate and non-primate brains with a resolution of 0.46 microm/pixel (55,000 dpi). The method can be replicated by labs seeking to increase accessibility and sharing of neuroanatomical data. Online tools offer the possibility of visualizing and exploring completely digitized sections of brains at a sub-neuronal level and can facilitate large-scale connectional tracing, histochemical, and stereological analyses. PMID:17229579

  12. Surface preparation for high purity alumina ceramics enabling direct brazing in hydrogen atmospheres

    DOEpatents

    Cadden, Charles H.; Yang, Nancy Yuan Chi; Hosking, Floyd M.

    2001-01-01

    The present invention relates to a method for preparing the surface of a high purity alumina ceramic or sapphire specimen that enables direct brazing in a hydrogen atmosphere using an active braze alloy. The present invention also relates to a method for directly brazing a high purity alumina ceramic or sapphire specimen to a ceramic or metal member using this method of surface preparation, and to articles produced by this brazing method. The presence of silicon, in the form of a SiO.sub.2 -containing surface layer, can more than double the tensile bond strength in alumina ceramic joints brazed in a hydrogen atmosphere using an active Au-16Ni-0.75 Mo-1.75V filler metal. A thin silicon coating applied by PVD processing can, after air firing, produce a semi-continuous coverage of the alumina surface with a SiO.sub.2 film. Room temperature tensile strength was found to be proportional to the fraction of air fired surface covered by silicon-containing films. Similarly, the ratio of substrate fracture versus interface separation was also related to the amount of surface silicon present prior to brazing. This process can replace the need to perform a "moly-manganese" metallization step.

  13. Exceptionally large entropy contributions enable the high rates of GTP hydrolysis on the ribosome

    PubMed Central

    Åqvist, Johan; Kamerlin, Shina C.L.

    2015-01-01

    Protein synthesis on the ribosome involves hydrolysis of GTP in several key steps of the mRNA translation cycle. These steps are catalyzed by the translational GTPases of which elongation factor Tu (EF-Tu) is the fastest GTPase known. Here, we use extensive computer simulations to explore the origin of its remarkably high catalytic rate on the ribosome and show that it is made possible by a very large positive activation entropy. This entropy term (TΔS‡) amounts to more than 7 kcal/mol at 25 °C. It is further found to be characteristic of the reaction mechanism utilized by the translational, but not other, GTPases and it enables these enzymes to attain hydrolysis rates exceeding 500 s−1. This entropy driven mechanism likely reflects the very high selection pressure on the speed of protein synthesis, which drives the rate of each individual GTPase towards maximal turnover rate of the whole translation cycle. PMID:26497916

  14. Soil-frost-enabled soil-moisture-precipitation feedback over northern high latitudes

    NASA Astrophysics Data System (ADS)

    Hagemann, Stefan; Blome, Tanja; Ekici, Altug; Beer, Christian

    2016-07-01

    Permafrost or perennially frozen ground is an important part of the terrestrial cryosphere; roughly one quarter of Earth's land surface is underlain by permafrost. The currently observed global warming is most pronounced in the Arctic region and is projected to persist during the coming decades due to anthropogenic CO2 input. This warming will certainly have effects on the ecosystems of the vast permafrost areas of the high northern latitudes. The quantification of such effects, however, is still an open question. This is partly due to the complexity of the system, including several feedback mechanisms between land and atmosphere. In this study we contribute to increasing our understanding of such land-atmosphere interactions using an Earth system model (ESM) which includes a representation of cold-region physical soil processes, especially the effects of freezing and thawing of soil water on thermal and hydrological states and processes. The coupled atmosphere-land models of the ESM of the Max Planck Institute for Meteorology, MPI-ESM, have been driven by prescribed observed SST and sea ice in an AMIP2-type setup with and without newly implemented cold-region soil processes. Results show a large improvement in the simulated discharge. On the one hand this is related to an improved snowmelt peak of runoff due to frozen soil in spring. On the other hand a subsequent reduction in soil moisture enables a positive feedback to precipitation over the high latitudes, which reduces the model's wet biases in precipitation and evapotranspiration during the summer. This is noteworthy as soil-moisture-atmosphere feedbacks have previously not been the focus of research on the high latitudes. These results point out the importance of high-latitude physical processes at the land surface for regional climate.

  15. Reduced-mode (REM) diodes enable high brightness fiber-coupled modules

    NASA Astrophysics Data System (ADS)

    Kanskar, M.; Bao, L.; Chen, Z.; Dawson, D.; DeVito, M.; Dong, W.; Grimshaw, M.; Guan, X.; Hemenway, M.; Kennedy, K.; Martinsen, R.; Urbanek, W.; Zhang, S.

    2016-03-01

    There is an increasing demand for high-power, high-brightness diode lasers from 8xx nm to 9xx nm for applications such as fiber laser pumping, materials processing, solid-state laser pumping, and consumer electronics manufacturing. The kilowatt CW fiber laser pumping (915 nm - 976 nm), in particular, requires the diode lasers to have both high power and high brightness in order to achieve high-performance and reduced manufacturing costs. This paper presents continued progress in the development of high brightness fiber-coupled product platform, elementTM. Further brightness improvement and power-scaling have been enabled by both the rise in chip brightness as well as the increase in number of chips used to couple into a given numerical aperture. We have developed a new generation of high power broad area laser known as reduced-mode diode (REM-diode) which suppresses many of the higher order modes in the slow axis and reduces divergence up to two times at the same operating conditions. To date, we have achieved slow-axis brightness as high as 4.3 W/mm-mrad for devices with thermal resistance of ~2.5 C/W. As a result, we have achieved >75 watts from a 1×6 elementTMin the 9xx nm spectral range; and 177 watts of peak power from a 2×6 elementTM. We have also improved our optics for fiber-coupling which accommodates 7 emitters per polarization in the same numerical aperture. Using this configuration, we project 200 watts of peak power from a 2×7 elementTM with a reliable product at 176 W of power from 105 μm and 0.15 NA fiber. REM-diodes can also be wavelength stabilized using VBGs. The reliability of REM-diodes are equal or better than broad area lasers (BALs). We present current status on ongoing reliability assessment of chip-on-submount.

  16. Materials-Enabled High-Efficiency (MEHE) Heavy-Duty Diesel Engines

    SciTech Connect

    Kass, M.; Veliz, M.

    2011-09-30

    The purpose of this Cooperative Research and Development Agreement (CRADA) between UTBattelle, Inc. and Caterpillar, Inc. was to improve diesel engine efficiency by incorporating advanced materials to enable higher combustion pressures and temperatures necessary for improved combustion. The project scope also included novel materials for use in advanced components and designs associated with waste-heat recovery and other concepts for improved thermal efficiency. Caterpillar initially provided ORNL with a 2004 Tier 2 C15 ACERT diesel engine (designed for on-highway use) and two 600 hp motoring dynamometers. The first year of the CRADA effort was focused on establishing a heavy-duty experimental engine research cell. First year activities included procuring, installing and commissioning the cell infrastructure. Infrastructure components consisted of intake air handling system, water tower, exhaust handling system, and cell air conditioning. Other necessary infrastructure items included the fuel delivery system and bottled gas handling to support the analytical instrumentation. The second year of the CRADA focused on commissioning the dynamometer system to enable engine experimentation. In addition to the requirements associated with the dynamometer controller, the electrical system needed a power factor correction system to maintain continuity with the electrical grid. During the second year the engine was instrumented and baseline operated to confirm performance and commission the dynamometer. The engine performance was mapped and modeled according to requirements provided by Caterpillar. This activity was further supported by a Work-for-Others project from Caterpillar to evaluate a proprietary modeling system. A second Work-for-Others activity was performed to evaluate a novel turbocharger design. This project was highly successful and may lead to new turbocharger designs for Caterpillar heavy-duty diesel engines. During the third (and final) year of the CRADA, a

  17. Highly efficient copper(II) ion sorbents obtained by calcium carbonate mineralization on functionalized cross-linked copolymers.

    PubMed

    Mihai, Marcela; Bunia, Ion; Doroftei, Florica; Varganici, Cristian-Dragos; Simionescu, Bogdan C

    2015-03-23

    A new type of Cu(II) ion sorbents is presented. These are obtained by CaCO3 mineralization from supersaturated solutions on gel-like cross-linked polymeric beads as insoluble templates. A divinylbenzene-ethylacrylate-acrylonitrile cross-linked copolymer functionalized with weakly acidic, basic, or amphoteric functional groups has been used, as well as different initial inorganic concentrations and addition procedures for CaCO3 crystal growth. The morphology of the new composites was investigated by SEM and compared to that of the unmodified beads, and the polymorph content was established by X-ray diffraction. The beads, before and after CaCO3 mineralization, were tested as sorbents for Cu(II) ions. The newly formed patterns on the bead surface after Cu(II) sorption were observed by SEM, and the elemental distribution on the composites and the chemical structure of crystals after interaction with Cu(II) were investigated by EDAX elemental mapping and by FTIR-ATR spectroscopy, respectively. The sorption capacity increased significantly after CaCO3 crystals growth on the weak anionic bead surface (up to 1041.5 mg Cu(II) /g sample) compared to that of unmodified beads (491.5 mg Cu(II) /g sample). PMID:25675892

  18. Highly Conductive Ionic-Liquid Gels Prepared with Orthogonal Double Networks of a Low-Molecular-Weight Gelator and Cross-Linked Polymer.

    PubMed

    Kataoka, Toshikazu; Ishioka, Yumi; Mizuhata, Minoru; Minami, Hideto; Maruyama, Tatsuo

    2015-10-21

    We prepared a heterogeneous double-network (DN) ionogel containing a low-molecular-weight gelator network and a polymer network that can exhibit high ionic conductivity and high mechanical strength. An imidazolium-based ionic liquid was first gelated by the molecular self-assembly of a low-molecular-weight gelator (benzenetricarboxamide derivative), and methyl methacrylate was polymerized with a cross-linker to form a cross-linked poly(methyl methacrylate) (PMMA) network within the ionogel. Microscopic observation and calorimetric measurement revealed that the fibrous network of the low-molecular-weight gelator was maintained in the DN ionogel. The PMMA network strengthened the ionogel of the low-molecular-weight gelator and allowed us to handle the ionogel using tweezers. The orthogonal DNs produced ionogels with a broad range of storage elastic moduli. DN ionogels with low PMMA concentrations exhibited high ionic conductivity that was comparable to that of a neat ionic liquid. The present study demonstrates that the ionic conductivities of the DN and single-network, low-molecular-weight gelator or polymer ionogels strongly depended on their storage elastic moduli. PMID:26426303

  19. Magnetically-Separable and Highly-Stable Enzyme System Based on Crosslinked Enzyme Aggregates Shipped in Magnetite-Coated Mesoporous Silica

    SciTech Connect

    Lee, Jinwoo; Na, Hyon Bin; Kim, Byoung Chan; Lee, Jin Hyung; Lee, Byoungsoo; Kwak, Ja Hun; Hwang, Yosun; Park, Je-Geun; Gu, Man Bock; Kim, Jaeyun; Joo, Jin; Shin, Chae-Ho; Grate, Jay W.; Hyeon, Taeghwan; Kim, Jungbae

    2009-10-15

    Magnetically-separable and highly-stable enzyme system was developed by adsorption of enzymes in superparamagnetic hierarchically ordered mesocellular mesoporous silica (M-HMMS) and subsequent enzyme crosslinking. Superparamagnetic nanoparticles were homogeneously incorporated into hierarchically-ordered mesocellular mesoporous silica (HMMS) by the decomposition of preformed iron propionate complex. The size of incorporated superparamagnetic 15 nanoparticles was around 5 nm, generating a magnetically separable host with high pore volumes and large pores (M-HMMS). α-chymotrypsin (CT) was adsorbed into M-HMMS with high loading (~30 wt%) in less than 30 minutes. Glutaraldehyde (GA) treatment of adsorbed CT resulted in nanometer scale crosslinked enzyme aggregates in M-HMMS (CLEA-M). The activity of these CT aggregates in M-HMMS (CLEA-M-CT) was 34 times than that of simply adsorbed CT in M20 HMMS, due to an effective prevention of enzyme leaching during washing via a ship-in-a-bottle approach. CLEA-M-CT maintained the intial activity not only under shaking (250 rpm) for 30 days, but also under recycled uses of 35 times. The same approach was employed for the synthesis of CLEA-M of lipase (CLEA-M-LP), and proven to be effective in improving the loading, activity, and stability of enzyme when compared to those of adsorbed LP in M-HMMS.

  20. Artificial Incoherent Speckles Enable Precision Astrometry and Photometry in High-contrast Imaging

    NASA Astrophysics Data System (ADS)

    Jovanovic, N.; Guyon, O.; Martinache, F.; Pathak, P.; Hagelberg, J.; Kudo, T.

    2015-11-01

    State-of-the-art coronagraphs employed on extreme adaptive optics enabled instruments are constantly improving the contrast detection limit for companions at ever-closer separations from the host star. In order to constrain their properties and, ultimately, compositions, it is important to precisely determine orbital parameters and contrasts with respect to the stars they orbit. This can be difficult in the post-coronagraphic image plane, as by definition the central star has been occulted by the coronagraph. We demonstrate the flexibility of utilizing the deformable mirror in the adaptive optics system of the Subaru Coronagraphic Extreme Adaptive Optics system to generate a field of speckles for the purposes of calibration. Speckles can be placed up to 22.5 λ/D from the star, with any position angle, brightness, and abundance required. Most importantly, we show that a fast modulation of the added speckle phase, between 0 and π, during a long science integration renders these speckles effectively incoherent with the underlying halo. We quantitatively show for the first time that this incoherence, in turn, increases the robustness and stability of the adaptive speckles, which will improve the precision of astrometric and photometric calibration procedures. This technique will be valuable for high-contrast imaging observations with imagers and integral field spectrographs alike.

  1. High-k Dielectric Passivation: Novel Considerations Enabling Cell Specific Lysis Induced by Electric Fields.

    PubMed

    Wassermann, Klemens J; Barth, Sven; Keplinger, Franz; Noehammer, Christa; Peham, Johannes R

    2016-08-24

    A better understanding of the electrodynamic behavior of cells interacting with electric fields would allow for novel scientific insights and would lead to the next generation of cell manipulation, diagnostics, and treatment. Here, we introduce a promising electrode design by using metal oxide high-k dielectric passivation. The thermally generated dielectric passivation layer enables efficient electric field coupling to the fluid sample comprising cells while simultaneously decoupling the electrode ohmically from the electrolyte, allowing for better control and adjustability of electric field effects due to reduced electrochemical reactions at the electrode surface. This approach demonstrates cell-size specific lysis with electric fields in a microfluidic flow-through design resulting in 99.8% blood cell lysis at 6 s exposure without affecting the viability of Gram-positive and Gram-negative bacterial spike-ins. The advantages of this new approach can support next-generation investigations of electrodynamics in biological systems and their exploitation for cell manipulation in multiple fields of medicine, life science, and industry. PMID:27466697

  2. Designs and numerical calculations for echo-enabled harmonic generation at very high harmonics

    NASA Astrophysics Data System (ADS)

    Penn, G.; Reinsch, M.

    2011-09-01

    The echo-enabled harmonic generation (EEHG) scheme for driving an FEL using two seeded energy modulations at much longer wavelengths than the output wavelength is a promising concept for future seeded FELs. There are many competing requirements in the design of an EEHG beamline which need careful optimization. Furthermore, revised simulation tools and methods are necessary because of both the high harmonic numbers simulated and the complicated nature of the phase space manipulations which are intrinsic to the scheme. This paper explores the constraints on performance and the required tolerances for reaching wavelengths well below 1/100th of that of the seed lasers, and describes some of the methodology for designing such a beamline. Numerical tools, developed both for the GENESIS and GINGER FEL codes, are presented and used here for more accurate study of the scheme beyond a time-averaged model. In particular, the impact of the local structure in peak current and bunching, which is an inherent part of the EEHG scheme, is evaluated.

  3. Identifying the pulmonary hazard of high aspect ratio nanoparticles to enable their safety-by-design.

    PubMed

    Donaldson, Ken; Murphy, Fiona; Schinwald, Anja; Duffin, Rodger; Poland, Craig A

    2011-01-01

    High aspect ratio, or fiber-shaped, nanoparticles (HARNs) represent a growth area in nanotechnology as their useful properties become more apparent. Carbon nanotubes, the best known and studied of the HARNs are handled on an increasingly large scale, with subsequent potential for human inhalation exposure. Their resemblance to asbestos fibers precipitated fears that they might show the same type of pathology as that caused by asbestos and there is emerging evidence to support this possibility. The large number of other HARNs, including nanorods, nanowires and other nanofibers, require similar toxicological scrutiny. In this article we describe the unusual hazard associated with fibers, with special reference to asbestos, and address the features of fibers that dictate their pathogenicity as developed in the fiber pathogenicity paradigm. This paradigm is a robust structure:toxicity model that identifies thin, long, biopersistent fibers as the effective dose for fiber-type pathogenic effects. It is likely that HARNs will in general conform to the paradigm and such an understanding of the features that make fibers pathogenic should enable us to design safer HARNs. PMID:21182425

  4. Nondestructive fluorescence-based quantification of threose-induced collagen cross-linking in bovine articular cartilage

    NASA Astrophysics Data System (ADS)

    Kinnunen, Jussi; Kokkonen, Harri T.; Kovanen, Vuokko; Hauta-Kasari, Markku; Vahimaa, Pasi; Lammi, Mikko J.; Töyräs, Juha; Jurvelin, Jukka S.

    2012-09-01

    Extensive collagen cross-linking affects the mechanical competence of articular cartilage: it can make the cartilage stiffer and more brittle. The concentrations of the best known cross-links, pyridinoline and pentosidine, can be accurately determined by destructive high-performance liquid chromatography (HPLC). We explore a nondestructive evaluation of cross-linking by using the intrinsic fluorescence of the intact cartilage. Articular cartilage samples from bovine knee joints were incubated in threose solution for 40 and 100 h to increase the collagen cross-linking. Control samples without threose were also prepared. Excitation-emission matrices at wavelengths of 220 to 950 nm were acquired from the samples, and the pentosidine and pyridinoline cross-links and the collagen concentrations were determined using HPLC. After the threose treatment, pentosidine and lysyl pyridinole (LP) concentrations increased. The intrinsic fluorescence, excited below 350 nm, decreased and was related to pentosidine [r=-0.90, 240/325 nm (excitation/emission)] or LP (r=-0.85, 235/285 nm) concentrations. Due to overlapping, the changes in emission could not be linked specifically to the recorded cross-links. However, the fluorescence signal enabled a nondestructive optical estimate of changes in the pentosidine and LP cross-linking of intact articular cartilage.

  5. Ensembler: Enabling High-Throughput Molecular Simulations at the Superfamily Scale.

    PubMed

    Parton, Daniel L; Grinaway, Patrick B; Hanson, Sonya M; Beauchamp, Kyle A; Chodera, John D

    2016-06-01

    The rapidly expanding body of available genomic and protein structural data provides a rich resource for understanding protein dynamics with biomolecular simulation. While computational infrastructure has grown rapidly, simulations on an omics scale are not yet widespread, primarily because software infrastructure to enable simulations at this scale has not kept pace. It should now be possible to study protein dynamics across entire (super)families, exploiting both available structural biology data and conformational similarities across homologous proteins. Here, we present a new tool for enabling high-throughput simulation in the genomics era. Ensembler takes any set of sequences-from a single sequence to an entire superfamily-and shepherds them through various stages of modeling and refinement to produce simulation-ready structures. This includes comparative modeling to all relevant PDB structures (which may span multiple conformational states of interest), reconstruction of missing loops, addition of missing atoms, culling of nearly identical structures, assignment of appropriate protonation states, solvation in explicit solvent, and refinement and filtering with molecular simulation to ensure stable simulation. The output of this pipeline is an ensemble of structures ready for subsequent molecular simulations using computer clusters, supercomputers, or distributed computing projects like Folding@home. Ensembler thus automates much of the time-consuming process of preparing protein models suitable for simulation, while allowing scalability up to entire superfamilies. A particular advantage of this approach can be found in the construction of kinetic models of conformational dynamics-such as Markov state models (MSMs)-which benefit from a diverse array of initial configurations that span the accessible conformational states to aid sampling. We demonstrate the power of this approach by constructing models for all catalytic domains in the human tyrosine kinase

  6. Ensembler: Enabling High-Throughput Molecular Simulations at the Superfamily Scale

    PubMed Central

    Parton, Daniel L.; Grinaway, Patrick B.; Hanson, Sonya M.; Beauchamp, Kyle A.; Chodera, John D.

    2016-01-01

    The rapidly expanding body of available genomic and protein structural data provides a rich resource for understanding protein dynamics with biomolecular simulation. While computational infrastructure has grown rapidly, simulations on an omics scale are not yet widespread, primarily because software infrastructure to enable simulations at this scale has not kept pace. It should now be possible to study protein dynamics across entire (super)families, exploiting both available structural biology data and conformational similarities across homologous proteins. Here, we present a new tool for enabling high-throughput simulation in the genomics era. Ensembler takes any set of sequences—from a single sequence to an entire superfamily—and shepherds them through various stages of modeling and refinement to produce simulation-ready structures. This includes comparative modeling to all relevant PDB structures (which may span multiple conformational states of interest), reconstruction of missing loops, addition of missing atoms, culling of nearly identical structures, assignment of appropriate protonation states, solvation in explicit solvent, and refinement and filtering with molecular simulation to ensure stable simulation. The output of this pipeline is an ensemble of structures ready for subsequent molecular simulations using computer clusters, supercomputers, or distributed computing projects like Folding@home. Ensembler thus automates much of the time-consuming process of preparing protein models suitable for simulation, while allowing scalability up to entire superfamilies. A particular advantage of this approach can be found in the construction of kinetic models of conformational dynamics—such as Markov state models (MSMs)—which benefit from a diverse array of initial configurations that span the accessible conformational states to aid sampling. We demonstrate the power of this approach by constructing models for all catalytic domains in the human tyrosine

  7. Modulation of orthogonal body waves enables high maneuverability in sidewinding locomotion

    PubMed Central

    Astley, Henry C.; Gong, Chaohui; Dai, Jin; Travers, Matthew; Serrano, Miguel M.; Vela, Patricio A.; Choset, Howie; Mendelson, Joseph R.; Hu, David L.; Goldman, Daniel I.

    2015-01-01

    Many organisms move using traveling waves of body undulation, and most work has focused on single-plane undulations in fluids. Less attention has been paid to multiplane undulations, which are particularly important in terrestrial environments where vertical undulations can regulate substrate contact. A seemingly complex mode of snake locomotion, sidewinding, can be described by the superposition of two waves: horizontal and vertical body waves with a phase difference of ±90°. We demonstrate that the high maneuverability displayed by sidewinder rattlesnakes (Crotalus cerastes) emerges from the animal’s ability to independently modulate these waves. Sidewinder rattlesnakes used two distinct turning methods, which we term differential turning (26° change in orientation per wave cycle) and reversal turning (89°). Observations of the snakes suggested that during differential turning the animals imposed an amplitude modulation in the horizontal wave whereas in reversal turning they shifted the phase of the vertical wave by 180°. We tested these mechanisms using a multimodule snake robot as a physical model, successfully generating differential and reversal turning with performance comparable to that of the organisms. Further manipulations of the two-wave system revealed a third turning mode, frequency turning, not observed in biological snakes, which produced large (127°) in-place turns. The two-wave system thus functions as a template (a targeted motor pattern) that enables complex behaviors in a high-degree-of-freedom system to emerge from relatively simple modulations to a basic pattern. Our study reveals the utility of templates in understanding the control of biological movement as well as in developing control schemes for limbless robots. PMID:25831489

  8. Modulation of orthogonal body waves enables high maneuverability in sidewinding locomotion.

    PubMed

    Astley, Henry C; Gong, Chaohui; Dai, Jin; Travers, Matthew; Serrano, Miguel M; Vela, Patricio A; Choset, Howie; Mendelson, Joseph R; Hu, David L; Goldman, Daniel I

    2015-05-12

    Many organisms move using traveling waves of body undulation, and most work has focused on single-plane undulations in fluids. Less attention has been paid to multiplane undulations, which are particularly important in terrestrial environments where vertical undulations can regulate substrate contact. A seemingly complex mode of snake locomotion, sidewinding, can be described by the superposition of two waves: horizontal and vertical body waves with a phase difference of ± 90°. We demonstrate that the high maneuverability displayed by sidewinder rattlesnakes (Crotalus cerastes) emerges from the animal's ability to independently modulate these waves. Sidewinder rattlesnakes used two distinct turning methods, which we term differential turning (26° change in orientation per wave cycle) and reversal turning (89°). Observations of the snakes suggested that during differential turning the animals imposed an amplitude modulation in the horizontal wave whereas in reversal turning they shifted the phase of the vertical wave by 180°. We tested these mechanisms using a multimodule snake robot as a physical model, successfully generating differential and reversal turning with performance comparable to that of the organisms. Further manipulations of the two-wave system revealed a third turning mode, frequency turning, not observed in biological snakes, which produced large (127°) in-place turns. The two-wave system thus functions as a template (a targeted motor pattern) that enables complex behaviors in a high-degree-of-freedom system to emerge from relatively simple modulations to a basic pattern. Our study reveals the utility of templates in understanding the control of biological movement as well as in developing control schemes for limbless robots. PMID:25831489

  9. Remote high-definition rotating video enables fast spatial survey of marine underwater macrofauna and habitats.

    PubMed

    Pelletier, Dominique; Leleu, Kévin; Mallet, Delphine; Mou-Tham, Gérard; Hervé, Gilles; Boureau, Matthieu; Guilpart, Nicolas

    2012-01-01

    Observing spatial and temporal variations of marine biodiversity from non-destructive techniques is central for understanding ecosystem resilience, and for monitoring and assessing conservation strategies, e.g. Marine Protected Areas. Observations are generally obtained through Underwater Visual Censuses (UVC) conducted by divers. The problems inherent to the presence of divers have been discussed in several papers. Video techniques are increasingly used for observing underwater macrofauna and habitat. Most video techniques that do not need the presence of a diver use baited remote systems. In this paper, we present an original video technique which relies on a remote unbaited rotating remote system including a high definition camera. The system is set on the sea floor to record images. These are then analysed at the office to quantify biotic and abiotic sea bottom cover, and to identify and count fish species and other species like marine turtles. The technique was extensively tested in a highly diversified coral reef ecosystem in the South Lagoon of New Caledonia, based on a protocol covering both protected and unprotected areas in major lagoon habitats. The technique enabled to detect and identify a large number of species, and in particular fished species, which were not disturbed by the system. Habitat could easily be investigated through the images. A large number of observations could be carried out per day at sea. This study showed the strong potential of this non obtrusive technique for observing both macrofauna and habitat. It offers a unique spatial coverage and can be implemented at sea at a reasonable cost by non-expert staff. As such, this technique is particularly interesting for investigating and monitoring coastal biodiversity in the light of current conservation challenges and increasing monitoring needs. PMID:22383965

  10. A GRAPHICS PROCESSING UNIT-ENABLED, HIGH-RESOLUTION COSMOLOGICAL MICROLENSING PARAMETER SURVEY

    SciTech Connect

    Bate, N. F.; Fluke, C. J.

    2012-01-10

    In the era of synoptic surveys, the number of known gravitationally lensed quasars is set to increase by over an order of magnitude. These new discoveries will enable a move from single-quasar studies to investigations of statistical samples, presenting new opportunities to test theoretical models for the structure of quasar accretion disks and broad emission line regions (BELRs). As one crucial step in preparing for this influx of new lensed systems, a large-scale exploration of microlensing convergence-shear parameter space is warranted, requiring the computation of O(10{sup 5}) high-resolution magnification maps. Based on properties of known lensed quasars, and expectations from accretion disk/BELR modeling, we identify regions of convergence-shear parameter space, map sizes, smooth matter fractions, and pixel resolutions that should be covered. We describe how the computationally time-consuming task of producing {approx}290,000 magnification maps with sufficient resolution (10,000{sup 2} pixel map{sup -1}) to probe scales from the inner edge of the accretion disk to the BELR can be achieved in {approx}400 days on a 100 teraflop s{sup -1} high-performance computing facility, where the processing performance is achieved with graphics processing units. We illustrate a use-case for the parameter survey by investigating the effects of varying the lens macro-model on accretion disk constraints in the lensed quasar Q2237+0305. We find that although all constraints are consistent within their current error bars, models with more densely packed microlenses tend to predict shallower accretion disk radial temperature profiles. With a large parameter survey such as the one described here, such systematics on microlensing measurements could be fully explored.

  11. Initiated Chemical Vapor Deposition (iCVD) of Highly Cross-Linked Polymer Films for Advanced Lithium-Ion Battery Separators.

    PubMed

    Yoo, Youngmin; Kim, Byung Gon; Pak, Kwanyong; Han, Sung Jae; Song, Heon-Sik; Choi, Jang Wook; Im, Sung Gap

    2015-08-26

    We report an initiated chemical vapor deposition (iCVD) process to coat polyethylene (PE) separators in Li-ion batteries with a highly cross-linked, mechanically strong polymer, namely, polyhexavinyldisiloxane (pHVDS). The highly cross-linked but ultrathin pHVDS films can only be obtained by a vapor-phase process, because the pHVDS is insoluble in most solvents and thus infeasible with conventional solution-based methods. Moreover, even after the pHVDS coating, the initial porous structure of the separator is well preserved owing to the conformal vapor-phase deposition. The coating thickness is delicately controlled by deposition time to the level that the pore size decreases to below 7% compared to the original dimension. The pHVDS-coated PE shows substantially improved thermal stability and electrolyte wettability. After incubation at 140 °C for 30 min, the pHVDS-coated PE causes only a 12% areal shrinkage (versus 90% of the pristine separator). The superior wettability results in increased electrolyte uptake and ionic conductivity, leading to significantly improved rate performance. The current approach is applicable to a wide range of porous polymeric separators that suffer from thermal shrinkage and poor electrolyte wetting. PMID:26258806

  12. Catalytic trimerization of aromatic nitriles and triaryl-s-triazine ring cross-linked high temperature resistant polymers and copolymers made thereby

    NASA Technical Reports Server (NTRS)

    Hsu, L. C. (Inventor)

    1979-01-01

    Triazine compounds and cross-linked polymer compositions are made by heating aromatic nitriles to a temperature in the range of from about 100 C to about 700 C, and preferably in the range of from about 200 C to about 350 C, in the presence of a catalyst or mixture of catalysts selected from one or more of the following groups: (1) organic sulfonic and sulfinic acids, (2) organic phosphonic and phosphinic acids, and (3)metallic acetylacetonates, at a pressure in the range of from about atmospheric pressure to about 10,000 psi and preferably in the range of from about 200 psi to about 750 psi. Aromatic nitrile-modified (terminated and/or appended) imide, benzimidazole, imidazopyrrolone, quinoxaline, and other condensation type prepolymers or their precopolymers are made which are trimerized with or without a filler by the aforementioned catalytic trimerization process into triaryl-s-triazine ring containing or cross-linked polymeric or copolymeric products useful in applications requiring high thermal-oxidative stability and high performance structural properties at elevated temperatures.

  13. Demonstration of high current carbon nanotube enabled vertical organic field effect transistors at industrially relevant voltages

    NASA Astrophysics Data System (ADS)

    McCarthy, Mitchell

    The display market is presently dominated by the active matrix liquid crystal display (LCD). However, the active matrix organic light emitting diode (AMOLED) display is argued to become the successor to the LCD, and is already beginning its way into the market, mainly in small size displays. But, for AMOLED technology to become comparable in market share to LCD, larger size displays must become available at a competitive price with their LCD counterparts. A major issue preventing low-cost large AMOLED displays is the thin-film transistor (TFT) technology. Unlike the voltage driven LCD, the OLEDs in the AMOLED display are current driven. Because of this, the mature amorphous silicon TFT backplane technology used in the LCD must be upgraded to a material possessing a higher mobility. Polycrystalline silicon and transparent oxide TFT technologies are being considered to fill this need. But these technologies bring with them significant manufacturing complexity and cost concerns. Carbon nanotube enabled vertical organic field effect transistors (CN-VFETs) offer a unique solution to this problem (now known as the AMOLED backplane problem). The CN-VFET allows the use of organic semiconductors to be used for the semiconductor layer. Organics are known for their low-cost large area processing compatibility. Although the mobility of the best organics is only comparable to that of amorphous silicon, the CN-VFET makes up for this by orienting the channel vertically, as opposed to horizontally (like in conventional TFTs). This allows the CN-VFET to achieve sub-micron channel lengths without expensive high resolution patterning. Additionally, because the CN-VFET can be easily converted into a light emitting transistor (called the carbon nanotube enabled vertical organic light emitting transistor---CN-VOLET) by essentially stacking an OLED on top of the CN-VFET, more potential benefits can be realized. These potential benefits include, increased aperture ratio, increased OLED

  14. OpenTopography: Enabling Online Access to High-Resolution Lidar Topography Data and Processing Tools

    NASA Astrophysics Data System (ADS)

    Crosby, Christopher; Nandigam, Viswanath; Baru, Chaitan; Arrowsmith, J. Ramon

    2013-04-01

    resources. Datasets hosted by other organizations, as well as lidar-specific software, can be registered into the OpenTopography catalog, providing users a "one-stop shop" for such information. With several thousand active users, OpenTopography is an excellent example of a mature Spatial Data Infrastructure system that is enabling access to challenging data for research, education and outreach. Ongoing OpenTopography design and development work includes the archive and publication of datasets using digital object identifiers (DOIs); creation of a more flexible and scalable high-performance environment for processing of large datasets; expanded support for satellite and terrestrial lidar; and creation of a "pluggable" infrastructure for third-party programs and algorithms. OpenTopography has successfully created a facility for sharing lidar data. In the project's next phase, we are working to enable equally easy and successful sharing of services for processing and analysis of these data.

  15. Polydopamine Wrapping Silicon Cross-linked with Polyacrylic Acid as High-Performance Anode for Lithium-Ion Batteries.

    PubMed

    Bie, Yitian; Yang, Jun; Liu, Xiaolin; Wang, Jiulin; Nuli, Yanna; Lu, Wei

    2016-02-10

    A robust silicon electrode for lithium-ion battery has been developed via prepolymerizing dopamine on silicon particle surface and then chemical binding with poly(acrylic acid) (PAA). In this favorable electrode, silicon nanoparticles are covered by a thin layer of polydopamine (PD) through firm hydrogen bonds between phenolic hydroxyl and hydroxyl, while the elastic polymer layer reacts with PAA binder to form three-dimensional cross-linked binding system. The Si@PD/PAA electrode exhibits more stable cycle performance than conventional electrodes. In the case of thick electrode, a capacity of 3.69 mA h cm(-2) and fairly good rechargeability for 80 cycles can be achieved. PMID:26808456

  16. Methylene crosslinked calix[6]arene hexacaarboxylic acid resin: a highly efficient solid phase extractant for decontamination of lead bearing effluents.

    PubMed

    Adhikari, Birendra Babu; Gurung, Manju; Kawakita, Hidetaka; Jumina; Ohto, Keisuke

    2011-10-15

    Calixarene-based cation exchange resin has been developed by methylene crosslinking of calix[6]arene hexacarboxylic acid derivative and the resin has been exploited for solid phase extraction of some toxic heavy metal ions. The selectivity order of the resin towards some metal ions follows the order Pb(II) > Cu(II)> Zn(II), Ni(II), Co(II). The maximum lead ion binding capacity of the resin was found to be 1.30 mmol g(-1) resin. The loaded lead was quantitatively eluted with dilute acid solution regenerating the resin. Mutual separation of Pb(II), Cu(II) and Zn(II) was achieved by using the column packed with the resin. PMID:21835544

  17. Enzyme adsorption, precipitation and crosslinking of glucose oxidase and laccase on polyaniline nanofibers for highly stable enzymatic biofuel cells.

    PubMed

    Kim, Ryang Eun; Hong, Sung-Gil; Ha, Su; Kim, Jungbae

    2014-11-01

    Enzymatic biofuel cells have many great features as a small power source for medical, environmental and military applications. Both glucose oxidase (GOx) and laccase (LAC) are widely used anode and cathode enzymes for enzymatic biofuel cells, respectively. In this paper, we employed three different approaches to immobilize GOx and LAC on polyaniline nanofibers (PANFs): enzyme adsorption (EA), enzyme adsorption and crosslinking (EAC) and enzyme adsorption, precipitation and crosslinking (EAPC) approaches. The activity of EAPC-LAC was 32 and 25 times higher than that of EA-LAC and EAC-LAC, respectively. The half-life of EAPC-LAC was 53 days, while those of EA-LAC and EAC-LAC were 6 and 21 days, respectively. Similar to LAC, EAPC-GOx also showed higher activity and stability than EA-GOx and EAC-GOx. For the biofuel cell application, EAPC-GOx and EAPC-LAC were applied over the carbon papers to form enzyme anode and cathode, respectively. In order to improve the power density output of enzymatic biofuel cell, 1,4-benzoquinone (BQ) and 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) diammonium salt (ABTS) were introduced as the electron transfer mediators on the enzyme anode and enzyme cathode, respectively. BQ- and ABTS-mediated enzymatic biofuel cells fabricated by EAPC-GOx and EAPC-LAC showed the maximum power density output of 37.4 μW/cm(2), while the power density output of 3.1 μW/cm(2) was shown without mediators. Under room temperature and 4°C for 28 days, enzymatic biofuel cells maintained 54 and 70% of its initial power density, respectively. PMID:25248697

  18. Enabling high grayscale resolution displays and accurate response time measurements on conventional computers.

    PubMed

    Li, Xiangrui; Lu, Zhong-Lin

    2012-01-01

    Display systems based on conventional computer graphics cards are capable of generating images with 8-bit gray level resolution. However, most experiments in vision research require displays with more than 12 bits of luminance resolution. Several solutions are available. Bit++ (1) and DataPixx (2) use the Digital Visual Interface (DVI) output from graphics cards and high resolution (14 or 16-bit) digital-to-analog converters to drive analog display devices. The VideoSwitcher (3) described here combines analog video signals from the red and blue channels of graphics cards with different weights using a passive resister network (4) and an active circuit to deliver identical video signals to the three channels of color monitors. The method provides an inexpensive way to enable high-resolution monochromatic displays using conventional graphics cards and analog monitors. It can also provide trigger signals that can be used to mark stimulus onsets, making it easy to synchronize visual displays with physiological recordings or response time measurements. Although computer keyboards and mice are frequently used in measuring response times (RT), the accuracy of these measurements is quite low. The RTbox is a specialized hardware and software solution for accurate RT measurements. Connected to the host computer through a USB connection, the driver of the RTbox is compatible with all conventional operating systems. It uses a microprocessor and high-resolution clock to record the identities and timing of button events, which are buffered until the host computer retrieves them. The recorded button events are not affected by potential timing uncertainties or biases associated with data transmission and processing in the host computer. The asynchronous storage greatly simplifies the design of user programs. Several methods are available to synchronize the clocks of the RTbox and the host computer. The RTbox can also receive external triggers and be used to measure RT with respect

  19. The effect of collagen crosslinking on the biphasic poroviscoelastic cartilage properties determined from a semi-automated microindentation protocol for stress relaxation.

    PubMed

    McGann, Megan E; Bonitsky, Craig M; Ovaert, Timothy C; Wagner, Diane R

    2014-06-01

    Given the important role of the collagenous structure in cartilage mechanics, there is considerable interest in the relationship between collagen crosslinking and the mechanical behavior of the cartilage matrix. While crosslink-induced alterations to the elastic modulus of cartilage have been described, changes to time-dependent behavior have not yet been determined. The objective of the study was to quantify changes to cartilage material properties, including viscoelastic coefficients, with crosslinking via indentation. To accomplish this, a semi-autonomous microindentation stress relaxation protocol was first developed, validated and then applied to cartilage specimens before and after crosslinking. The change in mechanical properties with crosslinking was analyzed both in the unloading portions of the test via the Oliver-Pharr method and in the holding portion with an inverse iterative finite element model that represented cartilage as a biphasic poroviscoelastic material. Although both techniques suggested a similar increase in equilibrium modulus in the crosslinked specimens as compared to the controls, distinct differences in the control specimens were apparent, suggesting that the two different techniques may be capturing different aspects of the material behavior. No differences in time-dependent properties were observed between the crosslinked and the control specimens. These results give further insight into the effects of crosslinking in cartilage mechanical behavior. Additionally, the microindentation stress relaxation protocol may enable increased automation for high-throughput testing. PMID:24631625

  20. Influence of cross-link structure, density and mechanical properties in the mesoscale deformation mechanisms of collagen fibrils

    PubMed Central

    Depalle, Baptiste; Qin, Zhao; Shefelbine, Sandra J.; Buehler, Markus J.

    2015-01-01

    Collagen is a ubiquitous protein with remarkable mechanical properties. It is highly elastic, shows large fracture strength and enables substantial energy dissipation during deformation. Most of the connective tissue in humans consists of collagen fibrils composed of a staggered array of tropocollagen molecules, which are connected by intermolecular cross-links. In this study, we report a three-dimensional coarse-grained model of collagen and analyze the influence of enzymatic cross-links on the mechanics of collagen fibrils. Two representatives immature and mature cross-links are implemented in the mesoscale model using a bottom-up approach. By varying the number, type and mechanical properties of cross-links in the fibrils and performing tensile test on the models, we systematically investigate the deformation mechanisms of cross-linked collagen fibrils. We find that cross-linked fibrils exhibit a three phase behavior, which agrees closer with experimental results than what was obtained using previous models. The fibril mechanical response is characterized by: (i) an initial elastic deformation corresponding to the collagen molecule uncoiling, (ii) a linear regime dominated by molecule sliding and (iii) the second stiffer elastic regime related to the stretching of the backbone of the tropocollagen molecules until the fibril ruptures. Our results suggest that both cross-link density and type dictate the stiffness of large deformation regime by increasing the number of interconnected molecules while cross-links mechanical properties determine the failure strain and strength of the fibril. These findings reveal that cross-links play an essential role in creating an interconnected fibrillar material of tunable toughness and strength. PMID:25153614

  1. New in situ crosslinking chemistries for hydrogelation

    NASA Astrophysics Data System (ADS)

    Roberts, Meredith Colleen

    Over the last half century, hydrogels have found immense value as biomaterials in a vast number of biomedical and pharmaceutical applications. One subset of hydrogels receiving increased attention is in situ forming gels. Gelling by either bioresponsive self-assembly or mixing of binary crosslinking systems, these technologies are useful in minimally invasive applications as well as drug delivery systems in which the sol-to-gel transition aids the formulation's performance. Thus far, the field of in situ crosslinking hydrogels has received limited attention in the development of new crosslinking chemistries. Moreover, not only does the chemical nature of the crosslinking moieties allow these systems to perform in situ, but they contribute dramatically to the mechanical properties of the hydrogel networks. For example, reversible crosslinks with finite lifetimes generate dynamic viscoelastic gels with time-dependent properties, whereas irreversible crosslinks form highly elastic networks. The aim of this dissertation is to explore two new covalent chemistries for their ability to crosslink hydrogels in situ under physiological conditions. First, reversible phenylboronate-salicylhydroxamate crosslinking was implemented in a binary, multivalent polymeric system. These gels formed rapidly and generated hydrogel networks with frequency-dependent dynamic rheological properties. Analysis of the composition-structure-property relationships of these hydrogels---specifically considering the effects of pH, degree of polymer functionality, charge of the polymer backbone and polymer concentration on dynamic theological properties---was performed. These gels demonstrate diverse mechanical properties, due to adjustments in the binding equilibrium of the pH-sensitive crosslinks, and thus have the potential to perform in a range of dynamic or bioresponsive applications. Second, irreversible catalyst-free "click" chemistry was employed in the hydrogelation of multivalent azide

  2. Enhancing DNA Crystal Durability through Chemical Crosslinking.

    PubMed

    Zhang, Diana; Paukstelis, Paul J

    2016-06-16

    Three-dimensional (3D) DNA crystals have been envisioned as a powerful tool for the positional control of biological and non-biological arrays on the nanoscale. However, most DNA crystals contain short duplex regions that can result in low thermal stability. Additionally, because DNA is a polyanion, DNA crystals often require high cation concentrations to maintain their integrity. Here, we demonstrate that a DNA alkylating mustard, bis(2-chloroethyl)amine, can form interstrand crosslinks within a model 3D DNA crystal. The crosslinking procedure did not alter crystal X-ray diffraction properties, but it did significantly improve the overall stability of the crystals under a variety of conditions. Crosslinked crystals showed enhanced stability at elevated temperature and were stable at Mg(2+) concentrations as low as 1 mm. Remarkably, the crosslinked crystals showed significant resistance to DNase I treatment, while also having improved longevity in tissue culture mediums. Characterization of the crosslinked species suggest that there are multiple crosslinking sites, but that the most prevalent interstrand crosslink involves an unpaired 3'-terminal guanosine residue. The improved stability of these DNA crystals suggests that simple treatment with alkylating reagents might be sufficient to stabilize crystals and other DNA constructs for improved functionality in biological and non-biological applications. PMID:27108768

  3. Evaluation of Pressure Stable Chip-to-Tube Fittings Enabling High-Speed Chip-HPLC with Mass Spectrometric Detection.

    PubMed

    Lotter, Carsten; Heiland, Josef J; Stein, Volkmar; Klimkait, Michael; Queisser, Marco; Belder, Detlev

    2016-08-01

    Appropriate chip-to-tube interfacing is an enabling technology for high-pressure and high-speed liquid chromatography on chip. For this purpose, various approaches, to connect pressure resistant glass chips with HPLC pumps working at pressures of up to 500 bar, were examined. Three side-port and one top-port connection approach were evaluated with regard to pressure stability and extra column band broadening. A clamp-based top-port approach enabled chip-HPLC-MS analysis of herbicides at the highest pressure and speed. PMID:27397738

  4. Advanced light source technologies that enable high-volume manufacturing of DUV lithography extensions

    NASA Astrophysics Data System (ADS)

    Cacouris, Theodore; Rao, Rajasekhar; Rokitski, Rostislav; Jiang, Rui; Melchior, John; Burfeindt, Bernd; O'Brien, Kevin

    2012-03-01

    Deep UV (DUV) lithography is being applied to pattern increasingly finer geometries, leading to solutions like double- and multiple-patterning. Such process complexities lead to higher costs due to the increasing number of steps required to produce the desired results. One of the consequences is that the lithography equipment needs to provide higher operating efficiencies to minimize the cost increases, especially for producers of memory devices that experience a rapid decline in sales prices of these products over time. In addition to having introduced higher power 193nm light sources to enable higher throughput, we previously described technologies that also enable: higher tool availability via advanced discharge chamber gas management algorithms; improved process monitoring via enhanced on-board beam metrology; and increased depth of focus (DOF) via light source bandwidth modulation. In this paper we will report on the field performance of these technologies with data that supports the desired improvements in on-wafer performance and operational efficiencies.

  5. Corneal cross-linking.

    PubMed

    Randleman, J Bradley; Khandelwal, Sumitra S; Hafezi, Farhad

    2015-01-01

    Since its inception in the late 1990s, corneal cross-linking has grown from an interesting concept to a primary treatment for corneal ectatic disease worldwide. Using a combination of ultraviolet-A light and a chromophore (vitamin B2, riboflavin), the cornea can be stiffened, usually with a single application, and progressive thinning diseases such as keratoconus arrested. Despite being in clinical use for many years, some of the underlying processes, such as the role of oxygen and the optimal treatment times, are still being worked out. More than a treatment technique, corneal cross-links represent a physiological principle of connective tissue, which may explain the enormous versatility of the method. We highlight the history of corneal cross-linking, the scientific underpinnings of current techniques, evolving clinical treatment parameters, and the use of cross-linking in combination with refractive surgery and for the treatment of infectious keratitis. PMID:25980780

  6. [Crosslinking in Keratoconus].

    PubMed

    Lang, S J; Reinhard, T

    2016-06-01

    Keratoconus leads to progressive thinning and protrusion of the cornea. Young patients exhibit the highest risk for progression. Corneal crosslinking was introduced in 1998 and is intended to prevent progression of keratoconus. Only a few prospective controlled trials have been published. Six randomised controlled trials have been published. All these trials confirmed the efficacy of crosslinking through keratometric data. In two trials, progression was reported in some patients of the treatment group. This indicates that not all patients benefit from corneal crosslinking. The risks of the procedure include corneal scarring, haze, endothelial cell damage and infections of the cornea. In order to avoid these risks, patients without progression should not be treated with crosslinking. PMID:27315291

  7. Extracellular glycation crosslinks: prospects for removal.

    PubMed

    Furber, John D

    2006-01-01

    Extracellular aging--accumulating molecular damage by glycation, oxidation, and crosslinking of long-lived extracellular proteins, mainly collagen and elastin--is a major cause of several important human aging pathologies. Crosslinking increases mechanical stiffness of blood vessels and urinary bladder. Crosslinking impairs the functioning of the kidney, heart, retina, and other tissues and organs. Glycation adducts trigger inflammatory signaling, provoking tissue damage and cancers. Crosslinking tightens up the extracellular matrix (ECM), hardening it against natural turnover processes. Known crosslink breakers (e.g., alagebrium, of the thiazolium halide family) are only partly effective because they break only a subset of AGE crosslink structures (sugar-derived alpha-diketone bridges). So far, no agent has been found that breaks the prevalent glucosepane and K2P crosslink structures. Enzymes that would be able to recognize and disassemble glycation products may be too big to migrate into the ECM and repair collagen or elastin in vivo. Two approaches to therapy development are presented here. ECM turnover enhancement would enhance natural processes to digest old ECM and replace it with new. It will be important to tune the collagen degradation to a rate slow enough to prevent dire side-effects, such as hemorrhage from leaky blood vessels as collagen molecules are removed and replaced. Glycation breaker discovery would use high-throughput screening and rational drug design to find molecules that are able to break glucosepane crosslinks and K2P crosslinks of extracellular proteins. Candidates would be further screened for selectivity and toxicity in order to avoid damage to other molecules. PMID:16706655

  8. RFID-enabled traceability system for consignment and high value products: a case study in the healthcare sector.

    PubMed

    Bendavid, Ygal; Boeck, Harold; Philippe, Richard

    2012-12-01

    This paper presents a case study of a hospital operating room that evaluated a Radio-Frequency Identification (RFID)-enabled traceability system for the management of consignment and high value products requiring item level traceability. Results indicate that the traceability system in conjunction with the redesign of replenishment processes facilitates item level traceability, improves financial controls and case costing, upgrades service levels and reduces inventory shrinkage. Other benefits include time saved from non-value-added activities that can be transferred to patient care activities. The solution can be considered (i) as an alternative to RFID-enabled cabinets used in the replenishment of consignment and high value supplies in certain operating rooms, cardiac catheterization laboratories and interventional radiology departments, or (ii) as a complementary solution facilitating the tracking of medical devices removed from RFID-enabled cabinets. In short, the end-to-end traceability of medical products in the healthcare supply chain can be significantly enhanced. PMID:22105627

  9. ULTRACOATINGS: Enabling Energy and Power Solutions in High Contact Stress Environments through Next-Generation Nanocoatings

    SciTech Connect

    Blau, P.; Qu, J.; Higdon, C. III

    2011-09-30

    This industry-driven project was the result of a successful response by Eaton Corporation to a DOE/ITP Program, Grand Challenge, industry call. It consisted of a one-year effort in which ORNL participated in the area of friction and wear testing. In addition to Eaton Corporation and ORNL (CRADA), the project team included: Ames Laboratory, who developed the underlying concept for titanium- zirconium-boron (TZB) based nanocomposite coatings; Borg-Warner Morse TEC, an automotive engine timing chain manufacturer in Ithaca, New York, with its own proprietary hard coating; and Pratt & Whitney Rocketdyne, Inc., a dry-solids pump manufacturer in San Fernando Valley, California. This report focuses only on the portion of work that was conducted by ORNL, in a CRADA with Eaton Corporation. A comprehensive final report for the entire effort, which ended in September 2010, has been prepared for DOE by the team. The term 'ultracoatings' derives from the ambitious technical target for the new generation of nanocoatings. As applications, Eaton was specifically considering a fuel pump and a gear application in which the product of the contact pressure and slip velocity during operation of mating surfaces, commonly called the 'PV value', was equal to or greater than 70,000 MPa-m/s. This ambitious target challenges the developers of coatings to produce material capable of strong bonding to the substrate, as well as high wear resistance and the ability to maintain sliding friction at low, energy-saving levels. The partners in this effort were responsible for the selection and preparation of such candidate ultracoatings, and ORNL used established tribology testing capabilities to help screen these candidates for performance. This final report summarizes ORNL's portion of the nanocomposite coatings development effort and presents both generated data and the analyses that were used in the course of this effort. Initial contact stress and speed calculations showed that laboratory tests

  10. In vivo biological response to highly cross-linked and vitamin e-doped polyethylene--a particle-Induced osteolysis animal study.

    PubMed

    Huang, Chang-Hung; Lu, Yung-Chang; Chang, Ting-Kuo; Hsiao, I-Lin; Su, Yi-Ching; Yeh, Shu-Ting; Fang, Hsu-Wei; Huang, Chun-Hsiung

    2016-04-01

    Polyethylene particle-induced osteolysis is the primary limitation in the long-term success of total joint replacement with conventional ultra high molecular weight polyethylene (UHMWPE). Highly cross-linked polyethylene (HXLPE) and vitamin E-doped cross-linked polyethylene (VE-HXLPE) have been developed to increase the wear resistance of joint surfaces. However, very few studies have reported on the incidence of particle-induced osteolysis for these novel materials. The aim of this study was to use a particle-induced osteolysis animal model to compare the in vivo biological response to different polymer particles. Three commercially available polymers (UHMWPE, HXLPE, and VE-HXLPE) were compared. Osseous properties including the bone volume relative to the tissue volume (BV/TV), trabecular thickness (Tb. Th), and bone mineral density (BMD) were examined using micro computed tomography. Histological analysis was used to observe tissue inflammation in each group. This study demonstrated that the osseous properties and noticeable inflammatory reactions were obviously decreased in the HXLPE group. When compared with the sham group, a decrease of 12.7% was found in BV/TV, 9.6% in BMD and 8.3% in Tb.Th for the HXLPE group. The heightened inflammatory response in the HXLPE group could be due to its smaller size and greater amount of implanted particles. Vitamin E diffused in vivo may not affect the inflammatory and osteolytic responses in this model. The morphological size and total cumulative amount of implanted particles could be critical factors in determining the biological response. PMID:25952769

  11. Stereocomplexation of low molecular weight poly(L-lactic acid) and high molecular weight poly(D-lactic acid), radiation crosslinking PLLA/PDLA stereocomplexes and their characterization

    NASA Astrophysics Data System (ADS)

    Quynh, Tran Minh; Mai, Hoang Hoa; Lan, Pham Ngoc

    2013-02-01

    Poly(L-lactic acid)s (PLLAx) were synthesized from L-lactic acid by polycondensation. Different stereocomplexes were also obtained with equimolar mixtures of synthesized PLLAx and a commercial PDLA. The stereocomplexes were crosslinked with triallyl isocyanurate (TAIC) by gamma irradiation. Crosslinking density increased with radiation doses, the heavier the crosslinking network, the lower its swelling degree. The crosslinking structures were introduced in the stereocomplexes inhibiting the mobility for crystallization of PLLA molecules. Thermal and mechanical properties of PLA stereocomplexes were remarkably enhanced by radiation induced crosslinking. PLA stereocomplex does not seem to be degraded by PLLA degrading microorganisms existing in compost at room temperature, but the synthesized PLLA was significantly degraded.

  12. Scalable, MEMS-enabled, vibrational tactile actuators for high resolution tactile displays

    NASA Astrophysics Data System (ADS)

    Xie, Xin; Zaitsev, Yuri; Velásquez-García, Luis Fernando; Teller, Seth J.; Livermore, Carol

    2014-12-01

    The design, fabrication, and characterization of a new type of tactile display for people with blindness or low vision is reported. Each tactile element comprises a piezoelectric extensional actuator that vibrates in plane, with a microfabricated scissor mechanism to convert the in-plane actuations into robust, higher-amplitude, out-of-plane (vertical) vibrations that are sensed with the finger pads. When the tactile elements are formed into a 2D array, information can be conveyed to the user by varying the pattern of vibrations in space and time. Analytical models and finite element analysis were used to design individual tactile elements, which were implemented with PZT actuators and both SU-8 and 3D-printed scissor amplifiers. The measured displacements of these 3 mm × 10 mm, MEMS-enabled tactile elements exceed 10 µm, in agreement with models, with measured forces exceeding 45 mN. The performance of the MEMS-enabled tactile elements is compared with the performance of larger, fully-macroscale tactile elements to demonstrate the scale dependence of the devices. The creation of a 28-element prototype is also reported, and the qualitative user experience with the individual tactile elements and displays is described.

  13. Formation of Deoxyguanosine Cross-links from Calf Thymus DNA Treated with Acrolein and 4-Hydroxy-2-nonenal

    PubMed Central

    Kozekov, Ivan D.; Turesky, Robert J.; Alas, Guillermo R.; Harris, Constance M.; Harris, Thomas M.; Rizzo, Carmelo J.

    2010-01-01

    Acrolein (AC) and 4-hydroxy-2-nonenal (HNE) are α,β-unsaturated aldehyde (enal) endogenous bis-electrophiles that arise from the oxidation of polyunsaturated fatty acids. AC is also found in high concentrations in cigarette smoke and automobile exhaust. These reactive enals covalently modify nucleic acids, to form exocyclic adducts, where the three-carbon hydroxypropano unit bridges the N1 and N2 -positions of deoxyguanosine (dG). The bifunctional nature of these enals enables them to undergo reaction with a second nucleophilic group and form DNA cross-links. These cross-linked enal adducts are likely to contribute to the genotoxic effects of both AC and HNE. We have developed a sensitive mass spectrometric method to detect cross-linked adducts of these enals in calf thymus DNA (CT DNA) treated with AC or HNE. The AC and HNE cross-linked adducts were measured by the stable isotope dilution method, employing a linear quadrupole ion trap mass spectrometer and consecutive reaction monitoring at the MS3 or MS4 scan stage. The lower limit of quantification of the cross-linked adducts is ~1 adduct per 108 DNA bases, when 50 µg of DNA is assayed. The cross-linked adducts occur at levels that are ~1–2% of the levels of the monomeric 1,N2-dG adducts in CT DNA treated with either enal. PMID:20964440

  14. Evidence of High Harmonics from Echo-Enabled Harmonic Generation for Seeding X-ray Free Electron Lasers

    SciTech Connect

    Xiang, D.; Colby, E.; Dunning, M.; Gilevich, S.; Hast, C.; Jobe, K.; McCormick, D.; Nelson, J.; Raubenheimer, T.O.; Soong, K.; Stupakov, G.; Szalata, Z.; Walz, D.; Weathersby, S.; Woodle, M.; /SLAC

    2012-02-15

    Echo-enabled harmonic generation free electron lasers hold great promise for the generation of fully coherent radiation in x-ray wavelengths. Here we report the first evidence of high harmonics from the echo-enabled harmonic generation technique in the realistic scenario where the laser energy modulation is comparable to the beam slice energy spread. In this experiment, coherent radiation at the seventh harmonic of the second seed laser is generated when the energy modulation amplitude is about 2-3 times the slice energy spread. The experiment confirms the underlying physics of echo-enabled harmonic generation and may have a strong impact on emerging seeded x-ray free electron lasers that are capable of generating laserlike x rays which will advance many areas of science.

  15. Abstract for Session IN016. Enabling Science Through Reuse of Data and Free and Open Source Software How Elsevier is supporting the value and usefulness of data with Cross-linking and Digital Content

    NASA Astrophysics Data System (ADS)

    Keall, B. S.; Koers, H.

    2013-12-01

    Thanks to decades of technological advances to improve the collection, organization, storage, and sharing of data, experimental research data has become an increasingly important element of the research process. And one can only expect that the relevance of research data will continue to grow, given the recent push from funding bodies to make research data better available, the emergence of trusted, domain-specific data repositories, and the support from journal publishers. Elsevier is excited by the prospect of accelerating the pace of research by creating proper solutions for research data, including bidirectional links between articles and data to enable discovery and proper re-use. Connecting articles and data is an integral part of Elsevier's 'Article of the Future', an ongoing program to improve the article format to meet the needs of modern-day researchers. As part of this effort, we have set up bi-directional linking between online articles and data repositories so that researchers can easily find the data that is relevant for a paper and vice versa. Recently, we have set up such links with some of the leading data repositories in Earth Sciences, including the British Geological Survey, IEDA's Marine Geoscience Data System, and the Oak Ridge National Laboratory DAAC. Building on these links, Elsevier has also developed a number of data integration and visualization tools, such as our long-standing collaboration with PANGAEA. Another dimension of the Article of the Future is to provide authors with the capabilities to embed digital research output to their publication, thus breaking away from the limitations of the traditional ink-on-paper format. Supported digital content types include interactive (Google) maps, videos, and 3D models. Recently, we have also published a Special Issue with Executable Papers that combines the narrative of the article with data and code elements, all connected in such a way that researchers can perform computations while

  16. Multiple and sequential data acquisition method: an improved method for fragmentation and detection of cross-linked peptides on a hybrid linear trap quadrupole Orbitrap Velos mass spectrometer.

    PubMed

    Rudashevskaya, Elena L; Breitwieser, Florian P; Huber, Marie L; Colinge, Jacques; Müller, André C; Bennett, Keiryn L

    2013-02-01

    The identification and validation of cross-linked peptides by mass spectrometry remains a daunting challenge for protein-protein cross-linking approaches when investigating protein interactions. This includes the fragmentation of cross-linked peptides in the mass spectrometer per se and following database searching, the matching of the molecular masses of the fragment ions to the correct cross-linked peptides. The hybrid linear trap quadrupole (LTQ) Orbitrap Velos combines the speed of the tandem mass spectrometry (MS/MS) duty circle with high mass accuracy, and these features were utilized in the current study to substantially improve the confidence in the identification of cross-linked peptides. An MS/MS method termed multiple and sequential data acquisition method (MSDAM) was developed. Preliminary optimization of the MS/MS settings was performed with a synthetic peptide (TP1) cross-linked with bis[sulfosuccinimidyl] suberate (BS(3)). On the basis of these results, MSDAM was created and assessed on the BS(3)-cross-linked bovine serum albumin (BSA) homodimer. MSDAM applies a series of multiple sequential fragmentation events with a range of different normalized collision energies (NCE) to the same precursor ion. The combination of a series of NCE enabled a considerable improvement in the quality of the fragmentation spectra for cross-linked peptides, and ultimately aided in the identification of the sequences of the cross-linked peptides. Concurrently, MSDAM provides confirmatory evidence from the formation of reporter ions fragments, which reduces the false positive rate of incorrectly assigned cross-linked peptides. PMID:23301806

  17. High strength polymer post insulators enable economical transmission lines with low environmental impact

    SciTech Connect

    Burnham, J.T.; Givens, P.S.; Grisham, T.M.

    1994-12-31

    In today`s operational environment, utility transmission engineers are being challenged with a new set of design parameters. In addition to the traditional objective of system reliability, new issues of paramount importance heave evolved. These include the reduction of construction costs, addressing transmission line aesthetics, and optimizing power delivery within restricted right of way. This document describes a design approach which enables the engineer to maximize these criteria without sacrificing system reliability. A laboratory test method for polymer post insulators is also presented which effectively simulates combined mechanical load conditions expected in application, thus allowing the utility engineer to optimize span lengths, conductor size, and insulator selection. Polymer history and benefits associated with compact line design are also reviewed.

  18. A poly(dimethylsiloxane)-based device enabling time-lapse imaging with high spatial resolution

    SciTech Connect

    Hirano, Masahiko; Hoshida, Tetsushi; Sakaue-Sawano, Asako; Miyawaki, Atsushi

    2010-02-12

    We have developed a regulator-free device that enables long-term incubation of mammalian cells for epi-fluorescence imaging, based on a concept that the size of sample to be gassed and heated is reduced to observation scale. A poly(dimethylsiloxane) block stamped on a coverslip works as a long-lasting supplier of CO{sub 2}-rich gas to adjust bicarbonate-containing medium in a tiny chamber at physiological pH, and an oil-immersion objective warms cells across the coverslip. A time-lapse imaging experiment using HeLa cells stably expressing fluorescent cell-cycle indicators showed that the cells in the chamber proliferated with normal cell-cycle period over 2 days.

  19. Immunogenic Display of Purified Chemically Cross-Linked HIV-1 Spikes

    PubMed Central

    Leaman, Daniel P.; Lee, Jeong Hyun; Ward, Andrew B.

    2015-01-01

    -neutralizing antibodies. Fixed native spikes were recognized by all classes of known broadly neutralizing antibodies but not by non-neutralizing antibodies and displayed on nanoparticles in high copy number. An immunization experiment in rabbits revealed that cross-linking Env reduced its overall immunogenicity; however, high-copy display on nanoparticles enabled boosting of antibodies that sporadically neutralized some relatively resistant HIV-1 isolates, albeit at a low titer. This study describes the purification of stable and antigenically correct Env spikes from virions that can be used as immunogens. PMID:25878116

  20. Gelation of Covalently Cross-Linked PEG–Heparin Hydrogels

    PubMed Central

    Schultz, Kelly M.; Baldwin, Aaron D.; Kiick, Kristi L.; Furst, Eric M.

    2010-01-01

    We study PEG–heparin hydrogels to identify compositions that lead to gel formation and measure the corresponding gelation kinetics. The material consists of a maleimide-functionalized high molecular weight heparin (HMWH) backbone covalently cross-linked with bis-thiol poly(ethylene glycol) (PEG). Using multiple particle tracking microrheology, we investigate a broad composition space, defined by the number of maleimide functional sites per HMWH (f = 3.9–11.8), the molecular weight of the PEG cross-linker (Mn = 2000, 5000, and 10 000), and the concentrations of the heparin and PEG polymers. Gelation kinetics are characterized by time–cure superposition, yielding the gel time, tc, and the critical relaxation exponent, n. Gelation times range from 5 < tc ≤ 45 min, with the fastest kinetics occurring for the highest HMWH maleimide functionalities. tc depends nonmonotonically on the PEG cross-linker molecular weight, suggesting that gelation is affected by the length of the cross-linker relative to intermolecular interactions between heparin molecules. The critical relaxation exponent decreases from n = 0.52 for PEG 2000 to n = 0.39 for PEG 10 000. Finally, 219 equilibrated samples taken over the entire composition space are identified as liquid or solid, defining the “gelation envelope”. The boundaries of this empirical gelation envelope are in good agreement with Flory–Stockmayer theory. In all, microrheological measurements enable characterization over a large parameter space and provide crucial insight into the gelation of complex, multifunctional hydrogelators used in therapeutic applications. PMID:21494422

  1. Multimodal confocal mosaics enable high sensitivity and specificity in screening of in situ squamous cell carcinoma

    NASA Astrophysics Data System (ADS)

    Grados Luyando, Maria del Carmen; Bar, Anna; Snavely, Nicholas; Jacques, Steven; Gareau, Daniel S.

    2014-02-01

    Screening cancer in excision margins with confocal microscopy may potentially save time and cost over the gold standard histopathology (H and E). However, diagnostic accuracy requires sufficient contrast and resolution to reveal pathological traits in a growing set of tumor types. Reflectance mode images structural details due to microscopic refractive index variation. Nuclear contrast with acridine orange fluorescence provides enhanced diagnostic value, but fails for in situ squamous cell carcinoma (SCC), where the cytoplasm is important to visualize. Combination of three modes [eosin (Eo) fluorescence, reflectance (R) and acridine orange (AO) fluorescence] enable imaging of cytoplasm, collagen and nuclei respectively. Toward rapid intra-operative pathological margin assessment to guide staged cancer excisions, multimodal confocal mosaics can image wide surgical margins (~1cm) with sub-cellular resolution and mimic the appearance of conventional H and E. Absorption contrast is achieved by alternating the excitation wavelength: 488nm (AO fluorescence) and 532nm (Eo fluorescence). Superposition and false-coloring of these modes mimics H and E, enabling detection of the carcinoma in situ in the epidermal layer The sum mosaic Eo+R is false-colored pink to mimic eosins' appearance in H and E, while the AO mosaic is false-colored purple to mimic hematoxylins' appearance in H and E. In this study, mosaics of 10 Mohs surgical excisions containing SCC in situ and 5 containing only normal tissue were subdivided for digital presentation equivalent to 4X histology. Of the total 16 SCC in situ multimodal mosaics and 16 normal cases presented, two reviewers made 1 and 2 (respectively) type-2 errors (false positives) but otherwise scored perfectly when using the confocal images to screen for the presence of SCC in situ as compared to the gold standard histopathology. Limitations to precisely mimic H and E included occasional elastin staining by AO. These results suggest that

  2. Cross-linking of hen egg white lysozyme by microbial transglutaminase under high hydrostatic pressure: localization of reactive amino acid side chains.

    PubMed

    Schuh, Susanne; Schwarzenbolz, Uwe; Henle, Thomas

    2010-12-22

    After incubation of hen egg white lysozyme (HEWL) with microbial transglutaminase (mTG) under high pressure (400-600 MPa for 30 min at 40 °C), the formation of HEWL oligomers was observed via SDS electrophoresis. At atmospheric pressure, HEWL represents no substrate for mTG. Likewise, enzymatic treatment following a pretreatment with high pressure did not lead to oligomerization. Reactive amino acid side chains were identified by peptide mapping after tryptic digestion using RP-HPLC with ESI-TOF-MS. Isopeptide-containing peptide fragments were found only in HEWL samples simultaneously treated with enzyme and pressure. It was found that mTG exclusively cross-links HEWL under high pressure by formation of an isopeptide between lysine at position 1 and glutamine at position 121 in the peptide chain. Therefore, a pressure-induced partial and reversible unfolding of the protein with exposure of lysine and glutamine side chains has to occur, resulting in a site-directed oligomerization of HEWL by mTG. The enzymatic modification of HEWL by mTG under high pressure offers interesting perspectives for further functionalization reactions. PMID:21087031

  3. Analysis of the conformation of the 3' major domain of Escherichia coli16S ribosomal RNA using site-directed photoaffinity crosslinking.

    PubMed Central

    Montpetit, A; Payant, C; Nolan, J M; Brakier-Gingras, L

    1998-01-01

    The 3' major domain of Escherichia coli 16S rRNA, which occupies the head of the small ribosomal subunit, is involved in several functions of the ribosome. We have used a site-specific crosslinking procedure to gain further insights into the higher-order structure of this domain. Circularly permuted RNAs were used to introduce an azidophenacyl group at specific positions within the 3' major domain. Crosslinks were generated in a high-ionic strength buffer that has been used for ribosome reconstitution studies and so enables the RNA to adopt a structure recognized by ribosomal proteins. The crosslinking sites were identified by primer extension and confirmed by assessing the mobility of the crosslinked RNA lariats in denaturing polyacrylamide gels. Eight crosslinks were characterized. Among them, one crosslink demonstrates that helix 28 is proximal to the top of helix 34, and two others show that the 1337 region, located in an internal loop at the junction of helices 29, 30, 41, and 42, is proximal to the center of helix 30 and to a segment connecting helix 28 to helix 29. These relationships of vicinity have previously been observed in native 30S subunits, which suggests that the free domain adopts a conformation similar to that within the 30S subunit. Furthermore, crosslinks were obtained in helix 34, which suggest that the upper and lower portions of this helix are in close proximity. PMID:9814765

  4. Highly coherent vacuum ultraviolet radiation at the 15th harmonic with echo-enabled harmonic generation technique

    NASA Astrophysics Data System (ADS)

    Hemsing, E.; Dunning, M.; Hast, C.; Raubenheimer, T. O.; Weathersby, S.; Xiang, D.

    2014-07-01

    X-ray free-electron lasers are enabling access to new science by producing ultrafast and intense x rays that give researchers unparalleled power and precision in examining the fundamental nature of matter. In the quest for fully coherent x rays, the echo-enabled harmonic generation technique is one of the most promising methods. In this technique, coherent radiation at the high harmonic frequencies of two seed lasers is generated from the recoherence of electron beam phase space memory. Here we report on the generation of highly coherent and stable vacuum ultraviolet radiation at the 15th harmonic of an infrared seed laser with this technique. The experiment demonstrates two distinct advantages that are intrinsic to the highly nonlinear phase space gymnastics of echo-enabled harmonic generation in a new regime, i.e., high frequency up-conversion efficiency and insensitivity to electron beam phase space imperfections. Our results allow comparison and confirmation of predictive models and scaling laws, and mark a significant step towards fully coherent x-ray free-electron lasers that will open new scientific research.

  5. Closing the Mathematics Achievement Gap in High-Poverty Middle Schools: Enablers and Constraints

    ERIC Educational Resources Information Center

    Balfanz, Robert; Byrnes, Vaughan

    2006-01-01

    The mathematics achievement levels of U.S. students fall far behind those of other developed nations; within the United States itself, the students who are falling behind come predominantly from high-poverty and high-minority areas. This article reports on a series of analyses that followed 4 cohorts of students from 3 such schools through the 5th…

  6. TOPK is highly expressed in circulating tumor cells, enabling metastasis of prostate cancer

    PubMed Central

    Shi, Changhong; Hu, Peizhen; Yan, Wei; Wang, Zhe; Duan, Qiuhong; Lu, Fan; Qin, Lipeng; Lu, Tao; Xiao, Juanjuan; Wang, Yingmei; Zhu, Feng; Shao, Chen

    2015-01-01

    Circulating tumor cells (CTCs) are important for metastasis in prostate cancer. T-LAK cell-originated protein kinase (TOPK) is highly expressed in cancer cells. Herein, we established a xenograft animal model, isolated and cultured the CTCs, and found CTCs have significantly greater migratory capacity than parental cells. TOPK is more highly expressed in the CTCs than in parental cells and is also highly expressed in the metastatic nodules caused by CTCs in mice. Knocking down TOPK decreased the migration of CTCs both in vitro and in vivo. TOPK was modulated by the PI3K/PTEN and ERK pathways during the metastasis of prostate cancer. High levels of TOPK in the tumors of patients were correlated with advanced stages of prostate cancer, especially for high-risk patients of Gleason score≥8, PSA>20ng/ml. In summary, TOPK was speculated to be one of a potential marker and therapeutic target in advanced prostate cancer. PMID:25881543

  7. Experimental demonstration of OpenFlow-enabled media ecosystem architecture for high-end applications over metro and core networks.

    PubMed

    Ntofon, Okung-Dike; Channegowda, Mayur P; Efstathiou, Nikolaos; Rashidi Fard, Mehdi; Nejabati, Reza; Hunter, David K; Simeonidou, Dimitra

    2013-02-25

    In this paper, a novel Software-Defined Networking (SDN) architecture is proposed for high-end Ultra High Definition (UHD) media applications. UHD media applications require huge amounts of bandwidth that can only be met with high-capacity optical networks. In addition, there are requirements for control frameworks capable of delivering effective application performance with efficient network utilization. A novel SDN-based Controller that tightly integrates application-awareness with network control and management is proposed for such applications. An OpenFlow-enabled test-bed demonstrator is reported with performance evaluations of advanced online and offline media- and network-aware schedulers. PMID:23482015

  8. Dual-gate polysilicon nanoribbon biosensors enable high sensitivity detection of proteins

    NASA Astrophysics Data System (ADS)

    Zeimpekis, I.; Sun, K.; Hu, C.; Ditshego, N. M. J.; Thomas, O.; de Planque, M. R. R.; Chong, H. M. H.; Morgan, H.; Ashburn, P.

    2016-04-01

    We demonstrate the advantages of dual-gate polysilicon nanoribbon biosensors with a comprehensive evaluation of different measurement schemes for pH and protein sensing. In particular, we compare the detection of voltage and current changes when top- and bottom-gate bias is applied. Measurements of pH show that a large voltage shift of 491 mV pH-1 is obtained in the subthreshold region when the top-gate is kept at a fixed potential and the bottom-gate is varied (voltage sweep). This is an improvement of 16 times over the 30 mV pH-1 measured using a top-gate sweep with the bottom-gate at a fixed potential. A similar large voltage shift of 175 mV is obtained when the protein avidin is sensed using a bottom-gate sweep. This is an improvement of 20 times compared with the 8.8 mV achieved from a top-gate sweep. Current measurements using bottom-gate sweeps do not deliver the same signal amplification as when using bottom-gate sweeps to measure voltage shifts. Thus, for detecting a small signal change on protein binding, it is advantageous to employ a double-gate transistor and to measure a voltage shift using a bottom-gate sweep. For top-gate sweeps, the use of a dual-gate transistor enables the current sensitivity to be enhanced by applying a negative bias to the bottom-gate to reduce the carrier concentration in the nanoribbon. For pH measurements, the current sensitivity increases from 65% to 149% and for avidin sensing it increases from 1.4% to 2.5%.

  9. Dual-gate polysilicon nanoribbon biosensors enable high sensitivity detection of proteins.

    PubMed

    Zeimpekis, I; Sun, K; Hu, C; Ditshego, N M J; Thomas, O; de Planque, M R R; Chong, H M H; Morgan, H; Ashburn, P

    2016-04-22

    We demonstrate the advantages of dual-gate polysilicon nanoribbon biosensors with a comprehensive evaluation of different measurement schemes for pH and protein sensing. In particular, we compare the detection of voltage and current changes when top- and bottom-gate bias is applied. Measurements of pH show that a large voltage shift of 491 mV pH(-1) is obtained in the subthreshold region when the top-gate is kept at a fixed potential and the bottom-gate is varied (voltage sweep). This is an improvement of 16 times over the 30 mV pH(-1) measured using a top-gate sweep with the bottom-gate at a fixed potential. A similar large voltage shift of 175 mV is obtained when the protein avidin is sensed using a bottom-gate sweep. This is an improvement of 20 times compared with the 8.8 mV achieved from a top-gate sweep. Current measurements using bottom-gate sweeps do not deliver the same signal amplification as when using bottom-gate sweeps to measure voltage shifts. Thus, for detecting a small signal change on protein binding, it is advantageous to employ a double-gate transistor and to measure a voltage shift using a bottom-gate sweep. For top-gate sweeps, the use of a dual-gate transistor enables the current sensitivity to be enhanced by applying a negative bias to the bottom-gate to reduce the carrier concentration in the nanoribbon. For pH measurements, the current sensitivity increases from 65% to 149% and for avidin sensing it increases from 1.4% to 2.5%. PMID:26954011

  10. Broadly available imaging devices enable high-quality low-cost photometry.

    PubMed

    Christodouleas, Dionysios C; Nemiroski, Alex; Kumar, Ashok A; Whitesides, George M

    2015-09-15

    This paper demonstrates that, for applications in resource-limited environments, expensive microplate spectrophotometers that are used in many central laboratories for parallel measurement of absorbance of samples can be replaced by photometers based on inexpensive and ubiquitous, consumer electronic devices (e.g., scanners and cell-phone cameras). Two devices, (i) a flatbed scanner operating in transmittance mode and (ii) a camera-based photometer (constructed from a cell phone camera, a planar light source, and a cardboard box), demonstrate the concept. These devices illuminate samples in microtiter plates from one side and use the RGB-based imaging sensors of the scanner/camera to measure the light transmitted to the other side. The broadband absorbance of samples (RGB-resolved absorbance) can be calculated using the RGB color values of only three pixels per microwell. Rigorous theoretical analysis establishes a well-defined relationship between the absorbance spectrum of a sample and its corresponding RGB-resolved absorbance. The linearity and precision of measurements performed with these low-cost photometers on different dyes, which absorb across the range of the visible spectrum, and chromogenic products of assays (e.g., enzymatic, ELISA) demonstrate that these low-cost photometers can be used reliably in a broad range of chemical and biochemical analyses. The ability to perform accurate measurements of absorbance on liquid samples, in parallel and at low cost, would enable testing, typically reserved for well-equipped clinics and laboratories, to be performed in circumstances where resources and expertise are limited. PMID:26241835

  11. A Structural Approach to Establishing a Platform Chemistry for the Tunable, Bulk Electron Beam Cross-Linking of Shape Memory Polymer Systems

    PubMed Central

    Hearon, Keith; Besset, Celine J.; Lonnecker, Alexander T.; Ware, Taylor; Voit, Walter E.; Wilson, Thomas S.; Wooley, Karen L.; Maitland, Duncan J.

    2014-01-01

    The synthetic design and thermomechanical characterization of shape memory polymers (SMPs) built from a new polyurethane chemistry that enables facile, bulk and tunable cross-linking of low-molecular weight thermoplastics by electron beam irradiation is reported in this study. SMPs exhibit stimuli-induced geometry changes and are being proposed for applications in numerous fields. We have previously reported a polyurethane SMP system that exhibits the complex processing capabilities of thermoplastic polymers and the mechanical robustness and tunability of thermomechanical properties that are often characteristic of thermoset materials. These previously reported polyurethanes suffer practically because the thermoplastic molecular weights needed to achieve target cross-link densities severely limit high-throughput thermoplastic processing and because thermally unstable radiation-sensitizing additives must be used to achieve high enough cross-link densities to enable desired tunable shape memory behavior. In this study, we demonstrate the ability to manipulate cross-link density in low-molecular weight aliphatic thermoplastic polyurethane SMPs (Mw as low as ~1.5 kDa) without radiation-sensitizing additives by incorporating specific structural motifs into the thermoplastic polymer side chains that we hypothesized would significantly enhance susceptibility to e-beam cross-linking. A custom diol monomer was first synthesized and then implemented in the synthesis of neat thermoplastic polyurethane SMPs that were irradiated at doses ranging from 1 to 500 kGy. Dynamic mechanical analysis (DMA) demonstrated rubbery moduli to be tailorable between 0.1 and 55 MPa, and both DMA and sol/gel analysis results provided fundamental insight into our hypothesized mechanism of electron beam cross-linking, which enables controllable bulk cross-linking to be achieved in highly processable, low-molecular weight thermoplastic shape memory polymers without sensitizing additives. PMID

  12. More time for complex consultations in a high-deprivation practice is associated with increased patient enablement

    PubMed Central

    Mercer, Stewart W; Fitzpatrick, Bridie; Gourlay, Glen; Vojt, Gaby; McConnachie, Alex; Watt, Graham CM

    2007-01-01

    Background Evidence of the beneficial effects of longer consultations in general practice is limited. Aim To evaluate the effect of increasing consultation length on patient enablement in general practice in an area of extreme socioeconomic deprivation. Design of study Longitudinal study using a ‘before and after’ design. Setting Keppoch Medical Centre in Glasgow, which serves the most deprived practice area in Scotland. Method Participants were 300 adult patients at baseline, before the introduction of longer consultations, and 324 at follow-up, more than 1 year after the introduction of longer consultations. The intervention studied was more time in complex consultations. Patient satisfaction, perceptions of the GPs' empathy, GP stress, and patient enablement were collected by face-to-face interview. Additional qualitative data were obtained by individual interviews with the GPs, relating to their perceptions of the impact of the longer consultations. Results Response rates of 70% were obtained. Overall, 53% of consultations were complex. GP stress was higher in complex consultations. Patient satisfaction and perception of the GPs' empathy were consistently high. Average consultation length in complex consultations was increased by 2.5 minutes by the intervention. GP stress in consultations was decreased after the introduction of longer consultations, and patient enablement was increased. GPs' views endorsed these findings, with more anticipatory and coordinated care being possible in the longer consultations. Conclusion More resource to provide more time in complex consultations in an area of extreme deprivation is associated with an increase in patient enablement. PMID:18252071

  13. Simple, High-Yield Syntheses of DNA Duplexes Containing Interstrand DNA-DNA Cross-Links Between an N(4) -Aminocytidine Residue and an Abasic Site.

    PubMed

    Gamboa Varela, Jacqueline; Gates, Kent S

    2016-01-01

    The protocol describes the preparation and purification of interstrand DNA-DNA cross-links derived from the reaction of an N(4) -aminocytidine residue with an abasic site in duplex DNA. The procedures employ inexpensive, commercially available chemicals and enzymes to carry out post-synthetic modification of commercially available oligodeoxynucleotides. The yield of cross-linked duplex is typically better than 90%. If purification is required, the cross-linked duplex can be readily separated from single-stranded DNA starting materials by denaturing gel electrophoresis. The resulting covalent hydrazone-based cross-links are stable under physiologically relevant conditions and may be useful for biophysical studies, structural analyses, DNA repair studies, and materials science applications. © 2016 by John Wiley & Sons, Inc. PMID:27248783

  14. High performance Li-ion sulfur batteries enabled by intercalation chemistry.

    PubMed

    Lv, Dongping; Yan, Pengfei; Shao, Yuyan; Li, Qiuyan; Ferrara, Seth; Pan, Huilin; Graff, Gordon L; Polzin, Bryant; Wang, Chongmin; Zhang, Ji-Guang; Liu, Jun; Xiao, Jie

    2015-09-11

    The unstable interface of lithium metal in high energy density Li sulfur (Li-S) batteries raises concerns of poor cycling, low efficiency and safety issues, which may be addressed by using intercalation types of anode. Herein, a new prototype of Li-ion sulfur battery with high performance has been demonstrated by coupling a graphite anode with a sulfur cathode (2 mA h cm(-2)) after successfully addressing the interface issue of graphite in an ether based electrolyte. PMID:26214797

  15. Hybrid Microscopy: Enabling Inexpensive High-Performance Imaging through Combined Physical and Optical Magnifications.

    PubMed

    Zhang, Yu Shrike; Chang, Jae-Byum; Alvarez, Mario Moisés; Trujillo-de Santiago, Grissel; Aleman, Julio; Batzaya, Byambaa; Krishnadoss, Vaishali; Ramanujam, Aishwarya Aravamudhan; Kazemzadeh-Narbat, Mehdi; Chen, Fei; Tillberg, Paul W; Dokmeci, Mehmet Remzi; Boyden, Edward S; Khademhosseini, Ali

    2016-01-01

    To date, much effort has been expended on making high-performance microscopes through better instrumentation. Recently, it was discovered that physical magnification of specimens was possible, through a technique called expansion microscopy (ExM), raising the question of whether physical magnification, coupled to inexpensive optics, could together match the performance of high-end optical equipment, at a tiny fraction of the price. Here we show that such "hybrid microscopy" methods--combining physical and optical magnifications--can indeed achieve high performance at low cost. By physically magnifying objects, then imaging them on cheap miniature fluorescence microscopes ("mini-microscopes"), it is possible to image at a resolution comparable to that previously attainable only with benchtop microscopes that present costs orders of magnitude higher. We believe that this unprecedented hybrid technology that combines expansion microscopy, based on physical magnification, and mini-microscopy, relying on conventional optics--a process we refer to as Expansion Mini-Microscopy (ExMM)--is a highly promising alternative method for performing cost-effective, high-resolution imaging of biological samples. With further advancement of the technology, we believe that ExMM will find widespread applications for high-resolution imaging particularly in research and healthcare scenarios in undeveloped countries or remote places. PMID:26975883

  16. Hybrid Microscopy: Enabling Inexpensive High-Performance Imaging through Combined Physical and Optical Magnifications

    PubMed Central

    Zhang, Yu Shrike; Chang, Jae-Byum; Alvarez, Mario Moisés; Trujillo-de Santiago, Grissel; Aleman, Julio; Batzaya, Byambaa; Krishnadoss, Vaishali; Ramanujam, Aishwarya Aravamudhan; Kazemzadeh-Narbat, Mehdi; Chen, Fei; Tillberg, Paul W.; Dokmeci, Mehmet Remzi; Boyden, Edward S.; Khademhosseini, Ali

    2016-01-01

    To date, much effort has been expended on making high-performance microscopes through better instrumentation. Recently, it was discovered that physical magnification of specimens was possible, through a technique called expansion microscopy (ExM), raising the question of whether physical magnification, coupled to inexpensive optics, could together match the performance of high-end optical equipment, at a tiny fraction of the price. Here we show that such “hybrid microscopy” methods—combining physical and optical magnifications—can indeed achieve high performance at low cost. By physically magnifying objects, then imaging them on cheap miniature fluorescence microscopes (“mini-microscopes”), it is possible to image at a resolution comparable to that previously attainable only with benchtop microscopes that present costs orders of magnitude higher. We believe that this unprecedented hybrid technology that combines expansion microscopy, based on physical magnification, and mini-microscopy, relying on conventional optics—a process we refer to as Expansion Mini-Microscopy (ExMM)—is a highly promising alternative method for performing cost-effective, high-resolution imaging of biological samples. With further advancement of the technology, we believe that ExMM will find widespread applications for high-resolution imaging particularly in research and healthcare scenarios in undeveloped countries or remote places. PMID:26975883

  17. Hybrid Microscopy: Enabling Inexpensive High-Performance Imaging through Combined Physical and Optical Magnifications

    NASA Astrophysics Data System (ADS)

    Zhang, Yu Shrike; Chang, Jae-Byum; Alvarez, Mario Moisés; Trujillo-de Santiago, Grissel; Aleman, Julio; Batzaya, Byambaa; Krishnadoss, Vaishali; Ramanujam, Aishwarya Aravamudhan; Kazemzadeh-Narbat, Mehdi; Chen, Fei; Tillberg, Paul W.; Dokmeci, Mehmet Remzi; Boyden, Edward S.; Khademhosseini, Ali

    2016-03-01

    To date, much effort has been expended on making high-performance microscopes through better instrumentation. Recently, it was discovered that physical magnification of specimens was possible, through a technique called expansion microscopy (ExM), raising the question of whether physical magnification, coupled to inexpensive optics, could together match the performance of high-end optical equipment, at a tiny fraction of the price. Here we show that such “hybrid microscopy” methods—combining physical and optical magnifications—can indeed achieve high performance at low cost. By physically magnifying objects, then imaging them on cheap miniature fluorescence microscopes (“mini-microscopes”), it is possible to image at a resolution comparable to that previously attainable only with benchtop microscopes that present costs orders of magnitude higher. We believe that this unprecedented hybrid technology that combines expansion microscopy, based on physical magnification, and mini-microscopy, relying on conventional optics—a process we refer to as Expansion Mini-Microscopy (ExMM)—is a highly promising alternative method for performing cost-effective, high-resolution imaging of biological samples. With further advancement of the technology, we believe that ExMM will find widespread applications for high-resolution imaging particularly in research and healthcare scenarios in undeveloped countries or remote places.

  18. High-Performance Silicon Battery Anodes Enabled by Engineering Graphene Assemblies.

    PubMed

    Zhou, Min; Li, Xianglong; Wang, Bin; Zhang, Yunbo; Ning, Jing; Xiao, Zhichang; Zhang, Xinghao; Chang, Yanhong; Zhi, Linjie

    2015-09-01

    We propose a novel material/electrode design formula and develop an engineered self-supporting electrode configuration, namely, silicon nanoparticle impregnated assemblies of templated carbon-bridged oriented graphene. We have demonstrated their use as binder-free lithium-ion battery anodes with exceptional lithium storage performances, simultaneously attaining high gravimetric capacity (1390 mAh g(-1) at 2 A g(-1) with respect to the total electrode weight), high volumetric capacity (1807 mAh cm(-3) that is more than three times that of graphite anodes), remarkable rate capability (900 mAh g(-1) at 8 A g(-1)), excellent cyclic stability (0.025% decay per cycle over 200 cycles), and competing areal capacity (as high as 4 and 6 mAh cm(-2) at 15 and 3 mA cm(-2), respectively). Such combined level of performance is attributed to the templated carbon bridged oriented graphene assemblies involved. This engineered graphene bulk assemblies not only create a robust bicontinuous network for rapid transport of both electrons and lithium ions throughout the electrode even at high material mass loading but also allow achieving a substantially high material tap density (1.3 g cm(-3)). Coupled with a simple and flexible fabrication protocol as well as practically scalable raw materials (e.g., silicon nanoparticles and graphene oxide), the material/electrode design developed would propagate new and viable battery material/electrode design principles and opportunities for energy storage systems with high-energy and high-power characteristics. PMID:26308100

  19. High rate lithium-sulfur battery enabled by sandwiched single ion conducting polymer electrolyte

    NASA Astrophysics Data System (ADS)

    Sun, Yubao; Li, Gai; Lai, Yuanchu; Zeng, Danli; Cheng, Hansong

    2016-02-01

    Lithium-sulfur batteries are highly promising for electric energy storage with high energy density, abundant resources and low cost. However, the battery technologies have often suffered from a short cycle life and poor rate stability arising from the well-known “polysulfide shuttle” effect. Here, we report a novel cell design by sandwiching a sp3 boron based single ion conducting polymer electrolyte film between two carbon films to fabricate a composite separator for lithium-sulfur batteries. The dense negative charges uniformly distributed in the electrolyte membrane inherently prohibit transport of polysulfide anions formed in the cathode inside the polymer matrix and effectively blocks polysulfide shuttling. A battery assembled with the composite separator exhibits a remarkably long cycle life at high charge/discharge rates.

  20. High rate lithium-sulfur battery enabled by sandwiched single ion conducting polymer electrolyte.

    PubMed

    Sun, Yubao; Li, Gai; Lai, Yuanchu; Zeng, Danli; Cheng, Hansong

    2016-01-01

    Lithium-sulfur batteries are highly promising for electric energy storage with high energy density, abundant resources and low cost. However, the battery technologies have often suffered from a short cycle life and poor rate stability arising from the well-known "polysulfide shuttle" effect. Here, we report a novel cell design by sandwiching a sp(3) boron based single ion conducting polymer electrolyte film between two carbon films to fabricate a composite separator for lithium-sulfur batteries. The dense negative charges uniformly distributed in the electrolyte membrane inherently prohibit transport of polysulfide anions formed in the cathode inside the polymer matrix and effectively blocks polysulfide shuttling. A battery assembled with the composite separator exhibits a remarkably long cycle life at high charge/discharge rates. PMID:26898772

  1. High rate lithium-sulfur battery enabled by sandwiched single ion conducting polymer electrolyte

    PubMed Central

    Sun, Yubao; Li, Gai; Lai, Yuanchu; Zeng, Danli; Cheng, Hansong

    2016-01-01

    Lithium-sulfur batteries are highly promising for electric energy storage with high energy density, abundant resources and low cost. However, the battery technologies have often suffered from a short cycle life and poor rate stability arising from the well-known “polysulfide shuttle” effect. Here, we report a novel cell design by sandwiching a sp3 boron based single ion conducting polymer electrolyte film between two carbon films to fabricate a composite separator for lithium-sulfur batteries. The dense negative charges uniformly distributed in the electrolyte membrane inherently prohibit transport of polysulfide anions formed in the cathode inside the polymer matrix and effectively blocks polysulfide shuttling. A battery assembled with the composite separator exhibits a remarkably long cycle life at high charge/discharge rates. PMID:26898772

  2. Shell-crosslinked knedel-like nanoparticles induce lower immunotoxicity than their non-crosslinked analogs

    PubMed Central

    Elsabahy, Mahmoud; Samarajeewa, Sandani; Raymond, Jeffery E.; Clark, Corrie; Wooley, Karen L.

    2013-01-01

    The development of stable nanoparticles that can withstand the changing conditions experienced in a biological setting and also be of low toxicity and immunogenicity is of particular importance to address the problems associated with currently utilized nanotechnology-based therapeutics and diagnostics. The use of crosslinked nanoparticles continues to receive special impetus, due to their robust structure and high kinetic stability, and they have recently been shown to induce lower cytotoxicity than their non-crosslinked micellar counterparts. In the current study, poly(acrylamidoethylamine)-block-poly(DL-lactide) (PAEA90-b-PDLLA40) copolymers were synthesized, self-assembled in water to yield nanoscopic polymeric micelles, and the effects of decorating the micellar surface with poly(ethylene glycol) (i.e. PEGylation) and crosslinking the PAEA layer to varying extents on the physicochemical characteristics, cytotoxicity and immunotoxicity of the nanoparticles were studied. Herein, we report for the first time that crosslinking can efficiently reduce the immunotoxicity of polymeric nanomaterials. In addition, increasing the degree of crosslinking further reduced the accessibility of biomolecules to the core of the nanoparticles and decreased their cytotoxicity and immunotoxicity. It is also highlighted that crosslinking can be more efficient than PEGylation in reducing the immunotoxicity of nanomaterials. Shell-crosslinking of block copolymer micelles, therefore, is expected to advance their clinical development beyond the earlier known effects, and to broaden the implications in the field of nanomedicine. PMID:24187610

  3. Click Reaction on Solid Phase Enables High Fidelity Synthesis of Nucleobase-Modified DNA.

    PubMed

    Tolle, Fabian; Rosenthal, Malte; Pfeiffer, Franziska; Mayer, Günter

    2016-03-16

    The post-synthetic functionalization of nucleic acids via click chemistry (CuAAC) has seen tremendous implementation, extending the applicability of nucleobase-modified nucleic acids in fields like fluorescent labeling, nanotechnology, and in vitro selection. However, the production of large quantities of high-density functionalized material via solid phase synthesis has been hampered by oxidative by-product formation associated with the alkaline workup conditions. Herein, we describe a rapid and cost-effective protocol for the high fidelity large-scale production of nucleobase-modified nucleic acids, exemplified with a recently described nucleobase-modified aptamer. PMID:26850226

  4. Cross-linked polyelectrolyte for direct methanol fuel cells applications based on a novel sulfonated cross-linker

    NASA Astrophysics Data System (ADS)

    Li, Mingyu; Zhang, Gang; Xu, Shuai; Zhao, Chengji; Han, Miaomiao; Zhang, Liyuan; Jiang, Hao; Liu, Zhongguo; Na, Hui

    2014-06-01

    A novel type of cross-linked proton exchange membrane of lower methanol permeation and high proton conductivity is prepared, based on a newly synthesized sulfonated cross-linker: carboxyl terminated benzimidazole trimer bearing sulfonic acid groups (s-BI). Compared to membranes cross-linked with non-sulfonated cross-linker (BI), SPEEK/s-BI-n membranes show higher IEC values and proton conductivities. Meanwhile, oxidative stability and mechanical property of SPEEK/s-BI-n membranes are obviously improved. Among SPEEK/s-BI-n membranes, SPEEK/s-BI-2 exhibits high proton conductivity, low swelling ratio (0.122 S cm-1 and 15.2% at 60 °C, respectively) and low methanol permeability coefficient. These results imply that the cross-linked membranes prepared with the newly sulfonated cross-linker are promising for the direct methanol fuel cells (DMFCs) application.

  5. Cross-linked branching nanohybrid polymer electrolyte with monodispersed TiO2 nanoparticles for high performance lithium-ion batteries

    NASA Astrophysics Data System (ADS)

    Ma, Cheng; Zhang, Jinfang; Xu, Mingquan; Xia, Qingbing; Liu, Jiatu; Zhao, Shuai; Chen, Libao; Pan, Anqiang; Ivey, Douglas G.; Wei, Weifeng

    2016-06-01

    Nanohybrid polymer electrolytes (NHPE) with ceramic particles have attracted significant attention owing to their improvement in electrochemical performance. However, particle aggregation and weak nanoparticle/polymer matrix interaction restrict their further application in lithium-ion batteries (LIBs). We demonstrate a facile in-situ polymerization/crystallization method to synthesize a homogeneous TiO2-grafted NHPE with a cross-linked branching structure, comprised of ion-conducting poly(ethylene glycol) methyl ether methacrylate (PEGMEM) and non-polar stearyl methacrylate (SMA). This technique is different from existing methods of blending functionalized ceramic particles into the polymer matrix. Highly monodispersed TiO2 nanocrystals enhance the effective interfacial interactions between particles and polymer matrix, which suppress the crystallization of ethylene oxide (EO) groups and facilitate forming continuously interconnected ion-conducting channels. Moreover, an increased dissociation degree of Li salt can also be achieved. The TiO2-grafted NHPE exhibits superior electrochemical properties with an ionic conductivity of 1.1 × 10-4 S cm-1 at 30 °C, a high lithium ion transference number and excellent interfacial compatibility with the lithium electrode. In particular, a lithium-ion battery based on TiO2-grafted NHPE demonstrates good C-rate performance, as well as excellent cycling stability with an initial discharge capacity of 153.5 mAh g-1 and a capacity retention of 96% after 300 cycles at 1 C (80 °C).

  6. Enabling High-Dimensional Hierarchical Uncertainty Quantification by ANOVA and Tensor-Train Decomposition

    SciTech Connect

    Zhang, Zheng; Yang, Xiu; Oseledets, Ivan; Karniadakis, George E.; Daniel, Luca

    2015-01-31

    Hierarchical uncertainty quantification can reduce the computational cost of stochastic circuit simulation by employing spectral methods at different levels. This paper presents an efficient framework to simulate hierarchically some challenging stochastic circuits/systems that include high-dimensional subsystems. Due to the high parameter dimensionality, it is challenging to both extract surrogate models at the low level of the design hierarchy and to handle them in the high-level simulation. In this paper, we develop an efficient analysis of variance-based stochastic circuit/microelectromechanical systems simulator to efficiently extract the surrogate models at the low level. In order to avoid the curse of dimensionality, we employ tensor-train decomposition at the high level to construct the basis functions and Gauss quadrature points. As a demonstration, we verify our algorithm on a stochastic oscillator with four MEMS capacitors and 184 random parameters. This challenging example is efficiently simulated by our simulator at the cost of only 10min in MATLAB on a regular personal computer.

  7. Aggregation and morphology control enables multiple cases of high-efficiency polymer solar cells

    PubMed Central

    Liu, Yuhang; Zhao, Jingbo; Li, Zhengke; Mu, Cheng; Hu, Huawei; Jiang, Kui; Lin, Haoran; Ade, Harald; Yan, He

    2014-01-01

    Although the field of polymer solar cell has seen much progress in device performance in the past few years, several limitations are holding back its further development. For instance, current high-efficiency (>9.0%) cells are restricted to material combinations that are based on limited donor polymers and only one specific fullerene acceptor. Here we report the achievement of high-performance (efficiencies up to 10.8%, fill factors up to 77%) thick-film polymer solar cells for multiple polymer:fullerene combinations via the formation of a near-ideal polymer:fullerene morphology that contains highly crystalline yet reasonably small polymer domains. This morphology is controlled by the temperature-dependent aggregation behaviour of the donor polymers and is insensitive to the choice of fullerenes. The uncovered aggregation and design rules yield three high-efficiency (>10%) donor polymers and will allow further synthetic advances and matching of both the polymer and fullerene materials, potentially leading to significantly improved performance and increased design flexibility. PMID:25382026

  8. New Suberconducting Technology to Enable the Next Generation of High Energy Research

    NASA Astrophysics Data System (ADS)

    McIntyre, Peter

    2007-10-01

    Two innovations in superconducting technology have the potential to shape the future capabilities for discovery in high energy physics. First, a hybrid dipole has been devised that would utilize windings of the high-temperature superconductor Bi-2212 and the low-temperature superconductor Nb3Sn to produce a field strength of 25 Tesla. The dipole would be suitable to replace the magnet ring in CERN's LHC, and would triple its collision energy in proton-proton colliding beams. Second, a polyhedral cavity has been devised for the high-gradient accelerating structure of an electron-positron linac collider. The polyhedral geometry provides access to the crucial inner surface during all stages of fabrication, and opens the possibility to prepare a heterostructure there that could support rf fields beyond the BCS limit. It also naturally suppresses deflecting modes so that the overall energy efficiency could be significantly improved. These features lead to a possibility for making high-luminosity e+e- collisions at TeV energy.

  9. Sulphur-impregnated flow cathode to enable high-energy-density lithium flow batteries.

    PubMed

    Chen, Hongning; Zou, Qingli; Liang, Zhuojian; Liu, Hao; Li, Quan; Lu, Yi-Chun

    2015-01-01

    Redox flow batteries are promising technologies for large-scale electricity storage, but have been suffering from low energy density and low volumetric capacity. Here we report a flow cathode that exploits highly concentrated sulphur-impregnated carbon composite, to achieve a catholyte volumetric capacity 294 Ah l(-1) with long cycle life (>100 cycles), high columbic efficiency (>90%, 100 cycles) and high energy efficiency (>80%, 100 cycles). The demonstrated catholyte volumetric capacity is five times higher than the all-vanadium flow batteries (60 Ah l(-1)) and 3-6 times higher than the demonstrated lithium-polysulphide approaches (50-117 Ah l(-1)). Pseudo-in situ impedance and microscopy characterizations reveal superior electrochemical and morphological reversibility of the sulphur redox reactions. Our approach of exploiting sulphur-impregnated carbon composite in the flow cathode creates effective interfaces between the insulating sulphur and conductive carbon-percolating network and offers a promising direction to develop high-energy-density flow batteries. PMID:25565112

  10. Sulphur-impregnated flow cathode to enable high-energy-density lithium flow batteries

    NASA Astrophysics Data System (ADS)

    Chen, Hongning; Zou, Qingli; Liang, Zhuojian; Liu, Hao; Li, Quan; Lu, Yi-Chun

    2015-01-01

    Redox flow batteries are promising technologies for large-scale electricity storage, but have been suffering from low energy density and low volumetric capacity. Here we report a flow cathode that exploits highly concentrated sulphur-impregnated carbon composite, to achieve a catholyte volumetric capacity 294 Ah l-1 with long cycle life (>100 cycles), high columbic efficiency (>90%, 100 cycles) and high energy efficiency (>80%, 100 cycles). The demonstrated catholyte volumetric capacity is five times higher than the all-vanadium flow batteries (60 Ah l-1) and 3-6 times higher than the demonstrated lithium-polysulphide approaches (50-117 Ah l-1). Pseudo-in situ impedance and microscopy characterizations reveal superior electrochemical and morphological reversibility of the sulphur redox reactions. Our approach of exploiting sulphur-impregnated carbon composite in the flow cathode creates effective interfaces between the insulating sulphur and conductive carbon-percolating network and offers a promising direction to develop high-energy-density flow batteries.

  11. Aggregation and morphology control enables multiple cases of high-efficiency polymer solar cells.

    PubMed

    Liu, Yuhang; Zhao, Jingbo; Li, Zhengke; Mu, Cheng; Ma, Wei; Hu, Huawei; Jiang, Kui; Lin, Haoran; Ade, Harald; Yan, He

    2014-01-01

    Although the field of polymer solar cell has seen much progress in device performance in the past few years, several limitations are holding back its further development. For instance, current high-efficiency (>9.0%) cells are restricted to material combinations that are based on limited donor polymers and only one specific fullerene acceptor. Here we report the achievement of high-performance (efficiencies up to 10.8%, fill factors up to 77%) thick-film polymer solar cells for multiple polymer:fullerene combinations via the formation of a near-ideal polymer:fullerene morphology that contains highly crystalline yet reasonably small polymer domains. This morphology is controlled by the temperature-dependent aggregation behaviour of the donor polymers and is insensitive to the choice of fullerenes. The uncovered aggregation and design rules yield three high-efficiency (>10%) donor polymers and will allow further synthetic advances and matching of both the polymer and fullerene materials, potentially leading to significantly improved performance and increased design flexibility. PMID:25382026

  12. A genome-enabled, high-throughput, and multiplexed fingerprinting platform for strawberry (Fragaria L.)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Strawberry (Fragaria L.) genotypes bear remarkable phenotypic similarity, even across ploidy levels. Additionally, breeding programs seek to introgress alleles from wild germplasm, so objective molecular description of genetic variation has great value. In this report, a high-throughput, robust prot...

  13. Using High-Speed WANs and Network Data Caches to Enable Remote and Distributed Visualization

    SciTech Connect

    Bethel, Wes; Lau, Stephen; Tierney, Brian; Lee, Jason; Gunter, Dan

    2000-04-18

    Visapult is a prototype application and framework for remote visualization of large scientific datasets. We approach the technical challenges of tera-scale visualization with a unique architecture that employs high speed WANs and network data caches for data staging and transmission. This architecture allows for the use of available cache and compute resources at arbitrary locations on the network. High data throughput rates and network utilization are achieved by parallelizing I/O at each stage in the application, and by pipe-lining the visualization process. On the desktop, the graphics interactivity is effectively decoupled from the latency inherent in network applications. We present a detailed performance analysis of the application, and improvements resulting from field-test analysis conducted as part of the DOE Combustion Corridor project.

  14. Solar Forecasting Challenges and Opportunities for Enabling High Penetration of Solar Energy

    NASA Astrophysics Data System (ADS)

    Mishra, S.

    2015-12-01

    In 2011, DOE launched the SunShot Initiative to reduce the total cost of solar energy systems by about 75% to make them cost competitive with other forms of energy (without subsidies) by 2020. This translates to a total cost of installed solar energy at 1/Watt or 0.06/kWh, incentivizing high penetration of solar on the utility grid. In the past four years, the SunShot Initiative has catalyzed revolutionary advancements in solar technologies, stimulating significant growth and accelerating deployment of solar energy systems. However, as solar deployment increases, integrating solar energy into the utility grid poses difficult challenges due to the variability in solar resource and the impact of clouds and aerosols on surface irradiance. Accurate forecasting of solar resource and its variability at high temporal and spatial resolution at least a day ahead is crucial to large scale integration of solar energy into the utility grid. However, this is limited by current errors in forecasting that are as high as 25% for clear sky forecasts of Global Horizontal Irradiance (GHI), and as large as 40-80% for cloudy conditions. Forecasting errors are even higher for the direct normal irradiance (DNI). For solar energy to be seamlessly integrated into the utility grid under the scenarios of high penetration of solar, significant improvements in surface solar irradiance modeling and observations of both Global Horizontal Irradiance (GHI) and Direct Normal Irradiance (DNI) are essential to accurately predict power outputs from photovoltaic (PV) and concentrating solar power (CSP) systems. Furthermore, forecasting improvements have to be closely tied to utility needs and operation timelines. Details about the ongoing research efforts supported through the SunShot initiative and the challenges and needs for solar forecasting improvements in regards to the SunShot Initiative will be presented at the conference.

  15. A novel 3D detector configuration enabling high quantum efficiency, low crosstalk, and low output capacitance

    NASA Astrophysics Data System (ADS)

    Aurola, A.; Marochkin, V.; Tuuva, T.

    2016-03-01

    The benefits of pixelated planar direct conversion semiconductor radiation detectors comprising a thick fully depleted substrate are that they offer low crosstalk, small output capacitance, and that the planar configuration simplifies manufacturing. In order to provide high quantum efficiency for high energy X-rays and Gamma-rays such a radiation detector should be as thick as possible. The maximum thickness and thus the maximum quantum efficiency has been limited by the substrate doping concentration: the lower the substrate doping the thicker the detector can be before reaching the semiconductor material's electric breakdown field. Thick direct conversion semiconductor detectors comprising vertical three-dimensional electrodes protruding through the substrate have been previously proposed by Sherwood Parker in order to promote rapid detection of radiation. An additional advantage of these detectors is that their thickness is not limited by the substrate doping, i.e., the size of the maximum electric field value in the detector does not depend on detector thickness. However, the thicker the substrate of such three dimensional detectors is the larger the output capacitance is and thus the larger the output noise is. In the novel direct conversion pixelated radiation detector utilizing a novel three dimensional semiconductor architecture, which is proposed in this work, the detector thickness is not limited by the substrate doping and the output capacitance is small and does not depend on the detector thickness. In addition, by incorporating an additional node to the novel three-dimensional semiconductor architecture it can be utilized as a high voltage transistor that can deliver current across high voltages. Furthermore, it is possible to connect a voltage difference of any size to the proposed novel three dimensional semiconductor architecture provided that it is thick enough—this is a novel feature that has not been previously possible for semiconductor

  16. New technology enables high precision multislit collimators for microbeam radiation therapy

    NASA Astrophysics Data System (ADS)

    Bräuer-Krisch, E.; Requardt, H.; Brochard, T.; Berruyer, G.; Renier, M.; Laissue, J. A.; Bravin, A.

    2009-07-01

    During the past decade microbeam radiation therapy has evolved from preclinical studies to a stage in which clinical trials can be planned, using spatially fractionated, highly collimated and high intensity beams like those generated at the x-ray ID17 beamline of the European Synchrotron Radiation Facility. The production of such microbeams typically between 25 and 100 μm full width at half maximum (FWHM) values and 100-400 μm center-to-center (c-t-c) spacings requires a multislit collimator either with fixed or adjustable microbeam width. The mechanical regularity of such devices is the most important property required to produce an array of identical microbeams. That ensures treatment reproducibility and reliable use of Monte Carlo-based treatment planning systems. New high precision wire cutting techniques allow the fabrication of these collimators made of tungsten carbide. We present a variable slit width collimator as well as a single slit device with a fixed setting of 50 μm FWHM and 400 μm c-t-c, both able to cover irradiation fields of 50 mm width, deemed to meet clinical requirements. Important improvements have reduced the standard deviation of 5.5 μm to less than 1 μm for a nominal FWHM value of 25 μm. The specifications of both devices, the methods used to measure these characteristics, and the results are presented.

  17. Enabling a high throughput real time data pipeline for a large radio telescope array with GPUs

    NASA Astrophysics Data System (ADS)

    Edgar, R. G.; Clark, M. A.; Dale, K.; Mitchell, D. A.; Ord, S. M.; Wayth, R. B.; Pfister, H.; Greenhill, L. J.

    2010-10-01

    The Murchison Widefield Array (MWA) is a next-generation radio telescope currently under construction in the remote Western Australia Outback. Raw data will be generated continuously at 5 GiB s-1, grouped into 8 s cadences. This high throughput motivates the development of on-site, real time processing and reduction in preference to archiving, transport and off-line processing. Each batch of 8 s data must be completely reduced before the next batch arrives. Maintaining real time operation will require a sustained performance of around 2.5 TFLOP s-1 (including convolutions, FFTs, interpolations and matrix multiplications). We describe a scalable heterogeneous computing pipeline implementation, exploiting both the high computing density and FLOP-per-Watt ratio of modern GPUs. The architecture is highly parallel within and across nodes, with all major processing elements performed by GPUs. Necessary scatter-gather operations along the pipeline are loosely synchronized between the nodes hosting the GPUs. The MWA will be a frontier scientific instrument and a pathfinder for planned peta- and exa-scale facilities.

  18. High-Resolution Enabled 12-Plex DiLeu Isobaric Tags for Quantitative Proteomics

    PubMed Central

    2015-01-01

    Multiplex isobaric tags (e.g., tandem mass tags (TMT) and isobaric tags for relative and absolute quantification (iTRAQ)) are a valuable tool for high-throughput mass spectrometry based quantitative proteomics. We have developed our own multiplex isobaric tags, DiLeu, that feature quantitative performance on par with commercial offerings but can be readily synthesized in-house as a cost-effective alternative. In this work, we achieve a 3-fold increase in the multiplexing capacity of the DiLeu reagent without increasing structural complexity by exploiting mass defects that arise from selective incorporation of 13C, 15N, and 2H stable isotopes in the reporter group. The inclusion of eight new reporter isotopologues that differ in mass from the existing four reporters by intervals of 6 mDa yields a 12-plex isobaric set that preserves the synthetic simplicity and quantitative performance of the original implementation. We show that the new reporter variants can be baseline-resolved in high-resolution higher-energy C-trap dissociation (HCD) spectra, and we demonstrate accurate 12-plex quantitation of a DiLeu-labeled Saccharomyces cerevisiae lysate digest via high-resolution nano liquid chromatography–tandem mass spectrometry (nanoLC–MS2) analysis on an Orbitrap Elite mass spectrometer. PMID:25405479

  19. Cross-linking Chemistry of Squid Beak*

    PubMed Central

    Miserez, Ali; Rubin, Daniel; Waite, J. Herbert

    2010-01-01

    In stark contrast to most aggressive predators, Dosidicus gigas (jumbo squids) do not use minerals in their powerful mouthparts known as beaks. Their beaks instead consist of a highly sclerotized chitinous composite with incremental hydration from the tip to the base. We previously reported l-3,4-dihydroxyphenylalanine (dopa)-histidine (dopa-His) as an important covalent cross-link providing mechanical strengthening to the beak material. Here, we present a more complete characterization of the sclerotization chemistry and describe additional cross-links from D. gigas beak. All cross-links presented in this report share common building blocks, a family of di-, tri-, and tetra-histidine-catecholic adducts, that were separated by affinity chromatography and high performance liquid chromatography (HPLC) and identified by tandem mass spectroscopy and proton nuclear magnetic resonance (1H NMR). The data provide additional insights into the unusually high cross-link density found in mature beaks. Furthermore, we propose both a low molecular weight catechol, and peptidyl-dopa, to be sclerotization agents of squid beak. This appears to represent a new strategy for forming hard tissue in animals. The interplay between covalent cross-linking and dehydration on the graded properties of the beaks is discussed. PMID:20870720

  20. Cross-linking chemistry of squid beak.

    PubMed

    Miserez, Ali; Rubin, Daniel; Waite, J Herbert

    2010-12-01

    In stark contrast to most aggressive predators, Dosidicus gigas (jumbo squids) do not use minerals in their powerful mouthparts known as beaks. Their beaks instead consist of a highly sclerotized chitinous composite with incremental hydration from the tip to the base. We previously reported l-3,4-dihydroxyphenylalanine (dopa)-histidine (dopa-His) as an important covalent cross-link providing mechanical strengthening to the beak material. Here, we present a more complete characterization of the sclerotization chemistry and describe additional cross-links from D. gigas beak. All cross-links presented in this report share common building blocks, a family of di-, tri-, and tetra-histidine-catecholic adducts, that were separated by affinity chromatography and high performance liquid chromatography (HPLC) and identified by tandem mass spectroscopy and proton nuclear magnetic resonance ((1)H NMR). The data provide additional insights into the unusually high cross-link density found in mature beaks. Furthermore, we propose both a low molecular weight catechol, and peptidyl-dopa, to be sclerotization agents of squid beak. This appears to represent a new strategy for forming hard tissue in animals. The interplay between covalent cross-linking and dehydration on the graded properties of the beaks is discussed. PMID:20870720

  1. Microbes encapsulated within crosslinkable polymers

    SciTech Connect

    Chidambaram, Devicharan; Liu, Ying; Rafailovich, Miriam H

    2013-02-05

    The invention relates to porous films comprising crosslinked electrospun hydrogel fibers. Viable microbes are encapsulated within the crosslinked electrospun hydrogel fibers. The crosslinked electrospun hydrogel fibers are water insoluble and permeable. The invention also relates to methods of making and using such porous films.

  2. Chlorine resistant glutaraldehyde crosslinked polyelectrolyte multilayer membranes for desalination.

    PubMed

    Cho, Kwun Lun; Hill, Anita J; Caruso, Frank; Kentish, Sandra E

    2015-05-01

    Crosslinked polyelectrolyte multilayer membranes are synthesized with salt rejection values approaching those of commercial desalination membranes, but with increased chlorine resistance. The membranes are fabricated directly onto porous commercial substrates. Subsequent crosslinking of the polycation layers with glutaraldehyde leads to NaCl rejections of up to 97%, while the incorporation of a highly sulfonated polysulfone polyanion leads to high chlorine resistance. PMID:25776340

  3. Collagen cross-linking and resorption: effect of glutaraldehyde concentration.

    PubMed

    Roe, S C; Milthorpe, B K; Schindhelm, K

    1990-12-01

    Cross-linked collagen bioprostheses usually are designed to be inert and nonresorbable, resulting in fatigue and wear failure in high-stress environments. Eventual replacement of the implant, although minimizing strength loss during resorption, would result in a graft with reparative ability. Kangaroo tail tendon (KTT) partially cross-linked with glutaraldehyde (GA) was evaluated in vitro for resistance to bacterial collagenase digestion and in vivo for biocompatibility and resorbability in an intramuscular implant assay. Cross-linking was quantified by thermal denaturation studies. Incomplete cross-linking was achieved with concentrations of GA less than 0.1% (w/v). KTT cross-linked in greater than or equal to 0.05% GA were collagenase resistant being incompletely digested after 240 h. Cross-linking of KTT with low concentrations of GA resulted in partial collagenase resistance and slowed resorption. PMID:2126427

  4. A highly parallel microfluidic droplet method enabling single-molecule counting for digital enzyme detection

    PubMed Central

    Guan, Zhichao; Zou, Yuan; Zhang, Mingxia; Lv, Jiangquan; Shen, Huali; Yang, Pengyuan; Zhang, Huimin; Zhu, Zhi; James Yang, Chaoyong

    2014-01-01

    Although digital detection of nucleic acids has been achieved by amplification of single templates in uniform microfluidic droplets and widely used for genetic analysis, droplet-based digital detection of proteins has rarely been reported, largely due to the lack of an efficient target amplification method for protein in droplets. Here, we report a key step towards digital detection of proteins using a highly parallel microfluidic droplet approach for single enzyme molecule detection in picoliter droplets via enzyme catalyzed signal amplification. An integrated microfluidic chip was designed for high throughput uniform droplet generation, monolayer droplet collection, incubation, detection, and release. Single β-galatosidase (β-Gal) molecules and the fluorogenic substrate fluorescein di-β-D-galactopyranoside were injected from two separated inlets to form uniform 20 μm droplets in fluorinated oil at a frequency of 6.6 kHz. About 200 000 droplets were captured as a monolayer in a capture well on-chip for subsequent imaging detection. A series of β-Gal solutions at different concentrations were analyzed at the single-molecule level. With no enzyme present, no droplets were found to fluoresce, while brightly fluorescent droplets were observed under single-enzyme molecule conditions. Droplet fluorescence intensity distribution analysis showed that the distribution of enzyme molecules under single-molecule conditions matched well with theoretical prediction, further proving the feasibility of detecting single enzyme molecules in emulsion droplets. Moreover, the population of fluorescent droplets increased as the β-Gal concentration increased. Based on a digital counting method, the measured concentrations of the enzyme were found to match well with input enzyme concentration, establishing the accuracy of the digital detection method for the quantification of β-Gal enzyme molecules. The capability of highly parallel detection of single enzyme molecules in

  5. Modular pathway rewiring of Saccharomyces cerevisiae enables high-level production of L-ornithine.

    PubMed

    Qin, Jiufu; Zhou, Yongjin J; Krivoruchko, Anastasia; Huang, Mingtao; Liu, Lifang; Khoomrung, Sakda; Siewers, Verena; Jiang, Bo; Nielsen, Jens

    2015-01-01

    Baker's yeast Saccharomyces cerevisiae is an attractive cell factory for production of chemicals and biofuels. Many different products have been produced in this cell factory by reconstruction of heterologous biosynthetic pathways; however, endogenous metabolism by itself involves many metabolites of industrial interest, and de-regulation of endogenous pathways to ensure efficient carbon channelling to such metabolites is therefore of high interest. Furthermore, many of these may serve as precursors for the biosynthesis of complex natural products, and hence strains overproducing certain pathway intermediates can serve as platform cell factories for production of such products. Here we implement a modular pathway rewiring (MPR) strategy and demonstrate its use for pathway optimization resulting in high-level production of L-ornithine, an intermediate of L-arginine biosynthesis and a precursor metabolite for a range of different natural products. The MPR strategy involves rewiring of the urea cycle, subcellular trafficking engineering and pathway re-localization, and improving precursor supply either through attenuation of the Crabtree effect or through the use of controlled fed-batch fermentations, leading to an L-ornithine titre of 1,041±47 mg l(-1) with a yield of 67 mg (g glucose)(-1) in shake-flask cultures and a titre of 5.1 g l(-1) in fed-batch cultivations. Our study represents the first comprehensive study on overproducing an amino-acid intermediate in yeast, and our results demonstrate the potential to use yeast more extensively for low-cost production of many high-value amino-acid-derived chemicals. PMID:26345617

  6. Modular pathway rewiring of Saccharomyces cerevisiae enables high-level production of L-ornithine

    PubMed Central

    Qin, Jiufu; Zhou, Yongjin J.; Krivoruchko, Anastasia; Huang, Mingtao; Liu, Lifang; Khoomrung, Sakda; Siewers, Verena; Jiang, Bo; Nielsen, Jens

    2015-01-01

    Baker's yeast Saccharomyces cerevisiae is an attractive cell factory for production of chemicals and biofuels. Many different products have been produced in this cell factory by reconstruction of heterologous biosynthetic pathways; however, endogenous metabolism by itself involves many metabolites of industrial interest, and de-regulation of endogenous pathways to ensure efficient carbon channelling to such metabolites is therefore of high interest. Furthermore, many of these may serve as precursors for the biosynthesis of complex natural products, and hence strains overproducing certain pathway intermediates can serve as platform cell factories for production of such products. Here we implement a modular pathway rewiring (MPR) strategy and demonstrate its use for pathway optimization resulting in high-level production of L-ornithine, an intermediate of L-arginine biosynthesis and a precursor metabolite for a range of different natural products. The MPR strategy involves rewiring of the urea cycle, subcellular trafficking engineering and pathway re-localization, and improving precursor supply either through attenuation of the Crabtree effect or through the use of controlled fed-batch fermentations, leading to an L-ornithine titre of 1,041±47 mg l−1 with a yield of 67 mg (g glucose)−1 in shake-flask cultures and a titre of 5.1 g l−1 in fed-batch cultivations. Our study represents the first comprehensive study on overproducing an amino-acid intermediate in yeast, and our results demonstrate the potential to use yeast more extensively for low-cost production of many high-value amino-acid-derived chemicals. PMID:26345617

  7. High performance electrical, magnetic, electromagnetic and electrooptical devices enabled by three dimensionally ordered nanodots and nanorods

    DOEpatents

    Goyal, Amit , Kang; Sukill

    2012-02-21

    Novel articles and methods to fabricate same with self-assembled nanodots and/or nanorods of a single or multicomponent material within another single or multicomponent material for use in electrical, electronic, magnetic, electromagnetic and electrooptical devices is disclosed. Self-assembled nanodots and/or nanorods are ordered arrays wherein ordering occurs due to strain minimization during growth of the materials. A simple method to accomplish this when depositing in-situ films is also disclosed. Device applications of resulting materials are in areas of superconductivity, photovoltaics, ferroelectrics, magnetoresistance, high density storage, solid state lighting, non-volatile memory, photoluminescence, thermoelectrics and in quantum dot lasers.

  8. High performance superconducting devices enabled by three dimensionally ordered nanodots and/or nanorods

    DOEpatents

    Goyal, Amit

    2013-09-17

    Novel articles and methods to fabricate same with self-assembled nanodots and/or nanorods of a single or multicomponent material within another single or multicomponent material for use in electrical, electronic, magnetic, electromagnetic and electrooptical devices is disclosed. Self-assembled nanodots and/or nanorods are ordered arrays wherein ordering occurs due to strain minimization during growth of the materials. A simple method to accomplish this when depositing in-situ films is also disclosed. Device applications of resulting materials are in areas of superconductivity, photovoltaics, ferroelectrics, magnetoresistance, high density storage, solid state lighting, non-volatile memory, photoluminescence, thermoelectrics and in quantum dot lasers.

  9. High performance devices enabled by epitaxial, preferentially oriented, nanodots and/or nanorods

    DOEpatents

    Goyal, Amit

    2011-10-11

    Novel articles and methods to fabricate same with self-assembled nanodots and/or nanorods of a single or multicomponent material within another single or multicomponent material for use in electrical, electronic, magnetic, electromagnetic, superconducting and electrooptical devices is disclosed. Self-assembled nanodots and/or nanorods are ordered arrays wherein ordering occurs due to strain minimization during growth of the materials. A simple method to accomplish this when depositing in-situ films is also disclosed. Device applications of resulting materials are in areas of superconductivity, photovoltaics, ferroelectrics, magnetoresistance, high density storage, solid state lighting, non-volatile memory, photoluminescence, thermoelectrics and in quantum dot lasers.

  10. Microfluidic Impedance Flow Cytometry Enabling High-Throughput Single-Cell Electrical Property Characterization

    PubMed Central

    Chen, Jian; Xue, Chengcheng; Zhao, Yang; Chen, Deyong; Wu, Min-Hsien; Wang, Junbo

    2015-01-01

    This article reviews recent developments in microfluidic impedance flow cytometry for high-throughput electrical property characterization of single cells. Four major perspectives of microfluidic impedance flow cytometry for single-cell characterization are included in this review: (1) early developments of microfluidic impedance flow cytometry for single-cell electrical property characterization; (2) microfluidic impedance flow cytometry with enhanced sensitivity; (3) microfluidic impedance and optical flow cytometry for single-cell analysis and (4) integrated point of care system based on microfluidic impedance flow cytometry. We examine the advantages and limitations of each technique and discuss future research opportunities from the perspectives of both technical innovation and clinical applications. PMID:25938973

  11. Analysis of Distribution Circuits with High Penetrations of Photo-Voltaic Generation and Progressive Steps to Enable Higher Penetrations

    NASA Astrophysics Data System (ADS)

    Payne, Joshua Daniel

    Concern for anthropogenic climate change has instigated an increase in renewable generation capacity, including photo-voltaic (PV) power generation in distribution circuits. Distribution circuits with relatively high penetrations of PV generation (High-Pen PV) exist today, but how much more generation can distribution systems handle? This research aims to approach this question by 1) analyzing and quantifying High-Pen PV limitations on the primary circuits of distribution systems and 2) propose and analyze progressive steps to enable higher penetrations of PV on distribution circuits. Utilizing connectivity and load demand measurements provided by Pacific Gas & Electric (PG&E), time-resolved three-phase balanced feeder models of a commercial and a residential circuit featuring High-Pen PV were developed and calibrated to the point of the sub-station. Once calibrated, the circuit performance was simulated with varying PV penetrations and spatial distributions for typical seasonal high and seasonal low load demand days. Circuit scenarios with the Generation Center located downstream of the Load Center and with high impedance distribution line in-between lead to high voltage conditions. High-Pen PV interacting with the sub-station Load Drop Compensation (LDC) resulted an increased number of equipment operations and low voltage conditions on the circuit. As PV penetration increased, sub-station power factor and line loss decreased until reverse power flow became dominant. These were observed characteristics of High-Pen PV circuits. To overcome the limitations stated above, practical steps, such as line re-conductoring, and progressive control and operation changes were introduced. The progressive changes included using a Voltage Rise Siting (VRS) score for planning and LDC Current Compensation control to enable higher penetrations of PV. It was shown that limitations of High-Pen PV on the primary side of distribution circuits may be overcome via these practical and

  12. Can Nanofluidic Chemical Release Enable Fast, High Resolution Neurotransmitter-Based Neurostimulation?

    PubMed

    Jones, Peter D; Stelzle, Martin

    2016-01-01

    Artificial chemical stimulation could provide improvements over electrical neurostimulation. Physiological neurotransmission between neurons relies on the nanoscale release and propagation of specific chemical signals to spatially-localized receptors. Current knowledge of nanoscale fluid dynamics and nanofluidic technology allows us to envision artificial mechanisms to achieve fast, high resolution neurotransmitter release. Substantial technological development is required to reach this goal. Nanofluidic technology-rather than microfluidic-will be necessary; this should come as no surprise given the nanofluidic nature of neurotransmission. This perspective reviews the state of the art of high resolution electrical neuroprostheses and their anticipated limitations. Chemical release rates from nanopores are compared to rates achieved at synapses and with iontophoresis. A review of microfluidic technology justifies the analysis that microfluidic control of chemical release would be insufficient. Novel nanofluidic mechanisms are discussed, and we propose that hydrophobic gating may allow control of chemical release suitable for mimicking neurotransmission. The limited understanding of hydrophobic gating in artificial nanopores and the challenges of fabrication and large-scale integration of nanofluidic components are emphasized. Development of suitable nanofluidic technology will require dedicated, long-term efforts over many years. PMID:27065794

  13. Can Nanofluidic Chemical Release Enable Fast, High Resolution Neurotransmitter-Based Neurostimulation?

    PubMed Central

    Jones, Peter D.; Stelzle, Martin

    2016-01-01

    Artificial chemical stimulation could provide improvements over electrical neurostimulation. Physiological neurotransmission between neurons relies on the nanoscale release and propagation of specific chemical signals to spatially-localized receptors. Current knowledge of nanoscale fluid dynamics and nanofluidic technology allows us to envision artificial mechanisms to achieve fast, high resolution neurotransmitter release. Substantial technological development is required to reach this goal. Nanofluidic technology—rather than microfluidic—will be necessary; this should come as no surprise given the nanofluidic nature of neurotransmission. This perspective reviews the state of the art of high resolution electrical neuroprostheses and their anticipated limitations. Chemical release rates from nanopores are compared to rates achieved at synapses and with iontophoresis. A review of microfluidic technology justifies the analysis that microfluidic control of chemical release would be insufficient. Novel nanofluidic mechanisms are discussed, and we propose that hydrophobic gating may allow control of chemical release suitable for mimicking neurotransmission. The limited understanding of hydrophobic gating in artificial nanopores and the challenges of fabrication and large-scale integration of nanofluidic components are emphasized. Development of suitable nanofluidic technology will require dedicated, long-term efforts over many years. PMID:27065794

  14. Advanced High-Voltage Aqueous Lithium-Ion Battery Enabled by "Water-in-Bisalt" Electrolyte.

    PubMed

    Suo, Liumin; Borodin, Oleg; Sun, Wei; Fan, Xiulin; Yang, Chongyin; Wang, Fei; Gao, Tao; Ma, Zhaohui; Schroeder, Marshall; von Cresce, Arthur; Russell, Selena M; Armand, Michel; Angell, Austen; Xu, Kang; Wang, Chunsheng

    2016-06-13

    A new super-concentrated aqueous electrolyte is proposed by introducing a second lithium salt. The resultant ultra-high concentration of 28 m led to more effective formation of a protective interphase on the anode along with further suppression of water activities at both anode and cathode surfaces. The improved electrochemical stability allows the use of TiO2 as the anode material, and a 2.5 V aqueous Li-ion cell based on LiMn2 O4 and carbon-coated TiO2 delivered the unprecedented energy density of 100 Wh kg(-1) for rechargeable aqueous Li-ion cells, along with excellent cycling stability and high coulombic efficiency. It has been demonstrated that the introduction of a second salts into the "water-in-salt" electrolyte further pushed the energy densities of aqueous Li-ion cells closer to those of the state-of-the-art Li-ion batteries. PMID:27120336

  15. Training in High-Throughput Sequencing: Common Guidelines to Enable Material Sharing, Dissemination, and Reusability

    PubMed Central

    Schiffthaler, Bastian

    2016-01-01

    The advancement of high-throughput sequencing (HTS) technologies and the rapid development of numerous analysis algorithms and pipelines in this field has resulted in an unprecedentedly high demand for training scientists in HTS data analysis. Embarking on developing new training materials is challenging for many reasons. Trainers often do not have prior experience in preparing or delivering such materials and struggle to keep them up to date. A repository of curated HTS training materials would support trainers in materials preparation, reduce the duplication of effort by increasing the usage of existing materials, and allow for the sharing of teaching experience among the HTS trainers’ community. To achieve this, we have developed a strategy for materials’ curation and dissemination. Standards for describing training materials have been proposed and applied to the curation of existing materials. A Git repository has been set up for sharing annotated materials that can now be reused, modified, or incorporated into new courses. This repository uses Git; hence, it is decentralized and self-managed by the community and can be forked/built-upon by all users. The repository is accessible at http://bioinformatics.upsc.se/htmr. PMID:27309738

  16. Cell-free protein synthesis enables high yielding synthesis of an active multicopper oxidase.

    PubMed

    Li, Jian; Lawton, Thomas J; Kostecki, Jan S; Nisthal, Alex; Fang, Jia; Mayo, Stephen L; Rosenzweig, Amy C; Jewett, Michael C

    2016-02-01

    Multicopper oxidases (MCOs) are broadly distributed in all kingdoms of life and perform a variety of important oxidative reactions. These enzymes have potential biotechnological applications; however, the applications are impeded by low expression yields in traditional recombinant hosts, solubility issues, and poor copper cofactor assembly. As an alternative to traditional recombinant protein expression, we show the ability to use cell-free protein synthesis (CFPS) to produce complex MCO proteins with high soluble titers. Specifically, we report the production of MCOs in an Escherichia coli-based cell-free transcription-translation system. Total yields as high as 1.2 mg mL(-1) were observed after a 20-h batch reaction. More than 95% of the protein was soluble and activity was obtained by simple post-CFPS addition of copper ions in the form of CuSO4 . Scale-up reactions were achieved from 15 to 100 µL without a decrease in productivity and solubility. CFPS titers were higher than in vivo expression titers and more soluble, avoiding the formation of inclusion bodies. Our work extends the utility of the cell-free platform to the production of active proteins containing copper cofactors and demonstrates a simple method for producing MCOs. PMID:26356243

  17. Highly Flexible Self-Assembled V2O5 Cathodes Enabled by Conducting Diblock Copolymers

    NASA Astrophysics Data System (ADS)

    An, Hyosung; Mike, Jared; Smith, Kendall; Swank, Lisa; Lin, Yen-Hao; Pesek, Stacy; Verduzco, Rafael; Lutkenhaus, Jodie

    Structural energy storage materials combining load-bearing mechanical properties and high energy storage performance are desired for applications in wearable devices or flexible displays. Vanadium pentoxide (V2O5) is a promising cathode material for possible use in flexible battery electrodes, but it remains limited by low Li+ diffusion coefficient and electronic conductivity, severe volumetric changes upon cycling, and limited mechanical flexibility. Here, we demonstrate a route to address these challenges by blending a diblock copolymer bearing electron- and ion-conducting blocks, poly(3-hexylthiophene)-block-poly(ethyleneoxide) (P3HT- b-PEO), with V2O5 to form a mechanically flexible, electro-mechanically stable hybrid electrode. V2O5 layers were arranged parallel in brick-and-mortar-like fashion held together by the P3HT- b-PEO binder. This unique structure significantly enhances mechanical flexibility, toughness and cyclability without sacrificing capacity. Electrodes comprised of 10 wt% polymer have unusually high toughness (293 kJ/m3) and specific energy (530 Wh/kg), both higher than reduced graphene oxide paper electrodes.

  18. Target dependent femtosecond laser plasma implantation dynamics in enabling silica for high density erbium doping.

    PubMed

    Chandrappan, Jayakrishnan; Murray, Matthew; Kakkar, Tarun; Petrik, Peter; Agocs, Emil; Zolnai, Zsolt; Steenson, D P; Jha, Animesh; Jose, Gin

    2015-01-01

    Chemical dissimilarity of tellurium oxide with silica glass increases phase separation and crystallization tendency when mixed and melted for making a glass. We report a novel technique for incorporating an Er(3+)-doped tellurite glass composition into silica substrates through a femtosecond (fs) laser generated plasma assisted process. The engineered material consequently exhibits the spectroscopic properties of Er(3+)-ions, which are unachievable in pure silica and implies this as an ideal material for integrated photonics platforms. Formation of a well-defined metastable and homogeneous glass structure with Er(3+)-ions in a silica network, modified with tellurite has been characterized using high-resolution cross-sectional transmission electron microscopy (HRTEM). The chemical and structural analyses using HRTEM, Rutherford backscattering spectrometry (RBS) and laser excitation techniques, confirm that such fs-laser plasma implanted glasses may be engineered for significantly higher concentration of Er(3+)-ions without clustering, validated by the record high lifetime-density product 0.96 × 10(19) s.cm(-3). Characterization of planar optical layers and photoluminescence emission spectra were undertaken to determine their thickness, refractive indices and photoluminescence properties, as a function of Er(3+) concentration via different target glasses. The increased Er(3+) content in the target glass enhance the refractive index and photoluminescence intensity of the modified silica layer whilst the lifetime and thickness decrease. PMID:26370060

  19. Target dependent femtosecond laser plasma implantation dynamics in enabling silica for high density erbium doping

    NASA Astrophysics Data System (ADS)

    Chandrappan, Jayakrishnan; Murray, Matthew; Kakkar, Tarun; Petrik, Peter; Agocs, Emil; Zolnai, Zsolt; Steenson, D. P.; Jha, Animesh; Jose, Gin

    2015-09-01

    Chemical dissimilarity of tellurium oxide with silica glass increases phase separation and crystallization tendency when mixed and melted for making a glass. We report a novel technique for incorporating an Er3+-doped tellurite glass composition into silica substrates through a femtosecond (fs) laser generated plasma assisted process. The engineered material consequently exhibits the spectroscopic properties of Er3+-ions, which are unachievable in pure silica and implies this as an ideal material for integrated photonics platforms. Formation of a well-defined metastable and homogeneous glass structure with Er3+-ions in a silica network, modified with tellurite has been characterized using high-resolution cross-sectional transmission electron microscopy (HRTEM). The chemical and structural analyses using HRTEM, Rutherford backscattering spectrometry (RBS) and laser excitation techniques, confirm that such fs-laser plasma implanted glasses may be engineered for significantly higher concentration of Er3+-ions without clustering, validated by the record high lifetime-density product 0.96 × 1019 s.cm-3. Characterization of planar optical layers and photoluminescence emission spectra were undertaken to determine their thickness, refractive indices and photoluminescence properties, as a function of Er3+ concentration via different target glasses. The increased Er3+ content in the target glass enhance the refractive index and photoluminescence intensity of the modified silica layer whilst the lifetime and thickness decrease.

  20. Training in High-Throughput Sequencing: Common Guidelines to Enable Material Sharing, Dissemination, and Reusability.

    PubMed

    Schiffthaler, Bastian; Kostadima, Myrto; Delhomme, Nicolas; Rustici, Gabriella

    2016-06-01

    The advancement of high-throughput sequencing (HTS) technologies and the rapid development of numerous analysis algorithms and pipelines in this field has resulted in an unprecedentedly high demand for training scientists in HTS data analysis. Embarking on developing new training materials is challenging for many reasons. Trainers often do not have prior experience in preparing or delivering such materials and struggle to keep them up to date. A repository of curated HTS training materials would support trainers in materials preparation, reduce the duplication of effort by increasing the usage of existing materials, and allow for the sharing of teaching experience among the HTS trainers' community. To achieve this, we have developed a strategy for materials' curation and dissemination. Standards for describing training materials have been proposed and applied to the curation of existing materials. A Git repository has been set up for sharing annotated materials that can now be reused, modified, or incorporated into new courses. This repository uses Git; hence, it is decentralized and self-managed by the community and can be forked/built-upon by all users. The repository is accessible at http://bioinformatics.upsc.se/htmr. PMID:27309738

  1. Target dependent femtosecond laser plasma implantation dynamics in enabling silica for high density erbium doping

    PubMed Central

    Chandrappan, Jayakrishnan; Murray, Matthew; Kakkar, Tarun; Petrik, Peter; Agocs, Emil; Zolnai, Zsolt; Steenson, D.P.; Jha, Animesh; Jose, Gin

    2015-01-01

    Chemical dissimilarity of tellurium oxide with silica glass increases phase separation and crystallization tendency when mixed and melted for making a glass. We report a novel technique for incorporating an Er3+-doped tellurite glass composition into silica substrates through a femtosecond (fs) laser generated plasma assisted process. The engineered material consequently exhibits the spectroscopic properties of Er3+-ions, which are unachievable in pure silica and implies this as an ideal material for integrated photonics platforms. Formation of a well-defined metastable and homogeneous glass structure with Er3+-ions in a silica network, modified with tellurite has been characterized using high-resolution cross-sectional transmission electron microscopy (HRTEM). The chemical and structural analyses using HRTEM, Rutherford backscattering spectrometry (RBS) and laser excitation techniques, confirm that such fs-laser plasma implanted glasses may be engineered for significantly higher concentration of Er3+-ions without clustering, validated by the record high lifetime-density product 0.96 × 1019 s.cm−3. Characterization of planar optical layers and photoluminescence emission spectra were undertaken to determine their thickness, refractive indices and photoluminescence properties, as a function of Er3+ concentration via different target glasses. The increased Er3+ content in the target glass enhance the refractive index and photoluminescence intensity of the modified silica layer whilst the lifetime and thickness decrease. PMID:26370060

  2. Enabling high-quality observations of surface imperviousness for water runoff modelling from unmanned aerial vehicles

    NASA Astrophysics Data System (ADS)

    Tokarczyk, Piotr; Leitao, Joao Paulo; Rieckermann, Jörg; Schindler, Konrad; Blumensaat, Frank

    2015-04-01

    Modelling rainfall-runoff in urban areas is increasingly applied to support flood risk assessment particularly against the background of a changing climate and an increasing urbanization. These models typically rely on high-quality data for rainfall and surface characteristics of the area. While recent research in urban drainage has been focusing on providing spatially detailed rainfall data, the technological advances in remote sensing that ease the acquisition of detailed land-use information are less prominently discussed within the community. The relevance of such methods increase as in many parts of the globe, accurate land-use information is generally lacking, because detailed image data is unavailable. Modern unmanned air vehicles (UAVs) allow acquiring high-resolution images on a local level at comparably lower cost, performing on-demand repetitive measurements, and obtaining a degree of detail tailored for the purpose of the study. In this study, we investigate for the first time the possibility to derive high-resolution imperviousness maps for urban areas from UAV imagery and to use this information as input for urban drainage models. To do so, an automatic processing pipeline with a modern classification method is tested and applied in a state-of-the-art urban drainage modelling exercise. In a real-life case study in the area of Lucerne, Switzerland, we compare imperviousness maps generated from a consumer micro-UAV and standard large-format aerial images acquired by the Swiss national mapping agency (swisstopo). After assessing their correctness, we perform an end-to-end comparison, in which they are used as an input for an urban drainage model. Then, we evaluate the influence which different image data sources and their processing methods have on hydrological and hydraulic model performance. We analyze the surface runoff of the 307 individual sub-catchments regarding relevant attributes, such as peak runoff and volume. Finally, we evaluate the model

  3. Diffractive intermediate layer enables broadband light trapping for high efficiency ultrathin c-Si tandem cells

    NASA Astrophysics Data System (ADS)

    Li, Guijun; Ho, Jacob Y. L.; Li, He; Kwok, Hoi-Sing

    2014-06-01

    Light management through the intermediate reflector in the tandem cell configuration is of great practical importance for achieving high stable efficiency and also low cost production. So far, however, the intermediate reflectors employed currently are mainly focused on the light absorption enhancement of the top cell. Here, we present a diffractive intermediate layer that allows for light trapping over a broadband wavelength for the ultrathin c-Si tandem solar cell. Compared with the standard intermediate reflector, this nanoscale architectural intermediate layer results in a 35% and 21% remarkable enhancement of the light absorption in the top (400-800 nm) and bottom (800-1100 nm) cells simultaneously, and ultrathin c-Si tandem cells with impressive conversion efficiency of 13.3% are made on the glass substrate.

  4. Enabling Access to High-Resolution Lidar Topography for Earth Science Research

    NASA Astrophysics Data System (ADS)

    Crosby, Christopher; Nandigam, Viswanath; Arrowsmith, Ramon; Baru, Chaitan

    2010-05-01

    High-resolution topography data acquired with lidar (light detection and ranging a.k.a. laser scanning) technology are revolutionizing the way we study the geomorphic processes acting along the Earth's surface. These data, acquired from either an airborne platform or from a tripod-mounted scanner, are emerging as a fundamental tool for research on a variety of topics ranging from earthquake hazards to ice sheet dynamics. Lidar topography data allow earth scientists to study the processes that contribute to landscape evolution at resolutions not previously possible yet essential for their appropriate representation. These datasets also have significant implications for earth science education and outreach because they provide an accurate digital representation of landforms and geologic hazards. However, along with the potential of lidar topography comes an increase in the volume and complexity of data that must be efficiently managed, archived, distributed, processed and integrated in order for them to be of use to the community. A single lidar data acquisition may generate terabytes of data in the form of point clouds, digital elevation models (DEMs), and derivative imagery. This massive volume of data is often difficult to manage and poses significant distribution challenges when trying to allow access to the data for a large scientific user community. Furthermore, the datasets can be technically challenging to work with and may require specific software and computing resources that are not readily available to many users. The U.S. National Science Foundation (NSF)-funded OpenTopography Facility (http://www.opentopography.org) is an online data access and processing system designed to address the challenges posed by lidar data, and to democratize access to these data for the scientific user community. OpenTopography provides free, online access to lidar data in a number of forms, including raw lidar point cloud data, standard DEMs, and easily accessible Google

  5. High-frequency chaotic dynamics enabled by optical phase-conjugation.

    PubMed

    Mercier, Émeric; Wolfersberger, Delphine; Sciamanna, Marc

    2016-01-01

    Wideband chaos is of interest for applications such as random number generation or encrypted communications, which typically use optical feedback in a semiconductor laser. Here, we show that replacing conventional optical feedback with phase-conjugate feedback improves the chaos bandwidth. In the range of achievable phase-conjugate mirror reflectivities, the bandwidth increase reaches 27% when compared with feedback from a conventional mirror. Experimental measurements of the time-resolved frequency dynamics on nanosecond time-scales show that the bandwidth enhancement is related to the onset of self-pulsing solutions at harmonics of the external-cavity frequency. In the observed regime, the system follows a chaotic itinerancy among these destabilized high-frequency external-cavity modes. The recorded features are unique to phase-conjugate feedback and distinguish it from the long-standing problem of time-delayed feedback dynamics. PMID:26739806

  6. High-frequency chaotic dynamics enabled by optical phase-conjugation

    NASA Astrophysics Data System (ADS)

    Mercier, Émeric; Wolfersberger, Delphine; Sciamanna, Marc

    2016-01-01

    Wideband chaos is of interest for applications such as random number generation or encrypted communications, which typically use optical feedback in a semiconductor laser. Here, we show that replacing conventional optical feedback with phase-conjugate feedback improves the chaos bandwidth. In the range of achievable phase-conjugate mirror reflectivities, the bandwidth increase reaches 27% when compared with feedback from a conventional mirror. Experimental measurements of the time-resolved frequency dynamics on nanosecond time-scales show that the bandwidth enhancement is related to the onset of self-pulsing solutions at harmonics of the external-cavity frequency. In the observed regime, the system follows a chaotic itinerancy among these destabilized high-frequency external-cavity modes. The recorded features are unique to phase-conjugate feedback and distinguish it from the long-standing problem of time-delayed feedback dynamics.

  7. High-frequency chaotic dynamics enabled by optical phase-conjugation

    PubMed Central

    Mercier, Émeric; Wolfersberger, Delphine; Sciamanna, Marc

    2016-01-01

    Wideband chaos is of interest for applications such as random number generation or encrypted communications, which typically use optical feedback in a semiconductor laser. Here, we show that replacing conventional optical feedback with phase-conjugate feedback improves the chaos bandwidth. In the range of achievable phase-conjugate mirror reflectivities, the bandwidth increase reaches 27% when compared with feedback from a conventional mirror. Experimental measurements of the time-resolved frequency dynamics on nanosecond time-scales show that the bandwidth enhancement is related to the onset of self-pulsing solutions at harmonics of the external-cavity frequency. In the observed regime, the system follows a chaotic itinerancy among these destabilized high-frequency external-cavity modes. The recorded features are unique to phase-conjugate feedback and distinguish it from the long-standing problem of time-delayed feedback dynamics. PMID:26739806

  8. Design for Verification: Enabling Verification of High Dependability Software-Intensive Systems

    NASA Technical Reports Server (NTRS)

    Mehlitz, Peter C.; Penix, John; Markosian, Lawrence Z.; Koga, Dennis (Technical Monitor)

    2003-01-01

    Strategies to achieve confidence that high-dependability applications are correctly implemented include testing and automated verification. Testing deals mainly with a limited number of expected execution paths. Verification usually attempts to deal with a larger number of possible execution paths. While the impact of architecture design on testing is well known, its impact on most verification methods is not as well understood. The Design for Verification approach considers verification from the application development perspective, in which system architecture is designed explicitly according to the application's key properties. The D4V-hypothesis is that the same general architecture and design principles that lead to good modularity, extensibility and complexity/functionality ratio can be adapted to overcome some of the constraints on verification tools, such as the production of hand-crafted models and the limits on dynamic and static analysis caused by state space explosion.

  9. Elongation of fibers from highly viscous dextran solutions enables fabrication of rapidly dissolving drug carrying fabrics.

    PubMed

    Frampton, John P; Lai, David; Lounds, Maxwell; Chung, Kyeongwoon; Kim, Jinsang; Mansfield, John F; Takayama, Shuichi

    2015-01-28

    A simple method is presented for forming thread-like fibers from highly viscous dextran solutions. Based on the cohesive and adhesive forces between a dextran solution and the substrate to which it is applied, multiple fibers of approximately 10 μm in diameter can be elongated simultaneously. These fibers can be woven into multiple layers to produce fabrics of varying fiber orientations and mechanical properties. Various bioactive agents can be incorporated into the dextran solution prior to fiber formation, including hemostatic and antibiotic agents. Fabrics containing thrombin are capable of coagulating human platelet poor plasma in vitro. Fabrics containing antibiotics are capable of suppressing bacterial growth in a disk diffusion assay. These data suggest that this new material composed entirely of dextran has promise as a drug delivery component in wound dressings. PMID:25204273

  10. Enabling Requirements-Based Programming for Highly-Dependable Complex Parallel and Distributed Systems

    NASA Technical Reports Server (NTRS)

    Hinchey, Michael G.; Rash, James L.; Rouff, Christopher A.

    2005-01-01

    The manual application of formal methods in system specification has produced successes, but in the end, despite any claims and assertions by practitioners, there is no provable relationship between a manually derived system specification or formal model and the customer's original requirements. Complex parallel and distributed system present the worst case implications for today s dearth of viable approaches for achieving system dependability. No avenue other than formal methods constitutes a serious contender for resolving the problem, and so recognition of requirements-based programming has come at a critical juncture. We describe a new, NASA-developed automated requirement-based programming method that can be applied to certain classes of systems, including complex parallel and distributed systems, to achieve a high degree of dependability.

  11. The Wide-Field Imaging Interferometry Testbed: Enabling Techniques for High Angular Resolution Astronomy

    NASA Technical Reports Server (NTRS)

    Rinehart, S. A.; Armstrong, T.; Frey, Bradley J.; Jung, J.; Kirk, J.; Leisawitz, David T.; Leviton, Douglas B.; Lyon, R.; Maher, Stephen; Martino, Anthony J.; Pauls, T.

    2007-01-01

    The Wide-Field Imaging Interferometry Testbed (WIIT) was designed to develop techniques for wide-field of view imaging interferometry, using "double-Fourier" methods. These techniques will be important for a wide range of future spacebased interferometry missions. We have provided simple demonstrations of the methodology already, and continuing development of the testbed will lead to higher data rates, improved data quality, and refined algorithms for image reconstruction. At present, the testbed effort includes five lines of development; automation of the testbed, operation in an improved environment, acquisition of large high-quality datasets, development of image reconstruction algorithms, and analytical modeling of the testbed. We discuss the progress made towards the first four of these goals; the analytical modeling is discussed in a separate paper within this conference.

  12. Crosslinking of aromatic polyamides via pendant propargyl groups

    NASA Technical Reports Server (NTRS)

    St.clair, A. K.; St.clair, T. L.; Barrick, J. D.; Campbell, F. J.

    1980-01-01

    Methods for crosslinking N-methyl substituted aromatic polyamides were investigated in an effort to improve the applicability of these polymers as matrix resins for Kavlar trademark fiber composites. High molecular weight polymers were prepared from isophthaloyl dichloride and 4,4'- bis(methylamino)diphenylmethane with varying proportions of the N,N'bispropargyl diamine incorporated as a crosslinking agent. The propargylcontaining diamines were crosslinked thermally and characterized by infrared spectroscopy, differential scanning calorimetry, and thermogravimetric analysis. Attempts were also made to crosslink polyamide films by exposure to ultraviolet light, electron beam, and gamma radiation.

  13. Design of Advanced MnO/N-Gr 3D Walls through Polymer Cross-Linking for High-Performance Supercapacitor.

    PubMed

    Tran, Ngoc Quang; Kang, Bong Kyun; Tiruneh, Sintayehu Nibret; Yoon, Dae Ho

    2016-01-26

    Three-dimensional, vertically aligned MnO/nitrogen-doped graphene (3D MnO/N-Gr) walls were prepared through facile solution-phase synthesis followed by thermal treatment. Polyvinylpyrrolidone (PVP) was strategically added to generate cross-links to simultaneously form 3D wall structures and to incorporate nitrogen atoms into the graphene network. The unique wall features of the as-prepared 3D MnO/N-Gr hybirdes provide a large surface area (91.516 m(2) g(-1)) and allow for rapid diffusion of the ion electrolyte, resulting in a high specific capacitance of 378 F g(-1) at 0.25 A g(-1) and an excellent charge/discharge stability (93.7% capacity retention after 8000 cycles) in aqueous 1 m Na2 SO4 solution as electrolyte. Moreover, the symmetric supercapacitors that were rationally designed by using 3D MnO/N-Gr hybrids exhibit outstanding electrochemical performance in an organic electrolyte with an energy density of 90.6 Wh kg(-1) and a power density of 437.5 W kg(-1). PMID:26689298

  14. Preparation of porous polymer monolithic column using functionalized graphene oxide as a functional crosslinker for high performance liquid chromatography separation of small molecules.

    PubMed

    Li, Yaping; Qi, Li; Ma, Huimin

    2013-09-21

    A newly developed porous polymer monolith was prepared through copolymerization of 3-(trimethoxysilyl)propylmethacrylate modified graphene oxide with glycidyl methacrylate and ethylene dimethacrylate as a functional crosslinker, which was synthesized through silanization reaction of graphene oxide prepared by Hummers method with 3-(trimethoxysilyl)propylmethacrylate. The monolith was characterized by Fourier transform infrared spectroscopy, X-ray photoelectron spectroscopy, transmission electron microscopy, scanning electron microscopy, mercury intrusion porosimetry and nitrogen adsorption measurement. The monolith column was applied as the stationary phase of high performance liquid chromatography and its chromatographic performance was evaluated by separation of small molecules in the isocratic reversed-phase mode. The chromatograms of hydrophobic steroids and polar aromatic amines on the prepared monolith displayed the enhanced separation performance over those on the parent monolith. The reproducibility of the column was less than 3.5% in terms of relative standard deviation of retention time. The results demonstrate that copolymerization of functionalized graphene oxide into porous polymer monolith was an effective tool for chromatography separation enhancement of small molecules in an isocratic mode. PMID:23884304

  15. Comparison of 10-year clinical wear of annealed and remelted highly cross-linked polyethylene: A propensity-matched cohort study.

    PubMed

    Hamai, Satoshi; Nakashima, Yasuharu; Mashima, Naohiko; Yamamoto, Takuaki; Kamada, Tomomi; Motomura, Goro; Imai, Hiroshi; Fukushi, Jun-Ichi; Miura, Hiromasa; Iwamoto, Yukihide

    2016-06-01

    No previous studies comparing the clinical wear rates of the two different kinds of cross-linked ultra-high-molecular-weight polyethylene (XLPE), annealed and remelted, are available. We compared the creep and steady wear rates of 36 matched pairs (72 hips in total) adjusting for baseline characteristics with propensity score matching techniques. Zirconia femoral heads with 26-mm diameter were used in all cases. The femoral-head cup penetration was measured digitally on radiographs. Significantly greater creep (p=0.006) was detected in the remelted (0.234mm) than annealed (0.159mm) XLPE. However, no significant difference (p=0.19) was found between the steady wear rates (0.003 and 0.008mm/year, respectively) of the annealed and remelted XLPE. Multiple regression analyses showed that remelted XLPE is significant independent variable (p<0.001) that is positively associated with creep. However, the patient age and body weight, cup size, the liner thickness, cup inclination, follow-up periods, and postoperative Merle d'Aubigné hip score had no significant effects (p>0.05) on the steady wear rates. No patients exhibited above the osteolysis threshold of 0.1mm/year, progressive radiolucencies, osteolysis, or polyethylene fracture. This propensity-matched cohort study document no significant difference in wear resistant performances of annealed and remelted XLPE over an average period of 10 years. PMID:26751705

  16. Alumina-on-alumina ceramic versus metal-on-highly cross-linked polyethylene bearings in total hip arthroplasty: a comparative study.

    PubMed

    Bascarevic, Zoran; Vukasinovic, Zoran; Slavkovic, Nemanja; Dulic, Borislav; Trajkovic, Goran; Bascarevic, Violeta; Timotijevic, Sladjan

    2010-12-01

    The aim of the study was to evaluate the reliability and durability of alumina-on-alumina ceramic in comparison to metal-on-highly cross-linked polyethylene (CoCr/HXLPE) bearing couples. This prospective randomised study involved 150 patients (157 hips). All patients (mean age: 54.7 years) obtained an identical fibre metal midcoat femoral stem and fibre metal-coated acetabular shell. In 78 patients (82 hips) we used alumina, while in 72 patients (75 hips) metal-polyethylene bearing couples were used. During a mean 50.4-month follow-up period (51 ± 8 alumina and 50 ± 8.9 metal-polyethylene) no statistically significant changes in clinical and radiographic parameters were noted between the two groups. There was no ceramic breakage and no need for revision surgery due to the ceramic liner. The alumina bearing couples proved to be as reliable as CoCr/HXLPE. PMID:19882338

  17. Synthesis and characterization of poly(maleic acid)-grafted crosslinked chitosan nanomaterial with high uptake and selectivity for Hg(II) sorption.

    PubMed

    Ge, Huacai; Hua, Tingting

    2016-11-20

    Chitosan-poly(maleic acid) nanomaterial (PMACS) with the size of 400-900nm was synthesized by grafting poly(maleic acid) onto chitosan and then crosslinking with glutaraldehyde. The synthesis conditions were optimized. The structure and morphology of PMACS were characterized by FT-IR, XRD, SEM and TGA. PMACS was used to adsorb some heavy metal ions such as Hg(II), Pb(II), Cu(II), Cd(II), Co(II), and Zn(II). The results indicated that PMACS had selectivity for Hg(II) sorption. The effects of various variables for sorption of Hg(II) were further explored. The maximum capacity for Hg(II) sorption was found to be 1044mgg(-1) at pH 6.0, which could compare with the maximal value of the recently reported other sorbents. The sorption followed the pseudo-second-order kinetics and Langmuir isotherm models. The rising of temperature benefited the uptake and the sorption was a spontaneous chemical process. The sorbent could be reused with EDTA. Hence, the nanomaterial would be used as a selective and high uptake sorbent in the removal of Hg(II) from effluents. PMID:27561493

  18. High temperature nitrogen oxides sensing enabled by indium oxide thin films

    NASA Astrophysics Data System (ADS)

    Kannan, Srinivasan

    Generation of power using fossil fuel combustion invariably results in formation of undesirable gas species (NOx, SOx, CO, CO2, etc.) at high-temperatures which are harmful to the environment. Thus, there is a continual need to develop sensitive, responsive, stable, selective, robust and low-cost sensor systems and sensor materials for combustion monitoring. This work investigates the viability of microfabricated NO x sensors based on sputtered indium oxide (In2O3) utilizing microhotplate structures. The material becomes resistive when exposed to oxidizing gases like NOx, with its conductivity dependent upon the temperature, partial pressure of the test gas and morphological structure. We believe this device would help increase efficiency and decrease emissions through improved combustion process control, leading to a comparably economic and responsive sensor. In this work, more than 600 sensors were fabricated and tested, including RF and pulsed-DC sputtered films. About 50 unique sensor conditions were characterized and related to the gas sensor response. The sensor conditions included deposition parameters (power, pressure, time, etc.) and postdeposition processes (anneals, promoter layers, etc.). In2O3 thin films were RF sputter deposited on microhotplate structures with different thickness (40 to 300 nm) in pure Ar. Additionally, a combination of reactive and RF sputtering of In2O3 material was-deposited in Ar and O2 (10% and 25%) mixture. In2O3 films without promoter layers and with gold or TiOx promoter layers (~ 3 nm) were investigated for NOx sensing. Selectivity, stability and repeatability of indium oxide (In2O3) thin film sensor to detect NOx (25 ppm) in presence of other exhaust gas pollutants including H2, NH3 and CO2 at high operating temperatures (greater than 350 °C) was investigated in N2 carrier gas. In2O 3 films (150nm thick) deposited in Ar and O2 (25% O 2) presented the highest response (S ~ 50) to 25 ppm NOx at 500 °C when compared to films

  19. High charge-carrier mobility enables exploitation of carrier multiplication in quantum-dot films

    PubMed Central

    Sandeep, C. S. Suchand; Cate, Sybren ten; Schins, Juleon M.; Savenije, Tom J.; Liu, Yao; Law, Matt; Kinge, Sachin; Houtepen, Arjan J.; Siebbeles, Laurens D. A.

    2013-01-01

    Carrier multiplication, the generation of multiple electron–hole pairs by a single photon, is of great interest for solar cells as it may enhance their photocurrent. This process has been shown to occur efficiently in colloidal quantum dots, however, harvesting of the generated multiple charges has proved difficult. Here we show that by tuning the charge-carrier mobility in quantum-dot films, carrier multiplication can be optimized and may show an efficiency as high as in colloidal dispersion. Our results are explained quantitatively by the competition between dissociation of multiple electron–hole pairs and Auger recombination. Above a mobility of ~1 cm2 V−1 s−1, all charges escape Auger recombination and are quantitatively converted to free charges, offering the prospect of cheap quantum-dot solar cells with efficiencies in excess of the Shockley–Queisser limit. In addition, we show that the threshold energy for carrier multiplication is reduced to twice the band gap of the quantum dots. PMID:23974282

  20. Structured nucleosome fingerprints enable high-resolution mapping of chromatin architecture within regulatory regions.

    PubMed

    Schep, Alicia N; Buenrostro, Jason D; Denny, Sarah K; Schwartz, Katja; Sherlock, Gavin; Greenleaf, William J

    2015-11-01

    Transcription factors canonically bind nucleosome-free DNA, making the positioning of nucleosomes within regulatory regions crucial to the regulation of gene expression. Using the assay of transposase accessible chromatin (ATAC-seq), we observe a highly structured pattern of DNA fragment lengths and positions around nucleosomes in Saccharomyces cerevisiae, and use this distinctive two-dimensional nucleosomal "fingerprint" as the basis for a new nucleosome-positioning algorithm called NucleoATAC. We show that NucleoATAC can identify the rotational and translational positions of nucleosomes with up to base-pair resolution and provide quantitative measures of nucleosome occupancy in S. cerevisiae, Schizosaccharomyces pombe, and human cells. We demonstrate the application of NucleoATAC to a number of outstanding problems in chromatin biology, including analysis of sequence features underlying nucleosome positioning, promoter chromatin architecture across species, identification of transient changes in nucleosome occupancy and positioning during a dynamic cellular response, and integrated analysis of nucleosome occupancy and transcription factor binding. PMID:26314830

  1. Planetary Science Enabled by High Power Ion Propulsion Systems from NASA's Prometheus Program

    NASA Astrophysics Data System (ADS)

    Cooper, John

    2004-11-01

    NASA's Prometheus program seeks to develop new generations of spacecraft nuclear-power and ion propulsion systems for applications to future planetary missions. The Science Definition Team for the first mission in the Prometheus series, the Jupiter Icy Moons Orbiter (JIMO), has defined science objectives for in-situ orbital exploration of the icy Galilean moons (Europa, Ganymede, Callisto) and the Jovian magnetosphere along with remote observations of Jupiter's atmosphere and aurorae, the volcanic moon Io, and other elements of the Jovian system. Important to this forum is that JIMO power and propulsion systems will need to be designed to minimize magnetic, radio, neutral gas, and plasma backgrounds that might otherwise interfere with achievement of mission science objectives. Another potential Prometheus mission of high science interest would be an extended tour of primitive bodies in the solar system, including asteroids, Jupiter family comets, Centaurs, and Kuiper Belt Objects (KBO). The final landed phase of this mission might include an active keplerian experiment for detectable (via downlink radio doppler shift) acceleration of a small kilometer-size Centaur or KBO object, likely the satellite of a larger object observable from Earth. This would have obvious application to testing of mitigation techniques for Earth impact hazards.

  2. High-speed communications enabling real-time video for battlefield commanders using tracked FSO

    NASA Astrophysics Data System (ADS)

    Al-Akkoumi, Mouhammad K.; Huck, Robert C.; Sluss, James J., Jr.

    2007-04-01

    Free Space Optics (FSO) technology is currently in use to solve the last-mile problem in telecommunication systems by offering higher bandwidth than wired or wireless connections when optical fiber is not available. Incorporating mobility into FSO technology can contribute to growth in its utility. Tracking and alignment are two big challenges for mobile FSO communications. In this paper, we present a theoretical approach for mobile FSO networks between Unmanned Aerial Vehicles (UAVs), manned aerial vehicles, and ground vehicles. We introduce tracking algorithms for achieving Line of Sight (LOS) connectivity and present analytical results. Two scenarios are studied in this paper: 1 - An unmanned aerial surveillance vehicle, the Global Hawk, with a stationary ground vehicle, an M1 Abrams Main Battle Tank, and 2 - a manned aerial surveillance vehicle, the E-3A Airborne Warning and Control System (AWACS), with an unmanned combat aerial vehicle, the Joint Unmanned Combat Air System (J-UCAS). After initial vehicle locations have been coordinated, the tracking algorithm will steer the gimbals to maintain connectivity between the two vehicles and allow high-speed communications to occur. Using this algorithm, data, voice, and video can be sent via the FSO connection from one vehicle to the other vehicle.

  3. Highly Flexible Self-Assembled V2O5 Cathodes Enabled by Conducting Diblock Copolymers.

    PubMed

    An, Hyosung; Mike, Jared; Smith, Kendall A; Swank, Lisa; Lin, Yen-Hao; L Pesek, Stacy; Verduzco, Rafael; Lutkenhaus, Jodie L

    2015-01-01

    Mechanically robust battery electrodes are desired for applications in wearable devices, flexible displays, and structural energy and power. In this regard, the challenge is to balance mechanical and electrochemical properties in materials that are inherently brittle. Here, we demonstrate a unique water-based self-assembly approach that incorporates a diblock copolymer bearing electron- and ion-conducting blocks, poly(3-hexylthiophene)-block-poly(ethyleneoxide) (P3HT-b-PEO), with V2O5 to form a flexible, tough, carbon-free hybrid battery cathode. V2O5 is a promising lithium intercalation material, but it remains limited by its poor conductivity and mechanical properties. Our approach leads to a unique electrode structure consisting of interlocking V2O5 layers glued together with micellar aggregates of P3HT-b-PEO, which results in robust mechanical properties, far exceeding the those obtained from conventional fluoropolymer binders. Only 5 wt % polymer is required to triple the flexibility of V2O5, and electrodes comprised of 10 wt % polymer have unusually high toughness (293 kJ/m(3)) and specific energy (530 Wh/kg), both higher than reduced graphene oxide paper electrodes. Furthermore, addition of P3HT-b-PEO enhances lithium-ion diffusion, eliminates cracking during cycling, and boosts cyclability relative to V2O5 alone. These results highlight the importance of tradeoffs between mechanical and electrochemical performance, where polymer content can be used to tune both aspects. PMID:26391053

  4. Highly Flexible Self-Assembled V2O5 Cathodes Enabled by Conducting Diblock Copolymers

    NASA Astrophysics Data System (ADS)

    An, Hyosung; Mike, Jared; Smith, Kendall A.; Swank, Lisa; Lin, Yen-Hao; L. Pesek, Stacy; Verduzco, Rafael; Lutkenhaus, Jodie L.

    2015-09-01

    Mechanically robust battery electrodes are desired for applications in wearable devices, flexible displays, and structural energy and power. In this regard, the challenge is to balance mechanical and electrochemical properties in materials that are inherently brittle. Here, we demonstrate a unique water-based self-assembly approach that incorporates a diblock copolymer bearing electron- and ion-conducting blocks, poly(3-hexylthiophene)-block-poly(ethyleneoxide) (P3HT-b-PEO), with V2O5 to form a flexible, tough, carbon-free hybrid battery cathode. V2O5 is a promising lithium intercalation material, but it remains limited by its poor conductivity and mechanical properties. Our approach leads to a unique electrode structure consisting of interlocking V2O5 layers glued together with micellar aggregates of P3HT-b-PEO, which results in robust mechanical properties, far exceeding the those obtained from conventional fluoropolymer binders. Only 5 wt % polymer is required to triple the flexibility of V2O5, and electrodes comprised of 10 wt % polymer have unusually high toughness (293 kJ/m3) and specific energy (530 Wh/kg), both higher than reduced graphene oxide paper electrodes. Furthermore, addition of P3HT-b-PEO enhances lithium-ion diffusion, eliminates cracking during cycling, and boosts cyclability relative to V2O5 alone. These results highlight the importance of tradeoffs between mechanical and electrochemical performance, where polymer content can be used to tune both aspects.

  5. Structured nucleosome fingerprints enable high-resolution mapping of chromatin architecture within regulatory regions

    PubMed Central

    Schep, Alicia N.; Buenrostro, Jason D.; Denny, Sarah K.; Schwartz, Katja; Sherlock, Gavin; Greenleaf, William J.

    2015-01-01

    Transcription factors canonically bind nucleosome-free DNA, making the positioning of nucleosomes within regulatory regions crucial to the regulation of gene expression. Using the assay of transposase accessible chromatin (ATAC-seq), we observe a highly structured pattern of DNA fragment lengths and positions around nucleosomes in Saccharomyces cerevisiae, and use this distinctive two-dimensional nucleosomal “fingerprint” as the basis for a new nucleosome-positioning algorithm called NucleoATAC. We show that NucleoATAC can identify the rotational and translational positions of nucleosomes with up to base-pair resolution and provide quantitative measures of nucleosome occupancy in S. cerevisiae, Schizosaccharomyces pombe, and human cells. We demonstrate the application of NucleoATAC to a number of outstanding problems in chromatin biology, including analysis of sequence features underlying nucleosome positioning, promoter chromatin architecture across species, identification of transient changes in nucleosome occupancy and positioning during a dynamic cellular response, and integrated analysis of nucleosome occupancy and transcription factor binding. PMID:26314830

  6. Two-dimensional Layered MoS2 Biosensors Enable Highly Sensitive Detection of Biomolecules

    NASA Astrophysics Data System (ADS)

    Lee, Joonhyung; Dak, Piyush; Lee, Yeonsung; Park, Heekyeong; Choi, Woong; Alam, Muhammad A.; Kim, Sunkook

    2014-12-01

    We present a MoS2 biosensor to electrically detect prostate specific antigen (PSA) in a highly sensitive and label-free manner. Unlike previous MoS2-FET-based biosensors, the device configuration of our biosensors does not require a dielectric layer such as HfO2 due to the hydrophobicity of MoS2. Such an oxide-free operation improves sensitivity and simplifies sensor design. For a quantitative and selective detection of PSA antigen, anti-PSA antibody was immobilized on the sensor surface. Then, introduction of PSA antigen, into the anti-PSA immobilized sensor surface resulted in a lable-free immunoassary format. Measured off-state current of the device showed a significant decrease as the applied PSA concentration was increased. The minimum detectable concentration of PSA is 1 pg/mL, which is several orders of magnitude below the clinical cut-off level of ~4 ng/mL. In addition, we also provide a systematic theoretical analysis of the sensor platform - including the charge state of protein at the specific pH level, and self-consistent channel transport. Taken together, the experimental demonstration and the theoretical framework provide a comprehensive description of the performance potential of dielectric-free MoS2-based biosensor technology.

  7. A high-performance keyboard neural prosthesis enabled by task optimization

    PubMed Central

    Nuyujukian, Paul; Fan, Joline M.; Kao, Jonathan C.; Ryu, Stephen I.; Shenoy, Krishna V.

    2015-01-01

    Communication neural prostheses are an emerging class of medical devices that aim to restore efficient communication to people suffering from paralysis. These systems rely on an interface with the user, either via the use of a continuously-moving cursor (e.g., mouse) or the discrete selection of symbols (e.g., keyboard). In developing these interfaces, many design choices have a significant impact on the performance of the system. The objective of this study was to explore the design choices of a continuously-moving cursor neural prosthesis and optimize the interface to maximize information theoretic performance. We swept interface parameters of two keyboard-like tasks to find task and subject specific optimal parameters as measured by achieved bitrate using two rhesus macaques implanted with multielectrode arrays. In this report, we present the highest performing free-paced neural prosthesis under any recording modality with sustainable communication rates of up to 3.5 bits per second (bps). These findings demonstrate that meaningful high performance can be achieved using an intracortical neural prosthesis, and that, when optimized, these systems may be appropriate for use as communication devices for those with physical disabilities. PMID:25203982

  8. Novel resist approaches to enable EUV lithography in high volume manufacturing and extensions to future nodes

    NASA Astrophysics Data System (ADS)

    Neisser, Mark; Cummings, Kevin; Valente, Sean; Montgomery, Cecilia; Fan, Yu-Jen; Matthews, Ken; Chun, JunSung; Ashby, Paul D.

    2015-03-01

    EUV lithography is needed by the semiconductor industry for both its resolution and for the process simplification it provides compared to multiple patterning. However it needs innovations to make it a success. One area where innovation is needed is resist performance. Resists that are commercially available for EUV use are typically based on conventional chemically amplified resist chemistry. So far, this has not provided the required performance at fast enough photo speed. Many innovative resist systems have been introduced in the last few years that have novel mechanisms and/or incorporate novel chemical elements with high EUV absorbance. These new systems are promising enough for EUV use that work on many of them now needs to shift to characterizing their functional parameters and optimizing their performance. For the future, new systems beyond these will have to focus on reducing the inherent noise in resist imaging. The concept of pixelated resists is introduced and it is suggested pixelated resists are one possible avenue for imaging sub 10nm features with sufficient feature size and profile control.

  9. A high-performance keyboard neural prosthesis enabled by task optimization.

    PubMed

    Nuyujukian, Paul; Fan, Joline M; Kao, Jonathan C; Ryu, Stephen I; Shenoy, Krishna V

    2015-01-01

    Communication neural prostheses are an emerging class of medical devices that aim to restore efficient communication to people suffering from paralysis. These systems rely on an interface with the user, either via the use of a continuously moving cursor (e.g., mouse) or the discrete selection of symbols (e.g., keyboard). In developing these interfaces, many design choices have a significant impact on the performance of the system. The objective of this study was to explore the design choices of a continuously moving cursor neural prosthesis and optimize the interface to maximize information theoretic performance. We swept interface parameters of two keyboard-like tasks to find task and subject-specific optimal parameters as measured by achieved bitrate using two rhesus macaques implanted with multielectrode arrays. In this paper, we present the highest performing free-paced neural prosthesis under any recording modality with sustainable communication rates of up to 3.5 bits/s. These findings demonstrate that meaningful high performance can be achieved using an intracortical neural prosthesis, and that, when optimized, these systems may be appropriate for use as communication devices for those with physical disabilities. PMID:25203982

  10. Strong Ion Regulatory Abilities Enable the Crab Xenograpsus testudinatus to Inhabit Highly Acidified Marine Vent Systems

    PubMed Central

    Hu, Marian Y.; Guh, Ying-Jey; Shao, Yi-Ta; Kuan, Pou-Long; Chen, Guan-Lin; Lee, Jay-Ron; Jeng, Ming-Shiou; Tseng, Yung-Che

    2016-01-01

    Hydrothermal vent organisms have evolved physiological adaptations to cope with extreme abiotic conditions including temperature and pH. To date, acid-base regulatory abilities of vent organisms are poorly investigated, although this physiological feature is essential for survival in low pH environments. We report the acid-base regulatory mechanisms of a hydrothermal vent crab, Xenograpsus testudinatus, endemic to highly acidic shallow-water vent habitats with average environment pH-values ranging between 5.4 and 6.6. Within a few hours, X. testudinatus restores extracellular pH (pHe) in response to environmental acidification of pH 6.5 (1.78 kPa pCO2) accompanied by an increase in blood HCO3- levels from 8.8 ± 0.3 to 31 ± 6 mM. Branchial Na+/K+-ATPase (NKA) and V-type H+-ATPase (VHA), the major ion pumps involved in branchial acid-base regulation, showed dynamic increases in response to acidified conditions on the mRNA, protein and activity level. Immunohistochemical analyses demonstrate the presence of NKA in basolateral membranes, whereas the VHA is predominantly localized in cytoplasmic vesicles of branchial epithelial- and pillar-cells. X. testudinatus is closely related to other strong osmo-regulating brachyurans, which is also reflected in the phylogeny of the NKA. Accordingly, our results suggest that the evolution of strong ion regulatory abilities in brachyuran crabs that allowed the occupation of ecological niches in euryhaline, freshwater, and terrestrial habitats are probably also linked to substantial acid-base regulatory abilities. This physiological trait allowed X. testudinatus to successfully inhabit one of the world's most acidic marine environments. PMID:26869933

  11. Tales of scales: how to enable backup process tool qualification for high-end photomasks

    NASA Astrophysics Data System (ADS)

    Cantrell, G. R.; Bürgel, Christian; Sczyrba, Martin; Heumann, Jan; Meusemann, Stefan; Utzny, Clemens

    2012-06-01

    Strict reticle critical dimension (CD) control is needed to supply <= 20nm wafer technology nodes. In front end lithographic processes for example, precise temperature control in resist baking steps is considered paramount to limiting reticle CD error sources. Additionally, current density during writing and focus are continuously tracked in 50kV e-beam pattern generators (PG) in order to provide stable CD performance. Despite these strict controls (and many others), feedback compensation strategies are increasingly utilized in mask manufacturing to reach < 2nm 3σ CD uniformity (CDU). Such compensations require stable reticle CD signatures which can be problematic when alternate or backup process tools are employed. The AMTC has applied principle component analysis (PCA) to resist CD measurements of 50kV test reticles fabricated with chemically amplified resists (CAR) in order to quantify the resist CDU capabilities of front and backup lithographic process tools. PCA results elucidate significant resist CDU differences between similar lithographic process tools that are considered well matched via CDU 3σ comparisons. The utility of PCA relies on the statistical analysis of large data sets however, reticle CD sampling is typically sparse, on the 10-2 m or centimeter (cm) scale using conventional scanning electron microscopes (CD SEM). Higher CD spatial resolutions can be achieved using advanced inspection tools, which provide CD data on a substantially smaller length scale (10-4 m), thus yielding a considerably larger CD snapshot for front/backup process tool comparisons. Combining PCA analysis with high spatial resolution CD data provides novel insights into the opportunities for tool and process CD capabilities.

  12. Strong Ion Regulatory Abilities Enable the Crab Xenograpsus testudinatus to Inhabit Highly Acidified Marine Vent Systems.

    PubMed

    Hu, Marian Y; Guh, Ying-Jey; Shao, Yi-Ta; Kuan, Pou-Long; Chen, Guan-Lin; Lee, Jay-Ron; Jeng, Ming-Shiou; Tseng, Yung-Che

    2016-01-01

    Hydrothermal vent organisms have evolved physiological adaptations to cope with extreme abiotic conditions including temperature and pH. To date, acid-base regulatory abilities of vent organisms are poorly investigated, although this physiological feature is essential for survival in low pH environments. We report the acid-base regulatory mechanisms of a hydrothermal vent crab, Xenograpsus testudinatus, endemic to highly acidic shallow-water vent habitats with average environment pH-values ranging between 5.4 and 6.6. Within a few hours, X. testudinatus restores extracellular pH (pHe) in response to environmental acidification of pH 6.5 (1.78 kPa pCO2) accompanied by an increase in blood [Formula: see text] levels from 8.8 ± 0.3 to 31 ± 6 mM. Branchial Na(+)/K(+)-ATPase (NKA) and V-type H(+)-ATPase (VHA), the major ion pumps involved in branchial acid-base regulation, showed dynamic increases in response to acidified conditions on the mRNA, protein and activity level. Immunohistochemical analyses demonstrate the presence of NKA in basolateral membranes, whereas the VHA is predominantly localized in cytoplasmic vesicles of branchial epithelial- and pillar-cells. X. testudinatus is closely related to other strong osmo-regulating brachyurans, which is also reflected in the phylogeny of the NKA. Accordingly, our results suggest that the evolution of strong ion regulatory abilities in brachyuran crabs that allowed the occupation of ecological niches in euryhaline, freshwater, and terrestrial habitats are probably also linked to substantial acid-base regulatory abilities. This physiological trait allowed X. testudinatus to successfully inhabit one of the world's most acidic marine environments. PMID:26869933

  13. High-power fused assemblies enabled by advances in fiber-processing technologies

    NASA Astrophysics Data System (ADS)

    Wiley, Robert; Clark, Brett

    2011-02-01

    The power handling capabilities of fiber lasers are limited by the technologies available to fabricate and assemble the key optical system components. Previous tools for the assembly, tapering, and fusion of fiber laser elements have had drawbacks with regard to temperature range, alignment capability, assembly flexibility and surface contamination. To provide expanded capabilities for fiber laser assembly, a wide-area electrical plasma heat source was used in conjunction with an optimized image analysis method and a flexible alignment system, integrated according to mechatronic principles. High-resolution imaging and vision-based measurement provided feedback to adjust assembly, fusion, and tapering process parameters. The system was used to perform assembly steps including dissimilar-fiber splicing, tapering, bundling, capillary bundling, and fusion of fibers to bulk optic devices up to several mm in diameter. A wide range of fiber types and diameters were tested, including extremely large diameters and photonic crystal fibers. The assemblies were evaluated for conformation to optical and mechanical design criteria, such as taper geometry and splice loss. The completed assemblies met the performance targets and exhibited reduced surface contamination compared to assemblies prepared on previously existing equipment. The imaging system and image analysis algorithms provided in situ fiber geometry measurement data that agreed well with external measurement. The ability to adjust operating parameters dynamically based on imaging was shown to provide substantial performance benefits, particularly in the tapering of fibers and bundles. The integrated design approach was shown to provide sufficient flexibility to perform all required operations with a minimum of reconfiguration.

  14. Highly Flexible Self-Assembled V2O5 Cathodes Enabled by Conducting Diblock Copolymers

    PubMed Central

    An, Hyosung; Mike, Jared; Smith, Kendall A.; Swank, Lisa; Lin, Yen-Hao; L. Pesek, Stacy; Verduzco, Rafael; Lutkenhaus, Jodie L.

    2015-01-01

    Mechanically robust battery electrodes are desired for applications in wearable devices, flexible displays, and structural energy and power. In this regard, the challenge is to balance mechanical and electrochemical properties in materials that are inherently brittle. Here, we demonstrate a unique water-based self-assembly approach that incorporates a diblock copolymer bearing electron- and ion-conducting blocks, poly(3-hexylthiophene)-block-poly(ethyleneoxide) (P3HT-b-PEO), with V2O5 to form a flexible, tough, carbon-free hybrid battery cathode. V2O5 is a promising lithium intercalation material, but it remains limited by its poor conductivity and mechanical properties. Our approach leads to a unique electrode structure consisting of interlocking V2O5 layers glued together with micellar aggregates of P3HT-b-PEO, which results in robust mechanical properties, far exceeding the those obtained from conventional fluoropolymer binders. Only 5 wt % polymer is required to triple the flexibility of V2O5, and electrodes comprised of 10 wt % polymer have unusually high toughness (293 kJ/m3) and specific energy (530 Wh/kg), both higher than reduced graphene oxide paper electrodes. Furthermore, addition of P3HT-b-PEO enhances lithium-ion diffusion, eliminates cracking during cycling, and boosts cyclability relative to V2O5 alone. These results highlight the importance of tradeoffs between mechanical and electrochemical performance, where polymer content can be used to tune both aspects. PMID:26391053

  15. Highly Flexible Self-Assembled V2O5 Cathodes Enabled by Conducting Diblock Copolymers

    DOE PAGESBeta

    An, Hyosung; Mike, Jared; Smith, Kendall A.; Swank, Lisa; Lin, Yen-Hao; L. Pesek, Stacy; Verduzco, Rafael; Lutkenhaus, Jodie L.

    2015-09-22

    Mechanically robust battery electrodes are desired for applications in wearable devices, flexible displays, and structural energy and power. In this regard, the challenge is to balance mechanical and electrochemical properties in materials that are inherently brittle. Here, we demonstrate a unique water-based self-assembly approach that incorporates a diblock copolymer bearing electron- and ion-conducting blocks, poly(3-hexylthiophene)-block-poly(ethyleneoxide) (P3HT-b-PEO), with V2O5 to form a flexible, tough, carbon-free hybrid battery cathode. V2O5 is a promising lithium intercalation material, but it remains limited by its poor conductivity and mechanical properties. Our approach leads to a unique electrode structure consisting of interlocking V2O5 layers glued togethermore » with micellar aggregates of P3HT-b-PEO, which results in robust mechanical properties, far exceeding the those obtained from conventional fluoropolymer binders. Only 5 wt % polymer is required to triple the flexibility of V2O5, and electrodes comprised of 10 wt % polymer have unusually high toughness (293 kJ/m3) and specific energy (530 Wh/kg), both higher than reduced graphene oxide paper electrodes. Furthermore, addition of P3HT-b-PEO enhances lithium-ion diffusion, eliminates cracking during cycling, and boosts cyclability relative to V2O5 alone. These results highlight the importance of tradeoffs between mechanical and electrochemical performance, where polymer content can be used to tune both aspects.« less

  16. Conductive Polymer Binder-Enabled SiO-SnxCoyCz Anode for High-Energy Lithium-Ion Batteries.

    PubMed

    Zhao, Hui; Fu, Yanbao; Ling, Min; Jia, Zhe; Song, Xiangyun; Chen, Zonghai; Lu, Jun; Amine, Khalil; Liu, Gao

    2016-06-01

    A SiOSnCoC composite anode is assembled using a conductive polymer binder for the application in next-generation high energy density lithium-ion batteries. A specific capacity of 700 mAh/g is achieved at a 1C (900 mA/g) rate. A high active material loading anode with an areal capacity of 3.5 mAh/cm(2) is demonstrated by mixing SiOSnCoC with graphite. To compensate for the lithium loss in the first cycle, stabilized lithium metal powder (SLMP) is used for prelithiation; when paired with a commercial cathode, a stable full cell cycling performance with a 86% first cycle efficiency is realized. By achieving these important metrics toward a practical application, this conductive polymer binder/SiOSnCoC anode system presents great promise to enable the next generation of high-energy lithium-ion batteries. PMID:27160017

  17. High-utility conserved avian microsatellite markers enable parentage and population studies across a wide range of species

    PubMed Central

    2013-01-01

    Background Microsatellites are widely used for many genetic studies. In contrast to single nucleotide polymorphism (SNP) and genotyping-by-sequencing methods, they are readily typed in samples of low DNA quality/concentration (e.g. museum/non-invasive samples), and enable the quick, cheap identification of species, hybrids, clones and ploidy. Microsatellites also have the highest cross-species utility of all types of markers used for genotyping, but, despite this, when isolated from a single species, only a relatively small proportion will be of utility. Marker development of any type requires skill and time. The availability of sufficient “off-the-shelf” markers that are suitable for genotyping a wide range of species would not only save resources but also uniquely enable new comparisons of diversity among taxa at the same set of loci. No other marker types are capable of enabling this. We therefore developed a set of avian microsatellite markers with enhanced cross-species utility. Results We selected highly-conserved sequences with a high number of repeat units in both of two genetically distant species. Twenty-four primer sets were designed from homologous sequences that possessed at least eight repeat units in both the zebra finch (Taeniopygia guttata) and chicken (Gallus gallus). Each primer sequence was a complete match to zebra finch and, after accounting for degenerate bases, at least 86% similar to chicken. We assessed primer-set utility by genotyping individuals belonging to eight passerine and four non-passerine species. The majority of the new Conserved Avian Microsatellite (CAM) markers amplified in all 12 species tested (on average, 94% in passerines and 95% in non-passerines). This new marker set is of especially high utility in passerines, with a mean 68% of loci polymorphic per species, compared with 42% in non-passerine species. Conclusions When combined with previously described conserved loci, this new set of conserved markers will not only

  18. Bespoke contrast-matched diblock copolymer nanoparticles enable the rational design of highly transparent Pickering double emulsions

    NASA Astrophysics Data System (ADS)

    Rymaruk, Matthew J.; Thompson, Kate L.; Derry, Matthew J.; Warren, Nicholas J.; Ratcliffe, Liam P. D.; Williams, Clive N.; Brown, Steven L.; Armes, Steven P.

    2016-07-01

    We report the preparation of highly transparent oil-in-water Pickering emulsions using contrast-matched organic nanoparticles. This is achieved via addition of judicious amounts of either sucrose or glycerol to an aqueous dispersion of poly(glycerol monomethacrylate)56-poly(2,2,2-trifluoroethyl methacrylate)500 [PGMA-PTFEMA] diblock copolymer nanoparticles prior to high shear homogenization with an equal volume of n-dodecane. The resulting Pickering emulsions comprise polydisperse n-dodecane droplets of 20-100 μm diameter and exhibit up to 96% transmittance across the visible spectrum. In contrast, control experiments using non-contrast-matched poly(glycerol monomethacrylate)56-poly(benzyl methacrylate)300 [PGMA56-PBzMA300] diblock copolymer nanoparticles as a Pickering emulsifier only produced conventional highly turbid emulsions. Thus contrast-matching of the two immiscible phases is a necessary but not sufficient condition for the preparation of highly transparent Pickering emulsions: it is essential to use isorefractive nanoparticles in order to minimize light scattering. Furthermore, highly transparent oil-in-water-in-oil Pickering double emulsions can be obtained by homogenizing the contrast-matched oil-in-water Pickering emulsion prepared using the PGMA56-PTFEMA500 nanoparticles with a contrast-matched dispersion of hydrophobic poly(lauryl methacrylate)39-poly(2,2,2-trifluoroethyl methacrylate)800 [PLMA39-PTFEMA800] diblock copolymer nanoparticles in n-dodecane. Finally, we show that an isorefractive oil-in-water Pickering emulsion enables fluorescence spectroscopy to be used to monitor the transport of water-insoluble small molecules (pyrene and benzophenone) between n-dodecane droplets. Such transport is significantly less efficient than that observed for the equivalent isorefractive surfactant-stabilized emulsion. Conventional turbid emulsions do not enable such a comparison to be made because the intense light scattering leads to substantial spectral

  19. Bespoke contrast-matched diblock copolymer nanoparticles enable the rational design of highly transparent Pickering double emulsions.

    PubMed

    Rymaruk, Matthew J; Thompson, Kate L; Derry, Matthew J; Warren, Nicholas J; Ratcliffe, Liam P D; Williams, Clive N; Brown, Steven L; Armes, Steven P

    2016-08-14

    We report the preparation of highly transparent oil-in-water Pickering emulsions using contrast-matched organic nanoparticles. This is achieved via addition of judicious amounts of either sucrose or glycerol to an aqueous dispersion of poly(glycerol monomethacrylate)56-poly(2,2,2-trifluoroethyl methacrylate)500 [PGMA-PTFEMA] diblock copolymer nanoparticles prior to high shear homogenization with an equal volume of n-dodecane. The resulting Pickering emulsions comprise polydisperse n-dodecane droplets of 20-100 μm diameter and exhibit up to 96% transmittance across the visible spectrum. In contrast, control experiments using non-contrast-matched poly(glycerol monomethacrylate)56-poly(benzyl methacrylate)300 [PGMA56-PBzMA300] diblock copolymer nanoparticles as a Pickering emulsifier only produced conventional highly turbid emulsions. Thus contrast-matching of the two immiscible phases is a necessary but not sufficient condition for the preparation of highly transparent Pickering emulsions: it is essential to use isorefractive nanoparticles in order to minimize light scattering. Furthermore, highly transparent oil-in-water-in-oil Pickering double emulsions can be obtained by homogenizing the contrast-matched oil-in-water Pickering emulsion prepared using the PGMA56-PTFEMA500 nanoparticles with a contrast-matched dispersion of hydrophobic poly(lauryl methacrylate)39-poly(2,2,2-trifluoroethyl methacrylate)800 [PLMA39-PTFEMA800] diblock copolymer nanoparticles in n-dodecane. Finally, we show that an isorefractive oil-in-water Pickering emulsion enables fluorescence spectroscopy to be used to monitor the transport of water-insoluble small molecules (pyrene and benzophenone) between n-dodecane droplets. Such transport is significantly less efficient than that observed for the equivalent isorefractive surfactant-stabilized emulsion. Conventional turbid emulsions do not enable such a comparison to be made because the intense light scattering leads to substantial spectral

  20. A highly addressable static droplet array enabling digital control of a single droplet at pico-volume resolution.

    PubMed

    Jeong, Heon-Ho; Lee, Byungjin; Jin, Si Hyung; Jeong, Seong-Geun; Lee, Chang-Soo

    2016-04-26

    Droplet-based microfluidics enabling exquisite liquid-handling has been developed for diagnosis, drug discovery and quantitative biology. Compartmentalization of samples into a large number of tiny droplets is a great approach to perform multiplex assays and to improve reliability and accuracy using a limited volume of samples. Despite significant advances in microfluidic technology, individual droplet handling in pico-volume resolution is still a challenge in obtaining more efficient and varying multiplex assays. We present a highly addressable static droplet array (SDA) enabling individual digital manipulation of a single droplet using a microvalve system. In a conventional single-layer microvalve system, the number of microvalves required is dictated by the number of operation objects; thus, individual trap-and-release on a large-scale 2D array format is highly challenging. By integrating double-layer microvalves, we achieve a "balloon" valve that preserves the pressure-on state under released pressure; this valve can allow the selective releasing and trapping of 7200 multiplexed pico-droplets using only 1 μL of sample without volume loss. This selectivity and addressability completely arranged only single-cell encapsulated droplets from a mixture of droplet compositions via repetitive selective trapping and releasing. Thus, it will be useful for efficient handling of miniscule volumes of rare or clinical samples in multiplex or combinatory assays, and the selective collection of samples. PMID:27075732

  1. Ultra-deep sequencing enables high-fidelity recovery of biodiversity for bulk arthropod samples without PCR amplification

    PubMed Central

    2013-01-01

    Background Next-generation-sequencing (NGS) technologies combined with a classic DNA barcoding approach have enabled fast and credible measurement for biodiversity of mixed environmental samples. However, the PCR amplification involved in nearly all existing NGS protocols inevitably introduces taxonomic biases. In the present study, we developed new Illumina pipelines without PCR amplifications to analyze terrestrial arthropod communities. Results Mitochondrial enrichment directly followed by Illumina shotgun sequencing, at an ultra-high sequence volume, enabled the recovery of Cytochrome c Oxidase subunit 1 (COI) barcode sequences, which allowed for the estimation of species composition at high fidelity for a terrestrial insect community. With 15.5 Gbp Illumina data, approximately 97% and 92% were detected out of the 37 input Operational Taxonomic Units (OTUs), whether the reference barcode library was used or not, respectively, while only 1 novel OTU was found for the latter. Additionally, relatively strong correlation between the sequencing volume and the total biomass was observed for species from the bulk sample, suggesting a potential solution to reveal relative abundance. Conclusions The ability of the new Illumina PCR-free pipeline for DNA metabarcoding to detect small arthropod specimens and its tendency to avoid most, if not all, false positives suggests its great potential in biodiversity-related surveillance, such as in biomonitoring programs. However, further improvement for mitochondrial enrichment is likely needed for the application of the new pipeline in analyzing arthropod communities at higher diversity. PMID:23587339

  2. Biocompatible sodium alginate fibers by aqueous processing and physical crosslinking.

    PubMed

    Shen, Wei; Hsieh, You-Lo

    2014-02-15

    Sodium alginate (SA) hybrid fibers have been robustly fabricated by electrospinning of aqueous mixtures containing as high as 60% SA in the presence of polyvinyl alcohol (PVA). Solution viscosities of SA, PVA and their mixtures showed fiber spinning to be strongly influenced by the balance between SA-PVA and PVA-PVA intermolecular polar interaction and SA-SA repulsion. Low viscosity SAl (50 mPas at 1%) enabled higher SA loadings without significantly increasing mixture viscosities, producing more cylindrical fibers. All aqueous mixtures containing 33.3-60% SAl (5.68-7.15% total SAl-PVA) had viscosities ranging from 530 to 3600 mPas and could be electrospun continuously for at least 48 h. The SA-PVA hybrid fibers had diameters ranging from ca. 140 to 350 nm and were rendered stable in water via simultaneous ionic-crosslinking SA and crystallization of PVA (5% CaCl2 in 75% EtOH for 30 min). This aqueous electrospinning and physical crosslinking approach is a green and highly efficient alternative to create alginate hybrid fibers that are biologically compatible and ingestible for potential biomedical, food and other applications. PMID:24507361

  3. Risk of revision following total hip arthroplasty: metal-on-conventional polyethylene compared with metal-on-highly cross-linked polyethylene bearing surfaces: international results from six registries.

    PubMed

    Paxton, Elizabeth; Cafri, Guy; Havelin, Leif; Stea, Susanna; Pallisó, Francesc; Graves, Stephen; Hoeffel, Daniel; Sedrakyan, Art

    2014-12-17

    The results of randomized controlled trials and systematic reviews have suggested reduced radiographic wear in highly cross-linked polyethylene compared with conventional polyethylene in primary total hip arthroplasty. However, longer-term clinical results have not been thoroughly examined, to our knowledge. The purpose of this study was to compare the risk of revision for metal-on-conventional and metal-on-highly cross-linked total hip arthroplasty bearing surfaces with use of a distributed data network of six national and regional registries (Kaiser Permanente, HealthEast, the Emilia-Romagna region in Italy, the Catalan region in Spain, Norway, and Australia). Inclusion criteria were osteoarthritis as the primary diagnosis, cementless implant fixation, and a patient age of forty-five to sixty-four years. These criteria resulted in a sample of 16,571 primary total hip arthroplasties. Multivariate meta-analysis was performed with use of linear mixed models, with survival probability as the unit of analysis. The results of a fixed-effects model suggested that there was insufficient evidence of a difference in risk of revision between bearing surfaces (hazard ratio, 1.20 [95% confidence interval, 0.80 to 1.79]; p = 0.384). Highly cross-linked polyethylene does not appear to have a reduced risk of revision in this subgroup of total hip arthroplasty patients. Arthroplasties involving highly cross-linked polyethylene do not appear to have an increased risk of revision in this subgroup of total hip arthroplasty patients. PMID:25520415

  4. High-frame rate four dimensional optoacoustic tomography enables visualization of cardiovascular dynamics and mouse heart perfusion

    PubMed Central

    Deán-Ben, Xosé Luís; Ford, Steven James; Razansky, Daniel

    2015-01-01

    Functional imaging of mouse models of cardiac health and disease provides a major contribution to our fundamental understanding of the mammalian heart. However, imaging murine hearts presents significant challenges due to their small size and rapid heart rate. Here we demonstrate the feasibility of high-frame-rate, noninvasive optoacoustic imaging of the murine heart. The temporal resolution of 50 three-dimensional frames per second provides functional information at important phases of the cardiac cycle without the use of gating or other motion-reduction methods. Differentiation of the blood oxygenation state in the heart chambers was enabled by exploiting the wavelength dependence of optoacoustic signals. Real-time volumetric tracking of blood perfusion in the cardiac chambers was also evaluated using indocyanine green. Taken together, the newly-discovered capacities offer a unique tool set for in-vivo structural and functional imaging of the whole heart with high spatio-temporal resolution in all three dimensions. PMID:26130401

  5. Polybenzimidazole-crosslinked poly(vinylbenzyl chloride) with quaternary 1,4-diazabicyclo (2.2.2) octane groups as high-performance anion exchange membrane for fuel cells

    NASA Astrophysics Data System (ADS)

    Lu, Wangting; Zhang, Geng; Li, Jin; Hao, Jinkai; Wei, Feng; Li, Wenhui; Zhang, Jiying; Shao, Zhi-Gang; Yi, Baolian

    2015-11-01

    Development of anion exchange membrane (AEM) with high conductivity, good dimensional stability, desirable toughness and long life-time simultaneously is still a challenge for the practical application of AEM fuel cells. Herein, a novel AEM (denoted as PBI-c-PVBC/OH) is fabricated by applying polybenzimidazole (PBI) and 1,4-diazabicyclo (2.2.2) octane (DABCO) as the macromolecular crosslinker and quaternizing reagent for poly(vinylbenzyl chloride) (PVBC), respectively. With the aid of crosslinking by PBI, PBI-c-PVBC/OH exhibits good flexibility and strength both in dry and water-saturated state. Moreover, high hydroxide conductivity (>25 mS cm-1 at room temperature) and low swelling ratio (∼13%) is obtained, especially the swelling ratio nearly does not increase with temperature. The membrane is also advanced for the superior chemical stability in alkaline environment due to the stable polymer backbone and ionic conductive group (only one nitrogen atom in a DABCO molecule is quaternized). Furthermore, a peak power density of 230 mW cm-2 at 50 °C is obtained on the H2/O2 fuel cell using PBI-c-PVBC/OH, and the membrane presents high durability both in the constant current and continuous open circuit voltage testing. Therefore, it is considered that the PBI crosslinking together with DABCO quaternization can be regarded as a promising strategy in the development of AEM for fuel cells.

  6. Radiation induced estane polymer crosslinking

    SciTech Connect

    Fletcher, M.; Foster, P.

    1997-12-01

    The exposure of polymeric materials to radiation has been known to induce the effects of crosslinking and degradation. The crosslinking phenomena comes about when two long chain polymers become linked together by a primary bond that extends the chain and increases the viscosity, molecular weight and the elastic modules of the polymer. This process has been observed in relatively short periods of time with fairly high doses of radiation, on the order of several megarads/hour. This paper address low dose exposure over long periods of time to determine what the radiation effects are on the polymeric binder material in PBX 9501. An experimental sample of binder material without explosives will be placed into a thermal and radiation field produced from a W-48 put mod 0. Another sample will be placed in a thermal environment without the radiation. The following is the test plan that was submitted to the Pantex process. The data presented here will be from the first few weeks of exposure and this test will be continued over the next few years. Subsequent data will hopefully be presented in the next compatibility and aging conference.

  7. One-Step "Click Chemistry"-Synthesized Cross-Linked Prodrug Nanogel for Highly Selective Intracellular Drug Delivery and Upregulated Antitumor Efficacy.

    PubMed

    Zhang, Yu; Ding, Jianxun; Li, Mingqiang; Chen, Xin; Xiao, Chunsheng; Zhuang, Xiuli; Huang, Yubin; Chen, Xuesi

    2016-05-01

    Polymeric prodrugs formed by the conjugation of drugs onto polymers have shown great promise in cancer therapy because of the enhancement of water solubility, elimination of premature drug release, and the improvement of pharmacokinetics. To integrate the two advantages of upregulated stability during circulation and selective release of drug in cancer cells, a pH and reduction dual-sensitive prodrug nanogel (CLP) was synthesized via a simple one step "click chemistry". CLP was spherically shaped with a uniform diameter of 60.6 ± 13.7 nm and exhibited great stability in size against large volume dilution, high salt concentration, and long-time incubation in phosphate-buffered saline. Owing to the presence of hydrazone-bonded doxorubicin (DOX) and disulfide cross-linker, CLP released minimal amount (7.8%) of drug under normal physiological pH (i.e., 7.4) condition. But it released 85.5% of the loaded DOX at endosomal pH (i.e., 5.5) plus the presence of 5.0 mM GSH in 120 h. CLP could be effectively internalized by tumor cells and subsequently release DOX in the intracellular environment, resulting in effective proliferation inhibition of HeLa and MCF-7 cells. Furthermore, compared with free DOX and non-cross-linked prodrug micelle (NCLP), CLP accumulated more in tumor site but less in the normal organs, so that CLP performed the enhanced antitumor efficiency and reduced side-toxicities toward the MCF-7 human breast cancer xenograft nude mouse model. With convenient fabrication, favorable stability, controlled release properties, optimized biodistribution, and enhanced suppression of tumor growth, CLP held great potential for optimal antitumor therapy. PMID:27077549

  8. Radiolytic preparation of poly(styrene sulfonic acid) - grafted poly(tetrafluoroethylene- co-perfluorovinyl vinyl ether) membranes with highly cross-linked networks

    NASA Astrophysics Data System (ADS)

    Kang, Sung-A.; Shin, Junhwa; Fei, Geng; Ko, Beom-Seok; Kim, Chong-Yeal; Nho, Young-Chang

    2010-11-01

    In this study, various amounts of a divinylbenzene (DVB) cross-linking agent (5˜30%) were introduced during a simultaneous irradiation grafting of styrene onto a PFA film of a 25 μm thickness in order to prepare a series of poly(styrene sulfonic acid)-grafted poly(tetrafluoroethylene- co-perfluorovinyl vinyl ether) (PFA) membranes with various degrees of cross-linking and grafting (29˜74%). The effects of the DVB cross-linking agent on the properties of the prepared membranes, such as water uptake, proton conductivity, methanol permeability, and chemical stability, were also investigated in this study. The results indicated that the ion exchange capacity (IEC) slightly decreased with increasing DVB content, whereas the water uptake, proton conductivity, and methanol permeability of the membrane greatly decreased. The chemical stability of the prepared membranes was found to be significantly improved with increasing DVB content. The results indicated that the cross-linked network membranes are promising for application in a direct methanol fuel cell.

  9. Structural Analysis of Guanylyl Cyclase-Activating Protein-2 (GCAP-2) Homodimer by Stable Isotope-Labeling, Chemical Cross-Linking, and Mass Spectrometry

    NASA Astrophysics Data System (ADS)

    Pettelkau, Jens; Thondorf, Iris; Theisgen, Stephan; Lilie, Hauke; Schröder, Thomas; Arlt, Christian; Ihling, Christian H.; Sinz, Andrea

    2013-12-01

    The topology of the GCAP-2 homodimer was investigated by chemical cross-linking and high resolution mass spectrometry. Complementary conducted size-exclusion chromatography and analytical ultracentrifugation studies indicated that GCAP-2 forms a homodimer both in the absence and in the presence of Ca2+. In-depth MS and MS/MS analysis of the cross-linked products was aided by 15 N-labeled GCAP-2. The use of isotope-labeled protein delivered reliable structural information on the GCAP-2 homodimer, enabling an unambiguous discrimination between cross-links within one monomer (intramolecular) or between two subunits (intermolecular). The limited number of cross-links obtained in the Ca2+-bound state allowed us to deduce a defined homodimeric GCAP-2 structure by a docking and molecular dynamics approach. In the Ca2+-free state, GCAP-2 is more flexible as indicated by the higher number of cross-links. We consider stable isotope-labeling to be indispensable for deriving reliable structural information from chemical cross-linking data of multi-subunit protein assemblies.

  10. High activity enables life on a high-sugar diet: blood glucose regulation in nectar-feeding bats

    PubMed Central

    Kelm, Detlev H.; Simon, Ralph; Kuhlow, Doreen; Voigt, Christian C.; Ristow, Michael

    2011-01-01

    High blood glucose levels caused by excessive sugar consumption are detrimental to mammalian health and life expectancy. Despite consuming vast quantities of sugar-rich floral nectar, nectar-feeding bats are long-lived, provoking the question of how they regulate blood glucose. We investigated blood glucose levels in nectar-feeding bats (Glossophaga soricina) in experiments in which we varied the amount of dietary sugar or flight time. Blood glucose levels increased with the quantity of glucose ingested and exceeded 25 mmol l−1 blood in resting bats, which is among the highest values ever recorded in mammals fed sugar quantities similar to their natural diet. During normal feeding, blood glucose values decreased with increasing flight time, but only fell to expected values when bats spent 75 per cent of their time airborne. Either nectar-feeding bats have evolved mechanisms to avoid negative health effects of hyperglycaemia, or high activity is key to balancing blood glucose levels during foraging. We suggest that the coevolutionary specialization of bats towards a nectar diet was supported by the high activity and elevated metabolic rates of these bats. High activity may have conferred benefits to the bats in terms of behavioural interactions and foraging success, and is simultaneously likely to have increased their efficiency as plant pollinators. PMID:21490011

  11. Crosslinking biopolymers for biomedical applications.

    PubMed

    Reddy, Narendra; Reddy, Roopa; Jiang, Qiuran

    2015-06-01

    Biomaterials made from proteins, polysaccharides, and synthetic biopolymers are preferred but lack the mechanical properties and stability in aqueous environments necessary for medical applications. Crosslinking improves the properties of the biomaterials, but most crosslinkers either cause undesirable changes to the functionality of the biopolymers or result in cytotoxicity. Glutaraldehyde, the most widely used crosslinking agent, is difficult to handle and contradictory views have been presented on the cytotoxicity of glutaraldehyde-crosslinked materials. Recently, poly(carboxylic acids) that can crosslink in both dry and wet conditions have been shown to provide the desired improvements in tensile properties, increase in stability under aqueous conditions, and also promote cell attachment and proliferation. Green chemicals and newer crosslinking approaches are necessary to obtain biopolymeric materials with properties desired for medical applications. PMID:25887334

  12. Large Scale Chemical Cross-linking Mass Spectrometry Perspectives

    PubMed Central

    Zybailov, Boris L.; Glazko, Galina V.; Jaiswal, Mihir; Raney, Kevin D.

    2014-01-01

    The spectacular heterogeneity of a complex protein mixture from biological samples becomes even more difficult to tackle when one’s attention is shifted towards different protein complex topologies, transient interactions, or localization of PPIs. Meticulous protein-by-protein affinity pull-downs and yeast-two-hybrid screens are the two approaches currently used to decipher proteome-wide interaction networks. Another method is to employ chemical cross-linking, which gives not only identities of interactors, but could also provide information on the sites of interactions and interaction interfaces. Despite significant advances in mass spectrometry instrumentation over the last decade, mapping Protein-Protein Interactions (PPIs) using chemical cross-linking remains time consuming and requires substantial expertise, even in the simplest of systems. While robust methodologies and software exist for the analysis of binary PPIs and also for the single protein structure refinement using cross-linking-derived constraints, undertaking a proteome-wide cross-linking study is highly complex. Difficulties include i) identifying cross-linkers of the right length and selectivity that could capture interactions of interest; ii) enrichment of the cross-linked species; iii) identification and validation of the cross-linked peptides and cross-linked sites. In this review we examine existing literature aimed at the large-scale protein cross-linking and discuss possible paths for improvement. We also discuss short-length cross-linkers of broad specificity such as formaldehyde and diazirine-based photo-cross-linkers. These cross-linkers could potentially capture many types of interactions, without strict requirement for a particular amino-acid to be present at a given protein-protein interface. How these shortlength, broad specificity cross-linkers be applied to proteome-wide studies? We will suggest specific advances in methodology, instrumentation and software that are needed to

  13. Quantifying the Nucleation and Growth Kinetics of Microwave Nanochemistry Enabled by in Situ High-Energy X-ray Scattering.

    PubMed

    Liu, Qi; Gao, Min-Rui; Liu, Yuzi; Okasinski, John S; Ren, Yang; Sun, Yugang

    2016-01-13

    The fast reaction kinetics presented in the microwave synthesis of colloidal silver nanoparticles was quantitatively studied, for the first time, by integrating a microwave reactor with in situ X-ray diffraction at a high-energy synchrotron beamline. Comprehensive data analysis reveals two different types of reaction kinetics corresponding to the nucleation and growth of the Ag nanoparticles. The formation of seeds (nucleation) follows typical first-order reaction kinetics with activation energy of 20.34 kJ/mol, while the growth of seeds (growth) follows typical self-catalytic reaction kinetics. Varying the synthesis conditions indicates that the microwave colloidal chemistry is independent of concentration of surfactant. These discoveries reveal that the microwave synthesis of Ag nanoparticles proceeds with reaction kinetics significantly different from the synthesis present in conventional oil bath heating. The in situ X-ray diffraction technique reported in this work is promising to enable further understanding of crystalline nanomaterials formed through microwave synthesis. PMID:26625184

  14. Sensory processing within cockroach antenna enables rapid implementation of feedback control for high-speed running maneuvers.

    PubMed

    Mongeau, Jean-Michel; Sponberg, Simon N; Miller, John P; Full, Robert J

    2015-08-01

    Animals are remarkably stable during high-speed maneuvers. As the speed of locomotion increases, neural bandwidth and processing delays can limit the ability to achieve and maintain stable control. Processing the information of sensory stimuli into a control signal within the sensor itself could enable rapid implementation of whole-body feedback control during high-speed locomotion. Here, we show that processing in antennal afferents is sufficient to act as the control signal for a fast sensorimotor loop. American cockroaches Periplaneta americana use their antennae to mediate escape running by tracking vertical surfaces such as walls. A control theoretic model of wall following predicts that stable control is possible if the animal can compute wall position (P) and velocity, its derivative (D). Previous whole-nerve recordings from the antenna during simulated turning experiments demonstrated a population response consistent with P and D encoding, and suggested that the response was synchronized with the timing of a turn executed while wall following. Here, we record extracellularly from individual mechanoreceptors distributed along the antenna and show that these receptors encode D and have distinct latencies and filtering properties. The summed output of these receptors can be used as a control signal for rapid steering maneuvers. The D encoding within the antenna in addition to the temporal filtering properties and P dependence of the population of afferents support a sensory-encoding notion from control theory. Our findings support the notion that peripheral sensory processing can enable rapid implementation of whole-body feedback control during rapid running maneuvers. PMID:26026042

  15. Nano-sized structured layered positive electrode materials to enable high energy density and high rate capability lithium batteries

    DOEpatents

    Deng, Haixia; Belharouak, Ilias; Amine, Khalil

    2012-10-02

    Nano-sized structured dense and spherical layered positive active materials provide high energy density and high rate capability electrodes in lithium-ion batteries. Such materials are spherical second particles made from agglomerated primary particles that are Li.sub.1+.alpha.(Ni.sub.xCo.sub.yMn.sub.z).sub.1-tM.sub.tO.sub.2-dR.sub.d- , where M is selected from can be Al, Mg, Fe, Cu, Zn, Cr, Ag, Ca, Na, K, In, Ga, Ge, V, Mo, Nb, Si, Ti, Zr, or a mixture of any two or more thereof, R is selected from F, Cl, Br, I, H, S, N, or a mixture of any two or more thereof, and 0.ltoreq..alpha..ltoreq.0.50; 0

  16. Ionic supramolecular bonds preserve mechanical properties and enable synergetic performance at high humidity in water-borne, self-assembled nacre-mimetics

    NASA Astrophysics Data System (ADS)

    Das, Paramita; Walther, Andreas

    2013-09-01

    Although tremendous effort has been focused on enhancing the mechanical properties of nacre-mimetic materials, conservation of high stiffness and strength against hydration-induced decay of mechanical properties at high humidity remains a fundamental challenge in such water-borne high-performance materials. Herein, we demonstrate that ionic supramolecular bonds, introduced by infiltration of divalent Cu2+ ions, allow efficient stabilization of the mechanical properties of self-assembled water-borne nacre-mimetics based on sustainable sodium carboxymethylcellulose (Na+CMC) and natural sodium montmorillonite nanoclay (Na+MTM) against high humidity (95% RH). The mechanical properties in the highly hydrated state (Young's modulus up to 13.5 GPa and tensile strength up to 125 MPa) are in fact comparable to a range of non-crosslinked nacre-mimetic materials in the dry state. Moreover, the Cu2+-treated nacre-inspired materials display synergetic mechanical properties as found in a simultaneous improvement of stiffness, strength and toughness, as compared to the pristine material. Significant inelastic deformation takes place considering the highly reinforced state. This contrasts the typical behaviour of tight, covalent crosslinks and is suggested to originate from a sacrificial, dynamic breakage and rebinding of transient supramolecular ionic bonds. Considering easy access to a large range of ionic interactions and alteration of counter-ion charge via external stimuli, we foresee responsive and adaptive mechanical properties in highly reinforced and stiff bio-inspired bulk nanocomposites and in other bio-inspired materials, e.g. nanocellulose papers and peptide-based materials.Although tremendous effort has been focused on enhancing the mechanical properties of nacre-mimetic materials, conservation of high stiffness and strength against hydration-induced decay of mechanical properties at high humidity remains a fundamental challenge in such water-borne high

  17. High resolution light-sheet based high-throughput imaging cytometry system enables visualization of intra-cellular organelles

    NASA Astrophysics Data System (ADS)

    Regmi, Raju; Mohan, Kavya; Mondal, Partha Pratim

    2014-09-01

    Visualization of intracellular organelles is achieved using a newly developed high throughput imaging cytometry system. This system interrogates the microfluidic channel using a sheet of light rather than the existing point-based scanning techniques. The advantages of the developed system are many, including, single-shot scanning of specimens flowing through the microfluidic channel at flow rate ranging from micro- to nano- lit./min. Moreover, this opens-up in-vivo imaging of sub-cellular structures and simultaneous cell counting in an imaging cytometry system. We recorded a maximum count of 2400 cells/min at a flow-rate of 700 nl/min, and simultaneous visualization of fluorescently-labeled mitochondrial network in HeLa cells during flow. The developed imaging cytometry system may find immediate application in biotechnology, fluorescence microscopy and nano-medicine.

  18. Dual-Beam Histotripsy: A Low-Frequency Pump Enabling a High-Frequency Probe for Precise Lesion Formation

    PubMed Central

    Lin, Kuang-Wei; Duryea, Alexander P.; Kim, Yohan; Hall, Timothy L.; Xu, Zhen; Cain, Charles A.

    2014-01-01

    Histotripsy produces tissue fractionation through dense energetic bubble clouds generated by short, high-pressure, ultrasound pulses. When using pulses shorter than 2 cycles, the generation of these energetic bubble clouds only depends on where the peak negative pressure (P–) exceeds an intrinsic threshold of a medium (26 – 30 MPa in soft tissue with high water content). This paper investigates a strategic method for precise lesion generation in which a low-frequency pump pulse is applied to enable a sub-threshold high-frequency probe pulse to exceed the intrinsic threshold. This pump-probe method of controlling a supra-threshold volume can be called “dual-beam histotripsy.” A 20-element dual-frequency (500 kHz and 3 MHz elements confocally aligned) array transducer was used to generate dual-beam histotripsy pulses in RBC phantoms and porcine hepatic tissue specimens. The results showed that, when sub-intrinsic-threshold pump (500 kHz) and probe (3 MHz) pulses were applied together, dense bubble clouds (and resulting lesions) were only generated when their peak negative pressures combined constructively to exceed the intrinsic threshold. The smallest reproducible lesion varied with the relative amplitude between the pump and probe pulses, and, with a higher proportion of the probe pulse, smaller lesions could be generated. When the propagation direction of the probe pulse relative to the pump pulse was altered, the shape of the produced lesion changed based on the region that exceeded intrinsic threshold. Since the low-frequency pump pulse is more immune to attenuation and aberrations, and the high-frequency probe pulse can provide precision in lesion formation, this dual-beam histotripsy approach would be very useful in situations where precise lesion formation is required through a highly attenuative and aberrative medium, such as transcranial therapy. This is particularly true if a small low-attenuation acoustic window is available for the high

  19. High-throughput sequencing enhanced phage display enables the identification of patient-specific epitope motifs in serum

    PubMed Central

    Christiansen, Anders; Kringelum, Jens V.; Hansen, Christian S.; Bøgh, Katrine L.; Sullivan, Eric; Patel, Jigar; Rigby, Neil M.; Eiwegger, Thomas; Szépfalusi, Zsolt; Masi, Federico de; Nielsen, Morten; Lund, Ole; Dufva, Martin

    2015-01-01

    Phage display is a prominent screening technique with a multitude of applications including therapeutic antibody development and mapping of antigen epitopes. In this study, phages were selected based on their interaction with patient serum and exhaustively characterised by high-throughput sequencing. A bioinformatics approach was developed in order to identify peptide motifs of interest based on clustering and contrasting to control samples. Comparison of patient and control samples confirmed a major issue in phage display, namely the selection of unspecific peptides. The potential of the bioinformatic approach was demonstrated by identifying epitopes of a prominent peanut allergen, Ara h 1, in sera from patients with severe peanut allergy. The identified epitopes were confirmed by high-density peptide micro-arrays. The present study demonstrates that high-throughput sequencing can empower phage display by (i) enabling the analysis of complex biological samples, (ii) circumventing the traditional laborious picking and functional testing of individual phage clones and (iii) reducing the number of selection rounds. PMID:26246327

  20. Transcriptome-based exon capture enables highly cost-effective comparative genomic data collection at moderate evolutionary scales

    PubMed Central

    2012-01-01

    Background To date, exon capture has largely been restricted to species with fully sequenced genomes, which has precluded its application to lineages that lack high quality genomic resources. We developed a novel strategy for designing array-based exon capture in chipmunks (Tamias) based on de novo transcriptome assemblies. We evaluated the performance of our approach across specimens from four chipmunk species. Results We selectively targeted 11,975 exons (~4 Mb) on custom capture arrays, and enriched over 99% of the targets in all libraries. The percentage of aligned reads was highly consistent (24.4-29.1%) across all specimens, including in multiplexing up to 20 barcoded individuals on a single array. Base coverage among specimens and within targets in each species library was uniform, and the performance of targets among independent exon captures was highly reproducible. There was no decrease in coverage among chipmunk species, which showed up to 1.5% sequence divergence in coding regions. We did observe a decline in capture performance of a subset of targets designed from a much more divergent ground squirrel genome (30 My), however, over 90% of the targets were also recovered. Final assemblies yielded over ten thousand orthologous loci (~3.6 Mb) with thousands of fixed and polymorphic SNPs among species identified. Conclusions Our study demonstrates the potential of a transcriptome-enabled, multiplexed, exon capture method to create thousands of informative markers for population genomic and phylogenetic studies in non-model species across the tree of life. PMID:22900609

  1. A high-force, out-of-plane actuator with a MEMS-enabled microscissor motion amplifier

    NASA Astrophysics Data System (ADS)

    Xie, Xin; Livermore, Carol

    2015-12-01

    The design, fabrication, and demonstration of a set of 2 mm2, high-force actuators that combine piezoelectric in-plane actuators with MEMS-enabled scissor mechanisms (motion amplifiers) to simultaneously produce high out-of-plane forces and large out-of-plane displacements are presented. The microscissor motion amplifier employs two layers of lithographically-patterned SU-8 microstructure laminated with a thin film of structural polyimide and adhesive to form hinges. Performance is optimized by varying layer thickness and adhesive types. Measured displacements of >3 μm and measured forces of >5 mN are observed, corresponding to a displacement per unit area of 1.6 μm/mm2 and a force per unit area of 2.6 mN/mm2. Cyanoacrylate adhesive provides superior performance to silicone adhesive, with larger force output. Thicker polyimide hinges provide smaller displacement but greater force than thinner polyimide hinges. These powerful, compact actuators have significant potential for high-force applications like tactile displays and micropumps.

  2. Enabling systematic interrogation of protein-protein interactions in live cells with a versatile ultra-high-throughput biosensor platform.

    PubMed

    Mo, Xiu-Lei; Luo, Yin; Ivanov, Andrei A; Su, Rina; Havel, Jonathan J; Li, Zenggang; Khuri, Fadlo R; Du, Yuhong; Fu, Haian

    2016-06-01

    Large-scale genomics studies have generated vast resources for in-depth understanding of vital biological and pathological processes. A rising challenge is to leverage such enormous information to rapidly decipher the intricate protein-protein interactions (PPIs) for functional characterization and therapeutic interventions. While a number of powerful technologies have been employed to detect PPIs, a singular PPI biosensor platform with both high sensitivity and robustness in a mammalian cell environment remains to be established. Here we describe the development and integration of a highly sensitive NanoLuc luciferase-based bioluminescence resonance energy transfer technology, termed BRET(n), which enables ultra-high-throughput (uHTS) PPI detection in live cells with streamlined co-expression of biosensors in a miniaturized format. We further demonstrate the application of BRET(n) in uHTS format in chemical biology research, including the discovery of chemical probes that disrupt PRAS40 dimerization and pathway connectivity profiling among core members of the Hippo signaling pathway. Such hippo pathway profiling not only confirmed previously reported PPIs, but also revealed two novel interactions, suggesting new mechanisms for regulation of Hippo signaling. Our BRET(n) biosensor platform with uHTS capability is expected to accelerate systematic PPI network mapping and PPI modulator-based drug discovery. PMID:26578655

  3. Fabrication of perforated isoporous membranes via a transfer-free strategy: enabling high-resolution separation of cells.

    PubMed

    Ou, Yang; Lv, Chang-Jiang; Yu, Wei; Mao, Zheng-Wei; Wan, Ling-Shu; Xu, Zhi-Kang

    2014-12-24

    Thin perforated membranes with ordered pores are ideal barriers for high-resolution and high-efficiency selective transport and separation of biological species. However, for self-assembled thin membranes with a thickness less than several micrometers, an additional step of transferring the membranes onto porous supports is generally required. In this article, we present a facile transfer-free strategy for fabrication of robust perforated composite membranes via the breath figure process, and for the first time, demonstrate the application of the membranes in high-resolution cell separation of yeasts and lactobacilli without external pressure, achieving almost 100% rejection of yeasts and more than 70% recovery of lactobacilli with excellent viability. The avoidance of the transfer step simplifies the fabrication procedure of composite membranes and greatly improves the membrane homogeneity. Moreover, the introduction of an elastic triblock copolymer increases the interfacial strength between the membrane and the support, and allows the preservation of composite membranes in a dry state. Such perforated ordered membranes can also be applied in other size-based separation systems, enabling new opportunities in bioseparation and biosensors. PMID:25421306

  4. Post-Polymerization Crosslinked Polyurethane Shape-Memory Polymers.

    PubMed

    Hearon, K; Gall, K; Ware, T; Maitland, D J; Bearinger, J P; Wilson, T S

    2011-07-01

    Novel urethane shape-memory polymers (SMPs) of significant industrial relevance have been synthesized and characterized. Chemically crosslinked SMPs have traditionally been made in a one-step polymerization of monomers and crosslinking agents. However, these new post-polymerization crosslinked SMPs can be processed into complex shapes by thermoplastic manufacturing methods and later crosslinked by heat exposure or by electron beam irradiation. Several series of linear, olefinic urethane polymers were made from 2-butene-1,4-diol, other saturated diols, and various aliphatic diisocyanates. These thermoplastics were melt-processed into desired geometries and thermally crosslinked at 200°C or radiation crosslinked at 50 kGy. The SMPs were characterized by solvent swelling and extraction, differential scanning calorimetry (DSC), dynamic mechanical analysis (DMA), tensile testing, and qualitative shape-recovery analysis. Swelling and DMA results provided concrete evidence of chemical crosslinking, and further characterization revealed that the urethanes had outstanding mechanical properties. Key properties include tailorable transitions between 25 and 80°C, tailorable rubbery moduli between 0.2 and 4.2 MPa, recoverable strains approaching 100%, failure strains of over 500% at T(g), and qualitative shape-recovery times of less than 12 seconds at body temperature (37°C). Because of its outstanding thermo-mechanical properties, one polyurethane was selected for implementation in the design of a complex medical device. These post-polymerization crosslinked urethane SMPs are an industrially relevant class of highly processable shape-memory materials. PMID:21572577

  5. Post-Polymerization Crosslinked Polyurethane Shape-Memory Polymers

    PubMed Central

    Hearon, K.; Gall, K.; Ware, T.; Maitland, D. J.; Bearinger, J. P.; Wilson, T. S.

    2011-01-01

    Novel urethane shape-memory polymers (SMPs) of significant industrial relevance have been synthesized and characterized. Chemically crosslinked SMPs have traditionally been made in a one-step polymerization of monomers and crosslinking agents. However, these new post-polymerization crosslinked SMPs can be processed into complex shapes by thermoplastic manufacturing methods and later crosslinked by heat exposure or by electron beam irradiation. Several series of linear, olefinic urethane polymers were made from 2-butene-1,4-diol, other saturated diols, and various aliphatic diisocyanates. These thermoplastics were melt-processed into desired geometries and thermally crosslinked at 200°C or radiation crosslinked at 50 kGy. The SMPs were characterized by solvent swelling and extraction, differential scanning calorimetry (DSC), dynamic mechanical analysis (DMA), tensile testing, and qualitative shape-recovery analysis. Swelling and DMA results provided concrete evidence of chemical crosslinking, and further characterization revealed that the urethanes had outstanding mechanical properties. Key properties include tailorable transitions between 25 and 80°C, tailorable rubbery moduli between 0.2 and 4.2 MPa, recoverable strains approaching 100%, failure strains of over 500% at Tg, and qualitative shape-recovery times of less than 12 seconds at body temperature (37°C). Because of its outstanding thermo-mechanical properties, one polyurethane was selected for implementation in the design of a complex medical device. These post-polymerization crosslinked urethane SMPs are an industrially relevant class of highly processable shape-memory materials. PMID:21572577

  6. Traceless cross-linker for photocleavable bioconjugation.

    PubMed

    Wang, Rong; Yan, Funing; Qiu, Dengli; Jeong, Jae-Sun; Jin, Qiaoling; Kim, Tae-Young; Chen, Liaohai

    2012-04-18

    Photoresponsive bioconjugation empowers the development of novel methods for drug discovery, disease diagnosis, and high-throughput screening, among others. In this paper, we report on the characteristics of a traceless photocleavable cross-linker, di-6-(3-succinimidyl carbonyloxymethyl-4-nitro-phenoxy)-hexanoic acid disulfide diethanol ester (SCNE). The traceless feature and the biocompatibility of this photocleavable cross-linking reagent were corroborated. Consequently, we demonstrated its application in reversible phage particle immobilization that could provide a platform for direct single-phage screening. We also applied it in protein-photoprinting, where SCNE acts as a "photo-eraser" to remove the cross-linked protein molecules at a desired region in a simple, clean, and light-controllable fashion. We further demonstrated the two-tier atomic force microscopic (AFM) method that uses SCNE to carry out two subsequent AFM tasks in situ. The approach allows guided protein delivery and subsequent high-resolution imaging at the same local area, thus opening up the possibility of monitoring protein functions in live cells. The results imply that SCNE is a versatile cross-linker that can be used for a wide range of applications where photocleavage ensures clean and remote-controllable release of biological molecules from a substrate. PMID:22432929

  7. Utilization of highly robust and selective crosslinked polymeric ionic liquid-based sorbent coatings in direct-immersion solid-phase microextraction and high-performance liquid chromatography for determining polar organic pollutants in waters.

    PubMed

    Pacheco-Fernández, Idaira; Najafi, Ali; Pino, Verónica; Anderson, Jared L; Ayala, Juan H; Afonso, Ana M

    2016-09-01

    Several crosslinked polymeric ionic liquid (PIL)-based sorbent coatings of different nature were prepared by UV polymerization onto nitinol wires. They were evaluated in a direct-immersion solid-phase microextraction (DI-SPME) method in combination with high-performance liquid chromatography (HPLC) and diode array detection (DAD). The studied PIL coatings contained either vinyl alkyl or vinylbenzyl imidazolium-based (ViCnIm- or ViBCnIm-) IL monomers with different anions, as well as different dicationic IL crosslinkers. The analytical performance of these PIL-based SPME coatings was firstly evaluated for the extraction of a group of 10 different model analytes, including hydrocarbons and phenols, while exhaustively comparing the performance with commercial SPME fibers such as polydimethylsyloxane (PDMS), polyacrylate (PA) and polydimethylsiloxane/divinylbenzene (PDMS/DVB), and using all fibers under optimized conditions. Those fibers exhibiting a high selectivity for polar compounds were selected to carry out an analytical method for a group of 5 alkylphenols, including bisphenol-A (BPA) and nonylphenol (n-NP). Under optimum conditions, average relative recoveries of 108% and inter-day precision values (3 non-consecutive days) lower than 19% were obtained for a spiked level of 10µgL(-1). Correlations coefficients for the overall method ranged between 0.990 and 0.999, and limits of detection were down to 1µgL(-1). Tap water, river water, and bottled water were analyzed to evaluate matrix effects. Comparison with the PA fiber was also performed in terms of analytical performance. Partition coefficients (logKfs) of the alkylphenols to the SPME coating varied from 1.69 to 2.45 for the most efficient PIL-based fiber, and from 1.58 to 2.30 for the PA fiber. These results agree with those obtained by the normalized calibration slopes, pointing out the affinity of these PILs-based coatings. PMID:27343586

  8. Bioprinting vessel-like constructs using hyaluronan hydrogels crosslinked with tetrahedral polyethylene glycol tetracrylates.

    PubMed

    Skardal, Aleksander; Zhang, Jianxing; Prestwich, Glenn D

    2010-08-01

    Bioprinting enables deposition of cells and biomaterials into spatial orientations and complexities that mirror physiologically relevant geometries. To facilitate the development of bioartificial vessel-like grafts, two four-armed polyethylene glycol (PEG) derivatives with different PEG chain lengths, TetraPEG8 and TetraPEG13, were synthesized from tetrahedral pentaerythritol derivatives. The TetraPEGs are unique multi-armed PEGs with a compact and symmetrical core. The TetraPEGs were converted to tetra-acrylate derivatives (TetraPAcs) which were used in turn to co-crosslink thiolated hyaluronic acid and gelatin derivatives into extrudable hydrogels for printing tissue constructs. First, the hydrogels produced by TetraPAc crosslinking showed significantly higher shear storage moduli when compared to PEG diacrylate (PEGDA)-crosslinked synthetic extracellular matrices (sECMs) of similar composition. These stiffer hydrogels have rheological properties more suited to bioprinting high-density cell suspensions. Second, TetraPAc-crosslinked sECMs were equivalent or superior to PEGDA-crosslinked gels in supporting cell growth and proliferation. Third, the TetraPac sECMs were employed in a proof-of-concept experiment by encapsulation of NIH 3T3 cells in sausage-like hydrogel macrofilaments. These macrofilaments were then printed into tubular tissue constructs by layer-by-layer deposition using the Fab@Home printing system. LIVE/DEAD viability/cytotoxicity-stained cross-sectional images showed the bioprinted cell structures to be viable in culture for up to 4 weeks with little evidence of cell death. Thus, biofabrication of cell suspensions in TetraPAc sECMs demonstrates the feasibility of building bioartificial blood vessel-like constructs for research and potentially clinical uses. PMID:20546891

  9. Bespoke contrast-matched diblock copolymer nanoparticles enable the rational design of highly transparent Pickering double emulsions

    NASA Astrophysics Data System (ADS)

    Rymaruk, Matthew J.; Thompson, Kate L.; Derry, Matthew J.; Warren, Nicholas J.; Ratcliffe, Liam P. D.; Williams, Clive N.; Brown, Steven L.; Armes, Steven P.

    2016-07-01

    We report the preparation of highly transparent oil-in-water Pickering emulsions using contrast-matched organic nanoparticles. This is achieved via addition of judicious amounts of either sucrose or glycerol to an aqueous dispersion of poly(glycerol monomethacrylate)56-poly(2,2,2-trifluoroethyl methacrylate)500 [PGMA-PTFEMA] diblock copolymer nanoparticles prior to high shear homogenization with an equal volume of n-dodecane. The resulting Pickering emulsions comprise polydisperse n-dodecane droplets of 20-100 μm diameter and exhibit up to 96% transmittance across the visible spectrum. In contrast, control experiments using non-contrast-matched poly(glycerol monomethacrylate)56-poly(benzyl methacrylate)300 [PGMA56-PBzMA300] diblock copolymer nanoparticles as a Pickering emulsifier only produced conventional highly turbid emulsions. Thus contrast-matching of the two immiscible phases is a necessary but not sufficient condition for the preparation of highly transparent Pickering emulsions: it is essential to use isorefractive nanoparticles in order to minimize light scattering. Furthermore, highly transparent oil-in-water-in-oil Pickering double emulsions can be obtained by homogenizing the contrast-matched oil-in-water Pickering emulsion prepared using the PGMA56-PTFEMA500 nanoparticles with a contrast-matched dispersion of hydrophobic poly(lauryl methacrylate)39-poly(2,2,2-trifluoroethyl methacrylate)800 [PLMA39-PTFEMA800] diblock copolymer nanoparticles in n-dodecane. Finally, we show that an isorefractive oil-in-water Pickering emulsion enables fluorescence spectroscopy to be used to monitor the transport of water-insoluble small molecules (pyrene and benzophenone) between n-dodecane droplets. Such transport is significantly less efficient than that observed for the equivalent isorefractive surfactant-stabilized emulsion. Conventional turbid emulsions do not enable such a comparison to be made because the intense light scattering leads to substantial spectral

  10. Photo-induced cross-linking of unmodified proteins (PICUP) applied to amyloidogenic peptides.

    PubMed

    Rahimi, Farid; Maiti, Panchanan; Bitan, Gal

    2009-01-01

    The assembly of amyloidogenic proteins into toxic oligomers is a seminal event in the pathogenesis of protein misfolding diseases, including Alzheimer's, Parkinson's, and Huntington's diseases, hereditary amyotrophic lateral sclerosis, and type 2 diabetes. Owing to the metastable nature of these protein assemblies, it is difficult to assess their oligomer size distribution quantitatively using classical methods, such as electrophoresis, chromatography, fluorescence, or dynamic light scattering. Oligomers of amyloidogenic proteins exist as metastable mixtures, in which the oligomers dissociate into monomers and associate into larger assemblies simultaneously. PICUP stabilizes oligomer populations by covalent cross-linking and when combined with fractionation methods, such as sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) or size-exclusion chromatography (SEC), PICUP provides snapshots of the oligomer size distributions that existed before cross-linking. Hence, PICUP enables visualization and quantitative analysis of metastable protein populations and can be used to monitor assembly and decipher relationships between sequence modifications and oligomerization(1). Mechanistically, PICUP involves photo-oxidation of Ru(2+) in a tris(bipyridyl)Ru(II) complex (RuBpy) to Ru(3+) by irradiation with visible light in the presence of an electron acceptor. Ru(3+) is a strong one-electron oxidizer capable of abstracting an electron from a neighboring protein molecule, generating a protein radical(1,2). Radicals are unstable, highly-reactive species and therefore disappear rapidly through a variety of intra- and intermolecular reactions. A radical may utilize the high energy of an unpaired electron to react with another protein monomer forming a dimeric radical, which subsequently loses a hydrogen atom and forms a stable, covalently-linked dimer. The dimer may then react further through a similar mechanism with monomers or other dimers to form higher

  11. Urban shear-wave reflection seismics enables high-resolution imaging of fault structures in the city of Hamburg

    NASA Astrophysics Data System (ADS)

    Krawczyk, C. M.; Polom, U.; Trabs, S.; Dahm, T.

    2011-12-01

    The investigated roof region of a salt diapir in Hamburg, northern Germany, suffers sinkhole activity that was accompanied lately by microseismic events in the Gross Flottbek quarter. Thus, a high geohazard potential is present which can only be evaluated if highly resolved structural data are available to characterize the presumably fault- and dissolution-driven subsurface processes. The urban environment and high building density required adapted and new, non-invasive geophysical methods for shallow applications. Our shear-wave seismic system, under development at LIAG, consists of a small, horizontal vibrator source (ELVIS, v. 5.0) and a 120 m long, mobile land streamer equipped with 120 SH-geophones. Thereby, a cost-effective, complete shear-wave seismic survey is possible, which is dedicated to urban applications and accounts for sealed surfaces. This high-resolution system is especially useful on sealed terrain because of the absence of surface waves, and it provides a higher resolution than a compressional-wave survey. Across the Wobbe See sinkhole in Gross Flottbek we acquired 500 profile m of high-resolution shear-wave seismics that enabled urban subsurface imaging with 1 m vertical and 5-10 m horizontal resolution. Small-scale structures in the sediments and salt are resolved down to 100 m depth. We show that it is possible (1) to classify a sinkhole type structurally -collapse depth is found here at ca. 60-80 m depth below surface- and (2) to map subrosion areas by the physical property of lowered shear-wave velocities and a chaotic reflection character. The fault structures found coincide well with the focal depth and mechanism of the 2009 microseismic events. Aditionally, the diapir model is confirmed locally in terms of rock salt depth suggested here lying ca. 150 m below surface.

  12. Low-cost, highly transparent flexible low-e coating film to enable electrochromic windows with increased energy savings

    SciTech Connect

    Berland, Brian; Hollingsworth, Russell

    2015-03-31

    Five Quads of energy are lost through windows annually in the U.S. Low-e coatings are increasingly employed to reduce the wasted energy. Most commonly, the low-e coating is an oxide material applied directly to the glass at high temperature. With over 100,000,000 existing homes, a retrofit product is crucial to achieve widespread energy savings. Low-e films, i.e. coatings on polymeric substrates, are now also available to meet this need. However, the traditional oxide materials and process is incompatible with low temperature plastics. Alternate high performing low-e films typically incorporate materials that limit visible transmission to 35% or less. Further, the cost is high. The objective of this award was to develop a retrofit, integrated low-e/electrochromic window film to dramatically reduce energy lost through windows. While field testing of state-of-the-art electrochromic (EC) windows show the energy savings are maximized if a low-e coating is used in conjunction with the EC, available low-e films have a low visible transmission (~70% or less) that limits the achievable clear state and therefore, appearance and energy savings potential. Comprehensive energy savings models were completed at Lawrence Berkeley National Lab (LBNL). A parametric approach was used to project energy usage for windows with a large range of low-e properties across all U.S. climate zones, without limiting the study to materials that had already been produced commercially or made in a lab. The model enables projection of energy savings for low-e films as well as integrated low-e/EC products. This project developed a novel low-e film, optimized for compatibility with EC windows, using low temperature, high deposition rate processes for the growth of low-e coatings on plastic films by microwave plasma enhanced chemical vapor deposition. Silica films with good density and optical properties were demonstrated at deposition rates as high as 130Å/sec. A simple bi-layer low-e stack of

  13. DNA Photolithography with Cinnamate Crosslinkers

    NASA Technical Reports Server (NTRS)

    Feng, Lang (Inventor); Chaikin, Paul Michael (Inventor)

    2016-01-01

    The present invention relates generally to cinnamate crosslinkers. Specifically, the present invention relates to gels, biochips, and functionalized surfaces useful as probes, in assays, in gels, and for drug delivery, and methods of making the same using a newly-discovered crosslinking configuration.

  14. High-Resolution Distance Dependence Study of Surface-Enhanced Raman Scattering Enabled by Atomic Layer Deposition.

    PubMed

    Masango, Sicelo S; Hackler, Ryan A; Large, Nicolas; Henry, Anne-Isabelle; McAnally, Michael O; Schatz, George C; Stair, Peter C; Van Duyne, Richard P

    2016-07-13

    We present a high-resolution distance dependence study of surface-enhanced Raman scattering (SERS) enabled by atomic layer deposition (ALD) at 55 and 100 °C. ALD is used to deposit monolayers of Al2O3 on bare silver film over nanospheres (AgFONs) and AgFONs functionalized with self-assembled monolayers. Operando SERS is used to measure the intensities of the Al-CH3 and C-H stretches from trimethylaluminum (TMA) as a function of distance from the AgFON surface. This study clearly demonstrates that SERS on AgFON substrates displays both a short- and long-range nanometer scale distance dependence. Excellent agreement is obtained between these experiments and theory that incorporates both short-range and long-range terms. This is a high-resolution operando SERS distance dependence study performed in one integrated experiment using ALD Al2O3 as the spacer layer and Raman label simultaneously. The long-range SERS distance dependence should make it possible to detect chemisorbed surface species located as far as ∼3 nm from the AgFON substrate and will provide new insight into the surface chemistry of ALD and catalytic reactions. PMID:27243108

  15. Pump-free gradient-based micro-device enables quantitative and high-throughput bacterial growth inhibition analysis.

    PubMed

    Ran, Min; Wang, Ying; Wang, Sida; Luo, Chunxiong

    2015-08-01

    Antibiotic susceptibility testing is very important in antibiotic therapy. Traditional methods to determine antibiotic susceptibility include disk diffusion and broth dilution. However, these tests are always labor intensive, time-consuming, and need large amounts of reagents. In this paper, we demonstrated a novel pump-free micro-device that enables quantitative and high-throughput bacterial growth inhibition analysis. This device consists of a series of wells and diffusion-based antibiotic gradient channels. The wells serve as antibiotic sources and buffer sinks, and we could easily observe the bacterial growth in the gradient channels .The design of the multi-wells is adapted to the commercialized multi-channel pipette, which makes it very convenient for loading reagents into the wells. For each assay, only about 20 μL antibiotic solution is needed. As a demonstration, we used both fluorescence images and dark-field images to quantify the bacterial growth inhibition effect under different antibiotics. The quantitative data of bacterial growth inhibition under different antibiotics can be obtained within 3 to 4 h. Considering the simple operation process and the high-throughput and quantitative result this device can offer, it has great potential to be widely used in clinics and may be useful for the study of the kinetics of bacterial growth. PMID:26044203

  16. Improved Selection of Internal Transcribed Spacer-Specific Primers Enables Quantitative, Ultra-High-Throughput Profiling of Fungal Communities

    PubMed Central

    Bokulich, Nicholas A.

    2013-01-01

    Ultra-high-throughput sequencing (HTS) of fungal communities has been restricted by short read lengths and primer amplification bias, slowing the adoption of newer sequencing technologies to fungal community profiling. To address these issues, we evaluated the performance of several common internal transcribed spacer (ITS) primers and designed a novel primer set and work flow for simultaneous quantification and species-level interrogation of fungal consortia. Primer comparison and validation were predicted in silico and by sequencing a “mock community” of mixed yeast species to explore the challenges of amplicon length and amplification bias for reconstructing defined yeast community structures. The amplicon size and distribution of this primer set are smaller than for all preexisting ITS primer sets, maximizing sequencing coverage of hypervariable ITS domains by very-short-amplicon, high-throughput sequencing platforms. This feature also enables the optional integration of quantitative PCR (qPCR) directly into the HTS preparatory work flow by substituting qPCR with these primers for standard PCR, yielding quantification of individual community members. The complete work flow described here, utilizing any of the qualified primer sets evaluated, can rapidly profile mixed fungal communities and capably reconstructed well-characterized beer and wine fermentation fungal communities. PMID:23377949

  17. Single-cell microarray enables high-throughput evaluation of DNA double-strand breaks and DNA repair inhibitors.

    PubMed

    Weingeist, David M; Ge, Jing; Wood, David K; Mutamba, James T; Huang, Qiuying; Rowland, Elizabeth A; Yaffe, Michael B; Floyd, Scott; Engelward, Bevin P

    2013-03-15

    A key modality of non-surgical cancer management is DNA damaging therapy that causes DNA double-strand breaks that are preferentially toxic to rapidly dividing cancer cells. Double-strand break repair capacity is recognized as an important mechanism in drug resistance and is therefore a potential target for adjuvant chemotherapy. Additionally, spontaneous and environmentally induced DSBs are known to promote cancer, making DSB evaluation important as a tool in epidemiology, clinical evaluation and in the development of novel pharmaceuticals. Currently available assays to detect double-strand breaks are limited in throughput and specificity and offer minimal information concerning the kinetics of repair. Here, we present the CometChip, a 96-well platform that enables assessment of double-strand break levels and repair capacity of multiple cell types and conditions in parallel and integrates with standard high-throughput screening and analysis technologies. We demonstrate the ability to detect multiple genetic deficiencies in double-strand break repair and evaluate a set of clinically relevant chemical inhibitors of one of the major double-strand break repair pathways, non-homologous end-joining. While other high-throughput repair assays measure residual damage or indirect markers of damage, the CometChip detects physical double-strand breaks, providing direct measurement of damage induction and repair capacity, which may be useful in developing and implementing treatment strategies with reduced side effects. PMID:23422001

  18. Single-cell microarray enables high-throughput evaluation of DNA double-strand breaks and DNA repair inhibitors

    PubMed Central

    Weingeist, David M.; Ge, Jing; Wood, David K.; Mutamba, James T.; Huang, Qiuying; Rowland, Elizabeth A.; Yaffe, Michael B.; Floyd, Scott; Engelward, Bevin P.

    2013-01-01

    A key modality of non-surgical cancer management is DNA damaging therapy that causes DNA double-strand breaks that are preferentially toxic to rapidly dividing cancer cells. Double-strand break repair capacity is recognized as an important mechanism in drug resistance and is therefore a potential target for adjuvant chemotherapy. Additionally, spontaneous and environmentally induced DSBs are known to promote cancer, making DSB evaluation important as a tool in epidemiology, clinical evaluation and in the development of novel pharmaceuticals. Currently available assays to detect double-strand breaks are limited in throughput and specificity and offer minimal information concerning the kinetics of repair. Here, we present the CometChip, a 96-well platform that enables assessment of double-strand break levels and repair capacity of multiple cell types and conditions in parallel and integrates with standard high-throughput screening and analysis technologies. We demonstrate the ability to detect multiple genetic deficiencies in double-strand break repair and evaluate a set of clinically relevant chemical inhibitors of one of the major double-strand break repair pathways, non-homologous end-joining. While other high-throughput repair assays measure residual damage or indirect markers of damage, the CometChip detects physical double-strand breaks, providing direct measurement of damage induction and repair capacity, which may be useful in developing and implementing treatment strategies with reduced side effects. PMID:23422001

  19. Ionically cross-linked alginate hydrogels as tissue engineering scaffolds

    NASA Astrophysics Data System (ADS)

    Kuo, Catherine Kyleen

    Generation of living tissues through tissue engineering can be achieved via incorporation of cells into synthetic scaffolds designed to facilitate new tissue formation. Necessary characteristics of a scaffold include biocompatibility, high porosity with controllable pore size and interconnectivity, moldability, chemical and mechanical stability, and structural homogeneity. Hydrogels often possess many of the necessary characteristics and thus are favorable candidates for scaffolding. Alginate hydrogels are commonly made by ionically crosslinking with calcium ions from CaCl2 or CaSO4. These hydrogels are favored for their mild gel formation, however the gelation rate is rapid and uncontrollable (fast-gelation), resulting in varying crosslinking density throughout the gel. In this work, structurally homogeneous calcium alginate hydrogels were formed via a slow-gelation system that utilizes uniform mixing of CaCO3 with sodium alginate solution, and the addition of slowly hydrolyzing D-gluconic acid lactone to slowly release calcium ions for crosslinking. Homogeneity and mechanical properties of these hydrogels were shown to be superior to those of fast-gelled hydrogels. Gelation rate was controlled through the incorporation of CaSO4, and by varying total calcium content, polymer concentration and gelation temperature. Control over mechanical properties and diffusivity was demonstrated in the homogeneous hydrogels by adjusting compositional variables. Consistent control over solute diffusivity through gel discs reflected the structural homogeneity of the gels. To overcome the instability of ionically crosslinked gels in tissue culture medium, a method was developed to control the hydrogel dimensions by adjusting the ionic concentration of the medium. Stability of the hydrogels in this controlled environment was characterized through swelling experiments and mechanical testing. To provide for scaffold degradation and thereby promote tissue growth, alginate lyase was

  20. Advanced Sulfur Cathode Enabled by Highly Crumpled Nitrogen-Doped Graphene Sheets for High-Energy-Density Lithium-Sulfur Batteries.

    PubMed

    Song, Jiangxuan; Yu, Zhaoxin; Gordin, Mikhail L; Wang, Donghai

    2016-02-10

    Herein, we report a synthesis of highly crumpled nitrogen-doped graphene sheets with ultrahigh pore volume (5.4 cm(3)/g) via a simple thermally induced expansion strategy in absence of any templates. The wrinkled graphene sheets are interwoven rather than stacked, enabling rich nitrogen-containing active sites. Benefiting from the unique pore structure and nitrogen-doping induced strong polysulfide adsorption ability, lithium-sulfur battery cells using these wrinkled graphene sheets as both sulfur host and interlayer achieved a high capacity of ∼1000 mAh/g and exceptional cycling stability even at high sulfur content (≥80 wt %) and sulfur loading (5 mg sulfur/cm(2)). The high specific capacity together with the high sulfur loading push the areal capacity of sulfur cathodes to ∼5 mAh/cm(2), which is outstanding compared to other recently developed sulfur cathodes and ideal for practical applications. PMID:26709841

  1. The Subaru Coronagraphic Extreme Adaptive Optics System: Enabling High-Contrast Imaging on Solar-System Scales

    NASA Astrophysics Data System (ADS)

    Jovanovic, N.; Martinache, F.; Guyon, O.; Clergeon, C.; Singh, G.; Kudo, T.; Garrel, V.; Newman, K.; Doughty, D.; Lozi, J.; Males, J.; Minowa, Y.; Hayano, Y.; Takato, N.; Morino, J.; Kuhn, J.; Serabyn, E.; Norris, B.; Tuthill, P.; Schworer, G.; Stewart, P.; Close, L.; Huby, E.; Perrin, G.; Lacour, S.; Gauchet, L.; Vievard, S.; Murakami, N.; Oshiyama, F.; Baba, N.; Matsuo, T.; Nishikawa, J.; Tamura, M.; Lai, O.; Marchis, F.; Duchene, G.; Kotani, T.; Woillez, J.

    2015-09-01

    The Subaru Coronagraphic Extreme Adaptive Optics (SCExAO) instrument is a multipurpose high-contrast imaging platform designed for the discovery and detailed characterization of exoplanetary systems and serves as a testbed for high-contrast imaging technologies for ELTs. It is a multiband instrument which makes use of light from 600 to 2500 nm, allowing for coronagraphic direct exoplanet imaging of the inner 3λ/D from the stellar host. Wavefront sensing and control are key to the operation of SCExAO. A partial correction of low-order modes is provided by Subaru's facility adaptive optics system with the final correction, including high-order modes, implemented downstream by a combination of a visible pyramid wavefront sensor and a 2000-element deformable mirror. The well-corrected NIR (y-K bands) wavefronts can then be injected into any of the available coronagraphs, including but not limited to the phase-induced amplitude apodization and the vector vortex coronagraphs, both of which offer an inner working angle as low as 1λ/D. Noncommon path, low-order aberrations are sensed with a coronagraphic low-order wavefront sensor in the infrared (IR). Low noise, high frame rate NIR detectors allow for active speckle nulling and coherent differential imaging, while the HAWAII 2RG detector in the HiCIAO imager and/or the CHARIS integral field spectrograph (from mid-2016) can take deeper exposures and/or perform angular, spectral, and polarimetric differential imaging. Science in the visible is provided by two interferometric modules: VAMPIRES and FIRST, which enable subdiffraction limited imaging in the visible region with polarimetric and spectroscopic capabilities respectively. We describe the instrument in detail and present preliminary results both on-sky and in the laboratory.

  2. Enabling iron pyrite (FeS2) and related ternary pyrite compounds for high-performance solar energy applications

    NASA Astrophysics Data System (ADS)

    Caban Acevedo, Miguel

    The success of solar energy technologies depends not only on highly efficient solar-to-electrical energy conversion, charge storage or chemical fuel production, but also on dramatically reduced cost, to meet the future terawatt energy challenges we face. The enormous scale involved in the development of impactful solar energy technologies demand abundant and inexpensive materials, as well as energy-efficient and cost-effective processes. As a result, the investigation of semiconductor, catalyst and electrode materials made of earth-abundant and sustainable elements may prove to be of significant importance for the long-term adaptation of solar energy technologies on a larger scale. Among earth-abundant semiconductors, iron pyrite (cubic FeS2) has been considered the most promising solar energy absorber with the potential to achieve terawatt energy-scale deployment. Despite extensive synthetic progress and device efforts, the solar conversion efficiency of iron pyrite has remained below 3% since the 1990s, primarily due to a low open circuit voltage (V oc). The low photovoltage (Voc) of iron pyrite has puzzled scientists for decades and limited the development of cost-effective solar energy technologies based on this otherwise promising semiconductor. Here I report a comprehensive investigation of the syntheses and properties of iron pyrite materials, which reveals that the Voc of iron pyrite is limited by the ionization of a high density of intrinsic bulk defect states despite high density surface states and strong surface Fermi level pinning. Contrary to popular belief, bulk defects most-likely caused by intrinsic sulfur vacancies in iron pyrite must be controlled in order to enable this earth-abundant semiconductor for cost-effective and sustainable solar energy conversion. Lastly, the investigation of iron pyrite presented here lead to the discovery of ternary pyrite-type cobalt phosphosulfide (CoPS) as a highly-efficient earth-abundant catalyst material for

  3. Photoprecursor Approach Enables Preparation of Well-Performing Bulk-Heterojunction Layers Comprising a Highly Aggregating Molecular Semiconductor.

    PubMed

    Suzuki, Mitsuharu; Yamaguchi, Yuji; Takahashi, Kohei; Takahira, Katsuya; Koganezawa, Tomoyuki; Masuo, Sadahiro; Nakayama, Ken-ichi; Yamada, Hiroko

    2016-04-01

    Active-layer morphology critically affects the performance of organic photovoltaic cells, and thus its optimization is a key toward the achievement of high-efficiency devices. However, the optimization of active-layer morphology is sometimes challenging because of the intrinsic properties of materials such as strong self-aggregating nature or low miscibility. This study postulates that the "photoprecursor approach" can serve as an effective means to prepare well-performing bulk-heterojunction (BHJ) layers containing highly aggregating molecular semiconductors. In the photoprecursor approach, a photoreactive precursor compound is solution-deposited and then converted in situ to a semiconducting material. This study employs 2,6-di(2-thienyl)anthracene (DTA) and [6,6]-phenyl-C71-butyric acid methyl ester as p- and n-type materials, respectively, in which DTA is generated by the photoprecursor approach from the corresponding α-diketone-type derivative DTADK. When only chloroform is used as a cast solvent, the photovoltaic performance of the resulting BHJ films is severely limited because of unfavorable film morphology. The addition of a high-boiling-point cosolvent, o-dichlorobenzene (o-DCB), to the cast solution leads to significant improvement such that the resulting active layers afford up to approximately 5 times higher power conversion efficiencies. The film structure is investigated by two-dimensional grazing-incident wide-angle X-ray diffraction, atomic force microscopy, and fluorescence microspectroscopy to demonstrate that the use of o-DCB leads to improvement in film crystallinity and increase in charge-carrier generation efficiency. The change in film structure is assumed to originate from dynamic molecular motion enabled by the existence of solvent during the in situ photoreaction. The unique features of the photoprecursor approach will be beneficial in extending the material and processing scopes for the development of organic thin-film devices. PMID

  4. Motion-Correction Enabled Ultra-High Resolution In-Vivo 7T-MRI of the Brain

    PubMed Central

    Federau, Christian

    2016-01-01

    Objectives To demonstrate the image quality that can be obtained for multiple contrasts using ultra-high resolution MRI (highest nominal resolution: 350 μm isotropic) at 7T using appropriate motion-correction. Materials and Methods An MRI-based fat-excitation motion navigator (which requires no additional hardware) was incorporated into T1-weighted (MP2RAGE, 350 μm nominal isotropic resolution, total scan time 124 mins over 2 sessions. The MP2RAGE also provides quantitative T1-maps), 3D-TSE (380 μm nominal isotropic resolution, total scan time 58 mins) and T2*-weighted protocols (3D-GRE, 380 μm nominal isotropic resolution, total scan time 42 mins) on a 7T MR system. Images from each contrast are presented from a single healthy adult male volunteer (34 years) for direct comparison. The subject provided written consent in accordance with the local review board. Results Images of various brain structures are revealed at unprecedented quality for in-vivo MRI. The presented images permit, for example, to delimit the internal structure of the basal ganglia and thalamus. The single digitationes of the hippocampus are visible, and the gyrus dentatus can be visualized. Intracortical contrast was also observed in the neocortex, including the stria of Gennari of the primary visual cortex. Conclusions Appropriate motion-correction allows MRI scans to be performed with extended scan times enabling exceptionally high resolution scans with high image quality, with the use of a 7T scanner allowing large brain coverage for 350–380 μm isotropic voxels with total scan times for each contrast ranging from 42 to 124 minutes. PMID:27159492

  5. A Study into the Collision-induced Dissociation (CID) Behavior of Cross-Linked Peptides*

    PubMed Central

    Giese, Sven H.; Fischer, Lutz; Rappsilber, Juri

    2016-01-01

    Cross-linking/mass spectrometry resolves protein–protein interactions or protein folds by help of distance constraints. Cross-linkers with specific properties such as isotope-labeled or collision-induced dissociation (CID)-cleavable cross-linkers are in frequent use to simplify the identification of cross-linked peptides. Here, we analyzed the mass spectrometric behavior of 910 unique cross-linked peptides in high-resolution MS1 and MS2 from published data and validate the observation by a ninefold larger set from currently unpublished data to explore if detailed understanding of their fragmentation behavior would allow computational delivery of information that otherwise would be obtained via isotope labels or CID cleavage of cross-linkers. Isotope-labeled cross-linkers reveal cross-linked and linear fragments in fragmentation spectra. We show that fragment mass and charge alone provide this information, alleviating the need for isotope-labeling for this purpose. Isotope-labeled cross-linkers also indicate cross-linker-containing, albeit not specifically cross-linked, peptides in MS1. We observed that acquisition can be guided to better than twofold enrich cross-linked peptides with minimal losses based on peptide mass and charge alone. By help of CID-cleavable cross-linkers, individual spectra with only linear fragments can be recorded for each peptide in a cross-link. We show that cross-linked fragments of ordinary cross-linked peptides can be linearized computationally and that a simplified subspectrum can be extracted that is enriched in information on one of the two linked peptides. This allows identifying candidates for this peptide in a simplified database search as we propose in a search strategy here. We conclude that the specific behavior of cross-linked peptides in mass spectrometers can be exploited to relax the requirements on cross-linkers. PMID:26719564

  6. Dynamic Cross-Linking of Polymeric Binders Based on Host-Guest Interactions for Silicon Anodes in Lithium Ion Batteries.

    PubMed

    Kwon, Tae-woo; Jeong, You Kyeong; Deniz, Erhan; AlQaradawi, Siham Y; Choi, Jang Wook; Coskun, Ali

    2015-11-24

    We report supramolecular cross-linking of polymer binders via dynamic host-guest interactions between hyperbranched β-cyclodextrin polymer and a dendritic gallic acid cross-linker incorporating six adamantane units for high-capacity silicon anodes. Calorimetric analysis in the solution phase indicates that the given host-guest complexation is a highly spontaneous and enthalpically driven process. These findings are further verified by carrying out gelation experiments in both aqueous and organic media. The dynamic cross-linking process enables intimate silicon-binder interaction, structural stability of electrode film, and controlled electrode-electrolyte interface, yielding enhanced cycling performance. Control experiments using both α, γ-CDp with different cavity sizes and a guest molecule incorporating a single adamantane unit verified that the enhanced cycle life originates from the host-guest interaction between β-cyclodextrin and adamantane. The impact of the dynamic cross-linking is maximized at an optimal stoichiometry between the two components. Importantly, the present investigation proves that the molecular-level tuning of the host-guest interactions can be translated directly to the cycling performance of silicon anodes. PMID:26422642

  7. Quaternary Diamines as Mass Spectrometry Cleavable Crosslinkers for Protein Interactions

    PubMed Central

    Clifford-Nunn, Billy; Showalter, H. D. Hollis; Andrews, Philip C.

    2013-01-01

    Mapping protein interactions and their dynamics is crucial to defining physiologic states, building effective models for understanding cell function, and to allow more effective targeting of new drugs. Crosslinking studies can estimate the proximity of proteins, determine sites of protein–protein interactions, and have the potential to provide a snapshot of dynamic interactions by covalently locking them in place for analysis. Several major challenges are associated with the use of crosslinkers in mass spectrometry, particularly in complex mixtures. We describe the synthesis and characterization of a MS-cleavable crosslinker containing cyclic amines, which address some of these challenges. The DC4 crosslinker contains two intrinsic positive charges, which allow crosslinked peptides to fragment into their component peptides by collision-induced dissociation (CID) or in-source decay. Initial fragmentation events result in cleavage on either side of the positive charges so crosslinked peptides are identified as pairs of ions separated by defined masses. The structures of the component peptides can then be robustly determined by MS3 because their fragmentation products rearrange to generate a mobile proton. The DC4 crosslinking reagent is stable to storage, highly reactive, highly soluble (1 M solutions), quite labile to CID, and MS3 results in productive backbone fragmentation. PMID:22131227

  8. Chitosan-based membranes with different ionic crosslinking density for pharmaceutical and industrial applications.

    PubMed

    Gierszewska, Magdalena; Ostrowska-Czubenko, Jadwiga

    2016-11-20

    Chitosan membranes (Ch), ionically crosslinked with pentasodium tripolyphosphate (TPP), were prepared using chitosan of medium and high molecular weight of similar degree of deacetylation and different crosslinking conditions. An effect of synthesis conditions (pH of crosslinking TPP solution equal to 5.5 and 9.0) on molecular and supermolecular structure and on crosslinking density of Ch/TPP membranes was confirmed using Fourier transform infrared spectroscopy (FTIR), wide-angle X-ray diffraction (WAXD) method and energy dispersive X-ray (EDX) spectrometry. Atomic-force microscopy (AFM) and contact angle measurements indicated some differences in membrane roughness and hydrophilicity. The state of water in non-crosslinked and ionically crosslinked Ch membranes containing different amount of water was investigated by low temperature differential scanning calorimetry (DSC) measurements. DSC analysis confirmed presence of freezing and non-freezing water in non-crosslinked and ionically crosslinked membranes. The amount of non-freezing water generally decreased after Ch crosslinking and was affected by crosslinking conditions and crosslinking density. Molecular weight of Ch had only slight influence on all characterized properties of ionically crosslinked membranes. PMID:27561522

  9. A parallel algorithm for error correction in high-throughput short-read data on CUDA-enabled graphics hardware.

    PubMed

    Shi, Haixiang; Schmidt, Bertil; Liu, Weiguo; Müller-Wittig, Wolfgang

    2010-04-01

    Emerging DNA sequencing technologies open up exciting new opportunities for genome sequencing by generating read data with a massive throughput. However, produced reads are significantly shorter and more error-prone compared to the traditional Sanger shotgun sequencing method. This poses challenges for de novo DNA fragment assembly algorithms in terms of both accuracy (to deal with short, error-prone reads) and scalability (to deal with very large input data sets). In this article, we present a scalable parallel algorithm for correcting sequencing errors in high-throughput short-read data so that error-free reads can be available before DNA fragment assembly, which is of high importance to many graph-based short-read assembly tools. The algorithm is based on spectral alignment and uses the Compute Unified Device Architecture (CUDA) programming model. To gain efficiency we are taking advantage of the CUDA texture memory using a space-efficient Bloom filter data structure for spectrum membership queries. We have tested the runtime and accuracy of our algorithm using real and simulated Illumina data for different read lengths, error rates, input sizes, and algorithmic parameters. Using a CUDA-enabled mass-produced GPU (available for less than US$400 at any local computer outlet), this results in speedups of 12-84 times for the parallelized error correction, and speedups of 3-63 times for both sequential preprocessing and parallelized error correction compared to the publicly available Euler-SR program. Our implementation is freely available for download from http://cuda-ec.sourceforge.net . PMID:20426693

  10. Thioredoxin fusion construct enables high-yield production of soluble, active matrix metalloproteinase-8 (MMP-8) in Escherichia coli.

    PubMed

    McNiff, M L; Haynes, E P; Dixit, N; Gao, F P; Laurence, J S

    2016-06-01

    Matrix metalloproteinases (MMPs) are crucial proteases in maintaining the health and integrity of many tissues, however their dysregulation often facilitates disease progression. In disease states these remodeling and repair functions support, for example, metastasis of cancer by both loosening the matrix around tumors to enable cellular invasion and by affecting proliferation and apoptosis, and they promote degradation of biological restorations by weakening the substrate to which the restoration is attached. As such, MMPs are important therapeutic targets. MMP-8 participates in cancer, arthritis, asthma and failure of dental fillings. MMP-8 differs from other MMPs in that it has an insertion that enlarges its active site. To elucidate the unique features of MMP-8 and develop selective inhibitors to this therapeutic target, a stable and active form of the enzyme is needed. MMP-8 has been difficult to express at high yield in a soluble, active form. Typically recombinant MMPs accumulate in inclusion bodies and complex methods are applied to refold and purify protein in acceptable yield. Presented here is a streamlined approach to produce in Escherichia coli a soluble, active, stable MMP-8 fusion protein in high yield. This fusion shows much greater retention of activity when stored refrigerated without glycerol. A variant of this construct that contains the metal binding claMP Tag was also examined to demonstrate the ability to use this tag with a metalloprotein. SDS-PAGE, densitometry, mass spectrometry, circular dichroism spectroscopy and an activity assay were used to analyze the chemical integrity and function of the enzyme. PMID:26923061

  11. Facile synthesis of core-shell/hollow anisotropic particles via control of cross-linking during one-pot dispersion polymerization.

    PubMed

    Liu, Yanan; Ma, Yuhong; Liu, Lianying; Yang, Wantai

    2015-05-01

    Preparation of anisotropic particles based on seed phase separation involves multiple processes, and asymmetrical structures and surfaces cannot be produced when anisotropic shapes emerge. In conventional one-pot dispersion polymerization (Dis.P) using cross-linker, only spherical particles are prepared due to rapid and high cross-linking. Herein, monodisperse snowman-like particles with core-shell/hollow structures and partially rough surface were synthesized straightforward by a modified one-pot Dis.P, in which ethylene glycol and water (6/4, vol.) were used as medium, and ammonium persulfate (APS) aqueous solution, vinyl acetate (VA) and/or acrylic acid (AA), divinylbenzene (DVB) and styrene (St) were added at 6h. The cross-linking of growing particles was confined to exterior (forming cross-linked shell), and gel contents were low, leading to phase separation. Asymmetrical morphologies, structures, sizes and surface roughness were flexibly tuned by varying amounts of APS, VA and/or AA, water and DVB, and DVB adding speed. At low APS contents or high DVB amounts, the inhomogeneous cross-linking of head enabled its phase to separate, producing elongated head. With addition of VA and AA, phase separations inside head and body were induced, generating hollow structure. Adding DVB very slowly, nonlinear growth of third compartment occurred, forming bowed head. PMID:25626132

  12. Toward High Performance Integrated Semiconductor Micro and Nano Lasers Enabled by Transparent Conducting Materials: from Thick Structure to Thin Film

    NASA Astrophysics Data System (ADS)

    Ou, Fang

    Integrated semiconductor lasers working at the wavelength around 1.3 microm and 1.55 microm are of great interest for the research of photonic integrated circuit (PIC) since they are the crucial components for optical communications and many other applications. To satisfy the requirement of the next generation optical communication and computing systems, integrated semiconductor lasers are expected to have high device performance like very low lasing threshold, high output powers, high speed and possibility of being integrated with electronics. This dissertation focuses on the design and realization of InP based high performance electrically pumped integrated semiconductor lasers. In the dissertation, we first design the tall structure based electrically pumped integrated micro-lasers. Those lasers are capable of giving >10 mW output power with a moderate low threshold current density (0.5--5 kA/cm 2). Besides, a new enhanced radiation loss based coupler design is demonstrated to realize single directional output for curvilinear cavities. Second, the thin film structure based integrated semiconductor laser designs are proposed. Both structures use the side conduction geometry to enable the electrical injection into the thin film laser cavity. The performance enhancement of the thin film structure based lasers is analyzed compared to the tall structure. Third, we investigate the TCO materials. CdO deposited by PLD and In 2O3 deposited by IAD are studied from aspects of their physical, optical and electrical properties. Those materials can give a wide range of tunability in their conductivity (1--5000 S/cm) and optical transparency (loss 200--5000 cm-1), which is of great interest in realizing novel nanophotonic devices. In addition, the electrical contact properties of those materials to InP are also studied. Experiment result shows that both CdO and In2O3 can achieve good ohmic contact to n-InP with contact resistance as low as 10-6O·cm 2. At last, we investigate

  13. Facilitating the mechanical properties of a high-performance pH-sensitive membrane by cross-linking graphene oxide and polyacrylic acid

    NASA Astrophysics Data System (ADS)

    Jiang, Zaixing; Xia, Dan; Li, Yue; Li, Jun; Li, Qiang; Chen, Menglin; Huang, Yudong; Besenbacher, Flemming; Dong, Mingdong

    2013-08-01

    Graphene represents a two-dimensional material having extraordinary physical properties, which make it a prospective material for many applications. In particular, graphene oxide (GO), with abundant chemical functional groups, further extends the new functions of graphene-based materials. However, the preparation of GO materials through chemical reactions remains a challenge to materials science. Here, using suitable cross-linkable polymers, a GO-polyacrylic acid (PAA) composite membrane was prepared by a gel-desiccation approach. The fabricated membrane displays both well controlled mechanical characteristics and unique multiple pH response.

  14. High-performance brain-machine interface enabled by an adaptive optimal feedback-controlled point process decoder.

    PubMed

    Shanechi, Maryam M; Orsborn, Amy; Moorman, Helene; Gowda, Suraj; Carmena, Jose M

    2014-01-01

    Brain-machine interface (BMI) performance has been improved using Kalman filters (KF) combined with closed-loop decoder adaptation (CLDA). CLDA fits the decoder parameters during closed-loop BMI operation based on the neural activity and inferred user velocity intention. These advances have resulted in the recent ReFIT-KF and SmoothBatch-KF decoders. Here we demonstrate high-performance and robust BMI control using a novel closed-loop BMI architecture termed adaptive optimal feedback-controlled (OFC) point process filter (PPF). Adaptive OFC-PPF allows subjects to issue neural commands and receive feedback with every spike event and hence at a faster rate than the KF. Moreover, it adapts the decoder parameters with every spike event in contrast to current CLDA techniques that do so on the time-scale of minutes. Finally, unlike current methods that rotate the decoded velocity vector, adaptive OFC-PPF constructs an infinite-horizon OFC model of the brain to infer velocity intention during adaptation. Preliminary data collected in a monkey suggests that adaptive OFC-PPF improves BMI control. OFC-PPF outperformed SmoothBatch-KF in a self-paced center-out movement task with 8 targets. This improvement was due to both the PPF's increased rate of control and feedback compared with the KF, and to the OFC model suggesting that the OFC better approximates the user's strategy. Also, the spike-by-spike adaptation resulted in faster performance convergence compared to current techniques. Thus adaptive OFC-PPF enabled proficient BMI control in this monkey. PMID:25571483

  15. Next-Generation Phage Display: Integrating and Comparing Available Molecular Tools to Enable Cost-Effective High-Throughput Analysis

    PubMed Central

    Dias-Neto, Emmanuel; Nunes, Diana N.; Giordano, Ricardo J.; Sun, Jessica; Botz, Gregory H.; Yang, Kuan; Setubal, João C.; Pasqualini, Renata; Arap, Wadih

    2009-01-01

    Background Combinatorial phage display has been used in the last 20 years in the identification of protein-ligands and protein-protein interactions, uncovering relevant molecular recognition events. Rate-limiting steps of combinatorial phage display library selection are (i) the counting of transducing units and (ii) the sequencing of the encoded displayed ligands. Here, we adapted emerging genomic technologies to minimize such challenges. Methodology/Principal Findings We gained efficiency by applying in tandem real-time PCR for rapid quantification to enable bacteria-free phage display library screening, and added phage DNA next-generation sequencing for large-scale ligand analysis, reporting a fully integrated set of high-throughput quantitative and analytical tools. The approach is far less labor-intensive and allows rigorous quantification; for medical applications, including selections in patients, it also represents an advance for quantitative distribution analysis and ligand identification of hundreds of thousands of targeted particles from patient-derived biopsy or autopsy in a longer timeframe post library administration. Additional advantages over current methods include increased sensitivity, less variability, enhanced linearity, scalability, and accuracy at much lower cost. Sequences obtained by qPhage plus pyrosequencing were similar to a dataset produced from conventional Sanger-sequenced transducing-units (TU), with no biases due to GC content, codon usage, and amino acid or peptide frequency. These tools allow phage display selection and ligand analysis at >1,000-fold faster rate, and reduce costs ∼250-fold for generating 106 ligand sequences. Conclusions/Significance Our analyses demonstrates that whereas this approach correlates with the traditional colony-counting, it is also capable of a much larger sampling, allowing a faster, less expensive, more accurate and consistent analysis of phage enrichment. Overall, qPhage plus pyrosequencing is

  16. Poly(arlyene ether sulfone) based semi-interpenetrating polymer network membranes containing cross-linked poly(vinyl phosphonic acid) chains for fuel cell applications at high temperature and low humidity conditions

    NASA Astrophysics Data System (ADS)

    Kim, Kihyun; Heo, Pilwon; Ko, Taeyun; Kim, Ki-hyun; Kim, Sung-Kon; Pak, Chanho; Lee, Jong-Chan

    2015-10-01

    Semi-interpenetrating polymer network (semi-IPN) membranes are prepared by in-situ casting and thermal-initiated radical polymerization of vinyl phosphonic acid (VPA) and bis(2-(methacryloyloxy)ethyl) phosphate (BMAEP) in N,N-dimethylacetamide solutions of sulfonated poly(arylene ether sulfone) (SPAES). The incorporation of VPA units into the SPAES membranes improves proton conductivity especially at high temperature and low humidity conditions. In addition the cross-linker, BMAEP, prevents the decrease of the mechanical and chemical stabilities by the aliphatic linear poly(vinyl phosphonic acid) chains in the semi-IPN membranes, and furthermore the phosphonic acid group in BMAEP can prevent the decrease of the proton conductivity by the formation of cross-linked structures. Therefore, the resulting semi-IPN membranes show high proton conductivities up to 15 mS cm-1 at 120 °C and 40% RH. The fuel cell performance (187 mW cm-2 at 120 °C and 40% RH) of membrane-electrode assembly (MEA) from the semi-IPN membrane is found to be superior to that (145 mW cm-2 at 120 °C and 40% RH) of MEA from the SPAES membrane. The durability test result at the operating conditions indicates that the semi-IPN membrane is electrochemically very stable maintaining the low hydrogen cross-over and high power densities.

  17. Structure, morphology and properties of genipin-crosslinked carboxymethylchitosan porous membranes.

    PubMed

    Fiamingo, Anderson; Campana-Filho, Sergio Paulo

    2016-06-01

    Highly porous genipin cross-linked membranes of carboxymethylchitosan exhibiting different crosslinking degree (3%high, medium or low molecular weight. The membranes were able to adsorb high amounts of PBS and presented high ultimate tensile strength and elongation-at-break the lower the crosslinking degree and the higher the molecular of the parent carboxymethylchitosan. Particularly, the membrane prepared from high molecular weight carboxymethylchitosan displayed higher swelling ratio (17.5g/g), ultimate tensile strength (≥300kPa) and elongation-at-break (≥65%). The susceptibility to lysozyme degradation depends only on the crosslinking degree of the membranes, the degradation rate being faster the lower the crosslinking degree. The preparation of lightly genipin cross-linked carboxymethylchitosan membranes displaying appropriated properties to fulfill specific applications as biomaterials is envisaged by using high molecular weight carboxymethylchitosan. PMID:27083355

  18. Investigation of Phycobilisome Subunit Interaction Interfaces by Coupled Cross-linking and Mass Spectrometry*

    PubMed Central

    Tal, Ofir; Trabelcy, Beny; Gerchman, Yoram; Adir, Noam

    2014-01-01

    The phycobilisome (PBS) is an extremely large light-harvesting complex, common in cyanobacteria and red algae, composed of rods and core substructures. These substructures are assembled from chromophore-bearing phycocyanin and allophycocyanin subunits, nonpigmented linker proteins and in some cases additional subunits. To date, despite the determination of crystal structures of isolated PBS components, critical questions regarding the interaction and energy flow between rods and core are still unresolved. Additionally, the arrangement of minor PBS components located inside the core cylinders is unknown. Different models of the general architecture of the PBS have been proposed, based on low resolution images from electron microscopy or high resolution crystal structures of isolated components. This work presents a model of the assembly of the rods onto the core arrangement and for the positions of inner core components, based on cross-linking and mass spectrometry analysis of isolated, functional intact Thermosynechococcus vulcanus PBS, as well as functional cross-linked adducts. The experimental results were utilized to predict potential docking interactions of different protein pairs. Combining modeling and cross-linking results, we identify specific interactions within the PBS subcomponents that enable us to suggest possible functional interactions between the chromophores of the rods and the core and improve our understanding of the assembly, structure, and function of PBS. PMID:25296757

  19. High-Capacity Molecular Scale Conversion Anode Enabled by Hybridizing Cluster-Type Framework of High Loading with Amino-Functionalized Graphene.

    PubMed

    Xie, Junjie; Zhang, Ye; Han, Yanlin; Li, Chilin

    2016-05-24

    Exploring high-capacity anodes with multielectron reaction, sufficient charge/mass transfer, and suppressed volume expansion is highly desired. The open frameworks consisting of independent structure units, which possess conversion reaction potentiality, can meet these demands and show advantages over routine insertion-type open frameworks with at most one-electron transfer or conversion materials with compact ligand linkage. Here, we report a class of electrochemically stable cluster-like polyoxometalates (POMs) as such open framework anodes. Their high loading and low solubility are enabled by Al- or Si-driven polymerization and hybridization with positively charged graphene, which immobilizes polyanions of POMs and improves their electric contact. Al-based POM composite (NAM-EDAG) for Li-storage achieves a high reversible capacity above 1000 mAh g(-1) and tolerates a long-term cycling with more than 1100 cycles and a current density up to 20 A g(-1). A six-electron conversion reaction occurring at molecular scale and the consequent optimized distribution of products benefiting from original open framework are also responsible for the high electroactivity. POM-based open frameworks give inspiration for exploring advanced, less soluble (or insoluble) framework materials made up of electroactive molecule or cluster moieties for Li- and Na-storage. PMID:27116433

  20. Development of the High-Order Decoupled Direct Method in Three Dimensions for Particulate Matter: Enabling Advanced Sensitivity Analysis in Air Quality Models

    EPA Science Inventory

    The high-order decoupled direct method in three dimensions for particular matter (HDDM-3D/PM) has been implemented in the Community Multiscale Air Quality (CMAQ) model to enable advanced sensitivity analysis. The major effort of this work is to develop high-order DDM sensitivity...

  1. Characterization of crosslinked artificial protein films

    NASA Astrophysics Data System (ADS)

    Nowatzki, Paul

    Genetically engineered artificial proteins are promising candidates for new biomaterials because their amino acid sequences can be precisely controlled. This work describes the characterization of crosslinked films of biomimetic artificial extracellular matrix (aECM) proteins with hybrid functions designed to meet materials needs in applications such as small diameter vascular grafts and corneal tissue implants. Elastin-derived polypeptides give the proteins flexibility, while RGD and CS5 peptide domains from fibronectin serve to adhere cells. Techniques were sought to crosslink aECM proteins in ways that resulted in tunable mechanical properties. Hexamethylene diisocyanate was used to crosslink aECM proteins into uniform, transparent, highly-extensible hydrogel films with low water contents characteristic of native elastin. Their elastic moduli, 0.1--1.1 MPa, depended on crosslinker concentration and aECM protein length, and spanned the observed range of elastin fibers. The suitability of biomaterials implants depends strongly on their susceptibility to proteolytic degradation in vivo. It was shown that small sequence changes in the elastin-like portion of aECM proteins were sufficient to decrease their rate of degradation by elastase sevenfold, illustrating a simple method to tune the protease sensitivity of designed proteins. The effects were seen in both soluble proteins and crosslinked films analyzed by measuring their decrease in elastic modulus during degradation. An aECM protein was examined for its effectiveness as a corneal onlay, i.e., a permanent contact lens. The protein was crosslinked into transparent, elastic, water-rich lenses and was implanted into rabbit corneas. The onlays were stable and well-tolerated, and full re-epithelialization occurred within 4-7 days. Histological examination revealed normal regenerating epithelial cell morphology on the anterior surface, good interfaces between the onlay and surrounding tissue, and only minimal

  2. Spectroscopic characterization of collagen cross-links in bone

    NASA Technical Reports Server (NTRS)

    Paschalis, E. P.; Verdelis, K.; Doty, S. B.; Boskey, A. L.; Mendelsohn, R.; Yamauchi, M.

    2001-01-01

    Collagen is the most abundant protein of the organic matrix in mineralizing tissues. One of its most critical properties is its cross-linking pattern. The intermolecular cross-linking provides the fibrillar matrices with mechanical properties such as tensile strength and viscoelasticity. In this study, Fourier transform infrared (FTIR) spectroscopy and FTIR imaging (FTIRI) analyses were performed in a series of biochemically characterized samples including purified collagen cross-linked peptides, demineralized bovine bone collagen from animals of different ages, collagen from vitamin B6-deficient chick homogenized bone and their age- and sex-matched controls, and histologically stained thin sections from normal human iliac crest biopsy specimens. One region of the FTIR spectrum of particular interest (the amide I spectral region) was resolved into its underlying components. Of these components, the relative percent area ratio of two subbands at approximately 1660 cm(-1) and approximately 1690 cm(-1) was related to collagen cross-links that are abundant in mineralized tissues (i.e., pyridinoline [Pyr] and dehydrodihydroxylysinonorleucine [deH-DHLNL]). This study shows that it is feasible to monitor Pyr and DHLNL collagen cross-links spatial distribution in mineralized tissues. The spectroscopic parameter established in this study may be used in FTIRI analyses, thus enabling the calculation of relative Pyr/DHLNL amounts in thin (approximately 5 microm) calcified tissue sections with a spatial resolution of approximately 7 microm.

  3. Evaluating Dimethyldiethoxysilane for use in Polyurethane Crosslinked Silica Aerogels

    NASA Technical Reports Server (NTRS)

    Randall, Jason P.; Meador, Mary Ann B.; Jana, Sadhan C.

    2008-01-01

    Silica aerogels are highly porous materials which exhibit exceptionally low density and thermal conductivity. Their "pearl necklace" nanostructure, however, is inherently weak; most silica aerogels are brittle and fragile. The strength of aerogels can be improved by employing an additional crosslinking step using isocyanates. In this work, dimethyldiethoxysilane (DMDES) is evaluated for use in the silane backbone of polyurethane crosslinked aerogels. Approximately half of the resulting aerogels exhibited a core/shell morphology of hard crosslinked aerogel surrounding a softer, uncrosslinked center. Solid state NMR and scanning electron microscopy results indicate the DMDES incorporated itself as a conformal coating around the outside of the secondary silica particles, in much the same manner as isocyanate crosslinking. Response surface curves were generated from compression data, indicating levels of reinforcement comparable to that in previous literature, despite the core/shell morphology.

  4. The colibactin warhead crosslinks DNA

    NASA Astrophysics Data System (ADS)

    Vizcaino, Maria I.; Crawford, Jason M.

    2015-05-01

    Members of the human microbiota are increasingly being correlated to human health and disease states, but the majority of the underlying microbial metabolites that regulate host-microbe interactions remain largely unexplored. Select strains of Escherichia coli present in the human colon have been linked to the initiation of inflammation-induced colorectal cancer through an unknown small-molecule-mediated process. The responsible non-ribosomal peptide-polyketide hybrid pathway encodes ‘colibactin’, which belongs to a largely uncharacterized family of small molecules. Genotoxic small molecules from this pathway that are capable of initiating cancer formation have remained elusive due to their high instability. Guided by metabolomic analyses, here we employ a combination of NMR spectroscopy and bioinformatics-guided isotopic labelling studies to characterize the colibactin warhead, an unprecedented substituted spirobicyclic structure. The warhead crosslinks duplex DNA in vitro, providing direct experimental evidence for colibactin's DNA-damaging activity. The data support unexpected models for both colibactin biosynthesis and its mode of action.

  5. Fluorophore-labeling of core-crosslinked polymeric micelles for multimodal in vivo and ex vivo optical imaging

    PubMed Central

    Shi, Yang; Kunjachan, Sijumon; Wu, Zhuojun; Gremse, Felix; Moeckel, Diana; van Zandvoort, Marc; Kiessling, Fabian; Storm, Gert; van Nostrum, Cornelus F.; Hennink, Wim E.; Lammers, Twan

    2015-01-01

    Aim To enable multimodal in vivo and ex vivo optical imaging of the biodistribution and tumor accumulation of core-crosslinked polymeric micelles (CCPM). Materials & Methods mPEG-b-p(HPMAm-Lac)-based polymeric micelles, core-crosslinked via cystamine and covalently labeled with two fluorophores (Dy-676/488) were synthesized. The CCPM were intravenously injected in CT26 tumor-bearing mice. Results Upon intravenous injection, the CCPM accumulated in CT26 tumors reasonably efficiently, with values reaching ~4 %ID at 24 hours. Ex vivo TPLSM confirmed efficient extravasation of the iCCPM out of tumor blood vessels and deep penetration into the tumor interstitium. Conclusions CCPM were labeled with multiple fluorophores, and they exemplify that combining different in vivo and ex vivo optical imaging techniques is highly useful for analyzing the biodistribution and tumor accumulation of nanomedicines. PMID:25929568

  6. Epoxy Crosslinked Silica Aerogels (X-Aerogels)

    NASA Technical Reports Server (NTRS)

    fabrizio, Eve; Ilhan, Faysal; Meador, Mary Ann; Johnston, Chris; Leventis, Nicholas

    2004-01-01

    NASA is interested in the development of strong lightweight materials for the dual role of thermal insulator and structural component for space vehicles; freeing more weight for useful payloads. Aerogels are very-low density materials (0.010 to 0.5 g/cc) that, due to high porosity (meso- and microporosity), can be, depending on the chemical nature of the network, ideal thermal insulators (thermal conductivity approx. 15 mW/mK). However, aerogels are extremely fragile. For practical application of aerogels, one must increase strength without compromising the physical properties attributed to low density. This has been achieved by templated growth of an epoxy polymer layer that crosslinks the "pearl necklace" network of nanoparticles: the framework of a typical silica aerogel. The requirement for conformal accumulation of the epoxy crosslinker is reaction both with the surface of silica and with itself. After cross-linking, the strength of a typical aerogel monolith increases by a factor of 200, in the expense of only a 2-fold increase in density. Strength is increased further by coupling residual unreacted epoxides with diamine.

  7. Robust Cross-Linked Stereocomplexes and C60 Inclusion Complexes of Vinyl-Functionalized Stereoregular Polymers Derived from Chemo/Stereoselective Coordination Polymerization.

    PubMed

    Vidal, Fernando; Falivene, Laura; Caporaso, Lucia; Cavallo, Luigi; Chen, Eugene Y-X

    2016-08-01

    The successful synthesis of highly syndiotactic polar vinyl polymers bearing the reactive pendant vinyl group on each repeat unit, which is enabled by perfectly chemoselective and highly syndiospecific coordination polymerization of divinyl polar monomers developed through this work, has allowed the construction of robust cross-linked supramolecular stereocomplexes and C60 inclusion complexes. The metal-mediated coordination polymerization of three representative polar divinyl monomers, including vinyl methacrylate (VMA), allyl methacrylate (AMA), and N,N-diallyl acrylamide (DAA) by Cs-ligated zirconocenium ester enolate catalysts under ambient conditions exhibits complete chemoselectivity and high stereoselectivity, thus producing the corresponding vinyl-functionalized polymers with high (92% rr) to quantitative (>99% rr) syndiotacticity. A combined experimental (synthetic, kinetic, and mechanistic) and theoretical (DFT) investigation has yielded a unimetallic, enantiomorphic-site-controlled propagation mechanism. Postfunctionalization of the obtained syndiotactic vinyl-functionalized polymers via the thiol-ene click and photocuring reactions readily produced the corresponding thiolated polymers and flexible cross-linked thin-film materials, respectively. Complexation of such syndiotactic vinyl-functionalized polymers with isotactic poly(methyl methacrylate) and fullerene C60 generates supramolecular crystalline helical stereocomplexes and inclusion complexes, respectively. Cross-linking of such complexes affords robust cross-linked stereocomplexes that are solvent-resistant and also exhibit considerably enhanced thermal and mechanical properties compared with the un-cross-linked stereocomplexes. PMID:27388024

  8. Omics in the Arctic: Genome-enabled Contributions to Carbon Cycle Research in High-Latitude Ecosystems (JGI Seventh Annual User Meeting 2012: Genomics of Energy and Environment)

    SciTech Connect

    Wullschleger, Stan

    2012-03-22

    Stan Wullschleger of Oak Ridge National Laboratory on "Omics in the Arctic: Genome-enabled Contributions to Carbon Cycle Research in High-Latitude Ecosystems" on March 22, 2012 at the 7th Annual Genomics of Energy & Environment Meeting in Walnut Creek, California.

  9. Omics in the Arctic: Genome-enabled Contributions to Carbon Cycle Research in High-Latitude Ecosystems (JGI Seventh Annual User Meeting 2012: Genomics of Energy and Environment)

    ScienceCinema

    Wullschleger, Stan [ORNL

    2013-01-22

    Stan Wullschleger of Oak Ridge National Laboratory on "Omics in the Arctic: Genome-enabled Contributions to Carbon Cycle Research in High-Latitude Ecosystems" on March 22, 2012 at the 7th Annual Genomics of Energy & Environment Meeting in Walnut Creek, California.

  10. Relations among Academic Enablers and Academic Achievement in Children with and without High Levels of Parent-Rated Symptoms of Inattention, Impulsivity, and Hyperactivity

    ERIC Educational Resources Information Center

    Demaray, Michelle Kilpatrick; Jenkins, Lyndsay N.

    2011-01-01

    This study examined the relationships among academic enablers (i.e., engagement, interpersonal skills, motivation, study skills) and academic achievement in children with and without high levels of parent-rated symptoms of inattention, impulsivity, and hyperactivity (Symptoms of IIH Group). The study included 69 participants (29 [42%] in the IIH…

  11. Photocontrolled Cargo Release from Dual Cross-Linked Polymer Particles.

    PubMed

    Tan, Shereen; Cui, Jiwei; Fu, Qiang; Nam, Eunhyung; Ladewig, Katharina; Ren, Jing M; Wong, Edgar H H; Caruso, Frank; Blencowe, Anton; Qiao, Greg G

    2016-03-01

    Burst release of a payload from polymeric particles upon photoirradiation was engineered by altering the cross-linking density. This was achieved via a dual cross-linking concept whereby noncovalent cross-linking was provided by cyclodextrin host-guest interactions, and irreversible covalent cross-linking was mediated by continuous assembly of polymers (CAP). The dual cross-linked particles (DCPs) were efficiently infiltrated (∼80-93%) by the biomacromolecule dextran (molecular weight up to 500 kDa) to provide high loadings (70-75%). Upon short exposure (5 s) to UV light, the noncovalent cross-links were disrupted resulting in increased permeability and burst release of the cargo (50 mol % within 1 s) as visualized by time-lapse fluorescence microscopy. As sunlight contains UV light at low intensities, the particles can potentially be incorporated into systems used in agriculture, environmental control, and food packaging, whereby sunlight could control the release of nutrients and antimicrobial agents. PMID:26862769

  12. Development of Nano-crystalline Doped-Ceramic Enabled Fiber Sensors for High Temperature In-Situ Monitoring of Fossil Fuel Gases

    SciTech Connect

    Xiao, Hai; Dong, Junhang; Lin, Jerry; Romero, Van

    2012-03-01

    This is a final technical report for the first project year from July 1, 2005 to Jan 31, 2012 for DoE/NETL funded project DE-FC26-05NT42439: Development of Nanocrystalline Doped-Ceramic Enabled Fiber Sensors for High Temperature In-Situ Monitoring of Fossil Fuel Gases. This report summarizes the technical progresses and achievements towards the development of novel nanocrystalline doped ceramic material-enabled optical fiber sensors for in situ and real time monitoring the gas composition of flue or hot gas streams involved in fossil-fuel based power generation and hydrogen production.

  13. Novel Multiplexer to Enable Multiple-Module Imaging with Adjustable High Spatial Resolution and Predetermined Display Bandwidth for Array Medical Imaging Systems.

    PubMed

    Sharma, P; Titus, A H; Qu, B; Huang, Y; Wang, W; Kuhls-Gilcrist, A; Cartwright, A N; Bednarek, D R; Rudin, S

    2010-01-01

    We describe a custom multiple-module multiplexer integrated circuit (MMMIC) that enables the combination of discrete Electron multiplying charge coupled devices (EMCCD) based imaging modules to improve medical imaging systems. It is highly desirable to have flexible imaging systems that provide high spatial resolution over a specific region of interest (ROI) and a field of view (FOV) large enough to encompass areas of clinical interest. Also, such systems should be dynamic, i.e. should be able to maintain a specified acquisition bandwidth irrespective of the size of the imaged FOV. The MMMIC achieves these goals by 1) multiplexing the outputs of an array of imaging modules to enable a larger FOV, 2) enabling a number of binning modes for adjustable high spatial resolution, and 3) enabling selection of a subset of modules in the array to achieve ROI imaging at a predetermined display bandwidth. The MMMIC design also allows multiple MMMICs to be connected to control larger arrays. The prototype MMMIC was designed and fabricated in the ON-SEMI 0.5μm CMOS process through MOSIS (www.mosis.org). It has three 12-bit inputs, a single 12-bit output, three input enable bits, and one output enable, so that one MMMIC can control the output from three discrete imager arrays. The modular design of the MMMIC enables four identical chips, connected in a two-stage sequential arrangement, to readout a 3×3 collection of individual imaging modules. The first stage comprises three MMMICs (each connected to three of the individual imaging module), and the second stage is a single MMMIC whose 12-bit output is then sent via a CameraLink interface to the system computer. The prototype MMMIC was successfully tested using digital outputs from two EMCCD-based detectors to be used in an x-ray imaging array detector system.Finally, we show how the MMMIC can be used to extend an imaging system to include any arbitrary (M×N) array of imaging modules enabling a large FOV along with ROI imaging

  14. Visible-Light Photocatalyzed Cross-Linking of Diacetylene Ligands by Quantum Dots to Improve Their Aqueous Colloidal Stability

    PubMed Central

    2015-01-01

    Ligand cross-linking is known to improve the colloidal stability of nanoparticles, particularly in aqueous solutions. However, most cross-linking is performed chemically, in which it is difficult to limit interparticle cross-linking, unless performed at low concentrations. Photochemical cross-linking is a promising approach but usually requires ultraviolet (UV) light to initiate. Using such high-energy photons can be harmful to systems in which the ligand–nanoparticle bond is fairly weak, as is the case for the commonly used semiconductor quantum dots (QDs). Here, we introduce a novel approach to cross-link thiolated ligands on QDs by utilizing the photocatalytic activity of QDs upon absorbing visible light. We show that using visible light leads to better ligand cross-linking by avoiding the problem of ligand dissociation that occurs upon UV light exposure. Once cross-linked, the ligands significantly enhance the colloidal stability of those same QDs that facilitated cross-linking. PMID:25036275

  15. Cross-linking multiwall carbon nanotubes using PFPA to build robust, flexible and highly aligned large-scale sheets and yarns.

    PubMed

    Inoue, Yoku; Nakamura, Kazumichi; Miyasaka, Yuta; Nakano, Takayuki; Kletetschka, Gunther

    2016-03-18

    Multi-walled carbon nanotube (CNT) structures, including unidirectionally aligned sheets and spun yarns, were fabricated by direct dry-spinning methods from spinnable CNT arrays. We improved the mechanical properties of the CNT structures. CNTs were tailored in sheets and yarns using perfluorophenyl azide (PFPA) as a binding agent. The azide group of PFPA bonds to graphene crystal surfaces under UV radiation exposed for 1 h. For the CNT sheet, Young's modulus increased from 1.6 to 32.9 GPa and tensile strength increased from 35.9 MPa to 144.5 MPa. For the CNT yarns Young's modulus increased from 29.5 to 78.0 GPa and tensile strength increased from 639.1 to 675.6 MPa. With this treatment, the CNT sheets became more robust and more flexible materials. Since cross-linking of CNTs by PFPA is a simple and rapid process, it is suitable for fabrication of enhanced CNT materials. PMID:26871413

  16. Cross-linking multiwall carbon nanotubes using PFPA to build robust, flexible and highly aligned large-scale sheets and yarns

    NASA Astrophysics Data System (ADS)

    Inoue, Yoku; Nakamura, Kazumichi; Miyasaka, Yuta; Nakano, Takayuki; Kletetschka, Gunther

    2016-03-01

    Multi-walled carbon nanotube (CNT) structures, including unidirectionally aligned sheets and spun yarns, were fabricated by direct dry-spinning methods from spinnable CNT arrays. We improved the mechanical properties of the CNT structures. CNTs were tailored in sheets and yarns using perfluorophenyl azide (PFPA) as a binding agent. The azide group of PFPA bonds to graphene crystal surfaces under UV radiation exposed for 1 h. For the CNT sheet, Young’s modulus increased from 1.6 to 32.9 GPa and tensile strength increased from 35.9 MPa to 144.5 MPa. For the CNT yarns Young’s modulus increased from 29.5 to 78.0 GPa and tensile strength increased from 639.1 to 675.6 MPa. With this treatment, the CNT sheets became more robust and more flexible materials. Since cross-linking of CNTs by PFPA is a simple and rapid process, it is suitable for fabrication of enhanced CNT materials.

  17. The Fabrication of Biomimetic Chitosan Scaffolds by Using SBF Treatment with Different Crosslinking Agents

    PubMed Central

    Liao, Chung-Tun; Ho, Ming-Hua

    2011-01-01

    In this study, a chitosan substrate was modified by simulated body fluid (SBF) treatment, in which the effect of the chosen crosslinking agent was investigated. Two crosslinking agents, glutaraldehyde (GA) and sodium tripolyphosphate (TPP), were used before the SBF process. By using TPP as the crosslinking agent, the Ca/P ratio and the degree of crystallinity were very close to the natural bone matrix. On the contrary, the substrate properties were very different from natural bone when the crosslinking agent GA was used. The results indicate that the produced substrates were more biomimetic when the TPP was applied. On the SBF-modified chitosan substrates with TPP crosslinking, the cultured osteoblastic cells expressed better proliferation, mitochondria activity and differentiation ability. The chitosan crosslinked using TPP was a good template in the SBF process, which resulted in a highly biomimetic layer. This biomimetic substrate possesses excellent biocompatibility and osteoconduction ability, promising high potential in the promotion of bone tissue engineering. PMID:24957491

  18. Oxidation resistant peroxide cross-linked UHMWPE produced by blending and surface diffusion

    NASA Astrophysics Data System (ADS)

    Gul, Rizwan M.; Oral, Ebru; Muratoglu, Orhun K.

    2014-06-01

    Ultra-high molecular weight polyethylene (UHMWPE) has been widely used as acetabular cup in total hip replacement (THR) and tibial component in total knee replacement (TKR). Crosslinking of UHMWPE has been successful used to improve its wear performance leading to longer life of orthopedic implants. Crosslinking can be performed by radiation or organic peroxides. Peroxide crosslinking is a convenient process as it does not require specialized equipment and the level of crosslinking can be manipulated by changing the amount of peroxide added. However, there is concern about the long-term stability of these materials due to possible presence of by-products. Vitamin E has been successfully used to promote long-term oxidative stability of UHMWPE. In this study, UHMWPE has been crosslinked using organic peroxide in the presence of Vitamin E to produce an oxidation resistant peroxide crosslinked material. Crosslinking was performed both in bulk by mixing peroxide and resin, and only on the surface using diffusion of peroxides.The results show that UHMWPE can be crosslinked using organic peroxides in the presence of vitamin E by both methods. However, the level of crosslinking decreases with the increase in vitamin E content. The wear resistance increases with the increase in crosslink density, and oxidation resistance significantly increases due to the presence of vitamin E.

  19. Protein folding: Turbo-charged crosslinking

    NASA Astrophysics Data System (ADS)

    Craik, David J.

    2012-08-01

    The efficient production of stable bioactive proteins often requires the selective formation of several disulfide crosslinks. Two recent studies have now shown that replacing cysteine with selenocysteine in the unfolded protein can autocatalyse the formation of the desired crosslinks.

  20. Betanin reduces the accumulation and cross-links of collagen in high-fructose-fed rat heart through inhibiting non-enzymatic glycation.

    PubMed

    Han, Junyan; Tan, Chang; Wang, Yiheng; Yang, Shaobin; Tan, Dehong

    2015-02-01

    We attempted to determine whether betanin (from natural pigments) that has antioxidant properties would be protective against fructose-induced diabetic cardiac fibrosis in Sprague-Dawley rats. Fructose water solution (30%) was accessed freely, and betanin (25 and 100 mg/kg/d) was administered by intra-gastric gavage continuously for 60 d. Rats were sacrificed after overnight fast. The rat blood and left ventricle were collected. In vitro antiglycation assay in bovine serum albumin/fructose system was also performed. In rats treated only with fructose, levels of plasma markers: glucose, insulin, HOMA and glycated hemoglobin rised, left ventricle collagen accumulated and cross-linked, profibrotic factor-transforming growth factor (TGF)-β1 and connective tissue growth factor (CTGF) protein expression increased, and soluble collagen decreased, compared with those in normal rats, showing fructose induces diabetic cardiac fibrosis. Treatment with betanin antagonized the changes of these parameters, demonstrating the antifibrotic role of betanin in the selected diabetic models. In further mechanistic study, betanin decreased protein glycation indicated by the decreased levels of protein glycation reactive intermediate (methylglyoxal), advanced glycation end product (N(ε)-(carboxymethyl) lysine) and receptors for advanced glycation end products (AGEs), antagonized oxidative stress and nuclear factor-κB activation elicited by fructose feeding, suggesting inhibition of glycation, oxidative stress and nuclear factor-κB activation may be involved in the antifibrotic mechanisms. Betanin also showed anitglycative effect in BSA/fructose system, which supported that anitglycation was involved in betanin's protective roles in vivo. Taken together, the potential for using betanin as an auxillary therapy for diabetic cardiomyopathy deserves to be explored further. PMID:25559852

  1. Electrospinning formaldehyde cross-linked zein solutions

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In order to develop zein fibers with improved physical properties and solvent resistance, formaldehyde was used as the cross-linking reagent before spinning. The cross-linking reaction was carried out in either acetic acid or ethanolic-HCl where the amount of cross-linking reagent was between 1 and...

  2. Incorporation of magnesium ions into photo-crosslinked alginate hydrogel enhanced cell adhesion ability.

    PubMed

    Yin, Miao; Xu, Fei; Ding, Huifen; Tan, Fei; Song, Fangfang; Wang, Jiawei

    2015-09-01

    Photo-crosslinked alginate hydrogel attracts wide interest in tissue engineering because of its excellent controllability and stability. However, its highly hydrophilic property makes cell adhesion difficult. Plenty of studies have confirmed that magnesium ions (Mg(2+) ) can efficiently improve the attachment of osteoblasts. In this study, for the first time, we fabricated a durable, crosslinked, alginate hydrogel with a dual-crosslinking network. Photo-crosslinked alginate hydrogel was chosen as the basic backbone, and various amounts of Mg(2+) were incorporated into the hydrogel through ionic crosslinking. The results showed that the physicochemical properties of the hydrogels, including surface structure, composition, swelling ratio, ion release and elastic modulus, could be well tuned by controlling the amount of Mg(2+) incorporated. In addition, a certain amount of Mg(2+) significantly improved the attachment and spread of osteoblasts on the hydrogels. These characteristics make Mg(2+) -incorporated photo-crosslinked alginate hydrogel a promising scaffold for bone tissue engineering. PMID:25694165

  3. The Enabling and Protective Role of Academic Buoyancy in the Appraisal of Fear Appeals Used Prior to High Stakes Examinations

    ERIC Educational Resources Information Center

    Symes, Wendy; Putwain, David W.; Remedios, Richard

    2015-01-01

    Prior to high stakes examinations, teachers may engage in instructional practices to encourage their students to prepare well for their exams, including the use of "fear appeals". The current study examined whether academic buoyancy played a role in student appraisals of fear appeals as threatening or challenging. High school students…

  4. Sub-100 nm gold nanoparticle vesicles as a drug delivery carrier enabling rapid drug release upon light irradiation.

    PubMed

    Niikura, Kenichi; Iyo, Naoki; Matsuo, Yasutaka; Mitomo, Hideyuki; Ijiro, Kuniharu

    2013-05-01

    Previously, we reported gold nanoparticles coated with semifluorinated ligands self-assembled into gold nanoparticle vesicles (AuNVs) with a sub-100 nm diameter in tetrahydrofuran (THF). (1) Although this size is potentially useful for in vivo use, the biomedical applications of AuNVs were limited, as the vesicular structure collapsed in water. In this paper, we demonstrate that the AuNVs can be dispersed in water by cross-linking each gold nanoparticle with thiol-terminated PEG so that the cross-linked vesicles can work as a drug delivery carrier enabling light-triggered release. Rhodamine dyes or anticancer drugs were encapsulated within the cross-linked vesicles by heating to 62.5 °C. At this temperature, the gaps between nanoparticles open, as confirmed by a blue shift in the plasmon peak and the more efficient encapsulation than that observed at room temperature. The cross-linked AuNVs released encapsulated drugs upon short-term laser irradiation (5 min, 532 nm) by again opening the nanogaps between each nanoparticle in the vesicle. On the contrary, when heating the solution to 70 °C, the release speed of encapsulated dyes was much lower (more than 2 h) than that triggered by laser irradiation, indicating that cross-linked AuNVs are highly responsive to light. The vesicles were efficiently internalized into cells compared to discrete gold nanoparticles and released anticancer drugs upon laser irradiation in cells. These results indicate that cross-linked AuNVs, sub-100 nm in size, could be a new type of light-responsive drug delivery carrier applicable to the biomedical field. PMID:23566248

  5. Low-loss smile-insensitive external frequency-stabilization of high power diode lasers enabled by vertical designs with extremely low divergence angle and high efficiency

    NASA Astrophysics Data System (ADS)

    Crump, Paul; Knigge, Steffen; Maaßdorf, Andre; Bugge, Frank; Hengesbach, Stefan; Witte, Ulrich; Hoffmann, Hans-Dieter; Köhler, Bernd; Hubrich, Ralf; Kissel, Heiko; Biesenbach, Jens; Erbert, Götz; Traenkle, Guenther

    2013-02-01

    Broad area lasers with narrow spectra are required for many pumping applications and for wavelength beam combination. Although monolithically stabilized lasers show high performance, some applications can only be addressed with external frequency stabilization, for example when very narrow spectra are required. When conventional diode lasers with vertical far field angle, ΘV 95% ~ 45° (95% power) are stabilized using volume holographic gratings (VHGs), optical losses are introduced, limiting both efficiency and reliable output power, with the presence of any bar smile compounding the challenge. Diode lasers with designs optimized for extremely low vertical divergence (ELOD lasers) directly address these challenges. The vertical far field angle in conventional laser designs is limited by the waveguiding of the active region itself. In ELOD designs, quantum barriers are used that have low refractive index, enabling the influence of the active region to be suppressed, leading to narrow far field operation from thin vertical structures, for minimal electrical resistance and maximum power conversion efficiency. We review the design process, and show that 975 nm diode lasers with 90 μm stripes that use ELOD designs operate with ΘV 95% = 26° and reach 58% power conversion efficiency at a CW output power of 10 W. We demonstrate directly that VHG stabilized ELOD lasers have significantly lower loss and larger operation windows than conventional lasers in the collimated feedback regimes, even in the presence of significant (≥ 1 μm) bar smile. We also discuss the potential influence of ELOD designs on reliable output power and options for further performance improvement.

  6. Effect of vapor-phase glutaraldehyde crosslinking on electrospun starch fibers.

    PubMed

    Wang, Wenyu; Jin, Xin; Zhu, Yonghao; Zhu, Chengzhang; Yang, Jian; Wang, Hongjie; Lin, Tong

    2016-04-20

    In this work, we have proven that starch nanofibrous membranes with high tensile strength, water stability and non-cytotoxicity can be produced by electrospinning of starch solution and post-treatment with GTA in vapor phase. GTA vapor phase crosslinking plays a key role in forming water-stable nanofiber membrane and improving the mechanical properties. Comparing with non-crosslinked starch fibers, the crosslinked fibers are increased by nearly 10 times in tensile strength. The crosslinked starch fibrous membranes are non-cytotoxic. They may find applications in the fields of tissue engineering, pharmaceutical therapy and medical. PMID:26876862

  7. Photomobile polymer materials: photoresponsive behavior of cross-linked liquid-crystalline polymers with mesomorphic diarylethenes.

    PubMed

    Mamiya, Jun-ichi; Kuriyama, Akito; Yokota, Naoki; Yamada, Munenori; Ikeda, Tomiki

    2015-02-16

    Cross-linked liquid-crystalline (LC) polymers with a mesomorphic diarylethene were prepared to demonstrate a versatile strategy for cross-linked photochromic LC polymers as photomobile materials. Upon exposure to UV light to cause photocyclization of the diarylethene chromophore, the cross-linked polymer films bend toward an actinic light source. By irradiation with visible light to cause a closed-ring to open-ring isomerization, the bent films revert to the initial flat state. Without visible-light irradiation, the bent films remain bent even at 120 °C, indicating high thermal stability of the cross-linked diarylethene LC polymers. PMID:25581255

  8. Femtosecond laser collagen cross-linking without traditional photosensitizers

    NASA Astrophysics Data System (ADS)

    Guo, Yizang; Wang, Chao; Celi, Nicola; Vukelic, Sinisa

    2015-03-01

    Collagen cross-linking in cornea has the capability of enhancing its mechanical properties and thereby providing an alternative treatment for eye diseases such as keratoconus. Currently, riboflavin assisted UVA light irradiation is a method of choice for cross-link induction in eyes. However, ultrafast pulsed laser interactions may be a powerful alternative enabling in-depth treatment while simultaneously diminishing harmful side effects such as, keratocyte apoptosis. In this study, femtosecond laser is utilized for treatment of bovine cornea slices. It is hypothesized that nonlinear absorption of femtosecond laser pulses plays a major role in the maturation of immature cross-links and the promotion of their growth. Targeted irradiation with tightly focused laser pulses allows for the absence of a photosensitizing agent. Inflation test was conducted on half treated porcine cornea to identify the changes of mechanical properties due to laser treatment. Raman spectroscopy was utilized to study subtle changes in the chemical composition of treated cornea. The effects of treatment are analyzed by observing shifts in Amide I and Amide III bands, which suggest deformation of the collagen structure in cornea due to presence of newly formed cross-links.

  9. High-Throughput Quantitative Proteomics Enabled by Mass Defect-Based 12-Plex DiLeu Isobaric Tags.

    PubMed

    Frost, Dustin C; Li, Lingjun

    2016-01-01

    Isobaric labeling has become a popular technique for high-throughput, mass spectrometry (MS)-based relative quantification of peptides and proteins. However, widespread use of the approach for large-scale proteomics applications has been limited by the high cost of commercial isobaric tags. To address this, we have developed our own N,N-dimethyl leucine (DiLeu) multiplex isobaric tags as a cost-effective alternative that can be synthesized with ease using readily available isotopic reagents. When paired with high-resolution tandem mass (MS(n)) acquisition, mass defect-based DiLeu isobaric tags allow relative quantification of up to twelve samples in a single liquid chromatography (LC)-MS(2) experiment. Herein, we present detailed methods for synthesis of 12-plex DiLeu isobaric tags, labeling of complex protein digest samples, analysis by high-resolution nanoLC-MS(n), and processing of acquired data. PMID:26867744

  10. Membrane Dehumidifier: High-Efficiency, On-Line Membrane Air Dehumidifier Enabling Sensible Cooling for Warm and Humid Climates

    SciTech Connect

    2010-09-01

    BEETIT Project: ADMA Products is developing a foil-like membrane for air conditioners that efficiently removes moisture from humid air. ADMA Products’s metal foil-like membrane consists of a paper thin, porous metal sheet coated with a layer of water-loving molecules. This new membrane allows water vapor to permeate across the membrane at high fluxes and at the same time, blocks air penetration efficiently resulting in high selectivity. The high selectivity of the membrane translates to less energy use, while the high permeation fluxes result in a more compact device. The new materials and the flat foil-like nature of the membrane facilitate the mass production of a low-coast compact dehumidification device

  11. Cross-Linking Electrochemical Mass Spectrometry for Probing Protein Three-Dimensional Structures

    PubMed Central

    2015-01-01

    Chemical cross-linking combined with mass spectrometry (MS) is powerful to provide protein three-dimensional structure information but difficulties in identifying cross-linked peptides and elucidating their structures limit its usefulness. To tackle these challenges, this study presents a novel cross-linking MS in conjunction with electrochemistry using disulfide-bond-containing dithiobis[succinimidyl propionate] (DSP) as the cross-linker. In our approach, electrolysis of DSP-bridged protein/peptide products, as online monitored by desorption electrospray ionization mass spectrometry is highly informative. First, as disulfide bonds are electrochemically reducible, the cross-links are subject to pronounced intensity decrease upon electrolytic reduction, suggesting a new way to identify cross-links. Also, mass shift before and after electrolysis suggests the linkage pattern of cross-links. Electrochemical reduction removes disulfide bond constraints, possibly increasing sequence coverage for tandem MS analysis and yielding linear peptides whose structures are more easily determined than their cross-linked precursor peptides. Furthermore, this cross-linking electrochemical MS method is rapid, due to the fast nature of electrochemical conversion (much faster than traditional chemical reduction) and no need for chromatographic separation, which would be of high value for structural proteomics research. PMID:25141260

  12. Spatial tuning of acoustofluidic pressure nodes by altering net sonic velocity enables high-throughput, efficient cell sorting

    SciTech Connect

    Jung, Seung-Yong; Notton, Timothy; Fong, Erika; Shusteff, Maxim; Weinberger, Leor S.

    2015-01-07

    Particle sorting using acoustofluidics has enormous potential but widespread adoption has been limited by complex device designs and low throughput. Here, we report high-throughput separation of particles and T lymphocytes (600 μL min-1) by altering the net sonic velocity to reposition acoustic pressure nodes in a simple two-channel device. Finally, the approach is generalizable to other microfluidic platforms for rapid, high-throughput analysis.

  13. Spatial tuning of acoustofluidic pressure nodes by altering net sonic velocity enables high-throughput, efficient cell sorting

    DOE PAGESBeta

    Jung, Seung-Yong; Notton, Timothy; Fong, Erika; Shusteff, Maxim; Weinberger, Leor S.

    2015-01-07

    Particle sorting using acoustofluidics has enormous potential but widespread adoption has been limited by complex device designs and low throughput. Here, we report high-throughput separation of particles and T lymphocytes (600 μL min-1) by altering the net sonic velocity to reposition acoustic pressure nodes in a simple two-channel device. Finally, the approach is generalizable to other microfluidic platforms for rapid, high-throughput analysis.

  14. Two Allergen Model Reveals Complex Relationship Between IgE Cross-Linking and Degranulation

    PubMed Central

    Handlogten, Michael W.; Deak, Peter E.; Bilgicer, Basar

    2014-01-01

    Summary Allergy is an immune response to complex mixtures of multiple allergens yet current models use a single synthetic allergen. Multiple allergens were modeled using two well-defined tetravalent allergens each specific for a distinct IgE thus enabling a systematic approach to evaluate the effect of each allergen and percent of allergen specific IgE on mast cell degranulation. We found the overall degranulation response caused by two allergens is additive for low allergen concentrations or low percent specific IgE, does not change for moderate allergen concentrations with moderate to high percent specific IgE, and is reduced for high allergen concentrations with moderate to high percent specific IgE. These results provide further evidence that supra-optimal IgE cross-linking decreases the degranulation response and establishes the two allergen model as a relevant experimental system to elucidate mast cell degranulation mechanisms. PMID:25308278

  15. Synthesis of borate cross-linked rhamnogalacturonan II

    PubMed Central

    Funakawa, Hiroya; Miwa, Kyoko

    2015-01-01

    In the present review, we describe current knowledge about synthesis of borate crosslinked rhamnogalacturonan II (RG-II) and it physiological roles. RG-II is a portion of pectic polysaccharide with high complexity, present in primary cell wall. It is composed of homogalacturonan backbone and four distinct side chains (A–D). Borate forms ester bonds with the apiosyl residues of side chain A of two RG-II monomers to generate borate dimerized RG-II, contributing for the formation of networks of pectic polysaccharides. In plant cell walls, more than 90% of RG-II are dimerized by borate under boron (B) sufficient conditions. Borate crosslinking of RG-II in primary cell walls, to our knowledge, is the only experimentally proven molecular function of B, an essential trace-element. Although abundance of RG-II and B is quite small in cell wall polysaccharides, increasing evidence supports that RG-II and its borate crosslinking are critical for plant growth and development. Significant advancement was made recently on the location and the mechanisms of RG-II synthesis and borate cross-linking. Molecular genetic studies have successfully identified key enzymes for RG-II synthesis and regulators including B transporters required for efficient formation of RG-II crosslinking and consequent normal plant growth. The present article focuses recent advances on (i) RG-II polysaccharide synthesis, (ii) occurrence of borate crosslinking and (iii) B transport for borate supply to RG-II. Molecular mechanisms underlying formation of borate RG-II crosslinking and the physiological impacts are discussed. PMID:25954281

  16. Biologically relevant oxidants cause bound proteins to readily oxidatively cross-link at Guanine.

    PubMed

    Solivio, Morwena J; Nemera, Dessalegn B; Sallans, Larry; Merino, Edward J

    2012-02-20

    Oxidative DNA-protein cross-links have received less attention than other types of DNA damage and remain as one of the least understood types of oxidative lesion. A model system using ribonuclease A and a 27-nucleotide DNA was used to determine the propensity of oxidative cross-linking to occur in the presence of oxidants. Cross-link formation was examined using four different oxidation systems that generate singlet oxygen, superoxide, and metal-based Fenton reactions. It is shown that oxidative cross-linking occurs in yields ranging from 14% to a maximal yield of 61% in all oxidative systems when equivalent concentrations of DNA and protein are present. Because singlet oxygen is the most efficient oxidation system in generating DNA-protein cross-links, it was chosen for further analyses. Cross-linking occurred with single-stranded DNA binding protein and not with bovine serum albumin. Addition of salt lowered nonspecific binding affinity and lowered cross-link yield by up to 59%. The yield of cross-linking increased with increased ratios of protein compared with DNA. Cross-linking was highly dependent on the number of guanines in a DNA sequence. Loss of guanine content on the 27-nucleotide DNA led to nearly complete loss in cross-linking, while primer extension studies showed cross-links to predominantly occur at guanine base on a 100-nucleotide DNA. The chemical species generated were examined using two peptides derived from the ribonuclease A sequence, N-acetyl-AAAKF and N-acetyl-AYKTT, which were cross-linked to 2'-deoxyguanosine. The cross-link products were spiroiminodihydantoin, guanidinohydantoin, and tyrosyl-based adducts. Formation of tyrosine-based adducts may be competitive with the more well-studied lysine-based cross-links. We conclude that oxidative cross-links may be present at high levels in cells since the propensity to oxidatively cross-link is high and so much of the genomic DNA is coated with protein. PMID:22216745

  17. Expression, cross-linking, and characterization of recombinant chitin binding resilin.

    PubMed

    Qin, Guokui; Lapidot, Shaul; Numata, Keiji; Hu, Xiao; Meirovitch, Sigal; Dekel, Mara; Podoler, Itai; Shoseyov, Oded; Kaplan, David L

    2009-12-14

    Resilin is a polymeric rubber-like protein secreted by insects to specialized cuticle regions, in areas where high resilience and low stiffness are required. Resilin binds to the cuticle polysaccharide chitin via a chitin binding domain and is further polymerized through oxidation of the tyrosine residues resulting in the formation of dityrosine bridges and assembly of a high-performance protein--carbohydrate composite material. We describe the mechanical, structural and biochemical function of chitin binding recombinant Drosophila melanogaster resilin. Various resilin constructs were cloned including the full length gene enabling Ni-NTA purification, as well as heat and salt precipitation for rapid and efficient purification. The binding isotherms and constants (K(d), B(max)) of resilin to chitin via its chitin binding domain were determined and displayed high affinity to chitin, implying its important role in the assembly of the resilin-chitin composite. The structural and elastic properties were investigated using Fourier transform infrared spectroscopy, circular dichroism, and atomic force microscopy with peroxidase cross-linked solid resilin materials. Generally, little structural organization was found by these biophysical methods, suggesting structural order was not induced by the dityrosine cross-links. Further, the elastomeric properties found from the full length protein compared favorably with the shorter resilin generated previously from exon 1. The unusual elastomeric behavior of this protein suggests possible utility in biomaterials applications. PMID:19928816

  18. Oscillating high-aspect-ratio monolithic silicon nanoneedle array enables efficient delivery of functional bio-macromolecules into living cells

    PubMed Central

    Matsumoto, Daisuke; Rao Sathuluri, Ramachandra; Kato, Yoshio; Silberberg, Yaron R.; Kawamura, Ryuzo; Iwata, Futoshi; Kobayashi, Takeshi; Nakamura, Chikashi

    2015-01-01

    Delivery of biomolecules with use of nanostructures has been previously reported. However, both efficient and high-throughput intracellular delivery has proved difficult to achieve. Here, we report a novel material and device for the delivery of biomacromolecules into live cells. We attribute the successful results to the unique features of the system, which include high-aspect-ratio, uniform nanoneedles laid across a 2D array, combined with an oscillatory feature, which together allow rapid, forcible and efficient insertion and protein release into thousands of cells simultaneously. PMID:26471006

  19. Conformists & Mavericks: Introducing IT-Enabled Plurilingual Pedagogy Informed by the CEFR in High School French Immersion

    ERIC Educational Resources Information Center

    Taylor, Shelley K.

    2015-01-01

    This exploratory case study investigates pathways taken by a Canadian French immersion high school teacher invested in pedagogical change. To fairly evaluate the successfulness of her attempt to effect change, Cummins' "framework of coercive and collaborative relations of power manifested in macro- and micro-interactions" was employed.…

  20. Constitutive Modeling of Crosslinked Nanotube Materials

    NASA Technical Reports Server (NTRS)

    Odegard, G. M.; Frankland, S. J. V.; Herzog, M. N.; Gates, T. S.; Fay, C. C.

    2004-01-01

    A non-linear, continuum-based constitutive model is developed for carbon nanotube materials in which bundles of aligned carbon nanotubes have varying amounts of crosslinks between the nanotubes. The model accounts for the non-linear elastic constitutive behavior of the material in terms of strain, and is developed using a thermodynamic energy approach. The model is used to examine the effect of the crosslinking on the overall mechanical properties of variations of the crosslinked carbon nanotube material with varying degrees of crosslinking. It is shown that the presence of the crosslinks has significant effects on the mechanical properties of the carbon nanotube materials. An increase in the transverse shear properties is observed when the nanotubes are crosslinked. However, this increase is accompanied by a decrease in axial mechanical properties of the nanotube material upon crosslinking.

  1. Enabling multi-disciplinary climate science through the application of GIS and high-resolution spatial data

    NASA Astrophysics Data System (ADS)

    Altmann, G.; Wilson, C. J.; Gangodagamage, C.; Wullschleger, S. D.

    2013-12-01

    Multidisciplinary field studies in climate science require effective methods for communicating data needs across a broad range of spatial and temporal scales. The Next Generation Ecosystem Experiment-Arctic seeks to reduce uncertainty in climate prediction by investigating critical land-atmosphere interactions in terrestrial ecosystems of Alaska. Using high-resolution LiDAR imagery and GIS, we applied geographic visualization principles to synthesize spatial data and facilitate cross-discipline communication for field planning, instrument implementation and model data integration. We hypothesized that providing three-dimensional (3D) representation of arctic landscape features would enhance perception and provide an effective medium to better optimize further field studies and analyses. Results indicate that key landscape features, such as polygonal ground and drained thaw lake basins (DTLB), represented in 3D maps offered superior recognition and differentiation among these features than traditional 2D maps. When overlaying 3D landscape features with high-resolution spatial data, such as WorldView-2 panchromatic imagery, digital elevation models (DEM), remotely derived indexes such as NDVI, or site instrumentation, further recognition and quantification of landscape processes was attained. Conversely, we observed that data inclusion in excess resulted in poor cognition of key features and/or themes. At various scales, 3D visualization proved to be effective at characterizing both large-scale (1:50) site level characteristics (polygon/trough), as well as small-scale (1:500) regional features (high vs. low polygon terrain). We conclude that applying GIS and high-resolution spatial data to create 3D visualizations is highly effective in representing key arctic landscape features across a wide range of scales. When combining multiple data layers (in moderation), these visualizations prove to be a valuable tool for communicating data needs, refining field

  2. Mechanophore activation in a crosslinked polymer matrix via instrumented indentation

    NASA Astrophysics Data System (ADS)

    Davis, Chelsea; Forster, Aaron; Woodcock, Jeremiah; Wang, Muzhou; Gilman, Jeffrey; Material Measurement Laboratory Team

    Recent advances in mechanically-activated fluorophores will enable a host of unique scientific challenges and opportunities to be addressed. Several mechanophores (MPs) in polymers have been reported, yet the specific deformation required to activate these molecules in a bulk polymer network has not been sufficiently specified. In an effort to develop the mechano-activation/deformation relationship of a spirolactam-based MP, scratches were applied to a MP-functionalized glassy crosslinked material at varying normal loads and lateral displacement rates. This experimental design allowed strain and strain rate effects to be decoupled. The fluorescence activation was then observed with a laser scanning confocal microscope. Areas of elastic and plastic deformation as well as brittle fracture were observed within each scratch as the normal loading of the indenter increased. The fluorescence intensity increased with increasing strain. Contact mechanics models are employed to demonstrate that relatively high degrees of strain are required to initiate the ring-opening activation transition within the spirolactam-based MP. These self-reporting damage sensors can be incorporated within polymeric coatings to allow real time structural health monitoring for a myriad of applications.

  3. Microintaglio Printing of In situ Synthesized Proteins Enables Rapid Printing of High-Density Protein Microarrays Directly from DNA Microarrays

    NASA Astrophysics Data System (ADS)

    Biyani, Manish; Moriyasu, Junpei; Tanaka, Yoko; Sato, Shusuke; Ueno, Shingo; Ichiki, Takanori

    2013-08-01

    A simple and versatile approach to the simultaneous on-chip synthesis and printing of proteins has been studied for high-density protein microarray applications. The method used is based on the principle of intaglio printing using microengraved plates. Unlike conventional approaches that require multistep reactions for synthesizing proteins off the chip followed by printing using a robotic spotter, our approach demonstrates the following: (i) parallel and spotter-free printing of high-density protein microarrays directly from a type of DNA microarray and (ii) microcompartmentalization of cell-free coupled transcription/translation reaction and direct transferring of picoliter protein solution per spot to pattern microarrays of 25-100 µm features.

  4. "Water-in-salt" electrolytes enable the use of cost-effective aluminum current collectors for aqueous high-voltage batteries.

    PubMed

    Kühnel, R-S; Reber, D; Remhof, A; Figi, R; Bleiner, D; Battaglia, C

    2016-08-16

    The extended electrochemical stability window offered by highly concentrated electrolytes allows the operation of aqueous batteries at voltages significantly above the thermodynamic stability limit of water, at which the stability of the current collector potentially limits the cell voltage. Here we report the observation of suppressed anodic dissolution of aluminum in "water-in-salt" electrolytes enabling roll-to-roll electrode fabrication for high-voltage aqueous lithium-ion batteries on cost-effective light-weight aluminum current collectors using established lithium-ion battery technology. PMID:27488137

  5. Gallium Adhesion: Phase Change of Gallium Enables Highly Reversible and Switchable Adhesion (Adv. Mater. 25/2016).

    PubMed

    Ye, Zhou; Lum, Guo Zhan; Song, Sukho; Rich, Steven; Sitti, Metin

    2016-07-01

    M. Sitti and co-workers find that gallium exhibits highly reversible and switchable adhesive characteristics during the liquid-solid phase change. As described on page 5088, this reversible adhesive allows miniature capsule-like robots, which are able to easily pick-and-place objects with irregular geometries and rough surfaces, and thus assemble such objects into a complex structure. The contact interface between gallium and the rough object is illustrated in the magnified image. PMID:27372722

  6. High-rate, ultralong cycle-life lithium/sulfur batteries enabled by nitrogen-doped graphene.

    PubMed

    Qiu, Yongcai; Li, Wanfei; Zhao, Wen; Li, Guizhu; Hou, Yuan; Liu, Meinan; Zhou, Lisha; Ye, Fangmin; Li, Hongfei; Wei, Zhanhua; Yang, Shihe; Duan, Wenhui; Ye, Yifan; Guo, Jinghua; Zhang, Yuegang

    2014-08-13

    Nitrogen-doped graphene (NG) is a promising conductive matrix material for fabricating high-performance Li/S batteries. Here we report a simple, low-cost, and scalable method to prepare an additive-free nanocomposite cathode in which sulfur nanoparticles are wrapped inside the NG sheets (S@NG). We show that the Li/S@NG can deliver high specific discharge capacities at high rates, that is, ∼ 1167 mAh g(-1) at 0.2 C, ∼ 1058 mAh g(-1) at 0.5 C, ∼ 971 mAh g(-1) at 1 C, ∼ 802 mAh g(-1) at 2 C, and ∼ 606 mAh g(-1) at 5 C. The cells also demonstrate an ultralong cycle life exceeding 2000 cycles and an extremely low capacity-decay rate (0.028% per cycle), which is among the best performance demonstrated so far for Li/S cells. Furthermore, the S@NG cathode can be cycled with an excellent Coulombic efficiency of above 97% after 2000 cycles. With a high active S content (60%) in the total electrode weight, the S@NG cathode could provide a specific energy that is competitive to the state-of-the-art Li-ion cells even after 2000 cycles. The X-ray spectroscopic analysis and ab initio calculation results indicate that the excellent performance can be attributed to the well-restored C-C lattice and the unique lithium polysulfide binding capability of the N functional groups in the NG sheets. The results indicate that the S@NG nanocomposite based Li/S cells have a great potential to replace the current Li-ion batteries. PMID:25073059

  7. viSNE enables visualization of high dimensional single-cell data and reveals phenotypic heterogeneity of leukemia

    PubMed Central

    Amir, El-ad David; Davis, Kara L; Tadmor, Michelle D; Simonds, Erin F; Levine, Jacob H; Bendall, Sean C; Shenfeld, Daniel K; Krishnaswamy, Smita; Nolan, Garry P; Pe’er, Dana

    2014-01-01

    High-dimensional single-cell technologies are revolutionizing the way we understand biological systems. Technologies such as mass cytometry measure dozens of parameters simultaneously in individual cells, making interpretation daunting. We developed viSNE, a tool to map high-dimensional cytometry data onto 2D while conserving high-dimensional structure. We integrated mass cytometry with viSNE to map healthy and cancerous bone marrow samples. Healthy bone marrow maps into a canonical shape that separates between immune subtypes. In leukemia, however, the shape is malformed: the maps of cancer samples are distinct from the healthy map and from each other. viSNE highlights structure in the heterogeneity of surface phenotype expression in cancer, traverses the progression from diagnosis to relapse, and identifies a rare leukemia population in minimal residual disease settings. As several new technologies raise the number of simultaneously measured parameters in each cell to the hundreds, viSNE will become a mainstay in analyzing and interpreting such experiments. PMID:23685480

  8. Magneto-electric Nanoparticles to Enable Field-controlled High-Specificity Drug Delivery to Eradicate Ovarian Cancer Cells

    NASA Astrophysics Data System (ADS)

    Guduru, Rakesh; Liang, Ping; Runowicz, Carolyn; Nair, Madhavan; Atluri, Venkata; Khizroev, Sakhrat

    2013-10-01

    The nanotechnology capable of high-specificity targeted delivery of anti-neoplastic drugs would be a significant breakthrough in Cancer in general and Ovarian Cancer in particular. We addressed this challenge through a new physical concept that exploited (i) the difference in the membrane electric properties between the tumor and healthy cells and (ii) the capability of magneto-electric nanoparticles (MENs) to serve as nanosized converters of remote magnetic field energy into the MENs' intrinsic electric field energy. This capability allows to remotely control the membrane electric fields and consequently trigger high-specificity drug uptake through creation of localized nano-electroporation sites. In in-vitro studies on human ovarian carcinoma cell (SKOV-3) and healthy cell (HOMEC) lines, we applied a 30-Oe d.c. field to trigger high-specificity uptake of paclitaxel loaded on 30-nm CoFe2O4@BaTiO3 MENs. The drug penetrated through the membrane and completely eradicated the tumor within 24 hours without affecting the normal cells.

  9. Magneto-electric Nanoparticles to Enable Field-controlled High-Specificity Drug Delivery to Eradicate Ovarian Cancer Cells

    PubMed Central

    Guduru, Rakesh; Liang, Ping; Runowicz, Carolyn; Nair, Madhavan; Atluri, Venkata; Khizroev, Sakhrat

    2013-01-01

    The nanotechnology capable of high-specificity targeted delivery of anti-neoplastic drugs would be a significant breakthrough in Cancer in general and Ovarian Cancer in particular. We addressed this challenge through a new physical concept that exploited (i) the difference in the membrane electric properties between the tumor and healthy cells and (ii) the capability of magneto-electric nanoparticles (MENs) to serve as nanosized converters of remote magnetic field energy into the MENs' intrinsic electric field energy. This capability allows to remotely control the membrane electric fields and consequently trigger high-specificity drug uptake through creation of localized nano-electroporation sites. In in-vitro studies on human ovarian carcinoma cell (SKOV-3) and healthy cell (HOMEC) lines, we applied a 30-Oe d.c. field to trigger high-specificity uptake of paclitaxel loaded on 30-nm CoFe2O4@BaTiO3 MENs. The drug penetrated through the membrane and completely eradicated the tumor within 24 hours without affecting the normal cells. PMID:24129652

  10. ExScalibur: A High-Performance Cloud-Enabled Suite for Whole Exome Germline and Somatic Mutation Identification.

    PubMed

    Bao, Riyue; Hernandez, Kyle; Huang, Lei; Kang, Wenjun; Bartom, Elizabeth; Onel, Kenan; Volchenboum, Samuel; Andrade, Jorge

    2015-01-01

    Whole exome sequencing has facilitated the discovery of causal genetic variants associated with human diseases at deep coverage and low cost. In particular, the detection of somatic mutations from tumor/normal pairs has provided insights into the cancer genome. Although there is an abundance of publicly-available software for the detection of germline and somatic variants, concordance is generally limited among variant callers and alignment algorithms. Successful integration of variants detected by multiple methods requires in-depth knowledge of the software, access to high-performance computing resources, and advanced programming techniques. We present ExScalibur, a set of fully automated, highly scalable and modulated pipelines for whole exome data analysis. The suite integrates multiple alignment and variant calling algorithms for the accurate detection of germline and somatic mutations with close to 99% sensitivity and specificity. ExScalibur implements streamlined execution of analytical modules, real-time monitoring of pipeline progress, robust handling of errors and intuitive documentation that allows for increased reproducibility and sharing of results and workflows. It runs on local computers, high-performance computing clusters and cloud environments. In addition, we provide a data analysis report utility to facilitate visualization of the results that offers interactive exploration of quality control files, read alignment and variant calls, assisting downstream customization of potential disease-causing mutations. ExScalibur is open-source and is also available as a public image on Amazon cloud. PMID:26271043

  11. Benchmarking density functional perturbation theory to enable high-throughput screening of materials for dielectric constant and refractive index

    NASA Astrophysics Data System (ADS)

    Petousis, Ioannis; Chen, Wei; Hautier, Geoffroy; Graf, Tanja; Schladt, Thomas D.; Persson, Kristin A.; Prinz, Fritz B.

    2016-03-01

    We demonstrate a high-throughput density functional perturbation theory (DFPT) methodology capable of screening compounds for their dielectric properties. The electronic and ionic dielectric tensors are calculated for 88 compounds, where the eigenvalues of the total dielectric tensors are compared with single crystal and polycrystalline experimental values reported in the literature. We find that GGA/PBE has a smaller mean average deviation from experiments (MARD=16.2 %) when compared to LDA. The prediction accuracy of DFPT is lowest for compounds that exhibit complex structural relaxation effects (e.g., octahedra rotation in perovskites) and/or strong anharmonicity. Despite some discrepancies between DFPT results and reported experimental values, the high-throughput methodology is found to be useful in identifying interesting compounds by ranking. This is demonstrated by the high Spearman correlation factor (ρ =0.92 ). Finally, we demonstrate that DFPT provides a good estimate for the refractive index of a compound without calculating the frequency dependence of the dielectric matrix (MARD=5.7 %).

  12. ExScalibur: A High-Performance Cloud-Enabled Suite for Whole Exome Germline and Somatic Mutation Identification

    PubMed Central

    Huang, Lei; Kang, Wenjun; Bartom, Elizabeth; Onel, Kenan; Volchenboum, Samuel; Andrade, Jorge

    2015-01-01

    Whole exome sequencing has facilitated the discovery of causal genetic variants associated with human diseases at deep coverage and low cost. In particular, the detection of somatic mutations from tumor/normal pairs has provided insights into the cancer genome. Although there is an abundance of publicly-available software for the detection of germline and somatic variants, concordance is generally limited among variant callers and alignment algorithms. Successful integration of variants detected by multiple methods requires in-depth knowledge of the software, access to high-performance computing resources, and advanced programming techniques. We present ExScalibur, a set of fully automated, highly scalable and modulated pipelines for whole exome data analysis. The suite integrates multiple alignment and variant calling algorithms for the accurate detection of germline and somatic mutations with close to 99% sensitivity and specificity. ExScalibur implements streamlined execution of analytical modules, real-time monitoring of pipeline progress, robust handling of errors and intuitive documentation that allows for increased reproducibility and sharing of results and workflows. It runs on local computers, high-performance computing clusters and cloud environments. In addition, we provide a data analysis report utility to facilitate visualization of the results that offers interactive exploration of quality control files, read alignment and variant calls, assisting downstream customization of potential disease-causing mutations. ExScalibur is open-source and is also available as a public image on Amazon cloud. PMID:26271043

  13. Mechanically resilient, injectable, and bioadhesive supramolecular gelatin hydrogels crosslinked by weak host-guest interactions assist cell infiltration and in situ tissue regeneration.

    PubMed

    Feng, Qian; Wei, Kongchang; Lin, Sien; Xu, Zhen; Sun, Yuxin; Shi, Peng; Li, Gang; Bian, Liming

    2016-09-01

    Although considered promising materials for assisting organ regeneration, few hydrogels meet the stringent requirements of clinical translation on the preparation, application, mechanical property, bioadhesion, and biocompatibility of the hydrogels. Herein, we describe a facile supramolecular approach for preparing gelatin hydrogels with a wide array of desirable properties. Briefly, we first prepare a supramolecular gelatin macromer via the efficient host-guest complexation between the aromatic residues of gelatin and free diffusing photo-crosslinkable acrylated β-cyclodextrin (β-CD) monomers. The subsequent crosslinking of the macromers produces highly resilient supramolecular gelatin hydrogels that are solely crosslinked by the weak host-guest interactions between the gelatinous aromatic residues and β-cyclodextrin (β-CD). The obtained hydrogels are capable of sustaining excessive compressive and tensile strain, and they are capable of quick self healing after mechanical disruption. These hydrogels can be injected in the gelation state through surgical needles and re-molded to the targeted geometries while protecting the encapsulated cells. Moreover, the weak host-guest crosslinking likely facilitate the infiltration and migration of cells into the hydrogels. The excess β-CDs in the hydrogels enable the hydrogel-tissue adhesion and enhance the loading and sustained delivery of hydrophobic drugs. The cell and animal studies show that such hydrogels support cell recruitment, differentiation, and bone regeneration, making them promising carrier biomaterials of therapeutic cells and drugs via minimally invasive procedures. PMID:27294539

  14. Poly(colloid)s: "Polymerization" of Poly(l-tyrosine)-silica Composite Particles through the Photoinduced Cross-Linking of Unmodified Proteins Method.

    PubMed

    Rosu, Cornelia; Cueto, Rafael; Russo, Paul S

    2016-08-23

    Photoinduced cross-linking of unmodified proteins, PICUP, was extended to core-shell silica-polypeptide composite particles to produce poly(colloid)s. Silica particles coated with poly(l-tyrosine), PTYR-SiO2, served as the monomer units. The PICUP reaction accomplished the formation of dityrosil linkages between the tyrosine units by illumination of photo-oxidizing ruthenium(II) bipyridyl catalyst under physiological conditions. The PICUP method was compared with an enzymatic route intermediated by horseradish peroxidase as catalyst. The PTYR-SiO2 particles feature high PTYR content in the shell, which facilitated the formation of heavily cross-linked but unstructured aggregates. After magnetic alignment of superparamagnetic PTYR-SiO2-cobalt composite particles, only the PICUP approach enabled the preparation of isolated chain-like poly(colloid)s. The cross-linking products were confirmed by FTIR. The native secondary structure of poly(l-tyrosine) is preserved in these poly(colloid)s. Because the PICUP reaction does not require the modification of the polypeptide structure, the cross-linked PTYR will retain its characteristic functions as a poly(amino acid). The PICUP method opens the door to a variety of PTYR-based poly(colloid) architectures. PMID:27504929

  15. Crosslinked Linear Polyethyleneimine Enhances Delivery of DNA to the Cytoplasm

    PubMed Central

    Bonner, Daniel K.; Zhao, Xiaoyong; Buss, Hilda; Langer, Robert

    2014-01-01

    Crosslinked polyethylenimines (PEIs) have been frequently examined over the past decade since they can maintain the transfection efficiency of commercially available, 25k branched PEI, but exhibit less cytotoxicity. The argument is often made that the degradability of such polymers, generally synthesized with either disulfide or hydrolytically degradable crosslinkers, is critical to the high efficiency and low toxicity of the system. In this work, we present a crosslinked linear PEI (xLPEI) system in which either disulfide-responsive or non-degradable linkages are incorporated. As with previous systems, strong transfection efficiency in comparison with commercial standards was achieved with low cytotoxicity. However, these properties were shown to be present when either the degradable or non-degradable crosslinker was used. Uncomplexed polymer was demonstrated to be the critical factor determining transfection efficiency for these polymers, mediating efficient endosomal escape without signs of cell membrane damage. While several crosslinked PEI systems in the literature have demonstrated the effect of the disulfide moiety, this work demonstrates that disulfide-mediated unpackaging may not be as important as conventionally thought for some PEI systems. PMID:22995755

  16. Crosslinked macromolecular structures in bituminous coals: Theoretical and experimental considerations

    NASA Astrophysics Data System (ADS)

    Lucht, Lucy M.; Peppas, Nicolaos A.

    1981-02-01

    Ample evidence from physicochemical experiments suggests that bituminous coals can be described as highly crosslinked and entangled networks of macromolecular chains of irregular structure. Theoretically these structures can be analyzed by statistical mechanical models considering non-Gaussian distribution of the macro-molecular chains along with departure from the Flory theories of crosslinked macromolecules. The models of Kovac (1978) and Peppas and Lucht (1979) have been developed in order to describe non-extractable coal matrices and their behavior during swelling in appropriate swelling agents. The molecular weight between cross-links Mc and the crosslinking density ρx can be determined for various solvents and equilibrium swelling ratios. Few experimental data are available to which these models can be applied. Thus, in view of these new theoretical models, experimental research must be directed towards the reexamination of extraction and swelling behavior of bituminous coals. Some of the important parameters to be determined for characterization of the physical structure of coals include the thermodynamic interaction parameter χ, the crosslinking parameters Mc and ρx and the molecular weight distribution of the extractable coal portion.

  17. Bifunctional crosslinking ligands for transthyretin

    PubMed Central

    Mangione, P. Patrizia; Deroo, Stéphanie; Ellmerich, Stephan; Bellotti, Vittorio; Kolstoe, Simon; Wood, Stephen P.; Robinson, Carol V.; Smith, Martin D.; Tennent, Glenys A.; Broadbridge, Robert J.; Council, Claire E.; Thurston, Joanne R.; Steadman, Victoria A.; Vong, Antonio K.; Swain, Christopher J.; Pepys, Mark B.; Taylor, Graham W.

    2015-01-01

    Wild-type and variant forms of transthyretin (TTR), a normal plasma protein, are amyloidogenic and can be deposited in the tissues as amyloid fibrils causing acquired and hereditary systemic TTR amyloidosis, a debilitating and usually fatal disease. Reduction in the abundance of amyloid fibril precursor proteins arrests amyloid deposition and halts disease progression in all forms of amyloidosis including TTR type. Our previous demonstration that circulating serum amyloid P component (SAP) is efficiently depleted by administration of a specific small molecule ligand compound, that non-covalently crosslinks pairs of SAP molecules, suggested that TTR may be also amenable to this approach. We first confirmed that chemically crosslinked human TTR is rapidly cleared from the circulation in mice. In order to crosslink pairs of TTR molecules, promote their accelerated clearance and thus therapeutically deplete plasma TTR, we prepared a range of bivalent specific ligands for the thyroxine binding sites of TTR. Non-covalently bound human TTR–ligand complexes were formed that were stable in vitro and in vivo, but they were not cleared from the plasma of mice in vivo more rapidly than native uncomplexed TTR. Therapeutic depletion of circulating TTR will require additional mechanisms. PMID:26400472

  18. Enabling large area and high throughput roll-to-roll NIL by novel inkjetable and photo-curable NIL resists

    NASA Astrophysics Data System (ADS)

    Thesen, Manuel W.; Rumler, Maximilian; Schlachter, Florian; Grützner, Susanne; Moormann, Christian; Rommel, Mathias; Nees, Dieter; Ruttloff, Stephan; Pfirrmann, Stefan; Vogler, Marko; Schleunitz, Arne; Grützner, Gabi

    2014-03-01

    The high throughput and large area nanostructuring of flexible substrates by continuous roller processes has great potential for future custom applications like wire grid polarizers, antireflection films, or super-hydrophobic surfaces. For each application different material characteristics have to be considered, e.g. refractive index, hydrophobicity, or dry etch stability. Herein, we show experimental results of nanoimprint lithography resist developments focused on inkjetable and photo-curable resists suitable for high throughput production, especially roll-to-roll NIL. The inkjet deposition of the novel materials is demonstrated by the use of different state-of-the-art inkjet printheads at room temperature. A plate-to-plate process on silicon substrates was successfully implemented on a NPS300 nano patterning stepper with previously inkjet dispensed NIL resist. Furthermore, we demonstrate a throughput of 30 m min-1 in a roller NIL process on PET. Dry etching of unstructured thin films on Si wafers was performed, and it was demonstrated that the etch stability in Si is tunable to a value of 3.5:1 by a concise selection of the resist components. The surface roughness of the etched films was measured to be < 2 nm, after etching of around 100 nm of the resist films what is an essential factor for a low line edge roughness. All resists reported herein can be deposited via inkjet dispensing at room temperature, are suitable for continuous high throughput imprinting on flexible substrates, and are applicable in step-wise NIL processes with good etch resistance in dry etch processes.

  19. Low-Cost 3D Printers Enable High-Quality and Automated Sample Preparation and Molecular Detection

    PubMed Central

    Chan, Kamfai; Coen, Mauricio; Hardick, Justin; Gaydos, Charlotte A.; Wong, Kah-Yat; Smith, Clayton; Wilson, Scott A.; Vayugundla, Siva Praneeth; Wong, Season

    2016-01-01

    Most molecular diagnostic assays require upfront sample preparation steps to isolate the target’s nucleic acids, followed by its amplification and detection using various nucleic acid amplification techniques. Because molecular diagnostic methods are generally rather difficult to perform manually without highly trained users, automated and integrated systems are highly desirable but too costly for use at point-of-care or low-resource settings. Here, we showcase the development of a low-cost and rapid nucleic acid isolation and amplification platform by modifying entry-level 3D printers that cost between $400 and $750. Our modifications consisted of replacing the extruder with a tip-comb attachment that houses magnets to conduct magnetic particle-based nucleic acid extraction. We then programmed the 3D printer to conduct motions that can perform high-quality extraction protocols. Up to 12 samples can be processed simultaneously in under 13 minutes and the efficiency of nucleic acid isolation matches well against gold-standard spin-column-based extraction technology. Additionally, we used the 3D printer’s heated bed to supply heat to perform water bath-based polymerase chain reactions (PCRs). Using another attachment to hold PCR tubes, the 3D printer was programmed to automate the process of shuttling PCR tubes between water baths. By eliminating the temperature ramping needed in most commercial thermal cyclers, the run time of a 35-cycle PCR protocol was shortened by 33%. This article demonstrates that for applications in resource-limited settings, expensive nucleic acid extraction devices and thermal cyclers that are used in many central laboratories can be potentially replaced by a device modified from inexpensive entry-level 3D printers. PMID:27362424

  20. Low-Cost 3D Printers Enable High-Quality and Automated Sample Preparation and Molecular Detection.

    PubMed

    Chan, Kamfai; Coen, Mauricio; Hardick, Justin; Gaydos, Charlotte A; Wong, Kah-Yat; Smith, Clayton; Wilson, Scott A; Vayugundla, Siva Praneeth; Wong, Season

    2016-01-01

    Most molecular diagnostic assays require upfront sample preparation steps to isolate the target's nucleic acids, followed by its amplification and detection using various nucleic acid amplification techniques. Because molecular diagnostic methods are generally rather difficult to perform manually without highly trained users, automated and integrated systems are highly desirable but too costly for use at point-of-care or low-resource settings. Here, we showcase the development of a low-cost and rapid nucleic acid isolation and amplification platform by modifying entry-level 3D printers that cost between $400 and $750. Our modifications consisted of replacing the extruder with a tip-comb attachment that houses magnets to conduct magnetic particle-based nucleic acid extraction. We then programmed the 3D printer to conduct motions that can perform high-quality extraction protocols. Up to 12 samples can be processed simultaneously in under 13 minutes and the efficiency of nucleic acid isolation matches well against gold-standard spin-column-based extraction technology. Additionally, we used the 3D printer's heated bed to supply heat to perform water bath-based polymerase chain reactions (PCRs). Using another attachment to hold PCR tubes, the 3D printer was programmed to automate the process of shuttling PCR tubes between water baths. By eliminating the temperature ramping needed in most commercial thermal cyclers, the run time of a 35-cycle PCR protocol was shortened by 33%. This article demonstrates that for applications in resource-limited settings, expensive nucleic acid extraction devices and thermal cyclers that are used in many central laboratories can be potentially replaced by a device modified from inexpensive entry-level 3D printers. PMID:27362424

  1. A high-salinity solution with calcium chloride enables RNase-free, easy plasmid isolation within 55 minutes.

    PubMed

    Sasagawa, Noboru; Koebis, Michinori; Yonemura, Yoji; Mitsuhashi, Hiroaki; Ishiura, Shoichi

    2013-12-01

    We dramatically improved a plasmid-isolation protocol based on the popular alkaline-sodium dodecyl sulfate plasmid isolation method. Our modified method provides significant time and cost savings. We used a modified solution during the neutralization step, which allowed us to skip several subsequent handling steps, saving a great amount of time. The plasmids purified by this method were of high quality, and the optical density ratio 260 and 280 was approximately 1.8. Plasmid DNA isolated by our method was of sufficient quality to perform subsequent restriction enzyme cuts and other downstream experiments, including budding yeast transformation, cultured cell transfection, and Caenorhabditis elegans injection experiments. PMID:24390365

  2. Piezoelectricity above the Curie temperature? Combining flexoelectricity and functional grading to enable high-temperature electromechanical coupling

    SciTech Connect

    Mbarki, R.; Baccam, N.; Dayal, Kaushik; Sharma, P.

    2014-03-24

    Most technologically relevant ferroelectrics typically lose piezoelectricity above the Curie temperature. This limits their use to relatively low temperatures. In this Letter, exploiting a combination of flexoelectricity and simple functional grading, we propose a strategy for high-temperature electromechanical coupling in a standard thin film configuration. We use continuum modeling to quantitatively demonstrate the possibility of achieving apparent piezoelectric materials with large and temperature-stable electromechanical coupling across a wide temperature range that extends significantly above the Curie temperature. With Barium and Strontium Titanate, as example materials, a significant electromechanical coupling that is potentially temperature-stable up to 900 °C is possible.

  3. High-efficiency fluorescent organic light-emitting diodes enabled by triplet-triplet annihilation and horizontal emitter orientation

    SciTech Connect

    Mayr, Christian Schmidt, Tobias D.; Brütting, Wolfgang

    2014-11-03

    A green organic light-emitting diode with the fluorescent emitter Coumarin 545T shows an external quantum efficiency (η{sub EQE}) of 6.9%, clearly exceeding the classical limit of 5% for fluorescent emitters. The analysis of the angular dependent photoluminescence spectrum of the emission layer reveals that 86% of the transition dipole moments are horizontally oriented. Furthermore, transient electroluminescence measurements demonstrate the presence of a delayed emission originating from triplet-triplet annihilation. A simulation based efficiency analysis reveals quantitatively the origin for the high η{sub EQE}: a radiative exciton fraction higher than 25% and a light-outcoupling efficiency of nearly 30%.

  4. Archiving data from new survey technologies: Enabling research with high-precision data while preserving participant privacy

    SciTech Connect

    Gonder, Jeffrey; Burton, Evan; Murakami, Elaine

    2015-12-29

    Despite the significant effort and expense to collect high-resolution Global Positioning System (GPS) data in travel surveys, privacy concerns often lead to its underutilization. This paper describes development of the Transportation Secure Data Center (TSDC) to address this dilemma of providing data access while preserving privacy. Furthermore, the TSDC operating structure was developed in consultation with an advisory committee and includes: a secure enclave with no external access for backing up and processing raw data, a publicly accessible website for downloading cleansed data, and a secure portal environment through which approved users can work with detailed spatial data using a variety of tools and reference information.

  5. An Extrusion Spheronization Approach to Enable a High Drug Load Formulation of a Poorly Soluble Drug with a Low Melting Surfactant.

    PubMed

    Tatava